

Intel® MPI Library for Windows* OS

Developer Reference

1. Introduction
This Developer Reference provides you with the complete reference for the Intel® MPI Library. It is intended to

help an experienced user fully utilize the Intel MPI Library functionality. You can freely redistribute this

document in any desired form.

1.1. Introducing Intel® MPI Library
Intel® MPI Library is a multi-fabric message passing library that implements the Message Passing Interface,

v3.1 (MPI-3.1) specification. It provides a standard library across Intel® platforms that enable adoption of MPI-

3.1 functions as their needs dictate.

Intel® MPI Library enables developers to change or to upgrade processors and interconnects as new

technology becomes available without changes to the software or to the operating environment.

You can get the latest information of Intel® MPI Library at https://software.intel.com/intel-mpi-library.

1.2. What's New
This document reflects the updates for Intel® MPI Library 2019 Update 5 release for Windows* OS:

The following latest changes in this document were made:

Intel MPI Library 2019 Update 5

 Added I_MPI_WAIT_MODE,

I_MPI_THREAD_YIELD,I_MPI_PAUSE_COUNT,I_MPI_THREAD_SLEEP to Other Environment

Variables.

 Added I_MPI_ADJUST_<opname>_LIST, I_MPI_COLL_EXTERNAL to I_MPI_ADJUST Family

Environment Variables.

 Updated Autotuning and Tuning Environment Variables.

Intel MPI Library 2019 Update 4

 Added new Autotuning functionality description and environment variables to Environment Variables

for Autotuning.

 Added new variables I_MPI_TUNING, I_MPI_TUNING_BIN, and I_MPI_TUNING_BIN_DUMP to

Tuning Environment Variables.

 Added arguments for I_MPI_PLATFORM in Other Environment Variables.

 Added new -tune, -hosts-group options to Global Options.

 Added new environment variables I_MPI_JOB_STARTUP_TIMEOUT, I_MPI_HYDRA_NAMESERVER to

Hydra Environment Variables

 Added new transports to I_MPI_SHM in Shared Memory Control.

 Removed -unmask and -gumask options.

Intel MPI Library 2019 Update 3

 Added new option -norpath to Compilation Command Options.

https://software.intel.com/intel-mpi-library

Introduction

2

 Added new options -silent-abort,-nameserver and environment variables

I_MPI_SILENT_ABORT,I_MPI_HYDRA_NAMESERVER to Hydra Environment Variables.

 Added new variables I_MPI_MALLOC,I_MPI_EXTRA_FILE_SYSTEM to Other Environment Variables.

 Updated the -validate option description.

 Added new argument for the -s <spec> option.

 Removed the -whoami option.

 Removed 14 outdated variables from I_MPI_ADJUST Family Environment Variables.

Intel MPI Library 2019 Update 2

 Bug fixes.

Intel MPI Library 2019 Update 1

 Added new variable I_MPI_CBWR to I_MPI_ADJUST Family Environment Variables.

 Restored I_MPI_PLATFORM and I_MPI_PLATFORM_CHECK (Other Environment Variables).

 Adjusted description of the -configfile option in Global Options and -wdir option in Local

Options.

 Added new variable I_MPI_VAR_CHECK_SPELLING to Other Environment Variables.

 Added new variable I_MPI_HYDRA_SERVICE_PORT to Hydra Environment Variables.

 Renamed Process Pinning to Main Thread Pinning for more accuracy.

Intel MPI Library 2019

 Document overhaul to align with supported functionality.

 Removed the I_MPI_HARD_FINALIZE, I_MPI_MIC, I_MPI_ENV_PREFIX_LIST, I_MPI_TUNE*,

I_MPI_ENV_PREFIX_LIST,I_MPI_JOB_FAST_STARTUP,I_MPI_FALLBACK, I_MPI_DAPL*,

I_MPI_LARGE_SCALE_THRESHOLD, I_MPI_OFA*, I_MPI_TCP*, I_MPI_TMI* environment variables.

 Removed the -hostos option from Local Options.

 Added the I_MPI_OFI_LIBRARY_INTERNAL environment variable to OFI-capable Network Fabrics

Control.

 Added an option for setting MPI_UNIVERSE_SIZE to Global Options.

 Added new collective operations to I_MPI_ADJUST Family Environment Variables.

 Added new variables I_MPI_SHM_CELL_EXT_SIZE and I_MPI_SHM_CELL_EXT_NUM_TOTAL to

Shared Memory Control.

 Added impi_info utility.

 Updated mpitune utility.

Intel MPI Library 2018 Update 3

 Added new algorithms for I_MPI_ADJUST_ALLREDUCE to I_MPI_ADJUST Family.

Intel MPI Library 2018 Update 2

 Improved shm performance with collective operations (I_MPI_THREAD_YIELD).

 Bug fixes .

Intel MPI Library 2018 Update 1

 Minor changes.

Intel MPI Library 2018

 Removed support of the Intel® Xeon Phi™ coprocessors (formerly code named Knights Corner)

Intel® MPI Developer Reference for Windows* OS

3

 Changes in environment variables:

o I_MPI_DAPL_TRANSLATION_CACHE is now disabled by default

Intel MPI Library 2017 Update 2

 Added the environment variable I_MPI_HARD_FINALIZE in Other Environment Variables.

Intel MPI Library 2017 Update 1

 Topology-aware collective communication algorithms support (I_MPI_ADJUST Family).

 Added a new algorithm for I_MPI_ADJUST_GATHER and related environment variable

I_MPI_ADJUST_GATHER_SEGMENT (I_MPI_ADJUST Family).

 Added the environment variable I_MPI_PORT_RANGE in Hydra Environment Variables.

Intel MPI Library 2017

 Document layout changes.

1.3. Notational Conventions
The following conventions are used in this document.

This type style Document or product names

This type style Hyperlinks

This type style Commands, arguments, options, file names

THIS_TYPE_STYLE Environment variables

<this type style> Placeholders for actual values

[items] Optional items

{ item | item } Selectable items separated by vertical bar(s)

1.4. Related Information
The following related documents that might be useful to the user:

 Product Web Site

 Intel® MPI Library Support

 Intel® Cluster Tools Products

 Intel® Software Development Products

http://www.intel.com/go/mpi
http://www.intel.com/software/products/support/mpi
http://software.intel.com/en-us/articles/intel-cluster-studio-xe/
http://www.intel.com/software/products

2. Command Reference

2.1. Compilation Commands
The following table lists the available Intel® MPI Library compiler commands with their underlying compilers

and programming languages.

Intel® MPI Library Compiler Wrappers

Compiler Command Underlying Compiler Supported Language(s)

Common Compilers

mpicc.bat cl.exe C

mpicxx.bat cl.exe C++

mpifc.bat ifort.exe Fortran 77/Fortran 95

Microsoft* Visual C++* Compilers

mpicl.bat cl.exe C/C++

Intel® Fortran, C++ Compilers

mpiicc.bat icl.exe C

mpiicpc.bat icl.exe C++

mpiifort.bat ifort.exe Fortran 77/Fortran 95

NOTES:

 Compiler commands are available only in the Intel® MPI Library Software Development Kit (SDK).

 For the supported versions of the listed compilers, refer to the Release Notes.

 Compiler wrapper scripts are located in the <installdir>\intel64\bin directory.

 The environment settings can be established by running the

<installdir>\intel64\bin\mpivars.bat script. If you need to use a specific library

configuration, you can pass one of the following arguments to the mpivars.bat script to switch to

the corresponding configuration: release or debug . The ordinary multi-threaded optimized library

is chosen by default .Alternatively, you can use the I_MPI_LIBRARY_KIND environment variable to

specify a configuration and source the script without arguments.

 Ensure that the corresponding underlying compiler is already in your PATH. If you use the Intel®

Compilers, run the compilervars.bat script from the installation directory to set up the compiler

environment.

 To display mini-help of a compiler command, execute it without any parameters.

Intel® MPI Developer Reference for Windows* OS

5

2.1.1. Compilation Command Options

-profile=<profile_name>

Use this option to specify an MPI profiling library. <profile_name> is the name of the configuration file

(profile) that loads the corresponding profiling library. The profiles are taken from

<installdir>\<arch>\etc.

You can create your own profile as <installdir>\<arch>\etc\<profile_name>.conf. You can define

the following environment variables in a configuration file:

 PROFILE_PRELIB – libraries (and paths) to load before the Intel® MPI Library

 PROFILE_POSTLIB – libraries to load after the Intel® MPI Library

 PROFILE_INCPATHS – C preprocessor arguments for any include files

For example, create a file <installdir>\<arch>\etc\myprof.conf with the following lines:

SET PROFILE_PRELIB=<path_to_myprof>\lib\myprof.lib

SET PROFILE_INCPATHS=-I"<paths_to_myprof>\include"

Use the -profile=myprof option for the relevant compiler wrapper to select this new profile.

-t or -trace

Use the -t or -trace option to link the resulting executable file against the Intel® Trace Collector library.

To use this option, include the installation path of the Intel® Trace Collector in the VT_ROOT environment

variable. Source the itacvars.bat script provided in the Intel® Trace Analyzer and Collector installation

folder.

-check_mpi

Use this option to link the resulting executable file against the Intel® Trace Collector correctness checking

library. The default value is libVTmc.so.

To use this option, include the installation path of the Intel® Trace Collector in the VT_ROOT environment

variable. Source the itacvars.bat script provided in the Intel® Trace Analyzer and Collector installation

folder.

-ilp64

Use this option to enable partial ILP64 support. All integer arguments of the Intel MPI Library are treated as

64-bit values in this case.

-no_ilp64

Use this option to disable the ILP64 support explicitly. This option must be used in conjunction with -i8

option of Intel® Fortran Compiler.

NOTE

If you specify the -i8 option for the Intel® Fortran Compiler, you still have to use the ilp64 option for linkage.

-link_mpi=<arg>

Use this option to always link the specified version of the Intel® MPI Library. See the I_MPI_LINK environment

variable for detailed argument descriptions. This option overrides all other options that select a specific

library, such as -Zi.

Command Reference

6

/Zi, /Z7 or /ZI

Use these options to compile a program in debug mode and link the resulting executable against the

debugging version of the Intel® MPI Library. See I_MPI_DEBUG for information on how to use additional

debugging features with the /Zi, /Z7, /ZI or debug builds.

NOTE

The /ZI option is only valid for C/C++ compiler.

-O

Use this option to enable compiler optimization.

Setting this option triggers a call to the libirc library. Many of those library routines are more highly

optimized for Intel microprocessors than for non-Intel microprocessors.

-echo

Use this option to display everything that the command script does.

-show

Use this option to learn how the underlying compiler is invoked, without actually running it. Use the following

command to see the required compiler flags and options:

> mpiicc -show -c test.c

Use the following command to see the required link flags, options, and libraries:

This option is particularly useful for determining the command line for a complex build procedure that directly

uses the underlying compilers.

-show_env

Use this option to see the environment settings in effect when the underlying compiler is invoked.

-{cc, cxx, fc}=<compiler>

Use this option to select the underlying compiler.

For example, use the following command to select the Intel® C++ Compiler:

> mpiicc -cc=icl.exe -c test.c

For this to work, icl.exe should be in your PATH. Alternatively, you can specify the full path to the compiler.

NOTE

This option works only with the mpiicc.bat and the mpifc.bat commands.

-v

Use this option to print the compiler wrapper script version.

-norpath

Use this option to disable rpath for the compiler wrapper for the Intel® MPI Library.

Intel® MPI Developer Reference for Windows* OS

7

2.2. mpiexec
Launches an MPI job using the Hydra process manager.

Syntax

mpiexec <g-options> <l-options> <executable>

or

mpiexec <g-options> <l-options> <executable1> : <l-options> <executable2>

Arguments

<g-options> Global options that apply to all MPI processes

<l-options> Local options that apply to a single argument set

<executable> <name>.exe or path\name of the executable file

Description

Use the mpiexec utility to run MPI applications using the Hydra process manager.

Use the first short command-line syntax to start all MPI processes of the <executable> with the single set of

arguments. For example, the following command executes test.exe over the specified processes and hosts:

> mpiexec -f <hostfile> -n <# of processes> test.exe

where:

 <# of processes> specifies the number of processes on which to run the test.exe executable

 <hostfile> specifies a list of hosts on which to run the test.exe executable

Use the second long command-line syntax to set different argument sets for different MPI program runs. For

example, the following command executes two different binaries with different argument sets:

> mpiexec -f <hostfile> -env <VAR1> <VAL1> -n 2 prog1.exe : ^

-env <VAR2> <VAL2> -n 2 prog2.exe

NOTE

You need to distinguish global options from local options. In a command-line syntax, place the local options

after the global options.

2.2.1. Global Options
This section describes the global options of the Intel® MPI Library's Hydra process manager. Global options are

applied to all arguments sets in the launch command. Argument sets are separated by a colon ':'.

-tune <filename>

Use this option to specify the file name that contains the tuning data in a binary format.

-usize <usize>

Use this option to set MPI_UNIVERSE_SIZE, which is available as an attribute of the MPI_COMM_WORLD.

<size> Define the universe size

Command Reference

8

SYSTEM Set the size equal to the number of cores passed to mpiexec through the hostfile or the resource

manager.

INFINITE Do not limit the size. This is the default value.

<value> Set the size to a numeric value ≥ 0.

-hostfile <hostfile> or -f <hostfile>

Use this option to specify host names on which to run the application. If a host name is repeated, this name is

used only once.

See also the I_MPI_HYDRA_HOST_FILE environment variable for more details.

NOTE

Use the -perhost, -ppn, -grr, and -rr options to change the process placement on the cluster nodes.

 Use the -perhost, -ppn, and -grr options to place consecutive MPI processes on every host using

the round robin scheduling.

 Use the -rr option to place consecutive MPI processes on different hosts using the round robin

scheduling.

-machinefile <machine file> or -machine <machine file>

Use this option to control process placement through a machine file. To define the total number of processes

to start, use the -n option. For example:

> type machinefile

node0:2

node1:2

node0:1

-hosts-group

Use this option to set node ranges using brackets, commas, and dashes (like in Slurm* Workload Manager).

For more details, see the I_MPI_HYDRA_HOST_FILE environment variable in Hydra Environment Variables.

-silent-abort

Use this option to disable abort warning messages.

For more details, see the I_MPI_SILENT_ABORT environment variable in Hydra Environment Variables.

-nameserver

Use this option to specify the nameserver in the hostname:port format.

For more details, see the I_MPI_HYDRA_NAMESERVER environment variable in Hydra Environment Variables.

-genv <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI processes.

-genvall

Use this option to enable propagation of all environment variables to all MPI processes.

Intel® MPI Developer Reference for Windows* OS

9

-genvnone

Use this option to suppress propagation of any environment variables to any MPI processes.

NOTE

The option does not work for localhost.

-genvexcl <list of env var names>

Use this option to suppress propagation of the listed environment variables to any MPI processes.

-genvlist <list>

Use this option to pass a list of environment variables with their current values. <list> is a comma separated

list of environment variables to be sent to all MPI processes.

-pmi-connect <mode>

Use this option to choose the caching mode of process management interface (PMI) message. Possible values

for <mode> are:

<mode> The caching mode to be used

nocache Do not cache PMI messages.

cache Cache PMI messages on the local pmi_proxy management processes to minimize the number

of PMI requests. Cached information is automatically propagated to child management

processes.

lazy-

cache

cache mode with on-request propagation of the PMI information.

alltoall Information is automatically exchanged between all pmi_proxy before any get request can be

done. This is the default mode.

See the I_MPI_HYDRA_PMI_CONNECT environment variable for more details.

-perhost <# of processes >, -ppn <# of processes >, or -grr <# of processes>

Use this option to place the specified number of consecutive MPI processes on every host in the group using

round robin scheduling. See the I_MPI_PERHOST environment variable for more details.

NOTE

When running under a job scheduler, these options are ignored by default. To be able to control process

placement with these options, disable the I_MPI_JOB_RESPECT_PROCESS_PLACEMENT variable.

-rr

Use this option to place consecutive MPI processes on different hosts using the round robin scheduling. This

option is equivalent to "-perhost 1". See the I_MPI_PERHOST environment variable for more details.

Command Reference

10

-trace-pt2pt

Use this option to collect the information about point-to-point operations using Intel® Trace Analyzer and

Collector. The option requires that your application be linked against the Intel® Trace Collector profiling

library.

-trace-collectives

Use this option to collect the information about collective operations using Intel® Trace Analyzer and

Collector. The option requires that your application be linked against the Intel® Trace Collector profiling

library.

NOTE

Use the -trace-pt2pt and -trace-collectives to reduce the size of the resulting trace file or the

number of message checker reports. These options work with both statically and dynamically linked

applications.

-configfile <filename>

Use this option to specify the file <filename> that contains the command-line options with one executable

per line. Blank lines and lines that start with '#' are ignored. Other options specified in the command line are

treated as global.

You can specify global options in configuration files loaded by default (mpiexec.conf in

<installdir>/intel64/etc, ~/.mpiexec.conf, and mpiexec.conf in the working directory). The

remaining options can be specified in the command line.

-branch-count <num>

Use this option to restrict the number of child management processes launched by the Hydra process

manager, or by each pmi_proxy management process.

See the I_MPI_HYDRA_BRANCH_COUNT environment variable for more details.

-pmi-aggregate or -pmi-noaggregate

Use this option to switch on or off, respectively, the aggregation of the PMI requests. The default value is -

pmi-aggregate, which means the aggregation is enabled by default.

See the I_MPI_HYDRA_PMI_AGGREGATE environment variable for more details.

-nolocal

Use this option to avoid running the <executable> on the host where mpiexec is launched. You can use this

option on clusters that deploy a dedicated master node for starting the MPI jobs and a set of dedicated

compute nodes for running the actual MPI processes.

-hosts <nodelist>

Use this option to specify a particular <nodelist> on which the MPI processes should be run. For example,

the following command runs the executable a.out on the hosts host1 and host2:

> mpiexec -n 2 -ppn 1 -hosts host1,host2 test.exe

NOTE

If <nodelist> contains only one node, this option is interpreted as a local option. See Local Options for

details.

Intel® MPI Developer Reference for Windows* OS

11

-iface <interface>

Use this option to choose the appropriate network interface. For example, if the IP emulation of your

InfiniBand* network is configured to ib0, you can use the following command.

> mpiexec -n 2 -iface ib0 test.exe

See the I_MPI_HYDRA_IFACE environment variable for more details.

-l, -prepend-rank

Use this option to insert the MPI process rank at the beginning of all lines written to the standard output.

-s <spec>

Use this option to direct standard input to the specified MPI processes.

Arguments

<spec> Define MPI process ranks

all Use all processes.

none Do not direct standard output to any processes.

<l>,<m>,<n> Specify an exact list and use processes <l>, <m> and <n> only. The default value is zero.

<k>,<l>-<m>,<n> Specify a range and use processes <k>, <l> through <m>, and <n>.

-noconf

Use this option to disable processing of the mpiexec.hydra configuration files.

-ordered-output

Use this option to avoid intermingling of data output from the MPI processes. This option affects both the

standard output and the standard error streams.

NOTE

When using this option, end the last output line of each process with the end-of-line '\n' character. Otherwise

the application may stop responding.

-path <directory>

Use this option to specify the path to the executable file.

-version or -V

Use this option to display the version of the Intel® MPI Library.

-info

Use this option to display build information of the Intel® MPI Library. When this option is used, the other

command line arguments are ignored.

Command Reference

12

-delegate

Use this option to enable the domain-based authorization with the delegation ability. See User Authorization

for details.

-impersonate

Use this option to enable the limited domain-based authorization. You will not be able to open files on remote

machines or access mapped network drives. See User Authorization for details.

-localhost

Use this option to explicitly specify the local host name for the launching node.

-localroot

Use this option to launch the root process directly from mpiexec if the host is local. You can use this option to

launch GUI applications. The interactive process should be launched before any other process in a job. For

example:

> mpiexec -n 1 -host <host2> -localroot interactive.exe : -n 1 -host <host1>

background.exe

-localonly

Use this option to run an application on the local node only. If you use this option only for the local node, the

Hydra service is not required.

-register

Use this option to encrypt the user name and password to the registry.

-remove

Use this option to delete the encrypted credentials from the registry.

-validate [-host <hostname>]

Validate the encrypted credentials for the current user.

-map <drive:\\host\share>

Use this option to create network mapped drive on nodes before starting executable. Network drive will be

automatically removed after the job completion.

-mapall

Use this option to request creation of all user created network mapped drives on nodes before starting

executable. Network drives will be automatically removed after the job completion.

-logon

Use this option to force the prompt for user credentials.

-noprompt

Use this option to suppress the prompt for user credentials.

Intel® MPI Developer Reference for Windows* OS

13

-port/-p

Use this option to specify the port that the service is listening on. See the I_MPI_HYDRA_SERVICE_PORT

environment variable for more details.

-verbose or -v

Use this option to print debug information from mpiexec, such as:

 Service processes arguments

 Environment variables and arguments passed to start an application

 PMI requests/responses during a job life cycle

See the I_MPI_HYDRA_DEBUG environment variable for more details.

-print-rank-map

Use this option to print out the MPI rank mapping.

-print-all-exitcodes

 Use this option to print the exit codes of all processes.

2.2.2. Local Options
This section describes the local options of the Intel® MPI Library's Hydra process manager. Local options are

applied only to the argument set they are specified in. Argument sets are separated by a colon ':'.

-n <# of processes> or -np <# of processes>

Use this option to set the number of MPI processes to run with the current argument set.

-env <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI processes in

the current argument set.

-envall

Use this option to propagate all environment variables in the current argument set. See the

I_MPI_HYDRA_ENV environment variable for more details.

Command Reference

14

-envnone

Use this option to suppress propagation of any environment variables to the MPI processes in the current

argument set.

NOTE

The option does not work for localhost.

-envexcl <list of env var names>

Use this option to suppress propagation of the listed environment variables to the MPI processes in the

current argument set.

-envlist <list>

Use this option to pass a list of environment variables with their current values. <list> is a comma separated

list of environment variables to be sent to the MPI processes.

-host <nodename>

Use this option to specify a particular <nodename> on which the MPI processes are to be run. For example, the

following command executes test.exe on hosts host1 and host2:

> mpiexec -n 2 -host host1 test.exe : -n 2 -host host2 test.exe

-path <directory>

Use this option to specify the path to the <executable> file to be run in the current argument set.

-wdir <directory>

Use this option to specify the working directory in which the <executable> file runs in the current argument

set.

2.3. cpuinfo
Provides information on processors used in the system.

Syntax

cpuinfo [[-]<options>]

Arguments

<options> Sequence of one-letter options. Each option controls a specific part of the output data.

g General information about single cluster node shows:

 the processor product name

 the number of packages/sockets on the node

 core and threads numbers on the node and within each package

 SMT mode enabling

Intel® MPI Developer Reference for Windows* OS

15

i Logical processors identification table identifies threads, cores, and packages of each logical

processor accordingly.

 Processor - logical processor number.

 Thread Id - unique processor identifier within a core.

 Core Id - unique core identifier within a package.

 Package Id - unique package identifier within a node.

d Node decomposition table shows the node contents. Each entry contains the information on

packages, cores, and logical processors.

 Package Id - physical package identifier.

 Cores Id - list of core identifiers that belong to this package.

 Processors Id - list of processors that belong to this package. This list order directly

corresponds to the core list. A group of processors enclosed in brackets belongs to one

core.

c Cache sharing by logical processors shows information of sizes and processors groups, which

share particular cache level.

 Size - cache size in bytes.

 Processors - a list of processor groups enclosed in the parentheses those share this cache

or no sharing otherwise.

s Microprocessor signature hexadecimal fields (Intel platform notation) show signature values:

 extended family

 extended model

 family

 model

 type

 stepping

f Microprocessor feature flags indicate what features the microprocessor supports. The Intel

platform notation is used.

A Equivalent to gidcsf

gidc Default sequence

? Utility usage info

Description

The cpuinfo utility prints out the processor architecture information that can be used to define suitable

process pinning settings. The output consists of a number of tables. Each table corresponds to one of the

single options listed in the arguments table.

Command Reference

16

NOTE

The architecture information is available on systems based on the Intel® 64 architecture.

The cpuinfo utility is available for both Intel microprocessors and non-Intel microprocessors, but it may

provide only partial information about non-Intel microprocessors.

An example of the cpuinfo output:

> cpuinfo -gdcs

===== Processor composition =====

Processor name : Intel(R) Xeon(R) X5570

Packages(sockets) : 2

Cores : 8

Processors(CPUs) : 8

Cores per package : 4

Threads per core : 1

===== Processor identification =====

Processor Thread Id. Core Id. Package Id.

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 0 2 0

5 0 2 1

6 0 3 0

7 0 3 1

===== Placement on packages =====

Package Id. Core Id. Processors

0 0,1,2,3 0,2,4,6

1 0,1,2,3 1,3,5,7

===== Cache sharing =====

Cache Size Processors

L1 32 KB no sharing

L2 256 KB no sharing

L3 8 MB (0,2,4,6)(1,3,5,7)

===== Processor Signature =====

 _________ ________ ______ ________ _______ __________

| xFamily | xModel | Type | Family | Model | Stepping |

|_________|________|______|________|_______|__________|

| 00 | 1 | 0 | 6 | a | 5 |

|_________|________|______|________|_______|__________|

2.4. impi_info
Provides information on available Intel® MPI Library environment variables.

Syntax

impi_info <options>

Arguments

<options> List of options.

-a | -all Show all IMPI variables.

Intel® MPI Developer Reference for Windows* OS

17

-h | -help Show a help message.

-v | -variable Show all available variables or description of the specified variable.

-c | -category Show all available categories or variables of the specified category.

Description

The impi_info utility provides information on environment variables available in the Intel MPI Library. For

each variable, it prints out the name, the default value, and the value data type. By default, a reduced list of

variables is displayed. Use the -all option to display all available variables with their descriptions.

The example of the impi_info output:

> impi_info

| NAME | DEFAULT VALUE | DATA TYPE |

==

| I_MPI_THREAD_SPLIT | 0 | MPI_INT |

| I_MPI_THREAD_RUNTIME | none | MPI_CHAR |

| I_MPI_THREAD_MAX | -1 | MPI_INT |

| I_MPI_THREAD_ID_KEY | thread_id | MPI_CHAR |

2.5. mpitune
Tunes the Intel® MPI Library parameters for the given MPI application.

Syntax

mpitune <options>

Arguments

<mpitune options> List of options.

-c | --config-file <file> Specify a configuration file to run a tuning session.

-d | --dump-file <file> Specify a file that stores the collected results. The option is

used in the analyze mode.

-m | --mode {collect | analyze} Specify the mpitune mode. The supported modes are

collect and analyze:

 the collect mode runs the tuning process and saves

results in temporary files;

 the analyze mode transforms temporary files into a

JSON-tree, which is used by the Intel® MPI Library, and

generates a table that represents algorithm values in a

human-readable format.

-tree-view {default | simple} Specify the mode to present the json-tree :

 the default mode enables interpolation mechanism;

 the simple mode disables interpolation mechanism.

The resulting tree will contain message sizes used

during the launch.

Command Reference

18

-h | --help Display the help message.

-v | --version Display the product version.

Description

The mpitune utility allows you to automatically adjust Intel MPI Library parameters, such as collective

operation algorithms, to your cluster configuration or application.

The tuner iteratively launches a benchmarking application with different configurations to measure

performance and stores the results of each launch. Based on these results, the tuner generates optimal values

for the parameters that are being tuned.

NOTE

Starting the Intel® MPI Library Update 4 release, mpitune requires two configuration files to be specified.

Configuration files differ in mode and dump-file fields.

All tuner parameters should be specified in two configuration files, passed to the tuner with the --config-

file option. All configuration file examples are available at <installdir>/etc/tune_cfg. Please note

that configuration files for Intel® MPI Benchmarks are already created.

The tuning process consists of two steps: data collection (the collect mode) and data analysis (the analyze

mode):

> mpitune –m analyze –c /path/to/config_file1

> mpitune –m collect –c /path/to/config_file2

The tuning results are presented as a JSON tree and can be added to the library with the I_MPI_TUNING

environment variable.

MPI options support

The following MPI options are available within the utility:

<MPI options> List of options.

-f <filename> Specify a file containing host names.

-hosts <hostlist> Specify a comma-separated list of hosts.

-np <value> Specify the number of processes.

-ppn <n> Specify the number of processes per node.

For example:

> mpitune –np 2 –ppn 1 –hosts HOST1,HOST2 –m analyze –c /path/to/config_file1

> mpitune –np 2 –ppn 1 –hosts HOST1,HOST2 –m collect –c /path/to/config_file2

See Also

Developer Guide, section Analysis and Tuning > MPI Tuning.

Intel® MPI Developer Reference for Windows* OS

19

2.5.1. mpitune Configuration Options

Application Options

-app

Sets a template for the command line to be launched to gather tuning results. The command line can contain

variables declared as @<var_name>@. The variables are defined further on using other options.

For example:

-app: mpirun -np @np@ -ppn @ppn@ IMB-MPI1 -msglog 0:@logmax@ -npmin @np@ @func@

NOTE

The application must produce output (in stdout or file or any other destination) that can be parsed by the

tuner to pick the value to be tuned and other variables. See the -app-regex and -app-regex-legend

options below for details.

-app-regex

Sets a regular expression to be evaluated to extract the required values from the application output. Use

regular expression groups to assign the values to variables. Variables and groups associations are set using the

-app-regex-legend option.

For example, to extract the #bytes and t_max[usec] values from this output:

#bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]

0 1000 0.06 0.06 0.06

1 1000 0.10 0.10 0.10

use the following configuration:

-app-regex: (\d+)\s+\d+\s+[\d.+-]+\s+([\d.+-]+)

-app-regex-legend

Specifies a list of variables extracted from the regular expression. Variables correspond to the regular

expression groups. The tuner uses the last variable as the performance indicator of the launch. Use the -

tree-opt to set the optimization direction of the indicator.

For example:

-app-regex-legend: size,time

-iter

Sets the number of iterations for each launch with a given set of parameters. Higher numbers of iterations

increase accuracy of results.

For example:

-iter: 3

Search Space Options

Use these options to define a search space, which is a set of combinations of Intel® MPI Library parameters

that the target application uses for launches. The library parameters are generally configured using run-time

options or environment variables.

Command Reference

20

NOTE

A search space line can be very long, so line breaking is available for all the search space options. Use a

backslash to break a line (see examples below).

-search

Defines the search space by defining variables declared with the -app option and by setting environment

variables for the application launch.

For example:

-search: func=BCAST, \

 np=4,ppn={1,4},{,I_MPI_ADJUST_BCAST=[1,3]},logmax=5

The -app variables are defined as <var1>=<value1>[,<var2>=<value2>][,...]. The following syntax is

available for setting values:

Syntax Description Examples

<value> Single value. Can be a

number or a string.

4

{<value1>[,<value2>][,...]} List of independent

values.

{2,4}

[<start>,<end>[,<step>]] Linear range of values

with the default step of 1.

[1,8,2] – expands to

{1,2,4,6,8}

(<start>,<end>[,<step>]) Exponential range with

the default step of 2.

(1,16) – expands to

{1,2,4,8,16}

To set environment variables for the command launch, use the following syntax:

Syntax Description Examples

<variable>=<value> Single variable definition. Any type of the

syntax above can be used for the value: single

values, lists or ranges.

I_MPI_ADJUST_BCAST=3

I_MPI_ADJUST_BCAST=[1,3]

{,<variable>=<value>} A special case of the syntax above. When set

this way, the variable default value is first used

in an application launch.

{,I_MPI_ADJUST_BCAST=[1,3]}

<prefix>{<value1>

[,<value2>][,...]}

Multi-value variable definition.

Prefix is a common part for all the values,

commonly the variable name.

A value can be a singular value or a

combination of values in the format:

<prefix>(<value1>[,<value2>][,...]).

Prefix is optional and a value in the

combination is a string, which can utilize the

list and range syntax above.

I_MPI_ADJUST_ALLREDUCE{=1,

=2,(=9,_KN_RADIX=(2,8))}

See below for a more complete

example.

Intel® MPI Developer Reference for Windows* OS

21

The following example shows a more complex option definition:

I_MPI_ADJUST_BCAST{=1,=2,(=9,_KN_RADIX=(2,8)),(={10,11},_SHM_KN_RADIX=[2,8,2])}

This directive consecutively runs the target application with the following environment variables set:

I_MPI_ADJUST_BCAST=1

I_MPI_ADJUST_BCAST=2

I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=2

I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=4

I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=8

I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=2

I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=4

I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=6

I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=8

I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=2

I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=4

I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=6

I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=8

-search-excl

Excludes certain combinations from the search space. The syntax is identical to that of the -search option.

For example:

-search-excl: I_MPI_ADJUST_BCAST={1,2}

or

-search-excl: func=BCAST,np=4,ppn=1,I_MPI_ADJUST_BCAST=1

-search-only

Defines a subset of the search space to search in. Only this subset is used for application launches. The syntax

is identical to the -search option.

This option is useful for the second and subsequent tuning sessions on a subset of parameters from the

original session, without creating a separate configuration file.

Output Options

Use these options to customize the output. The tuner can produce output of two types:

 table – useful for verifying the tuning results, contains values from all the application launches

 tree – an internal output format, contains the optimal values

-table

Defines the layout for the resulting output table. The option value is a list of variables declared with the -app

option, which are joined in colon-separated groups. Each group denotes a specific part of the table.

For example:

-table: func:ppn,np:size:*:time

The last group variables (time) are rendered in table cells. The second last group variables are used for

building table columns (*, denotes all the variables not present the other variable groups). The third last group

variables are used for building table rows (size). All other variable groups are used to make up the table label.

Groups containing several variables are complex groups and produce output based on all the value

combinations.

For example, the option definition above can produce the following output:

Command Reference

22

Label: "func=BCAST,ppn=2,np=2"

Legend:

set 0: ""

set 1: "I_MPI_ADJUST_BCAST=1"

set 2: "I_MPI_ADJUST_BCAST=2"

set 3: "I_MPI_ADJUST_BCAST=3"

Table:

 | set 0 | set 1 | set 2 | set 3

-----------|-------------|-------------|-------------|------------

"size=0" | "time=0.10" | "time=0.08" | "time=0.11" | "time=0.10"

 | "time=0.12" | "time=0.09" | "time=0.12" | "time=0.11"

 | | "time=0.10" | |

-----------|-------------|-------------|-------------|------------

"size=4" | "time=1.12" | "time=1.11" | "time=1.94" | "time=1.72"

 | "time=1.35" | "time=1.18" | "time=1.97" | "time=1.81"

 | "time=1.38" | "time=1.23" | "time=2.11" | "time=1.89"

-----------|-------------|-------------|-------------|------------

"size=8" | "time=1.21" | "time=1.10" | "time=1.92" | "time=1.72"

 | "time=1.36" | "time=1.16" | "time=2.01" | "time=1.75"

 | "time=1.37" | "time=1.17" | "time=2.24" | "time=1.87"

-----------|-------------|-------------|-------------|------------

...

Cells include only unique values from all the launches for the given parameter combination. The number of

launches is set with the -iter option.

-table-ignore

Specifies the variables to ignore from the -table option definition.

-tree

Defines the layout for the resulting tree of optimal values of the parameter that is tuned (for example,

collective operation algorithms). The tree is rendered as a JSON structure. The option value is a list of

variables declared with the -app option, which are joined in colon-separated groups. Each group denotes a

specific part of the tree. Groups containing several variables are complex groups and produce output based on

all the value combinations.

Example:

-tree: func:ppn,np:size:*:time

The first two groups (func and ppn,np) make up the first two levels of the tree. The last group variables

(time) are used as the optimization criteria and are not rendered. The second last group contains variables to

be optimized (*, denotes all the variables not present the other variable groups). The third last group variables

are used to split the search space into intervals based on the optimal values of parameters from the next

group (for example, I_MPI_ADJUST_<operation> algorithm numbers).

For example, the option definition above can produce the following output:

{

 "func=BCAST":

 {

 "ppn=1,np=4":

 {

 "size=0":

 {"I_MPI_ADJUST_BCAST": "3"},

 "size=64":

Intel® MPI Developer Reference for Windows* OS

23

 {"I_MPI_ADJUST_BCAST": "1"},

 "size=512":

 {"I_MPI_ADJUST_BCAST": "2"},

 ...

 }

 }

}

This tree representation is an intermediate format of tuning results and is ultimately converted to a string that

the library can understand. The conversion script is specified with -tree-postprocess option.

-tree-ignore

Specifies the variables to ignore from the -tree option definition.

-tree-intervals

Specifies the maximum number of intervals where the optimal parameter value is applied. If not specified, any

number of intervals is allowed.

-tree-tolerance

Specifies the tolerance level. Non-zero tolerance (for example, 0.03 for 3%) joins resulting intervals with the

performance indicator value varying by the specified tolerance.

-tree-postprocess

Specifies an executable to convert the resulting JSON tree to a custom format.

-tree-opt

Specifies the optimization direction. The available values are max (default) and min.

-tree-file

Specifies a log file where the tuning results are saved.

3. Environment Variable Reference

3.1. Compilation Environment Variables

I_MPI_{CC,CXX,FC,F77,F90}_PROFILE

Specify the default profiling library.

Syntax

I_MPI_CC_PROFILE=<profile_name>

I_MPI_CXX_PROFILE=<profile_name>

I_MPI_FC_PROFILE=<profile_name>

I_MPI_F77_PROFILE=<profile_name>

I_MPI_F90_PROFILE=<profile_name>

Arguments

<profile_name> Specify a default profiling library.

Description

Set this environment variable to select a specific MPI profiling library to be used by default. This has the same

effect as using -profile=<profile_name> as an argument for mpiicc or another Intel® MPI Library

compiler wrapper.

I_MPI_{CC,CXX,FC,F77,F90}

Set the path/name of the underlying compiler to be used.

Syntax

I_MPI_CC=<compiler>

I_MPI_CXX=<compiler>

I_MPI_FC=<compiler>

I_MPI_F77=<compiler>

I_MPI_F90=<compiler>

Arguments

<compiler> Specify the full path/name of compiler to be used.

Description

Set this environment variable to select a specific compiler to be used. Specify the full path to the compiler if it

is not located in the search path.

NOTE

Some compilers may require additional command line options.

Intel® MPI Developer Reference for Windows* OS

25

I_MPI_ROOT

Set the Intel® MPI Library installation directory path.

Syntax

I_MPI_ROOT=<path>

Arguments

<path> Specify the installation directory of the Intel® MPI Library

Description

Set this environment variable to specify the installation directory of the Intel® MPI Library.

VT_ROOT

Set Intel® Trace Collector installation directory path.

Syntax

VT_ROOT=<path>

Arguments

<path> Specify the installation directory of the Intel® Trace Collector

Description

Set this environment variable to specify the installation directory of the Intel® Trace Collector.

I_MPI_COMPILER_CONFIG_DIR

Set the location of the compiler configuration files.

Syntax

I_MPI_COMPILER_CONFIG_DIR=<path>

Arguments

<path> Specify the location of the compiler configuration files. The default value is

<installdir>\<arch>\etc

Description

Set this environment variable to change the default location of the compiler configuration files.

I_MPI_LINK

Select a specific version of the Intel® MPI Library for linking.

Syntax

I_MPI_LINK=<arg>

Arguments

<arg> Version of library

Environment Variable Reference

26

opt Multi-threaded optimized library. This is the default value

dbg Multi-threaded debug library

Description

Set this variable to always link against the specified version of the Intel® MPI Library.

3.2. Hydra Environment Variables

I_MPI_HYDRA_HOST_FILE

Set the host file to run the application.

Syntax

I_MPI_HYDRA_HOST_FILE=<arg>

Arguments

<arg> String parameter

<hostsfile> The full or relative path to the host file

Description

Set this environment variable to specify the hosts file.

I_MPI_HYDRA_HOSTS_GROUP

Set node ranges using brackets, commas, and dashes.

Syntax

I_MPI_HYDRA_HOSTS_GROUP=<arg>

Argument

<arg> Set a node range.

Description

Set this variable to be able to set node ranges using brackets, commas, and dashes (like in Slurm* Workload

Manager). For example:

I_MPI_HYDRA_HOSTS_GROUP=”hostA[01-05],hostB,hostC[01-05,07,09-11]”

You can set node ranges with the -hosts-group option.

I_MPI_HYDRA_DEBUG

Print out the debug information.

Syntax

I_MPI_HYDRA_DEBUG=<arg>

Arguments

Intel® MPI Developer Reference for Windows* OS

27

<arg> Binary indicator

enable | yes | on | 1 Turn on the debug output

disable | no | off | 0 Turn off the debug output. This is the default value

Description

Set this environment variable to enable the debug mode.

I_MPI_HYDRA_ENV

Control the environment propagation.

Syntax

I_MPI_HYDRA_ENV=<arg>

Arguments

<arg> String parameter

all Pass all environment to all MPI processes

Description

Set this environment variable to control the environment propagation to the MPI processes. By default, the

entire launching node environment is passed to the MPI processes. Setting this variable also overwrites

environment variables set by the remote shell.

I_MPI_JOB_TIMEOUT

Set the timeout period for mpiexec.

Syntax

I_MPI_JOB_TIMEOUT=<timeout>

I_MPI_MPIEXEC_TIMEOUT=<timeout>

Arguments

<timeout> Define mpiexec timeout period in seconds

<n> ≥ 0 The value of the timeout period. The default timeout value is zero, which means no timeout.

Description

Set this environment variable to make mpiexec terminate the job in <timeout> seconds after its launch. The

<timeout> value should be greater than zero. Otherwise the environment variable setting is ignored.

NOTE

Set this environment variable in the shell environment before executing the mpiexec command. Setting the

variable through the -genv and -env options has no effect.

Environment Variable Reference

28

I_MPI_JOB_STARTUP_TIMEOUT

Set the mpiexec job startup timeout.

Syntax

I_MPI_JOB_STARTUP_TIMEOUT=<timeout>

Arguments

<timeout> Define mpiexec startup timeout period in seconds

<n> ≥ 0 The value of the timeout period. The default timeout value is zero, which means no timeout.

Description

Set this environment variable to make mpiexec terminate the job in <timeout> seconds if some processes

are not launched. The <timeout> value should be greater than zero.

I_MPI_HYDRA_BOOTSTRAP

Set the bootstrap server.

Syntax

I_MPI_HYDRA_BOOTSTRAP=<arg>

Arguments

<arg> String parameter

service Use hydra service agent

Description

Set this environment variable to specify the bootstrap server.

NOTE

Set the I_MPI_HYDRA_BOOTSTRAP environment variable in the shell environment before executing the

mpiexec command. Do not use the -env option to set the <arg> value. This option is used for passing

environment variables to the MPI process environment.

I_MPI_HYDRA_BOOTSTRAP_EXEC

Set the executable file to be used as a bootstrap server.

Syntax

I_MPI_HYDRA_BOOTSTRAP_EXEC=<arg>

Arguments

<arg> String parameter

<executable> The name of the executable file

Description

Set this environment variable to specify the executable file to be used as a bootstrap server.

Intel® MPI Developer Reference for Windows* OS

29

NOTE

I_MPI_HYDRA_PMI_CONNECT

Define the processing method for PMI messages.

Syntax

I_MPI_HYDRA_PMI_CONNECT=<value>

Arguments

<value> The algorithm to be used

nocache Do not cache PMI messages

cache Cache PMI messages on the local pmi_proxy management processes to minimize the number

of PMI requests. Cached information is automatically propagated to child management

processes.

lazy-

cache

cache mode with on-demand propagation.

alltoall Information is automatically exchanged between all pmi_proxy before any get request can be

done. This is the default value.

Description

Use this environment variable to select the PMI messages processing method.

I_MPI_PERHOST

Define the default behavior for the -perhost option of the mpiexec command.

Syntax

I_MPI_PERHOST=<value>

Arguments

<value> Define a value used for -perhost by default

integer > 0 Exact value for the option

all All logical CPUs on the node

allcores All cores (physical CPUs) on the node. This is the default value.

Description

Set this environment variable to define the default behavior for the -perhost option. Unless specified

explicitly, the -perhost option is implied with the value set in I_MPI_PERHOST.

NOTE

When running under a job scheduler, this environment variable is ignored by default. To be able to control

process placement with I_MPI_PERHOST, disable the I_MPI_JOB_RESPECT_PROCESS_PLACEMENT variable.

Environment Variable Reference

30

I_MPI_HYDRA_BRANCH_COUNT

Set the hierarchical branch count.

Syntax

I_MPI_HYDRA_BRANCH_COUNT =<num>

Arguments

<num> Number

<n> >=

0

 The default value is -1 if less than 128 nodes are used. This value also means that there is no

hierarchical structure

 The default value is 32 if more than 127 nodes are used

Description

Set this environment variable to restrict the number of child management processes launched by the

mpiexec operation or by each pmi_proxy management process.

I_MPI_HYDRA_PMI_AGGREGATE

Turn on/off aggregation of the PMI messages.

Syntax

I_MPI_HYDRA_PMI_AGGREGATE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable PMI message aggregation. This is the default value.

disable | no | off | 0 Disable PMI message aggregation.

Description

Set this environment variable to enable/disable aggregation of PMI messages.

I_MPI_HYDRA_IFACE

Set the network interface.

Syntax

I_MPI_HYDRA_IFACE=<arg>

Arguments

<arg> String parameter

<network interface> The network interface configured in your system

Description

Set this environment variable to specify the network interface to use. For example, use "-iface ib0", if the IP

emulation of your InfiniBand* network is configured on ib0.

Intel® MPI Developer Reference for Windows* OS

31

I_MPI_TMPDIR

Specify a temporary directory.

Syntax

I_MPI_TMPDIR=<arg>

Arguments

<arg> String parameter

<path> Temporary directory. The default value is /tmp

Description

Set this environment variable to specify a directory for temporary files.

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT

Specify whether to use the process-per-node placement provided by the job scheduler, or set explicitly.

Syntax

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=<arg>

Arguments

<value> Binary indicator

enable | yes | on | 1 Use the process placement provided by job scheduler. This is the default value

disable | no | off | 0 Do not use the process placement provided by job scheduler

Description

If the variable is set, the Hydra process manager uses the process placement provided by job scheduler

(default). In this case the -ppn option and its equivalents are ignored. If you disable the variable, the Hydra

process manager uses the process placement set with -ppn or its equivalents.

I_MPI_PORT_RANGE

Specify a range of allowed port numbers.

Syntax

I_MPI_PORT_RANGE=<range>

Arguments

<range> String parameter

<min>:<max> Allowed port range

Description

Set this environment variable to specify a range of the allowed port numbers for the Intel® MPI Library.

Environment Variable Reference

32

I_MPI_HYDRA_SERVICE_PORT

Set the port on which the hydra service is installed.

Syntax

I_MPI_HYDRA_SERVICE_PORT=<int>

Arguments

<int> Define the port number

Description

Set this environment variable to inform mpiexec, on which port the hydra service is installed. Use this

 variable if you want to run a number of services on different ports.

To be able to run a number of hydra services, follow these steps:

1. Start cmd and run hydra services:

> start hydra_service -p <port1> -d

> start hydra_service -p <port2> -d

2. Set the environment variable to choose the service to be used:

set I_MPI_HYDRA_SERVICE_PORT=”port2”

3. Run mpiexec as usual

I_MPI_SILENT_ABORT

Control abort warning messages.

Syntax

I_MPI_SILENT_ABORT=<arg>

Argument

<arg> Binary indicator

enable | yes | on | 1 Do not print abort warning message

disable | no | off | 0 Print abort warning message. This is the default value

Description

Set this variable to disable printing of abort warning messages. The messages are printed in case of the

MPI_Abort call.

You can also disable printing of these messages with the -silent-abort option.

I_MPI_HYDRA_NAMESERVER

Specify the nameserver.

Syntax

Intel® MPI Developer Reference for Windows* OS

33

I_MPI_HYDRA_NAMESERVER=<arg>

Argument

<arg> String parameter

<hostname>:<port> Set the hostname and the port.

Description

Set this variable to specify the nameserver for your MPI application in the following format:

I_MPI_HYDRA_NAMESERVER = hostname:port

You can set the nameserver with the -nameserver option.

3.3. I_MPI_ADJUST Family Environment Variables

I_MPI_ADJUST_<opname>

Control collective operation algorithm selection.

Syntax

I_MPI_ADJUST_<opname>="<algid>[:<conditions>][;<algid>:<conditions>[...]]"

Arguments

<algid> Algorithm identifier

>= 0 The default value of zero selects the optimized default settings

<conditions> A comma separated list of conditions. An empty list selects all message sizes and

process combinations

<l> Messages of size <l>

<l>-<m> Messages of size from <l> to <m>, inclusive

<l>@<p> Messages of size <l> and number of processes <p>

<l>-<m>@<p>-<q> Messages of size from <l> to <m> and number of processes from <p> to <q>, inclusive

Description

Set this environment variable to select the desired algorithm(s) for the collective operation <opname> under

particular conditions. Each collective operation has its own environment variable and algorithms.

Environment Variables, Collective Operations, and Algorithms

Environment Variable Collective Operation Algorithms

Environment Variable Reference

34

I_MPI_ADJUST_ALLGATHER MPI_Allgather 1. Recursive doubling

2. Bruck's

3. Ring

4. Topology aware

Gatherv + Bcast

5. Knomial

I_MPI_ADJUST_ALLGATHERV MPI_Allgatherv 1. Recursive doubling

2. Bruck's

3. Ring

4. Topology aware

Gatherv + Bcast

I_MPI_ADJUST_ALLREDUCE MPI_Allreduce 1. Recursive doubling

2. Rabenseifner's

3. Reduce + Bcast

4. Topology aware

Reduce + Bcast

5. Binomial gather +

scatter

6. Topology aware

binominal gather +

scatter

7. Shumilin's ring

8. Ring

9. Knomial

10. Topology aware SHM-

based flat

11. Topology aware SHM-

based Knomial

12. Topology aware SHM-

based Knary

I_MPI_ADJUST_ALLTOALL MPI_Alltoall 1. Bruck's

2. Isend/Irecv + waitall

3. Pair wise exchange

4. Plum's

I_MPI_ADJUST_ALLTOALLV MPI_Alltoallv 1. Isend/Irecv + waitall

2. Plum's

Intel® MPI Developer Reference for Windows* OS

35

I_MPI_ADJUST_ALLTOALLW MPI_Alltoallw Isend/Irecv + waitall

I_MPI_ADJUST_BARRIER MPI_Barrier 1. Dissemination

2. Recursive doubling

3. Topology aware

dissemination

4. Topology aware

recursive doubling

5. Binominal gather +

scatter

6. Topology aware

binominal gather +

scatter

7. Topology aware SHM-

based flat

8. Topology aware SHM-

based Knomial

9. Topology aware SHM-

based Knary

I_MPI_ADJUST_BCAST MPI_Bcast 1. Binomial

2. Recursive doubling

3. Ring

4. Topology aware

binomial

5. Topology aware

recursive doubling

6. Topology aware ring

7. Shumilin's

8. Knomial

9. Topology aware SHM-

based flat

10. Topology aware SHM-

based Knomial

11. Topology aware SHM-

based Knary

12. NUMA aware SHM-

based (SSE4.2)

13. NUMA aware SHM-

based (AVX2)

14. NUMA aware SHM-

Environment Variable Reference

36

based (AVX512)

I_MPI_ADJUST_EXSCAN MPI_Exscan 1. Partial results

gathering

2. Partial results

gathering regarding

layout of processes

I_MPI_ADJUST_GATHER MPI_Gather 1. Binomial

2. Topology aware

binomial

3. Shumilin's

4. Binomial with

segmentation

I_MPI_ADJUST_GATHERV MPI_Gatherv 1. Linear

2. Topology aware linear

3. Knomial

I_MPI_ADJUST_REDUCE_SCATTER MPI_Reduce_scatter 1. Recursive halving

2. Pair wise exchange

3. Recursive doubling

4. Reduce + Scatterv

5. Topology aware

Reduce + Scatterv

I_MPI_ADJUST_REDUCE MPI_Reduce 1. Shumilin's

2. Binomial

3. Topology aware

Shumilin's

4. Topology aware

binomial

5. Rabenseifner's

6. Topology aware

Rabenseifner's

7. Knomial

8. Topology aware SHM-

based flat

9. Topology aware SHM-

based Knomial

10. Topology aware SHM-

Intel® MPI Developer Reference for Windows* OS

37

based Knary

11. Topology aware SHM-

based binomial

I_MPI_ADJUST_SCAN MPI_Scan 1. Partial results

gathering

2. Topology aware

partial results

gathering

I_MPI_ADJUST_SCATTER MPI_Scatter 1. Binomial

2. Topology aware

binomial

3. Shumilin's

I_MPI_ADJUST_SCATTERV MPI_Scatterv 1. Linear

2. Topology aware linear

I_MPI_ADJUST_IALLGATHER MPI_Iallgather 1. Recursive doubling

2. Bruck’s

3. Ring

I_MPI_ADJUST_IALLGATHERV MPI_Iallgatherv 1. Recursive doubling

2. Bruck’s

3. Ring

I_MPI_ADJUST_IALLREDUCE MPI_Iallreduce 1. Recursive doubling

2. Rabenseifner’s

3. Reduce + Bcast

4. Ring (patarasuk)

5. Knomial

6. Binomial

7. Reduce scatter

allgather

8. SMP

9. Nreduce

I_MPI_ADJUST_IALLTOALL MPI_Ialltoall 1. Bruck’s

2. Isend/Irecv + Waitall

3. Pairwise exchange

Environment Variable Reference

38

I_MPI_ADJUST_IALLTOALLV MPI_Ialltoallv Isend/Irecv + Waitall

I_MPI_ADJUST_IALLTOALLW MPI_Ialltoallw Isend/Irecv + Waitall

I_MPI_ADJUST_IBARRIER MPI_Ibarrier Dissemination

I_MPI_ADJUST_IBCAST MPI_Ibcast 1. Binomial

2. Recursive doubling

3. Ring

4. Knomial

5. SMP

6. Tree knominal

7. Tree kary

I_MPI_ADJUST_IEXSCAN MPI_Iexscan 1. Recursive doubling

2. SMP

I_MPI_ADJUST_IGATHER MPI_Igather 1. Binomial

2. Knomial

I_MPI_ADJUST_IGATHERV MPI_Igatherv 1. Linear

2. Linear ssend

I_MPI_ADJUST_IREDUCE_SCATTER MPI_Ireduce_scatter 1. Recursive halving

2. Pairwise

3. Recursive doubling

I_MPI_ADJUST_IREDUCE MPI_Ireduce 1. Rabenseifner’s

2. Binomial

3. Knomial

I_MPI_ADJUST_ISCAN MPI_Iscan 1. Recursive Doubling

2. SMP

I_MPI_ADJUST_ISCATTER MPI_Iscatter 1. Binomial

2. Knomial

I_MPI_ADJUST_ISCATTERV MPI_Iscatterv Linear

The message size calculation rules for the collective operations are described in the table. In the following

table, "n/a" means that the corresponding interval <l>-<m> should be omitted.

Intel® MPI Developer Reference for Windows* OS

39

Message Collective Functions

Collective Function Message Size Formula

MPI_Allgather recv_count*recv_type_size

MPI_Allgatherv total_recv_count*recv_type_size

MPI_Allreduce count*type_size

MPI_Alltoall send_count*send_type_size

MPI_Alltoallv n/a

MPI_Alltoallw n/a

MPI_Barrier n/a

MPI_Bcast count*type_size

MPI_Exscan count*type_size

MPI_Gather recv_count*recv_type_size if MPI_IN_PLACE is used,

otherwise send_count*send_type_size

MPI_Gatherv n/a

MPI_Reduce_scatter total_recv_count*type_size

MPI_Reduce count*type_size

MPI_Scan count*type_size

MPI_Scatter send_count*send_type_size if MPI_IN_PLACE is used,

otherwise recv_count*recv_type_size

MPI_Scatterv n/a

Examples

Use the following settings to select the second algorithm for MPI_Reduce operation:

I_MPI_ADJUST_REDUCE=2

Use the following settings to define the algorithms for MPI_Reduce_scatter operation:

I_MPI_ADJUST_REDUCE_SCATTER="4:0-100,5001-10000;1:101-3200,2:3201-5000;3"

In this case. algorithm 4 is used for the message sizes between 0 and 100 bytes and from 5001 and 10000

bytes, algorithm 1 is used for the message sizes between 101 and 3200 bytes, algorithm 2 is used for the

message sizes between 3201 and 5000 bytes, and algorithm 3 is used for all other messages.

I_MPI_ADJUST_<opname>_LIST

Syntax

I_MPI_ADJUST_<opname>_LIST=<algid1>[-<algid2>][,<algid3>][,<algid4>-<algid5>]

Environment Variable Reference

40

Description

Set this environment variable to specify the comma-separated list of ranges. The list has to be ordered.

I_MPI_COLL_INTRANODE

Syntax

I_MPI_COLL_INTRANODE=<mode>

Arguments

<mode> Intranode collectives type

pt2pt Use only point-to-point communication-based collectives

shm Enables shared memory collectives. This is the default value

Description

Set this environment variable to switch intranode communication type for collective operations. If there is

large set of communicators, you can switch off the SHM-collectives to avoid memory overconsumption.

I_MPI_COLL_INTRANODE_SHM_THRESHOLD

Syntax

I_MPI_COLL_INTRANODE_SHM_THRESHOLD=<nbytes>

Arguments

<nbytes> Define the maximal data block size processed by shared memory collectives.

> 0 Use the specified size. The default value is 16384 bytes.

Description

Set this environment variable to define the size of shared memory area available for each rank for data

placement. Messages greater than this value will not be processed by SHM-based collective operation, but will

be processed by point-to-point based collective operation. The value must be a multiple of 4096.

I_MPI_COLL_EXTERNAL

Syntax

I_MPI_COLL_EXTERNAL=<arg>

Arguments

<arg> Binary indicator.

enable | yes | on | 1 Enable the external collective operations functionality.

disable | no | off | 0 Disable the external collective operations functionality. This is the default value.

Description

Intel® MPI Developer Reference for Windows* OS

41

Set this environment variable to enable external collective operations. The mechanism allows to enable

HCOLL. The functionality enables the following collective operations: I_MPI_ADJUST_ALLREDUCE=24,

I_MPI_ADJUST_BARRIER=11, I_MPI_ADJUST_BCAST=16, I_MPI_ADJUST_REDUCE=13,

I_MPI_ADJUST_ALLGATHER=6, I_MPI_ADJUST_ALLTOALL=5, I_MPI_ADJUST_ALLTOALLV=5.

I_MPI_CBWR

Control reproducibility of floating-point operations results across different platforms, networks, and

topologies in case of the same number of processes.

Syntax

I_MPI_CBWR=<arg>

Arguments

<arg> CBWR

compatibility

mode

Description

0 None Do not use CBWR in a library-wide mode. CNR-safe communicators may be created

with MPI_Comm_dup_with_info explicitly. This is the default value.

1 Weak mode Disable topology aware collectives. The result of a collective operation does not

depend on the rank placement. The mode guarantees results reproducibility across

different runs on the same cluster (independent of the rank placement).

2 Strict mode Disable topology aware collectives, ignore CPU architecture, and interconnect

during algorithm selection. The mode guarantees results reproducibility across

different runs on different clusters (independent of the rank placement, CPU

architecture, and interconnection)

Description

Conditional Numerical Reproducibility (CNR) provides controls for obtaining reproducible floating-point

results on collectives operations. With this feature, Intel MPI collective operations are designed to return the

same floating-point results from run to run in case of the same number of MPI ranks.

Control this feature with the I_MPI_CBWR environment variable in a library-wide manner, where all collectives

on all communicators are guaranteed to have reproducible results. To control the floating-point operations

reproducibility in a more precise and per-communicator way, pass the {“I_MPI_CBWR”, “yes”} key-value pair to

the MPI_Comm_dup_with_info call.

NOTE

Setting the I_MPI_CBWR in a library-wide mode using the environment variable leads to performance penalty.

CNR-safe communicators created using MPI_Comm_dup_with_info always work in the strict mode. For

example:

MPI_Info hint;

MPI_Comm cbwr_safe_world, cbwr_safe_copy;

MPI_Info_create(&hint);

Environment Variable Reference

42

MPI_Info_set(hint, “I_MPI_CBWR”, “yes”);

MPI_Comm_dup_with_info(MPI_COMM_WORLD, hint, & cbwr_safe_world);

MPI_Comm_dup(cbwr_safe_world, & cbwr_safe_copy);

In the example above, both cbwr_safe_world and cbwr_safe_copy are CNR-safe. Use cbwr_safe_world and its

duplicates to get reproducible results for critical operations.

Note that MPI_COMM_WORLD itself may be used for performance-critical operations without reproducibility

limitations.

3.4. Tuning Environment Variables

3.4.1. Tuning Environment Variables

I_MPI_TUNING_MODE

Select the tuning method.

Syntax

I_MPI_TUNING_MODE=<arg>

Argument

<arg> Description

none Disable tuning modes. This is the default value.

auto Enable autotuner.

auto:application Enable autotuner with application focused strategy (alias for auto).

auto:cluster Enable autotuner without application specific logic. This is typically performed with

the help of benchmarks (for example, IMB-MPI1) and proxy applications.

Description

Set this environment variable to enable the autotuner functionality and set the autotuner strategy.

I_MPI_TUNING_BIN

Specify the path to tuning settings in a binary format.

Syntax

I_MPI_TUNING_BIN=<path>

Argument

<path> A path to a binary file with tuning settings. By default, Intel® MPI Library uses the binary tuning file

located at <$I_MPI_ROOT/intel64/etc>.

Description

Set this environment variable to load tuning settings in a binary format.

Intel® MPI Developer Reference for Windows* OS

43

I_MPI_TUNING_BIN_DUMP

Specify the file for storing tuning settings in a binary format.

Syntax

I_MPI_TUNING_BIN_DUMP=<filename>

Argument

<filename> A file name of a binary that stores tuning settings. By default, the path is not specified.

Description

Set this environment variable to store tuning settings in a binary format.

I_MPI_TUNING

Load tuning settings in a JSON format.

Syntax

I_MPI_TUNING=<path>

Argument

<path> A path to a JSON file with tuning settings.

Description

Set this environment variable to load tuning settings in a JSON format.

NOTE

The tuning settings in the JSON format are produced by the mpitune utility.

By default, Intel® MPI library loads tuning settings in a binary format. If it is not possible, Intel MPI Library loads

the tuning file in a JSON format specified through the I_MPI_TUNING environment variable.

Thus, to enable JSON tuning, turn off the default binary tuning: I_MPI_BIN="". If it is not possible to load

tuning settings from a JSON file and in a binary format, the default tuning values are used.

You do not need to turn off binary or JSON tuning settings if you use I_MPI_ADJUST family environment

variables. The algorithms specified with I_MPI_ADJUST environment variables always have priority over

binary and JSON tuning settings.

See Also

Autotuning

Environment Variables for Autotuning

3.4.2. Autotuning

Autotuning

Tuning greatly depends on specification of the platform it is performed on. We carefully verify the tuning

parameters on a limited set of platforms and provide the most effective ways for their tuning. A full list of the

platforms supported with the I_MPI_TUNING_MODE environment variable is available in Tuning Environment

Environment Variable Reference

44

Variables. The variable has no effect on the rest of platfroms. For such platforms, use I_MPI_TUNING_AUTO

Family Environment Variables directly to find the best settings.

The autotuner functionality allows to automatically find the best algorithms for collective operations . The

autotuner search space can be modified by I_MPI_ADJUST_<opname>_LIST variables from I_MPI_ADJUST

Family Environment Variables.

The collectives that are currently available for autotuning: MPI_Allreduce, MPI_Bcast, MPI_Barrier,

MPI_Reduce, MPI_Gather, MPI_Scatter, MPI_Alltoall, MPI_Allgatherv,

MPI_Reduce_scatter_block, MPI_Scan, MPI_Exscan.

To get started with the tuner, follow these steps:

1. Launch the application with the autotuner enabled and specify the dump file, which stores results:

I_MPI_TUNING_MODE=auto

I_MPI_TUNING_BIN_DUMP=<tuning_results.dat>

2. Launch the application with the tuning results generated at the previous step:

I_MPI_TUNING_BIN=<tuning_results.dat>

3. Or use the -tune Hydra option.

4. If you experience performance issues, see Environment Variables for Autotuning.

For example:

1.

> export I_MPI_TUNING_MODE=auto

> export I_MPI_TUNING_AUTO_SYNC=1

> export I_MPI_TUNING_AUTO_ITER_NUM=5

> export I_MPI_TUNING_BIN_DUMP=./tuning_results.dat

> mpirun -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

3.

> export I_MPI_TUNING_BIN=./tuning_results.dat

> mpirun -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE

To tune collectives on a communicator identified with the help of Application Performance Snapshot (APS),

execute the following variable at step 1: I_MPI_TUNING_AUTO_COMM_LIST=comm_id_1, … , comm_id_n.

See Also

Environment Variables for Autotuning

I_MPI_TUNING_AUTO Family Environment Variables

I_MPI_TUNING_AUTO_STORAGE_SIZE

Define size of the per-communicator tuning storage.

Intel® MPI Developer Reference for Windows* OS

45

Syntax

I_MPI_TUNING_AUTO_STORAGE_SIZE=<size>

Argument

<size> Specify size of the communicator tuning storage. The default size of the storage is 512 Kb.

Description

Set this environment variable to change the size of the communicator tuning storage.

I_MPI_TUNING_AUTO_ITER_NUM

Specify the number of autotuner iterations.

Syntax

I_MPI_TUNING_AUTO_ITER_NUM=<number>

Argument

<number> Define the number of iterations. By default, it is 1.

Description

Set this environment variable to specify the number of autotuner iterations. The greater iteration number

produces more accurate results.

NOTE

To check if all possible algorithms are iterated, make sure that the total number of collective invocations for a

particular message size in a target application is at least equal the value of I_MPI_TUNING_AUTO_ITER_NUM

multiplied by the number of algorithms.

I_MPI_TUNING_AUTO_WARMUP_ITER_NUM

Specify the number of warmup autotuner iterations.

Syntax

I_MPI_TUNING_AUTO_WARMUP_ITER_NUM=<number>

Argument

<number> Define the number of iterations. By default, it is 1.

Description

Set this environment variable to specify the number of autotuner warmup iterations. Warmup iterations do not

impact autotuner decisions and allow to skip additional iterations, such as infrastructure preparation.

I_MPI_TUNING_AUTO_SYNC

Enable the internal barrier on every iteration of the autotuner.

Syntax

I_MPI_TUNING_AUTO_SYNC=<arg>

Argument

Environment Variable Reference

46

<arg> Binary indicator

enable | yes | on | 1 Align the autotuner with the IMB measurement approach.

disable | no | off |

0

Do not use the barrier on every iteration of the autotuner. This is the default

value.

Description

Set this environment variable to control the IMB measurement logic. Setting this variable to 1 may lead to

overhead due to an additional MPI_Barrier call.

I_MPI_TUNING_AUTO_COMM_LIST

Control the scope of autotuning.

Syntax

I_MPI_TUNING_AUTO_COMM_LIST=<comm_id_1, ..., comm_id_n>

Argument

<comm_id_n, ...> Specify communicators to be tuned.

Description

Set this environment variable to specify communicators to be tuned using their unique id. By default, the

variable is not specified. In this case, all communicators in the application are involved into the tuning process.

NOTE

To get the list of communicators available for tuning, use the Application Performance Snapshot (APS) tool,

which supports per communicator profiling starting the 2019 Update 4 release.

I_MPI_TUNING_AUTO_COMM_DEFAULT

Mark all communicators with the default value.

Syntax

I_MPI_TUNING_AUTO_COMM_DEFAULT=<arg>

Argument

<arg> Binary indicator

enable | yes | on | 1 Mark communicators.

disable | no | off | 0 Do not mark communicators. This is the default value.

Description

Set this environment variable to mark all communicators in an application with the default value. In this case,

all communicators will have the identical default comm_id equal to -1.

https://software.intel.com/sites/products/snapshots/application-snapshot/

Intel® MPI Developer Reference for Windows* OS

47

I_MPI_TUNING_AUTO_COMM_USER

Enable communicator marking with a user value.

Syntax

I_MPI_TUNING_AUTO_COMM_USER=<arg>

Argument

<arg> Binary indicator

enable | yes | on | 1 Enable marking of communicators.

disable | no | off | 0 Disable marking of communicators. This is the default value.

Description

Set this environment variable to enable communicator marking with a user value. To mark a communicator in

your application, use the MPI_Info object for this communicator that contains a record with the comm_id key.

The key must belong the 0...UINT64_MAX range .

I_MPI_TUNING_AUTO_ITER_POLICY

Control the iteration policy logic.

Syntax

I_MPI_TUNING_AUTO_ITER_POLICY=<arg>

Argument

<arg> Binary indicator

enable | yes | on

| 1

Reduce the number of iterations with a message size increase after 64Kb (by half).

This is the default value.

disable | no |

off | 0

Use the I_MPI_TUNING_AUTO_ITER_NUM value. This value affects warmup

iterations.

Description

Set this environment variable to control the autotuning iteration policy logic.

I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD

Control the message size limit for the I_MPI_TUNING_AUTO_ITER_POLICY environment variable.

Syntax

I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD=<arg>

Argument

<arg> Define the value. By default, it is 64KB.

Description

Environment Variable Reference

48

Set this environment variable to control the message size limit for the autotuning iteration policy logic

(I_MPI_TUNING_AUTO_ITER_POLICY).

I_MPI_TUNING_AUTO_POLICY

Choose the best algorithm identification strategy.

Syntax

I_MPI_TUNING_AUTO_POLICY=<arg>

Argument

<arg> Description

max Choose the best algorithm based on a maximum time value. This is the default value.

min Choose the best algorithm based on a minimum time value.

avg Choose the best algorithm based on an average time value.

Description

Set this environment variable to control the autotuning strategy and choose the best algorithm based on the

time value across ranks involved into the tuning process.

3.5. Main Thread Pinning
Use this feature to pin a particular MPI thread to a corresponding CPU within a node and avoid undesired

thread migration. This feature is available on operating systems that provide the necessary kernel interfaces.

3.5.1. Processor Identification
The following schemes are used to identify logical processors in a system:

 System-defined logical enumeration

 Topological enumeration based on three-level hierarchical identification through triplets

(package/socket, core, thread)

The number of a logical CPU is defined as the corresponding position of this CPU bit in the kernel affinity bit-

mask. Use the cpuinfo utility, provided with your Intel MPI Library installation to find out the logical CPU

numbers.

The three-level hierarchical identification uses triplets that provide information about processor location and

their order. The triplets are hierarchically ordered (package, core, and thread).

See the example for one possible processor numbering where there are two sockets, four cores (two cores per

socket), and eight logical processors (two processors per core).

NOTE

Logical and topological enumerations are not the same.

Logical Enumeration

0 4 1 5 2 6 3 7

Intel® MPI Developer Reference for Windows* OS

49

Hierarchical Levels

Socket 0 0 0 0 1 1 1 1

Core 0 0 1 1 0 0 1 1

Thread 0 1 0 1 0 1 0 1

Topological Enumeration

0 1 2 3 4 5 6 7

Use the cpuinfo utility to identify the correspondence between the logical and topological enumerations. See

Processor Information Utility for more details.

3.5.2. Default Settings
If you do not specify values for any main thread pinning environment variables, the default settings below are

used. For details about these settings, see Environment Variables and Interoperability with OpenMP API.

 I_MPI_PIN=on

 I_MPI_PIN_MODE=pm

 I_MPI_PIN_RESPECT_CPUSET=on

 I_MPI_PIN_RESPECT_HCA=on

 I_MPI_PIN_CELL=unit

 I_MPI_PIN_DOMAIN=auto:compact

 I_MPI_PIN_ORDER=compact

3.5.3. Environment Variables for Main Thread Pinning

I_MPI_PIN

Turn on/off main thread pinning.

Syntax

I_MPI_PIN=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable main thread pinning. This is the default value

disable | no | off | 0 Disable main thread pinning

Description

Set this environment variable to control the main thread pinning feature of the Intel® MPI Library.

Environment Variable Reference

50

I_MPI_PIN_PROCESSOR_LIST

(I_MPI_PIN_PROCS)

Define a processor subset and the mapping rules for MPI main threads within this subset.

Syntax

I_MPI_PIN_PROCESSOR_LIST=<value>

The environment variable value has the following syntax forms:

1. <proclist>

2. [<procset>][:[grain= <grain>][,shift= <shift>][,preoffset= <preoffset>

][,postoffset= <postoffset>]

3. [<procset>][:map= <map>]

The following paragraphs provide detail descriptions for the values of these syntax forms.

NOTE

The postoffset keyword has offset alias.

NOTE

The second form of the pinning procedure has three steps:

1. Cyclic shift of the source processor list on preoffset*grain value.

2. Round robin shift of the list derived on the first step on shift*grain value.

3. Cyclic shift of the list derived on the second step on the postoffset*grain value.

NOTE

The grain, shift, preoffset, and postoffset parameters have a unified definition style.

This environment variable is available for both Intel® and non-Intel microprocessors, but it may perform

additional optimizations for Intel microprocessors than it performs for non-Intel microprocessors.

Syntax

I_MPI_PIN_PROCESSOR_LIST=<proclist>

Arguments

<proclist> A comma-separated list of logical processor numbers and/or ranges of processors. The main

thread with the i-th rank is pinned to the i-th processor in the list. The number should not

exceed the amount of processors on a node.

<l> Processor with logical number <l> .

<l>-<m> Range of processors with logical numbers from <l> to <m> .

<k>,<l>-<m> Processors <k> , as well as <l> through <m> .

Syntax

I_MPI_PIN_PROCESSOR_LIST=[<procset>][:[grain=<grain>][,shift=<shift>][,preoffset=<p

reoffset>][,postoffset=<postoffset>]

Intel® MPI Developer Reference for Windows* OS

51

Arguments

<procset> Specify a processor subset based on the topological numeration. The default value is

allcores.

all All logical processors. Specify this subset to define the number of CPUs on a node.

allcores All cores (physical CPUs). Specify this subset to define the number of cores on a node. This is

the default value.

If Intel® Hyper-Threading Technology is disabled, allcores equals to all.

allsocks All packages/sockets. Specify this subset to define the number of sockets on a node.

<grain> Specify the pinning granularity cell for a defined <procset> . The minimal <grain> value

is a single element of the <procset> . The maximal <grain> value is the number of

<procset> elements in a socket. The <grain> value must be a multiple of the

<procset> value. Otherwise, the minimal <grain> value is assumed. The default value is

the minimal <grain> value.

<shift> Specify the granularity of the round robin scheduling shift of the cells for the <procset> .

<shift> is measured in the defined <grain> units. The <shift> value must be positive

integer. Otherwise, no shift is performed. The default value is no shift, which is equal to 1

normal increment.

<preoffset> Specify the cyclic shift of the processor subset <procset> defined before the round robin

shifting on the <preoffset> value. The value is measured in the defined <grain> units.

The <preoffset> value must be non-negative integer. Otherwise, no shift is performed.

The default value is no shift.

<postoffset> Specify the cyclic shift of the processor subset <procset> derived after round robin

shifting on the <postoffset> value. The value is measured in the defined <grain> units.

The <postoffset> value must be non-negative integer. Otherwise no shift is performed.

The default value is no shift.

The following table displays the values for <grain>, <shift>, <preoffset>, and <postoffset> options:

<n> Specify an explicit value of the corresponding parameters. <n> is non-negative integer.

fine Specify the minimal value of the corresponding parameter.

core Specify the parameter value equal to the amount of the corresponding parameter units

contained in one core.

cache1 Specify the parameter value equal to the amount of the corresponding parameter units that

share an L1 cache.

cache2 Specify the parameter value equal to the amount of the corresponding parameter units that

share an L2 cache.

cache3 Specify the parameter value equal to the amount of the corresponding parameter units that

Environment Variable Reference

52

share an L3 cache.

cache The largest value among cache1, cache2, and cache3.

socket |

sock

Specify the parameter value equal to the amount of the corresponding parameter units

contained in one physical package/socket.

half | mid Specify the parameter value equal to socket/2.

third Specify the parameter value equal to socket/3.

quarter Specify the parameter value equal to socket/4.

octavo Specify the parameter value equal to socket/8.

Syntax

I_MPI_PIN_PROCESSOR_LIST=[<procset>][:map=<map>]

Arguments

<map> The mapping pattern used for main thread placement.

bunch The main threads are mapped as close as possible on the sockets.

scatter The main threads are mapped as remotely as possible so as not to share common resources: FSB,

caches, and core.

spread The main threads are mapped consecutively with the possibility not to share common resources.

Description

Set the I_MPI_PIN_PROCESSOR_LIST environment variable to define the processor placement. To avoid

conflicts with different shell versions, the environment variable value may need to be enclosed in quotes.

NOTE

This environment variable is valid only if I_MPI_PIN is enabled.

The I_MPI_PIN_PROCESSOR_LIST environment variable has the following different syntax variants:

 Explicit processor list. This comma-separated list is defined in terms of logical processor numbers. The

relative node rank of a main thread is an index to the processor list such that the i-th main thread is

pinned on i-th list member. This permits the definition of any main thread placement on the CPUs.

For example, main thread mapping for I_MPI_PIN_PROCESSOR_LIST=p0,p1,p2,...,pn is as

follows:

Rank on a node 0 1 2 ... n-1 N

Logical CPU p0 p1 p2 ... pn-1 Pn

 grain/shift/offset mapping. This method provides cyclic shift of a defined grain along the

processor list with steps equal to shift*grain and a single shift on offset*grain at the end. This

shifting action is repeated shift times.

Intel® MPI Developer Reference for Windows* OS

53

For example: grain = 2 logical processors, shift = 3 grains, offset = 0.

Legend:

gray - MPI main thread grains

A) red - processor grains chosen on the 1st pass

B) cyan - processor grains chosen on the 2nd pass

C) green - processor grains chosen on the final 3rd pass

D) Final map table ordered by MPI ranks

A)

0 1 2 3 ... 2n-2 2n-1

0 1 2 3 4 5 6 7 8 9 10 11 ... 6n-6 6n-5 6n-4 6n-3 6n-2 6n-1

B)

0 1 2n 2n+1 2 3 2n+2

2n+3

 ... 2n-2 2n-1 4n-2 4n-1

0 1 2 3 4 5 6 7 8 9 10 11 ... 6n-6 6n-5 6n-4 6n-3 6n-2 6n-1

C)

0 1 2n 2n+1 4n 4n+1 2 3 2n+2

2n+3

4n+2

4n+3

... 2n-2 2n-1 4n-2 4n-1 6n-2 6n-1

0 1 2 3 4 5 6 7 8 9 10 11 ... 6n-6 6n-5 6n-4 6n-3 6n-2 6n-1

D)

0 1 2 3 … 2n-2 2n-1 2n

2n+1

2n+2

2n+3

… 4n-2 4n-1 4n 4n+1 4n+2

4n+3

… 6n-2

6n-1

0 1 6 7 … 6n-6 6n-5 2 3 8 9 … 6n-4 6n-3 4 5 10 11 … 6n-2

6n-1

 Predefined mapping scenario. In this case popular main thread pinning schemes are defined as

keywords selectable at runtime. There are two such scenarios: bunch and scatter.

In the bunch scenario the main threads are mapped proportionally to sockets as closely as possible. This

mapping makes sense for partial processor loading. In this case the number of main threads is less than the

number of processors.

In the scatter scenario the main threads are mapped as remotely as possible so as not to share common

resources: FSB, caches, and cores.

In the example, there are two sockets, four cores per socket, one logical CPU per core, and two cores per

shared cache.

Legend:

gray - MPI main threads

cy an - 1st socket processors

Environment Variable Reference

54

gre en - 2nd socket processors

Same color defines a processor pair sharing a cache

0 1 2 3 4

0 1 2 3 4 5 6 7

bunch scenario for 5 processes

0 4 2 6 1 5 3 7

0 1 2 3 4 5 6 7

scatter scenario for full loading

Examples

To pin the main thread to CPU0 and CPU3 on each node globally, use the following command:

 > mpiexec -genv I_MPI_PIN_PROCESSOR_LIST=0,3 -n <# of main

threads>

 <executable>

To pin the main thread to different CPUs on each node individually (CPU0 and CPU3 on host1 and CPU0,

CPU1 and CPU3 on host2), use the following command:

 > mpiexec -host host1 -env I_MPI_PIN_PROCESSOR_LIST=0,3 -n <# of

main threads> <executable> :^

 -host host2 -env I_MPI_PIN_PROCESSOR_LIST=1,2,3 -n <# of main

threads> <executable>

To print extra debug information about the main thread pinning, use the following command:

 > mpiexec -genv I_MPI_DEBUG=4 -m -host host1 -env

I_MPI_PIN_PROCESSOR_LIST=0,3 -n <# of main threads> <executable> :^

 -host host2 -env I_MPI_PIN_PROCESSOR_LIST=1,2,3 -n <# of main

threads> <executable>

3.5.4. Interoperability with OpenMP* API

I_MPI_PIN_DOMAIN

Intel® MPI Library provides an additional environment variable to control main thread pinning for hybrid

MPI/OpenMP* applications. This environment variable is used to define a number of non-overlapping subsets

(domains) of logical processors on a node, and a set of rules on how MPI processes are bound to these

domains by the following formula: one MPI process per one domain. See the picture below.

Intel® MPI Developer Reference for Windows* OS

55

Figure 1 Domain Example

Each MPI process can create a number of children threads for running within the corresponding domain. The

process threads can freely migrate from one logical processor to another within the particular domain.

If the I_MPI_PIN_DOMAIN environment variable is defined, then the I_MPI_PIN_PROCESSOR_LIST

environment variable setting is ignored.

If the I_MPI_PIN_DOMAIN environment variable is not defined, then MPI main threads are pinned according

to the current value of the I_MPI_PIN_PROCESSOR_LIST environment variable.

The I_MPI_PIN_DOMAIN environment variable has the following syntax forms:

 Domain description through multi-core terms <mc-shape>

 Domain description through domain size and domain member layout <size>[:<layout>]

 Explicit domain description through bit mask <masklist>

The following tables describe these syntax forms.

Multi-core Shape

I_MPI_PIN_DOMAIN=<mc-shape>

<mc-

shape>

Define domains through multi-core terms.

core Each domain consists of the logical processors that share a particular core. The number of

domains on a node is equal to the number of cores on the node.

socket |

sock

Each domain consists of the logical processors that share a particular socket. The number of

domains on a node is equal to the number of sockets on the node. This is the recommended

value.

numa Each domain consists of the logical processors that share a particular NUMA node. The number

of domains on a machine is equal to the number of NUMA nodes on the machine.

node All logical processors on a node are arranged into a single domain.

cache1 Logical processors that share a particular level 1 cache are arranged into a single domain.

Environment Variable Reference

56

cache2 Logical processors that share a particular level 2 cache are arranged into a single domain.

cache3 Logical processors that share a particular level 3 cache are arranged into a single domain.

cache The largest domain among cache1, cache2, and cache3 is selected.

NOTE

If Cluster on Die is disabled on a machine, the number of NUMA nodes equals to the number of sockets. In

this case, pinning for I_MPI_PIN_DOMAIN = numa is equivalent to pinning for I_MPI_PIN_DOMAIN =

socket.

Explicit Shape

I_MPI_PIN_DOMAIN=<size>[:<layout>]

<size> Define a number of logical processors in each domain (domain size)

omp The domain size is equal to the OMP_NUM_THREADS environment variable value. If the

OMP_NUM_THREADS environment variable is not set, each node is treated as a separate domain.

auto The domain size is defined by the formula size=#cpu/#proc, where #cpu is the number of logical

processors on a node, and #proc is the number of the MPI processes started on a node

<n> The domain size is defined by a positive decimal number <n>

<layout> Ordering of domain members. The default value is compact

platform Domain members are ordered according to their BIOS numbering (platform-depended

numbering)

compact Domain members are located as close to each other as possible in terms of common resources

(cores, caches, sockets, and so on). This is the default value

scatter Domain members are located as far away from each other as possible in terms of common

resources (cores, caches, sockets, and so on)

Explicit Domain Mask

I_MPI_PIN_DOMAIN=<masklist>

<masklist> Define domains through the comma separated list of hexadecimal numbers (domain masks)

[m1,...,mn] For <masklist>, each mi is a hexadecimail bit mask defining an individual domain. The

following rule is used: the ith logical processor is included into the domain if the

corresponding mi value is set to 1. All remaining processors are put into a separate domain.

BIOS numbering is used.

NOTE

To ensure that your configuration in <masklist> is parsed correctly, use square brackets to

Intel® MPI Developer Reference for Windows* OS

57

enclose the domains specified by the <masklist>. For example:

I_MPI_PIN_DOMAIN=[55,aa]

NOTE

These options are available for both Intel® and non-Intel microprocessors, but they may perform additional

optimizations for Intel microprocessors than they perform for non-Intel microprocessors.

NOTE

To pin OpenMP* processes or threads inside the domain, the corresponding OpenMP feature (for example, the

KMP_AFFINITY environment variable for Intel® compilers) should be used.

See the following model of a symmetric multiprocessing (SMP) node in the examples:

Figure 2 Model of a Node

The figure above represents the SMP node model with a total of 8 cores on 2 sockets. Intel® Hyper-Threading

Technology is disabled. Core pairs of the same color share the L2 cache.

Environment Variable Reference

58

Figure 3 mpiexec -n 2 -env I_MPI_PIN_DOMAIN socket test.exe

In Figure 3, two domains are defined according to the number of sockets. Process rank 0 can migrate on all

cores on the 0-th socket. Process rank 1 can migrate on all cores on the first socket.

Figure 4 mpiexec -n 4 -env I_MPI_PIN_DOMAIN cache2 test.exe

In Figure 4, four domains are defined according to the amount of common L2 caches. Process rank 0 runs on

cores {0,4} that share an L2 cache. Process rank 1 runs on cores {1,5} that share an L2 cache as well, and so on.

Intel® MPI Developer Reference for Windows* OS

59

Figure 5 mpiexec -n 2 -env I_MPI_PIN_DOMAIN 4:platform test.exe

In Figure 5, two domains with size=4 are defined. The first domain contains cores {0,1,2,3}, and the second

domain contains cores {4,5,6,7}. Domain members (cores) have consecutive numbering as defined by the

platform option.

Figure 6 mpiexec -n 4 -env I_MPI_PIN_DOMAIN auto:scatter test.exe

Environment Variable Reference

60

In Figure 6, domain size=2 (defined by the number of CPUs=8 / number of processes=4), scatter layout.

Four domains {0,2}, {1,3}, {4,6}, {5,7} are defined. Domain members do not share any common resources.

Figure 7 set OMP_NUM_THREADS=2

mpiexec -n 4 -env I_MPI_PIN_DOMAIN omp:platform test.exe

In Figure 7, domain size=2 (defined by OMP_NUM_THREADS=2), platform layout. Four domains {0,1}, {2,3},

{4,5}, {6,7} are defined. Domain members (cores) have consecutive numbering.

Figure 8 mpiexec -n 2 -env I_MPI_PIN_DOMAIN [55,aa] test.exe

In Figure 8 (the example for I_MPI_PIN_DOMAIN=<masklist>), the first domain is defined by the 55 mask. It

contains all cores with even numbers {0,2,4,6}. The second domain is defined by the AA mask. It contains all

cores with odd numbers {1,3,5,7}.

I_MPI_PIN_ORDER

Set this environment variable to define the mapping order for MPI processes to domains as specified by the

I_MPI_PIN_DOMAIN environment variable.

Syntax

Intel® MPI Developer Reference for Windows* OS

61

I_MPI_PIN_ORDER=<order>

Arguments

<order> Specify the ranking order

range The domains are ordered according to the processor's BIOS numbering. This is a platform-

dependent numbering

scatter The domains are ordered so that adjacent domains have minimal sharing of common resources

compact The domains are ordered so that adjacent domains share common resources as much as possible.

This is the default value

spread The domains are ordered consecutively with the possibility not to share common resources

bunch The processes are mapped proportionally to sockets and the domains are ordered as close as

possible on the sockets

Description

The optimal setting for this environment variable is application-specific. If adjacent MPI processes prefer to

share common resources, such as cores, caches, sockets, FSB, use the compact or bunch values. Otherwise,

use the scatter or spread values. Use the range value as needed. For detail information and examples

about these values, see the Arguments table and the Example section of I_MPI_PIN_ORDER in this topic.

The options scatter, compact, spread and bunch are available for both Intel® and non-Intel

microprocessors, but they may perform additional optimizations for Intel microprocessors than they perform

for non-Intel microprocessors.

Examples

For the following configuration:

 Two socket nodes with four cores and a shared L2 cache for corresponding core pairs.

 4 MPI processes you want to run on the node using the settings below.

Compact order:

I_MPI_PIN_DOMAIN=2

I_MPI_PIN_ORDER=compact

Environment Variable Reference

62

Figure 9 Compact Order Example

Scatter order:

I_MPI_PIN_DOMAIN=2

I_MPI_PIN_ORDER=scatter

Figure 10 Scatter Order Example

Spread order:

I_MPI_PIN_DOMAIN=2

I_MPI_PIN_ORDER=spread

Figure 11 Spread Order Example

Bunch order:

Intel® MPI Developer Reference for Windows* OS

63

I_MPI_PIN_DOMAIN=2

I_MPI_PIN_ORDER=bunch

Figure 12 Bunch Order Example

3.6. Environment Variables for Fabrics Control

3.6.1. Communication Fabrics Control

I_MPI_FABRICS

Select the particular fabrics to be used.

Syntax

I_MPI_FABRICS=ofi | shm

Arguments

<fabric> Define a network fabric.

shm Shared memory transport (used for intra-node communication only).

ofi OpenFabrics Interfaces* (OFI)-capable network fabrics, such as Intel® True Scale Fabric, Intel®

Omni-Path Architecture, InfiniBand*, and Ethernet (through OFI API).

Description

Set this environment variable to select a specific fabric combination.

NOTE

This option is not applicable to slurm and pdsh bootstrap servers.

3.6.2. OFI*-capable Network Fabrics Control

I_MPI_OFI_DRECV

Control the capability of the direct receive in the OFI fabric.

Syntax

Environment Variable Reference

64

I_MPI_OFI_DRECV=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable direct receive. This is the default value

disable | no | off | 0 Disable direct receive

Description

Use the direct receive capability to block MPI_Recv calls only. Before using the direct receive capability,

ensure that you use it for single-threaded MPI applications and check if you have selected OFI as the network

fabric by setting I_MPI_FABRICS=ofi.

I_MPI_OFI_LIBRARY_INTERNAL

Control the usage of libfabric* shipped with the Intel® MPI Library.

Syntax

I_MPI_OFI_LIBRARY_INTERNAL=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Use libfabric from the Intel MPI Library

disable | no | off | 0 Do not use libfabric from the Intel MPI Library

Description

Set this environment variable to disable or enable usage of libfabric from the Intel MPI Library. The variable

must be set before sourcing the mpivars.bat script.

Example

> set I_MPI_OFI_LIBRARY_INTERNAL=1

> call <installdir>\intel64\bin\mpivars.bat

Setting this variable is equivalent to passing the -ofi_internal option to the mpivars.bat script.

For more information, refer to the Intel® MPI Library Developer Guide, section Running Applications >

Libfabric* Support.

3.7. Environment Variables for Memory Policy
Control
Intel® MPI Library supports non-uniform memory access (NUMA) nodes with high-bandwidth (HBW) memory

(MCDRAM) on Intel® Xeon Phi™ processors (codenamed Knights Landing). Intel® MPI Library can attach

memory of MPI processes to the memory of specific NUMA nodes. This section describes the environment

variables for such memory placement control.

Intel® MPI Developer Reference for Windows* OS

65

I_MPI_HBW_POLICY

Set the policy for MPI process memory placement for using HBW memory.

Syntax

I_MPI_HBW_POLICY=<user memory policy>[,<mpi memory policy>][,<win_allocate policy>]

In the syntax:

 <user memory policy> - memory policy used to allocate the memory for user applications

(required)

 <mpi memory policy> - memory policy used to allocate the internal MPI memory (optional)

 <win_allocate policy> - memory policy used to allocate memory for window segments for RMA

operations (optional)

Each of the listed policies may have the values below:

Arguments

<value> The memory allocation policy used.

hbw_preferred Allocate the local HBW memory for each process. If the HBW memory is not available,

allocate the local dynamic random access memory.

hbw_bind Allocate only the local HBW memory for each process.

hbw_interleave Allocate the HBW memory and dynamic random access memory on the local node in the

round-robin manner.

Description

Use this environment variable to specify the policy for MPI process memory placement on a machine with

HBW memory.

By default, Intel MPI Library allocates memory for a process in local DDR. The use of HBW memory becomes

available only when you specify the I_MPI_HBW_POLICY variable.

Examples

The following examples demonstrate different configurations of memory placement:

 I_MPI_HBW_POLICY=hbw_bind,hbw_preferred,hbw_bind

Only use the local HBW memory allocated in user applications and window segments for RMA

operations. Use the local HBW memory internally allocated in Intel® MPI Library first. If the HBW

memory is not available, use the local DDR internally allocated in Intel MPI Library.

 I_MPI_HBW_POLICY=hbw_bind,,hbw_bind

Only use the local HBW memory allocated in user applications and window segments for RMA

operations. Use the local DDR internally allocated in Intel MPI Library.

 I_MPI_HBW_POLICY=hbw_bind,hbw_preferred

Only use the local HBW memory allocated in user applications. Use the local HBW memory internally

allocated in Intel MPI Library first. If the HBW memory is not available, use the local DDR internally

allocated in Intel MPI Library. Use the local DDR allocated in window segments for RMA operations.

Environment Variable Reference

66

I_MPI_BIND_NUMA

Set the NUMA nodes for memory allocation.

Syntax

I_MPI_BIND_NUMA=<value>

Arguments

<value> Specify the NUMA nodes for memory allocation.

localalloc Allocate memory on the local node. This is the default value.

Node_1,…,Node_k Allocate memory according to I_MPI_BIND_ORDER on the specified NUMA nodes.

Description

Set this environment variable to specify the NUMA node set that is involved in the memory allocation

procedure.

I_MPI_BIND_ORDER

Set this environment variable to define the memory allocation manner.

Syntax

I_MPI_BIND_ORDER=<value>

Arguments

<value> Specify the allocation manner.

compact Allocate memory for processes as close as possible (in terms of NUMA nodes), among the NUMA

nodes specified in I_MPI_BIND_NUMA. This is the default value.

scatter Allocate memory among the NUMA nodes specified in I_MPI_BIND_NUMA using the round-robin

manner.

Description

Set this environment variable to define the memory allocation manner among the NUMA nodes specified in

I_MPI_BIND_NUMA. The variable has no effect without I_MPI_BIND_NUMA set.

I_MPI_BIND_WIN_ALLOCATE

Set this environment variable to control memory allocation for window segments.

Syntax

I_MPI_BIND_WIN_ALLOCATE=<value>

Arguments

<value> Specify the memory allocation behavior for window segments.

localalloc Allocate memory on the local node. This is the default value.

Intel® MPI Developer Reference for Windows* OS

67

hbw_preferred Allocate the local HBW memory for each process. If the HBW memory is not available,

allocate the local dynamic random access memory.

hbw_bind Allocate only the local HBW memory for each process.

hbw_interleave Allocate the HBW memory and dynamic random access memory on a local node in the

round-robin manner.

<NUMA node id> Allocate memory on the given NUMA node.

Description

Set this environment variable to create window segments allocated in HBW memory with the help of the

MPI_Win_allocate_shared or MPI_Win_allocate functions.

MPI_Info

You can control memory allocation for window segments with the help of an MPI_Info object, which is

passed as a parameter to the MPI_Win_allocate or MPI_Win_allocate_shared function. In an

application, if you specify such an object with the numa_bind_policy key, window segments are allocated in

accordance with the value for numa_bind_policy. Possible values are the same as for

I_MPI_BIND_WIN_ALLOCATE.

A code fragment demonstrating the use of MPI_Info:

MPI_Info info;

...

MPI_Info_create(&info);

MPI_Info_set(info, "numa_bind_policy", "hbw_preferred");

...

MPI_Win_allocate_shared(size, disp_unit, info, comm, &baseptr, &win);

NOTE

When you specify the memory placement policy for window segments, Intel MPI Library recognizes the

configurations according to the following priority:

1. Setting of MPI_Info.

2. Setting of I_MPI_HBW_POLICY, if you specified <win_allocate policy>.

3. Setting of I_MPI_BIND_WIN_ALLOCATE.

3.8. Other Environment Variables

I_MPI_DEBUG

Print out debugging information when an MPI program starts running.

Syntax

I_MPI_DEBUG=<level>[,<flags>]

Arguments

<level> Indicate the level of debug information provided

Environment Variable Reference

68

0 Output no debugging information. This is the default value.

1,2 Output libfabric* version and provider.

3 Output effective MPI rank, pid and node mapping table.

4 Output process pinning information.

5 Output environment variables specific to Intel® MPI Library.

> 5 Add extra levels of debug information.

<flags> Comma-separated list of debug flags

pid Show process id for each debug message.

tid Show thread id for each debug message for multithreaded library.

time Show time for each debug message.

datetime Show time and date for each debug message.

host Show host name for each debug message.

level Show level for each debug message.

scope Show scope for each debug message.

line Show source line number for each debug message.

file Show source file name for each debug message.

nofunc Do not show routine name.

norank Do not show rank.

flock Synchronize debug output from different process or threads.

nobuf Do not use buffered I/O for debug output.

Description

Set this environment variable to print debugging information about the application.

NOTE

Set the same <level> value for all ranks.

Intel® MPI Developer Reference for Windows* OS

69

You can specify the output file name for debug information by setting the I_MPI_DEBUG_OUTPUT

environment variable.

Each printed line has the following format:

[<identifier>] <message>

where:

 <identifier> is the MPI process rank, by default. If you add the '+' sign in front of the <level>

number, the <identifier> assumes the following format: rank#pid@hostname. Here, rank is the

MPI process rank, pid is the process ID, and hostname is the host name. If you add the '-' sign,

<identifier> is not printed at all.

 <message> contains the debugging output.

The following examples demonstrate possible command lines with the corresponding output:

> mpiexec -n 1 -env I_MPI_DEBUG=2 test.exe

...

[0] MPI startup(): shared memory data transfer mode

The following commands are equal and produce the same output:

> mpiexec -n 1 -env I_MPI_DEBUG=+2 test.exe

> mpiexec -n 1 -env I_MPI_DEBUG=2,pid,host test.exe

...

[0#1986@mpicluster001] MPI startup(): shared memory data transfer mode

NOTE

Compiling with the /Zi, /ZI or /Z7 option adds a considerable amount of printed debug information.

I_MPI_DEBUG_OUTPUT

Set output file name for debug information.

Syntax

I_MPI_DEBUG_OUTPUT=<arg>

Arguments

<arg> String value

stdout Output to stdout. This is the default value.

stderr Output to stderr.

<file_name> Specify the output file name for debug information (the maximum file name length is 256

symbols).

Description

Set this environment variable if you want to split output of debug information from the output produced by an

application. If you use format like %r, %p or %h, rank, process ID or host name is added to the file name

accordingly.

I_MPI_NETMASK

Choose the network interface for MPI communication over sockets.

Environment Variable Reference

70

Syntax

I_MPI_NETMASK=<arg>

Arguments

<arg> Define the network interface (string parameter)

<interface_mnemonic> Mnemonic of the network interface: ib or eth

ib Select IPoIB*

eth Select Ethernet. This is the default value

<network_address> Network address. The trailing zero bits imply netmask

<network_address/netmask> Network address. The <netmask> value specifies the netmask length

<list of interfaces> A colon separated list of network addresses or interface mnemonics

Description

Set this environment variable to choose the network interface for MPI communication over sockets in the

sock and ssm communication modes. If you specify a list of interfaces, the first available interface on the node

will be used for communication.

Examples

1. Use the following setting to select the IP over InfiniBand* (IPoIB) fabric:

I_MPI_NETMASK=ib

I_MPI_NETMASK=eth

2. Use the following setting to select a particular network for socket communications. This setting

implies the 255.255.0.0 netmask:

I_MPI_NETMASK=192.169.0.0

3. Use the following setting to select a particular network for socket communications with netmask set

explicitly:

I_MPI_NETMASK=192.169.0.0/24

4. Use the following setting to select the specified network interfaces for socket communications:

I_MPI_NETMASK=192.169.0.5/24:ib0:192.169.0.0

NOTE

If the library cannot find any suitable interface by the given value of I_MPI_NETMASK, the value will be used as

a substring to search in the network adapter's description field. And if the substring is found in the description,

this network interface will be used for socket communications. For example, if I_MPI_NETMASK=myri and the

description field contains something like Myri-10G adapter, this interface will be chosen.

$ export I_MPI_STATS=5

$ mpirun -n 2 ./myApp

$ aps-report aps_result_20171231_235959

Intel® MPI Developer Reference for Windows* OS

71

I_MPI_REMOVED_VAR_WARNING

Print out a warning if a removed environment variable is set.

Syntax

I_MPI_REMOVED_VAR_WARNING=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Print out the warning. This is the default value

disable | no | off | 0 Do not print the warning

Description

Use this environment variable to print out a warning if a removed environment variable is set. Warnings are

printed regardless of whether I_MPI_DEBUG is set.

I_MPI_VAR_CHECK_SPELLING

Print out a warning if an unknown environment variable is set.

Syntax

I_MPI_VAR_CHECK_SPELLING=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Print out the warning. This is the default value

disable | no | off | 0 Do not print the warning

Description

Use this environment variable to print out a warning if an unsupported environment variable is set. Warnings

are printed in case of removed or misprinted environment variables.

I_MPI_LIBRARY_KIND

Specify the Intel® MPI Library configuration.

Syntax

I_MPI_LIBRARY_KIND=<value>

Arguments

<value> Binary indicator

release Multi-threaded optimized library. This is the default value

debug Multi-threaded debug library

Environment Variable Reference

72

Description

Use this variable to set an argument for the mpivars.[c]sh script. This script establishes the Intel® MPI

Library environment and enables you to specify the appropriate library configuration. To ensure that the

desired configuration is set, check the LD_LIBRARY_PATH variable.

Example

> export I_MPI_LIBRARY_KIND=debug

Setting this variable is equivalent to passing an argument directly to the mpivars.[c]sh script:

Example

> <installdir>\intel64\bin\mpivars.bat release

I_MPI_PLATFORM

Select the intended optimization platform.

Syntax

I_MPI_PLATFORM=<platform>

Arguments

<platform> Intended optimization platform (string value)

auto[:min] Optimize for the oldest supported Intel® Architecture Processor across all nodes

auto:max Optimize for the newest supported Intel® Architecture Processor across all nodes

auto:most Optimize for the most numerous Intel® Architecture Processor across all nodes. In case of a tie,

choose the newer platform

ivb Optimize for the Intel® Xeon® Processors E3, E5, and E7 V2 series and other Intel® Architecture

processors formerly code named Ivy Bridge

hsw Optimize for the Intel® Xeon® Processors E3, E5, and E7 V3 series and other Intel® Architecture

processors formerly code named Haswell

bdw Optimize for the Intel® Xeon® Processors E3, E5, and E7 V4 series and other Intel® Architecture

processors formerly code named Broadwell

knl Optimize for the Intel® Xeon Phi™ processor and coprocessor formerly code named Knights

Landing

skx Optimize for the Intel® Xeon® Processors E3 V5 and Intel® Xeon® Scalable Family series, and

other Intel® Architecture processors formerly code named Skylake

clx Optimize for the 2nd Generation Intel® Xeon® Scalable Processors, and other Intel®

Architecture processors formerly code named Cascade Lake

Description

Intel® MPI Developer Reference for Windows* OS

73

Set this environment variable to use the predefined platform settings. The default value is a local platform for

each node.

The variable is available for both Intel® and non-Intel microprocessors, but it may utilize additional

optimizations for Intel microprocessors than it utilizes for non-Intel microprocessors.

NOTE

The values auto[:min], auto:max, and auto:most may increase the MPI job startup time.

I_MPI_MALLOC

Control the Intel® MPI Library custom allocator of private memory.

Syntax

I_MPI_MALLOC=<arg>

Argument

<arg> Binary indicator

1 Enable the Intel MPI Library custom allocator of private memory.

Use the Intel MPI custom allocator of private memory for MPI_Alloc_mem/MPI_Free_mem.

0 Disable the Intel MPI Library custom allocator of private memory.

Use the system-provided memory allocator for MPI_Alloc_mem/MPI_Free_mem.

Description

Use this environment variable to enable or disable the Intel MPI Library custom allocator of private memory

for MPI_Alloc_mem/MPI_Free_mem.

By default, I_MPI_MALLOC is enabled for release and debug Intel MPI library configurations and disabled

for release_mt and debug_mt configurations.

NOTE

If the platform is not supported by the Intel MPI Library custom allocator of private memory, a system-

provided memory allocator is used and the I_MPI_MALLOC variable is ignored.

I_MPI_WAIT_MODE

Control the Intel® MPI Library optimization for oversubscription mode.

Syntax

I_MPI_WAIT_MODE=<arg>

Argument

<arg> Binary indicator

0 Optimize MPI application to work in the normal mode (1 rank on 1 CPU)

1 Optimize MPI application to work in the oversubscription mode (multiple ranks on 1 CPU). This is the

default value if a number of process-per-node is less than a number of CPU on the node. In other

Environment Variable Reference

74

cases, 1 is the default.

Description

It is recommended to use this variable in the oversubscription mode.

I_MPI_THREAD_YIELD

Control the Intel® MPI Library thread yield customization during MPI busy wait time.

Syntax

I_MPI_THREAD_YIELD=<arg>

Argument

<arg> Binary indicator

0 Do nothing for thread yield during the busy wait (spin wait). This is the default value when

I_MPI_WAIT_MODE=0

1 Do the pause processor instruction for I_MPI_PAUSE_COUNT during the busy wait.

2 Do the SwitchToThread() system call for thread yield during the busy wait.

This is the default value when I_MPI_WAIT_MODE=1

3 Do the Sleep() system call for I_MPI_THREAD_SLEEP number of milliseconds for thread yield

during the busy wait.

Description

It is recommended to use I_MPI_THREAD_YIELD=0 or I_MPI_THREAD_YIELD=1 in the normal mode and

I_MPI_THREAD_YIELD=2 or I_MPI_THREAD_YIELD=3 in the oversubscription mode.

I_MPI_PAUSE_COUNT

Control the Intel® MPI Library pause count for the thread yield customization during MPI busy wait time.

Syntax

I_MPI_PAUSE_COUNT=<arg>

Argument

<arg> Description

>=0 Pause count for thread yield customization during MPI busy wait time.

The default value is 0. Normally, the value is less than 100.

Description

This variable is applicable when I_MPI_THREAD_YIELD=1. Small values of I_MPI_PAUSE_COUNT may

increase performance, while larger values may reduce energy consumption.

I_MPI_THREAD_SLEEP

Control the Intel® MPI Library thread sleep milliseconds timeout for thread yield customization while MPI busy

wait progress.

Intel® MPI Developer Reference for Windows* OS

75

Syntax

I_MPI_THREAD_SLEEP=<arg>

Argument

<arg> Description

>=0 Thread sleep microseconds timeout. The default value is 0. Normally, the value is less than 100.

Description

This variable is applicable when I_MPI_THREAD_YIELD=3. Small values of I_MPI_PAUSE_COUNT may

increase performance in the normal mode, while larger values may increase performance in the

oversubscription mode

I_MPI_EXTRA_FILE_SYSTEM

Control native support for parallel file systems.

Syntax

I_MPI_EXTRA_FILE_SYSTEM=<arg>

Argument

<arg> Binary indicator

enable | yes | on | 1 Enable native support for parallel file systems.

disable | no | off | 0 Disable native support for parallel file systems.

Description

Use this environment variable to enable or disable native support for parallel file systems.

4. Miscellaneous

4.1. User Authorization
Intel® MPI Library supports several authentication methods under Windows* OS:

I_MPI_AUTH_METHOD

Select a user authorization method.

Syntax

I_MPI_AUTH_METHOD=<method>

Arguments

<method> Define the authorization method

password Use the password-based authorization. This is the default value.

delegate Use the domain-based authorization with delegation ability.

impersonate Use the limited domain-based authorization. You will not be able to open files on remote

machines or access mapped network drives.

Description

Set this environment variable to select a desired authorization method. If this environment variable is not

defined, mpiexec uses the password-based authorization method by default. Alternatively, you can change

the default behavior by using the -delegate or -impersonate options.

For more details, see the Developer Guide, section Installation and Prerequisites > User Authorization.

2

Contents
1. Introduction .. 1

1.1. Introducing Intel® MPI Library ... 1

1.2. What's New .. 1

1.3. Notational Conventions ... 3

1.4. Related Information .. 3

2. Command Reference ... 4

2.1. Compilation Commands .. 4

2.1.1. Compilation Command Options .. 5

2.2. mpiexec ... 7

2.2.1. Global Options ... 7
2.2.2. Local Options .. 13

2.3. cpuinfo ... 14

2.4. impi_info .. 16

2.5. mpitune .. 17

2.5.1. mpitune Configuration Options .. 19

3. Environment Variable Reference ..24

3.1. Compilation Environment Variables ... 24

3.2. Hydra Environment Variables .. 26

3.3. I_MPI_ADJUST Family Environment Variables .. 33

3.4. Tuning Environment Variables .. 42

3.4.1. Tuning Environment Variables .. 42
3.4.2. Autotuning .. 43

3.5. Main Thread Pinning .. 48

3.5.1. Processor Identification .. 48
3.5.2. Default Settings .. 49
3.5.3. Environment Variables for Main Thread Pinning .. 49
3.5.4. Interoperability with OpenMP* API ... 54

3.6. Environment Variables for Fabrics Control .. 63

3.6.1. Communication Fabrics Control ... 63
3.6.2. OFI*-capable Network Fabrics Control .. 63

3.7. Environment Variables for Memory Policy Control .. 64

3.8. Other Environment Variables... 67

4. Miscellaneous ...76

4.1. User Authorization .. 76

Legal Information ... 3

Intel® MPI Developer Reference for Windows* OS

3

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from

course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information

provided here is subject to change without notice. Contact your Intel representative to obtain the latest

forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause

deviations from published specifications. Current characterized errata are available on request.

Intel technologies features and benefits depend on system configuration and may require enabled hardware,

software or service activation. Learn more at Intel.com, or from the OEM or retailer.

Copies of documents which have an order number and are referenced in this document may be obtained by

calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations

that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction

sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this

product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

Copyright 2003-2019 Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed by

the express license under which they were provided to you (License). Unless the License provides otherwise,

you may not use, modify, copy, publish, distribute, disclose or transmit this software or the related documents

without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other than

those that are expressly stated in the License.

http://www.intel.com/design/literature.htm

	Intel® MPI Library for Windows* OS Developer Reference
	1. Introduction
	1.1. Introducing Intel® MPI Library
	1.2. What's New
	1.3. Notational Conventions
	1.4. Related Information

	2. Command Reference
	2.1. Compilation Commands
	2.1.1. Compilation Command Options

	2.2. mpiexec
	2.2.1. Global Options
	2.2.2. Local Options

	2.3. cpuinfo
	2.4. impi_info
	2.5. mpitune
	2.5.1. mpitune Configuration Options
	Application Options
	Search Space Options
	Output Options

	3. Environment Variable Reference
	3.1. Compilation Environment Variables
	3.2. Hydra Environment Variables
	3.3. I_MPI_ADJUST Family Environment Variables
	3.4. Tuning Environment Variables
	3.4.1. Tuning Environment Variables
	3.4.2. Autotuning
	Autotuning
	I_MPI_TUNING_AUTO Family Environment Variables

	3.5. Main Thread Pinning
	3.5.1. Processor Identification
	3.5.2. Default Settings
	3.5.3. Environment Variables for Main Thread Pinning
	3.5.4. Interoperability with OpenMP* API

	3.6. Environment Variables for Fabrics Control
	3.6.1. Communication Fabrics Control
	3.6.2. OFI*-capable Network Fabrics Control

	3.7. Environment Variables for Memory Policy Control
	3.8. Other Environment Variables

	4. Miscellaneous
	4.1. User Authorization

	Legal Information

