C++ API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1

References | Namespaces | Enumerations

Contains a class for linear regression model-based training. More...

References

 Batch
 
 Distributed
 
 Online
 

Namespaces

 daal::algorithms::linear_regression::training
 Contains a class for linear regression model-based training.
 
 daal::algorithms::linear_regression::training::interface1
 Contains version 1.0 of the Intel(R) Data Analytics Acceleration Library (Intel(R) DAAL) interface.
 

Enumerations

enum  Method { defaultDense = 0, normEqDense = 0, qrDense = 1 }
 Computation methods for linear regression model-based training. More...
 
enum  InputId { data = linear_model::training::data, dependentVariables = linear_model::training::dependentVariables }
 Available identifiers of input objects for linear regression model-based training. More...
 
enum  Step2MasterInputId { partialModels }
 Available identifiers of input objects for linear regression model-based training in the second step of the distributed processing mode. More...
 
enum  PartialResultID { partialModel }
 Available identifiers of a partial result of linear regression model-based training. More...
 
enum  ResultId { model = linear_model::training::model }
 Available identifiers of the result of linear regression model-based training. More...
 

Enumeration Type Documentation

enum InputId

Enumerator
data 

Input data table

dependentVariables 

Values of the dependent variable for the input data

enum Method

Enumerator
defaultDense 

Default: Normal equations method

normEqDense 

Normal equations method

qrDense 

QR decomposition-based method

enum PartialResultID

Enumerator
partialModel 

Partial model trained on the available input data

enum ResultId

Enumerator
model 

Linear regression model

enum Step2MasterInputId

Enumerator
partialModels 

Collection of partial models trained on local nodes

For more complete information about compiler optimizations, see our Optimization Notice.