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Overview 
This sample demonstrates the fundamentals of using Shared Virtual Memory 
(SVM) capabilities in OpenCL™ applications. The SVM Basic code sample uses the 
OpenCL 2.0 APIs to query SVM support and manage SVM allocations for the 
selected OpenCL 2.0 device. 
The sample code implements an algorithm to demonstrate pointer sharing 
between host and device with OpenCL SVM features. Advanced topics like use of 
atomics within SVM allocations and associated performance considerations are 
out of the scope of this tutorial. 

About Shared Virtual Memory (SVM) 
Intel’s Shared Virtual Memory capabilities can be programmed via OpenCL 2.0’s 
Shared Virtual Memory (SVM) APIs and OpenCL C language support. OpenCL SVM 
enables the host and device portions of OpenCL applications to seamlessly share 
pointers and complex data-structures. OpenCL 2.0 also defines memory model 
consistency guarantees for SVM. 
OpenCL 2.0 defines three types of SVM: 

• Coarse-Grained buffer SVM: Sharing occurs at the granularity of 
regions of OpenCL buffer memory objects. 

• Fine-Grained buffer SVM: Sharing occurs at the granularity of individual 
loads and stores within OpenCL buffer memory objects. 

• Fine-Grained system SVM: Sharing occurs at the granularity of 
individual loads/stores occurring anywhere within the host memory. 

In Coarse-Grained buffer SVM, consistency is enforced at synchronization points 
and with map/unmap commands to drive updates between the host and the 
device. This form of SVM is similar to non-SVM use of memory; however, it lets 
host and device share a single region of virtual memory address space containing 
pointer-based data structures (such as linked-lists), which was not possible in 
OpenCL versions lower than 2.0. 
Coarse-Grained buffer SVM is the minimum required by the core OpenCL 2.0 
specification. So if there is an OpenCL 2.0 device in your OpenCL platform, it 
should support the necessary functionality to run the sample code. The other two 
(fine-grained) levels described above are optional OpenCL 2.0 features. Consider 

About  This 
Tutorial 

This tutorial demonstrates an end-to-end workflow you can 
ultimately apply to your own applications:  
• Check SVM availability 
• Allocate SVM memory. Access SVM memory in host code 
• Pass pointers to SVM memory to OpenCL C device code 

Estimated 
Duration 

10-15 minutes. 

Learning 
Objectives 

After you complete this tutorial, you should be able to:  
• Allocate SVM memory 
• Use the SVM memory in host- and device code. 

More 
Resources 

Intel SDK for OpenCL Applications documentation: 
- Optimization Guide 
- User’s Guide 

OpenCL Specification Version 2.0 
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf 

http://software.intel.com/en-us/intel-software-technical-documentation?field_software_product_tid%5b%5d=42511
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf


coarse-grained buffer SVM as a compatibility option to be able to run on any 
OpenCL 2.0 device. 
Even the basic coarse-grained buffer type of SVM lets applications avoid 
duplicating data structure representations between the host and each OpenCL 
device. Thus, SVM can save extra memory copying and eliminate the need for 
fragile data structure marshalling code and its overhead. Pointers initialized on 
the host can be used “as is” on the device side in OpenCL C kernels. This is the 
main benefit of the shared address space that SVM provides. 
Fine-grained buffer SVM eliminates the need to call map/unmap OpenCL API 
functions on the host to access SVM allocations. This simplifies the programming 
experience in real applications compared to coarse-grained SVM. 
Besides a shared virtual address space, fine-grained SVM gives the application 
the capability to seamlessly read and write the same region of memory from both 
the host and from the device simultaneously. That is true for any non-overlapping 
modifications with granularity of byte. To modify the same bytes of memory 
concurrently, applications should synchronize between device(s) and the host via 
OpenCL 2.0-defined atomic operations applied on variables in SVM allocations. 
This expands the programmability of OpenCL 2.0 platforms opening the door to 
true heterogeneous programming. 
Those advanced topics are out of the scope for this basic tutorial, which focuses 
on the key API functions necessary for allocation and use of SVM buffers.  
 

See Also 
OpenCL 2.0 Specification: 

• SVM Introduction: 3.3.3 Memory Model: Shared Virtual Memory 
• SVM Host API: 5.6 Shared Virtual Memory 

Prerequisites 
Before you start with the tutorial, make sure your system meets the following 
requirements.  
To build and run the sample application, you need 

• A processor based on Intel® microarchitecture Broadwell. See the list of 
supported processors in the SDK release notes. 

• Intel OpenCL Driver for Intel Graphics (which already includes Intel 
OpenCL 2.0 runtime for CPU device) available at the OpenCL Drivers and 
Runtimes for Intel® Architecture page. 

• Microsoft Visual Studio* 2010 and higher. 
• Intel® SDK for OpenCL™ Applications 2014 and higher, available at the 

SDK main page. 

Navigation Quick Start 
This tutorial includes sample code that you can compile using Microsoft Visual 
Studio 2010 and higher. Find the relevant solution file in the sample root 
directory > SVMBasic subfolder. 

Building and Running Code Sample 
To build the SVM Basic code sample, 

1. Double-click the solution file (*.sln) relevant to your Visual Studio 
version. 

2. Select Build > Build Solution. 

http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://software.intel.com/en-us/articles/intel-sdk-for-opencl-applications-2014-release-notes
http://software.intel.com/en-us/articles/opencl-drivers
http://software.intel.com/en-us/articles/opencl-drivers
http://software.intel.com/en-us/vcsource/tools/opencl-sdk


Then to run the application, 
1. Select a project file in the Visual Studio Solution Explorer. 
2. If the sample application is not set as a startup project, right-click the 

project and select Set as StartUp Project. 
3. Press Ctrl+F5 to run the application. 

To run the application in Debug mode, press F5. 
You can also run the sample application using the command-line interface:  

1. Run the command prompt. 
2. Switch to the directory, where the solution file resides. 
3. Go to the directory according to the platform configuration: 

- \Win32 - for Win32 configuration 
- \x64 - for x64 configuration 

4. Open the appropriate project configuration (Debug or Release). 
5. Run the sample by entering SVMBasic.exe. 

Controlling the Sample Application 
The sample executable is a console application. You can control OpenCL platform, 
device type, and array size with the dedicated command-line options. The sample 
uses default parameters if you run it without specifying any command-line 
options. 
 

Command-Line Options 

Short 
Form 

Full Form Description 

-h --help Shows command-line options with descriptions. 

-p --platform 
Selects the platform, the devices of which are used. 
(Default value: Intel) 

-t --type 

Selects an OpenCL device to run by type. First device of the 
specified type will be picked. The following options are 
relevant:  

• cpu 
• gpu 

Combine the -t option with the -p option, which specifies 
OpenCL platform. 
 (Default value: gpu) 

-d --device 

Selects an OpenCL device by number (or name). 
This option combines well with the previous ones. For 
example, if you have multiple devices of the same type 
specified with –t, you can select the particular device to run 
using -d. 
(Default value: 0) 

-s --size 
Amount of input floating-point numbers to process with the 
OpenCL kernel. 
(Default value: 1048576) 



Sample Implementation 
For illustrative purposes, the sample implements a traversal algorithm that 
handles a data structure populated with pointers. Core functionality is placed in 
the following files: 

• svmbasic.cpp – OpenCL host code 
• svmbasic.cl – OpenCL C kernel device code 
• svmbasic.h – Definition of the structure type, arrays of which are used by 

both the device and the host code. 

Code Execution Scenario 
The sample code executes according to the following scenario: 
 

1. Selects the OpenCL platform and device according to the specified 
command-line arguments. 

2. Checks SVM availability for the selected OpenCL device. If SVM capabilities 
are not available the application exits immediately. 

3. Allocate SVM memory by creating two arrays in two SVM buffers on the 
host side. 

4. Access SVM memory on the host by mapping the newly-created arrays on 
the host and populating them via pointers in the host address space. The 
map/unmap pair is only required for coarse-grained buffer SVM. 

5. Pass pointers to SVM memory to the device to enable the OpenCL C kernel 
to access SVM memory. 

6. The OpenCL C kernel reads the shared memory and traverses the arrays 
using those shared pointers. With SVM, such pointers work seamlessly in 
OpenCL C kernels and point to the same data, just as they do in the host 
code.    

7. The OpenCL C kernel performs arithmetic operations with values from the 
SVM buffers and writes to the dedicated output buffer. 

8. The kernel-written data is read in the host code and validated against a 
CPU reference implementation to prove its correctness. 

 
Steps 2-6 are specific for SVM, while the rest of the steps are common 
infrastructure. This tutorial document focuses on the SVM-specific steps only. 

Using SVM in Your Application 
The rest of the tutorial sections guide you through the process of using SVM in 
your application. The following steps correspond to the scenario described in the 
Code Execution Scenario section. 

Check SVM Availability 
You can check SVM availability using the checkSVMAvailability function, which 
queries CL_DEVICE_SVM_CAPABILITIES from clGetDeviceInfo. See 
svmbasic.cpp for details. 
 
bool checkSVMAvailability (cl_device_id device) 
{ 
    cl_device_svm_capabilities caps; 
    cl_int err = clGetDeviceInfo( 
        device, 
        CL_DEVICE_SVM_CAPABILITIES, 



        sizeof(cl_device_svm_capabilities), 
        &caps, 
        0); 
    return err == CL_SUCCESS; 
} 

 
This returns true if at least coarse-grained buffer SVM is available. 
cl_device_svm_capabilities is a bit-field that describes a combination of the 
following values: 

• CL_DEVICE_SVM_COARSE_GRAIN is for coarse-grained buffer SVM 
• CL_DEVICE_SVM_FINE_GRAIN_BUFFER is for fine-grained buffer SVM 
• CL_DEVICE_SVM_FINE_GRAIN_SYSTEM is for fine-grained system SVM 
• CL_DEVICE_SVM_ATOMICS is for atomics support 

OpenCL 2.0 specification requires that CL_DEVICE_SVM_COARSE_GRAIN_BUFFER is 
supported by all OpenCL 2.0 devices.  
For example, if your application requires fine-grained buffer support, the return 
statement should be replaced with 
 
  return err == CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER); 
 

false might be returned in the case when the device is not an OpenCL 2.0 device 
(an OpenCL 1.2 device for example). In this case clGetDeviceInfo should 
respond with an error because CL_DEVICE_SVM_CAPABILITIES constant is an 
invalid value for OpenCL implementation version lower than OpenCL 2.0. 

Allocate SVM Memory 
Create two synthetic data structures - arrays to be allocated and filled: 

• the first array should consist of Element structures (refer to svmbasic.h 
for the structure definition), 

• the second one of float values. 
Create the first array in the SVM memory with the clSVMAlloc function. This 
function returns a regular pointer in the host address space. At the same time, 
you can pass this pointer to the kernel to be used like a regular OpenCL buffer. 
Pointers to the memory in the SVM allocation are mapped to the same bytes on 
the host and on the device sides. 
The arguments for clSVMAlloc are similar to clCreateBuffer. See the example 
below: 
 
Element* inputElements = (Element*)clSVMAlloc( 
    context,              // an OpenCL context where this buffer is 
                          // available 
    CL_MEM_READ_ONLY, 
    size*sizeof(Element), // amount of memory to allocate (in bytes) 
    0                     // alignment in bytes (0 means default) 
); 

 
In case of fine-grained buffer SVM, while allocating SVM memory, you need to 
pass CL_MEM_SVM_FINE_GRAIN_BUFFER as an extra flag for clSVMAlloc, like in the 
following example: 
 
Element* inputElements = (Element*)clSVMAlloc( 
    context,              // an OpenCL context where this buffer is 
                          // available 



    CL_MEM_READ_ONLY | CL_MEM_SVM_FINE_GRAIN_BUFFER, 
    size*sizeof(Element), // amount of memory to allocate (in bytes) 
    0                     // alignment in bytes (0 means default) 
); 

 
Do it for all allocations in case of using the fine-grained buffer SVM. 
 
Each structure of the first array (struct Element) has two pointers: 

• The first pointer (internal) points to the value field of another Element 
from the same array. 

• The second pointer (external) points to a floating point value in the 
separate array. 

You create the second array in a similar way: 
 
float* inputFloats = (float*)clSVMAlloc( 
    context,              // context where this buffer is available 
    CL_MEM_READ_ONLY,     // fine-grained: CL_MEM_SVM_FINE_GRAIN_BUFFER 
    size*sizeof(float),   // amount of memory to allocate (in bytes) 
    0                     // default alignment (0 means default) 
); 
 
Pointer values of the Element array entries are set randomly. The data structures 
do not reflect any real usage scenario, but are illustrative for a simple device-side 
traversal. After initialization the linked data structure appears as illustrated 
below: 
 
 
       Array of Element                        Array of floats 
          Structures                            (inputFloats) 
        (inputElements) 
 
   ||====================|| 
   ||    .............   ||                   ||============|| 
   ||    .............   ||<-----+            || .......... || 
   ||====================||      |            ||    float   || 
   ||   float* internal--||------+            ||    float   || 
   ||   float* external--||------------------>||    float   || 
   ||   float value <----||------+            || .......... || 
   ||====================||      |            || .......... || 
   ||    .............   ||      |            ||    float   || 
   ||    .............   ||      |            ||    float   || 
   ||====================||      |            ||    float   || 
   ||====================||      |            ||    float   || 
   ||   float* internal--||------+            ||    float   || 
   ||   float* external--||------------------>||    float   || 
   ||   float value      ||                   ||    float   || 
   ||====================||                   ||    float   || 
   ||    .............   ||                   || .......... || 
   ||    .............   ||                   ||============|| 
   ||====================|| 
 
 
The two arrays described above, are created separately to illustrate two different 
ways of passing pointers to SVM allocations to the kernel: 
 

• The first array (inputElements) is passed to the kernel as one of the 
kernel arguments with the clSetKernelArgSVMPointer OpenCL 2.0 API 
function. 



• The second array (inputFloats) is used by the kernel indirectly and 
should be also made known to the kernel with the clSetKernelExecInfo 
OpenCL 2.0 new API (refer to Passing SVM Pointers to Kernel section 
below for details). 

Access SVM Memory in Host Code 
Much like new or delete operators, clSVMAlloc returns a conventional C/C++ 
pointer. Once allocated, OpenCL 2.0 platforms with fine-grained SVM support may 
just start using the pointer directly like any conventional C/C++ pointer. 
In contrast to fine-grained SVM, coarse-grained-only enabled platforms should 
perform special steps to use allocated SVM memory on the host. In this case, 
although clSVMAlloc function returns a regular host pointer, according to the 
OpenCL 2.0 specification you cannot access this SVM memory in the host code 
without mapping it. To map the memory region, you should call 
clEnqueueSVMMap: 
 
clEnqueueSVMMap( 
    queue,          // OpenCL queue 
    CL_TRUE,        // block on this command until map is done 
    CL_MAP_WRITE,   // map for writing on the host 
    inputElements,  // pointer to the beginning of the SVM region to map 
    sizeof(Element)*size,  // the size of the SVM region to map 
    0, 0, 0 
); 
 

The code should map the SVM region for initialization, so you should use 
CL_MAP_WRITE. To be able to use the region in the OpenCL kernel, after 
initialization of inputElements, you need to unmap the region: 
 
clEnqueueSVMUnmap( 
    queue, 
    inputElements, 
    0, 0, 0 
); 
 

By using map/unmap commands as synchronization points you coordinate the 
ownership over the SVM allocations between the host and OpenCL device(s), 
hence keeping the content of the allocations consistent. Refer to paragraph 
5.6.2 ”Memory consistency for SVM allocations” of the OpenCL 2.0 specification 
for details. 
As it has been already said before, using clEnqueueSVMMap and 
clEnqueueSVMUnmap commands is necessary for coarse-grained buffer SVM only. 
 

Pass SVM Pointers to a Kernel 
Pointers to SVM memory may be passed to the OpenCL C kernel in two ways. The 
first one is to pass the SVM pointer as a kernel argument (such as 
inputElements below) with clSetKernelArgSVMPointer(). This is similar to 
passing a conventional OpenCL buffer cl_mem object as a regular argument to 
the kernel: 
 
clSetKernelArgSVMPointer(kernel, 0, inputElements); 
 



This pointer will point to the first argument of the kernel (pointer to the array of 
Element, see the svmbasic.cl file for details): 
 
kernel void svmbasic (global Element* elements, global float *dst) 
{ 
    . . . 
} 
 

The second method of passing SVM allocations is used when an SVM allocation is 
accessed implicitly by the OpenCL C Kernel (for example, when it is pointed to by 
pointers within another SVM allocation). This is the case for inputFloats usage 
in the kernel, as the sample does not pass inputFloats pointer directly as a 
kernel argument. Instead, inputFloats elements are used through pointers 
stored in inputElements: 
 
kernel void svmbasic (global Element* elements, global float *dst) 
{ 
    int id = (int)get_global_id(0); 
 
    float internalElement = *(elements[id].internal); 
    float externalElement = *(elements[id].external); 
    dst[id] = internalElement + externalElement; 
} 

 
In this case, according to OpenCL 2.0 specification (refer to section 5.9.2 ‘Setting 
Kernel Arguments’) the SVM pointer must be specified using 
clSetKernelExecInfo function with parameter 
CL_KERNEL_EXEC_INFO_SVM_PTRS: 
 
clSetKernelExecInfo( 
    kernel,  
    CL_KERNEL_EXEC_INFO_SVM_PTRS, 
    sizeof(inputFloats), 
    &inputFloats 
); 
 

You need to do that for each non-argument SVM pointer in your program that is 
used in the kernel. 
Note that using clSetKernelExecInfo is a necessary step for both coarse-
grained and fine-grained buffer SVM allocations, but not for fine-grain system 
SVM allocations, which operates on the full range of the system virtual memory 
addresses. 

Summary 
This tutorial demonstrated an end-to-end workflow you can apply to your own 
application. 

Step Tutorial Recap Key Tutorial Take-aways 
Check SVM 
availability 

Use the checkSVMAvailability 
function to query OpenCL device 
capabilities. 

Make sure your system contains 
OpenCL 2.0 devices, so that you are 
able to utilize the SVM feature. 

Allocate SVM 
memory 

Use the clSVMAlloc function to 
create two arrays: an array of 
Element structures and an 

By allocating pointers to SVM 
memory, you create a pool of 
memory to be available for the host 

https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSetKernelExecInfo.html


element of float values. and device sides of the application in 
a shared address space. 

Access SVM 
memory in 
host code 

In case of fine-grained SVM: use 
the pointers to SVM memory as 
you would use conventional 
C/C++ pointers. 
In case of coarse-grained SVM: 
use the clEnqueueSVMMap 
function to enable the host side 
of the application to use the 
allocated SVM memory. 

In case of coarse-grained SVM only, 
to be able to access the allocated 
SVM memory on the host side of the 
application, you need to map the 
memory.  
Make sure you unmap the memory 
after using it in the host side, so that 
the device side of the application is 
also able to use the memory region. 
Fine-grained SVM doesn’t require 
those steps. 

Pass SVM 
memory to the 
kernel 

Use the 
clSetKernelArgSVMPointer to 
pass the SVM pointer explicitly 
as a kernel argument, or use the 
clSetKernelExecInfo 
function with the 
CL_KERNEL_EXEC_INFO_SVM_PTRS 
parameter to pass the SVM 
pointers implicitly. 

Even indirectly accessed (not through 
kernel arguments) SVM should be 
passed to the kernel via the 
clSetKernelExecInfo.  

Exposed OpenCL APIs 
The sample application focuses on the following API functions: 

• clSVMAlloc 

• clEnqueueSVMMap 

• clEnqueueSVMUnmap 

• clSetKernelArgSVMPointer 

• clSetKernelExecInfo 

• clSVMFree 

 

https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSetKernelExecInfo.html
https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSetKernelExecInfo.html
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