
Dynamic Resolution Rendering
Doug Binks

Introduction
The resolution selection screen has been one of the defining aspects of PC gaming since the birth of

3D games. In this whitepaper and the accompanying sample code, we argue that this no longer

needs to be the case; developers can dynamically vary the resolution of their rendering instead of

having a static resolution selection.

Dynamic resolution rendering involves adjusting the resolution to which you render the 3D scene by

constraining the rendering to a portion of a render target using a viewport, and then scaling this to

the output back buffer. Graphical user interface components can then be rendered at the back

buffer resolution, as these are typically less expensive elements to draw. The end result is that stable

high frame rates can be achieved with high quality GUIs.

We’ll be presenting performance results and screenshots in this article taken on a pre-release

mobile 2nd generation Intel® Core™ i7 processor (Intel® microarchitecture code name Sandy Bridge,

D1 stepping quad core 2.4 GHz CPU with 4GB DDR3 1333MHz RAM) with Intel® HD Graphics 3000.

This article and the accompanying sample were originally presented at the Game Developers

Conference (GDC) in San Francisco 2011, and a video of the presentation can be found on GDC Vault

[GDC Vault 2011], with the slides for that presentation available on the Intel website [Intel GDC

2011]. Since the presentation, the author has discovered that several game companies already use

this technique on consoles; Dmitry Andreev from LucasArts’ presentation on Anti-Aliasing is the only

public source, though with few details on the dynamic resolution technique used [Andreev 2011].

Figure 1: The sample scene viewed from one of the static camera viewpoints.

Motivation
Games have almost always had a strong performance variation with resolution, and the increase in

shader complexity along with post-processing techniques has continued the trend of per-pixel costs

dominating modern games. Increasing resolution also increases texture sampling and render target

bandwidth. Setting the resolution appropriately for the performance of the system is therefore

critical. Being able to vary the resolution dynamically gives the developer an additional performance

control option which can enable the game to maintain a stable and appropriate frame rate, thus

improving the overall quality of the experience.

Rendering the graphical user interface at the native screen resolution can be particularly important

for role playing, real time strategy, and massively multiplayer games. Suddenly, even on low-end

systems, the player can indulge in complex chat messaging whilst keeping an eye on their

teammates’ stats.

Finally, with the increasing dominance of laptops in PC gaming, power consumption is beginning to

become relevant to game development. Performance settings can cause a reduction in CPU and GPU

frequency when a machine goes from mains to battery power, and with dynamic resolution

rendering, the game can automatically adjust the resolution to compensate. Some games may want

to give the user the option of a low power profile to further reduce power consumption and enable

longer gaming on the go. Experiments with the sample have found that cutting the resolution to 0.5x

reduces the power consumption of the processor package to 0.7x normal when vertical sync is

enabled so that the frame rate is maintained.

Basic Principles
The basic principle of dynamic resolution rendering is to use a viewport to constrain the rendering to

a portion of an off-screen render target, and then to scale the view. For example, the render target

might be of size (1920, 1080), but the viewport could have an origin of (0, 0) and size (1280, 720).

Figure 2: using a viewport to constrain rendering

By creating render targets larger than the back buffer, the dynamic resolution can be varied from

subsampled to supersampled. Care needs to be taken to ensure the full set of required render

targets and textures fit within graphics memory, but systems based on Intel® microarchitecture code

name Sandy Bridge processor graphics usually have considerable memory, as they use system

memory.

 33DD

Viewport

Render Target

Figure 3: dynamic resolution can be varied from subsampling to supersampling

When undertaking normal rendering to the dynamic viewport, there are no changes that need to be

made—the rasterization rules ensure this is handled. However, when reading from the render

target, care needs to be taken to scale the coordinates appropriately and handle clamping at the

right and bottom edges.

The following example pixel shader code shows how to clamp UVs. This is mainly used when doing

dependent reads (i.e., when there are per-pixel operations on a UV, which is subsequently used to

sample from a dynamic render target).

// Clamp UVs to texture size

// PSSubSampleRTCurrRatio is the fraction of the render target in use.

float2 clampedUV = min(unclampedUV, g_PSSubSampleRTCurrRatio.xy);

In the case of motion blur—a common post-process operation that uses dependent reads from a

render target—the extra math required has little effect on the performance, as the shader is

texture-fetch bound.

33DD

Render

33DD

 33DD

Render

33DD

Super-sampling Sub-sampling

33DD

+ GUI

33DD

Render

GUI

Scale

33DD

+ GUI

33DD

Render

GUI

Scale

Figure 4: Colour leak on edges of screen due to motion blur, which can be solved by using clamping

In addition to clamping, it’s also important to ensure that the resolution ratios used in shaders is

representative of the actual viewport ratio, rather than just your application’s desired ratio. This is

easily obtained by recalculating the ratio from the dynamic viewport dimensions. For example, in the

sample code function DynamicResolution::SetScale, the following is performed after ensuring the

scale meets boundary criteria:

// Now convert to give integer height and width for viewport
m_CurrDynamicRTHeight = floor((float)m_DynamicRTHeight * m_ScaleY / m_MaxScalingY);
m_CurrDynamicRTWidth = floor((float)m_DynamicRTWidth * m_ScaleX / m_MaxScalingX);

// Recreate scale values from actual viewport values
m_ScaleY = m_CurrDynamicRTHeight * m_MaxScalingY / (float)m_DynamicRTHeight;
m_ScaleX = m_CurrDynamicRTWidth * m_MaxScalingX / (float)m_DynamicRTWidth;

Scaling Filters
After rendering the 3D scene, the viewport area needs to be scaled to the back buffer resolution. A

variety of filters can be used to perform this, and the sample implements several examples as

described here.

Point Filtering
Point filtering is a fast basic filter option. Scaling from a 0.71x ratio dynamic viewport to 1280x720

takes ~0.4ms.

Bilinear Filtering
Bilinear filtering is almost as fast as point filtering due to hardware support, and it reduces the

aliasing artifacts from edges by smoothing, but also blurs the scene. Scaling from a 0.71x ratio

dynamic viewport to 1280x720 takes ~0.4ms.

Clear
colour leak

Clear
colour

leak

Bicubic Filtering
Bicubic filtering is only noticeably better than bilinear for resolutions of 0.5x the back buffer, and its

performance is 7x slower even using a fast bicubic filter [Sigg 2005]. Scaling from a 0.71x ratio

dynamic viewport to 1280x720 takes ~3.5ms.

Noise Filtering
Adding some noise to point filtering helps to add high frequencies, which break the aliasing slightly

at a low cost. The implementation in the sample is fairly basic, and improved film grain filtering

might artistically fit your rendering. Scaling from a 0.71x ratio dynamic viewport to 1280x720 takes

~0.5ms.

Noise Offset Filtering
Adding a small random offset to the sampling location during scaling reduces the regularity of

aliased edges. This approach is common in fast filtering of shadow maps. Scaling from a 0.71x ratio

dynamic viewport to 1280x720 takes ~0.7ms.

Temporal Anti-aliasing Filtering
This scaling filter requires extra support during the initial rendering path to render odd and even

frames offset by half a pixel in X and Y. When filtered intelligently to remove ghosting artifacts, the

resulting image quality is substantially improved by sampling from twice as many pixels. This filtering

method is described in greater depth in its own section below. Scaling from a 0.71x ratio dynamic

viewport to 1280x720 takes ~1.1ms, and has almost the same quality as rendering to full resolution.

Temporal Anti-aliasing Details
Temporal anti-aliasing has been around for some time; however, ghosting problems due to

differences in the positions of objects in consecutive frames have limited its use. Modern rendering

techniques are finally making it an attractive option due to its low performance overhead.

The basic approach is to render odd and even frames jittered (offset) by half a pixel in both X and Y.

The sample code does this by translating the projection matrix. The final scaling then combines both

the current and previous frames, offsetting them by the inverse of the amount they were jittered.

The final image is thus made from twice the number of pixels arranged in a pattern similar to the

dots of the five side on a die, frequently termed a quincunx pattern.

Figure 5: Temporal Anti-Aliasing basic principle

Used along with dynamic resolution, this approach gives an increased observed number of pixels in

the scene when the dynamic resolution is lower than the back buffer, improving the detail in the

scene. When the dynamic resolution is equal or higher to the back buffer, the result is a form of anti-

aliasing.

Figure 6: Result of Temporal AA when dynamic resolution is lower than that of the back buffer

Figure 7: Result of Temporal AA when dynamic resolution is equal or higher to that of the back buffer

100% Resolution
Temporal AA

100% Resolution
Point Filter

71% Resolution
Temporal AA

71% Resolution
Point Filter

N-3

N-2

N-1

N

Time Frame 3D Render Final Image

In order to get increased texture resolution, a MIP LOD bias needs to be applied to textures. In

Microsoft Direct3D* 11, use a D3D11_SAMPLER_DESC MipLODBias of -0.5f during the 3D scene pass.

Additionally, the sampler used during scaling needs to use bilinear minification filtering, for example:

D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT.

In order to reduce ghosting, we use the velocity buffer written out for motion blur. Importantly, this

buffer contains the velocity for each pixel in screen space, thus accounting for camera movement. A

scale factor is calculated from both the current and previous frame’s velocity and applied to the

previous frame’s colour to determine its contribution to the final image. This scales the contribution

based on how similar the sample location is in real space in both frames.

1/width. ~ be tosized typicallyis constant The

buffers. velocity previous the andcurrent theis

buffers.color previous the andcurrent the

output.color final theis Where

)1(

)(

)(1

1

1

1

1

11

K

S

S

K
S

nn

nn

nn

nnnn



















VV

CC

C

CC
C

VVVV

The sample has K tuned to give what the author considers to be the best results for a real time

application, with no ghosting observed at realistically playable frame rates. Screenshots do expose a

small amount of ghosting in high contrast areas as in the screenshot below, which can be tuned out

if desired.

For games, transparencies present a particular problem in not always rendering out velocity

information. In this case, the alpha channel could be used during the forwards rendering of the

transparencies to store a value used to scale the contributions in much the same way as the velocity

is currently used.

An alternative to this approach for ghosting removal is to use the screen space velocity to sample

from the previous frame at the location where the current pixel was. This is the technique used in

the CryENGINE* 3, first demonstrated in the game Crysis* 2 [Crytek 2010]. Intriguingly, LucasArts’

Dmitry Andreev considered using temporal anti-aliasing, but did not due to the use of dynamic

resolution in their engine [Andreev 2011]. The author believes these are compatible, as

demonstrated in the sample code.

Figure 8: Temporal Anti-Aliasing with velocity scaling and moving objects

The effect of motion blur
Motion blur smears pixels and reduces observed aliasing effectively, hence a lower resolution can be

used when the camera is moving. However, the sample does not exploit this in its resolution control

algorithm. The following screenshots show how reducing the resolution to 0.71x the back buffer

results in higher performance, but roughly the same image. Combined with varying motion blur

sample rates, this could be a way to reduce artifacts from undersampling with large camera motions

whilst maintaining a consistent performance.

Figure 9: Motion blur with dynamic resolution off

Figure 10: Motion blur with dynamic resolution on at 0.71x resolution. Note the decreased frame time yet similar quality
end result

Supersampling
Supersampling is a simple technique where the render target used to render the scene is larger than

the back buffer. This technique is largely ignored by the current real-time rendering community—

multi sampled anti-aliasing and other anti-aliasing techniques have replaced its usage due to their

better memory consumption and performance.

Using dynamic resolution significantly reduces the performance impact of adding supersampling, as

the actual resolution used can be dynamically adjusted. There is a small performance impact to

enabling supersampling, mainly due to the extra cost of clearing the larger buffers. The sample code

implements a 2x resolution render target when supersampling is enabled, but good quality results

are observed for relatively small increases in resolution over the back buffer resolution, so a smaller

render target could be used if memory were at a premium. Memory is less of an issue on processor

graphics platforms, as the GPU has access to a relatively large proportion of the system memory, all

of which is accessible at full performance.

Once dynamic resolution rendering methods are integrated, using supersampling is trivial. We

encourage developers to consider this, since it can be beneficial for smaller screen sizes and future

hardware which could have sufficient performance to run the game at more than its maximum

quality.

Render Target Clearing
Since dynamic resolution rendering does not always use the entire render targets surface, it can be

beneficial to clear only the required portion. The sample implements a pixel shader clear, and on the

Intel® HD Graphics 3000-based system tested, the performance of a pixel shader clear was greater

than that of a standard clear when the dynamic ratio was less than 0.71x for a 1280x720 back buffer.

In many cases, it may not be necessary to clear the render targets, as these get overwritten fully

every frame.

Depth buffers should still be cleared completely with the standard clear methods, since these may

implement hierarchical depth. Some multi-sampled render targets may also use compression, so

should be cleared normally.

Performance Scaling
The sample code scales well with resolution, despite the heavy vertex processing load due to the

large highly detailed scene with no level of detail and only very simple culling performed. This gives

the chosen control method significant leverage to maintain frame rate at the desired level.

Most games use level-of-detail mechanisms to control the vertex load. If these are linked to the

approximate size of the object in pixels, the resulting performance scaling will be greater.

-

Figure 11: Dynamic Resolution Performance at 1280x720

Resolution Control
The sample implements a resolution control method in addition to allowing manual control. The

code is in the file DynamicResolutionRendering.cpp, in the function ControlResolution. The desired

0

50

100

150

200

250

300

40 60 80 100 120 140 160 180 200

FP
S

% of Resolution of Back Buffer (1280x720)
Pixel area is square of this value

Conventional @ 100%

Point

Point + PS Clear

TAA + PS Clear

Point + PS Clear + SS Enabled

TAA + PS Clear + SS Enabled

Theoretical Maximum

performance can be selected between the refresh rate (usually 60Hz or 60FPS) and half the refresh

rate (usually 30FPS).

The control scheme is basic: a resolution scale delta is calculated proportionally to the dimensionless

difference in the desired frame time and the current frame time.

Where is the new resolution scale ratio, is the current resolution scale ratio, is the scale delta,

 a rate of change constant, the desired frame time, and the current frame time.

The current frame time uses an average of the GPU inner frame time excluding the present

calculated using Microsoft DirectX* queries, and the frame time calculated from the interval

between frames in the normal way. The GPU inner frame time is required when vertical sync is

enabled, as in this situation the frame time is capped to the sync rate, yet we need to know if the

actual rendering time is shorter than that. Averaging with the actual frame rate helps to take into

account the present along with some CPU frame workloads. If the actual frame time is significantly

larger than the GPU inner frame time, this is ignored, as these are usually due to CPU side spikes

such as going from windowed to fullscreen.

Potential Improvements
The following list is by no means complete, but merely some of the features which the author

believes would naturally extend the current work:

 Combine the dynamic resolution scene rendering with a similar method for shadow maps.

 Use this technique with a separate control mechanism for particle systems, allowing

enhanced quality when only a few small particles are being rendered and improved

performance when the fill rate increases.

 The technique is compatible with other anti-aliasing techniques that can also be applied

along with temporal anti-aliasing.

 Temporal anti-aliasing can use an improved weighted sum dependent on the distance to the

pixel center of the current and previous frames, rather than just a summed blend. A velocity-

dependent offset read, such as that used in the CryENGINE* 3 [Crytek 2010], could also be

used.

 Some games may benefit from running higher quality anti-aliasing techniques over a smaller

area of the image, such as for the main character or on RTS units highlighted by the mouse.

Conclusion
Dynamic resolution rendering gives developers the tools needed to improve overall quality with

minimal user intervention, especially when combined with temporal anti-aliasing. Given the large

32

range of performance in the PC GPU market, we encourage developers to use this technique as one

of their methods of achieving the desired frame rate for their game.

References
[Sigg 2005] Christian Sigg, Martin Hadwiger, “Fast Third Order Filtering”, GPU Gems 2. Addison-

Wesley, 2005.

[Crytek 2010] HPG 2010 “Future graphics in games”, Cevat Yerli & Anton Kaplanyan.

http://www.crytek.com/cryengine/presentations

[GDC Vault 2011] http://www.gdcvault.com/play/1014646/-SPONSORED-Dynamic-Resolution-

Rendering

[Intel GDC 2011] http://software.intel.com/en-us/articles/intelgdc2011/

[Andreev 2011] http://www.gdcvault.com/play/1014550/Anti-aliasing-from-a-Different [PPT 4.6MB]

http://www.crytek.com/cryengine/presentations
http://www.gdcvault.com/play/1014646/-SPONSORED-Dynamic-Resolution-Rendering
http://www.gdcvault.com/play/1014646/-SPONSORED-Dynamic-Resolution-Rendering
http://software.intel.com/en-us/articles/intelgdc2011/
http://www.gdcvault.com/play/1014550/Anti-aliasing-from-a-Different

