C++ API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1

List of all members
Batch< algorithmFPType, method > Class Template Reference

Computes correlation or variance-covariance matrix in the batch processing mode. More...

Class Declaration

template<typename algorithmFPType = DAAL_ALGORITHM_FP_TYPE, Method method = defaultDense>
class daal::algorithms::covariance::interface1::Batch< algorithmFPType, method >

Template Parameters
algorithmFPTypeData type to use in intermediate computations of the correlation or variance-covariance matrix, double or float
methodComputation method, daal::algorithms::covariance::Method
Enumerations
  • Method Computation methods for correlation or variance-covariance matrix
  • InputId Identifiers of input objects for the correlation or variance-covariance matrix algorithm
  • ResultId Identifiers of results of the correlation or variance-covariance matrix algorithm
References

Constructor & Destructor Documentation

Batch ( )
inline

Default constructor

Batch ( const Batch< algorithmFPType, method > &  other)
inline

Constructs an algorithm for correlation or variance-covariance matrix computation by copying input objects and parameters of another algorithm for correlation or variance-covariance matrix computation

Parameters
[in]otherAn algorithm to be used as the source to initialize the input objects and parameters of the algorithm

Member Function Documentation

services::SharedPtr<Batch<algorithmFPType, method> > clone ( ) const
inline

Returns a pointer to the newly allocated algorithm for correlation or variance-covariance matrix computation with a copy of input objects and parameters of this algorithm for correlation or variance-covariance matrix computation

Returns
Pointer to the newly allocated algorithm
virtual int getMethod ( ) const
inlinevirtual

Returns method of the algorithm

Returns
Method of the algorithm

The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.