
 

  Copyright © 2021 Intel Corporation.  All rights reserved.  

 

 

 

 

 

Intel® TDX Module Architecture Specification:  TD 
Migration 
 

  

348550-001US 

September 2021 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 2 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

Notices and Disclaimers 

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties. 

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change 
without notice.  Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel 
representative to obtain the latest Intel product specifications and roadmaps. 5 

The products described might contain design defects or errors known as errata, which might cause the product to 
deviate from published specifications.  Current, characterized errata are available on request. 

Intel technologies might require enabled hardware, software, or service activation.  Some results have been estimated 
or simulated.  Your costs and results might vary. 

No product or component can be absolutely secure. 10 

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis 
concerning Intel products described herein.  You agree to grant Intel a non-exclusive, royalty-free license to any patent 
claim thereafter drafted that includes the subject matter disclosed herein. 

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document. 

This document contains information on products, services and/or processes in development. All information provided 15 

here is subject to change without notice.  

Copies of documents that have an order number and are referenced in this document or other Intel literature may be 
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm. 

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  
Other names and brands might be claimed as the property of others.   20 

  

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.


TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 3 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

SECTION 1: 
TD MIGRATION INTRODUCTION AND OVERVIEW 

 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 4 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

1. About this Document 

1.1. Scope of this Document 

This document describes the architecture and the external Application Binary Interface (ABI) of the Intel® Trust Domain 
Extensions (Intel® TDX) module’s Live Migration feature, implemented using the Intel TDX Instruction Set Architecture 
(ISA) extensions, for cold or live migration of Trust Domains in an untrusted hosted cloud environment. 5 

This document is part of the TDX Module Architecture Specification Set, which includes the following documents: 

Table 1.1:  TDX Module Architecture Specification Set 

 Document Name Reference Description 

 

TDX Module 
Base Architecture Specification 

[TDX Module Spec] Base TDX module architecture overview 
and specification, covering key 
management, TD lifecycle management, 
memory management, virtualization, 
measurement and attestation, service TDs, 
debug aspects etc. 

→ 
TDX Module 
TD Migration Architecture Specification 

[TD Migration Spec] Architecture overview and specification for 
TD migration 

 

TDX Module 
ABI Reference Specification 

[TDX Module ABI] Detailed TDX module Application Binary 
Interface (ABI) reference specification, 
covering the entire TDX module 
architecture 

 

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This 
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors. 10 

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though 
Intel does not represent that such information will remain as described indefinitely in light of future research 
and design implementations.  Intel does not commit to update this document in real time when such changes 
occur. 

1.2. Document Organization 15 

The document has two main sections: 

• Section 1 contains an introduction to the document, overview of TD Migration, scenarios and requirements. 

• Section 2 contains the Intel TDX Module Migration architecture 

The detailed reference specification of TD Migration data structures and interface functions is provided in the [TDX 
Module ABI]. 20 

1.3. Glossary 

For a complete TDX module glossary, see the [TDX Module Spec]. 

Table 1.2:  Intel TDX Module Glossary for TD Migration 

Acronym Full Name New 
for 
TDX 

Description 

MigTD Migration TD Yes A specific type of Service TD used to provide Live Migration capability for TD VMs. 
A Migration TD extends the TCB of the serviced tenant TD.  



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 5 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

Acronym Full Name New 
for 
TDX 

Description 

MSK Migration 
Session Key 

Yes AES-GCM-256 key generated by the source MigTD and shared with the destination 
MigTD (protected by the Migration Transport key). This key helps protect the TD 
private data and is used for export and import of the TD confidential assets.  

MTK Migration 
Transport Key 

Yes Authenticated Diffie-Helman negotiated symmetric key generated after mutual 
attestation of the MigTDs and is used to help protect the transport of the 
Migration Session Key from the source to the destination platform.  

1.4. Notation 

See the [TDX Module Spec]. 

1.5. References 

1.5.1. Intel Public Documents 

Table 1.3:  Intel Public Documents 5 

Reference Document Version & Date 

Intel SDM Intel® 64 and IA-32 Architectures 
Software Developer’s Manual 

June 2021 

ISA Extensions Intel® Architecture 
Instruction Set Extensions and Future Features  
Programming Reference 

May 2021 

 

1.5.2. Intel TDX Public Documents 

Table 1.4:  Intel TDX Public Documents 

Reference Document Version & Date 

TDX Whitepaper Intel Trust Domain Extensions Whitepaper August 2020 

Intel TDX Spec Intel® Architecture Trust Domain Extensions (TDX) 
Specification 

Rev. 1.0, August 
2020 

MKTMEi Spec Intel® Architecture Memory Integrity Specification Rev. 1.0, March 2020 

TDX Module Spec Intel TDX Module 1.5 Base Architecture Specification 348549-001US 
September 2021 

TD Migration Spec Intel TDX Module 1.5 TD Migration Architecture Specification 348550-001US 
September 2021 

TDX Module ABI Intel TDX Module 1.5 ABI Reference Specification 348551-001US 
September 2021 

GHCI Spec Intel TDX Guest-Hypervisor Communication Interface Version 
1.5 

348552-001US 
September 2021 

 

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference
https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference
https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference


TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 6 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

1.5.3. Non-Intel Public Documents 

Table 1.5:  Non-Intel Public Documents 

Reference Document Version & Date 

AES-256-GCM NIST Special Publication 800-38D:  Recommendation for Block 
Cipher Modes of Operation: Galois/Counter Mode (GCM) and 
GMAC 

November 2007 

 

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf


TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 7 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

2. TD Migration Overview 

For an overview of TDX, refer to the [TDX Module Spec]. 

2.1. Introduction 

5

TDX-Aware 
host VMM

Intel TDX Module
Running in SEAM 

Root Mode

Host-Side

Interface

Trust Domain

TDX-
Enlightened

OS

Unmodified 
Applications

Unmodified 
Drivers

Legacy VM

OS

Applications

Drivers

Platform (Cores, Caches, Devices etc.)

TDX-Aware 
host VMM

Intel TDX Module
Running in SEAM 

Root Mode

Host-Side

Interface

Trust Domain

TDX-
Enlightened

OS

Unmodified 
Applications

Unmodified 
Drivers

Guest-Side

Interface

Legacy VM

OS

Applications

Drivers

Platform (Cores, Caches, Devices etc.)

Destination PlatformSource Platform

Guest-Side

Interface

 

Figure 2.1:  TD Migration 5 

Analogous to legacy VM migration, a cloud-service provider (CSP) may want to relocate/migrate an executing Trust 
Domain from a source TDX platform to a destination TDX platform in the cloud environment.  A cloud provider may use 
TD migration to meet customer SLA, while balancing cloud platform upgradability, patching and other serviceability 
requirements.  Since a TD runs in a CPU mode which helps protect the confidentiality of its memory contents and its CPU 
state from any other platform software, including the hosting Virtual Machine Monitor (VMM), this primary security 10 

objective must be maintained while allowing the TD resource manager, i.e., the host VMM to migrate TDs across 
compatible platforms.  The TD typically may be assigned a different HKID (and will be always assigned a different 
ephemeral key) on the destination platform chosen to migrate the TD. 

In this specification, the TD being migrated is called the source TD, and the TD created as a result of the migration is called 
the destination TD.  An extensible TD Migration Policy is associated with a TD that is used to maintain the TD’s security 15 

posture.  The TD Migration policy is enforced in a scalable and extensible manner using a specific type of Service TD called 
the Migration TD (a.k.a. MigTD) (introduced in the Figure 2.2 below) – which is used to provide services for migrating 
TDs. 

The TD Live Migration process (and the Migration TD) does not depend on any interaction with the TD guest software 
operating inside the TD being migrated. 20 

2.2. TD Migration Scenarios 

This section describes the usage scenarios addressed by this specification (and those explicitly out of scope). This 
specification documents the TD Migration functionality from a Live Migration (scenario described below) perspective. 
Cold Migration and other scenarios described below are effectively subset scenarios that are software managed via the 
Intel TDX module interface functions in this specification.  25 

2.2.1. Cold migration 

Cold migration with destination known and resumed such that both ends must be alive to do the handoff 

• TD image is suspended during migration and resumed after a duration >> TCP timeout 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 8 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

• Useful for rolling upgrades/patch + rebooting servers (non-reboot patches can be done without migrating the TD), 
capacity planning and load balancing. 

2.2.2. Live Migration 

Live migration with destination known and resumed such that both ends must be alive to do the handoff 

• TD executing during migration and paused for duration << TCP timeout 5 

• Customer SLA, capacity planning/load balancing 

A TD may be live migrated more than once using multiple sessions. 

2.2.3. Image Snapshot and Jumpstart  

Pre-built Image/Jumpstart with destination unknown and TD image stored for an indeterminate amount of time. 

This usage has additional platform security requirements that are not comprehended in this specification.  Example use 10 

cases are saving checkpoints of TDs such that TD may be pre-loaded into memory. Alternate implementations to satisfy 
this usage are possible.  E.g., the TD could un-hibernate the image itself.  This scenario/use case is out of scope for this 
specification. 

2.3. Migration TD and TD Migration Policy overview 

5

TDX-Aware 
host VMM

Intel TDX Module
Running in SEAM Root Mode

Host-Side

Interface

Trust Domain

TDX-
Enlightened

OS

Unmodified 
Applications

Unmodified 
Drivers

Intel TDX

Guest-Host Interface

Legacy 
VM

Platform (Cores, Caches, Devices etc.)

Destination PlatformSource Platform

MigTD

TDVF-shim

Migration 
Service and 

Policy 
Evaluation

Legacy 
VM

Legacy 
VM

TDX-Aware 
host VMM

Intel TDX Module
Running in SEAM Root Mode

Host-Side

Interface

Trust Domain

TDX-
Enlightened

OS

Unmodified 
Applications

Unmodified 
Drivers

Intel TDX

Guest-Host Interface

Legacy 
VM

Platform (Cores, Caches, Devices etc.)

MigTD

TDVF-shim

Migration 
Service and 

Policy 
Evaluation

Legacy 
VM

Legacy 
VM

Untrusted 
network 
services

Untrusted 
network 
services

 15 

Figure 2.2:  MigTD usage for TD Live Migration 

A Migration TD (MigTD) is used to evaluate potential migration sources and targets for adherence to the TD Migration 
Policy.  The TD Migration policy enumerates TDX platform TCB requirements as well as acceptable destination Migration 
TD TCB levels. 

If TCB levels are acceptable, the source MigTD shares a Migration Session Key (MSK) with the destination platform (via 20 

the destination MigTD) to migrate assets of a specific TD.  The source/initiating MigTD configures the Migration Session 
Key into the source TDX Module and also securely transfers the key to the destination TDX Module via the 
destination/receiving MigTD. The source TD private contents are transferred by the VMM, but protected by the TDX 
Module by using the MSK. A MSK is used only for the unique migration session for a TD. 

The host VMM may associated a MigTD to one (or many TDs) – this is a bind operation - using TDH.SERVTD.BIND or 25 

TDH.SERVTD.PREBIND  (see [TDX Module Spec]’s Service TDs chapter).  The host VMM, via the Intel TDX Module, is 
responsible for export/import of the TD content, and the transport of the protected TD content to the destination 
platform. ,Since the MigTD is in the TCB of the TD being migrated, a MigTD must be pre-bound to the target TD being 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 9 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

migrated before the target TD measurement is finalized. ,The MigTD lifecycle does not have to be coincidental with the 
target TD – the MigTD may be instantiated when required for Live Migration, but it must be bound to the target TD before 
Live Migration can begin, and must be operational until the migration session keys has been successfully programmed 
for the target TD being migrated. 

Intel plans to provide a reference Migration TD per the architecture described in this specification - that MigTD may be 5 

extended or modified by the CSP.  This extensibility is another reason to include the MigTD measurements in the TCB of 
the tenant TD.  The extended measurement information is captured during the Service TD Bind operation and is reported 
in the attestation information structures (described in the TDX Module Spec for Service TD attestation). 

2.4. Migrated Assets 

The table below shows the TD assets that are migrated.  Metadata includes TD-scope and VCPU-scope non-memory state 10 

(such as control state, CPU register state etc.) and memory attributes (such as GPA and access permissions).  Metadata 
is not migrated as-is; it is serialized into a migration format and re-created on the destination platform. 

Table 2.1:  Migrated TD Assets 

TD Asset Where Held Export Functions Import Functions 

Immutable Non-Memory 
State (Metadata) 

TDX module global 

TDR 

TDCS 

TDH.EXPORT.STATE.IMMUTABLE TDH.IMPORT.STATE.IMMUTABLE 

Mutable Non-Memory 
State (Metadata) 

TDCS 

TDVPS 

TDH.EXPORT.STATE.TD 

TDH.EXPORT.STATE.VP 

TDH.IMPORT.STATE.TD 

TDH. IMPORT.STATE.VP 

Memory State and 
Metadata 

TD private pages 

Secure EPT 

TDH.EXPORT.MEM TDH. IMPORT.MEM 

 

2.5. Guest TD Migration Life Cycle Overview 15 

The following sequence shows the lifecycle of a TD Live Migration process and the corresponding Intel TDX Module APIs 
involved. 

TDX-controlled Blackout period

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM 

(CANCEL)

TDH.IMPORT.
TRACK

TD may run on source Optional software-controlled downtime
(if cold migration is used)

TDH.EXPORT.
MEM

(MIGRATE)

TDH.EXPORT.
(UN)BLOCKW

TDH.EXPORT.
MEM

(CANCEL)

TDH.EXPORT.
TRACK

TD may run
on destination

Source
Platform

TDCONFIGKEY
TDCONFIGKEY

TDH.MNG.
CREATE

(legacy)

TDH.MNG.
KEY.CONFIG

(legacy)

HKID

per package

TDH.MNG.
ADDCX

(legacy)

TDH.IMPORT.
STATE.

IMMUTABLE

per TDCS page

TDH.EXPORT.
STATE.

IMMUTABLE

TD 
Immutable 
Config

Target
Platform

ReservationPre-Migration

TDH.IMPORT.
TRACK

(consumes 
epoch token

– starts Out-of-
order

TDH.
EXPORT.
PAUSE

token

TDH.EXPORT.
MEM

(MIGRATE)

TDH.IMPORT.
MEM

Iterative pre-copy Commitment

TDH.IMPORT.
STATE.VP

TDH.IMPORT.
STATE.TD

At this point migration is 
enabled for this TD and MigTD 
is bound to TD for attestation

MigTD 
Verifies Mig 

Policy via
TDH.SERVTD.

RD

MigTD 
Verifies Mig 

Policy via
TDG.

SERVTD.
RD

TD Migration 
Transport
Session

At this point the TD has been paused –
final state can be migrated and memory 
reclaimed - unless migration fails

per TD

per mig. page
per vcpu

per TD

MigTD sets Mig key
TDG.SERVTD.WR

TDH.EXPORT.
STATE.VP

TDH.EXPORT.
STATE.TD

per TD
per TD

TD 
memory 

state

Mutable 
TD VP 
State and 
TD state

TDH.MNG.
CREATE/

KEY.CONFIG/
ADDCX
(legacy)

TDH.MNG.INIT

Attr.
Migratable

=1

TDH.SERVTD.
[PRE]BIND
(TD,Mig TD)

TDH.SERVTD.
[PRE]BIND
(MigTD, TD)

Stop and copy control state

TDH.EXPORT.
TRACK
(generates
Epoch Token 
– ends in order)

TDH.EXPORT.
MEM

Data (TD 
Migration 
Session
Key)

TDH.IMPORT.
MEM

Post-copy

Pending
TD memory 

state

Post-copy

per mig. 
page

TD
memory 

state

TDH.IMPORT.
MEM

TDH.
EXPORT.
ABORT
(TD 
unpaused)

Src
TD

Teardown

TDH.EXPORT.
MEM

Post-copy

token

TDH.
IMPORT.
ABORT

TDH.EXPORT.
(UN)BLOCKW

TDH.EXPORT.
MEM

(CANCEL)

TDH.IMPORT.
MEM 

(CANCEL)

per mig. page

TDH.
IMPORT.
COMMIT

TDH.
EXPORT.
RESTORE

TDH.EXPORT.
TRACK

TDH.IMPORT.
TRACK

MigTD sets Mig key
TDG.SERVTD.WR

TDH.MIG.STREAM.
CREATE

TDH.MIG.STREAM.
CREATE

 

Figure 2.3: TD Migration Lifecycle Overview 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 10 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

2.5.1. Pre-Migration 

 Intel TDX Module Enumeration 

The host VMM calls the TDH.SYS.RD or TDH.SYS.RDALL interface function to enumerate Intel TDX Module functionality 
and learns from the TDX_FEATURES that the Intel TDX Module supports TD Migration.  The host VMM learns details of 
TD migration capabilities and service TD capabilities from the other fields. 5 

2.5.2. Reservation and Session Setup 

 Guest TD Build and Execution on the Source Platform 

The source TD build and execution process is described in the [TDX Module Spec].  To be migratable, the TD may be 
initialized, using the TDH.MNG.INIT function, with ATTRIBUTES.MIGRATABLE bit set to 1. 

Before a migration session can begin, the VMM on the source platform must use TDH.SERVTD.BIND to bind a Migration 10 

TD to the source TD. 

 Guest TD Initial Build on the Destination Platform 

Same as a legacy TD build process, the host VMM creates a new guest TD by using the TDH.MNG.CREATE interface 
function.  This destination TD is setup as a “template” to receive the state of the Source Guest TD.  The host  VMM 
programs the HKID and HW-generated encryption key assigned to the TD into the MKTME encryption engines using the 15 

TDH.MNG.KEY.CONFIG interface function on each package.  The host VMM can then continue to build the TDCS by adding 
TDCS pages using the TDH.MNG.ADDCX interface function. 

Once the destination TDCS is built and before TD import can begin, the VMM on the destination platform must use 
TDH.SERVTD.BIND to bind a Migration TD to the destination TD.   

 Migration Session Key Negotiation 20 

The Migration session keys are an ephemeral AES-256-GCM keys used for confidentiality and integrity protection of the 
TD private state exported from the source platform and imported on the destination platform, and for integrity 
protections of the migration session control protocol.  TD shared memory state is migrated by the untrusted host VMM 
per legacy methods – the same network transport may be used for both by the host VMM.  The Migration Session Key 
(MSK) is established by a Migration TD which is responsible for evaluation of the Migration policy for the TD being 25 

migrated. 

The migration TDs executing on the source and destination platforms use a TD-quote-based mutual authentication 
protocol to create a VMM-transport-agnostic session between them.  The Migration TDs negotiate a protected transport 
session (using Diffie-Hellman exchange).  Using this protected transport session, the migration policy can be evaluated 
by the Migration TD. 30 

The Service TD binding mechanism supported by the TDX module allows the Migration TD to access target TD metadata 
– specifically the Migration session keys.  The MigTD can access the TD metadata using TDG.SERVTD.RD/WR* guest-side 
interface functions. 

The source Migration TD generates an ephemeral migration session key, and transfers it securely to the destination 
MigTD.  Refer to the [MigTD EAS] for details of the Migration policy structure.  The Migration TDs on both the source and 35 

destination platforms use the Service TD interface to write the established Migration session key (as meta-data) to the 
target TD’s control structures. 

After this point, the host VMM can invoke TDX Module functions such as TDH.EXPORT.* to export state at the source 
platform and TDH.IMPORT.* to import TD state at the destination platform.  The protocol is described in Ch. 6.5 in detail. 

 TD Global Immutable Metadata (Non-Memory State) Migration 40 

Intel TDX Module protects the confidentiality and integrity of a guest TD global state.  Control structures, which hold 
guest TD metadata, are not directly accessible to any software (besides the Intel TDX Module) or devices.  These 
structures are stored encrypted and integrity-protected in memory with the TD private key and managed by Intel TDX 
Module interface functions. 

Immutable metadata is the set of TD state variables that are set by TDH.MNG.INIT, may be modified during TD build but 45 

are never modified after the TD’s measurement is finalized using TDH.MR.FINALIZE.  Some of these state variables control 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 11 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

how the TD and its memory is migrated.  Therefore, the immutable TD control state is migrated before any of the TD 
memory state is migrated. 

TD immutable state is exported via the TDH.EXPORT.STATE.IMMUTABLE interface function and imported on the 
destination platform via the TDH.IMPORT.STATE.IMMUTABLE interface function.  TD global immutable state migration is 
described in Ch. 8. 5 

2.5.3. Iterative Pre-Copy of Memory State 

 Migration Considerations for TD Private Memory 

Intel TDX helps protect guest TD state in private memory from a malicious VMM, using MKTME (memory encryption and 
integrity protection) and the Intel TDX Module.  The Intel TDX Module performs ephemeral key id management to enforce 
the TDX security objectives.  Memory encryption is performed by encryption engines that reside at each memory 10 

controller, with no software access (including the TDX module) to the ephemeral keys.  The memory encryption engine 
holds a table of encryption keys, in the Key Encryption Table (KET).  The encryption key selected for memory transactions 
is based on a Host Key Identifier (HKID) provided with the memory access transaction. 

The Intel TDX Module API functions enable the host VMM to manage HKID assignment to guest TDs, configure the 
memory encryption engines etc., while assuring proper operation to maintain TDX’s security objectives.  The host VMM 15 

also does not have access to the TD encryption keys. 

TD Migration does not migrate the HKIDs – a free HKID is assigned to the TD created on the destination platform to 
receive migratable assets of the TD from the source platform.  All TD private memory is protected during transport from 
the source platform to the destination platform using an intermediate encryption performed using AES-GCM 256 using 
the MSK negotiated via the Migration TDs on the source and destination platform.  On the destination platform the 20 

memory is encrypted via the destination ephemeral key as it is imported into the destination platform memory assigned 
to the destination TD.  The import operation on the destination TDX module verifies and decrypts the TD private data 
using the MSK, and uses the MKTME engine to encrypt (and integrity protect) while writing it to memory using the 
destination TD HKID. 

During live migration, the source TD is allowed to modify private memory (until the source TD is paused by the host VMM 25 

to complete the last phase of migration).  To allow this, TD private memory is migrated over a set of Migration Epochs.  
Migration epochs enforce TD Live migration security property S4: CSP must not be able to operate the destination TD 
on any stale state from the source TD.   The host VMM may also instantiate multiple migration streams for memory 
state transfer (for example to leverage multiple host hardware threads) – as long as the security invariants are not 
violated. TD Private memory migration is described in Ch. 9 in detail. 30 

Shared memory assigned to the TD is migrated using legacy mechanisms used by the host VMM.  

Encryption-based memory protection is described in the [MKTME PAS] and the ISA is described in the [Intel TDX PAS].  TD 
migration has no change to TD key management when the Migration TD uses an independent HKID. 

 Migration Considerations for EPT Structures  

Guest Physical Address (GPA) space is divided into private and shared sub-spaces, determined by the SHARED bit of GPA.  35 

The CPU translates shared GPAs using the Shared EPT, which resides in host VMM memory, and is directly managed by 
the host VMM, same as with legacy VMX. The CPU translates private GPAs using a separate Secure EPT.  Secure EPT pages 
are encrypted and integrity protected with the TD’s ephemeral private key.   

As there is no guarantee of allocating the same physical memory addresses to the TD being migrated on the destination 
platform, the memory used for Secure EPT structures is not migrated across platforms.  Hence, the VMM must invoke 40 

the TDX module’s TDH.MEM.SEPT.* interface functions on the destination platform to re-create the private GPA 
mappings on the destination platform (per the assigned HPAs).  The Intel TDX module uses the cryptographically 
protected exported meta-data (generated via TDH.EXPORT.MEM) to verify and enforce (via the TDH.IMPORT.MEM) that 
the Secure EPT security properties from the source platform are rec-created correctly as TD private memory contents are 
migrated, thus preventing remap attacks during migration. TD private memory migration is described in Ch. 9 in detail. 45 

Even though Secure EPT structures are not migrated, the source SEPT structures track the state of the mappings when a 
page is exported and then modified by the TD OS in the pre-copy stage.  The TD OS may be allowed to modify such a page 
and the TDX module enforces that the modified and previously exported page is re-exported by the source host VMM 
and re-imported by the destination host VMM. 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 12 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

 Post Copy:  Destination Guest TD Execution during Memory Migration 

In a typical live migration scenario, the TD is expected to resume executing on the destination platform shortly (typically 
~300ms) after it is paused on the source platform.  The destination TD can only begin executing after the pre-copy stage 
completes and the destination TD control state has been imported – memory transfer may continue after that in a post-
copy stage.  Pre-copy stage imports the working set of memory pages, the host VMM must have paused the source TD, 5 

exported the final mutable control state and imported the final mutable control state to the destination TD virtual 
processors and control state, as described in 2.5.4 below.  The Intel TDX module enforces the security objectives of this 
Commitment protocol as described in 9.7.2, with the remaining memory state transferred in the post-copy stage (see 
below) which also happens via TDX Module interfaces – TDH.EXPORT.MEM and TDH.IMPORT.MEM.  

 Aborted Private Memory Migration 10 

In a live migration scenario, an error may cause CSP orchestration to abort an active TD live migration session.  In such a 
scenario, the host VMM on the source platform may pro-actively initiate an abort via TDH.EXPORT.ABORT, or may 
respond to an about token received from the destination platform, where it may be generated by  TDH.IMPORT.ABORT 
for a late abort (after pre-copy has been completed).  In both scenarios, the host VMM must reset the state of the SEPT 
state of exported pages on the source platform, using TDH.EXPORT.RESTORE. 15 

2.5.4. Source TD Stop and Final Non-Memory State Migration  

Following pre-copy of TD private memory, the host VMM must pause the source TD for a brief period (also called the 
blackout period) so that the VMM may export the final control state (for all VCPUs and for the TD overall).  The VMM 
initiates this via TDH.EXPORT.PAUSE, which checks security pre-conditions and prevents TD VCPUs from executing any 
more.  It then allows export of final (mutable) TD non-memory state.  20 

 Final Memory State Migration 

TDH.EXPORT.MEM and TDH.IMPORT.MEM may be used to migrate memory contents during this source (and destination) 
TD paused state.  The TDX Module enforces that all exported state for the source TD must be imported before the 
destination TD may run using the commitment protocol described in 2.5.5 below. 

 TD-Scope and VCPU-Scope Mutable Non-Memory State migration 25 

TD mutable non-memory state is a set of source TD state variables that might have changed since it was finalized via 
TDH.MR.FINALIZE.  Immutable non-memory state exists for the TD scope (as part of the TDR and TDCS control structures) 
and the VCPU scope (as part of the TDVPS control structure). 

Mutable TD state is exported by TDH.EXPORT.STATE.TD (per TD) and TDXPORT.STATE.VP (per VCPU) and imported by 
TDH.IMPORT.STATE.TD and TDH.IMPORT.STATE.VP respectively.  This is described in Ch. 8. 30 

2.5.5. Commitment 

The commitment protocol is enforced by the Intel TDX Module to ensure that a host VMM cannot violate the security 
objectives (see 3.2) of TD Live migration – for example, S3: both the destination and source TD must not continue to 
execute after live migration of the source TD to a destination TD, even if an error causes the TD migration to be aborted.  

This protocol is enforced via the following TDX Module interface functions:  35 

• On the source platform, TDH.EXPORT.PAUSE starts the blackout phase of TD live migration and TDH.EXPORT.TRACK 
ends the blackout phase of live migration (and marks the end of the transfer of TD memory pre-copy, mutable TD VP 
and mutable TD global control state). TDH.EXPORT.TRACK generates a MSK-based cryptographically-authenticated 
start token to allow the destination TD to become runnable. On the destination platform, TDH.IMPORT.TRACK – 
which consumes the cryptographic start token, allows the destination TD to be un-paused. 40 

• In error scenarios, the migration process may be aborted proactively by the host on the source platform via 
TDH.EXPORT.ABORT before a start token was generated; if a start token was already generated (i.e. pre-copy 
completed), the destination platform can generate an abort token using TDH.IMPORT.ABORT which generates an 
abort token which may be consumed by TDH.EXPORT.ABORT by the source TD platform TDX Module to abort the 
migration process and again allows the source TD to become runnable again.  45 

The detailed operations are described in Ch. 6.5. 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 13 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

2.5.6. Post-Copy of Memory State 

In some live migration scenarios, the host VMM may stage some memory state transfer to occur lazily after the 
destination TD has started execution.  In this case, the host VMM will be required to fetch the required pages as accesses 
occur by the destination TD – this order of access is indeterminate and will likely differ from the order in which the host 
VMM has queued memory state to be transferred. 5 

In order to support that on-demand model, the order of memory migration during this post-copy stage is not enforced 
by TDX.  The host VMM may implement multiple migration queues with multiple priorities for memory state transfer.  
For example, the host VMM on the source platform may keep a copy of each encrypted migrated page until it receives a 
confirmation from the destination that the page has been successfully imported.  If needed, that copy can be re-sent on 
a high priority queue.  Another option is, instead of holding a copy of exported pages, to call TDH.EXPORT.MEM again on 10 

demand. 

Also, to simplify host VMM software for this model, the TDX module interface functions used for memory import in this 
post-copy stage return additional informational error codes to indicate that a stale import was attempted by the host-
VMM to account for the case where the low-latency import operation for a GPA superseded the import from the higher 
latency import queue. 15 

2.6. Impact of Migration on Measurement and Attestation 

TD measurement is extended for the MigTD bound to the TD being migrated, and the ATTRIBUTES.MIGRATABLE bit is 
part of the TD attestation.  For details, see the [TDX Module Spec]. 

2.7. Intel TDX Module Managed Control Structures affected by Migration 

Intel TDX Module manages a set of control structures that are not directly accessible to untrusted host software. The 20 

control-structures are protected in memory using encryption and integrity (with TDX private keys). Most control 
structures are in memory assigned to the TD by the host VMM.  The following table describes the impact of Migration on 
the TD control structures.  See the detailed definition of these structures in the [TDX Module ABI]. 

Table 2.2:  TDX-Managed Control Structures 

Scope Name Meaning Migration Impact 

Platform KOT Key Ownership 
Table 

None 

PAMT Physical Address 
Metadata Table 

PAMT.BEPOCH is used to hold migration epoch information  

Guest TD TDR Trust Domain 
Root 

None 

TDCS Trust Domain 
Control Structure 

TD ATTRIBUTES field has a new MIGRATABLE Security attribute 
that must be set for a TD to be migratable.  

Some state is initialized (same as legacy) and some state is 
imported via TDH.IMPORT.STATE.IMMUTABLE and 
TDH.IMPORT.STATE.TD. 

TDCS has new Migration stream context structures associated 
with the TD setup via TDH.MIG.STREAM.CREATE. 

 

SEPT Secure EPT SEPT entry state is much extended to support tracking of 
memory export and import by the TDX module.  

 

TDINFO_
STRUCT 

TD 
measurement 

A new field SERVTD_HASH is added, see the [TDX Module 
Spec] for details. 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 14 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

Scope Name Meaning Migration Impact 

Guest TD 
VCPU 

TDVPS Trust Domain 
Virtual Processor 
State 

Some state is initiated and some state Imported via Intel TDX 
Module API TDH.IMPORT.STATE.VP for migrating VCPU control 
state 

 

There are new data structures introduced for TD Migration that are generated by the TDX-module (and managed by the 
VMM). 

Table 2.3:  TDX-Generated Control Structures 

Name Meaning Migration impact 

MBMD Migration Bundle 
Metadata 

Common header and type information for migrated information 

GPA_LIST GPA list of 
migrated pages 

List of GPAs and associated attributes, used for memory 
migration and related memory operations 

MIGRATION_BUFFER_ 
LIST 

Migration buffer 
list 

List of migration buffers provided by the host VMM to hold 
migration data 

2.8. Intel TDX Module TD Migration Interface Functions Overview 5 

See the [TDX Module Spec]’s overview chapter. 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 15 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

3. TD Migration Requirements 

This chapter discusses TD Migration requirements.  This includes: 

• Functional requirements and non-requirements 

• Security requirements and non-requirements 

• Non-functional requirements (e.g., scale and performance) 5 

3.1. Functional Requirements 

TD Migration has the following additional functional requirements, on top of other TDX functional requirements. 

Table 3.1:  Functional Requirements 

Functional Requirement Details Priority 

F1: No migratable TD run-time 
involvement 

CSP must be able to migrate the tenant TD without tenant TD runtime 
involvement. 

H 

F2: Opt-in at TD creation TD must be able to opt-in to migration at creation.  Tenant SW should 
not be part of this decision. 

H 

F3: No performance impact when 
not migrating 

CSP must be able to minimize additional performance impact due to TD 
migration only during migrating the TD.  For example, TD migration 
entails page fragmentation, but this should only be required during 
migration. 

H 

F4: Live migration TD Migration must support the usage model where the TD continues to 
run on the source platform while most of its memory state is being 
migrated.  

H 

F5: Post copy TD Migration must support the usage model where the TD may run on 
the destination platform even though some of its memory state has not 
yet been migrated. 

H 

F6: Platform compatibility TD Migration shall allow migrating a TD between platforms with 
different capabilities, as long as the migrated TD does not depend on 
platform capabilities that do not exist on the destination platform.  

H 

F7: Migration protocol 
compatibility 

TD Migration shall allow migration between platforms that use different 
versions of the migration protocol, and shall check the compatibility of 
the protocols between the source and destination platforms.  

H 

F8: Non-blocking export Non-blocking mode, where memory to be exported in not write-blocked, 
shall be supported. 

Detection of memory content modification will rely on the EPT Dirty (D) 
bit and/or Page Modification Log (PML). 

L 

F9: Large pages Initial export shall allow mapping of TD private memory as 2MB or 1GB 
pages. 

L 

F10: Memory migration 
concurrency 

TD migration shall be designed to allow concurrent memory migration 
operation on multiple logical processors. 

H 

 

The non-requirements list below highlights items that are not considered functional requirement of TD Migration. 10 

Table 3.2:  Functional Non-Requirements 

Functional Non-Requirement Details 

FN1: Shared memory Migration of shared memory content is out of the scope of TD Migration.  It 
is the responsibility of the host VMM 

 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 16 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

3.2. Security Requirements 

TD Migration has the following additional security requirements, on top of other TDX security requirements. 

Table 3.3:  Security Requirements 

Security Requirement Details 

S1: Minimum destination TCB 
requirements 

CSP must not be able to migrate a TD to a destination platform with a TCB 
that does not meet the minimum requirements expressed in the TD 
Migration Policy (TD Migration Policy is configurable and attestable). 

Note: CPUSVN is different for each CPU – it starts from 0 on each 
generation, hence relying on a platform being newer is not good 
enough for SVN comparison. 

Corollary: TD attestation enforces the base line of required security.  A TD 
may start on a stronger TCB platform and then migrated to a 
weaker TCB, if they are within the required security 
requirements of the TD. 

S2: Migratable attribute CSP must not be able to create a TD to be migratable without the tenant 
knowledge (attestation report includes TD migratable attribute). 

S3: No cloning CSP must not be able to clone a TD during migration (either source or 
destination TD must be executing after migration process completes) . 

S4: No stale state CSP must not be able to operate the destination TD on any stale state from 
the source TD. 

S5: Transport mechanism 
independence 

Security (confidentiality, integrity and replay protection) of TD migration 
data is agnostic of the transport mechanism between source and 
destination. 

 

The non-requirements list below highlights items that are not considered security requirement of TD Migration. 5 

Table 3.4:  Security Non-Requirements 

Security Non-Requirement Details 

SN1: DOS by the host VMM Prevention of DOS by the host VMM during migration is not required. 

 

3.3. Non-Functional Requirements 

TD Migration has the following additional non-functional requirements, on top of other TDX non-functional requirements. 

Table 3.5:  Non-Functional Requirements 10 

Non-Functional Requirement Details 

N1: Blackout period TD Migration should enable the blackout period, when the TD may not run 
on either the source or the destination platform, to be shorter than 300 
msec. 

Test conditions for this requirement are TBD. 

Note: This is not a hard requirement.  Blackout period depends on the 
TD workload; specifically, the amount of memory that is the TD’s 
software working set and that frequently gets modified by it.  

N2: Number of migration streams Up to 511 concurrent migration streams shall be supported per TD.  

 

 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 17 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

4. TD Migration Software Flows  

This chapter summarizes the software flows used for TD migration using Intel TDX Module interface functions. 

4.1. Typical TD Migration Flow Overview 

Source Platform  Destination Platform 

1. Create Worker Threads, disable 
device optimizations 

   
4. Receive memory layout and 

device resource information 

2. Save memory layout and device 
resource information 

   
5. Allocate guest memory and 

reserve resources on devices 

3. Send memory layout and 
resource  information to the 
destination host 

Send Migration Information → Receive Migration Information  

    
6. Setup worker process and signal 

the completion to source host 

 TDH.SERVTD.BIND  TDH.SERVTD.BIND  

 
Establish DH session between 
MigTDs using QE 

→ 
Establish DH session between 
MigTDs using QE 

 

 TDG.SERVTD.WR  TDG.SERVTD.WR  

 
TDH.EXPORT.STATE. 
IMMUTABLE 

→ 
TDH.IMPORT.STATE. 
IMMUTABLE 

 

 Memory Pre-Export  Memory Pre-Import  

7. Run multiple passes of memory 
walker to transfer dirty guest-
memory pages  

TDH.EXPORT.BLOCKW   

8. Import TD memory contents 

TDH.MEM.TRACK   

TDH.EXPORT.MEM → TDH.IMPORT.MEM 

TDH.EXPORT.UNBLOCKW   

TDH.EXPORT.TRACK → TDH.IMPORT.TRACK 

 TDH.EXPORT.PAUSE    

9. Export mutable state 
TDH.EXPORT.STATE.TD → TDH.IMPORT.STATE.TD 

10. Import mutable state 
TDH.EXPORT.STATE.VP → TDH.IMPORT.STATE.VP 

 TDH.EXPORT.TRACK(start token) → TDH.IMPORT.TRACK(start token)  

11. Export memory TDH.EXPORT.MEM → TDH.IMPORT.MEM 12. Import memory 

 
13. (optional) Send end of export 

indication 
→ 

14. (optional) Receive end of export 
indication 

 

   TDH.IMPORT.COMMIT  

    15. Resume VPs 

   
16. (optional) Request post-copy of 

pages 
 

17. (optional) Export memory (post-
copy) 

TDH.EXPORT.MEM → TDH.IMPORT.MEM  

   TDH.IMPORT.END  

 
Receive migration success 
indication 

 Send migration success indication  

 
Indicate success to VM 
Management 

 
Indicate success to VM 
Management 

 

18. Tear-down source TD     

Figure 4.1:  Typical TD Migration Flow 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 18 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

4.2. Successful TD Export 

The following sequence is typically used to export a TD from a source platform. 

Table 4.1:  Typical TD Export Sequence 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

In-Order 
Export 

Start of 
Export 
Session 

VMM initializes MigTD (as a legacy TD) 
and binds it to the source TD. 

Once TDH.SERVTD.BIND 

VMM/orchestration sets up transport 
session between source and destination 
MigTD.  MigTDs setup their own protected 
channel, generate a Migration session key 
and write to the source TD metadata. 

Once TDG.SERVTD.WR(migration session 
key) 

VMM starts the export session and 
exports immutable state creating a state 
migration bundle. 

Once TDH.EXPORT.STATE.IMMUTABLE  

Live Memory 
Export  

Host VMM blocks a set of pages for 
writing. 

Multiple TDH.EXPORT.BLOCKW 

Host VMM increments the TD’s TLB epoch  Once per 
migration 
epoch 

TDH.MEM.TRACK 

Host VMM starts migration epoch and 
creates epoch token migration bundle;  a 
page can be exported once per epoch. 

Once per 
migration 
epoch 

TDH.EXPORT.TRACK(epoch token) 

Host VMM exports, re-exports or cancels 
the export of TD private pages and creates 
a memory migration bundle. 

Multiple TDH.EXPORT.MEM 

TD write attempt to write to page blocked 
for writing results in an EPT violation.  The 
host VMM unblocks the page; if already 
exported, it will need to be re-blocked 
and re-exported. 

Multiple TDH.EXPORT.UNBLOCKW 

Mutable Non-
Memory 
State Export 

VMM pauses the source TD Once TDH.EXPORT.PAUSE 

VMM exports mutable TD-scope state and 
creates a state migration bundle. 

Once TDH.EXPORT.STATE.TD 

VMM exports mutable VCPU-scope state 
and creates a state migration bundle. 

Per VCPU TDH.EXPORT.STATE.VP 

Out-Of-
Order 
Export 

Cold Memory 
Export 

Host VMM starts the out-of-order export 
phase and creates a start token migration 
bundle. 

Once TDH.EXPORT.TRACK(start token) 

Host VMM exports TD private pages and 
creates a memory migration bundle. 

Multiple TDH.EXPORT.MEM 

TD 
Teardown 

End Host VMM gets success notification from 
the destination platform, terminates the 
export session and tears down the TD on 
the source platform 

Once TDH.MNG.VPFLUSHDONE 

TDH.PHYMEM.CACHE.WB 

TDH.MNG.KEY.FREEID 

TDH.PHYMEM.PAGE.RECLAIM 

TDH.PHYMEM.PAGE.WBINVD 

 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 19 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

4.3. Successful TD Import 

The following sequence is typically used to import a TD to a destination platform. 

Table 4.2:  Typical TD Import Sequence 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

In-Order 
Import 

Start of 
Import 
Session 

VMM initializes MigTD (as a legacy TD) 
and binds it to the destination TD. 

Once TDH.SERVTD.BIND 

VMM/orchestration sets up transport 
session between source and destination 
MigTD.  MigTDs setup their own protected 
channel, generate a Migration session key 
and write to the destination TD metadata. 

Once TDG.SERVTD.WR(migration session 
key) 

VMM starts the import session and 
imports immutable state with a state 
migration bundle received from the 
source platform. 

Once TDH.IMPORT.STATE.IMMUTABLE 

Pre-Copy 
Memory 
Import  

Host VMM builds the Secure EPT by 
allocating physical pages. 

Multiple TDH.MEM.SEPT.ADD 

Host VMM imports TD private pages with 
a memory migration bundle received from 
the source platform. 

Multiple TDH.IMPORT.MEM 

Host VMM starts migration epoch with an 
epoch token migration bundle received 
from the source platform;  a page can be 
imported once per epoch. 

Once per 
migration 
epoch 

TDH.IMPORT.TRACK(epoch token) 

Mutable TD-
scope and 
VCPU-scope 
non-memory 
state import 

VMM imports mutable TD-scope state 
with a state migration bundle received 
from the source platform. 

Once TDH.IMPORT.STATE.TD 

VMM creates VCPU. Per VCPU TDH.VP.CREATE 

VMM allocates physical pages for the 
VCPU’s TDVPS. 

Multiple 
per VCPU 

TDH.VP.ADDCX 

VMM imports mutable VCPU-scope state 
with a state migration bundle received 
from the source platform. 

Per VCPU TDH.IMPORT.STATE.VP 

Out-Of-
Order 
Import 

Pre-Copy 
Memory 
Import 

Host VMM starts the out-of-order import 
phase with a start token migration bundle 
received from the source platform. 

Once TDH.IMPORT.TRACK(start token) 

Host VMM builds the Secure EPT by 
allocating physical pages. 

Multiple TDH.MEM.SEPT.ADD 

Host VMM imports TD private pages with 
a memory migration bundle received from 
the source platform. 

Multiple TDH.IMPORT.MEM 

Post-Copy 
Memory 
Import 

Host VMM commits the import session, 
allowing the TD to run on the destination 
platform. 

Once TDH.IMPORT.COMMIT 

Host VMM can execute the TD as usual.  
Memory can be imported on demand. 

Per VCPU TDH.VP.ENTER 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 20 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

On EPT violation, host VMM requests a 
page import from the source platform. 

Multiple N/A 

Host VMM builds the Secure EPT by 
allocating physical pages. 

Multiple TDH.MEM.SEPT.ADD 

Host VMM imports TD private pages with 
a memory migration bundle received from 
the source platform. 

Multiple TDH.IMPORT.MEM 

End Host VMM terminates the import session Once TDH.IMPORT.END 

 

4.4. TD Import Abort 

The following sequence is typically used to import a TD to a destination platform, if an error is detected. 

4.4.1. TD Import Abort During the In-Order Import Phase 

Table 4.3:  Typical TD Import Sequence Abort During In-Order Input 5 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

In-Order 
Import 

    

Pre-Copy 
Memory 
Import 
(Failed) 

Host VMM builds the Secure EPT by 
allocating physical pages. 

Multiple TDH.MEM.SEPT.ADD 

Host VMM imports TD private pages with 
a memory migration bundle received from 
the source platform. 

TDH.IMPORT.MEM returns an error status 
indicating a failed import session. 

Multiple TDH.IMPORT.MEM 

Abort Token 
Transmission 
(Optional) 

VMM creates an abort token and 
transmits it to the source platform. 

Once TDH.IMPORT.ABORT 

TD 
Teardown 

End Host VMM terminates the import session 
and tears down the TD on the destination 
platform 

Once TDH.MNG.VPFLUSHDONE 

TDH.PHYMEM.CACHE.WB 

TDH.MNG.KEY.FREEID 

TDH.PHYMEM.PAGE.RECLAIM 

TDH.PHYMEM.PAGE.WBINVD 

 

4.4.2. TD Import Abort During the Out-Of-Order Import Phase 

Table 4.4:  Typical TD Import Sequence Abort During Out-of-Order Input 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

In-Order 
Import 

    

   



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 21 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

Out-Of-
Order 
Import 

Memory 
Import 
(Failed) 

Host VMM imports TD private pages with 
a memory migration bundle received from 
the source platform. 

TDH.IMPORT.MEM returns an error status 
indicating a failed import session. 

Multiple TDH.IMPORT.MEM 

Abort Token 
Transmission 

VMM creates an abort token and 
transmits it to the source platform. 

Once TDH.IMPORT.ABORT 

TD 
Teardown 

End Host VMM terminates the import session 
and tears down the TD on the destination 
platform 

Once TDH.MNG.VPFLUSHDONE 

TDH.PHYMEM.CACHE.WB 

TDH.MNG.KEY.FREEID 

TDH.PHYMEM.PAGE.RECLAIM 

TDH.PHYMEM.PAGE.WBINVD 

 

4.5. TD Export Abort 

The following sequence is typically used to export a TD from a source platform, if the export is aborted. 

4.5.1. Export Abort During the In-Order Export Phase 

Table 4.5:  Typical TD Export Sequence Abort During In-Order Export 5 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

In-Order 
Export 

Start of 
Export 
Session 

   

VMM starts the export session and 
exports immutable state creating a state 
migration bundle. 

Once TDH.EXPORT.STATE.IMMUTABLE  

Export Abort  Host VMM aborts the export session. Once TDH.EXPORT.ABORT 

Source TD 
Run and 
Restore 

 Host VMM may run and manage the 
source TD 

Multiple TDH.VP.ENTER etc. 

Host VMM restores SEPT entries to their 
normal non-export state 

Multiple TDH.EXPORT.UNBLOCKW 

TDH.EXPORT.RESTORE 

 

4.5.2. Export Abort During the Out-Of-Order Export Phase 

Table 4.6:  Typical TD Export Sequence Abort During Out-Of-Order Export 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

In-Order 
Export 

    

Out-Of-
Order 
Export 

    

Export Abort  Host VMM receives an abort token from 
the destination platform and abort the 
export session. 

Once TDH.EXPORT.ABORT 

 Host VMM may run and manage the 
source TD 

Multiple TDH.VP.ENTER etc. 



TDX Module TD Migration Spec Section 1:   Introduction and Overview 348550-001US 

September 2021      Page 22 of 68 

Se
ct

io
n

 1
:  

In
tr

o
d

u
ct

io
n

 a
n

d
 O

ve
rv

ie
w

 

Migration 
Phase 

Step Description Plurality TDX Module Interface Function 

Source TD 
Run and 
Restore 

Host VMM restores SEPT entries to their 
normal non-export state 

Multiple TDH.EXPORT.UNBLOCKW 

TDH.EXPORT.RESTORE 

 

 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 23 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

SECTION 2: 
TD MIGRATION ARCHITECTURE SPECIFICATION 

 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 24 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

5. Migration TD Overview 

This chapter provides a short introduction to the Migration TD and its roles.  For details, refer to the [MigTD Spec]. 

5.1. Example Migration Session Establishment 

The goal is to stablish secure transport channel between Intel TDX Modules and MigTDs on both sides across compatible 
platforms and reserve resources for the migration session. 5 

Generate 
key-pair

Intel TDX ModuleVMM

SEAMCALL

SEAMRET

Intel TDX ModuleVMM

SEAMCALL

SEAMRET

SOURCE PLATFORM DESTINATION PLATFORM

Generate 
key-pair

MigTD

verify certificate chain 
for source platform

MigTD
Request QE 
certification Quote 

verification 
library

QuotingE
nclave

Sign alias 
certificate for 

MigTD

Quoting
Enclave

Sign alias 
certificate for 

MigTD

Libvirt
(untrusted 
host 
service)

Libvirt
(untrusted 
host 
service)

Logical secure channel (OpenEnclave/ TLS with TDX Quote Support ) – Transport key

1

4

2

Eval Mig pol and 
Generate Mig Key Eval Mig Pol and 

Unwrap Mig Key

Migration session Key

Quote 
verification 

library
verify certificate chain 

for dest platform

3

Migration session Key

Request QE 
certification

Program Mig KeyProgram Mig Key

Data (Migration session Key)

0

TD TD

 

Figure 5.1: MigTD Transport Security Setup 

1. On platform 1, TD-s to be migrated is created with MIGRATABLE attribute.  TD-s is built and executed using the 
legacy process. 
1.1. The VMM may pre-bind MigTD-s to TD-s using TDH.SERVTD.PREBIND. 10 

2. The cloud orchestration triggers a migration of TD-s from platform 1 to platform 2. 
3. The host VMM on platform 1 instantiates MigTD-s and binds it to TD-s via an unsolicited service TD binding using 

TDH.SERVTD.BIND. 
4. MigTD-s binds to TD-s: 

4.1. MigTD-s requests the host VMM to be bound to TD-s, using TDG.VP.VMCALL.  15 

4.2. The VMM invokes TDH.SERVTD.BIND to bind TD0 to MigTD-s. 
4.3. The VMM communicates the binding handle, target TD_UUID and other binding parameters to MigTD-s. 

5. The VMM initiates the migration process for the TD-s: 
5.1. The VMM creates a network transport session (nonce) with the destination platform (destination of TD 

migration) and requests a quote from the MigTD-d on destination platform. 20 

5.2. The VMM notifies MigTD-s of a new session providing quote for MigTD-d (from destination platform); in 
response MigTD-s invokes TDG.MR.REPORT and requests a QUOTE from the host VMM (to be sent to source 
platform). 

5.3. MigTD-s verifies the MigTD-d quote using a Quote Verification Library in the MigTD-s and establishes via 
Diffie-Helman a transport key for the session with destination platform (and vice-versa). 25 

6. MigTD-s and MigTD-d can enumerate their respective TDX module properties (e.g., what migration version is 
supported, what CPU functionality is supported) using TDG.SYS.RD/RDALL.  They can exchange this information in 
order to ensure compatibility. 

7. MigTD-s authenticates the Migration Policy and evaluates it per the capabilities (SVN etc.) of the destination 
platform  (learnt via the quote) for the specified live migration session. 30 

8. On platform 2 a destination TD-d skeleton is created via legacy process. 
8.1. The VMM may pre-bind MigTD-d to TD-d using TDH.SERVTD.PREBIND. 

9. Migration Key Setup: 
9.1. MigTD-s generates a Migration Key to be used on the source and destination platform for exporting and 

importing the TD state on source and destination platform respectively. 35 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 25 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

9.2. MigTD-s writes the migration key to TD-s using TDG.SERVTD.WR. 
9.3. MigTD-s sends the migration key to MigTD-d. 
9.4. On the destination platform MigTD-d binds with TD-d and writes the migration key to it using 

TDG.SERVTD.WR. 
10. The host VMM on the source platform can now initiate the state export via TDH.EXPORT* SEAMCALLs and import 5 

state via TDH.IMPORT* SEAMCALLs 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 26 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

6. TD Migration Common Mechanisms 

This chapter describes the infrastructure used by all Import/Export APIs to migrate TD private memory and metadata. 

6.1. Migration Bundles 

This section describes the generic migration bundle structure.  Private memory migration uses an enhanced format, 
described in 9.2.5. 5 

6.1.1. Overview 

TD information is transported from the source platform to the destination platform in migration bundles.  A migration 
bundle consists of migration data, which may span one or more 4KB pages or one 2MB page, and migration bundle 
metadata (MBMD).  Migration bundle transport is the responsibility of untrusted software and is out of the scope of this 
specification. 10 

Target PlatformSource Platform

Migration 
Bundle 

Metadata
(MBMD)

Migrated 
Data

Migration 
Bundle

TDH.EXPORT.*

Migration 
Bundle 

Metadata
(MBMD)

Migrated 
Data

Migration 
Bundle

TDH.IMPORT.*
Transport

 

Figure 6.1:  Migration Bundle 

6.1.2. Migration Data 

Migration data contains either TD private memory contents or TD non-memory state.  It is confidentiality-protected using 
AES-GCM with the TD migration key and a running migration session counter.  Migration data is integrity-protected by its 15 

associated MBMD.  For encryption details, see 6.3. 

Note: Migration of shared memory pages is the responsibility of untrusted software and is out of the scope of this 
specification. 

In memory, migration data occupies one or more 4KB shared memory pages, or one 2MB shared memory page, managed 
be the host VMM. 20 

6.1.3. Migration Bundle Metadata (MBMD) 

A migration bundle metadata (MBMD) structure provides metadata for an associated migration data.  In memory, MBMD 
resides in a shared page, managed by the host VMM, and must be naturally aligned.  An MBMD is not confidentiality 
protected, but it provides integrity protection for itself and for its associated migration data. 

The MBMD structure consists of a fixed header and a per-type variable part.  The header contains the following fields: 25 

SIZE: Overall size of the MBMD structure, in bytes 

MIG_VERSION: Migration protocol version 

MB_TYPE: The type of information being migrated 

MB_COUNTER: Per-stream migration bundle counter 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 27 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

MIG_EPOCH: Migration epoch number 

MIGS_INDEX: Index of the migration stream 

IV_COUNTER: Monotonously increasing counter, used as a component in the AES-GCM IV 

The last field of each MBMD is an AES-256-GCM MAC over other MBMD fields and other associated migration data 
(migration pages). 5 

The detailed MBMD definition is provided in [TDX Module ABI]. 

6.2. Export and Import Functions Interface 

Export and import functions operate on a single migration bundle at a time, which belongs to a specific migration stream. 

6.2.1. Overview of Migration Data Format in Memory 

While in memory, a migration bundle always contains a single MBMD.  Optional migration data can be stored in multiple 10 

4KB migration buffer pages. 

6.2.2. Migrating a Multi-Page Migration Bundle 

To export a multi-page migration bundle, the host VMM on the source platform prepares a set of migration buffer pages 
and a buffer for an MBMD in shared memory.  The required number of migration pages per TDH.EXPORT.* function is 
enumerated by TDH.SYS.INFO.  The host VMM provides the MBMD’s HPA and a list of HPA pointers to the migration 15 

pages as an input to the TDH.EXPORT* function. 

To import a multi-page migration bundle, the host VMM on the destination platform prepares the set of migration pages 
and the MBMD, as received from the source platform, in shared memory.  The host VMM provides the MBMD’s HPA and 
a list of HPA pointers to the migration pages as an input to the TDH.IMPORT* function. 

Target PlatformSource Platform

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Page List

Migration 
Bundle 

Metadata
(MBMD)

4KB
Migration

Page

4KB
Migration

Page

4KB
Migration

Page

Multi-Page 
Migration 

Bundle

TDH.EXPORT.* TDH.IMPORT.*

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Page List

Transport

Migrated Data

Migration 
Bundle 

Metadata
(MBMD)

4KB
Migration

Page

4KB
Migration

Page

4KB
Migration

Page

Multi-Page 
Migration 

Bundle

Migrated Data

 20 

Figure 6.2:  Migrating a Multi-Page Migration Bundle 

6.2.3. Migration Functions Interruptibility 

TDH.EXPORT.* and TDH.IMPORT.* functions may take relatively long time to execute.  This is especially true for 2MB 
page migration and multiple 4KB page migration.  To avoid latency issues, such functions may be interruptible and 
restartable.  This is supported as follows: 25 

• TDH.EXPORT.* and TDH.IMPORT.* functions are designed to synchronously check for a pending external event by 
reading MSR_INTR_PENDING (once after every pre-determined number of cycles, chosen to be smaller than the 
maximum allowed cycle latency). 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 28 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

• If an external event is pending, the functions store their context in the proper MIGSC and returns with a 
TDX_INTERRUPTED_RESUMABLE completion status. 

• The host VMM is expected to call the TDH.EXPORT.* or TDH.IMPORT.* function again with the same set of inputs 
until the operation is completed successfully (completion status is TDX_SUCCESS) or some error occurs (completion 
status indicates an error). 5 

• An input flag indicates whether the invocation of a TDH.EXPORT.* or TDH.IMPORT.* function starts a new operation 
(and possibly aborts an interrupted one) or resumes an interrupted operation. 

6.3. Cryptographic Protection for Migration Data 

6.3.1. Encryption Algorithm 

TD migration uses AES in Galois/Counter Mode (GCM) to transfer state between the source and destination platform 10 

platforms.  Per [AES-256-GCM] definitions, the TD data private memory or non-memory state temporarily held in the 
CPU cache during TDH.EXPORT.* forms the “Plaintext”, and some of the MBMD fields form the “Additional Authenticated 
Data”.  The “Plaintext” is encrypted using a Migration key (described below).  The MAC size, also known as t, as defined 
in [AES-256-GCM], must be 128 bits.  

The Initialization Vector (IV) is 96 bits.  It is composed as described below.  Since 64 bits will never wrap around in practice, 15 

this helps ensure a unique counter for each stream. 

Table 6.1:  Components of the 96-bits IV 

Bits Size Name Description 

63:0 64 IV_COUNTER Starts from 1, incremented by 1 every time AES-GCM is used to 
encrypt data and/or generate a MAC for a migration bundle.  
The counter is incremented even if the data is discarded and not 
used for migration. 

79:64 16 MIGS_INDEX Stream index (see 6.3) 

94:80 15 RESERVED Set to 0 

95 1 DIRECTION 0 for source to destination, 1 for destination to source 

 

6.3.2. Migration Session Key 

The MigTDs on the source and the destination platforms agree on a migration session key.  The MigTD on each side sets 20 

the migration key in the source/destination TD using the generic binding write protocol, as described in the [TDX Module 
Spec]. 

The migration key properties are as follows: 

• The key strength is 256 bits. 

• The key is generated by the MigTD after a successful policy negotiation for a migratable TD. 25 

• The key is programmed by the MigTD, via the host VMM,  into the source and destination TDs’ TDCS using the Service 
TD metadata write protocol, as described in the [TDX Module Spec]. 

• The key is accessible only by the MigTD and the Intel TDX Module. 

• On migration session start by TDH.*PORT.STATE.IMMUTABLE, the Intel TDX module copies the programmed key into 
a working key that is uses throughout the session. 30 

• The key is used by TDH.EXPORT.*/TDH.IMPORT.* to migrate TD state as the VMM selects them for migration. The 
migration stream AES-GCM protocol requires that state is migrated in-order between the source and destination 
platform.  This helps maintain the order within each migration stream. 

• The key is destroyed when a TD holding it is torn down, or when a new key is programmed.  

6.4. Migration Streams and Migration Queues 35 

Migration stream is a TDX concept.  Multiple streams allow multi-threaded, concurrent export and import, and enable 
the Intel TDX Module to enforce proper ordering of migration bundles during the in-order phase where this is essential. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 29 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Migration queue is a host VMM concept.  Multiple queues allow QoS and prioritization.  E.g., Post-copy of pages on 
demand (triggered by an EPT violation on the destination platform) may have a higher priority than other post-copy of 
pages.  To avoid head-of-line blocking by waiting in the same queue as lower priority pages, a separate high priority queue 
can be used by the host VMM. 

From the migration streams and migration queues perspective, a migration session is divided into two main phases: 5 

• In-order, where the source TD may run, and its memory and non-memory state may change.  During the in-order 
phase, the order of memory migration is critical.  A newer export of the same memory page must be imported after 
an older export of the same page.  Furthermore, for any memory page that has been migrated during the in-order 
phase, the most up-to-date version of that page must be migrated before the in-order phase ends.  In the in-order 
phase, one or more migration streams are mapped to each migration queue. 10 

• Out-of-order, where the source TD does not run, and its memory and non-memory state may not change.  During 
out-of-order, the order of memory migration is not important – except that migration bundles exported during the 
in-order phase can’t be imported during the out-of-order phase.  Furthermore, the host VMM may assign exported 
pages (even multiple copies of the same exported page) to different priority queue.  This is used, e.g., for on-demand 
migration after the destination TD starts running. 15 

The start tokens, generated by TDH.EXPORT.TRACK and verified by TDH.IMPORT.TRACK, serve as markers to indicate the 
end of the in-order phase and start of the out-of-order phase.  They are used to implement a rendezvous point, enforcing 
all the in-order state (across all streams) to have been imported before the out-of-order phase starts and the destination 
TD may execute. 

Figure 6.3 below describes how the stream context held by the source and the destination platforms and the MBMD 20 

fields included in each migration bundle are used to construct the non-repeated AES-GCM IV.  Note also that the same 
stream queues can be used for both in-order and out-of-order.  The semantic use of the queues is up to the host VMM. 

STREAM_INDEX 
(16 bits)

AES_GCM_CONTER
(64 bits)

AES-256-GCM Migration Session Key

TDH.EXPORT.PAGE
@ LP1

Migration 
Bundle  3

TDCS

Migration 
Bundle 0

Migration 
Bundle 2

TDCS

Migration 
Bundle  3

Migration 
Bundle 0

Migration 
Bundle 2

TDH.EXPORT.PAGE
@ LP2

TDH.IMPORT.PAGE
@ LP1

TDH.IMPORT.PAGE
@ LP2

Source
Platform

Target
Platform

0
(15 bits)

Direction
(1 bit)

Implicit From MBMD

AES-256-GCM IV (96 bits)

MB 0
MB_COUNTER = 0

MB 3 
MB_COUNTER = 1

Migration Stream 0 (Default)

MB 1
MB_COUNTER = 0

MB 2 
MB_COUNTER = 1

Migration Stream 1

Migration 
Bundle 1

Migration 
Bundle 1

Stream 
Context

Stream 
Context

Stream 
ContextStream 

Context

Stream 
Context

Stream 
Context

 

Figure 6.3:  Migration Streams 

Migration streams have the following characteristics: 25 

• Within each stream, state is migrated in-order.  This is enforced by the MB_COUNTER field of MBMD. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 30 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

• Export or import operations using a specific migration stream must be serialized.  Concurrency is supported only 
between streams.  

• The host VMM should use the same stream index to import memory on the destination TD (which should be in 
MEMORY_IMPORT, STATE_IMPORT or RUNNABLE state).  This is enforced by TDH.IMPORT.MEM. 

• Non-memory state can only be migrated once; there is no override of older migrated non-memory state with a newer 5 

one.  Ordering requirements (e.g., TD-scope non-memory state must be imported before VCPU non-memory state) 
are enforced by the lifecycle state machine, as described in 7.2. 

• The maximum number of forward streams is implementation dependent: 
o Each stream requires context space allocation. 
o Stream ID requires a field in the MBMD header. 10 

The maximum number of forward streams is enumerated by TDH.SYS.RD*. 

6.5. Measurement and Attestation 

6.5.1. TD Measurement Registers Migration 

TDs have two types of measurement registers: 

MRTD: Static measurement of the TD build process and the initial contents of the TD.  This state is migrated as part of 15 

the global immutable state of the TD (via TDH.EXPORT.STATE.IMMUTABLE and 
TDH.IMPORT.STATE.IMMUTABLE). 

RTMR: An array of general-purpose measurement registers, available to the TD software for measuring additional logic 
and data loaded into the TD at runtime.  Since this measurement covers dynamic state beyond the static state 
and can be extended by TD software via TDG.MR.RTMR.EXTEND, hence, this state is migrated only during the 20 

blackout period, as part of the TD’s mutable state (via TDH.EXPORT.STATE.TD and TDH.IMPORT.STATE.TD). 

All TD measurements are reflected in TD attestations. 

6.5.2. TD Measurement Reporting Changes 

The TDINFO structure is enhanced to include hashes of Service TDs’ TDINFO; for TD migration, the applicable Service TD 
is the Migration TD.  Refer to the [TDX Module Spec] for a discussion of Service TDs. 25 

6.5.3. TD Measurement Quoting Changes 

To create a remotely verifiable attestation, the TDREPORT_STRUCT must be converted into a Quote signed by a certified 
Quote signing key, as described in the [TDX Module Spec]. 

TDREPORT_STRUCT is HMAC’ed using an HMAC key unique to each platform and accessible only to the CPU.  This protects 
the integrity of the structure and can only be verified on the local platform via the SGX ENCLU(EVERIFYREPORT2) 30 

instruction.  TDREPORT_STRUCT cannot be sent off platforms for verification; it first must be converted into signed 
Quotes. 

If a report is generated by TDG.MR.REPORT on the source platform, but the is migrated to a destination platform, the 
local HMAC key is different and hence the EVERIFYREPORT2 on the migrated TDG.MR.REPORT is expected to fail.  The TD 
software is typically unaware of being migrated.  It is expected to retry the TDG.MR.REPORT operation if it fails. 35 

6.5.4. TCB Recovery and Migration 

The TDX architecture has several levels of TCB:  

• CPU HW level, which includes microcode patch, ACMs, and PFAT 

• Intel TDX Module  

• Attestation Enclaves, which include the TD Quoting Enclave and Provisioning Certification Enclave 40 

The TCB Recovery story is different for each level.  The existing TCB Recovery model for CPU SW level items applies 
similarly to TDX and SGX and requires a restart of the platform to take effect.   The Intel TDX Module can be unloaded 
and reloaded to reflect an upgraded Intel TDX Module.  The enclaves can be upgraded at runtime, but if the PCE is 
upgraded, a new certificate must be downloaded. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 31 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

6.6. TDX Control Structure Updates 

This section discusses updates and additions to the global and TD-scope control structures. 

TDCS

TDCSTDX
TDCX Page

Shared:
VMM-Managed, Shared HKID

Opaque (TD Private HKID):
VMM Allocated, Intel TDX Module Managed

TDR Page

Opaque (Intel TDX Module
Global Private HKID):

VMM Allocated,
Intel TDX Module Managed

Secure EPT Tree

SEPT_PAGE
SEPT_PAGE
SEPT Page

Migration Stream Context

SEPT_PAGE
SEPT_PAGE

MIGSC

 

Figure 6.4:  TD-Scope Control Structures Overview 

6.6.1. Per-TD:  TDCS 5 

As described in 7.2, TD migration happens when both the source and destination TDs have their ephemeral encryption 
keys assigned and configured, and the TDCS pages have been allocated.  Thus, all migration-related metadata is stored in 
TDCS.  There is no change to TDR.  TDCS details are described in the [TDX Module ABI]. 

 Updates to Existing TDCS Fields 

TDCS is updated with the following migration-related fields: 10 

• The ATTRIBUTES field has a new MIGRATABLE bit. 

• TD state variables are enhanced to support the updated TD Operation State Machine and the new TD Migration State 
Machine, described in 7.2. 

• Service TD context array supports, among other, the Migration TD.  Service TDs are described in the [TDX Module 
Spec]. 15 

 TDCS Migration-Related Fields 

The following TDCS fields hold per-TD migration context.  The detailed specification is provided in the [TDX Module ABI]. 

Table 6.2:  TDCS Migration Context High Level Definition 

Field Description 

MIG_KEY_SET Set when a new MIG_KEY is written, cleared when the MIG_KEY is copied to 
MIG_WORKING_KEY 

EXPORT_COUNT Counts the number of times this TD has been exported, included aborted export 
sessions. 
Incremented at the beginning of each export session 
(TDH.EPORT.STATE.IMMUTABLE). 

IMPORT_COUNT Counts the number of times this TD has been imported.  
Incremented by TDH.IMPORT.COMMIT. 

MIG_EPOCH Migration epoch 
Starts from 0 on migration session start, incremented by 1 on each epoch token.  
A value of 0xFFFFFFFF indicates out-of-order phase. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 32 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Field Description 

BW_EPOCH Blocking-for-write epoch 
Holds the value of TD_EPOCH at last time TDH.EXPORT.BLOCKW blocked a page 
for writing. 

TOTAL_MB_COUNT The total number of migration bundles exported or imported during the current 
migration sessions 

MIG_KEY Migration key, as written by the Migration TD 

MIG_WORKING_KEY Migration working key, copied from MIG_KEY at the beginning of a migration 
session and used throughout the session 

MIG_VERSION Migration protocol version, as written by the migration TD 

MIG_WORKING_VERSION Migration working protocol version, copied from MIG_VERSION at the beginning 
of a migration session and used throughout the session 

DIRTY_COUNT Counts of the number of pages that must be re-exported, because their contents 
have been modified since they have been exported, before a start token may be 
generated 

MIG_COUNT Counts the number of SEPT entries that need to be cleaned up after an aborted 
migration 

NUM_MIGS Number of Migration Stream Context (MIGSC) pages that have been allocated  

NUM_IN_ORDER_MIGS Number of migration streams that can be used during the export in -order phase 

MIGSC_LINKS An array of links to MIGSC pages.  Each entry contains the following information:  

MIGSC_HPA: Physical address of the MIGSC page (without the HKID bits)  

INITIALIZED: A boolean flag, indicating that the migration stream has been 
initialized. 

 

 

6.6.2. Secure EPT 

Secure EPT entry structure is updated as follows: 

• Multiple TDX-specific state bits, to support the many new states required for TD private memory migration (see 
Chapter 9). 5 

• Host-side entry lock bit, to support concurrent migration operations on separate Secure EPT entries without 
exclusively locking the whole Secure EPT tree. 

Secure EPT entry details are provided in the [TDX Module ABI]. 

6.6.3. MIGSC:  Migration Stream Context 

Migration streams are defined in 6.3. 10 

MIGSC (Migration Stream Context) is an opaque control structure that holds migration stream context.  MIGSC occupies 
a single 4KB physical page, and is created using the TDH.MIG.STREAM.CREATE function.  MIGSC can only be created if a 
migration session is not in progress. 

Most of the migration stream context is initialized at the beginning of a new migration session by 
TDH.EXPORT.STATE.IMMUTABLE or TDH.IMPORT.STATE.IMMUTABLE. 15 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 33 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Table 6.3:  Migration Stream Context High Level Definition 

Field Description Initial 
Value 

IV_COUNTER Monotonously incrementing 64b counter, used as a component in the AES-
GCM IV 

IV_COUNTER is incremented near the beginning of any TDX module 
function that creates a migration bundle, before it is used for composing an 
IV.  This is done to avoid reusing the IV value in case of a failure. 

0 

NEXT_MB_COUNTER Transmitted migration bundle counter (64b) 

On export, incremented by 1 after every successful MBMD generation.  
After transitioning to the out-of-order phase by TDH.EXPORT.TRACK, bit 63 
is set to 1. 

0 

EXPECTED_MB_COUNTER Expected received migration bundle counter (64b) 

Applicable only on the import side, during the in-order phase before a start 
token has been received on this stream.  A received MBMD’s  
MB_COUNTER must be equal or higher than EXPECTED_MB_COUNTER. 

During the out-of-order phase, the imported MBMD’s MB_COUNTER is not 
compared to EXPECTED_MB_COUNTER.  Instead, its bit 63 is checked to be 
1. 

0 

AES_GCM_CONTEXT Implementation-dependent AES-GCM context 

 

N/A 

INTERRUPTED_STATE The state of interrupted TDH.EXPORT.* or TDH.IMPORT.* interface 
function.  Includes the following: 

• Valid flag 

• Interrupted function’s leaf number  

• Interrupted function’s input operands  

• Interrupted function’s MBMD 

• Other state the needs to be saved across interruptions and 
resumptions. 

N/A 

 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 34 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

7. Migration Session Control and State Machines 

This chapter discusses the TD migration session control, state machine and messaging protocol. 

7.1. Overview 

7.1.1. Successful Migration Session 

Figure 7.1 below shows an overview of a successful migration session.  This figure shows the following: 5 

• Migration the session control TDX Module interface functions (TDH.EXPORT.PAUSE, TDX.EXPORT.TRACK etc.) 

• States of the TD Operation State Machine (RUNNABLE, LIVE_EXPORT etc.) are also shown.  The state machine itself 
is discussed in 7.2.2 below. 

• Phases of the export and import sessions 

TD May Not Run
on Src. Platform

UNINITIALIZED

TD May Run on 
Destination Platform

TD May Run on Source Platform TDX-Imposed Blackout

RUNNABLE

MEMORY/STATE_IMPORT POST_IMPORT

POST_EXPORTPAUSED_EXPORTLIVE_EXPORT

LIVE_IMPORT

In-Order Memory Export Phase Out-Of-Order Memory Export Phase

In-Order Memory Import Phase Out-Of-Order Memory Import Phase

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.EXPORT.
PAUSE TDH.EXPORT.

STATE.DONE

TDH.EXPORT.
STATE.DONE

TDH.EXPORT.
TRACK(DONE)

TDH.IMPORT.
STATE.

IMMUTABLE
TDH.EXPORT.
STATE.DONE

TDH.EXPORT.
STATE.DONE

TDH.IMPORT.
TRACK(DONE)

TDH.IMPORT.
COMMIT

Start
Tokens

Source

Destination

 10 

Figure 7.1:  Migration Session Control Overview (Success Case) 

On the source platform, an export session’s in-order export phase starts with the host VMM invoking the 
TDH.EXPORT.STATE.IMMUTABLE function.  This function creates a migration bundle that is transmitted by the host VMM 
to the destination platform, where TDH.IMPORT.STATE.IMMUTABLE is invoked to start the import session’s in-order 
import phase. 15 

TDH.EXPORT.PAUSE pauses the TD on the source platform and starts the TDX-imposed blackout period. 

TDH.EXPORT.TRACK, invoked on the source platform for every migration stream used during the in-order export phase, 
verifies proper in-order export.  TD state must have been exported, and if any TD private page has been exported, the 
latest version of that page must have been exported.  TDH.EXPORT.TRACK(done) ends that phase and creates a start 
token migration bundle that is transmitted by the host VMM to the destination platform, where 20 

TDH.IMPORT.TRACK(done) is invoked to end the in-order import phase.  See also the discussion of migration epochs in 
7.1.3 below. 

TDH.IMPORT.COMMIT, invoked on the destination platform, commits the migration session and enables the TD to run 
on it, while memory import may continue.  This also helps ensure that the TD will not run on the source platform, since 
an abort token will not be generated. 25 

Optionally, TDH.IMPORT.END, invoked on the destination platform, commits the migration session and enables the TD 
to run on it if not already done by TDH.IMPORT.COMMIT.  TDH.IMPORT.END ends the migration session; memory import 
is no longer allowed. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 35 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

7.1.2. Aborted Migration Session 

 Abort during the In-Order Phase 

Figure 7.2 below shows a case where a migration session is aborted during the in-order migration phase.  
TDH.EXPORT.ABORT, invoked by the host VMM, terminates the export session and enables the TD to resume running on 
the source platform.  By design, the TD should not be able to run on the destination platform – it is up to the host VMM 5 

to free up any resource allocated there. 

TD May Run on Source Platform

UNINITIALIZED

TD May Not Run on Destination Platform

TD May Run on Source Platform TDX-Imposed
Blackout

RUNNABLE

MEMORY/STATE_IMPORT

RUNNABLEPAUSED_EXPORTLIVE_EXPORT

In-Order Memory Export Phase

In-Order Memory Import Phase

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.EXPORT.
PAUSE

TDH.EXPORT.
ABORT

TDH.IMPORT.
STATE.

IMMUTABLE

Source

Destination

 

Figure 7.2:  Migration Session Control Overview (Abort During the In-Order Phase) 

 Abort during the Out-Of-Order Phase 

Figure 7.3 below shows a case where a migration session is aborted during the out-of-order migration phase.  10 

TDH.IMPORT.ABORT is invoked by the host VMM on the destination platform.  This function terminates the import 
session and puts the TD in a state where, by design, it should not be able to run – it is up to the host VMM to free up any 
resource allocated there.  TDH.IMPORT.ABORT also creates an abort token, which is transmitted by the host VMM back 
to the source platform. 

On the source platform, the host VMM invokes TDH.EXPORT.ABORT, which checks the validity of the abort token and 15 

enables the TD to resume running. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 36 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

TD May Run on
Source Platform

UNINITIALIZED

TD May Not Run
on Dest. Platform

TD May Run on Source Platform TDX-Imposed Blackout

RUNNABLE

MEMORY/STATE_IMPORT POST_IMPORT

RUNNABLEPOST_EXPORTPAUSED_EXPORTLIVE_EXPORT

FAILED_IMPORT

Abort
Token

In-Order Memory Export Phase Out-Of-Order Mem. Export

In-Order Memory Import Phase Out-Of-Order Memory Import Phase

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.EXPORT.
PAUSE TDH.EXPORT.

STATE.DONE

TDH.EXPORT.
STATE.DONE

TDH.EXPORT.
TRACK(DONE)

TDH.EXPORT.
ABORT

TDH.IMPORT.
STATE.

IMMUTABLE
TDH.EXPORT.
STATE.DONE

TDH.EXPORT.
STATE.DONE

TDH.IMPORT.
TRACK(DONE)

TDH.IMPORT.
ABORT

Start
Tokens

Source

Destination

 

Figure 7.3:  Migration Session Control Overview (Abort During the Out-Of-Order Phase) 

7.1.3. Migration Epochs 

To help maintain proper ordering of migrated page versions, the in-order migration phase is divided to multiple migration 
epochs.  A specific page can only be migrated once per migration epoch.  This is detailed in 9.5.1.3.  TDH.EXPORT.TRACK 5 

starts a new export epoch and creates an epoch token migration bundle that is transmitted by the host VMM to the 
destination platform, where TDH.IMPORT.TRACK is invoked to a new import epoch.  The last invocations of 
TDX.EXPORT.TRACK and TDX.IMPORT.TRACK, with a parameter indicating that the in-order phase is done, start the out-
of-order export and import phases respectively. 

Stream
1

Stream
2

Stream
3

Stream
0

Page
0

Page
11

Page
5

Page
15

Page
3

Page
8

Page
12

Page
4

Page
13

Page
1

Page
6

Page
14

Page
2

Page
7

Page
10

Page
9

Page
6

Page
12

Page
11

Page
4

Page
8

Cancel
7

Page
7

Page
6

Cancel
8

Page
14

Page
12

Page
1

Page
8

Page
24

Page
28

Page
20

Page
23

Page
16

Page
21

Page
29

Page
18

Page
17

Page
26

Page
19

Page
17

Page
27

Page
22

Page
29

Mig. Epoch 0 Mig. Epoch 1 Mig. Epoch 2

In-Order Phase Out-Of-Order Phase

Live Migration (TD is Running on Source)
Post-Copy (TD 
is Running on 
Destination)

Blackout (TD is 
not Running)

Epoch
Token

Epoch
Token

Start
Token

Time

 10 

Figure 7.4:  Migration Epochs Overview 

 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 37 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

7.2. TD Migration State Machines 

7.2.1. Overview 

The whole TD migration process happens within the TD_KEYS_CONFIGURED state of the TD life cycle state machine, 
where an HKID has been assigned to the TD and the keys have been configured on the hardware.  As a reminder, the TD 
life cycle state diagram is shown in Figure 7.5 below.  For details, see the [TDX Module Spec]. 5 

TDH.MNG.CREATE

TD_HKID_ASSIGNED

TD private key not 
configured TDH.MNG.KEY.CONFIG

[last package]

TDH.MNG.
KEY.CONFIG

[non-last
package]

TDH.PHYMEM.PAGE.RECLAIM[TDR]

TDH.MNG.VPFLUSHDONE
[no associated VCPUs]

TD_TEARDOWN

TD has no HKID

TDH.MNG.KEY.FREEID
TDH.PHYMEM.
PAGE.RECLAIM

[non-TDR]

TD_BLOCKED

TD private memory 
access is blocked 
and caches are 
getting flushed

TDH.MNG.KEY.FREEID

TD_KEYS_CONFIGURED

TD private key is configured

TD Operation
Sub-State

 

Figure 7.5:  TD Life Cycle State Diagram 

Within the TD_KEYS_CONFIGURED state, a secondary-level TD Operation state machine controls the overall TD 
operation, including migration. 

7.2.2. OP_STATE:  TD Operation State Machine 10 

The TD Operation state machine is shown in Figure 7.6 below.  The baseline state machine is extended with new 
migration-related states and transitions, highlighted in red text and lines.  The export states are highlighted in purple and 
the import states are highlighted in blue. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 38 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

UNALLOCATED

TDCS memory 
allocation

TDH.MNG.ADDCX
[non-last page]

INITIALIZED

TD memory 
allocation and 
measurement, 
VCPU creation

TDH.MNG.INIT

TDH.VP.CREATE,
TDH.VP.ADDCX,

TDH.VP.INIT

TDH.MEM.SEPT.ADD,
TDH.MEM.PAGE.ADD,

TDH.MR.EXTEND

TDH.MR.FINALIZE

MEMORY_IMPORT

TD memory import

STATE_IMPORT

TD memory and 
non-memory state 
import

TDH.IMPORT.
STATE.IMMUTABLE

TDH.IMPORT.STATE.TD

TDH.IMPORT.
TRACK

[in-order done]

PAUSED_EXPORT

TD memory export, 
non-memory state 
export

POST_EXPORT

TD memory post-
copy export

TDH.EXPORT.ABORT
[good abort token]

TDH.EXPORT.
TRACK

[in-order done]

TDH.EXPORT.PAUSE

TDH.EXPORT.MEM

TDH.EXPORT.MEM,
TDH.EXPORT.
STATE.TD/VP

TDH.IMPORT.STATE.VP,
TDH.IMPORT.MEM

TDH.IMPORT.MEM

TDH.IMPORT.ABORT /
Generate abort token

TDH.EXPORT.
ABORT

FAILED_IMPORT

Destination TD can 
only be destroyed

TDH.MNG.KEY.CONFIG
[last package]

UNINITIALIZED

TDCS memory has 
been allocatedTDH.MNG.ADDCX

[last page]

TDH.SERVTD.BIND
(MigTD)

TDH.SERVTD.BIND
(MigTD)

TDH.IMPORT.
TRACK

[in-order
not done]

TDH.EXPORT.
TRACK

[in-order
not done]

POST_IMPORT

Post-copy TD 
memory import

TDH.IMPORT.
COMMIT

TDH.IMPORT.
MEM

TDH.MEM.*

RUNNABLE

TD is runnable

LIVE_EXPORT

TD is runnable, live 
memory export can 
be done

LIVE_IMPORT

TD is runnable, 
post-copy memory 
import can be done

TDH.MEM.*

TDH.IMPORT.ABORT /
Generate abort token

TDH.IMPORT.*
[import failed]

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.MEM.*

TDH.EXPORT.
STATE.

IMMUTABLE

TDH.IMPORT.
MEM

TDH.EXPORT.
ABORT

TDH.IMPORT.MEM
[import failed]

TDH.IMPORT.
END TDH.IMPORT.END

TDH.EXPORT.
TRACK

[in-order
not done]

TDH.IMPORT.
TRACK

[in-order
not done]

TDH.EXPORT.MEM

 

Figure 7.6:  TD Operation State Machine (Sub-States of TD_KEYS_CONFIGURED) 

7.2.3. Migration TD Binding and Migration Key Assignment 

Migration TD binding (using TDH.SERVTD.BIND) must happen before a migration session can start.  This may happen 
during TD build, before the measurement has been finalized (by TDH.MR.FINALIZE).  Alternatively, pre-binding (using 5 

TDH.SERVTD.PREBIND) can be done during TD build, and actual binding can happen later.  On the destination platform 
migration TD binding and TD import must happen before the TD is initialized (by TDH.MNG.INIT). 

Migration key assignment, done by TDG.SERVTD.WR, may happen at any time after migration TD binding.  A new 
migration key must be written for any migration session. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 39 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

7.2.4. Export Side (Source Platform) 

To begin an export session, the TD’s OP_STATE must either be RUNNABLE, indicating that its measurement has been 
finalized (by TDH.MR.FINALIZE), or LIVE_IMPORT, indicating that this TD has been previously imported. 

An export session begins with immutable TD state export (using TDH.EXPORT.STATE.IMMUTABLE).  This function copies 
the migration key to a working migration key.  It then starts the in-order export phase.  It transitions the OP_STATE to 5 

LIVE_EXPORT, allowing the source TD to continue running normally while private memory is being exported. 

TDH.EXPORT.PAUSE transitions the source TD’s OP_STATE into the PAUSED_EXPORT state.  In this state, TD private 
memory and TD state modification are prevented.  None of the TD VCPUs may be running (i.e., in TDX non-root mode), 
and no host-side (SEAMCALL) function is allowed to change any TD non-memory state that is to be exported.  Memory 
export (via TDH.EXPORT.MEM etc.) may still continue.  Per-TD and per-VCPU mutable control state are exported using 10 

TDH.EXPORT.STATE.TD and TDH.EXPORT.STATE.VP respectively. 

At any time, the export may be aborted by the host VMM using TDH.EXPORT.ABORT, which returns the source TD to the 
RUNNABLE state, where it can continue to run normally.  No abort token is required at this phase since no start token 
has been generated and the destination TD, by design, should not be able to run. 

Note: TDH.EXPORT.STATE.TD is expected to be called by the exporting host VMM prior to TDH.EXPORT.STATE.VP, but 15 

this is only enforced on the import side. 

TDH.EXPORT.TRACK(done) generates a start token which the host VMM transmits to the destination VMM.  It transitions 
the source TD OP_STATE into the POST_EXPORT state, starting the out-of-order export phase.  Memory export 
(TDH.EXPORT.MEM) may continue, to support the out-of-order stage of the TD live migration. 

In the TD Migration Session POST_EXPORT state, a TDH.EXPORT.ABORT with a valid abort token, received from the 20 

destination VMM, indicates that the TD, by design, should not be able to run on the destination platform.  It terminates 
the export session and returns the source TD to the RUNNABLE state, where it can continue to run normally. 

The host VMM can start tearing down the source TD at any time, by ensuring that no VCPU is associated with an LP (i.e., 
by executing TDH.VP.FLUSH for all VCPUs) and issuing TDH.MNG.VPFLUSHDONE.  Typically, it will do so in the after it gets 
a notification from the destination platform that import has been successful. 25 

7.2.5. Import Side (Destination Platform) 

Migration TD binding (using TDH.SERVTD.BIND) and migration key assignment (using TDG.SERVTD.WR) must happen in 
the UNINITIALIZED state, where TDCS memory has already been allocated but the destination TD has not been initialized 
yet.  This is required since the destination TD is going to be initialized by importing immutable state from the source TD. 

TDH.IMPORT.STATE.IMMUTABLE starts the in-order import phase.  It initializes the destination TD’s TDCS with imported 30 

immutable state and transitions the destination TD’s OP_STATE into MEMORY_IMPORT.  In this state, TD private memory 
can be imported using TDH.IMPORT.MEM etc. 

TDH.IMPORT.STATE.TD imports the per-TD mutable state and transitions the destination TD’s OP_STATE into 
STATE_IMPORT.  In this state, mutable VCPU state can be imported using TDH.IMPORT.STATE.VP.  TD private memory 
import also continues. 35 

Upon executing TDH.IMPORT.TRACK with a valid start token as operand, the destination TD’s OP_STATE transitions into 
the POST_IMPORT state, starting the out-of-order import phase.  Memory import (a.k.a. post-copy) may continue, but 
pages can only be imported if their GPA is free (i.e., the Secure EPT state is FREE). 

An import failure up to this point, e.g., improper sequence of page import vs. alias import, or executing 
TDH.IMPORT.TRACK with a bad start token received from the source platform, transitions the TD’s OP_STATE to the 40 

FAILED_IMPORT state.  In addition, the host VMM can explicitly abort the import by using TDH.IMPORT.ABORT.  In the 
FAILED_IMPORT state, the TD is designed not to run; it can only be torn down.  TDH.IMPORT.ABORT generates an abort 
token, which can be transmitted to the source platform. 

TDH.IMPORT.COMMIT transitions the destination TD’s OP_STATE transitions into the LIVE_IMPORT state.  In this state, 
the destination TD may run normally.  Out-of-order memory import may continue as long as the destination TD is in the 45 

LIVE_IMPORT state.  An input failure in the LIVE_IMPORT terminates the import session; it transitions the TD’s OP_STATE 
to the RUNNABLE state, where the TD can continue running normally.  Abort token can no longer be generated. 

TDH.IMPORT.END ends the import session and transitions the destination TD’s OP_STATE into the RUNNABLE state.  This 
transition is optional if TDH.IMPORT.COMMIT has already been executed; it removes any limitations on TD memory 
management that exist during the out-of-order import phase.  50 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 40 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

A new export session (TDH.EXPORT.STATE.IMMUTABLE) terminates a previous out-of-order import. 

7.2.6. OP_STATE Concurrency Considerations 

 Export Side 

The following export functions typically result in an OP_STATE transition.  They need to run while the source TD may be 
running, therefore they acquire a shared lock on the source TD (via its TDR page).  To avoid concurrent execution with 5 

other export functions that may result in a OP_STATE transition, they acquire an exclusive lock on OP_STATE itself and 
must be serialized by the host VMM: 

• TDH.EXPORT.STATE.IMMUTABLE 

• TDH.EXPORT.ABORT 

The following export functions typically result in an OP_STATE transition.  The source TD does not run when the execute.  10 

They acquire an exclusive lock on the source TD (via its TDR page).  This implicitly locks OP_STATE itself.  These interface 
functions must be serialized by the host VMM: 

• TDH.EXPORT.PAUSE 

• TDH.EXPORT.TRACK 

The following export functions do not result in an OP_STATE transition, but they depend on OP_STATE not changing 15 

during their execution.  They acquire a shared lock on the source TD (via its TDR page) and a shared lock on OP_STATE 
itself. 

• TDH.EXPORT.BLOCKW 

• TDH.EXPORT.UNBLOCKW 

• TDH.EXPORT.MEM 20 

• TDH.EXPORT.STATE.TD 

• TDH.EXPORT.STATE.VP 

• TDH.MIG.STREAM.CREATE 

 Import Side 

The following import functions typically result in an OP_STATE transition.  They acquire an exclusive lock on the 25 

destination TD (via its TDR page) and must be serialized by the host VMM: 

• TDH.IMPORT.STATE.IMMUTABLE 

• TDH.IMPORT.STATE.TD 

• TDH.IMPORT.TRACK 

• TDH.IMPORT.COMMIT 30 

• TDH.IMPORT.END 

• TDH.IMPORT.ABORT 

The following import functions do not typically result in an OP_STATE transition, but they may depend on OP_STATE not 
changing during their execution.  To maximize import performance, they are designed to be executed concurrently on 
multiple LPs.  These interface function acquire a shared lock on the destination TD (via its TDR page): 35 

• TDH.IMPORT.MEM 

• TDH.IMPORT.STATE.VP 

However, all TDH.IMPORT.* functions may result in a transition to the FAILED_IMPORT state.  For example, a 
TDH.IMPORT.MEM on one LP might transition to FAILED_IMPORT, while a concurrent TDH.IMPORT.MEM on another LP 
might still be in progress.  The architecture is designed to harmlessly support this case; the FAILED_IMPORT state has no 40 

direct output transition – the destination TD can only be torn down, starting with TDH.MNG.VPFLUSHDONE which 
acquires an exclusive lock on the TD (via its TDR) and thus helps ensure that any TDH.IMPORT.* are not in progress. 

Similarly, TDH.IMPORT.MEM may result in a transition to the RUNNING state, in case of an import error.  The architecture 
is designed to harmlessly support this case; transitions out of the RUNNING state either acquire an exclusive lock on the 
OP_STATE or acquire an exclusive lock on the TD (via its TDR). 45 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 41 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

7.2.7. Summary 

Table 7.1:  OP_STATE Sub-States of TD_KEYS_CONFIGURED 

Sub-State Source /  
Destination 

Description 

UNALLOCATED Both TDCS memory is being allocated. 

UNINITIALIZED Both • TDCS is pending initialization. 

• On the destination platform, migration TD binding and migration 
key assignment must happen in this state. 

INITIALIZED Source • TD is being built.  Memory is added and measured.  VCPUs are 
created. 

• Migration TD binding may happen in this state. 

RUNNABLE Both • TD can run. 

LIVE_EXPORT Both • TD can run. 

• Immutable non-memory state (TDH.EXPORT.STATE.IMMUTABLE) 
has been exported. 

• Live memory can be exported (TDH.EXPORT.MEM etc.). 

PAUSED_EXPORT Source • No TD VCPU may run. 

• TD memory can’t be written. 

• Memory can be exported. 

• Mutable non-memory state is being exported. 

POST_EXPORT Source • Start token has been generated on all streams that were active.  

• Mutable control state has been exported. 

• No TD VCPU may run. 

• TD memory can’t be written. 

• Memory can be exported (post-copy). 

MEMORY_IMPORT Destination • TD memory can be imported. 

STATE_IMPORT Destination • TD memory can be imported. 

• TD VCPU non-memory state can be imported 

POST_IMPORT Destination • TD memory can be imported (post-copy). 

LIVE_IMPORT Destination • TD VCPUs may run. 

• TD memory can be imported (post-copy). 

FAILED_IMPORT Destination • Destination TD will not run. 

 

7.3. Migration Tokens 

A migration token is formatted as a Migration Bundle, with only an MBMD.  Its format is defined in the [TDX Module ABI]. 5 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 42 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Target PlatformSource Platform

TDH.EXPORT.
STATE.DONE

TDH.IMPORT.
STATE.DONE

Transport

Migration 
Bundle 

Metadata
(MBMD)

Abort Token

Migration 
Bundle 

Metadata
(MBMD)

Abort Token

TDH.EXPORT.
ABORT

Transport

If Failed

TDH.IMPORT.
ABORT

Migration 
Bundle 

Metadata
(MBMD)

Epoch Token

Migration 
Bundle 

Metadata
(MBMD)

Migration 
Bundle 

Metadata
(MBMD)

Migration 
Bundle 

Metadata
(MBMD)

Epoch Token

Migration 
Bundle 

Metadata
(MBMD)

Migration 
Bundle 

Metadata
(MBMD)

TDH.EXPORT.
STATE.DONE

TDH.EXPORT.
TRACK

TDH.IMPORT.
STATE.DONE

TDH.IMPORT.
TRACK

 

Figure 7.7:  Migration Tokens 

An epoch token is generated by TDH.EXPORT.TRACK.  it serves as a separator between migration epochs.  A start token 
is a special version of an epoch token which starts the out-of-order phase.  The start token helps ensure that no newer 
version of any memory page exported prior to the start token exists on the source platform. 5 

The abort token is generated by TDH.IMPORT.ABORT on the destination platform if import fails for any reason.  It helps 
ensure that the TD will not run on the destination platform, and therefore may be restored on the source platform. 

7.4. Migration Protocol Versioning 

7.4.1. Introduction 

Migration protocol version number is provided as part of the MBMD header.  Migration protocol changes may require 10 

migration version increment and may impact source and destination compatibility.  For example, this may happen due 
to: 

• Incompatible MBMD format changes 

• New values of MBMD fields 

• New memory migration variants (e.g., support of aliases for VM nesting) 15 

• Incompatible migration session state machine changes 

Non-memory state (metadata) migration changes may also require migration version increment.  For example, this may 
happen due to:  

• New exported metadata fields 

• New values or format of exported metadata fields 20 

7.4.2. Enumeration of Supported Migration Versions 

TDX module enumeration version support using global metadata fields that can be read by the host VMM (TDH.SYS.RD) 
and MigTD (TDG.SYS.RD). 

On export, the TDX module can work with MIG_VERSION in the range specified by the following metadata fields: 

MAX_EXPORT_VERSION: Maximum value of migration version supported for export 25 

MIN_EXPORT_VERSION: Minimum value of migration version supported for export 

For example, a module may be updated to support version X for new memory migration formats for VM Nesting.  But it 
may be written to export using version X-1 if a non-VM-Nesting TD is exported to an older module. 

On import, the TDX module understands MIG_VERSION in the range specified by the following: 

MAX_IMPORT_VERSION: Maximum value of migration version supported for export 30 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 43 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

MIN_IMPORT_VERSION: Minimum value of migration version supported for import 

For example, if the module supports version X that was created to support new memory migration formats for VM 
Nesting, it can still understand version X-1 that doesn’t use the new formats. 

7.4.3. Setting the Migration Protocol Version for a Migration Session 

Migration protocol version to be used for a migration session is set the MigTD before the session starts.  MigTDs at the 5 

source and destination platform enumerate export and import versions support respectively, and decide on the version 
that is compatible between the platforms, to be used for the migration session.  TD-scope metadata field MIG_VERSION 
is writable by the MigTD using TDH.SERVTD.WR.  At the start of the migration session, the TDX module copies 
MIG_VERSION to an internal  WORKING_MIG_VERSION that is used throughout the session. 

7.5. Export Session Control Functions 10 

This section provides an overview of the export session control functions.  A detailed description is provided in [TDX 
Module ABI]. 

7.5.1. TDH.EXPORT.STATE.IMMUTABLE (Session Control Aspects) 

TDH.EXPORT.STATE.IMMUTABLE starts an export session.  It also exports the TD’s immutable state – that functionality is 
discussed in 8.3.1. 15 

The host VMM is expected, prior to invoking TDH.EXPORT.STATE.IMMUTABLE, to create enough migration streams 
contexts using TDH.MIG.STREAM.CREATE. 

Inputs 

• Source TD handle:  the TDR page HPA 

• MBMD HPA 20 

• Migration Page List HPA and size 

• Migration stream index 

• Number of migration streams that will be used during the in-order phase 

Pre-Conditions 

• TD is runnable 25 

• A new migration key has been set 

Operation (Session Control Aspects Only) 

1. Start the export session in-order phase. 
2. Export a TD Immutable State MBMD.  The MBMD details the number of migration streams that will be used during 

the in-order phase and the maximum number of migration streams. 30 

7.5.2. TDH.EXPORT.PAUSE 

TDH.EXPORT.PAUSE pauses the source TD starts the TDX-enforced blackout period.  This operation is local to the source 
platform and is not communicated to the destination platform. 

Inputs 

• Source TD handle:  the TDR page HPA 35 

Outputs 

• Success or failure status 

Pre-Conditions 

• TD immutable state has been exported. 

• All TD VCPUs have stopped executing and no other TD-specific SEAMCALL is running. 40 

Operation 

• Prevent further TD entries and host-side functions that may modify the TD state. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 44 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

7.5.3. TDH.EXPORT.TRACK 

TDH.EXPORT.TRACK starts a new migration epoch.  It generates an epoch token.  If so requested, it starts the out-of-order 
phase and generates a start. 

Inputs 

• Source TD handle:  the TDR page HPA 5 

• Migration stream index 

Outputs 

• Epoch token migration bundle 

Pre-Conditions 

• The export session is in progress, but its out-of-order phase has not begun yet. 10 

• If a start token is to be generated, then for any page that has been exported so far, an up-to-date version of that 
page has been exported. 

Operation 

1. Start a new migration epoch. 
2. Create an epoch token migration bundle which includes only  an MBMD.  15 

7.5.4. TDH.EXPORT.ABORT 

TDH.EXPORT.ABORT aborts the export session.  If invoked during the in-order export phase, after the TD has been paused, 
it re-enables the TD to run on the source platform.  If invoked during the out-of-order phase, it consumes an abort token 
received from the destination platform; if that token is correct it enables the TD to run on the source platform. 

Inputs 20 

• Source TD handle:  the TDR page HPA 

• Optional:  migration bundle containing the abort token received from the destination platform. 

Pre-Conditions 

• An export session is in progress. 

• Export has not been committed by TDH.EXPORT.COMMIT. 25 

Operation 

• Terminate the export session:  Invalidate all migration contexts for source TD. 

• If the export session is in the in-order phase, re-enable the TD. 

• If the export session is in the out-of-order phase, check the abort token.  If valid, re-enable the TD. 

7.6. Import Session Control Functions 30 

This section provides an overview of the import session control functions.  A detailed description is provided in [TDX 
Module ABI]. 

7.6.1. TDH.IMPORT.STATE.IMMUTABLE (Session Control Aspects) 

TDH.IMPORT.STATE.IMMUTABLE consumes a TD immutable state migration bundle and starts the import session in-order 
phase.  It also imports the TD’s immutable state – that functionality is discussed in 8.4.1. 35 

The host VMM is expected, prior to invoking TDH.IMPORT.STATE.IMMUTABLE, to parse the received MBMD, determine 
the number of migration streams required and assure that enough migration stream contexts have been created using 
TDH.MIG.STREAM.CREATE. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 45 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Inputs 

• Destination TD handle:  the TDR page HPA 

• MBMD HPA 

• Migration Page List HPA and size 

Pre-Conditions 5 

• TDCS been allocation but not initialized. 

• A new migration key has been set. 

Operation (Session Control Aspects Only) 

Start the import session in-order phase. 

Any failure aborts the operation and marks the TD as IMPORT_FAILED; it will not run. 10 

7.6.2. TDH.IMPORT.TRACK 

TDH.IMPORT.TRACK consumes an epoch token received from the source platform and starts a new epoch.  If a start token 
is received, TDH.IMPORT.TRACK starts the import session in-order phase. 

Any failure aborts the operation and marks the TD as IMPORT_FAILED; it will not run. 

Inputs 15 

• Destination TD handle:  the TDR page HPA 

• Migration stream index 

• Migration bundle containing the epoch token 

Outputs 

• None 20 

Pre-Conditions 

• The import session is in progress, but its out-of-order phase has not begun yet. 

• The start token migration bundle is imported successfully. 

• If a start token is received, TD-scope mutable state must have been imported. 

Operation 25 

1. Starts a new migration epoch. 
2. If a start token has been received, start the out-of-order import phase. 

7.6.3. TDH.IMPORT.COMMIT 

TDH.IMPORT.COMMIT enables the TD to run. 

Inputs 30 

• Destination TD handle:  the TDR page HPA 

Outputs 

• None 

Pre-Conditions 

• The import session out-of-order phase is in progress. 35 

Operation 

• Set the TD’s OP_STATE to LIVE_IMPORT, allowing it to run. 

7.6.4. TDH.IMPORT.END 

TDH.IMPORT.END ends the import session. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 46 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Inputs 

• Destination TD handle:  the TDR page HPA 

Outputs 

• None 

Pre-Conditions 5 

• The import session out-of-order phase is in progress. 

Operation 

• Set the TD’s OP_STATE to RUNNABLE, ending the import session and allowing the TD to run. 

7.6.5. TDH.IMPORT.ABORT 

TDH.IMPORT.ABORT aborts the import session (if not already aborted) and generates an abort token.  The TD will not 10 

run. 

Inputs 

• Destination TD handle:  the TDR page HPA 

Outputs 

• Migration bundle containing the abort token 15 

Pre-Conditions 

• The import session is in progress. 

• The TD is not allowed to run yet (OP_STATE is not LIVE_IMPORT). 

Operation 

• Generate an abort token MBMD. 20 

• Set the OP_STATE to FAILED_IMPORT.  In this state it can only be torn down. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 47 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

8. TD Non-Memory State Migration 

This chapter discusses all non-memory state migration, immutable and mutable. 

TD-scope non-memory state resides in control structures TDR and TDCS.  TD VCPU state resides (while the VCPU is not 
running) in TDVPS, which includes the TD VMCS.  This chapter discusses how non-memory state migration is migrated. 

8.1. TD Non-Memory State Migration Operation 5 

8.1.1. Non-Memory State Migration Data 

Non-memory state migration data is used for migrating immutable state, at the beginning of the migration process, by 
TDH.EXPORT.STATE.IMMUTABLE and TDH.IMPORT.STATE.IMMUTABLE, and for migrating mutable state, at the end of 
the migration process, by TDH.EXPORT.STATE.TD, TDH.IMPORT.STATE.TD,  TDH.EXPORT.STATE.VP and 
TDH.IMPORT.STATE.VP. 10 

The non-memory state is migrated in a way that abstracts the actual TD control structure format, allowing that format to 
remain implementation-dependent and vary between the source and destination platforms.  To support that, each of the 
state migration data’s 4KB pages contains a TD metadata list, composed of multiple field sequences.  Each field sequence 
contains a sequence header and one or more field values. 

Metadata abstraction is discussed in the [TDX Module Spec]. 15 

TD Metadata List

Header NUM_SEQUENCES

Multiple-
Field 
Sequence

SEQUENCE_HEADER(LAST_INDEX = n)

FIELD_VALUE 0

FIELD_VALUE 1

…

FIELD_VALUE n

Single-Field 
Sequence

SEQUENCE_HEADER(LAST_INDEX = 0)

FIELD_VALUE

Multiple-
Field 
Sequence

SEQUENCE_HEADER(LAST_INDEX = m)

FIELD_VALUE 0

FIELD_VALUE 1

…

FIELD_VALUE m

Reserved

8 Bytes

4
0

9
6

 B
yt

es

 

Figure 8.1:  Non-Memory State Migration Page 

Metadata fields are exported in order of their field codes.  This enables easy identification of missing required fields on 
import. 

8.1.2. Non-Memory State MBMD 20 

The MBMD for each non-memory state migration bundle contains the following type-specific fields: 

• Metadata type:  Immutable TD-scope metadata or mutable L1 VCPU-scope metadata 

• VM index and VCPU index (if applicable). 

Details of the non-memory state MBMD are defined in the [TDX Module ABI]. 

8.1.3. Immutable vs. Mutable TD State 25 

In the scope of TD migration, immutable state is defined as any TD state that may not change after TD build, i.e., after  
TD measurement has been finalized (by TDH.MR.FINALIZE). 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 48 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Migrated immutable state includes the following: 

• Platform-scope immutable state required so that the TDX module on the destination platform can verify 
compatibility.  Namely, it includes the source TDX module’s version information.  

• TD-scope immutable state of the source TD 

Immutable TD state export and import functions (TDH.EXPORT.STATE.IMMUTABLE, TDH.IMPORT.STATE.IMMUTABLE) 5 

start the migration session.  Migration session control is discussed in Ch. 6.5. 

Migrated mutable state includes the following: 

• TD-scope mutable state 

• VCPU-scope mutable state 

Mutable TD state export is done after the TD has been paused (by TDH.EXPORT.PAUSE), and helps ensure that the state 10 

will not change anymore until TD export completes.  TDH.EXPORT.STATE.TD exports TD-scope mutable state, followed 
by multiple, per-VCPU TDH.EXPORT.STATE.VPs which export VCPUs mutable state. 

Mutable TD state import must begin with TD-scope state import (by TDH.IMPORT.STATE.TD), followed by multiple, per-
VCPU TDH.IMPORT.STATE.VP which import VCPUs state. 

8.2. State Migration Rules 15 

8.2.1. General State Export Rules 

Only state that may be used for import on the destination platform is exported from the source platform.  State that is 
never imported, or that is not in use based on the TD configuration (ATTRIBUTES, XFAM and CPUID configuration), is not 
exported.  For example: 

• KeyLocker state is not exported if ATTRIBUTES.KL is not set to 1. 20 

• Only the defined VAPIC page fields are exported. 

There may be exceptions where state is exported even if it’s not explicitly imported.  This may be done for possible future 
compatibility or for simplicity of export.  For example: 

• TDX module version information – this information is exported so a future TDX module may examine it on import, to 
take some action due to possible incompatibility or bug of the exporting TDX module. 25 

8.2.2. General State Import Rules 

In addition to the immutable or mutable classification, non-memory state can be classified as migrated and/or initialized.  
For migrated each state component, import may be mandatory or optional.  For optionally migrated state, a default 
initial value must be specified. 

Each import function verifies that all the applicable mandatory state has been imported and initializes the default values 30 

for state components that have not been imported. 

8.2.3. Immutable State Import Rules 

TD immutable state is verified by TDH.IMPORT.STATE.IMMUTABLE against destination platform capabilities and Intel TDX 
module version, capabilities and configuration.  The checks are similar, but not identical, to the TD_PARAMS checks done 
on the source platform by TDH.MNG.INIT.  For example: 35 

• TD ATTRIBUTES bits must be compatible with the destination platform and Intel TDX module configuration. 

• Any XFAM bit that was set on the source platform by TDH.MNG.INIT must be supported by the destination platform. 

• Virtual CPUID configuration is calculated on the source platform by TDH.MNG.INIT.  This configuration is exported 
and checked on import to be compatible with the destination platform.  CPUID virtualization, including fine-grained 
virtualization of sub-features, is described in the [TDX Module Spec]. 40 

Immutable state that can be regenerated on the destination platform is not imported.  For example: 

• The TD’s MSR exit bitmaps are generated by TDH.IMPORT.STATE.IMMUTABLE, like the way they are generated by 
TDH.MNG.INIT on the source platform. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 49 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

8.2.4. Mutable State Import Rules 

Intel SDM, Vol. 3, 26.3.1 Checks on the Guest State Area 
Intel SDM, Vol. 3, 26.8 VM-Entry Failures During or After Loading Guest State 

 Imported State Verification 

Mutable non-memory state is verified by TDH.IMPORT.STATE.TD and TDH.IMPORT.STATE.VP against destination platform 5 

capabilities and Intel TDX module configuration.  For example: 

• CR0 and CR4 values are verified using the same rules used for CR0 and CR4 virtualization, respectively.  This is 
required because the values of the IA32_VMC_CR*_FIXED* MSRs may be different between the platforms.  For 
details, see the [TDX Module Spec]. 

• CPUID virtualization state, originally calculated on TD initialization based on configuration and the capabilities of the 10 

source CPU, is verified versus the capabilities of the destination CPU. 

 Handling State that is Not Verified on Import 

In some cases, immutable VCPU state is difficult to verify during TDH.IMPORT.STATE.VP.  This may include, for example: 

• Guest MSR state saved in TDVPS 

• Guest state saved in TD VMCS 15 

In those cases, the TDX Module reports the incompatibility on TDH.VP.ENTER using CPU compatibility checks, as follows: 

• The Intel TDX module gracefully handles WRMSR errors, i.e., #GP(0), that occur during the TDH.VP.ENTER flow when 
loading guest MSR values.  In this case, the Intel TDX module marks the TD as FATAL and TDH.VP.ENTER terminates 
with an error code. 

Note: This is different from the current TDX 1 behavior, but may be implemented in TDX 1 due to a requirement 20 

to support host VMM writes of guest MSRs for debug TDs. 

• The Intel TDX module gracefully handles guest state checks that fail during VM entry.  In this case, the CPU behavior 
is like a VM exit, with the exit reason indicating VM-entry failure due to invalid guest state, MSR loading or a machine-
check event.  In this case, the Intel TDX module marks the TD as FATAL and TDH.VP.ENTER terminates with an error 
code. 25 

Note: This is different from the current TDX 1 behavior but may be implemented in TDX 1 due to a requirement 
to support host VMM writes of guest MSRs for debug TDs. 

 State Initialized or Calculated on Import 

Many of the TD VMCS execution controls that control the host VMM interaction with the guest TD are reset to their initial 
state on import.  These include, for example: 30 

• Posted interrupt execution controls (see the [TDX Module Spec]) 

Other state is calculated on import.  For example: 

• The virtual TSC value, sampled and exported by TDH.EXPORT.STATE.TD, is used by TDH.IMPORT.STATE.TD to 
calculate a new TSC offset so that the virtual TSC value will continue as a monotonously incrementing value on the 
destination platform.  For details see the [TDX Module Spec]. 35 

8.3. Non-Memory State Export Functions 

8.3.1. TDH.EXPORT.STATE.IMMUTABLE (State Export Aspects) 

TDH.EXPORT.STATE.IMMUTABLE exports the TD’s immutable state as a multi-page migration bundle.  It also starts the 
export session – that functionality is described in 7.5.1. 

A detailed description of TDH.EXPORT.STATE.IMMUTABLE is provided in the [TDX Module ABI]. 40 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 50 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Inputs 

• Source TD handle:  the TDR page HPA 

• MBMD HPA 

• Migration Page List HPA and size 

• Migration stream index 5 

• Number of migration streams that will be used during the in-order phase 

Pre-Conditions 

• TD is runnable 

• A new migration key has been set 

Operation (State Export Aspects Only) 10 

1. Export the TD’s immutable state: 
1.1. Serialize and encrypt the TD exported immutable state into the multi-page migration data buffer. 
1.2. Update the MBMD with the MB type, stream index, metadata type and the MAC. 

8.3.2. TDH.EXPORT.STATE.TD 

TDH.EXPORT.STATE.TD exports the TD-scope mutable state as a multi-page migration bundle. 15 

A detailed description of TDH.EXPORT.STATE.TD is provided in the [TDX Module ABI]. 

Inputs 

• Source TD handle:  the TDR page HPA 

• MBMD HPA 

• Migration Page List HPA and size 20 

• Migration stream index 

Pre-Conditions 

• The export session is in the in-order phase and the TD has been paused 

Operation 

1. Export the TD’s mutable state: 25 

1.1. Serialize and encrypt the TD exported mutable state into the multi-page migration data buffer. 
1.2. Update the MBMD with the MB type, stream index, metadata type and the MAC. 

8.3.3. TDH.EXPORT.STATE.VP 

TDH.EXPORT.STATE.VP exports the VCPU-scope mutable state as a multi-page migration bundle. 

A detailed description of TDH.EXPORT.STATE.VP is provided in the [TDX Module ABI]. 30 

Inputs 

• Source VCPU handle:  the TDVPR page HPA 

• MBMD HPA 

• Migration Page List HPA and size 

• Migration stream index 35 

Pre-Conditions 

• The export session is in the in-order phase and the TD has been paused 

Operation 

1. Export the VCPU’s mutable state: 
1.1. Serialize and encrypt the VCPU exported mutable state into the multi-page migration data buffer. 40 

1.2. Update the MBMD with the MB type, stream index, metadata type and the MAC. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 51 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

8.4. Non-Memory State Import Functions 

8.4.1. TDH.IMPORT.STATE.IMMUTABLE (State Import Aspects) 

TDH.IMPORT.STATE.IMMUTABLE imports the TD’s immutable state as a multi-page migration bundle.  It also starts the 
import session – that functionality is described in 6.5. 

A detailed description of TDH.IMPORT.STATE.IMMUTABLE is provided in the [TDX Module ABI]. 5 

Inputs 

• Destination TD handle:  the TDR page HPA 

• MBMD HPA 

• Migration Page List HPA and size 

Pre-Conditions 10 

• TD has not been initialized 

• A new migration key has been set 

Operation (State Import Aspects Only) 

1. Initialize TDCS default values. 
2. Read MBMD into an internal buffer. 15 

3. To save internal buffer space, the steps below can be done on, e.g., one import data page at a time: 
3.1. Decrypt the TD immutable state from the multi-page migration data buffer into a temporary buffer. 
3.2. De-serialize the imported fields, verify, then set TDR and TDCS fields based on the imported values. 

4. Verify the calculated MAC versus the value read from the MBMD. 
5. Verify that all required fields have been imported. 20 

Any verification failure aborts the operation and marks the TD as IMPORT_FAILED; it will not run. 

8.4.2. TDH.IMPORT.STATE.TD 

TDH.IMPORT.STATE.TD imports the TD’s mutable state as a multi-page migration bundle. 

A detailed description of TDH.IMPORT.STATE.TD is provided in the [TDX Module ABI]. 

Inputs 25 

• Destination TD handle:  the TDR page HPA 

• MBMD HPA 

• Migration Page List HPA and size 

Pre-Conditions 

• TD immutable state has been imported 30 

Operation 

1. Read MBMD into an internal buffer. 
2. To save internal buffer space, the steps below can be done on, e.g., one import data page at a time: 

2.1. Decrypt the TD mutable state from the multi-page migration data buffer into a temporary buffer. 
2.2. De-serialize the imported fields, verify, then set TDR and TDCS fields based on the imported values. 35 

3. Verify the calculated MAC versus the value read from the MBMD. 
4. Verify that all required fields have been imported. 
5. Allow VCPU state import:  Set TDCS.OP_STATE to STATE_IMPORT. 

Any verification failure aborts the operation and marks the TD as IMPORT_FAILED; it will not run. 

8.4.3. TDH.IMPORT.STATE.VP 40 

TDH.IMPORT.STATE.VP imports a VCPU mutable state as a multi-page migration bundle. 

A detailed description of TDH.IMPORT.STATE.VP is provided in the [TDX Module ABI]. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 52 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Inputs 

• Destination VCPU handle:  the TDVPR page HPA 

• MBMD HPA 

• Migration Page List HPA and size 

Pre-Conditions 5 

• TDVPS pages have been allocated by the host VMM, but the VCPU has not been initialized. 

• TD-scope state has been imported 

Operation 

1. Initialize the TDVPS (including TD VMCS) default values. 
2. Read MBMD into an internal buffer. 10 

3. To save internal buffer space, the steps below can be done on, e.g., one import data page at a time: 
3.1. Decrypt the VCPU mutable state from the multi-page migration data buffer into a temporary buffer. 
3.2. De-serialize the imported fields, verify, then set TDVPS (including TD VMCS) fields based on the imported values. 

4. Verify the calculated MAC versus the value read from the MBMD. 
5. Verify that all required fields have been imported. 15 

Any verification failure aborts the operation and marks the TD as IMPORT_FAILED; it will not run. 

 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 53 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

9. TD Private Memory Migration 

This chapter described how Intel TDX Module manages TD private memory and guest-physical (GPA) address translation 
meta-data migration. 

9.1. Overview 

TD private memory migration can happen in the in-order migration phase and out-of-order migration phase. 5 

During the in-order phase, the host VMM may implement live migration pre-copy, by exporting memory content (using 
TDH.EXPORT.MEM etc.) while the TD is running (TDCS.OP_STATE is LIVE_EXPORT).  This is not enforced by TDX; the host 
VMM may implement cold migration by avoiding memory export until the TD is paused. 

During the out-of-order phase, the host VMM may implement post-copy by allowing the TD to run on the destination 
platform (using TDH.IMPORT.COMMIT).  This is not enforced by TDX; the host VMM can first complete all memory 10 

migration before allowing the TD to run, yet benefit from the simpler and potentially higher performance operation 
supported during the out-of-order phase. 

9.2. Achieving Memory Migration Security Objectives 

9.2.1. General 

The key security requirement for TD Private memory migration is to ensure integrity and freshness of the TD private 15 

memory at the destination TD after migration – this helps ensure that a malicious VMM cannot execute the TD after 
migration with any stale or modified data.  

Integrity of memory includes the memory contents as well as the guest physical to host physical mapping and attributes 
that control TD access to private memory. 

Using PAMT and Secure EPT, Intel TDX Module enforces the following properties for TD private GPA accesses: 20 

Unique TD Association: A physical page used as a TD private page, Secure EPT page or a control structure can only be 
assigned to single guest TD. 

Unique GPA Mapping: A TD private page or a Secure EPT page can be mapped at most by single guest TD GPA. 

These security properties are maintained for a TD during migration with some additional functionality afforded to allow 
for live migration. 25 

• Private TD pages and Secure EPT entries are initialized in a single operation (via TDH.IMPORT.MEM) for pages 
migrated using TDH.EXPORT.MEM.  Like the pre-conditions for the non-migration TDH.MEM.PAGE.ADD, the parent 
Secure EPT entry must be free (unmapped). 

• On the source platform, a private page may be mapped to be non-writable (a.k.a. blocked for writing) to allow for 
the page contents to be exported.  Following from previous security requirements, this mapping update also requires 30 

TLB tracking to ensure that no active writable cached GPA address translations exist to the to-be-migrated GPA range.  

• For 1GB and 2MB pages, secure EPT mapping demotion (to a 4KB page size) is required as a pre-condition to exporting 
contents of a page for migration. 

• The Migration key used for exporting and important TD memory and CPU state is distinct from keys used for other 
operations such as Paging. 35 

9.2.2. Migration Epochs:  Usage of Stale Memory Copies due to Mis-Ordering 

Running the destination TD with a stale copy of a memory page, because an older copy of a page was imported after a 
newer copy of that page, is prevented by the migration epochs mechanism.  Within each migration stream, proper 
ordering is maintained by the migration bundle counter (MB_COUNTER) of each MBMD.  However, there is no intrinsic 
guarantee of ordering across migration streams. 40 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 54 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Stream
1

Stream
2

Stream
3

Stream
0

Page
0

Page
11

Page
5

Page
15

Page
3

Page
8

Page
12

Page
4

Page
13

Page
1

Page
6

Page
14

Page
2

Page
7

Page
10

Page
9

Page
6

Page
12

Page
11

Page
4

Page
8

Cancel
7

Page
7

Page
6

Cancel
8

Page
14

Page
12

Page
1

Page
8

Page
24

Page
28

Page
20

Page
23

Page
16

Page
21

Page
29

Page
18

Page
17

Page
26

Page
19

Page
17

Page
27

Page
22

Page
29

Mig. Epoch 0 Mig. Epoch 1 Mig. Epoch 2

In-Order Phase Out-Of-Order Phase

Time

Live Migration (TD is Running on Source)
Post-Copy (TD 
is Running on 
Destination)

Blackout (TD is 
not Running)

Epoch
Token

Epoch
Token

Start
Token

TDH.EXPORT.

TRACK
TDH.EXPORT.

BLOCKW
TDH.EXPORT.

BLOCKW

TDH.EXPORT.

BLOCKW

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

TDH.EXPORT.

STATE.
IMMUTABLE

TDH.EXPORT.

TRACK
TDH.EXPORT.

MEM
TDH.EXPORT.

TRACK
TDH.EXPORT.

MEM

Export Round 0 Export Round 1 Export Round 2
(Final)

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

TDH.EXPORT.

MEM

Out-Of-Order Export

TDH.EXPORT.

UNBLOCKW
TDH.EXPORT.

UNBLOCKW
TDH.EXPORT.

UNBLOCKW

Mig. Epoch 0xFFFFFFFF

 

Figure 9.1:  Migration Epochs 

To help ensure overall ordering, the migration session is divided to migration epochs.  A given page can only be imported, 
or its import can be cancelled, once per migration epoch.  An epoch token serves as an epoch separator.  It provided the 
total number of migration bundles exported so far.  This helps TDH.IMPORT.TRACK, which imports the epoch token, 5 

checks that all migration bundles of the previous epoch have been received.  No migration bundle of an older epoch may 
be imported. 

The start token, which starts the out-of-order phase, is a special version of the epoch token.  Epoch number 0xFFFFFFFF 
indicates the out-of-order phase. 

Note: Migration epoch is a TDX concept.  It roughly corresponds to migration round (or migration pass) which is a 10 

usage concept. 

9.2.3. Preventing Usage of Stale Memory Copies due to Failure to Import 

Running the destination TD with a stale copy of a memory page, because the target VMM failed to import a newer copy 
of a page, is prevented as follows: 

Newer page state can only be generated before the source TD is paused (by TD.EXPORT.PAUSE).   Assume for example 15 

that two versions (v1 and v2) of the same page were exported, but the destination platform’s VMM only imports the 
older version (v1), withholding the newer one (v2). 

The in-order phase commitment protocol ensures that the export will fail, and the destination TD will not run.  
TDH.EXPORT.TRACK with an in-order-done parameter generates a start token that is dependent of the exact export 
sequence; it checks that no unexported newer versions of previously exported pages remain.  The start token is verified 20 

by TDH.IMPORT.TRACK; the out-of-order migration phase may start, and the destination TD may run only if the start 
token verifies correctly.  For migration session control details see Ch. 7. 

9.2.4. Preventing Usage of Stale Memory Copies due to Failure to Export 

Running the destination TD with a stale copy of a memory page, because the source VMM failed to export a newer copy 
of a page, is prevented as follows: 25 

Assume for example that the source VMM exported an older version (v1) of page but never exported a newer version 
(v2) of that page.  In this case, generating a start token by TDH.EXPORT.TRACK is prevented.  A counter of dirty pages 
(TDCS.DIRTY_COUNT) is accumulated by the TDX module at  source platform.  If the value of that counter is not 0, then 
TDH.EXPORT.TRACK fails.  See 9.4.5.3 for details. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 55 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

9.2.5. Out-Of-Order Phase and Its Usage for Post Copy 

In the in-order import phase the VMM can import page for GPA addresses that are free, and it may also reload newer 
versions of pages to previously imported and present GPA addresses.  In the out-of-order import phase, import is only 
allowed to non-present GPA addresses.  At this stage, all memory state on the source platform is designed to be 
immutable, and the latest version of all pages exported so far will be imported.  Thus, the order of out-of-order import is 5 

not relevant – except that memory content exported during the in-order phase can’t be imported during the out-of-order 
phase.  This allows using a separate migration stream for high-priority, low-latency updates, e.g., to implement post-copy 
by allowing the TD to run and migrate memory pages on demand at a high priority, based on EPT violation. 

9.3. GPA Lists and Private Memory Migration Bundle 

Destination PlatformSource Platform

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Mig. Buffers List

MBMD

4KB
Migration

Page

4KB
Migration

Page

Up to
512 * 4KB
Encrypted 
Migration

Pages

Multi-Page 
Migration Bundle

TDH.EXPORT.MEM TDH.IMPORT.MEM

…

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

Mig. Buffers List

Transport

Migrated Data

MBMD

4KB
Migration

Page

4KB
Migration

Page

Up to
512 * 4KB
Encrypted 
Migration

Pages

Multi-Page 
Migration Bundle

Migrated Data

Page GPA & 
Attributes 

List

4KB
Migration

Page

4KB
Migration

Page

Up to
512 * 4KB

Pages

Page GPA &  
Attributes 

List …

PAGE_HPA0

PAGE_HPA1

PAGE_HPAlast

New Pages List*

*HPA is null for in-
place import and for 
re-import

Page MAC 
List

Page MAC 
List

Page MAC 
List

Page MAC 
List

 10 

Figure 9.2:  Private Memory Migration 

Contrary to the generic migration bundle structure described in 6.1, private memory migration bundle is composed of 
multiple MAC-protected components: 

• MAC-protected MBMD 

• For each 4KB page, encrypted 4KB migration buffer and MAC-protected page metadata 15 

This structure allows the export and import functions to process the MBMD and each page and its metadata separately, 
avoiding the need to perform SEPT walks twice and to hold intermediate SEPT entry states.  The separate parts of the 
migration bundle are cryptographically bound together as follows: 

• A per-stream monotonously incrementing IV_COUNTER and the migration steam index are used for calculating the 
AES-GCM IV value, as described in 6.3. 20 

• This is first done for the migration bundle’s MBMD MAC. 

• For each page, the IV_COUNTER is incremented by 1 and a new IV value is calculated and used for the page metadata 
MAC. 

• The MBMD specifies the number of pages migrated by the migration bundle.  This helps check that the whole 
migration bundle is imported on the destination platform. 25 

9.3.1. GPA List 

A GPA list is used as part of the private memory migration bundle.  It is also used as an input and output of multiple 
memory migration interface functions:  TDH.EXPORT.BLOCKW, TDH.EXPORT.MEM, TDH.EXPORT.RESTORE and 
TDH.IMPORT.MEM. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 56 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

A GPA list contains up to 512 entries, each containing the following information: 

Table 9.1:  GPA List Entry 

Field Page Migration 

Type 4KB Page 

GPA and Level GPA bits 51:12 

Migratable Attributes R, W, Xs, Xu 

State MAPPED, PENDING 

Operation NOP, MIGRATE, REMIGRATE, CANCEL 

 

A detailed definition of the GPA list is provided in the [TDX Module ABI]. 

A single GPA list entry and a separate page MAC list entry compose the page metadata. 5 

9.3.2. Private Memory Migration Buffer 

Migration buffer is included only if the page metadata indicates a MIGRATE or a REMIGRATE request, and the page is 
MAPPED.  it contains the encrypted content of the migrated page. 

9.4. TD Private Memory Export 

9.4.1. Typical Export Round 10 

Typical expected usage divides the export session to export rounds (or passes).  An export round may have the following 
steps: 

1. If the TD has not been paused by TDH.EXPORT.PAUSE, ensure TLB shootdown: 
1.1. Invoke TDH.EXPORT.BLOCKW with a list of pages to be exported. 
1.2. Invoke TDH.MEM.TARCK. 15 

1.3. Issue IPIs to ensure TD re-entry on all VCPUs and TLB invalidation. 
2. Start a new migration epoch by invoking TDH.EXPORT.TRACK. 
3. Invoke TDH.EXPORT.MEM with a list of pages. 

3.1. If this is the first time a page is being exported, mark the list entry as MIGRATE. 
3.2. If a page has been exported before and is re-exported because its content has changes, mark the list entry as 20 

REMIGRATE. 
3.3. If a page has been exported before but need to be removed, promoted or demoted, cancel its migration by 

marking the list entry as CANCEL. 

Note: In the example above, steps 1 and 2 need to be performed before step 3, but there is no strict requirement for 
the order of step 2 vs. step 1. 25 

9.4.2. SEPT Leaf Entry Partial State Diagram for Export 

Figure 9.3 below shows a partial SEPT entry state diagram for exporting mapped pages.  The following sections describe 
the details. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 57 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

MAPPED

Page is mapped and 
accessible to guest 
TD

BLOCKEDW

Page is mapped but 
new write 
translations are 
blocked

TDH.EPORT.BLOCKW
[TD is not paused]

TDH.EXPORT.UNBLOCKW

EXPORTED_
BLOCKEDW

Page is exported and 
blocked for writing

TDH.EXPORT.MEM(MIGRATE) /
MIG_COUNT++

TDH.MEM.
RANGE.BLOCK

TDH.EXPORT.MEM
(MIGRATE)

[out-of-order]

EXPORTED_
DIRTY

Page is mapped and 
accessible to guest 
TD

TDH.EXPORT.UNBLOCKW /
DIRTY_COUNT++

TDH.EPORT.BLOCKW

EXPORTED_
DIRTY_BLOCKEDW

Page is exported and 
blocked for writing

TDH.EXPORT.MEM
(REMIGATE) /

DIRTY_COUNT--

TDH.EXPORT.UNBLOCKW

BLOCKED

Page is mapped but 
new translations are 
blocked

See Leaf Entry 
State Diagram

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.MEM(MIGRATE)
[TD is paused] /
MIG_COUNT++

TDH.EXPORT.MEM
(REMIGRATE)

[TD is paused] /
DIRTY_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.MEM(CANCEL) /
MIG_COUNT--

 

Figure 9.3:  Partial SEPT Leaf Entry State Diagram for Mapped Page Export  

9.4.3. Live Export:  Blocking for Writing, TLB Tracking and Exporting a Page 

During the live export phase (when TDCS.OP_STATE is LIVE_EXPORT), exporting a private memory page requires that 
page modification must be prevented.  This includes: 5 

• Page content 

• Page attributes 

To achieve this, the page L1 SEPT entry must be blocked for writing by TDH.EXPORT.BLOCKW. 

If the TD has not been paused, the host VMM must execute the TLB tracking sequence below, which together with the 
checks done by TDH.EXPORT.MEM helps ensure that no cached TLB entries that have been created before blocking for 10 

writing are left. 

1. Execute TDH.EXPORT.BLOCKW on each page to be exported, blocking subsequent creation of writable TLB 
translations to that page.  Note that cached translations may still exits at this stage. 

2. Execute TDH.MEM.TRACK, advancing the TD’s epoch counter. 
3. Send an IPI (Inter-Processor Interrupt) to each RLP (Remote Logical Processor) on which any of the TD’s VCPUs is 15 

currently scheduled. 
4. Upon receiving the IPI, each RLP will TD exit to the host VMM. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 58 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

At this point the blocked pages are considered tracked for export.  Even though some LPs may still hold writable TLB 
entries to the target GPA ranges, those are designed to be flushed on the next TD entry.  Normally, the host VMM on 
each RLP will treat the TD exit as spurious and will immediately re-enter the TD. 

5. Export each page using TDH.EXPORT.MEM. 

9.4.4. Exporting a Page after the Source TD is Paused 5 

After the source TD is paused, no blocking is required since the TD is not running.  This reduces the amount of work that 
needs to be done by the host VMM during the TD’s blackout period.  This is shown in the dashed transitions in Figure 9.3 
above. 

If the export session is aborted by TDH.EXPORT.ABORT, some LPs may still hold stale TLB entries exported pages.  To help 
ensure they are flushed on the next TD entry, TDH.EXPORT.PAUSE advances the TD’s epoch counter, similarly to 10 

TDH.MEM.TRACK. 

9.4.5. Unblocking for Write, Tracking Dirty Pages and Re-Exporting 

 Overview 

During the live export phase (when TDCS.OP_STATE is LIVE_EXPORT), the source TD may attempt to write a page that has 
been blocked for writing.  The TDX migration architecture allows the host VMM to unblock the page.  The Intel TDX 15 

module tracks such pages as “dirty”.  All dirty pages must be re-exported by the host VMM for the in-order migration 
phase to be completed.  This assures that either the  latest version of a page has been exported by the time the source 
TD is paused, or that page has not been exported at all. 

 Unblocking for Write and Re-Exporting a Page 

If the source TD attempts to write to a page that has been blocked for writing a TD exit will occur, indicating an EPT 20 

violation due to a write attempt to a non-writable page. 

Note: No indication is directly provided to the host VMM whether this page is blocked for writing by 
TDH.EXPORT.BLOCKW or whether writing is disabled due to some other reason. 

Host VMM
Intel TDX 
Module

Guest TD

VM Exit (EPT Violation)

TD Exit (EPT Violation)

TDH.EXPORT.UNBLOCKW

TDH.VP.ENTER

VM entry

Write attempt
(failed)

Write attempt
(success)

Remove write protection, mark 
the page as dirty if exported

 

Figure 9.4:  Typical Sequence for Unblocking a Page on Guest TD Write Attempt 25 

To enable access to the page, the host VMM is expected to execute TDH.EXPORT.UNBLOCKW. 

• If the page has not yet been exported, TDH.EXPORT.UNBLOCKW restores its SEPT entry’s original MAPPED state. 

• If the page has been exported, TDH.EXPORT.UNBLOCKW updates its SEPT state to EXPORTED_DIRTY.  This state is 
similar from the guest TD’s memory access perspective to MAPPED, but it indicates that the page is dirty and needs 
to be re-exported. 30 

The host VMM re-exports the page by TDH.EXPORT.BLOCKW, TLB tracking and TDH.EXPORT.MEM as described in 9.4.3 
above. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 59 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

 TDCS.DIRTY_COUNT:  TD-Scope Dirty Page Counter 

TDCS.DIRTY_COUNT is TD-scope dirty page counter. 

• DIRTY_COUNT is cleared when a new migration session begins (by TDH.EXPORT.STATE.IMMUTABLE). 

• DIRTY_COUNT is incremented when a page that has previously been exported in the current session is unblocked for 
writing by TDH.EXPORT.UNBLOCKW. 5 

• DIRTY_COUNT is decremented when a newer version of a page, which has previously been exported in the current 
session, it exported by TDH.EXPORT.MEM. 

For successful start token generation by TDH.EXPORT.TRACK, the value of the DIRTY_COUNT must be 0, indicating that 
all pages exported so far have their newest pages exported.  At this point, since the source TD is paused, no newer 
versions of any page can be created, and the destination TD can start execution.  Private pages which has not been 10 

exported yet in the current session may still be remaining for post copy export.  Note that exported pages may not have 
been transported yet.  The start token MBMD’s TOTAL_MB field verification enforces that all exported state has been 
imported (in-order) on destination – see the [TDX Module ABI] for details. 

9.4.6. Re-Exporting a Non-Dirty Page 

In the out-of-order phase, where strict migration order is not enforced, the host VMM may re-export a previously 15 

exported page even if it has not been unblocked for writing and its contents have not been modified. 

This allows a page can be re-exported and transferred to the destination platform over a high-priority stream.  This helps 
reduce destination TD latency while waiting for a page to be imported. 

Such an operation is tagged MIGRATE, not REMIGRATE, in the exported GPA list.  This is because the exact same version 
of the page is being exported. 20 

9.4.7. Interruptible Memory Export 

TDH.EXPORT.MEM may export up to 512 4KB pages.  To keep its latency within reasonable limit, the function is designed 
to be interruptible.  TDH.EXPORT.MEM can only be interrupted after completing the export of each page.  If 
TDH.EXPORT.MEM detects that an interrupt is pending, it saves its intermediate state and returns with a proper status 
indication.  The host VMM is expected to re-invoke TDH.EXPORT.MEM to complete the export operation. 25 

Intermediate state is saved as part of the migration stream context that has been used for the interrupted 
TDH.EXPORT.MEM.  Upon invocation, TDH.EXPORT.MEM checks to see if an intermediate state has been saved, and if so, 
it checks that it is being invoked with the same input arguments as last time when it was interrupted. 

9.4.8. Prohibited Operations on Exported Pages and Export Cancellation 

Once a page has been exported during the current export session, it can’t be blocked, removed, promoted, demoted or 30 

relocated.  This prevents the destination platform from using a stale copy of that page. 

In order to perform such memory management operations on an exported page, the host VMM must first execute 
TDH.EXPORT.MEM indicating a CANCEL operation for the page.   No migration buffer is required for this GPA list entry.  
The When the GPA list is processed on the destination platform by TDH.IMPORT.MEM, the previously migrated page is 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 60 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

removed from the destination TD.  TDH.EXPORT.MEM restores the page SEPT entry to its pre-export MAPPED or PENDING 
state. 

Source
Host VMM

Source
TDX Module

TDH.MEM.PAGE.BLOCK(page X)

failure indication

TDH.EXPORT.MEM(CANCEL page X)

TDH.EXPORT.MEM(MIGRATE page X)

Destination
Host VMM

Destination
TDX Module

TDH.IMPORT.TRACK

TDH.IMPORT.MEM(CANCEL page X)

TDH.IMPORT.MEM(MIGRATE page X)

Migration Bundle(MIGRATE page X)

TDH.EXPORT.TRACK

Epoch Token

Migration Bundle(CANCEL page X)

TDH.MEM.PAGE.BLOCK(page X)

success

 

Figure 9.5:  Typical Sequence for Cancelling a Page Export 

9.4.9. Exporting Pending Pages 5 

The host VMM is not directly aware if a page is in a PENDING state or not; the guest TD may accept the page by 
TDG.MEM.PAGE.ACCEPT at any time.  Thus, TDH.EXPORT.MEM may export a pending page.  This is indicated by the GPA 
list entry, and no migration buffer is used since the page content is not exported.  On the destination platform, 
TDH.IMPORT.MEM creates the page in a PENDING state. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 61 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

PENDING

Page is pending guest 
TD acceptance

PENDING_
BLOCKEDW

TDH.EPORT.BLOCKW
[TD is not paused]

TDH.EXPORT.UNBLOCKW

PENDING_
EXPORTED_
BLOCKEDW

TDH.EXPORT.MEM(MIGRATE) /
MIG_COUNT++

TDH.MEM.
RANGE.BLOCK

TDH.EXPORT.MEM
(MIGRATE)

PENDING_
EXPORTED_

DIRTY

TDH.EXPORT.UNBLOCKW /
DIRTY_COUNT++

TDH.EPORT.BLOCKW

EXPORTED_
DIRTY_BLOCKEDW

TDH.EXPORT.MEM
(REMIGRATE) /
DIRTY_COUNT--

TDH.EXPORT.UNBLOCKW

PENDING_BLOCKED

Page is pending and 
blocked

See Leaf Entry 
State Diagram

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

TDH.EXPORT.MEM(CANCEL) /
DIRTY_COUNT--, MIG_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.MEM(MIGRATE)
[TD is paused] /
MIG_COUNT++

TDH.EXPORT.MEM
(REMIGRATE)

[TD is paused] /
DIRTY_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.RESTORE /
MIG_COUNT--

TDH.EXPORT.MEM(CANCEL) /
MIG_COUNT--

TDG.MEM.
PAGE.ACCEPT

EXPORTED_
DIRTY

Page is mapped and 
accessible to guest 
TD

See Mapped 
Leaf Entry 
Export State 
Diagram

 

Figure 9.6:  Partial SEPT Leaf Entry State Diagram for Pending Page Export  

If the guest TD accepts a pending page that has been exported, TDG.MEM.PAGE.ACCEPT results in an EPT violation.  The 
host VMM is expected to call TDH.EXPORT.UNBLOCKW, which marks the page as PENDING_EXPORT_DIRTY, and resumes 
the guest TD.  TDH.MEM.PAGE.ACCEPT then re-executes; it initialized the page and updates the SEPT state to mark the 5 

page as EXPORTED_DIRTY (where the page is mapped and accessible to the guest TD).  The host VMM can then re-export 
the page, as described in 9.4.5 above.  



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 62 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Host VMM
Intel TDX 
Module

Guest TD

TD Exit (EPT Violation)

TDH.EXPORT.UNBLOCKW

TDH.VP.ENTER

VM entry

Remove write protection, mark 
the page as dirty if exported

TDG.MEM.PAGE.ACCEPT

TDG.MEM.PAGE.ACCEPT

Success

 

Figure 9.7:  Typical Sequence for Unblocking a PENDING Page on TDG.MEM.PAGE.ACCEPT Attempt 

9.4.10. SEPT Cleanup after Export Abort 

Following an export session is aborted (by TDH.EXPORT.ABORT) the source TD is allowed to run.  However, SEPT entries 
that have been modified during the aborted export session keep their state.  Such SEPT entries must be cleaned up by 5 

the host VMM before memory management operations are allowed on them, and/or before a new export session is 
attempted, as follows: 

• Cleanup of SEPT entries that have been blocked for writing is done by TDH.EXPORT.UNBLOCKW (if the page is to be 
written) or TDH.RANGE.BLOCK (is the page is to be blocked for some memory management operation). 

• Cleanup of SEPT entries that have been exported is done by TDH.EXPORT.RESTORE. 10 

To track and enforce proper cleanup, the following counter is maintained in TDCS: 

• MIG_COUNT counts the number of SEPT entries that need to be cleaned up. 

The counter is initialized to 0.  To start a new migration session, its value must be 0. 

TDH.EXPORT.MEM increments MIG_COUNT for exported pages, and decrements MIG_COUNT for export cancels.   

9.5. TD Private Memory Import 15 

9.5.1. In-Order Import Phase 

 Overview of In-order Import 

During the in-order import phase, a page may be imported multiple times.  In addition, a page import may be cancelled.  
Ordering is maintained by the MBMD’s MB_COUNTER and the requirement that a page can only be imported once per 
migration epoch. 20 

Once out-of-order import phase begins, any pages that has been imported are designed to be up to date. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 63 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

 

FREE

SEPT entry is not 
mapped to the TD

MAPPED

Page is mapped and 
accessible to guest 
TD

PENDING

Page is pending guest 
TD acceptance

TDH.IMPORT.MEM(REMIGRATE)
[mapped]

TDH.IMPORT.MEM(MIGRATE)
[mapped]

TDH.IMPORT.MEM(MIGRATE)
[pending]

TDH.IMPORT.MEM(CANCEL)

TDH.IMPORT.MEM(CANCEL)

TDH.IMPORT.MEM(REMIGRATE)
[mapped]

TDH.IMPORT.MEM(REMIGRATE)
[pending]

REMOVED

TDH.IMPORT.MEM(MIGRATE)
[mapped]

TDH.IMPORT.MEM(MIGRATE)
[pending]

 

Figure 9.8:  Page In-Order Import Phase Partial SEPT Entry State Diagram 

 Memory Management During In-Order Import 

9.5.1.2.1. TLB Tracking During In-Order Import 

During the in-order import phase, no blocking and no TLB tracking is required, since the destination TD is not running yet. 5 

9.5.1.2.2. Secure EPT Management During In-Order Import 

Addition and removal of Secure EPT pages are allowed during the in-order phase – they are required as part of building 
the TD on the destination platform. 

An SEPT page can only be removed if all its entries are FREE; specifically, it can’t be removed if any entry state is 
REMOVED. 10 

9.5.1.2.3. Page Management During In-Order Import 

Page management operations are prohibited during the in-order import phase: 

• Page addition by TDH.MEM.PAGE.ADD and TDH.MEM.PAGE.AUG 

• Page removal by TDH.MEM.PAGE.REMOVE 

• Page promotion and demotion by TDH.MEM.PAGE.PROMOTE and TDH.MEM.PAGE.DEMOTE 15 

• Page relocation by TDH.MEM.PAGE.RELOCATE 

• GPA range blocking and unblocking by TDH.MEM.RANGE.BLOCK and TDH.MEM.RANGE.UNBLOCK 

 Enforcing a Single Import Operation per Migration Epoch 

When a page is imported during the in-order, the current migration epoch is recorded in the page’s PAMT.BEPOCH field. 

Note: TDH.MEM.RANGE.BLOCK, which is the only other interface function that writes to PAMT.BEPOCH, can’t be 20 

invoked during in-order import. 

Page re-import and import cancel operations compare the recorded migration epoch in the existing page’s PAMT.  For 
the import to succeed, it should be older than the current migration epoch. 

When a page import is cancelled during the in-order, the physical page is removed but its SEPT entry is put into a 
REMOVED state, and the current migration epoch is recorded in the SEPT entry’s HPA field. 25 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 64 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Page first-time import operation compares the recorded migration epoch in the existing page’s SEPT entry.  For the import 
to succeed, it should be older than the current migration epoch. 

9.5.2. Out-of-Order import Phase 

 Overview of Out-of-Order Import 

When the out-of-order import phase begins, any pages that have been imported are designed to be up to date.  A page 5 

may only be imported if its GPA mapping does not exist yet (SEPT entry’s state is FREE).  An import attempt of a page that 
has been imported before during the out-of-order phase is dropped but not considered an error; this is normally the 
result of the same page being migrated on a high-priority queue.  Source memory state is immutable, so ordering is not 
required.   

FREE

SEPT entry is not 
mapped to a physical 
page

MAPPED

Page is mapped and 
accessible to guest 
TD

PENDING

Page is pending guest 
TD acceptance

TDH.IMPORT.MEM(MIGRATE)
[mapped]

TDH.IMPORT.MEM(MIGRATE)
[pending]

TDH.MEM.PAGE.DEMOTE /
Entry becomes non-leaf,

MAPPED

TDH.MEM.PAGE.PROMOTE
[512 MAPPED entries] /

Entry becomes leaf, MAPPEDFrom Non-Leaf Entry 
State Diagram

TDH.MEM.PAGE.DEMOTE /
New leaf, MAPPED

TDH.MEM.PAGE.DEMOTE /
Entry becomes non-leaf,

MAPPED

TDH.MEM.PAGE.DEMOTE /
New leaf, PENDING

To Non-Leaf 
Entry State 
Diagram

To Non-Leaf 
Entry State 
Diagram

REMOVED

SEPT entry is not 
mapped to a physical 
page.  If OP_STATE is 
not LIVE_IMPORT, 
equivalent to FREE.

TDH.MEM.PAGE.REMOVE

BLOCKED

Page is mapped but 
new translations are 
blockedTDH.MEM.RANGE.BLOCK

PENDING_BLOCKED

Page is pending but 
guest TD acceptance 
is blockedTDH.MEM.RANGE.BLOCK

TDH.MEM.PAGE.REMOVE

TDH.IMPORT.MEM(MIGRATE)
[mapped, 

previous CANCEL during in-order import]

TDH.IMPORT.MEM(MIGRATE)
[pending, 

previous CANCEL during in-order import]

 10 

Figure 9.9:  Page Out-of-Order Import Phase Partial SEPT Entry State Diagram 

 Memory Management During Out-of-Order Import 

9.5.2.2.1. TLB Tracking During Out-of-Order Import 

During the out-of-order import phase, TLB tracking is required in the LIVE_IMPORT OP_STATE, since the TD may be 
running on the destination platform. 15 

9.5.2.2.2. Secure EPT Management During Out-of-Order Import 

Addition and removal of Secure EPT pages are allowed during the out-of-order phase – they are required as part of 
building the TD on the destination platform. 

An SEPT page can only be removed if all its entries are FREE; specifically, it can’t be removed if any entry state is 
REMOVED. 20 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 65 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

9.5.2.2.3. Page Addition During Out-of-Order Import 

TDH.MEM.PAGE.ADD is prohibited but TDH.MEM.PAGE.AUG is allowed in the LIVE_IMPORT OP_STATE. 

If a page was added locally (TDH.MEM.PAGE.AUG),  this is equivalent to the VMM removing a page without coordinating 
with the TD, then adding a new page.  The TD should not accept (TDG.MEM.PAGE.ACCEPT) such a page since from its 
point of view this is a page that already existed in its GPA space.  The secure EPT entry state for the locally added page is 5 

PENDING, and if a page is imported to the same GPA, import will fail.   

9.5.2.2.4. Promotion and Demotion During Out-of-Order Import 

Page promotion and demotion are allowed during the out-of-order phase. 

9.5.2.2.5. Page Removal During Out-of-Order Import 

Page removal (TDH.MEM.PAGE.REMOVE) is allowed during the out-of-order import phase.  However, the page’s SEPT 10 

entry is not marked as FREE when the page is removed.  Instead, the SEPT entry state is set to REMOVED.  The REMOVED 
state is equivalent to the FREE state, except for the following limitations that apply as long as the TD is in the LIVE_IMPORT 
OP_STATE: 

• Page import is not allowed to this GPA. 

• Removal of the parent SEPT page is not allowed. 15 

The above limitations prevent the following attack scenario: 

1. The host VMM creates a copy of a migration bundle and saves it for later. 
2. The host VMM import a page using the migration bundle. 
3. The TD runs and modifies the imported page content. 
4. The host VMM removes the page. 20 

5. The host VMM attempt to re-import the page using the saved copy of the migration bundle. 

If the host VMM succeeded in re-importing the page, it would have rolled back the page content.  Remember we do not 
enforce order of import during the out-of-order phase.  But setting the SEPT entry state to REMOVED when the page was 
removed prevents this attack. 

9.5.2.2.6. Page Relocation During Out-of-Order Import 25 

Page relocation is supported at any stage without any changes. 

9.5.3. In-Place Import 

In-place import repurposes the physical pages holding the imported data as private memory pages that hold the 
decrypted data.  This saves the host VMM on the destination platform the need to allocate memory for the imported 
data, at the cost of a small fixed-sized intermediate buffer that needs to be held by Intel TDX Module, and some other 30 

complications.  In-place import may be selected for each page imported for the first time, or following a previous CANCEL, 
but not for re-import of a new version of a previously imported page. 

9.6. Secure EPT Concurrency Considerations 

Note: OP_STATE related concurrency considerations are described in 7.2.6. 

To support high performance migration, memory migration interface functions are allowed to run concurrently on 35 

multiple LPs.  However, no concurrent operation is allowed on any single Secure EPT entry.  Interface functions that work 
on specific Secure EPT entries acquire an exclusive lock to that entry. 

9.7. Memory Migration Interface Functions 

This section provides a short overview of the memory migration interface functions.  A detailed specification is provided 
in [TDX Module ABI]. 40 

9.7.1. TDH.EXPORT.BLOCKW 

TDH.EXPORT.BLOCKW blocks a list of 4KB pages for writing, as a preparation for export.  The function records the current 
value of TD_EPOCH in TDCS.BW_EPOCH. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 66 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Inputs 

• Source TD handle:  the TDR page HPA 

• GPA list 

Pre-Conditions 

• Export session is in the in-order phase and the TD has not been paused yet  5 

Operation 

Note: TDH.EXPORT.BLOCKW is interruptible.  For simplicity, this is not described here.  Migration functions 
interruptibility is discussed in 6.2.3. 

1. For each GPA in the list: 
1.1. Check that the page is a MAPPED or PENDING 4KB page. 10 

1.2. Update the SEPT entry to mark the page as blocked for writing.  Save the value of SEPT.W in SEPT.TDW and 
clear it. 

1.3. Copy TDCS.TD_EPOCH to the TDCS.BW_EPOCH. 

9.7.2. TDH.EXPORT.MEM 

TDH.EXPORT.MEM exports, re-exports or sends an export cancellation request for a list of 4KB pages.  A page may be 15 

PENDING (in which case no data is exported). 

Inputs 

• Source TD handle:  the TDR page HPA 

• GPA list 

• MBMD HPA 20 

• Migration buffers list HPA 

• Page MAC list HPA 

• Migration stream index 

Pre-Conditions 

• Export session is in progress 25 

Operation 

Note: TDH.EXPORT.MEM is interruptible.  For simplicity, this is not described here.  Migration functions interruptibility 
is discussed in 6.2.3. 

1. Create and write the MBMD. 
2. For each GPA in the list: 30 

2.1. Walk the SEPT and find the leaf entry for the page. 
2.2. If page migration is requested and the TD has not been paused: 

2.2.1. Check that the page is blocked for writing. 
2.2.2. Check TLB tracking based on the TDCS.BW_EPOCH. 

2.3. If page migration is requested and the page is not PENDING, write the migration buffer: 35 

2.3.1. Using TDCS.MIGRATION_KEY and the TDCS migration context for the specified migration stream index, 
encrypt the page into the destination buffer page(s) and calculate page MAC. 

2.4. If the page is PENDING of an export cancellation is requested, the migration buffer is not used, and only 
metadata is exported. 

2.5. Save page metadata:  GPA list entry and page MAC. 40 

2.6. Update the SEPT state. 

9.7.3. TDH.EXPORT.RESTORE 

TDH.EXPORT.RESTORE restores a list of 4KB pages after an export abort. 

Inputs 

• Source TD handle:  the TDR page HPA 45 

• GPA list 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 67 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

Pre-Conditions 

• Export session is not in progress  

Operation 

Note: TDH.EXPORT.RESTORE is interruptible.  For simplicity, this is not described here.  Migration functions 
interruptibility is discussed in 6.2.3. 5 

2. For each GPA in the list: 
2.1. Check that the page has been exported. 
2.2. Restore the SEPT entry state to MAPPED or PENDING as appropriate. 

9.7.4. TDH.EXPORT.UNBLOCKW 

TDH.EXPORT.UNBLOCKW unblocks a 4KB page that has been blocked for writing. 10 

Inputs 

• Source TD handle:  the TDR page HPA 

• Source GPA and level 

Pre-Conditions 

• Either an export session is in progress but committed export phase has not begun, or the TD is allowed to run  15 

Operation 

1. Walk the SEPT and find the leaf entry for the page.  The page must be blocked for writing. 
2. Update the SEPT state. 

9.7.5. TDH.IMPORT.MEM 

TDH.IMPORT.MEM exports, re-imports or cancels a previous import for a list of 4KB pages. 20 

Inputs 

• Destination TD handle:  the TDR page HPA 

• GPA list 

• MBMD HPA 

• Migration buffers list HPA 25 

• Page MAC list HPA 

• Migration stream index 

• New TD pages list HPA 

Pre-Conditions 

• Import session is in progress 30 

Operation 

Note: TDH.IMPORT.MEM is interruptible.  For simplicity, this is not described here.  Migration functions interruptibility 
is discussed in 6.2.3. 

1. Check the MBMD. 
2. For each GPA in the list: 35 

2.1. Walk the SEPT and find the leaf entry for the page. 
2.2. If a page re-migration or a migration cancellation is requested, check that the page has not been processed in 

the current migration epoch. 
2.3. If a first-time migration is requested: 

2.3.1. Check the SEPT entry is FREE. 40 

2.3.2. If no new TD page is provided, this is an in-place import.  Copy the migration buffer content into a 
temporary buffer, and use the migration buffer as the new page. 

2.3.3. Add the new page to the TD and set its PAMT state. 
2.4. If migration is requested and the page is not PENDING, decrypt the migration buffer: 

2.4.1. Using TDCS.MIGRATION_KEY and the TDCS migration context for the specified migration stream index, 45 

decrypt the page into the TD page and calculate page MAC. 



TDX Module TD Migration Spec Section 2:   TD Migration Architecture Specification 348550-001US 

September 2021      Page 68 of 68 

Se
ct

io
n

 2
:  

TD
 M

ig
ra

ti
o

n
 A

rc
h

it
ec

tu
re

 S
p

ec
if

ic
at

io
n

 

2.5. If the page is PENDING or an export cancellation is requested, the migration buffer is not used, and only 
metadata is exported. 

2.6. If a migration cancellation is requested, check the SEPT state and remove the page. 
2.7. Update the SEPT state. 


	Notices and Disclaimers
	SECTION 1: TD MIGRATION INTRODUCTION AND OVERVIEW
	1. About this Document
	1.1. Scope of this Document
	1.2. Document Organization
	1.3. Glossary
	1.4. Notation
	1.5. References
	1.5.1. Intel Public Documents
	1.5.2. Intel TDX Public Documents
	1.5.3. Non-Intel Public Documents


	2. TD Migration Overview
	2.1. Introduction
	2.2. TD Migration Scenarios
	2.2.1. Cold migration
	2.2.2. Live Migration
	2.2.3. Image Snapshot and Jumpstart

	2.3. Migration TD and TD Migration Policy overview
	2.4. Migrated Assets
	2.5. Guest TD Migration Life Cycle Overview
	2.5.1. Pre-Migration
	2.5.1.1. Intel TDX Module Enumeration

	2.5.2. Reservation and Session Setup
	2.5.2.1. Guest TD Build and Execution on the Source Platform
	2.5.2.2. Guest TD Initial Build on the Destination Platform
	2.5.2.3. Migration Session Key Negotiation
	2.5.2.4. TD Global Immutable Metadata (Non-Memory State) Migration

	2.5.3. Iterative Pre-Copy of Memory State
	2.5.3.1. Migration Considerations for TD Private Memory
	2.5.3.2. Migration Considerations for EPT Structures
	2.5.3.3. Post Copy:  Destination Guest TD Execution during Memory Migration
	2.5.3.4. Aborted Private Memory Migration

	2.5.4. Source TD Stop and Final Non-Memory State Migration
	2.5.4.1. Final Memory State Migration
	2.5.4.2. TD-Scope and VCPU-Scope Mutable Non-Memory State migration

	2.5.5. Commitment
	2.5.6. Post-Copy of Memory State

	2.6. Impact of Migration on Measurement and Attestation
	2.7. Intel TDX Module Managed Control Structures affected by Migration
	2.8. Intel TDX Module TD Migration Interface Functions Overview

	3. TD Migration Requirements
	3.1. Functional Requirements
	3.2. Security Requirements
	3.3. Non-Functional Requirements

	4. TD Migration Software Flows
	4.1. Typical TD Migration Flow Overview
	4.2. Successful TD Export
	4.3. Successful TD Import
	4.4. TD Import Abort
	4.4.1. TD Import Abort During the In-Order Import Phase
	4.4.2. TD Import Abort During the Out-Of-Order Import Phase

	4.5. TD Export Abort
	4.5.1. Export Abort During the In-Order Export Phase
	4.5.2. Export Abort During the Out-Of-Order Export Phase


	SECTION 2: TD MIGRATION ARCHITECTURE SPECIFICATION
	5. Migration TD Overview
	5.1. Example Migration Session Establishment

	6. TD Migration Common Mechanisms
	6.1. Migration Bundles
	6.1.1. Overview
	6.1.2. Migration Data
	6.1.3. Migration Bundle Metadata (MBMD)

	6.2. Export and Import Functions Interface
	6.2.1. Overview of Migration Data Format in Memory
	6.2.2. Migrating a Multi-Page Migration Bundle
	6.2.3. Migration Functions Interruptibility

	6.3. Cryptographic Protection for Migration Data
	6.3.1. Encryption Algorithm
	6.3.2. Migration Session Key

	6.4. Migration Streams and Migration Queues
	6.5. Measurement and Attestation
	6.5.1. TD Measurement Registers Migration
	6.5.2. TD Measurement Reporting Changes
	6.5.3. TD Measurement Quoting Changes
	6.5.4. TCB Recovery and Migration

	6.6. TDX Control Structure Updates
	6.6.1. Per-TD:  TDCS
	6.6.1.1. Updates to Existing TDCS Fields
	6.6.1.2. TDCS Migration-Related Fields

	6.6.2. Secure EPT
	6.6.3. MIGSC:  Migration Stream Context


	7. Migration Session Control and State Machines
	7.1. Overview
	7.1.1. Successful Migration Session
	7.1.2. Aborted Migration Session
	7.1.2.1. Abort during the In-Order Phase
	7.1.2.2. Abort during the Out-Of-Order Phase

	7.1.3. Migration Epochs

	7.2. TD Migration State Machines
	7.2.1. Overview
	7.2.2. OP_STATE:  TD Operation State Machine
	7.2.3. Migration TD Binding and Migration Key Assignment
	7.2.4. Export Side (Source Platform)
	7.2.5. Import Side (Destination Platform)
	7.2.6. OP_STATE Concurrency Considerations
	7.2.6.1. Export Side
	7.2.6.2. Import Side

	7.2.7. Summary

	7.3. Migration Tokens
	7.4. Migration Protocol Versioning
	7.4.1. Introduction
	7.4.2. Enumeration of Supported Migration Versions
	7.4.3. Setting the Migration Protocol Version for a Migration Session

	7.5. Export Session Control Functions
	7.5.1. TDH.EXPORT.STATE.IMMUTABLE (Session Control Aspects)
	Inputs
	Pre-Conditions
	Operation (Session Control Aspects Only)

	7.5.2. TDH.EXPORT.PAUSE
	Inputs
	Outputs
	Pre-Conditions
	Operation

	7.5.3. TDH.EXPORT.TRACK
	Inputs
	Outputs
	Pre-Conditions
	Operation

	7.5.4. TDH.EXPORT.ABORT
	Inputs
	Pre-Conditions
	Operation


	7.6. Import Session Control Functions
	7.6.1. TDH.IMPORT.STATE.IMMUTABLE (Session Control Aspects)
	Inputs
	Pre-Conditions
	Operation (Session Control Aspects Only)

	7.6.2. TDH.IMPORT.TRACK
	Inputs
	Outputs
	Pre-Conditions
	Operation

	7.6.3. TDH.IMPORT.COMMIT
	Inputs
	Outputs
	Pre-Conditions
	Operation

	7.6.4. TDH.IMPORT.END
	Inputs
	Outputs
	Pre-Conditions
	Operation

	7.6.5. TDH.IMPORT.ABORT
	Inputs
	Outputs
	Pre-Conditions
	Operation



	8. TD Non-Memory State Migration
	8.1. TD Non-Memory State Migration Operation
	8.1.1. Non-Memory State Migration Data
	8.1.2. Non-Memory State MBMD
	8.1.3. Immutable vs. Mutable TD State

	8.2. State Migration Rules
	8.2.1. General State Export Rules
	8.2.2. General State Import Rules
	8.2.3. Immutable State Import Rules
	8.2.4. Mutable State Import Rules
	8.2.4.1. Imported State Verification
	8.2.4.2. Handling State that is Not Verified on Import
	8.2.4.3. State Initialized or Calculated on Import


	8.3. Non-Memory State Export Functions
	8.3.1. TDH.EXPORT.STATE.IMMUTABLE (State Export Aspects)
	Inputs
	Pre-Conditions
	Operation (State Export Aspects Only)

	8.3.2. TDH.EXPORT.STATE.TD
	Inputs
	Pre-Conditions
	Operation

	8.3.3. TDH.EXPORT.STATE.VP
	Inputs
	Pre-Conditions
	Operation


	8.4. Non-Memory State Import Functions
	8.4.1. TDH.IMPORT.STATE.IMMUTABLE (State Import Aspects)
	Inputs
	Pre-Conditions
	Operation (State Import Aspects Only)

	8.4.2. TDH.IMPORT.STATE.TD
	Inputs
	Pre-Conditions
	Operation

	8.4.3. TDH.IMPORT.STATE.VP
	Inputs
	Pre-Conditions
	Operation



	9. TD Private Memory Migration
	9.1. Overview
	9.2. Achieving Memory Migration Security Objectives
	9.2.1. General
	9.2.2. Migration Epochs:  Usage of Stale Memory Copies due to Mis-Ordering
	9.2.3. Preventing Usage of Stale Memory Copies due to Failure to Import
	9.2.4. Preventing Usage of Stale Memory Copies due to Failure to Export
	9.2.5. Out-Of-Order Phase and Its Usage for Post Copy

	9.3. GPA Lists and Private Memory Migration Bundle
	9.3.1. GPA List
	9.3.2. Private Memory Migration Buffer

	9.4. TD Private Memory Export
	9.4.1. Typical Export Round
	9.4.2. SEPT Leaf Entry Partial State Diagram for Export
	9.4.3. Live Export:  Blocking for Writing, TLB Tracking and Exporting a Page
	9.4.4. Exporting a Page after the Source TD is Paused
	9.4.5. Unblocking for Write, Tracking Dirty Pages and Re-Exporting
	9.4.5.1. Overview
	9.4.5.2. Unblocking for Write and Re-Exporting a Page
	9.4.5.3. TDCS.DIRTY_COUNT:  TD-Scope Dirty Page Counter

	9.4.6. Re-Exporting a Non-Dirty Page
	9.4.7. Interruptible Memory Export
	9.4.8. Prohibited Operations on Exported Pages and Export Cancellation
	9.4.9. Exporting Pending Pages
	9.4.10. SEPT Cleanup after Export Abort

	9.5. TD Private Memory Import
	9.5.1. In-Order Import Phase
	9.5.1.1. Overview of In-order Import
	9.5.1.2. Memory Management During In-Order Import
	9.5.1.2.1. TLB Tracking During In-Order Import
	9.5.1.2.2. Secure EPT Management During In-Order Import
	9.5.1.2.3. Page Management During In-Order Import

	9.5.1.3. Enforcing a Single Import Operation per Migration Epoch

	9.5.2. Out-of-Order import Phase
	9.5.2.1. Overview of Out-of-Order Import
	9.5.2.2. Memory Management During Out-of-Order Import
	9.5.2.2.1. TLB Tracking During Out-of-Order Import
	9.5.2.2.2. Secure EPT Management During Out-of-Order Import
	9.5.2.2.3. Page Addition During Out-of-Order Import
	9.5.2.2.4. Promotion and Demotion During Out-of-Order Import
	9.5.2.2.5. Page Removal During Out-of-Order Import
	9.5.2.2.6. Page Relocation During Out-of-Order Import


	9.5.3. In-Place Import

	9.6. Secure EPT Concurrency Considerations
	9.7. Memory Migration Interface Functions
	9.7.1. TDH.EXPORT.BLOCKW
	Inputs
	Pre-Conditions
	Operation

	9.7.2. TDH.EXPORT.MEM
	Inputs
	Pre-Conditions
	Operation

	9.7.3. TDH.EXPORT.RESTORE
	Inputs
	Pre-Conditions
	Operation

	9.7.4. TDH.EXPORT.UNBLOCKW
	Inputs
	Pre-Conditions
	Operation

	9.7.5. TDH.IMPORT.MEM
	Inputs
	Pre-Conditions
	Operation




