
Tutorial: Using Shared Virtual Memory
Intel® SDK for OpenCL™ Applications
OpenCL Sample Application Code

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. A Mission Critical Application" is any application in which failure of
the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU
PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS,
DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR
INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features
within each processor family, not across different processor families. See
http://www.intel.com/products/processor_number for details.
Centrino, Cilk, Intel, Intel Atom, Intel Core, Intel NetBurst, Itanium, MMX, Pentium, Xeon, Intel Xeon
Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
* Other names and brands may be claimed as the property of others.
Copyright © 2014, Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

Overview
This sample demonstrates the fundamentals of using Shared Virtual Memory
(SVM) capabilities in OpenCL™ applications. The SVM Basic code sample uses the
OpenCL 2.0 APIs to query SVM support and manage SVM allocations for the
selected OpenCL 2.0 device.
The sample code implements an algorithm to demonstrate pointer sharing
between host and device with OpenCL SVM features. Advanced topics like use of
atomics within SVM allocations and associated performance considerations are
out of the scope of this tutorial.

About Shared Virtual Memory (SVM)
Intel’s Shared Virtual Memory capabilities can be programmed via OpenCL 2.0’s
Shared Virtual Memory (SVM) APIs and OpenCL C language support. OpenCL SVM
enables the host and device portions of OpenCL applications to seamlessly share
pointers and complex data-structures. OpenCL 2.0 also defines memory model
consistency guarantees for SVM.
OpenCL 2.0 defines three types of SVM:

• Coarse-Grained buffer SVM: Sharing occurs at the granularity of
regions of OpenCL buffer memory objects.

• Fine-Grained buffer SVM: Sharing occurs at the granularity of individual
loads and stores within OpenCL buffer memory objects.

• Fine-Grained system SVM: Sharing occurs at the granularity of
individual loads/stores occurring anywhere within the host memory.

In Coarse-Grained buffer SVM, consistency is enforced at synchronization points
and with map/unmap commands to drive updates between the host and the
device. This form of SVM is similar to non-SVM use of memory; however, it lets
host and device share a single region of virtual memory address space containing
pointer-based data structures (such as linked-lists), which was not possible in
OpenCL versions lower than 2.0.
Coarse-Grained buffer SVM is the minimum required by the core OpenCL 2.0
specification. So if there is an OpenCL 2.0 device in your OpenCL platform, it
should support the necessary functionality to run the sample code. The other two
(fine-grained) levels described above are optional OpenCL 2.0 features. Consider

About This
Tutorial

This tutorial demonstrates an end-to-end workflow you can
ultimately apply to your own applications:
• Check SVM availability
• Allocate SVM memory. Access SVM memory in host code
• Pass pointers to SVM memory to OpenCL C device code

Estimated
Duration

10-15 minutes.

Learning
Objectives

After you complete this tutorial, you should be able to:
• Allocate SVM memory
• Use the SVM memory in host- and device code.

More
Resources

Intel SDK for OpenCL Applications documentation:
- Optimization Guide
- User’s Guide

OpenCL Specification Version 2.0
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

http://software.intel.com/en-us/intel-software-technical-documentation?field_software_product_tid%5b%5d=42511
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

coarse-grained buffer SVM as a compatibility option to be able to run on any
OpenCL 2.0 device.
Even the basic coarse-grained buffer type of SVM lets applications avoid
duplicating data structure representations between the host and each OpenCL
device. Thus, SVM can save extra memory copying and eliminate the need for
fragile data structure marshalling code and its overhead. Pointers initialized on
the host can be used “as is” on the device side in OpenCL C kernels. This is the
main benefit of the shared address space that SVM provides.
Fine-grained buffer SVM eliminates the need to call map/unmap OpenCL API
functions on the host to access SVM allocations. This simplifies the programming
experience in real applications compared to coarse-grained SVM.
Besides a shared virtual address space, fine-grained SVM gives the application
the capability to seamlessly read and write the same region of memory from both
the host and from the device simultaneously. That is true for any non-overlapping
modifications with granularity of byte. To modify the same bytes of memory
concurrently, applications should synchronize between device(s) and the host via
OpenCL 2.0-defined atomic operations applied on variables in SVM allocations.
This expands the programmability of OpenCL 2.0 platforms opening the door to
true heterogeneous programming.
Those advanced topics are out of the scope for this basic tutorial, which focuses
on the key API functions necessary for allocation and use of SVM buffers.

See Also
OpenCL 2.0 Specification:

• SVM Introduction: 3.3.3 Memory Model: Shared Virtual Memory
• SVM Host API: 5.6 Shared Virtual Memory

Prerequisites
Before you start with the tutorial, make sure your system meets the following
requirements.
To build and run the sample application, you need

• A processor based on Intel® microarchitecture Broadwell. See the list of
supported processors in the SDK release notes.

• Intel OpenCL Driver for Intel Graphics (which already includes Intel
OpenCL 2.0 runtime for CPU device) available at the OpenCL Drivers and
Runtimes for Intel® Architecture page.

• Microsoft Visual Studio* 2010 and higher.
• Intel® SDK for OpenCL™ Applications 2014 and higher, available at the

SDK main page.

Navigation Quick Start
This tutorial includes sample code that you can compile using Microsoft Visual
Studio 2010 and higher. Find the relevant solution file in the sample root
directory > SVMBasic subfolder.

Building and Running Code Sample
To build the SVM Basic code sample,

1. Double-click the solution file (*.sln) relevant to your Visual Studio
version.

2. Select Build > Build Solution.

http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://software.intel.com/en-us/articles/intel-sdk-for-opencl-applications-2014-release-notes
http://software.intel.com/en-us/articles/opencl-drivers
http://software.intel.com/en-us/articles/opencl-drivers
http://software.intel.com/en-us/vcsource/tools/opencl-sdk

Then to run the application,
1. Select a project file in the Visual Studio Solution Explorer.
2. If the sample application is not set as a startup project, right-click the

project and select Set as StartUp Project.
3. Press Ctrl+F5 to run the application.

To run the application in Debug mode, press F5.
You can also run the sample application using the command-line interface:

1. Run the command prompt.
2. Switch to the directory, where the solution file resides.
3. Go to the directory according to the platform configuration:

- \Win32 - for Win32 configuration
- \x64 - for x64 configuration

4. Open the appropriate project configuration (Debug or Release).
5. Run the sample by entering SVMBasic.exe.

Controlling the Sample Application
The sample executable is a console application. You can control OpenCL platform,
device type, and array size with the dedicated command-line options. The sample
uses default parameters if you run it without specifying any command-line
options.

Command-Line Options

Short
Form

Full Form Description

-h --help Shows command-line options with descriptions.

-p --platform
Selects the platform, the devices of which are used.
(Default value: Intel)

-t --type

Selects an OpenCL device to run by type. First device of the
specified type will be picked. The following options are
relevant:

• cpu
• gpu

Combine the -t option with the -p option, which specifies
OpenCL platform.
 (Default value: gpu)

-d --device

Selects an OpenCL device by number (or name).
This option combines well with the previous ones. For
example, if you have multiple devices of the same type
specified with –t, you can select the particular device to run
using -d.
(Default value: 0)

-s --size
Amount of input floating-point numbers to process with the
OpenCL kernel.
(Default value: 1048576)

Sample Implementation
For illustrative purposes, the sample implements a traversal algorithm that
handles a data structure populated with pointers. Core functionality is placed in
the following files:

• svmbasic.cpp – OpenCL host code
• svmbasic.cl – OpenCL C kernel device code
• svmbasic.h – Definition of the structure type, arrays of which are used by

both the device and the host code.

Code Execution Scenario
The sample code executes according to the following scenario:

1. Selects the OpenCL platform and device according to the specified
command-line arguments.

2. Checks SVM availability for the selected OpenCL device. If SVM capabilities
are not available the application exits immediately.

3. Allocate SVM memory by creating two arrays in two SVM buffers on the
host side.

4. Access SVM memory on the host by mapping the newly-created arrays on
the host and populating them via pointers in the host address space. The
map/unmap pair is only required for coarse-grained buffer SVM.

5. Pass pointers to SVM memory to the device to enable the OpenCL C kernel
to access SVM memory.

6. The OpenCL C kernel reads the shared memory and traverses the arrays
using those shared pointers. With SVM, such pointers work seamlessly in
OpenCL C kernels and point to the same data, just as they do in the host
code.

7. The OpenCL C kernel performs arithmetic operations with values from the
SVM buffers and writes to the dedicated output buffer.

8. The kernel-written data is read in the host code and validated against a
CPU reference implementation to prove its correctness.

Steps 2-6 are specific for SVM, while the rest of the steps are common
infrastructure. This tutorial document focuses on the SVM-specific steps only.

Using SVM in Your Application
The rest of the tutorial sections guide you through the process of using SVM in
your application. The following steps correspond to the scenario described in the
Code Execution Scenario section.

Check SVM Availability
You can check SVM availability using the checkSVMAvailability function, which
queries CL_DEVICE_SVM_CAPABILITIES from clGetDeviceInfo. See
svmbasic.cpp for details.

bool checkSVMAvailability (cl_device_id device)
{
 cl_device_svm_capabilities caps;
 cl_int err = clGetDeviceInfo(
 device,
 CL_DEVICE_SVM_CAPABILITIES,

 sizeof(cl_device_svm_capabilities),
 &caps,
 0);
 return err == CL_SUCCESS;
}

This returns true if at least coarse-grained buffer SVM is available.
cl_device_svm_capabilities is a bit-field that describes a combination of the
following values:

• CL_DEVICE_SVM_COARSE_GRAIN is for coarse-grained buffer SVM
• CL_DEVICE_SVM_FINE_GRAIN_BUFFER is for fine-grained buffer SVM
• CL_DEVICE_SVM_FINE_GRAIN_SYSTEM is for fine-grained system SVM
• CL_DEVICE_SVM_ATOMICS is for atomics support

OpenCL 2.0 specification requires that CL_DEVICE_SVM_COARSE_GRAIN_BUFFER is
supported by all OpenCL 2.0 devices.
For example, if your application requires fine-grained buffer support, the return
statement should be replaced with

 return err == CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER);

false might be returned in the case when the device is not an OpenCL 2.0 device
(an OpenCL 1.2 device for example). In this case clGetDeviceInfo should
respond with an error because CL_DEVICE_SVM_CAPABILITIES constant is an
invalid value for OpenCL implementation version lower than OpenCL 2.0.

Allocate SVM Memory
Create two synthetic data structures - arrays to be allocated and filled:

• the first array should consist of Element structures (refer to svmbasic.h
for the structure definition),

• the second one of float values.
Create the first array in the SVM memory with the clSVMAlloc function. This
function returns a regular pointer in the host address space. At the same time,
you can pass this pointer to the kernel to be used like a regular OpenCL buffer.
Pointers to the memory in the SVM allocation are mapped to the same bytes on
the host and on the device sides.
The arguments for clSVMAlloc are similar to clCreateBuffer. See the example
below:

Element* inputElements = (Element*)clSVMAlloc(
 context, // an OpenCL context where this buffer is
 // available
 CL_MEM_READ_ONLY,
 size*sizeof(Element), // amount of memory to allocate (in bytes)
 0 // alignment in bytes (0 means default)
);

In case of fine-grained buffer SVM, while allocating SVM memory, you need to
pass CL_MEM_SVM_FINE_GRAIN_BUFFER as an extra flag for clSVMAlloc, like in the
following example:

Element* inputElements = (Element*)clSVMAlloc(
 context, // an OpenCL context where this buffer is
 // available

 CL_MEM_READ_ONLY | CL_MEM_SVM_FINE_GRAIN_BUFFER,
 size*sizeof(Element), // amount of memory to allocate (in bytes)
 0 // alignment in bytes (0 means default)
);

Do it for all allocations in case of using the fine-grained buffer SVM.

Each structure of the first array (struct Element) has two pointers:

• The first pointer (internal) points to the value field of another Element
from the same array.

• The second pointer (external) points to a floating point value in the
separate array.

You create the second array in a similar way:

float* inputFloats = (float*)clSVMAlloc(
 context, // context where this buffer is available
 CL_MEM_READ_ONLY, // fine-grained: CL_MEM_SVM_FINE_GRAIN_BUFFER
 size*sizeof(float), // amount of memory to allocate (in bytes)
 0 // default alignment (0 means default)
);

Pointer values of the Element array entries are set randomly. The data structures
do not reflect any real usage scenario, but are illustrative for a simple device-side
traversal. After initialization the linked data structure appears as illustrated
below:

 Array of Element Array of floats
 Structures (inputFloats)
 (inputElements)

	====================						
				============		
		<-----+			
	====================					float	
	float* internal--		------+		float		
	float* external--		------------------>		float		
	float value <----		------+			
	====================					
					float	
					float	
	====================					float	
	====================					float	
	float* internal--		------+		float		
	float* external--		------------------>		float		
	float value				float		
	====================				float		
		
				============		
	====================						

The two arrays described above, are created separately to illustrate two different
ways of passing pointers to SVM allocations to the kernel:

• The first array (inputElements) is passed to the kernel as one of the
kernel arguments with the clSetKernelArgSVMPointer OpenCL 2.0 API
function.

• The second array (inputFloats) is used by the kernel indirectly and
should be also made known to the kernel with the clSetKernelExecInfo
OpenCL 2.0 new API (refer to Passing SVM Pointers to Kernel section
below for details).

Access SVM Memory in Host Code
Much like new or delete operators, clSVMAlloc returns a conventional C/C++
pointer. Once allocated, OpenCL 2.0 platforms with fine-grained SVM support may
just start using the pointer directly like any conventional C/C++ pointer.
In contrast to fine-grained SVM, coarse-grained-only enabled platforms should
perform special steps to use allocated SVM memory on the host. In this case,
although clSVMAlloc function returns a regular host pointer, according to the
OpenCL 2.0 specification you cannot access this SVM memory in the host code
without mapping it. To map the memory region, you should call
clEnqueueSVMMap:

clEnqueueSVMMap(
 queue, // OpenCL queue
 CL_TRUE, // block on this command until map is done
 CL_MAP_WRITE, // map for writing on the host
 inputElements, // pointer to the beginning of the SVM region to map
 sizeof(Element)*size, // the size of the SVM region to map
 0, 0, 0
);

The code should map the SVM region for initialization, so you should use
CL_MAP_WRITE. To be able to use the region in the OpenCL kernel, after
initialization of inputElements, you need to unmap the region:

clEnqueueSVMUnmap(
 queue,
 inputElements,
 0, 0, 0
);

By using map/unmap commands as synchronization points you coordinate the
ownership over the SVM allocations between the host and OpenCL device(s),
hence keeping the content of the allocations consistent. Refer to paragraph
5.6.2 ”Memory consistency for SVM allocations” of the OpenCL 2.0 specification
for details.
As it has been already said before, using clEnqueueSVMMap and
clEnqueueSVMUnmap commands is necessary for coarse-grained buffer SVM only.

Pass SVM Pointers to a Kernel
Pointers to SVM memory may be passed to the OpenCL C kernel in two ways. The
first one is to pass the SVM pointer as a kernel argument (such as
inputElements below) with clSetKernelArgSVMPointer(). This is similar to
passing a conventional OpenCL buffer cl_mem object as a regular argument to
the kernel:

clSetKernelArgSVMPointer(kernel, 0, inputElements);

This pointer will point to the first argument of the kernel (pointer to the array of
Element, see the svmbasic.cl file for details):

kernel void svmbasic (global Element* elements, global float *dst)
{
 . . .
}

The second method of passing SVM allocations is used when an SVM allocation is
accessed implicitly by the OpenCL C Kernel (for example, when it is pointed to by
pointers within another SVM allocation). This is the case for inputFloats usage
in the kernel, as the sample does not pass inputFloats pointer directly as a
kernel argument. Instead, inputFloats elements are used through pointers
stored in inputElements:

kernel void svmbasic (global Element* elements, global float *dst)
{
 int id = (int)get_global_id(0);

 float internalElement = *(elements[id].internal);
 float externalElement = *(elements[id].external);
 dst[id] = internalElement + externalElement;
}

In this case, according to OpenCL 2.0 specification (refer to section 5.9.2 ‘Setting
Kernel Arguments’) the SVM pointer must be specified using
clSetKernelExecInfo function with parameter
CL_KERNEL_EXEC_INFO_SVM_PTRS:

clSetKernelExecInfo(
 kernel,
 CL_KERNEL_EXEC_INFO_SVM_PTRS,
 sizeof(inputFloats),
 &inputFloats
);

You need to do that for each non-argument SVM pointer in your program that is
used in the kernel.
Note that using clSetKernelExecInfo is a necessary step for both coarse-
grained and fine-grained buffer SVM allocations, but not for fine-grain system
SVM allocations, which operates on the full range of the system virtual memory
addresses.

Summary
This tutorial demonstrated an end-to-end workflow you can apply to your own
application.

Step Tutorial Recap Key Tutorial Take-aways
Check SVM
availability

Use the checkSVMAvailability
function to query OpenCL device
capabilities.

Make sure your system contains
OpenCL 2.0 devices, so that you are
able to utilize the SVM feature.

Allocate SVM
memory

Use the clSVMAlloc function to
create two arrays: an array of
Element structures and an

By allocating pointers to SVM
memory, you create a pool of
memory to be available for the host

https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSetKernelExecInfo.html

element of float values. and device sides of the application in
a shared address space.

Access SVM
memory in
host code

In case of fine-grained SVM: use
the pointers to SVM memory as
you would use conventional
C/C++ pointers.
In case of coarse-grained SVM:
use the clEnqueueSVMMap
function to enable the host side
of the application to use the
allocated SVM memory.

In case of coarse-grained SVM only,
to be able to access the allocated
SVM memory on the host side of the
application, you need to map the
memory.
Make sure you unmap the memory
after using it in the host side, so that
the device side of the application is
also able to use the memory region.
Fine-grained SVM doesn’t require
those steps.

Pass SVM
memory to the
kernel

Use the
clSetKernelArgSVMPointer to
pass the SVM pointer explicitly
as a kernel argument, or use the
clSetKernelExecInfo
function with the
CL_KERNEL_EXEC_INFO_SVM_PTRS
parameter to pass the SVM
pointers implicitly.

Even indirectly accessed (not through
kernel arguments) SVM should be
passed to the kernel via the
clSetKernelExecInfo.

Exposed OpenCL APIs
The sample application focuses on the following API functions:

• clSVMAlloc

• clEnqueueSVMMap

• clEnqueueSVMUnmap

• clSetKernelArgSVMPointer

• clSetKernelExecInfo

• clSVMFree

https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSetKernelExecInfo.html
https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSetKernelExecInfo.html

	Tutorial: Using Shared Virtual Memory
	Legal Information
	Overview
	About Shared Virtual Memory (SVM)
	Prerequisites

	Navigation Quick Start
	Building and Running Code Sample
	Controlling the Sample Application

	Sample Implementation
	Code Execution Scenario

	Using SVM in Your Application
	Check SVM Availability
	Allocate SVM Memory
	Access SVM Memory in Host Code
	Pass SVM Pointers to a Kernel

	Summary
	Exposed OpenCL APIs

