
Making the Most of
Intel® Transactional
Synchronisation Extensions

10 May 2016

Dr. Roman Dementiev

Software and Services Group, Intel

Legal Disclaimer and Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this information.

All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems
or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See
www.intel.com/products/processor_number for details.

The Intel Core and Itanium processor families may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

The code names Arrandale, Bloomfield, Boazman, Boulder Creek, Calpella, Chief River, Clarkdale, Cliffside, Cougar Point, Gulftown, Huron River, Ivy Bridge, Kilmer Peak, King’s Creek, Lewille,
Lynnfield, Maho Bay, Montevina, Montevina Plus, Nehalem, Penryn, Puma Peak, Rainbow Peak, Sandy Bridge, Sugar Bay, Tylersburg, and Westmere presented in this document are only for
use by Intel to identify a product, technology, or service in development, that has not been made commercially available to the public, i.e., announced, launched or shipped. It is not a
"commercial" name for products or services and is not intended to function as a trademark.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel, Intel Core, Core Inside, Itanium, and the Intel Logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

2

Legal Disclaimer and Optimization Notice

3

Agenda

• Intel® Transactional Synchronization Extensions (Intel® TSX)

• Enabling Intel TSX

• Intel TSX Optimization Workflow

• Monitoring and Profiling Intel TSX

• Root Causing Transaction Aborts

• Intel TSX Tuning Tips and Tricks

• Performance results

• Conclusion

4

Optimistic Non-blocking execution

Serialize execution only when necessary

5

Picture idea from Dave Boutcher

Transactional lock elision
T

im
e

T0 T1 T2 T3 T0 T1 T2 T3

Concurrent execution
smaller overhead

Serialized execution
Lock overhead

6

Expose Concurrency & Eliminate Unnecessary Overhead

Intel® Transactional Synchronization Extensions

Two extensions of instruction set

• Hardware Lock Elision (HLE) – elision hints for LOCK instructions

• Explicit „Restricted Transactional Memory (RTM) instructions

Usages:

• Lock libraries to implement elided mutexes/rwlocks (HLE/RTM)

• Acceleration of transactional memory programming model

– gcc 4.8: __transaction_atomic { c = a –b; }

RTM and HLE Hardware Implementation
(Haswell, Broadwell, Skylake)

Buffering memory writes

• Hardware uses L1 cache to buffer transactional writes

– Writes not visible to other threads until after commit

– Eviction of transactionally written line causes abort

• Buffering at cache line granularity

Sufficient buffering for typical critical sections

• Cache associativity can occasionally be a limit

• Software (library) always provides fallback path in case of aborts

8

Hardware Manages All Transactional Writes

RTM and HLE Hardware Implementation
(Haswell, Broadwell, Skylake)

Read and write addresses for conflict checking

• Tracked at cache line granularity using physical address

• L1 cache tracks addresses written to in transactional region

• L1 cache tracks addresses read from in transactional region

– Additional implementation-specific probabilistic second level structure

– Cache may evict address without loss of tracking

Data conflicts

• Detected at cache line granularity

• Detected using cache coherence protocol (R/W snoops)

• Occurs if at least one request is doing a write (strong isolation)

• Abort when conflicting access detected (“eager” protocol)

Hardware Automatically Detects Conflicting Accesses

9

RTM and HLE Hardware Implementation
(Haswell, Broadwell, Skylake)

Transactional abort

• Occurs when abort condition is detected

• Hardware discards all transactional updates

Transactional commit

• Hardware makes transactional updates visible instantaneously

• No cross-thread/core/socket coordination required

More details in „Intel® 64 and IA-32 Architectures

Optimization Reference Manual” (chapter 12)

No Global Communication for Commit and Abort

10

Agenda

• Intel TSX - Introduction

• Enabling Intel TSX

• Intel TSX Optimization Workflow

• Monitoring and Profiling Intel TSX

• Root Causing Transaction Aborts

• Intel TSX Tuning Tips and Tricks

• Conclusion

11

Comparison to Fine-Grained Locking or Lock-
Free

12

Coarse grained lock elision Fine-grained locking or lock-free

Development
complexity

low high (race conditions, dead-
locks, limited data width of
atomic instructions)

Maintainbility good (locking model well
understood)

poor (experts required)

Overhead low (only single Tx
start/commit)

high (frequent long-latency
atomic instructions)

Scalability high high

Coarse grained lock elision: Scalable performance
at coarse-grained development effort

Enabling TSX using a TSX Lock Library

13

*

Intel® TBB 4.2 features speculative_spin_mutex

• HLE-based implementation of a speculative lock

RTM-based speculative_spin_rw_mutex

• Allows both concurrent speculative reads and concurrent
writes

• Allows non-speculative readers to proceed together with
speculations

http://www.threadingbuildingblocks.org/docs/help/reference/synchronization/mutexes/speculative_spin
_rw_mutex_cls.htm

http://software.intel.com/en-us/blogs/2014/03/07/transactional-memory-support-the-speculative-spin-
rw-mutex-community-preview

http://www.threadingbuildingblocks.org/docs/help/reference/synchronization/mutexes/speculative_spin_rw_mutex_cls.htm
http://software.intel.com/en-us/blogs/2014/03/07/transactional-memory-support-the-speculative-spin-rw-mutex-community-preview

Enabling TSX using a TSX Lock Library

Intel OpenMP (since Composer XE 2013 SP1)*

• export KMP_LOCK_KIND=adaptive to enable RTM
adaptive elision for all omp_lock_t

• http://goparallel.sourceforge.net/wp-
content/uploads/2014/03/TheParallelUniverse_Issue_17.
pdf

• OpenMP 4.5 standard introduces (TSX) speculative hints

14

http://goparallel.sourceforge.net/wp-content/uploads/2014/03/TheParallelUniverse_Issue_17.pdf

Enabling TSX using a TSX Lock Library

GLIBC PThreads 2.18

• configure with --enable-lock-elision=yes

• SUSE SLES SP12 enables it by default

• Other distros

• mutexes with PTHREAD_MUTEX_DEFAULT type are
adaptively elided (RTM-based)

• PThreads 2.20: rwlocks can be elided too

15

Enabling TSX in Java (JDK8u20 onwards)

-XX:+UseRTMLocking option on the Java command line

• JVM will automatically use RTM instructions for synchronized statements and methods

• Adaptive lock elision (disabled/re-enabled based on commit statistics)

Additional tunings:

https://docs.oracle.com/javase/8/docs/technotes/tools/enhancements-8.html

https://bugs.openjdk.java.net/browse/JDK-8054376

https://bugs.openjdk.java.net/browse/JDK-8031320

Performance evaluation: http://transact2014.cse.lehigh.edu/yoo.pdf

https://docs.oracle.com/javase/8/docs/technotes/tools/enhancements-8.html
https://bugs.openjdk.java.net/browse/JDK-8054376
https://bugs.openjdk.java.net/browse/JDK-8031320

Other lock libraries with TSX support

• Concurrency kit: spinlock elision with ck_elide wrappers

• Data plane development kit: „_tm“ suffix to elide

• Spin locks

• Read-Write locks

Agenda

• Intel TSX - Introduction

• Enabling Intel TSX

• Intel TSX Optimization Workflow

• Monitoring and Profiling Intel TSX

• Root Causing Transaction Aborts

• Intel TSX Tuning Tips and Tricks

• Conclusion

18

When to optimize with TSX (lock elision)

Contention on lock but small contention on data protected

• Different cache lines modified (read-read is not a contention)

Not too large

• data must fit into Tx buffer

• not too long: timer/interrupts abort

Not too small

• Min 100s of cycles, avoid tight transactions (HSW client)

Don‘t do TSX-unfriendly operations that always abort

19

Strategies to apply Intel TSX

Elide all locks -> analyze aborts -> optimize critical sections
or disable elision for bad locks

OR

Find good elision candidates

• Spin locks: Many cycles in lock functions

– Use VTune hotspot analysis or Linux „perf record cycles“

• „Sleeping“ locks: wait&spin time from Locks&Waits VTune
analysis

20

The Workflow

1. Enable lock elision for (all/some) locks

2. Monitor TSX execution:

• Too few cycles in transaction: check if right locks are elided: VTune
locks&waits and mem_uops_retired.lock_loads PEBS sampling. Goto
1.

• Build abort reason distribution

3. Find sources of aborts (IP -> source code)

• Synchronous aborts (unfriendly instructions, page fault, etc) : use a
TSX profiler

• Asynchronous aborts (conflicts, tx buffer overflow): only with a TSX
emulator

4. Fix the aborts or disable elision. Goto 2

21

Agenda

• Intel TSX - Introduction

• Enabling Intel TSX

• Intel TSX Optimization Workflow

• Monitoring and Profiling Intel TSX

• Root Causing Transaction Aborts

• Intel TSX Tuning Tips and Tricks

• Conclusion

22

Monitoring Intel TSX Execution
(transactional/aborted cycles)

23

perf stat -T ./program
Performance counter stats for './program':

62.890098 task-clock # 1.542 CPUs utilized

77874071 instructions # 0.72 insns per cycle

108086139 cycles # 1.719 GHz

68002201 raw 0x10000003c # 62.91% transactional cycles

67779742 raw 0x30000003c # 0.21% aborted cycles

15050 raw 0x1c9 # 4518 cycles / transaction

0 raw 0x1c8 # 0.000 K/sec

0.040780936 seconds time elapsed

#./pcm-tsx.x ./program
Intel(r) Performance Counter Monitor: Intel(r) Transactional Synchronization Extensions Monitoring Utility

Executing "./program" command:

Time elapsed: 42 ms

Core | IPC | Instructions | Cycles | Transactional Cycles | Aborted Cycles | #RTM | #HLE | Cycles/Transaction

0 0.58 47 M 81 M 33 M (40.81%) 127 K (0.16%) 7239 0 4583

1 1.13 3278 K 2905 K 0 (0.00%) 0 (0.00%) 0 0 N/A

2 0.84 3831 K 4566 K 2659 K (58.24%) 1460 (0.03%) 576 0 4617

3 0.74 33 M 45 M 32 M (70.23%) 85 K (0.19%) 7233 0 4446

--

* 0.66 88 M 134 M 68 M (50.56%) 214 K (0.16%) 15 K 0 4519

Perf tool from
linux kernel 3.13+

Windows/any Linux/
FreeBSD/OSX:
Intel PCM-TSX tool

http://software.intel.com/en-us/blogs/2013/06/14/monitoring-intel-transactional-synchronization-extensions-with-intel-pcm

Success Metrics in Intel® VTune™ Amplifier XE

24

Hardware events for abort (reason) statistics

25

Intel TSX Perfmon Events (why transactions
aborted?) (I)

26

Event name Event code Event Unit mask Description

RTM/HLE_RETIRED.START 0xC9/0xC8 0x01 Number of times an RTM execution started.

RTM/HLE_RETIRED.COMMIT 0xC9/0xC8 0x02 Number of times an RTM execution successfully committed

RTM/HLE_RETIRED.ABORTED 0xC9/0xC8 0x04
Number of times an RTM execution aborted due to any reasons (multiple
categories may count as one)

RTM/HLE_RETIRED.ABORTED_MISC1 0xC9/0xC8 0x08
Number of times an RTM execution aborted due to various memory events
(conflict, overflow)

RTM/HLE_RETIRED.ABORTED_MISC2 0xC9/0xC8 0x10
Number of times an RTM execution aborted due to uncommon conditions
(watchdog, etc)

RTM/HLE_RETIRED.ABORTED_MISC3 0xC9/0xC8 0x20
Number of times an RTM execution aborted due to RTM-unfriendly
instructions

RTM/HLE_RETIRED.ABORTED_MISC4 0xC9/0xC8 0x40
Number of times an RTM execution aborted due to incompatible memory
type (MMIO, page fault)

RTM/HLE_RETIRED.ABORTED_MISC5 0xC9/0xC8 0x80
Number of times an RTM execution aborted due to none of the previous 4
categories (e.g. interrupt)

Intel TSX Perfmon Events (why transactions
aborted?) (II)

Event name
Event
code

Event Unit
mask Description

TX_MEM.ABORT_CONFLICT 0x54 0x01
Number of times a transactional abort was signaled due to a
data conflict on a transactionally accessed address

TX_MEM.ABORT_CAPACITY_WRITE 0x54 0x02
Number of times a transactional abort was signaled due to
limited resources for transactional stores

TX_MEM.ABORT_HLE_STORE_TO_ELIDED_LOCK 0x54 0x04

Number of times a HLE transactional region aborted due to a
non XRELEASE prefixed instruction writing to an elided lock in
the elision buffer

TX_MEM.ABORT_HLE_ELISION_BUFFER_NOT_EMPTY 0x54 0x08
Number of times an HLE transactional execution aborted due to
NoAllocatedElisionBuffer being nonzero.

TX_MEM.ABORT_HLE_ELISION_BUFFER_MISMATCH 0x54 0x10

Number of times an HLE transactional execution aborted due to
XRELEASE lock not satisfying the address and value
requirements in the elision buffer.

TX_MEM.ABORT_HLE_ELISION_BUFFER_UNSUPPORTE
D_ALIGNMENT 0x54 0x20

Number of times an HLE transactional execution aborted due to
an unsupported read alignment from the elision buffer.

TX_MEM.ABORT_HLE_ELISION_BUFFER_FULL 0x54 0x40
Number of times HLE lock could not be elided due to Elision
Buffer Available being zero.

ABORT_CAPACITY = RTM/HLE_RETIRED.ABORTED_MISC1 - TX_MEM.ABORT_CONFLICT

27

Intel TSX Perfmon Events (why transactions
aborted?) (III)

Event name Event code
Event Unit
mask Description

TX_EXEC.MISC1 0x5D 0x01

Counts the number of times a class of instructions that may cause a
transactional abort was executed. Since this is the count of
execution it may not always cause a transactional abort.

TX_EXEC.MISC2 0x5D 0x02
Counts the number of times a class of instructions that may cause a
transactional abort was executed inside a transactional region

TX_EXEC.MISC3 0x5D 0x04
Counts the number of times an instruction execution caused the
nest count supported to be exceeded

TX_EXEC.MISC4 0x5D 0x08
Counts the number of times an HLE XACQUIRE instruction was
executed inside an RTM transactional region

28

Abort Reason Distribution

Use PMU counting mode with TSX events

Linux Perf 3.13: http://software.intel.com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-extensions-intelr-tsx-
profiling-with-linux-0

RTM:
perf stat -e '{tx-abort-count,r8c9,r154,r20c9}' program

pcm-tsx program -e RTM_RETIRED.ABORTED

–e RTM_RETIRED.ABORTED_MISC1 –e TX_MEM.ABORT_CONFLICT

–e RTM_RETIRED.ABORTED_MISC3

RTM -> HLE: tx -> el; c9->c8 ;

#conflicts: TX_MEM.ABORT_CONFLICT
#Tx buf overflow:*_RETIRED.ABORTED_MISC1 - TX_MEM.ABORT_CONFLICT

#unfriendly instr: *_RETIRED.ABORTED_MISC3
#other: *_RETIRED.ABORTED - *_RETIRED.ABORTED_MISC1

- *_RETIRED.ABORTED_MISC3

Use additional TSX events to complete the picture

29

http://software.intel.com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-extensions-intelr-tsx-profiling-with-linux-0

Linux perf stat with TSX events

perf stat -e r4c9 -e r8c9 -e r154 -e r20c9 ./matrix_tsx

Performance counter stats for './matrix_tsx':

14184836 raw 0x4c9

14171948 raw 0x8c9

14395057 raw 0x154

0 raw 0x20c9

9.410623956 seconds time elapsed

Here most aborts are conflicts: 0x4c9 ~= 0x154 (-+ overcounting)

30

PCM-TSX with TSX events

pcm-tsx.x ./matrix_tsx -e RTM_RETIRED.ABORTED -e RTM_RETIRED.ABORTED_MISC1 -e TX_MEM.ABORT_CONFLICT -

e RTM_RETIRED.ABORTED_MISC3

Intel(r) Performance Counter Monitor: Intel(r) Transactional Synchronization Extensions Monitoring

Utility

Executing "./matrix_tsx" command:

Time elapsed: 9549 ms

Event0: RTM_RETIRED.ABORTED Number of times an RTM execution aborted due to any reasons (multiple

categories may count as one) (raw 0x4c9)

Event1: RTM_RETIRED.ABORTED_MISC1 Number of times an RTM execution aborted due to various memory

events (raw 0x8c9)

Event2: TX_MEM.ABORT_CONFLICT Number of times a transactional abort was signalled due to a data

conflict on a transactionally accessed address (raw 0x154)

Event3: RTM_RETIRED.ABORTED_MISC3 Number of times an RTM execution aborted due to HLE-unfriendly

instructions (raw 0x20c9)

Core | Event0 | Event1 | Event2 | Event3

0 8707 K 8701 K 8810 K 0

1 0 0 0 0

2 1 0 0 0

3 8247 K 8242 K 9231 K 0

--

* 16 M 16 M 18 M 0

31

TSX Exploration in Intel® VTune™ Amplifier XE

Note that the result will be empty if #aborts < „Sample After“

Decrease the „Sample After“ if the workload has only a few aborts

32

TSX Exploration in Intel® VTune™ Amplifier XE

Instruction aborts are

sync: can drill-down

to exact instruction

precise

not precise

33

Profiling Cycles Inside Transactions

Traditional profiling associate all cycles inside
transactions to transaction begin instruction

Haswell adds hardware capability to show cycles
correctly

Use profilers that support this new capability

34

Profiling Cycles Inside Transactions

Linux perf 3.13+: perf record -e cycles:pp

Intel® VTune™ Amplifier XE:

35

Agenda

• Intel TSX - Introduction

• Enabling Intel TSX

• Intel TSX Optimization Workflow

• Monitoring Intel TSX

• Root Causing Transaction Aborts

• Intel TSX Tuning Tips and Tricks

• Conclusion

36

Find Sources of Sync Aborts

Need a TSX enabled profiler

• Linux kernel 3.13 perf

• or Intel® Vtune™ Amplifier XE 2013 (TSX Exploration)

Collect abort sources with PEBS abort sampling:

RTM: perf record -g --transaction --weight -e tx-aborts program

HLE: perf record -g --transaction --weight -e el-aborts program

Show abort sources (weight=aborted cycles):

perf report --sort symbol,dso,weight,transaction

37

Find Sources of Async Aborts

Arrival of an abort „event“ is delayed/asynchronous

• tx buf overflow (loosing track of tx access) or conflict

• Perfmon/profiler can not tell killerIP

But: TSX emulation

• Big overhead, some aborts cannot be emulated (faults)

• But if many async aborts -> must show up in emulation too
(reasoning statistically)

Intel Software Development Emulator

http://software.intel.com/en-us/articles/intel-software-development-emulator

http://software.intel.com/en-us/blogs/2012/11/06/exploring-intel-transactional-synchronization-extensions-with-intel-
software

38

http://software.intel.com/en-us/articles/intel-software-development-emulator
http://software.intel.com/en-us/blogs/2012/11/06/exploring-intel-transactional-synchronization-extensions-with-intel-software

Intel SDE TSX Emulator

Options: -hsw -hle_enabled 1 -rtm-mode full -

tsx_stats 1 -tsx_stats_call_stack 1

• Tx killer {instruction, IP, source code file and line, stack}

• Top abort sources by type

• Many other abort statistics

39

Agenda

• Intel TSX - Introduction

• Enabling Intel TSX

• Intel TSX Optimization Workflow

• Monitoring and Profiling Intel TSX

• Root Causing Transaction Aborts

• Intel TSX Tuning Tips and Tricks

• Conclusion

40

Poor TSX lock Implementation

Anti-patterns:

• Retrying forever

• Not putting lock into read-set

• „Lemming effect“ = Persistent non-speculative execution

• Avoid unsupported lock elision patterns (same value on lock word restore,
lock word size/address must match)

• Avoid unaligned accesses or partially overlapping accesses to the lock
word

• Avoid writes to the lock word without XRELEASE instruction

Consult „TSX anti-patterns“ article or use a proven TSX lock from a standard
library (TBB, PThreads, OpenMP,etc)

41

http://software.intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code

Reduce Generic Conflict Aborts

Avoid false-sharing

• Padding, data structure re-org helps

Avoid true-sharing

• Avoid global statistics and accounting: use sampling, per-thread
stats, remove not critical stats, reduce windows of conflict (move
bad accesses towards the tx end), use XTEST instruction

Sharing in memory allocators

• Use thread-friendly allocators (TBB, Google tcmalloc)

Silent stores: use conditional writes

42

Reduce Capacity/Overflow Aborts

• First time initialization: skip elision first time

• Check if particular cache sets are hot: use SDE emulator to
log memory accesses inside transactions

• Change algorithm to touch less memory

• If cannot reduce the footprint: transit to fall-back early

43

Performance Studies

44

Performance: Java Hashtable/Hashmap

• Hashtable

0

0.5

1

1.5

2

2.5

1 2 4 8

N
o

r
m

a
li
z
e
d

o
p

e
r
a
ti

o
n

s
/

m
s
e
c

#Threads

0

1

2

3

4

5

6

1 2 4 8

N
o
r
m

a
li

z
e
d

o
p

e
r
a
ti

o
n

s
/

m
s
e
c

#Threads

• HashMap

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8

N
o

r
m

a
li
z
e
d

O
p

e
r
a
ti

o
n

s
/

m
s
e
c

#Threads

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

N
o

r
m

a
li
z
e
d

O
p

e
r
a
ti

o
n

s
/

m
s
e
c

#Threads

:-UseRTM

:+UseRTM

Put 0%
Get 100%
Remove 0%

Put 10%
Get 80%
Remove 10%

Performance: Java JSTAMP
http://transact2014.cse.lehigh.edu/yoo.pdf

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

Ssca2

:-UseRTM

:+UseRTM

X-Axis: #Threads
Y-Axis: Normalized execution time

0

0.5

1

1.5

2

2.5

1 2 4 8

Vacation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8

Genome

0

0.5

1

1.5

2

2.5

1 2 4 8

Kmeans

Performance Evaluation of Intel R Transactional
Synchronization Extensions for HPC
http://pcl.intel-research.net/publications/SC13-TSX.pdf

TSX in Database studies

• HPCA 2014 Improving In-Memory Database Index
Performance with Intel® Transactional Synchronization
Extensions - Tomas Karnagel, Roman Dementiev, Ravi
Rajwar, Konrad Lai, Thomas Legler, Benjamin Schlegel,
Wolfgang Lehner (Intel, SAP AG and TU Dresden)

• EuroSys 2014 Using Restricted Transactional Memory to
Build a Scalable In-Memory Database. - Zhaoguo Wang,
Hao Qian, Jinyang Li, Haibo Chen (Fudan University,
Shanghai Jiao Tong University, New York University)

• TDKE 2015 Scaling HTM-Supported Database
Transactions to Many Cores - Viktor Leis, Alfons Kemper,
Thomas Neumann (TU Munchen)

Intel TSX in a Commercial Database Product

Up to 2x performance boost in transactional processing
when running SAP HANA database with TSX enabled

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/sap-hana-real-time-analytics-solution-brief.pdf

Conclusion

• Intel TSX with lock elision is a simple technique to
efficiently resolve locking and synchronization problems

• Tools for Intel TSX optimization are available

• Numerous studies show performance benefits

• Intel TSX tech resources + performance studies:
www.intel.com/software/tsx

50

http://www.intel.com/software/tsx

Transactional Lock Elision

52

Lock: Free

Hash Table

Thread 1 Thread 2

Acquire Acquire

A

Critical
section

B

Critical
section

Release

Release

Lock remains free
throughout

No Serialization and No Communication if No Data Conflicts

HLE/RTM Overview

HLE is a hint inserted in front of a LOCK operation to indicate a region is a candidate
for lock elision

• XACQUIRE (0xF2) and XRELEASE (0xF3) prefixes

• Don’t actually acquire lock, but execute region speculatively

• Hardware buffers loads and stores, checkpoints registers

• Hardware attempts to commit atomically without locks

• If cannot do lock-free, restart and execute non-speculatively

RTM is three new instructions (XBEGIN, XEND, XABORT)

• Similar operation as HLE (except no locks, new ISA)

• If cannot commit atomically, go to handler indicated by XBEGIN

• Provides software additional functionality over HLE

XTEST is a new instruction to determine if in HLE or RTM

• Can be used inside both HLE and RTM

• Allows SW to query execution status of HLE and RTM

53

Enabling HLE in Custom locks

• Use intrisics or direct machine code (compiler support
needed) - see slides in backup for details

• Using HLE and RTM with older compilers with tsx-tools:
http://software.intel.com/en-us/blogs/2013/05/20/using-
hle-and-rtm-with-older-compilers-with-tsx-tools (BSD
licensed)

54

http://software.intel.com/en-us/blogs/2013/05/20/using-hle-and-rtm-with-older-compilers-with-tsx-tools

HLE Lock in Microsoft VC++

#include <intrin.h> /* For _mm_pause() */

#include <imminitrin.h> /* For HLE intrisics */

/* Lock initialized with 0 initially */

void acquire_lock(int *mutex)

{

while (_InterlockedCompareExchange_HLEAcquire(&mutex, 1, 0) != 0) {

/* Wait for lock to become free again before retrying speculation */

do {

_mm_pause(); /* Abort speculation */

/* prevent compiler instruction reordering and wait-loop skipping,

no additional fence instructions are generated on IA */

_ReadWriteBarrier();

} while (mutex == 1);

}

}

void release_lock(int *mutex)

{

_Store_HLERelease (mutex, 0); // was mutex = 0; in non-HLE version

}

55

RTM Intrisics

gcc 4.8 (–mrtm flag), Microsoft Visual Studio 2012, Intel® C++ Compiler XE 13.0

_xbegin(): attempt transaction. Returns status

• _XBEGIN_STARTED (-1): in transaction

• Otherwise abort code with bits:

_xend(): commit transaction

_xtest(): true if in transaction

_xabort(constant): aborts current transaction

_XABORT_EXPLICIT Abort caused by _xabort(). _XABORT_CODE(status) contains the
value passed to _xabort()

_XABORT_RETRY When this bit is set retrying the transaction has a chance to
commit. If not set retrying will likely not succeed.

_XABORT_CONFLICT Another thread / processor conflicted with a memory address that
was part of this thread’s transaction.

_XABORT_CAPACITY The abort is related to a capacity overflow

_XABORT_DEBUG The abort happened due to a debug trap

_XABORT_NESTED The abort happened in a nested transaction

56

Enabling RTM with a Lock Wrapper
(basic, no retries, etc)

57

void elided_lock_wrapper(lock) {

if (_xbegin() == _XBEGIN_STARTED) { /* Start transaction */

if (lock is free) /* Check lock and put into read-set */

return; /* Execute lock region in transaction */

_xabort(0xff); /* Abort transaction as lock is busy */

} /* Abort comes here */

// abort handler: optionally analyze abort flags, retry with xbegin...

take fallback lock

}

void elided_unlock_wrapper(lock) {

if (lock is free)

_xend(); /* Commit transaction */

else

unlock lock;

}

With retries, abort status bits analysis, etc: http://software.intel.com/en-
us/blogs/2012/11/06/exploring-intel-transactional-synchronization-extensions-with-intel-
software

http://software.intel.com/en-us/blogs/2012/11/06/exploring-intel-transactional-synchronization-extensions-with-intel-software

HLE in Linux (Intel® C++ Compiler and gcc)

#define XACQUIRE ".byte 0xf2; "

#define XRELEASE ".byte 0xf3; "

static inline int hle_acquire_xchg(int *lock, int val)

{

asm volatile(XACQUIRE "xchg %0,%1" : "+r" (val), "+m" (*lock) :: "memory");

return val;

}

static void hle_release_store(int *lock, int val)

{

asm volatile(XRELEASE "mov %0,%1" : "r" (val), "+m" (*lock) :: "memory");

}

Inline asm:
Inline asm:

58

HLE Intrisics in gcc 4.8

Caution: needs –O2 or higher opt (compiler bug)

__ATOMIC_HLE_ACQUIRE and __ATOMIC_HLE_RELEASE
flags for

__atomic_compare_exchange_n,

__atomic_store,

__atomic_clear, etc

intrisics

59

Other Compilers with HLE support

C++11 <atomic> in gcc 4.8: extended memory models:
__memory_order_hle_acquire and
__memory_order_hle_release

• i.e. for atomic_flag::test_and_test(..), clear(..), etc

Windows: Intel and Microsoft compilers

• _InterlockedCompareExchange{,64,Pointer}_HLE{Acquire,
Release}

• _InterlockedExchangeAdd_HLE{Acquire, Release}

• _Store{,64,Pointer}_HLERelease

60

Reduce Conflict Aborts in Lock Elision
„lemming effect“ (persistent non-spec execution)

Lock word is in the read-set

• Lock Elision specific (both with HLE and RTM)

• Non-spec lock acquisition -> conflict on lock word

– Avoid „lemming effect“ (persistent non-spec execution)

• Solution: wait outside transaction (non-HLE path or abort
handler) for fall-back lock to be free and only then
respeculate/retry

See also http://software.intel.com/en-us/articles/tsx-anti-
patterns-in-lock-elision-code

61

http://software.intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code

(Single-Threaded) Transaction Overheads

The overhead is amortized in larger critical sections but will
be exposed in very small critical sections.

One simple approach to reduce perceived overhead is to
perform an access to the transactional cache lines early in
the critical section

62

Contention (conflicts) in SDE (I)

sde-tsx-stats.txt:

COUNTERS OF TSX ABORTS PER ABORT REASON

#---

REASON RTM ABORTS HLE ABORTS

ABORT_CONTENTION 6559 0

Transaction killers:

TOP 10 CONTENTION ABORTS

#---

IP COUNT INSTRUCTION DISASSEMBLY

0x0000000000400ddf 3993 mov eax, dword ptr [rax+0x10]

0x0000000000400ec2 2519 mov dword ptr [rax+0x10], 0x1

0x00000000004008b2 31 mov eax, dword ptr [rax+0x4]

0x000000000040104e 7 mov eax, dword ptr [rax+0x10]

0x0000000000400ed0 3 mov dword ptr [rax+0x8], edx

0x0000000000401117 3 mov dword ptr [rax+0x10], 0x1

0x0000000000400e24 1 mov eax, dword ptr [rax+0x10]

0x0000000000400eeb 1 mov dword ptr [rax+0xc], edx

0x0000000000400fbb 1 mov eax, dword ptr [rax+0x10]

63

Contention (conflicts) in SDE (II)

STACK INFORMATION FOR CONTENTION ABORT KILLER IP: 0x0000000000400ddf

#---

IP FUNCTION NAME FILE NAME LINE COLUMN

0x00007fe4cf526520 start_thread 0 0

0x00000000004015d6 worker /root/FP/double/matrix_tsx.c 56 0

0x0000000000400d78 call_tsx_fasttrack_read /root/FP/double/fasttrack_tsx.h 148 0

0x0000000000400ddf call_tsx_fasttrack_read /root/FP/double/fasttrack_tsx.h 159 0

STACK INFORMATION FOR CONTENTION ABORT KILLER IP: 0x0000000000400ec2

#---

IP FUNCTION NAME FILE NAME LINE COLUMN

0x00007fe4cf526520 start_thread 0 0

0x00000000004015d6 worker /root/FP/double/matrix_tsx.c 56 0

0x00000000004013fd mm /root/FP/double/matrix_tsx.c 30 0

0x0000000000400d78 call_tsx_fasttrack_read /root/FP/double/fasttrack_tsx.h 148 0

0x0000000000400ef0 call_tsx_fasttrack_read /root/FP/double/fasttrack_tsx.h 188 0

0x0000000000400ec2 call_tsx_fasttrack_read /root/FP/double/fasttrack_tsx.h 182 0

#LIST OF TSX CONTENTION ABORT EVENTS

#--

TID TRANSACTION IP KILLER TID KILLER IP KILLER DATA ADDRESS INSIDE TSX TSX TYPE

1 0x000000000040138e 2 0x0000000000400ec2 0x00000000006067e0 YES RTM

2 0x000000000040138e 1 0x00000000004008b2 0x00000000006066e4 YES RTM

1 0x000000000040138e 2 0x0000000000400fbb 0x0000000000608408 YES RTM

2 0x000000000040138e 1 0x0000000000400ec2 0x00000000006065d8 YES RTM

<--- CUT -->

64

Instruction Specific Aborts

• Legacy X87 math (long double)/MMX -> use SSE/AVX
math (compiler switch)

• X87 for function parameters -> inline

• SSE/XMM regs AVX instruction mix, VZEROUPPER ->
avoid

• Avoid ring transitions: SYSENTER, SYSCALL, SYSEXIT,
SYSRET

• Segment, control, debug regs (kernel) -> move outside Tx

65

CPU Faults and Traps

• Instruction page faults, segm faults, divide errors,
breakpoint, other exceptions are supressed -> reexecute
exactly the same path without elision to resolve the fault
and/or debug the error

Higher abort rate on program start up:

• Data page faults (memory init, program startup) -> skip
elision for first time -> ok then

• Core sets Accessed and Dirty Bits in page table: skip
elision for first time -> ok then

66

Background (Noise-level) Aborts

Not a problem – should be just noise level

• NMI, SMI, INTR, IPI, PMI, timer ticks, etc

• L3 cache inclusion aborts

• Rare uarch conditions

• Handling corner cases with ucode (rare)

67

Still Observing Aborts?

• One-time or temporal aborts: transition to fall-back early
(XABORT or lock acquire commit), skip elision for some time
(once)

• Disable TSX elision for selected lock

Aborts/retries may be better than taking lock

• TSX with low commit/abort ratio may still outperform locks
(better to retry than waste time in waiting for the lock)

• Taking lock is very expensive on servers (all 100s threads
serialize): Tx retrying without serializing other threads is
cheaper

68

Further Reading

• Intel TSX tech resources + performance studies:
www.intel.com/software/tsx

• IA Optimization Guide (Chapter 12)

http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-optimization-manual.html

69

http://www.intel.com/software/tsx
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

