Microsoft DirectCompute on the 2nd Generation Intel® Core™

Processor
By Wolfgang Engel

This is the second and last part of the Microsoft DirectCompute series. This article covers
programming DirectCompute with Microsoft DirectX* 10-class graphics processors, while the
previous article focused on Microsoft DirectX 11-class hardware. Each article can exist on its own
as each one provides all the information necessary to begin programming DirectX 10- or 11-class
hardware.

DirectCompute on DirectX* 10 and 11 Hardware

DirectCompute on DirectX 10.x hardware is exposed as new versions of the compute shader with
the cs_4_0 and cs_4_1 profiles in the DirectX 11 application programming interface (API). Here is a
list of features with no or restricted support in DirectX 10.x:

a Device memory. Only one unordered access view (UAV) is available, and you can’t use it to
write into a 2D texture (no RwTexture* support). Only RwStructuredBuffers and
RwByteAddressBuffers are available as UAVs.

o Thread group shared memory (TGSM). This memory is limited to 16 KB per group, and a
single thread is limited to a 256-byte region of it. TGSM can only be accessed using
SV_GroupIndex or SV_DispatchThreadiD.

o Dispatching Kernels. For dispatching kernels:
® Dispatchindirect() is not supported.

e D3D11_CS_4_X_THREAD_GROUP_MAX_THREADS_PER_GROUP shows the overall number of
threads per group, with 768; D3D11_CS_4_X_THREAD_GROUP_MAX_X / *Y showing that

this maximum number of threads is available for the x and y direction.
e Similarly, the number of thread groups is limited in the z direction of a dispatch call to
1, as shown in D3D11_CS_4_X_DISPATCH_MAX_THREAD_GROUPS_IN_Z_DIMENSION.
0 Atomic operations. Atomic operations are not available.
o Double-precision. Double-precision is not supported.

Device Memory

DirectCompute on DirectX 10.x hardware only supports structured and byte address buffers, also
called raw buffers. All textures are read only—in other words, there is no support for a UAV to
write to textures (no RwTexture¥*).

2 Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor

To read from textures and read or write into buffers, memory views are available. DirectX 11
introduced the UAV that allows scattered writes and gathered reads. To read memory in a shader,
DirectX 10 introduced a shader resource view (SRV).

Structured Buffers

A structured buffer is a buffer that contains elements of a structure. Here’s a simple example:

// Compute Shader code: structured buffer with Unordered Access View in u0
struct BufferStruct
{

floatd4 color;
b
RWStructuredBuffer<BufferStruct> output : register (ul) ;

To fill up a structured buffer in the Compute shader, you can use code like this:

uint stride = WindowWidth;

// buffer stride, assumes data stride =
// data width (i.e. no padding)

// DTid is the SV DispatchThreadID

uint idx = (DTid.x) + (DTid.y) * stride;
output[idx].color = color;

The following code creates a structured buffer on the application level:

//

// structured buffer
//

struct BufferStruct
{

float color;

b

D3D11 BUFFER DESC sbDesc;

sbDesc.BindFlags = D3D1 l_BIND_UNORDERED_ACCESS | D3D1 l_BIND_SHADER_RESOURCE;
sbDesc.CPUAccessFlags = 0;

sbDesc.MiscFlags = D3D11 RESOURCE MISC BUFFER STRUCTURED;
sbDesc.StructureByteStride = sizeof (BufferStruct) ;

int Height = WindowHeight;

int Width = WindowWidth;

sbDesc.ByteWidth = ((sbDesc.StructureByteStride * gWidth * gHeight + 63) / 64) * 64;
sbDesc.Usage = D3D11 USAGE DEFAULT;

pd3dDevice->CreateBuffer (&sbDesc, NULL, &pStructuredBuffer);

Byte Address Buffers

Byte address buffers, or raw buffers, are a special type of buffer addressed using a byte offset from
the beginning of the buffer. The byte offset must be a multiple of 4 so that it is word aligned.

3 July 2012

Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor | 3

The type of raw buffers is always 32-bit unsigned int. Other data types would need to be casted to
unsigned int. Raw buffers are useful for generating geometry with DirectCompute, because they
can be bound as vertex and index buffers. In High-level Shading Language (HLSL), they are
declared as follows:

ByteAddressBuffer
RWByteAddressBuffer

In DirectX 10.x, the base offset for a raw buffer must be aligned to 256-byte boundary.
Shader Resource View and Unordered Access View

Similar to the other shader stages in the DirectX pipeline, an SRV is supported in DirectCompute to
allow a shader to read resource memory. In case of a structured buffer, you can create an SRV as
follows:

//

// shader resource view on structured buffer

//

D3D11 SHADER RESOURCE VIEW DESC sbSRVDesc;

ZeroMemory (&sbSRVDesc, sizeof(sbSRVDesc)); sbSRVDesc.Buffer.ElementOffset = 0;
sbSRVDesc.Buffer.ElementWidth = sbDesc.StructureByteStride; sbSRVDesc.Buffer.FirstElement =
sbUAVDesc.Buffer.FirstElement; sbSRVDesc.Buffer.NumElements = sbUAVDesc.Buffer.NumElements;
sbSRVDesc.Format = DXGI FORMAT UNKNOWN;

sbSRVDesc.ViewDimension = D3D11 SRV DIMENSION BUFFER;

hr = pd3dDevice->CreateShaderResourceView ((ID3D11Resource *) pStructuredBuffer, &sbSRVDesc,
&pComputeShaderSRV) ;

A UAV allows you to randomly scatter writes into byte address or raw buffers and structured
buffers, and then randomly gather while reading those buffers. In DirectX 10.x, only a single UAV
could be bound to the pipeline at any time, while in DirectX 11, eight UAVs can be bound at the
same time. DirectX 11.1 seems to allow you to even use a larger number than that.

Code for a UAV to a structured buffer might look like this:

// Unordered access view on structured buffer

D3Dll_UNORDERED_ACCESS_VIEW_DESC sbUAVDesc;

ZeroMemory (&sbUAVDesc, sizeof (sbUAVDesc)); sbUAVDesc.Buffer.FirstElement = 0;
sbUAVDesc.Buffer.Flags = 0;

sbUAVDesc.Buffer.NumElements = sbDesc.ByteWidth / sbDesc.StructureByteStride;
sbUAVDesc.Format = DXGI FORMAT UNKNOWN;

sbUAVDesc.ViewDimension = D3Dl1_UAV_DIMENSION_BUFFER;

HRESULT hr = pd3dDevice>CreateUnorderedAccessView ((ID3D11Resource *)pStructuredBuffer,
&sbUAVDesc, &pComputeOutputUAV) ;

DirectX 10.x does not support RwTextures* and therefore doesn’t allow it to write into a render
target with a compute shader. To move data from a structured buffer into the back buffer, a pixel
shader needs to read the data from the structured buffer via an SRV and write it into the back
buffer via a render target view.

3 July 2012

4 Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor

Thread Group Shared Memory

TGSM is located in on-chip memory. You can consider it a cache to minimize off-chip bandwidth
use. This memory is accessed by all the threads in a thread group. In other words, TGSM allows
threads within a given group to cooperate and share data. Reads and writes to shared memory are
fast compared to global buffer loads and stores.

A common programming pattern is to have the threads within a group cooperatively load a block
of data into shared memory, process the data, and then write out the results to a writable buffer. A
typical example is storing all of the neighboring pixels for horizontal or vertical blur kernels for a
post-processing pipeline.

TGSM is not persistent between dispatch calls. So, the result of one dispatch call needs to be stored
somewhere else. TGSM is indicated in the HLSL shader code using the groupshared type qualifier:

groupshared float sharedmem[256];

In DirectX 10.x, TGSM is limited to 16 KB per group, and a single thread is limited to a 256-byte
region of it. TGSM in DirectX 10 can be read from any location in shared memory but can only
write to the position indexed by SV_GroupIndex or sv_bDispatchThreadib. On DirectX 10-class
hardware, only one shared memory variable can be used in a shader at a time.

DirectCompute Threading Model

The typical multi-threading paradigm used in traditional CPU-based algorithms uses separate
processor cores and threads for execution, coupled with a shared memory space and manual
synchronization. High-end CPUs like the 2nd generation Intel® Core™ processor have up to six
cores, each supporting up to two threads.

DirectCompute uses a different threading model. DirectCompute-capable devices can run
thousands of threads, with flexible mapping of threads to data elements, while the same shader or
program executes them all—a process called kernel processing.

Kernel Processing

A compute shader is considered a processing kernel when executed. A kernel is instantiated for
each thread and applied to a set of data. The data is provided through Microsoft Direct3D*
resources bound to the DirectCompute stage. In other words, each hardware thread can be tasked
with executing one individual invocation of a kernel that is the same for all threads in a dispatch
call.

3 July 2012

Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor | 5

Typical data for a DirectCompute application consists of small parts so that it can be processed
separately. In other words, a typical DirectCompute application requires data that consists of a
large number of similarly structured pieces of data—the classical domain of graphics hardware.

Dispatching Kernels

Executing a compute shader is also called dispatching a kernel. DirectX 10.x only supports one
function to dispatch a kernel:

Dispatch (UINT ThreadGroupCountX, UINT ThreadGroupCountY, UINT ThreadGroupCountZ) ;

This method expects three values that represent the number of thread groups in three dimensions
that should be dispatched. For example, if an application calls the bispatch() method with 4, 8,
and 2, a total of 64 thread groups will be launched. The number of threads in each of those thread
groups is specified in the compute shader.

The following code snippet shows a typical example of how to call bispatch() and provide the
number of threads in a thread group:

// C++ application code
pImmediateContext->Dispatch (Width / THREADSX, Height / THREADSY, 1);

// HLSL compute shader code

[numthreads (THREADSX, THREADSY, 1)]

void CS_QJuliad4D(uint3 Gid : SV_GroupID, uint3 DTid : SV_DispatchThreadID, uint3 GTid :
SV_GroupThreadID, uint GI : SV _GroupIndex)

In case of the thread group for x, the width of the window is divided by the number of threads that
should be in the thread group. The number of threads is defined in the HLSL shader code. With 16
threads in each thread group and a window size of 800, the application will use 50 thread groups
consisting of 16 threads each. For the y direction, if the window has a height of 640, there will be
20 thread groups consisting of 32 threads. This example dispatches 1000 thread groups, each with
512 threads. So, 512,000 threads are in flight.

In the case of DirectX 10.x, the z parameter of a thread group in numthreads can only take 1 as an
input. In other words, DirectX 10.x only supports 2D thread groups, while DirectX 11.x supports
3D groups, as well. Think of the threads in a thread group in DirectX 10.x as a 2D array and those
in DirectX 11 as a 3D array.

A thread in a thread group is addressed by using registers that hold the dimensions of the threads
and thread groups.

3 July 2012

6 Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor

Thread Addressing System

Each of the 512,000 threads executes an instance of a kernel or a compute shader. How does each
kernel know which thread is responsible for its execution? Knowing which thread is executing the
kernel is important for indexing data, and then reading and writing data from or to Direct3D
resources.

The DirectCompute runtime provides system values stored in registers to a kernel. Four registers

hold this data:

O vThreadID.xyz
vThreadGroupID.xyz
vThreadIDInGroup.Xxyz
vThreadIDInGroupFlattended

000D

The values those registers hold are accessible in the compute shader via the following semantics:
Q Sv_DispatchThreadID. An index of the thread within the entire dispatch in each dimension:
x-0x-1,y-0.y-1,z-0.z-1
Q SV_GroupID. An index of a thread group in the dispatch—for example, calling
Dispatch(2,1,1) results in possible values of 0,0,0 and 1,0,0, varying from 0 to
(numthreadsX * numthreadsy * numThreadsz) -1

O Sv_GroupThreadID. An index of a thread in a thread group in each dimension—for example,
if you specified numthreads(3,2,1), possible values for the sv_GroupThreadib input value
have the range of values (0-2, 0-1, 0)

O SV_GroupIndex. A flattened 1D index (uint) to show to which thread group a thread
belongs

A simple example for writing into a 2D texture is shown in the following source code:

RWTexture2D<float4> output : register (ul);
void CS QJuliad4D(uint3 Gid : SV _GroupID, uint3 DTid : SV DispatchThreadID, uint3 GTid :
SV_GroupThreadID, uint GI : SV_GroupIndex)
{
output [DTid.xy] = color;
}

The following code shows how to access a 1D structured buffer in a compute shader:

struct BufferStruct

{
float4 color;
b
RWStructuredBuffer<BufferStruct> output : register (ul); // UAV 0
void CS QJuliad4D(uint3 Gid : SV_GroupID, uint3 DTid : SV DispatchThreadID, uint3 GTid :
SV_GroupThreadID, uint GI : SV_GroupIndex)
{

uint stride = c width;

3 July 2012

Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor | 7

uint idx = (DTid.x) + (DTid.y) * stride;

output[idx].color = color;

Thread Synchronization

As with traditional multi-threaded programming models, many threads can read and write the
same memory location, and therefore there is a potential for memory corruption resulting from
read-after-write hazards. To synchronize memory access of threads, memory barriers are
available.

Memory Barriers

In DirectX 10.x, six different HLSL intrinsics, called memory barriers, can synchronize thread
execution and memory writes:

a AllMemoryBarrier/*withGroupSync
Q DeviceMemoryBarrier/*withGroupSync
Q GroupMemoryBarrier/*withGroupSync

A memory barrier is a method for saying, “wait until the memory operations are complete.” You
use these barriers to ensure that when threads share data with one another, the desired values
written to memory have had a chance to be written before being read by other threads. There is
an important distinction here between the shader core executing a Write instruction and that
instruction actually being carried out by the GPU’s memory system and written to memory.
Depending on the underlying hardware, there can be a variable amount of time between writing a
value and when it actually ends up at its memory destination.

There are *MemoryBarriers for TGSM, device memory, and both memory types. The
*MemoryBarrierwithGroupSync stalls until outstanding memory operations, which are active at
the time of calling, have finished and all threads in the group have hit the instruction.

AllMemoryBarrier says that no memory access can be moved across this barrier. So until this
barrier is hit, there is no guarantee that what was written to memory will be visible to other
threads. AT1MemoryBarrierwithGroupSync adds a threading barrier, as well; all threads must hit
this statement before any can continue.

DeviceMemoryBarrier says that no UAV access can be moved across this barrier, and
GroupMemoryBarrier says that no group shared memory access can be moved across this barrier.
In both cases, the GroupSync version adds a threading barrier.

A typical example for using a memory barrier is shown in the following code:

for (uint tile = 0; tile < numTiles; tile++)

{

3 July 2012

8 Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor

sharedPos[threadId] = particles]|..];
GroupMemoryBarrierWithGroupSync () ;

// gravitation() uses sharedPos[] as input data
acceleration = gravitation(..);

GroupMemoryBarrierWithGroupSync () ;

}

The granularity with which those barriers stall out outstanding memory operations is 4 bytes.
Memory barriers are used to synchronize a whole group of threads. They are not an appropriate
solution for synchronizing only a few threads in a thread group, which would require atomic
instructions. Atomic instructions are not supported on DirectX 10.x-class hardware.

Example

The example program is a DirectX 10 port of the Julia 4D demo that Jan Vlietinck ported to
DirectCompute with DirectX 11 functionality. There is a good explanation of the algorithm and the
quarternion Julia set on Keenan Crane’s website (see “References” at the end of this article).
Figure 1 shows a screenshot of the DirectX 10 version of the demo.

Figure 1. Julia 4D

Figure 2 shows another screenshot of the demo application running on the2nd generation Intel
Core processor.

3 July 2012

Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor | 9

|

Figure 2. Julia 4D on a Znd generation Intel® Core™ processor

This example is well suited to explain a DirectX 10 implementation because it uses the minimum
number of API calls to set up a DirectCompute application for DirectX 10-class hardware and
nicely shows the minimum requirements. In general, the example code is not written with
production quality in mind to make it easier to read and more instructive. So, there’s no checking
all return statements, and picking the right device and window size can’t be changed without re-
compilation.

Setting Up the Device

The simplest way to set up a device is to call D3p11CreateDeviceAndswapcChain() with the default
values. That means that whatever feature set the first device supports is exposed to the
application. For a DirectX 10 application running with the DirectX 11 API, that means that while
creating the device, you will discover whether the underlying hardware supports DirectX 10 or 11
and, depending on that support, this feature level will be chosen. If the application asks for
DirectX 10 features, it will still run if the underlying hardware supports the DirectX 11 feature
level but not vice versa. The simplest way to create a device and a swap chain is as follows:

// return value -> what the hardware supports
D3D FEATURE LEVEL MaxFeatureLevel = D3D FEATURE LEVEL 11 0;

// we are asking for DirectX 10 support here
D3D_FEATURE LEVEL FeaturelLevel = D3D FEATURE LEVEL 10 0;

3 July 2012

10 | Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor

HRESULT hr = D3Dl1CreateDeviceAndSwapChain (
NULL,
D3D DRIVER TYPE HARDWARE,
NULL,
D3D11 CREATE DEVICE DEBUG,
&Featurelevel,
1,
D3D11 SDK VERSION,
&sd,
&pSwapChain,
&pd3dDevice,
&MaxFeaturelevel,
&pImmediateContext) ;

The code asks whether the hardware supports at least the DirectX 10.0 feature level. If it doesn’t,
the return value shows an error.

With the swap chain created, a handle to the back buffer and a render target view to write into this
back buffer can be retrieved. This back buffer is then set with the help of the handle as the main
render target:

ID3D1l1RenderTargetView *pRenderTargetView;

// Create a back buffer render target, get a view on it to clear it later

ID3D11Texture2D *pBackBuffer;
pSwapChain->GetBuffer (0, uuidof (ID3D11Texture2D), (LPVOID*) &pBackBuffer) ;
pd3dDevice->CreateRenderTargetView ((ID3Dl1lResource*)pBackBuffer, NULL, &pRenderTargetView);
pImmediateContext->0OMSetRenderTargets(1, &pRenderTargetView, NULL);

On DirectX 10.x-capable hardware, a compute shader can only write into a structured buffer. A
pixel shader can then read this structured buffer and write its content into the back buffer.
Therefore, an application needs to create a structured buffer, a UAV to write into it, and an SRV to
read from inside a pixel shader later:

//
// structured buffer + shader resource view and unordered access view
//
struct BufferStruct
{
float color;
b
D3D11 BUFFER DESC sbDesc;
sbDesc.BindFlags = D3D1l_BIND_UNORDERED_ACCESS | D3Dll_BIND_SHADER_RESOURCE;
sbDesc.CPUAccessFlags = 0;
sbDesc.MiscFlags = D3D11 RESOURCE MISC BUFFER STRUCTURED;
sbDesc.StructureByteStride = sizeof (BufferStruct) ;

sbDesc.ByteWidth = ((sbDesc.StructureByteStride * gWidth * gHeight + 63) / 64) * 64;
sbDesc.Usage = D3D11 USAGE DEFAULT;
pd3dDevice->CreateBuffer (&sbDesc, NULL, &pStructuredBuffer) ;

// UAV

D3D11 UNORDERED ACCESS VIEW DESC sbUAVDesc;
ZeroMemory (&sbUAVDesc, sizeof (sbUAVDesc));

3 July 2012

Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor | 11

sbUAVDesc.Buffer.FirstElement = 0;
sbUAVDesc.Buffer.Flags = 0;
sbUAVDesc.Buffer.NumElements = sbDesc.ByteWidth / sbDesc.StructureByteStride;
sbUAVDesc.Format = DXGI FORMAT UNKNOWN;
sbUAVDesc.ViewDimension = D3D11 UAV DIMENSION BUFFER;
if (pd3dDevice->CreateUnorderedAccessView ((ID3D11Resource *)pStructuredBuffer, &sbUAVDesc,
&pComputeOutputUAV) != S OK)
MessageBoxA (NULL, "UAV error", "Error", MB OK | MB ICONERROR) ;

// SRV on structured buffer
D3Dll_SHADER_RESOURCE_VIEW_DESC sbSRVDesc;
ZeroMemory (&sbSRVDesc, sizeof (sbSRVDesc));
sbSRVDesc.Buffer.ElementOffset = 0;
sbSRVDesc.Buffer.ElementWidth = sbDesc.StructureByteStride;
sbSRVDesc.Buffer.FirstElement = sbUAVDesc.Buffer.FirstElement;
sbSRVDesc.Buffer.NumElements = sbUAVDesc.Buffer.NumElements;
sbSRVDesc.Format = DXGI_FORMAT_UNKNOWN;
sbSRVDesc.ViewDimension = D3D11 SRV DIMENSION BUFFER;
if (pd3dDevice->CreateShaderResourceView ((ID3D11Resource *) pStructuredBuffer, &sbSRVDesc,
&pComputeShaderSRV) != S OK)

MessageBoxA (NULL, "SRV error", "Error", MB OK | MB ICONERROR) ;

The structured buffer is built with the expectation that a UAV and an SRV will be attached to it.
This is expressed in BindF1ags, which uses a float value to store four 8-bit color values. Those four

values will be packed in the shader into this float value and unpacked later when they are blit into
the back buffer.

With the structured buffer and the necessary views in place, the actual compute shader, the vertex
shader, and the pixel shader are compiled. The vertex and pixel shader combo will blit the content
of the structured buffer into the back buffer:

//

// compile the compute, vertex and pixel shader

//

// compute shader

if (D3DX11lCompileFromFile (L"gjulia4D.hlsl", NULL, NULL, "CS QJulia4D", "cs 4 0", 0, 0, NULL,
&pByteCodeBlob, &pErrorBlob, NULL)!= S OK)

MessageBoxA(..) ;
if (pd3dDevice->CreateComputeShader (pByteCodeBlob->GetBufferPointer (), pByteCodeBlob-
>GetBufferSize (), NULL, &pCompiledComputeShader)!= S OK)

MessageBoxA(..) ;

// pixel shader

if (D3DX11lCompileFromFile (L"blitStructuredBuffer.hlsl", NULL, NULL, "PSBlit", "ps 4 0", 0, O,
NULL, &pByteCodeBlob, &pErrorBlob, NULL)!= S OK)

MessageBoxA(..) ;
if (pd3dDevice->CreatePixelShader (pByteCodeBlob->GetBufferPointer (), pByteCodeBlob-
>GetBufferSize (), NULL, &pCompiledPixelShader)!= S OK)

MessageBoxA(...) ;

// vertex shader
if (D3DX11lCompileFromFile (L"blitStructuredBuffer.hlsl", NULL, NULL, "VSBlit", "vs 4 0", 0, O,
NULL, &pByteCodeBlob, &pErrorBlob, NULL)!= S OK)

MessageBoxA(..) ;

3 July 2012

12 | Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor

i1f (pd3dDevice->CreateVertexShader (pByteCodeBlob->GetBufferPointer (), pByteCodeBlob-
>GetBufferSize (), NULL, &pCompiledVertexShader)!= S OK)
MessageBoxA(...) ;

The application code that runs the compute shader and later blits the content of the structured
buffer into the back buffer is rather compact:

// Set compute shader
pImmediateContext->CSSetShader (pCompiledComputeShader, NULL, 0);

// For CS output
pImmediateContext->CSSetUnorderedAccessViews (0, 1, &pComputeOutputUAV, NULL) ;

// For CS constant buffer
pImmediateContext->CSSetConstantBuffers (0, 1, &pcbFractal);

// Run the CS
pImmediateContext->Dispatch (gWidth / THREADSX, gHeight / THREADSY, 1);

// D3D11 on D3D10 hW: only a single UAV can be bound to a pipeline at once.
// set to NULL to unbind

ID3D11UnorderedAccessView* pNullUAV = NULL;
pImmediateContext->CSSetUnorderedAccessViews (0, 1, &pNullUAV, NULL) ;

// set the vertex shader
pImmediateContext->VSSetShader (pCompiledVertexShader, NULL, 0);

// set the pixel shader
pImmediateContext->PSSetShader (pCompiledPixelShader, NULL, 0);

// to read the structured buffer a shader resource view is set here
pImmediateContext->PSSetShaderResources(0, 1, &pComputeShaderSRV) ;

// set primitive topology
pImmediateContext->IASetPrimitiveTopology (D3D PRIMITIVE TOPOLOGY TRIANGLELIST);

// draw the results on the screen
pImmediateContext->Draw (3, 0);

// unbind the compute shader buffer resource
ID3Dl11ShaderResourceView* pNULLSRV[1] = { NULL };
pImmediateContext->PSSetShaderResources(0, 1, pNULLSRV);

// make it visible
pSwapChain->Present (0, 0);

Before the Dispatch() call that invokes the compute shader execution, the compute shader is set,
a UAV is set to write into the structured buffer, and a constant buffer is set that holds data for the
Julia 4D algorithm. Because DirectX 10.x hardware can only have one UAV set at a time, the
available UAV is then set to NULL.

The following draw call in braw() blits the content of the structured buffer into the back buffer.
Therefore, it sets the SRV to read the structured buffer and, after the draw call, sets it back to
NULL. The back buffer was already set up as the main render target in the initialization code.

3 July 2012

Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor | 13

Two shaders are involved: the compute shader that writes the Julia 4D data set into the structured
buffer and the blit shader that blits the content of this buffer into the back buffer. The compute
shader writes into the buffer by packing four color values into a float variable with the following
code:

float Pack4PNForFP32 (float4 channel)
{
// layout of a 32-bit fp register
// SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM
// 1 sign bit; 8 bits for the exponent and 23 bits for the mantissa
uint uvValue = 0;

// just make sure everything is between 0..1

channel = saturate (channel);

// pack x

uValue = ((uint) (channel.x * 255.0 + 0.5));

// pack y

uValue |= ((uint) (channel.y * 255.0 + 0.5)) << 8;

// pack z in EMMMMMMM
uValue |= ((uint) (channel.z * 255.0 + 0.5)) << 16;

// pack w in SEEEEEEE

// the last E will never be 1b because the upper value is 254
// max value is 11111110 == 254

// this prevents the bits of the exponents to become all 1

// range is 1.. 254

// to prevent an exponent that is 0 we add 1.0

uValue |= ((uint) (channel.w * 253.0 + 1.5)) << 24;

return asfloat (uvValue) ;

}

uint stride = c width;

// buffer stride, assumes data stride = data width (i.e. no padding)
uint idx = (DTid.x + (c_width / 2)) + (DTid.y) * stride;
output [idx] .color = Pack4PNForFP32 ((color)) ;

}

The vertex and pixel shader then blit the content of the buffer by unpacking it into the 8:8:8:8 back
buffer:

StructuredBuffer<float> buffer : register(t0);

struct PsIn

{
float4 Pos : SV_POSITION;

I

#define WINDOWWIDTH 800
#define WINDOWHEIGHT 640

3 July 2012

14 | Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor

PsIn VSBlit (uint VertexID: SV VertexID)

{
PsIn Out = (PsIn)O0;

// Produce a fullscreen triangle with a triangle list
float4 position;

position.x = (VertexID == 2)? 3.0 : -1.0;
position.y = (VertexID == 0)? -3.0 : 1.0;
position.zw = 1.0;

Out.Pos = position;

return Out;

}

// unpack four positive normalized values from a 32-bit float
float4 Unpack4PNFromFP32 (float fFloatFromFP32)
{

float r, g, b, d;
uint uValue;

uint ulnputFloat = asuint (fFloatFromFP32) ;

// unpack a
r = ((uInputFloat) & OxFF) / 255.0;

g = ((uInputFloat >> 8) & OxFF) / 255.0;

b

((uInputFloat >> 16) & OxFF) / 255.0;

// extract the 1..254 value range and subtract 1
// ending up with 0..253
d = (((uInputFloat >> 24) & OxFF) - 1.0) / 253.0;

return float4(r, g, b, d);

float4 PSBlit (PsIn In) : SV_TARGET

{
uint idx = ((In.Pos.x)) + ((In.Pos.y)) * WINDOWWIDTH;

return Unpack4PNFromFP32 (buffer[idx]) ;
}

The vertex shader generates position values by using the vertex counter with the semantic
SV_vertexID. When sv_position values are used in the pixel shader, they describe the pixel
location. Packing four 8-bit values into a 32-bit structured buffer instead of using a 128-bit
structured buffer is a more efficient use of memory. Alpha doesn’t need to be packed and
unpacked. The fourth component is there only to show a complete packing and unpacking routine.
You might also consider using a buffer consisting of integer values to simplify the packing routine
even further.

Note: The blit shader combo doesn’t use a vertex or index buffer.

3 July 2012

Microsoft DirectCompute on the 2nd generation Intel® Core™ Processor | 15

Summary

DirectCompute allows you to program compute shaders on hardware running on 2nd generation
Intel Core processors. Operations that need a more relaxed relationship between threads and data
or operations that do not require the rasterizer can therefore be brought over to the graphics
hardware. Doing so allows you to balance the load between the CPU and the graphics processor
with a fine level of granularity.

References
o Keenan Crane, http://users.cms.caltech.edu/~keenan/project gjulia.html

o Registers used in ¢s_5_0 http://msdn.microsoft.com/en-
us/library/hh447206(v=VS.85).aspx

o Jan Vlietinck, http://users.skynet.be/fquake

a Jason Zink, Matt Pettineo, Jack Hoxley, “Practical Rendering & Computing with
Direct3D 11,” CRC Press, 2011; p. 305

About the Author

Wolfgang Engel is the CTO/CEO and Co-founder of Confetti Special Effects Inc., a think tank for
advanced real-time graphics research for the video game and movie industry. Previously, he
worked for more than four years in Rockstar’s core technology group as the lead graphics
programmer. Some of his game credits can be found at
http://www.mobygames.com/developer/sheet/view/developerld,158706. He is the editor of the
ShaderX Pro and GPU Pro books as well as the author of several other books, and he speaks on
graphics programming at conferences worldwide. He has been a DirectX MVP since July 2006 and
active in several advisory boards in the industry. He teaches the class “GPU Programming” at the
University of California, San Diego. You can find him on Twitter at @wolfgangengel. Confetti’s
website is www.conffx.com.

*Other names and brands may be claimed as the property of others.

3 July 2012

http://users.cms.caltech.edu/~keenan/project_qjulia.html
http://msdn.microsoft.com/en-us/library/hh447206(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/hh447206(v=VS.85).aspx
http://users.skynet.be/fquake/
http://www.mobygames.com/developer/sheet/view/developerId,158706
http://www.conffx.com/

