
How to detect New Instruction support in the 4th generation Intel®

Core™ processor family

The 4th generation Intel® Core™ processor family (codenamed Haswell) introduces support for many

new instructions that are specifically designed to provide better performance to a broad range of

applications such as: media, gaming, data processing, hashing, cryptography, etc. The new instructions

can be divided into the following categories:

 Intel® Advanced Vector Extensions 2 (Intel® AVX2)

 Fused Multiply Add (FMA)

 Bit Manipulation New Instructions (BMI)

 MOVBE instruction (previously supported by the Intel® Atom™ processor)

 Intel® Transactional Synchronization Extensions (Intel® TSX) (available in some models)

The details of these instructions can be found in Intel® 64 and IA-32 Architectures Software Developer

Manuals and Intel® Advanced Vector Extensions Programming Reference manual.

In order to correctly use the new instructions and avoid runtime crashes, applications must properly

detect hardware support for the new instructions using CPUID checks. It is important to understand that

a new instruction is supported on a particular processor only if the corresponding CPUID feature flag is

set. Applications must not assume support of any instruction set extension simply based on, for

example, checking a CPU model or family and must instead always check for _all_ the feature CPUID bits

of the instructions being used.

Software developers can take advantage of the new instructions via writing assembly code, using

intrinsic functions, or relying on compiler automatic code generation. In the latter case, it is crucial to

understand what instructions the compiler(s) can generate with given switches and implement proper

CPUID feature checks accordingly.

Generally, compilers and libraries generating code for 4th generation Intel Core processors are expected

and allowed to use all the instructions listed above, with the exception of Intel TSX. Below is the

complete list of CPUID flags that generally must be checked:

CPUID.(EAX=01H, ECX=0H):ECX.FMA[bit 12]==1 &&

CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]==1 &&

CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]==1 &&

CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]==1 &&

CPUID.(EAX=80000001H):ECX.LZCNT[bit 5]==1 &&

CPUID.(EAX=01H, ECX=0H):ECX.MOVBE[bit 22]==1

Note: Applications using instructions from the RTM subset of Intel TSX extension need to guard the code

by checking the CPUID.(EAX=07H, ECX=0H).EBX.RTM[bit 11]==1. Applications can also, but are not

required to, check CPUID.(EAX=07H, ECX=0H).EBX.HLE[bit 4]==1 for HLE, because legacy processors

ignore HLE hints.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://download-software.intel.com/sites/default/files/m/8/a/1/8/4/36945-319433-011.pdf

For example Intel® Composer XE 2013 can automatically generate all the new instructions guarded by

the CPUID features in the above list, using -QaxCORE-AVX2 and -QxCORE-AVX2 switches on Microsoft

Windows* (on Linux*: -axCORE-AVX2 and -xCORE-AVX2). The compiler switch -[Q]axCORE-AVX2

generates automatic CPUID check and dispatch to the code using new instructions, while the -

[Q]xCORE-AVX2 switch assumes the new instructions are supported and thus requires a manual

implementation of the CPUID check for all the features in the list above. Microsoft Visual C++* 2012

compiler supports these new instructions via intrinsics as well as 32-bit inline assembler, while the GCC

compiler supports both auto-generation and intrinsics with -march=core-avx2 switch starting with

version 4.7, thus requiring a check of the complete list of CPUID features above, whenever such code is

called.

Additionally, libraries such as Intel® Integrated Performance Primitives (Intel® IPP) beginning with

version 7.1 may also use these new Instructions. In the case of Intel IPP, two types of interfaces are

available: an automatically dispatched interface is the default, and a CPU-specific interface available via

prefixes like ‘h9_’ (32-bit) or ‘l9_’ (64-bit). In the case of functions optimized for the 4th generation Intel

Core processor family, applications must check for the support of all the features in the list above before

calling these functions.

And finally, new instructions using VEX prefixes and operating on vector YMM/XMM registers continue

to require checking for OS support of YMM state before using, the same check as for Intel AVX

instructions.

Below is a code example you can use to detect the support of new instructions:

#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300)

#include <immintrin.h>

int check_4th_gen_intel_core_features()
{
 const int the_4th_gen_features =
 (_FEATURE_AVX2 | _FEATURE_FMA | _FEATURE_BMI | _FEATURE_LZCNT | _FEATURE_MOVBE);
 return _may_i_use_cpu_feature(the_4th_gen_features);
}

#else /* non-Intel compiler */

#include <stdint.h>
#if defined(_MSC_VER)
include <intrin.h>
#endif

void run_cpuid(uint32_t eax, uint32_t ecx, uint32_t* abcd)
{
#if defined(_MSC_VER)
 __cpuidex(abcd, eax, ecx);
#else
 uint32_t ebx, edx;
if defined(__i386__) && defined (__PIC__)
 /* in case of PIC under 32-bit EBX cannot be clobbered */
 __asm__ ("movl %%ebx, %%edi \n\t cpuid \n\t xchgl %%ebx, %%edi" : "=D" (ebx),
else
 __asm__ ("cpuid" : "+b" (ebx),

endif
 "+a" (eax), "+c" (ecx), "=d" (edx));
 abcd[0] = eax; abcd[1] = ebx; abcd[2] = ecx; abcd[3] = edx;
#endif
}

int check_xcr0_ymm()
{
 uint32_t xcr0;
#if defined(_MSC_VER)
 xcr0 = (uint32_t)_xgetbv(0); /* min VS2010 SP1 compiler is required */
#else
 __asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx");
#endif
 return ((xcr0 & 6) == 6); /* checking if xmm and ymm state are enabled in XCR0 */
}

int check_4th_gen_intel_core_features()
{
 uint32_t abcd[4];
 uint32_t fma_movbe_osxsave_mask = ((1 << 12) | (1 << 22) | (1 << 27));
 uint32_t avx2_bmi12_mask = (1 << 5) | (1 << 3) | (1 << 8);

 /* CPUID.(EAX=01H, ECX=0H):ECX.FMA[bit 12]==1 &&
 CPUID.(EAX=01H, ECX=0H):ECX.MOVBE[bit 22]==1 &&
 CPUID.(EAX=01H, ECX=0H):ECX.OSXSAVE[bit 27]==1 */
 run_cpuid(1, 0, abcd);
 if ((abcd[2] & fma_movbe_osxsave_mask) != fma_movbe_osxsave_mask)
 return 0;

 if (! check_xcr0_ymm())
 return 0;

 /* CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]==1 &&
 CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]==1 &&
 CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]==1 */
 run_cpuid(7, 0, abcd);
 if ((abcd[1] & avx2_bmi12_mask) != avx2_bmi12_mask)
 return 0;

 /* CPUID.(EAX=80000001H):ECX.LZCNT[bit 5]==1 */
 run_cpuid(0x80000001, 0, abcd);
 if ((abcd[2] & (1 << 5)) == 0)
 return 0;

 return 1;
}

#endif /* non-Intel compiler */

static int can_use_intel_core_4th_gen_features()
{
 static int the_4th_gen_features_available = -1;
 /* test is performed once */
 if (the_4th_gen_features_available < 0)
 the_4th_gen_features_available = check_4th_gen_intel_core_features();

 return the_4th_gen_features_available;
}

#include <stdio.h>

int main(int argc, char** argv)
{
 if (can_use_intel_core_4th_gen_features())
 printf("This CPU supports ISA extensions introduced in Haswell\n");
 else
 printf("This CPU does not support all ISA extensions introduced in Haswell\n");

 return 1;
}

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO

SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR

ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL

INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

The products described in this document may contain design defects or errors known as errata which may cause

the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your

product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,

may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer

systems, components, software, operations, and functions. Any change to any of those factors may cause the

results to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products.

http://www.intel.com/design/literature.htm

Any software source code reprinted in this document is furnished under a software license and may only be used

or copied in accordance with the terms of that license.

Intel, the Intel logo, Atom, and Core are trademarks of Intel Corporation in the U.S. and/or other countries.

Copyright © 2013 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

