C++ API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1

lrn_layer_types.h
1 /* file: lrn_layer_types.h */
2 /*******************************************************************************
3 * Copyright 2014-2020 Intel Corporation
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *******************************************************************************/
17 
18 /*
19 //++
20 // Implementation of the local response normalization layer types.
21 //--
22 */
23 
24 #ifndef __LRN_LAYER_TYPES_H__
25 #define __LRN_LAYER_TYPES_H__
26 
27 #include "algorithms/algorithm.h"
28 #include "data_management/data/tensor.h"
29 #include "data_management/data/homogen_tensor.h"
30 #include "data_management/data/homogen_numeric_table.h"
31 #include "services/daal_defines.h"
32 #include "algorithms/neural_networks/layers/layer_types.h"
33 
34 namespace daal
35 {
36 namespace algorithms
37 {
38 namespace neural_networks
39 {
40 namespace layers
41 {
48 namespace lrn
49 {
54 enum Method
55 {
56  defaultDense = 0,
57 };
58 
63 enum LayerDataId
64 {
65  auxData = layers::lastLayerInputLayout + 1,
66  auxSmBeta,
67  lastLayerDataId = auxSmBeta
68 };
69 
73 namespace interface1
74 {
75 
82 /* [Parameter source code] */
83 class DAAL_EXPORT Parameter: public layers::Parameter
84 {
85 public:
95  DAAL_DEPRECATED Parameter(
96  data_management::NumericTablePtr dimension_ = data_management::HomogenNumericTable<size_t>::create(1, 1, data_management::NumericTableIface::doAllocate, 1),
97  const double kappa_ = 2,
98  const double alpha_ = 1.0e-04,
99  const double beta_ = 0.75,
100  const size_t nAdjust_ = 5 );
101 
102  data_management::NumericTablePtr dimension;
104  double kappa;
105  double alpha;
106  double beta;
107  size_t nAdjust;
115  DAAL_DEPRECATED_VIRTUAL virtual services::Status check() const;
116 };
117 /* [Parameter source code] */
118 
119 } // namespace interface1
120 using interface1::Parameter;
121 
122 } // namespace lrn
124 } // namespace layers
125 } // namespace neural_networks
126 } // namespace algorithm
127 } // namespace daal
128 #endif
daal::algorithms::neural_networks::layers::lrn::interface1::Parameter::dimension
data_management::NumericTablePtr dimension
Definition: lrn_layer_types.h:102
daal::algorithms::neural_networks::layers::lrn::defaultDense
Definition: lrn_layer_types.h:56
daal::algorithms::neural_networks::layers::lrn::interface1::Parameter::beta
double beta
Definition: lrn_layer_types.h:106
daal::algorithms::neural_networks::layers::lrn::interface1::Parameter::kappa
double kappa
Definition: lrn_layer_types.h:104
daal::algorithms::neural_networks::layers::lrn::interface1::Parameter
Parameters for the local response normalization layer.
Definition: lrn_layer_types.h:83
daal::algorithms::neural_networks::layers::lrn::auxData
Definition: lrn_layer_types.h:65
daal_defines.h
daal::algorithms::neural_networks::layers::lrn::auxSmBeta
Definition: lrn_layer_types.h:66
daal::algorithms::neural_networks::layers::lrn::Method
Method
Computation methods for the local response normalization layer.
Definition: lrn_layer_types.h:54
daal::algorithms::neural_networks::layers::lrn::LayerDataId
LayerDataId
Identifiers of input objects for the backward stage and results for the forward stage of the local re...
Definition: lrn_layer_types.h:63
daal::algorithms::neural_networks::layers::lrn::interface1::Parameter::nAdjust
size_t nAdjust
Definition: lrn_layer_types.h:107
daal::algorithms::neural_networks::layers::lrn::interface1::Parameter::alpha
double alpha
Definition: lrn_layer_types.h:105

For more complete information about compiler optimizations, see our Optimization Notice.