(intel“

Intel® Math Kernel Library
for Windows*

Developer Guide

Intel® MKL 2018 - Windows*
Revision: 061

Legal Information

Intel® Math Kernel Library for Windows* Developer Guide

Contents

Legal INformationccviciieinmmnsmsnssansssnssssssanssanssasssanssnsssnnssnnssnnsnnnsnnnns 6
Getting Help and SUupport......ccciiciiimnsmi s s s ssssssasssassssnssnnssnnssnnsnnns 7
Introducing the Intele Math Kernel Librarycccccrveimnemncsnnnsasssnsnsnsnnnss 8
WHhat's NeW ..uciiiciiiciiciiseimemmssmmasssasssasmssssssssssssssssssnssnsssnnssnnssnnssnnnnnnss 10
Notational ConventionsS......cuicciiiiiriimismssmse s s s s sssnssanssanssnnnnns 11
Related INformationcccciviciismimismsesnse s s s sssnsssnsssnssanssanssnnsnns 12

Chapter 1: Getting Started

Checking Your Installationcooieiiiiiiiii e 13
Setting Environment Variables. e 13
(0o 0 0] oY1 1= YU o] oY] o c PP 14
USING COde EXAMIPIES .. ittt et et e e e e eeas 15
Before You Begin Using the Intel(R) Math Kernel Librarycoooviviiiiiiiiins 15
Chapter 2: Structure of the Intel(R) Math Kernel Library
PN ol a1 =Tt (U] o ST] o] o o | o PP 17
High-level Directory StrUCtUreo e eee 17
(= 17T o <To I\ Fo Yo 1= I @] o Vol =T o P 19
Chapter 3: Linking Your Application with the Intel(R) Math Kernel
Library
Linking QUICK STart ...oiiii i e 20
Using the /Qmkl Compiler Optionooiiiiiiiii e 20
Automatically Linking a Project in the Visual Studio* Integrated
Development Environment with Intel(R) MKLcoviiiiiiiiiiiciinnen, 21
Automatically Linking Your Microsoft Visual C/C++* Project with
INtel® MKL. ... 21
Automatically Linking Your Intele Visual Fortran Project with
INtel® MKL. .. et e aaeas 21
Using the Single Dynamic Libraryccooiiiiiiiiii e 22
Selecting Libraries to Link With.......ccooiiiii i 22
Using the Link-1in@ AdVIiSOrccviviiiiii e 23
Using the Command-line Link TOOIlocoiiiiiiiiiiii e 23
[T] Lo == [] 0] 1= P 23
Linking on IA-32 Architecture Systems........ccoiiiiiiiiiiiii e 23
Linking on Intel(R) 64 Architecture Systemsccoviiiiiiiiiiiiiiiines 24
Linking in Detail ...o.ueiei e 25
Dynamically Selecting the Interface and Threading Layer...................... 25
Linking with Interface Librariesccooovriiiiiiiii e 27
Using the cdecl and stdcall Interfacesccvvvviiiiiiiiiiiiciiiiiieiens 27
Using the ILP64 Interface vs. LP64 Interfacecooevviiviiiiinnnnns 28
Linking with Fortran 95 Interface Libraries............covviiiiiiininnnne. 30
Linking with Threading Librariescoiveiiiiiiiii e 30
Linking with Computational Libraries.........ccoooviiiiiii i 31
Linking with Compiler Run-time Libraries.........ccooiiiiiiiiiiii 32
Linking with System Libraries.......c.covviiiiiiiiii e 33
Building Custom Dynamic-link Librariesccooiiiiiiiiiiii e 33
Using the Custom Dynamic-link Library Builder in the Command-line
17 o T 1= 33

Contents

Composing a List of FUNCEIONSoiviiiiiiii e 35
Specifying FUNCtion Namesoooiiiiiii e 35
Building a Custom Dynamic-link Library in the Visual Studio*
Development Systemo e 36
Distributing Your Custom Dynamic-link Librarycc.oiiiiiiiiins 37
Chapter 4: Managing Performance and Memory
Improving Performance with Threadingcccoiiiiiiiiic e 38
OpenMP* Threaded Functions and Problemsccoeviiiiiiiiciiiie e, 38
Functions Threaded with Intele Threading Building Blocks..................... 40
Avoiding Conflicts in the Execution Environment...........c.oooiiiiiiiiinnnnn. 41
Techniques to Set the Number of Threads........ccoviviiiiiiiiiiii i 42
Setting the Number of Threads Using an OpenMP* Environment
VAl o 42
Changing the Number of OpenMP* Threads at Run Time....................... 43
Using Additional Threading Controlooiiiiiiiiiii e 45
Intel MKL-specific Environment Variables for OpenMP Threading
1000 a1 /o PP 45
1 S D A 1 46
MKL_DOMAIN_NUM_THREADS.ottt 47
MKL NUM STRIPES 4tusssueunsssuennrusnsnernsnmnernsieneinrmnmmnmmnms 48
Setting the Environment Variables for Threading Control............... 49
Calling Intel MKL Functions from Multi-threaded Applications 49
Using Intele Hyper-Threading Technologyccccooiiiiiiiiiiiiiiiiiiiciie e 51
Managing Multi-core PerformancCe..........vieiieiii i 51
Improving Performance for Small Size Problems ..o 52
Using MKL_DIRECT_CALL in C Applicationsccoviiiiiiiiii i e 53
Using MKL_DIRECT_CALL in Fortran Applications.........ccooeviiiieiinninnnnnn. 53
Limitations of the Direct Callccoiiiiiiiiii e 54
Other Tips and Techniques to Improve Performancec.vvevviiiiiiiiiiieniiaennns. 54
(@foTo 1 g Vo [l [=Tel ol o] (o [0 1= PP 54
Improving Intel(R) MKL Performance on Specific Processors.................. 55
Operating on Denormalsooeiiiiieii e e e eea 55
Using Memory FUNCHIONS......iiiiii i e 56
Memory Leaks in INtel MKL....ciiiiiiii i s e e e ae s 56
Redefining Memory FUNCLIONS ... 56

Chapter 5: Language-specific Usage Options

Using Language-Specific Interfaces with Intel(R) Math Kernel Library 58
Interface Libraries and Modules........c.ooviiiiiiiiiiii i naeas 58
Fortran 95 Interfaces to LAPACK and BLAScoviiiiiiiii i 60
Compiler-dependent Functions and Fortran 90 Modulescccceennee. 60
Using the stdcall Calling Convention in C/CH+4...ccciiiiiiiiiiiiiiiiiiiiie e 61
Compiling an Application that Calls the Intel(R) Math Kernel Library

and Uses the CVF Calling Conventions.......cccvviiiiiiiiiic i e 61

Mixed-language Programming with the Intel Math Kernel Library 62

Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language
ENVIFONMENTS ..o e 62
Using Complex Types iN C/CH+ ..ottt 63

Calling BLAS Functions that Return the Complex Values in C/C++ Code.. 64

Chapter 6: Obtaining Numerically Reproducible Results

Getting Started with Conditional Numerical Reproducibilityc..oooeeiiit. 68
Specifying Code BranChes......ccciiiiiiii 69
Reproducibility Conditions.......ccviviiiiii i 70

Intel® Math Kernel Library for Windows* Developer Guide

Setting the Environment Variable for Conditional Numerical Reproducibility 71
CodE EXAMPIES .o e 71
Chapter 7: Coding Tips
Example of Data AlgNment......ooiiiiii i e 74
Using Predefined Preprocessor Symbols for Intele MKL Version-Dependent
(@00 3 0] o] | = o] o [P 75
Chapter 8: Managing Output
Using Intel MKL Varbose MOAE ...c.uiiiiii i it e it ees 77
Version Information Lineciveiii i e 77
Call DeSCriPlioN LiNE cuiiiiii i e e 78
Chapter 9: Working with the Intele Math Kernel Library Cluster
Software
Message-Passing Interface SUPPOrt...cvvi i nee e 80
Linking with Intel MKL Cluster Software.......covviiiii i i i veneens 81
Determining the Number of OpenMP* Threadsccvviviiiiii i s 82
U =3 o T T 83
Setting Environment Variables on @ Cluster.......covviviiiiii i e 83
Interaction with the Message-passing Interfacecovoivviiiiiiiiiiic i 84
Using a Custom Message-Passing Interface.......cccovviiiiiiiiiii i venneens 85
Examples of Linking for ClUSEerS ...c.viiriii i e e raenneas 86
Examples for Linking @ C Application.......c.ccvviiiiiiiiiiiii e 86
Examples for Linking a Fortran Application........ccooviiiiiiiiic i 86

Chapter 10: Managing Behavior of the Intel(R) Math Kernel Library
with Environment Variables

Managing Behavior of Function Domains with Environment Variables 88
Setting the Default Mode of Vector Math with an Environment Variable... 88
Managing Performance of the Cluster Fourier Transform Functions 89

Instruction Set Specific Dispatching on Intele Architectures...........c.ccoviieenne. 90

Chapter 11: Programming with Intel(R) Math Kernel Library in the
Visual Studio* Integrated Development Environment
Configuring Your Integrated Development Environment to link with Intel(R)

1 T PP 93
Configuring the Microsoft Visual C/C++* Development System to Link
WIth Intel MKL ..o e e e e e reeeaas 93
Configuring Intel(R) Visual Fortran to Link with Intel MKL 94
Getting Assistance for Programming in the Microsoft Visual Studio* IDE 94
Using Context-Sensitive Help ... 94
Using the IntelliSense* Capability......ccocoviviiiiii 94
Chapter 12: Intele Math Kernel Library Benchmarks
Intele Optimized LINPACK Benchmark for Windows*cccviviiiiiiiniinnnnnne. 97
(@0) (=] 01 = 97
RUNNING the SoftWareo e 98
KNOWN Limitations ... e 99
Intele Distribution for LINPACK* Benchmark.......c.oovviiiiiiiicii e 99
L@ YT oY TP 99
@0) (=] 1 =P 100
Building the Intel Distribution for LINPACK Benchmark for a
Customized MPI Implementationcccviiiiiiii e 101
Building the Netlib HPL from Source Code.........coceiiiiiiiiiiiiiiiiiiieenen, 101

Contents

Configuring Parameters. ... oo 101
Ease-of-use Command-line Parametersc.cooviiiiiiiiiiiiiiie e 102
Running the Intel Distribution for LINPACK Benchmark...........cc.ovivenns 103
Heterogeneous Support in the Intel Distribution for LINPACK

BeNChMaArK i 103
Environment Variables ..o 105
Improving Performance of Your Clustercooiiiiiiiiiiiiiieeeens 106

Appendix A: Appendix A: Intel(R) Math Kernel Library Language
Interfaces Support

Language Interfaces Support, by Function Domain........cccevvviiiiniiiinnnnennn, 107
g T 10 T LT 1= 108
Appendix B: Support for Third-Party Interfaces
FFTW Interface SUP PO .o e i e e e aneeaas 110
Appendix C: Appendix C: Directory Structure In Detail
Detailed Structure of the IA-32 Architecture Directories........c.ccvvviiiiininnnnnn. 111
Static Libraries in the lib\ia32_win Directorycccoviviiiiiiiiiiiiiinnn, 111
Dynamic Libraries in the lib\ia32_win Directorycccooiiiiiiiiiiiiinns 112
Contents of the redist\ia32 win\mkl Directorycocoviiiiiiiinnnnnnn, 113
Detailed Structure of the Intel(R) 64 Architecture Directoriescccvvvvens 115
Static Libraries in the lib\intel64_win Directory........cccciiiiiiiiiiiiiniinnnns 115
Dynamic Libraries in the lib\intel64_win Directory............cociiiviiinnnnnn. 117
Contents of the redist\intel64 win\mkl Directory..........ccocieiiininnnn, 118

Intel® Math Kernel Library for Windows* Developer Guide

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest
forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from
published specifications. Current characterized errata are available on request.

Intel, the Intel logo, Intel Atom, Intel Core, Intel Xeon Phi, VTune and Xeon are trademarks of Intel
Corporation in the U.S. and/or other countries.

*QOther names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

This software and the related documents are Intel copyrighted materials, and your use of them is governed
by the express license under which they were provided to you (License). Unless the License provides
otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this software or the
related documents without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other
than those that are expressly stated in the License.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Getting Help and Support

Intel provides a support web site that contains a rich repository of self help information, including getting
started tips, known product issues, product errata, license information, user forums, and more. Visit the Intel

MKL support website at http://www.intel.com/software/products/support/.

You can get context-sensitive help when editing your code in the Microsoft Visual Studio* integrated
development environment (IDE). See Getting Assistance for Programming in the Microsoft Visual Studio* IDE

for details.

Intel® Math Kernel Library for Windows* Developer Guide

Introducing the Intel® Math Kernel
Library

Intel® Math Kernel Library (Intel® MKL) is a computing math library of highly optimized, extensively threaded
routines for applications that require maximum performance. The library provides Fortran and C
programming language interfaces. Intel MKL C language interfaces can be called from applications written in
either C or C++, as well as in any other language that can reference a C interface.

Intel MKL provides comprehensive functionality support in these major areas of computation:

e BLAS (level 1, 2, and 3) and LAPACK linear algebra routines, offering vector, vector-matrix, and matrix-
matrix operations.

e ScalAPACK distributed processing linear algebra routines, as well as the Basic Linear Algebra
Communications Subprograms (BLACS) and the Parallel Basic Linear Algebra Subprograms (PBLAS).

e Intel MKL PARDISO (a direct sparse solver based on Parallel Direct Sparse Solver PARDISO*), an iterative
sparse solver, and supporting sparse BLAS (level 1, 2, and 3) routines for solving sparse systems of
equations, as well as a distributed version of Intel MKL PARDISO solver provided for use on clusters.

e Fast Fourier transform (FFT) functions in one, two, or three dimensions with support for mixed radices
(not limited to sizes that are powers of 2), as well as distributed versions of these functions provided for
use on clusters.

e Vector Mathematics (VM) routines for optimized mathematical operations on vectors.

e \Vector Statistics (VS) routines, which offer high-performance vectorized random number generators
(RNG) for several probability distributions, convolution and correlation routines, and summary statistics
functions.

e Data Fitting Library, which provides capabilities for spline-based approximation of functions, derivatives
and integrals of functions, and search.

e Extended Eigensolver, a shared memory programming (SMP) version of an eigensolver based on the Feast
Eigenvalue Solver.

e Deep Neural Network (DNN) primitive functions with C language interface.

For details see the Intel® MKL Developer Reference.

Intel MKL is optimized for the latest Intel processors, including processors with multiple cores (see the Intel
MKL Release Notes for the full list of supported processors). Intel MKL also performs well on non-Intel
processors.

For Windows* and Linux* systems based on Intel® 64 Architecture, Intel MKL also includes support for the
Intel® Many Integrated Core Architecture (Intel® MIC Architecture) and provides libraries to help you port
your applications to Intel MIC Architecture.

NOTE
It is your responsibility when using Intel MKL to ensure that input data has the required format and
does not contain invalid characters. These can cause unexpected behavior of the library.

The library requires subroutine and function parameters to be valid before being passed. While some
Intel MKL routines do limited checking of parameter errors, your application should check for NULL
pointers, for example.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

Introducing the Intel® Math Kernel Library

Optimization Notice

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction

sets covered by this notice.
Notice revision #20110804

Intel® Math Kernel Library for Windows* Developer Guide

What's New

This Developer Guide documents Intel® Math Kernel Library (Intel® MKL) 2018 Update 3.

The Developer Guide has been updated to fix inaccuracies in the document.

10

Notational Conventions

The following term is used in reference to the operating system.

Windows*

This term refers to information that is valid on all supported Windows* operating
systems.

The following notations are used to refer to Intel MKL directories.

<parent
directory>

<mkl directory>

The installation directory that includes Intel MKL directory; for example, the
directory for Intel® Parallel Studio XE Composer Edition.

The main directory where Intel MKL is installed:
<mkl directory>=<parent directory>\mkl.

Replace this placeholder with the specific pathname in the configuring, linking, and
building instructions.

The following font conventions are used in this document.

Italic

Monospace
lowercase mixed
with uppercase

UPPERCASE
MONOSPACE

Monospace
italic

[items]

{ item | item }

Italic is used for emphasis and also indicates document names in body text, for
example:
see Intel MKL Developer Reference.

Indicates:

e Commands and command-line options, for example,

ifort myprog.f mkl blas95.1ib mkl c.lib libiomp5md.lib
* Filenames, directory names, and pathnames, for example,

C:\Program Files\Java\jdkl.5.0 09
e (C/C++ code fragments, for example,
a = new double [SIZE*SIZE];

Indicates system variables, for example, SMKLPATH.

Indicates a parameter in discussions, for example, 1da.

When enclosed in angle brackets, indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value, for example, <mk1 directory>.
Substitute one of these items for the placeholder.

Square brackets indicate that the items enclosed in brackets are optional.

Braces indicate that only one of the items listed between braces should be selected.
A vertical bar (|) separates the items.

11

Intel® Math Kernel Library for Windows* Developer Guide

Related Information

To reference how to use the library in your application, use this guide in conjunction with the following
documents:

e The Intel® Math Kernel Library Developer Reference, which provides reference information on routine
functionalities, parameter descriptions, interfaces, calling syntaxes, and return values.
e The Intel® Math Kernel Library for Windows* OS Release Notes.

12

Getting Started

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Checking Your Installation

After installing the Intel® Math Kernel Library (Intel® MKL), verify that the library is properly installed and
configured:

1. Intel MKL installs in the <parent directory> directory.
Check that the subdirectory of <parent directory> referred to as <mkl directory> was created.

Check that subdirectories for Intel MKL redistributable DLLs redist\ia32 win\mkl and redist
\intel64 win\mkl were created in the <parent directory> directory (See redist.txt in the Intel
MKL documentation directory for a list of files that can be redistributed.)

2. If you want to keep multiple versions of Intel MKL installed on your system, update your build scripts to
point to the correct Intel MKL version.

3. Check that the mklvars.bat file appears in the <mk1 directory>\bin directory.

Use this file to assign Intel MKL-specific values to several environment variables, as explained in Scripts
to Set Environment Variables Setting Environment Variables .

4. To understand how the Intel MKL directories are structured, see Structure of the Intel® Math Kernel
Library.

5. To make sure that Intel MKL runs on your system, launch an Intel MKL example, as explained in Using
Code Examples.

See Also
Notational Conventions

Setting Environment Variables

When the installation of Intel MKL for Windows* is complete, set the PATH, LIB, and INCLUDE environment
variables in the command shell using the mklvars.bat script in the bin subdirectory of the Intel MKL
installation directory.

The script accepts the parameters, explained in the following table:

Setting Specified Required Possible Values Comment
(Yes/No)
Architecture Yes, ia32

when applicabl
en applicable intel64

13

1 Intel® Math Kernel Library for Windows* Developer Guide

Setting Specified Required Possible Values Comment
(Yes/No)

Use of Intel MKL No mod Supply this

Fortran modules parameter only if you

precompiled with the are using this

Intel®Visual Fortran compiler.

compiler

Programming No 1p64, default

interface (LP64 or i

ILP64) ilp64

For example:

e The command
mklvars ia32
sets the environment for Intel MKL to use the IA-32 architecture.
e The command
mklvars intel64 mod ilp64
sets the environment for Intel MKL to use the Intel 64 architecture, ILP64 programming interface, and
Fortran modules.
e The command
mklvars intel64 mod
sets the environment for Intel MKL to use the Intel 64 architecture, LP64 interface, and Fortran modules.

NOTE
Supply the parameter specifying the architecture first, if it is needed. Values of the other two
parameters can be listed in any order.

See Also

High-level Directory Structure

Intel® MKL Interface Libraries and Modules

Fortran 95 Interfaces to LAPACK and BLAS

Setting the Number of Threads Using an OpenMP* Environment Variable

Compiler Support

Intel® MKL supports compilers identified in the Release Notes. However, the library has been successfully
used with other compilers as well.

Although Compaq no longer supports the Compagq Visual Fortran* (CVF) compiler, Intel MKL still preserves
the CVF interface in the IA-32 architecture implementation. You can use this interface with the Intel® Fortran
Compiler. Intel MKL provides both stdcall (default CVF interface) and cdecl (default interface of the Microsoft
Visual C* application) interfaces for the IA-32 architecture.

When building Intel MKL code examples, you can select a compiler:

e For Fortran examples: Intel® or PGI* compiler
e For C examples: Intel, Microsoft Visual C++*, or PGI compiler

Intel MKL provides a set of include files to simplify program development by specifying enumerated values
and prototypes for the respective functions. Calling Intel MKL functions from your application without an
appropriate include file may lead to incorrect behavior of the functions.

See Also
Compiling an Application that Calls Intel® MKL and Uses the CVF Calling Conventions
Using the cdecl and stdcall Interfaces

14

Getting Started 1

Intel® MKL Include Files

Using Code Examples

The Intel MKL package includes code examples, located in the examples subdirectory of the installation
directory. Use the examples to determine:

e Whether Intel MKL is working on your system
e How you should call the library
e How to link the library

If an Intel MKL component that you selected during installation includes code examples, these examples are
provided in a separate archive. Extract the examples from the archives before use.

For each component, the examples are grouped in subdirectories mainly by Intel MKL function domains and
programming languages. For instance, the blas subdirectory (extracted from the examples core archive)
contains a makefile to build the BLAS examples and the vmlc subdirectory contains the makefile to build the
C examples for Vector Mathematics functions. Source code for the examples is in the next-level sources
subdirectory.

See Also
High-level Directory Structure

What You Need to Know Before You Begin Using the Intel®
Math Kernel Library

Target platform Identify the architecture of your target machine:

e IA-32 or compatible
¢ Intel® 64 or compatible

Reason:Because Intel MKL libraries are located in directories corresponding to your
particular architecture (seeArchitecture Support), you should provide proper paths
on your link lines (see Linking Examples). To configure your development
environment for the use with Intel MKL, set your environment variables using the
script corresponding to your architecture (see Scripts to Set Environment Variables
Setting Environment Variables for details).

Mathematical Identify all Intel MKL function domains that you require:
problem « BLAS

e Sparse BLAS

* LAPACK

* PBLAS

e ScalAPACK

e Sparse Solver routines

e Parallel Direct Sparse Solvers for Clusters

* \Vector Mathematics functions (VM)

* Vector Statistics functions (VS)

* Fourier Transform functions (FFT)

e Cluster FFT

e Trigonometric Transform routines

e Poisson, Laplace, and Helmholtz Solver routines

e Optimization (Trust-Region) Solver routines

¢ Data Fitting Functions

L]

Extended Eigensolver Functions

15

1 Intel® Math Kernel Library for Windows* Developer Guide

Programming
language

Range of integer
data

Threading model

Number of threads

Linking model

MPI used

Reason: The function domain you intend to use narrows the search in the Intel MKL
Developer Reference for specific routines you need. Additionally, if you are using the
Intel MKL cluster software, your link line is function-domain specific (see Working
with the Intel® Math Kernel Library Cluster Software). Coding tips may also depend
on the function domain (see Other Tips and Techniques to Improve Performance).

Intel MKL provides support for both Fortran and C/C++ programming. Identify the
language interfaces that your function domains support (see Appendix A: Intel® Math
Kernel Library Language Interfaces Support).

Reason: Intel MKL provides language-specific include files for each function domain
to simplify program development (see Language Interfaces Support_ by Function
Domain).

For a list of language-specific interface libraries and modules and an example how to
generate them, see also Using Language-Specific Interfaces with Intel® Math Kernel
Library.

If your system is based on the Intel 64 architecture, identify whether your
application performs calculations with large data arrays (of more than 231-1
elements).

Reason: To operate on large data arrays, you need to select the ILP64 interface,
where integers are 64-bit; otherwise, use the default, LP64, interface, where
integers are 32-bit (see Using the ILP64 Interface vs).

Identify whether and how your application is threaded:

e Threaded with the Intel compiler
e Threaded with a third-party compiler
* Not threaded

Reason: The compiler you use to thread your application determines which
threading library you should link with your application. For applications threaded
with a third-party compiler you may need to use Intel MKL in the sequential mode
(for more information, see Linking with Threading Libraries).

If your application uses an OpenMP* threading run-time library, determine the
number of threads you want Intel MKL to use.

Reason: By default, the OpenMP* run-time library sets the number of threads for
Intel MKL. If you need a different number, you have to set it yourself using one of
the available mechanisms. For more information, see Improving Performance with
Threading.

Decide which linking model is appropriate for linking your application with Intel MKL
libraries:

e Static
¢ Dynamic

Reason: The link libraries for static and dynamic linking are different. For the list of
link libraries for static and dynamic models, linking examples, and other relevant
topics, like how to save disk space by creating a custom dynamic library, see Linking
Your Application with the Intel® Math Kernel Library.

Decide what MPI you will use with the Intel MKL cluster software. You are strongly
encouraged to use the latest available version of Intel® MPI.

Reason: To link your application with ScaLAPACK and/or Cluster FFT, the libraries
corresponding to your particular MPI should be listed on the link line (see Working
with the Intel® Math Kernel Library Cluster Software).

16

Structure of the Intel® Math
Kernel Library

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Architecture Support

Intel® Math Kernel Library (Intel® MKL) for Windows* provides architecture-specific implementations for
supported platforms. The following table lists the supported architectures and directories where each
architecture-specific implementation is located.

Architecture Location

IA-32 or compatible <mkl directory>\1lib\ia32 win
<parent directory>\redist\ia32 win\mkl
(DLLs)

Intel® 64 or compatible <mkl directory>\lib\intel64 win
<parent directory>\redist\intel64 win\mkl
(DLLs)

Intel® Many Integrated Core Architecture (Intel® <mkl directory>\..\..\linux\mkl\lib

MIC Architecture) \intel64 linmic

See Also

High-level Directory Structure

Notational Conventions

Detailed Structure of the IA-32 Architecture Directories
Detailed Structure of the Intel® 64 Architecture Directories

High-level Directory Structure

Directory Contents

<mkl directory> Installation directory of the Intel® Math Kernel Library (Intel® MKL)

Subdirectories of<mk1 directory>

bin Batch files to set environmental variables in the user shell

17

2 Intel® Math Kernel Library for Windows* Developer Guide

Directory Contents
bin\ia32 Batch files for the IA-32 architecture
bin\intelé64 Batch files for the Intel® 64 architecture

benchmarks\linpack
benchmarks\mp linpack
1lib\ia32 win
lib\intel64 win

examples

include
include\ia32

include\intel64\1p64

include\intel64\ilp64

include\fftw
interfaces\blas95
interfaces\fftw2x cdft
interfaces\fftw3x cdft
interfaces\fftw2xc
interfaces\fftw2xf
interfaces\fftw3xc
interfaces\fftw3xf
interfaces\lapack95

tools

tools\builder

Shared-Memory (SMP) version of the LINPACK benchmark
Message-passing interface (MPI) version of the LINPACK benchmark
Static libraries and static interfaces to DLLs for the IA-32 architecture
Static libraries and static interfaces to DLLs for the Intel® 64 architecture

Source and data files for Intel MKL examples. Provided in archives
corresponding to Intel MKL components selected during installation.

Include files for the library routines and examples
Fortran 95 .mod files for the IA-32 architecture and Intel Fortran compiler

Fortran 95 .mod files for the Intel® 64 architecture, Intel® Fortran
compiler, and LP64 interface

Fortran 95 .mod files for the Intel® 64 architecture, Intel Fortran compiler,
and ILP64 interface

Header files for the FFTW2 and FFTW3 interfaces

Fortran 95 interfaces to BLAS and a makefile to build the library
MPI FFTW 2.x interfaces to Intel MKL Cluster FFT

MPI FFTW 3.x interfaces to Intel MKL Cluster FFT

FFTW 2.x interfaces to the Intel MKL FFT (C interface)

FFTW 2.x interfaces to the Intel MKL FFT (Fortran interface)

FFTW 3.x interfaces to the Intel MKL FFT (C interface)

FFTW 3.x interfaces to the Intel MKL FFT (Fortran interface)
Fortran 95 interfaces to LAPACK and a makefile to build the library

Command-line link tool and tools for creating custom dynamically linkable
libraries

Tools for creating custom dynamically linkable libraries

Subdirectories of<parent directory>

redist\ia32 win\mkl

redist\intel64 win\mkl

DLLs for applications running on processors with the IA-32 architecture

DLLs for applications running on processors with Intel® 64 architecture

See Also
Notational Conventions
Using Code Examples

18

Structure of the Intel® Math Kernel Library 2

Layered Model Concept

Intel MKL is structured to support multiple compilers and interfaces, both serial and multi-threaded modes,
different implementations of threading run-time libraries, and a wide range of processors. Conceptually Intel
MKL can be divided into distinct parts to support different interfaces, threading models, and core
computations:

1. Interface Layer
2. Threading Layer
3. Computational Layer

You can combine Intel MKL libraries to meet your needs by linking with one library in each part layer-by-
layer.

To support threading with different compilers, you also need to use an appropriate threading run-time library
(RTL). These libraries are provided by compilers and are not included in Intel MKL.

The following table provides more details of each layer.

Layer Description

Interface Layer This layer matches compiled code of your application with the threading and/or
computational parts of the library. This layer provides:

* cdecl and CVF default interfaces.
e LP64 and ILP64 interfaces.
e Compatibility with compilers that return function values differently.

Threading Layer This layer:

* Provides a way to link threaded Intel MKL with supported compilers.
* Enables you to link with a threaded or sequential mode of the library.

This layer is compiled for different environments (threaded or sequential) and
compilers (from Intel and PGI*).

Computational This layer accommodates multiple architectures through identification of architecture
Layer features and chooses the appropriate binary code at run time.
See Also

Using the ILP64 Interface vs. LP64 Interface
Linking Your Application with the Intel® Math Kernel Library
Linking with Threading Libraries

19

3 Intel® Math Kernel Library for Windows* Developer Guide

Linking Your Application with
the Intel® Math Kernel Library

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Linking Quick Start

Intel® Math Kernel Library (Intel® MKL) provides several options for quick linking of your application. The
simplest options depend on your development environment:

Intel® Parallel Studio XE Composer Edition compiler see Using the /Qmkl Compiler Option.

Microsoft Visual Studio* Integrated Development Environment See Automatically Linking a Project in the
(IDE) Visual Studio* Integrated Development

Environment with Intel® MKL.

Other options are independent of your development environment, but depend on the way you link:

Explicit dynamic linking see Using the Single Dynamic Library for
how to simplify your link line.

Explicitly listing libraries on your link line see Selecting Libraries to Link with for a
summary of the libraries.

Using an interactive interface see Using the Link-line Advisor to
determine libraries and options to specify

on your link or compilation line.

Using an interna”y provided tool see Using the Command-line Link Tool to
determine libraries, options, and
environment variables or even compile and
build your application.

Using the /Qmkl Compiler Option

The Intel®Parallel Studio XE Composer Edition compiler supports the following variants of the /Qmk1l compiler
option:

/Qmkl or to link with a certain Intel MKL threading layer depending on the
/omkl:parallel threading option provided:

e For -gopenmp the OpenMP threading layer for Intel compilers
e For -tbb the Intel® Threading Building Blocks (Intel® TBB)
threading layer

/Omkl:sequential to link with sequential version of Intel MKL.

20

Linking Your Application with the Intel® Math Kernel Library 3

/Omkl:cluster to link with Intel MKL cluster components (sequential) that use
Intel MPI.
NOTE
The -gopenmp option has higher priority than -tbb in choosing the Intel MKL threading layer for
linking.

For more information on the /omk1 compiler option, see the Intel Compiler User and Reference Guides.
For each variant of the /Qmk1 option, the compiler links your application using the following conventions:

o cdecl for the IA-32 architecture
e LP64 for the Intel® 64 architecture

If you specify any variant of the /Qmk1 compiler option, the compiler automatically includes the Intel MKL
libraries. In cases not covered by the option, use the Link-line Advisor or see Linking in Detail.

See Also
Using the ILP64 Interface vs. LP64 Interface
Using the Link-line Advisor

Intel® Software Documentation Library for Intel® compiler documentation
for Intel® compiler documentation

Automatically Linking a Project in the Visual Studio* Integrated Development
Environment with Intel® MKL

After a default installation of the Intel® Math Kernel Library (Intel® MKL) or Intel® Parallel Studio XE Composer
Edition, you can easily configure your project to automatically link with Intel MKL.

Automatically Linking Your Microsoft Visual C/C++* Project with Intel® MKL

Configure your Microsoft Visual C/C++* project for automatic linking with Intel MKL as follows:

1. Go to Project>Properties>Configuration Properties>Intel Performance Libraries.
2. Change the Use MKL property setting by selecting Parallel, Sequential, or Cluster as appropriate.

Specific Intel MKL libraries that link with your application may depend on more project settings. For details,
see the documentation for Intel®Parallel Studio XE Composer Edition for C++.

See Also

Intel® Software Documentation Library for the documentation for Intel® Parallel Studio XE
Composer Edition
for the documentation for Intel® Parallel Studio XE Composer Edition

Automatically Linking Your Intel® Visual Fortran Project with Intel® MKL

Configure your Intel® Visual Fortran project for automatic linking with Intel MKL as follows:

Go to Project > Properties > Libraries > Use Intel Math Kernel Library and select Parallel,
Sequential, or Cluster as appropriate.

Specific Intel MKL libraries that link with your application may depend on more project settings. For details
see the documentation for Intel® Parallel Studio XE Composer Edition for Fortran.

See Also

Intel® Software Documentation Library for the documentation for Intel® Parallel Studio XE
Composer Edition
for the documentation for Intel® Parallel Studio XE Composer Edition

21

http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/

3 Intel® Math Kernel Library for Windows* Developer Guide

Using the Single Dynamic Library
You can simplify your link line through the use of the Intel MKL Single Dynamic Library (SDL).

To use SDL, place mk1l rt.1lib on your link line. For example:

icl.exe application.c mkl rt.lib

mkl rt.lib is the import library for mkl rt.dll.

SDL enables you to select the interface and threading library for Intel MKL at run time. By default, linking
with SDL provides:

e Intel LP64 interface on systems based on the Intel® 64 architecture
e Intel threading

To use other interfaces or change threading preferences, including use of the sequential version of Intel MKL,
you need to specify your choices using functions or environment variables as explained in section
Dynamically Selecting the Interface and Threading Layer.

Selecting Libraries to Link with
To link with Intel MKL:

e Choose one library from the Interface layer and one library from the Threading layer
e Add the only library from the Computational layer and run-time libraries (RTL)

The following table lists Intel MKL libraries to link with your application.

Interface layer Threading layer Computational RTL
layer

IA-32 mkl intel c.lib mkl intel mkl core.lib libiompb5md.lib
architecture, thread.lib
static linking
IA-32 mkl intel c mkl intel mkl core dll. libiomp5md.lib
architecture, dll.lib thread dll.1lib lib
dynamic linking
Intel® 64 mkl intel mkl intel mkl core.lib libiomp5md.1lib
architecture, 1p64.1ib thread.lib
static linking
Intel® 64 mkl intel mkl intel mkl core dll. libiomp5md.lib
architecture, 1lp64_dll. lib thread dll1.1ib lib
dynamic linking
Intel® Many libmkl intel libmkl intel libmkl core.a libiomp5.so
Integrated Core 1p64.a thread.a
Architecture
(Intel® MIC
Architecture),
static linking
Intel MIC libmkl intel libmkl intel libmkl core.so libiomp5.s0
Architecture, 1p64.so thread.so

dynamic linking

The Single Dynamic Library (SDL) automatically links interface, threading, and computational libraries and
thus simplifies linking. The following table lists Intel MKL libraries for dynamic linking using SDL. See
Dynamically Selecting the Interface and Threading Layer for how to set the interface and threading layers at
run time through function calls or environment settings.

22

Linking Your Application with the Intel® Math Kernel Library 3

SDL RTL

IA-32 and Intel® 64 mkl rt.lib libiomp5md.1lib’
architectures

fLinking with 1ibiomp5md.lib is not required.

For exceptions and alternatives to the libraries listed above, see Linking in Detail.

See Also

Layered Model Concept

Using the Link-line Advisor

Using the /omk1 Compiler Option
Working with the Cluster Software

Using the Link-line Advisor

Use the Intel MKL Link-line Advisor to determine the libraries and options to specify on your link or
compilation line.

The latest version of the tool is available at http://software.intel.com/en-us/articles/intel-mkl-link-line-
advisor. The tool is also available in the documentation directory of the product.

The Advisor requests information about your system and on how you intend to use Intel MKL (link
dynamically or statically, use threaded or sequential mode, and so on). The tool automatically generates the
appropriate link line for your application.

See Also
High-level Directory Structure

Using the Command-line Link Tool
Use the command-line Link tool provided by Intel MKL to simplify building your application with Intel MKL.

The tool not only provides the options, libraries, and environment variables to use, but also performs
compilation and building of your application.

The tool mk1l link tool.exe is installed in the <mkl directory>\tools directory.

See the knowledge base article at http://software.intel.com/en-us/articles/mkl-command-line-link-tool for
more information.

Linking Examples

See Also
Using the Link-line Advisor
Examples for Linking with ScaLAPACK and Cluster FFT

Linking on 1A-32 Architecture Systems
The following examples illustrate linking that uses Intel(R) compilers.

Most examples use the . f Fortran source file. C/C++ users should instead specify a .cpp (C++) or .c (C)
file and replace ifort with icl:

e Static linking of myprog. £ and OpenMP* threaded Intel MKL supporting the cdecl interface:

23

3 Intel® Math Kernel Library for Windows* Developer Guide

ifort myprog.f mkl intel c.lib mkl intel thread.lib mkl core.lib libiomp5md.lib
Dynamic linking of myprog. f and OpenMP* threaded Intel MKL supporting the cdecl interface:

ifort myprog.f mkl intel ¢ dll.lib mkl intel thread dll.lib mkl core dll.lib
libiompbmd.1lib
Static linking of myprog. £ and sequential version of Intel MKL supporting the cdecl interface:

ifort myprog.f mkl intel c.lib mkl sequential.lib mkl core.lib
Dynamic linking of myprog. f and sequential version of Intel MKL supporting the cdecl interface:

ifort myprog.f mkl intel c dll.lib mkl sequential dll.lib mkl core dll.lib
Static linking of user code myprog. f and OpenMP* threaded Intel MKL supporting the stdcall interface:

ifort myprog.f mkl intel s.lib mkl intel thread.lib mkl core.lib libiompb5md.lib
Dynamic linking of user code myprog. f and OpenMP* threaded Intel MKL supporting the stdcall interface:

ifort myprog.f mkl intel s dll.lib mkl intel thread dll.lib mkl core dll.lib
libiompbmd.1lib

Dynamic linking of myprog. f and OpenMP* threaded or sequential Intel MKL supporting the cdecl or
stdcall interface (Call the mk1l set threading layer function or set value of the

MKL THREADING LAYER environment variable to choose threaded or sequential mode):

ifort myprog.f mkl rt.lib
Static linking of myprog. £, Fortran 95 LAPACK interface, and OpenMP* threaded Intel MKL supporting the
cdecl interface:

ifort myprog.f mkl lapack95.1ib mkl intel c.lib mkl intel thread.lib mkl core.lib
libiomp5md.1lib

Static linking of myprog. £, Fortran 95 BLAS interface, and OpenMP* threaded Intel MKL supporting the
cdecl interface:

ifort myprog.f mkl blas95.1ib mkl intel c.lib mkl intel thread.lib mkl core.lib
libiomp5md.lib

Static linking of myprog.c and Intel MKL threaded with Intel® Threading Building Blocks (Intel® TBB),
provided that the L.IB environment variable contains the path to Intel TBB library:

icl myprog.c /link /libpath:$MKLPATH -I$MKLINCLUDE mkl intel.lib mkl tbb thread.lib
mkl core.lib tbb.lib

Dynamic linking of myprog.c and Intel MKL threaded with Intel TBB, provided that the LIB environment
variable contains the path to Intel TBB library:

icl myprog.c /link /libpath:$MKLPATH -ISMKLINCLUDE mkl intel d11.1lib
mkl tbb thread dll.lib mkl core dll.lib tbb.lib

See Also

Fortran 95 Interfaces to LAPACK and BLAS

Examples for linking a C application using cluster components
Examples for linking a Fortran application using cluster components
Using the Single Dynamic Library

Linking on Intel(R) 64 Architecture Systems

The following examples illustrate linking that uses Intel(R) compilers.

Most examples use the . f Fortran source file. C/C++ users should instead specify a .cpp (C++) or .c (C)
file and replace ifort with icl:

Static linking of myprog. f and OpenMP* threaded Intel MKL supporting the LP64 interface:

ifort myprog.f mkl intel 1p64.l1ib mkl intel thread.lib mkl core.lib
libiompbmd.1lib
Dynamic linking of myprog. £ and OpenMP* threaded Intel MKL supporting the LP64 interface:

ifort myprog.f mkl intel 1p64 dll.lib mkl intel thread dll.lib mkl core dll.lib

24

Linking Your Application with the Intel® Math Kernel Library 3

libiomp5md.lib
e Static linking of myprog. f and sequential version of Intel MKL supporting the LP64 interface:

ifort myprog.f mkl intel 1p64.l1ib mkl sequential.lib mkl core.lib
e Dynamic linking of myprog. £ and sequential version of Intel MKL supporting the LP64 interface:

ifort myprog.f mkl intel 1p64 dll.lib mkl sequential dll.lib mkl core dll.lib
e Static linking of myprog. £ and OpenMP* threaded Intel MKL supporting the ILP64 interface:

ifort myprog.f mkl intel ilp64.1ib mkl intel thread.lib mkl core.lib libiomp5md.lib
e Dynamic linking of myprog.f and OpenMP* threaded Intel MKL supporting the ILP64 interface:

ifort myprog.f mkl intel ilp64 dll.lib mkl intel thread dll.lib mkl core dll.lib
libiomp5md.lib

¢ Dynamic linking of user code myprog.f and OpenMP* threaded or sequential Intel MKL supporting the
LP64 or ILP64 interface (Call appropriate functions or set environment variables to choose threaded or
sequential mode and to set the interface):

ifort myprog.f mkl rt.lib
e Static linking of myprog. f, Fortran 95 LAPACK interface, and OpenMP* threaded Intel MKL supporting the
LP64 interface:

ifort myprog.f mkl lapack95 1p64.lib mkl intel 1p64.l1lib mkl intel thread.lib
mkl core.lib libiompS5md.lib

e Static linking of myprog. £, Fortran 95 BLAS interface, and OpenMP* threaded Intel MKL supporting the
LP64 interface:

ifort myprog.f mkl blas95 1p64.1lib mkl intel 1p64.1lib mkl intel thread.lib
mkl core.lib libiomp5md.lib

e Static linking of myprog.c and Intel MKL threaded with Intel® Threading Building Blocks (Intel® TBB),
provided that the L.IB environment variable contains the path to Intel TBB library:

icl myprog.c /link /libpath:$MKLPATH% -I$MKLINCLUDE% mkl intel 1p64.lib
mkl tbb thread.lib mkl core.lib tbb.lib

¢ Dynamic linking of myprog.c and Intel MKL threaded with Intel TBB, provided that the LIB environment
variable contains the path to Intel TBB library:

icl myprog.c /link /libpath:$MKLPATH% -IS$MKLINCLUDE% mkl intel 1p64 dl1l.1lib
mkl tbb thread dll.lib mkl core dll.lib tbb.lib

See Also

Fortran 95 Interfaces to LAPACK and BLAS

Examples for linking a C application using cluster components
Examples for linking a Fortran application using cluster components
Using the Single Dynamic Library

Linking in Detail

This section recommends which libraries to link with depending on your Intel MKL usage scenario and
provides details of the linking.

Dynamically Selecting the Interface and Threading Layer
The Single Dynamic Library (SDL) enables you to dynamically select the interface and threading layer for
Intel MKL.

Setting the Interface Layer

To set the interface layer at run time, use the mkl set interface layer function or the
MKL INTERFACE LAYER environment variable.

25

3 Intel® Math Kernel Library for Windows* Developer Guide

Available interface layers depend on the architecture of your system.

On systems based on the Intel® 64 architecture, LP64 and ILP64 interfaces are available. The following table
provides values to be used to set each interface layer.

Specifying the Interface Layer

Interface Layer Value of Value of the Parameter of
MKL_ INTERFACE LAYER mkl set_interface layer

Intel LP64, default LP64 MKL INTERFACE LP64

Intel ILP64 ILP64 MKL INTERFACE ILP64

If the mkl set interface layer function is called, the environment variable MKL INTERFACE LAYER is
ignored.

See the Intel MKL Developer Reference for details of the mkl set interface layer function.

On systems based on the IA-32 architecture, the cdecl and stdcall interfaces are available. These interfaces
have different function naming conventions, and SDL selects between cdecl and stdcall at link time according
to the function names.

Setting the Threading Layer

To set the threading layer at run time, use the mkl set threading layer function or the
MKL THREADING LAYER environment variable. The following table lists available threading layers along with
the values to be used to set each layer.

Specifying the Threading Layer

Threading Layer Value of Value of the Parameter of
MKL_ THREADING LAYER mkl set_ threading layer

Intel threading, INTEL MKL THREADING INTEL

default

Sequential mode SEQUENTIAL MKL THREADING SEQUENTIAL

of Intel MKL

PGI threading” PGI MKL THREADING PGI

Intel TBB TBB MKL THREADING TBB

threading

T Not supported by the SDL for Intel® Many Integrated Core Architecture.

If the mkl set threading layer function is called, the environment variable MKL THREADING LAYER is
ignored.

See the Intel MKL Developer Reference for details of the mkl set threading layer function.

Replacing Error Handling and Progress Information Routines

You can replace the Intel MKL error handling routine xerbla or progress information routine mkl progress
with your own function. If you are using SDL, to replace xerbla or mkl progress, call the mkl set xerbla
and mkl set progress function, respectively. See the Intel MKL Developer Reference for details.

26

Linking Your Application with the Intel® Math Kernel Library 3

NOTE
If you are using SDL, you cannot perform the replacement by linking the object file with your
implementation of xerbla or mkl progress.

See Also

Using the Single Dynamic Library
Layered Model Concept

Using the cdecl and stdcall Interfaces
Directory Structure in Detail

Linking with Interface Libraries

Using the cdecl and stdcall Interfaces

cdecl and stdcall calling conventions differ in the way how the stack is restored after a function call. Intel MKL
supports both conventions in its IA-32 architecture implementation through the mk1 intel c[d11].lib
and mkl intel s[dl1].1lib interface libraries. These libraries assume the defaults of different compilers,
which also differ in the position of the string lengths in the lists of parameters passed to the calling program,
as explained in the following table:

Library for Static Linking Library for Dynamic Linking Calling Position of String
Convention Lengths in
Parameter Lists

mkl intel c.lib mkl intel c dll.lib cdecl At the end

The defaults of Intel® C++ and Intel®
Fortran compilers

mkl intel s.lib mkl intel s dll.1lib stdcall Immediately after
the string address

The defaults of Compaq Visual
Fortran* (CVF) compiler

Important
To avoid errors, ensure that the calling and called programs use the same calling convention.

To use the cdecl or stdcall calling convention, use appropriate calling syntax in C applications and appropriate
compiler options for Fortran applications.

If you are using a C compiler, to link with the cdecl or stdcall interface library, call Intel MKL routines in your
code as explained in the table below:

Interface Library Calling Intel MKL Routines

mkl_intel c Use the following declaration:

[d11].1ib

<type> name (<prototype variablel>, <prototype variable2>, ..);
mkl intel s Call a routine with the following statement:
[d11].1ib

extern stdcall name(<prototype variablel>, <prototype variable2>, ..);

If you are using a Fortran compiler, to link with the cdecl or stdcall interface library, provide compiler options
as explained in the table below:

27

3 Intel® Math Kernel Library for Windows* Developer Guide

Interface Library Compiler Options Comment

Intel® Fortran compiler

mkl intel c[d11].1lib Default
mkl intel s[dl11].lib /Gm /Gm and /iface:cvf options
or enable compatibility of the CVF and
/iface:cvf Powerstation calling conventions
CVF compiler
mkl intel s[dl11].lib Default
mkl intel c[dl1].1lib /iface=(cref,

nomixed str len arg)

See Also
Using the stdcall Calling Convention in C/C++
Compiling an Application that Calls Intel® MKL and Uses the CVF Calling Conventions

Using the ILP64 Interface vs. LP64 Interface

The Intel MKL ILP64 libraries use the 64-bit integer type (necessary for indexing large arrays, with more than
231-1 elements), whereas the LP64 libraries index arrays with the 32-bit integer type.

The LP64 and ILP64 interfaces are implemented in the Interface layer. Link with the following interface
libraries for the LP64 or ILP64 interface, respectively:

e mkl intel 1p64.libormkl intel ilp64.1lib for static linking
e mkl intel 1p64 dll.lib ormkl intel ilp64 dll.1lib for dynamic linking

The ILP64 interface provides for the following:

e Support large data arrays (with more than 231-1 elements)
e Enable compiling your Fortran code with the /418 compiler option

The LP64 interface provides compatibility with the previous Intel MKL versions because "LP64" is just a new
name for the only interface that the Intel MKL versions lower than 9.1 provided. Choose the ILP64 interface if
your application uses Intel MKL for calculations with large data arrays or the library may be used so in future.

Intel MKL provides the same include directory for the ILP64 and LP64 interfaces.

Compiling for LP64/ILP64

The table below shows how to compile for the ILP64 and LP64 interfaces:

Fortran

Compiling for ifort /418 /I<mkl directory>\include
ILP64

Compiling for LP64 ifort /I<mkl directory>\include

CorC++

Compiling for icl /DMKL ILP64 /I<mkl directory>\include
ILP64

Compiling for LP64 icl /I<mkl directory>\include

28

Linking Your Application with the Intel® Math Kernel Library 3

Caution
Linking of an application compiled with the /418 or /DMKL ILP64 option to the LP64 libraries may
result in unpredictable consequences and erroneous output.

Coding for ILP64
You do not need to change existing code if you are not using the ILP64 interface.

To migrate to ILP64 or write new code for ILP64, use appropriate types for parameters of the Intel MKL
functions and subroutines:

Integer Types Fortran Cor C++

32-bit integers INTEGER*4 or int
INTEGER (KIND=4)

Universal integers for ILP64/ INTEGER MKL INT
LP64: without specifying KIND

e 64-bit for ILP64

e 32-bit otherwise

Universal integers for ILP64/ INTEGER*8 or MKL INT64
LP64: INTEGER (KIND=8)

e 64-bit integers

FFT interface integers for ILP64/ INTEGER MKL_ LONG
LP64 without specifying KIND

To determine the type of an integer parameter of a function, use appropriate include files. For functions that
support only a Fortran interface, use the C/C++ include files *.h.

The above table explains which integer parameters of functions become 64-bit and which remain 32-bit for
ILP64. The table applies to most Intel MKL functions except some Vector Mathematics and Vector Statistics
functions, which require integer parameters to be 64-bit or 32-bit regardless of the interface:

e Vector Mathematics: The mode parameter of the functions is 64-bit.
¢ Random Number Generators (RNG):

All discrete RNG except viRngUniformBits64 are 32-bit.

The viRngUniformBits64 generator function and vs1SkipAheadStream service function are 64-bit.
e Summary Statistics: The estimate parameter of the vslsSSCompute/vsldSSCompute function is 64-
bit.

Refer to the Intel MKL Developer Reference for more information.

To better understand ILP64 interface details, see also examples.

Limitations
All Intel MKL function domains support ILP64 programming but FFTW interfaces to Intel MKL:

e FFTW 2.x wrappers do not support ILP64.
e FFTW 3.x wrappers support ILP64 by a dedicated set of functions plan guru64.

See Also
High-level Directory Structure
Intel® MKL Include Files

29

3 Intel® Math Kernel Library for Windows* Developer Guide

Language Interfaces Support, by Function Domain
Layered Model Concept
Directory Structure in Detail

Linking with Fortran 95 Interface Libraries

The mkl blas95*.1ib and mkl lapack95*.1ib libraries contain Fortran 95 interfaces for BLAS and
LAPACK, respectively, which are compiler-dependent. In the Intel MKL package, they are prebuilt for the
Intel® Fortran compiler. If you are using a different compiler, build these libraries before using the interface.

See Also
Fortran 95 Interfaces to LAPACK and BLAS
Compiler-dependent Functions and Fortran 90 Modules

Linking with Threading Libraries

Intel MKL threading layer defines how Intel MKL functions utilize multiple computing cores of the system that
the application runs on. You must link your application with one appropriate Intel MKL library in this layer, as
explained below. Depending on whether this is a threading or a sequential library, Intel MKL runs in a parallel
or sequential mode, respectively.

In the parallel mode, Intel MKL utilizes multiple processor cores available on your system, uses the OpenMP*
or Intel TBB threading technology, and requires a proper threading run-time library (RTL) to be linked with
your application. Independently of use of Intel MKL, the application may also require a threading RTL. You
should link not more than one threading RTL to your application. Threading RTLs are provided by your
compiler. Intel MKL provides several threading libraries, each dependent on the threading RTL of a certain
compiler, and your choice of the Intel MKL threading library must be consistent with the threading RTL that
you use in your application.

The OpenMP RTL of the Intel® compiler is the 1ibiomp5md. 1ib library, located under <parent directory>
\compiler\1lib. You can find additional information about the Intel OpenMP RTL at https://
www.openmprtl.org.

The Intel TBB RTL of the Intel® compiler is the tbb.1ib library, located under <parent directory>\tbb
\1ib. You can find additional information about the Intel TBB RTL at https://
www.threadingbuildingblocks.org.

In the sequential mode, Intel MKL runs unthreaded code, does not require an threading RTL, and does not
respond to environment variables and functions controlling the number of threads. Avoid using the library in
the sequential mode unless you have a particular reason for that, such as the following:

e Your application needs a threading RTL that none of Intel MKL threading libraries is compatible with

e Your application is already threaded at a top level, and using parallel Intel MKL only degrades the
application performance by interfering with that threading

e Your application is intended to be run on a single thread, like a message-passing Interface (MPI)
application

It is critical to link the application with the proper RTL. The table below explains what library in the Intel MKL
threading layer and what threading RTL you should choose under different scenarios:

Application Intel MKL RTL Required

Uses Compiled
OpenMP with

Execution Mode Threading Layer

no any compiler parallel Static linking: libiompbmd.lib

mkl intel
thread.lib

Dynamic linking:

mkl intel
thread dll1.1lib

30

Linking Your Application with the Intel® Math Kernel Library

3

Application

Intel MKL

RTL Required

Uses
OpenMP

Compiled
with

Execution Mode

Threading Layer

no

no

yes

yes

yes

any compiler

any compiler

Intel compiler

PGI*

compiler

any other
compiler

parallel

sequential

parallel

parallel

parallel

Static linking: thbb.1lib

mkl tbb
thread.lib

Dynamic linking:

mkl tbb

thread dl1.1lib

Static linking: none

mkl
sequential.lib

Dynamic linking:

mkl

sequential dll.1lib

Static linking: libiompb5md.1lib

mkl intel
thread.lib

Dynamic linking:

mkl intel

thread dll.1lib

Static linking: PGI OpenMP RTL
mkl pgi

thread.lib

Dynamic linking:

mkl pgi
thread dll.1lib

Not supported. Use Intel
MKL in the sequential
mode.

See Also

Layered Model Concept
Notational Conventions

Linking with Computational Libraries

If you are not using the Intel MKL ScaLAPACK and Cluster Fast Fourier Transforms (FFT), you need to link
your application with only one computational library, depending on the linking method:

Static Linki

ng

Dynamic Linking

mkl core.lib

mkl core dll.1lib

Computational Libraries for Applications that Use ScaLAPACK or Cluster FFT

ScalAPACK and Cluster FFT require more computational libraries, which may depend on your architecture.

31

3 Intel® Math Kernel Library for Windows* Developer Guide

The following table lists computational libraries for IA -32 architecture applications that use ScaLAPACK or
Cluster FFT.

Computational Libraries for IA-32 Architecture

Function domain Static Linking Dynamic Linking
ScalLAPACK ' mkl scalapack core.lib mkl scalapack core dll.lib
mkl core.lib mkl core dll.lib
Cluster Fourier mkl cdft core.lib mkl cdft core dll.1lib
Transform , ,
. + mkl core.lib mkl core dll.lib
Functions - — —

T Also add the library with BLACS routines corresponding to the MPI used.

The following table lists computational libraries for Intel® 64 or Intel® Many Integrated Core Architecture
applications that use ScalLAPACK or Cluster FFT.

Computational Libraries for the Intel® 64 or Intel® Many Integrated Core Architecture

Function domain Static Linking Dynamic Linking
ScalAPACK, LP64 mkl scalapack 1p64.1ib mkl scalapack 1lp64 dll.lib
interface* , _

mkl core.lib mkl core dll.lib
ScalLAPACK, ILP64 mkl scalapack ilp64.1lib mkl scalapack ilp64 dll.lib
interface* , .

mkl core.lib mkl core dll.lib
Cluster Fourier mkl cdft core.lib mkl cdft core dll.lib
Transform))

. + mkl core.lib mkl core dll.lib

Functions - - -

* Also add the library with BLACS routines corresponding to the MPI used.

See Also

Linking with ScaLAPACK and Cluster FFT
Using the Link-line Advisor

Using the ILP64 Interface vs. LP64 Interface

Linking with Compiler Run-time Libraries
Dynamically link 1ibiomp5 or tbb library even if you link other libraries statically.

Linking to the 1ibiomp5 statically can be problematic because the more complex your operating environment
or application, the more likely redundant copies of the library are included. This may result in performance
issues (oversubscription of threads) and even incorrect results.

To link 1ibiomp5 or tbb dynamically, be sure the PATH environment variable is defined correctly.

Sometimes you may improve performance of your application with threaded Intel MKL by using the /MT
compiler option. The compiler driver will pass the option to the linker and the latter will load multi-thread
(MT) static run-time libraries.

However, to link a Vector Mathematics (VM) application that uses the errno variable for error reporting,
compile and link your code using the option that depends on the linking model:

e /MT for linking with static Intel MKL libraries
e /MD for linking with dynamic Intel MKL libraries

32

Linking Your Application with the Intel® Math Kernel Library 3

See Also
Setting Environment Variables
Layered Model Concept

Linking with System Libraries

If your system is based on the Intel® 64architecture, be aware that Microsoft SDK builds 1289 or higher
provide the bufferoverflowu.lib library to resolve the security cookie external references.
Makefiles for examples and tests include this library by using the buf lib=bufferoverflowu.lib macro. If
you are using older SDKs, leave this macro empty on your command line as follows: buf lib= .

See Also
Linking Examples

Building Custom Dynamic-link Libraries

Custom dynamic-link libraries (DLL) reduce the collection of functions available in Intel MKL libraries to those
required to solve your particular problems, which helps to save disk space and build your own dynamic
libraries for distribution.

The Intel MKL custom DLL builder enables you to create a dynamic library containing the selected functions
and located in the tools\builder directory. The builder contains a makefile and a definition file with the list

of functions.

Using the Custom Dynamic-link Library Builder in the Command-line Mode
To build a custom DLL, use the following command:
nmake target [<options>]

The following table lists possible values of target and explains what the command does for each value:

Value Comment

1ibia32 The builder uses static Intel MKL interface, threading, and core libraries to build a

custom DLL for the IA-32 architecture.

libintel64 The builder uses static Intel MKL interface, threading, and core libraries to build a
custom DLL for the Intel® 64 architecture.

dllias3z The builder uses the single dynamic library 1ibmkl rt.d11 to build a custom DLL
for the IA-32 architecture.

dllintelo4 . . A) .
The builder uses the single dynamic library 1ibmkl rt.d11 to build a custom DLL
for the Intel® 64 architecture.

help

The command prints Help on the custom DLL builder

The <options> placeholder stands for the list of parameters that define macros to be used by the makefile.
The following table describes these parameters:

Parameter Description
[Values]

interface Defines which programming interface to use.Possible values:

e For the IA-32 architecture, {cdecl|stdcall}. The default value is cdecl.

33

3 Intel® Math Kernel Library for Windows* Developer Guide

Parameter Description
[Values]

e For the Intel 64 architecture, {1p64|ilp64}. The default value is 1p64.

threading =
{parallel]|
sequential}

Defines whether to use the Intel MKL in the threaded or sequential mode. The
default value is parallel.

export =

. Specifies the full name of the file that contains the list of entry-point functions to be
<file name>

included in the DLL. The default name is user example list (no extension).

name = <dll1l

names Specifies the name of the dll and interface library to be created. By default, the

names of the created libraries are mkl custom.dll and mkl custom.lib.

xerbla =

Specifies the name of the object file <user xerbla>.obj that contains the user's
<error handler> -

error handler. The makefile adds this error handler to the library for use instead of
the default Intel MKL error handler xerbla. If you omit this parameter, the native
Intel MKL xerbla is used. See the description of the xerbla function in the Intel
MKL Developer Reference on how to develop your own error handler. For the IA-32
architecture, the object file should be in the interface defined by the interface macro
(cdecl or stdcall).

MKLROOT =

) Specifies the location of Intel MKL libraries used to build the custom DLL. By default,
<mkl directory>

the builder uses the Intel MKL installation directory.

buf_1ib Manages resolution of the security cookie external references in the custom
DLL on systems based on the Intel® 64 architecture.
By default, the makefile uses the bufferoverflowu.lib library of Microsoft SDK
builds 1289 or higher. This library resolves the security cookie external
references.
To avoid using this library, set the empty value of this parameter. Therefore, if you
are using an older SDK, set buf 1lib= .
Caution
Use the buf 1ib parameter only with the empty value. Incorrect value of the parameter
causes builder errors.
crt = <c run-

Specifies the name of the Microsoft C run-time library to be used to build the custom

time library> DLL. By default, the builder uses msvcrt.lib.

manifest =

Manages the creation of a Microsoft manifest for the custom DLL:
{yes|no|embed}

* If manifest=yes, the manifest file with the name defined by the name
parameter above and the manifest extension will be created.

e If manifest=no, the manifest file will not be created.

e If manifest=embed, the manifest will be embedded into the DLL.

By default, the builder does not use the manifest parameter.

All the above parameters are optional.

In the simplest case, the command line is nmake ia32, and the missing options have default values. This
command creates the mkl custom.dll and mkl custom.lib libraries with the cdecl interface for
processors using the IA-32 architecture. The command takes the list of functions from the functions list
file and uses the native Intel MKL error handler xerbla.

An example of a more complex case follows:

34

Linking Your Application with the Intel® Math Kernel Library 3

nmake ia32 interface=stdcall export=my func list.txt name=mkl smallxerbla=my xerbla.obj

In this case, the command creates the mk1 small.dll and mkl small.lib libraries with the stdcall
interface for processors using the IA-32 architecture. The command takes the list of functions from
my func list.txt file and uses the user's error handler my xerbla.obj.

The process is similar for processors using the Intel® 64 architecture.

See Also
Linking with System Libraries

Composing a List of Functions

To compose a list of functions for a minimal custom DLL needed for your application, you can use the
following procedure:

1. Link your application with installed Intel MKL libraries to make sure the application builds.
2. Remove all Intel MKL libraries from the link line and start linking.

Unresolved symbols indicate Intel MKL functions that your application uses.
3. Include these functions in the list.

Important
Each time your application starts using more Intel MKL functions, update the list to include the new
functions.

See Also
Specifying Function Names

Specifying Function Names

In the file with the list of functions for your custom DLL, adjust function names to the required interface. For
example, you can list the cdecl entry points as follows:

DGEMM

DTRSM

DDOT

DGETRF
DGETRS
cblas dgemm
cblas _ddot
You can list the stdcall entry points as follows:
_DGEMM@60
_DDOT@20
_DGETRF@24

For more examples, see domain-specific lists of function names in the <mk1 directory>\tools\builder
folder. This folder contains lists of function names for both cdecl or stdcall interfaces.

35

3 Intel® Math Kernel Library for Windows* Developer Guide

NOTE
The lists of function names are provided in the <mkl directory>\tools\builder folder merely as

examples. See Composing a List of Functions for how to compose lists of functions for your custom
DLL.

Tip

Names of Fortran-style routines (BLAS, LAPACK, etc.) can be both upper-case or lower-case, with or
without the trailing underscore. For example, these names are equivalent:

BLAS: dgemm, DGEMM, dgemm_ , DGEMM

LAPACK: dgetrf, DGETRF, dgetrf , DGETRF .

Properly capitalize names of C support functions in the function list. To do this, follow the guidelines below:

1. Inthemkl service.h include file, look up a #define directive for your function
(mkl service.his included in the mkl.h header file).
2. Take the function name from the replacement part of that directive.

For example, the #define directive for the mkl disable fast mm function is
#define mkl disable fast mm MKL Disable Fast MM.

Capitalize the name of this function in the list like this: MKL Disable Fast MM.

For the names of the Fortran support functions, see the tip.

Building a Custom Dynamic-link Library in the Visual Studio* Development System

You can build a custom dynamic-link library (DLL) in the Microsoft Visual Studio* Development System
(VS*). To do this, use projects available in the tools\builder\MSVS_Projects subdirectory of the Intel
MKL directory. The directory contains subdirectories with projects for the respective versions of the Visual
Studio Development System, for example, vS2012. For each version of VS two solutions are available:

e libia32.sln builds a custom DLL for the IA-32 architecture.
e libintel64.sln builds a custom DLL for the Intel® 64 architecture.

The builder uses the following default settings for the custom DLL:

Interface: cdecl for the IA-32 architecture and LP64 for the Intel 64
architecture

Error handler: Native Intel MKL xerbla

Create Microsoft manifest: yes

List of functions: in the project's source file examples.def

To build a custom DLL:

1. Set the MKLROOT environment variable with the installation directory of the Intel MKL version you are
going to use.
2. Openthelibia32.slnor libintel64.sln solution depending on the architecture of your system.

The solution includes the following projects:

e i malloc dll

e vml dll core

e cdecl parallel (in libia32.sln) or 1p64 parallel (in libintel64.sln)

e cdecl sequential (in 1ibia32.sln)or 1p64 sequential (in libintel64.sln)

3. [Optional] To change any of the default settings, select the project depending on whether the DLL will
use Intel MKL functions in the sequential or multi-threaded mode:

36

Linking Your Application with the Intel® Math Kernel Library 3

e Inthe 1ibia32 solution, select the cdecl sequential or cdecl parallel project.
e Inthe l1ibintelé64 solution, select the 1p64 sequential or 1p64 parallel project.

4. [Optional] To build the DLL that uses the stdcall interface for the IA-32 architecture or the ILP64
interface for the Intel 64 architecture:
a. Select Project>Properties>Configuration Properties>Linker>Input>Additional
Dependencies.
b. Inthe 1ibia32 solution, change mkl intel c.lib tomkl intel s.lib.
In the 1ibintel64 solution, change mkl intel 1p64.lib tomkl intel ilp64.lib.
5. [Optional] To include your own error handler in the DLL:
a. Select Project>Properties>Configuration Properties>Linker>Input.
b. Add <user xerbla>.ob]
6. [Optional] To turn off creation of the manifest:
a. Select Project>Properties>Configuration Properties>Linker>Manifest File>Generate
Manifest.
b. Select: no.
7. [Optional] To change the list of functions to be included in the DLL:
a. Select Source Files.
b. Edit the examples.def file. Refer to Specifying Function Names for how to specify entry points.
8. To build the library, select Build>Build Solution.
See Also

Using the Custom Dynamic-link Library Builder in the Command-line Mode

Distributing Your Custom Dynamic-link Library

To enable use of your custom DLL in a threaded mode, distribute 1ibiomp5md.d11 along with the custom

DLL.

37

4 Intel® Math Kernel Library for Windows* Developer Guide

Managing Performance and
Memory

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Improving Performance with Threading

Intel® Math Kernel Library (Intel® MKL) is extensively parallelized. See OpenMP* Threaded Functions and
Problems and Functions Threaded with Intel® Threading Building Blocks for lists of threaded functions and
problems that can be threaded.

Intel MKL is thread-safe, which means that all Intel MKL functions (except the LAPACK deprecated routine 2
lacon) work correctly during simultaneous execution by multiple threads. In particular, any chunk of
threaded Intel MKL code provides access for multiple threads to the same shared data, while permitting only
one thread at any given time to access a shared piece of data. Therefore, you can call Intel MKL from
multiple threads and not worry about the function instances interfering with each other.

If you are using OpenMP* threading technology, you can use the environment variable OMP_NUM THREADS to
specify the number of threads or the equivalent OpenMP run-time function calls. Intel MKL also offers
variables that are independent of OpenMP, such as MKL NUM THREADS, and equivalent Intel MKL functions for
thread management. The Intel MKL variables are always inspected first, then the OpenMP variables are
examined, and if neither is used, the OpenMP software chooses the default number of threads.

By default, Intel MKL uses the number of OpenMP threads equal to the number of physical cores on the
system.

If you are using the Intel TBB threading technology, the OpenMP threading controls, such as the
OMP NUM THREADS environment variable or MKL NUM THREADS function, have no effect. Use the Intel TBB
application programming interface to control the number of threads.

To achieve higher performance, set the humber of threads to the number of processors or physical cores, as
summarized in Techniques to Set the Number of Threads.

See Also
Managing Multi-core Performance

OpenMP* Threaded Functions and Problems

The following Intel MKL function domains are threaded with the OpenMP* technology:

e Direct sparse solver.
e LAPACK.

For a list of threaded routines, see LAPACK Routines.
e Levell and Level2 BLAS.

For a list of threaded routines, see BLAS Levell and Level2 Routines.

38

Managing Performance and Memory 4

e All Level 3 BLAS and all Sparse BLAS routines except Level 2 Sparse Triangular solvers.
e All Vector Mathematics functions (except service functions).
e FFT.

For a list of FFT transforms that can be threaded, see Threaded FFT Problems.

LAPACK Routines

In this section, ? stands for a precision prefix of each flavor of the respective routine and may have the value
of s, d, c,orz.

The following LAPACK routines are threaded with OpenMP*:
e Linear equations, computational routines:

e Factorization: ?getrf, ?getrfnpi, ?gbtrf, ?potrf, ?pptrf, ?sytrf, ?hetrf, ?sptrf, ?
hptrf
e Solving: ?2dttrsb, ?2gbtrs, 2gttrs, ?pptrs, °?pbtrs, ?pttrs, ?sytrs, 2sptrs, ?hptrs, ?
tptrs, ?tbtrs
e Orthogonal factorization, computational routines:
?geqrf, ?2ormgr, ?2unmgr, ?2ormlqg, ?unmlqg, ?ormgl, ?unmgl, ?ormrqg, ?2unmrg
e Singular Value Decomposition, computational routines:
?gebrd, ?bdsqgr
e Symmetric Eigenvalue Problems, computational routines:
?sytrd, ?hetrd, ?sptrd, ?hptrd, ?steqr, ?stedc.
e Generalized Nonsymmetric Eigenvalue Problems, computational routines:
chgeqgz/zhgeqgz.

A number of other LAPACK routines, which are based on threaded LAPACK or BLAS routines, make effective
use of OpenMP* parallelism:

?gesv, ?posv, ?gels, ?gesvd, ?syev, 2heev, cgegs/zgegs, cgegv/zgegv, cgges/zgges,
cggesx/zggesx, cggev/zggev, cggevx/zggevx, and so on.

Threaded BLAS Level1 and Level2 Routines

In the following list, ? stands for a precision prefix of each flavor of the respective routine and may have the
value of s, d, c,or z.

The following routines are threaded with OpenMP* for Intel® Core™2 Duo and Intel® Core™ i7 processors:

e Levell BLAS:

?axpy, ?copy, ?swap, ddot/sdot, cdotc, drot/srot
e Level2 BLAS:

?gemv, ?trmv, dsyr/ssyr, dsyr2/ssyr2, dsymv/ssymv

Threaded FFT Problems

The following characteristics of a specific problem determine whether your FFT computation may be threaded
with OpenMP*:

e rank

e domain

e size/length

e precision (single or double)

e placement (in-place or out-of-place)

e strides

e number of transforms

e layout (for example, interleaved or split layout of complex data)

39

4 Intel® Math Kernel Library for Windows* Developer Guide

Most FFT problems are threaded. In particular, computation of multiple transforms in one call (hnumber of
transforms > 1) is threaded. Details of which transforms are threaded follow.

One-dimensional (1D) transforms
1D transforms are threaded in many cases.

1D complex-to-complex (c2c) transforms of size N using interleaved complex data layout are threaded under
the following conditions depending on the architecture:

Architecture Conditions

Intel® 64 N is a power of 2, log>(N) > 9, the transform is double-precision out-of-place, and
input/output strides equal 1.

IA-32 N is a power of 2, log>(N) > 13, and the transform is single-precision.
N is a power of 2, log>(N) > 14, and the transform is double-precision.

Any N is composite, log>(N) > 16, and input/output strides equal 1.

1D complex-to-complex transforms using split-complex layout are not threaded.
Multidimensional transforms

All multidimensional transforms on large-volume data are threaded.

Functions Threaded with Intel® Threading Building Blocks

In this section, ? stands for a precision prefix or suffix of the routine name and may have the value of s, d,
c, or z.

The following Intel MKL function domains are threaded with Intel® Threading Building Blocks (Intel® TBB):
e LAPACK.

For a list of threaded routines, see LAPACK Routines.

Entire Level3 BLAS.

Fast Poisson, Laplace, and Helmholtz Solver (Poisson Library).

All Vector Mathematics functions (except service functions).

Intel MKL PARDISO, a direct sparse solver based on Parallel Direct Sparse Solver (PARDISO*).

For details, see Intel MKL PARDISO Steps.
e Sparse BLAS.

For a list of threaded routines, see Sparse BLAS Routines.

LAPACK Routines
The following LAPACK routines are threaded with Intel TBB:

?geqrf, ?gelqgf, ?getrf, ?potrf, ?unmgr*, ?ormgr¥*, 2unmrg*, 2ormrg*, 2unmlg*, 2ormlg*, 2unmgl™*,
?ormgl*, ?sytrd, ?hetrd, ?syev, ?heev, and ?latrd.
A number of other LAPACK routines, which are based on threaded LAPACK or BLAS routines, make effective

use of Intel TBB threading:
?getrs, ?gesv, ?potrs, ?bdsqr, and ?gels.

Intel MKL PARDISO Steps

Intel MKL PARDISO is threaded with Intel TBB in the reordering and factorization steps. However, routines
performing the solving step are still called sequentially when using Intel TBB.

40

4

Managing Performance and Memory

Sparse BLAS Routines

The Sparse BLAS inspector-executor application programming interface routines mkl sparse ? mv are
threaded with Intel TBB for the general compressed sparse row (CSR) and block sparse row (BSR) formats.

The following Sparse BLAS inspector-executor application programming routines are threaded with Intel TBB:

e mkl sparse_ ? mv using the general compressed sparse row (CSR) and block sparse row (BSR) matrix

formats.

e mkl sparse ? mm using the general CSR sparse matrix format and both row and column major storage

formats for the dense matrix.

Avoiding Conflicts in the Execution Environment

Certain situations can cause conflicts in the execution environment that make the use of threads in Intel MKL
problematic. This section briefly discusses why these problems exist and how to avoid them.

If your program is parallelized by other means than Intel® OpenMP* run-time library (RTL) and Intel TBB
RTL, several calls to Intel MKL may operate in a multithreaded mode at the same time and result in slow
performance due to overuse of machine resources.

The following table considers several cases where the conflicts may arise and provides recommendations
depending on your threading model:

Threading model

Discussion

You parallelize the program
using the technology other
than Intel OpenMP and Intel
TBB (for example: Win32*
threads on Windows*).

You parallelize the program
using OpenMP directives
and/or pragmas and compile
the program using a non-Intel
compiler.

You thread the program using
Intel TBB threading
technology and compile the
program using a non-Intel
compiler.

You run multiple programs
calling Intel MKL on a
multiprocessor system, for
example, a program
parallelized using a message-
passing interface (MPI).

If more than one thread calls Intel MKL, and the function being called is
threaded, it may be important that you turn off Intel MKL threading. Set
the number of threads to one by any of the available means (see
Techniques to Set the Number of Threads).

To avoid simultaneous activities of multiple threading RTLs, link the
program against the Intel MKL threading library that matches the
compiler you use (see Linking Examples on how to do this). If this is not
possible, use Intel MKL in the sequential mode. To do this, you should link
with the appropriate threading library: mkl sequential.lib or

mkl sequential.dll (see Appendix C: Directory Structure in Detail).

To avoid simultaneous activities of multiple threading RTLs, link the
program against the Intel MKL Intel TBB threading library and Intel TBB
RTL if it matches the compiler you use. If this is not possible, use Intel
MKL in the sequential mode. To do this, link with the appropriate
threading library: mkl sequential.lib or mkl sequential dll.lib
(see Appendix C: Directory Structure in Detail).

The threading RTLs from different programs you run may place a large
number of threads on the same processor on the system and therefore
overuse the machine resources. In this case, one of the solutions is to set
the number of threads to one by any of the available means (see
Techniques to Set the Number of Threads). The Intel® Distribution for
LINPACK* Benchmark section discusses another solution for a Hybrid
(OpenMP* + MPI) mode.

Using the mkl set num threads and mkl domain set num threads functions to control parallelism of
Intel MKL from parallel user threads may result in a race condition that impacts the performance of the

application because these functions operate on internal control variables that are global, that is, apply to all
threads. For example, if parallel user threads call these functions to set different numbers of threads for the
same function domain, the number of threads actually set is unpredictable. To avoid this kind of data races,
use the mkl set num threads local function (see the "Support Functions" chapter in the Inte/ MKL
Developer Reference for the function description).

a1

4 Intel® Math Kernel Library for Windows* Developer Guide

See Also
Using Additional Threading Control
Linking with Compiler Support RTLs

Techniques to Set the Number of Threads

Use the following techniques to specify the number of OpenMP threads to use in Intel MKL:
e Set one of the OpenMP or Intel MKL environment variables:

e OMP NUM THREADS
e MKL NUM THREADS
e MKL DOMAIN NUM THREADS
e Call one of the OpenMP or Intel MKL functions:

e omp set num threads()

e mkl set num threads()

¢ mkl domain set num threads|()
e mkl set num threads local ()

NOTE

A call to the mkl set num threads ormkl domain_ set num_threads function changes the number
of OpenMP threads available to all in-progress calls (in concurrent threads) and future calls to Intel
MKL and may result in slow Intel MKL performance and/or race conditions reported by run-time tools,
such as Intel® Inspector.

To avoid such situations, use the mkl_set_num_threads_local function (see the "Support Functions"
section in the Intel MKL Developer Reference for the function description).

When choosing the appropriate technique, take into account the following rules:

e The Intel MKL threading controls take precedence over the OpenMP controls because they are inspected
first.

e A function call takes precedence over any environment settings. The exception, which is a consequence of
the previous rule, is that a call to the OpenMP subroutine omp set num threads () does not have
precedence over the settings of Intel MKL environment variables such as MKL._ NUM THREADS. See Using
Additional Threading Control for more details.

e You cannot change run-time behavior in the course of the run using the environment variables because
they are read only once at the first call to Intel MKL.

If you use the Intel TBB threading technology, read the documentation for the tbb: :task scheduler init

class at https://www.threadingbuildingblocks.org/documentation to find out how to specify the number of
threads.

Setting the Number of Threads Using an OpenMP* Environment Variable

You can set the number of threads using the environment variable OMP_NUM THREADS. To change the number
of OpenMP threads, in the command shell in which the program is going to run, enter:

set OMP_NUM THREADS=<number of threads to use>.

Some shells require the variable and its value to be exported:

export OMP NUM THREADS=<number of threads to use>.

You can alternatively assign value to the environment variable using Microsoft Windows*OS Control Panel.

Note that you will not benefit from setting this variable on Microsoft Windows* 98 orWindows* ME because
multiprocessing is not supported.

42

Managing Performance and Memory 4

See Also
Using Additional Threading Control

Changing the Number of OpenMP* Threads at Run Time

You cannot change the number of OpenMP threads at run time using environment variables. However, you
can call OpenMP routines to do this. Specifically, the following sample code shows how to change the number
of threads during run time using the omp_set num_threads () routine. For more options, see also
Techniques to Set the Number of Threads.

The example is provided for both C and Fortran languages. To run the example in C, use the omp.h header
file from the Intel(R) compiler package. If you do not have the Intel compiler but wish to explore the
functionality in the example, use Fortran API for omp set num threads () rather than the C version. For
example, omp set num threads (&i one);

[/ ***EFXHR C language *KFFEFAK

#include "omp.h"

#include "mkl.h"

#include <stdio.h>

#define SIZE 1000

int main(int args, char *argvl[]) {

double *a, *b, *c;

a = (double*)malloc (sizeof (double)*SIZE*SIZE) ;
b (double*)malloc (sizeof (double) *SIZE*SIZE) ;
c = (double*)malloc(sizeof (double)*SIZE*SIZE) ;
double alpha=1, beta=1;

int m=SIZE, n=SIZE, k=SIZE, 1da=SIZE, 1db=SIZE, 1ldc=SIZE, i=0, j=0;
char transa='n', transb='n';

for(1=0; 1<SIZE; 1i++) {

for(j=0; j<SIZE; j++){
ali*SIZE+j]= (double) (i+j);
b[i*SIZE+j]= (double) (i*7j);
c[i*SIZE+j]= (double)O;

}

}

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc);

printf ("row\ta\tc\n");

for (1=0;1i<10;1i++) {

printf ("$d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);

}

omp set num threads(1);
for(i=0; i<SIZE; i++) {
for(j=0; J<SIZE; j++){
ali*SIZE+j]= (double) (i+j);
b[i*SIZE+j]= (double) (i*j);

c[i*SIZE+]]= (double)O;

}

}

cblas dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc);

printf ("row\ta\tc\n");

for (1=0;1i<10;1i++) {

printf ("$d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);

}

omp set num threads(2);
for(1=0; 1<SIZE; 1i++) {

43

4 Intel® Math Kernel Library for Windows* Developer Guide

for(3=0; J<SIZE; j++){
a[i*SIZE+j]= (double) (it+7j);
b[i*SIZE+j]= (double) (i*7j);
c[i*SIZE+j]= (double)O;

}
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc);

printf ("row\ta\tc\n");

for (1=0;i<10;i++){

printf ("$d:\t%f\t%f\n", i, a[i*SIZE],

c[i*SIZE]);

}

free (a
free (b
free (c
return

}

D e
)8
) g
0

’

// * Kk Kk kkk Kk Fortran language * Kk kkk kK
PROGRAM DGEMM DIFF THREADS

INTEGER N, I, J

PARAMETER (N=100)

REAL*8 A (N,N),B(N,N),C(N,N)

REAL*8 ALPHA, BETA

= I*j

I
o
o

END DO

CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA, C,N)
print *,'Row A C'

DO i=1,10

write(*,'(I4,F20.8,F20.8)"') I, A(1,I),C(1,I)
END DO

CALL OMP_SET NUM THREADS (1) ;

DO I=1,N

DO J=1,N

A(I,J) = I+J

B(I,J) = I*j

C(1,J) = 0.0

END DO

END DO

CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)
print *,'Row A C'

DO i=1,10

write(*,'(I4,F20.8,F20.8)"') I, A(1,I),C(1,I)
END DO

CALL OMP_SET NUM THREADS (2);

DO I=1,N

DO J=1,N

44

Managing Performance and Memory 4

A(I,J) = I+J
B(I,J) = I*]
C(I,J) = 0.0
END DO
END DO

CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)
print *,'Row A C'

DO i=1,10

write(*,'(I4,F20.8,F20.8)"') I, A(1,I),C(1,I)
END DO

STOP

END

Using Additional Threading Control

Intel MKL-specific Environment Variables for OpenMP Threading Control

Intel MKL provides environment variables and support functions to control Intel MKL threading independently
of OpenMP. The Intel MKL-specific threading controls take precedence over their OpenMP equivalents. Use the
Intel MKL-specific threading controls to distribute OpenMP threads between Intel MKL and the rest of your
program.

NOTE

Some Intel MKL routines may use fewer OpenMP threads than suggested by the threading controls if
either the underlying algorithms do not support the suggested number of OpenMP threads or the
routines perform better with fewer OpenMP threads because of lower OpenMP overhead and/or better
data locality. Set the MKL. DYNAMIC environment variable to FALSE or call mkl set dynamic (0) to
use the suggested number of OpenMP threads whenever the algorithms permit and regardless of
OpenMP overhead and data locality.

Section "Number of User Threads" in the "Fourier Transform Functions" chapter of the Intel MKL Developer
Reference shows how the Intel MKL threading controls help to set the number of threads for the FFT
computation.

The table below lists the Intel MKL environment variables for threading control, their equivalent functions,
and OMP counterparts:

Environment Variable Support Function Comment Equivalent OpenMP*
Environment Variable

MKL NUM THREADS mkl set num threads Suggests the number of OMP NUM THREADS

OpenMP threads to use.
mkl set num threads

_local
MKL DOMAIN NUM mkl domain set num_ Suggests the number of
THREADS threads OpenMP threads for a
particular function
domain.
MKL DYNAMIC mkl set dynamic Enables Intel MKL to OMP_DYNAMIC

dynamically change the
number of OpenMP
threads.

45

4 Intel® Math Kernel Library for Windows* Developer Guide

NOTE

Call mkl set num threads () to force Intel MKL to use a given number of OpenMP threads and
prevent it from reacting to the environment variables MKI. NUM THREADS, MKL DOMAIN NUM THREADS,
and OMP_NUM THREADS.

The example below shows how to force Intel MKL to use one thread:

// Kk k ok kK x C language * Kk ok kK kK
#include <mkl.h>

mkl set num threads (1);

[/ ***%x%*% Fortran language *****%%

call mkl set num threads(1)

See the Intel MKL Developer Reference for the detailed description of the threading control functions, their
parameters, calling syntax, and more code examples.

MKL_DYNAMIC
The MKL DYNAMIC environment variable enables Intel MKL to dynamically change the number of threads.
The default value of MKL. DYNAMIC is TRUE, regardless of OMP_DYNAMIC, whose default value may be FALSE.

When MKL DYNAMIC is TRUE, Intel MKL may use fewer OpenMP threads than the maximum number you
specify.

For example, MKL DYNAMIC set to TRUE enables optimal choice of the number of threads in the following
cases.

o If the requested number of threads exceeds the number of physical cores (perhaps because of using the
Intel® Hyper-Threading Technology), Intel MKL scales down the number of OpenMP threads to the number
of physical cores.

e If you are able to detect the presence of a message-passing interface (MPI), but cannot determine
whether it has been called in a thread-safe mode, Intel MKL runs one OpenMP thread.

When MKL DYNAMIC is FALSE, Intel MKL uses the suggested number of OpenMP threads whenever the
underlying algorithms permit. For example, if you attempt to do a size one matrix-matrix multiply across
eight threads, the library may instead choose to use only one thread because it is impractical to use eight
threads in this event.

If Intel MKL is called from an OpenMP parallel region in your program, Intel MKL uses only one thread by
default. If you want Intel MKL to go parallel in such a call, link your program against an OpenMP threading
RTL supported by Intel MKL and set the environment variables:

e OMP NESTED to TRUE
e OMP DYNAMIC and MKL DYNAMIC to FALSE
e MKL NUM THREADS to some reasonable value

With these settings, Intel MKL uses MKL NUM THREADS threads when it is called from the OpenMP parallel
region in your program.

In general, set MKL_ DYNAMIC to FALSE only under circumstances that Intel MKL is unable to detect, for
example, to use nested parallelism where the library is already called from a parallel section.

46

Managing Performance and Memory 4

MKL_DOMAIN_NUM_THREADS

The MKL DOMAIN NUM THREADS environment variable suggests the number of OpenMP threads for a
particular function domain.

MKL DOMAIN NUM THREADS accepts a string value <MKL-env-string>, which must have the following
format:

<MKL-env-string> ::= <MKL-domain-env-string> { <delimiter><MKL-domain-env-string> }
<delimiter> ::= [<space-symbol>*] (<space-symbol> | <comma-symbol> | <semicolon-
symbol> | <colon-symbol>) [<space-symbol>*]

<MKL-domain-env-string> ::= <MKL-domain-env-name><uses><number-of-threads>
<MKL-domain-env-name> ::= MKL DOMAIN ALL | MKL DOMAIN BLAS | MKL DOMAIN FFT |

MKL DOMAIN VML | MKL DOMAIN PARDISO

<uses> ::= [<space-symbol>*] (<space-symbol> | <equality-sign> | <comma-symbol>)
[<space-symbol>*]

<number-of-threads> ::= <positive-number>
<positive-number> ::= <decimal-positive-number> | <octal-number> | <hexadecimal-number>

In the syntax above, values of <MKL-domain-env-name> indicate function domains as follows:

MKIL DOMAIN ALL All function domains

MKL DOMAIN BLAS BLAS Routines

MKI, DOMAIN FFT non-cluster Fourier Transform Functions

MKI, DOMATIN VML Vector Mathematics (VM)

MKI DOMAIN PARDISO Intel MKL PARDISO, a direct sparse solver based on Parallel Direct

Sparse Solver (PARDISO*)

For example,

MKL DOMAIN ALL 2 : MKL DOMAIN BLAS 1 : MKL DOMAIN FFT 4
MKL DOMAIN ALL=2 : MKL DOMAIN BLAS=1 : MKL DOMAIN FFT=4
MKL DOMAIN ALL=2, MKL DOMAIN BLAS=1, MKL DOMAIN FFT=4
MKL DOMAIN ALL=2; MKL DOMAIN BLAS=1; MKL DOMAIN FFT=4
MKL DOMAIN ALL = 2 MKL DOMAIN BLAS 1 , MKL DOMAIN FFT 4
MKL DOMAIN ALL,2: MKL DOMAIN BLAS 1, MKL DOMAIN FFT,4

The global variables MKL. DOMAIN ALL, MKL DOMAIN BLAS, MKL DOMAIN FFT,MKL DOMAIN VML, and
MKL DOMAIN PARDISO, as well as the interface for the Intel MKL threading control functions, can be found in
the mk1.h header file.

The table below illustrates how values of MKL_ DOMAIN NUM THREADS are interpreted.

Value of Interpretation
MKL DOMAIN NUM
THREADS

MKL DOMAIN ALL= All parts of Intel MKL should try four OpenMP threads. The actual number of threads
4 may be still different because of the MKL DYNAMIC setting or system resource
issues. The setting is equivalent to MKL NUM THREADS = 4.

47

4 Intel® Math Kernel Library for Windows* Developer Guide

Value of Interpretation
MKL_DOMAIN NUM _
THREADS

MKL DOMAIN ALL= All parts of Intel MKL should try one OpenMP thread, except for BLAS, which is
1, suggested to try four threads.

MKL DOMAIN BLAS

=4

MKL DOMAIN VML= VM should try two OpenMP threads. The setting affects no other part of Intel MKL.
2

Be aware that the domain-specific settings take precedence over the overall ones. For example, the

"MKL DOMAIN BLAS=4" value of MKL DOMAIN NUM THREADS suggests trying four OpenMP threads for BLAS,
regardless of later setting MKL. NUM THREADS, and a function call "mkl domain set num threads (4,
MKL DOMAIN BLAS) ;" suggests the same, regardless of later calls to mk1l set num threads().

However, a function call with input "MKL DOMAIN ALL", such as "mkl domain set num threads (4,

MKL DOMAIN ALL) ;" is equivalent to "mkl set num threads (4)", and thus it will be overwritten by later
calls to mkl set num threads. Similarly, the environment setting of MKL_ DOMAIN NUM THREADS with
"MKL DOMAIN ALL=4" will be overwritten with MKL. NUM THREADS = 2.

Whereas the MKL._DOMAIN NUM THREADS environment variable enables you set several variables at once, for
example, "MKL DOMAIN BLAS=4,MKL DOMAIN FFT=2", the corresponding function does not take string
syntax. So, to do the same with the function calls, you may need to make several calls, which in this
example are as follows:

mkl domain set num threads (4, MKL DOMAIN BLAS);

mkl domain set num threads (2, MKL DOMAIN FFT);

MKL NUM_STRIPES

The MKL NUM_ STRIPES environment variable controls the Intel MKL threading algorithm for ?gemm functions.
When MKL NUM_ STRIPES is set to a positive integer value nstripes, Intel MKL tries to use a number of
partitions equal to nstripes along the leading dimension of the output matrix.

The following table explains how the value nstripes of MKL_NUM STRIPES defines the partitioning algorithm
used by Intel MKL for 2gemm output matrix; max_threads_for_mkl/ denotes the maximum number of OpenMP
threads for Intel MKL:

Value of Partitioning Algorithm
MKL_NUM STRIPES

1 < nstripes < 2D partitioning with the number of partitions equal to nstripes:
(zmax_threads_for_mkl/ e Horizontal, for column-major ordering.
) * Vertical, for row-major ordering.
nstripes = 1 1D partitioning algorithm along the opposite direction of the leading dimension.
nstripes = 1D partitioning algorithm along the leading dimension.
(max_threads_for_mkl
/2)
nstripes < 0 The default Intel MKL threading algorithm.

The following figure shows the partitioning of an output matrix for nstripes = 4 and a total number of 8
OpenMP threads for column-major and row-major orderings:

48

Managing Performance and Memory 4

nstripes=4
A

4

\

nstripes

column-major row-major

You can use support functions mkl set num stripes and mkl get num stripes to set and query the
number of stripes, respectively.
Setting the Environment Variables for Threading Control

To set the environment variables used for threading control, in the command shell in which the program is
going to run, enter:

set <VARIABLE NAME>=<value>

For example:

set MKL NUM THREADS=4

set MKL DOMAIN NUM THREADS="MKL DOMAIN ALL=1, MKL DOMAIN BLAS=4"
set MKL DYNAMIC=FALSE

set MKL NUM STRIPES=4

Some shells require the variable and its value to be exported:

export <VARIABLE NAME>=<value>

For example:

export MKL NUM THREADS=4

export MKL DOMAIN NUM THREADS="MKL DOMAIN ALL=1, MKL DOMAIN BLAS=4"
export MKL DYNAMIC=FALSE

export MKL NUM STRIPES=4

You can alternatively assign values to the environment variables using Microsoft Windows* OS Control Panel.

Calling Intel MKL Functions from Multi-threaded Applications

This section summarizes typical usage models and available options for calling Intel MKL functions from
multi-threaded applications. These recommendations apply to any multi-threading environments: OpenMP*,
Intel® Threading Building Blocks, Windows* threads, and others.

49

4 Intel® Math Kernel Library for Windows* Developer Guide

Usage model: disable Intel MKL internal threading for the whole application

When used: Intel MKL internal threading interferes with application's own threading or may slow down the
application.

Example: the application is threaded at top level, or the application runs concurrently with other
applications.

Options:

e Link statically or dynamically with the sequential library
e Link with the Single Dynamic Library mk1l rt.1ib and select the sequential library using an environment
variable or a function call:

e Set MKL THREADING LAYER=sequential
e Callmkl set threading layer (MKL THREADING SEQUENTIAL)*

Usage model: partition system resources among application threads
When used: application threads are specialized for a particular computation.

Example: one thread solves equations on all cores but one, while another thread running on a single core
updates a database.

Linking Options:

e Link statically or dynamically with a threading library
e Link with the Single Dynamic Library mkl rt.1ib and select a threading library using an environment
variable or a function call:

e set MKL THREADING LAYER=intel or MKL THREADING LAYER=tbb
e callmkl set threading layer (MKL THREADING INTEL) or
mkl set threading layer (MKL THREADING TBB)

Other Options for OpenMP Threading:

e Set the MKL NUM THREADS environment variable to a desired number of OpenMP threads for Intel MKL.
e Set the MKL DOMAIN NUM THREADS environment variable to a desired number of OpenMP threads for Intel
MKL for a particular function domain.

Use if the application threads work with different Intel MKL function domains.
e Callmkl set num threads/()

Use to globally set a desired number of OpenMP threads for Intel MKL at run time.
e Call mkl domain set num threads().

Use if at some point application threads start working with different Intel MKL function domains.
e Callmkl set num threads local().

Use to set the number of OpenMP threads for Intel MKL called from a particular thread.

NOTE
If your application uses OpenMP* threading, you may need to provide additional settings:

¢ Set the environment variable OMP NESTED=TRUE, or alternatively call omp_set nested (1), to
enable OpenMP nested parallelism.

e Set the environment variable MKL_ DYNAMIC=FALSE, or alternatively call mkl set dynamic(0), to
prevent Intel MKL from dynamically reducing the number of OpenMP threads in nested parallel
regions.

* For details of the mentioned functions, see the Support Functions section of the Intel MKL Developer
Reference, available in the Intel Software Documentation Library.

50

Managing Performance and Memory 4

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

See Also

Linking with Threading Libraries

Dynamically Selecting the Interface and Threading Layer

Intel MKL-specific Environment Variables for OpenMP Threading Control
MKL_ DOMATN NUM THREADS

Avoiding Conflicts in the Execution Environment

Intel Software Documentation Library

Using Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) is especially effective when each thread performs
different types of operations and when there are under-utilized resources on the processor. However, Intel
MKL fits neither of these criteria because the threaded portions of the library execute at high efficiencies
using most of the available resources and perform identical operations on each thread. You may obtain
higher performance by disabling Intel HT Technology.

If you run with Intel HT Technology enabled, performance may be especially impacted if you run on fewer
threads than physical cores. Moreover, if, for example, there are two threads to every physical core, the
thread scheduler may assign two threads to some cores and ignore the other cores altogether. If you are
using the OpenMP* library of the Intel Compiler, read the respective User Guide on how to best set the
thread affinity interface to avoid this situation. For Intel MKL, apply the following setting:

set KMP AFFINITY=granularity=fine, compact,1,0

If you are using the Intel TBB threading technology, read the documentation on the
tbb::affinity partitioner class at https://www.threadingbuildingblocks.org/documentation to find out
how to affinitize Intel TBB threads.

Managing Multi-core Performance

You can obtain best performance on systems with multi-core processors by requiring thatthreads do not
migrate from core to core. To do this, bind threads to the CPU cores bysetting an affinity mask to threads.
Use one of the following options:

e OpenMP facilities (if available), for example, theKMP AFFINITYenvironment variable using the Intel
OpenMP library

e A system function, as explained below

e Intel TBB facilities (if available), for example, the tbb::affinity partitioner class (for details, see
https://www.threadingbuildingblocks.org/documentation)

Consider the following performance issue:

e The system has two sockets with two cores each, for a total of four cores (CPUs).
e The application sets the number of OpenMP threads to four and calls an Intel MKL LAPACK routine. This
call takes considerably different amounts of time from run to run.

51

http://software.intel.com/en-us/intel-software-technical-documentation/

4 Intel® Math Kernel Library for Windows* Developer Guide

To resolve this issue, before calling Intel MKL, set an affinity mask for each OpenMP thread using the

KMP AFFINITY environment variable or the SetThreadaffinityMask system function. The following code
example shows how to resolve the issue by setting an affinity mask by operating system means using the
Intel compiler. The code calls the functionSetThreadAffinityMask to bind the threads
toappropriatecores,preventing migration of the threads. Then the Intel MKLLAPACK routineis called:

// Set affinity mask

#include <windows.h>

#include <omp.h>

int main(void) {

#pragma omp parallel default (shared)

{

int tid = omp get thread num();

// 2 packages x 2 cores/pkg x 1 threads/core (4 total cores)
DWORD PTR mask = (1 << (tid==0 720 : 2));
SetThreadAffinityMask(GetCurrentThread(), mask);
}

// Call Intel MKL LAPACK routine

return 0;

}

Compile the application with the Intel compiler using the following command:
icl /Qopenmp test application.c
wheretest application.cis the filename for the application.

Build the application. Run it in four threads, for example, by using the environment variable to set the
number of threads:

set OMP_NUM THREADS=4
test application.exe

See Windows API documentation at msdn.microsoft.com/ for the restrictions on the usage of Windows API
routines and particulars of the SetThreadAffinityMask function used in the above example.

See also a similar example at en.wikipedia.org/wiki/Affinity_mask.

Improving Performance for Small Size Problems

The overhead of calling an Intel MKL function for small problem sizes can be significant when the function
has a large number of parameters or internally checks parameter errors. To reduce the performance
overhead for these small size problems, the Intel MKL direct call feature works in conjunction with the
compiler to preprocess the calling parameters to supported Intel MKL functions and directly call or inline
special optimized small-matrix kernels that bypass error checking. For a list of functions supporting direct
call, see Limitations of the Direct Call.

To activate the feature, do the following:

e Compile your C or Fortran code with the preprocessor macro depending on whether a threaded or
sequential mode of Intel MKL is required by supplying the compiler option as explained below:

Intel MKL Mode Macro Compiler Option
Threaded MKL DIRECT CALL /DMKL DIRECT CALL
Sequential MKL_DIRECT_CALL_SEQ /DMKL_DIRECT_CALL_SEQ

e For Fortran applications:

e Enable preprocessor by using the /fpp option for Intel® Fortran Compiler and -Mpreprocess option for
PGI* compilers.

52

Managing Performance and Memory 4

¢ Include the Intel MKL Fortran include file mkl direct call.fi.

Intel MKL skips error checking and intermediate function calls if the problem size is small enough (for
example: a call to a function that supports direct call, such as dgemm, with matrix ranks smaller than 50).

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Using MKL_DIRECT_CALL in C Applications

The following examples of code and link lines show how to activate direct calls to Intel MKL kernels in C
applications:

e Include the mkl.h header file:

#include "mkl.h"
int main(void) {

// Call Intel MKL DGEMM

return 0;

}
e For multi-threaded Intel MKL, compile with MKL DIRECT CALL preprocessor macro:

icl /DMKL DIRECT CALL /Qstd=c99 your application.c mkl intel 1p64.1ib mkl core.lib
mkl intel thread.lib /Qopenmp -I$MKLROOT$%/include
e To use Intel MKL in the sequential mode, compile with MKL._ DIRECT CALL_ SEQ preprocessor macro:

icl /DMKL DIRECT CALL SEQ /Qstd=c99 your application.c mkl intel 1p64.1ib mkl core.lib
mkl sequential.lib -I$MKLROOT$%/include

Using MKL_DIRECT_CALL in Fortran Applications

The following examples of code and link lines show how to activate direct calls to Intel MKL kernels in Fortran
applications:

¢ Include mkl direct call.fi, to be preprocessed by the Fortran compiler preprocessor

include "mkl direct call.fi"
program DGEMM MAIN

& Call Intel MKL DGEMM

call subl ()
stop 1
end
o A subroutine that calls DGEMM
subroutine subl
& Call Intel MKL DGEMM
end

53

4 Intel® Math Kernel Library for Windows* Developer Guide

e For multi-threaded Intel MKL, compile with /fpp option for Intel Fortran compiler (or with -Mpreprocess
for PGI compilers) and with MKL._ DIRECT CALL preprocessor macro:

ifort /DMKL DIRECT CALL /fpp your application.f mkl intel 1p64.1ib mkl core.lib
mkl intel thread.lib
/Qopenmp -I3$MKLROOTS/include
e To use Intel MKL in the sequential mode, compile with /fpp option for Intel Fortran compiler (or with -
Mpreprocess for PGI compilers) and with MKL DIRECT CALL SEQ preprocessor macro:

ifort /DMKL DIRECT CALL SEQ /fpp your application.f mkl intel 1p64.1ib mkl core.lib
mkl sequential.lib
-ISMKLROOT%/include

Limitations of the Direct Call
Directly calling the Intel MKL kernels has the following limitations:
e Ifthe MKL DIRECT CALL or MKL DIRECT CALL SEQ macro is used, Intel MKL may skip error checking.

Important
With a limited error checking, you are responsible for checking the correctness of function parameters
to avoid unsafe and incorrect code execution.

e The feature is only available for the following functions:

e BLAS: ?gemm, ?gemm3m, ?syrk, ?trsm, ?axpy, and ?dot
e LAPACK: ?getrf, ?getrs, ?getri, ?potrf, and ?geqrf. (available for C applications only)

e Intel MKL Verbose mode, Conditional Numerical Reproducibility, and BLAS95 interfaces are not supported.

e GNU* Fortran compilers are not supported.

e For C applications, you must enable mixing declarations and user code by providing the /Qstd=c99 option
for Intel® compilers.

e In a fixed format Fortran source code compiled with PGI compilers, the lines containing Intel MKL
functions must end at least seven columns before the line ending column, usually, in a column with the
index not greater than 72 - 7 = 65.

NOTE

The direct call feature substitutes the names of Intel MKL functions with longer counterparts, which
can cause the lines to exceed the column limit for a fixed format Fortran source code compiled with
PGI compilers. Because the compilers ignore any part of the line that exceeds the limit, the behavior
of the program can be unpredictable.

Other Tips and Techniques to Improve Performance

See Also
Managing Performance of the Cluster Fourier Transform Functions

Coding Techniques

This section discusses coding techniques to improve performance on processors based on supported
architectures.

To improve performance, properly align arrays in your code. Additional conditions can improve performance
for specific function domains.

54

Managing Performance and Memory 4

Data Alignment and Leading Dimensions

To improve performance of your application that calls Intel MKL, align your arrays on 64-byte boundaries and
ensure that the leading dimensions of the arrays are divisible by 64/element_size, where element_size is the
number of bytes for the matrix elements (4 for single-precision real, 8 for double-precision real and single-
precision complex, and 16 for double-precision complex) . For more details, see Example of Data Alignment.

For Intel® Xeon Phi™ processor x200 product family, codenamed Knights Landing, align your matrices on
4096-byte boundaries and set the leading dimension to the following integer expression:

(((n * element_size + 511) / 512) * 512 + 64) /element_size,

where n is the matrix dimension along the leading dimension.

LAPACK Packed Routines

The routines with the names that contain the letters HpP, 0P, PP, SP, TP, UP in the matrix type and
storage position (the second and third letters respectively) operate on the matrices in the packed format (see
LAPACK "Routine Naming Conventions" sections in the Intel MKL Developer Reference). Their functionality is
strictly equivalent to the functionality of the unpacked routines with the names containing the letters HE,

OR, PO, SY, TR, UN in the same positions, but the performance is significantly lower.

If the memory restriction is not too tight, use an unpacked routine for better performance. In this case, you
need to allocate N2/2 more memory than the memory required by a respective packed routine, where N is
the problem size (the number of equations).

For example, to speed up solving a symmetric eigenproblem with an expert driver, use the unpacked routine:

call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork,
iwork, ifail, info)

where a is the dimension 1da-by-n, which is at least N? elements,
instead of the packed routine:

call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail,
info)

where ap is the dimension N*(N+1)/2.

See Also
Managing Performance of the Cluster Fourier Transform Functions

Improving Intel(R) MKL Performance on Specific Processors

Dual-Core Intel® Xeon® Processor 5100 Series

To get the best performance with Intel MKL on Dual-Core Intel® Xeon® processor 5100 series systems, enable
the Hardware DPL (streaming data) Prefetcher functionality of this processor. To configure this functionality,
use the appropriate BIOS settings, as described in your BIOS documentation.

Operating on Denormals

The IEEE 754-2008 standard, "An IEEE Standard for Binary Floating-Point Arithmetic", defines denormal (or
subnormal) numbers as non-zero numbers smaller than the smallest possible normalized numbers for a
specific floating-point format. Floating-point operations on denormals are slower than on normalized

55

4 Intel® Math Kernel Library for Windows* Developer Guide

operands because denormal operands and results are usually handled through a software assist mechanism
rather than directly in hardware. This software processing causes Intel MKL functions that consume
denormals to run slower than with normalized floating-point numbers.

You can mitigate this performance issue by setting the appropriate bit fields in the MXCSR floating-point
control register to flush denormals to zero (FTZ) or to replace any denormals loaded from memory with zero
(DAZ). Check your compiler documentation to determine whether it has options to control FTZ and DAZ.
Note that these compiler options may slightly affect accuracy.

Using Memory Functions

Avoiding Memory Leaks in Intel MKL

When running, Intel MKL allocates and deallocates internal buffers to facilitate better performance. However,
in some cases this behavior may result in memory leaks.

To avoid memory leaks, you can do either of the following:
e Set the MKL DISABLE FAST MM environment variable to 1 or call the mk1l disable fast mm() function.

Be aware that this change may negatively impact performance of some Intel MKL functions, especially for
small problem sizes.

e Call the mkl free buffers () function or the mkl thread free buffers() function in the current
thread.

For the descriptions of the memory functions, see the Intel MKL Developer Reference, available in the Intel
Software Documentation Library.

See Also
Intel Software Documentation Library

Redefining Memory Functions

In C/C++ programs, you can replace Intel MKL memory functions that the library uses by default with your
own functions. To do this, use the memory renaming feature.

Memory Renaming

Intel MKL memory management by default uses standard C run-time memory functions to allocate or free
memory. These functions can be replaced using memory renaming.

Intel MKL accesses the memory functions by pointers i malloc, i free, i calloc, and i_realloc,
which are visible at the application level. These pointers initially hold addresses of the standard C run-time
memory functions malloc, free, calloc, and realloc, respectively. You can programmatically redefine
values of these pointers to the addresses of your application's memory management functions.

Redirecting the pointers is the only correct way to use your own set of memory management functions. If
you call your own memory functions without redirecting the pointers, the memory will get managed by two
independent memory management packages, which may cause unexpected memory issues.

How to Redefine Memory Functions
To redefine memory functions, use the following procedure:
If you areusing the statically linked Intel MKL,

1. Include the i malloc.h header file in your code.
This header file contains all declarations required for replacing the memory allocation functions. The
header file also describes how memory allocation can be replaced in those Intel libraries that support
this feature.

56

http://software.intel.com/en-us/intel-software-technical-documentation

Managing Performance and Memory 4

2. Redefine values of pointers i malloc, i free, i calloc, and i realloc prior to the first call to
Intel MKL functions, as shown in the following example:

#include "i malloc.h"

i malloc = my malloc;

i calloc = my calloc;
i realloc = my realloc;
i free = my free;

// Now you may call Intel MKL functions

If you are using the dynamically linked Intel MKL,

1. Include the i malloc.h header file in your code.
2. Redefine values of pointers i malloc dll, i free dll, i calloc dll, and i realloc dll prior
to the first call to Intel MKL functions, as shown in the following example:

#include "i malloc.h"
i malloc dll = my malloc;
i calloc dll = my calloc;
i realloc dll = my realloc;

i free dll = my free;

// Now you may call Intel MKL functions

57

5 Intel® Math Kernel Library for Windows* Developer Guide

Language-specific Usage
Options

The Intel® Math Kernel Library (Intel® MKL) provides broad support for Fortran and C/C++ programming.
However, not all functions support both Fortran and C interfaces. For example, some LAPACK functions have
no C interface. You can call such functions from C using mixed-language programming.

If you want to use LAPACK or BLAS functions that support Fortran 77 in the Fortran 95 environment,
additional effort may be initially required to build compiler-specific interface libraries and modules from the
source code provided with Intel MKL.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

See Also
Language Interfaces Support, by Function Domain

Using Language-Specific Interfaces with Intel® Math Kernel
Library

This section discusses mixed-language programming and the use of language-specific interfaces with Intel
MKL.

See also the "FFTW Interface to Intel® Math Kernel Library" Appendix in the Intel MKL Developer Reference
for details of the FFTW interfaces to Intel MKL.

Interface Libraries and Modules

You can create the following interface libraries and modules using the respective makefiles located in the
interfaces directory.

File name Contains

Libraries, in Intel MKL architecture-specific directories

mkl blas95.1ib? Fortran 95 wrappers for BLAS (BLAS95) for IA-32 architecture.

mkl blas95 ilp64.lib? Fortran 95 wrappers for BLAS (BLAS95) supporting LP64
interface.

mkl blas95 1p64.1ib! Fortran 95 wrappers for BLAS (BLAS95) supporting ILP64
interface.

mkl lapack95.lib? Fortran 95 wrappers for LAPACK (LAPACK95) for IA-32

architecture.

58

Language-specific Usage Options 5

File name Contains

mkl lapack95 1p64. libl Fortran 95 wrappers for LAPACK (LAPACK95) supporting LP64
interface.

mkl lapack95 ilp64. libl Fortran 95 wrappers for LAPACK (LAPACK95) supporting ILP64
interface.

fftw2xc_intel.lib? Interfaces for FFTW version 2.x (C interface for Intel

compilers) to call Intel MKL FFT.

fftw2xc ms.1lib Contains interfaces for FFTW version 2.x (C interface for
Microsoft compilers) to call Intel MKL FFT.

fftw2xf intel.lib Interfaces for FFTW version 2.x (Fortran interface for Intel
compilers) to call Intel MKL FFT.

fftw3xc intel.lib? Interfaces for FFTW version 3.x (C interface for Intel compiler)
to call Intel MKL FFT.

fftw3xc ms.1lib Interfaces for FFTW version 3.x (C interface for Microsoft
compilers) to call Intel MKL FFT.

fftw3xf intel.lib? Interfaces for FFTW version 3.x (Fortran interface for Intel
compilers) to call Intel MKL FFT.

fftw2x cdft SINGLE.lib Single-precision interfaces for MPI FFTW version 2.x (C
interface) to call Intel MKL cluster FFT.

fftw2x cdft DOUBLE.lib Double-precision interfaces for MPI FFTW version 2.x (C
interface) to call Intel MKL cluster FFT.

fftw3x_cdft.lib Interfaces for MPI FFTW version 3.x (C interface) to call Intel
MKL cluster FFT.

fftw3x cdft ilp64.lib Interfaces for MPI FFTW version 3.x (C interface) to call Intel
MKL cluster FFT supporting the ILP64 interface.

Modules, in architecture- and interface-specific subdirectories of the Intel MKL include
directory

blas95.mod! Fortran 95 interface module for BLAS (BLAS95).

lapack95.mod?! Fortran 95 interface module for LAPACK (LAPACK95).

£95 precision.mod? Fortran 95 definition of precision parameters for BLAS95 and
LAPACKO95.

mkl service.mod! Fortran 95 interface module for Intel MKL support functions.

1 Prebuilt for the Intel® Fortran compiler

2 FFTW3 interfaces are integrated with Intel MKL. Look into <mkl directory>\interfaces\fftw3x*
\makefile for options defining how to build and where to place the standalone library with the wrappers.

See Also
Fortran 95 Interfaces to LAPACK and BLAS

59

5 Intel® Math Kernel Library for Windows* Developer Guide

Fortran 95 Interfaces to LAPACK and BLAS

Fortran 95 interfaces are compiler-dependent. Intel MKL provides the interface libraries and modules
precompiled with the Intel® Fortran compiler. Additionally, the Fortran 95 interfaces and wrappers are
delivered as sources. (For more information, see Compiler-dependent Functions and Fortran 90 Modules). If
you are using a different compiler, build the appropriate library and modules with your compiler and link the
library as a user's library:

1. Go to the respective directory <mkl directory>\interfaces\blas95 or <mkl directory>
\interfaces\lapack95
2. Type one of the following commands depending on your architecture:

e For the IA-32 architecture,

nmake libia32 install dir=<user dir>
e For the Intel® 64 architecture,

nmake libintel64 [interface=1p64|ilp64] install dir=<user dir>

Important
The parameter install dir is required.

As a result, the required library is built and installed in the <user dir>\1ib directory, and the .mod files are
built and installed in the <user dir>\include\<arch>[\{1p64|ilp64}] directory, where <arch> is one of
{ia32, intelo4}.

By default, the ifort compiler is assumed. You may change the compiler with an additional parameter of
nmake:

FC=<compiler>.

For example, the command

nmake libintel64 FC=£f95 install dir=<userf95 dir> interface=1p64

builds the required library and .mod files and installs them in subdirectories of <userf95 dir>.
To delete the library from the building directory, use one of the following commands:

e For the IA-32 architecture,

nmake cleania32 install dir=<user dir>
e For the Intel® 64 architecture,

nmake cleanintel64 [interface=1p64|ilp64] install dir=<user dir>
e For all the architectures,

nmake clean install dir=<user dir>

Caution

Even if you have administrative rights, avoid setting install dir=..\.. or install dir=<mkl
directory> in a build or clean command above because these settings replace or delete the Intel
MKL prebuilt Fortran 95 library and modules.

Compiler-dependent Functions and Fortran 90 Modules

Compiler-dependent functions occur whenever the compiler inserts into the object code function calls that
are resolved in its run-time library (RTL). Linking of such code without the appropriate RTL will result in
undefined symbols. Intel MKL has been designed to minimize RTL dependencies.

60

Language-specific Usage Options 5

In cases where RTL dependencies might arise, the functions are delivered as source code and you need to
compile the code with whatever compiler you are using for your application.

In particular, Fortran 90 modules result in the compiler-specific code generation requiring RTL support.
Therefore, Intel MKL delivers these modules compiled with the Intel compiler, along with source code, to be
used with different compilers.

Using the stdcall Calling Convention in C/C++
Intel MKL supports stdcall calling convention for the following function domains:

BLAS, except CBLAS, compact API, and JIT API

Sparse BLAS

LAPACK

Vector Mathematics

Vector Statistics (VS)

Intel MKL PARDISO,

a direct sparse solver based on Parallel Direct Sparse Solver (PARDISO¥*)
Direct Sparse Solvers

e RCI Iterative Solvers

e Support Functions

To use the stdcall calling convention in C/C++, follow the guidelines below:

e In your function calls, pass lengths of character strings to the functions. For example, compare the
following calls to the VS function vslLoadStreamF':

cdecl: errstatus = vslLoadStreamF (&stream, "streamfile.bin");

stdcall: errstatus = vslLoadStreamF (&stream, "streamfile.bin", 14);
e Define the MKL STDCALL macro using either of the following techniques:

- Define the macro in your source code before including Intel MKL header files:

#define MKL STDCALL
#include "mkl.h"

- Pass the macro to the compiler. For example:
icl -DMKL STDCALL foo.c
e Link your application with the following library:

- mkl intel s.1lib for static linking
- mkl intel s dll.1lib for dynamic linking

Caution Avoid linking with the Single Dynamic Library mk1 rt.d11 because its support of the stdcall
calling convention is limited.

See Also

Using the cdecl and stdcall Interfaces

Compiling an Application that Calls Intel MKL and Uses the CVF Calling Conventions
Intel MKL Include Files

Compiling an Application that Calls the Intel® Math Kernel Library and Uses the CVF
Calling Conventions

The IA-32 architecture implementation of Intel MKL supports the Compaq Visual Fortran* (CVF) calling
convention by providing the stdcall interface.

61

5 Intel® Math Kernel Library for Windows* Developer Guide

Although the Intel MKL does not provide the CVF interface in its Intel® 64 architecture implementation, you
can use the Intel® Visual Fortran Compiler to compile your Intel® 64 architecture application that calls Intel
MKL and uses the CVF calling convention. To do this:

e Provide the following compiler options to enable compatibility with the CVF calling convention:
/Gm or /iface:cvf

e Additionally provide the following options to enable calling Intel MKL from your application:
/iface:nomixed str len arg

See Also
Using the cdecl and stdcall Interfaces
Compiler Support

Mixed-language Programming with the Intel Math Kernel
Library

Appendix A Intel® Math Kernel Library Language Interfaces Support lists the programming languages
supported for each Intel MKL function domain. However, you can call Intel MKL routines from different
language environments.

See also these Knowledge Base articles:

e http://software.intel.com/en-us/articles/performance-tools-for-software-developers-how-do-i-use-intel-
mkl-with-java for how to call Intel MKL from Java* applications.

e http://software.intel.com/en-us/articles/how-to-use-boost-ublas-with-intel-mkl for how to perform BLAS
matrix-matrix multiplication in C++ using Intel MKL substitution of Boost* uBLAS functions.

e http://software.intel.com/en-us/articles/intel-mkl-and-third-party-applications-how-to-use-them-together
for a list of articles describing how to use Intel MKL with third-party libraries and applications.

Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language Environments

Not all Intel MKL function domains support both C and Fortran environments. To use Intel MKL Fortran-style
functions in C/C++ environments, you should observe certain conventions, which are discussed for LAPACK
and BLAS in the subsections below.

Caution

Avoid calling BLAS 95/LAPACK 95 from C/C++. Such calls require skills in manipulating the descriptor
of a deferred-shape array, which is the Fortran 90 type. Moreover, BLAS95/LAPACK95 routines contain
links to a Fortran RTL.

LAPACK and BLAS

Because LAPACK and BLAS routines are Fortran-style, when calling them from C-language programs, follow
the Fortran-style calling conventions:

e Pass variables by address, not by value.
Function calls in Example "Calling a Complex BLAS Level 1 Function from C++" and Example "Using
CBLAS Interface Instead of Calling BLAS Directly from C" illustrate this.

e Store your data in Fortran style, that is, column-major rather than row-major order.

With row-major order, adopted in C, the last array index changes most quickly and the first one changes
most slowly when traversing the memory segment where the array is stored. With Fortran-style column-
major order, the last index changes most slowly whereas the first index changes most quickly (as illustrated
by the figure below for a two-dimensional array).

62

Language-specific Usage Options 5

1 2 3 4 0 1 2 3
1 - - — 0 -—
EEeia iy)
T | i i
2 || | Lo 1 0 G N
| :I I I (i
3 I\~— 4 Yy 2]
A: Column-major order {Fortran-style) B: Row-major order (C-style}

For example, if a two-dimensional matrix A of size mxn is stored densely in a one-dimensional array B, you
can access a matrix element like this:

A[i][3] = B[i*n+3]inC (i=0, ... , m-1, =0, ... , -1)
A(i,j) = B((j-1)*m+i) in Fortran (i=1, ... , m, j=1, ... , n).

When calling LAPACK or BLAS routines from C, be aware that because the Fortran language is case-
insensitive, the routine names can be both upper-case or lower-case, with or without the trailing underscore.
For example, the following names are equivalent:

e LAPACK: dgetrf, DGETRF, dgetrf , and DGETRF
e BLAS: dgemm, DGEMM, dgemm , and DGEMM

See Example "Calling a Complex BLAS Level 1 Function from C++" on how to call BLAS routines from C.

See also the Intel(R) MKL Developer Reference for a description of the C interface to LAPACK functions.

CBLAS
Instead of calling BLAS routines from a C-language program, you can use the CBLAS interface.

CBLAS is a C-style interface to the BLAS routines. You can call CBLAS routines using regular C-style calls. Use
the mk1.h header file with the CBLAS interface. The header file specifies enumerated values and prototypes
of all the functions. It also determines whether the program is being compiled with a C++ compiler, and if it
is, the included file will be correct for use with C++ compilation. Example "Using CBLAS Interface Instead of
Calling BLAS Directly from C" illustrates the use of the CBLAS interface.

C Interface to LAPACK

Instead of calling LAPACK routines from a C-language program, you can use the C interface to LAPACK
provided by Intel MKL.

The C interface to LAPACK is a C-style interface to the LAPACK routines. This interface supports matrices in
row-major and column-major order, which you can define in the first function argument matrix order. Use
the mk1.h header file with the C interface to LAPACK. mk1.h includes the mkl lapacke.h header file, which
specifies constants and prototypes of all the functions. It also determines whether the program is being
compiled with a C++4+ compiler, and if it is, the included file will be correct for use with C++ compilation. You
can find examples of the C interface to LAPACK in the examples\lapacke subdirectory in the Intel MKL
installation directory.

Using Complex Types in C/C++

As described in the documentation for the Intel®Visual Fortran Compiler, C/C++ does not directly implement
the Fortran types COMPLEX (4) and COMPLEX (8) . However, you can write equivalent structures. The type
COMPLEX (4) consists of two 4-byte floating-point numbers. The first of them is the real-number component,
and the second one is the imaginary-number component. The type COMPLEX (8) is similar to COMPLEX (4)
except that it contains two 8-byte floating-point numbers.

63

5 Intel® Math Kernel Library for Windows* Developer Guide

Intel MKL provides complex types MKL Complex8 and MKL Complex16, which are structures equivalent to
the Fortran complex types COMPLEX (4) and COMPLEX (8), respectively. The MKL Complex8 and

MKL Complex16 types are defined in the mkl types.h header file. You can use these types to define
complex data. You can also redefine the types with your own types before including the mk1l types.h header
file. The only requirement is that the types must be compatible with the Fortran complex layout, that is, the
complex type must be a pair of real numbers for the values of real and imaginary parts.

For example, you can use the following definitions in your C++ code:
#define MKL Complex8 std::complex<float>

and
#define MKL Complexl6 std::complex<double>

See Example "Calling a Complex BLAS Level 1 Function from C++" for details. You can also define these
types in the command line:

-DMKL Complex8="std::complex<float>"
-DMKL Complexl6="std::complex<double>"

See Also

Intel® Software Documentation Library for the Intel®Visual Fortran Compiler documentation
for the Intel®Visual Fortran Compiler documentation

Calling BLAS Functions that Return the Complex Values in C/C++ Code

Complex values that functions return are handled differently in C and Fortran. Because BLAS is Fortran-style,
you need to be careful when handling a call from C to a BLAS function that returns complex values. However,
in addition to normal function calls, Fortran enables calling functions as though they were subroutines, which
provides a mechanism for returning the complex value correctly when the function is called from a C
program. When a Fortran function is called as a subroutine, the return value is the first parameter in the
calling sequence. You can use this feature to call a BLAS function from C.

The following example shows how a call to a Fortran function as a subroutine converts to a call from C and
the hidden parameter result gets exposed:

Normal Fortran function call: result = cdotc(n, %, 1, y, 1)
A call to the function as a subroutine: call cdotc(result, n, x, 1, vy, 1)

A call to the function from C: cdotc(&result, &n, x, &one, y, &one)

NOTE

Intel MKL has both upper-case and lower-case entry points in the Fortran-style (case-insensitive)
BLAS, with or without the trailing underscore. So, all these hames are equivalent and acceptable:
cdotc, CDOTC, cdotc , and CDOTC_.

The above example shows one of the ways to call several level 1 BLAS functions that return complex values
from your C and C++ applications. An easier way is to use the CBLAS interface. For instance, you can call the
same function using the CBLAS interface as follows:

cblas cdotc(n, x, 1, y, 1, &result)

NOTE
The complex value comes last on the argument list in this case.

The following examples show use of the Fortran-style BLAS interface from C and C++, as well as the CBLAS
(C language) interface:

64

http://software.intel.com/en-us/articles/intel-software-technical-documentation/

Language-specific Usage Options 5

e Example "Calling a Complex BLAS Level 1 Function from C"
e Example "Calling a Complex BLAS Level 1 Function from C++"
e Example "Using CBLAS Interface Instead of Calling BLAS Directly from C"

Example "Calling a Complex BLAS Level 1 Function from C"

The example below illustrates a call from a C program to the complex BLAS Level 1 function zdotc (). This
function computes the dot product of two double-precision complex vectors.

In this example, the complex dot product is returned in the structure c.

#include "mkl.h"

#define N 5

int main ()

{

int n = N, inca = 1, incb =1, i;

MKL Complexl6 a[N], b[N], c;

for(i =0; i < n; i++){

a[i].real = (double)i; a[i].imag = (double)i * 2.0;
b[i].real = (double) (n - i); b[i].imag = (double)i * 2.0;
}

zdotc(&c, &n, a, &inca, b, &incb);

printf ("The complex dot product is: (%$6.2f, %6.2f)\n", c.real, c.imag);
return 0;

}

Example "Calling a Complex BLAS Level 1 Function from C++"

Below is the C++ implementation:

#include <complex>

#include <iostream>

#define MKL Complex16 std::complex<double>
#include "mkl.h"

#define N 5

int main ()

{
int n, inca = 1, incb =1, 1i;
std::complex<double> a[N], b[N], c;

n = N;

for(i =0; i < n; i++){
ali] = std::complex<double>(i,1i*2.0);
b[i] = std::complex<double>(n-i,1*2.0);

zdotc (&c, &n, a, &inca, b, &incb);
std::cout << "The complex dot product is: " << ¢ << std::endl;
return 0;

65

5 Intel® Math Kernel Library for Windows* Developer Guide

Example "Using CBLAS Interface Instead of Calling BLAS Directly from C"
This example uses CBLAS:

#include <stdio.h>

#include "mkl.h"

typedef struct{ double re; double im; } complexl6;
#define N 5

int main ()

{

int n, inca = 1, incb =1, 1i;

complexl6 a[N], b[N], c;

n = N;

for(i =0; i < n; it++){

al[i]l.re = (double)i; a[i].im = (double)i * 2.0;
b[i].re = (double) (n - i); b[i].im = (double)i * 2.0;
}

cblas zdotc sub(n, a, inca, b, incb, &c);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);
return 0;

}

66

Obtaining Numerically
Reproducible Results

Intel® Math Kernel Library (Intel® MKL) offers functions and environment variables that help you obtain
Conditional Numerical Reproducibility (CNR) of floating-point results when calling the library functions from
your application. These new controls enable Intel MKL to run in a special mode, when functions return bitwise
reproducible floating-point results from run to run under the following conditions:

e Calls to Intel MKL occur in a single executable
e The number of computational threads used by the library does not change in the run

It is well known that for general single and double precision IEEE floating-point numbers, the associative
property does not always hold, meaning (a+b)+c may not equal a +(b+c). Let's consider a specific example.
In infinite precision arithmetic 2763 + 1 + -1 = 2763, If this same computation is done on a computer using
double precision floating-point numbers, a rounding error is introduced, and the order of operations becomes
important:

(263 + 1) + (-1) =1 + (-1)
versus
263+ (14 (-1)) =29 +0=263

This inconsistency in results due to order of operations is precisely what the new functionality addresses.

I
o

The application related factors that affect the order of floating-point operations within a single executable
program include selection of a code path based on run-time processor dispatching, alignment of data arrays,
variation in number of threads, threaded algorithms and internal floating-point control settings. You can
control most of these factors by controlling the number of threads and floating-point settings and by taking
steps to align memory when it is allocated (see the Getting Reproducible Results with Intel® MKL knowledge
base article for details). However, run-time dispatching and certain threaded algorithms do not allow users to
make changes that can ensure the same order of operations from run to run.

Intel MKL does run-time processor dispatching in order to identify the appropriate internal code paths to
traverse for the Intel MKL functions called by the application. The code paths chosen may differ across a wide
range of Intel processors and Intel architecture compatible processors and may provide differing levels of
performance. For example, an Intel MKL function running on an Intel® Pentium® 4 processor may run one
code path, while on the latest Intel® Xeon® processor it will run another code path. This happens because
each unique code path has been optimized to match the features available on the underlying processor. One
key way that the new features of a processor are exposed to the programmer is through the instruction set
architecture (ISA). Because of this, code branches in Intel MKL are designated by the latest ISA they use for
optimizations: from the Intel® Streaming SIMD Extensions 2 (Intel® SSE2) to the Intel® Advanced Vector
Extensions 2 (Intel® AVX2). The feature-based approach introduces a challenge: if any of the internal
floating-point operations are done in a different order or are re-associated, the computed results may differ.

Dispatching optimized code paths based on the capabilities of the processor on which the code is running is
central to the optimization approach used by Intel MKL. So it is natural that consistent results require some
performance trade-offs. If limited to a particular code path, performance of Intel MKL can in some
circumstances degrade by more than a half. To understand this, note that matrix-multiply performance
nearly doubled with the introduction of new processors supporting Intel AVX2 instructions. Even if the code
branch is not restricted, performance can degrade by 10-20% because the new functionality restricts
algorithms to maintain the order of operations.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain

67

6 Intel® Math Kernel Library for Windows* Developer Guide

Optimization Notice

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Getting Started with Conditional Numerical Reproducibility

Intel MKL offers functions and environment variables to help you get reproducible results. You can configure
Intel MKL using functions or environment variables, but the functions provide more flexibility.

The following specific examples introduce you to the conditional numerical reproducibility.

While these examples recommend aligning input and output data, you can supply unaligned data to Intel
MKL functions running in the CNR mode, but refer to Reproducibility Conditions for details related to data
alignment.

Intel CPUs supporting Intel AVX2
To ensure Intel MKL calls return the same results on every Intel CPU supporting Intel AVX2 instructions:

1. Make sure that your application uses a fixed number of threads
2. (Recommended) Properly align input and output arrays in Intel MKL function calls
3. Do either of the following:

o Call

mkl cbwr set (MKL CBWR AVX2)
e Set the environment variable:

set MKL CBWR = AVX2

NOTE

On non-Intel CPUs and on Intel CPUs that do not support Intel AVX2, this environment setting may
cause results to differ because the AUTO branch is used instead, while the above function call returns
an error and does not enable the CNR mode.

Intel CPUs supporting Intel SSE2
To ensure Intel MKL calls return the same results on every Intel CPU supporting Intel SSE2 instructions:

1. Make sure that your application uses a fixed number of threads
2. (Recommended) Properly align input and output arrays in Intel MKL function calls
3. Do either of the following:

e Call

mkl cbwr set (MKL CBWR SSE2)
e Set the environment variable:

set MKL CBWR = SSE2

NOTE
On non-Intel CPUs, this environment setting may cause results to differ because the AUTO branch is
used instead, while the above function call returns an error and does not enable the CNR mode.

68

Obtaining Numerically Reproducible Results 6

Intel or Intel compatible CPUs supporting Intel SSE2

On non-Intel CPUs, only the MKL CBWR AUTO and MKL CBWR_ COMPATIBLE options are supported for function
calls and only AUTO and COMPATIBLE options for environment settings.

To ensure Intel MKL calls return the same results on all Intel or Intel compatible CPUs supporting Intel SSE2
instructions:

1. Make sure that your application uses a fixed number of threads

2.

Recommended) Properly align input and output arrays in Intel MKL function calls

3. Do either of the following:

Call

mkl cbwr set (MKL CBWR COMPATIBLE)
Set the environment variable:

set MKL CBWR = COMPATIBLE

NOTE

The special MKL_CBWR COMPATIBLE/COMPATIBLE option is provided because Intel and Intel
compatible CPUs have a few instructions, such as approximation instructions rcpps/rsqrtps, that may
return different results. This option ensures that Intel MKL does not use these instructions and forces a
single Intel SSE2 only code path to be executed.

Next steps

See Specifying the Code Branches for details of specifying the branch using
environment variables.

See the following sections in the Intel MKL Developer Reference:

Support Functions for Conditional Numerical Reproducibility for how to configure the CNR mode of Intel
MKL using functions.

Intel MKL PARDISO - Parallel Direct Sparse Solver Interface for how to configure the CNR mode for
PARDISO.

See Also

Code Examples

Specifying Code Branches

Intel MKL provides conditional numerically reproducible results for a code branch determined by the
supported instruction set architecture (ISA). The values you can specify for the MKL._ CBWR environment

variab

le may have one of the following equivalent formats:

e MKL CBWR="<branch>"
e MKL CBWR="BRANCH=<branch>"

The <branch> placeholder specifies the CNR branch with one of the following values:

Value Description

AUTO

CNR mode uses the standard ISA-based dispatching model while
ensuring fixed cache sizes, deterministic reductions, and static
scheduling

CNR mode uses the branch for the following ISA:

69

6 Intel® Math Kernel Library for Windows* Developer Guide

Value Description

COMPATIBLE Intel® Streaming SIMD Extensions 2 (Intel® SSE2) without rcpps/
rsqrtps instructions

SSE2 Intel SSE2

SSE3 DEPRECATED. Intel® Streaming SIMD Extensions 3 (Intel® SSE3). This
setting is kept for backward compatibility and is equivalent to SSE2.

SSSE3 Supplemental Streaming SIMD Extensions 3 (SSSE3)

SSE4.1 Intel® Streaming SIMD Extensions 4.1 (Intel® SSE4.1)

SSE4.2 Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2)

AVX Intel® Advanced Vector Extensions (Intel® AVX)

AVX2 Intel® Advanced Vector Extensions 2 (Intel® AVX2)

AVX512 MIC Intel® Advanced Vector Extensions 512 (Intel® AVX-512) on Intel®

Xeon Phi™ processors

AVX512 Intel AVX-512 on Intel® Xeon® processors

When specifying the CNR branch, be aware of the following:

e Reproducible results are provided under Reproducibility Conditions.

e Settings other than AUTO or COMPATIBLE are available only for Intel processors.

e To get the CNR branch optimized for the processor where your program is currently running, choose the
value of AUTO or call the mkl cbwr get auto branch function.

Setting the MKL CBWR environment variable or a call to an equivalent mkl cbwr_set function fixes the code
branch and sets the reproducibility mode.

CBWR supports AvxX512 MIC, AVX512, and AVX512 MIC E1l as well.

NOTE

o If the value of the branch is incorrect or your processor or operating system does not support the
specified ISA, CNR ignores this value and uses the AUTO branch without providing any warning
messages.

e (Calls to functions that define the behavior of CNR must precede any of the math library functions
that they control.

e Settings specified by the functions take precedence over the settings specified by the environment
variable.

See the Intel MKL Developer Reference for how to specify the branches using functions.

See Also
Getting Started with Conditional Numerical Reproducibility

Reproducibility Conditions

To get reproducible results from run to run, ensure that the number of threads is fixed and constant.
Specifically:

e If you are running your program with OpenMP* parallelization on different processors, explicitly specify
the number of threads.

70

Obtaining Numerically Reproducible Results 6

e To ensure that your application has deterministic behavior with OpenMP* parallelization and does not
adjust the number of threads dynamically at run time, set MKL. DYNAMIC and OMP_ DYNAMIC to FALSE. This
is especially needed if you are running your program on different systems.

e If you are running your program with the Intel® Threading Building Blocks parallelization, numerical
reproducibility is not guaranteed.

NOTE

e As usual, you should align your data, even in CNR mode, to obtain the best possible performance.
While CNR mode also fully supports unaligned input and output data, the use of it might reduce the
performance of some Intel MKL functions on earlier Intel processors. Refer to coding techniques
that improve performance for more details.

e Conditional Numerical Reproducibility does not ensure that bitwise-identical NaN values are
generated when the input data contains NaN values.

e If dynamic memory allocation fails on one run but succeeds on another run, you may fail to get
reproducible results between these two runs.

See Also
MKL_DYNAMIC
Coding Techniques

Setting the Environment Variable for Conditional
Numerical Reproducibility
The following examples illustrate the use of the MKL._ CBWR environment variable. The first command sets

Intel MKL to run in the CNR mode based on the default dispatching for your platform. The other two
commands are equivalent and set the CNR branch to Intel AVX:

e set MKL CBWR=AUTO
e set MKL CBWR=AVX
e set MKL CBWR=BRANCH=AVX

See Also
Specifying Code Branches

Code Examples

The following simple programs show how to obtain reproducible results from run to run of Intel MKL
functions. See the Intel MKL Developer Reference for more examples.

C Example of CNR

#include <mkl.h>
int main (void) {
int my cbwr branch;
/* Align all input/output data on 64-byte boundaries */
/* "for best performance of Intel MKL */
void *darray;
int darray size=1000;
/* Set alignment value in bytes */
int alignment=64;
/* Allocate aligned array */
darray = mkl malloc (sizeof (double)*darray size, alignment);
/* Find the available MKL CBWR BRANCH automatically */

71

6 Intel® Math Kernel Library for Windows* Developer Guide

my cbwr branch = mkl cbwr get auto branch();
/* User code without Intel MKL calls */
/* Piece of the code where CNR of Intel MKL is needed */
/* The performance of Intel MKL functions might be reduced for CNR mode */
/* If the "IF" statement below is commented out, Intel MKL will run in a reqular mode, */
/* and data alignment will allow you to get best performance */
if (mkl cbwr set(my cbwr branch)) {
printf ("Error in setting MKL CBWR BRANCH! Aborting..\n”);
return;
}
/* CNR calls to Intel MKL + any other code */
/* Free the allocated aligned array */
mkl free(darray);

Fortran Example of CNR

PROGRAM MAIN
INCLUDE 'mkl.fi'
INTEGER*4 MY CBWR BRANCH
! Align all input/output data on 64-byte boundaries
! "for best performance of Intel MKL
! Declare Intel MKL memory allocation routine
#ifdef IA32
INTEGER MKL MALLOC
#else
INTEGER*8 MKL MALLOC
#endif
EXTERNAL MKL MALLOC, MKL FREE
DOUBLE PRECISION DARRAY
POINTER (P_DARRAY, DARRAY (1))
INTEGER DARRAY SIZE
PARAMETER (DARRAY_SIZE=1000)
! Set alignment value in bytes
INTEGER ALIGNMENT
PARAMETER (ALIGNMENT=64)
! Allocate aligned array
P DARRAY = MKL MALLOC (%VAL (8*DARRAY SIZE), 3%VAL(ALIGNMENT));
! Find the available MKL CBWR BRANCH automatically
MY CBWR BRANCH = MKL CBWR GET AUTO BRANCH /()
! User code without Intel MKL calls
! Piece of the code where CNR of Intel MKL is needed
! The performance of Intel MKL functions may be reduced for CNR mode
! If the "IF" statement below is commented out, Intel MKL will run in a regular mode,
! and data alignment will allow you to get best performance
IF (MKL CBWR SET (MY CBWR BRANCH) .NE. MKL CBWR SUCCESS) THEN
PRINT *, 'Error in setting MKL CBWR BRANCH! Aborting.'
RETURN
ENDIF
! CNR calls to Intel MKL + any other code
! Free the allocated aligned array
CALL MKL FREE (P _DARRAY)

END

72

Obtaining Numerically Reproducible Results 6

Use of CNR with Unaligned Data in C

#include <mkl.h>
int main(void) {
int my cbwr branch;
/* If it is not possible to align all input/output data on 64-byte boundaries */
/* to achieve performance, use unaligned IO data with possible performance */
/* penalty */
/* Using unaligned IO data */
double *darray;
int darray size=1000;
/* Allocate array, malloc aligns data on 8/16-byte boundary only */
darray = (double *)malloc (sizeof (double)*darray size);
/* Find the available MKL CBWR BRANCH automatically */
my cbwr branch = mkl cbwr get auto branch();
/* User code without Intel MKL calls */
/* Piece of the code where CNR of Intel MKL is needed */
/* The performance of Intel MKL functions might be reduced for CNR mode */
/* If the "IF" statement below is commented out, Intel MKL will run in a regular mode, */
/* and you will NOT get best performance without data alignment */
if (mkl cbwr set(my cbwr branch)) {
printf ("Error in setting MKL CBWR BRANCH! Aborting..\n");
return;

/* CNR calls to Intel MKL + any other code */
/* Free the allocated array */
free(darray);

Use of CNR with Unaligned Data in Fortran

PROGRAM MAIN

INCLUDE 'mkl.fi'

INTEGER*4 MY CBWR BRANCH
! If it is not possible to align all input/output data on 64-byte boundaries
! to achieve performance, use unaligned IO data with possible performance
! penalty

DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DARRAY

INTEGER DARRAY SIZE, STATUS

PARAMETER (DARRAY SIZE=1000)
! Allocate array with undefined alignment

ALLOCATE (DARRAY (DARRAY SIZE));
! Find the available MKL CBWR BRANCH automatically

MY CBWR BRANCH = MKL CBWR GET AUTO BRANCH ()
! User code without Intel MKL calls
! Piece of the code where CNR of Intel MKL is needed
! The performance of Intel MKL functions might be reduced for CNR mode
! If the "IF" statement below is commented out, Intel MKL will run in a regular mode,
! and you will NOT get best performance without data alignment

IF (MKL CBWR SET (MY CBWR BRANCH) .NE. MKL CBWR SUCCESS) THEN

PRINT *, 'Error in setting MKL CBWR BRANCH! Aborting..'
RETURN

ENDIF
! CNR calls to Intel MKL + any other code
! Free the allocated array

DEALLOCATE (DARRAY)

END

73

7 Intel® Math Kernel Library for Windows* Developer Guide

Coding Tips

This section provides coding tips for managing data alignment and version-specific compilation.

See Also

Mixed-language Programming with the Intel® Math Kernel Library Tips on language-specific
programming

Managing Performance and Memory Coding tips related to performance improvement and use of
memory functions

Obtaining Numerically Reproducible Results Tips for obtaining numerically reproducible results of
computations

Example of Data Alignment

Needs for best performance with Intel MKL or for reproducible results from run to run of Intel MKL functions
require alignment of data arrays. The following example shows how to align an array on 64-byte boundaries.
To do this, use mkl malloc () in place of system provided memory allocators, as shown in the code example

below.

Aligning Addresses on 64-byte Boundaries

// *xkkkxk language *)k ok ok kK

#include <stdlib.h>
#include <mkl.h>

void *darray;

int workspace;

// Set value of alignment
int alignment=64;

// Allocate aligned workspace
darray = mkl malloc(sizeof (double)*workspace, alignment);

// call the program using Intel MKL
mkl app(darray);

// Free workspace
mkl free(darray);

I x%x¥xxx%% Fortran language ****x*x*

! Set value of alignment
integer alignment
parameter (alignment=64)

! Declare Intel MKL routines
#ifdef IA32

integer mkl malloc

telse

74

Coding Tips 7

integer*8 mkl malloc
#endif
external mkl malloc, mkl free, mkl app

double precision darray
pointer (p wrk,darray (1))

integer workspace

! Allocate aligned workspace
p _wrk = mkl malloc(%val(8*workspace), %val(alignment)

! call the program using Intel MKL
call mkl app(darray)

! Free workspace
call mkl free(p wrk)

Using Predefined Preprocessor Symbols for Intel® MKL
Version-Dependent Compilation

Preprocessor symbols (macros) substitute values in a program before it is compiled. The substitution is
performed in the preprocessing phase.

The following preprocessor symbols are available:

Predefined Preprocessor Symbol Description

___INTEL MKL Intel MKL major version

__INTEL MKL MINOR Intel MKL minor version

__ INTEL MKL UPDATE Intel MKL update number

INTEL MKL VERSION Intel MKL full version in the following format:

INTEL MKL VERSION =
(_INTEL MKL *100+ INTEL MKL MINOR)*100+ I
NTEL MKL UPDATE

These symbols enable conditional compilation of code that uses new features introduced in a particular
version of the library.

To perform conditional compilation:
1. Depending on your compiler, include in your code the file where the macros are defined:

C/C++ compiler: mkl version.h,
or mkl.h, which includes mkl version.h

Intel®Fortran compiler: mkl.fi

Any Fortran compiler with enabled mkl _version.h

preprocessing: Read the documentation for your compiler for the option that
enables preprocessing.

2. [Optionally] Use the following preprocessor directives to check whether the macro is defined:

e #ifdef, #endif for C/C++
e !DECSIF DEFINED, !DECSENDIF for Fortran
3. Use preprocessor directives for conditional inclusion of code:

75

7 Intel® Math Kernel Library for Windows* Developer Guide

o #if, #endif for C/C++
e |!DECSIF, !DECSENDIF for Fortran

Example

This example shows how to compile a code segment conditionally for a specific version of Intel MKL. In this
case, the version is 11.2 Update 4:

Intel®Fortran Compiler:

include "mkl.fi"

IDECSIF DEFINED INTEL MKL VERSION
IDECSIF INTEL MKL VERSION .EQ. 110204

w Code to be conditionally compiled
!DECSENDIF

! DECSENDIF

C/C++ Compiler. Fortran Compiler with Enabled Preprocessing:

#include "mkl.h"
#ifdef INTEL MKL VERSION
#if INTEL MKL VERSION == 110204
Code to be conditionally compiled
#endif
#endif

76

Managing Output

Using Intel MKL Verbose Mode

When building applications that call Intel MKL functions, it may be useful to determine:

e which computational functions are called,
e what parameters are passed to them, and
¢ how much time is spent to execute the functions.

You can get an application to print this information to a standard output device by enabling Intel MKL
Verbose. Functions that can print this information are referred to as verbose-enabled functions.

When Verbose mode is active in an Intel MKL domain, every call of a verbose-enabled function finishes with
printing a human-readable line describing the call. However, if your application gets terminated for some
reason during the function call, no information for that function will be printed. The first call to a verbose-
enabled function also prints a version information line.

To enable the Intel MKL Verbose mode for an application, do one of the following:

e set the environment variable MKL_VERBOSE to 1, or
e call the support function mkl verbose(1).

To disable the Intel MKL Verbose mode, call the mk1l verbose(0) function. Both enabling and disabling of the
Verbose mode using the function call takes precedence over the environment setting. For a full description of
now the mkl verbose function works by language, see either the Intel MKL Developer Reference for C or
thelntel MKL Developer Reference for Fortran. Both references are available in the Intel® Software
Documentation Library.

Intel MKL Verbose mode is not a thread-local but a global state. In other words, if an application changes the
mode from multiple threads, the result is undefined.

WARNING

The performance of an application may degrade with the Verbose mode enabled, especially when the
number of calls to verbose-enabled functions is large, because every call to a verbose-enabled
function requires an output operation.

See Also
Intel Software Documentation Library

Version Information Line

In the Intel MKL Verbose mode, the first call to a verbose-enabled function prints a version information line.
The line begins with the MKL. VERBOSE character string and uses spaces as delimiters. The format of the rest
of the line may change in a future release.

The following table lists information contained in a version information line and provides available links for
more information:

Information Description Related Links
Intel MKL version. This information is separated by a comma from the rest

of the line.
Operating system. Possible values:

77

http://software.intel.com/en-us/intel-software-technical-documentation

8 Intel® Math Kernel Library for Windows* Developer Guide

Information Description Related Links

e ILnx for Linux* OS
e Win for Windows* OS
e 0sXx for macOS*

The host CPU frequency.

Intel MKL interface layer Possible values: Using the cdecl
used by the application. * stdcall or cdecl on systems based on the IA-32 and stdcall
- Interfaces
architecture.
e 1p64 or ilp64 on systems based on the Intel® 64 Using the ILP64
architecture. Interface vs. LP64
Interface
Intel MKL threading layer Possible values: Linking with

used by the application. Threading Libraries

intel thread, tbb thread, pgi thread, or
sequential.

The following is an example of a version information line:

MKL VERBOSE Intel(R) MKL 11.2 Beta build 20131126 for Intel(R) 64 architecture Intel (R)
Advanced Vector Extensions (Intel (R) AVX) Enabled Processor, Win 3.10GHz lp64
intel thread NMICDev:2

Call Description Line

In Intel MKL Verbose mode, each verbose-enabled function called from your application prints a call
description line. The line begins with the MKL. VERBOSE character string and uses spaces as delimiters. The
format of the rest of the line may change in a future release.

The following table lists information contained in a call description line and provides available links for more
information:

Information Description Related Links

The name of the Although the name printed may differ from the name used in

function. the source code of the application (for example, the cblas
prefix of CBLAS functions is not printed), you can easily
recognize the function by the printed name.

Values of the * The values are listed in the order of the formal argument list.
arguments. The list directly follows the function name, it is parenthesized
and comma-separated.

* Arrays are printed as addresses (to see the alignment of the
data).

* Integer scalar parameters passed by reference are printed by
value. Zero values are printed for NULL references.

e Character values are printed without quotes.

* For all parameters passed by reference, the values printed
are the values returned by the function. For example, the
printed value of the info parameter of a LAPACK function is
its value after the function execution.

Time taken by the ¢ The time is printed in convenient units (seconds, Managing Multi-
function. milliseconds, and so on), which are explicitly indicated. core Performance
* The time may fluctuate from run to run. for options to set

an affinity mask.

78

Managing Output 8

Information Description Related Links
* The time printed may occasionally be larger than the time

actually taken by the function call, especially for small

problem sizes and multi-socket machines. To reduce this

effect, bind threads that call Intel MKL to CPU cores by

setting an affinity mask.
Value of the The value printed is prefixed with CNR: Getting Started
MKL CBWR with Conditional
environment Numerical
variable. Reproducibility
Value of the The value printed is prefixed with Dyn: MKL DYNAMIC

MKL DYNAMIC
environment
variable.

Status of the Intel
MKL memory
manager.

The value printed is prefixed with FastMM: Avoiding Memory
Leaks in Intel MKL
for a description
of the Intel MKL

memory manager

OpenMP* thread
number of the
calling thread.

The value printed is prefixed with TID:

Values of Intel The first value printed is prefixed with NThr: Intel MKL-specific

MKL environment
variables defining
the general and
domain-specific
numbers of
threads,
separated by a
comma.

Environment
Variables for
Threading Control

The following is an example of a call description line:

MKL VERBOSE DGEMM (n,n,
1000,1000,240,0x7£f£££708bb30,0x7f£f2aea4c000,1000,0x7££28e92b000,240,0x7££££708bb38, 0x7£f

£28e08d000,1000)

WDiv:0:-1.000 WDiv:1:-1.000

The following information is not printed because of limitations of Intel MKL Verbose mode:

1.66ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:16,FFT:2 WDiv:HOST:-1.000

e Input values of parameters passed by reference if the values were changed by the function.

For example, if a LAPACK function is called with a workspace query, that is, the value of the Iwork
parameter equals -1 on input, the call description line prints the result of the query and not -1.
e Return values of functions.

For example, the value returned by the function ilaenv is not printed.
e Floating-point scalars passed by reference.

79

9 Intel® Math Kernel Library for Windows* Developer Guide

Working with the Intel® Math
Kernel Library Cluster Software

Intel® Math Kernel Library (Intel® MKL) includes distributed memory function domains for use on clusters:

e ScalAPACK
e Cluster Fourier Transform Functions (Cluster FFT)
e Parallel Direct Sparse Solvers for Clusters (Cluster Sparse Solver)

ScalLAPACK, Cluster FFT, and Cluster Sparse Solver are only provided for the Intel® 64 and Intel® Many
Integrated Core architectures.

Important
ScalAPACK, Cluster FFT, and Cluster Sparse Solver function domains are not installed by default. To
use them, explicitly select the appropriate component during installation.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

See Also

Intel® Math Kernel Library Structure

Managing Performance of the Cluster Fourier Transform Functions
Intel® Distribution for LINPACK* Benchmark

Message-Passing Interface Support

Intel MKL ScalLAPACK, Cluster FFT, and Cluster Sparse Solver support implementations of the message-
passing interface (MPI) identified in the Intel® Math Kernel Library (Intel® MKL) Release Notes.

To link applications with ScaLAPACK, Cluster FFT, or Cluster Sparse Solver, you need to configure your system
depending on your message-passing interface (MPI) implementation as explained below.

If you are using MPICH2, do the following:

Add mpich2\include to the include path (assuming the default MPICH?2 installation).

Add mpich2\1ib to the library path.

Add mpi.1lib to your link command.

Add fmpich2.1lib to your Fortran link command.

Add cxx.1lib to your Release target link command and cxxd.1lib to your Debug target link command
for C++ programs.

nhwnNe

If you are using the Microsoft MPI, do the following:

1. AddMicrosoft Compute Cluster Pack\include to the include path (assuming the default
installation of the Microsoft MPI).

80

Working with the Intel® Math Kernel Library Cluster Software 9

2. AddMicrosoft Compute Cluster Pack\Lib\AMD64 to the library path.
3. Add msmpi.lib to your link command.

If you are using the Intel® MPI, do the following:

1. Add the following string to the include path: $ProgramFiles%\Intel\MPI\<ver>\intel64\include,
where <ver> is the directory for a particular MPI version, for example, $ProgramFiles%\Intel\MPI
\5.1\intel64\include.

2. Add the following string to the library path: $ProgramFiles%\Intel\MPI\<ver>\intel64\1lib, for
example, $ProgramFiles%\Intel\MPI\5.1\intel64\1ib.

3. Add impi.lib and impicxx.lib to your link command.

Check the documentation that comes with your MPI implementation for implementation-specific details of
linking.

Linking with Intel MKL Cluster Software

The Intel MKL ScaLAPACK, Cluster FFT, and Cluster Sparse Solver support MPI implementations identified in
the Intel MKL Release Notes.

To link with ScalLAPACK, Cluster FFT, and/or Cluster Sparse Solver, use the following commands:
set lib =<path to MKL libraries>;<path to MPI libraries>;%1lib%

<linker> <files to link> [<MKL cluster library>] <BLACS><MKL core libraries><MPI
libraries>

where the placeholders stand for paths and libraries as explained in the following table:

<path to MKL libraries> <mkl directory>\lib\intel64 win. If you
performed the Scripts to Set Environment Variables
Setting Environment Variables step of the Getting
Started process, you do not need to add this
directory to the 1ib environment variable.

<path to MPI libraries> Typically the 1ib subdirectory in the MPI
installation directory.

<linker> One of icl, ifort, xilink.

<MKIL cluster library> One of libraries for ScaLAPACK or Cluster FFT listed

in Appendix C: Directory Structure in Detail. For
example, for the LP64 interface, it is

mkl scalapack 1p64.1ib or

mkl cdft core.lib. Cluster Sparse Solver does
not require an additional computation library.

<BLACS> The BLACS library corresponding to your ,
programming interface (LP64 or ILP64), and MPI
version. These libraries are listed in Appendix C:
Directory Structure in Detail. For example, for the
LP64 interface, choose one of
mkl blacs intelmpi 1p64.lib,
mkl blacs mpich2 1p64.1lib, or
mkl blacs msmpi 1p64.1ib in the case of static
linking and mkl blacs 1p64 dll.1lib in the case
of dynamic linking.

<MKL core libraries> Intel MKL libraries other than libraries with
ScalAPACK, Cluster FFT, or Cluster Sparse Solver.

81

9 Intel® Math Kernel Library for Windows* Developer Guide

Tip
Use the Using the Link-line Advisor to quickly choose the appropriate set of <MKL cluster
Library>, <BLACS>, and <MKL core libraries>.

Intel MPI provides prepackaged scripts for its linkers to help you link using the respective linker. Therefore, if
you are using Intel MPI, the best way to link is to use the following commands:

<path to Intel MPI binaries>\mpivars.bat
set lib = <path to MKL libraries>;%1lib%
<mpilinker><files to 1link> [<MKL cluster Library>] <BLACS><MKL core libraries>

where the placeholders that are not yet defined are explained in the following table:

<path to MPI binaries> By default, the bin subdirectory in the MPI installation
directory.
<MPI linker> mpicl ormpiifort
See Also

Linking Your Application with the Intel(R) Math Kernel Library
Examples of Linking for Clusters

Determining the Number of OpenMP* Threads

The OpenMP* run-time library responds to the environment variable OMP NUM THREADS. Intel MKL also has
other mechanisms to set the number of OpenMP threads, such as the MKL._NUM THREADS or
MKL DOMAIN NUM THREADS environment variables (see Using Additional Threading Control).

Make sure that the relevant environment variables have the same and correct values on all the nodes. Intel
MKL does not set the default number of OpenMP threads to one, but depends on the OpenMP libraries used
with the compiler to set the default number. For the threading layer based on the Intel compiler

(mkl intel thread.lib), this value is the number of CPUs according to the OS.

Caution

Avoid over-prescribing the number of OpenMP threads, which may occur, for instance, when the
number of MPI ranks per node and the number of OpenMP threads per node are both greater than
one. The number of MPI ranks per node multiplied by the nhumber of OpenMP threads per node should
not exceed the number of hardware threads per node.

The OMP_NUM THREADS environment variable is assumed in the discussion below.

Set OMP_NUM THREADS so that the product of its value and the number of MPI ranks per node equals the
number of real processors or cores of a node. If the Intel® Hyper-Threading Technology is enabled on the
node, use only half number of the processors that are visible on Windows OS.

Important
For Cluster Sparse Solver, set the number of OpenMP threads to a number greater than one because
the implementation of the solver only supports a multithreaded algorithm.

See Also
Setting Environment Variables on a Cluster

82

Working with the Intel® Math Kernel Library Cluster Software 9

Using DLLs

All the needed DLLs must be visible on all the nodes at run time, and you should install Intel® Math Kernel
Library (Intel® MKL) on each node of the cluster. You can use Remote Installation Services (RIS) provided by
Microsoft to remotely install the library on each of the nodes that are part of your cluster. The best way to
make the DLLs visible is to point to these libraries in the PATH environment variable. See Setting
Environment Variables on a Cluster on how to set the value of the PATH environment variable.

The ScalLAPACK DLLs in the <parent directory>\redist\intel64 win\mkldirectory use the MPI
dispatching mechanism. MPI dispatching is based on the MKL. BLACS MPI environment variable. The BLACS
DLL uses MKL_BLACS_MPI for choosing the needed MPI libraries. The table below lists possible values of the
variable.

Value Comment

MPICH2 Default value. MPICH2 for Windows* OS is used for message passing
INTELMPI Intel MPI is used for message passing

MSMPT Microsoft MPI is used for message passing

CUSTOM Intel MKL MPI wrappers built with a custom MPI are used for message passing

If you are using a non-default MPI, assign the same appropriate value to MKL_BLACS MPI on all nodes.

See Also
Setting Environment Variables on a Cluster
Notational Conventions

Setting Environment Variables on a Cluster

If you are using MPICH2 or higher or Intel MPI, to set an environment variable on the cluster, use -env,
genv, -genvlist keys of mpiexec.

See the following MPICH2 examples on how to set the value of OMP_NUM THREADS:
mpiexec —-genv OMP NUM THREADS 2
mpiexec —-genvlist OMP_NUM THREADS

mpiexec -n 1 -host first -env OMP NUM THREADS 2 test.exe : -n 1 -host second -env
OMP NUM THREADS 3 test.exe

See the following Intel MPI examples on how to set the value of MKL. BLACS MPI:
mpiexec -genv MKL BLACS MPI INTELMPI
mpiexec -genvlist MKL BLACS MPI

mpiexec -n 1 -host first -env MKL BLACS MPI INTELMPI test.exe : -n 1 -host second -env
MKL BLACS MPI INTELMPI test.exe.

When using MPICH2 or higher, you may have problems with getting the global environment, such as

MKL BLACS_MPI, by the -~genvlist key. In this case, set up user or system environments on each node as
follows:

From the Start menu, select Settings > Control Panel > System > Advanced > Environment
Variables.

If you are using Microsoft MPI, the above ways of setting environment variables are also applicable if the
Microsoft Single Program Multiple Data (SPMD) process managers are running in a debug mode on all nodes
of the cluster. However, the best way to set environment variables is using the Job Scheduler with the
Microsoft Management Console (MMC) and/or the Command Line Interface (CLI) to submit a job and pass
environment variables. For more information about MMC and CLI, see the Microsoft Help and Support page at
the Microsoft Web site (http://www.microsoft.com/).

83

9 Intel® Math Kernel Library for Windows* Developer Guide

Interaction with the Message-passing Interface

To improve performance of cluster applications, it is critical for Intel MKL to use the optimal number of
threads, as well as the correct thread affinity. Usually, the optimal number is the number of available cores
per node divided by the number of MPI processes per node. You can set the number of threads using one of
the available methods, described in Techniques to Set the Number of Threads.

If the number of threads is not set, Intel MKL checks whether it runs under MPI provided by the Intel® MPI
Library. If this is true, the following environment variables define Intel MKL threading behavior:

e I MPI THREAD LEVEL
e MKL MPI PPN

e I MPI NUMBER OF MPI PROCESSES PER NODE
e I MPI PIN MAPPING

e OMPI COMM WORLD LOCAL SIZE

e MPI LOCALNRANKS

The threading behavior depends on the value of I _MPI THREAD LEVEL as follows:

e 0 or undefined.

Intel MKL considers that thread support level of Intel MPI Library is MPI THREAD SINGLE and defaults to

sequential execution.
e 1,2, 0r3.

This value determines Intel MKL conclusion of the thread support level:
e 1-MPI THREAD FUNNELED

e 2-MPI THREAD SERIALIZED
e 3-MPI THREAD MULTIPLE

In all these cases, Intel MKL determines the number of MPI processes per node using the other
environment variables listed and defaults to the number of threads equal to the number of available cores
per node divided by the number of MPI processes per node.

Important
Instead of relying on the discussed implicit settings, explicitly set the number of threads for Intel MKL.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

See Also
Managing Multi-core Performance

Intel® Software Documentation Library for more information on Intel MPI Library
for more information on Intel MPI Library

84

http://software.intel.com/en-us/articles/intel-software-technical-documentation/

Working with the Intel® Math Kernel Library Cluster Software 9

Using a Custom Message-Passing Interface

While different message-passing interface (MPI) libraries are compatible at the application programming
interface (API) level, they are often incompatible at the application binary interface (ABI) level. Therefore,
Intel MKL provides a set of prebuilt BLACS libraries that support certain MPI libraries, but this, however, does
not enable use of Intel MKL with other MPI libraries. To fill this gap, Intel MKL also includes the MKL MPI
wrapper, which provides an MPI-independent ABI to Intel MKL. The adaptor is provided as source code. To
use Intel MKL with an MPI library that is not supported by default, you can use the adapter to build custom
static or dynamic BLACS libraries and use them similarly to the prebuilt libraries.

Building a Custom BLACS Library

The MKL MPI wrapper is located in the <mkl directory>\interfaces\mklmpi directory.
To build a custom BLACS library, from the above directory run the nmake command.

For example: the command

nmake libintel64

builds a static custom BLACS library mk1l blacs custom lp64.1lib using the default MPI compiler on your
system. Look into the <mk1 directory>\interfaces\mklmpi\makefile for targets and variables that
define how to build the custom library. In particular, you can specify the compiler through the MpICC variable.

For more control over the building process, refer to the documentation available through the command

nmake help

Using a Custom BLACS Library

In the case of static linking, use custom BLACS libraries exactly the same way as you use the prebuilt BLACS
libraries, but pass the custom library to the linker. For example, instead of passing the
mkl blacs intelmpi lp64.1lib static library, pass mkl blacs custom 1lp64.1lib.

To use a dynamic custom BLACS library:

1. Link your application the same way as when you use the prebuilt BLACS library.
2. Call the mkl set mpi support function or set the MKL BLACS MPI environment variable to one of the
following values:

e CUSTOM

to load a custom library with the default name mkl blacs custom 1p64.dl11l or
mkl blacs custom ilp64.dll, depending on whether the BLACS interface linked against your
application is LP64 or ILP64.

e <dIl name>

to load the specified BLACS DLL.

NOTE
Intel MKL looks for the specified DLL either in the directory with Intel MKL dynamic libraries or in the
directory with the application executable.

For a description of the mk1l set mpi function, see the Intel MKL Developer Reference.

See Also
Linking with Intel MKL Cluster Software

85

9 Intel® Math Kernel Library for Windows* Developer Guide

Examples of Linking for Clusters

This section provides examples of linking with ScaLAPACK, Cluster FFT, and Cluster Sparse Solver.

Note that a binary linked with the Intel MKL cluster function domains runs the same way as any other MPI
application (refer to the documentation that comes with your MPI implementation).

For further linking examples, see the support website for Intel products at http://www.intel.com/software/
products/support/.

See Also
Directory Structure in Detail

Examples for Linking a C Application
These examples illustrate linking of an application under the following conditions:

e Main module is in C.

e MPICH2 is installed in c:\mpich2x64.

¢ You are using the Intel® C++ Compiler.
e Intel MKL functions use LP64 interfaces.

To link with ScalLAPACK for a cluster of Intel® 64 architecture based systems, set the environment variable
and use the link line as follows:

set lib=c:\mpich2x64\1ib; <mkl directory>\lib\intel64 win;%1ib%

icl <user files to link> mkl scalapack 1lp64.1lib mkl blacs mpich2 1p64.1lib
mkl intel 1p64.lib mkl intel thread.lib mkl core.lib libiompS5md.lib mpi.lib cxx.lib
bufferoverflowu.lib

To link with Cluster FFT for a cluster of Intel® 64 architecture based systems, set the environment variable
and use the link line as follows:

set lib=c:\mpich2x64\1ib; <mkl directory>\1lib\intel64 win;%$1ib%

icl <user files to link> mkl cdft core.lib mkl blacs mpich2 1p64.1ib mkl intel 1p64.1ib
mkl intel thread.lib mkl core.lib libiomp5md.lib mpi.lib cxx.lib bufferoverflowu.lib

To link with Cluster Sparse Solver for a cluster of Intel® 64 architecture based systems, set the environment
variable and use the link line as follows:

set lib=c:\mpich2x64\1ib; <mkl directory>\lib\intel64 win;%1ib%

icl <user files to link> mkl blacs mpich2 1p64.lib mkl intel 1p64.lib
mkl intel thread.lib mkl core.lib libiomp5md.lib mpi.lib cxx.lib bufferoverflowu.lib

See Also

Linking with Intel MKL Cluster Software
Using the Link-line Advisor

Linking with System Libraries

Examples for Linking a Fortran Application
These examples illustrate linking of an application under the following conditions:

¢ Main module is in Fortran.
e Microsoft Windows Compute Cluster Pack SDK is installed in c:\MS CCP SDK.
e You are using the Intel® Fortran Compiler.

86

Working with the Intel® Math Kernel Library Cluster Software 9

¢ Intel MKL functions use LP64 interfaces.

To link with ScalLAPACK for a cluster of Intel® 64 architecture based systems, set the environment variable
and use the link line as follows:

set 1lib="c:\MS CCP SDK\Lib\AMD64";<mkl directory>\1lib\intel64 win;%1ib%

ifort <user files to link> mkl scalapack 1lp64.1lib mkl blacs mpich2 1p64.lib
mkl intel 1p64.l1ib mkl intel thread.lib mkl core.lib libiomp5md.lib msmpi.lib
bufferoverflowu.lib

To link with Cluster FFT for a cluster of Intel® 64 architecture based systems, set the environment variable
and use the link line as follows:

set lib="c:\MS CCP SDK\Lib\AMD64";<mkl directory>\lib\intel64 win;%1ib%

ifort <user files to link> mkl cdft core.lib mkl blacs mpich2 1p64.1lib
mkl intel 1p64.1ib mkl intel thread.lib mkl core.lib libiomp5md.lib msmpi.lib
bufferoverflowu.lib

To link with Cluster Sparse Solver for a cluster of Intel® 64 architecture based systems, set the environment
variable and use the link line as follows:

set lib="c:\MS CCP SDK\Lib\AMD64";<mkl directory>\1lib\intel64 win;%$1ib%

ifort <user files to l1ink> mkl blacs mpich2 1p64.lib mkl intel 1p64.lib
mkl intel thread.lib mkl core.lib libiomp5md.lib msmpi.lib bufferoverflowu.lib

See Also

Linking with Intel MKL Cluster Software
Using the Link-line Advisor

Linking with System Libraries

87

1 0 Intel® Math Kernel Library for Windows* Developer Guide

Managing Behavior of the
Intel(R) Math Kernel Library with
Environment Variables

See Also
Intel MKL-specific Environment Variables for Threading Control

Specifying the Code Branches
for how to use an environment variable to specify the code branch for Conditional Numerical Reproducibility

Using Intel MKL Verbose Mode
for how to use an environment variable to set the verbose mode

Managing Behavior of Function Domains with Environment
Variables

NaN checking on matrix input can be expensive. By default, NaN checking is turned on. LAPACKE provides a
way to set it through the environment variable:

e Setting environment variable LAPACKE NANCHECK to 0 turns OFF NaN-checking
e Setting environment variable LAPACKE NANCHECK to 1 turns ON NaN-checking

The other way is to call the LAPACKE set nancheck flag; see the Developer Reference for C's Support
Functions section for more information.

Note that the NaN-checking flag value set by the call to LAPACKE set nancheck will always have higher
priority than the environment variable LAPACKE NANCHECK.

Setting the Default Mode of Vector Math with an Environment Variable

Intel® Math Kernel Library (Intel® MKL) enables overriding the default setting of the Vector Mathematics (VM)
global mode using the MKL_VML_ MODE environment variable.

Because the mode is set or can be changed in different ways, their precedence determines the actual mode
used. The settings and function calls that set or change the VM mode are listed below, with the precedence
growing from lowest to highest:

1. The default setting

2. The MKL VML MODE environment variable

3. A call vmlSetMode function

4. A call to any VM function other than a service function

For more details, see the Vector Mathematical Functions section in the Intel MKL Developer Reference and
the description of the vml1SetMode function in particular.

To set the MKL VML MODE environment variable, use the following command:
set MKL VML MODE=<mode-string>

In this command, <mode-string> controls error handling behavior and computation accuracy, consists of
one or several comma-separated values of the mode parameter listed in the table below, and meets these
requirements:

e Not more than one accuracy control value is permitted
e Any combination of error control values except VML ERRMODE DEFAULT is permitted

88

Managing Behavior of the Intel(R) Math Kernel Library with Environment Variables 1 O

e No denormalized numbers control values are permitted

Values of the mode Parameter

Value of mode

Description

Accuracy Control

VML HA

VML LA

VML EP

Denormalized Numbers Handling Control
VML FTZDAZ ON

VML FTZDAZ OFF

Error Mode Control

VML ERRMODE TIGNORE

VML ERRMODE NOERR

VML ERRMODE STDERR
VML ERRMODE EXCEPT
VML ERRMODE CALLBACK
VML ERRMODE DEFAULT

high accuracy versions of VM functions
low accuracy versions of VM functions
enhanced performance accuracy versions of VM functions

Faster processing of denormalized inputs is enabled.
Faster processing of denormalized inputs is disabled.

On computation error, VM Error status is updated, but otherwise no
action is set. Cannot be combined with other VML, ERRMODE
settings.

On computation error, VM Error status is not updated and no action is
set. Cannot be combined with other VML, ERRMODE settings.

On error, the error text information is written to stderr.
On error, an exception is raised.
On error, an additional error handler function is called.

On error, an exception is raised and an additional error handler
function is called.

This command provides an example of valid settings for the MKL. VML MODE environment variable:

set MKL VML MODE=VML LA, VML ERRMODE ERRNO, VML ERRMODE STDERR

NOTE

VM ignores the MKL VML MODE environment variable in the case of incorrect or misspelled settings of

mode.

Managing Performance of the Cluster Fourier Transform Functions

Performance of Intel MKL Cluster FFT (CFFT) in different applications mainly depends on the cluster
configuration, performance of message-passing interface (MPI) communications, and configuration of the
run. Note that MPI communications usually take approximately 70% of the overall CFFT compute time. For
more flexibility of control over time-consuming aspects of CFFT algorithms, Intel MKL provides the MKL CDFT
environment variable to set special values that affect CFFT performance. To improve performance of your
application that intensively calls CFFT, you can use the environment variable to set optimal values for you

cluster, application, MPI, and so on.

The MKL_CDFT environment variable has the following syntax, explained in the table below:

MKL CDFT=optionl[=valuel],option2[=value2],..,optionN[=valueN]

Important

While this table explains the settings that usually improve performance under certain conditions, the
actual performance highly depends on the configuration of your cluster. Therefore, experiment with the
listed values to speed up your computations.

Option Possible Description
Values
alltoallv 0 (default) Configures CFFT to use the standard MPI Alltoallv function to

perform global transpositions.

89

1 O Intel® Math Kernel Library for Windows* Developer Guide

Option Possible Description
Values
1 Configures CFFT to use a series of calls to MPI Isend and MPI Irecv

instead of the MPI Alltoallv function.

4 Configures CFFT to merge global transposition with data movements
in the local memory. CFFT performs global transpositions by calling
MPI Isend and MPI Irecv in this case.

Use this value in a hybrid case (MPI + OpenMP), especially when the
number of processes per node equals one.

wo_omatcopy 0 Configures CFFT to perform local FFT and local transpositions
separately.

CFFT usually performs faster with this value than with wo_omatcopy
= 1 if the configuration parameter DFTI TRANSPOSE has the value of
DFTI_ ALLOW. See the Intel MKL Developer Reference for details.

1 Configures CFFT to merge local FFT calls with local transpositions.

CFFT usually performs faster with this value than with wo_omatcopy
= 0 if DFTI_TRANSPOSE has the value of DFTI NONE.

-1 (default) Enables CFFT to decide which of the two above values to use
depending on the value of DFTI TRANSPOSE.

enable soi Not applicable A flag that enables low-communication Segment Of Interest FFT (SOI
FFT) algorithm for one-dimensional complex-to-complex CFFT, which
requires fewer MPI communications than the standard nine-step (or
six-step) algorithm.

Caution
While using fewer MPI communications, the SOI FFT algorithm incurs a
minor loss of precision (about one decimal digit).

The following example illustrates usage of the environment variable:

set MKL CDFT=wo omatcopy=1,alltoallv=4,enable soi
mpirun -ppn 2 -n 16 mkl cdft app.exe

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Instruction Set Specific Dispatching on Intel® Architectures

Intel MKL automatically queries and then dispatches the code path supported on your Intel® processor to the
optimal instruction set architecture (ISA) by default. The MKL._ENABLE INSTRUCTIONS environment variable
or the mkl enable instructions support function enables you to dispatch to an ISA-specific code path of

90

Managing Behavior of the Intel(R) Math Kernel Library with Environment Variables 1 O

your choice. For example, you can run the Intel® Advanced Vector Extensions (Intel® AVX) code path on an
Intel processor based on Intel® Advanced Vector Extensions 2 (Intel® AVX2), or you can run the Intel®
Streaming SIMD Extensions 4.2 (Intel® SSE4.2) code path on an Intel AVX-enabled Intel processor. This
feature is not available on non-Intel processors.

In some cases Intel MKL also provides support for upcoming architectures ahead of hardware availability, but
the library does not automatically dispatch the code path specific to an upcoming ISA by default. If for your
exploratory work you need to enable an ISA for an Intel processor that is not yet released or if you are
working in a simulated environment, you can use the MKL_ENABLE INSTRUCTIONS environment variable or
mkl enable instructions support function.

The following table lists possible values of MKL. ENABLE INSTRUCTIONS alongside the corresponding ISA
supported by a given processor. MKL_ENABLE INSTRUCTIONS dispatches to the default ISA if the ISA
requested is not supported on the particular Intel processor. For example, if you request to run the Intel
AVX512 code path on a processor based on Intel AVX2, Intel MKL runs the Intel AVX2 code path. The table
also explains whether the ISA is dispatched by default on the processor that supports this ISA.

Value of ISA Dispatched by
MKL _ENABLE INSTRUCTIONS Default
AVX512 MIC E1 Intel AVX-512 for systems based on Intel® Xeon Yes

Phi™ processors with support of
AVX512_4FMAPS and AVX512_4VNNI
instruction groups

AVX512 Intel AVX-512 for systems based on Intel® Yes
Xeon® processors

AVX512 MIC Intel AVX-512 for systems based on Intel® Xeon Yes
Phi™ processors

AVX2 Intel AVX2 Yes

AVX Intel AVX Yes

SSE4.2 Intel SSE4.2 Yes

For more details about the mk1 enable instructions function, including the argument values, see the
Intel MKL Developer Reference.

For example:

e To turn on automatic CPU-based dispatching of Intel AVX-512 with support of AVX512_4FMAPS and
AVX512_4VNNI instruction groups on systems based on Intel Xeon Phi processors, do one of the
following:

o Call

mkl enable instructions (MKL ENABLE AVX512 MIC E1l)
e Set the environment variable:

set MKL ENABLE INSTRUCTIONS=AVX512 MIC E1
e To configure the library not to dispatch more recent architectures than Intel AVX2, do one of the
following:

o Call

mkl enable instructions (MKL ENABLE AVXZ2)
e Set the environment variable:

set MKL ENABLE INSTRUCTIONS=AVX2

91

1 O Intel® Math Kernel Library for Windows* Developer Guide

NOTE
Settings specified by the mk1l enable instructions function take precedence over the settings

specified by the MKL. ENABLE INSTRUCTIONS environment variable.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

92

Programming with Intel® Math
Kernel Library in Integrated
Development Environments
(IDE)

Configuring Your Integrated Development Environment to
Link with Intel(R) Math Kernel Library

See these Knowledge Base articles for how to configure your Integrated Development Environment for linking
with Intel MKL:

Compiling and Linking Intel® MKL with Microsoft* Visual C/C++* (http://software.intel.com/en-us/
articles/intel-math-kernel-library-intel-mkl-compiling-and-linking-with-microsoft-visual-cc)

How to Build an Intel® MKL Application with Intel® Visual Fortran Compiler (http://software.intel.com/en-
us/articles/how-to-build-mkl-application-in-intel-visual-fotran-msvc2005)

Configuring Intel® MKL in Microsoft* Visual Studio* (http://software.intel.com/en-us/articles/configuring-
intel-mklin-microsoft-visual-studio)

Configuring the Microsoft Visual C/C++* Development System to Link with Intel® MKL

Steps for configuring Microsoft Visual C/C++* development system for linking with Intel® Math Kernel Library
(Intel® MKL) depend on whether you installed the C++ Integration(s) in Microsoft Visual Studio* component
of the Intel® Parallel Studio XE Composer Edition:

If you installed the integration component, see Automatically Linking Your Microsoft Visual C/C++*
Project with Intel® MKL.

If you did not install the integration component or need more control over Intel MKL libraries to link, you
can configure the Microsoft Visual C++* development system by performing the following steps. Though
some versions of the Visual C++* development system may vary slightly in the menu items mentioned
below, the fundamental configuring steps are applicable to all these versions.

1.In Solution Explorer, right-click your project and click Properties

2.Select Configuration Properties > VC++ Directories

3.Select Include Directories. Add the directory for the Intel MKL include files, that is, <mk1
directory>\include

4.Select Library Directories. Add architecture-specific directories for Intel MKL and OpenMP* libraries,
for example: <mkl directory>\1ib\ia32 win and <parent directory>\compiler\lib\ia32 win

5.Select Executable Directories. Add architecture-specific directories with dynamic-link libraries:

e For OpenMP* support, for example: <parent directory>\redist\ia32 win\compiler
e For Intel MKL (only if you link dynamically), for example: <parent directory>\redist\ia32 win
\mk1
6. Select Configuration Properties > Custom Build Setup > Additional Dependencies. Add the
libraries required, for example, mk1 intel c.lib mkl intel thread.lib mkl core.lib
libiomp5md.lib

See Also

Intel® Software Documentation Library for the documentation for Intel Parallel Studio XE
Composer Edition
for the documentation for Intel Parallel Studio XE Composer Edition

Linking in Detail

93

http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/

1 1 Intel® Math Kernel Library for Windows* Developer Guide

Notational Conventions

Configuring Intel® Visual Fortran to Link with Intel MKL

Steps for configuring Intel® Visual Fortran for linking with Intel® Math Kernel Library (Intel® MKL) depend on
whether you installed the Visual Fortran Integration(s) in Microsoft Visual Studio* component of the Intel®
Parallel Studio XE Composer Edition:

e If you installed the integration component, see Automatically Linking Your Intel® Visual Fortran Project
with Intel® MKL.

e If you did not install the integration component or need more control over Intel MKL libraries to link, you
can configure your project as follows:

1.Select Project > Properties > Linker > General > Additional Library Directories. Add
architecture-specific directories for Intel MKL and OpenMP* libraries,
for example: <mkl directory>\1ib\ia32 win and <parent directory>\compiler\lib\ia32 win

2.Select Project > Properties > Linker > Input > Additional Dependencies. Insert names of the
required libraries, for example: mkl intel c.lib mkl intel thread.lib mkl core.lib
libiompbmd.1lib

3.Select Project > Properties > Debugging > Environment. Add architecture-specific paths to
dynamic-link libraries:

e For OpenMP* support; for example: enter PATH=%PATHS; <parent directory>\redist\ia32 win
\compiler

e For Intel MKL (only if you link dynamically); for example: enter PATH=%PATHS; <parent
directory>\redist\ia32 win\mkl

See Also

Intel® Software Documentation Library for the documentation for Intel Parallel Studio XE
Composer Edition
for the documentation for Intel Parallel Studio XE Composer Edition

Notational Conventions

Getting Assistance for Programming in the Microsoft Visual
Studio* IDE

Using Context-Sensitive Help

You can get context-sensitive help when typing your code in the Visual Studio* IDE Code Editor. To open the
help topic describing an Intel MKL function called in your code, select the function name and press F1. The
topic with the function description opens in the Microsoft Help Viewer or your Web browser depending on the
Visual Studio IDE Help settings.

Using the IntelliSense* Capability

IntelliSense is a set of native Visual Studio*(VS) IDE features that make language references easily
accessible.

The user programming with Intel MKL in the VS Code Editor can employ two IntelliSense features: Parameter
Info and Complete Word.

Both features use header files. Therefore, to benefit from IntelliSense, make sure the path to the include files
is specified in the VS or solution settings. For example, see Configuring the Microsoft Visual C/C++*
Development System to Link with Intel® MKL on how to do this.

94

http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/

Programming with Intel® Math Kernel Library in Integrated Development Environments (IDE) 1 1

Parameter Info

The Parameter Info feature displays the parameter list for a function to give information on the number and
types of parameters. This feature requires adding the include statement with the appropriate Intel MKL
header file to your code.

To get the list of parameters of a function specified in the header file,

1. Type the function name.
2. Type the opening parenthesis.

This brings up the tooltip with the list of the function parameters:

#% proj - Microsoft Visual Studio E@g|

File Edit View Project Build Debug Tools

Window Community Help
3 W
=N | =

| Search | -

i'n'kl_dfti.h_,. i)ro]c '_ SEart__P:age
?(Global Scope) v “main(}

1T "mkl_dfti.h"”

> |_ <..:;>< | R -

5

6— = DftiCreatelescriptor [&my_

7 DFTI_CC

8 = DftiCommitDescriptor | rs
£ . |I0ng DftiCommitDescriptor {DFTI_Descriptor_struck "‘)|

Oukput - a %

Show output: From: L

jBreakpoints] Immediate ... |[Z] Output f%lndex Resulks

Ready Ln& Col 32 Ch 32

Complete Word

For a software library, the Complete Word feature types or prompts for the rest of the name defined in the
header file once you type the first few characters of the name in your code. This feature requires adding the
include statement with the appropriate Intel MKL header file to your code.

To complete the name of the function or named constant specified in the header file,

1. Type the first few characters of the name.

2. Press Alt+RIGHT ARROW or Ctrl+SPACEBAR.
If you have typed enough characters to disambiguate the name, the rest of the name is typed
automatically. Otherwise, a pop-up list appears with the names specified in the header file

3. Select the name from the list, if needed.

95

1 1 Intel® Math Kernel Library for Windows* Developer Guide

proj - Microsoft ¥isual Studio

File Edit View Project Build Debug Tools
Window Community Help

C RN W A NN R
=2 @603

- mkl_dfti.h | Search |

! (Global Scope) v | | “igmaing)

/pﬁii.c"‘ | " Start Page

int mainf)
{

status = DftiCreateDescriptc

status = Dftic

! DFTI_UNCOMMITTED
DFTI_UMIMPLEMEMNTED
DFTI_VERSION
DFTI_VERSION_LENGTH
Shows oukput: from: -iadn] mitDesc
‘4 DftiComputeBackward

= —. ' DftiComputeForward

—SBreakpolnts A “ip DftiCopyDescriptar

Ready ‘i DftiCreateDescriptor =
‘i DftiErrorClass

|

Output

| <

96

Intel® Math Kernel Library
Benchmarks

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Intel® Optimized LINPACK Benchmark for Windows*

Intel® Optimized LINPACK Benchmark for Windows* is a generalization of the LINPACK 1000 benchmark. It
solves a dense (real*8) system of linear equations (Ax=b), measures the amount of time it takes to factor
and solve the system, converts that time into a performance rate, and tests the results for accuracy. The
generalization is in the number of equations (N) it can solve, which is not limited to 1000. It uses partial
pivoting to assure the accuracy of the results.

Do not use this benchmark to report LINPACK 100 performance because that is a compiled-code only
benchmark. This is a shared-memory (SMP) implementation which runs on a single platform. Do not confuse
this benchmark with:

e Intel® Distribution for LINPACK* Benchmark, which is a distributed memory version of the same
benchmark.
e LINPACK, the library, which has been expanded upon by the LAPACK library.

Intel provides optimized versions of the LINPACK benchmarks to help you obtain high LINPACK benchmark
results on your genuine Intel processor systems more easily than with the High Performance Linpack (HPL)
benchmark.

Additional information on this software, as well as on other Intel® software performance products, is available
at http://www.intel.com/software/products/.

Acknowledgement

This product includes software developed at the University of Tennessee, Knoxville, Innovative Computing
Laboratories.

Contents of the Intel® Optimized LINPACK Benchmark

The Intel Optimized LINPACK Benchmark for Windows* contains the following files, located in the
benchmarks\linpack\ subdirectory of the Intel® Math Kernel Library (Intel® MKL) directory:

File in benchmarks\linpack)\ Description

linpack xeon32.exe The 32-bit program executable for a system based on Intel®
Xeon® processor or Intel® Xeon® processor MP with or without
Intel® Streaming SIMD Extensions 3 (SSE3).

97

1 2 Intel® Math Kernel Library for Windows* Developer Guide

File in benchmarks\linpack\ Description

linpack xeon64.exe The 64-bit program executable for a system with Intel Xeon
processor using Intel® 64 architecture.

runme_xeon32.bat A sample shell script for executing a pre-determined problem set
for linpack xeon32.exe.

lininput xeon32 Input file for a pre-determined problem for the runme xeon32
script.

lininput xeon64 Input file for a pre-determined problem for the runme xeon64
script.

help.lpk Simple help file.

xhelp.lpk Extended help file.

These files are not available immediately after installation and appear as a result of execution of an
appropriate runme script.

win xeon32.txt Result of the runme xeon32 script execution.
win xeon64.txt Result of the runme xeon64 script execution.
See Also

High-level Directory Structure

Running the Software

To obtain results for the pre-determined sample problem sizes on a given system, type one of the following,
as appropriate:

runme_xeon32.bat
runme_xeonb64.bat

To run the software for other problem sizes, see the extended help included with the program. Extended help
can be viewed by running the program executable with the -e option:

linpack xeon32.exe -e
linpack xeon64.exe -e

The pre-defined data input files 1ininput xeon32 and lininput xeon64 are examples. Different systems
have different numbers of processors or amounts of memory and therefore require new input files. The
extended help can give insight into proper ways to change the sample input files.

Each input file requires the following minimum amount of memory:
lininput xeon32 2 GB
lininput xeon64 16 GB

If the system has less memory than the above sample data input requires, you may need to edit or create
your own data input files, as explained in the extended help.

The Intel Optimized LINPACK Benchmark determines the optimal number of OpenMP threads to use. To run a
different number, you can set the OMP NUM THREADS or MKL NUM THREADS environment variable inside a
sample script. If you run the Intel Optimized LINPACK Benchmark without setting the number of threads, it
defaults to the number of physical cores.

98

Intel® Math Kernel Library Benchmarks 1 2

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Known Limitations of the Intel® Optimized LINPACK Benchmark
The following limitations are known for the Intel Optimized LINPACK Benchmark for Windows*:

e Intel Optimized LINPACK Benchmark supports only OpenMP threading

¢ Intel Optimized LINPACK Benchmark is threaded to effectively use multiple processors. So, in multi-
processor systems, best performance will be obtained with the Intel® Hyper-Threading Technology turned
off, which ensures that the operating system assigns threads to physical processors only.

e If an incomplete data input file is given, the binaries may either hang or fault. See the sample data input
files and/or the extended help for insight into creating a correct data input file.

Intel® Distribution for LINPACK* Benchmark

Overview of the Intel Distribution for LINPACK Benchmark

The Intel® Distribution for LINPACK* Benchmark is based on modifications and additions to High-Performance
LINPACK (HPL) 2.1 (http://www.netlib.org/benchmark/hpl/) from Innovative Computing Laboratories (ICL) at
the University of Tennessee, Knoxville. The Intel Distribution for LINPACK Benchmark can be used for TOP500
runs (see http://www.top500.0rg) and for benchmarking your cluster. To use the benchmark you need to be
familiar with HPL usage. The Intel Distribution for LINPACK Benchmark provides some enhancements
designed to make the HPL usage more convenient and to use Intel® Message-Passing Interface (MPI) settings
to improve performance.

The Intel Distribution for LINPACK Benchmark measures the amount of time it takes to factor and solve a
random dense system of linear equations (Ax=b) in real*8 precision, converts that time into a performance
rate, and tests the results for accuracy. The benchmark uses random number generation and full row pivoting
to ensure the accuracy of the results.

Intel provides optimized versions of the LINPACK benchmarks to help you obtain high LINPACK benchmark
results on your systems based on genuine Intel processors more easily than with the standard HPL
benchmark. The prebuilt binaries require Intel® MPI library be installed on the cluster. The run-time version of
Intel MPI library is free and can be downloaded from http://www.intel.com/software/products/ .

The Intel package includes software developed at the University of Tennessee, Knoxville, ICL, and neither the
University nor ICL endorse or promote this product. Although HPL 2.1 is redistributable under certain
conditions, this particular package is subject to the Intel® Math Kernel Library (Intel® MKL) license.

Intel MKL provides prebuilt binaries that are linked against Intel MPI libraries either statically or dynamically.
In addition, binaries linked with a customized MPI implementation can be created using the Intel MKL MPI
wrappers.

NOTE

Performance of statically and dynamically linked prebuilt binaries may be different. The performance of
both depends on the version of Intel MPI you are using. You can build binaries statically or dynamically
linked against a particular version of Intel MPI by yourself.

99

1 2 Intel® Math Kernel Library for Windows* Developer Guide

HPL code is homogeneous by nature: it requires that each MPI process runs in an environment with similar
CPU and memory constraints. The Intel Distribution for LINPACK Benchmark supports heterogeneity,
meaning that the data distribution can be balanced to the performance requirements of each node, provided
that there is enough memory on that node to support additional work. For information on how to configure
Intel MKL to use the internode heterogeneity, see Heterogeneous Support in the Intel Distribution for
LINPACK Benchmark.

Contents of the Intel Distribution for LINPACK Benchmark

The Intel Distribution for LINPACK Benchmark includes prebuilt binaries linked with Intel® MPI library. For a
customized MPI implementation, tools are also included to build a binary using Intel MKL MPI wrappers. All
the files are located in the .\benchmarks\mp linpack\ subdirectory of the Intel MKL directory.

File in <mkl directory>\benchmarks Contents
\mp_linpack\

COPYRIGHT Original Netlib HPL copyright document.
readme. txt Information about the files provided.
Prebuilt executables for performance testing

xhpl intel64 dynamic.exe Prebuilt binary for the Intel® 64 architecture dynamically linked
against Intel MPI library®.

Run scripts and an input file example

runme_intel64 dynamic.bat Sample run script for the Intel® 64 architecture and binary
dynamically linked against Intel MPI library.

runme intel64 prv.bat Script that sets HPL environment variables. It is called by
runme_intel64 dynamic.bat.

HPL.dat Example of an HPL configuration file.
Prebuilt libraries and utilities for building with a customized MPI implementation

libhpl intel64.1lib Library file required to build Intel Distribution for LINPACK
Benchmark for the Intel® 64 architecture with a customized
MPI implementation.

HPL main.c Source code required to build Intel Distribution for LINPACK
Benchmark for the Intel® 64 architecture with a customized
MPI implementation.

build.bat Build script for creating Intel Distribution for LINPACK
Benchmark for the Intel® 64 architecture with a customized
MPI implementation.

Utilities for building Netlib HPL from source code

Make.Windows Intel64 Makefile for building Netlib HPL from source code.

* For a list of supported versions of the Intel MPI Library, see system requirements in the Intel MKL Release
Notes.

See Also
High-level Directory Structure

100

Intel® Math Kernel Library Benchmarks 1 2

Building the Intel Distribution for LINPACK Benchmark for a Customized MPI
Implementation

The Intel Distribution for LINPACK Benchmark contains a sample build script build.bat. If you are using a
customized MPI implementation, this script builds a binary using Intel MKL MPI wrappers. To build the binary,
follow these steps:

1. Specify the location of Intel MKL to be used (MKLROOT)

2. Set up your MPI environment
3. Run the script build.bat

See Also
Contents of the Intel Distribution for LINPACK Benchmark

Building the Netlib HPL from Source Code

The source code for Intel Distribution for LINPACK Benchmark is not provided. However, you can download
reference Netlib HPL source code from http://www.netlib.org/benchmark/hpl/ . To build the HPL:

1. Download and extract the source code.

2. Copy the makefile <mkl directory>\benchmarks\mp linpack\Make.Windows Intel64 to your HPL
directory

3. Edit Make .Windows_ Intel64 as appropriate

4. Build the HPL binary:

$> nmake -f Make.Windows_ Intel64
5. Check that the built binary is available in the current directory.

NOTE
The Intel Distribution for LINPACK Benchmark may contain additional optimizations compared to the
reference Netlib HPL implementation.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

See Also
Contents of the Intel Distribution for LINPACK Benchmark

Configuring Parameters
The most significant parameters in HPL.dat are P, Q, NB, and N. Specify them as follows:
e Pand Q - the number of rows and columns in the process grid, respectively.

P*Q must be the number of MPI processes that HPL is using.

Choose P<Q.

101

1 2 Intel® Math Kernel Library for Windows* Developer Guide

e NB - the block size of the data distribution.

The table below shows recommended values of NB for different Intel® processors:

Processor NB

Intel® Xeon® Processor X56*/E56*/E7-*/E7*/X7* (codenamed Nehalem or Westmere) 256

Intel Xeon Processor E26*/E26* v2 (codenamed Sandy Bridge or Ivy Bridge) 256
Intel Xeon Processor E26* v3/E26* v4 (codenamed Haswell or Broadwell) 192
Intel® Core™ i3/i5/i7-6* Processor (codenamed Skylake Client) 192
Intel® Xeon Phi™ Processor 72* (codenamed Knights Landing) 336

Intel Xeon Processor supporting Intel® Advanced Vector Extensions 512 (Intel® AVX-512) 384
instructions (codenamed Skylake Server)

e N - the problem size:

e For homogeneous runs, choose N divisible by NB*LCM(P,Q), where LCM is the least common multiple
of the two numbers.

e For heterogeneous runs, see Heterogeneous Support in the Intel Distribution for LINPACK Benchmark
for how to choose N.

NOTE

Increasing N usually increases performance, but the size of N is bounded by memory. In general, you
can compute the memory required to store the matrix (which does not count internal buffers) as
8*N*N/(P*Q) bytes, where N is the problem size and P and Q are the process grids in HPL.dat. A
general rule of thumb is to choose a problem size that fills 80% of memory.

Ease-of-use Command-line Parameters

The Intel Distribution for LINPACK Benchmark supports command-line parameters for HPL that help you to
avoid making small changes in the HPL.dat input file every time you do a new run.

Placeholders in this command line illustrate these parameters:

xhpl.exe -n <problem size> -m <memory size in Mbytes> -b <block size> -p <grid row
dimn> -q <grid column dimn>

You can also use command-line parameters with the sample runme script. For example:

runme_intel64 dynamic.bat -m <memory size in Mbytes> -b <block size> -p <grid row dimn>
-q <grid column dimn>

For more command-line parameters, see Heterogeneous Support in the Intel Distribution for LINPACK
Benchmark.

If you want to run for N=10000 on a 1x3 grid, execute this command, provided that the other parameters in
HPL.dat and the script are correct:

runme_intel64 dynamic.bat -n 10000 -p 1 -g 3

By using the m parameter you can scale by the memory size instead of the problem size. The m parameter
only refers to the size of the matrix storage. Therefore, to use matrices that fit in 50000 Mbytes with
NB=256 on 16 nodes, adjust the script to set the total number of MPI processes to 16 and execute this
command:

runme_intel64 dynamic.bat -m 50000 -b 256 -p 4 -q 4

102

Intel® Math Kernel Library Benchmarks 1 2

Running the Intel Distribution for LINPACK Benchmark

To run the Intel Distribution for LINPACK Benchmark on multiple nodes or on one node with multiple MPI
processes, you need to use MPI and either modify HPL.dat or use Ease-of-use Command-line Parameters.
The following example describes how to run the dynamically-linked prebuilt Intel Distribution for LINPACK
Benchmark binary using the script provided. To run other binaries, adjust the steps accordingly.

1. Load the necessary environment variables for the Intel MPI Library and Intel® compiler:
<parent directory>\bin\compilervars.bat intel64

<mpi directory>\bin64\mpivars.bat

2. In HPL.dat, set the problem size N to 10000. Because this setting is for a test run, the problem size
should be small.

3. For better performance, enable non-uniform memory access (NUMA) on your system and configure to
run an MPI process for each NUMA socket as explained below.

NOTE

High-bandwidth Multi-Channel Dynamic Random Access Memory (MCDRAM) on the second-generation
Intel Xeon Phi processors may appear to be a NUMA node. However, because there are no CPUs on
this node, do not run an MPI process for it.

Refer to your BIOS settings to enable NUMA on your system.
e Set the following variables at the top of the runme intel64 dynamic.bat script according to your
cluster configuration:

MPI_PROC NUM The total number of MPI processes.
MPI_PER_NODE The number of MPI processes per each cluster node.

e In the HPL.dat file, set the parameters Ps and Qs so that Ps * Qs equals the number of MPI
processes. For example, for 2 processes, set Ps to 1 and Qs to 2. Alternatively, leave the HPL.dat
file as is and launch with -p and -g command-line parameters.

4. Execute runme intel64 dynamic.bat script:

runme_intel64 dynamic.bat
5. Rerun the test increasing the size of the problem until the matrix size uses about 80% of the available
memory. To do this, either modify Ns in line 6 of HPL.dat or use the -n command-line parameter:

e For 16 GB: 40000 Ns
e For 32 GB: 56000 Ns
e For 64 GB: 83000 Ns

See Also

Notational Conventions

Building the Intel Distribution for LINPACK Benchmark for a Customized MPI Implementation
Building the Netlib HPL from Source Code

Heterogeneous Support in the Intel Distribution for LINPACK Benchmark

Intel Distribution for LINPACK Benchmark achieves heterogeneous support by distributing the matrix data
unequally between the nodes. The heterogeneous factor command-line parameter £ controls the amount of
work to be assigned to the more powerful nodes, while the command-line parameter ¢ controls the number
of process columns for the faster nodes:

xhpl.exe —-n <problem size> -b <block size> -p <grid row dimn> —-q <grid column dimn> -f
<heterogeneous factor> —-c <number of faster processor columns>

103

1 2 Intel® Math Kernel Library for Windows* Developer Guide

If the heterogeneous factor is 2.5, roughly 2.5 times the work will be put on the more powerful nodes. The
more work you put on the more powerful nodes, the more memory you might be wasting on the other nodes
if all nodes have equal amount of memory. If your cluster includes many different types of nodes, you may
need multiple heterogeneous factors.

Let P be the number of rows and Q the number of columns in your processor grid (PxQ). The work must be
homogeneous within each processor column because vertical operations, such as pivoting or panel
factorization, are synchronizing operations. When there are two different types of nodes, use MPI to process
all the faster nodes first and make sure the "PMAP process mapping" (line 9) of HPL.dat is set to 1 for
Column-major mapping. Because all the nodes must be the same within a process column, the number of
faster nodes must always be a multiple of P, and you can specify the faster nodes by setting the number of
process columns C for the faster nodes with the ¢ command-line parameter. The -f 1.0 -c 0 setting
corresponds to the default homogeneous behavior.

To understand how to choose the problem size N for a heterogeneous run, first consider a homogeneous
system, where you might choose N as follows:

N ~= sgrt(Memory Utilization * P * Q * Memory Size in Bytes / 8)

Memory Utilization is usually around 0.8 for homogeneous Intel Xeon processor systems. On a
heterogeneous system, you may apply a different formula for N for each set of nodes that are the same and
then choose the minimum N over all sets. Suppose you have a cluster with only one heterogeneous factor F
and the number of processor columns (out of the total Q) in the group with that heterogeneous factor equal
to C. That group contains P*C nodes. First compute the sum of the parts: S =F*P*C + P*(Q-C). Note that on
a homogeneous system S=P*Q,F=1, and C=Q. Take N as

N ~= sgrt(Memory Utilization * P * Q * ((F*P*C)/S) * Memory Size in Bytes / 8)
or simply scale down the value of N for the homogeneous system by sqgrt(F*P*C/S).

Example

Suppose the cluster has 100 nodes each having 64 GB of memory, and 20 of the nodes are 2.7 times as
powerful as the other 80. Run one MPI process per node for a total of 100 MPI processes. Assume a square
processor grid P=Q=10, which conveniently divides up the faster nodes evenly. Normally, the HPL
documentation recommends choosing a matrix size that consumes 80 percent of available memory. If N is
the size of the matrix, the matrix consumes 8N*2/(P*Q) bytes. So a homogeneous run might look like:

xhpl.exe -n 820000 -b 256 —-p 10 -q 10

If you redistribute the matrix and run the heterogeneous Intel Distribution for LINPACK Benchmark, you can
take advantage of the faster nodes. But because some of the nodes will contain 2.7 times as much data as
the other nodes, you must shrink the problem size (unless the faster nodes also happen to have 2.7 times as
much memory). Instead of 0.8*64GB*100 total memory size, we have only 0.8*64GB*20 + 0.8*64GB/
2.7*80 total memory size, which is less than half the original space. So the problem size in this case would
be 526000. Because P=10 and there are 20 faster nodes, two processor columns are faster. If you arrange
MPI to send these nodes first to the application, the command line looks like:

xhpl.exe -n 526000 -b 1024 -p 10 -g 10 -f 2.7 -c 2

The m parameter may be misleading for heterogeneous calculations because it calculates the problem size
assuming all the nodes have the same amount of data.

Warning

The number of faster nodes must be C*P. If the number of faster nodes is not divisible by P, you
might not be able to take advantage of the extra performance potential by giving the faster nodes
extra work.

104

Intel® Math Kernel Library Benchmarks 1 2

While it suffices to simply provide £ and ¢ command-line parameters if you need only one heterogeneous
factor, you must add lines to the HPL.dat input to support multiple heterogeneous factors. For the above
example (two processor columns have nodes that are 2.7 times faster), instead of passing f and c
command-line parameters you can modify the HPL.dat input file by adding these two lines to the end:

1 number of heterogeneous factors
012.7 [start column, stop column, heterogeneous factor for that range]

NOTE
Numbering of processor columns starts at 0. The start and stopping humbers must be between 0 and
Q-1 (inclusive).

If instead there are three different types of nodes in a cluster and you need at least two heterogeneous
factors, change the number in the first row above from 1 to 2 and follow that line with two lines specifying
the start column, stopping column, and heterogeneous factor.

When choosing parameters for heterogeneous support in HPL.dat, primarily focus on the most powerful
nodes. The larger the heterogeneous factor, the more balanced the cluster may be from a performance
viewpoint, but the more imbalanced from a memory viewpoint. At some point, further performance balancing
might affect the memory too much. If this is the case, try to reduce any changes done for the faster nodes
(such as in block sizes). Experiment with values in HPL.dat carefully because wrong values may greatly
hinder performance.

When tuning on a heterogeneous cluster, do not immediately attempt a heterogeneous run, but do the
following:

1. Break the cluster down into multiple homogeneous clusters.

2. Make heterogeneous adjustments for performance balancing. For instance, if you have two different
sets of nodes where one is three times as powerful as the other, it must do three times the work.

3. Figure out the approximate size of the problem (per node) that you can run on each piece.

4. Do some homogeneous runs with those problem sizes per node and the final block size needed for the
heterogeneous run and find the best parameters.

5. Use these parameters for an initial heterogeneous run.

Environment Variables

The table below lists Intel MKL environment variables to control runs of the Intel Distribution for LINPACK
Benchmark.

Environment Variable Description Value

HPL LARGEPAGE Defines the memory mapping to be 0 or 1:

used for the Intel Xeon processor. « 0 - normal memory

mapping, default.

¢ 1 - memory mapping with
large pages (2 MB per
page mapping). It may
increase performance.

HPL LOG Controls the level of detail for the An integer ranging from 0 to
HPL output. 2:

* 0 -no log is displayed.

e 1 - only one root node
displays a log, exactly the
same as the ASYOUGO
option provides.

105

1 2 Intel® Math Kernel Library for Windows* Developer Guide

Environment Variable Description Value

e 2 - the most detailed log is
displayed. All P root nodes
in the processor column
that owns the current
column block display a log.

HPL HOST CORE, HPL HOST NODE Specifies cores or Non-Uniform A list of integers ranging from
Memory Access (NUMA) nodes to 0 to the largest number of a
be used. core or NUMA node in the

cluster and separated as

HPL HOST NODE requires NUMA - -
- — explained in example 3.

mode to be enabled. You can check
whether it is enabled by the
numactl —--hardware command.

The default behavior is auto-
detection of the core or NUMA
node.

HPL SWAPWIDTH Specifies width for each swap 16 or 24. The default is 24.
operation.

You can set Intel Distribution for LINPACK Benchmark environment variables using the PMI RANK and
PMI_SIZE environment variables of the Intel MPI library, and you can create a shell script to automate the
process.

Examples of Environment Settings

Settings Behavior of the Intel Distribution for LINPACK
Benchmark

1 Nothing specified All Intel Xeon processors in the cluster are used.

2 HPL MIC_DEVICE=0,2 Intel Xeon processor cores 1,2,3,8,9, and 10 are used.

HPL HOST CORE=1-3,8-10

3 HPL HOST NODE=1 Only Intel Xeon processor cores on NUMA node 1 are used.

Improving Performance of Your Cluster
To improve cluster performance, follow these steps, provided all required software is installed on each node:

1. Reboot all nodes.

2. Ensure all nodes are in identical conditions and no zombie processes are left running from prior HPL
runs. To do this, run single-node Stream and Intel Distribution for LINPACK Benchmark on every node.
Ensure results are within 10% of each other (problem size must be large enough depending on memory
size and CPU speed). Investigate nodes with low performance for hardware/software problems.

3. Check that your cluster interconnects are working. Run a test over the complete cluster using an MPI
test for bandwidth and latency, such as one found in the Intel® MPI Benchmarks package.

4. Run an Intel Distribution for LINPACK Benchmark on pairs of two or four nodes and ensure results are
within 10% of each other. The problem size must be large enough depending on the memory size and
CPU speed.

5. Run a small problem size over the complete cluster to ensure correctness.

6. Increase the problem size and run the real test load.

7. In case of problems go back to step 2.

Before making a heterogeneous run, always run its homogeneous equivalent first.

106

Intel® Math Kernel Library
Language Interfaces Support

See Also
Mixed-language Programming with Intel® MKL

Language Interfaces Support, by Function Domain

The following table shows language interfaces that Intel® Math Kernel Library (Intel® MKL) provides for each
function domain. However, Intel MKL routines can be called from other languages using mixed-language
programming. See Mixed-language Programming with the Intel Math Kernel Library for an example of how to
call Fortran routines from C/C++.

Function Domain Fortranint C/C++
erface interface
Basic Linear Algebra Subprograms (BLAS) Yes through
CBLAS
BLAS-like extension transposition routines ves Yes
Sparse BLAS Level 1 Yes through
CBLAS
Sparse BLAS Level 2 and 3 Yes Yes
LAPACK routines for solving systems of linear equations Yes Yes
LAPACK routines for solving least-squares problems, eigenvalue and singular Yes Yes
value problems, and Sylvester's equations
Auxiliary and utility LAPACK routines ves Yes
Parallel Basic Linear Algebra Subprograms (PBLAS) ves
ScalAPACK ves t
Direct Sparse Solvers/ Yes Yes
Intel MKL PARDISO, a direct sparse solver based on Parallel Direct Sparse
Solver (PARDISO*)
Parallel Direct Sparse Solvers for Clusters Yes Yes
Other Direct and Iterative Sparse Solver routines Yes Yes
Vector Mathematics (VM) Yes Yes
Vector Statistics (VS) Yes Yes
Fast Fourier Transforms (FFT) Yes Yes
Cluster FFT Yes Yes
Trigonometric Transforms Yes Yes
Fast Poisson, Laplace, and Helmholtz Solver (Poisson Library) Yes Yes
Optimization (Trust-Region) Solver Yes Yes

107

/ \ Intel® Math Kernel Library for Windows* Developer Guide

Function Domain Fortranint C/C++
erface interface

Data Fitting Yes Yes

Deep Neural Network (DNN) functions Yes

Extended Eigensolver Yes Yes

Support functions (including memory allocation) Yes Yes

T Supported using a mixed language programming call. See Include Files for the respective header file.

Include Files

The table below lists Intel MKL include files.

Function Domain/ Fortran Include Files C/C++ Include Files
Purpose
All function domains mkl.fi mkl.h
BLACS mkl blacs.h™
BLAS blas.f90 mkl blas.h*
mkl blas.fi'
BLAS-like Extension Transposition mkl trans.fi' mkl trans.h*
Routines
CBLAS Interface to BLAS mkl cblas.h*
Sparse BLAS mkl spblas.fil mkl spblas.h®
LAPACK lapack.f90 mkl_lapack.hfF
mklilapack.fiJr
C Interface to LAPACK mkl lapacke.h?
PBLAS mkl pblas.h®
ScalAPACK mkl scalapack. n**
Intel MKL PARDISO mkl pardiso.f90 mkl pardiso.h*
mkl_pardiso.fiT
Parallel Direct Sparse Solvers for mkl cluster mkl cluster
Clusters sparse_solver.£f90 sparse_solver.h®
Direct Sparse Solver (DSS) mkl dss.f90 mkl dss.h¥

mkl dss.fi’

RCI Iterative Solvers
mkl rci.f90 mkl rci.h¥

ILUF ization
U Factorizatio mkl_rci.fi*

Optimization Solver mkl rci.f90 mkl rci.h¥
mkl rci. £if

Vector Mathematics mkl vml.90 mkl vml.h*
mkl vml.fi'

108

Intel® Math Kernel Library Language Interfaces Support A

Function Domain/ Fortran Include Files C/C++ Include Files
Purpose
Vector Statistics mkl vsl.£90 mkl vsl.h¥

mkl vsl.fi'
Fast Fourier Transforms mkl dfti.£90 mkl dfti.h*
Cluster Fast Fourier Transforms mkl cdft.£90 mkl cdft.h**

Partial Differential Equations Support

Trigonometric Transforms mkl trig transforms.f90 mkl_trig_transform.hi
Poisson Solvers mkl poisson.f90 mkl_poisson.hjk
Data Fitting mkl df.£90 mkl df.h*
Deep Neural Networks mkl dnn.h*
Extended Eigensolver mkl solvers ee.fi' mkl solvers ee.h®
Support functions mkl service.f90 mkl service.h®

mkl service. £iT

Declarations for replacing memory i malloc.h
allocation functions. See Redefining
Memory Functions for details.

: : S
Auxiliary macros to determine the mkl_version mkl_version

version of Intel MKL at compile time.

T You can use the mk1.fi include file in your code instead.
* You can include the mk1.h header file in your code instead.

** Also include the mk1.h header file in your code.

See Also
Language Interfaces Support, by Function Domain

109

B Intel® Math Kernel Library for Windows* Developer Guide

Support for Third-Party Interfaces

FFTW Interface Support

Intel® Math Kernel Library (Intel® MKL) offers two collections of wrappers for the FFTW interface
(www.fftw.org). The wrappers are the superstructure of FFTW to be used for calling the Intel MKL Fourier
transform functions. These collections correspond to the FFTW versions 2.x and 3.x and the Intel MKL
versions 7.0 and later.

These wrappers enable using Intel MKL Fourier transforms to improve the performance of programs that use
FFTW without changing the program source code. See the "FFTW Interface to Intel® Math Kernel Library"
appendix in the Intel MKL Developer Reference for details on the use of the wrappers.

Important
For ease of use, FFTW3 interface is also integrated in Intel MKL.

110

Directory Structure in Detail

Tables in this section show contents of the Intel(R) Math Kernel Library (Intel(R) MKL) architecture-specific
directories.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

See Also
High-level Directory Structure
Using Language-Specific Interfaces with Intel(R) MKL

Intel Math Kernel Library Benchmarks

Detailed Structure of the I1A-32 Architecture Directories

Static Libraries in the 1iv\ia32 win Directory

Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified
optional component during installation.

File Contents Optional Component
Name Installed by
Default

Interface Layer

mkl intel c.lib cdecl interface library

mkl intel s.lib CVF default interface
library

mkl blas95.1ib Fortran 95 interface Fortran 95 Yes
library for BLAS. interfaces for BLAS
Supports the Intel® and LAPACK

Fortran compiler

111

C Intel® Math Kernel Library for Windows* Developer Guide

File Contents Optional Component
Name Installed by
Default
mkl lapack95.1lib Fortran 95 interface Fortran 95 Yes
library for LAPACK. interfaces for BLAS
Supports the Intel® and LAPACK
Fortran compiler
Threading Layer
mkl intel thread.lib OpenMP threading
library for the Intel
compilers
mkl tbb thread.lib Intel® Threading Intel TBB Yes

mkl sequential.lib
Computational Layer

mkl core.lib

Building Blocks (Intel®
TBB) threading library
for the Intel compilers

Sequential library

Kernel library for IA-32
architecture

threading support

Dynamic Libraries in the 1iv\ia32 win Directory

Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified

optional component during installation.

File Contents Optional Component
Name Installed by
Default
mkl rt.lib Single Dynamic Library
to be used for linking
Interface Layer
mkl intel c dl1l.lib cdecl interface library
for dynamic linking
mkl_intel s dll.lib CVF default interface
library for dynamic
linking
Threading Layer
mkl intel thread dll.1lib OpenMP threading
library for dynamic
linking with the Intel
compilers
mkl tbb thread dll.1ib Intel TBB threading Intel TBB Yes

112

library for the Intel
compilers

threading support

Directory Structure in Detail C

File

Contents

Optional Component

Name Installed by
Default

mkl sequential dll.1lib

Computational Layer

mkl core dll.1lib

Sequential library for
dynamic linking

Core library for dynamic

linking

Contents of the redist\ia32 win\mkl Directory

Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified

optional component during installation.

File Contents Optional Component
Name Installed by
Default

mkl rt.dll Single Dynamic Library
Threading Layer
mkl intel thread.dll Dynamic OpenMP

threading library for the

Intel compilers
mkl tbb thread.dll Dynamic Intel TBB Intel TBB Yes

mkl sequential.dll

Computational Layer

mkl core.dll

mkl pd.dll

mkl pdm.dll

mkl p4m3.dl11l

threading library for the
Intel compilers

Dynamic sequential
library

Core library containing
processor-independent
code and a dispatcher

for dynamic loading of
processor-specific code

Pentium® 4 processor
kernel

Kernel library for Intel®

Supplemental Streaming

SIMD Extensions 3
(Intel® SSSE3) enabled
processors

Kernel library for Intel®
Streaming SIMD
Extensions 4.2 (Intel®
SSE4.2) enabled
processors

threading support

113

C Intel® Math Kernel Library for Windows* Developer Guide

File

Contents

Optional Component

Name Installed by
Default

mkl avx.dll

mkl avx2.dll

mkl avx512.d11

mkl vml p4.dll

mkl vml p4m.dll

mkl vml p4m2.dll

mkl vml p4m3.dl1l

mkl vml avx.dll

mkl vml avx2.dll

mkl vml avx512.d11

mkl vml ia.dll

libmkl vml cmpt.dll

114

Kernel library for Intel®
Advanced Vector
Extensions (Intel® AVX)
enabled processors

Kernel library for Intel®
Advanced Vector
Extensions 2 (Intel®
AVX2) enabled
processors

Kernel library for Intel®
Advanced Vector
Extensions 512 (Intel®
AVX-512) enabled
processors

Vector Mathematics
(VM)/Vector Statistics
(VS)/Data Fitting (DF)
part of Pentium® 4
processor kernel

VM/VS/DF for Intel®
SSSE3 enabled
processors

VM/VS/DF for 45nm Hi-
k Intel® Core™2 and Intel
Xeon® processor families

VM/VS/DF for Intel®
SSE4.2 enabled
processors

VM/VS/DF optimized for
Intel® AVX enabled
processors

VM/VS/DF optimized for
Intel® AVX2 enabled
processors

VM/VS/DF optimized for
Intel® AVX-512 enabled
processors

VM/VS/DF default kernel
for newer Intel®
architecture processors

VM/VS/DF library for
conditional numerical
reproducibility

Directory Structure in Detail C

File

Contents

Optional Component

Name Installed by
Default

libimalloc.dll

Message Catalogs

1033\mkl msg.dll

1041\mkl msg.dll

Dynamic library to
support renaming of
memory functions

Catalog of Intel® Math
Kernel Library (Intel®
MKL) messages in
English

Catalog of Intel MKL
messages in Japanese.
Available only if Intel
MKL provides Japanese
localization. Please see
the Release Notes for
this information.

Detailed Structure of the Intel® 64 Architecture Directories

Static Libraries in the 1iv\intel64 win Directory

Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified

optional component during installation.

File

Contents

Optional Component

Interface Layer

mkl intel 1p64.lib

mkl intel ilp64.lib

mkl blas95 1p64.1ib

mkl blas95 ilp64.1ib

LP64 interface library for
the Intel compilers

ILP64 interface library
for the Intel compilers

Fortran 95 interface
library for BLAS.
Supports the Intel®
Fortran compiler and
LP64 interface

Fortran 95 interface
library for BLAS.
Supports the Intel®
Fortran compiler and
ILP64 interface

Name Installed by
Default

Fortran 95 Yes

interfaces for BLAS

and LAPACK

Fortran 95 Yes

interfaces for BLAS

and LAPACK

115

C Intel® Math Kernel Library for Windows* Developer Guide

File Contents Optional Component
Name Installed by
Default
mkl lapack95 1p64.1lib Fortran 95 interface Fortran 95 Yes
library for LAPACK. interfaces for BLAS
Supports the Intel® and LAPACK
Fortran compiler and
LP64 interface
mkl lapack95 ilp64.1lib Fortran 95 interface Fortran 95 Yes
library for LAPACK. interfaces for BLAS
Supports the Intel® and LAPACK
Fortran compiler and
ILP64 interface
Threading Layer
mkl intel thread.lib OpenMP threading
library for the Intel
compilers
mkl tbb thread.lib Intel® Threading Intel TBB Yes

mkl pgi thread.lib

mkl sequential.lib

Computational Layer

mkl core.lib

Cluster Libraries

mkl scalapack 1p64.1lib

mkl scalapack ilp64.1lib

mkl cdft core.lib

mkl blacs intelmpi 1p64.lib

mkl blacs intelmpi ilp64.1lib

mkl blacs mpich2 1p64.1lib

116

Building Blocks (Intel®
TBB) threading library
for the Intel compilers

OpenMP threading
library for the PGI*
compiler

Sequential library

Kernel library for the
Intel® 64 architecture

ScalLAPACK routine
library supporting the
LP64 interface

ScalLAPACK routine
library supporting the
ILP64 interface

Cluster version of FFTs

LP64 version of BLACS
routines supporting
Intel® MPI Library

ILP64 version of BLACS
routines supporting Intel
MPI Library

LP64 version of BLACS
routines supporting
MPICH2 or higher

threading support

PGI* Compiler
support

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Directory Structure in Detail C

File

Contents

Optional Component

Name Installed by
Default

mkl blacs mpich2 ilp64.1lib

mkl blacs msmpi 1p64.1lib

mkl blacs msmpi ilp64.1lib

ILP64 version of BLACS
routines supporting
MPICH2 or higher

LP64 version of BLACS
routines supporting
Microsoft* MPI

ILP64 version of BLACS
routines supporting
Microsoft* MPI

Cluster support

Cluster support

Cluster support

Dynamic Libraries in the 1ib\inte164 win Directory

Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified

optional component during installation.

File Contents Optional Component
Name Installed by
Default
mkl rt.lib Single Dynamic Library
to be used for linking
Interface Layer
mkl intel 1p64 dll.1lib LP64 interface library for
dynamic linking with the
Intel compilers
mkl intel ilp64 dll.1lib ILP64 interface library
for dynamic linking with
the Intel compilers
Threading Layer
mkl intel thread dll1.1lib OpenMP threading
library for dynamic
linking with the Intel
compilers
mkl tbb thread dll.1ib Intel TBB threading Intel TBB Yes

mkl pgi thread dll.lib

mkl sequential dll.lib

Computational Layer

library for the Intel
compilers

OpenMP threading
library for dynamic
linking with the PGI*
compiler

Sequential library for
dynamic linking

threading support

PGI* Compiler
support

117

C Intel® Math Kernel Library for Windows* Developer Guide

File

Contents

Optional Component

Name Installed by
Default

mkl core dll.1lib

Cluster Libraries

mkl scalapack 1p64 dll.lib

mkl scalapack ilp64 dll.lib

mkl cdft core dll.lib

mkl blacs 1p64 dll.1lib

mkl blacs ilp64 dll.lib

Core library for dynamic
linking

ScalLAPACK routine
library for dynamic
linking supporting the
LP64 interface

ScalLAPACK routine
library for dynamic
linking supporting the
ILP64 interface

Cluster FFT library for
dynamic linking

LP64 version of BLACS
interface library for
dynamic linking

ILP64 version of BLACS
interface library for
dynamic linking

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Contents of the redist\intel64 win\mkl Directory

Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified

optional component during installation.

File Contents Optional Component
Name Installed by
Default

mkl rt.dll Single Dynamic Library
Threading layer
mkl intel thread.dll Dynamic OpenMP

threading library for the

Intel compilers
mkl tbb thread.dll Dynamic Intel TBB Intel TBB Yes

mkl pgi thread.dll

mkl sequential.dll

Computational layer

118

threading library for the
Intel compilers

Dynamic OpenMP
threading library for the
PGI* compiler

Dynamic sequential
library

threading support

PGI* compiler
support

Directory Structure in Detail C

File

Contents Optional Component
Name Installed by
Default

mkl core.dll

mkl def.dll

mkl mc.dll

mkl mc3.dll

mkl avx.dll

mkl avx2.dll

mkl avx512.dll

mkl _vml def.dll

mkl vml mc.dll

mkl vml mc2.dll

mkl vml mc3.dll

Core library containing
processor-independent
code and a dispatcher

for dynamic loading of
processor-specific code

Default kernel for the
Intel® 64 architecture

Kernel library for Intel®
Supplemental Streaming
SIMD Extensions 3
(Intel® SSSE3) enabled
processors

Kernel library for Intel®
Streaming SIMD
Extensions 4.2 (Intel®
SSE4.2) enabled
processors

Kernel library optimized
for Intel® Advanced
Vector Extensions
(Intel® AVX) enabled
processors

Kernel library optimized
for Intel® Advanced
Vector Extensions 2
(Intel® AVX2) enabled
processors

Kernel library optimized
for Intel® Advanced
Vector Extensions 512
(Intel® AVX-512)
enabled processors

Vector Mathematics
(VM)/Vector Statistics
(VS)/Data Fitting (DF)
part of default kernel

VM/VS/DF for Intel®
SSSE3 enabled
processors

VM/VS/DF for 45nm Hi-
k Intel® Core™2 and Intel
Xeon® processor families

VM/VS/DF for Intel®
SSE4.2 enabled
processors

119

C Intel® Math Kernel Library for Windows* Developer Guide

File

Contents

Optional Component

Name Installed by

Default

mkl vml avx.dll

mkl vml avx2.dll

mkl vml avx512.d11

libmkl vml cmpt.dll

libimalloc.dll

Cluster Libraries

mkl scalapack 1p64.dll

mkl scalapack ilp64.dll

mkl cdft core.dll

mkl blacs 1p64.dll

mkl blacs ilp64.dl1l

mkl blacs intelmpi 1p64.dll

mkl blacs intelmpi ilp64.dll

mkl blacs mpich2 1p64.dll

mkl blacs mpich2 ilp64.dll

mkl blacs msmpi 1p64.dll

120

VM/VS/DF optimized for
Intel® AVX enabled
processors

VM/VS/DF optimized for
Intel® AVX2 enabled
processors

VM/VS/DF optimized for
Intel® AVX-512 enabled
processors

VM/VS/DF library for
conditional numerical
reproducibility

Dynamic library to
support renaming of
memory functions

ScalLAPACK routine
library supporting the
LP64 interface

ScalLAPACK routine
library supporting the
ILP64 interface

Cluster FFT dynamic
library

LP64 version of BLACS
routines

ILP64 version of BLACS
routines

LP64 version of BLACS
routines for Intel® MPI
Library

ILP64 version of BLACS
routines for Intel MPI
Library

LP64 version of BLACS
routines for MPICH2 or
higher

ILP64 version of BLACS
routines for MPICH2 or
higher

LP64 version of BLACS
routines for Microsoft*
MPI

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Cluster support

Directory Structure in Detail C

File

Contents

Optional Component

Name Installed by
Default

mkl blacs msmpi ilp64.dll

Message Catalogs

1033\mkl msg.dll

1041\mkl msg.dll

ILP64 version of BLACS
routines for Microsoft*
MPI

Catalog of Intel® Math
Kernel Library (Intel®
MKL) messages in
English

Catalog of Intel MKL
messages in Japanese.
Available only if Intel
MKL provides Japanese
localization. Please see
the Release Notes for
this information.

Cluster support

121

Intel® Math Kernel Library for Windows* Developer Guide

Index

A

affinity mask 51
aligning data, example 74
architecture support 17

BLAS
calling routines from C 62
Fortran 95 interface to 60
OpenMP* threaded routines 38
building a custom DLL
in Visual Studio* IDE 36

C

C interface to LAPACK, use of 62
C, calling LAPACK, BLAS, CBLAS from 62
C/C++, Intel(R) MKL complex types 63
calling
BLAS functions from C 64
CBLAS interface from C 64
complex BLAS Level 1 function from C 64
complex BLAS Level 1 function from C++ 64
Fortran-style routines from C 62
calling convention, cdecl and stdcall 14
CBLAS interface, use of 62
cdecl interface, use of 27
Cluster FFT
environment variable for 89
linking with 81
managing performance of 89
cluster software, Intel(R) MKL 80
cluster software, linking with
commands 81
linking examples 86
Cluster Sparse Solver, linking with 81
code examples, use of 15
coding
data alignment 74
techniques to improve performance 54
compilation, Intel(R) MKL version-dependent 75
compiler run-time libraries, linking with 32
compiler support 14
compiler-dependent function 60
complex types in C and C++, Intel(R) MKL 63
computation results, consistency 67
computational libraries, linking with 31
conditional compilation 75
configuring
Intel(R) Visual Fortran 94
Microsoft Visual* C/C++ 93
consistent results 67
context-sensitive Help, for Intel(R) MKL, in Visual Studio*
IDE 94
conventions, notational 11
ctdcall interface, use of 27
custom DLL

122

custom DLL (continued)
building 33
composing list of functions 35
specifying function names 35
CVF calling convention, use with Intel(R) MKL 61

D

data alignment, example 74
denormal number, performance 55
direct call, to Intel(R) Math Kernel Library computational
kernels 52
directory structure

high-level 17

in-detail
dispatch Intel(R) architectures, configure with an
environment variable 90
dispatch, new Intel(R) architectures, enable with an
environment variable 90

Enter index keyword 20
environment variables
for threading control 45
setting for specific architecture and programming
interface 13
to control dispatching for Intel(R) architectures 90
to control threading algorithm for 2gemm 48
to enable dispatching of new architectures 90
to manage behavior of function domains 88
to manage behavior of Intel(R) Math Kernel Library
with 88
to manage performance of cluster FFT 89
examples, linking
for cluster software 86
general 23

F

FFT interface
OpenMP* threaded problems 38
FFTW interface support 110
Fortran 95 interface libraries 30
function call information, enable printing 77

H

header files, Intel(R) MKL 108
heterogeneity
of Intel(R) Distribution for LINPACK* Benchmark 99
heterogeneous cluster
support by Intel(R) Distribution for LINPACK*
Benchmark for Clusters 103
HT technology, configuration tip 51

Index

I

ILP64 programming, support for 28

improve performance, for matrices of small sizes 52

include files, Intel(R) MKL 108

information, for function call , enable printing 77

installation, checking 13

Intel(R) Distribution for LINPACK* Benchmark
heterogeneity of 99

Intel(R) Distribution for LINPACK* Benchmark for Clusters
heterogeneous support 103

Intel(R) Hyper-Threading Technology, configuration tip 51

Intel(R) Visual* Fortran project, linking with Intel(R)

MKL 21

Intel® Threading Building Blocks, functions threaded with 40

IntelliSense*, with Intel(R) MKL, in Visual Studio* IDE 94
interface

cdecl and stdcall, use of 27

Fortran 95, libraries 30

LP64 and ILP64, use of 28
interface libraries and modules, Intel(R) MKL 58
interface libraries, linking with 27

K

kernel, in Intel(R) Math Kernel Library, direct call to 52

L

language interfaces support 107
language-specific interfaces
interface libraries and modules 58
LAPACK
C interface to, use of 62
calling routines from C 62
Fortran 95 interface to 60
OpenMP* threaded routines 38
performance of packed routines 54
layers, Intel(R) MKL structure 19
libraries to link with
computational 31
interface 27
run-time 32
system libraries 33
threading 30
link tool, command line 23
linking
Intel(R) Visual* Fortran project with Intel(R) MKL 21
Microsoft Visual* C/C++ project with Intel(R) MKL 21
linking examples
cluster software 86
general 23
linking with
compiler run-time libraries 32
computational libraries 31
interface libraries 27
system libraries 33
threading libraries 30
linking, quick start 20
linking, Web-based advisor 23
LINPACK benchmark 97

M

memory functions, redefining 56
memory management 56

memory renaming 56
message-passing interface
custom, usage 85
Intel(R) Math Kernel Library interaction with 84
support 80
Microsoft Visual* C/C++ project, linking with Intel(R)
MKL 21
mixed-language programming 62
module, Fortran 95 60
MPI
custom, usage 85
Intel(R) Math Kernel Library interaction with 84
support 80
multi-core performance 51

notational conventions 11
number of threads
changing at run time 43
changing with OpenMP* environment variable 42
Intel(R) MKL choice, particular cases 46
setting for cluster 82
techniques to set 42
numerically reproducible results 67

o

OpenMP* threaded functions 38
OpenMP* threaded problems 38

P

parallel performance 41
parallelism, of Intel(R) MKL 38
performance

multi-core 51

with denormals 55

with subnormals 55
performance improvement, for matrices of small sizes 52
performance, of Intel(R) MKL, improve on specific
processors 55

R

results, consistent, obtaining 67
results, numerically reproducible, obtaining 67

S

ScalAPACK, linking with 81
SDL 22, 25
Single Dynamic Library 22, 25
stdcall calling convention, use in C/C++ 61
structure

high-level 17

in-detail

model 19
support, technical 7
supported architectures 17
system libraries, linking with 33

123

Intel® Math Kernel Library for Windows* Developer Guide

T

technical support 7

thread safety, of Intel(R) MKL 38

threaded functions, with Intel® Threading Building Blocks 40
threading control, Intel(R) MKL-specific 45

threading libraries, linking with 30

U

unstable output, getting rid of 67

v

Vector Mathematics
default mode, setting with environment variable 88
environment variable to set default mode 88
verbose mode, of Intel(R) MKL 77
Visual Studio* IDE
IntelliSense*, with Intel(R) MKL 94
using Intel(R) MKL context-sensitive Help in 94

124

	Contents
	Legal Information
	Getting Help and Support
	Introducing the Intel® Math Kernel Library
	What's New
	Notational Conventions
	Related Information
	Getting Started
	Checking Your Installation
	Setting Environment Variables
	Compiler Support
	Using Code Examples
	Before You Begin Using the Intel(R) Math Kernel Library

	Structure of the Intel(R) Math Kernel Library
	Architecture Support
	High-level Directory Structure
	Layered Model Concept

	Linking Your Application with the Intel(R) Math Kernel Library
	Linking Quick Start
	Using the /Qmkl Compiler Option
	Automatically Linking a Project in the Visual Studio* Integrated Development Environment with Intel(R) MKL
	Automatically Linking Your Microsoft Visual C/C++* Project with Intel® MKL
	Automatically Linking Your Intel® Visual Fortran Project with Intel® MKL

	Using the Single Dynamic Library
	Selecting Libraries to Link with
	Using the Link-line Advisor
	Using the Command-line Link Tool

	Linking Examples
	Linking on IA-32 Architecture Systems
	Linking on Intel(R) 64 Architecture Systems

	Linking in Detail
	Dynamically Selecting the Interface and Threading Layer
	Linking with Interface Libraries
	Using the cdecl and stdcall Interfaces
	Using the ILP64 Interface vs. LP64 Interface
	Linking with Fortran 95 Interface Libraries

	Linking with Threading Libraries
	Linking with Computational Libraries
	Linking with Compiler Run-time Libraries
	Linking with System Libraries

	Building Custom Dynamic-link Libraries
	Using the Custom Dynamic-link Library Builder in the Command-line Mode
	Composing a List of Functions
	Specifying Function Names
	Building a Custom Dynamic-link Library in the Visual Studio* Development System
	Distributing Your Custom Dynamic-link Library

	Managing Performance and Memory
	Improving Performance with Threading
	OpenMP* Threaded Functions and Problems
	Functions Threaded with Intel® Threading Building Blocks
	Avoiding Conflicts in the Execution Environment
	Techniques to Set the Number of Threads
	Setting the Number of Threads Using an OpenMP* Environment Variable
	Changing the Number of OpenMP* Threads at Run Time
	Using Additional Threading Control
	Intel MKL-specific Environment Variables for OpenMP Threading Control
	MKL_DYNAMIC
	MKL_DOMAIN_NUM_THREADS
	MKL_NUM_STRIPES
	Setting the Environment Variables for Threading Control

	Calling Intel MKL Functions from Multi-threaded Applications
	Using Intel® Hyper-Threading Technology
	Managing Multi-core Performance

	Improving Performance for Small Size Problems
	Using MKL_DIRECT_CALL in C Applications
	Using MKL_DIRECT_CALL in Fortran Applications
	Limitations of the Direct Call

	Other Tips and Techniques to Improve Performance
	Coding Techniques
	Improving Intel(R) MKL Performance on Specific Processors
	Operating on Denormals

	Using Memory Functions
	Memory Leaks in Intel MKL
	Redefining Memory Functions

	Language-specific Usage Options
	Using Language-Specific Interfaces with Intel(R) Math Kernel Library
	Interface Libraries and Modules
	Fortran 95 Interfaces to LAPACK and BLAS
	Compiler-dependent Functions and Fortran 90 Modules
	Using the stdcall Calling Convention in C/C++
	Compiling an Application that Calls the Intel(R) Math Kernel Library and Uses the CVF Calling Conventions

	Mixed-language Programming with the Intel Math Kernel Library
	Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language Environments
	Using Complex Types in C/C++
	Calling BLAS Functions that Return the Complex Values in C/C++ Code

	Obtaining Numerically Reproducible Results
	Getting Started with Conditional Numerical Reproducibility
	Specifying Code Branches
	Reproducibility Conditions
	Setting the Environment Variable for Conditional Numerical Reproducibility
	Code Examples

	Coding Tips
	Example of Data Alignment
	Using Predefined Preprocessor Symbols for Intel® MKL Version-Dependent Compilation

	Managing Output
	Using Intel MKL Verbose Mode
	Version Information Line
	Call Description Line

	Working with the Intel® Math Kernel Library Cluster Software
	Message-Passing Interface Support
	Linking with Intel MKL Cluster Software
	Determining the Number of OpenMP* Threads
	Using DLLs
	Setting Environment Variables on a Cluster
	Interaction with the Message-passing Interface
	Using a Custom Message-Passing Interface
	Examples of Linking for Clusters
	Examples for Linking a C Application
	Examples for Linking a Fortran Application

	Managing Behavior of the Intel(R) Math Kernel Library with Environment Variables
	Managing Behavior of Function Domains with Environment Variables
	Setting the Default Mode of Vector Math with an Environment Variable
	Managing Performance of the Cluster Fourier Transform Functions

	Instruction Set Specific Dispatching on Intel® Architectures

	Programming with Intel(R) Math Kernel Library in the Visual Studio* Integrated Development Environment
	Configuring Your Integrated Development Environment to link with Intel(R) MKL
	Configuring the Microsoft Visual C/C++* Development System to Link with Intel MKL
	Configuring Intel(R) Visual Fortran to Link with Intel MKL

	Getting Assistance for Programming in the Microsoft Visual Studio* IDE
	Using Context-Sensitive Help
	Using the IntelliSense* Capability

	Intel® Math Kernel Library Benchmarks
	Intel® Optimized LINPACK Benchmark for Windows*
	Contents
	Running the Software
	Known Limitations

	Intel® Distribution for LINPACK* Benchmark
	Overview
	Contents
	Building the Intel Distribution for LINPACK Benchmark for a Customized MPI Implementation
	Building the Netlib HPL from Source Code
	Configuring Parameters
	Ease-of-use Command-line Parameters
	Running the Intel Distribution for LINPACK Benchmark
	Heterogeneous Support in the Intel Distribution for LINPACK Benchmark
	Environment Variables
	Improving Performance of Your Cluster

	Appendix A: Intel(R) Math Kernel Library Language Interfaces Support
	Language Interfaces Support, by Function Domain
	Include Files

	Support for Third-Party Interfaces
	FFTW Interface Support

	Appendix C: Directory Structure In Detail
	Detailed Structure of the IA-32 Architecture Directories
	Static Libraries in the lib\ia32_win Directory
	Dynamic Libraries in the lib\ia32_win Directory
	Contents of the redist\ia32_win\mkl Directory

	Detailed Structure of the Intel(R) 64 Architecture Directories
	Static Libraries in the lib\intel64_win Directory
	Dynamic Libraries in the lib\intel64_win Directory
	Contents of the redist\intel64_win\mkl Directory

	Index

