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Figure 1: Our programming model enables flexible control of scene hierarchies during traversal. Some example use cases are: distance based
LOD with reflections and shadows (a–c), ray-type based LOD with ambient occlusion and diffuse rays (d–e), and multi-level instancing (f–g).

ABSTRACT
The availability of hardware-accelerated ray tracing in GPUs and
standardized APIs has led to a rapid adoption of ray tracing in games.
While these APIs allow programmable surface shading and intersec-
tions, most of the ray traversal is assumed to be fixed-function. As
a result, the implementation of per-instance Level-of-Detail (LOD)
techniques is very limited. In this paper, we propose an extended
programming model for ray tracing which includes an additional
programmable stage called the traversal shader that enables proce-
dural selection of acceleration structures for instances. Using this
programming model, we demonstrate multiple applications such
as procedural multi-level instancing and stochastic LOD selection
that can significantly reduce the bandwidth and memory footprint
of ray tracing with no perceptible loss in image quality.
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1 INTRODUCTION
Recent programming models for real-time ray tracing such as the
Microsoft DirectX Ray Tracing (DXR) API [Microsoft 2018] have
enabled developers to easily incorporate ray tracing in their game
engines by building upon existing APIs like Direct3D 12. DXR
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models the scene representation using a two-level hierarchy that
comprises a single top-level acceleration structure (TLAS) that is
build over instances of bottom level acceleration structures (BLAS).
This abstraction gives GPU vendors the flexibility to choose any
implementation of acceleration structures and deploy hardware
acceleration for ray-scene intersections [NVIDIA 2018]. While DXR
provides some programmability during traversal such as intersec-
tion shaders for custom shapes and any-hit shaders for sampling
alpha textures, it does not allow procedural selection and transfor-
mation of instances during traversal.

This programming model trades flexibility for performance, but
in complex rendering scenarios, programmers may need to dynam-
ically modify ray traversal behavior on a higher (e.g. per-object)
level that cannot easily be baked into fixed-function hardware. For
example, multi-level instancing, which is widely used in production
rendering and dynamic LOD techniques, could be quite useful in
ray-traced game engines [Tatarchuck 2019]. By adaptively selecting
objects with different LODs and constructing hierarchical instances
during traversal, the number of accesses to nodes and primitives
can be reduced, improving memory bandwidth and cache efficiency.

We propose to address this limitation by introducing a new
shader stage called the traversal shader, which can be invoked at
higher-levels of the AS traversal upon intersecting a programmable
node. By redirecting traversal to a different AS, and potentially
transforming the ray, augmented by user data, it provides a new
methodology to support a wide range of dynamic, per-ray-instance
traversal algorithms. We demonstrate a variety of LOD selection
scenarios and mitigate artifacts caused by self-occlusion or abrupt
LOD transitions. We also illustrate procedural multi-level instanc-
ing through fractal-rendering. Based on experimental data, we
argue that for complex scenes this level of programmability does
not necessary penalize performance by achieving a significant re-
duction in bandwidth (43% to 71%) as well as the memory footprint.

2 RELATEDWORK
A flexible programming model is an important component of any
ray tracing system. Frameworks such as OptiX [Parker et al. 2010]
or Embree [Wald et al. 2014] are used extensively in production
rendering. OptiX 6 provides limited control of ray traversal through
Visit programs, allowing the user to select a child node to be tra-
versed when a ray visits a Selector node. However, this selection
was limited to one of the predefined children. Embree has been
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Figure 2: Flexible scene hierarchy with multi-level instancing and
LOD selection using Traversal Shaders.

supported multi-level instancing by doing user-defined objects and
just recently added a direct support from 3.6. In contrast, our tra-
versal shader allows arbitrary AS selection, naturally scaling to
multiple levels. Current real-time APIs such as DXR are limited to
single-level instancing without programmable traversal controls.

LOD and multi-level instancing are widely-used rendering opti-
mizations to handle complex scenes. Christensen et al. [2003] adap-
tively utilized geometry caches based on ray differentials. Some
production renderers have adopted LOD to incoherent rays [Panta-
leoni et al. 2010; Tabellion 2010], while others support multi-level
instancing to reduce memory footprint and tree build times [Di-
etrich et al. 2006; Georgiev et al. 2018]. In real-time rendering,
game engines have primarily relied on camera distance to switch
between pre-defined details of geometry, using methods like sub-
pixel screen-door transparency to smoothly blend between discrete
LOD levels [Mittring 2007], or dynamically tessellate surfaces for
continuous LOD transition [Nießner et al. 2012]. Rendering perfor-
mance can be further increased by extending the concept beyond
geometry to shader simplification [He et al. 2016].

Ray tracing introduces additional constraints for these applica-
tions since they also need to consider the distribution of indirect
rays. The main focus of this paper is to introduce a novel program-
ming model for future real-time ray tracing APIs. This can support
various geometry and shader LOD techniques for real-time ray
tracing with fully programmable control of ray traversal.

3 PROGRAMMING MODEL
Due to its increasing adoption in the industry, we base our discus-
sion on the terminology of the Microsoft DXR API. As mentioned
earlier, the DXR scene hierarchy includes a top-level acceleration
structure (TLAS), referencing instances, and bottom-level accelera-
tion structures (BLAS), referencing triangles and custom primitives.

We extend this model with a new leaf node called a programmable
instance (PI ), which can be referenced by both the TLAS and BLAS.
A PI can be associated with a traversal shader that can transform
the ray and select a BLAS for continuing traversal, as shown in
Figure 2. In order to specify a traversal shader for execution, we
rely on DXR shader tables and introduce a new type called traversal
shader table. For each PI node, the user provides a shader index to
select an entry from this table for execution, when a ray intersects
it. Listing 1 shows an example traversal shader that transforms the
ray and selects an instance LOD. The traversal shader can access

Listing 1: Example Traversal Shader.
1 [shader("traversal")]
2 void myLodShader(in RayPayload rp, in InstancePayload ip) {
3 // Transform Ray
4 float3 objRayOrigin = worldToObj * WorldRayOrigin ()
5 float3 objRayDirection = worldToObj * WorldRayDirection ()
6 RayDesc transformedRay = { objRayOrigin , RayTMin (),
7 objRayDirection , RayTMax ()};
8 // Compute LOD based on Instance distance
9 RaytracingAccelerationStructure myAccStructure;
10 myAccStructure = FetchLOD(RayTInstance ())
11 // Set the next level instance and hit shader table offset
12 SetInstance(myAccStructure , transformedRay ,
13 myHitShaderOffset , myInstPayload);
14 }

the ray payload if needed and can also access a payload from its
parent instance. Every execution of the traversal shader creates
a new entry at the top of the instance stack and the SetInstance()
intrinsic updates this entry. For each instance that is traversed,
the user can specify an offset in the hit shader table. This can be
used to select the shader LOD by specifying a different offset for
each LOD instance. The user can also pass a payload value to the
next child which can be useful for procedurally generated instance
transformations.

4 APPLICATIONS
4.1 Programmable LOD Selection
Distance and Object Size: A popular way to select a LOD level
is based on the pixel size of an object projected to screen space,
widely used in many game engines [Akenine-Möller et al. 2018].
This combines the distance to the object and the length of the radius
of its bounding sphere. We use the following equations:

rpixel =
rworld

tan(
FOV y

2 )D

H
2

(1) LOD =
⌊
log2(2

N−1 rpixel
rmax

)

⌋
(2)

where rpixel and rworld are the length of the radius in screen and
world space, FOVy is the vertical field of view, D is the distance be-
tween the ray origin and the object, H is the screen height in pixels,
N is the number of the LOD levels used, and rmax is a predefined
length corresponding to the projection of the most detailed LOD.

Figure 1(a–c) shows an example of LOD selection implemented
through equations (1-2). For easy identification, we assigned differ-
ent colors to the instances on different levels. The different BLASes
are adaptively selected according to the distance.

Ray Type: Production renderers often apply coarser LOD to
divergent indirect rays since these rays affect the quality to a lesser
degree. That is, the primary ray traces the full-resolution geom-
etry and the secondary rays trace the lower LOD, which could
reduce the cost of indirect GI computations [Pantaleoni et al. 2010;
Tabellion 2010]. This technique can be naturally implemented using
traversal shaders, by selecting a different BLAS based on the ray
type. Figure 1(d–e) is an example of applying this technique with
ambient occlusion and diffuse indirect rays. The user can achieve
further performance improvements by combining this technique
with distance-based LOD, which is not possible in the standard
DXR model.

4.2 Stochastic LOD Transitions
The traversal shader can also be used to reduce the visual artifacts
that often occur in LOD applications. A typical example is the "pop-
ping" caused by abruptly transitioning between two LOD ranges.



Flexible Ray Traversal with an Extended Programming Model SA ’19 Technical Briefs, November 17–20, 2019, Brisbane, QLD, Australia

0 5 10 15 20 25 30

Figure 3: Frame sequence from a camera animation using stochas-
tic LOD transitions. The frame numbers are shown in the top-left
corners.

This is often resolved by a stochastic approach in game engines,
for example by applying a smooth screen-door dithering mask to
each of the two LODs spanning the transition [Mittring 2007].

In Figure 3 we demonstrate a stochastic LOD transition using our
programming model. The traversal shader compares the fractional
part of the LOD value at each pixel with a sample value in a blue
noise dither mask [Ulichney 1993], then returns one of the two
integer LOD values according to the binary result. Unlike the stencil
buffer method, which renders twice, the traversal shader can handle
this in a single pass without any overdraws, because it assigns only
one LOD value to each ray.

We can also handle another artifact called tunneling caused by
self-occlusion [Djeu et al. 2011]. There are many cases where a
primary ray intersects an instance with a certain LOD geometry
and the secondary ray from this hit may intersect the same instance
using a different LOD. We can use traversal shaders to ensure the
usage of the identical LOD level of the previous surface hit. By
storing the instance ID and the selected LOD level of the previous hit
point in the ray payload, the traversal shader can detect if the same
instance is to be traversed by the secondary ray and automatically
select the stored LOD, overriding the current selection scheme.
This way we can apply coarse LOD for certain indirect illumination
rays more aggressively without being concerned with false self-
occlusions (Figure 4).

Finally, the ray payload can also be used to accumulate the path
length of multiple ray segments, potentially also considering cone
angles. In Figure 5 we show this algorithm applied to reflection
rays, where the closest hit shader passes the total path length to
the traversal shader for LOD computation. Note that for this simple
demonstration we consider only the ray length, but considering
the surface curvature and BRDF roughness would allow a more
sophisticated scheme using very coarse LODs for rough materials.

Figure 4: Artifacts caused by self-occlusions of different LODs (left)
and our result after consistent selection by tracking the previous
hit instance using the Traversal Shader (right).

Figure 5: Incorrectly selected LOD levels by using a simple hit dis-
tance (left), corrected by using accumulated distances computed in
the Closest-Hit and Traversal Shaders (right).

4.3 Multi-level Instancing
Instancing has been used extensively in production rendering to
reduce scene complexity and tree construction times. By storing
multiple references to the same geometry, several copies of the
same object can be rendered with different transformations and
shading parameters. While DXR has been specifically designed to
have this feature, it only supports one level of instances within a
two-level AS. If the scene graph contains more levels of hierarchy,
this restriction forces the renderer to flatten the bottom levels into
a single BLAS, therefore expanding the number of primitives.

Multi-level instancing can benefit from traversal shaders in many
scenarios. As mentioned in Sec. 3, each execution of a traversal
shader pushes a new entry to the instance stack, which may include
user-defined data besides standard ray transformation information.
Up to the maximum depth of this stack (pre-allocated upon context
initialization), the user is free to select a new level of instancing
using a BLAS reference and a ray transformation. It is also the
responsibility of the user to provide a valid bounding box in the PI
node that the actual transformed instance would fit into.

Figure 1(f–g) is an extreme example of multi-level instancing nat-
urally supported by our model. The sphereflake fractal recursively
copies nine child spheres from a parent, which is a benchmark
of Standard Procedural Databases [Haines 2019]. When implement-
ing through traversal shaders, the number of primitives can be
drastically reduced compared to single-level instancing (820× with
a recursion depth of 4). Recursive instancing is only possible us-
ing dynamic traversal, and the maximum recursion depth is only
limited by the instance stack preallocation. Akin to ray depth in
recursive ray tracing, the traversal shader may abort ray traversal at
a threshold instance depth. While we illustrate the concept on this
simple fractal, we believe this feature holds an interesting potential
for complex procedural worlds in future games.

5 EVALUATION
In order to evaluate different LOD schemes, we use a user space
implementation of our programming model and a software ray trac-
ing runtime. We implement ray tracing shaders as C++ functions,
with an emulation of intrinsics and data types available in HLSL.
To compute ray-scene intersections, we use the traversal algorithm
of Vaidyanathan et al. [2019] with a 64B quantized BVH6 layout
and 64B triangle-pair (quad) primitives at its leaves. In the runtime,
we model a 6MB cache with a 64B line size to reflect the size of the
last level cache on modern GPUs. We use three models, Buddha,
Dragon, and BMW for our analysis with 3,864 uniformly distributed
instances in the scene as shown in Figure 1. For each model we use
six LOD levels, where the number of primitives decreases 4× with
each increase in LOD.
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Table 1 summarizes the cache miss rates (%) and the average
bandwidths (Bytes/ray) with full geometric detail (no LOD), dis-
crete LOD selection (LOD-D) and stochastic LOD selection (LOD-S).
Using coarser LODs for distant camera ray hits results in fewer
cache misses and a 58% reduction in bandwidth with discrete LODs.
With stochastic LODs, we see a slightly smaller reduction in band-
width of up to 43% but with image quality that is comparable to no
LODs. With low-complexity meshes like the BMW model, we see
a smaller reduction in the bandwidth (2.5%) with stochastic LOD
selection for camera rays. In this case, the additional cost of sam-
pling two LODs close to the camera may be significant compared
to the benefits of reduced geometric complexity at a distance. We
also evaluate scenes with ambient occlusion (AO) and two-bounce
diffuse indirect lighting. Using a coarser LOD (level 4) for indirect
and AO rays results in a significant bandwidth reduction across all
scenes (60% to 89%).

Table 1: Comparison of the cachemiss rates and average bandwidth
for different ray types with discrete and stochastic LOD selection.

Miss rate (%) BW (Bytes/ray)
Buddha (1M tris)

Primary No LOD 10.3 127.0
LOD-D 5.0 53.7
LOD-S 6.4 72.9
Change(D) (%) -51.5 -57.7
Change(S) (%) -37.9 -42.6

Primary No LOD 10.1 62.9
+ AO LOD 4.1 25.4

Change (%) -59.4 -59.6
Dragon (871K tris)

Primary No LOD 10.0 138.0
LOD-D 4.9 57.8
LOD-S 6.2 79.8
Change(D) (%) -51.0 -58.1
Change(S) (%) -38.0 -42.2

Primary No LOD 9.8 167.8
+ Indirect LOD 3.3 49.1

Change (%) -66.3 -70.7
BMW (384K tris)

Primary No LOD 2.1 28.5
LOD-D 1.6 19.1
LOD-S 2.1 27.8
Change(D) (%) -23.8 -33.2
Change(S) (%) 0.0 -2.5

Primary No LOD 0.7 5.0
+ AO LOD 0.2 1.7

Change (%) -71.4 -66.7
Primary No LOD 0.8 32.7
+ Indirect LOD 0.1 3.7

Change (%) -87.5 -88.7

6 DISCUSSION AND FUTUREWORK
Our programming model offers flexible scene management on the
cost of additional shader invocations during ray traversal. However,
users can choose to selectively apply programmable instancing to
parts of the scene with complex geometry where the reduction in
memory bandwidth should outweigh the additional cost of shading.
Moreover, traversal shader invocations are likely to be less frequent
than some existing shader stages, for example, any-hit shaders that
are invoked for each alpha-textured primitive.

As a limitation, programmable instances also preclude some ac-
celeration structure optimization techniques like re-braiding [Ben-
thin et al. 2017] that require access to the instance acceleration
structures during build.

A complete understanding of the performance implications of
our programming model requires a more thorough analysis of these
tradeoffs, which we plan to investigate in the future.
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