

*Other names and brands may be claimed as the property of others. Page 1 of 27

© 2016, Intel Corporation.

Intel® Stress Bitstreams and Encoder (Intel® SBE)
2016 – VP9
User Guide

Version 2.2

Updated March 28, 2016

Contents

Introduction ... 3

Feature Sets and Profiles ... 3

General Overview .. 3

VP9 Specifics .. 4

Parfile Editing Basics: How to Setup Test Coverage .. 5

Parfile Editing: a Short Summary ... 7

Description of Command-Line Application Options .. 7

Case Study: Focus on ADST Implementation .. 9

How to Choose Input Resolution ... 10

How to Control Frame-Scaling Randomization ... 11

Extensive Testing and Parallel Execution .. 12

Using VP9 Random Encoder as a Debugging Tool ... 12

Smoke Test Streams .. 13

VP9 FC2 Specifics ... 14

Residual Randomization .. 14

What VP9 Random Encoder Does Not Support .. 15

Memory-Bandwidth Testing of the Decoder... 15

Worst-Case Performance Testing of the Decoder... 16

Visually Clean Content ... 16

Overriding Parameters .. 17

Iterating Parameters .. 18

Error Resilience Encoder.. 19

Description ... 19

Important Restrictions ... 19

Broken Stream Generation .. 19

*Other names and brands may be claimed as the property of others. Page 2 of 27

© 2016, Intel Corporation.

Common Parameters ... 19

Bit Randomization ... 19

Packet Randomization ... 20

Syntax Randomization ... 20

Parfiles Description .. 21

Parfile Example and Parameter Description ... 22

Legal Information .. 27

*Other names and brands may be claimed as the property of others. Page 3 of 27

© 2016, Intel Corporation.

Introduction
Testing a decoder is a complex multi-criteria task. Code coverage of 100% lines of a decoder

code does not guarantee the decoder is 100% compliant. At the same time, creation of millions

of streams to test all possible feature combinations is time and storage consuming. Random

Encoder partially resolves these two issues. It is a lightweight encoder with no mode decision,

so it is as fast as the decoder is. Effective motion estimation and mode decision are not parts of

video codec standard and are not required to be tested at the decoder side. So this most time-

consuming part is mostly omitted in Random Encoder in favor of speed and flexibility.

Codec developer will not want to keep all streams generated by random encoder, it is enough

to keep only basic vectors. If a decoder fails to correctly decode a randomly generated stream,

it makes sense to extend the test pool with the stream for future regression validation. Random

Encoder is a great extension of codec validation in addition to basic vectors provided with

Stress Bitstreams.

Feature Sets and Profiles
VP9* specification has two feature sets: Feature Set 1 (FC1) containing only 8-bit 4:2:0

colorspace (chroma components reduced in both directions) and Feature Set 2 (FC2) allowing

10 and 12-bit color depth and more flexible options of chroma subsampling.

Profile is a syntax element in frame header defining color bit depth and chroma subsampling

setting scope:

 Profile 0 allows only 8-bit 4:2:0 color representation.

 Profile 1 adds an option to disable chroma subsampling in vertical, horizontal or both

directions.

 Profile 2 enables 10- or 12-bit color depth with 4:2:0 color representation.

 Profile 3 enables both high-bit color depth and chroma subsampling options.

Random Encoder supports all bit-depth options and chroma-subsampling configurations. All the

information in this document is applicable to any Profile and Feature Set. For more information

about high-bit depth and chroma subsampling, see VP9 section.

General Overview
Random Encoder is a highly configurable and flexible syntax (VP9) encoder tool. Unlike regular

encoders, it is not intended to achieve compression but only designed to create a valid

specification-compliant stream. Compliant streams contain only allowed combinations of

syntax elements and their values to test decoder for unusual cases or boundary stress cases

where developers usually relax requirements to code development in favor of higher decoding

speed. Decoder must be compatible with any stream so its sloppy optimizations have to be

carefully tracked for boundary cases where residuals overflow may break visual representation

of the picture.

You can find the recommended Decode validation process with Random Encoder below. It is up

to the user to change the flow and to react on pass and fail events and even decide on the

*Other names and brands may be claimed as the property of others. Page 4 of 27

© 2016, Intel Corporation.

criteria of test passing. We recommend to use the latest development branch of libvpx

reference decoder for VP9 for testing.

As an input, Random Encoder accepts an optional YUV file and a parfile describing testing

settings: features to utilize, fixed values, random values. As an output, Random Encoder

produces an encoded bitstream and optionally writes a YUV file with internal reconstruction

data. This file is used to validate that Encoder generated a proper compressed file and that

the resulted bitstream is valid.

If there is a mismatch between encoder reconstruct and reference decoder result, you are

welcome to report this to Software Publisher (your Intel contact) with the case configuration to

request the fix, if it fits your license agreement with Intel. We will always appreciate your

feedback.

Random Encoder has the seed parameter (-s) defining initial random-engine state. If you

change it, you can use the same parfile to produce totally different streams with the same

scope of randomization defined by parfile. The main purpose of this seed feature is extensive

testing with all possible syntax-element combinations. Besides, this feature can be used to

create small bug-reproducers (setting frame number parameter "-f" to some small value) for

the parfiles which are known to generate the streams causing failure of the examined decoder.

To summarize, a typical workflow of compliance testing for VP9 consists of the following steps:

1. Produce test stream by feeding Random Encoder with a parfile and an optional input

YUV file.

2. Decode the stream with reference decoder.

3. Verify that Encoder’s reconstruct matches the reference decoder result.

4. Decode the stream with your decoder and verify that its result matches the reference

decoder result.

5. Increment the seed parameter and return to step 1.

VP9 Specifics
To start validation cycle with Random Encoder for VP9, make a decision regarding your testing

agenda and set up certain features and value range in random-encode parfile. Parfile is a JSON

formatted file that contains the settings for all syntax elements and some additional entries

related to frame scaling and residual randomization. Wide range of values in the parfile will

result in a very detailed testing. Random Encoder accepts a YUV file and a parfile and iterates

each time the “--seed” command-line option changes, producing a new output stream for each

iteration.

Here is a simple example when it is reasonable to narrow the scope of search. If you want to

check how the decoder handles a whole range of motion vectors, then set the "mv_len"

parameter in the "superblock" section of the parfile to a maximum value. Magnitude of each

MV component will be uniformly distributed in range [−mv_len..mv_len]. But if you need to test

interpolation filters and convolution implementation, you need to ensure that 1/8-pixel MV

accuracy is utilized, and it is considered only if neighbor motion-vector components have the

magnitude not greater than 8 pixels. For proper testing, you need to set "mv_len" to value 64

*Other names and brands may be claimed as the property of others. Page 5 of 27

© 2016, Intel Corporation.

(see the detailed description of this parameter explaining why all values are multiplied by 8),

this will provide uniform distribution between all convolution vectors of each interpolation

filter. Otherwise, the chances to produce 1/8-pixel accurate MV are very small, so proper

testing of convolution implementation will take a long time.

Parfile Editing Basics: How to Setup Test Coverage
This chapter explains in detail the format that was chosen for test coverage.

Let’s start with a basic question: why do we need a parfile? Random Encoder makes each

decision randomly, there are no constraints or behavior patterns. You can expect any possible

syntax-element combination from the Encoder, as long as this combination is compliant to the

VP9 format. Two possible problems arise here.

The first problem is that we may not want any combination: for example, we are at an early

development stage and don’t have all the features implemented, so it doesn’t make sense to

test those features.

The second problem is test-coverage control. For example, Encoder has to choose the current

frame type: key or Inter. We could give equal chances for both variants, or put key frame about

every second or every 10 seconds. Equal chances may not be good for inter-prediction feature

coverage, since inter-prediction features may form more complicated feature combinations and

Figure 1. Testing workflow for Random Encoder for VP9.
The scope of testing is defined in a parfile. Encoder produces a compressed bitstream with randomized mode decisions and a
YUV file with internal reconstruct (optional). To validate your decoder, compare its results of randomized bitstream
decompression against the results of the reference decoder. The purpose of the YUV file with reconstruct is validation of the
Random Encoder—it also must match the reference decoder result.

*Other names and brands may be claimed as the property of others. Page 6 of 27

© 2016, Intel Corporation.

require more detailed testing; 10 seconds may be too rare for accurate key frame testing, intra-

prediction testing and key/inter frame combinations; one second may seem fair but it still

doesn’t look like a flexible enough solution. Besides, we need a possibility to disable key frames

for extensive testing of intra prediction.

The solution we came with is definition of chances for certain values of enumerated syntax

element by probability weights. Frame type has two options: Key and Inter. To have equal

chances for both, we add the following line into the parfile: "frame_type" : [1, 1]. If we want to

have a key frame about every second, we increase the chances of Inter frame: "frame_type" :

[1, 29]. This defines the chances of getting a key frame as 1/30, and, what is important, doesn’t

define any strict pattern allowing to produce any possible combination of key and inter frames.

Sometimes it is even possible to have two consecutive key frames, but the average ratio of key-

frame number to the total length will be about 1/30 for the long enough streams. And if we

want to disable inter frames we just give them zero chance: "frame_type" : [1, 0]. The solution

is quite flexible and is applicable to all enumerated syntax elements. Most of the elements are

named the same or similar way as variables in libvpx source code (reference decoder VP9

implementation).

Some syntax elements would be unreasonable to enumerate, for example, base_qindex has the

range of 256 acceptable values. Instead, you would typically prefer one of the following

options:

 fixed value

 range of small or large QP values

 full range

 full range except zero, which may turn lossless mode on

Such range parameters are defined in the parfile with minimum and maximum values, so

random values will be distributed uniformly in this range. For example, the full range of

base_qindex is defined as follows: "base_qindex_range" : [0, 255]. If we want to exclude zero

value, we write "base_qindex_range" : [1, 255]. To make QP fixed, for example, equal to 40, we

set min=max: "base_qindex_range" : [40, 40].

JSON syntax was chosen since it is convenient both for reading and for manual editing, but

initially, this format also had some drawbacks. There are no syntax cues to recognize weight-

based parameters from range-based ones, and for weight-based parameters the order of

enumeration may be unobvious. These drawbacks are compensated by the comments for each

parameter prompting the type of the parameter, the acceptable values for range-based

parameters, and the actual enumeration values of weight-based parameters. Parameters not

corresponding to VP9 syntax-elements and related to Encoder’s behavior control have

comments with additional explanations.

Such JSON definition extended with comments turned out to be a good tradeoff between

flexibility of test-coverage setup, human readability and compatibility with automatic parsers.

*Other names and brands may be claimed as the property of others. Page 7 of 27

© 2016, Intel Corporation.

Parfile Editing: a Short Summary
A parfile is a file in JSON format with comments. It includes the following general sections

related to different groups of parameters:

 The "frame" and "superblock" sections allow to control syntax-element randomization

scope in the frame header and at the superblock level. Most elements in these two

sections are named according to the corresponding variables in libvpx source code.

 The "scaling" section defines how frame resolution will be varied in the encoded stream.

 The "residual" section contains the settings related to residual randomization at the

superblock level.

 The "override" section allows to redefine the settings for the specified frames.

There are two types of parameters: weights and range. In most cases logical or enumerated

parameters are defined by relative weights. For example, setting "frame_type" : [1, 10] means

one chance of key frame against 10 chances of inter frame. Numeric parameters with wide

range are defined by specifying minimum and maximum values. For example, for the loop filter

level, acceptable values range from 0 to 63, and in parfile it is defined as "lf_filter_level" : [0,

63]. Actual values will be spread uniformly in this range.

To disable randomization for weights-defined parameters, weights for all except one values

must be set to zero. To set a range-defined parameter to a fixed value, you should set minimum

and maximum values to the same value.

Description of Command-Line Application Options
Random Encoder is a command-line application that accepts the following parameters:

vp9_random_encoder.exe -i <input.yuv> -o <output.vp9> -w <width> -h <height>
 [-p <config.json> -s <seed> -r <reconstruct.yuv>]
 [-f <# of frames to process>]

Parameter description:

Parameter Short description Details

-i STRING,
--input=STRING

Input file (raw YUV) File path, currently only I420 YUV is accepted

-o STRING,
--output=STRING

Output VP9 bistream File is output in IVF container

-w INT –h INT,
--width=INT
--height=INT

Width and height of input YUV

f INT,
--frames=INT

Number of frames to process Number of frames which random encoder will consume
and encode. Decoding result may have different number
of frames because some of encoded frames may be
hidden and also bitstream may contain one-byte-
repeated frames. If hidden frames and one-byte frame
repeats are disabled, output will contain the same
number of frames.

-r STRING,
--recon=STRING

Output YUV file with encoder's
reconstruct (optional)

Used to validate random encoder. If not set, encoder’s
reconstruct won’t be written.

-p STRING,
--parfile=STRING

JSON file with distribution
parameters (optional)

Parfile setting limitations on syntax element
randomization. If not set, the default values, which

*Other names and brands may be claimed as the property of others. Page 8 of 27

© 2016, Intel Corporation.

actually are not very practical, will be used.

-s INT,
--seed=INT

Seed for random engine
(optional)

Acceptable range: 0..INT_MAX

--dump_hidden=BOOL Write invisible frames to
reconstruct file (optional)

0 or 1, the default is 0. If is set to 1, encoder will output
hidden frames to reconstruct. This option was added to
enable use of libvpx reference decoder without
modification, because there is no option to dump hidden
frames. On the other hand, for thorough validation, you
need to modify reference decoder and use output
containing hidden frames.

--output_state=STRING Path to the file to which states
of random engine at keyframes
are written (optional)

This is another way to get short-reproducer stream, but it
is not well designed and needs to be accurate. You are
recommended to avoid using this option and to iterate
with seed instead.

If you use this option to provide the file path, the encoder
will dump the whole state of internal Mersenne-twister
random-engine at each key frame. The state is a single
line with a lot of numbers. If you want to start from the
state of a certain frame, you can copy the corresponding
line (without frame number) to a separate file and
provide the path to this file using the --input_state option.
Since the random encoder mostly doesn’t rely on input
frames for mode decision, there are very good chances to
get the same combination of modes at the beginning of
the bitstream, not somewhere in the middle.

However, there are much better ways to get short
reproducers. In addition to iterating with seed, you can
just cut a certain part with Intel® Video Pro Analyzer
(Intel® VPA) or any other tool that can parse and edit IVF
format.

--input_state=STRING Path to input file with random
engine state (optional)

See --output_state option description.

--bit_depth=INT Bitstream bit depth (8, 10, 12),
overwrites parfile setting

Only for the version with FC2 support, see VP9 section for
details.

--recon_bit_depth=INT Encoder-reconstruct bit depth
(8, 10, 12, 16), for easier
comparison with reference
decoder results

Only for the version with FC2 support, see VP9 section for
details.

--colorspace=STRING Bitstream colorspace:
yuv420|yuv422|yuv440|yuv444,
overwrites parfile setting

Only for the version with FC2 support, see VP9 section for
details.

-t STRING,
--target=STRING

Target mode:
random | visual | mem_bw

 random (default) - no
restriction, full randomization

 visual - try to avoid some
configurations yielding
visual artifacts

 mem_bw - optimize for
memory bandwidth testing

At the current stage, visual mode does two things:

 Repeats each invisible frame with
show_existing_frame flag. This allows to make
playback smooth without disabling invisible frames
in the parfile.

 Disables residual randomization.
All other settings potentially yielding visual artifacts are to
be controlled through the parfile.

“mem_bw” (memory_bandwidth) mode enforces
reference frame sign bias flags to have different values, so
compound prediction is available at each inter frame. All
other settings recommended for memory bandwidth
testing are provided in 401th parfile

--allow_idct_overflow=BOOL Disable check that randomized Residual randomization in combination with high QP may

*Other names and brands may be claimed as the property of others. Page 9 of 27

© 2016, Intel Corporation.

residual doesn't yield inverse-
transform overflow

produce illegal combination of coefficients yielding
inverse transform overflow. During residual
randomization, Encoder performs additional checks
dropping illegal combinations. To disable these checks,
set this option to 1.

--extreme_residual=BOOL Use only extreme values for
random residual

Effective if residual randomization is enabled in parfile,
helps to hit inverse-transform overflow.

--idct_overflow_hw=BOOL Enable
Emulate-Hardware-Highbitdepth
behavior for iDCT calculation

Affects inverse transform, copies behavior of
corresponding configuration define in libvpx code.

--verbose Print reference frames’
resolution for each frame
(optional)

An option for debugging purposes. This option helps to
understand dependencies between reference frames
when you are working with a certain stream and parfile
while frame scaling is enabled.

--help Output help message

Case Study: Focus on ADST Implementation
Let’s assume you have optimized inverse Asymmetric Discrete Sine Transform (ADST)

computation and want to validate the new implementation against the reference one. ADST is

applied only to intra blocks, but for the default config the portion of key frames is 10% and the

portion of intra blocks in inter frames is 25%. Taking into account that not all intra modes utilize

ADST, about 75% of bitstream content will be irrelevant to the validation task.

It will be reasonable not to use inter frames for ADST testing. So 008_intra_stress.json parfile is

a good starting point, and it will be modified to setup Random Encoder for ADST testing. First of

all, let’s perform smoke testing using this parfile without modification on a small number of

frames (about 20 at SD resolution). If it passes, you can move ahead. If not, you can check that

each size of transform works correctly by creating separate parfiles for each transform

modifying the following line in the "frame" section:

"tx_mode" : [1, 1, 1, 1, 2], // 4x4, 8x8, 16x16, 32x32, select

Let’s disable all transform except 4×4:

"tx_mode" : [1, 0, 0, 0, 0], // 4x4, 8x8, 16x16, 32x32, select

Then do the same for 8×8:

"tx_mode" : [0, 1, 0, 0, 0], // 4x4, 8x8, 16x16, 32x32, select

And the same way for 16×16. In fact, when you set "tx_mode" to enable 8x8 transforms only,

this setting doesn’t fully disable 4×4 transforms, they are still used for superblocks less than 8×8

and for chroma in blocks less than 16×16. If it is necessary to fully disable small transforms,

modify the "partition" setting in "superblock" section to disable superblock splitting at a

certain level. If there were any basic problems with the new ADST implementation, they would

be revealed by such basic tests.

*Other names and brands may be claimed as the property of others. Page 10 of 27

© 2016, Intel Corporation.

Now let’s focus on validation of extreme cases. Since it is important to check extreme values,

increase the portion of blocks with randomized residual up to 50% by changing the following

line in the "residual" section:

"sb_randomized" : [9, 1], // no | yes

to

"sb_randomized" : [1, 1], // no | yes

The original version defines chances that superblock has random residual as one against nine,

which yields only 10% of blocks with random residual. In the modified version, the changes are

one-to-one, encoder will produce 50% of such blocks.

The "tx_mode" parameter described above should be set to allow 4×4, 8×8 and 16×16

transforms with equal chances (32×32 blocks are processed only with DCT):

"tx_mode" : [1, 1, 1, 0, 0], // 4x4, 8x8, 16x16, 32x32, select

In addition, you may disable intra-prediction mode, which don’t utilize ADST (DC and 45°) by

changing the "intra_mode" setting in the "superblock" section as follows:

// //DC, V, H, 45,135,117,153,207, 63, TM

"intra_mode" : [0, 1, 1, 0, 1, 1, 1, 1, 1, 1],

Summary: to validate the ADST implementation, we selected the parfile without inter frames as

the starting point; the portion of blocks with random residual was increased in order to test

inverse transform for handling extreme values; 32×32 transform size and transform-size

definition at the superblock level were disabled. Besides, the intra modes not utilizing ADST

were disabled. This configuration is dedicated to validation of ADST transform, and if there is a

possible mismatch with reference implementation, the chances that it will be revealed are

several times higher than those for the default all-enabled configuration are.

How to Choose Input Resolution
Recommended resolution for input video is 432×240 or close to it. This is a trade-off between

performance and test coverage. Globally, we have two separate scopes of value randomization:

frame header and superblock elements. Larger resolution (for example, Full HD) will lead to

lower Encoder speed in terms of FPS, which means that we will write fewer frames and will try

fewer frame-header element combinations in the same period of time. For superblock-element

combination coverage, resolution does not matter much. However, using the resolution smaller

than 432×240 will yield a video with fewer superblocks, which will significantly reduce coverage

of dependencies between neighbor superblocks.

Some features need input video of large resolution for proper testing. For example, maximum

magnitude of MV component is limited by resolution and is not reached at 432×240, so for

testing MV extreme values, Full HD input is recommended. Another example is the number of

vertical tiles. Minimum tile width is 256 pixels, so at bitstreams with frame width less than 512

pixels, vertical tiles can’t appear at all. It’s recommended to test tiles on 4K+ content and also

try frame width not divisible by 256.

*Other names and brands may be claimed as the property of others. Page 11 of 27

© 2016, Intel Corporation.

Another specific feature is frame scaling. First of all, it is recommended to perform separate

validation of frame scaling and other features. The main reason is that scaling complicates the

debugging process. Besides, for frame-scaling test you need an input of quite a large resolution

to test the edge cases of different reference-frame resolution: for proper testing of all

combinations, it’s recommended to have an input file of dimensions that produce reasonable

values after division by 32 (for example, 4096×2048 is OK).

Summary: basic recommended resolution is 432×240, it is a good trade-off between

performance and frame-header feature coverage; some cases require Full HD or larger input

resolution; frame scaling also requires large input resolution and we recommend to test other

features thoroughly prior to frame-scaling validation.

How to Control Frame-Scaling Randomization
The "scaling" section is the most unobvious one as compared to other parfile sections, but it is

quite important because on-the-fly frame scaling is a new feature in VP9 and it requires special

attention.

This parameter section provides enough flexibility to generate basic scaling cases, corner cases

and extensive-testing streams with arbitrary resolution. VP9 has a limitation on reference

scaling factor (2x downscale and 16x upscale), so the parameters don’t control absolute values

in pixels, only relative factors.

Random Encoder doesn’t upscale the input frames, only downscales them. So the maximum

resolution is defined by the resolution of input video. The minimum frame size can be limited

with the "min_frame_size" parameter. Each frame is scaled independently of other frames, but

0.5x−16x ref scaling limit is taken into account.

The "resolution_change" parameter enables frame scaling. It is a weight-based parameter that

defines the chances for the current frame to be scaled.

Three similar parameters are defined by pairs of floats: "intra_max_downscale",

"max_upscale_factor" and "max_downscale_factor". The first number defines max scale factor

for frame width, the second one defines max scale factor for frame height. These parameters

are applied in different cases. "intra_max_downscale" applies to key frames and intra-only

frames; these types of frames are free from restrictions on reference frame size, so intra frames

are allowed to be any size. Other two parameters apply to inter frame scaling.

Resolution randomization of inter frames is performed as follows:

1. Encoder picks one reference frame with ref frame index from the range defined by the

"base_ref_frame" parameter.

2. For each dimension, Encoder decides whether to increase or decrease it by chances

from "downscale_or_upscale".

3. Encoder picks a random value in the range between the original size and the size

defined by max upscale/downscale factor. Minimum allowed value is 4, maximum is

limited by input video resolution.

*Other names and brands may be claimed as the property of others. Page 12 of 27

© 2016, Intel Corporation.

There is an extra parameter "scale_first_frame" that defines whether the first frame is

downscaled. This enables the decoder to start with the largest frame size and thus allocate

enough memory. Don’t expect such behavior in real world, but feel free to use it for debugging

purposes. This parameter is defined by string, possible values are "no", "yes" or "maybe". The

"maybe" option leaves to decoder the decision whether to scale the first frame for the current

stream or not.

In order to specify exact dimensions, parameter "frame_size_px" is used.

Extensive Testing and Parallel Execution
Random Encoder completes as many as ≈50 000 cases a week for a single process. For

satisfactory validation, it needs to run for a month with NO fails in decoder on a corner case. To

increase coverage for a shorter time period, you can execute several processes in parallel on a

single system, as many as hardware memory and CPU cores allow.

You may split parallel tasks by parfiles, input resolutions and seed interval. It is reasonable to

spend most of CPU time testing all-enabled stress parfile at a small resolution, but also have

some additional launches focusing on the following targets:

 Large resolutions, tiles and long motion vectors

 Interpolation filters, motion vectors ≤ 8 pixels, randomized residual to test inverse

transform and convolution for extreme cases

 Frame scaling with a very large range of possible resolutions

Using VP9 Random Encoder as a Debugging Tool
In addition to stress-testing after basic validation, VP9 Random Encoder is a useful debugging

tool, which can help you identify the exact feature that got broken after changes in the

decoder.

Starting from the 1.2.0 release, Intel® SBE includes the parfiles used for Stress Bitstreams

generation. Parfiles contain the same information as the spreadsheet defining the syntax-

element utilization, but they are more convenient for debugging purposes as you can feed

them into the Encoder without any modifications.

The Stress Bitstreams are organized in such a way that their complexity and the number of

utilized features increase with the stream index. So if several of your streams failed validation,

you should start debugging with the one having the lowest stream index value.

The proposed workflow for debugging with Intel® SBE is as follows:

1. Pick the failed stream with the lowest stream-index value and the stream with the

preceding stream-index value that passes validation.

2. Pick the corresponding parfiles and generate new streams with Random Encoder.

Ensure that behavior of the tested decoder on the generated streams is the same as on

the original ones.

*Other names and brands may be claimed as the property of others. Page 13 of 27

© 2016, Intel Corporation.

3. Compare “good” and “bad” parfiles side-by-side in a text comparison tool to identify the

feature difference. Most of the parfile lines are mapped directly to VP9 syntax elements.

Changes between consecutive parfiles include several syntax elements, usually related

to one feature or similar features.

4. Try to disable the identified new features one by one, to determine whether they affect

the decoder behavior. In some cases, this information combined with knowledge about

recent decoder modifications will be enough to figure out the cause of the failure.

5. Narrow the scope of possible values for problem syntax element.

When the problem syntax element is defined, sometimes it is possible to narrow the

scope of utilized values. For example, if a decoder produces wrong output on streams

generated by Random Encoder, but behaves properly if you disable sharp interpolation

filter, the problem is most likely with the handling of sharp interpolation filter.

6. Continue simplification of the “bad” parfile by disabling other features.

This step pursues two goals: check cross-feature dependencies and simplify further

debugging.

a. To illustrate the first goal, intra_only flag in header causes

setup_past_independence() function call, which resets some of decoder contexts

and buffers. Disabling intra_only element in parfile checks whether this case

affects the considered feature of “bad” parfile. Other noticeable features to be

tested first for cross-dependence: frame resolution change, show_frame flag

(frame visibility), segmentation, tiling, frame context operation flags.

b. Even if all this stuff didn’t help, it would be easier to go into deeper debugging if

we have the stream with only the largest partitions (simpler call stack and

debugging path) and the smallest transforms (easier to observe the values of the

whole block). Of course, if the bug still occurs on such a configuration. You can

also try to set max motion vector length to 0, leave only one interpolation filter,

disable intra prediction on intra frames, disable compound prediction and so on.

7. Iterate with the “--seed” option to find a shorter reproducer.

Sometime the bug is occurring in quite rare cases and far from the beginning of the

stream. To get a shorter reproducer, limit the length of the bitstream produced by

random encoder by some small value and iterate with the seed parameter value, which

controls the initial state of random engine. For intra frame bugs, a single frame will

usually be enough. For inter-prediction bugs, we recommend to do the reduction of

stream length in several steps, because in the case of specific dependency between

several frames 2-frames reproducer may not be enough.

Smoke Test Streams
In addition to the default streams, Intel® SBE includes a small set of streams for fast smoke

testing. This set has the same reference code coverage as the default set, and allows to

perform a much faster test and validation cycle. Stream set has a much smaller memory

footprint in comparison to the default set. As a drawback, it has degradation in cross-coverage

of multiple syntax elements.

*Other names and brands may be claimed as the property of others. Page 14 of 27

© 2016, Intel Corporation.

VP9 FC2 Specifics
The Random Encoder supports all Profiles of VP9 format: color depth of 8, 10 and 12 bits with

different settings of chroma subsampling. To enable high-bit depth encoding, use --bit_depth

and --colorspace command-line options or the "color" section in parfile. When command-line

and parfile settings are used together, the command-line settings have a priority. Generation of

bitstreams with mixed bit depth or colorspace is possible only with parfile color setting.

Supported values for --bit_depth option are 8, 10 and 12; for --colorspace option: yuv420,

yuv422, yuv440, yuv444.

The Random Encoder supports only 8-bit YUV 4:2:0 input and performs necessary color

conversions internally. Bit-depth conversion is performed as shifting the 8-bit value by 2 or 4

bits. The lower bits are randomized. For chroma upscale, the Encoder uses nearest-neighbor

method.

To simplify validation and debugging, you can use the --recon_bit_depth option defining bit

depth of YUV file with decoders reconstruct. Supported values are 8, 10, 12 and 16. libvpx

decoder has a similar option --output-bit-depth. It may be useful to decode all high-bit-depth

enabled streams to 16 bits for easier comparison against the reference decoder. Pay special

attention to streams with mixed bit depth: the reference decoder defines output parameters as

the first-frame parameters, and information loss is possible. The reference decoder does not

have any options to unify output chroma subsampling format, so neither has the Random

Encoder.

Profile, bit depth and subsampling randomization settings can be defined in the "color" section

of the JSON parfile. All the parameters in the "color" section are weight-based. If you use --

bit_depth or --colorspace command-line options, the "color" section in the parfile is ignored.

VP9 format allows profile, bit depth and subsampling settings to change only at key and intra-

only frames.

Residual Randomization
To stress-test residual decoding, Random Encoder provides two modes of residual

randomization: randomized residual and randomized transform coefficients. The mode is

defined with the "type" parameter in the "residual" section, the available values are:

 "off" - no residual randomization

 "diff" - plain residual

 "transform" - transform coefficients

For each superblock, Random Encoder makes a decision whether to fill it with random residual

or not. You can control the portion of such superblocks with the "sb_randomized" parameter.

In randomized-residual mode, randomization is performed independently for each pixel of the

superblock. Pixel-residual value is picked from the range defined by the "residual_range"

parameter (−255..255 by default). Please take into account that for 10- and 12-bit color depth

this range is adapted by the encoder internally, no adjustments are required. So if you need

*Other names and brands may be claimed as the property of others. Page 15 of 27

© 2016, Intel Corporation.

max range for 10-bit color, parameter value still needs to be [-255, 255] and Random Encoder

will interpret it as [-255..255] for 8-bit frames and as [-1023..1023] for 10-bit frames.

Transform-coefficient randomization is a bit more complicated. Not all the coefficient

configurations will have valid back-projection, so the encoder should be accurate in performing

randomization. First, it picks end-of-block (EOB) token position. EOB token means that all

coefficients starting from this position are equal to zero. Then the encoder picks a random

position in the range from DC coefficient to EOB and puts in this position a random value

according to coefficient position, transform size and type. If the result is a valid transform

(inverse transform yields residual in acceptable range), the encoder tries to put one more

coefficient. When encoder finally fails to get a valid transform, it steps one iteration back and

stops. Depending on the "type" parameter in the "residual" section, coefficient values are

generated either uniformly between tokens ("tokens") or in a way to yield uniform distribution

of the most significant bit ("transform"), producing a reasonable amount of extreme-value

cases.

Another option related to transform randomization is "tx_zero_coeff_tail". Its purpose is to

deliver coverage of the following corner case. In a transform block, the last coefficient can’t be

zero, EOB token must always be preceded with a nonzero coefficient value. But if the block

includes only N×N coefficients, EOB token is omitted. A block filled with the tail of zero

coefficients instead of a single EOB token will be valid for VP9 decoder, and the

"tx_zero_coeff_tail" parameter is responsible for chances of getting such block. The parameter

is only applicable to blocks with randomized residual.

Residual and transform-coefficient randomization modes cannot be used simultaneously in a

single stream. Besides, you should take into account that enabling any mode of residual

randomization increases memory footprint in propotion to the size of input frame, in pixels.

What VP9 Random Encoder Does Not Support
 Superframes. This feature is related to IVF container, not to VP9 format. You can find

streams for testing superframes in the publicly available libvpx test stream pool.

 display_width and display_height that differ from source-frame size. Frame header may

have a special flag in the parfile. When set to 1, this flag indicates that the display size is

different, but the actual display size values will be equal to the source frame size. If the

display size is different, the part performing rescale is not related to decoder, so it will

be almost impossible to achieve binary match for this, unless you use the same

interpolation algorithm.

Memory-Bandwidth Testing of the Decoder
VP9 Random Encoder allows to stress-test decoder memory throughput at inter-prediction.

401_memory_bandwidth.json parfile contains the encoder settings, which are targeted to

maximize the amount of reads of reference frame surfaces. The key distinction of this parfile is

usage of 4×4 partitions only. In combination with heavy interpolation utilization and compound

prediction, 4×4 block requires reference-frame area of 13×13 pixels to be read twice. Besides,

we disable all features using intra-prediction (like intra-only frames or segmentation reference-

*Other names and brands may be claimed as the property of others. Page 16 of 27

© 2016, Intel Corporation.

frame setting) and ZEROMV mode. To avoid the possibility of single reference prediction mode,

we use “--target mem_bw” command-line option, which enforces reference frame sign bias

flags to have different values and adds in average 12% reads in inter-prediction.

The stream package contains a sample stream of 1920×1080 resolution. To test other

resolutions, you will need to generate test streams using the Random Encoder and the

memory-bandwidth parfile.

Worst-Case Performance Testing of the Decoder
In addition to the memory-bandwidth test, we deliver parfiles for decoder-performance stress

testing. We provide parfiles 402_worst_performance_19mbps.json,

403_worst_performance_80mbps.json, 404_worst_performance_200mbps.json, which are

targeted to stress the most CPU-consuming parts of VP9 decoding pipeline: bool decoder, inter-

prediction, and loopfilter.

The main idea is to stress intra-prediction and loopfilter by small-prediction and transform

block configuration. The key difference between 19mbps and 80mbps parfiles is the switch

from 8×8 prediction blocks to 4×4 ones.

The main tools to control bool-decoder load are QP and mode of forward probability update

estimation. 200mbps parfile is derived from the 80mbps one, the only different option is the

probability update mode. For the 80mbps case, the encoder estimates the optimal probability

based on mode-decision stats, for the 200mbps case it writes fully random probabilities.

Bitrates in the parfile names are approximate and were adjusted to the type of content we use

for other streams at Full HD resolution. The Random Encoder doesn’t have direct control over

bitrate. The main way to adjust the result bitrate are QP-related parameters and the portion of

blocks with randomized residual.

Visually Clean Content
Visual parfiles enable you to check decoding results visually when it is impossible to validate the

binary match. They are based on the original parfiles, but have some modifications to eliminate

visual artifacts: reference-frame scaling, skip-coefficients flag and residual randomization are

disabled, range of possible QP is reduced. Random Encoder has a special mode to repeat all

invisible frames with show_existing_frame flag. To enable it, add “--target visual” to the

encoder options.

Visual parfiles are organized in the same way as standard ones, and have letter “V” in front of

the parfile index.

*Other names and brands may be claimed as the property of others. Page 17 of 27

© 2016, Intel Corporation.

Overriding Parameters
To redefine parameters for specific frames, you should put them into the "override" section of

the JSON file. This section has the following structure:

"override" : {
 "0,4..6" : { // frames 0, 4, 5 and 6 will use settings specified below instead of the default ones

"frame" : {
 "frame_type" : [1, 0] // only key frames
},
"scaling" : {
 "frame_size_px" : [256, 128] //exact frame size [width, height]
}

 },
 "1..3" : {
 "frame" : {

 "frame_type" : [0, 1] // only inter frames
}

 }
}

In this example, "0,4..6" is a string specifying the frames to which the new settings will apply.

You can set individual frames and frame ranges a..b, separated by commas. Attribute

"frame_type" is redefined in both parameter sets shown in this example, making frames 0, 4, 5,

6 key-frames, and 1, 2, 3 - inter-frames. If you do not set any parameters in the “override”

parameter set, they are taken from the main parfile.

It’s easy to visualize the effect of these settings using Intel® Video Pro Analyzer:

If we open a stream generated with the sample parfile below in Intel® Video Pro Analyzer, we

can actually see that frame types are set according to our settings, and frames 0, 4-6 have the

size of 256x128 pixels.

https://software.intel.com/en-us/intel-video-pro-analyzer

*Other names and brands may be claimed as the property of others. Page 18 of 27

© 2016, Intel Corporation.

Iterating Parameters
Starting from version 2.1, most of the parameter ranges in JSON file can be replaced with

iterations:

(𝑆𝑡𝑎𝑟𝑡, 𝑆𝑡𝑒𝑝, 𝐸𝑛𝑑)

Each call to a certain parameter will return the previous value of this parameter incremented

by Step, but not greater than End. The first used value will be equal to Start. When the value

exceeds End, the iteration starts again from Start. This behaviour could be useful if you want to

cover a certain range in a determenistic way.

For example, "frame_type" : [1, 1] will give key (parameter value 0) and inter (parameter value 1)

frames with equal probabilities, while "frame_type" : (0, 1, 1) will produce a sequence of

alternating frame types (key, inter, key, inter, …).

As another example, "show_existing_idx" : (0, 1, 7) will allow you to cover each possible existing

frame buffer index one by one.

Currently, some elements that represent size in the "scaling" section are not supported, for

example, "frame_size_px" or "min_frame_size".

Note that if you specify iterations in brackets, parfile is no longer a valid JSON file.

*Other names and brands may be claimed as the property of others. Page 19 of 27

© 2016, Intel Corporation.

Error Resilience Encoder

Description
Error Resilience Encoder for VP9 is a tool that allows you to generate broken video streams to

test behavior of VP9 decoder on various types of errors. It also allows to control type and

positioning of errors that make the stream invalid. This tool can be used to pinpoint flaws in

error handling and to define the expected behavior more precisely on a wide range of possible

errors.

Error Resilience Encoder is based on Random Encoder: at first, a valid compliant stream is

generated with Random Encoder, utilizing all of its flexibility, and then destructive changes are

applied to it, based on the user-defined parameters.

As an input, Error Resilience Encoder accepts a YUV file and a parfile – a JSON-formatted file

describing testing settings: features to utilize, fixed values, random values. As an output,

Encoder produces an encoded broken bitstream.

Important Restrictions
Although Error Resilience Encoder is an extension of Random Encoder, it’s not intended to

generate valid streams. Currently, only the first 15 frames of the stream are fully customizable

by user (via the "override" section in parfile). For the rest of the frames, if user-defined

parameters don’t meet the required level of degradation, additional errors are introduced into

the stream.

Broken Stream Generation
Rules of error generation are described by the "broken" section in the parfile. If in doubt, see an

example of the parfile below, which explains parfile parameters in detail. There are three

invalidation options: bitwise randomization, packet-level failures, and corrupted syntax

elements. The corresponding subsections in JSON are: "bit", "packet", and "syntax".

Common Parameters
Each of the subsections has string parameter "frames". If this parameter is specified, other

parameters of this subsection will only apply to the selected frames. The format of this string is

similar to overrides: "0,1..3" means "generate this type of errors only for frames 0, 1, 2 and 3".

If you set the "keep_file_header" parameter in "broken" to a non-zero value, it guards the ivf

file header from changes. Otherwise, "ivf_header_prob" probabilities are used to corrupt file

header in "bit" and "packet" modes.

Bit Randomization
The idea of bit randomization is to simply invert some bits in a valid VP9 stream. The main

parameter here is the “prob” parameter in the “bit” subsection, which defines the probability

with which a specific bit will be inverted. Each frame of the generated VP9 stream consists of

separately coded parts: container (ivf) header, uncompressed header, compressed header

(probabilities), and compressed frame data. Error Resilience Encoders allow to specify separate

*Other names and brands may be claimed as the property of others. Page 20 of 27

© 2016, Intel Corporation.

probabilities for each of these parts. The corresponding parameters are: "ivf_header_prob",

"unc_header_prob", "comp_header_prob", "frame_data_prob". If some of these parameters

are not specified explicitly, the default "prob" is used instead. Bit randomization allows to

simulate low-level network and storage errors.

Packet Randomization
The main idea is to operate on the packet level, i.e. with the set of bytes. The "prob" in the

"packet" section stands for probability for each byte to start the corrupted packet. Parameter

"size" : [min, max] determines ranged distribution of the length of this packet. This packet could

then be cut from the stream, turned to zeroes, or duplicated, depending on parameter "mode",

which is weighted distribution. As a special case, packet-level randomization allows you to cut

sections or entire frames from stream. For an example, see parfiles 004_drop_frames.json and

005_header_mismatch.json in Error Resilience package.

Syntax Randomization
This section allows you to corrupt syntax elements, where bitstream specification made it

possible. It consists mostly of the elements of the uncompressed header. Each parameter is a

probability with which this feature will be enabled. The following table lists all these features.

"frame_marker" Change in constant value, which marks each VP9 frame

"sync_code" Change in sync code, used in keyframes

"reserved_bit" Set bit, which is reserved to zero

"header_size" Corrupt header size, written after uncompressed header

"profile" Set invalid profile value

"subsampling" Set 4:2:0 subsampling for profiles 1 and 3

"reference" Use invalid reference, if possible. Invalid references might be either
uninitialized (stream starts with intra-only), or of wrong size (VP9 has
restriction on relation between frame sizes), or of wrong profile

"context" Use uninitialized entropy context

"transform_coeff" Use coefficients that result in overflow after inverse transform

"tile_count" Corrupt tile count encoding

"dimensions" Write wrong dimensions in header

The following values are valid, but not fully covered by randomization in Random Encoder.

"force_write_dimensions" Explicitly write dimensions on inter-frames

"color_range " YUV color range

"colorspace" Random colorspace

*Other names and brands may be claimed as the property of others. Page 21 of 27

© 2016, Intel Corporation.

Parfiles Description
000_all_features.json All features written in parfile

001_corrupted_headers.json Invert bits in headers (ivf, uncompressed, compressed)

002_packet_failures.json Packet randomization

003_frame_parallel.json Generated streams contain two independent streams,
only one of which is corrupted. Demonstrates use of
override feature to create independent streams

004_drop_frames.json Demonstrates ability to cut entire frames

005_header_mismatch.json Demonstrates ability to cut specific parts

006_uninitialized_structures.json Starts with intra-only, randomly generates either
uninitialized entropy context, or uninitialized reference

007_invalid_scale_reference.json Cuts valid reference to produce error

008_missing_existing_frame.json Cuts first frame, trying to show existing

*Other names and brands may be claimed as the property of others. Page 22 of 27

© 2016, Intel Corporation.

Parfile Example and Parameter Description
Here we provide a sample parfile, which has randomization of all the features enabled. Each

syntax element is provided with a comment about its values. If the type of the parameter

(weight or range) is not obvious, check the table below.

{
 "frame" : {
 "frame_type" : [1, 10], // key | inter
 "start_w_intra_only" : [4, 1], // no | yes, start bitstream with intra-only instead
 // of key frame
 "tx_mode" : [1, 1, 1, 1, 2], // 4x4, 8x8, 16x16, 32x32, select
 "interp_filter" : [1, 1, 1, 1, 4], // reg, smooth, sharp, bilin, switchable
 "horz_tile_range" : [0, 2], // log2 val, [0..2]
 "vert_tile_range" : [0, 6], // log2 val, [0..6], 2 is max reasonable for FullHD

"allow_zero_h_tile" : [0, 1], // no | yes, allow tiles with zero height
 "frame_context_idx" : [1, 1, 1, 1], // context id
 "allow_hp" : [1, 1], // 1/8-pel MV accuracy, off/on
 "error_resilient" : [5, 1], // no | yes
 "frame_parallel" : [1, 1], // no | yes
 "reset_context" : [1, 1, 1, 1], // do nothing | invalid | reset current | reset all
 "refresh_context" : [1, 1], // no | yes
 // Lossless forces base_qindex and q deltas to zero.
 // Without this control it would be difficult to generate proper mix of lossless
 // and lossy frames in one stream.
 "lossless" : [4, 1], // no | yes
 "write_display_size" : [1, 1], // no | yes -- write display size flag
 // the frame size is kept from source
 "base_qindex_range" : [0, 255], // 0 to 255, zero means lossless
 "y_dc_delta_q_range" : [-15, 15], // [-15..15]
 "uv_ac_delta_q_range": [-15, 15], // [-15..15]
 "uv_dc_delta_q_range": [-15, 15], // [-15..15]
 "lf_filter_level" : [0, 63], // [0..63], 6 bit
 "lf_sharpness_level" : [0, 7], // 3 bit
 "lf_delta_enable" : [1, 1], // no | yes
 "lf_delta_update" : [1, 1], // no | yes
 "lf_mode_delta_range": [-63, 63], // 6 bit + sign
 "lf_ref_delta_range" : [-63, 63], // 6 bit + sign
 "seg_enabled" : [1, 1], // no | yes
 "seg_update_map" : [1, 1], // no | yes
 "seg_update_data" : [1, 1], // no | yes
 "seg_abs_delta" : [1, 1], // delta | abs value
 "seg_temporal_update": [1, 1], // no | yes
 "seg_alt_q_enable" : [1, 1], // no | yes
 "seg_alt_q_range" : [0, 127], // [0..127], if seg_abs_delta == 1
 "seg_alt_q_delta" : [-127, 127], // [-127..127], if seg_abs_delta == 0
 "seg_alt_lf_enable" : [1, 1], // no | yes
 "seg_alt_lf_range" : [0, 63], // if seg_abs_delta == 1
 "seg_alt_lf_delta" : [-63, 63], // if seg_abs_delta == 0
 "seg_ref_enable" : [4, 1], // no | yes
 "seg_ref" : [1, 1, 1, 1], // intra | last | golden | altref
 "seg_skip_zeromv" : [10, 1], // no | yes

 // Ref-frame-index settings are ignored if not all reference buffers are suitable
 // for prediction: configurations with enabled frame scaling, bit-depth or
 // chroma-subsampling randomization, and when first frame is intra-only and all buffers were
 // initialized.
 "lst_fb_idx_range" : [0, 7], // [0..7] last frame ref id range
 "gld_fb_idx_range" : [0, 7], // [0..7] golden frame ref id range
 "alt_fb_idx_range" : [0, 7], // [0..7] alt frame ref id range
 "refresh_mask_bit" : [2, 1], // probs that bit in refresh mask = 0 | 1
 "refresh_mask" : "01000100", // explicitly set which frames to refresh;

// overrides refresh_mask_bit
 "ref_frame_sign_bias": [2, 2], // probs for ref frame sign bias = 0 | 1
 "lst_frame_sign_bias": [1, 0], // sign bias when last frame is selected as reference;

// when not specified defaults to ref_frame_sign_bias
 "gld_frame_sign_bias": [0, 1], // sign bias when gold frame is reference
 "alt_frame_sign_bias": [0, 1], // sign bias when alt frame is reference
 "show_frame" : [1, 2], // no | yes
 "intra_only" : [2, 1], // no | yes
 "show_existing_frame": [5, 1], // no | yes - repeat existing frame from ref buffer
 "show_existing_idx" : [1, 1, 1, 1, 1, 1, 1, 1], // prob weights for existing frame ref idx

*Other names and brands may be claimed as the property of others. Page 23 of 27

© 2016, Intel Corporation.

 "comp_pred_mode" : [1, 1, 1], // single only | compound only | hybrid
 // frame context update
 // * no update -- keep the probabilities from the previous frame
 // * optimal probs -- estimate optimal probabilities for the frame and write them
 // in forward update
 // * random probs -- randomize frame context probs for the frame
 "fc_update_type" : [1, 1, 1], // no update | optimal probs | random probs
 "fc_rnd_prob_range" : [1, 255] // [1..255] (only for random probs)
 },
 "superblock" : {
 "ref_frame" : [1, 1, 1, 1], // intra | last | golden | altref
 // //DC, V, H, 45,135,117,153,207, 63, TM
 "intra_mode" : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 "inter_mode" : [1, 1, 1, 1], // nearestmv | nearmv | zeromv | newmv
 "mv_len" : 16376, // max len * 8 (with fractional part bits)
 "skip" : [9, 1], // no | yes
 "interp_filter" : [1, 1, 1], // reg, smooth, sharp
 "comp_pred" : [1, 1], // no | yes, if comp_pred_mode == hybrid
 "comp_pred_var_ref" : [1, 1], // ref_idx, 0 or 1
 "seg_id" : [1, 1, 1, 1, 1, 1, 1, 1], // 8 segments
 "seg_id_predicted" : [3, 1], // no | yes

 "partitions" : [
 // N, H, V, S
 [1, 1, 1, 1], // 8x8
 [1, 1, 1, 3], // 16x16
 [1, 1, 1, 6], // 32x32
 [1, 1, 1, 9] // 64x64
],

 "tx_size" : [
 // 4, 8,16,32
 [1, 1], // blocks less than 16x16
 [1, 1, 1], // blocks less than 32x32
 [1, 1, 1, 1], // when any transform size suits
]
 },
 "color" : {
 // Bitstream profiles indicated by 2-3 bits in the uncompressed header.
 // Profile 0. 8-bit 4:2:0 only.
 // Profile 1. 8-bit 4:4:4, 4:2:2, and 4:4:0.
 // Profile 2. 10-bit and 12-bit color only, with 4:2:0 sampling.
 // Profile 3. 10-bit and 12-bit color only, with 4:2:2/4:4:4/4:4:0 sampling.
 "profile" : [1, 0, 0, 0], // bitstream profile, 0..3
 "bitdepth" : [1, 0], // 10 or 12 bit if profile >= 2
 "subsampling_x" : [0, 1], // chroma subsampling, no | yes, if profile == 1 or 3
 "subsampling_y" : [0, 1] // chroma subsampling, no | yes, if profile == 1 or 3
 },
 "scaling" : {
 // Input file defines maximum resolution.
 // intra_max_downscale pair defines maximum possible downscale on key frames and intra-only
 // frames for width and height, respectively.
 //
 // For example, if we have source 1920x1080 and "intra_max_downscale" : [2, 4],
 // then frame width for intra frames will vary in range of 960..1920 (up to 2x downscale)
 // and the range for frame height will be 270..1080 (up to 4x downscale).
 //
 // To randomize resolution of inter frames, we do the following:
 // 1. Pick one reference frame with ref frame index from range defined by "base_ref_frame"
 // parameter.
 // 2. For each dimension, decide whether it will be increased or decresed by chances from

// "downscale_or_upscale".
 // 3. Pick random value in range between the original size and the size defined by max
 // upscale/downscale factor.
 "resolution_change" : [0, 1], // probs of resolution change <no | yes>
 "scale_first_frame" : "yes", // "no" | "maybe" | "yes"
 "intra_max_downscale" : [16, 16], // width, height (floating point allowed)
 "base_ref_frame" : [0, 7], // ref frame to borrow resolution if size_from_ref == 1
 "downscale_or_upscale" : [1, 1], // chances to decrease and increase frame size
 "max_upscale_factor" : [16, 16], // width, height (floating point allowed), max = 16
 "max_downscale_factor" : [2, 2], // width, height (floating point allowed), max = 2
 "min_frame_size" : [4, 4] // width and height in pixels,
 // min frame size restrictions
 },

*Other names and brands may be claimed as the property of others. Page 24 of 27

© 2016, Intel Corporation.

 "residual" : {
 // Only one mode of residual randomization per stream can be used.
 "type" : "diff", // off | diff | transform
 "sb_randomized" : [9, 1], // no | yes
 "residual_range" : [-255, 255], // min and max residual value (max range is [-255, 255])

//ZERO, ONE, TWO, THREE, FOUR, CAT1, CAT2, CAT3, CAT4, CAT5, CAT6
 "coef_tokens" : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

 // For tx mode if inverse transform of random-generated block doesn't produce valid
 // residual, encoder tries to regerate it, and stops after several unsuccessful tries.
 // Increasing the range will reduce the chances to generate valid transform and the portion
 // of random blocks in bitstream.
 "tx_eob_range" : [
 [1, 16], // tx 4x4
 [1, 64], // tx 8x8
 [1, 256], // tx 16x16
 [1, 1024] // tx 32x32
]
 },
 "broken" : {
 "keep_file_header" : 1,
 "bit" : {
 "frames" : "0..5,10..15",
 //"prob" : 0.005,

 "ivf_header_prob" : 0.001,
 "unc_header_prob" : 0.001,
 "comp_header_prob" : 0.0001,
 "frame_data_prob" : 0.00001
 },
 "packet" : {
 "frames" : "6,8,10,12",
 "size" : [2, 8],
 //"prob" : 0.001,

 "ivf_header_prob" : 0,
 "unc_header_prob" : 0.01,
 "comp_header_prob" : 0.001,
 "frame_data_prob" : 0.0001,
 "mode" : [1, 1, 1] //loss, duplicate, zero
 },
 "syntax" : {
 "frames" : "7..9,11,13",
 //"prob" : 0.1,

 "frame_marker" : 0.2,
 "sync_code" : 0.2,
 "reserved_bit" : 0.2,
 "header_size" : 0.2,
 "profile" : 0.2,
 "subsampling" : 0,
 "reference" : 0.5,
 "context" : 0.4,
 "color_range" : 0,
 "colorspace" : 0,
 "dimensions" : 0,
 "force_write_dimensions" : 1,
 "tile_count" : 0,
 "transform_coeff" : 1,
 }
 },

 "override" : {
 "0,4..6" : { // frames 0, 4, 5 and 6 will use settings specified below instead of default ones
 "frame" : {

"frame_type" : [1, 0] // only key frames
 },
 "scaling" : {
 "frame_size_px" : [256, 128] //exact frame size [width, height]
 }

*Other names and brands may be claimed as the property of others. Page 25 of 27

© 2016, Intel Corporation.

},
"1..3" : {

 "frame" : {
"frame_type" : [0, 1] // only inter frames

 }
}

 }
}

Table 1. Randomization-control parameter types and acceptable values

Parameter Type Enumeration (for weights)
and acceptable range (for other types)

Default value

Frame section

frame_type weights KEY, INTER [1, 24]

start_w_intra_only weights False, True [1, 0]

tx_mode weights ONLY_4X4, ALLOW_8X8, ALLOW_16X16,
ALLOW_32X32, TX_MODE_SELECT

[1, 1, 1, 1, 1]

interp_filter weights EIGHTTAP, EIGHTTAP_SMOOTH,
EIGHTTAP_SHARP, BILINEAR, SWITCHABLE

[1, 1, 1, 1, 1]

horz_tile_range range [0..2] [0, 0]

vert_tile_range range [0..6] [0, 0]

allow_zero_h_tile weights False, True [0, 1]

frame_context_idx weights 0, 1, 2, 3 [1, 1, 1, 1]

allow_hp weights False, True [1, 1]

error_resilient weights False, True [1, 0]

frame_parallel weights False, True [1, 0]

reset_context weights 0, 1, 2, 3 [1, 0]

refresh_context weights False, True [1, 1]

lossless weights False, True [1, 0]

write_display_size weights False, True [1, 1]

base_qindex_range range [0..255] [40, 40]

y_dc_delta_q_range range [−15..15] [0, 0]

uv_ac_delta_q_range range [−15..15] [0, 0]

uv_dc_delta_q_range range [−15..15] [0, 0]

lf_filter_level range [0..63] [0, 63]

lf_sharpness_level range [0..7] [0, 7]

lf_delta_enable weights False, True [1, 1]

lf_delta_update weights False, True [1, 1]

lf_mode_delta_range range [−63, 63] [−63, 63]

lf_ref_delta_range range [−63, 63] [−63, 63]

seg_enabled weights False, True [1, 1]

seg_update_map weights False, True [1, 1]

seg_update_data weights False, True [1, 1]

seg_abs_delta weights False, True [1, 1]

seg_temporal_update weights False, True [1, 1]

seg_alt_q_enable weights False, True [1, 1]

seg_alt_q_range range [0, 127] [20, 40]

seg_alt_q_delta range [−127, 127] [−20, 20]

seg_alt_lf_enable weights False, True [1, 1]

seg_alt_lf_range range [0, 63] [0, 63]

seg_alt_lf_delta range [-63, 63] [-63, 63]

seg_ref_enable weights False, True [1, 1]

seg_ref weights INTRA_FRAME, LAST_FRAME,
GOLDEN_FRAME, ALTREF_FRAME

[1, 1, 1, 1]

seg_skip_zeromv weights False, True [1, 1]

lst_fb_idx_range range [0..7] [0, 0]

gld_fb_idx_range range [0..7] [1, 1]

alt_fb_idx_range range [0..7] [2, 2]

refresh_mask_bit weights 0, 1 [1, 2]

refresh_mask bitmask [00000000..11111111] refresh_mask_bit

ref_frame_sign_bias weights 0, 1 [2, 1]

*Other names and brands may be claimed as the property of others. Page 26 of 27

© 2016, Intel Corporation.

lst_frame_sign_bias weights 0, 1 ref_frame_sign_bias

alt_frame_sign_bias weights 0, 1 ref_frame_sign_bias

gld_frame_sign_bias weights 0, 1 ref_frame_sign_bias

show_frame weights False, True [0, 1]

intra_only weights False, True [2, 1]

show_existing_frame weights False, True [1, 0]

show_existing_idx weights 0, 1, 2, 3, 4, 5, 6, 7 [1, 1, 1, 1, 1, 1, 1, 1]

comp_pred_mode weights SINGLE_REFERENCE, COMPOUND_REFERENCE,
REFERENCE_MODE_SELECT

[2, 1, 2]

fc_update_type weights No update, optimal probabilities, random
probabilities

[1, 1, 1]

fc_rnd_prob_range range [1..255] [1, 254]

Superblock section

ref_frame weights INTRA_FRAME, LAST_FRAME,
GOLDEN_FRAME, ALTREF_FRAME

[1, 1, 1, 1]

intra_mode weights DC_PRED, V_PRED, H_PRED, D45_PRED,
D135_PRED, D117_PRED, D153_PRED,
D207_PRED, D63_PRED, TM_PRED

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

inter_mode weights NEARESTMV, NEARMV, ZEROMV, NEWMV [1, 1, 1, 1]

mv_len integer 0..16384 1280

mv_joint_zero weights False, True [1, 0]

skip weights False, True [10, 1]

interp_filter weights EIGHTTAP, EIGHTTAP_SMOOTH,
EIGHTTAP_SHARP

[1, 1, 1]

comp_pred weights SINGLE_REFERENCE, COMPOUND_REFERENCE [1, 1]

comp_pred_var_ref weights 0, 1 [1, 1]

seg_id weights 0, 1, 2, 3, 4, 5, 6, 7 [1, 1, 1, 1, 1, 1, 1, 1]

seg_id_predicted weights False, True [3, 1]

partitions weights PARTITION_NONE, PARTITION_HORZ,
PARTITION_VERT, PARTITION_SPLIT

// N, H, V, S
[1, 1, 1, 1], // 8x8
[1, 1, 1, 3], // 16x16
[1, 1, 1, 6], // 32x32
[1, 1, 1, 9] // 64x64

tx_size weights TX_4X4, TX_8X8, TX_16X16, TX_32X32 [1, 1],
[1, 1, 1],
[1, 1, 1, 1]

Color section

profile weights Profile 0, profile 1, profile 2, profile 3 [1, 0, 0, 0]

bit_depth weights 10 bit, 12 bit [1, 0]

subsampling_x weights False, True [0, 1]

subsampling_y weights False, True [0, 1]

Scaling section

resolution_change weights False, True [1, 0]

frame_size_px int [width, height], no more than
input_frame_size

[width, height]

intra_max_downscale float [1.0 .. 16.0] 1.0
base_ref_frame [0, 7], range [0..7] [0, 7]
downscale_or_upscale weights Downscale, upscale [1, 1]
max_upscale_factor float [1.0 .. 16.0] 1.0
max_downscale_factor float [1.0 .. 2.0] 1.0

scale_first_frame string "no", "maybe", "yes" "no"

min_frame_size Int [1..input_frame_size] [4, 4]

Residual section

type string "off", "diff", "transform", "tokens" "off"

sb_randomized weights False, True [1, 0]

residual_range range [−255..255] [−255, 255]

coef_tokens weights ZERO, ONE, TWO, THREE, FOUR, CAT1-CAT6 Equal probability

tx_eob_range range [0, 16], // tx 4x4
[0, 64], // tx 8x8
[0, 256], // tx 16x16
[0, 1024] // tx 32x32

[0, 16], // tx 4x4
[0, 64], // tx 8x8
[0, 256], // tx 16x16
[0, 1024] // tx 32x32

*Other names and brands may be claimed as the property of others. Page 27 of 27

© 2016, Intel Corporation.

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is

granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied

warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any

warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative to

obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may

cause deviations from published specifications. Current characterized errata are available on

request.

Copies of documents which have an order number and are referenced in this document may be

obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Core are trademarks or registered trademarks of Intel Corporation

or its subsidiaries in the United States and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors

for optimizations that are not unique to Intel microprocessors. These optimizations include

SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee

the availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved

for Intel microprocessors. Please refer to the applicable product User and Reference Guides

for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/design/literature.htm

