
	

Hardware-Accelerated	Video	
Decode	in	Unity*	3D		

By	Bryan	Mackenzie		

As	it	stands,	Unity*	does	not	provide	hardware-accelerated	decode	for	video	playback.	Therefore,	playing	
video	on	a	low-end	device	could	suffer	dropped	frames,	low	frame	rates,	and	poor	quality.	The	provided	
project	illustrates	how	to	merge	the	hardware	decode	path	within	Unity.	The	main	components	within	
this	solution	are	the	creation	of	an	external	video	texture	mapped	to	Unity,	the	creation	of	the	media	
player,	and	the	calls	exposed	to	Unity.		

Video	Texture	Creation	

To	leverage	the	media	player	component,	an	external	texture	is	created	and	shared	with	the	Unity	
rendering	component.	To	gain	access	to	the	Unity	rendering	component	we	use	the	IUnityInterface	to	
retrieve	the	IUnityGraphicsD3D11	interface,	which	provides	access	to	the	Unity	rendering	component	
used	to	call	CreateTexture2D,	creating	a	staged	texture	on	the	Unity	device.	CreateTexture2D	then	
receives	the	ID3D11Texture2D	interface.		

The	D3D	device	is	used	to	call	CreateShaderResourceView,	passing-in	the	ID3D11Texture2D	that	will	
serve	as	the	input	to	the	shader.	The	CreateShaderResourceView	also	receives	the	
ID3D11ShaderResourceView,	which	provides	access	to	the	shader-resource-view	interface,	used	to	access	
data	of	the	passed-in	resource;	in	this	case,	the	ID3D11Texture2D	texture.		

At	this	point,	a	shared	texture	is	created	and	a	handle	to	the	shared	texture	is	returned.	The	handle	is	
then	used	to	open	the	shared	resource	(ID3D11Texture2D),	where	the	IDXGISurface	surface	of	the	
texture	is	retrieved.	CreateDirect3D11SurfaceFromDXGISurface	is	then	called	to	create	an	instance	of	
IDirect3DSurface	from	an	IDXGISurface,	whereupon	a	video	frame	is	available.	The	frame	is	then	copied	
to	the	IDirect3DSurface	video	surface	which,	as	stated,	is	shared	with	the	Unity	rendering	pipeline.		

Media	Player	

To	begin,	we	first	create	a	new	instance	of	the	Windows	Media*	playback	media	player	interface,	which	
provides	access	to	media	playback	functionality	such	as	play,	pause,	seek,	and	so	on.	Once	we	have	the	
interface,	we	load	content	by	calling	CreateFromUri,	which	creates	a	MediaSource*	from	the	passed-in	
Uri,	where	MediaSource	provides	a	means	of	accessing	media	data.		

We	then	associate	the	MediaSource	to	a	MediaPlaybackItem,	which	acts	as	a	wrapper	around	a	
MediaSource,	exposing	audio	and	video	tracks	within	the	MediaSource.	

Unity*	Integration	

The	purpose	of	this	project	is	to	detail	the	integration	of	hardware-accelerated	video	in	Unity,	how	it	is	
achieved,	and	how	you	can	leverage	the	code	to	integrate	accelerated	video	into	your	project.	A	wrapper	
is	created	to	expose	the	relevant	calls	to	create,	load,	and	interact	with	the	media.	While	not	within	this	



article’s	scope,	more	information	on	creating	and	exposing	native	dynamic	libraries	to	Unity	can	be	found	
here.	The	project	does	not	expose	all	available	features	of	the	media	player,	but	does	expose	core	
functionality	to	provide	a	jump-off	point	to	further	expand	upon	with	new	features.	The	following	
functionality	is	currently	exposed	and	available	for	integration:	

CreateMediaPlayback:	Create	media	player	instance	

CreatePlaybackTexture:	Return	native	texture	to	a	pointer		

LoadContent:	Load	from	Uri	

SetPosition:	Set	current	playback	position	(seek)	

GetPosition:	Get	current	playback	position		

GetDuration:	Retrieve	the	video	duration		

GetPlaybackRate:	Retrieve	current	playback	speed	

StateChangedCallback:	Media	playback	change	event	callback		

Play:	Play	video	

Stop:	Stop	video	

Pause:	Pause	video	

Notices	
No	license	(express	or	implied,	by	estoppel	or	otherwise)	to	any	intellectual	property	rights	is	granted	by	
this	document.	

Intel	disclaims	all	express	and	implied	warranties,	including	without	limitation,	the	implied	warranties	of	
merchantability,	fitness	for	a	particular	purpose,	and	non-infringement,	as	well	as	any	warranty	arising	
from	course	of	performance,	course	of	dealing,	or	usage	in	trade.	

This	document	contains	information	on	products,	services	and/or	processes	in	development.	All	
information	provided	here	is	subject	to	change	without	notice.	Contact	your	Intel	representative	to	
obtain	the	latest	forecast,	schedule,	specifications	and	roadmaps.	

The	products	and	services	described	may	contain	defects	or	errors	known	as	errata	which	may	cause	
deviations	from	published	specifications.	Current	characterized	errata	are	available	on	request.	

Copies	of	documents	which	have	an	order	number	and	are	referenced	in	this	document	may	be	
obtained	by	calling	1-800-548-4725	or	by	visiting	www.intel.com/design/literature.htm.	

Intel	and	the	Intel	logo	are	trademarks	of	Intel	Corporation	in	the	U.S.	and/or	other	countries.		

Microsoft,	Windows,	and	the	Windows	logo	are	trademarks,	or	registered	trademarks	of	Microsoft	
Corporation	in	the	United	States	and/or	other	countries.	

*Other	names	and	brands	may	be	claimed	as	the	property	of	others.	

©	2017	Intel	Corporation	


