
1

Innovative Technology for CPU Based Attestation and
Sealing

Ittai Anati Shay Gueron Simon P Johnson Vincent R Scarlata
Intel Corporation

{ittai.anati, shay.gueron, simon.p.johnson, vincent.r.scarlata}@intel.com

ABSTRACT
Intel is developing the Intel® Software Guard Extensions (Intel®
SGX) technology, an extension to Intel® Architecture for
generating protected software containers. The container is referred
to as an enclave. Inside the enclave, software’s code, data, and
stack are protected by hardware enforced access control policies
that prevent attacks against the enclave’s content. In an era where
software and services are deployed over the Internet, it is critical
to be able to securely provision enclaves remotely, over the wire
or air, to know with confidence that the secrets are protected and
to be able to save secrets in non-volatile memory for future use.

This paper describes the technology components that allow
provisioning of secrets to an enclave. These components include a
method to generate a hardware based attestation of the software
running inside an enclave and a means for enclave software to seal
secrets and export them outside of the enclave (for example store
them in non-volatile memory) such that only the same enclave
software would be able un-seal them back to their original form.

General Terms
Measurement, Security

Keywords
Enclave, Measurement, Attestation, Local Attestation, Remote
Attestation, Sealing

1 INTRODUCTION
In an era where software and services are deployed over the
Internet, Intel® Software Guard Extensions (Intel® SGX), and
extension to Intel® Architecture enables service providers to
provision applications over the wire or air with sensitive content,
and to know with confidence that their secrets are properly
protected. In order to do so, the service providers must be able to
know with certainty what software is running on the remote
platform and in which environment it is executing.

1.1 Software Lifecycle
Intel® SGX-enabled software does not ship with sensitive data.
After the software is installed, it contacts the service provider to
have data remotely provisioned to the enclave. The software then
encrypts the data and stores it for future use. Figure 1 illustrates
the steps software takes to complete this processes.

1. Enclave Launch – The untrusted application launches

the enclave environment to protect the service provider's
software. While the enclave is built, a secure log is
recorded reflecting the contents of the enclave and how
it was loaded. This secure log is the enclave’s
"Measurement."

Application

Enclave v1

Service Provider

St
or

ag
e

Enclave v2

N
ew

St

or
ag

e

Figure 1: Software Lifecycle

2. Attestation –The enclave contacts the service provider to
have its sensitive data provisioned to the enclave. The
platform produces a secure assertion that identifies the
hardware environment and the enclave.

3. Provisioning – The service provider assesses the
trustworthiness of the enclave. It uses the attestation to
establish secure communication and provision sensitive
data to the enclave. Using the secure channel, the service
provider sends the data to the enclave.

4. Sealing/Unsealing – The enclave uses a persistent
hardware-based encryption key to securely encrypt and
store its sensitive data in a way that ensures the data can
be retrieved only when the trusted environment is
restored.

5. Software Upgrade – Enclave software updates might be
required by the service provider. To streamline the
migration of data from an older software version to the
newer version, the software can request seal keys from
older versions to unseal the data and request the new
version’s seal so that the sealed data won’t be available
to previous versions of the software.

Finally, when platform owners plan to transfer ownership of the
platform, the secrets available during their ownership period
should be made inaccessible. Intel® SGX includes a user owned
special persistent value that, when changed, changes all keys
available to software.

1.2 Security Model
A service provider that wishes to provision secrets to a remote
platform must know, in advance, that the protection policies of the
remote platform meet the protection requirements of the secrets to
be deployed. According to Intel® SGX’s security model [1], the
trusted computing base (TCB) in charge of protecting the secrets
includes the processor’s firmware and hardware and only the
software inside the enclave.

An enclave writer can use Intel® SGX’s dedicated sealing
and attestation components that uphold the security model

2

assertions below to prove to the service provider that the secrets
will be protected according to the intended security level:

 Intel® SGX provides an enclave instance with the means
to request a secure assertion from the platform of the
enclave’s identity.

 Intel® SGX also allows the enclave to bind
enclave ephemeral data to the assertion.

 Intel® SGX provides the means for an enclave instance
to verify assertions originating from other enclave
instances on the same platform.

 Intel® SGX provides the means for remote entity to
verify assertions from an enclave instance.

 Intel® SGX allows an enclave instance to obtain keys
that are bound to the platform and the enclave.

 Intel® SGX prevents software access to keys
of other Enclave Identities

1.3 Intel® SGX Instructions
The Intel® SGX Architecture [1] provides the hardware
instructions, EREPORT and EGETKEY, to support attestation and
sealing. Secret owners that accept SGX’s security model can rely
on these instructions to report back the TCB in charge of the
secrets.

To create the enclave environment, untrusted software uses
Intel® SGX instructions. These instructions also compute the
cryptographic measurement of the launched environment. These
processes are further described in section 2 of this paper.

To enable attestation and sealing, the hardware provides two
additional instructions EREPORT and EGETKEY. The EREPORT
instruction provides an evidence structure that is cryptographically
bound to the hardware for consumption by attestation verifiers.
EGETKEY provides enclave software with access to the “Report”
and “Seal” keys used in the attestation and sealing process. The
use of these instructions to provide an attestation of the enclave is
discussed in section 3, and to protect the secrets delivered to the
enclave in section 4.

In section 5 we briefly review related work in the field of
establishing remote trust in platforms.

2 MEASUREMENT
The Intel® SGX architecture is responsible for establishing
identities for attestation and sealing. For each enclave it provides
two measurement registers, MRENCLAVE and MRSIGNER;
MRENCLAVE provides an identity of the enclave code and data
as it’s constructed and MRSIGNER provides an identity of an
authority over the enclave. These values are recorded while the
enclave is built, and are finalized before enclave execution
commences. Only the TCB has access to write to these registers in
order to ensure an accurate reflection of the identities is available
when attesting and sealing.

2.1 MRENCLAVE - Enclave Identity
The “Enclave Identity” is the value of MRENCLAVE, which is a
SHA-256[2] digest of an internal log that records all the activity
done while the enclave is built [1]. The log consists of the
following information:

 The contents of the pages (code, data, stack, heap).
 The relative position of the pages in the enclave.
 Any security flags associated with the pages.

Once enclave initialization is complete, through the EINIT
instruction, no more updates are made to MRENCLAVE. The final
value of MRENCLAVE is a SHA-256 digest that identifies,
cryptographically, the code, data, and stack placed inside the

enclave, the order and position in which the enclave’s pages were
placed, and the security properties of each page. Any change to
any of these variables would lead to a different value in
MRENCLAVE.

2.2 MRSIGNER - Sealing Identity
The enclave has a second identity used for data protection called
the “Sealing Identity.” The Sealing Identity includes a “Sealing
Authority,” a product ID and a version number. The Sealing
Authority is an entity that signs the enclave prior to distribution,
typically the enclave builder. The enclave builder presents the
hardware with an RSA signed enclave certificate (SIGSTRUCT)
that contains the expected value of the Enclave Identity,
MRENCLAVE, and the public key of the Sealing Authority. The
hardware checks the signature on the certificate, using the public
key contained within, and then it compares the value of the
measured MRENCLAVE against the signed version. If these
checks pass, a hash of the public key of the Sealing Authority is
stored in the MRSIGNER register. It is important to note that if
multiple enclaves are signed by the same Sealing Authority, they
will all have the same MRSIGNER value. As shown in Section 4,
the value of Sealing Identity can be used for sealing data in a way
that enclaves from the same Sealing Authority (e.g., different
versions of the same enclave) can share and migrate their sealed
data.

3 ATTESTATION
Attestation is the process of demonstrating that a piece of software
has been properly instantiated on the platform. In Intel® SGX it is
the mechanism by which another party can gain confidence that
the correct software is securely running within an enclave on an
enabled platform. In order to do this the Intel® SGX architecture
produces an attestation assertion (shown in Figure 2) that conveys
the following information:

 The identities of the software environment being attested
 Details of any non-measureable state (e.g. the mode the

software environment may be running in)
 Data which the software environment wishes to

associated with itself
 A cryptographic binding to the platform TCB making

the assertion

Attestation Assertion Structure

MRENCLAVE MRSIGNER User Data

Sign

Signature

Attestation
Key

Other
Meta-Data

Figure 2: Attestation Assertion Creation

The Intel® SGX architecture provides one mechanism for
creating an authenticated assertion between two enclaves running
on the same platform (local attestation), and another mechanism
for extending local attestation to provide assertions to 3rd parties
outside the platform (remote attestation).

Finally, in order to gain maximum trustworthiness in the
system, the attestation key should only be bound to a specific

3

platform TCB. Should the platform TCB change, say through a
microcode update, the platform attestation key should be replaced
in order to properly represent the trustworthiness of the TCB.

3.1 Intra-Platform Enclave Attestation
Application developers may wish to write enclaves which can co-
operate with one another to perform some higher-level function. In
order to do this they need a mechanism for the enclaves to
authenticate one another. For this purpose Intel® SGX architecture
provides the EREPORT instruction.

When invoked by an enclave, EREPORT creates a signed
structure, known as a REPORT. The REPORT structure contains
the two identities of the enclave, the attributes associated with the
enclave (attributes identify modes and other properties established
during ECREATE), the trustworthiness of the hardware TCB, and
additional information the enclave developer wishes to pass on to
the target enclave, and a message authentication code (MAC) tag.
The target enclave is the enclave which will verify the MAC over
the REPORT allowing it to determine that the enclave that created
the REPORT has run on the same platform.

The MAC is produced with a key called the “Report Key”.
As shown in Table 1, Report Key is known only to the target
enclave and to the EREPORT instruction. The validating (target)
enclave can retrieve its own Report Key using the EGETKEY
instruction. EGETKEY provides enclaves with keys, among them
the Report Key, usable for symmetric encryption and
authentication. The target enclave uses the Report Key to re-
compute the MAC over the REPORT data structure, and verify
that the REPORT was produced by the attesting (reporting)
enclave. The Intel® SGX architecture uses AES128-CMAC [3] as
the MAC algorithm.

Table 1: Access to Report Key and Seal Key

Key Instruction Key association
Seal Key EGETKEY Current enclave
Report Key EREPORT Target enclave

EGETKEY Current enclave

Each REPORT structure also includes a 256-bit field for

User Data. This field binds data that is inside the enclave to the
identity of the enclave (as expressed by the REPORT). This field
can be used to extend the REPORT with auxiliary data by
populating it with a hash digest of of the auxiliary data, which is
then provided alongside the REPORT. The use of the User Data
field enables an enclave to build a higher level protocol to form a
secure channel between itself and another entity.

For example, by exchanging REPORTs that authenticate
public Diffie-Hellman keys, that were randomly generated inside
the enclave using mutually agreed parameters, the enclaves can
generate an authenticated shared secret and use it to protect further
communications between themselves. The Intel® Architecture
supports the generation of true random values through the
RDRAND instruction [4] available for use by enclave software.

 The figure below shows an example flow of how two
enclaves on the same platform would authenticate each other and
verify that the other party is running inside an enclave on the same
platform and therefore meets Intel® SGX’s security model

User Platform

Application A Application B

Enclave B

Report B

Enclave A

Report A

Figure 3: Intra-Platform Attestation Example

1. After communication paths between enclave A and B have
been established, enclave A obtains enclave B’s
MRENCLAVE value. Note that the communication path in
this step doesn’t have to be secure.

2. Enclave A invokes the EREPORT instruction together with
enclave B’s MRENCLAVE to create a signed REPORT
destined for enclave B. Enclave A transmits its REPORT to
enclave B via the untrusted communication path.

3. After receiving the REPORT from enclave A:
 Enclave B calls EGETKEY to retrieve its Report Key, re-

computes the MAC over the REPORT structure, and
compares the result with the MAC accompanying the
REPORT. A match in the MAC value affirms that A is
indeed an enclave that is running on the same platform
as enclave B and as such that A is running in an
environment that abides to Intel® SGX’s security
model.

 Once the firmware and hardware components of the
TCB have been verified, Enclave B can then examine
Enclave A’s REPORT to verify the software
components of the TCB:

o MRENCLAVE reflects the contents of the
software image running inside the enclave.

o MRSIGNER reflects the sealer’s identity
 Enclave B can then reciprocate by creating a REPORT

for enclave A, by using the MRENCLAVE value from
the REPORT it just received.

 Enclave B transmits its REPORT to enclave A. Enclave
A can then verify the report in a similar manner to
enclave B confirming that enclave B exists on the same
platform as enclave A.

3.2 Inter-Platform Enclave Attestation
The authentication mechanism used for Intra-platform enclave
attestation uses a symmetric key system, where only the enclave
verifying the REPORT structure and the EREPORT instruction
that creates the REPORT have access to the authentication key.
Creating an attestation that can be verified outside the platform
requires using asymmetric cryptography. The Intel® SGX enables
a special enclave, called the Quoting Enclave, which is devoted to
remote attestation. The Quoting Enclave verifies REPORTs from
other enclaves on the platform using the Intra-platform enclave
attestation method described above, and then replaces the MAC
over these REPORTs with a signature created with a device
specific (private) asymmetric key. The output of this process is
called a QUOTE.

3.2.1 Intel® Enhanced Privacy ID (EPID)
Attestation using standard asymmetric signing schemes has drawn
privacy concerns when a small number of keys are used across the
life of the platform. To overcome this problem Intel has introduced
an extension to the Direct Anonymous Attestation scheme used by
the TPM [5] &[6] called Intel® Enhanced Privacy ID (EPID)[7]
that is used by the Quoting Enclave to sign enclave attestations.

4

EPID is a group signature scheme that allows a platform to
sign objects without uniquely identifying the platform or linking
different signatures. Instead, each signer belongs to a “group”, and
verifiers use the group’s public key to verify signatures. EPID
supports two modes of signatures. In the fully anonymous mode of
EPID a verifier cannot associate a given signature with a particular
member of the group. In Pseudonymous mode an EPID verifier
has the ability to determine whether it has verified the platform
previously.

3.2.2 The Quoting Enclave
The Quoting Enclave creates the EPID key used for signing
platform attestations which is then certified by an EPID backend
infrastructure. The EPID key represents not only the platform but
the trustworthiness of the underlying hardware.

Only the Quoting Enclave has access to the EPID key when
the enclave system is operational, and the EPID key is bound to
the version of the processor’s firmware. Therefore, a QUOTE can
be seen to be issued by the processor itself.

3.2.3 Example Remote Attestation Process
Figure 4 shows an example of how an application with a secure
processing element on the user platform could provide an
attestation to a challenging service provider in order to receive
some value added service from the provider. Note that many
usages will use this process infrequently (e.g. at enrolment time)
to provision the enclave with a communication key that will then
be used directly in subsequent connections.

User Platform

Application
Enclave

Ephemeral

Quoting
Enclave

EPID

Application Challenger

Attestation
Verification

Figure 4: Remote Attestation Example

1. Initially, the application needs service from outside the
platform, and establishes communication with the service
providing system. The service provider issues a challenge to
the application to demonstrate that it is indeed running the
necessary components inside one or more enclaves. The
challenge itself contains a nonce for liveness purposes.

2. The application is provided with the Quoting Enclave’s
Enclave Identity and passes it along with the provider’s
challenge to the application’s enclave.

3. The enclave generates a manifest that includes a response to
the challenge and an ephemerally generated public key to be
used by the challenger for communicating secrets back to the
enclave. It then generates a hash digest of the manifest and
includes it as User Data for the EREPORT instruction that
will generate a REPORT that binds the manifest to the
enclave, as described in section 3.2. The enclave then sends
the REPORT to the application.

4. The application forwards the REPORT to the Quoting
Enclave for signing.

5. The Quoting Enclave retrieves its Report Key using the
EGETKEY instruction and verifies the REPORT. The
Quoting enclave creates the QUOTE structure and signs it
with its EPID key. The Quoting Enclave returns the QUOTE
structure to the application.

6. The application sends the QUOTE structure and any

associated manifest of supporting data to the service
challenger.

7. The challenger uses an EPID public key certificate and
revocation information or an attestation verification service
to validate the signature over the Quote. It then verifies the
integrity of the manifest using USERDATA and checks the
manifest for the response to the challenge it sent in step 1.

4 SEALING
When an enclave is instantiated, the hardware provides protections
(confidentiality and integrity) to its data, when it is maintained
within the boundary of the enclave. However, when the enclave
process exits, the enclave will be destroyed and any data that is
secured within the enclave will be lost. If the data is meant to be
re-used later, the enclave must make special arrangements to store
the data outside the enclave.

Table 1 above shows that EGETKEY provides access to
persistent Sealing Keys that enclave software can use to encrypt
and integrity-protect data. Intel® SGX has no restrictions on the
encryption scheme used by the enclave. Replay protection for the
data is also possible when combined with other service offered by
the platform, such as monotonic counters.

4.1 Intel® SGX supported Sealing Policies
When invoking EGETKEY, the enclave selects criteria, or a policy,
for which enclaves may access this sealing key. These policies are
useful for controlling the accessibility of sensitive data to future
versions of the enclave.

Intel® SGX supports two policies for Seal Keys:
 Sealing to the Enclave Identity
 Sealing to the Sealing Identity

Sealing to the Enclave’s Identity produces a key that is

available to any instance of this exact enclave. This does not allow
future software to access the secrets of this enclave. Sealing to the
enclave’s Sealing Identity produces a key that is available to some
other enclaves signed by the same Sealing Authority. This can be
used to allow newer enclaves to access data stored by previous
versions.

Only a subsequent instantiation of an enclave, executing
EGETKEY with the same policy specification, will be able to
retrieve the Sealing Key and decrypt data that was sealed using
that key by a previous instantiation.

4.1.1 Sealing to the Enclave Identity
When sealing to the enclave’s Enclave Identity, EGETKEY bases
the key on the value of the enclave’s MRENCLAVE. Any change
that impacts the enclave’s measurement will yield a different key.
This results in a different key for each enclave, providing full
isolation between enclaves. A byproduct of using this policy is that
different versions of the same enclave will also have different seal
keys, preventing offline data migration.

This policy is useful for usages where the old data should not
be used after a vulnerability is found. For example, if the data is an
authentication credential, the service provider may revoke those
credentials and provision new ones. Access to the old credential
might be harmful.

4.1.2 Sealing to the Sealing Identity
When sealing to the enclave’s Sealing Identity, EGETKEY bases
the key on the value of the enclave’s MRSIGNER, and the
enclave’s version. MRSIGNER reflects the key/identity of the
Sealing Authority that signed the enclave’s certificate.

The advantage of sealing to the Sealing Authority over
sealing to the Enclave Identity is that it allows offline migration of
sealed data between enclave versions. The Sealing Authority may

5

sign multiple enclaves and enable them to retrieve the same seal
key. These enclaves can transparently access data that was sealed
by the other.

When sealing to a Sealing Authority, the older software
should not be allowed to access data created by the newer software.
This is true when the reason for releasing new software is to fix
security issues. To facilitate this, the Sealing Authority has the
option to prescribe a Security Version Number (SVN) as part of
the Sealing Identity. EGETKEY allows the enclave to specify
which SVN to use when producing the Seal Key. It will only allow
the enclave to specify SVNs for its Sealing Identity or previous
ones. When the enclave seals data, it has a choice to set the
minimum SVN value of the enclave permitted to access that
Sealing Key. This protects future secrets from access by old
vulnerable software, but still enables a seamless upgrade transition
where all previous secrets are available after the upgrade.

The SVN is not the same as a product version number. A
product may have several versions, with different functionalities,
but with the same SVN. It is the responsibility of the enclave writer
to communicate to their customers (if necessary), which product
versions have the same security equivalence.

4.2 Removing Secrets from a Platform
The architecture proposes a mechanism, known as OwnerEpoch,
which enables the platform owner to change all the keys in the
system by changing a single value. As OwnerEpoch is
automatically included when requesting keys through the
EGETKEY instruction, data objects which were sealed with a
particular OwnerEpoch value can only be unsealed if the
OwnerEpoch is set to the same value.

The primary purpose of this mechanism is to allow a
platform owner to deny access to all sealed secrets on the platform,
in a simple and recoverable step, before transferring the platform
to someone else (permanently, or temporarily). Prior to
transferring the platform, the platform owner can change the
OwnerEpoch to a different value by using the hooks provided by
the OEM. In case of a temporary transfer (such as for platform
maintenance), the platform owner can restore OwnerEpoch to its
original value once the platform is returned and can restore access
to the sealed secrets.

5 RELATED WORK
Previous work to define hardware additions to a micro-processor
chip for remote attestation [8] was designed for a single authority
in hold of multiple platforms and was not easily scalable to support
an unbound number of trusted authorities. In contrast, the Intel®
SGX architecture allows for a plurality of distrusting enclaves,
with complete separation between the enclaves and each one
capable of securely communicating with one or more trusted
authorities.

Commercially, the Trusted Platform Module 1.2 [5] has seen
widespread introduction onto PC platforms in both discrete and
integrated form. It supports a variety of usage models that include
attestation of and sealing to the pre-boot and OS environments.
Attesting and sealing to programs at the application level requires
secret owners to evaluate the whole platform stack. Previous
attempts to address this scalability issue have included [9]. The
Intel® SGX architecture significantly reduces the software TCB
by including only the enclave software in it and provides for the
direct measurement of application software. This significantly
reduces the attestation evaluation work any secret owner has to
perform.

The TPM relies on the platform providing a Root of Trust of
Measurement. To gain maximum trust when issuing TPM
Attestation Certificates a binding to a platform credential
identifying the Root of Trust for Measurement is required. By

providing the Root of Trust for Measurement along with the Root
of Trust for Reporting, the Intel® SGX architecture allows us to
use a single key to endorse and attest at the same time, significantly
reducing the eco-system overhead in evaluating the
trustworthiness of platforms.

6 CONCLUSIONS
In this paper, a novel hardware assisted mechanism in the form of
a new ISA extension to Intel® Architecture is proposed to allow
secure attestation and sealing to application software executing in
a secure environment (referred to as an enclave).

The ISA extension provides the means for the enclave
software to prove to another party that it has been properly
instantiated on the platform and by extension is the correct
software and is securely running inside an enclave on an enabled
platform. This attestation does not require the verifier to
understand the platform software context in which the enclave is
executing and is limited to trusting the enclave software.

The Intel® SGX architecture also provides a mechanism to
obtain a persistent unique key that could be used by the software
to seal secrets and unseal the secrets later. The sealing mechanism
also provides the ability to seamlessly transition secrets when an
enclave’s software is upgraded.

The attestation and sealing mechanisms, are defined in a
scalable way that supports a plurality of enclaves running
simultaneously, each handling its own secrets, and securely
communicating with remote parties and proving to them that they
are in compliancy with their security policies.

7 ACKNOWLEDGMENTS
The authors of this paper wish to acknowledge the contributions
of many hardware and software architects and designers who have
worked in developing this innovative technology.

8 REFERENCES

[1] F. Mckeen, I. Alexandrovich, A. Brenenzon, C. Rozas, H.

Shafi, V. Shanbhogue and U. Savagaonkar, "Innovative
Instructions and Software Model for Isolated Execution,"
in Hardware and Architectural Support for Security and
Privacy, 2013.

[2] NIST, "FIPS 180-4:Secure Hash Standard," NIST,
Gaithersburg, 2012.

[3] NIST, "Special Publication 800-38B: Recommendation for
Block Cipher Modes of Operation: The CMAC Mode for
Authentication," May 2005. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-
38B/SP_800-38B.pdf.

[4] Intel, "Intel(r) 64 and IA-32 Architectures Software
Developers Reference Manual," June 2013. [Online].
Available:
http://www.intel.com/content/www/us/en/processors/archi
tectures-software-developer-manuals.html.

[5] Trusted Computing Group, "Trusted Platform Module
Main Specification (TPM1.0)," March 2011. [Online].
Available:
http://www.trustedcomputinggroup.org/resources/tpm_ma
in_specification.

[6] Trusted Computing Group, "Trusted Platform Module
Library Specification (TPM2.0)," March 2013. [Online].
Available:
http://www.trustedcomputinggroup.org/resources/tpm_lib
rary_specification.

6

[7] E. Brickell and J. Li, "Enhanced privacy ID from bilinear
pairing for Hardware Authentication and Attestation,"
International Journal for Information Privacy, Security
and Integrity, vol. 1, no. 1, pp. 3-33, 2011.

[8] J. S. Dwoskin and R. B. Lee, "Hardware-rooted Trust for
Secure Key Management and Transient Trust," in CCS '07
Proceedings of the 14th ACM conference on Computer and
communications security, New York, 2007.

[9] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter and H.
Isozaki, "Flicker: An Execution Infrastructure for TCB

Minimization," Proceedings of the ACM European
Conference on Computer Systems (EuroSys'08), March
2008.

[10] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, V. Phegade
and J. Del Cuvillo, "Using Innovative Instructions to
Create Trustworthy Software Solutions," in Hardware and
Architectural Support for Security and Privacy, 2013.

7

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE
OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES,
AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them. The information here is subject to change without notice. Do not finalize a design with this information.

No computer system can provide absolute security under all conditions. Built-in security features available on select Intel® processors may require additional software, hardware,
services and/or an Internet connection. Results may vary depending upon configuration. Consult your system manufacturer for more details.

Intel®, the Intel® Logo, Intel® Inside, Intel® Core™ , Intel® Atom™, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and/or other countries. Other names and
brands may be claimed as the property of others.

Copyright © 2013 Intel® Corporation

