
Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 1

White paper

Lower Numerical Precision Deep Learning
Inference and Training

Andres Rodriguez, Eden Segal, Etay Meiri, Evarist Fomenko, Young Jim Kim, Haihao Shen,

and Barukh Ziv

January 2018

Introduction

Most commercial deep learning applications today use 32-bits of floating point precision

(𝑓𝑝32) for training and inference workloads. Various researchers have demonstrated that both

deep learning training and inference can be performed with lower numerical precision, using

16-bit multipliers for training and 8-bit multipliers or fewer for inference with minimal to no

loss in accuracy (higher precision – 16-bits vs. 8-bits – is usually needed during training to

accurately represent the gradients during the backpropagation phase). Using these lower

numerical precisions (training with 16-bit multipliers accumulated to 32-bits or more and

inference with 8-bit multipliers accumulated to 32-bits) will likely become the standard over

the next year, in particular for convolutional neural networks (CNNs).

There are two main benefits of lower numerical precision. First, many operations are memory

bandwidth bound, and reducing precision would allow for better usage of cache and reduction

of bandwidth bottlenecks. Thus, data can be moved faster through the memory hierarchy to

maximize compute resources. Second, the hardware may enable higher operations per second

(OPS) at lower numerical precision as these multipliers require less silicon area and power.

In this article, we review the history of lower numerical precision training and inference and

describe how Intel® is enabling lower numerical precision for deep learning inference and

training. Specifically, we describe instructions available in the current Intel® Xeon® Scalable

processors and instructions that will be available in some future processors. We describe how

to quantize the model weights and activations and the lower numerical functions available in

the Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN). Finally, we describe

how deep learning frameworks take advantage of these lower numerical precision functions

and reduce the conversion overhead between different numerical precisions. Each section can

be read independently of other sections and the reader may skip to their section of interest. A

detailed exposition including commercial examples of deep learning training with the Intel

Xeon Scalable processors is presented elsewhere.

https://github.com/01org/mkl-dnn
https://software.intel.com/en-us/articles/intel-processors-for-deep-learning-training

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 2

Brief History of Lower Numerical Precision in Deep Learning

Researchers have demonstrated deep learning training with 16-bit multipliers and inference

with 8-bit multipliers or less of numerical precision accumulated to higher precision with

minimal to no loss in accuracy across various models. Vanhoucke, et al. (2011) quantized

activations and weights to 8-bits and kept the biases and first layer input at full precision

(𝑓𝑝32) for the task of speech recognition on CPUs. Hwang, et al. (2014) trained a simple

network with quantized weights of -1, 0 and 1 in the feed forward propagation and updated

the high precision weights in the back propagation using the MNIST* and TIMIT* datasets with

negligible performance loss. Courbariaux, et al. (2015) used the MNIST, CIFAR-10*, and SVHN*

datasets to train with lower numerical precision multipliers and high precision accumulators

and updated the high precision weights. They proposed combining dynamic fixed point

(having one shared exponent for a tensor or high dimensional array) with Gupta, et al.’s (2015)

stochastic rounding as future work. This became the core piece of Koster, et al.’s (2017) use of

the Flexpoint numerical format in the Intel® Nervana™ Neural Network Processors (Intel

Nervana NNP). Kim and Smaragdis (2016) trained with binary weights and updated on full

precision weights with competitive performance on the MNIST dataset. Miyashita, et al. (2016)

encoded the weights and activations in a base-2 logarithmic representation (since

weights/activations have a non-uniform distribution). They trained CIFAR-10 with 5-bits

weights and 4-bit activations resulting in minimal performance degradation. Rastegari, et al.

(2016) trained AlexNet with binary weights (except for the first and last layers) and updated on

full precision weights with a top-1 2.9% accuracy loss. Based on their experiments, they

recommend avoiding binarization in fully connected layers and convolutional layers with small

channels or filter sizes (e.g., 1x1 kernels). Mellempudi, et al. (2017) from Intel Labs trained

ResNet-101 with 4-bit weights and 8-bit activations in convolutional layers while doing

updates in full precision with a top-1 2% accuracy loss. Micikevicius, et al. (2017) trained with

16-bit floating-point (𝑓𝑝16) multipliers and full precision accumulators and updated the full

precision weights with negligible to no loss in accuracy for AlexNet*, VGG-D*, GoogLeNet*,

ResNet-50*, Faster R-CNN*, Multibox SSD*, DeepSpeech2*, Sequence-to-Sequence*,

bigLSTM*, and DCGAN* (some models required gradient scaling to match full precision

results). Baidu researchers (2017) successfully used 8-bits of fixed precision with 1 sign bit, 4-

bits for the integer part and 3-bits for the fractional part. Sze, et al. (2017) used various

quantization techniques (see Table 3 in their paper) showing minimal to no loss at reduced

precision (except for the first and last layers which were kept at full precision). An anonymous

submission to ICLR 2018 details how to generate state-of-the-art on ResNet-50, GoogLeNet,

VGG-16, and AlexNet using 16-bits integer multipliers and 32-bit accumulators.

Lower numerical precision with Intel Xeon Scalable processors

The Intel Xeon Scalable processor now includes the Intel® Advance Vector Extension 512

(Intel® AVX-512) instruction set which have the 512-bit wide Fused Multiply Add (FMA) core

instructions. These instructions enable lower numerical precision multiplies with higher

https://research.google.com/pubs/pub37631.html
http://ieeexplore.ieee.org/abstract/document/6986082/
https://arxiv.org/abs/1412.7024
https://arxiv.org/abs/1502.02551
https://arxiv.org/abs/1711.02213
https://ai.intel.com/flexpoint-numerical-innovation-underlying-intel-nervana-neural-network-processor/
https://ai.intel.com/intel-nervana-neural-network-processor-architecture-update/
https://ai.intel.com/intel-nervana-neural-network-processor-architecture-update/
https://arxiv.org/abs/1601.06071
https://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1701.08978
https://arxiv.org/abs/1710.03740
https://cdn.oreillystatic.com/en/assets/1/event/258/Benchmarking%20deep%20learning%20inference%20Presentation.pptx
https://arxiv.org/abs/1703.09039
https://openreview.net/forum?id=H135uzZ0-¬eId=H135uzZ0-
https://openreview.net/forum?id=H135uzZ0-¬eId=H135uzZ0-
https://iclr.cc/
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 3

precision accumulates. Multiplying two 8-bit values and accumulating the result to 32-bits

requires 3 instructions and requires one of the 8-bit vectors to be in 𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛𝑡8 (𝑢8) format,

the other in 𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛𝑡8 (𝑠8) format with the accumulation in 𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛𝑡32 (𝑠32) format. This

allows for 4x more input at the cost of 3x more instructions or 33.33% more compute with 1/4

the memory requirement. The reduced memory and higher frequency for lower numerical

precision operations makes it even faster. See Figure 1 for details1.

Figure 1: The Intel Xeon Scalable processor enables 8-bit multiplies with 32-bit accumulates with 3 instructions:

VPMADDUBSW 𝑢8 × 𝑠8 → 𝑠16 multiples, VPMADDWD 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡1 𝑠16 → 𝑠32, and VPADDD 𝑠32 → 𝑠32 adds the

result to accumulator. This allows for 4x more input over 𝑓𝑝32 at the cost of 3x more instructions or 33.33% more

compute and 1/4 the memory requirement. The reduced memory and higher frequency available with lower

numerical precision makes it even faster. Image credit to Israel Hirsh.

The Intel AVX-512 instructions also enable 16-bit multiplies. Multiplying two 16-bit values

and accumulating the result to 32-bits requires 2 instructions (2 cycles) with both 16-bit

vectors to be in signed 𝑖𝑛𝑡16 (𝑠16) format and the accumulation in signed 𝑖𝑛𝑡32 (𝑠32) format.

This allows for 2x more input at the cost of 2x more instructions, resulting in no additional

compute. It does, however, reduce the memory requirement and bandwidth bottlenecks, both

of which may improve the overall performance. See Figure 2 for details.

1 The raw compute can be calculated as AVX-512-frequency * number-of-cores * number-of-FMAs-per-core * 2-

operations-per-FMA * SIMD-vector-length / number-of-bits-in-numerical-format / number-of-instructions. Two

512-bit FMA units located in Ports 0 and 5 computing in parallel per core are available in the Intel Xeon Platinum

processors, Intel Xeon Gold processors 6000 series and 5122 available. Other Intel Xeon Scalable processor stock

keeping units (SKUs) have one FMA unit per core located in Port 0 (see Chapter 15 for details). 𝑓𝑝32, 𝑖𝑛𝑡16, and 𝑖𝑛𝑡8

FMAs require 1, 2, and 3 instructions, respectively, with the Intel AVX-512 instructions. The Intel Xeon Platinum

8180 has 28 cores per socket and 2 FMAs per core. The 𝑓𝑝32 OPS per socket are approximately 1.99-GHz-AVX-

512-frequency * 28-cores * 2-FMA-units-per-core * 2-OPS-per-FMA * 512-bits / 32-bits / 1-instruction = 3.570

𝑓𝑝32 TOPS. The 𝑖𝑛𝑡8 OPS per socket are approximately 2.17-GHz-AVX-512-frequency * 28-cores * 2-FMA-units-

per-core * 2-OPS-per-FMA * 512-bits / 8-bits / 3-instruction = 5.185 𝑖𝑛𝑡8 TOPS. The AVX-512 frequencies for

multiple SKUs can be found here (these correspond to 𝑓𝑝64 operations—the frequencies for lower numerical

precision are higher and the ones used in the 𝑓𝑝32 and 𝑖𝑛𝑡8 TOPS computations above are estimates). The AVX-

512 max turbo-frequency may not be fully sustained when running high OPS workloads.

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 4

Figure 2: The Intel Xeon Scalable processor core is capable of 16-bit multiplies with 32-bit accumulates with 2

instructions: VPMADDWD 𝑠16 × 𝑠16 → 𝑠32 multiples, and VPADDD 𝑠32 → 𝑠32 adds the result to accumulator. This

allows for 2x more input over 𝑓𝑝32 at the cost of 2x more instructions or no more compute and 1/2 the memory

requirement. Image credit to Israel Hirsh.

Intel developed the AVX512_VNNI (Vector Neural Network Instruction), a new set of Intel AVX-

512 instructions to boost DL performance. Ice Lake and other future microarchitectures (see

Table 1-1) will have the AVX512_VNNI instructions. AVX512_VNNI includes 1) an FMA

instruction for 8-bit multiplies with 32-bits accumulates 𝑢8 × 𝑠8 → 𝑠32 as shown in Figure 3,

and 2) an FMA instruction for 16-bit multiplies with 32-bit accumulates 𝑠16 × 𝑠16 → 𝑠32 as

shown in Figure 4. The theoretical peak compute gains are 4x 𝑖𝑛𝑡8 OPS and 2x 𝑖𝑛𝑡16 OPS over

𝑓𝑝32 OPS, respectively. Practically, the gains may be lower due to memory bandwidth

bottlenecks.

Figure 3: AVX512_VNNI enables 8-bit multiplies with 32-bit accumulates with 1 instruction. The VPMADDUBSW,

VPMADDWD, VPADDD instructions in Figure 1 are fused into the VPDPBUSD instruction 𝑢8 × 𝑠8 → 𝑠32. This allows

for 4x more inputs over 𝑓𝑝32 and (theoretical peak) 4x more compute with 1/4 the memory requirements. Image

credit to Israel Hirsh.

https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 5

Figure 4: AVX512_VNNI enables 16-bit multiplies with 32-bit accumulates with 1 instruction. The VPMADDWD,

VPADDD instructions in Figure 2 are fused into the VPDPWSSD instruction 𝑠16 × 𝑠16 → 𝑠32. This allows for 2x more

inputs over 𝑓𝑝32 and (theoretical peak) 2x more compute with 1/2 the memory requirements. Image credit to Israel

Hirsh.

A potential issue is the undefined behavior on overflows that may occur when using the

VPMADDUBSW instruction 𝑢8 × 𝑠8 → 𝑠16 (see Figure 1). This is a problem when both 𝑢8 and

𝑠8 values are near their maximum values2. This can be mitigated by reducing the precision of

the inputs by 1-bit. This is not in practice an issue when using the AVX512_VNNI VPDPBUSD

FMA instruction 𝑢8 × 𝑠8 → 𝑠32.

An overflow is more likely to occur with the AVX512_VNNI VPDPWSSD FMA instruction 𝑠16 ×

𝑠16 → 𝑠32. This can be similarly mitigated by reducing the precision of the activations and the

weights by 1 or 2 bits. Another technique to prevent overflow is to use a second accumulator

at 𝑓𝑝32, and convert to 𝑓𝑝32 and use that accumulator after a set number of 𝑠32 accumulates.

Preliminary results show that statistical performance does not suffer using these techniques.

Compiler support for these AVX512_VNNI instructions is underway. GCC 8 development code

and LLVM/Clang 6.0 compiler already support AVX512_VNNI instructions. The X86 Encoder

Decoder (XED) and the Intel software developer emulator (SDE) October 2017 update adds

support for AVX512_VNNI instructions.

Intel MKL-DNN Library Lower Numerical Precision Primitives

The Intel MKL-DNN library contains popular deep learning functions or primitives used across

various models such as inner products, convolutions, rectified linear units (ReLU), and batch

normalization (BN), along with functions necessary to manipulate the layout of tensors or high

dimensional arrays. Intel MKL-DNN is optimized for Intel processors with Intel AVX-512, Intel®

AVX-2, and Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2) instructions. These functions

use 𝑓𝑝32 for training and inference workloads. Recently, new functions were introduced to

2 in practice these 𝑢8 values are usually closer to their minimum than their maximum if they activations are

preceded by the ReLU activation function

https://openreview.net/forum?id=H135uzZ0-
https://gcc.gnu.org/ml/gcc-patches/2017-10/msg01670.html
https://github.com/llvm-mirror/clang/commit/cd1ee4494104517b80e3295a32fc1bfedbd6a1f6
https://intelxed.github.io/
https://intelxed.github.io/
https://software.intel.com/en-us/isa-extensions

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 6

support inference workloads with 8-bits of precision in convolutional, ReLU, fused

convolutional plus ReLU, and pooling layers. Functions for long short-term memory (LSTM),

other fused operations, and Winograd convolutions with 8-bits are designated as future work.

Intel MKL-DNN support for 16-bit multiplies using the AVX512_VNNI instructions is designed

as future work when the instructions become available.

Currently, Intel MKL-DNN does not have a local response normalization (LRN), fully connected

(FC), softmax, or batch normalization (BN) layers implemented with 8-bits of precision (only

with 𝑓𝑝32) for the following reasons. Modern models do not use LRN and older models can be

modified to use batch normalization, instead. Modern CNN models do not typically have many

FC layers, although adding support for FC layers is designated as future work. The softmax

function currently requires full precision as it does not maintain accuracy with 8-bits of

precision. A BN inference layer is not needed as it can be absorbed by its preceding layer by

scaling the weight values and modifying the bias as discussed in the Enabling Lower Numerical

Precision in the Frameworks section.

Intel MKL-DNN implements the 8-bit convolution operations with the activation (or input)

values in 𝑢8 format, the weights in 𝑠8 format and the biases in 𝑠32 format (biases can be kept

in 𝑓𝑝32 as well as they take a very small percentage of the overall compute). Figure 5 shows

the process of inference operations with 8-bit multipliers accumulated to 𝑠32.

Figure 5: The data layer or the first convolution layer activations are quantized to 𝑢8 as inputs to the next

convolutional layer. The weights are quantized to 𝑠8 and the bias is formatted to 𝑠32 and added to the 𝑠32

convolution accumulate. The framework chooses the format of the convolution output as 𝑠8, 𝑢8, or 𝑠32 depending

on the parameters of the following layer. Image credit to Jiong Gong.

8-bit quantization of activations with non-negative values and weights

Quantized Reorder
fp32 -> u8

fp32

u8

u8 -> u8/s8/s32
Convolution

Inner Product
Primitives

s8fp32

s32

s8/u8 -> s8/u8
Primitives

fp32
Normalization Primitives

Loss Layers

fp32s32
Quantized Reorder

fp32 -> s32

fp32

Quantized Reorder
fp32 -> s8

weights bias

inputs outputs

outputs

Quantized Reorder
s32 -> fp32

inputs

Framework
decides output

data type

s8/u8

s32 -> s32
Primitives

inputs

inputs

Quantized Reorder
s32 -> u8

outputs

outputs

Data Layer or First
Convolution Layer

outputs

Fast Path

Medium Path

Slow Path

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 7

Intel MKL-DNN currently assumes that the activations are non-negative, which is the case after

the ReLU activation function. Later in this article we discuss how to quantize activations with

negative values. Intel MKL-DNN quantizes the values for a given tensor or for each channel in

a tensor (the choice is up to the framework developers) as follows.

𝑅{𝑎,𝑤} = max(𝑎𝑏𝑠(𝕋{𝑎,𝑤})), where 𝕋{𝑎,𝑤} is a tensor corresponding to either the weights 𝑤 or

the activations or model inputs 𝑎.

𝑄𝑎 =
255

𝑅𝑎
 is the quantization factor for activations with non-negative values, and 𝑄𝑤 =

127

𝑅𝑤
 is the

quantization factor for the weights. The quantized activation, weights, and bias are:

𝒂𝑢8 = ‖𝑄𝑎𝒂𝑓32‖ ∈ [0,255]

𝑾𝑠8 = ‖𝑄𝑤𝑾𝑓32‖ ∈ [−127,127]

𝒃𝑠32 = ‖𝑄𝑎𝑄𝑤𝒃𝑓32‖ ∈ [−231, 231 − 1]

where the function ‖⋅‖ rounds to the nearest integer. Note that while the 𝑠8 format supports -

128, the smallest quantized 𝑠8 weight value use is -127.

The affine transformation using 8-bit multipliers and 32-bit accumulates results in

𝒙𝑠32 = 𝑾𝑠8𝒂𝑢8 + 𝒃𝑠32 ≈ 𝑄𝑎𝑄𝑤(𝑾𝑓32𝒂𝑓32 + 𝒃𝑓32) = 𝑄𝑎𝑄𝑤𝒙𝑓32

where the approximation is because the equation ignores the rounding operation, and

𝒙𝑓32 = 𝑾𝑓32𝒂𝑓32 + 𝒃𝑓32 ≈
1

𝑄𝑎𝑄𝑤
𝒙𝑠32 = 𝐷𝒙𝑠32

is the affine transformation with 𝑓32 format, and 𝐷 =
1

𝑄𝑎𝑄𝑤
 is the dequantization factor.

In quantizing to 𝑢8 and 𝑠8 formats, a zero value maps to a specific value without any rounding.

Given that zero is one of the most common values, it is advantageous to have exact mappings

to reduce quantization errors and improve statistical accuracy.

The quantization factors above can be in 𝑓𝑝32 format in the Intel Xeon Scalable processors.

However, some architectures do not support divides (e.g., FPGAs) and use shifts. For those

architectures, the scalar is rounded to the nearest power-of-two and the scaling is done with

bit-shifts. The reduction in statistical accuracy is minimal (usually <1%).

Efficient 8-bit multiplies

In Figure 6, we demonstrate how to efficiently perform the 8-bit multiplies for 𝑨 × 𝑾. Intel

MKL-DNN uses an 𝑁𝐻𝑊𝐶 data layout for the activation tensors where 𝑁 is the batch size, 𝐻 is

the height, 𝑊 is the width, and 𝐶 is the number of channels, and an (
𝑂

16
) Κ (

𝐶

4
) Τ16𝑜4𝑐 data

layout for the weight tensors where 𝑂 is the number kernels or output channels, 𝐶 is the

number of input channels, Κ is the height, and Τ is the width. The first 32-bits (4 𝑖𝑛𝑡8 values) of

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 8

tensor 𝑨 shown in gray are broadcasted 16 times to fill a 512-bit register. Intel MKL-DNN

modifies the data layout of tensor 𝑾 after quantizing the weights. Tensor 𝑾 data layout is

rearranged as 𝑾′ by groups of 16 columns, with each column having 32-bits (4 𝑖𝑛𝑡8 values) to

be read continuous in memory starting with the first 4 values in column 1 occupying the first

32-bits of the register (red), the next 4x1 occupying the next 32-bits of the register (orange),

and so forth (green). The second, third, and fourth block (yellow) below the first block are

rearranged in the same pattern. The next set of blocks (blue) follows. In practice, tensor 𝑾 is

usually transposed before re-arranging the memory layout in order to access 1x4 continuous

memory values rather than 4x1 scatter values when rearranging the data layout. Modifying

this data layout is usually done once and stored for reuse for all inference iterations.

Figure 6: Efficient use of 𝑖𝑛𝑡8 multiplies to compute the product 𝑨 × 𝑾 requires a data layout transformation of

tensor 𝑾 in order to read continuous bits. Groups of 32-bits of 𝑨 are broadcasted 16 times to fill a 512-bit register

which are multiplied by groups of 512-bits from tensor 𝑾’.

The register with the first 4 𝑖𝑛𝑡8 values (copied 16 times) of 𝑨 is multiplied by the 64 𝑖𝑛𝑡8

values (512-bits) of 𝑾’ and accumulated. The next 4 values in 𝑨 are broadcasted 16 times to

another register which is multiplied by the next 64 𝑖𝑛𝑡8 values of 𝑾’. This continues until the

first row of 𝑨 is read and the results are accumulated. The outputs (after all 3 instructions of

the 8-bit FMA) are the first 16 output values (requiring 512-bits at 𝑠32). The first row of 𝑨 is

then multiplied by the next values of 𝑾’ resulting in the next 16 values of the output.

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 9

The Intel Xeon Scalable processors have up to 32 registers. When executing in 512-bit register

port scheme on processors with two FMA units3, Port 0 FMA has a latency of 4 cycles and Port

5 FMA has a latency of 6 cycles. The instructions used for deep learning workloads at 𝑖𝑛𝑡8

support bypass and have a latency of 5 cycles for both ports 0 and 5 (see Section 15.17). In

practice, multiple rows of 𝑾′ are loaded to multiple registers to hide these latencies.

16-bit functions for training

Intel MKL-DNN support for 16-bit multiplies using the AVX512_VNNI instructions is designed

as future work when the instructions become available. Nevertheless, researchers have

already shown training of various CNNs models using 16-bit multiplies with 32-bit

accumulates by taking advantage of the AVX512_4VNNI instructions (also known as QVNNI,

available on some Intel® Xeon® Phi™ processors), specifically the AVX512_4VNNI VP4DPWSSD

instruction (similar to the AVX512_VNNI VPDPWSSD instruction discussed earlier).

These researchers matched the 𝑓𝑝32 statistical performance of ResNet-50, GoogLeNet-v1,

VGG-16 and AlexNet with the same number of iterations as 𝑓𝑝32 models without changing the

hyper-parameters. They use 𝑠16 to store the activations, weights, and gradients, and also keep

a master-copy of the 𝑓𝑝32 weights for the weights updates that gets quantized back to 𝑠16

after each iteration. They use quantization factors that are powers-of-two which facilitates

managing the quantization / dequantization factors through tensor multiplies.

Enabling Lower Numerical Precision in the Frameworks

The popular frameworks enable users to define their model without writing all the function

definitions themselves. The details on the implementations of the various functions can be

hidden from the framework users. These implementations are done by framework developers.

This section explains the modifications required at the framework level to enable lower

numerical precision.

Quantizing the weights is done before inference starts. Quantizing the activations efficiently

requires precomputing the quantization factors. The activation quantization factor are

precomputed usually sampling the validation dataset to find the range as described above.

Values in the test dataset outside this range are saturated to the range. For negative activation

values, the range before saturation could be relaxed to −
128𝑅𝑎′

127
 in order to use the 𝑠8 = −128

value, where 𝑅𝑎′ is maximum absolute value of these activations. These scalars are then

written to a file.

3 Two 512-bit FMA units computing in parallel per core are available in Intel Xeon Platinum processors, Intel Xeon

Gold processors 6000 series and 5122. Other Intel Xeon Scalable processor SKUs have one FMA unit per core.

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://openreview.net/forum?id=H135uzZ0-

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 10

8-bit quantization of activations or inputs with negative values

Quantizing activations or input values with negative values can be implemented at the

framework level as follows. 𝑄𝑎′ =
127

𝑅𝑎′
 is the quantization factor for activations with negative

values. The 𝑠8 quantized format is 𝒂𝑠8 = ‖𝑄𝑎′𝒂𝑓32‖ ∈ [−128, 127], where the function ‖⋅‖

rounds to the nearest integer. However, the activation must be in 𝑢8 format to take advantage

of the AVX512_VNNI VPMADDUBSW instruction or the AVX512_VNNI VPDPBUSD instruction

(both described in the section Lower numerical precision with Intel Xeon Scalable processors).

Therefore, all values in 𝒂𝑠8 are shifted by 𝐾 = 128 to be non-negative:

𝒂𝑢8 = 𝒂𝑠8 + 𝐾𝟏 ∈ [0, 255]

where 𝟏 is a vector of all 1s, and the bias 𝒃𝑓32 is modify as

𝒃𝑓32
′ = 𝒃𝑓32 −

𝐾

𝑄𝑎
′ 𝑾𝑓32𝟏

The methodology to quantize the weights and modified bias is the same as before:

𝑾𝑠8 = ‖𝑄𝑤𝑾𝑓32‖ ∈ [−128,127]

𝒃′𝑠32 = ‖𝑄𝑎′𝑄𝑤𝒃′𝑓32‖ ∈ [−231, 231 − 1]

The affine transformation using 8-bit multipliers and 32-bit accumulates results in

𝒙𝑠32 = 𝑾𝑠8𝒂𝑢8 + 𝒃′𝑠32 ≈ 𝑄𝑤𝑾𝑓32(𝑄𝑎′𝒂𝑓32 + 𝐾𝟏) + 𝑄𝑤𝑄𝑎′ (𝒃𝑓32 −
𝐾

𝑄𝑎
′ 𝑾𝑓32𝟏) =

𝑄𝑎′𝑄𝑤(𝑾𝑓32𝒂𝑓32 + 𝒃32) = 𝑄𝑎′𝑄𝑤𝒙𝑓32

where

𝒙𝑓32 = 𝑾𝑓32𝒂𝑓32 + 𝒃32 ≈
1

𝑄𝑎′𝑄𝑤
𝒙𝑠32 = 𝐷𝒙𝑠32

where 𝐷 =
1

𝑄𝑎′𝑄𝑤
 is the dequantization factor.

When the input signal is already in 𝑢8 format (e.g., RGB images) but a preprocessing step is

required to subtract the mean signal, the above equations can be used where 𝐾 is the mean,

𝒂𝑢8 is the input signal (not pre-processed), and 𝑄𝑎′ = 1.

Researchers often keep the first convolution layer in 𝑓𝑝32 format and do the other

convolutional layers in 𝑖𝑛𝑡8 (see Brief History of Lower Numerical Precision in Deep Learning

section for examples). We observe that using these quantization techniques enables the use of

all convolution layers in 𝑖𝑛𝑡8 with no significant decrease in statistical accuracy.

To recap, to use activations with negative values, the activations are quantized to 𝑠8 format

and then shifted by 𝐾 = 128 to 𝑢8 format. The only additional change is to modify the bias:

𝒃𝑓32
′ = 𝒃𝑓32 −

𝐾

𝑄𝑎
′ 𝑾𝑓32𝟏. For a convolution layer the product 𝑾𝑓32𝟏 is generalized to equal the

sum over all the values of 𝑾𝑓32 along all dimensions except the dimension shared with 𝒃𝑓32.

See Appendix A for details.

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 11

Fused quantization

Fused quantization improves performance by combining dequantization and quantization as

follows so there is no need to convert to 𝑓𝑝32. The activation at layer 𝑙 + 1 is:

𝒂𝑓32
(𝑙+1)

= 𝑔 (𝒙𝑓32
(𝑙)

) = 𝑔 (𝐷(𝑙)𝒙𝑠32
(𝑙)

)

where 𝑔(⋅) is a non-linear activation function. Assuming the ReLU activation function, the

activation can be expressed in 𝑢8 format as

𝒂𝑢8
(𝑙+1)

= ‖𝑄𝑎
(𝑙+1)

𝒂𝑓32
(𝑙+1)

‖ = ‖𝑄𝑎
(𝑙+1)

𝐷(𝑙) max (0, 𝒙𝑠32
(𝑙)

)‖

where the product 𝑄𝑎
(𝑙+1)

𝐷(𝑙) enables computing the next layer’s quantized activation in 𝑢8

format without computing the 𝑓𝑝32 representation.

When 𝑔(⋅) is the ReLU function (as in the equations below) and 𝑄 ≥ 0 (as is always the case for

the quantization factors), the following property holds:

𝑄𝑔 (𝐷(𝑙)𝒙𝑠32
(𝑙)

+ 𝐷(ℎ)𝒙𝑠32
(ℎ)

) = 𝑔 (𝑄𝐷(𝑙)𝒙𝑠32
(𝑙)

+ 𝑄𝐷(ℎ)𝒙𝑠32
(ℎ)

)

This property is useful for models with skip connections such as ResNet where a skip

connection branch may have dependencies on various activations. As an example, and using

the nomenclature by the ResNet-50 author in Caffe’s deploy.prototxt (see Figure 7), the

quantized input activation in layer 𝑟𝑒𝑠2𝑏_𝑏𝑟𝑎𝑛𝑐ℎ2𝑎 (abbreviated as 2𝑏2𝑎 in the equations

below) is

𝒂𝑢8
(2𝑏2𝑎)

= 𝑄𝑎
(2𝑏2𝑎)

𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

)

= 𝑔 (𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

)

where 𝒂𝑢8
(2𝑏2𝑎)

∈ [0, 127] (instead of [0, 255]) because 𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

∈ [−128, 127] is in 𝑠8

format because the product comes before the ReLU function and 𝑄𝑎
(2𝑏2𝑎)

=
127

𝑅𝑎
(2𝑏2𝑎) is the

quantization factor. Following this procedure, it is shown in Appendix B that the activation

𝒂𝑢8
(2𝑐2𝑎)

 depends on 𝒔32
(2𝑎1)

, 𝒔32
(2𝑎2𝑐)

 and 𝒔32
(2𝑏2𝑐)

. Similarly, the activation 𝒂𝑢8
(3𝑐𝑎)

 depends on 𝒔32
(2𝑎1)

,

𝒔32
(2𝑎2𝑐)

, 𝒔32
(2𝑏2𝑐)

 and 𝒔32
(2𝑐2𝑐)

.

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 12

Figure 7: Diagram of the second group of residual blocks in ResNet-50 (and the first branch in the third group) using

the nomenclature by the ResNet-50 author in Caffe’s deploy.prototxt. The layers marked with a blue arrow have

dependencies on 2 or more activations. Image credit to Barukh Ziv, Etay Meiri, Eden Segal.

Batch normalization

A batch normalization (BN) inference layer is not needed as it can be absorbed by its

preceding layer by scaling the weight values and modifying the bias. This technique only

works for inference and is not unique to lower numerical precision. It can be implemented at

the framework level instead of Intel MKL-DNN. BN is usually applied after the affine

transformation 𝒙 = 𝑾𝒂 + 𝒃 and before the activation function (details in the original BN

paper). BN normalizes 𝒙 to be zero mean and unit norm, and then scales and shifts the

normalized vector by and , respectively, which are parameters also learned during training.

During a training iteration, 𝒙 is normalized using the mini-batch statistics. For inference, the

mean 𝐸 and variance 𝑉 of 𝒙 are precomputed using the statistics of the entire training dataset

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 13

or a variant such as a running average of these statistics computed during training. During

inference, the BN output 𝒚 is:

𝒚 = 𝐵𝑁(𝒙) = 𝛾
𝒙 − 𝐸𝟏

𝑉
+ 𝛽𝟏 = 𝛾

𝑾𝒂 + 𝒃 − 𝐸𝟏

𝑉
+ 𝛽𝟏 =

𝛾

𝑉
𝑾𝒂 +

𝛾

𝑉
𝒃 +

𝛽 − 𝛾𝐸

𝑉
𝟏 = 𝑾′𝒂 + 𝒃′

where 𝑾′ =
𝛾

𝑉
𝑾 and 𝒃′ =

𝛾

𝑉
𝒃 +

𝛽−𝛾𝐸

𝑉
𝟏. That is, during inference the BN layer can be replaced

by adjusting weights and bias in the preceding convolutional or fully connected layer.

Frameworks

Intel enabled 8-bit inference in Intel® Distribution of Caffe*. Intel’s DL Inference Engine,

Apache* MXNet*, and TensorFlow* optimizations are expected to be available in Q2 2018. All

these 8-bit optimizations are currently limited to CNN models. RNN models, 16-bit training

enabling, and other frameworks will follow later in 2018.

In the Intel Distribution of Caffe, the model.prototxt file is modified to include the

precomputed scalars as shown in Figure 8. Currently, the Intel Optimization of Caffe can

provide the quantization factor as either a power-of-two or as regular 𝑓𝑝32 value, and can use

either 1 quantization factor per tensor or 1 per channel. Those quantization factors are

computed using a sampling tool built into the Intel Distribution of Caffe.

Figure 8: Quantization factors are added to the model.prototxt file. Image credit to Haihao Shen.

Intel’s Deep Learning Inference Engine is part of Intel's Deep Learning Deployment Toolkit and

Intel® Computer Vision SDK. It’s available on Linux* and Windows* OS and initially supports

models trained from the Caffe, MXNet, and TensorFlow frameworks. The Inference Engine

facilitates deployment of DL solutions by delivering a unified API for various hardware

backends: Intel Xeon processors with Intel AVX-2 and Intel AVX-512, Intel Atom® processors,

Intel® HD Graphics, and Intel® Arria® 10 (Intel® A10) discrete cards at various numerical

https://github.com/bvlc/caffe/tree/intel
https://software.intel.com/en-us/inference-engine-devguide-introduction
https://mxnet.apache.org/
https://www.tensorflow.org/
https://software.intel.com/en-us/inference-engine-devguide-introduction
https://software.seek.intel.com/deep-learning-deployment

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 14

precisions depending on the hardware. The inference engine will support 8-bit inference on

Intel Xeon Scalable processors starting in Q2 2018.

TensorFlow already supports 8-bit inference and various quantization methods. It can

dynamically compute the scale or collect statistics during training or calibration phase to then

assign a quantization factor. TensorFlow’s graph, which includes these scalars, is written to a

file. The graph with the respective scalars is quantized and ran during inference. TensorFlow

supports two methods for quantization. One method is similar to Intel MKL-DNN by setting

the min and max as additive inverses. The other uses arbitrary values for min and max that

need an offset plus scale (not supported in Intel MKL-DNN). See Pete Warden’s blog for more

details but note that the blog is outdated as it does not contain all the ways to quantize in

TensorFlow.

Another tool of TensorFlow is retraining or fine-tuning at lower numerical precision. Fine-

tuning can improve the statistical performance. Given a model that is trained at 𝑓𝑝32, after its

weights are quantized, the model is then fine-tuned with the quantized weights and the

weights are re-quantized after each training iteration.

GemmLowP is a Google library adopted in TensorFlow Lite*. It uses 𝑢8 multiplies, where 𝑓32 =

𝐷 × (𝑢8 − 𝐾), 𝐾 is an 𝑢8 value that maps to 𝑓𝑝32 = 0, and 𝐷 > 0 is the dequantization factor.

The Apache MXNet branch currently does not support 8-bit. However, a branch by one of the

main MXNet contributors supports 8-bit inference. In that branch, there are two methods to

quantize the values: one where the min value is mapped to 0 and the max value to 255 (note

that zero does not map to an exact value); and, another one where the max of the absolute

value is mapped to either -127 or 127 (note that zero maps to zero—similar to Intel MKL-

DNN). The main difference with the presented approached is that the scalars in this MXNet

branch are not precomputed. Rather, they are computed during the actual inference steps

which reduces the benefits of lower numerical precision. In that branch, the scalars for the

activations are computed by multiplying the scalars from the inputs with the scalars from the

weights: activation-scalar = input-scalar * weight-scalar, where input = input-scalar *

quantized-input; weight = weight-scalar * quantized-weight; and activation = activation-scalar

* quantized-activation; input, weights, activations, and scalars are in 𝑓𝑝32 format, quantized-

input and quantized-weights are in 𝑖𝑛𝑡8 format, and quantized-activations are in 𝑖𝑛𝑡32 format

(see details). While min and max of the activations are tracked, the values are only

dequantized when encountering an 𝑓𝑝32 layers (e.g., softmax).

TensorRT quantizes to 𝑠8 format similar to Intel MKL-DNN with the addition of finding a

tighter range by minimizing the KL divergence between the quantized and reference

distributions.

The TPU team claims that TPUs which uses 𝑖𝑛𝑡8 multiplies are being used across a variety of

models including LSTM models. The software stack translates API calls from TensorFlow

graphs into TPU instructions.

https://www.tensorflow.org/performance/quantization
https://petewarden.com/2017/06/22/what-ive-learned-about-neural-network-quantization/
https://www.tensorflow.org/api_guides/python/array_ops#Fake_quantization
https://github.com/google/gemmlowp/blob/master/doc/quantization.md
https://github.com/ZihengJiang/mxnet/tree/quantization
https://github.com/ZihengJiang/mxnet/blob/quantization/src/operator/quantization/quantize-inl.h#L47
https://github.com/ZihengJiang/mxnet/blob/quantization/src/operator/quantization/quantization_utils.h#L126
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
https://arxiv.org/abs/1704.04760
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 15

Caffe2’s docs state that there is “flexibility for future directions such as quantized

computation,” but currently no plans for quantization have been disclosed.

PyTorch has a branch that offers various options to quantize but there is no discussion on

which is better.

Microsoft introduced Project Brainwave* using a custom 8-bit floating point format (ms-𝑓𝑝8)

that runs on Intel® Stratix® 10 FPGAs. The details of this format, quantization techniques, or

framework implementation has not been disclosed. Project Brainwave supports CNTK* and

TensorFlow and plans to support many others by converting models trained in popular

frameworks to an internal graph-based intermediate representation.

Model and graph optimizations

Model optimizations can further improve inference performance. For example, in ResNet, the

stride operation can be moved to an earlier layer without modifying the end result and

reducing the number of operations as shown in Figure 9. This modification applies to both 8-

bit and 32-bits.

Figure 9: The stride 2 shown on the layers on the left blocks can be moved to an earlier layer during inference which

reduces the number of operations and does not modify the result. Illustration courtesy of Eden Segal and Etay Meiri.

Conclusion

https://caffe2.ai/docs/caffe-migration.html
https://github.com/aaron-xichen/pytorch-playground/blob/master/quantize.py
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 16

Lower numerical precision inference and training can improve the computational performance

with minimal or no reduction in statistical accuracy. Intel is enabling 8-bit precision for

inference on the current generation of Intel Xeon Scalable processors. Intel is also enabling 8-

bit precision for inference and 16-bit precision for training on future microarchitectures in

both hardware and software enabling compilers, the Intel MKL-DNN library and popular deep

learning frameworks.

Acknowledgements

A special thanks to the framework optimization team leads, and the Intel Xeon processor

architects and researchers for the useful discussions including Israel Hirsh, Alex Heinecke,

Vadim Pirogov, Frank Zhang, Rinat Rappoport, Barak Hurwitz, Dipankar Das, Dheevatsa

Mudigere, Naveen Mellempudi, Dhiraj Kalamkar, Bob Valentine, AG Ramesh, Nagib Hakim as

well as the wonderful reviewers R. Chase Adams, Nikhil Murthy, Banu Nagasundaram, Todd

Wilson, Alexis Crowell, and Emily Hudson.

About the Authors

Andres Rodriguez, PhD, is a Sr. Principal Engineer working with the Data Center Group (DCG)

and Artificial Intelligence Products Group (AIPG) where he designs AI solutions for Intel’s

customers and provides technical leadership across Intel for AI products. He has 13 years of

experience working in AI. Andres received his PhD from Carnegie Mellon University for his

research in machine learning. He holds over 20 peer reviewed publications in journals and

conferences, and a book chapter on machine learning.

Eden Segal, is a software developer at the Pre-Enabling team where he optimizes Deep

Learning algorithms to find the peak algorithm performance on Intel processors. This

knowledge is used to improve Intel’s performance across the entire deep learning stack from

the hardware, through the libraries and up to the deep learning framework.

Etay Meiri, is a software developer at the Pre-Enabling team where he optimizes Deep

Learning algorithms to find the peak algorithm performance on Intel processors. This

knowledge is used to improve Intel’s performance across the entire deep learning stack from

the hardware, through the libraries and up to the deep learning framework.

Evarist Fomenko, MD in Applied Mathematics, is a software development engineer in Intel

MKL and Intel MKL-DNN where he designs and optimizes library functions, and interacts with

internal and external teams to assist with integration. He has 5 years of experience working on

hardware optimizations at Intel.

Young Jin Kim, PhD, is a Sr. Machine Learning Engineer with Intel’s AI Products Group (AIPG)

where he develops and optimizes deep learning software frameworks for Intel’s hardware

architecture by adopting the state-of-the-art techniques. He has over 10 years of experience

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 17

working in artificial intelligence. Young received his PhD from Georgia Institute of Technology

for his research in deep learning and high-performance computing. He holds over 10 peer

reviewed publications in journals and conferences.

Haihao Shen, MD in Computer Science, is a deep learning engineer in machine learning and

translation team (MLT) with Intel Software and Services Group (SSG). He leads the

development of Intel Distribution of Caffe, including low precision inference and model

optimizations. He has 6 years of experience working on software optimization and verification

at Intel. Prior to joining Intel, he graduated from Shanghai Jiao Tong University.

Barukh Ziv, PhD, is a Senior Software Engineer, working with pre-Enabling group in SSGi,

where he designs efficient implementations of DL applications for future generations of Xeon

processors. He has 2 years of experience working on DL optimizations. Barukh received his Ph.

D. in Technical Sciences from Kaunas University of Technology. He holds over 5 peer reviewed

publications in journals and conferences.

Appendix A – Details on quantization of activations or inputs with negative values

To convince the reader that these same formulas (see the section 8-bit quantization of

activations or inputs with negative values) generalize to convolutional layers, we use the

indices of each tensor entry and work through the steps to show the convolutional output. Let

𝑾𝑓32 ∈ ℜ𝑂×𝐶×Κ×Τ be the weight tensor with 𝑂 kernels or output channels, 𝐶 input channels, Κ

height, and Τ width. The modified bias can be represented as:

𝑏𝑓32
′ [𝑜𝑖] = 𝑏𝑓32[𝑜𝑖] −

𝐾

𝑄𝑎
′ ∑ ∑ ∑ 𝑊𝑓32[𝑜𝑖, 𝑐𝑖 , 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

= 𝑏𝑓32[𝑜𝑖] −
𝐾

𝑄𝑎
′ �̅�𝑓32[𝑜𝑖]

where �̅�𝑓32[𝑜𝑖] = ∑ ∑ ∑ 𝑊𝑓32[𝑜𝑖, 𝑐𝑖, 𝜅𝑖, 𝜏𝑖]𝜏𝑖𝜅𝑖𝑐𝑖
 and 𝑜𝑖, 𝑐𝑖, 𝜅𝑖, and 𝜏𝑖 are the indices for the kernels

or output channels, input channels, kernel height, and kernel width, respectively. The

convolution output can be represented as follows. Note that we assume batch size one (to

omit the batch index for simplicity), the activations have been already zero padded in 𝑓𝑝32

format (or equivalently padded with 𝐾 = 128 in 𝑢8 format), and the convolution stride is one.

𝑥𝑠32[𝑜𝑖, ℎ𝑖, 𝑤𝑖] = 𝑏𝑠32
′ [𝑜𝑖] + ∑ ∑ ∑ 𝑎𝑢8[𝑐𝑖, ℎ𝑖 + 𝜅𝑖, 𝑤𝑖 + 𝜏𝑖]𝑊𝑠8[𝑜𝑖, 𝑐𝑖 , 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

≈ 𝑄𝑎′𝑄𝑤𝑏𝑓32
′ [𝑜𝑖] + ∑ ∑ ∑(𝑄𝑎′𝑎𝑓32[𝑐𝑖, ℎ𝑖 + 𝜅𝑖 , 𝑤𝑖 + 𝜏𝑖] + 𝐾)𝑄𝑤𝑊𝑓32[𝑜𝑖, 𝑐𝑖, 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

= 𝑄𝑎′𝑄𝑤 (𝑏𝑓32[𝑜𝑖] −
𝐾

𝑄𝑎
′ �̅�𝑓32[𝑜𝑖]) + ∑ ∑ ∑ 𝑄𝑤𝑄𝑎′𝑎𝑓32[𝑐𝑖, ℎ𝑖 + 𝜅𝑖, 𝑤𝑖 + 𝜏𝑖]𝑊𝑓32[𝑜𝑖, 𝑐𝑖, 𝜅𝑖 , 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

+ ∑ ∑ ∑ 𝐾𝑄𝑤𝑊𝑠8[𝑜𝑖, 𝑐𝑖 , 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 18

= 𝑄𝑎′𝑄𝑤𝑏𝑓32[𝑜𝑖] − 𝐾𝑄𝑤�̅�𝑓32[𝑜𝑖] + ∑ ∑ ∑ 𝑄𝑤𝑄𝑎′𝑎𝑓32[𝑐𝑖, ℎ𝑖 + 𝜅𝑖, 𝑤𝑖 + 𝜏𝑖]𝑊𝑓32[𝑜𝑖, 𝑐𝑖, 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

+ 𝐾𝑄𝑤�̅�𝑓32[𝑜𝑖]

= 𝑄𝑎′𝑄𝑤 (𝑏𝑓32[𝑜𝑖] + ∑ ∑ ∑ 𝑎𝑓32[𝑐𝑖, ℎ𝑖 + 𝜅𝑖, 𝑤𝑖 + 𝜏𝑖]𝑊𝑓32[𝑜𝑖, 𝑐𝑖 , 𝜅𝑖, 𝜏𝑖]

𝜏𝑖𝜅𝑖𝑐𝑖

)

= 𝑄𝑎′𝑄𝑤𝑥𝑓32[𝑜𝑖, ℎ𝑖, 𝑤𝑖]

Appendix B – Details on fused quantization with skip connections

The activation inputs to the layers marked by the blue arrow in Figure 7 are as follows where

layer 𝑟𝑒𝑠2𝑏_𝑏𝑟𝑎𝑛𝑐ℎ2𝑎 is abbreviated as 2𝑏2𝑎 in the equations below with similar abbreviations

for the other layers.

𝒂𝑢8
(2𝑏2𝑎)

= 𝑄𝑎
(2𝑏2𝑎)

𝒂𝑓32
(2𝑏2𝑎)

≈ 𝑄𝑎
(2𝑏2𝑎)

𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

)

= 𝑔 (𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(2𝑏2𝑎)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

)

𝒂𝑢8
(2𝑐2𝑎)

= 𝑄𝑎
(2𝑐2𝑎)

𝒂𝑓32
(2𝑐2𝑎)

≈ 𝑄𝑎
(2𝑐2𝑎)

𝑔 (𝒂𝑓32
(2𝑏2𝑎)

+ 𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

)

≈ 𝑄𝑎
(2𝑐2𝑎)

𝑔 (𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

)

= 𝑔 (𝑔 (𝑄𝑎
(2𝑐2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(2𝑐2𝑎)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝑄𝑎
(2𝑐2𝑎)

𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

)

𝒂𝑢8
(3𝑎2𝑎)

= 𝑄𝑎
(3𝑎2𝑎)

𝒂𝑓32
(3𝑎2𝑎)

≈ 𝑄𝑎
(3𝑎2𝑎)

𝑔 (𝒂𝑓32
(2𝑐2𝑎)

+ 𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

)

≈ 𝑄𝑎
(3𝑎2𝑎)

𝑔 (𝑔 (𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

) + 𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

)

= 𝑔 (𝑔 (𝑔 (𝑄𝑎
(3𝑎2𝑎)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(3𝑎2𝑎)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝑄𝑎
(3𝑎2𝑎)

𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

)

+ 𝑄𝑎
(3𝑎2𝑎)

𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

)

𝒂𝑢8
(3𝑎1)

= 𝑄𝑎
(3𝑎1)

𝒂𝑓32
(3𝑎1)

≈ 𝑄𝑎
(3𝑎1)

𝑔 (𝒂𝑓32
(2𝑐2𝑎)

+ 𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

)

≈ 𝑄𝑎
(3𝑎1)

𝑔 (𝑔 (𝑔 (𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

) + 𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

)

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as property of others. 19

= 𝑔 (𝑔 (𝑔 (𝑄𝑎
(3𝑎1)

𝐷(2𝑎1)𝒔32
(2𝑎1)

+ 𝑄𝑎
(3𝑎1)

𝐷(2𝑎2𝑐)𝒔32
(2𝑎2𝑐)

) + 𝑄𝑎
(3𝑎1)

𝐷(2𝑏2𝑐)𝒔32
(2𝑏2𝑐)

)

+ 𝑄𝑎
(3𝑎1)

𝐷(2𝑐2𝑐)𝒔32
(2𝑐2𝑐)

)

Notices and Disclaimers:

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You

should visit the referenced web site and confirm whether referenced data are accurate.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates

intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make

these results inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific

computer systems, components, software, operations and functions. Any change to any of those factors may cause

the results to vary. You should consult other information and performance tests to assist you in fully evaluating

your contemplated purchases, including the performance of that product when combined with other products. For

more complete information visit: http://www.intel.com/performance.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors

for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3

instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of

any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this

product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference

Guides for more information regarding the specific instruction sets covered by this notice

Tests document performance of components on a particular test, in specific systems. Differences in hardware,

software, or configuration will affect actual performance. Consult other sources of information to evaluate

performance as you consider your purchase. For more complete information about performance and benchmark

results, visit www.intel.com/benchmarks.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware,

software or service activation. Performance varies depending on system configuration. No computer system can be

absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

The products described may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course

of performance, course of dealing, or usage in trade.

Intel, the Intel logo, Xeon, Xeon Phi and Intel Nervana are trademarks of Intel Corporation or its subsidiaries in the

U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© 2018 Intel Corporation. All rights reserved.

http://www.intel.com/performance
http://www.intel.com/benchmarks

