Intel® MPI Library for Windows™* OS

Developer Reference

1. Introduction

This Developer Reference provides you with the complete reference for the Intel® MPI Library. It is intended to
help an experienced user fully utilize the Intel MPI Library functionality. You can freely redistribute this
document in any desired form.

1.1. Introducing Intel® MPI Library

Intel® MPI Library is a multi-fabric message passing library that implements the Message Passing Interface,
v3.1 (MPI-3.1) specification. It provides a standard library across Intel® platforms that enable adoption of MPI-
3.1 functions as their needs dictate.

Intel® MPI Library enables developers to change or to upgrade processors and interconnects as new
technology becomes available without changes to the software or to the operating environment.

You can get the latest information of Intel® MPI Library at https://software.intel.com/intel-mpi-library.

1.2. What's New

This document reflects the updates for Intel® MPI Library 2019 Update 5 release for Windows* OS:
The following latest changes in this document were made:
Intel MPI Library 2019 Update 5

e AddedI MPI WAIT MODE,
I MPI THREAD YIELD,I MPI PAUSE COUNT,I MPI THREAD SLEEP to Other Environment
Variables.

e Added I MPI ADJUST <opname> LIST, I MPI COLL EXTERNAL to |_MPI_ADJUST Family
Environment Variables.

e Updated Autotuning and Tuning Environment Variables.
Intel MPI Library 2019 Update 4

¢ Added new Autotuning functionality description and environment variables to Environment Variables
for Autotuning.

e Added new variables I MPI TUNING,I MPI TUNING BIN,and I MPI TUNING BIN DUMP to
Tuning Environment Variables.

e Added arguments for I_MPI PLATFORM in Other Environment Variables.
e Added new -tune, ~hosts-group options to Global Options.

¢ Added new environment variables I MPI JOB STARTUP TIMEOUT,I MPI HYDRA NAMESERVER to
Hydra Environment Variables

¢ Added new transportsto I MPI SHMin Shared Memory Control.
e Removed -unmask and —gumask options.
Intel MPI Library 2019 Update 3

e Added new option —-norpath to Compilation Command Options.

https://software.intel.com/intel-mpi-library

Introduction

e Added new options -silent-abort, -nameserver and environment variables
I MPI SILENT ABORT,I MPI HYDRA NAMESERVER to Hydra Environment Variables.

e Added new variables I MPI MALLOC,I MPI EXTRA FILE SYSTEM to Other Environment Variables.
e Updated the -validate option description.
e Added new argument for the -s <spec> option.
e Removed the ~whoami option.
e Removed 14 outdated variables from |_MPI_ADJUST Family Environment Variables.
Intel MPI Library 2019 Update 2
e Bug fixes.
Intel MPI Library 2019 Update 1
e Added new variable I MPI CBWR to|_MPI_ADJUST Family Environment Variables.
e RestoredI MPI PLATFORMand I MPI PLATFORM CHECK (Other Environment Variables).

e Adjusted description of the —~configfile option in Global Options and -wdir option in Local
Options.

e Added new variable I MPI VAR CHECK SPELLING to Other Environment Variables.
e Added new variable I MPI HYDRA SERVICE PORT to Hydra Environment Variables.
e Renamed Process Pinning to Main Thread Pinning for more accuracy.

Intel MPI Library 2019
e Document overhaul to align with supported functionality.

e RemovedtheI MPI HARD FINALIZE,I MPI MIC,I MPI ENV PREFIX LIST,I MPI TUNE¥,
I MPI ENV_PREFIX LIST,I MPI JOB FAST STARTUP,I MPI FALLBACK,I MPI DAPL*,
I MPI LARGE SCALE THRESHOLD,I MPI OFA* I MPI TCP* I MPI TMI*environment variables.

¢ Removed the ~hostos option from Local Options.

e AddedtheI MPI OFI LIBRARY INTERNAL environment variable to OFl-capable Network Fabrics
Control.

¢ Added an option for setting MPI UNIVERSE SIZE to Global Options.
e Added new collective operations to |_MPI_ADJUST Family Environment Variables.

e Added new variables I MPI SHM CELL EXT SIzEand I MPI SHM CELL EXT NUM TOTALto
Shared Memory Control.

e Added impi_info utility.
o Updated mpitune utility.
Intel MPI Library 2018 Update 3
e Added new algorithms for I MPI ADJUST ALLREDUCE to |_MPI_ADJUST Family.
Intel MPI Library 2018 Update 2
e Improved shm performance with collective operations (I_MPI THREAD YIELD).
e Bug fixes.
Intel MPI Library 2018 Update 1
e Minor changes.
Intel MPI Library 2018

e Removed support of the Intel® Xeon Phi™ coprocessors (formerly code named Knights Corner)

Intel® MPI Developer Reference for Windows* OS

e Changes in environment variables:
o I MPI DAPL TRANSLATION CACHE is now disabled by default
Intel MPI Library 2017 Update 2
¢ Added the environment variable I MPI HARD FINALIZE in Other Environment Variables.
Intel MPI Library 2017 Update 1
e Topology-aware collective communication algorithms support (I_MPI_ADJUST Family).

e Added anew algorithm for I _MPI ADJUST GATHER and related environment variable
I MPI ADJUST GATHER SEGMENT (I_MPI_ADJUST Family).

e Added the environment variable I MPI PORT RANGE in Hydra Environment Variables.
Intel MPI Library 2017

e Document layout changes.

1.3. Notational Conventions

The following conventions are used in this document.

This type style Document or product names

This type style Hyperlinks

This type style Commands, arguments, options, file names
THIS TYPE STYLE Environment variables

<this type style> Placeholders for actual values

[items] Optional items

{ item | item } Selectable items separated by vertical bar(s)

1.4. Related Information

The following related documents that might be useful to the user:
e Product Web Site
¢ Intel® MPI Library Support
¢ Intel® Cluster Tools Products

e Intel® Software Development Products

http://www.intel.com/go/mpi
http://www.intel.com/software/products/support/mpi
http://software.intel.com/en-us/articles/intel-cluster-studio-xe/
http://www.intel.com/software/products

2. Command Reference

2.1. Compilation Commands

The following table lists the available Intel® MPI Library compiler commands with their underlying compilers
and programming languages.

Intel® MPI Library Compiler Wrappers
Compiler Command Underlying Compiler Supported Language(s)

Common Compilers

mpicc.bat cl.exe C
mpicxx.bat cl.exe C++
mpifc.bat ifort.exe Fortran 77/Fortran 95

Microsoft* Visual C++* Compilers
mpicl.bat cl.exe C/C++

Intel® Fortran, C++ Compilers

mpiicc.bat icl.exe C

mpiicpc.bat icl.exe C++

mpiifort.bat ifort.exe Fortran 77/Fortran 95
NOTES:

e Compiler commands are available only in the Intel® MPI Library Software Development Kit (SDK).
e Forthe supported versions of the listed compilers, refer to the Release Notes.
e Compiler wrapper scripts are located in the <installdir>\intel64\bin directory.

e The environment settings can be established by running the
<installdir>\intel64\bin\mpivars.bat script. If you need to use a specific library
configuration, you can pass one of the following arguments to the mpivars.bat script to switch to
the corresponding configuration: release or debug . The ordinary multi-threaded optimized library
is chosen by default .Alternatively, you can use the I MPI LIBRARY KIND environment variable to
specify a configuration and source the script without arguments.

e Ensure that the corresponding underlying compiler is already in your PATH. If you use the Intel®
Compilers, run the compilervars.bat script from the installation directory to set up the compiler
environment.

e To display mini-help of a compiler command, execute it without any parameters.

Intel® MPI Developer Reference for Windows* OS

2.1.1. Compilation Command Options

-profile=<profile_name>

Use this option to specify an MPI profiling library. <profile name>isthe name of the configuration file
(profile) that loads the corresponding profiling library. The profiles are taken from
<installdir>\<arch>\etc.

You can create your own profile as <installdir>\<arch>\etc\<profile name>.conf.You can define
the following environment variables in a configuration file:

e PROFILE PRELIB - libraries (and paths) to load before the Intel® MPI Library
e PROFILE POSTLIB - libraries to load after the Intel® MPI Library
e PROFILE INCPATHS - C preprocessor arguments for any include files

For example, create a file <installdir>\<arch>\etc\myprof.conf with the following lines:

SET PROFILE PRELIB=<path to myprof>\lib\myprof.lib
SET PROFILE_INCPATHS=—I"<paths_to_myprof>\include"

Use the -profile=myprof option for the relevant compiler wrapper to select this new profile.

-t or -trace
Use the -t or —trace option to link the resulting executable file against the Intel® Trace Collector library.

To use this option, include the installation path of the Intel® Trace Collector in the VT ROOT environment
variable. Source the itacvars.bat script provided in the Intel® Trace Analyzer and Collector installation
folder.

-check_mpi

Use this option to link the resulting executable file against the Intel® Trace Collector correctness checking
library. The default value is 1ibVTmc. so.

To use this option, include the installation path of the Intel® Trace Collector in the VT ROOT environment
variable. Source the itacvars.bat script provided in the Intel® Trace Analyzer and Collector installation
folder.

-ilp64

Use this option to enable partial ILP64 support. All integer arguments of the Intel MPI Library are treated as
64-bit values in this case.

-no_ilp64

Use this option to disable the ILP64 support explicitly. This option must be used in conjunction with -18
option of Intel® Fortran Compiler.

NOTE

If you specify the -1 8 option for the Intel® Fortran Compiler, you still have to use the i1p64 option for linkage.

-link_mpi=<arg>

Use this option to always link the specified version of the Intel® MPI Library. See the T MPT LINK environment
variable for detailed argument descriptions. This option overrides all other options that select a specific
library, such as -z1i.

Command Reference

/Zi, /27 or [ZI

Use these options to compile a program in debug mode and link the resulting executable against the
debugging version of the Intel® MPI Library. See I MPI DEBUG for information on how to use additional
debugging features with the /z1i, /27, /ZI or debug builds.

NOTE

The /71 option is only valid for C/C++ compiler.

-0
Use this option to enable compiler optimization.

Setting this option triggers a call to the 1ibirc library. Many of those library routines are more highly
optimized for Intel microprocessors than for non-Intel microprocessors.

-echo

Use this option to display everything that the command script does.

-show

Use this option to learn how the underlying compiler is invoked, without actually running it. Use the following
command to see the required compiler flags and options:

> mpiicc -show -c test.c
Use the following command to see the required link flags, options, and libraries:

This option is particularly useful for determining the command line for a complex build procedure that directly
uses the underlying compilers.

-show_env

Use this option to see the environment settings in effect when the underlying compiler is invoked.

-{cc, cxx, fc}=<compiler>

Use this option to select the underlying compiler.

For example, use the following command to select the Intel® C++ Compiler:
> mpiicc -cc=icl.exe -c test.c

For this to work, icl.exe should be in your PATH. Alternatively, you can specify the full path to the compiler.

NOTE

This option works only with the mpiicc.bat and the mpifc.bat commands.

'

Use this option to print the compiler wrapper script version.

-norpath
Use this option to disable rpath for the compiler wrapper for the Intel® MPI Library.

Intel® MPI Developer Reference for Windows* OS

2.2. mpiexec

Launches an MPI job using the Hydra process manager.
Syntax

mpiexec <g-options> <l-options> <executable>
or

mpiexec <g-options> <l-options> <executablel> : <l-options> <executablel>

Arguments

<g-options> Global options that apply to all MPI processes
<l-options> Local options that apply to a single argument set
<executable> <name>.exe or path\name of the executable file
Description

Use the mpiexec utility to run MPI applications using the Hydra process manager.

Use the first short command-line syntax to start all MPI processes of the <executable> with the single set of
arguments. For example, the following command executes test . exe over the specified processes and hosts:

> mpiexec -f <hostfile> -n <# of processes> test.exe

where:
o <# of processes> specifies the number of processes on which to run the test.exe executable
e <hostfile>specifies a list of hosts on which to run the test.exe executable

Use the second long command-line syntax to set different argument sets for different MPI program runs. For
example, the following command executes two different binaries with different argument sets:

> mpiexec -f <hostfile> -env <VARI1> <VAL1> -n 2 progl.exe : "
-env <VAR2> <VALZ2> -n 2 prog2.exe

NOTE

You need to distinguish global options from local options. In a command-line syntax, place the local options
after the global options.

2.2.1. Global Options

This section describes the global options of the Intel® MPI Library's Hydra process manager. Global options are
applied to all arguments sets in the launch command. Argument sets are separated by a colon ':".

-tune <filename>

Use this option to specify the file name that contains the tuning data in a binary format.

-usize <usize>

Use this option to set MPT UNIVERSE SIZE, which is available as an attribute of the MPI COMM WORLD.

<size> Define the universe size

Command Reference

SYSTEM Set the size equal to the number of cores passed to mpiexec through the hostfile or the resource
manager.

INFINITE Do not limit the size. This is the default value.

<value> Set the size to a numeric value = 0.

-hostfile <hostfile> or -f <hostfile>

Use this option to specify host names on which to run the application. If a host name is repeated, this name is
used only once.

Seealsothe I MPI HYDRA HOST FILE environment variable for more details.

NOTE
Use the -perhost, -ppn, —grr,and —rr options to change the process placement on the cluster nodes.

e Usethe -perhost, -ppn, and —grr options to place consecutive MPI processes on every host using
the round robin scheduling.

o Use the -rr option to place consecutive MPI processes on different hosts using the round robin
scheduling.

-machinefile <machine file> or -machine <machine file>

Use this option to control process placement through a machine file. To define the total number of processes
to start, use the —n option. For example:

> type machinefile
node0:2
nodel:2
node0:1

-hosts-group

Use this option to set node ranges using brackets, commas, and dashes (like in Slurm* Workload Manager).

For more details, see the I MPI HYDRA HOST FILE environment variable in Hydra Environment Variables.

-silent-abort
Use this option to disable abort warning messages.

For more details, seethe I MPI SILENT ABORT environment variable in Hydra Environment Variables.

-nameserver
Use this option to specify the nameserver in the hostname:port format.

For more details, see the I MPI HYDRA NAMESERVER environment variable in Hydra Environment Variables.

-genv <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI processes.

-genvall

Use this option to enable propagation of all environment variables to all MPI processes.

Intel® MPI Developer Reference for Windows* OS

-genvnone

Use this option to suppress propagation of any environment variables to any MPI processes.

NOTE

The option does not work for localhost.

-genvexcl <list of env var names>

Use this option to suppress propagation of the listed environment variables to any MPI processes.

-genvlist <list>

Use this option to pass a list of environment variables with their current values. <1ist>isa comma separated
list of environment variables to be sent to all MPI processes.

-pmi-connect <mode>

Use this option to choose the caching mode of process management interface (PMI) message. Possible values
for <mode> are:

<mode> The caching mode to be used

nocache Do not cache PMI messages.

cache Cache PMI messages on the local pmi_proxy management processes to minimize the number
of PMI requests. Cached information is automatically propagated to child management
processes.

lazy- cache mode with on-request propagation of the PMI information.

cache

alltoall Information is automatically exchanged between all pmi proxy before any get request can be
done. This is the default mode.

Seethe I MPI HYDRA PMI CONNECT environment variable for more details.

-perhost <# of processes >, -ppn <# of processes >, or -grr <# of processes>

Use this option to place the specified number of consecutive MPI processes on every host in the group using
round robin scheduling. See the I MPI PERHOST environment variable for more details.

NOTE

When running under a job scheduler, these options are ignored by default. To be able to control process
placement with these options, disable the I MPI JOB RESPECT PROCESS PLACEMENT variable.

=rr

Use this option to place consecutive MPI processes on different hosts using the round robin scheduling. This
option is equivalent to "-perhost 1".Seethe I MPI PERHOST environment variable for more details.

Command Reference

-trace-pt2pt

Use this option to collect the information about point-to-point operations using Intel® Trace Analyzer and
Collector. The option requires that your application be linked against the Intel® Trace Collector profiling
library.

-trace-collectives

Use this option to collect the information about collective operations using Intel® Trace Analyzer and
Collector. The option requires that your application be linked against the Intel® Trace Collector profiling
library.

NOTE

Use the -trace-pt2pt and -trace-collectives to reduce the size of the resulting trace file or the
number of message checker reports. These options work with both statically and dynamically linked
applications.

-configfile <filename>

Use this option to specify the file <filename> that contains the command-line options with one executable
per line. Blank lines and lines that start with '#' are ignored. Other options specified in the command line are
treated as global.

You can specify global options in configuration files loaded by default (mpiexec.conf in
<installdir>/intel64/etc,~/.mpiexec.conf,and mpiexec.conf in the working directory). The
remaining options can be specified in the command line.

-branch-count <num>

Use this option to restrict the number of child management processes launched by the Hydra process
manager, or by each pmi_proxy management process.

Seethe I MPI HYDRA BRANCH COUNT environment variable for more details.

-pmi-aggregate or -pmi-noaggregate

Use this option to switch on or off, respectively, the aggregation of the PMI requests. The default value is -
pmi-aggregate, which means the aggregation is enabled by default.

Seethe I MPI HYDRA PMI AGGREGATE environment variable for more details.

-nolocal

Use this option to avoid running the <executable> on the host where mpiexec is launched. You can use this
option on clusters that deploy a dedicated master node for starting the MPI jobs and a set of dedicated
compute nodes for running the actual MPI processes.

-hosts <nodelist>

Use this option to specify a particular <nodelist>on which the MPI processes should be run. For example,
the following command runs the executable a.out on the hosts host1 and host2:
> mpiexec -n 2 -ppn 1 -hosts hostl,host2 test.exe

NOTE

If <nodelist>contains only one node, this option is interpreted as a local option. See Local Options for
details.

10

Intel® MPI Developer Reference for Windows* OS

-iface <interface>

Use this option to choose the appropriate network interface. For example, if the IP emulation of your
InfiniBand* network is configured to ib0, you can use the following command.
> mpiexec -n 2 -iface ib0 test.exe

Seethe I MPI HYDRA IFACE environment variable for more details.

-1, -prepend-rank

Use this option to insert the MPI process rank at the beginning of all lines written to the standard output.

-s <spec>

Use this option to direct standard input to the specified MPI processes.

Arguments

<spec> Define MPI process ranks

all Use all processes.

none Do not direct standard output to any processes.

<1>,<m>, <n> Specify an exact list and use processes <1>, <m>and <n> only. The default value is zero.

<k>, <1>-<m>, <n> Specify a range and use processes <k>, <1>through <m>, and <n>.

-noconf

Use this option to disable processing of the mpiexec.hydra configuration files.

-ordered-output

Use this option to avoid intermingling of data output from the MPI processes. This option affects both the
standard output and the standard error streams.

NOTE

When using this option, end the last output line of each process with the end-of-line "\n' character. Otherwise
the application may stop responding.

-path <directory>
Use this option to specify the path to the executable file.

-version or -V

Use this option to display the version of the Intel® MPI Library.

-info

Use this option to display build information of the Intel® MPI Library. When this option is used, the other
command line arguments are ignored.

11

Command Reference

-delegate

Use this option to enable the domain-based authorization with the delegation ability. See User Authorization
for details.

-impersonate

Use this option to enable the limited domain-based authorization. You will not be able to open files on remote
machines or access mapped network drives. See User Authorization for details.

-localhost

Use this option to explicitly specify the local host name for the launching node.

-localroot

Use this option to launch the root process directly from mpiexec if the host is local. You can use this option to
launch GUI applications. The interactive process should be launched before any other process in a job. For
example:

> mpiexec -n 1 -host <host2> -localroot interactive.exe : -n 1 -host <hostl>
background.exe

-localonly

Use this option to run an application on the local node only. If you use this option only for the local node, the
Hydra service is not required.
-register

Use this option to encrypt the user name and password to the registry.

-remove

Use this option to delete the encrypted credentials from the registry.

-validate [-host <hostname>]

Validate the encrypted credentials for the current user.

-map <drive:\\host\share>

Use this option to create network mapped drive on nodes before starting executable. Network drive will be
automatically removed after the job completion.

-mapall

Use this option to request creation of all user created network mapped drives on nodes before starting
executable. Network drives will be automatically removed after the job completion.

-logon

Use this option to force the prompt for user credentials.

-noprompt

Use this option to suppress the prompt for user credentials.

12

Intel® MPI Developer Reference for Windows* OS

-port/-p
Use this option to specify the port that the service is listening on. See the I MPI HYDRA SERVICE PORT
environment variable for more details.

-verbose or -v

Use this option to print debug information from mpiexec, such as:
e Service processes arguments
e Environment variables and arguments passed to start an application
e PMlrequests/responses during a job life cycle

Seethe I MPI HYDRA DEBUG environment variable for more details.

-print-rank-map
Use this option to print out the MPI rank mapping.

-print-all-exitcodes

Use this option to print the exit codes of all processes.

2.2.2. Local Options

This section describes the local options of the Intel® MPI Library's Hydra process manager. Local options are
applied only to the argument set they are specified in. Argument sets are separated by a colon ':".

-n <# of processes> or -np <# of processes>

Use this option to set the number of MPI processes to run with the current argument set.

-env <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI processes in
the current argument set.

-envall

Use this option to propagate all environment variables in the current argument set. See the
I MPI HYDRA ENV environment variable for more details.

13

Command Reference

-envnone

Use this option to suppress propagation of any environment variables to the MPI processes in the current
argument set.

NOTE

The option does not work for localhost.

-envexcl <list of env var names>

Use this option to suppress propagation of the listed environment variables to the MPI processes in the
current argument set.

-envlist <list>

Use this option to pass a list of environment variables with their current values. <1ist>is a comma separated
list of environment variables to be sent to the MPI processes.

-host <nodename>

Use this option to specify a particular <nodename> on which the MPI processes are to be run. For example, the
following command executes test.exe on hosts host1 and host2:

> mpiexec -n 2 -host hostl test.exe : -n 2 -host host2 test.exe

-path <directory>

Use this option to specify the path to the <executable> file to be run in the current argument set.

-wdir <directory>

Use this option to specify the working directory in which the <executable> file runs in the current argument
set.

2.3. cpuinfo

Provides information on processors used in the system.
Syntax
cpuinfo [[-]<options>]

Arguments

<options> Sequence of one-letter options. Each option controls a specific part of the output data.

g General information about single cluster node shows:
e the processor product name
e the number of packages/sockets on the node
e core and threads numbers on the node and within each package

e SMT mode enabling

14

Intel® MPI Developer Reference for Windows* OS

gidc

Description

Logical processors identification table identifies threads, cores, and packages of each logical
processor accordingly.

e Processor - logical processor number.
e Thread Id - unique processor identifier within a core.
e Core Id - unique core identifier within a package.

e Package Id - unique package identifier within a node.

Node decomposition table shows the node contents. Each entry contains the information on
packages, cores, and logical processors.

e Package Id - physical package identifier.
e Cores Id - list of core identifiers that belong to this package.

e Processors Id - list of processors that belong to this package. This list order directly
corresponds to the core list. A group of processors enclosed in brackets belongs to one
core.

Cache sharing by logical processors shows information of sizes and processors groups, which
share particular cache level.

e Size - cache size in bytes.

e Processors - a list of processor groups enclosed in the parentheses those share this cache
or no sharing otherwise.

Microprocessor signature hexadecimal fields (Intel platform notation) show signature values:
e extended family

e extended model

o family

e model

* type

e stepping

Microprocessor feature flags indicate what features the microprocessor supports. The Intel
platform notation is used.

Equivalent to gidcsf

Default sequence

Utility usage info

The cpuinfo utility prints out the processor architecture information that can be used to define suitable
process pinning settings. The output consists of a number of tables. Each table corresponds to one of the
single options listed in the arguments table.

15

Command Reference

NOTE

The architecture information is available on systems based on the Intel® 64 architecture.

The cpuinfo utility is available for both Intel microprocessors and non-Intel microprocessors, but it may
provide only partial information about non-Intel microprocessors.
An example of the cpuinfo output:

> cpuinfo -gdcs
===== Processor composition =====

Processor name : Intel (R) Xeon(R) X5570

Packages (sockets) : 2

Cores : 8

Processors (CPUs) : 8

Cores per package : 4

Threads per core : 1

===== Processor identification =====

Processor Thread Id. Core Id. Package Id.
0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 0 2 0

5 0 2 1

6 0 3 0

7 0 3 1
===== Placement on packages =====

Package Id. Core Id. Processors

0 0,1,2,3 0,2,4,6

1 0,1,2,3 1,3,%5,7

===== Cache sharing =====

Cache Size Processors

Ll 32 KB no sharing

L2 256 KB no sharing

L3 8 MB (0,2,4,6) (1,3,5,7)

===== Processor Signature =====

xFamily	xModel	Type	Family	Model	Stepping
00	1	0	6	a S	

2.4. impi_info

Provides information on available Intel® MPI Library environment variables.

Syntax

impi info <options>

Arguments

<options> List of options.

-a | -all Show all IMPI variables.

16

Intel® MPI Developer Reference for Windows* OS

-h | -help Show a help message.

-v | -variable Show all available variables or description of the specified variable.
-c | -category Show all available categories or variables of the specified category.
Description

The impi info utility provides information on environment variables available in the Intel MPI Library. For
each variable, it prints out the name, the default value, and the value data type. By default, a reduced list of
variables is displayed. Use the -all option to display all available variables with their descriptions.

The example of the impi info output:

> impi info

NAME	DEFAULT VALUE	DATA TYPE
I MPI THREAD SPLIT	0	MPI INT
I _MPI THREAD RUNTIME	none	MPI CHAR
I MPI THREAD MAX	-1	MPI INT
I MPI THREAD ID KEY	thread id	MPI CHAR
2.5. mpitune
Tunes the Intel® MPI Library parameters for the given MPI application.
Syntax
mpitune <options>
Arguments
<mpitune options> List of options.
-c | --config-file <file> Specify a configuration file to run a tuning session.
-d | --dump-file <file> Specify a file that stores the collected results. The option is
used in the analyze mode.
-m | --mode {collect | analyze} Specify the mpitune mode. The supported modes are
collect and analyze:
e the collect mode runs the tuning process and saves
results in temporary files;
e the analyze mode transforms temporary files into a
JSON-tree, which is used by the Intel® MPI Library, and
generates a table that represents algorithm values in a
human-readable format.
-tree-view {default | simple} Specify the mode to present the json-tree:

e the default mode enables interpolation mechanism;

e the simple mode disables interpolation mechanism.
The resulting tree will contain message sizes used
during the launch.

17

Command Reference

-h | --help Display the help message.
-v | --version Display the product version.
Description

The mpitune utility allows you to automatically adjust Intel MPI Library parameters, such as collective
operation algorithms, to your cluster configuration or application.

The tuner iteratively launches a benchmarking application with different configurations to measure
performance and stores the results of each launch. Based on these results, the tuner generates optimal values
for the parameters that are being tuned.

NOTE

Starting the Intel® MPI Library Update 4 release, mpitune requires two configuration files to be specified.
Configuration files differ in mode and dump-file fields.

All tuner parameters should be specified in two configuration files, passed to the tuner with the --config-
file option. All configuration file examples are available at <installdir>/etc/tune cfg.Please note
that configuration files for Intel® MPI Benchmarks are already created.

The tuning process consists of two steps: data collection (the collect mode) and data analysis (the analyze
mode):

> mpitune -m analyze -c /path/to/config filel

> mpitune -m collect -c /path/to/config file2

The tuning results are presented as a JSON tree and can be added to the library with the T MPI TUNING
environment variable.

MPI options support

The following MPI options are available within the utility:

<MPI options> List of options.

-f <filename> Specify a file containing host names.
-hosts <hostlist> Specify a comma-separated list of hosts.
-np <value> Specify the number of processes.

-ppn <n> Specify the number of processes per node.

For example:

> mpitune -np 2 -ppn 1 -hosts HOST1,HOST2 -m analyze -c /path/to/config filel
> mpitune -np 2 -ppn 1 -hosts HOST1,HOST2 -m collect -c /path/to/config file2

See Also

Developer Guide, section Analysis and Tuning > MPI Tuning.

18

Intel® MPI Developer Reference for Windows* OS

2.5.1. mpitune Configuration Options

Application Options

-app
Sets a template for the command line to be launched to gather tuning results. The command line can contain
variables declared as @<var_ name>@Q. The variables are defined further on using other options.

For example:
-app: mpirun -np @np@ -ppn @ppn@ IMB-MPI1 -msglog 0:@logmax@ -npmin @np@ @func@

NOTE

The application must produce output (in stdout or file or any other destination) that can be parsed by the
tuner to pick the value to be tuned and other variables. See the -~app-regex and -app-regex-legend
options below for details.

-app-regex

Sets a regular expression to be evaluated to extract the required values from the application output. Use
regular expression groups to assign the values to variables. Variables and groups associations are set using the
-app-regex-legend option.

For example, to extract the #bytes and t max [usec] values from this output:

#bytes #repetitions t min[usec] t max[usec] t avg[usec]
0 1000 0.06 0.06 0.06
1 1000 0.10 0.10 0.10

use the following configuration:
—app-regex: (\d+)\s+\d+\s+[\d.+-1+\s+ ([\d.+-1+)

-app-regex-legend

Specifies a list of variables extracted from the regular expression. Variables correspond to the regular
expression groups. The tuner uses the last variable as the performance indicator of the launch. Use the -
tree-opt to set the optimization direction of the indicator.

For example:

-app-regex-legend: size,time

-iter

Sets the number of iterations for each launch with a given set of parameters. Higher numbers of iterations
increase accuracy of results.

For example:

-iter: 3

Search Space Options

Use these options to define a search space, which is a set of combinations of Intel® MPI Library parameters
that the target application uses for launches. The library parameters are generally configured using run-time
options or environment variables.

19

Command Reference

NOTE

A search space line can be very long, so line breaking is available for all the search space options. Use a
backslash to break a line (see examples below).

-search

Defines the search space by defining variables declared with the —app option and by setting environment
variables for the application launch.
For example:

-search: func=BCAST, \
np=4,ppn={1,4},{,I _MPI ADJUST BCAST=[1,3]}, logmax=5

The -app variables are defined as <varl>=<valuel>[,<var2>=<value2>] [, ...]. The following syntax is
available for setting values:

Syntax Description Examples

<value> Single value. Can be a 4
number or a string.

{<value1>[,<value2>][,...]} List of independent {2,4}
values.
[<start>,<end>[,<step>]] Linear range of values [1,8,2] —expands to

with the default stepof 1. {1,2,4,6,8}

(<start>,<end>[,<step>]) Exponential range with (1,16) —expands to
the default step of 2. {1,2,4,8,16}

To set environment variables for the command launch, use the following syntax:
Syntax Description Examples

<variable>=<value> Single variable definition. Any type of the I MPI ADJUST BCAST=3
syntax above can be used for the value: single I MPI ADJUST BCAST=[1, 3]
values, lists or ranges.

{,<variable>=<value>} | A special case of the syntax above. When set {,I MPI ADJUST BCAST=[1,3]}
this way, the variable default value is first used
in an application launch.

<prefix>{<valuel> Multi-value variable definition. I MPI ADJUST ALLREDUCE{=1,

[,<value2>][,...1} Prefix is a common part for all the values, =2, (=9, _KN_RADIX=(2,8))}

commonly the variable name. See below for a more complete

A value can be a singular value or a example.

combination of values in the format:
<prefix>(<valuel>[,<value2>][,...]).
Prefix is optional and a value in the
combination is a string, which can utilize the
list and range syntax above.

20

Intel® MPI Developer Reference for Windows* OS

The following example shows a more complex option definition:
I MPI ADJUST BCAST{=1,=2, (=9, KN RADIX=(2,8)), (={10,11}, SHM KN RADIX=[2,8,2])}
This directive consecutively runs the target application with the following environment variables set:

I MPI_ADJUST BCAST=1

I MPI_ADJUST BCAST=2

I MPI_ADJUST BCAST=9,I MPI ADJUST BCAST KN RADIX=2

I MPI_ADJUST BCAST=9,I MPI ADJUST BCAST KN RADIX=4

I MPI_ADJUST BCAST=9,I MPI ADJUST BCAST KN RADIX=8

I MPI_ADJUST BCAST=10,I MPI ADJUST BCAST SHM KN RADIX=2
I MPI_ADJUST BCAST=10,I MPI ADJUST BCAST SHM KN RADIX=4
I MPI_ADJUST BCAST=10,I MPI ADJUST BCAST SHM KN RADIX=6
I MPI_ADJUST BCAST=10,I MPI ADJUST BCAST SHM KN RADIX=8
I MPI_ADJUST BCAST=11,I MPI ADJUST BCAST SHM KN RADIX=2
I MPI_ADJUST BCAST=11,I MPI ADJUST BCAST SHM KN RADIX=4
I MPI_ADJUST BCAST=11,I MPI ADJUST BCAST SHM KN RADIX=6
I MPI_ADJUST BCAST=11,I MPI ADJUST BCAST SHM KN RADIX=8

-search-excl

Excludes certain combinations from the search space. The syntax is identical to that of the -search option.
For example:
-search-excl: I MPI ADJUST BCAST={1,2}

or
-search-excl: func=BCAST,np=4,ppn=1,I MPI ADJUST BCAST=1

-search-only

Defines a subset of the search space to search in. Only this subset is used for application launches. The syntax
is identical to the —search option.

This option is useful for the second and subsequent tuning sessions on a subset of parameters from the
original session, without creating a separate configuration file.

Output Options

Use these options to customize the output. The tuner can produce output of two types:
o table — useful for verifying the tuning results, contains values from all the application launches

e tree —an internal output format, contains the optimal values

-table

Defines the layout for the resulting output table. The option value is a list of variables declared with the —app
option, which are joined in colon-separated groups. Each group denotes a specific part of the table.

For example:

-table: func:ppn,np:size:*:time

The last group variables (t ime) are rendered in table cells. The second last group variables are used for
building table columns (*, denotes all the variables not present the other variable groups). The third last group
variables are used for building table rows (size). All other variable groups are used to make up the table label.

Groups containing several variables are complex groups and produce output based on all the value
combinations.

For example, the option definition above can produce the following output:

21

Command Reference

Label: "func=BCAST, ppn=2,np=2"

set 0: ""

set 1: "I MPI ADJUST BCAST=1"
set 2: "I MPI ADJUST BCAST=2"
set 3: "I MPI ADJUST BCAST=3"

Table
| set O | set 1 | set 2 | set 3
——————————— e el e] [
"size=0" | "time=0.10" | "time=0.08" | "time=0.11" | "time=0.10"
| "time=0.12" | "time=0.09" | "time=0.12" | "time=0.11"
| | "time=0.10" | |
———————————] el]
"size=4" | "time=1.12" | "time=1.11" | "time=1.94" | "time=1.72"
| "time=1.35" | "time=1.18" | "time=1.97" | "time=1.81"
| "time=1.38" | "time=1.23" | "time=2.11" | "time=1.89"
——————————— |l-----|- | |
"size=8" | "time=1.21" | "time=1.10" | "time=1.92" | "time=1.72"
| "time=1.36" | "time=1.16" | "time=2.01" | "time=1.75"
| "time=1.37" | "time=1.17" | "time=2.24" | "time=1.87"
\ | | |

Cells include only unique values from all the launches for the given parameter combination. The number of
launches is set with the —iter option.

-table-ignore

Specifies the variables to ignore from the -table option definition.

-tree

Defines the layout for the resulting tree of optimal values of the parameter that is tuned (for example,
collective operation algorithms). The tree is rendered as a JSON structure. The option value is a list of
variables declared with the —-app option, which are joined in colon-separated groups. Each group denotes a
specific part of the tree. Groups containing several variables are complex groups and produce output based on
all the value combinations.

Example:
-tree: func:ppn,np:size:*:time

The first two groups (func and ppn, np) make up the first two levels of the tree. The last group variables
(time) are used as the optimization criteria and are not rendered. The second last group contains variables to
be optimized (*, denotes all the variables not present the other variable groups). The third last group variables
are used to split the search space into intervals based on the optimal values of parameters from the next
group (for example, I MPI ADJUST <operation> algorithm numbers).
For example, the option definition above can produce the following output:
{
"func=BCAST":
{
"ppn=1,np=4":
{
"size=0":
{"I MPI ADJUST BCAST": "3"},
"size=64":

22

Intel® MPI Developer Reference for Windows* OS

{"I_MPI ADJUST BCAST": "1"},
"size=512":
{"I_MPI _ADJUST BCAST": "2"},

}
This tree representation is an intermediate format of tuning results and is ultimately converted to a string that

the library can understand. The conversion script is specified with -tree-postprocess option.
-tree-ignore

Specifies the variables to ignore from the -t ree option definition.

-tree-intervals

Specifies the maximum number of intervals where the optimal parameter value is applied. If not specified, any
number of intervals is allowed.

-tree-tolerance

Specifies the tolerance level. Non-zero tolerance (for example, 0.03 for 3%) joins resulting intervals with the

performance indicator value varying by the specified tolerance.

-tree-postprocess

Specifies an executable to convert the resulting JSON tree to a custom format.

-tree-opt

Specifies the optimization direction. The available values are max (default) and min.

-tree-file

Specifies a log file where the tuning results are saved.

23

3. Environment Variable Reference

3.1. Compilation Environment Variables

I_MPI_{CC,CXX,FC,F77,F90}_PROFILE
Specify the default profiling library.

Syntax

I MPI CC PROFILE=<profile name>

I MPI CXX PROFILE=<profile name>

I MPI FC PROFILE=<profile name>

I MPI F77 PROFILE=<profile name>

I MPI F90 PROFILE=<profile name>

Arguments

<profile name> Specify a default profiling library.

Description

Set this environment variable to select a specific MPI profiling library to be used by default. This has the same
effect as using -profile=<profile name>asan argument for mpiicc or another Intel® MPI Library
compiler wrapper.

I_MPI_{CC,CXX,FC,F77,F90}

Set the path/name of the underlying compiler to be used.
Syntax

I MPI CC=<compiler>

I MPI CXX=<compiler>

I MPI FC=<compiler>

I MPI F77=<compiler>

I MPI F90=<compiler>

Arguments

<compiler> Specify the full path/name of compiler to be used.

Description

Set this environment variable to select a specific compiler to be used. Specify the full path to the compiler if it
is not located in the search path.

NOTE

Some compilers may require additional command line options.

Intel® MPI Developer Reference for Windows* OS

I_MPI_ROOT
Set the Intel® MPI Library installation directory path.

Syntax
I _MPI ROOT=<path>

Arguments

<path> Specify the installation directory of the Intel® MPI Library

Description

Set this environment variable to specify the installation directory of the Intel® MPI Library.

VT_ROOT

Set Intel® Trace Collector installation directory path.

Syntax
VT ROOT=<path>

Arguments

<path> Specify the installation directory of the Intel® Trace Collector

Description

Set this environment variable to specify the installation directory of the Intel® Trace Collector.

I_MPI_COMPILER_CONFIG_DIR

Set the location of the compiler configuration files.

Syntax
I MPI COMPILER CONFIG DIR=<path>

Arguments

<path> Specify the location of the compiler configuration files. The default value is
<installdir>\<arch>\etc

Description

Set this environment variable to change the default location of the compiler configuration files.

I_MPI_LINK

Select a specific version of the Intel® MPI Library for linking.

Syntax

I MPI LINK=<arg>

Arguments

<arg> Version of library

25

Environment Variable Reference

opt Multi-threaded optimized library. This is the default value
dbg Multi-threaded debug library
Description

Set this variable to always link against the specified version of the Intel® MPI Library.

3.2. Hydra Environment Variables

I_MPI_HYDRA_HOST FILE

Set the host file to run the application.

Syntax

I MPI HYDRA HOST FILE=<arg>

Arguments

<arg> String parameter

<hostsfile> The full or relative path to the host file
Description

Set this environment variable to specify the hosts file.

I_MPI_HYDRA_HOSTS_GROUP

Set node ranges using brackets, commas, and dashes.

Syntax

I MPI HYDRA HOSTS GROUP=<arg>

Argument

<arg> Set a node range.
Description

Set this variable to be able to set node ranges using brackets, commas, and dashes (like in Slurm* Workload
Manager). For example:

T _MPI_HYDRA HOSTS_ GROUP="hostA[01-05],hostB,hostC[01-05,07,09-111"

You can set node ranges with the -hosts-group option.

I_MPI_HYDRA_DEBUG

Print out the debug information.

Syntax

I MPI_HYDRA DEBUG=<arg>

Arguments

26

Intel® MPI Developer Reference for Windows* OS

<arg> Binary indicator

enable | yes | on | 1 Turn on the debug output

disable no off 0 Turn off the debug output. This is the default value
Description

Set this environment variable to enable the debug mode.

I_MPI_HYDRA_ENV

Control the environment propagation.

Syntax

I MPI HYDRA ENV=<arg>

Arguments

<arg> String parameter

all Pass all environment to all MPI processes
Description

Set this environment variable to control the environment propagation to the MPI processes. By default, the
entire launching node environment is passed to the MPI processes. Setting this variable also overwrites
environment variables set by the remote shell.

I_MPI_JOB_TIMEOUT

Set the timeout period for mpiexec.

Syntax
I MPI JOB TIMEOUT=<timeout>
I MPI MPIEXEC TIMEOUT=<timeout>

Arguments
<timeout> Define mpiexec timeout period in seconds

<n>20 The value of the timeout period. The default timeout value is zero, which means no timeout.

Description

Set this environment variable to make mpiexec terminate the job in <timeout> seconds after its launch. The
<timeout>value should be greater than zero. Otherwise the environment variable setting is ignored.

NOTE

Set this environment variable in the shell environment before executing the mpiexec command. Setting the
variable through the ~genv and -env options has no effect.

27

Environment Variable Reference

I_MPI_JOB_STARTUP_TIMEOUT

Set the mpiexec job startup timeout.

Syntax
I MPI JOB STARTUP TIMEOUT=<timeout>

Arguments
<timeout> Define mpiexec startup timeout period in seconds

<n>20 The value of the timeout period. The default timeout value is zero, which means no timeout.

Description

Set this environment variable to make mpiexec terminate the job in <timeout> seconds if some processes
are not launched. The <timeout> value should be greater than zero.

I_MPI_HYDRA_BOOTSTRAP

Set the bootstrap server.

Syntax

I MPI HYDRA BOOTSTRAP=<arg>

Arguments

<arg> String parameter
service Use hydra service agent
Description

Set this environment variable to specify the bootstrap server.

NOTE

Setthe I MPI HYDRA BOOTSTRAP environment variable in the shell environment before executing the
mpiexec command. Do not use the —env option to set the <arg> value. This option is used for passing
environment variables to the MPI process environment.

I_MPI_HYDRA_BOOTSTRAP_EXEC

Set the executable file to be used as a bootstrap server.

Syntax

I MPI HYDRA BOOTSTRAP EXEC=<arg>

Arguments

<arg> String parameter
<executable> The name of the executable file
Description

Set this environment variable to specify the executable file to be used as a bootstrap server.

28

Intel® MPI Developer Reference for Windows* OS

NOTE

I_MPI_HYDRA_PMI_CONNECT

Define the processing method for PMI messages.

Syntax

I MPI HYDRA PMI CONNECT=<value>

Arguments

<value> The algorithm to be used

nocache Do not cache PMI messages

cache Cache PMI messages on the local pmi proxy management processes to minimize the number
of PMI requests. Cached information is automatically propagated to child management
processes.

lazy- cache mode with on-demand propagation.

cache

alltoall Information is automatically exchanged between all pmi proxy before any get request can be
done. This is the default value.

Description

Use this environment variable to select the PMI messages processing method.

I_MPI_PERHOST

Define the default behavior for the -perhost option of the mpiexec command.
Syntax

I MPI PERHOST=<value>

Arguments

<value> Define a value used for -perhost by default

integer > 0 Exact value for the option

all All logical CPUs on the node

allcores All cores (physical CPUs) on the node. This is the default value.
Description

Set this environment variable to define the default behavior for the -perhost option. Unless specified
explicitly, the -perhost option is implied with the value setin I _MPI PERHOST.

NOTE

When running under a job scheduler, this environment variable is ignored by default. To be able to control
process placement with I _MPI PERHOST, disablethe I MPI JOB RESPECT PROCESS PLACEMENT variable.

29

Environment Variable Reference

I_MPI_HYDRA_BRANCH_COUNT

Set the hierarchical branch count.

Syntax
I MPI HYDRA BRANCH COUNT =<num>

Arguments

<num> Number

<n>>= e The default value is -1 if less than 128 nodes are used. This value also means that there is no
0 hierarchical structure

e The default value is 32 if more than 127 nodes are used

Description

Set this environment variable to restrict the number of child management processes launched by the
mpiexec operation or by each pmi_ proxy management process.

I_MPI_HYDRA_PMI_AGGREGATE

Turn on/off aggregation of the PMI messages.

Syntax

I MPI HYDRA PMI AGGREGATE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable PMI message aggregation. This is the default value.
disable | no | off | 0 Disable PMI message aggregation.

Description

Set this environment variable to enable/disable aggregation of PMI messages.

I_MPI_HYDRA_IFACE

Set the network interface.

Syntax

I MPI_HYDRA IFACE=<arg>

Arguments

<arg> String parameter
<network interface> The network interface configured in your system

Description

Set this environment variable to specify the network interface to use. For example, use "-iface ib0", if the IP
emulation of your InfiniBand* network is configured on 1ib0.

30

Intel® MPI Developer Reference for Windows* OS

I_MPI_TMPDIR

Specify a temporary directory.

Syntax

I MPI TMPDIR=<arg>

Arguments

<arg> String parameter

<path> Temporary directory. The default value is /tmp
Description

Set this environment variable to specify a directory for temporary files.

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT

Specify whether to use the process-per-node placement provided by the job scheduler, or set explicitly.

Syntax

I MPI JOB RESPECT PROCESS PLACEMENT=<arg>
Arguments

<value> Binary indicator

enable | yes | on | 1 Usethe process placement provided by job scheduler. This is the default value
disable | no | off | 0 Do notuse the process placement provided by job scheduler

Description

If the variable is set, the Hydra process manager uses the process placement provided by job scheduler
(default). In this case the —-ppn option and its equivalents are ignored. If you disable the variable, the Hydra
process manager uses the process placement set with —-ppn or its equivalents.

I_MPI_PORT_RANGE

Specify a range of allowed port numbers.

Syntax

I MPI PORT RANGE=<range>

Arguments

<range> String parameter
<min>:<max> Allowed port range

Description

Set this environment variable to specify a range of the allowed port numbers for the Intel® MPI Library.

31

I_MPI_HYDRA_SERVICE_PORT

Set the port on which the hydra service is installed.

Syntax

I MPI HYDRA SERVICE PORT=<int>
Arguments

<int> Define the port number
Description

Environment Variable Reference

Set this environment variable to inform mpiexec, on which port the hydra service is installed. Use this

variable if you want to run a number of services on different ports.
To be able to run a number of hydra services, follow these steps:

1. Start cmd and run hydra services:

> start hydra service -p <portl> -d
> start hydra service -p <port2> -d

2. Setthe environment variable to choose the service to be used:

set I _MPI HYDRA SERVICE PORT="port2”

3. Runmpiexec as usual

I_MPI_SILENT_ABORT

Control abort warning messages.

Syntax

I MPI SILENT ABORT=<arg>
Argument

<arg>

enable | yes | on | 1

disable | no | off | O

Description

Binary indicator

Do not print abort warning message

Print abort warning message. This is the default value

Set this variable to disable printing of abort warning messages. The messages are printed in case of the

MPI_Abort call.

You can also disable printing of these messages with the -silent-abort option.

I_MPI_HYDRA_NAMESERVER

Specify the nameserver.

Syntax

32

Intel® MPI Developer Reference for Windows* OS

I MPI HYDRA NAMESERVER=<arg>

Argument

<arg> String parameter
<hostname>:<port> Set the hostname and the port.
Description

Set this variable to specify the nameserver for your MPI application in the following format:
I MPI HYDRA NAMESERVER = hostname:port

You can set the nameserver with the -nameserver option.

3.3. |_MPI_ADJUST Family Environment Variables

I_MPI_ADJUST_<opname>

Control collective operation algorithm selection.

Syntax

I MPI ADJUST <opname>="<algid>[:<conditions>][;<algid>:<conditions>[...]]"

Arguments

<algid> Algorithm identifier

>= 0 The default value of zero selects the optimized default settings

<conditions> A comma separated list of conditions. An empty list selects all message sizes and
process combinations

<1> Messages of size <1>

<1>-<m> Messages of size from <1>to <m>, inclusive

<1>@<p> Messages of size <1>and number of processes <p>

<1>-<m>@<p>-<g> Messages of size from <I>to <m>and number of processes from <p>to <g>, inclusive

Description

Set this environment variable to select the desired algorithm(s) for the collective operation <opname>under
particular conditions. Each collective operation has its own environment variable and algorithms.

Environment Variables, Collective Operations, and Algorithms

Environment Variable Collective Operation Algorithms

33

I MPI ADJUST ALLGATHER

I MPI ADJUST ALLGATHERV

I MPI ADJUST ALLREDUCE

I MPI_ADJUST ALLTOALL

I MPI ADJUST ALLTOALLV

MPI Allgather

MPI Allgatherv

MPI Allreduce

MPI Alltoall

MPI Alltoallv

Environment Variable Reference

=Y

A wWN

=Y

A wnN

A LN~

11.

12.

-

A wWwN

Recursive doubling
Bruck's
Ring

Topology aware
Gatherv + Bcast

Knomial

Recursive doubling
Bruck's
Ring

Topology aware
Gatherv + Bcast

Recursive doubling
Rabenseifner's
Reduce + Bcast

Topology aware
Reduce + Bcast

Binomial gather +
scatter

Topology aware
binominal gather +
scatter

Shumilin's ring
Ring

Knomial

. Topology aware SHM-

based flat

Topology aware SHM-
based Knomial

Topology aware SHM-
based Knary

Bruck's
Isend/Irecv + waitall
Pair wise exchange

Plum's

Isend/Irecv + waitall

Plum's

34

Intel® MPI Developer Reference for Windows* OS

I MPI_ADJUST ALLTOALLW MPI Alltoallw Isend/Irecv + waitall

I MPI ADJUST BARRIER MPI Barrier 1. Dissemination
2. Recursive doubling

3. Topology aware
dissemination

4. Topology aware
recursive doubling

5. Binominal gather +
scatter

6. Topology aware
binominal gather +
scatter

7. Topology aware SHM-
based flat

8. Topology aware SHM-
based Knomial

9. Topology aware SHM-
based Knary

I MPI ADJUST BCAST MPI Bcast Binomial
Recursive doubling

Ring

P DN =

Topology aware
binomial

v

Topology aware
recursive doubling

Topology aware ring
Shumilin's

Knomial

© © N o

Topology aware SHM-
based flat

10. Topology aware SHM-
based Knomial

11. Topology aware SHM-
based Knary

12. NUMA aware SHM-
based (SSE4.2)

13. NUMA aware SHM-
based (AVX2)

14. NUMA aware SHM-

35

I MPI ADJUST EXSCAN

I _MPI_ADJUST GATHER

I MPI_ADJUST GATHERV

I MPI_ADJUST REDUCE_SCATTER

I MPI ADJUST REDUCE

MPI Exscan

MPI Gather

MPI Gatherv

MPI Reduce scatter

MPI Reduce

Environment Variable Reference

o~ W DN =

based (AVX512)

Partial results
gathering

Partial results
gathering regarding
layout of processes

Binomial

Topology aware
binomial

Shumilin's
Binomial with
segmentation

Linear
Topology aware linear

Knomial

Recursive halving
Pair wise exchange
Recursive doubling
Reduce + Scatterv

Topology aware
Reduce + Scatterv

Shumilin's
Binomial
Topology aware
Shumilin's
Topology aware
binomial
Rabenseifner's

Topology aware
Rabenseifner's

Knomial

Topology aware SHM-
based flat

Topology aware SHM-
based Knomial

10. Topology aware SHM-

36

Intel® MPI Developer Reference for Windows* OS

I MPI ADJUST SCAN

I MPI_ADJUST_ SCATTER

I_MPI ADJUST SCATTERV

|_MPI_ADJUST_IALLGATHER

I_MPI_ADJUST_IALLGATHERV

|_MPI_ADJUST _IALLREDUCE

I_MPI_ADJUST_IALLTOALL

37

MPI Scan

MPI Scatter

MPI Scatterv

MPI_lallgather

MPI_lallgatherv

MPI_lallreduce

MPI_lalltoall

11.

N o v M w N o=

®

based Knary

Topology aware SHM-
based binomial

Partial results
gathering

Topology aware
partial results
gathering

Binomial

Topology aware
binomial

Shumilin's

Linear

Topology aware linear

Recursive doubling
Bruck’s

Ring

Recursive doubling
Bruck’s

Ring

Recursive doubling
Rabenseifner's
Reduce + Bcast
Ring (patarasuk)
Knomial

Binomial

Reduce scatter
allgather

SMP

Nreduce

Bruck’s
Isend/Irecv + Waitall

Pairwise exchange

|_MPI_ADJUST_IALLTOALLV
|_MPI_ADJUST _IALLTOALLW
|_MPI_ADJUST_IBARRIER

|_MPI_ADJUST_IBCAST

|_MPI_ADJUST_IEXSCAN

|_MPI_ADJUST_IGATHER

|_MPI_ADJUST_IGATHERV

|_MPI_ADJUST_IREDUCE_SCATTER

|_MPI_ADJUST_IREDUCE

|_MPI_ADJUST_ISCAN

|_MPI_ADJUST_ISCATTER

I_MPI_ADJUST_ISCATTERV

MPI_lalltoallv
MPI_lalltoallw
MPI_lbarrier

MPI_lbcast

MPI_lexscan

MPI_lgather

MPI_lgatherv

MPI_Ireduce_scatter

MPI_Ireduce

MPI_lIscan

MPI_Iscatter

MPI_lscatterv

Environment Variable Reference

Isend/Irecv + Waitall

Isend/Irecv + Waitall

Dissemination

1. Binomial

2. Recursive doubling
3. Ring

4, Knomial

5. SMP

6. Tree knominal

7. Treekary

1. Recursive doubling
2. SMP

1. Binomial

2. Knomial

1. Linear

2. Linear ssend

1. Recursive halving
2. Pairwise

3. Recursive doubling
1. Rabenseifner’s

2. Binomial

3. Knomial

1. Recursive Doubling
2. SMP

1. Binomial

2. Knomial

Linear

The message size calculation rules for the collective operations are described in the table. In the following
table, "n/a" means that the corresponding interval <1I>-<m>should be omitted.

38

Intel® MPI Developer Reference for Windows* OS

Message Collective Functions

Collective Function
MPI Allgather
MPI Allgatherv
MPI Allreduce
MPI Alltoall

MPI Alltoallv
MPI Alltoallw
MPI Barrier

MPI Bcast
MPI Exscan

MPI Gather

MPI Gatherv

MPI Reduce_ scatter
MPI Reduce
MPI Scan

MPI Scatter

MPI Scatterv

Examples

Message Size Formula
recv_count*recv_type size

total recv count*recv_type size
count*type size
send_count*send type size

n/a
n/a
n/a

count*type size
count*type size

recv_count*recv_type sizeifMPI IN PLACE is used,
otherwise send count*send type size

n/a

total recv _count*type size
count*type size
count*type size

send count*send type sizeif MPI IN PLACE is used,
otherwise recv_count*recv_type size

n/a

Use the following settings to select the second algorithm for MPI Reduce operation:

I MPI ADJUST REDUCE=2

Use the following settings to define the algorithms for MPI Reduce scatter operation:
I _MPI_ADJUST REDUCE SCATTER="4:0-100,5001-10000;1:101-3200,2:3201-5000; 3"

In this case. algorithm 4 is used for the message sizes between 0 and 100 bytes and from 5001 and 10000
bytes, algorithm 1 is used for the message sizes between 101 and 3200 bytes, algorithm 2 is used for the
message sizes between 3201 and 5000 bytes, and algorithm 3 is used for all other messages.

I_MPI_ADJUST_<opname>_LIST

Syntax

I MPI ADJUST <opname> LIST=<algidl>[-<algid2>][,<algid3>][,<algid4>-<algid5>]

39

Environment Variable Reference

Description

Set this environment variable to specify the comma-separated list of ranges. The list has to be ordered.

I_MPI_COLL_INTRANODE

Syntax

I MPI COLL INTRANODE=<mode>

Arguments

<mode> Intranode collectives type

pt2pt Use only point-to-point communication-based collectives
shm Enables shared memory collectives. This is the default value
Description

Set this environment variable to switch intranode communication type for collective operations. If there is
large set of communicators, you can switch off the SHM-collectives to avoid memory overconsumption.

I_MPI_COLL_INTRANODE_SHM_THRESHOLD

Syntax
I MPI COLL INTRANODE SHM THRESHOLD=<nbytes>

Arguments

<nbytes> Define the maximal data block size processed by shared memory collectives.
>0 Use the specified size. The default value is 16384 bytes.

Description

Set this environment variable to define the size of shared memory area available for each rank for data
placement. Messages greater than this value will not be processed by SHM-based collective operation, but will
be processed by point-to-point based collective operation. The value must be a multiple of 4096.

I_MPI_COLL_EXTERNAL

Syntax

I MPI COLL EXTERNAL=<arg>
Arguments

<arg> Binary indicator.

enable [yes|on |1 Enable the external collective operations functionality.
disable | no | off |0 | Disable the external collective operations functionality. This is the default value.
Description

40

Intel® MPI Developer Reference for Windows* OS

Set this environment variable to enable external collective operations. The mechanism allows to enable
HCOLL. The functionality enables the following collective operations: I MPI ADJUST ALLREDUCE=24,
I MPI _ADJUST BARRIER=11, I MPI ADJUST BCAST=16, I MPI ADJUST REDUCE=13,

I MPI ADJUST ALLGATHER=6, I MPI ADJUST ALLTOALL=5, I MPI ADJUST ALLTOALLV=5.

I_MPI_CBWR

Control reproducibility of floating-point operations results across different platforms, networks, and
topologies in case of the same number of processes.

Syntax

I MPI CBWR=<arg>

Arguments

<arg> CBWR Description

compatibility
mode

0 None Do not use CBWR in a library-wide mode. CNR-safe communicators may be created
with MPI_Comm_dup_with_info explicitly. This is the default value.

1 Weak mode Disable topology aware collectives. The result of a collective operation does not
depend on the rank placement. The mode guarantees results reproducibility across
different runs on the same cluster (independent of the rank placement).

2 Strict mode Disable topology aware collectives, ignore CPU architecture, and interconnect
during algorithm selection. The mode guarantees results reproducibility across
different runs on different clusters (independent of the rank placement, CPU
architecture, and interconnection)

Description

Conditional Numerical Reproducibility (CNR) provides controls for obtaining reproducible floating-point
results on collectives operations. With this feature, Intel MPI collective operations are designed to return the
same floating-point results from run to run in case of the same number of MPI ranks.

Control this feature with the |_MPI_CBWR environment variable in a library-wide manner, where all collectives
on all communicators are guaranteed to have reproducible results. To control the floating-point operations
reproducibility in a more precise and per-communicator way, pass the {“|_MPI_CBWR?”", “yes"} key-value pair to
the MPI_Comm_dup_with_info call.

NOTE

Setting the |_MPI_CBWR in a library-wide mode using the environment variable leads to performance penalty.

CNR-safe communicators created using MPI_Comm_dup_with_info always work in the strict mode. For
example:
MPI Info hint;

MPI Comm cbwr safe world, cbwr safe copy;

MPI Info create(&hint);

41

Environment Variable Reference
MPI Info set (hint, “I _MPI CBWR”, “yes”);
MPI Comm dup with info (MPI COMM WORLD, hint, & cbwr safe world);

MPI Comm dup (cbwr safe world, & cbwr safe copy);

In the example above, both cbwr_safe_world and cbwr_safe_copy are CNR-safe. Use cbwr_safe_world and its
duplicates to get reproducible results for critical operations.

Note that MPI_COMM_WORLD itself may be used for performance-critical operations without reproducibility
limitations.

3.4. Tuning Environment Variables

3.4.1. Tuning Environment Variables

I_MPI_TUNING_MODE
Select the tuning method.

Syntax

I MPI TUNING MODE=<arg>

Argument

<arg> Description

none Disable tuning modes. This is the default value.
auto Enable autotuner.

auto:application Enable autotuner with application focused strategy (alias for auto).

auto:cluster Enable autotuner without application specific logic. This is typically performed with
the help of benchmarks (for example, IMB-MPI1) and proxy applications.

Description

Set this environment variable to enable the autotuner functionality and set the autotuner strategy.

I_MPI_TUNING_BIN
Specify the path to tuning settings in a binary format.

Syntax
I MPI TUNING BIN=<path>

Argument

<path> A path to a binary file with tuning settings. By default, Intel® MPI Library uses the binary tuning file
located at <$I MPI ROOT/intel64/etc>.

Description

Set this environment variable to load tuning settings in a binary format.

42

Intel® MPI Developer Reference for Windows* OS

I_MPI_TUNING_BIN_DUMP

Specify the file for storing tuning settings in a binary format.

Syntax
I MPI TUNING BIN DUMP=<filename>

Argument

<filename> A file name of a binary that stores tuning settings. By default, the path is not specified.

Description

Set this environment variable to store tuning settings in a binary format.

I_MPI_TUNING
Load tuning settings in a JSON format.

Syntax
I MPI TUNING=<path>

Argument

<path> A path to a JSON file with tuning settings.

Description

Set this environment variable to load tuning settings in a JSON format.

NOTE
The tuning settings in the JSON format are produced by the mpitune utility.

By default, Intel® MPI library loads tuning settings in a binary format. If it is not possible, Intel MPI Library loads
the tuning file in a JSON format specified through the I MPI TUNING environment variable.

Thus, to enable JSON tuning, turn off the default binary tuning: I MPI BIN="".If itis not possible to load
tuning settings from a JSON file and in a binary format, the default tuning values are used.

You do not need to turn off binary or JSON tuning settings if youuse I MPI ADJUST family environment
variables. The algorithms specified with I MPI ADJUST environment variables always have priority over
binary and JSON tuning settings.

See Also

Autotuning

Environment Variables for Autotuning

3.4.2. Autotuning

Autotuning

Tuning greatly depends on specification of the platform it is performed on. We carefully verify the tuning
parameters on a limited set of platforms and provide the most effective ways for their tuning. A full list of the
platforms supported with the I MPI TUNING MODE environment variable is available in Tuning Environment

43

Environment Variable Reference

Variables. The variable has no effect on the rest of platfroms. For such platforms, use | MPI_TUNING_AUTO
Family Environment Variables directly to find the best settings.

The autotuner functionality allows to automatically find the best algorithms for collective operations . The
autotuner search space can be modified by I MPI ADJUST <opname> LIST variables from |_MPI_ADJUST
Family Environment Variables.

The collectives that are currently available for autotuning: MPI Allreduce, MPI Bcast, MPI Barrier,
MPI Reduce, MPI Gather, MPI Scatter, MPI Alltoall, MPI Allgatherv,
MPI Reduce scatter block, MPI Scan, MPI Exscan

To get started with the tuner, follow these steps:

1. Launch the application with the autotuner enabled and specify the dump file, which stores results:

I_MPI_TUNING MODE=auto
I MPI_TUNING BIN DUMP=<tuning results.dat>

2. Launch the application with the tuning results generated at the previous step:

I MPI TUNING BIN=<tuning results.dat>

3. Oruse the -tune Hydra option.
4. If you experience performance issues, see Environment Variables for Autotuning.
For example:

1.

export I MPI TUNING MODE=auto

export I MPI TUNING AUTO SYNC=1

export I MPI TUNING AUTO ITER NUM=5

export I MPI TUNING BIN DUMP=./tuning results.dat

mpirun -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

vV V.V VYV

3.

> export I MPI TUNING BIN=./tuning results.dat
> mpirun -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE

To tune collectives on a communicator identified with the help of Application Performance Snapshot (APS),
execute the following variable at step 1: I_MPI TUNING AUTO COMM LIST=comm id 1, .. , comm_ id n.

See Also

Environment Variables for Autotuning

I_MPI_TUNING_AUTO Family Environment Variables

I_MPI_TUNING_AUTO_STORAGE_SIZE

Define size of the per-communicator tuning storage.

44

Intel® MPI Developer Reference for Windows* OS

Syntax
I MPI TUNING AUTO STORAGE SIZE=<size>

Argument

<size> Specify size of the communicator tuning storage. The default size of the storage is 512 Kb.

Description

Set this environment variable to change the size of the communicator tuning storage.

I_MPI_TUNING_AUTO_ITER_NUM

Specify the number of autotuner iterations.

Syntax

I MPI TUNING AUTO ITER NUM=<number>

Argument

<number> Define the number of iterations. By default, it is 1.
Description

Set this environment variable to specify the number of autotuner iterations. The greater iteration number
produces more accurate results.

NOTE

To check if all possible algorithms are iterated, make sure that the total number of collective invocations for a
particular message size in a target application is at least equal the value of I_MPI TUNING AUTO ITER NUM
multiplied by the number of algorithms.

I_MPI_TUNING_AUTO_WARMUP_ITER_NUM

Specify the number of warmup autotuner iterations.

Syntax

I MPI TUNING AUTO WARMUP ITER NUM=<number>

Argument

<number> Define the number of iterations. By default, it is 1.
Description

Set this environment variable to specify the number of autotuner warmup iterations. Warmup iterations do not
impact autotuner decisions and allow to skip additional iterations, such as infrastructure preparation.

I_MPI_TUNING_AUTO_SYNC

Enable the internal barrier on every iteration of the autotuner.

Syntax
I MPI TUNING AUTO SYNC=<arg>

Argument

45

Environment Variable Reference

<arg> Binary indicator

enable | yes | on | 1 Alignthe autotuner with the IMB measurement approach.

disable | no | off | Do not use the barrier on every iteration of the autotuner. This is the default
0 value.
Description

Set this environment variable to control the IMB measurement logic. Setting this variable to 1 may lead to
overhead due to an additional MPI_Barrier call.

I_MPI_TUNING_AUTO_COMM_LIST

Control the scope of autotuning.

Syntax

I MPI TUNING AUTO COMM LIST=<comm id 1, ..., comm id n>
Argument

<comm id n, ...> Specify communicators to be tuned.
Description

Set this environment variable to specify communicators to be tuned using their unique id. By default, the
variable is not specified. In this case, all communicators in the application are involved into the tuning process.

NOTE

To get the list of communicators available for tuning, use the Application Performance Snapshot (APS) tool,
which supports per communicator profiling starting the 2019 Update 4 release.

I_MPI_TUNING_AUTO_COMM_DEFAULT

Mark all communicators with the default value.

Syntax

I MPI TUNING AUTO COMM DEFAULT=<arg>

Argument

<arg> Binary indicator

enable | yes | on | 1 Mark communicators.

disable | no | off | O Do not mark communicators. This is the default value.
Description

Set this environment variable to mark all communicators in an application with the default value. In this case,
all communicators will have the identical default comm_id equal to -1.

46

https://software.intel.com/sites/products/snapshots/application-snapshot/

Intel® MPI Developer Reference for Windows* OS

I_MPI_TUNING_AUTO_COMM_USER

Enable communicator marking with a user value.

Syntax

I MPI TUNING AUTO COMM USER=<arg>

Argument

<arg> Binary indicator

enable | yes | on | 1 Enable marking of communicators.

disable | no | off | 0 Disable marking of communicators. This is the default value.
Description

Set this environment variable to enable communicator marking with a user value. To mark a communicator in
your application, use the MPI_Info object for this communicator that contains a record with the comm_id key.
The key must belong the 0...UINT64 MAX range.

I_MPI_TUNING_AUTO_ITER_POLICY

Control the iteration policy logic.

Syntax

I MPI TUNING AUTO ITER POLICY=<arg>
Argument

<arg> Binary indicator

enable | yes | on Reducethe number of iterations with a message size increase after 64Kb (by half).
| 1 This is the default value.

disable | no | Usethe I MPI TUNING AUTO ITER NUM value. This value affects warmup
off | O iterations.
Description

Set this environment variable to control the autotuning iteration policy logic.

I_MPI_TUNING_AUTO_ITER_POLICY_ THRESHOLD

Control the message size limit forthe I MPI TUNING AUTO ITER POLICY environment variable.

Syntax

I MPI TUNING AUTO ITER POLICY THRESHOLD=<arg>
Argument

<arg> Define the value. By default, it is 64KB.
Description

47

Environment Variable Reference

Set this environment variable to control the message size limit for the autotuning iteration policy logic
(I MPI TUNING AUTO ITER POLICY).

I_MPI_TUNING_AUTO_POLICY

Choose the best algorithm identification strategy.

Syntax
I MPI TUNING AUTO POLICY=<arg>

Argument

<arg> Description

max Choose the best algorithm based on a maximum time value. This is the default value.
min Choose the best algorithm based on a minimum time value.

avg Choose the best algorithm based on an average time value.

Description

Set this environment variable to control the autotuning strategy and choose the best algorithm based on the
time value across ranks involved into the tuning process.

3.5. Main Thread Pinning

Use this feature to pin a particular MPI thread to a corresponding CPU within a node and avoid undesired
thread migration. This feature is available on operating systems that provide the necessary kernel interfaces.

3.5.1. Processor Identification

The following schemes are used to identify logical processors in a system:
e System-defined logical enumeration

e Topological enumeration based on three-level hierarchical identification through triplets
(package/socket, core, thread)

The number of a logical CPU is defined as the corresponding position of this CPU bit in the kernel affinity bit-
mask. Use the cpuinfo utility, provided with your Intel MPI Library installation to find out the logical CPU
numbers.

The three-level hierarchical identification uses triplets that provide information about processor location and
their order. The triplets are hierarchically ordered (package, core, and thread).

See the example for one possible processor numbering where there are two sockets, four cores (two cores per
socket), and eight logical processors (two processors per core).

NOTE

Logical and topological enumerations are not the same.

Logical Enumeration
0 4 1 5 2 6 3 7

48

Intel® MPI Developer Reference for Windows* OS

Hierarchical Levels

Thread 0 1 0 1 0 1 0 1

Topological Enumeration
0 1 2 3 4 5 6 7

Use the cpuinfo utility to identify the correspondence between the logical and topological enumerations. See
Processor Information Utility for more details.

3.5.2. Default Settings

If you do not specify values for any main thread pinning environment variables, the default settings below are
used. For details about these settings, see Environment Variables and Interoperability with OpenMP API.

e I MPI PIN=on

e I MPI PIN MODE=pm

e I MPI PIN RESPECT CPUSET=on

e I MPI PIN RESPECT HCA=on

e I MPI PIN CELL=unit

e I MPI PIN DOMAIN=auto:compact
e I MPI PIN ORDER=compact

3.5.3. Environment Variables for Main Thread Pinning

I_MPI_PIN
Turn on/off main thread pinning.

Syntax
I MPI PIN=<arg>

Arguments

<arg> Binary indicator
enable | yes | on | 1 Enable main thread pinning. This is the default value
disable | no | off | O Disable main thread pinning

Description

Set this environment variable to control the main thread pinning feature of the Intel® MPI Library.

49

Environment Variable Reference

I_MPI_PIN_PROCESSOR_LIST
(I_MPI_PIN_PROCS)

Define a processor subset and the mapping rules for MPI main threads within this subset.

Syntax

I MPI_PIN PROCESSOR LIST=<value>

The environment variable value has the following syntax forms:
1.<proclist>

2. [<procset>][:[grain=<grain>]|[,shift=<shift>][,preoffset= <preoffset>
] [,postoffset=<postoffset>]

3. [<procset>] [:map= <map>]

The following paragraphs provide detail descriptions for the values of these syntax forms.

NOTE

The postoffset keyword has offset alias.

NOTE
The second form of the pinning procedure has three steps:
1. Cyclic shift of the source processor list on preoffset*grain value.
2. Round robin shift of the list derived on the first step on shift*grain value.

3. Cyclic shift of the list derived on the second step on the postoffset*grain value.

NOTE

The grain, shift,preoffset,and postoffset parameters have a unified definition style.

This environment variable is available for both Intel® and non-Intel microprocessors, but it may perform
additional optimizations for Intel microprocessors than it performs for non-Intel microprocessors.

Syntax

I MPI PIN PROCESSOR LIST=<proclist>

Arguments

<proclist> A comma-separated list of logical processor numbers and/or ranges of processors. The main
thread with the i-th rank is pinned to the i-th processor in the list. The number should not
exceed the amount of processors on a node.

<1> Processor with logical number <1> .
<1>-<m> Range of processors with logical numbers from <1> to <m> .
<k>,<1>-<m> Processors <k> ,as well as <1> through <m> .

Syntax

I MPI PIN PROCESSOR LIST=[<procset>][:[grain=<grain>][,shift=<shift>][,preoffset=<p
reoffset>] [,postoffset=<postoffset>]

50

Intel® MPI Developer Reference for Windows* OS

Arguments

<procset>

all

allcores

allsocks

<grain>

<shift>

Specify a processor subset based on the topological numeration. The default value is
allcores.

All logical processors. Specify this subset to define the number of CPUs on a node.

All cores (physical CPUs). Specify this subset to define the number of cores on a node. This is
the default value.

If Intel® Hyper-Threading Technology is disabled, allcores equalsto all.

All packages/sockets. Specify this subset to define the number of sockets on a node.

Specify the pinning granularity cell for a defined <procset> . The minimal <grain> value
is a single element of the <procset> . The maximal <grain> value is the number of
<procset> elementsin a socket. The <grain> value must be a multiple of the
<procset> value. Otherwise, the minimal <grain> value is assumed. The default value is
the minimal <grain> value.

Specify the granularity of the round robin scheduling shift of the cells for the <procset> .
<shift> is measured in the defined <grain> units. The <shift> value must be positive
integer. Otherwise, no shift is performed. The default value is no shift, which is equal to 1
normal increment.

<preoffset> Specify the cyclic shift of the processor subset <procset> defined before the round robin

shifting on the <preoffset> value. The value is measured in the defined <grain> units.
The <preoffset> value must be non-negative integer. Otherwise, no shift is performed.
The default value is no shift.

<postoffset> Specify the cyclic shift of the processor subset <procset> derived after round robin

shifting on the <postoffset> value. The value is measured in the defined <grain> units.
The <postoffset> value must be non-negative integer. Otherwise no shift is performed.
The default value is no shift.

The following table displays the values for <grain>, <shift>, <preoffset>,and <postoffset> options:

<n>

fine

core

cachel

cache?2

cache3

51

Specify an explicit value of the corresponding parameters. <n> is non-negative integer.

Specify the minimal value of the corresponding parameter.

Specify the parameter value equal to the amount of the corresponding parameter units
contained in one core.

Specify the parameter value equal to the amount of the corresponding parameter units that
share an L1 cache.

Specify the parameter value equal to the amount of the corresponding parameter units that
share an L2 cache.

Specify the parameter value equal to the amount of the corresponding parameter units that

Environment Variable Reference

share an L3 cache.

cache The largest value among cachel, cache?2, and cache3.
socket | Specify the parameter value equal to the amount of the corresponding parameter units
sock contained in one physical package/socket.

half | mid Specify the parameter value equal to socket/2.

third Specify the parameter value equal to socket/3.
quarter Specify the parameter value equal to socket /4.
octavo Specify the parameter value equal to socket/8.
Syntax

I MPI PIN PROCESSOR LIST=[<procset>][:map=<map>]

Arguments

<map> The mapping pattern used for main thread placement.
bunch The main threads are mapped as close as possible on the sockets.

scatter The main threads are mapped as remotely as possible so as not to share common resources: FSB,
caches, and core.

spread The main threads are mapped consecutively with the possibility not to share common resources.

Description

Setthe I MPI PIN PROCESSOR LIST environment variable to define the processor placement. To avoid
conflicts with different shell versions, the environment variable value may need to be enclosed in quotes.

NOTE

This environment variable is valid only if I MPI PIN is enabled.

TheI MPI PIN PROCESSOR_LIST environment variable has the following different syntax variants:

e Explicit processor list. This comma-separated list is defined in terms of logical processor numbers. The
relative node rank of a main thread is an index to the processor list such that the i-th main thread is
pinned on i-th list member. This permits the definition of any main thread placement on the CPUs.

For example, main thread mapping for I MPI PIN PROCESSOR LIST=p0,pl,p2,...,pnisas

follows:
Rank on a node 0 1 2 n-1 N
Logical CPU pO p1 p2 pn-1 Pn

e grain/shift/offset mapping. This method provides cyclic shift of a defined grain along the
processor list with steps equal to shift*grain and a single shift on of fset*grain at the end. This
shifting action is repeated shift times.

52

Intel® MPI Developer Reference for Windows* OS

For example: grain = 2 logical processors, shift = 3 grains, offset = 0.
Legend:
gray - MPI main thread grains
A) . - processor grains chosen on the 15 pass
B) cyan - processor grains chosen on the 2" pass
Q) - - processor grains chosen on the final 3" pass
D) Final map table ordered by MPI ranks

A)
01 23 2n-2 2n-1
- 23 45 - 89 1011 - 6n-4 6n-3 6n-2 6n-1
B)
01 2n 2n+1 23 2n+2 2n-2 2n-1 4n-2 4n-1
2n+3
0
01 2n2n+1 4n4n+1 23 2n+2 4n+2 2n-2 2n-1 4n-2 4n-1 6n-2 6n-1

2n+3 4n+3

- - B e e e

D)

01 23 .. 2n-22n-1 2n 2n+2 4n-2 4n-1 4n 4n+1 4n+2 ... 6n-2
2n+1 2n+3 4n+3 6n-1

¢ Predefined mapping scenario. In this case popular main thread pinning schemes are defined as
keywords selectable at runtime. There are two such scenarios: bunch and scatter.

In the bunch scenario the main threads are mapped proportionally to sockets as closely as possible. This
mapping makes sense for partial processor loading. In this case the number of main threads is less than the
number of processors.

In the scatter scenario the main threads are mapped as remotely as possible so as not to share common
resources: FSB, caches, and cores.

In the example, there are two sockets, four cores per socket, one logical CPU per core, and two cores per
shared cache.

Legend:
gray - MPI main threads

cy . - 1** socket processors

53

Environment Variable Reference

. . - 2" socket processors

Same color defines a processor pair sharing a cache

0 1 2 3 4
bunch scenario for 5 processes

0 4 2 6 1 5 3 7
scatter scenario for full loading

Examples

To pin the main thread to CPUO and CPU3 on each node globally, use the following command:

> mpiexec -genv I MPI PIN PROCESSOR LIST=0,3 -n <# of main
threads>
<executable>

To pin the main thread to different CPUs on each node individually (CPUO and CPU3 on host1 and CPUOQ,
CPU1 and CPU3 on host?2), use the following command:

> mpiexec -host hostl -env I MPI PIN PROCESSOR LIST=0,3 -n <# of
main threads> <executable> :°

-host host2 -env I MPI PIN PROCESSOR LIST=1,2,3 -n <# of main
threads> <executable>

To print extra debug information about the main thread pinning, use the following command:

> mpiexec -genv I MPI DEBUG=4 -m -host hostl -env
I MPI PIN PROCESSOR LIST=0,3 -n <# of main threads> <executable> :"

-host host2 -env I MPI PIN PROCESSOR LIST=1,2,3 -n <# of main
threads> <executable>

3.5.4. Interoperability with OpenMP* API

I_MPI_PIN_DOMAIN

Intel® MPI Library provides an additional environment variable to control main thread pinning for hybrid
MPI/OpenMP* applications. This environment variable is used to define a number of non-overlapping subsets
(domains) of logical processors on a node, and a set of rules on how MPI processes are bound to these
domains by the following formula: one MPI process per one domain. See the picture below.

54

Intel® MPI Developer Reference for Windows* OS

Figure 1 Domain Example

Damain 0

. - logical CPU O - MP| process sl - binding

Each MPI process can create a number of children threads for running within the corresponding domain. The
process threads can freely migrate from one logical processor to another within the particular domain.

Ifthe I MPI PIN DOMAIN environment variable is defined, thenthe I MPI PIN PROCESSOR LIST
environment variable setting is ignored.

Ifthe I MPI PIN DOMAIN environment variable is not defined, then MPI main threads are pinned according
to the current value of the T MPI PIN PROCESSOR LIST environment variable.

The I MPI PIN DOMAIN environment variable has the following syntax forms:
e Domain description through multi-core terms <mc-shape>
e Domain description through domain size and domain member layout <size>[:<layout>]
e Explicit domain description through bit mask <masklist>

The following tables describe these syntax forms.

Multi-core Shape

I MPI PIN DOMAIN=<mc-shape>

<mc- Define domains through multi-core terms.
shape>
core Each domain consists of the logical processors that share a particular core. The number of

domains on a node is equal to the number of cores on the node.

socket | Each domain consists of the logical processors that share a particular socket. The number of

sock domains on a node is equal to the number of sockets on the node. This is the recommended
value.

numa Each domain consists of the logical processors that share a particular NUMA node. The number

of domains on a machine is equal to the number of NUMA nodes on the machine.
node All logical processors on a node are arranged into a single domain.

cachel Logical processors that share a particular level 1 cache are arranged into a single domain.

55

Environment Variable Reference

cache? Logical processors that share a particular level 2 cache are arranged into a single domain.
cache3 Logical processors that share a particular level 3 cache are arranged into a single domain.
cache The largest domain among cachel, cache?2, and cache3 is selected.

NOTE

If Cluster on Die is disabled on a machine, the number of NUMA nodes equals to the number of sockets. In
this case, pinning for I MPI PIN DOMAIN = numa is equivalent to pinning for I MPI PIN DOMAIN =
socket.

Explicit Shape
I MPI PIN DOMAIN=<size>[:<layout>]

<size> Define a number of logical processors in each domain (domain size)

omp The domain size is equal to the OMP_NUM THREADS environment variable value. If the
OMP NUM THREADS environment variable is not set, each node is treated as a separate domain.

auto The domain size is defined by the formula size=#cpu/#proc, where #cpu is the number of logical
processors on a node, and #proc is the number of the MPI processes started on a node

<n> The domain size is defined by a positive decimal number <n>

<layout> | Ordering of domain members. The default value is compact

platform ' Domain members are ordered according to their BIOS numbering (platform-depended
numbering)

compact Domain members are located as close to each other as possible in terms of common resources
(cores, caches, sockets, and so on). This is the default value

scatter Domain members are located as far away from each other as possible in terms of common
resources (cores, caches, sockets, and so on)

Explicit Domain Mask

I MPI PIN DOMAIN=<masklist>

<masklist> | Define domains through the comma separated list of hexadecimal numbers (domain masks)

[mi,...,my] For<masklist>, eachm; is a hexadecimail bit mask defining an individual domain. The
following rule is used: the it" logical processor is included into the domain if the
corresponding mi value is set to 1. All remaining processors are put into a separate domain.
BIOS numbering is used.

NOTE

To ensure that your configuration in <masklist> is parsed correctly, use square brackets to

56

Intel® MPI Developer Reference for Windows* OS

enclose the domains specified by the <mask1list>. For example:
I MPI_PIN DOMAIN=[55,aa]

NOTE

These options are available for both Intel® and non-Intel microprocessors, but they may perform additional
optimizations for Intel microprocessors than they perform for non-Intel microprocessors.

NOTE

To pin OpenMP* processes or threads inside the domain, the corresponding OpenMP feature (for example, the
KMP_AFFINITY environment variable for Intel® compilers) should be used.

See the following model of a symmetric multiprocessing (SMP) node in the examples:

Figure 2 Model of a Node

Socket 0 Socket 1

The figure above represents the SMP node model with a total of 8 cores on 2 sockets. Intel® Hyper-Threading
Technology is disabled. Core pairs of the same color share the L2 cache.

Core 3 Core 7

57

Environment Variable Reference

Figure 3mpiexec -n 2 -env I_MPI_PIN DOMAIN socket test.exe

Socket 0

Socket 1

Core 3

Core7

Rank O

Rank 1

In Figure 3, two domains are defined according to the number of sockets. Process rank O can migrate on all

cores on the O-th socket. Process rank 1 can migrate on all cores on the first socket.

Figure 4 mpiexec -n 4 -env I_MPI_PIN DOMAIN cache2 test.exe

Socket O

Socket 1

Rank O

Core O Core 4
Rank 1

Core 1 Core 5

Core 3 Core 7

Rank 2

Rank 3

In Figure 4, four domains are defined according to the amount of common L2 caches. Process rank O runs on
cores {0,4} that share an L2 cache. Process rank 1 runs on cores {1,5} that share an L2 cache as well, and so on.

58

Intel® MPI Developer Reference for Windows* OS

Figure 5mpiexec -n 2 -env I_MPI_PIN DOMAIN 4:platform test.exe

Socket O

Socket 1

Core 3 Core 7

Rank O Rank 1

In Figure 5, two domains with size=4 are defined. The first domain contains cores {0,1,2,3}, and the second
domain contains cores {4,5,6,7}. Domain members (cores) have consecutive numbering as defined by the

platform option.
Figure 6 mpiexec -n 4 -env I_MPI_ PIN DOMAIN auto:scatter test.exe

o

- - Core 3 Core 7 Socket 1

Rank O Rank 2 Rank 1 Rank 3

59

Environment Variable Reference
In Figure 6, domain size=2 (defined by the number of CPUs=8 / number of processes=4), scatter layout.
Four domains {0,2}, {1,3}, {4,6}, {5,7} are defined. Domain members do not share any common resources.

Figure 7 set OMP_NUM_THREADS=2
mpiexec -n 4 -env I_MPI PIN DOMAIN omp:platform test.exe

Socket O Socket 1

- -

Rank O Rank 2 Rank 1 Rank 3

In Figure 7, domain size=2 (defined by OMP NUM THREADS=2), platform layout. Four domains {0,1}, {2,3},
{4,5}, {6,7} are defined. Domain members (cores) have consecutive numbering.
Figure 8 mpiexec -n 2 -env I_MPI PIN DOMAIN [55,aa] test.exe

e

- - - — o

Rank O Rank 1

In Figure 8 (the example for I MPI PIN DOMAIN=<masklist>), the first domain is defined by the 55 mask. It
contains all cores with even numbers {0,2,4,6}. The second domain is defined by the AA mask. It contains all
cores with odd numbers {1,3,5,7}.

I_MPI_PIN_ORDER

Set this environment variable to define the mapping order for MPI processes to domains as specified by the
I MPI_PIN DOMAIN environment variable.

Syntax

60

Intel® MPI Developer Reference for Windows* OS

I MPI_PIN ORDER=<order>

Arguments

<order> Specify the ranking order

range The domains are ordered according to the processor's BIOS numbering. This is a platform-
dependent numbering

scatter The domains are ordered so that adjacent domains have minimal sharing of common resources

compact The domains are ordered so that adjacent domains share common resources as much as possible.
This is the default value

spread The domains are ordered consecutively with the possibility not to share common resources

bunch The processes are mapped proportionally to sockets and the domains are ordered as close as
possible on the sockets

Description

The optimal setting for this environment variable is application-specific. If adjacent MPI processes prefer to
share common resources, such as cores, caches, sockets, FSB, use the compact or bunch values. Otherwise,
use the scatter or spread values. Use the range value as needed. For detail information and examples
about these values, see the Arguments table and the Example section of I _MPI PIN ORDER in this topic.

The options scatter, compact, spread and bunch are available for both Intel® and non-Intel
microprocessors, but they may perform additional optimizations for Intel microprocessors than they perform
for non-Intel microprocessors.

Examples

For the following configuration:
e Two socket nodes with four cores and a shared L2 cache for corresponding core pairs.
e 4 MPI processes you want to run on the node using the settings below.

Compact order:

I MPI PIN DOMAIN=2
I MPI PIN ORDER=compact

61

Figure 9 Compact Order Example

Rank O Rank 1 Rank 3

Rank 2

Scatter order:

I MPI PIN DOMAIN=2
I MPI PIN ORDER=scatter

Figure 10 Scatter Order Example

Rank O Rank 2

Spread order:

I MPI PIN DOMAIN=2
I MPI PIN ORDER=spread

Figure 11 Spread Order Example

Rank O Rank 1

Bunch order:

Environment Variable Reference

CPU1 CPU3 CPU5 CPU7
CPU9 CPU11 CPU13 CPU15

Rank 1 Rank 3

Rank 2 Rank 3

62

Intel® MPI Developer Reference for Windows* OS

I MPI_PIN DOMAIN=2
I MPI PIN ORDER=bunch

Figure 12 Bunch Order Example

Rank O Rank 1 Rank 2 Rank 3

CPU4 CPUB CPUS5 CPU7
CPU12 CPU14 CPU13 CPU15

3.6. Environment Variables for Fabrics Control

3.6.1. Communication Fabrics Control

I_MPI_FABRICS

Select the particular fabrics to be used.

Syntax
I _MPI FABRICS=ofi | shm

Arguments

<fabric> Define a network fabric.
shm Shared memory transport (used for intra-node communication only).

ofi OpenFabrics Interfaces* (OFIl)-capable network fabrics, such as Intel® True Scale Fabric, Intel®
Omni-Path Architecture, InfiniBand*, and Ethernet (through OFI API).

Description

Set this environment variable to select a specific fabric combination.

NOTE

This option is not applicable to s1urm and pdsh bootstrap servers.

3.6.2. OFI*-capable Network Fabrics Control

I_MPI_OFI_DRECV
Control the capability of the direct receive in the OFI fabric.

Syntax

63

Environment Variable Reference

I MPI_OFI DRECV=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable direct receive. This is the default value
disable | no | off | O Disable direct receive

Description

Use the direct receive capability to block MPI Recv calls only. Before using the direct receive capability,
ensure that you use it for single-threaded MPI applications and check if you have selected OFI as the network
fabric by setting I MPI FABRICS=ofi.

|_MPI_OFI_LIBRARY_INTERNAL
Control the usage of libfabric* shipped with the Intel® MPI Library.

Syntax
I MPI OFI LIBRARY INTERNAL=<arg>

Arguments

<arg> Binary indicator
enable | yes | on | 1 Use libfabric from the Intel MPI Library
disable | no | off | 0 Do not use libfabric from the Intel MPI Library

Description

Set this environment variable to disable or enable usage of libfabric from the Intel MPI Library. The variable
must be set before sourcing the mpivars.bat script.

Example

> set I MPI OFI LIBRARY INTERNAL=1
> call <installdir>\intel64\bin\mpivars.bat

Setting this variable is equivalent to passing the —ofi internal option to the mpivars.bat script.

For more information, refer to the Intel® MPI Library Developer Guide, section Running Applications >
Libfabric* Support.

3.7. Environment Variables for Memory Policy
Control

Intel® MPI Library supports non-uniform memory access (NUMA) nodes with high-bandwidth (HBW) memory
(MCDRAM) on Intel® Xeon Phi™ processors (codenamed Knights Landing). Intel® MPI Library can attach
memory of MPI processes to the memory of specific NUMA nodes. This section describes the environment
variables for such memory placement control.

64

Intel® MPI Developer Reference for Windows* OS

I_MPI_HBW_POLICY

Set the policy for MPI process memory placement for using HBW memory.

Syntax
I MPI HBW POLICY=<user memory policy>[,<mpi memory policy>][,<win_allocate policy>]
In the syntax:

e <user memory policy>-memory policy used to allocate the memory for user applications
(required)

e <mpi memory policy>-memory policy used to allocate the internal MPI memory (optional)

e <win allocate policy>-memory policy used to allocate memory for window segments for RMA
operations (optional)

Each of the listed policies may have the values below:

Arguments

<value> The memory allocation policy used.

hbw preferred Allocate the local HBW memory for each process. If the HBW memory is not available,
allocate the local dynamic random access memory.

hbw_bind Allocate only the local HBW memory for each process.

hbw interleave Allocate the HBW memory and dynamic random access memory on the local node in the
round-robin manner.

Description

Use this environment variable to specify the policy for MPI process memory placement on a machine with
HBW memory.

By default, Intel MPI Library allocates memory for a process in local DDR. The use of HBW memory becomes
available only when you specify the I MPI HBW POLICY variable.
Examples
The following examples demonstrate different configurations of memory placement:
e I MPI HBW POLICY=hbw bind,hbw preferred,hbw bind

Only use the local HBW memory allocated in user applications and window segments for RMA
operations. Use the local HBW memory internally allocated in Intel® MPI Library first. If the HBW
memory is not available, use the local DDR internally allocated in Intel MPI Library.

e I MPI HBW POLICY=hbw bind,,hbw bind

Only use the local HBW memory allocated in user applications and window segments for RMA
operations. Use the local DDR internally allocated in Intel MPI Library.

e I MPI HBW POLICY=hbw bind,hbw preferred

Only use the local HBW memory allocated in user applications. Use the local HBW memory internally
allocated in Intel MPI Library first. If the HBW memory is not available, use the local DDR internally
allocated in Intel MPI Library. Use the local DDR allocated in window segments for RMA operations.

65

Environment Variable Reference

I_MPI_BIND_NUMA

Set the NUMA nodes for memory allocation.

Syntax

I MPI BIND NUMA=<value>

Arguments

<value> Specify the NUMA nodes for memory allocation.
localalloc Allocate memory on the local node. This is the default value.

Node 1,..,Node k Allocate memory accordingto I MPI BIND ORDER on the specified NUMA nodes.

Description

Set this environment variable to specify the NUMA node set that is involved in the memory allocation
procedure.

I_MPI_BIND_ORDER

Set this environment variable to define the memory allocation manner.

Syntax
I MPI BIND ORDER=<value>

Arguments

<value> Specify the allocation manner.

compact | Allocate memory for processes as close as possible (in terms of NUMA nodes), among the NUMA
nodes specified in I _MPI BIND NUMA. This is the default value.

scatter Allocate memory among the NUMA nodes specifiedin I MPI BIND NUMA using the round-robin
manner.

Description

Set this environment variable to define the memory allocation manner among the NUMA nodes specified in
I _MPI BIND NUMA. The variable has no effect without I_MPI BIND NUMA set.

I_MPI_BIND_WIN_ALLOCATE

Set this environment variable to control memory allocation for window segments.

Syntax

I MPI BIND WIN ALLOCATE=<value>

Arguments

<value> Specify the memory allocation behavior for window segments.
localalloc Allocate memory on the local node. This is the default value.

66

Intel® MPI Developer Reference for Windows* OS

hbw preferred Allocate the local HBW memory for each process. If the HBW memory is not available,
allocate the local dynamic random access memory.

hbw_bind Allocate only the local HBW memory for each process.

hbw_interleave Allocate the HBW memory and dynamic random access memory on a local node in the
round-robin manner.

<NUMA node id> Allocate memory on the given NUMA node.

Description

Set this environment variable to create window segments allocated in HBW memory with the help of the
MPI Win allocate sharedorMPI Win allocate functions.

MPI_Info

You can control memory allocation for window segments with the help of an MPI_Info object, which is
passed as a parameter to the MPI Win allocate orMPI Win allocate shared function.Inan
application, if you specify such an object with the numa bind policy key, window segments are allocated in
accordance with the value for numa_bind policy. Possible values are the same as for

I MPI BIND WIN ALLOCATE.

A code fragment demonstrating the use of MPT Info:
MPI Info info;

MPI Info create(&info);
MPI Info set(info, "numa bind policy", "hbw preferred");

MPI Win allocate shared(size, disp unit, info, comm, &baseptr, &win);

NOTE

When you specify the memory placement policy for window segments, Intel MPI Library recognizes the
configurations according to the following priority:

1. Setting of MPI Info.
2. Settingof I MPI HBW POLICY, if you specified <win allocate policy>.
3. Settingof I MPI BIND WIN ALLOCATE.

3.8. Other Environment Variables

|_MPI_DEBUG

Print out debugging information when an MPI program starts running.

Syntax

I MPI DEBUG=<level>[,<flags>]

Arguments

<level> Indicate the level of debug information provided

67

<flags>

pid

tid

time

datetime

host

level

scope

line

file

nofunc

norank

flock

nobuf

Description

Set this environment variable to print debugging information about the application.

Environment Variable Reference

Output no debugging information. This is the default value.
Output libfabric* version and provider.

Output effective MPI rank, pid and node mapping table.

Output process pinning information.
Output environment variables specific to Intel® MPI Library.

Add extra levels of debug information.

Comma-separated list of debug flags

Show process id for each debug message.

Show thread id for each debug message for multithreaded library.
Show time for each debug message.

Show time and date for each debug message.

Show host name for each debug message.

Show level for each debug message.

Show scope for each debug message.

Show source line number for each debug message.

Show source file name for each debug message.

Do not show routine name.

Do not show rank.

Synchronize debug output from different process or threads.

Do not use buffered I/O for debug output.

NOTE

Set the same <level> value for all ranks.

68

Intel® MPI Developer Reference for Windows* OS

You can specify the output file name for debug information by setting the I MPI DEBUG OUTPUT
environment variable.

Each printed line has the following format:
[<identifier>] <message>
where:

e <identifier> isthe MPI process rank, by default. If you add the '+' sign in front of the <level>
number, the <identifier> assumes the following format: rank#pid@hostname. Here, rank is the
MPI process rank, pid is the process ID, and hostname is the host name. If you add the '-' sign,
<identifier>is not printed at all.

e <message> contains the debugging output.

The following examples demonstrate possible command lines with the corresponding output:
> mpiexec -n 1 -env I MPI DEBUG=2 test.exe

[0] MPI startup(): shared memory data transfer mode

The following commands are equal and produce the same output:

> mpiexec -n 1 -env I MPI DEBUG=+2 test.exe
> mpiexec -n 1 -env I MPI DEBUG=2,pid,host test.exe

[0#1986@mpicluster001] MPI startup(): shared memory data transfer mode

NOTE

Compiling with the /z1, /21 or /27 option adds a considerable amount of printed debug information.

I_MPI_DEBUG_OUTPUT

Set output file name for debug information.

Syntax

I MPI DEBUG OUTPUT=<arg>

Arguments

<arg> String value

stdout Output to stdout. This is the default value.
stderr Output to stderr.

<file name> Specify the output file name for debug information (the maximum file name length is 256
symbols).

Description

Set this environment variable if you want to split output of debug information from the output produced by an
application. If you use format like $r, $p or $h, rank, process ID or host name is added to the file name
accordingly.

I_MPI_NETMASK

Choose the network interface for MPI communication over sockets.

69

Environment Variable Reference

Syntax

I MPI NETMASK=<arg>

Arguments

<arg> Define the network interface (string parameter)
<interface mnemonic> Mnemonic of the network interface: ib or eth

ib Select IPolB*

eth Select Ethernet. This is the default value

<network address> Network address. The trailing zero bits imply netmask

<network address/netmask> Network address. The <netmask> value specifies the netmask length

<list of interfaces> A colon separated list of network addresses or interface mnemonics

Description

Set this environment variable to choose the network interface for MPI communication over sockets in the
sock and ssm communication modes. If you specify a list of interfaces, the first available interface on the node
will be used for communication.

Examples
1. Use the following setting to select the IP over InfiniBand* (IPolB) fabric:
I MPI NETMASK=ib
I _MPI NETMASK=eth

2. Use the following setting to select a particular network for socket communications. This setting
implies the 255.255. 0.0 netmask:

I MPI NETMASK=192.169.0.0

3. Use the following setting to select a particular network for socket communications with netmask set
explicitly:

I MPI NETMASK=192.169.0.0/24
4. Use the following setting to select the specified network interfaces for socket communications:
I MPI NETMASK=192.169.0.5/24:1b0:192.169.0.0

NOTE

If the library cannot find any suitable interface by the given value of I MPI NETMASK, the value will be used as
a substring to search in the network adapter's description field. And if the substring is found in the description,
this network interface will be used for socket communications. For example, if I_MPI NETMASK=myri and the
description field contains something like Myri-10G adapter, this interface will be chosen.

$ export I MPI STATS=5
$ mpirun -n 2 ./myApp
$ aps-report aps result 20171231 235959

70

Intel® MPI Developer Reference for Windows* OS

I_MPI_REMOVED_VAR_WARNING

Print out a warning if a removed environment variable is set.

Syntax

I MPI REMOVED VAR WARNING=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Print out the warning. This is the default value
disable | no | off | 0 Do not print the warning

Description

Use this environment variable to print out a warning if a removed environment variable is set. Warnings are
printed regardless of whether I MPI DEBUG is set.

I_MPI_VAR_CHECK_SPELLING

Print out a warning if an unknown environment variable is set.

Syntax
I MPI VAR CHECK SPELLING=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Print out the warning. This is the default value
disable | no | off | 0 Do not print the warning

Description

Use this environment variable to print out a warning if an unsupported environment variable is set. Warnings
are printed in case of removed or misprinted environment variables.

I_MPI_LIBRARY_KIND
Specify the Intel® MPI Library configuration.

Syntax

I MPI LIBRARY KIND=<value>

Arguments

<value> Binary indicator

release Multi-threaded optimized library. This is the default value
debug Multi-threaded debug library

71

Environment Variable Reference

Description

Use this variable to set an argument for the mpivars. [c] sh script. This script establishes the Intel® MPI
Library environment and enables you to specify the appropriate library configuration. To ensure that the
desired configuration is set, check the LD LIBRARY PATH variable.

Example
> export I MPI LIBRARY KIND=debug

Setting this variable is equivalent to passing an argument directly to the mpivars. [c] sh script:

Example

> <installdir>\intel64\bin\mpivars.bat release

I_MPI_PLATFORM

Select the intended optimization platform.

Syntax

I _MPI PLATFORM=<platform>

Arguments

<platform> Intended optimization platform (string value)
auto[:min] | Optimize for the oldest supported Intel® Architecture Processor across all nodes
auto:max Optimize for the newest supported Intel® Architecture Processor across all nodes

auto:most Optimize for the most numerous Intel® Architecture Processor across all nodes. In case of a tie,
choose the newer platform

ivb Optimize for the Intel® Xeon® Processors E3, E5, and E7 V2 series and other Intel® Architecture
processors formerly code named Ivy Bridge

hsw Optimize for the Intel® Xeon® Processors E3, E5, and E7 V3 series and other Intel® Architecture
processors formerly code named Haswell

bdw Optimize for the Intel® Xeon® Processors E3, E5, and E7 V4 series and other Intel® Architecture
processors formerly code named Broadwell

knl Optimize for the Intel® Xeon Phi™ processor and coprocessor formerly code named Knights
Landing
skx Optimize for the Intel® Xeon® Processors E3 V5 and Intel® Xeon® Scalable Family series, and

other Intel® Architecture processors formerly code named Skylake

clx Optimize for the 2nd Generation Intel® Xeon® Scalable Processors, and other Intel®
Architecture processors formerly code named Cascade Lake

Description

72

Intel® MPI Developer Reference for Windows* OS

Set this environment variable to use the predefined platform settings. The default value is a local platform for
each node.

The variable is available for both Intel® and non-Intel microprocessors, but it may utilize additional
optimizations for Intel microprocessors than it utilizes for non-Intel microprocessors.

NOTE

The values auto[:min], auto:max,and auto:most may increase the MPI job startup time.

I_MPI_MALLOC

Control the Intel® MPI Library custom allocator of private memory.
Syntax

I MPI MALLOC=<arg>

Argument

<arg> Binary indicator

1 Enable the Intel MPI Library custom allocator of private memory.

Use the Intel MPI custom allocator of private memory for MPI_Alloc_mem/MPI_Free_mem.

0 Disable the Intel MPI Library custom allocator of private memory.

Use the system-provided memory allocator for MPI_Alloc_mem/MPI_Free_mem.

Description

Use this environment variable to enable or disable the Intel MPI Library custom allocator of private memory
for MPI_Alloc_mem/MPI_Free_mem.

By default, I MPI MALLOC is enabled for release and debug Intel MPI library configurations and disabled
for release mt and debug mt configurations.

NOTE

If the platform is not supported by the Intel MPI Library custom allocator of private memory, a system-
provided memory allocator is used and the I MPI MALLOC variable is ignored.

I_MPI_WAIT_MODE

Control the Intel® MPI Library optimization for oversubscription mode.

Syntax

I MPI WAIT MODE=<arg>
Argument

<arg> Binary indicator
0 Optimize MPI application to work in the normal mode (1 rank on 1 CPU)

1 Optimize MPI application to work in the oversubscription mode (multiple ranks on 1 CPU). This is the
default value if a number of process-per-node is less than a number of CPU on the node. In other

73

Environment Variable Reference
cases, 1 is the default.

Description

It is recommended to use this variable in the oversubscription mode.

I_MPI_THREAD_YIELD
Control the Intel® MPI Library thread yield customization during MPI busy wait time.

Syntax

I MPI THREAD YIELD=<arg>
Argument

<arg> | Binary indicator

0 Do nothing for thread yield during the busy wait (spin wait). This is the default value when
I MPI WAIT MODE=0

1 Do the pause processor instruction for I MPI PAUSE COUNT during the busy wait.

2 Do the SwitchToThread () system call for thread yield during the busy wait.
This is the default value when I MPI WAIT MODE=1

3 Do the Sleep () systemcall for I_ MPI THREAD SLEEP number of milliseconds for thread yield
during the busy wait.

Description

Itis recommended to use I MPI THREAD YIELD=0orI MPI THREAD YIELD=1 inthe normal mode and
I MPI THREAD YIELD=2orI MPI THREAD YIELD=3in the oversubscription mode.

I_MPI_PAUSE_COUNT

Control the Intel® MPI Library pause count for the thread yield customization during MPI busy wait time.

Syntax

I MPI PAUSE COUNT=<arg>
Argument

<arg> Description

>=0 Pause count for thread yield customization during MPI busy wait time.

The default value is 0. Normally, the value is less than 100.

Description

This variable is applicable when I MPI THREAD YIELD=1.Smallvaluesof I_MPI PAUSE COUNT may
increase performance, while larger values may reduce energy consumption.

I_MPI_THREAD_SLEEP

Control the Intel® MPI Library thread sleep milliseconds timeout for thread yield customization while MPI busy
wait progress.

74

Intel® MPI Developer Reference for Windows* OS

Syntax

I MPI THREAD SLEEP=<arg>
Argument

<arg> Description
>=0 Thread sleep microseconds timeout. The default value is 0. Normally, the value is less than 100.

Description

This variable is applicable when I MPI THREAD YIELD=3.Smallvaluesof I _MPI PAUSE COUNT may
increase performance in the normal mode, while larger values may increase performance in the
oversubscription mode

I_MPI_EXTRA_FILE_SYSTEM

Control native support for parallel file systems.

Syntax

I MPI_EXTRA FILE SYSTEM=<arg>
Argument

<arg> Binary indicator
enable | yes | on | 1 Enable native support for parallel file systems.
disable | no | off | 0 Disable native support for parallel file systems.

Description

Use this environment variable to enable or disable native support for parallel file systems.

75

4. Miscellaneous

4.1. User Authorization

Intel® MPI Library supports several authentication methods under Windows* OS:

I_MPI_AUTH_METHOD

Select a user authorization method.

Syntax

I MPI AUTH METHOD=<method>

Arguments

<method> Define the authorization method

password Use the password-based authorization. This is the default value.
delegate Use the domain-based authorization with delegation ability.

impersonate | Use the limited domain-based authorization. You will not be able to open files on remote
machines or access mapped network drives.

Description

Set this environment variable to select a desired authorization method. If this environment variable is not
defined, mpiexec uses the password-based authorization method by default. Alternatively, you can change
the default behavior by using the -delegate or -impersonate options.

For more details, see the Developer Guide, section Installation and Prerequisites > User Authorization.

Contents

1. Introduction 1
1.7, INtrodUCING INTELT MPI LIDIAIY ..o ceceeeeeseeseeseesessesssssessessesssssssssssssssssssesssssssssssssssessnes 1
T2, WNAE'S NEW ...ttt st sse s s s s £ £ £ AR b bbbt as 1
7.3, NOtATIONAL CONVENTIONS ...ttt esesss st s s s bR bbbt as 3
7.4, RElAEA INFOIMIATION oottt s s s bR R R e s 3

2. Command Reference 4
2.7, COMPIlatiON COMIMEANGAS ... coieereerreeeeeeeeeeeseeseessesseesssesssesseesssessess s eesseessees s es s RS ER R R R R R R R R bR Ran R 4

2.1.1. Compilation COMMANA OPTIONS ...cccuverereereereseseses s sessessesesssssss st ssssessesssssssssssssssssssessesssssssssssessesssessesssanes 5
N 41 0 1T= =T o 7
JZZ 2 IR €1 o T- 1 o 4 o 1= TP 7
2.2.2. LOCAL OPTIONS w.oreueureueeneesseuseessessessessessessssssessesssassessess s esss s es s esse s s R s AR e b e bbb bR snes 13
2.3, CPUINTO certeuieueeneesstesseessesss e e esssesss e s s ess e e s es R R R R R R84 ER 8RR AR AR ER AR e 14
22 1 Y oY) o ST 16
D2 TR 0] o1 (U1 [T O U T OOV 17
2.5.7. mpitune CoNfiGUration OPTIONScveereereereeseeseeseeseesse s s s s s s 19

3. Environment Variable Reference 24
3.1. Compilation ENVIroNmMeNt Variables ...t sesesesssssess s ssessesesesssssssssssssessessessesssssssssssssssessenseans 24
3.2. Hydra ENVIroNMENT VArIADLES ... ieeereeseeseeseesessessessseesse s s st 26
3.3. I_MPI_ADJUST Family ENVIronmMent Variables ... neeneesesessessessesssssesssssssssssssssssssesssssssssessssssssees 33
3.4. TUNING ENVIrONMENT VANIADLES ...ttt es st es s s 42

3.4.7. TUNING ENVIrONMENT VATTADLES ... eeuieeeeeeeeeseeseeseeseesesssessessessesssesssessessessessssssssssssssssssssssssssssessssssees 42
.2 AUTOTUNING ettt sea ettt s s s E e nEnb et npantas 43
3.5. MAIN TIIEAA PINNINEG ..curieuriurieeeeesreereeeesseesstsesseessessesse s esss e s s s £ bR bR b e 48
3.5.7. ProcessOr IdeNtifiCatioN ...t ssss st st s 48
R 1= T [G0 SY= =P 49
3.5.3. Environment Variables for Main Thread PiNNING ... neceiseesesseesessessssssssesssssssssesssssssssees 49
3.5.4. Interoperability With OPENMP* AP ... eeeeeceeesceseisesses s esss s sasss s s essase s ssaees 54
3.6. Environment Variables for FAbriCs CONTIOL.... s sssssssss s ssssssssssssssssssssssssesns 63
3.6.1. COmMUNICAtioN FADIICS CONTIOL..uiuiiiereeceeeseeeesceseeseeses et sesses bbb s bbb s 63
3.6.2. OFI*-capable Network FAbriCs CONTIOL ... ceeereeseireesessesssessesssssessesssssesssssssssesssssssssessssssssesssssssasees 63
3.7. Environment Variables for Memory POLICY CONTIOL. ... eeeneeseeseessessessesssssessssssessssssssssssssssssssssssssssans 64
3.8. Other ENVIrONMENT Variables.... e eeceseeeeeesseeseesesse e essesssssessss s ssss st es s ssse s ssss s ssss s ssssssssesssssssness 67

4. Miscellaneous 76

4.7, USEI AULNOTIZAION ettt s s s s b bbbt 76

Legal Information 3

Intel® MPI Developer Reference for Windows* OS

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest
forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Intel technologies features and benefits depend on system configuration and may require enabled hardware,
software or service activation. Learn more at Intel.com, or from the OEM or retailer.

Copies of documents which have an order number and are referenced in this document may be obtained by
calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.
Copyright 2003-2019 Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed by
the express license under which they were provided to you (License). Unless the License provides otherwise,
you may not use, modify, copy, publish, distribute, disclose or transmit this software or the related documents
without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other than
those that are expressly stated in the License.

http://www.intel.com/design/literature.htm

	Intel® MPI Library for Windows* OS Developer Reference
	1. Introduction
	1.1. Introducing Intel® MPI Library
	1.2. What's New
	1.3. Notational Conventions
	1.4. Related Information

	2. Command Reference
	2.1. Compilation Commands
	2.1.1. Compilation Command Options

	2.2. mpiexec
	2.2.1. Global Options
	2.2.2. Local Options

	2.3. cpuinfo
	2.4. impi_info
	2.5. mpitune
	2.5.1. mpitune Configuration Options
	Application Options
	Search Space Options
	Output Options

	3. Environment Variable Reference
	3.1. Compilation Environment Variables
	3.2. Hydra Environment Variables
	3.3. I_MPI_ADJUST Family Environment Variables
	3.4. Tuning Environment Variables
	3.4.1. Tuning Environment Variables
	3.4.2. Autotuning
	Autotuning
	I_MPI_TUNING_AUTO Family Environment Variables

	3.5. Main Thread Pinning
	3.5.1. Processor Identification
	3.5.2. Default Settings
	3.5.3. Environment Variables for Main Thread Pinning
	3.5.4. Interoperability with OpenMP* API

	3.6. Environment Variables for Fabrics Control
	3.6.1. Communication Fabrics Control
	3.6.2. OFI*-capable Network Fabrics Control

	3.7. Environment Variables for Memory Policy Control
	3.8. Other Environment Variables

	4. Miscellaneous
	4.1. User Authorization

	Legal Information

