C++ API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1

List of all members
DistributedIface< step2Master > Class Template Referenceabstract

Interface for correlation or variance-covariance matrix computation algorithms in the distributed processing mode on master node. More...

Class Declaration

template<>
class daal::algorithms::covariance::interface1::DistributedIface< step2Master >

Template Parameters
stepStep of distributed processing, ComputeStep
algorithmFPTypeData type to use in intermediate computations of the correlation or variance-covariance matrix, double or float
methodComputation method, daal::algorithms::covariance::Method
Enumerations
  • Method Computation methods for correlation or variance-covariance matrix
  • InputId Identifiers of input objects for the correlation or variance-covariance matrix algorithm
  • MasterInputId Identifiers of input objects for the correlation or variance-covariance matrix algorithm on master node
  • PartialResultId Identifiers of partial results for the correlation or variance-covariance matrix algorithm
  • ResultId Identifiers of final results of the correlation or variance-covariance matrix algorithm
References

Constructor & Destructor Documentation

DistributedIface ( )
inline

Default constructor

DistributedIface ( const DistributedIface< step2Master > &  other)
inline

Constructs an algorithm for correlation or variance-covariance matrix computation in the distributed processing mode on master node by copying input objects and parameters of another algorithm for correlation or variance-covariance matrix computation

Parameters
[in]otherAn algorithm to be used as the source to initialize the input objects and parameters of the algorithm

Member Function Documentation

services::Status checkFinalizeComputeParams ( )
inline

Validates parameters of the finalizeCompute() method

services::SharedPtr<DistributedIface<step2Master> > clone ( ) const
inline

Returns a pointer to the newly allocated algorithm for correlation or variance-covariance matrix computation in the distributed processing mode on master node with a copy of input objects and parameters of this algorithm for correlation or variance-covariance matrix computation

Returns
Pointer to the newly allocated algorithm
PartialResultPtr getPartialResult ( )
inline

Returns the structure that contains computed partial results of the correlation or variance-covariance matrix algorithm

Returns
Structure that contains partial results
ResultPtr getResult ( )
inline

Returns the structure that contains final results of the correlation or variance-covariance matrix algorithm

Returns
Structure that contains final results
virtual services::Status setPartialResult ( const PartialResultPtr &  partialResult,
bool  initFlag = false 
)
inlinevirtual

Registers user-allocated memory to store partial results of the correlation or variance-covariance matrix algorithm

Parameters
[in]partialResultStructure to store partial results
[in]initFlagFlag that specifies whether the partial results are initialized
virtual services::Status setResult ( const ResultPtr &  result)
inlinevirtual

Registers user-allocated memory to store final results of the correlation or variance-covariance matrix algorithm

Parameters
[in]resultStructure to store the results

Member Data Documentation

Input data structure

ParameterType parameter

Parameters of the algorithm


The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.