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Challenge: Implementing Concurrency Control 

High-performance in-memory databases 

 Extensively use low-level synchronization mechanisms 

 Synchronize access to internal in-memory data structures 

Rich history with numerous proposals and implementations 

 Remains complicated and difficult to verify/deploy/productize 

 Trade-off – complexity/verifiability 

 Latches/Locks remain popular 

 Consumes significant developmental effort and resources 
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“Perhaps the most urgently needed future direction is simplification. 

Functionality and code for concurrency control and recovery are too complex  

to design, implement, test, debug, tune, explain, and maintain.“ 

           - Graefe, 2010 



A Case Study: Two Index Implementations 

 

 

 

 

 

 

 

Read-Only  Queries on Dual Socket Intel® Xeon®  E5-2680 Server 
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Hidden Scalability Impact of Atomic Read-Modify-Write Operations 

B+Tree Index 
(a common index implementation) 

Delta Storage Index 
(from the SAP HANA® database) 
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Hardware Trends 

Hardware support for Transactional Synchronization 

 IBM System z CPU (zEC12) 

 4th Generation Core ™ Processors (codenamed Haswell) 

Goal 

 Enable development of simple and scalable easy-to-verify implementations 

 Without requiring new programming models and paradigms 

Question 

 How can a commercial database exploit such hardware? 

 Without requiring large scale changes? 
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Can Modern Databases Take Advantage of Hardware Trends? 



Outline 

Challenge and Trends 

Intel Transactional Synchronization Extensions (Intel TSX) 

Case Study: SAP HANA index implementation 

Applying Intel TSX 

Analysis and Transformations 

Results 

Lessons and Summary 
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What is Intel® TSX? 

Hardware support to enable Lock Elision 

 Focus on lock granularity optimizations 

 Fine grain performance at coarse grain effort 

Intel® TSX: Instruction Set Extensions for Intel Architecture 

 Transactionally execute lock-protected critical sections 

 Execute without acquiring lock  Expose hidden concurrency 

 Hardware manages transactional updates – All or None 

 Other threads cannot observe intermediate transactional updates 

 If lock elision cannot succeed, restart execution, and acquire lock 
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Improves the Well-Understood Lock Based Programming Model 



Intel® TSX Interfaces for Lock Elision 

Hardware Lock Elision (HLE) – XACQUIRE/XRELEASE 

 Software uses legacy compatible hints to identify critical section.  

 Hints ignored on hardware without TSX 

 Hardware support to execute transactionally without acquiring lock 

 Abort causes a re-execution without elision 

 Hardware manages all architectural state 

Restricted Transactional Memory (RTM) – XBEGIN/XEND 

 Software uses new instructions to specify critical sections 

 Similar to HLE but flexible interface for software to do lock elision 

 Abort transfers control to target specified by XBEGIN operand 

 Abort information returned in a general purpose register (EAX) 
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Outline 

Challenge and Trends 

Intel Transactional Synchronization Extensions 

Case Study: SAP HANA index implementations 

Applying Intel TSX 

Analysis and Transformations 

Results 

Summary 
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Case Study: Index Tree Implementations 

SAP HANA Database 

 Read optimized column store database system 

Two index implementations  

 B+Tree [Data Structure] 

 Common index implementation 

 Smaller foot print 

 Delta Storage Index (B+Tree with a Dictionary) 

 Complex data structure with additional support structures 

 Large foot print 

Lock protect access 

 Reader-Writer 

 Spin Lock 
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Steps To Apply Intel TSX 

Modify synchronization library to use Intel TSX for lock elision 

 Use either the HLE or RTM interface 

 Application changes not immediately required  

RTM: Start with good “fallback handler" design 

 Avoid “the lemming effect” 

 Retry appropriately for both conflict and capacity aborts 

Analyze early results 

 Extensive hardware profiling infrastructure 

Apply transaction-friendly transformations if needed 

 To reduce conflict and capacity aborts 
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Lemming Effect:  Persistent convoy of non-

transactional execution 

 XA  xbegin; test; xabort; (retry loop when lock is busy) 

L—U  Lock; critical section; Unlock (non-transactional execution) 

T1 --AL 

T2 ---A 

T3 ---A 

 Happens when a thread aborts and acquires the lock 

 And aborts other threads 
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Lemming Effect:  Persistent convoy of non-

transactional execution 

 XA  xbegin; test; xabort; (retry loop when lock is busy) 

L—U  Lock; critical section; Unlock (non-transactional execution) 

T1 --AL-------- 

T2 ---AXAXAXAXA 

T3 ---AXAXAXAXA 

 Happens when a thread aborts and acquires the lock 

 And aborts other threads 

 And other threads immediately retry transactional execution 

 Find the lock held and abort 

– And immediately retry transactional execution 
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Lemming Effect:  Persistent convoy of non-

transactional execution 

 XA  xbegin; test; xabort; (retry loop when lock is busy) 

L—U  Lock; critical section; Unlock (non-transactional execution) 

T1 --AL------------UXAXAXAXAXAsssssss 

T2 ---AXAXAXAXAXAsssL------------UXAX 

T3 ---AXAXAXAXAXAsssssssssssssssssL-- 

 Happens when a thread aborts and acquires the lock 

 And aborts other threads 

 And other threads immediately retry transactional execution 

 Find the lock held and abort 

– And immediately retry transactional execution 

 Reach their retry limit 

– And enter non-transactional fall-back execution, trying to acquire lock 

13 



Lemming Effect:  Persistent convoy of non-

transactional execution 

 XA  xbegin; test; xabort; (retry loop when lock is busy) 

L—U  Lock; critical section; Unlock (non-transactional execution) 

T1 --AL------------UXAXAXAXAXAssssssssssssssssL----------UXAXA 

T2 ---AXAXAXAXAXAsssL------------UXAXAXAXAXAXAssssssssssssL--- 

T3 ---AXAXAXAXAXAsssssssssssssssssL----------UXAXAXAXAXAssssss 

 Happens when a thread aborts and acquires the lock 

 And aborts other threads 

 And other threads immediately retry transactional execution 

 Find the lock held and abort 

– And immediately retry transactional execution 

 Reach their retry limit 

– And enter non-transactional fall-back execution, trying to acquire lock 

 And never actually had any opportunity to elide the lock 

 Elision is effectively disabled until all threads have serially released the lock 

 Disabled forever if at least 1 thread is holding the lock 
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Lemming Effect 

Fix: Don’t retry until the lock is free (test-and-test-&-set) 

 

T1 --AL------------UX------- 

T2 ---AsssssssssssssX------- 

T3 ---AsssssssssssssX------- 
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Initial Results: B+Tree 

Intel TSX provides significant gains with no application changes 

 Outperforms RW lock on read-only queries  

 Significant gains with increasing inserts (6x for 50%) 
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Initial Results: Delta Storage Index 

Intel TSX provides gains with no application changes 

 Different profile as compared to B+Tree 

 Spin lock w/ Intel TSX better than RW Lock when > 5% insert  

 Significant gap as compared to no concurrency control  

Baseline should implement good retry policy on aborts 

 

 

 

 

17 Intel® Core™ i7 processor with 4 physical cores / 8 logical cores (HT) 
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Analysis: Delta Storage Index 

Capacity Aborts 

 Algorithmic level 

 Node/Leaf Search Scan   

 Causes O(n) random lookups 

 Cache Associativity Limits 

 Aborts typically before cache size limits 

 Hyper-threads share the L1 cache 

 Dictionary contributes to larger footprint 

Data Conflicts 

 Single dictionary 

 Global memory allocator 
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Well Known Causes of Transactional Aborts 



Software Transformations 

Capacity Aborts 

 Node/Leaf Search Scan  

 Causes O(n) random lookups 

 Transformation – Binary Search 

 Causes O(log(n)) random lookups 

Data Conflicts 

 Single dictionary 

 Global memory allocator 

 Transformation – Multiple Dictionaries, per-thread/core allocators 
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Well Known Transformations 



0

1

2

3

4

5

6

7

0 20 40 60 80 100

re
la

ti
ve

 p
e

rf
o

rm
an

ce
 

insert operations (%) 

No Concurrency Control

Spin Lock Elision w/ TSX−R (tuned) 

Spin Lock Elision w/ TSX (previous)

RW Lock

Spin lock

Tuned Results: Delta Storage Index 

Intel TSX provides significant gains with transformations 

 Restores read-only query performance 

 Spin lock w/ Intel TSX significantly outperforms RW lock (5x for 50% inserts) 

 Close to ‘No Concurrency Control” 
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Lessons 

Lemming Effect 

 A common but deadly mistake 

 Simple fixes 

Capacity Limits 

 Best determined by running actual workloads 

 Transient aborts due to associativity 

Use Analysis Tools and Iterate Optimizations 

 Extensive infrastructure 

 Can pinpoint areas of interest effectively 

Retry on Aborts 

 Limited retries are effective – even on capacity aborts 

 Abort rates can be misleading 
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Summary 

Atomic read-modify-write operations can limit scalability 

 Even for read only transactions using reader-writer locks  

 An often overlooked performance issue 

Database data structures compelling candidates for Intel TSX 

 SAP HANA Delta Storage Index 

 B+Tree 

Intel TSX-based lock elision can provide excellent scalability 

 Provides gains even for unmodified applications 

 Additional gains with simple well-known software transformations 

Great MT performance - Delta Storage Index  

 2x for 10% insert to ~5x for >50% insert 
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