Intel® Stress Bitstreams and Encoder (Intel® SBE)
2016 — VP9
User Guide

Version 2.2
Updated March 28, 2016

Contents
INEFOTUCTION ...ttt et e e bt e e bt e e e bt e e e bt e e eabbeeeabeeeeabeeeenneesanneeenns 3
Feature Sets and Profiles........oo i 3
GENEIAI OVEIVIBW ..ttt sttt et s e st e et e e st e e e bb e e e st e e sabbeesaneeesanteesaneeennneens 3
RV Y o111 ok PSRRI 4
Parfile Editing Basics: HOW t0 Setup TeSt COVEIAZE ..uuuriiiiiiiiiiiiiiieeee e e e ettt ee e e e e e e sirrrre e e e e e e e e eeanes 5
Parfile Eiting: @ SHOrt SUMMArycoo oo e e e e et e e e e e e e reraeeeeeeeeenannnes 7
Description of Command-Line Application OPtioNnS........ccccueeiiiiiiiie e 7
Case Study: Focus on ADST IMplementationcoooecciiiiiiee e e e e 9
How t0 Choose INPUL RESOIULION ..ot e e e e e ee e e e e e e e ennnes 10
How to Control Frame-Scaling Randomizationeeeeeieeiiiiiiieeiee et 11
Extensive Testing and Parallel EXECULIONoiiiiiciiiieeeee ettt ee e e e e e e e eanns 12
Using VP9 Random Encoder as a Debugging TOOI.........ooiiiiiiiiiiiiiee e 12
SMOKE TEST STFEAMS ...ttt e s e e e st e sneeeneennne e 13
VPO FC2 SPECITICS turrrrrieeiieieiiiiireee et e e eeeecirree e e e e e e eeeitbrereeeeeeeesseasraereeeeessesastaesaeeeeseeesasssraneaeeessennnnes 14
Residual RANAOMIZATION ..coouviiiiiiieiiieee et 14
What VP9 Random Encoder Does NOt SUPPOIteeieieee it 15
Memory-Bandwidth Testing of the DECOUET........ccuvveeeiieiieicieeeeee e e e e e eeanns 15
Worst-Case Performance Testing of the DeCOUErccoiiiiiiiiiie e 16
Visually Clean CONTENT......uiiiiiie e e e e e e et e e e e e e e s e eaer e e e e e e e e e e eeaneneaenas 16
OVEITIAING PArGMELEIS ..vvveeeieeieeieiiiireeeeeeeeeeeeetrtereeeeeeeeseabareeeeeeeeesesasbsareeeeeseessastrraereseeeeeensssresees 17
LY LY=o Y=Y 1= =T RPN 18
Error RESIlIENCE ENCOUENeiiiiiieiiieeee ettt et e e e as 19
D=y of T o1 o [0 o 1RSSR 19
TagYoYoT = Lo} dl =] g Tt o Lo o 1RSSR 19
Broken Stream GeNEratioNioiuiiiiiiiiiiieee ettt 19
*Other names and brands may be claimed as the property of others. Page 1 of 27

© 2016, Intel Corporation.

(66 1 0010 AN A= 1= 1 8 A1 oY Y 19

2T T g Lo (o] 3 Y14 Y d o o [PPSR 19
Packet RANAOMIZAtIONuiiiiiiiiiee e e e st e e s e e e s snneeee s 20
SyNtax RaNAOMIZAtiON c....eeeiiiiiiee e e e e e aaaeeas 20
oY {1 LT D oYY ol o} o o RSP PRPRUPTPPPN 21
Parfile Example and Parameter DeSCriptionceciviueiieiiiiieee e esireee e e e s aee e e 22
(=Y I) o]0 =14 o o F SRS 27
*Other names and brands may be claimed as the property of others. Page 2 of 27

© 2016, Intel Corporation.

Introduction

Testing a decoder is a complex multi-criteria task. Code coverage of 100% lines of a decoder
code does not guarantee the decoder is 100% compliant. At the same time, creation of millions
of streams to test all possible feature combinations is time and storage consuming. Random
Encoder partially resolves these two issues. It is a lightweight encoder with no mode decision,
so it is as fast as the decoder is. Effective motion estimation and mode decision are not parts of
video codec standard and are not required to be tested at the decoder side. So this most time-
consuming part is mostly omitted in Random Encoder in favor of speed and flexibility.

Codec developer will not want to keep all streams generated by random encoder, it is enough
to keep only basic vectors. If a decoder fails to correctly decode a randomly generated stream,
it makes sense to extend the test pool with the stream for future regression validation. Random
Encoder is a great extension of codec validation in addition to basic vectors provided with
Stress Bitstreams.

Feature Sets and Profiles

VP9* specification has two feature sets: Feature Set 1 (FC1) containing only 8-bit 4:2:0
colorspace (chroma components reduced in both directions) and Feature Set 2 (FC2) allowing
10 and 12-bit color depth and more flexible options of chroma subsampling.

Profile is a syntax element in frame header defining color bit depth and chroma subsampling
setting scope:

e Profile 0 allows only 8-bit 4:2:0 color representation.

e Profile 1 adds an option to disable chroma subsampling in vertical, horizontal or both
directions.

e Profile 2 enables 10- or 12-bit color depth with 4:2:0 color representation.

e Profile 3 enables both high-bit color depth and chroma subsampling options.

Random Encoder supports all bit-depth options and chroma-subsampling configurations. All the
information in this document is applicable to any Profile and Feature Set. For more information
about high-bit depth and chroma subsampling, see VP9 section.

General Overview

Random Encoder is a highly configurable and flexible syntax (VP9) encoder tool. Unlike regular
encoders, it is not intended to achieve compression but only designed to create a valid
specification-compliant stream. Compliant streams contain only allowed combinations of
syntax elements and their values to test decoder for unusual cases or boundary stress cases
where developers usually relax requirements to code development in favor of higher decoding
speed. Decoder must be compatible with any stream so its sloppy optimizations have to be
carefully tracked for boundary cases where residuals overflow may break visual representation
of the picture.

You can find the recommended Decode validation process with Random Encoder below. It is up
to the user to change the flow and to react on pass and fail events and even decide on the

*Other names and brands may be claimed as the property of others. Page 3 of 27
© 2016, Intel Corporation.

criteria of test passing. We recommend to use the latest development branch of libvpx
reference decoder for VP9 for testing.

As an input, Random Encoder accepts an optional YUV file and a parfile describing testing
settings: features to utilize, fixed values, random values. As an output, Random Encoder
produces an encoded bitstream and optionally writes a YUV file with internal reconstruction
data. This file is used to validate that Encoder generated a proper compressed file and that
the resulted bitstream is valid.

If there is a mismatch between encoder reconstruct and reference decoder result, you are
welcome to report this to Software Publisher (your Intel contact) with the case configuration to
request the fix, if it fits your license agreement with Intel. We will always appreciate your
feedback.

Random Encoder has the seed parameter (-s) defining initial random-engine state. If you
change it, you can use the same parfile to produce totally different streams with the same
scope of randomization defined by parfile. The main purpose of this seed feature is extensive
testing with all possible syntax-element combinations. Besides, this feature can be used to
create small bug-reproducers (setting frame number parameter "-f" to some small value) for
the parfiles which are known to generate the streams causing failure of the examined decoder.

To summarize, a typical workflow of compliance testing for VP9 consists of the following steps:

1. Produce test stream by feeding Random Encoder with a parfile and an optional input
YUV file.

2. Decode the stream with reference decoder.

3. Verify that Encoder’s reconstruct matches the reference decoder result.

4. Decode the stream with your decoder and verify that its result matches the reference
decoder result.

5. Increment the seed parameter and return to step 1.

VP9 Specifics

To start validation cycle with Random Encoder for VP9, make a decision regarding your testing
agenda and set up certain features and value range in random-encode parfile. Parfile is a JSON
formatted file that contains the settings for all syntax elements and some additional entries
related to frame scaling and residual randomization. Wide range of values in the parfile will
result in a very detailed testing. Random Encoder accepts a YUV file and a parfile and iterates
each time the “--seed” command-line option changes, producing a new output stream for each
iteration.

Here is a simple example when it is reasonable to narrow the scope of search. If you want to
check how the decoder handles a whole range of motion vectors, then set the "mv_len"
parameter in the "superblock" section of the parfile to a maximum value. Magnitude of each
MV component will be uniformly distributed in range [-mv_len..mv_len]. But if you need to test
interpolation filters and convolution implementation, you need to ensure that 1/8-pixel MV
accuracy is utilized, and it is considered only if neighbor motion-vector components have the
magnitude not greater than 8 pixels. For proper testing, you need to set "mv_len" to value 64

*Other names and brands may be claimed as the property of others. Page 4 of 27
© 2016, Intel Corporation.

(see the detailed description of this parameter explaining why all values are multiplied by 8),
this will provide uniform distribution between all convolution vectors of each interpolation
filter. Otherwise, the chances to produce 1/8-pixel accurate MV are very small, so proper
testing of convolution implementation will take a long time.

i

Define -~
Start features to Par file
test

i

Intel* Media SDK VP2 Random

Intermal Valsdation
% Reference Test VPG
o e VPS Decoder Decoder
£ Recon
& YUV
&
.r’f-'-' T L
z Match? [Ref. ¢ Test.
5 N 4 l YUV

— Match? —_—

Figure 1. Testing workflow for Random Encoder for VP9.

The scope of testing is defined in a parfile. Encoder produces a compressed bitstream with randomized mode decisions and a
YUV file with internal reconstruct (optional). To validate your decoder, compare its results of randomized bitstream
decompression against the results of the reference decoder. The purpose of the YUV file with reconstruct is validation of the
Random Encoder—it also must match the reference decoder result.

Parfile Editing Basics: How to Setup Test Coverage

This chapter explains in detail the format that was chosen for test coverage.

Let’s start with a basic question: why do we need a parfile? Random Encoder makes each
decision randomly, there are no constraints or behavior patterns. You can expect any possible
syntax-element combination from the Encoder, as long as this combination is compliant to the
VP9 format. Two possible problems arise here.

The first problem is that we may not want any combination: for example, we are at an early
development stage and don’t have all the features implemented, so it doesn’t make sense to
test those features.

The second problem is test-coverage control. For example, Encoder has to choose the current
frame type: key or Inter. We could give equal chances for both variants, or put key frame about
every second or every 10 seconds. Equal chances may not be good for inter-prediction feature
coverage, since inter-prediction features may form more complicated feature combinations and

*Other names and brands may be claimed as the property of others. Page 5 of 27
© 2016, Intel Corporation.

require more detailed testing; 10 seconds may be too rare for accurate key frame testing, intra-
prediction testing and key/inter frame combinations; one second may seem fair but it still
doesn’t look like a flexible enough solution. Besides, we need a possibility to disable key frames
for extensive testing of intra prediction.

The solution we came with is definition of chances for certain values of enumerated syntax
element by probability weights. Frame type has two options: Key and Inter. To have equal
chances for both, we add the following line into the parfile: "frame_type" : [1, 1]. If we want to
have a key frame about every second, we increase the chances of Inter frame: "frame_type" :
[1, 29]. This defines the chances of getting a key frame as 1/30, and, what is important, doesn’t
define any strict pattern allowing to produce any possible combination of key and inter frames.
Sometimes it is even possible to have two consecutive key frames, but the average ratio of key-
frame number to the total length will be about 1/30 for the long enough streams. And if we
want to disable inter frames we just give them zero chance: "frame_type" : [1, 0]. The solution
is quite flexible and is applicable to all enumerated syntax elements. Most of the elements are
named the same or similar way as variables in libvpx source code (reference decoder VP9
implementation).

Some syntax elements would be unreasonable to enumerate, for example, base_gindex has the
range of 256 acceptable values. Instead, you would typically prefer one of the following
options:

o fixed value

e range of small or large QP values

e full range

e full range except zero, which may turn lossless mode on

Such range parameters are defined in the parfile with minimum and maximum values, so
random values will be distributed uniformly in this range. For example, the full range of

base _gindex is defined as follows: "base_gindex_range" : [0, 255]. If we want to exclude zero
value, we write "base_gindex_range" : [1, 255]. To make QP fixed, for example, equal to 40, we
set min=max: "base_gqgindex_range" : [40, 40].

JSON syntax was chosen since it is convenient both for reading and for manual editing, but
initially, this format also had some drawbacks. There are no syntax cues to recognize weight-
based parameters from range-based ones, and for weight-based parameters the order of
enumeration may be unobvious. These drawbacks are compensated by the comments for each
parameter prompting the type of the parameter, the acceptable values for range-based
parameters, and the actual enumeration values of weight-based parameters. Parameters not
corresponding to VP9 syntax-elements and related to Encoder’s behavior control have
comments with additional explanations.

Such JSON definition extended with comments turned out to be a good tradeoff between
flexibility of test-coverage setup, human readability and compatibility with automatic parsers.

*Other names and brands may be claimed as the property of others. Page 6 of 27
© 2016, Intel Corporation.

Parfile Editing: a Short Summary

A parfile is a file in JSON format with comments. It includes the following general sections
related to different groups of parameters:

e The "frame" and "superblock" sections allow to control syntax-element randomization
scope in the frame header and at the superblock level. Most elements in these two
sections are named according to the corresponding variables in libvpx source code.

e The "scaling" section defines how frame resolution will be varied in the encoded stream.

e The "residual" section contains the settings related to residual randomization at the
superblock level.

e The "override" section allows to redefine the settings for the specified frames.

There are two types of parameters: weights and range. In most cases logical or enumerated
parameters are defined by relative weights. For example, setting "frame_type" : [1, 10] means
one chance of key frame against 10 chances of inter frame. Numeric parameters with wide
range are defined by specifying minimum and maximum values. For example, for the loop filter
level, acceptable values range from 0 to 63, and in parfile it is defined as "If filter_level" : [0,
63]. Actual values will be spread uniformly in this range.

To disable randomization for weights-defined parameters, weights for all except one values
must be set to zero. To set a range-defined parameter to a fixed value, you should set minimum
and maximum values to the same value.

Description of Command-Line Application Options

Random Encoder is a command-line application that accepts the following parameters:

vp9_random_encoder.exe -i <input.yuv> -o <output.vp9> -w <width> -h <height>
[-p <config.json> -s <seed> -r <reconstruct.yuv>]
[-f <# of frames to process>]

Parameter description:

Parameter Short description Details

-i STRING, Input file (raw YUV) File path, currently only 1420 YUV is accepted

--input=STRING

-o STRING, Output VP9 bistream File is output in IVF container

--output=STRING

-w INT -h INT, Width and height of input YUV

--width=INT

--height=INT

f INT, Number of frames to process Number of frames which random encoder will consume

--frames=INT and encode. Decoding result may have different number
of frames because some of encoded frames may be
hidden and also bitstream may contain one-byte-
repeated frames. If hidden frames and one-byte frame
repeats are disabled, output will contain the same
number of frames.

-r STRING, Output YUV file with encoder's Used to validate random encoder. If not set, encoder’s

--recon=STRING reconstruct (optional) reconstruct won’t be written.

-p STRING, JSON file with distribution Parfile setting limitations on syntax element

--parfile=STRING parameters (optional) randomization. If not set, the default values, which

*Other names and brands may be claimed as the property of others. Page 7 of 27

© 2016, Intel Corporation.

-s INT,
--seed=INT

--dump_hidden=BOOL

--output_state=STRING

--input_state=STRING

--bit_depth=INT

--recon_bit_depth=INT

--colorspace=STRING

-t STRING,
--target=STRING

--allow_idct_overflow=BOOL

*Other names and brands may be claimed as the property of others.

© 2016, Intel Corporation.

Seed for random engine
(optional)

Write invisible frames to
reconstruct file (optional)

Path to the file to which states
of random engine at keyframes
are written (optional)

Path to input file with random
engine state (optional)

Bitstream bit depth (8, 10, 12),
overwrites parfile setting

Encoder-reconstruct bit depth
(8,10, 12, 16), for easier
comparison with reference
decoder results

Bitstream colorspace:
yuv420|yuv422 |yuv440|yuv4as,
overwrites parfile setting

Target mode:

random | visual | mem_bw

e random (default) - no
restriction, full randomization

e visual - try to avoid some
configurations yielding
visual artifacts

e mem_bw - optimize for
memory bandwidth testing

Disable check that randomized

actually are not very practical, will be used.

Acceptable range: 0..INT_MAX

0 or 1, the default is 0. If is set to 1, encoder will output
hidden frames to reconstruct. This option was added to
enable use of libvpx reference decoder without
modification, because there is no option to dump hidden
frames. On the other hand, for thorough validation, you
need to modify reference decoder and use output
containing hidden frames.

This is another way to get short-reproducer stream, but it
is not well designed and needs to be accurate. You are
recommended to avoid using this option and to iterate
with seed instead.

If you use this option to provide the file path, the encoder
will dump the whole state of internal Mersenne-twister
random-engine at each key frame. The state is a single
line with a lot of numbers. If you want to start from the
state of a certain frame, you can copy the corresponding
line (without frame number) to a separate file and
provide the path to this file using the --input_state option.
Since the random encoder mostly doesn’t rely on input
frames for mode decision, there are very good chances to
get the same combination of modes at the beginning of
the bitstream, not somewhere in the middle.

However, there are much better ways to get short
reproducers. In addition to iterating with seed, you can
just cut a certain part with Intel® Video Pro Analyzer
(Intel® VPA) or any other tool that can parse and edit IVF
format.

See --output_state option description.

Only for the version with FC2 support, see VP9 section for
details.

Only for the version with FC2 support, see VP9 section for
details.

Only for the version with FC2 support, see VP9 section for
details.

At the current stage, visual mode does two things:

e Repeats each invisible frame with
show_existing_frame flag. This allows to make
playback smooth without disabling invisible frames
in the parfile.

e Disables residual randomization.

All other settings potentially yielding visual artifacts are to
be controlled through the parfile.

“mem_bw” (memory_bandwidth) mode enforces
reference frame sign bias flags to have different values, so
compound prediction is available at each inter frame. All
other settings recommended for memory bandwidth
testing are provided in 401th parfile

Residual randomization in combination with high QP may

Page 8 of 27

--extreme_residual=BOOL

--idct_overflow_hw=BOOL

--verbose

--help

residual doesn't yield inverse-
transform overflow

Use only extreme values for
random residual

Enable
Emulate-Hardware-Highbitdepth
behavior for iDCT calculation

Print reference frames’
resolution for each frame
(optional)

Output help message

produce illegal combination of coefficients yielding
inverse transform overflow. During residual
randomization, Encoder performs additional checks
dropping illegal combinations. To disable these checks,
set this option to 1.

Effective if residual randomization is enabled in parfile,
helps to hit inverse-transform overflow.

Affects inverse transform, copies behavior of
corresponding configuration define in libvpx code.

An option for debugging purposes. This option helps to
understand dependencies between reference frames
when you are working with a certain stream and parfile
while frame scaling is enabled.

Case Study: Focus on ADST Implementation

Let’s assume you have optimized inverse Asymmetric Discrete Sine Transform (ADST)

computation and want to validate the new implementation against the reference one. ADST is
applied only to intra blocks, but for the default config the portion of key frames is 10% and the
portion of intra blocks in inter frames is 25%. Taking into account that not all intra modes utilize
ADST, about 75% of bitstream content will be irrelevant to the validation task.

It will be reasonable not to use inter frames for ADST testing. So 008 _intra_stress.json parfile is
a good starting point, and it will be modified to setup Random Encoder for ADST testing. First of
all, let’s perform smoke testing using this parfile without modification on a small number of
frames (about 20 at SD resolution). If it passes, you can move ahead. If not, you can check that
each size of transform works correctly by creating separate parfiles for each transform

modifying the following line in the "frame" section:

"tx_mode" : [1, 1, 1, 1, 2], // 4x4, 8x8, 16x16, 32x32, select

Let’s disable all transform except 4x4:

"tx_mode" : [1, @, 0, 0, 0], // 4x4, 8x8, 16x16, 32x32, select

Then do the same for 8x8:

"tx_mode" : [0, 1, @, 0, O], // 4x4, 8x8, 16x16, 32x32, select

And the same way for 16x16. In fact, when you set "tx_mode" to enable 8x8 transforms only,
this setting doesn’t fully disable 4x4 transforms, they are still used for superblocks less than 8x8
and for chroma in blocks less than 16x16. If it is necessary to fully disable small transforms,
modify the "partition" setting in "superblock" section to disable superblock splitting at a
certain level. If there were any basic problems with the new ADST implementation, they would
be revealed by such basic tests.

*Other names and brands may be claimed as the property of others.
© 2016, Intel Corporation.

Page 9 of 27

Now let’s focus on validation of extreme cases. Since it is important to check extreme values,
increase the portion of blocks with randomized residual up to 50% by changing the following
line in the "residual" section:

"sb_randomized" : [9, 1], // no | yes
to
"sb_randomized" : [1, 1], // no | yes

The original version defines chances that superblock has random residual as one against nine,
which yields only 10% of blocks with random residual. In the modified version, the changes are
one-to-one, encoder will produce 50% of such blocks.

The "tx_mode" parameter described above should be set to allow 4x4, 8x8 and 16x16
transforms with equal chances (32x32 blocks are processed only with DCT):

"tx_mode" : [1, 1, 1, @, @], // 4x4, 8x8, 16x16, 32x32, select

In addition, you may disable intra-prediction mode, which don’t utilize ADST (DC and 45°) by
changing the "intra_mode" setting in the "superblock" section as follows:

// //DC, V, H, 45,135,117,153,207, 63, TM
"intra_mode" : [, 21, 1, o, 1, 1, 1, 1, 1, 1],

Summary: to validate the ADST implementation, we selected the parfile without inter frames as
the starting point; the portion of blocks with random residual was increased in order to test
inverse transform for handling extreme values; 32x32 transform size and transform-size
definition at the superblock level were disabled. Besides, the intra modes not utilizing ADST
were disabled. This configuration is dedicated to validation of ADST transform, and if there is a
possible mismatch with reference implementation, the chances that it will be revealed are
several times higher than those for the default all-enabled configuration are.

How to Choose Input Resolution

Recommended resolution for input video is 432x240 or close to it. This is a trade-off between
performance and test coverage. Globally, we have two separate scopes of value randomization:
frame header and superblock elements. Larger resolution (for example, Full HD) will lead to
lower Encoder speed in terms of FPS, which means that we will write fewer frames and will try
fewer frame-header element combinations in the same period of time. For superblock-element
combination coverage, resolution does not matter much. However, using the resolution smaller
than 432x240 will yield a video with fewer superblocks, which will significantly reduce coverage
of dependencies between neighbor superblocks.

Some features need input video of large resolution for proper testing. For example, maximum
magnitude of MV component is limited by resolution and is not reached at 432x240, so for
testing MV extreme values, Full HD input is recommended. Another example is the number of
vertical tiles. Minimum tile width is 256 pixels, so at bitstreams with frame width less than 512
pixels, vertical tiles can’t appear at all. It’s recommended to test tiles on 4K+ content and also
try frame width not divisible by 256.

*Other names and brands may be claimed as the property of others. Page 10 of 27
© 2016, Intel Corporation.

Another specific feature is frame scaling. First of all, it is recommended to perform separate
validation of frame scaling and other features. The main reason is that scaling complicates the
debugging process. Besides, for frame-scaling test you need an input of quite a large resolution
to test the edge cases of different reference-frame resolution: for proper testing of all
combinations, it’s recommended to have an input file of dimensions that produce reasonable
values after division by 32 (for example, 4096x2048 is OK).

Summary: basic recommended resolution is 432x240, it is a good trade-off between
performance and frame-header feature coverage; some cases require Full HD or larger input
resolution; frame scaling also requires large input resolution and we recommend to test other
features thoroughly prior to frame-scaling validation.

How to Control Frame-Scaling Randomization

The "scaling" section is the most unobvious one as compared to other parfile sections, but it is
quite important because on-the-fly frame scaling is a new feature in VP9 and it requires special
attention.

This parameter section provides enough flexibility to generate basic scaling cases, corner cases
and extensive-testing streams with arbitrary resolution. VP9 has a limitation on reference
scaling factor (2x downscale and 16x upscale), so the parameters don’t control absolute values
in pixels, only relative factors.

Random Encoder doesn’t upscale the input frames, only downscales them. So the maximum
resolution is defined by the resolution of input video. The minimum frame size can be limited
with the "min_frame_size" parameter. Each frame is scaled independently of other frames, but
0.5x-16x ref scaling limit is taken into account.

The "resolution_change" parameter enables frame scaling. It is a weight-based parameter that
defines the chances for the current frame to be scaled.

Three similar parameters are defined by pairs of floats: "intra_max_downscale",
"max_upscale_factor" and "max_downscale_factor". The first number defines max scale factor
for frame width, the second one defines max scale factor for frame height. These parameters
are applied in different cases. "intra_max_downscale" applies to key frames and intra-only
frames; these types of frames are free from restrictions on reference frame size, so intra frames
are allowed to be any size. Other two parameters apply to inter frame scaling.

Resolution randomization of inter frames is performed as follows:

1. Encoder picks one reference frame with ref frame index from the range defined by the
"base_ref frame" parameter.

2. For each dimension, Encoder decides whether to increase or decrease it by chances
from "downscale_or_upscale".

3. Encoder picks a random value in the range between the original size and the size
defined by max upscale/downscale factor. Minimum allowed value is 4, maximum is
limited by input video resolution.

*Other names and brands may be claimed as the property of others. Page 11 of 27
© 2016, Intel Corporation.

There is an extra parameter "scale_first_frame" that defines whether the first frame is
downscaled. This enables the decoder to start with the largest frame size and thus allocate
enough memory. Don’t expect such behavior in real world, but feel free to use it for debugging
purposes. This parameter is defined by string, possible values are "no", "yes" or "maybe". The
"maybe" option leaves to decoder the decision whether to scale the first frame for the current

stream or not.

In order to specify exact dimensions, parameter "frame_size_px" is used.

Extensive Testing and Parallel Execution

Random Encoder completes as many as =50 000 cases a week for a single process. For
satisfactory validation, it needs to run for a month with NO fails in decoder on a corner case. To
increase coverage for a shorter time period, you can execute several processes in parallel on a
single system, as many as hardware memory and CPU cores allow.

You may split parallel tasks by parfiles, input resolutions and seed interval. It is reasonable to
spend most of CPU time testing all-enabled stress parfile at a small resolution, but also have
some additional launches focusing on the following targets:

e Large resolutions, tiles and long motion vectors

e Interpolation filters, motion vectors < 8 pixels, randomized residual to test inverse
transform and convolution for extreme cases

e Frame scaling with a very large range of possible resolutions

Using VP9 Random Encoder as a Debugging Tool

In addition to stress-testing after basic validation, VP9 Random Encoder is a useful debugging
tool, which can help you identify the exact feature that got broken after changes in the
decoder.

Starting from the 1.2.0 release, Intel® SBE includes the parfiles used for Stress Bitstreams
generation. Parfiles contain the same information as the spreadsheet defining the syntax-
element utilization, but they are more convenient for debugging purposes as you can feed
them into the Encoder without any modifications.

The Stress Bitstreams are organized in such a way that their complexity and the number of
utilized features increase with the stream index. So if several of your streams failed validation,
you should start debugging with the one having the lowest stream index value.

The proposed workflow for debugging with Intel® SBE is as follows:

1. Pick the failed stream with the lowest stream-index value and the stream with the
preceding stream-index value that passes validation.

2. Pick the corresponding parfiles and generate new streams with Random Encoder.
Ensure that behavior of the tested decoder on the generated streams is the same as on
the original ones.

*Other names and brands may be claimed as the property of others. Page 12 of 27
© 2016, Intel Corporation.

3. Compare “good” and “bad” parfiles side-by-side in a text comparison tool to identify the
feature difference. Most of the parfile lines are mapped directly to VP9 syntax elements.
Changes between consecutive parfiles include several syntax elements, usually related
to one feature or similar features.

4. Try to disable the identified new features one by one, to determine whether they affect
the decoder behavior. In some cases, this information combined with knowledge about
recent decoder modifications will be enough to figure out the cause of the failure.

5. Narrow the scope of possible values for problem syntax element.

When the problem syntax element is defined, sometimes it is possible to narrow the
scope of utilized values. For example, if a decoder produces wrong output on streams
generated by Random Encoder, but behaves properly if you disable sharp interpolation
filter, the problem is most likely with the handling of sharp interpolation filter.

6. Continue simplification of the “bad” parfile by disabling other features.

This step pursues two goals: check cross-feature dependencies and simplify further
debugging.

a. Toillustrate the first goal, intra_only flag in header causes
setup_past_independence() function call, which resets some of decoder contexts
and buffers. Disabling intra_only element in parfile checks whether this case
affects the considered feature of “bad” parfile. Other noticeable features to be
tested first for cross-dependence: frame resolution change, show_frame flag
(frame visibility), segmentation, tiling, frame context operation flags.

b. Even if all this stuff didn’t help, it would be easier to go into deeper debugging if
we have the stream with only the largest partitions (simpler call stack and
debugging path) and the smallest transforms (easier to observe the values of the
whole block). Of course, if the bug still occurs on such a configuration. You can
also try to set max motion vector length to O, leave only one interpolation filter,
disable intra prediction on intra frames, disable compound prediction and so on.

7. lterate with the “--seed” option to find a shorter reproducer.

Sometime the bug is occurring in quite rare cases and far from the beginning of the
stream. To get a shorter reproducer, limit the length of the bitstream produced by
random encoder by some small value and iterate with the seed parameter value, which
controls the initial state of random engine. For intra frame bugs, a single frame will
usually be enough. For inter-prediction bugs, we recommend to do the reduction of
stream length in several steps, because in the case of specific dependency between
several frames 2-frames reproducer may not be enough.

Smoke Test Streams

In addition to the default streams, Intel® SBE includes a small set of streams for fast smoke
testing. This set has the same reference code coverage as the default set, and allows to
perform a much faster test and validation cycle. Stream set has a much smaller memory
footprint in comparison to the default set. As a drawback, it has degradation in cross-coverage
of multiple syntax elements.

*Other names and brands may be claimed as the property of others. Page 13 of 27
© 2016, Intel Corporation.

VP9 FC2 Specifics

The Random Encoder supports all Profiles of VP9 format: color depth of 8, 10 and 12 bits with
different settings of chroma subsampling. To enable high-bit depth encoding, use --bit_depth
and --colorspace command-line options or the "color" section in parfile. When command-line
and parfile settings are used together, the command-line settings have a priority. Generation of
bitstreams with mixed bit depth or colorspace is possible only with parfile color setting.
Supported values for --bit_depth option are 8, 10 and 12; for --colorspace option: yuv42e,
yuv422, yuv44e, yuv4as,

The Random Encoder supports only 8-bit YUV 4:2:0 input and performs necessary color
conversions internally. Bit-depth conversion is performed as shifting the 8-bit value by 2 or 4
bits. The lower bits are randomized. For chroma upscale, the Encoder uses nearest-neighbor
method.

To simplify validation and debugging, you can use the --recon_bit_depth option defining bit
depth of YUV file with decoders reconstruct. Supported values are 8, 10, 12 and 16. libvpx
decoder has a similar option --output-bit-depth. It may be useful to decode all high-bit-depth
enabled streams to 16 bits for easier comparison against the reference decoder. Pay special
attention to streams with mixed bit depth: the reference decoder defines output parameters as
the first-frame parameters, and information loss is possible. The reference decoder does not
have any options to unify output chroma subsampling format, so neither has the Random
Encoder.

Profile, bit depth and subsampling randomization settings can be defined in the "color" section
of the JSON parfile. All the parameters in the "color" section are weight-based. If you use --
bit_depth or --colorspace command-line options, the "color" section in the parfile is ignored.

VP9 format allows profile, bit depth and subsampling settings to change only at key and intra-
only frames.

Residual Randomization

To stress-test residual decoding, Random Encoder provides two modes of residual
randomization: randomized residual and randomized transform coefficients. The mode is
defined with the "type" parameter in the "residual" section, the available values are:

e '"off" - no residual randomization
o "diff" - plain residual
e "transform" - transform coefficients

For each superblock, Random Encoder makes a decision whether to fill it with random residual
or not. You can control the portion of such superblocks with the "sb_randomized" parameter.

In randomized-residual mode, randomization is performed independently for each pixel of the
superblock. Pixel-residual value is picked from the range defined by the "residual_range"
parameter (-255..255 by default). Please take into account that for 10- and 12-bit color depth
this range is adapted by the encoder internally, no adjustments are required. So if you need

*Other names and brands may be claimed as the property of others. Page 14 of 27
© 2016, Intel Corporation.

max range for 10-bit color, parameter value still needs to be [-255, 255] and Random Encoder
will interpret it as [-255..255] for 8-bit frames and as [-1023..1023] for 10-bit frames.

Transform-coefficient randomization is a bit more complicated. Not all the coefficient
configurations will have valid back-projection, so the encoder should be accurate in performing
randomization. First, it picks end-of-block (EOB) token position. EOB token means that all
coefficients starting from this position are equal to zero. Then the encoder picks a random
position in the range from DC coefficient to EOB and puts in this position a random value
according to coefficient position, transform size and type. If the result is a valid transform
(inverse transform yields residual in acceptable range), the encoder tries to put one more
coefficient. When encoder finally fails to get a valid transform, it steps one iteration back and
stops. Depending on the "type" parameter in the "residual" section, coefficient values are
generated either uniformly between tokens ("tokens") or in a way to yield uniform distribution
of the most significant bit ("transform"), producing a reasonable amount of extreme-value
cases.

Another option related to transform randomization is "tx_zero_coeff_tail". Its purpose is to
deliver coverage of the following corner case. In a transform block, the last coefficient can’t be
zero, EOB token must always be preceded with a nonzero coefficient value. But if the block
includes only NxN coefficients, EOB token is omitted. A block filled with the tail of zero
coefficients instead of a single EOB token will be valid for VP9 decoder, and the
"tx_zero_coeff_tail" parameter is responsible for chances of getting such block. The parameter
is only applicable to blocks with randomized residual.

Residual and transform-coefficient randomization modes cannot be used simultaneously in a
single stream. Besides, you should take into account that enabling any mode of residual
randomization increases memory footprint in propotion to the size of input frame, in pixels.

What VP9 Random Encoder Does Not Support

e Superframes. This feature is related to IVF container, not to VP9 format. You can find
streams for testing superframes in the publicly available libvpx test stream pool.

e display_width and display_height that differ from source-frame size. Frame header may
have a special flag in the parfile. When set to 1, this flag indicates that the display size is
different, but the actual display size values will be equal to the source frame size. If the
display size is different, the part performing rescale is not related to decoder, so it will
be almost impossible to achieve binary match for this, unless you use the same
interpolation algorithm.

Memory-Bandwidth Testing of the Decoder

VP9 Random Encoder allows to stress-test decoder memory throughput at inter-prediction.
401_memory_bandwidth.json parfile contains the encoder settings, which are targeted to
maximize the amount of reads of reference frame surfaces. The key distinction of this parfile is
usage of 4x4 partitions only. In combination with heavy interpolation utilization and compound
prediction, 4x4 block requires reference-frame area of 13x13 pixels to be read twice. Besides,
we disable all features using intra-prediction (like intra-only frames or segmentation reference-

*Other names and brands may be claimed as the property of others. Page 15 of 27
© 2016, Intel Corporation.

frame setting) and ZEROMV mode. To avoid the possibility of single reference prediction mode,
we use “--target mem_bw” command-line option, which enforces reference frame sign bias
flags to have different values and adds in average 12% reads in inter-prediction.

The stream package contains a sample stream of 1920x1080 resolution. To test other
resolutions, you will need to generate test streams using the Random Encoder and the
memory-bandwidth parfile.

Worst-Case Performance Testing of the Decoder

In addition to the memory-bandwidth test, we deliver parfiles for decoder-performance stress
testing. We provide parfiles 402_worst_performance_19mbps.json,
403_worst_performance_80mbps.json, 404_worst_performance_200mbps.json, which are
targeted to stress the most CPU-consuming parts of VP9 decoding pipeline: bool decoder, inter-
prediction, and loopfilter.

The main idea is to stress intra-prediction and loopfilter by small-prediction and transform
block configuration. The key difference between 19mbps and 80mbps parfiles is the switch
from 8x8 prediction blocks to 4x4 ones.

The main tools to control bool-decoder load are QP and mode of forward probability update
estimation. 200mbps parfile is derived from the 80mbps one, the only different option is the
probability update mode. For the 80mbps case, the encoder estimates the optimal probability
based on mode-decision stats, for the 200mbps case it writes fully random probabilities.

Bitrates in the parfile names are approximate and were adjusted to the type of content we use
for other streams at Full HD resolution. The Random Encoder doesn’t have direct control over
bitrate. The main way to adjust the result bitrate are QP-related parameters and the portion of
blocks with randomized residual.

Visually Clean Content

Visual parfiles enable you to check decoding results visually when it is impossible to validate the
binary match. They are based on the original parfiles, but have some modifications to eliminate
visual artifacts: reference-frame scaling, skip-coefficients flag and residual randomization are
disabled, range of possible QP is reduced. Random Encoder has a special mode to repeat all
invisible frames with show_existing_frame flag. To enable it, add “--target visual” to the
encoder options.

Visual parfiles are organized in the same way as standard ones, and have letter “V” in front of
the parfile index.

*Other names and brands may be claimed as the property of others. Page 16 of 27
© 2016, Intel Corporation.

Overriding Parameters

To redefine parameters for specific frames, you should put them into the "override" section of
the JSON file. This section has the following structure:

"override" : {

"0,4..6" : { // frames 0, 4, 5 and 6 will use settings specified below instead of the default ones
"frame" : {

"frame_type" : [1, @] // only key frames
s

"scaling" : {
"frame_size_px" : [256, 128] //exact frame size [width, height]
¥
¥

"1..3" ¢ {
"frame" : {
"frame_type" : [0, 1] // only inter frames
¥

In this example, "0,4..6" is a string specifying the frames to which the new settings will apply.
You can set individual frames and frame ranges a..b, separated by commas. Attribute
"frame_type" is redefined in both parameter sets shown in this example, making frames 0, 4, 5,
6 key-frames, and 1, 2, 3 - inter-frames. If you do not set any parameters in the “override”
parameter set, they are taken from the main parfile.

It’s easy to visualize the effect of these settings using Intel® Video Pro Analyzer:

= example.vp9 | Intel® Video Pro Analyzer 2015 1.5.1.2135 - B “
File Mode YUVDIff Options Help
| Thumbs i Bars 1/0 - Inter 2/1 - Inter 3/2 - Inter 5/3 - Keyframe 6/3 - Keyframe
Famez [0 2 R W i ~ ; o P
' .
Extract frame i -
I< Play = i, & b . 3
= Not displayed Displayed Displayed Not displayed Displayed Not displayed Not displayed
[] skip hidden frames
< >
R v SE Name Value &
Frame marker 2
Profile 0
Repeat previous frame 0
Frame type 0
Show frame 0
Error resilient 0
Sync code0 73
Sync codel 131
Sync code2 66
Color space 0
YUV range type 0
Picture width - 1 255
Picture height - 1 127
Scaling active 0
refresh_frame_context 1
frame_parallel_decoding_mode 1
frame_context_idx 3 N
Total bools per bit in header: 23/16 = 1.438. 224 bits not coded.
NF | Frame | Probabities | Counts | Refs | Block | TX |43 -+ R[vw|Y U v [pic|mfo] Detais H D Right-click selection for details
5 Block at pixel position 64, 64 Decoding frame 0... done. ~
Block size: 64x64 Segment ID: 6 Bits (mode+coeff): 26+0 = 26 (4 bytes) Decoding frame 1... done.
Height: 128 Block XY: 64,64 Transform size: N/A Bools (mode+coeff): 18 + 0 = 18 (0.692 bools per bit) Decoding frame 2... done.
op—T Block MI col, row: 8,8 Transform XY: N/A Starting at position 1033 in file: Decoding frame 3... done.
Tile col, row: 0, 1 Block part: PART_NONE Transform type: N/A 0% cd 26 b8 ﬁ:zz::g i::: ; . :Z::
SB col, row: 1,1 Prediction mode: H_PRED First MV: 11/A Decoding frame ... done. v
Pixel X, Y: N/A Prediction size: 4x4 Second MV: /A

Ready ‘UNB 83MB / 8089MB
If we open a stream generated with the sample parfile below in Intel® Video Pro Analyzer, we

can actually see that frame types are set according to our settings, and frames 0, 4-6 have the
size of 256x128 pixels.

*QOther names and brands may be claimed as the property of others. Page 17 of 27
© 2016, Intel Corporation.

https://software.intel.com/en-us/intel-video-pro-analyzer

Iterating Parameters

Starting from version 2.1, most of the parameter ranges in JSON file can be replaced with
iterations:

(Start, Step, End)

Each call to a certain parameter will return the previous value of this parameter incremented
by Step, but not greater than End. The first used value will be equal to Start. When the value
exceeds End, the iteration starts again from Start. This behaviour could be useful if you want to
cover a certain range in a determenistic way.

For example, "frame_type" : [1, 1] Will give key (parameter value 0) and inter (parameter value 1)
frames with equal probabilities, while "frame_type" : (o, 1, 1) will produce a sequence of
alternating frame types (key, inter, key, inter, ...).

As another example, "show_existing_idx" : (e, 1, 7) Will allow you to cover each possible existing
frame buffer index one by one.

Currently, some elements that represent size in the "scaling" section are not supported, for
example, "frame_size_ px" O "min_frame_size".

Note that if you specify iterations in brackets, parfile is no longer a valid JSON file.

*Other names and brands may be claimed as the property of others. Page 18 of 27
© 2016, Intel Corporation.

Error Resilience Encoder

Description

Error Resilience Encoder for VP9 is a tool that allows you to generate broken video streams to
test behavior of VP9 decoder on various types of errors. It also allows to control type and
positioning of errors that make the stream invalid. This tool can be used to pinpoint flaws in
error handling and to define the expected behavior more precisely on a wide range of possible
errors.

Error Resilience Encoder is based on Random Encoder: at first, a valid compliant stream is
generated with Random Encoder, utilizing all of its flexibility, and then destructive changes are
applied to it, based on the user-defined parameters.

As an input, Error Resilience Encoder accepts a YUV file and a parfile — a JSON-formatted file
describing testing settings: features to utilize, fixed values, random values. As an output,
Encoder produces an encoded broken bitstream.

Important Restrictions

Although Error Resilience Encoder is an extension of Random Encoder, it’s not intended to
generate valid streams. Currently, only the first 15 frames of the stream are fully customizable
by user (via the "override" section in parfile). For the rest of the frames, if user-defined
parameters don’t meet the required level of degradation, additional errors are introduced into
the stream.

Broken Stream Generation

Rules of error generation are described by the "broken" section in the parfile. If in doubt, see an
example of the parfile below, which explains parfile parameters in detail. There are three
invalidation options: bitwise randomization, packet-level failures, and corrupted syntax
elements. The corresponding subsections in JSON are: "bit", "packet", and "syntax".

Common Parameters

Each of the subsections has string parameter "frames". If this parameter is specified, other
parameters of this subsection will only apply to the selected frames. The format of this string is
similar to overrides: "0,1..3" means "generate this type of errors only for frames 0, 1, 2 and 3".

If you set the "keep_file_header" parameter in "broken" to a non-zero value, it guards the ivf
file header from changes. Otherwise, "ivf_header_prob" probabilities are used to corrupt file
header in "bit" and "packet" modes.

Bit Randomization

The idea of bit randomization is to simply invert some bits in a valid VP9 stream. The main
parameter here is the “prob” parameter in the “bit” subsection, which defines the probability
with which a specific bit will be inverted. Each frame of the generated VP9 stream consists of
separately coded parts: container (ivf) header, uncompressed header, compressed header
(probabilities), and compressed frame data. Error Resilience Encoders allow to specify separate

*Other names and brands may be claimed as the property of others. Page 19 of 27
© 2016, Intel Corporation.

probabilities for each of these parts. The corresponding parameters are: "ivf_header_prob",
"unc_header_prob", "comp_header_prob", "frame_data_prob". If some of these parameters
are not specified explicitly, the default "prob" is used instead. Bit randomization allows to
simulate low-level network and storage errors.

Packet Randomization

The main idea is to operate on the packet level, i.e. with the set of bytes. The "prob" in the
"packet" section stands for probability for each byte to start the corrupted packet. Parameter
"size" : [min, max] determines ranged distribution of the length of this packet. This packet could
then be cut from the stream, turned to zeroes, or duplicated, depending on parameter "mode",
which is weighted distribution. As a special case, packet-level randomization allows you to cut
sections or entire frames from stream. For an example, see parfiles 004 _drop frames.json and
005 _header_mismatch.json in Error Resilience package.

Syntax Randomization

This section allows you to corrupt syntax elements, where bitstream specification made it
possible. It consists mostly of the elements of the uncompressed header. Each parameter is a
probability with which this feature will be enabled. The following table lists all these features.

"frame_marker" Change in constant value, which marks each VP9 frame
"sync_code" Change in sync code, used in keyframes

"reserved_bit" Set bit, which is reserved to zero

"header_size" Corrupt header size, written after uncompressed header

"profile" Set invalid profile value

"subsampling" Set 4:2:0 subsampling for profiles 1 and 3

"reference" Use invalid reference, if possible. Invalid references might be either

uninitialized (stream starts with intra-only), or of wrong size (VP9 has
restriction on relation between frame sizes), or of wrong profile

"context" Use uninitialized entropy context

"transform_coeff" Use coefficients that result in overflow after inverse transform
"tile_count" Corrupt tile count encoding

"dimensions" Write wrong dimensions in header

The following values are valid, but not fully covered by randomization in Random Encoder.

"force_write_dimensions" | Explicitly write dimensions on inter-frames

"color_range " YUV color range

"colorspace" Random colorspace

*Other names and brands may be claimed as the property of others. Page 20 of 27

© 2016, Intel Corporation.

Parfiles Description

000_all_features.json

All features written in parfile

001_corrupted_headers.json

Invert bits in headers (ivf, uncompressed, compressed)

002_packet_failures.json

Packet randomization

003_frame_parallel.json

Generated streams contain two independent streams,
only one of which is corrupted. Demonstrates use of
override feature to create independent streams

004 _drop_frames.json

Demonstrates ability to cut entire frames

005_header_mismatch.json

Demonstrates ability to cut specific parts

006_uninitialized_structures.json

Starts with intra-only, randomly generates either
uninitialized entropy context, or uninitialized reference

007_invalid_scale_reference.json

Cuts valid reference to produce error

008_missing_existing_frame.json

Cuts first frame, trying to show existing

*Other names and brands may be claimed as the property of others. Page 21 of 27

© 2016, Intel Corporation.

Parfile Example and Parameter Description

Here we provide a sample parfile, which has randomization of all the features enabled. Each
syntax element is provided with a comment about its values. If the type of the parameter
(weight or range) is not obvious, check the table below.

{
"frame" : {

"frame_type" . [1, 1@0], //
"start_w_intra_only" : [4, 1], //

//
"tx_mode" [1, 1, 1, 1, 21, //
"interp_filter" [1, 1, 1, 1, 41, //
"horz_tile_range" [0, 2], //
"vert_tile_range" [0, 6], //
"allow_zero_h_tile" [o, 1], //
"frame_context_idx" [1, 1, 1, 1], //
"allow_hp" [1, 1], //
"error_resilient” [5, 1], //
"frame_parallel” [1, 1], //
"reset_context" [1, 1, 1, 1], //
"refresh_context” [1, 1], //

key | inter

no | yes, start bitstream with intra-only instead
of key frame

4x4, 8x8, 16x16, 32x32, select

reg, smooth, sharp, bilin, switchable

log2 val, [0..2]

log2 val, [0..6], 2 is max reasonable for FullHD

no | yes, allow tiles with zero height

context id

1/8-pel MV accuracy, off/on

no | yes

no | yes

do nothing | invalid | reset current | reset all

no | yes

// Lossless forces base_qgindex and q deltas to zero.

// Without this control it
// and lossy frames in one stream.
"lossless" : [4, 17, //
"write_display_size" : [1, 1], //
//
"base_gindex_range" [0, 255], //
"y_dc_delta_qg_range" : [-15, 15], //
"uv_ac_delta_qg_range": [-15, 15], //
"uv_dc_delta_qg_range": [-15, 15], //
"1f_filter_level" [0, 63], //
"1f_sharpness_level" : [0, 7], //
"1f_delta_enable" [1, 17, //
"1f_delta_update" [1, 17, //
"1f_mode_delta_range": [-63, 63], //
"1f_ref_delta_range" : [-63, 63], //
"seg_enabled" :[1, 17, //
"seg_update_map" [1, 17, //
"seg_update_data" [1, 17, //
"seg_abs_delta" [1, 17, //
"seg_temporal_update": [1, 1], //
"seg_alt_g_enable" [1, 17, //
"seg_alt_g_range" [0, 127], //
"seg_alt_g_delta" [-127, 127], //
"seg_alt_lf_enable" [1, 17, //
"seg_alt_1f_range" [0, 63], //
"seg_alt_1f_delta" [-63, 63], //
"seg_ref_enable" [4, 17, //
"seg_ref" [1, 1, 1, 1], //
"seg_skip_zeromv" [1e, 1], //

// Ref-frame-index settings are ignored if

would be difficult to generate proper mix of lossless

no | yes
no | yes -- write display size flag
the frame size is kept from source

0 to 255, zero means lossless
[-15..15]

[-15..15]

[-15..15]

[0..63], 6 bit

3 bit

no | yes

no | yes

6 bit + sign

6 bit + sign

no | yes

no | yes

no | yes

delta | abs value

no | yes

no | yes

[0..127], if seg_abs_delta
[-127..127], if seg abs_delta
no | yes

if seg_abs_delta
if seg_abs_delta

no | yes
intra | last | golden | altref
no | yes

not all reference buffers are suitable

// for prediction: configurations with enabled frame scaling, bit-depth or
// chroma-subsampling randomization, and when first frame is intra-only and all buffers were

// initialized.

"1lst_fb_idx_range" [o, 71, //
"gld_fb_idx_range" [o, 71, //
"alt_fb_idx_range" [e, 71, //
"refresh_mask_bit" : [2, 17, //
"refresh_mask" : "01000100", //

//
"ref_frame_sign_bias": [2, 2], //

"1lst_frame_sign_bias": [1, @], //

//
"gld_frame_sign_bias": [0, 1], //
"alt_frame_sign_bias": [0, 1], //
"show_frame" :[1, 2], //
"intra_only" : [2, 1], //
"show_existing frame": [5, 1], //
"show_existing idx" [1,

*Other names and brands may be claimed as the property of others.

© 2016, Intel Corporation.

[0..7] last frame ref id range

[0..7] golden frame ref id range

[0..7] alt frame ref id range

probs that bit in refresh mask = @ | 1

explicitly set which frames to refresh;

overrides refresh_mask_bit

probs for ref frame sign bias =0 | 1

sign bias when last frame is selected as reference;
when not specified defaults to ref_frame_sign_bias
sign bias when gold frame is reference

sign bias when alt frame is reference

no | yes

no | yes

no | yes - repeat existing frame from ref buffer

1, 1, 1, 1, 1, 1, 1], // prob weights for existing frame ref idx

Page 22 of 27

"comp_pred_mode" : [1, 1, 1], // single only | compound only | hybrid
// frame context update

// * no update -- keep the probabilities from the previous frame
// * optimal probs -- estimate optimal probabilities for the frame and write them
// in forward update
// * random probs -- randomize frame context probs for the frame
"fc_update_type" :[1, 1, 1], // no update | optimal probs | random probs
"fc_rnd_prob_range" : [1, 255] // [1..255] (only for random probs)
3
"superblock" : {
"ref_frame" :[1, 1, 1, 1], // intra | last | golden | altref
// //DC, V, H, 45,135,117,153,207, 63, TM
"intra_mode" : [, 2, 21, 1, 1, 1, 1, 1, 1, 1],
"inter_mode" :[1, 1, 1, 1], // nearestmv | nearmv | zeromv | newmv
"mv_len" : 16376, // max len * 8 (with fractional part bits)
"skip" 2 [9, 11, // no | yes
"interp_filter" :[1, 1, 17, // reg, smooth, sharp
"comp_pred" : [1, 17, // no | yes, if comp_pred_mode == hybrid
"comp_pred_var_ref" : [1, 1], // ref_idx, @ or 1
"seg_id" . [1, 21, 1, 1, 1, 1, 1, 1], // 8 segments
"seg_id_predicted" : [3, 17, // no | yes
"partitions” [
// N, H, V, S
[1, 1, 1, 1], // 8x8
[1, 1, 1, 3], // 16x16
[1, 1, 1, 6], // 32x32
[1, 1, 1, 9] // 64x64
1,
"tx_size" H
// 4, 8,16,32
[1, 17, // blocks less than 16x16
[1, 1, 1], // blocks less than 32x32
[1, 1, 1, 1], // when any transform size suits
]
3
"color" : {
// Bitstream profiles indicated by 2-3 bits in the uncompressed header.
// Profile ©. 8-bit 4:2:0 only.
// Profile 1. 8-bit 4:4:4, 4:2:2, and 4:4:0.
// Profile 2. 10-bit and 12-bit color only, with 4:2:0 sampling.
// Profile 3. 10-bit and 12-bit color only, with 4:2:2/4:4:4/4:4:0 sampling.
"profile" : [1, o, 0, @], // bitstream profile, ©..3
"bitdepth” : [1, o], // 10 or 12 bit if profile >= 2
"subsampling_x" . [e, 1], // chroma subsampling, no | yes, if profile == 1 or 3
"subsampling_y" : [o, 1] // chroma subsampling, no | yes, if profile == 1 or 3
s

"scaling" : {
// Input file defines maximum resolution.
// intra_max_downscale pair defines maximum possible downscale on key frames and intra-only
// frames for width and height, respectively.

// For example, if we have source 1920x1080 and "intra_max_downscale" : [2, 4],
// then frame width for intra frames will vary in range of 960..1920 (up to 2x downscale)
// and the range for frame height will be 270..1080 (up to 4x downscale).

// To randomize resolution of inter frames, we do the following:
// 1. Pick one reference frame with ref frame index from range defined by "base_ref_frame"

// parameter.
// 2. For each dimension, decide whether it will be increased or decresed by chances from
// "downscale_or_upscale".
// 3. Pick random value in range between the original size and the size defined by max
// upscale/downscale factor.
"resolution_change" : [o, 17, // probs of resolution change <no | yes>
"scale_first_frame" ¢ "yes", // "no" | "maybe" | "yes"
"intra_max_downscale" : [16, 16], // width, height (floating point allowed)
"base_ref_frame" : [o, 71, // ref frame to borrow resolution if size_from_ref == 1
"downscale_or_upscale" : [1, 1], // chances to decrease and increase frame size
"max_upscale_factor" : [16, 16], // width, height (floating point allowed), max = 16
"max_downscale_factor" : [2, 2], // width, height (floating point allowed), max = 2
"min_frame_size" : [4, 4] // width and height in pixels,
// min frame size restrictions
¥
*Other names and brands may be claimed as the property of others. Page 23 of 27

© 2016, Intel Corporation.

"residual” : {
// Only one mode of residual randomization per stream can be used.

"type" : "diff", // off | diff | transform
"sb_randomized" : [9, 1], // no | yes
"residual_range" : [-255, 255], // min and max residual value (max range is [-255, 255])

//ZERO, ONE, TWO, THREE, FOUR, CAT1, CAT2, CAT3, CAT4, CAT5, CAT6
"coef_tokens" : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

// For tx mode if inverse transform of random-generated block doesn't produce valid
// residual, encoder tries to regerate it, and stops after several unsuccessful tries.
// Increasing the range will reduce the chances to generate valid transform and the portion
// of random blocks in bitstream.
"tx_eob_range" : [
[1, 16], // tx 4x4
[1, 64], // tx 8x8
[1, 256], // tx 16x16
[1, 1@24] // tx 32x32

1
s
"broken" : {
"keep_file_header" : 1,
"bit" : {
"frames" : "0..5,10..15",
//"prob" : 0.005,

"ivf_header_prob" : 0.001,
"unc_header_prob" : 0.001,
"comp_header_prob" : 0.0001,
"frame_data_prob" : 0.00001
s
"packet" : {
"frames" : "6,8,10,12",
"size" : [2, 8],
//"prob" : 0.001,

"ivf_header_prob" : 0,
"unc_header_prob" : 0.01,
"comp_header_prob" : 0.001,
"frame_data_prob" : 0.0001,
"mode" : [1, 1, 1] //loss, duplicate, zero
s
"syntax" : {
"frames" : "7..9,11,13",
//"prob" : 0.1,

"frame_marker" : 0.2,
"sync_code" : 0.2,
"reserved_bit" : 0.2,
"header_size" : 0.2,
"profile" : 0.2,
"subsampling" : @,
"reference" : 0.5
"context" : 0.4,
"color_range" : 0,
"colorspace" : 0,
"dimensions" : 0,
"force_write_dimensions" : 1,
"tile_count" : 0,
"transform_coeff" : 1,

3

3

"override" : {
"0,4..6" : { // frames 0, 4, 5 and 6 will use settings specified below instead of default ones
"frame" : {
"frame_type" : [1, @] // only key frames
s
"scaling" : {
"frame_size_px" : [256, 128] //exact frame size [width, height]
}

*Other names and brands may be claimed as the property of others. Page 24 of 27
© 2016, Intel Corporation.

¥
"1..3" ¢ {
"frame" : {
"frame_type" : [0, 1] // only inter frames
}

Table 1. Randomization-control parameter types and acceptable values

Parameter Type Enumeration (for weights)
and acceptable range (for other types)

Default value

Frame section

frame_type weights KEY, INTER [1, 24]
start_w_intra_only weights False, True [1, 0]
tx_mode weights ONLY_4X4, ALLOW_8X8, ALLOW_16X16, [1,1,1,1,1]
ALLOW_32X32, TX_MODE_SELECT
interp_filter weights EIGHTTAP, EIGHTTAP_SMOOTH, [1,1,1,1,1]
EIGHTTAP_SHARP, BILINEAR, SWITCHABLE
horz_tile_range range [0..2] [0, 0]
vert_tile_range range [0..6] [0, 0]
allow_zero_h_tile weights False, True [0, 1]
frame_context_idx weights 0,1,2,3 [1,1,1,1]
allow_hp weights False, True [1,1]
error_resilient weights False, True [1, 0]
frame_parallel weights False, True [1, 0]
reset_context weights 0,1,2,3 [1, 0]
refresh_context weights False, True [1,1]
lossless weights False, True [1, 0]
write_display_size weights False, True [1, 1]
base_gindex_range range [0..255] [40, 40]
y_dc_delta_qg_range range [-15..15] [0, 0]
uv_ac_delta_qg_range range [-15..15] [0, 0]
uv_dc_delta_q_range range [-15..15] [0, 0]
If_filter_level range [0..63] [0, 63]
If _sharpness_level range [0..7] [0, 7]
If _delta_enable weights False, True [1, 1]
If delta_update weights False, True [1, 1]
If mode_delta_range range [-63, 63] [-63, 63]
If ref_delta_range range [-63, 63] [-63, 63]
seg_enabled weights False, True [1, 1]
seg_update_map weights False, True [1, 1]
seg_update_data weights False, True [1,1]
seg_abs_delta weights False, True [1, 1]
seg_temporal_update weights False, True [1, 1]
seg_alt_qg_enable weights False, True [1,1]
seg_alt_qg_range range [0, 127] [20, 40]
seg_alt_qg_delta range [-127,127] [-20, 20]
seg_alt_If_enable weights False, True [1, 1]
seg_alt_If_range range [0, 63] [0, 63]
seg_alt_If_delta range [-63, 63] [-63, 63]
seg_ref_enable weights False, True [1,1]
seg_ref weights INTRA_FRAME, LAST_FRAME, [1,1,1,1]
GOLDEN_FRAME, ALTREF_FRAME
seg_skip_zeromv weights False, True [1, 1]
Ist_fb_idx_range range [0..7] [0, 0]
gld_fb_idx_range range [0..7] [1, 1]
alt_fb_idx_range range [0..7] [2,2]
refresh_mask_bit weights 0,1 [1,2]
refresh_mask bitmask [00000000..11111111] refresh_mask_bit
ref_frame_sign_bias weights 0,1 [2,1]

*QOther names and brands may be claimed as the property of others.
© 2016, Intel Corporation.

Page 25 of 27

Ist_frame_sign_bias weights 0,1 ref_frame_sign_bias
alt_frame_sign_bias weights 0,1 ref_frame_sign_bias
gld_frame_sign_bias weights 0,1 ref_frame_sign_bias
show_frame weights False, True [0, 1]
intra_only weights False, True [2,1]
show_existing_frame weights False, True [1, 0]
show_existing_idx weights 0,1,2,3,4,5,6,7 [1,1,1,1,1,1,1,1]
comp_pred_mode weights SINGLE_REFERENCE, COMPOUND_REFERENCE, [2,1,2]
REFERENCE_MODE_SELECT
fc_update_type weights No update, optimal probabilities, random [1,1,1]
probabilities
fc_rnd_prob_range range [1..255] [1, 254]
Superblock section
ref_frame weights INTRA_FRAME, LAST_FRAME, [1,1,1,1]
GOLDEN_FRAME, ALTREF_FRAME
intra_mode weights DC_PRED, V_PRED, H_PRED, D45_PRED, 1,1,1,1,1,1,1,1,1, 1]
D135 _PRED, D117_PRED, D153_PRED,
D207_PRED, D63_PRED, TM_PRED
inter_mode weights NEARESTMV, NEARMV, ZEROMV, NEWMV [1,1,1,1]
mv_len integer 0..16384 1280
mv_joint_zero weights False, True [1, 0]
skip weights False, True [10, 1]
interp_filter weights EIGHTTAP, EIGHTTAP_SMOOQOTH, [1,1,1]
EIGHTTAP_SHARP
comp_pred weights SINGLE_REFERENCE, COMPOUND_REFERENCE [1,1]
comp_pred_var_ref weights 0,1 [1,1]
seg_id weights 0,1,2,3,4,5,6,7 [1,1,1,1,1,1,1,1]
seg id_predicted weights False, True [3,1]
partitions weights PARTITION_NONE, PARTITION_HORZ, // N,H,V,S
PARTITION_VERT, PARTITION_SPLIT [1,1,1,1],//8x8
[1,1,1,3],// 16x16
[1,1,1,6],//32x32
[1,1,1,9] //64x64
tx_size weights TX_4X4, TX_8X8, TX_16X16, TX_32X32 11,11,
[1,1,1],
[1,1,1,1]
Color section
profile weights Profile 0, profile 1, profile 2, profile 3 [1,0,0,0]
bit_depth weights 10 bit, 12 bit [1, 0]
subsampling_x weights False, True [0, 1]
subsampling_y weights False, True [0, 1]
Scaling section
resolution_change weights False, True [1, 0]
frame_size_px int [width, height], no more than [width, height]
input_frame_size
intra_max_downscale float [1.0..16.0] 1.0
base_ref_frame [0, 7], range [0..7] [0,7]
downscale_or_upscale weights Downscale, upscale [1, 1]
max_upscale_factor float [1.0..16.0] 1.0
max_downscale_factor float [1.0..2.0] 1.0
scale_first_frame string "no", "maybe", "yes" "no"
min_frame_size Int [1..input_frame_size] [4, 4]
Residual section
type string "off", "diff", "transform", "tokens" "off"
sb_randomized weights False, True [1, 0]
residual_range range [-255..255] [-255, 255]
coef_tokens weights ZERO, ONE, TWO, THREE, FOUR, CAT1-CAT6 Equal probability
tx_eob_range range [0,16], //tx4x4 [0,16], //tx4x4

[0, 64], //tx8x8
[0, 256], //tx 16x16
[0, 1024] // tx 32x32

[0, 64], //tx8x8
[0, 256], //tx 16x16
[0, 1024] // tx 32x32

*QOther names and brands may be claimed as the property of others.

© 2016, Intel Corporation.

Page 26 of 27

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to
obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may
cause deviations from published specifications. Current characterized errata are available on
request.

Copies of documents which have an order number and are referenced in this document may be
obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Core are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved
for Intel microprocessors. Please refer to the applicable product User and Reference Guides
for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

*QOther names and brands may be claimed as the property of others. Page 27 of 27
© 2016, Intel Corporation.

http://www.intel.com/design/literature.htm

