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Introduction 

Most commercial deep learning applications today use 32-bits of floating point precision 

(𝑓𝑝32) for training and inference workloads. Various researchers have demonstrated that both 

deep learning training and inference can be performed with lower numerical precision, using 

16-bit multipliers for training and 8-bit multipliers or fewer for inference with minimal to no 

loss in accuracy (higher precision – 16-bits vs. 8-bits – is usually needed during training to 

accurately represent the gradients during the backpropagation phase). Using these lower 

numerical precisions (training with 16-bit multipliers accumulated to 32-bits or more and 

inference with 8-bit multipliers accumulated to 32-bits) will likely become the standard over 

the next year, in particular for convolutional neural networks (CNNs). 

There are two main benefits of lower numerical precision. First, many operations are memory 

bandwidth bound, and reducing precision would allow for better usage of cache and reduction 

of bandwidth bottlenecks. Thus, data can be moved faster through the memory hierarchy to 

maximize compute resources. Second, the hardware may enable higher operations per second 

(OPS) at lower numerical precision as these multipliers require less silicon area and power. 

In this article, we review the history of lower numerical precision training and inference and 

describe how Intel® is enabling lower numerical precision for deep learning inference and 

training. Specifically, we describe instructions available in the current Intel® Xeon® Scalable 

processors and instructions that will be available in some future processors. We describe how 

to quantize the model weights and activations and the lower numerical functions available in 

the Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN). Finally, we describe 

how deep learning frameworks take advantage of these lower numerical precision functions 

and reduce the conversion overhead between different numerical precisions. Each section can 

be read independently of other sections and the reader may skip to their section of interest. A 

detailed exposition including commercial examples of deep learning training with the Intel 

Xeon Scalable processors is presented elsewhere. 

https://github.com/01org/mkl-dnn
https://software.intel.com/en-us/articles/intel-processors-for-deep-learning-training
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Brief History of Lower Numerical Precision in Deep Learning 

Researchers have demonstrated deep learning training with 16-bit multipliers and inference 

with 8-bit multipliers or less of numerical precision accumulated to higher precision with 

minimal to no loss in accuracy across various models. Vanhoucke, et al. (2011) quantized 

activations and weights to 8-bits and kept the biases and first layer input at full precision 

(𝑓𝑝32) for the task of speech recognition on CPUs. Hwang, et al. (2014) trained a simple 

network with quantized weights of -1, 0 and 1 in the feed forward propagation and updated 

the high precision weights in the back propagation using the MNIST* and TIMIT* datasets with 

negligible performance loss. Courbariaux, et al. (2015) used the MNIST, CIFAR-10*, and SVHN* 

datasets to train with lower numerical precision multipliers and high precision accumulators 

and updated the high precision weights. They proposed combining dynamic fixed point 

(having one shared exponent for a tensor or high dimensional array) with Gupta, et al.’s (2015) 

stochastic rounding as future work. This became the core piece of Koster, et al.’s (2017) use of 

the Flexpoint numerical format in the Intel® Nervana™ Neural Network Processors (Intel 

Nervana NNP). Kim and Smaragdis (2016) trained with binary weights and updated on full 

precision weights with competitive performance on the MNIST dataset. Miyashita, et al. (2016) 

encoded the weights and activations in a base-2 logarithmic representation (since 

weights/activations have a non-uniform distribution). They trained CIFAR-10 with 5-bits 

weights and 4-bit activations resulting in minimal performance degradation. Rastegari, et al. 

(2016) trained AlexNet with binary weights (except for the first and last layers) and updated on 

full precision weights with a top-1 2.9% accuracy loss. Based on their experiments, they 

recommend avoiding binarization in fully connected layers and convolutional layers with small 

channels or filter sizes (e.g., 1x1 kernels). Mellempudi, et al. (2017) from Intel Labs trained 

ResNet-101 with 4-bit weights and 8-bit activations in convolutional layers while doing 

updates in full precision with a top-1 2% accuracy loss. Micikevicius, et al. (2017) trained with 

16-bit floating-point (𝑓𝑝16) multipliers and full precision accumulators and updated the full 

precision weights with negligible to no loss in accuracy for AlexNet*, VGG-D*, GoogLeNet*, 

ResNet-50*, Faster R-CNN*, Multibox SSD*, DeepSpeech2*, Sequence-to-Sequence*, 

bigLSTM*, and DCGAN* (some models required gradient scaling to match full precision 

results). Baidu researchers (2017) successfully used 8-bits of fixed precision with 1 sign bit, 4-

bits for the integer part and 3-bits for the fractional part. Sze, et al. (2017) used various 

quantization techniques (see Table 3 in their paper) showing minimal to no loss at reduced 

precision (except for the first and last layers which were kept at full precision). An anonymous 

submission to ICLR 2018 details how to generate state-of-the-art on ResNet-50, GoogLeNet, 

VGG-16, and AlexNet using 16-bits integer multipliers and 32-bit accumulators. 

 

Lower numerical precision with Intel Xeon Scalable processors 

The Intel Xeon Scalable processor now includes the Intel® Advance Vector Extension 512 

(Intel® AVX-512) instruction set which have the 512-bit wide Fused Multiply Add (FMA) core 

instructions. These instructions enable lower numerical precision multiplies with higher 

https://research.google.com/pubs/pub37631.html
http://ieeexplore.ieee.org/abstract/document/6986082/
https://arxiv.org/abs/1412.7024
https://arxiv.org/abs/1502.02551
https://arxiv.org/abs/1711.02213
https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/
https://ai.intel.com/intel-nervana-neural-network-processor-architecture-update/
https://ai.intel.com/intel-nervana-neural-network-processor-architecture-update/
https://arxiv.org/abs/1601.06071
https://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1701.08978
https://arxiv.org/abs/1710.03740
https://cdn.oreillystatic.com/en/assets/1/event/258/Benchmarking%20deep%20learning%20inference%20Presentation.pptx
https://arxiv.org/abs/1703.09039
https://openreview.net/forum?id=H135uzZ0-&noteId=H135uzZ0-
https://openreview.net/forum?id=H135uzZ0-&noteId=H135uzZ0-
https://iclr.cc/
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
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precision accumulates. Multiplying two 8-bit values and accumulating the result to 32-bits 

requires 3 instructions and requires one of the 8-bit vectors to be in 𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛𝑡8 (𝑢8) format, 

the other in 𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛𝑡8 (𝑠8) format with the accumulation in 𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛𝑡32 (𝑠32) format. This 

allows for 4x more input at the cost of 3x more instructions or 33.33% more compute with 1/4 

the memory requirement. The reduced memory and higher frequency for lower numerical 

precision operations makes it even faster. See Figure 1 for details1. 

 

 

Figure 1: The Intel Xeon Scalable processor enables 8-bit multiplies with 32-bit accumulates with 3 instructions: 

VPMADDUBSW 𝑢8 × 𝑠8 → 𝑠16 multiples, VPMADDWD 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡1 𝑠16 → 𝑠32, and VPADDD 𝑠32 → 𝑠32 adds the 

result to accumulator. This allows for 4x more input over 𝑓𝑝32 at the cost of 3x more instructions or 33.33% more 

compute and 1/4 the memory requirement. The reduced memory and higher frequency available with lower 

numerical precision makes it even faster. Image credit to Israel Hirsh. 

 

The Intel AVX-512 instructions also enable 16-bit multiplies. Multiplying two 16-bit values 

and accumulating the result to 32-bits requires 2 instructions (2 cycles) with both 16-bit 

vectors to be in signed 𝑖𝑛𝑡16 (𝑠16) format and the accumulation in signed 𝑖𝑛𝑡32 (𝑠32) format. 

This allows for 2x more input at the cost of 2x more instructions, resulting in no additional 

compute. It does, however, reduce the memory requirement and bandwidth bottlenecks, both 

of which may improve the overall performance. See Figure 2 for details. 

                                                           
1 The raw compute can be calculated as AVX-512-frequency * number-of-cores * number-of-FMAs-per-core * 2-

operations-per-FMA * SIMD-vector-length / number-of-bits-in-numerical-format / number-of-instructions. Two 

512-bit FMA units located in Ports 0 and 5 computing in parallel per core are available in the Intel Xeon Platinum 

processors, Intel Xeon Gold processors 6000 series and 5122 available. Other Intel Xeon Scalable processor stock 

keeping units (SKUs) have one FMA unit per core located in Port 0 (see Chapter 15 for details). 𝑓𝑝32, 𝑖𝑛𝑡16, and 𝑖𝑛𝑡8 

FMAs require 1, 2, and 3 instructions, respectively, with the Intel AVX-512 instructions. The Intel Xeon Platinum 

8180 has 28 cores per socket and 2 FMAs per core. The 𝑓𝑝32 OPS per socket are approximately 1.99-GHz-AVX-

512-frequency * 28-cores * 2-FMA-units-per-core * 2-OPS-per-FMA * 512-bits / 32-bits / 1-instruction = 3.570 

𝑓𝑝32 TOPS. The 𝑖𝑛𝑡8 OPS per socket are approximately 2.17-GHz-AVX-512-frequency * 28-cores * 2-FMA-units-

per-core * 2-OPS-per-FMA * 512-bits / 8-bits / 3-instruction = 5.185 𝑖𝑛𝑡8 TOPS. The AVX-512 frequencies for 

multiple SKUs can be found here (these correspond to 𝑓𝑝64 operations—the frequencies for lower numerical 

precision are higher and the ones used in the 𝑓𝑝32 and 𝑖𝑛𝑡8 TOPS computations above are estimates). The AVX-

512 max turbo-frequency may not be fully sustained when running high OPS workloads. 

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html
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Figure 2: The Intel Xeon Scalable processor core is capable of 16-bit multiplies with 32-bit accumulates with 2 

instructions: VPMADDWD 𝑠16 × 𝑠16 → 𝑠32 multiples, and VPADDD 𝑠32 → 𝑠32 adds the result to accumulator. This 

allows for 2x more input over 𝑓𝑝32 at the cost of 2x more instructions or no more compute and 1/2 the memory 

requirement. Image credit to Israel Hirsh. 

 

Intel developed the AVX512_VNNI (Vector Neural Network Instruction), a new set of Intel AVX-

512 instructions to boost DL performance. Ice Lake and other future microarchitectures (see 

Table 1-1) will have the AVX512_VNNI instructions. AVX512_VNNI includes 1) an FMA 

instruction for 8-bit multiplies with 32-bits accumulates 𝑢8 × 𝑠8 → 𝑠32 as shown in Figure 3, 

and 2) an FMA instruction for 16-bit multiplies with 32-bit accumulates 𝑠16 × 𝑠16 → 𝑠32 as 

shown in Figure 4. The theoretical peak compute gains are 4x 𝑖𝑛𝑡8 OPS and 2x 𝑖𝑛𝑡16 OPS over 

𝑓𝑝32 OPS, respectively. Practically, the gains may be lower due to memory bandwidth 

bottlenecks. 

 

 

Figure 3: AVX512_VNNI enables 8-bit multiplies with 32-bit accumulates with 1 instruction. The VPMADDUBSW, 

VPMADDWD, VPADDD instructions in Figure 1 are fused into the VPDPBUSD instruction 𝑢8 × 𝑠8 → 𝑠32. This allows 

for 4x more inputs over 𝑓𝑝32 and (theoretical peak) 4x more compute with 1/4 the memory requirements. Image 

credit to Israel Hirsh. 

 

https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
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Figure 4: AVX512_VNNI enables 16-bit multiplies with 32-bit accumulates with 1 instruction. The VPMADDWD, 

VPADDD instructions in Figure 2 are fused into the VPDPWSSD instruction 𝑠16 × 𝑠16 → 𝑠32. This allows for 2x more 

inputs over 𝑓𝑝32 and (theoretical peak) 2x more compute with 1/2 the memory requirements. Image credit to Israel 

Hirsh. 

 

A potential issue is the undefined behavior on overflows that may occur when using the 

VPMADDUBSW instruction 𝑢8 × 𝑠8 → 𝑠16 (see Figure 1). This is a problem when both 𝑢8 and 

𝑠8 values are near their maximum values2. This can be mitigated by reducing the precision of 

the inputs by 1-bit. This is not in practice an issue when using the AVX512_VNNI VPDPBUSD 

FMA instruction 𝑢8 × 𝑠8 → 𝑠32. 

An overflow is more likely to occur with the AVX512_VNNI VPDPWSSD FMA instruction 𝑠16 ×

𝑠16 → 𝑠32. This can be similarly mitigated by reducing the precision of the activations and the 

weights by 1 or 2 bits. Another technique to prevent overflow is to use a second accumulator 

at 𝑓𝑝32, and convert to 𝑓𝑝32 and use that accumulator after a set number of 𝑠32 accumulates. 

Preliminary results show that statistical performance does not suffer using these techniques. 

Compiler support for these AVX512_VNNI instructions is underway. GCC 8 development code 

and LLVM/Clang 6.0 compiler already support AVX512_VNNI instructions. The X86 Encoder 

Decoder (XED) and the Intel software developer emulator (SDE) October 2017 update adds 

support for AVX512_VNNI instructions.  

 

Intel MKL-DNN Library Lower Numerical Precision Primitives 

The Intel MKL-DNN library contains popular deep learning functions or primitives used across 

various models such as inner products, convolutions, rectified linear units (ReLU), and batch 

normalization (BN), along with functions necessary to manipulate the layout of tensors or high 

dimensional arrays. Intel MKL-DNN is optimized for Intel processors with Intel AVX-512, Intel® 

AVX-2, and Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2) instructions. These functions 

use 𝑓𝑝32 for training and inference workloads. Recently, new functions were introduced to 

                                                           
2 in practice these 𝑢8 values are usually closer to their minimum than their maximum if they activations are 

preceded by the ReLU activation function 

https://openreview.net/forum?id=H135uzZ0-
https://gcc.gnu.org/ml/gcc-patches/2017-10/msg01670.html
https://github.com/llvm-mirror/clang/commit/cd1ee4494104517b80e3295a32fc1bfedbd6a1f6
https://intelxed.github.io/
https://intelxed.github.io/
https://software.intel.com/en-us/isa-extensions
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support inference workloads with 8-bits of precision in convolutional, ReLU, fused 

convolutional plus ReLU, and pooling layers. Functions for long short-term memory (LSTM), 

other fused operations, and Winograd convolutions with 8-bits are designated as future work. 

Intel MKL-DNN support for 16-bit multiplies using the AVX512_VNNI instructions is designed 

as future work when the instructions become available. 

Currently, Intel MKL-DNN does not have a local response normalization (LRN), fully connected 

(FC), softmax, or batch normalization (BN) layers implemented with 8-bits of precision (only 

with 𝑓𝑝32) for the following reasons. Modern models do not use LRN and older models can be 

modified to use batch normalization, instead. Modern CNN models do not typically have many 

FC layers, although adding support for FC layers is designated as future work. The softmax 

function currently requires full precision as it does not maintain accuracy with 8-bits of 

precision. A BN inference layer is not needed as it can be absorbed by its preceding layer by 

scaling the weight values and modifying the bias as discussed in the Enabling Lower Numerical 

Precision in the Frameworks section. 

Intel MKL-DNN implements the 8-bit convolution operations with the activation (or input) 

values in 𝑢8 format, the weights in 𝑠8 format and the biases in 𝑠32 format (biases can be kept 

in 𝑓𝑝32 as well as they take a very small percentage of the overall compute). Figure 5 shows 

the process of inference operations with 8-bit multipliers accumulated to 𝑠32. 

 

 

Figure 5: The data layer or the first convolution layer activations are quantized to 𝑢8 as inputs to the next 

convolutional layer. The weights are quantized to 𝑠8 and the bias is formatted to 𝑠32 and added to the 𝑠32 

convolution accumulate. The framework chooses the format of the convolution output as 𝑠8, 𝑢8, or 𝑠32 depending 

on the parameters of the following layer. Image credit to Jiong Gong.  
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Intel MKL-DNN currently assumes that the activations are non-negative, which is the case after 

the ReLU activation function. Later in this article we discuss how to quantize activations with 

negative values. Intel MKL-DNN quantizes the values for a given tensor or for each channel in 

a tensor (the choice is up to the framework developers) as follows. 

𝑅{𝑎,𝑤} = max(𝑎𝑏𝑠(𝕋{𝑎,𝑤})), where 𝕋{𝑎,𝑤} is a tensor corresponding to either the weights 𝑤 or 

the activations or model inputs 𝑎.  

𝑄𝑎 =
255

𝑅𝑎
 is the quantization factor for activations with non-negative values, and 𝑄𝑤 =

127

𝑅𝑤
 is the 

quantization factor for the weights. The quantized activation, weights, and bias are:  

𝒂𝑢8 = ‖𝑄𝑎𝒂𝑓32‖ ∈ [0,255]  

𝑾𝑠8 = ‖𝑄𝑤𝑾𝑓32‖ ∈ [−127,127]  

𝒃𝑠32 = ‖𝑄𝑎𝑄𝑤𝒃𝑓32‖ ∈ [−231, 231 − 1]  

where the function ‖⋅‖ rounds to the nearest integer. Note that while the 𝑠8 format supports -

128, the smallest quantized 𝑠8 weight value use is -127. 

The affine transformation using 8-bit multipliers and 32-bit accumulates results in 

𝒙𝑠32 = 𝑾𝑠8𝒂𝑢8 + 𝒃𝑠32 ≈ 𝑄𝑎𝑄𝑤(𝑾𝑓32𝒂𝑓32 + 𝒃𝑓32) = 𝑄𝑎𝑄𝑤𝒙𝑓32  

where the approximation is because the equation ignores the rounding operation, and 

𝒙𝑓32 = 𝑾𝑓32𝒂𝑓32 + 𝒃𝑓32 ≈
1

𝑄𝑎𝑄𝑤
𝒙𝑠32 = 𝐷𝒙𝑠32  

is the affine transformation with 𝑓32 format, and 𝐷 =
1

𝑄𝑎𝑄𝑤
 is the dequantization factor. 

In quantizing to 𝑢8 and 𝑠8 formats, a zero value maps to a specific value without any rounding. 

Given that zero is one of the most common values, it is advantageous to have exact mappings 

to reduce quantization errors and improve statistical accuracy.  

The quantization factors above can be in 𝑓𝑝32 format in the Intel Xeon Scalable processors. 

However, some architectures do not support divides (e.g., FPGAs) and use shifts. For those 

architectures, the scalar is rounded to the nearest power-of-two and the scaling is done with 

bit-shifts. The reduction in statistical accuracy is minimal (usually <1%). 

 

Efficient 8-bit multiplies 

In Figure 6, we demonstrate how to efficiently perform the 8-bit multiplies for 𝑨 × 𝑾. Intel 

MKL-DNN uses an 𝑁𝐻𝑊𝐶 data layout for the activation tensors where 𝑁 is the batch size, 𝐻 is 

the height, 𝑊 is the width, and 𝐶 is the number of channels, and an (
𝑂

16
) Κ (

𝐶

4
) Τ16𝑜4𝑐 data 

layout for the weight tensors where 𝑂 is the number kernels or output channels, 𝐶 is the 

number of input channels, Κ is the height, and Τ is the width. The first 32-bits (4 𝑖𝑛𝑡8 values) of 
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tensor 𝑨 shown in gray are broadcasted 16 times to fill a 512-bit register. Intel MKL-DNN 

modifies the data layout of tensor 𝑾 after quantizing the weights. Tensor 𝑾 data layout is 

rearranged as 𝑾′ by groups of 16 columns, with each column having 32-bits (4 𝑖𝑛𝑡8 values) to 

be read continuous in memory starting with the first 4 values in column 1 occupying the first 

32-bits of the register (red), the next 4x1 occupying the next 32-bits of the register (orange), 

and so forth (green). The second, third, and fourth block (yellow) below the first block are 

rearranged in the same pattern. The next set of blocks (blue) follows. In practice, tensor 𝑾 is 

usually transposed before re-arranging the memory layout in order to access 1x4 continuous 

memory values rather than 4x1 scatter values when rearranging the data layout. Modifying 

this data layout is usually done once and stored for reuse for all inference iterations. 

 

 

 

Figure 6: Efficient use of 𝑖𝑛𝑡8 multiplies to compute the product 𝑨 × 𝑾 requires a data layout transformation of 

tensor 𝑾 in order to read continuous bits. Groups of 32-bits of 𝑨 are broadcasted 16 times to fill a 512-bit register 

which are multiplied by groups of 512-bits from tensor 𝑾’. 

 

The register with the first 4 𝑖𝑛𝑡8 values (copied 16 times) of 𝑨 is multiplied by the 64 𝑖𝑛𝑡8 

values (512-bits) of 𝑾’ and accumulated. The next 4 values in 𝑨 are broadcasted 16 times to 

another register which is multiplied by the next 64 𝑖𝑛𝑡8 values of 𝑾’. This continues until the 

first row of 𝑨 is read and the results are accumulated. The outputs (after all 3 instructions of 

the 8-bit FMA) are the first 16 output values (requiring 512-bits at 𝑠32). The first row of 𝑨 is 

then multiplied by the next values of 𝑾’ resulting in the next 16 values of the output. 
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The Intel Xeon Scalable processors have up to 32 registers. When executing in 512-bit register 

port scheme on processors with two FMA units3, Port 0 FMA has a latency of 4 cycles and Port 

5 FMA has a latency of 6 cycles. The instructions used for deep learning workloads at 𝑖𝑛𝑡8 

support bypass and have a latency of 5 cycles for both ports 0 and 5 (see Section 15.17). In 

practice, multiple rows of 𝑾′ are loaded to multiple registers to hide these latencies. 

 

16-bit functions for training 

Intel MKL-DNN support for 16-bit multiplies using the AVX512_VNNI instructions is designed 

as future work when the instructions become available. Nevertheless, researchers have 

already shown training of various CNNs models using 16-bit multiplies with 32-bit 

accumulates by taking advantage of the AVX512_4VNNI instructions (also known as QVNNI, 

available on some Intel® Xeon® Phi™ processors), specifically the AVX512_4VNNI VP4DPWSSD 

instruction (similar to the AVX512_VNNI VPDPWSSD instruction discussed earlier). 

These researchers matched the 𝑓𝑝32 statistical performance of ResNet-50, GoogLeNet-v1, 

VGG-16 and AlexNet with the same number of iterations as 𝑓𝑝32 models without changing the 

hyper-parameters. They use 𝑠16 to store the activations, weights, and gradients, and also keep 

a master-copy of the 𝑓𝑝32 weights for the weights updates that gets quantized back to 𝑠16 

after each iteration. They use quantization factors that are powers-of-two which facilitates 

managing the quantization / dequantization factors through tensor multiplies.  

 

Enabling Lower Numerical Precision in the Frameworks 

The popular frameworks enable users to define their model without writing all the function 

definitions themselves. The details on the implementations of the various functions can be 

hidden from the framework users. These implementations are done by framework developers. 

This section explains the modifications required at the framework level to enable lower 

numerical precision. 

Quantizing the weights is done before inference starts. Quantizing the activations efficiently 

requires precomputing the quantization factors. The activation quantization factor are 

precomputed usually sampling the validation dataset to find the range as described above. 

Values in the test dataset outside this range are saturated to the range. For negative activation 

values, the range before saturation could be relaxed to −
128𝑅𝑎′

127
 in order to use the 𝑠8 = −128 

value, where 𝑅𝑎′ is maximum absolute value of these activations. These scalars are then 

written to a file.  

 

                                                           
3 Two 512-bit FMA units computing in parallel per core are available in Intel Xeon Platinum processors, Intel Xeon 

Gold processors 6000 series and 5122. Other Intel Xeon Scalable processor SKUs have one FMA unit per core. 

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://openreview.net/forum?id=H135uzZ0-
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8-bit quantization of activations or inputs with negative values 

Quantizing activations or input values with negative values can be implemented at the 

framework level as follows. 𝑄𝑎′ =
127

𝑅𝑎′
 is the quantization factor for activations with negative 

values. The 𝑠8 quantized format is 𝒂𝑠8 = ‖𝑄𝑎′𝒂𝑓32‖ ∈ [−128, 127], where the function ‖⋅‖ 

rounds to the nearest integer. However, the activation must be in 𝑢8 format to take advantage 

of the AVX512_VNNI VPMADDUBSW instruction or the AVX512_VNNI VPDPBUSD instruction 

(both described in the section Lower numerical precision with Intel Xeon Scalable processors). 

Therefore, all values in 𝒂𝑠8 are shifted by 𝐾 = 128 to be non-negative: 

𝒂𝑢8 = 𝒂𝑠8 + 𝐾𝟏 ∈ [0, 255]  

where 𝟏 is a vector of all 1s, and the bias 𝒃𝑓32 is modify as 

𝒃𝑓32
′ = 𝒃𝑓32 −

𝐾

𝑄𝑎
′ 𝑾𝑓32𝟏  

The methodology to quantize the weights and modified bias is the same as before:  

𝑾𝑠8 = ‖𝑄𝑤𝑾𝑓32‖ ∈ [−128,127]  

𝒃′𝑠32 = ‖𝑄𝑎′𝑄𝑤𝒃′𝑓32‖ ∈ [−231, 231 − 1]  

The affine transformation using 8-bit multipliers and 32-bit accumulates results in 

𝒙𝑠32 = 𝑾𝑠8𝒂𝑢8 + 𝒃′𝑠32 ≈ 𝑄𝑤𝑾𝑓32(𝑄𝑎′𝒂𝑓32 + 𝐾𝟏) + 𝑄𝑤𝑄𝑎′ (𝒃𝑓32 −
𝐾

𝑄𝑎
′ 𝑾𝑓32𝟏) =

𝑄𝑎′𝑄𝑤(𝑾𝑓32𝒂𝑓32 + 𝒃32) = 𝑄𝑎′𝑄𝑤𝒙𝑓32  

where 

𝒙𝑓32 = 𝑾𝑓32𝒂𝑓32 + 𝒃32 ≈
1

𝑄𝑎′𝑄𝑤
𝒙𝑠32 = 𝐷𝒙𝑠32  

where 𝐷 =
1

𝑄𝑎′𝑄𝑤
 is the dequantization factor.  

When the input signal is already in 𝑢8 format (e.g., RGB images) but a preprocessing step is 

required to subtract the mean signal, the above equations can be used where 𝐾 is the mean, 

𝒂𝑢8 is the input signal (not pre-processed), and 𝑄𝑎′ = 1. 

Researchers often keep the first convolution layer in 𝑓𝑝32 format and do the other 

convolutional layers in 𝑖𝑛𝑡8 (see Brief History of Lower Numerical Precision in Deep Learning 

section for examples). We observe that using these quantization techniques enables the use of 

all convolution layers in 𝑖𝑛𝑡8 with no significant decrease in statistical accuracy. 

To recap, to use activations with negative values, the activations are quantized to 𝑠8 format 

and then shifted by 𝐾 = 128 to 𝑢8 format. The only additional change is to modify the bias: 

𝒃𝑓32
′ = 𝒃𝑓32 −

𝐾

𝑄𝑎
′ 𝑾𝑓32𝟏. For a convolution layer the product 𝑾𝑓32𝟏 is generalized to equal the 

sum over all the values of 𝑾𝑓32 along all dimensions except the dimension shared with 𝒃𝑓32. 

See Appendix A for details. 
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Fused quantization 

Fused quantization improves performance by combining dequantization and quantization as 

follows so there is no need to convert to 𝑓𝑝32. The activation at layer 𝑙 + 1 is: 

𝒂𝑓32
(𝑙+1)

= 𝑔 (𝒙𝑓32
(𝑙)

) = 𝑔 (𝐷(𝑙)𝒙𝑠32
(𝑙)

)  

where 𝑔(⋅) is a non-linear activation function. Assuming the ReLU activation function, the 

activation can be expressed in 𝑢8 format as 

𝒂𝑢8
(𝑙+1)

= ‖𝑄𝑎
(𝑙+1)

𝒂𝑓32
(𝑙+1)

‖ = ‖𝑄𝑎
(𝑙+1)

𝐷(𝑙) max (0, 𝒙𝑠32
(𝑙)

)‖  

where the product 𝑄𝑎
(𝑙+1)

𝐷(𝑙) enables computing the next layer’s quantized activation in 𝑢8 

format without computing the 𝑓𝑝32 representation. 

When 𝑔(⋅) is the ReLU function (as in the equations below) and 𝑄 ≥ 0 (as is always the case for 

the quantization factors), the following property holds: 

𝑄𝑔 (𝐷(𝑙)𝒙𝑠32
(𝑙)

+ 𝐷(ℎ)𝒙𝑠32
(ℎ)

) = 𝑔 (𝑄𝐷(𝑙)𝒙𝑠32
(𝑙)

+ 𝑄𝐷(ℎ)𝒙𝑠32
(ℎ)

) 

This property is useful for models with skip connections such as ResNet where a skip 

connection branch may have dependencies on various activations. As an example, and using 

the nomenclature by the ResNet-50 author in Caffe’s deploy.prototxt (see Figure 7), the 

quantized input activation in layer 𝑟𝑒𝑠2𝑏_𝑏𝑟𝑎𝑛𝑐ℎ2𝑎 (abbreviated as 2𝑏2𝑎 in the equations 

below) is 

𝒂𝑢8
(2𝑏2𝑎)

= 𝑄𝑎
(2𝑏2𝑎)

𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) 

= 𝑔 (𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) 

where 𝒂𝑢8
(2𝑏2𝑎)

∈ [0, 127] (instead of [0, 255]) because 𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

∈ [−128, 127] is in 𝑠8 

format because the product comes before the ReLU function and 𝑄𝑎
(2𝑏2𝑎)

=
127

𝑅𝑎
(2𝑏2𝑎) is the 

quantization factor. Following this procedure, it is shown in Appendix B that the activation 

𝒂𝑢8
(2𝑐2𝑎)

 depends on 𝒔32
(2𝑎1)

, 𝒔32
(2𝑎2𝑐)

 and 𝒔32
(2𝑏2𝑐)

. Similarly, the activation 𝒂𝑢8
(3𝑐𝑎)

 depends on 𝒔32
(2𝑎1)

, 

𝒔32
(2𝑎2𝑐)

, 𝒔32
(2𝑏2𝑐)

 and 𝒔32
(2𝑐2𝑐)

. 

 

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
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Figure 7: Diagram of the second group of residual blocks in ResNet-50 (and the first branch in the third group) using 

the nomenclature by the ResNet-50 author in Caffe’s deploy.prototxt. The layers marked with a blue arrow have 

dependencies on 2 or more activations. Image credit to Barukh Ziv, Etay Meiri, Eden Segal.  

 

Batch normalization 

A batch normalization (BN) inference layer is not needed as it can be absorbed by its 

preceding layer by scaling the weight values and modifying the bias. This technique only 

works for inference and is not unique to lower numerical precision. It can be implemented at 

the framework level instead of Intel MKL-DNN. BN is usually applied after the affine 

transformation 𝒙 = 𝑾𝒂 + 𝒃 and before the activation function (details in the original BN 

paper). BN normalizes 𝒙 to be zero mean and unit norm, and then scales and shifts the 

normalized vector by  and , respectively, which are parameters also learned during training. 

During a training iteration, 𝒙 is normalized using the mini-batch statistics. For inference, the 

mean 𝐸 and variance 𝑉 of 𝒙 are precomputed using the statistics of the entire training dataset 

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
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or a variant such as a running average of these statistics computed during training. During 

inference, the BN output 𝒚 is: 

𝒚 = 𝐵𝑁(𝒙) = 𝛾
𝒙 − 𝐸𝟏

𝑉
+ 𝛽𝟏 = 𝛾

𝑾𝒂 + 𝒃 − 𝐸𝟏

𝑉
+ 𝛽𝟏 =

𝛾

𝑉
𝑾𝒂 +

𝛾

𝑉
𝒃 +

𝛽 − 𝛾𝐸

𝑉
𝟏 = 𝑾′𝒂 + 𝒃′ 

where 𝑾′ =
𝛾

𝑉
𝑾 and 𝒃′ =

𝛾

𝑉
𝒃 +

𝛽−𝛾𝐸

𝑉
𝟏. That is, during inference the BN layer can be replaced 

by adjusting weights and bias in the preceding convolutional or fully connected layer. 

 

Frameworks 

Intel enabled 8-bit inference in Intel® Distribution of Caffe*. Intel’s DL Inference Engine, 

Apache* MXNet*, and TensorFlow* optimizations are expected to be available in Q2 2018. All 

these 8-bit optimizations are currently limited to CNN models. RNN models, 16-bit training 

enabling, and other frameworks will follow later in 2018. 

In the Intel Distribution of Caffe, the model.prototxt file is modified to include the 

precomputed scalars as shown in Figure 8. Currently, the Intel Optimization of Caffe can 

provide the quantization factor as either a power-of-two or as regular 𝑓𝑝32 value, and can use 

either 1 quantization factor per tensor or 1 per channel. Those quantization factors are 

computed using a sampling tool built into the Intel Distribution of Caffe. 

 

 

Figure 8: Quantization factors are added to the model.prototxt file. Image credit to Haihao Shen. 

Intel’s Deep Learning Inference Engine is part of Intel's Deep Learning Deployment Toolkit and 

Intel® Computer Vision SDK. It’s available on Linux* and Windows* OS and initially supports 

models trained from the Caffe, MXNet, and TensorFlow frameworks. The Inference Engine 

facilitates deployment of DL solutions by delivering a unified API for various hardware 

backends: Intel Xeon processors with Intel AVX-2 and Intel AVX-512, Intel Atom® processors, 

Intel® HD Graphics, and Intel® Arria® 10 (Intel® A10) discrete cards at various numerical 

https://github.com/bvlc/caffe/tree/intel
https://software.intel.com/en-us/inference-engine-devguide-introduction
https://mxnet.apache.org/
https://www.tensorflow.org/
https://software.intel.com/en-us/inference-engine-devguide-introduction
https://software.seek.intel.com/deep-learning-deployment
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precisions depending on the hardware. The inference engine will support 8-bit inference on 

Intel Xeon Scalable processors starting in Q2 2018. 

TensorFlow already supports 8-bit inference and various quantization methods. It can 

dynamically compute the scale or collect statistics during training or calibration phase to then 

assign a quantization factor. TensorFlow’s graph, which includes these scalars, is written to a 

file. The graph with the respective scalars is quantized and ran during inference. TensorFlow 

supports two methods for quantization. One method is similar to Intel MKL-DNN by setting 

the min and max as additive inverses. The other uses arbitrary values for min and max that 

need an offset plus scale (not supported in Intel MKL-DNN). See Pete Warden’s blog for more 

details but note that the blog is outdated as it does not contain all the ways to quantize in 

TensorFlow.  

Another tool of TensorFlow is retraining or fine-tuning at lower numerical precision. Fine-

tuning can improve the statistical performance. Given a model that is trained at 𝑓𝑝32, after its 

weights are quantized, the model is then fine-tuned with the quantized weights and the 

weights are re-quantized after each training iteration. 

GemmLowP is a Google library adopted in TensorFlow Lite*. It uses 𝑢8 multiplies, where 𝑓32 =

𝐷 × (𝑢8 − 𝐾), 𝐾 is an 𝑢8 value that maps to 𝑓𝑝32 = 0, and 𝐷 > 0 is the dequantization factor. 

The Apache MXNet branch currently does not support 8-bit. However, a branch by one of the 

main MXNet contributors supports 8-bit inference. In that branch, there are two methods to 

quantize the values: one where the min value is mapped to 0 and the max value to 255 (note 

that zero does not map to an exact value); and, another one where the max of the absolute 

value is mapped to either -127 or 127 (note that zero maps to zero—similar to Intel MKL-

DNN). The main difference with the presented approached is that the scalars in this MXNet 

branch are not precomputed. Rather, they are computed during the actual inference steps 

which reduces the benefits of lower numerical precision. In that branch, the scalars for the 

activations are computed by multiplying the scalars from the inputs with the scalars from the 

weights: activation-scalar = input-scalar * weight-scalar, where input = input-scalar * 

quantized-input; weight = weight-scalar * quantized-weight; and activation = activation-scalar 

* quantized-activation; input, weights, activations, and scalars are in 𝑓𝑝32 format, quantized-

input and quantized-weights are in 𝑖𝑛𝑡8 format, and quantized-activations are in 𝑖𝑛𝑡32 format 

(see details). While min and max of the activations are tracked, the values are only 

dequantized when encountering an 𝑓𝑝32 layers (e.g., softmax). 

TensorRT quantizes to 𝑠8 format similar to Intel MKL-DNN with the addition of finding a 

tighter range by minimizing the KL divergence between the quantized and reference 

distributions. 

The TPU team claims that TPUs which uses 𝑖𝑛𝑡8 multiplies are being used across a variety of 

models including LSTM models. The software stack translates API calls from TensorFlow 

graphs into TPU instructions. 

https://www.tensorflow.org/performance/quantization
https://petewarden.com/2017/06/22/what-ive-learned-about-neural-network-quantization/
https://www.tensorflow.org/api_guides/python/array_ops#Fake_quantization
https://github.com/google/gemmlowp/blob/master/doc/quantization.md
https://github.com/ZihengJiang/mxnet/tree/quantization
https://github.com/ZihengJiang/mxnet/blob/quantization/src/operator/quantization/quantize-inl.h#L47
https://github.com/ZihengJiang/mxnet/blob/quantization/src/operator/quantization/quantization_utils.h#L126
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
https://arxiv.org/abs/1704.04760
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
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Caffe2’s docs state that there is “flexibility for future directions such as quantized 

computation,” but currently no plans for quantization have been disclosed. 

PyTorch has a branch that offers various options to quantize but there is no discussion on 

which is better. 

Microsoft introduced Project Brainwave* using a custom 8-bit floating point format (ms-𝑓𝑝8) 

that runs on Intel® Stratix® 10 FPGAs. The details of this format, quantization techniques, or 

framework implementation has not been disclosed. Project Brainwave supports CNTK* and 

TensorFlow and plans to support many others by converting models trained in popular 

frameworks to an internal graph-based intermediate representation.  

 

Model and graph optimizations 

Model optimizations can further improve inference performance. For example, in ResNet, the 

stride operation can be moved to an earlier layer without modifying the end result and 

reducing the number of operations as shown in Figure 9. This modification applies to both 8-

bit and 32-bits. 

 

 

Figure 9: The stride 2 shown on the layers on the left blocks can be moved to an earlier layer during inference which 

reduces the number of operations and does not modify the result. Illustration courtesy of Eden Segal and Etay Meiri. 

 

Conclusion 

https://caffe2.ai/docs/caffe-migration.html
https://github.com/aaron-xichen/pytorch-playground/blob/master/quantize.py
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
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Lower numerical precision inference and training can improve the computational performance 

with minimal or no reduction in statistical accuracy. Intel is enabling 8-bit precision for 

inference on the current generation of Intel Xeon Scalable processors. Intel is also enabling 8-

bit precision for inference and 16-bit precision for training on future microarchitectures in 

both hardware and software enabling compilers, the Intel MKL-DNN library and popular deep 

learning frameworks.  
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Appendix A – Details on quantization of activations or inputs with negative values 

To convince the reader that these same formulas (see the section 8-bit quantization of 

activations or inputs with negative values) generalize to convolutional layers, we use the 

indices of each tensor entry and work through the steps to show the convolutional output. Let 

𝑾𝑓32 ∈ ℜ𝑂×𝐶×Κ×Τ be the weight tensor with 𝑂 kernels or output channels, 𝐶 input channels, Κ 

height, and Τ width. The modified bias can be represented as: 

𝑏𝑓32
′ [𝑜𝑖] = 𝑏𝑓32[𝑜𝑖] −

𝐾

𝑄𝑎
′ ∑ ∑ ∑ 𝑊𝑓32[𝑜𝑖, 𝑐𝑖 , 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

= 𝑏𝑓32[𝑜𝑖] −
𝐾

𝑄𝑎
′ 𝑊̅𝑓32[𝑜𝑖]  

where 𝑊̅𝑓32[𝑜𝑖] = ∑ ∑ ∑ 𝑊𝑓32[𝑜𝑖, 𝑐𝑖, 𝜅𝑖, 𝜏𝑖]𝜏𝑖𝜅𝑖𝑐𝑖
 and 𝑜𝑖, 𝑐𝑖, 𝜅𝑖, and 𝜏𝑖 are the indices for the kernels 

or output channels, input channels, kernel height, and kernel width, respectively. The 

convolution output can be represented as follows. Note that we assume batch size one (to 

omit the batch index for simplicity), the activations have been already zero padded in 𝑓𝑝32 

format (or equivalently padded with 𝐾 = 128 in 𝑢8 format), and the convolution stride is one. 

𝑥𝑠32[𝑜𝑖, ℎ𝑖, 𝑤𝑖] = 𝑏𝑠32
′ [𝑜𝑖] + ∑ ∑ ∑ 𝑎𝑢8[𝑐𝑖, ℎ𝑖 + 𝜅𝑖, 𝑤𝑖 + 𝜏𝑖]𝑊𝑠8[𝑜𝑖, 𝑐𝑖 , 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

 

≈ 𝑄𝑎′𝑄𝑤𝑏𝑓32
′ [𝑜𝑖] + ∑ ∑ ∑(𝑄𝑎′𝑎𝑓32[𝑐𝑖, ℎ𝑖 + 𝜅𝑖 , 𝑤𝑖 + 𝜏𝑖] + 𝐾)𝑄𝑤𝑊𝑓32[𝑜𝑖, 𝑐𝑖, 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

 

= 𝑄𝑎′𝑄𝑤 (𝑏𝑓32[𝑜𝑖] −
𝐾

𝑄𝑎
′ 𝑊̅𝑓32[𝑜𝑖]) + ∑ ∑ ∑ 𝑄𝑤𝑄𝑎′𝑎𝑓32[𝑐𝑖, ℎ𝑖 + 𝜅𝑖, 𝑤𝑖 + 𝜏𝑖]𝑊𝑓32[𝑜𝑖, 𝑐𝑖, 𝜅𝑖 , 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

+ ∑ ∑ ∑ 𝐾𝑄𝑤𝑊𝑠8[𝑜𝑖, 𝑐𝑖 , 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖
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= 𝑄𝑎′𝑄𝑤𝑏𝑓32[𝑜𝑖] − 𝐾𝑄𝑤𝑊̅𝑓32[𝑜𝑖] + ∑ ∑ ∑ 𝑄𝑤𝑄𝑎′𝑎𝑓32[𝑐𝑖, ℎ𝑖 + 𝜅𝑖, 𝑤𝑖 + 𝜏𝑖]𝑊𝑓32[𝑜𝑖, 𝑐𝑖, 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

+ 𝐾𝑄𝑤𝑊̅𝑓32[𝑜𝑖] 

= 𝑄𝑎′𝑄𝑤 (𝑏𝑓32[𝑜𝑖] + ∑ ∑ ∑ 𝑎𝑓32[𝑐𝑖, ℎ𝑖 + 𝜅𝑖, 𝑤𝑖 + 𝜏𝑖]𝑊𝑓32[𝑜𝑖, 𝑐𝑖 , 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

) 

= 𝑄𝑎′𝑄𝑤𝑥𝑓32[𝑜𝑖, ℎ𝑖, 𝑤𝑖] 

 

Appendix B – Details on fused quantization with skip connections 

The activation inputs to the layers marked by the blue arrow in Figure 7 are as follows where 

layer 𝑟𝑒𝑠2𝑏_𝑏𝑟𝑎𝑛𝑐ℎ2𝑎 is abbreviated as 2𝑏2𝑎 in the equations below with similar abbreviations 

for the other layers. 

 

𝒂𝑢8
(2𝑏2𝑎)

= 𝑄𝑎
(2𝑏2𝑎)

𝒂𝑓32
(2𝑏2𝑎)

 

≈ 𝑄𝑎
(2𝑏2𝑎)

𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) 

= 𝑔 (𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) 

 

𝒂𝑢8
(2𝑐2𝑎)

= 𝑄𝑎
(2𝑐2𝑎)

𝒂𝑓32
(2𝑐2𝑎)

 

≈ 𝑄𝑎
(2𝑐2𝑎)

𝑔 (𝒂𝑓32
(2𝑏2𝑎)

+ 𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

) 

≈ 𝑄𝑎
(2𝑐2𝑎)

𝑔 (𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

) 

= 𝑔 (𝑔 (𝑄𝑎
(2𝑐2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(2𝑐2𝑎)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝑄𝑎
(2𝑐2𝑎)

𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

) 

 

𝒂𝑢8
(3𝑎2𝑎)

= 𝑄𝑎
(3𝑎2𝑎)

𝒂𝑓32
(3𝑎2𝑎)

 

≈ 𝑄𝑎
(3𝑎2𝑎)

𝑔 (𝒂𝑓32
(2𝑐2𝑎)

+ 𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

) 

≈ 𝑄𝑎
(3𝑎2𝑎)

𝑔 (𝑔 (𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

) + 𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

) 

= 𝑔 (𝑔 (𝑔 (𝑄𝑎
(3𝑎2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(3𝑎2𝑎)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝑄𝑎
(3𝑎2𝑎)

𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

)

+ 𝑄𝑎
(3𝑎2𝑎)

𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

) 

 

𝒂𝑢8
(3𝑎1)

= 𝑄𝑎
(3𝑎1)

𝒂𝑓32
(3𝑎1)

 

≈ 𝑄𝑎
(3𝑎1)

𝑔 (𝒂𝑓32
(2𝑐2𝑎)

+ 𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

) 

≈ 𝑄𝑎
(3𝑎1)

𝑔 (𝑔 (𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

) + 𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

) 
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= 𝑔 (𝑔 (𝑔 (𝑄𝑎
(3𝑎1)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(3𝑎1)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝑄𝑎
(3𝑎1)

𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

)

+ 𝑄𝑎
(3𝑎1)

𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

) 
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