
Intel® C++ Compiler Classic Developer
Guide and Reference

Disclaimer and Legal Information

Contents
Notices and Disclaimers... 32
Intel® C++ Compiler Classic Developer Guide and Reference 33

Part I: Introducing the Intel® C++ Compiler Classic
Feature Requirements .. 34
Get Help and Support .. 35
Related Information... 36
Notational Conventions .. 37

Part II: Compiler Setup
Use the Command Line .. 40

Specify the Location of Compiler Components 40
Invoke the Compiler .. 42
Use the Command Line on Windows .. 44
File Extensions.. 44
Use Makefiles for Compilation ... 45
Use Compiler Options .. 46
Specify Compiler Files.. 49
Convert Projects to Use a Selected Compiler 50

Use Eclipse* .. 51
Add the Compiler to Eclipse* .. 51
Multi-Version Compiler Support ... 52
Use Cheat Sheets.. 52
Create a Simple Eclipse Project ... 52
Makefiles ... 55
Use Intel Libraries with Eclipse* .. 56

Using Microsoft Visual Studio*... 57
Create a New Project ... 57
Use the Intel® C++ Compiler Classic .. 58
Select the Compiler Version .. 59
Specify a Base Platform Toolset... 59
Use Property Pages ... 60
Use Intel® Libraries with Microsoft Visual Studio*................................. 60
Include MPI Support .. 61
Use Guided Auto Parallelism in Microsoft Visual Studio*........................ 62
Use Code Coverage in Microsoft Visual Studio*.................................... 63
Use Profile Guided Optimization in Microsoft Visual Studio*................... 63
Optimization Reports .. 64
Dialog Box Help .. 66

Options: Compilers dialog box .. 67
Use Intel® C++ Compiler Classic dialog box 67
Options: Intel Libraries for oneAPI dialog box 67
Options: Converter dialog box .. 68
Options: Optimization Reports dialog box 68
Options: Guided Auto Parallelism dialog box 69
Configure Analysis dialog box ... 70
Options: Profile Guided Optimization (PGO) dialog box................. 70
Profile Guided Optimization dialog box 71
Options: Code Coverage dialog box ... 73

Intel® C++ Compiler Classic Developer Guide and Reference

2

Code Coverage dialog box .. 73
Code Coverage Settings dialog box.. 74

Using Xcode* (macOS) ... 75
Create an Xcode* Project ... 75
Select the Intel® Compiler .. 75
Build the Target .. 76
Set Compiler Options... 77
Run the Executable ... 77
Use Intel Libraries with Xcode* ... 78

Part III: Compiler Reference
C/C++ Calling Conventions... 80
Compiler Options... 84

Alphabetical Option List.. 84
General Rules for Compiler Options.. 105
What Appears in the Compiler Option Descriptions............................. 106
Optimization Options ... 107

falias, Oa ... 107
fast... 108
fbuiltin, Oi.. 109
fdefer-pop.. 110
ffnalias, Ow.. 111
foptimize-sibling-calls .. 112
fprotect-parens, Qprotect-parens .. 113
GF .. 114
nolib-inline... 114
O.. 115
Od .. 118
Ofast... 118
Os .. 119
Ot... 120
Ox .. 121

Code Generation Options.. 121
arch .. 122
ax, Qax ... 124
EH .. 127
fasynchronous-unwind-tables ... 129
fcf-protection, Qcf-protection.. 130
fdata-sections, Gw .. 131
fexceptions .. 131
ffunction-sections, Gy.. 132
fomit-frame-pointer, Oy ... 133
Gd .. 135
Gr... 135
GR.. 136
guard .. 137
Gv .. 138
Gz .. 139
hotpatch.. 140
m ... 141
m32, m64, Q32, Q64 .. 143
m80387... 144
march ... 144
masm ... 147
mauto-arch, Qauto-arch .. 148

Contents

3

mbranches-within-32B-boundaries, Qbranches-within-32B-
boundaries... 148

mconditional-branch, Qconditional-branch 149
minstruction, Qinstruction .. 151
momit-leaf-frame-pointer... 152
mregparm.. 153
mregparm-version .. 154
mstringop-inline-threshold, Qstringop-inline-threshold 155
mstringop-strategy, Qstringop-strategy.................................... 156
mtune, tune... 157
Qcxx-features... 159
Qpatchable-addresses ... 160
Qsafeseh ... 161
regcall, Qregcall.. 162
x, Qx... 162
xHost, QxHost .. 166

Interprocedural Optimization Options... 169
ffat-lto-objects ... 169
ip, Qip ... 170
ip-no-inlining, Qip-no-inlining ... 171
ip-no-pinlining, Qip-no-pinlining.. 172
ipo, Qipo.. 173
ipo-c, Qipo-c .. 174
ipo-jobs, Qipo-jobs.. 175
ipo-S, Qipo-S ... 176
ipo-separate, Qipo-separate ... 176

Advanced Optimization Options... 177
alias-const, Qalias-const .. 177
ansi-alias, Qansi-alias.. 178
ansi-alias-check, Qansi-alias-check ... 179
complex-limited-range, Qcomplex-limited-range 180
fargument-alias, Qalias-args... 181
fargument-noalias-global ... 182
ffreestanding, Qfreestanding .. 183
fjump-tables .. 184
ftls-model .. 185
funroll-all-loops .. 186
guide, Qguide... 186
guide-data-trans, Qguide-data-trans 188
guide-file, Qguide-file .. 189
guide-file-append, Qguide-file-append 190
guide-opts, Qguide-opts .. 192
guide-par, Qguide-par ... 194
guide-vec, Qguide-vec ... 195
ipp-link, Qipp-link ... 195
qdaal, Qdaal... 196
qipp, Qipp.. 198
qmkl, Qmkl .. 199
qopt-args-in-regs, Qopt-args-in-regs 201
qopt-assume-safe-padding, Qopt-assume-safe-padding 202
qopt-block-factor, Qopt-block-factor... 203
qopt-calloc, Qopt-calloc ... 204
qopt-class-analysis, Qopt-class-analysis................................... 205
qopt-dynamic-align, Qopt-dynamic-align 205
qopt-jump-tables, Qopt-jump-tables.. 206

Intel® C++ Compiler Classic Developer Guide and Reference

4

qopt-malloc-options .. 207
qopt-matmul, Qopt-matmul.. 208
qopt-mem-layout-trans, Qopt-mem-layout-trans 210
qopt-multi-version-aggressive, Qopt-multi-version-aggressive 211
qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-

scatter-by-shuffles .. 212
qopt-prefetch, Qopt-prefetch .. 213
qopt-prefetch-distance, Qopt-prefetch-distance......................... 214
qopt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint 215
qopt-ra-region-strategy, Qopt-ra-region-strategy 216
qopt-streaming-stores, Qopt-streaming-stores.......................... 217
qopt-subscript-in-range, Qopt-subscript-in-range 219
qopt-zmm-usage, Qopt-zmm-usage .. 219
qoverride-limits, Qoverride-limits .. 221
qtbb, Qtbb ... 222
Qvla.. 223
scalar-rep, Qscalar-rep .. 223
simd, Qsimd... 224
simd-function-pointers, Qsimd-function-pointers 225
unroll, Qunroll .. 226
unroll-aggressive, Qunroll-aggressive 227
use-intel-optimized-headers, Quse-intel-optimized-headers 228
vec, Qvec .. 229
vec-guard-write, Qvec-guard-write.. 230
vec-threshold, Qvec-threshold .. 230
vecabi, Qvecabi .. 232

Profile Guided Optimization Options ... 233
finstrument-functions, Qinstrument-functions 234
fnsplit, Qfnsplit ... 235
Gh .. 236
GH.. 237
p .. 237
prof-data-order, Qprof-data-order ... 238
prof-dir, Qprof-dir ... 239
prof-file, Qprof-file .. 240
prof-func-groups... 241
prof-func-order, Qprof-func-order.. 242
prof-gen, Qprof-gen .. 243
prof-gen-sampling .. 245
prof-hotness-threshold, Qprof-hotness-threshold....................... 245
prof-src-dir, Qprof-src-dir ... 246
prof-src-root, Qprof-src-root... 248
prof-src-root-cwd, Qprof-src-root-cwd...................................... 249
prof-use, Qprof-use... 250
prof-use-sampling... 252
prof-value-profiling, Qprof-value-profiling................................. 252
Qcov-dir .. 254
Qcov-file.. 254
Qcov-gen... 255

Optimization Report Options ... 256
qopt-report, Qopt-report .. 256
qopt-report-annotate, Qopt-report-annotate 258
qopt-report-annotate-position, Qopt-report-annotate-position 259
qopt-report-embed, Qopt-report-embed................................... 260
qopt-report-file, Qopt-report-file ... 261

Contents

5

qopt-report-filter, Qopt-report-filter ... 262
qopt-report-format, Qopt-report-format 264
qopt-report-help, Qopt-report-help.. 265
qopt-report-names, Qopt-report-names 266
qopt-report-per-object, Qopt-report-per-object 267
qopt-report-phase, Qopt-report-phase 268
qopt-report-routine, Qopt-report-routine 272

OpenMP* Options and Parallel Processing Options.............................. 273
device-math-lib .. 273
fmpc-privatize .. 274
fopenmp-device-lib ... 274
par-affinity, Qpar-affinity.. 275
par-loops, Qpar-loops.. 277
par-num-threads, Qpar-num-threads....................................... 277
par-runtime-control, Qpar-runtime-control 278
par-schedule, Qpar-schedule .. 279
par-threshold, Qpar-threshold .. 282
parallel, Qparallel.. 283
parallel-source-info, Qparallel-source-info 285
qopenmp, Qopenmp.. 286
qopenmp-lib, Qopenmp-lib ... 287
qopenmp-link, Qopenmp-link.. 289
qopenmp-simd, Qopenmp-simd .. 290
qopenmp-stubs, Qopenmp-stubs .. 291
qopenmp-threadprivate, Qopenmp-threadprivate 292
Qpar-adjust-stack ... 293

Floating-Point Options.. 294
fast-transcendentals, Qfast-transcendentals 294
fimf-absolute-error, Qimf-absolute-error................................... 296
fimf-accuracy-bits, Qimf-accuracy-bits 297
fimf-arch-consistency, Qimf-arch-consistency............................ 299
fimf-domain-exclusion, Qimf-domain-exclusion 301
fimf-force-dynamic-target, Qimf-force-dynamic-target 304
fimf-max-error, Qimf-max-error .. 306
fimf-precision, Qimf-precision ... 307
fimf-use-svml, Qimf-use-svml... 310
fma, Qfma ... 312
fp-model, fp ... 313
fp-port, Qfp-port... 317
fp-speculation, Qfp-speculation... 319
fp-stack-check, Qfp-stack-check.. 320
fp-trap, Qfp-trap... 320
fp-trap-all, Qfp-trap-all .. 322
ftz, Qftz... 324
Ge .. 325
mp1, Qprec.. 326
pc, Qpc.. 327
prec-div, Qprec-div ... 328
prec-sqrt, Qprec-sqrt... 329
qsimd-honor-fp-model, Qsimd-honor-fp-model 330
qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction.......... 331
rcd, Qrcd ... 332

Inlining Options .. 333
fgnu89-inline.. 333
finline.. 333

Intel® C++ Compiler Classic Developer Guide and Reference

6

finline-functions.. 334
finline-limit .. 335
inline-calloc, Qinline-calloc ... 336
inline-factor, Qinline-factor ... 337
inline-forceinline, Qinline-forceinline .. 338
inline-level, Ob ... 339
inline-max-per-compile, Qinline-max-per-compile...................... 340
inline-max-per-routine, Qinline-max-per-routine 341
inline-max-size, Qinline-max-size.. 342
inline-max-total-size, Qinline-max-total-size............................. 343
inline-min-caller-growth, Qinline-min-caller-growth 344
inline-min-size, Qinline-min-size ... 345
Qinline-dllimport ... 346

Output, Debug, and Precompiled Header Options............................... 347
c .. 347
debug (Linux* and macOS*) .. 348
debug (Windows*) .. 351
Fa... 352
FA... 353
fasm-blocks ... 354
FC .. 355
fcode-asm.. 356
Fd... 356
FD .. 357
Fe... 358
feliminate-unused-debug-types, Qeliminate-unused-debug-types 359
femit-class-debug-always... 360
fmerge-constants.. 361
fmerge-debug-strings.. 361
Fo... 362
Fp... 363
FR .. 364
fsource-asm... 365
ftrapuv, Qtrapuv ... 365
fverbose-asm ... 367
g .. 367
gdwarf .. 369
Gm ... 370
grecord-gcc-switches... 371
gsplit-dwarf.. 371
map-opts, Qmap-opts ... 372
o .. 373
pch ... 374
pch-create ... 375
pch-dir .. 376
pch-use ... 377
pdbfile... 378
print-multi-lib... 379
Qpchi .. 380
Quse-msasm-symbols ... 380
RTC... 381
S .. 382
use-asm, Quse-asm .. 383
use-msasm .. 384
V .. 384

Contents

7

Y- ... 385
Yc... 386
Yd... 387
Yu... 388
Zi, Z7, ZI... 389
Zo .. 391

Preprocessor Options... 391
A, QA .. 392
B .. 393
C .. 394
D.. 395
dD, QdD .. 396
dM, QdM.. 396
dN, QdN .. 397
E .. 398
EP... 399
FI ... 400
gcc, gcc-sys ... 400
gcc-include-dir ... 401
H, QH.. 402
I... 403
I-.. 403
icc, Qicl ... 404
idirafter ... 405
imacros ... 406
iprefix ... 406
iquote ... 407
isystem ... 408
iwithprefix ... 408
iwithprefixbefore... 409
Kc++, TP... 410
M, QM ... 410
MD, QMD ... 411
MF, QMF .. 412
MG, QMG... 412
MM, QMM... 413
MMD, QMMD .. 414
MP (Linux* OS) .. 414
MQ ... 415
MT, QMT .. 416
nostdinc++.. 416
P .. 417
pragma-optimization-level.. 418
u (Windows*)... 419
U.. 419
undef .. 420
X .. 421

Component Control Options.. 422
Qinstall.. 422
Qlocation ... 423
Qoption ... 424

Language Options ... 425
ansi .. 425
check .. 426
early-template-check... 428

Intel® C++ Compiler Classic Developer Guide and Reference

8

fblocks .. 428
ffriend-injection .. 429
fno-gnu-keywords... 430
fno-implicit-inline-templates ... 430
fno-implicit-templates.. 431
fno-operator-names .. 432
fno-rtti .. 432
fnon-lvalue-assign... 433
fpermissive .. 434
fshort-enums ... 434
fsyntax-only... 435
ftemplate-depth, Qtemplate-depth .. 436
funsigned-bitfields .. 436
funsigned-char ... 437
GZ.. 438
H (Windows* OS) ... 439
help-pragma, Qhelp-pragma... 439
intel-extensions, Qintel-extensions.. 440
J... 441
restrict, Qrestrict .. 442
std, Qstd ... 443
strict-ansi .. 445
vd... 446
vmb.. 447
vmg.. 447
vmm... 448
vms .. 449
x (type option) ... 449
Za .. 450
Zc... 451
Ze .. 453
Zg .. 453
Zp .. 454
Zs... 455

Data Options .. 455
align ... 456
auto-ilp32, Qauto-ilp32.. 457
auto-p32 ... 458
check-pointers, Qcheck-pointers ... 459
check-pointers-dangling, Qcheck-pointers-dangling 460
check-pointers-mpx, Qcheck-pointers-mpx............................... 461
check-pointers-narrowing, Qcheck-pointers-narrowing 463
check-pointers-undimensioned, Qcheck-pointers-undimensioned . 464
falign-functions, Qfnalign ... 465
falign-loops, Qalign-loops... 466
falign-stack.. 467
fcommon ... 468
fextend-arguments, Qextend-arguments.................................. 469
fkeep-static-consts, Qkeep-static-consts 469
fmath-errno ... 470
fminshared .. 471
fmudflap.. 472
fpack-struct ... 473
fpascal-strings.. 473
fpic ... 474

Contents

9

fpie ... 475
freg-struct-return.. 476
fstack-protector .. 477
fstack-security-check... 478
fvisibility.. 479
fvisibity-inlines-hidden... 481
fzero-initialized-in-bss, Qzero-initialized-in-bss 481
GA.. 482
Gs .. 483
GS.. 484
GT .. 485
homeparams .. 486
malign-double .. 487
malign-mac68k... 487
malign-natural.. 488
malign-power ... 489
mcmodel ... 489
mdynamic-no-pic .. 491
mlong-double ... 491
no-bss-init, Qnobss-init ... 493
noBool... 493
Qlong-double ... 494
Qsfalign... 496

Compiler Diagnostic Options ... 497
diag, Qdiag .. 497
diag-dump, Qdiag-dump .. 500
diag-enable=power, Qdiag-enable:power 501
diag-error-limit, Qdiag-error-limit.. 502
diag-file, Qdiag-file ... 503
diag-file-append, Qdiag-file-append... 504
diag-id-numbers, Qdiag-id-numbers .. 505
diag-once, Qdiag-once... 506
fnon-call-exceptions .. 506
traceback... 507
w.. 509
w0...w5, W0...W5 ... 509
Wabi ... 511
Wall .. 511
Wbrief ... 512
Wcheck ... 513
Wcheck-unicode-security ... 514
Wcomment .. 515
Wcontext-limit, Qcontext-limit .. 515
wd, Qwd.. 516
Wdeprecated.. 517
we, Qwe .. 517
Weffc++, Qeffc++ .. 518
Werror, WX .. 519
Werror-all .. 520
Wextra-tokens.. 521
Wformat .. 522
Wformat-security .. 522
Wic-pointer .. 523
Winline.. 524
WL.. 525

Intel® C++ Compiler Classic Developer Guide and Reference

10

Wmain .. 525
Wmissing-declarations... 526
Wmissing-prototypes... 527
wn, Qwn.. 527
Wnon-virtual-dtor ... 528
wo, Qwo .. 529
Wp64 .. 530
Wpch-messages ... 530
Wpointer-arith.. 531
Wport.. 532
wr, Qwr ... 532
Wremarks .. 533
Wreorder ... 534
Wreturn-type ... 534
Wshadow... 535
Wsign-compare .. 536
Wstrict-aliasing... 537
Wstrict-prototypes .. 538
Wtrigraphs... 538
Wuninitialized... 539
Wunknown-pragmas.. 540
Wunused-function ... 540
Wunused-variable ... 541
ww, Qww... 542
Wwrite-strings.. 543

Compatibility Options... 543
clang-name.. 543
clangxx-name .. 544
fabi-version.. 545
fms-dialect... 546
gcc-name .. 548
gnu-prefix.. 549
gxx-name .. 551
Qgcc-dialect ... 552
Qms.. 553
Qvc... 554
stdlib .. 555
vmv .. 556

Linking or Linker Options.. 556
Bdynamic .. 556
Bstatic... 557
Bsymbolic .. 558
Bsymbolic-functions .. 559
cxxlib .. 559
dynamic-linker ... 561
dynamiclib ... 561
F (Windows*)... 562
F (macOS*) ... 563
fixed ... 563
Fm.. 564
fuse-ld .. 565
l ... 565
L .. 566
LD .. 567
link ... 567

Contents

11

MD ... 568
MT.. 569
no-libgcc ... 570
nodefaultlibs .. 571
no-intel-lib... 571
nostartfiles... 572
nostdlib ... 573
pie.. 574
pthread ... 574
shared... 575
shared-intel ... 576
shared-libgcc.. 577
static .. 578
static-intel ... 579
static-libgcc ... 580
static-libstdc++.. 580
staticlib ... 581
T .. 582
u (Linux* OS)... 583
v .. 583
Wa.. 584
Wl .. 585
Wp ... 585
Xlinker .. 586
Zl ... 587

Miscellaneous Options.. 588
bigobj ... 588
dryrun... 588
dumpmachine .. 589
dumpversion .. 590
global-hoist, Qglobal-hoist ... 590
help .. 591
intel-freestanding ... 593
intel-freestanding-target-os.. 594
MP-force.. 595
multibyte-chars, Qmultibyte-chars .. 596
multiple-processes, MP .. 596
nologo... 598
print-sysroot .. 598
save-temps, Qsave-temps.. 599
showIncludes ... 600
sox ... 601
sysroot.. 603
Tc ... 603
TC .. 604
Tp... 605
V, QV .. 606
version .. 606
watch.. 607

Deprecated and Removed Compiler Options...................................... 608
Display Option Information... 617
Alternate Compiler Options... 617
Portability and GCC*-Compatible Warning Options 618

Floating-Point Operations ... 626
Programming Tradeoffs in Floating-point Applications 626

Intel® C++ Compiler Classic Developer Guide and Reference

12

Floating-point Optimizations ... 628
Use the -fp-model, /fp Option ... 629
Denormal Numbers ... 633
Floating-Point Environment... 633
Set the FTZ and DAZ Flags ... 634
Checking the Floating-point Stack State ... 635
Tuning Performance... 635
IEEE Floating-point Operations.. 638

Attributes... 640
align.. 640
align_value .. 641
avoid_false_share ... 641
code_align ... 642
concurrency_safe .. 643
const... 643
cpu_dispatch, cpu_specific ... 644
mpx .. 646
target.. 646
vector.. 647
vector_variant .. 648

Intrinsics.. 650
Details about Intrinsics .. 650
Naming and Usage Syntax.. 654
References ... 655
Intrinsics for All Intel® Architectures .. 655

Integer Arithmetic Intrinsics ... 655
Floating-point Intrinsics ... 656
String and Block Copy Intrinsics.. 658
Miscellaneous Intrinsics ... 659
_may_i_use_cpu_feature ... 662
_allow_cpu_features .. 664

Data Alignment, Memory Allocation Intrinsics, and Inline Assembly...... 667
Alignment Support .. 667
Allocating and Freeing Aligned Memory Blocks 668
Inline Assembly .. 668

Intrinsics for Managing Extended Processor States and Registers 672
Intrinsics for Reading and Writing the Content of Extended

Control Registers .. 673
_xgetbv() .. 673
_xsetbv() .. 674

Intrinsics for Saving and Restoring the Extended Processor States674
_fxsave()... 676
_fxsave64() ... 677
_fxrstor() .. 677
_fxrstor64()... 677
_xsave()/_xsavec()/_xsaves().. 678
_xsave64()/ _xsavec64()/ _xsaves64() 678
_xsaveopt() ... 679
_xsaveopt64().. 679
_xrstor()/xrstors() .. 679
_xrstor64()/xrstors64() ... 680

Intrinsics for the Short Vector Random Number Generator Library 680
Data Types and Calling Conventions .. 681
Usage Model .. 683
Engine Initialization and Finalization .. 686

Contents

13

svrng_new_rand0_engine/svrng_new_rand0_ex............... 687
svrng_new_rand_engine/svrng_new_rand_ex 688
svrng_new_mcg31m1_engine/svrng_new_mcg31m1_ex ... 689
svrng_new_mcg59_engine/svrng_new_mcg59_ex 689
svrng_new_mt19937_engine/svrng_new_mt19937_ex...... 690
svrng_delete_engine... 691

Distribution Initialization and Finalization 692
svrng_new_uniform_distribution_[int|float|double]/

svrng_update_uniform_distribution_[int|float|double] ... 692
svrng_new_normal_distribution_[float|double]/

svrng_update_normal_distribution_[float|double] 693
svrng_delete_distribution .. 694

Random Values Generation... 694
svrng_generate[1|2|4|8|16|32]_[uint|ulong] 695
svrng_generate[1|2|4|8|16|32]_[int|float|double]............ 696

Service Routines ... 697
Parallel Computation Support ... 697
Error Handling.. 701

Intrinsics for Instruction Set Architecture (ISA) Instructions................ 702
SERIALIZE ... 702

_serialize... 702
TSXLDTRK ... 702

_xresldtrk.. 702
_xsusldtrk ... 703

Intrinsics for Intel® Advanced Matrix Extensions (Intel(R) AMX)
Instructions.. 703

Intrinsic for Intel® Advanced Matrix Extensions AMX-BF16
Instructions.. 703

_tile_dpbf16ps ... 704
Intrinsics for Intel® Advanced Matrix Extensions AMX-INT8

Instructions.. 704
_tile_dpbssd .. 704
_tile_dpbsud .. 705
_tile_dpbusd .. 706
_tile_dpbuud.. 707

Intrinsics for Intel(R) Advanced Matrix Extensions AMX-TILE
Instructions.. 708

_tile_loadconfig .. 708
_tile_loadd .. 709
_tile_release .. 710
_tile_storeconfig... 710
_tile_stored ... 711
_tile_stream_loadd ... 712
_tile_zero .. 712

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
BF16 Instructions.. 713

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
4VNNIW Instructions ... 718

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
4FMAPS Instructions.. 720

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
VPOPCNTDQ Instructions.. 724

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
Additional Instructions ... 726

Intel® C++ Compiler Classic Developer Guide and Reference

14

Intrinsics for Arithmetic Operations ... 727
Intrinsics for Bit Manipulation Operations 809
Intrinsics for Comparison Operations 813
Intrinsics for Conversion Operations .. 874
Intrinsics for Load Operations ... 954
Intrinsics for Logical Operations .. 969
Intrinsics for Miscellaneous Operations..................................... 988
Intrinsics for Move Operations ...1092
Intrinsics for Set Operations ..1099
Intrinsics for Shift Operations ..1103
Intrinsics for Store Operations ...1137

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
Instructions...1150

Intrinsics for Arithmetic Operations ..1153
Intrinsics for Addition Operations1153
Intrinsics for Determining Minimum and Maximum Values .1158
Intrinsics for FP Fused Multiply-Add (FMA) Operations.......1171
Intrinsics for Multiplication Operations1196
Intrinsics for Subtraction Operations1202
Intrinsics for Other Mathematics Operations1207

Intrinsics for Blend Operations...1220
Intrinsics for Bit Manipulation Operations1221

Intrinsics for Integer Bit Manipulation and Conflict
Detection Operations..1221

Intrinsics for Bitwise Logical Operations1224
Intrinsics for Integer Bit Rotation Operations1228
Intrinsics for Integer Bit Shift Operations1232

Intrinsics for Broadcast Operations...1241
Intrinsics for FP Broadcast Operations1241
Intrinsics for Integer Broadcast Operations......................1243

Intrinsics for Comparison Operations1245
Intrinsics for FP Comparison Operations..........................1245
Intrinsics for Integer Comparison Operations...................1255

Intrinsics for Compression Operations.....................................1264
Intrinsics for Conversion Operations1266

Intrinsics for FP Conversion Operations...........................1267
Intrinsics for Integer Conversion Operations1284

Intrinsics for Expand and Load Operations...............................1311
Intrinsics for FP Expand and Load Operations1311
Intrinsics for Integer Expand and Load Operations1313

Intrinsics for Gather and Scatter Operations1315
Intrinsics for FP Gather and Scatter Operations................1315
Intrinsics for Integer Gather and Scatter Operations.........1322

Intrinsics for Insert and Extract Operations..............................1325
Intrinsics for FP Insert and Extract Operations1325
Intrinsics for Integer Insert and Extract Operations1333

Intrinsics for Load and Store Operations..................................1335
Intrinsics for FP Loads and Store Operations....................1335
Intrinsics for Integer Load and Store Operations1340

Intrinsics for Miscellaneous Operations....................................1344
Intrinsics for Miscellaneous FP Operations1344
Intrinsics for Miscellaneous Integer Operations1353

Intrinsics for Move Operations ...1354
Intrinsics for FP Move Operations1354
Intrinsics for Integer Move Operations1357

Contents

15

Intrinsics for Pack and Unpack Operations1358
Intrinsics for FP Pack and Unpack Operations...................1358
Intrinsics for Integer Pack and Unpack Operations............1360

Intrinsics for Permutation Operations......................................1362
Intrinsics for FP Permutation Operations1362
Intrinsics for Integer Permutation Operations1367

Intrinsics for Reduction Operations ...1371
Intrinsics for FP Reduction Operations1371
Intrinsics for Integer Reduction Operations......................1374

Intrinsics for Set Operations ..1379
Intrinsics for Shuffle Operations...1386

Intrinsics for FP Shuffle Operations1386
Intrinsics for Integer Shuffle Operations..........................1388

Intrinsics for Test Operations ...1389
Intrinsics for Typecast Operations...1392
Intrinsics for Vector Mask Operations......................................1396

Intrinsics for Later Generation Intel® Core™ Processor Instruction
Extensions ..1398

Intrinsics for 3rd Generation Intel® Core™ Processor Instruction
Extensions ..1398

Intrinsics for 4th Generation Intel® Core™ Processor Instruction
Extensions ..1398

Intrinsics for Converting Half Floats that Map to 3rd Generation
Intel® Core™ Processor Instructions.....................................1398

_mm_cvtph_ps()...1399
_mm256_cvtph_ps()..1399
_mm_cvtps_ph()...1400
_mm256_cvtps_ph()..1400

Intrinsics that Generate Random Numbers of 16/32/64 Bit Wide
Random Integers ...1400

_rdrand16_step(), _rdrand32_step(), _rdrand64_step() ...1401
_rdseed16_step/ _rdseed32_step/ _rdseed64_step..........1401

Intrinsics for Multi-Precision Arithmetic1402
_addcarry_u32(), _addcarry_u64()1402
_addcarryx_u32(), _addcarryx_u64().............................1403
_subborrow_u32(), _subborrow_u64()1404

Intrinsics that Allow Reading from and Writing to the FS Base
and GS Base Registers..1404

_readfsbase_u32(), _readfsbase_u64()1404
_readgsbase_u32(), _readgsbase_u64().........................1405
_writefsbase_u32(), _writefsbase_u64().........................1405
_writegsbase_u32(), _writegsbase_u64()1405

Intrinsics for Intel® Advanced Vector Extensions 2 (Intel® AVX2)1406
Intrinsics for Arithmetic Operations ..1407

_mm256_abs_epi8/16/32 ..1407
_mm256_add_epi8/16/32/641407
_mm256_adds_epi8/16 ...1408
_mm256_adds_epu8/16 ..1408
_mm256_sub_epi8/16/32/641409
_mm256_subs_epi8/16 ...1409
_mm256_subs_epu8/16 ..1410
_mm256_avg_epu8/16 ...1410
_mm256_hadd_epi16/32 ...1411
_mm256_hadds_epi16 ..1411
_mm256_hsub_epi16/32 ...1412

Intel® C++ Compiler Classic Developer Guide and Reference

16

_mm256_hsubs_epi16 ..1412
_mm256_madd_epi16 ...1413
_mm256_maddubs_epi16 ..1413
_mm256_mul_epi32 ..1414
_mm256_mul_epu32 ...1414
_mm256_mulhi_epi16..1415
_mm256_mulhi_epu16 ..1415
_mm256_mullo_epi16/32 ..1415
_mm256_mulhrs_epi16..1416
_mm256_sign_epi8/16/32..1416
_mm256_mpsadbw_epu8...1417
_mm256_sad_epu8 ...1418

Intrinsics for Arithmetic Shift Operations1418
_mm256_sra_epi16/32 ...1418
_mm256_srai_epi16/32..1419
_mm256_srav_epi32 ..1419
_mm_srav_epi32 ..1420

Intrinsics for Blend Operations...1420
_mm_blend_epi32, _mm256_blend_epi16/321420
_mm256_blendv_epi8 ...1421

Intrinsics for Bitwise Operations...1421
_mm256_and_si256 ..1421
_mm256_andnot_si256..1422
_mm256_or_si256...1422
_mm256_xor_si256 ...1423

Intrinsics for Broadcast Operations...1423
_mm_broadcastss_ps, _mm256_broadcastss_ps1423
_mm256_broadcastsd_pd...1424
_mm_broadcastb_epi8, _mm256_broadcastb_epi81424
_mm_broadcastw_epi16, _mm256_broadcastw_epi16......1425
_mm_broadcastd_epi32, _mm256_broadcastd_epi32.......1425
_mm_broadcastq_epi64, _mm256_broadcastq_epi64.......1426
_mm256_broadcastsi128_si2561426

Intrinsics for Compare Operations ..1426
_mm256_cmpeq_epi8/16/32/64....................................1426
_mm256_cmpgt_epi8/16/32/641427
_mm256_max_epi8/16/32..1428
_mm256_max_epu8/16/32...1428
_mm256_min_epi8/16/32 ..1429
_mm256_min_epu8/16/32 ...1429

Intrinsics for Fused Multiply Add Operations1430
_mm_fmadd_pd, _mm256_fmadd_pd1430
_mm_fmadd_ps, _mm256_fmadd_ps.............................1430
_mm_fmadd_sd ...1431
_mm_fmadd_ss ..1432
_mm_fmaddsub_pd, _mm256_fmaddsub_pd1432
_mm_fmaddsub_ps, _mm256_fmaddsub_ps...................1433
_mm_fmsub_pd, _mm256_fmsub_pd1434
_mm_fmsub_ps, _mm256_fmsub_ps1434
_mm_fmsub_sd ...1435
_mm_fmsub_ss ..1435
_mm_fmsubadd_pd, _mm256_fmsubadd_pd1436
_mm_fmsubadd_ps, _mm256_fmsubadd_ps...................1437
_mm_fnmadd_pd, _mm256_fnmadd_pd.........................1437
_mm_fnmadd_ps, _mm256_fnmadd_ps1438

Contents

17

_mm_fnmadd_sd ..1439
_mm_fnmadd_ss...1439
_mm_fnmsub_pd, _mm256_fnmsub_pd.........................1440
_mm_fnmsub_ps, _mm256_fnmsub_ps1441
_mm_fnmsub_sd...1441
_mm_fnmsub_ss ...1442

Intrinsics for GATHER Operations ...1442
_mm_mask_i32gather_pd, _mm256_mask_i32gather_pd 1443
_mm_i32gather_pd, _mm256_i32gather_pd1444
_mm_mask_i64gather_pd, _mm256_mask_i64gather_pd 1444
_mm_i64gather_pd, _mm256_i64gather_pd1445
_mm_mask_i32gather_ps, _mm256_mask_i32gather_ps 1446
_mm_i32gather_ps, _mm256_i32gather_ps....................1447
_mm_mask_i64gather_ps, _mm256_mask_i64gather_ps .1448
_mm_i64gather_ps, _mm256_i64gather_ps....................1449
_mm_mask_i32gather_epi32,

_mm256_mask_i32gather_epi321450
_mm_i32gather_epi32, _mm256_i32gather_epi32...........1451
_mm_mask_i32gather_epi64,_mm256_mask_i32gather_e

pi64...1452
_mm_i32gather_epi64,_mm256_i32gather_epi64............1453
_mm_mask_i64gather_epi32,_mm256_mask_i64gather_e

pi32...1454
_mm_i64gather_epi32,_mm256_i64gather_epi32............1455
_mm_mask_i64gather_epi64,_mm256_mask_i64gather_e

pi64...1456
_mm_i64gather_epi64,_mm256_i64gather_epi64............1457

Intrinsics for Logical Shift Operations......................................1457
_mm256_sll_epi16/32/64 ..1457
_mm256_slli_epi16/32/64 ...1458
_mm256_sllv_epi32/64 ...1459
_mm_sllv_epi32/64 ..1459
_mm256_slli_si256 ...1460
_mm256_srli_si256 ...1460
_mm256_srl_epi16/32/64 ...1461
_mm256_srli_epi16/32/64 ...1461
_mm256_srlv_epi32/64 ...1462
_mm_srlv_epi32/64 ..1462

Intrinsics for Insert/Extract Operations1463
_mm256_inserti128_si256 ...1463
_mm256_extracti128_si256 ...1463
_mm256_insert_epi8/16/32/641464
_mm256_extract_epi8/16/32/641464

Intrinsics for Masked Load/Store Operations1465
_mm_maskload_epi32/64, _mm256_maskload_epi32/64 .1465
_mm_maskstore_epi32/64, _mm256_maskstore_epi32/641465

Intrinsics for Miscellaneous Operations....................................1466
_mm256_alignr_epi8 ...1466
_mm256_movemask_epi8 ..1467
_mm256_stream_load_si256 ..1467

Intrinsics for Operations to Manipulate Integer Data at Bit-
Granularity..1467

_bextr_u32/64 ...1467
_blsi_u32/64 ..1468
_blsmsk_u32/64 ...1468

Intel® C++ Compiler Classic Developer Guide and Reference

18

_blsr_u32/64 ...1469
_bzhi_u32/64 ...1469
_pext_u32/64 ..1470
_pdep_u32/64 ...1470
_lzcnt_u32/64 ..1471
_tzcnt_u32/64 ...1471

Intrinsics for Pack/Unpack Operations.....................................1472
_mm256_packs_epi16/32...1472
_mm256_packus_epi16/32...1472
_mm256_unpackhi_epi8/16/32/641473
_mm256_unpacklo_epi8/16/32/641473

Intrinsics for Packed Move with Extend Operations1474
_mm256_cvtepi8_epi16/32/64......................................1474
_mm256_cvtepi16_epi32/64...1474
_mm256_cvtepi32_epi64..1475
_mm256_cvtepu8_epi16/32/64.....................................1475
_mm256_cvtepu16_epi32/64..1476
_mm256_cvtepu32_epi64...1476

Intrinsics for Permute Operations ...1476
_mm256_permutevar8x32_epi321476
_mm256_permutevar8x32_ps1477
_mm256_permute4x64_epi641478
_mm256_permute4x64_pd ..1478
_mm256_permute2x128_si2561479

Intrinsics for Shuffle Operations...1480
_mm256_shuffle_epi8..1480
_mm256_shuffle_epi32 ..1481
_mm256_shufflehi_epi16 ...1481
_mm256_shufflelo_epi16 ...1482

Intrinsics for Intel® Transactional Synchronization Extensions
(Intel® TSX) ..1482

Intel® Transactional Synchronization Extensions (Intel®
TSX) Overview ..1482

Intel® Transactional Synchronization Extensions (Intel®
TSX) Programming Considerations1483

Restricted Transactional Memory Intrinsics1486
Hardware Lock Elision Intrinsics (Windows*)1490
Function Prototype and Macro Definitions........................1493

Intrinsics for Intel® Advanced Vector Extensions1494
Details of Intel® AVX Intrinsics and FMA Intrinsics.....................1495
Intrinsics for Arithmetic Operations ..1498

_mm256_add_pd ..1498
_mm256_add_ps...1499
_mm256_addsub_pd ...1499
_mm256_addsub_ps..1500
_mm256_hadd_pd...1500
_mm256_hadd_ps...1500
_mm256_sub_pd...1501
_mm256_sub_ps...1501
_mm256_hsub_pd...1502
_mm256_hsub_ps ...1502
_mm256_mul_pd ..1503
_mm256_mul_ps...1503
_mm256_div_pd ...1503

Contents

19

_mm256_div_ps..1504
_mm256_dp_ps ..1504
_mm256_sqrt_pd ..1505
_mm256_sqrt_ps ..1505
_mm256_rsqrt_ps ...1506
_mm256_rcp_ps ...1506

Intrinsics for Bitwise Operations...1506
_mm256_and_pd ..1506
_mm256_and_ps...1507
_mm256_andnot_pd..1507
_mm256_andnot_ps ..1508
_mm256_or_pd...1508
_mm256_or_ps...1508
_mm256_xor_pd ...1509
_mm256_xor_ps ...1509

Intrinsics for Blend and Conditional Merge Operations1510
_mm256_blend_pd..1510
_mm256_blend_ps ..1510
_mm256_blendv_pd ..1511
_mm256_blendv_ps...1511

Intrinsics for Compare Operations ..1512
_mm_cmp_pd, _mm256_cmp_pd..................................1512
_mm_cmp_ps, _mm256_cmp_ps1513
_mm_cmp_sd ...1513
_mm_cmp_ss ...1514

Intrinsics for Conversion Operations1514
_mm256_cvtepi32_pd..1515
_mm256_cvtepi32_ps ..1515
_mm256_cvtpd_epi32..1515
_mm256_cvtps_epi32 ..1516
_mm256_cvtpd_ps ..1516
_mm256_cvtps_pd ..1516
_mm256_cvttp_epi32 ..1517
_mm256_cvttps_epi32...1517
_mm256_cvtsi256_si32..1518
_mm256_cvtsd_f64 ...1518
_mm256_cvtss_f32 ...1518

Intrinsics to Determine Minimum and Maximum Values1519
_mm256_max_pd ...1519
_mm256_max_ps..1519
_mm256_min_pd ..1520
_mm256_min_ps...1520

Intrinsics for Load and Store Operations..................................1520
_mm256_broadcast_pd..1520
_mm256_broadcast_ps ..1521
_mm256_broadcast_sd ..1521
_mm256_broadcast_ss, _mm_broadcast_ss....................1522
_mm256_load_pd..1522
_mm256_load_ps ..1523
_mm256_load_si256..1523
_mm256_loadu_pd..1523
_mm256_loadu_ps ..1524
_mm256_loadu_si256..1524
_mm256_maskload_pd, _mm_maskload_pd1525
_mm256_maskload_ps, _mm_maskload_ps....................1525

Intel® C++ Compiler Classic Developer Guide and Reference

20

_mm256_store_pd ..1526
_mm256_store_ps...1526
_mm256_store_si256 ..1527
_mm256_storeu_pd...1527
_mm256_storeu_ps ...1527
_mm256_storeu_si256...1528
_mm256_stream_pd..1528
_mm256_stream_ps ..1529
_mm256_stream_si256..1529
_mm256_maskstore_pd, _mm_maskstore_pd.................1530
_mm256_maskstore_ps, _mm_maskstore_ps1530

Intrinsics for Miscellaneous Operations....................................1531
_mm256_extractf128_pd..1531
_mm256_extractf128_ps..1532
_mm256_extractf128_si256..1532
_mm256_insertf128_pd ...1532
_mm256_insertf128_ps..1533
_mm256_insertf128_si256 ...1533
_mm256_lddqu_si256..1534
_mm256_movedup_pd...1534
_mm256_movehdup_ps ...1535
_mm256_moveldup_ps ..1535
_mm256_movemask_pd ..1535
_mm256_movemask_ps...1536
_mm256_round_pd ...1536
_mm256_round_ps..1537
_mm256_set_pd ...1538
_mm256_set_ps..1538
_mm256_set_epi8/16/32/64x1539
_mm256_setr_pd ..1539
_mm256_setr_ps ..1540
_mm256_setr_epi32 ..1540
_mm256_set1_pd..1541
_mm256_set1_ps..1541
_mm256_set1_epi32 ...1541
_mm256_setzero_pd ...1542
_mm256_setzero_ps..1542
_mm256_setzero_si256 ...1543
_mm256_zeroall..1543
_mm256_zeroupper...1543

Intrinsics for Packed Test Operations1544
_mm256_testz_si256...1544
_mm256_testc_si256...1544
_mm256_testnzc_si256..1545
_mm256_testz_pd, _mm_testz_pd1545
_mm256_testz_ps, _mm_testz_ps.................................1546
_mm256_testc_pd, _mm_testc_pd1547
_mm256_testc_ps, _mm_testc_ps.................................1547
_mm256_testnzc_pd, _mm_testnzc_pd..........................1548
_mm256_testnzc_ps, _mm_testnzc_ps1549

Intrinsics for Permute Operations ...1550
_mm256_permute_pd, _mm_permute_pd1550
_mm256_permute_ps, _mm_permute_ps.......................1551
_mm256_permutevar_pd, _mm_permutevar_pd1551
_mm_permutevar_ps, _mm256_permutevar_ps..............1552

Contents

21

_mm256_permute2f128_pd..1552
_mm256_permute2f128_ps ..1553
_mm256_permute2f128_si256......................................1553

Intrinsics for Shuffle Operations...1554
_mm256_shuffle_pd ..1554
_mm256_shuffle_ps ..1554

Intrinsics for Unpack and Interleave Operations1555
_mm256_unpackhi_pd ...1555
_mm256_unpackhi_ps ...1555
_mm256_unpacklo_pd ...1556
_mm256_unpacklo_ps ...1556

Support Intrinsics for Vector Typecasting Operations.................1557
_mm256_castpd_ps...1557
_mm256_castps_pd...1557
_mm256_castpd_si256 ..1558
_mm256_castps_si256...1558
_mm256_castsi256_pd ..1558
_mm256_castsi256_ps...1559
_mm256_castpd128_pd256..1559
_mm256_castpd256_pd128..1560
_mm256_castps128_ps256 ..1560
_mm256_castps256_ps128 ..1561
_mm256_castsi128_si256 ..1561
_mm256_castsi256_si128 ..1561

Intrinsics Generating Vectors of Undefined Values.....................1562
_mm256_undefined_ps()..1562
_mm256_undefined_pd() ...1562
_mm256_undefined_si256..1563

Intrinsics for Intel® Streaming SIMD Extensions 4 (Intel® SSE4)1563
Efficient Accelerated String and Text Processing1563

Overview..1563
Packed Compare Intrinsics ...1563
Application Targeted Accelerators Intrinsics1566

Vectorizing Compiler and Media Accelerators............................1567
Overview: Vectorizing Compiler and Media Accelerators1567
Packed Blending Intrinsics ..1567
Floating Point Dot Product Intrinsics1568
Packed Format Conversion Intrinsics1568
Packed Integer Min/Max Intrinsics..................................1569
Floating Point Rounding Intrinsics1570
DWORD Multiply Intrinsics ..1571
Register Insertion/Extraction Intrinsics1571
Test Intrinsics ..1572
Packed DWORD to Unsigned WORD Intrinsic1573
Packed Compare for Equal Intrinsic1574
Cacheability Support Intrinsic1574

Intrinsics for Intel® Supplemental Streaming SIMD Extensions 3
(SSSE3)..1574

Addition Intrinsics ...1574
Subtraction Intrinsics ..1576
Multiplication Intrinsics ..1577
Absolute Value Intrinsics ..1578
Shuffle Intrinsics..1579
Concatenate Intrinsics ...1580
Negation Intrinsics ..1580

Intel® C++ Compiler Classic Developer Guide and Reference

22

Intrinsics for Intel® Streaming SIMD Extensions 3 (Intel® SSE3)1583
Integer Vector Intrinsic ..1583
Single-precision Floating-point Vector Intrinsics1583
Double-precision Floating-point Vector Intrinsics1585
Miscellaneous Intrinsics ...1586

Intrinsics for Intel® Streaming SIMD Extensions 2 (Intel® SSE2)1586
Macro Functions ..1587
Floating-point Intrinsics ..1587

Arithmetic Intrinsics...1588
Logical Intrinsics..1591
Compare Intrinsics...1592
Conversion Intrinsics..1601
Load Intrinsics ..1604
Set Intrinsics ..1606
Store Intrinsics..1608

Integer Intrinsics ...1610
Arithmetic Intrinsics...1610
Logical Intrinsics..1617
Shift Intrinsics...1619
Compare Intrinsics...1623
Conversion Intrinsics..1625
Move Intrinsics..1627
Load Intrinsics ..1628
Set Intrinsics ..1629
Store Intrinsics..1633

Miscellaneous Functions and Intrinsics1634
Cacheability Support Intrinsics1635
Miscellaneous Intrinsics ...1637
Casting Support Intrinsics ..1642
Pause Intrinsic ..1643
Macro Function for Shuffle ..1644
Intrinsics Returning Vectors of Undefined Values1644

Intrinsics for Intel® Streaming SIMD Extensions (Intel® SSE)..............1645
Details about Intel® Streaming SIMD Extensions Intrinsics.........1645
Writing Programs with Intel® Streaming SIMD Extensions (Intel®

SSE) Intrinsics...1647
Arithmetic Intrinsics ...1647
Logical Intrinsics ...1651
Compare Intrinsics...1652
Conversion Intrinsics ..1661
Load Intrinsics...1666
Set Intrinsics...1667
Store Intrinsics..1669
Cacheability Support Intrinsics...1671
Integer Intrinsics ..1672
Intrinsics to Read and Write Registers1675
Miscellaneous Intrinsics ..1676
Macro Functions...1678

Macro Function for Shuffle Operations1678
Macro Functions to Read and Write Control Registers........1678
Macro Function for Matrix Transposition1680

Intrinsics for MMX™ Technology ..1681
Details about MMX™ Technology Intrinsics................................1681
The EMMS Instruction: Why You Need It1682

Contents

23

EMMS Usage Guidelines ..1683
General Support Intrinsics...1683
Packed Arithmetic Intrinsics ..1685
Shift Intrinsics...1688
Logical Intrinsics..1691
Compare Intrinsics...1691
Set Intrinsics...1693

Intrinsics for Advanced Encryption Standard Implementation1695
Intrinsics for Carry-less Multiplication Instruction and Advanced

Encryption Standard Instructions1696
Intrinsics for Converting Half Floats ..1697

Details About Intrinsics for Half Floats1698
Intrinsics for Short Vector Math Library Operations (SVML)1699

Intrinsics for Division Operations (512-bit)1699
Intrinsics for Division Operations..1703

_mm_div_epi8/ _mm256_div_epi81703
_mm_div_epi16/ _mm256_div_epi16.............................1704
_mm_div_epi32/ _mm256_div_epi32.............................1704
_mm_div_epi64/ _mm256_div_epi64.............................1705
_mm_div_epu8/ _mm256_div_epu81705
_mm_div_epu16/ _mm256_div_epu16...........................1706
_mm_div_epu32/ _mm256_div_epu32...........................1706
_mm_div_epu64/ _mm256_div_epu64...........................1707
_mm_rem_epi8/ _mm256_rem_epi81708
_mm_rem_epi16/ _mm256_rem_epi16..........................1708
_mm_rem_epi32/ _mm256_rem_epi32..........................1709
_mm_rem_epi64/ _mm256_rem_epi64..........................1709
_mm_rem_epu8/ _mm256_rem_epu81710
_mm_rem_epu16/ _mm256_rem_epu16........................1710
_mm_rem_epu32/ _mm256_rem_epu32........................1711
_mm_rem_epu64/ _mm256_rem_epu64........................1711

Intrinsics for Error Function Operations (512-bit)1712
Intrinsics for Error Function Operations1716

_mm_cdfnorminv_pd, _mm256_cdfnorminv_pd...............1716
_mm_cdfnorminv_ps, _mm256_cdfnorminv_ps1716
_mm_erf_pd, _mm256_erf_pd......................................1717
_mm_erf_ps, _mm256_erf_ps1717
_mm_erfc_pd, _mm256_erfc_pd1718
_mm_erfc_ps, _mm256_erfc_ps....................................1718
_mm_erfinv_pd, _mm256_erfinv_pd..............................1719
_mm_erfinv_ps, _mm256_erfinv_ps1719

Intrinsics for Exponential Operations (512-bit)1720
Intrinsics for Exponential Operations1724

_mm_exp2_pd, _mm256_exp2_pd1724
_mm_exp2_ps, _mm256_exp2_ps.................................1724
_mm_exp_pd, _mm256_exp_pd1725
_mm_exp_ps, _mm256_exp_ps1725
_mm_exp10_pd, _mm256_exp10_pd1726
_mm_exp10_ps, _mm256_exp10_ps1726
_mm_expm1_pd, _mm256_expm1_pd...........................1727
_mm_expm1_ps, _mm256_expm1_ps1727
_mm_cexp_ps, _mm256_cexp_ps1728
_mm_pow_pd, _mm256_pow_pd1728
_mm_pow_ps, _mm256_pow_ps...................................1729
_mm_hypot_pd, _mm256_hypot_pd..............................1729

Intel® C++ Compiler Classic Developer Guide and Reference

24

_mm_hypot_ps, _mm256_hypot_ps1730
Intrinsics for Logarithmic Operations (512-bit)1731
Intrinsics for Logarithmic Operations1733

_mm_log2_pd, _mm256_log2_pd..................................1733
_mm_log2_ps, _mm256_log2_ps1734
_mm_log10_pd, _mm256_log10_pd1734
_mm_log10_ps, _mm256_log10_ps...............................1735
_mm_log_pd, _mm256_log_pd1735
_mm_log_ps, _mm256_log_ps......................................1736
_mm_logb_pd, _mm256_logb_pd..................................1736
_mm_logb_ps, _mm256_logb_ps1737
_mm_log1p_pd, _mm256_log1p_pd1737
_mm_log1p_ps, _mm256_log1p_ps...............................1738
_mm_clog_ps, _mm256_clog_ps...................................1738

Intrinsics for Reciprocal Operations (512-bit)1739
Intrinsics for Root Function Operations (512-bit)1748
Intrinsics for Rounding Operations (512-bit)1751
Intrinsics for Square Root and Cube Root Operations1755

_mm_sqrt_pd, _mm256_sqrt_pd...................................1755
_mm_sqrt_ps, _mm256_sqrt_ps1755
_mm_invsqrt_pd, _mm256_invsqrt_pd1756
_mm_invsqrt_ps, _mm256_invsqrt_ps1756
_mm_cbrt_pd, _mm256_cbrt_pd...................................1757
_mm_cbrt_ps, _mm256_cbrt_ps1757
_mm_invcbrt_pd, _mm256_invcbrt_pd1758
_mm_invcbrt_ps, _mm256_invcbrt_ps1758
_mm_csqrt_ps, _mm256_csqrt_ps1759

Intrinsics for Trigonometric Operations (512-bit)1759
Intrinsics for Trigonometric Operations....................................1769

_mm_acos_pd, _mm256_acos_pd1770
_mm_acos_ps, _mm256_acos_ps..................................1770
_mm_acosh_pd, _mm256_acosh_pd..............................1771
_mm_acosh_ps, _mm256_acosh_ps1771
_mm_asin_pd, _mm256_asin_pd1772
_mm_asin_ps, _mm256_asin_ps...................................1772
_mm_asinh_pd, _mm256_asinh_pd...............................1773
_mm_asinh_ps, _mm256_asinh_ps1773
_mm_atan_pd, _mm256_atan_pd1774
_mm_atan_ps, _mm256_atan_ps..................................1774
_mm_atan2_pd, _mm256_atan2_pd..............................1775
_mm_atan2_ps, _mm256_atan2_ps1775
_mm_atanh_pd, _mm256_atanh_pd..............................1776
_mm_atanh_ps, _mm256_atanh_ps1777
_mm_cos_pd, _mm256_cos_pd1777
_mm_cos_ps, _mm256_cos_ps1778
_mm_cosd_pd, _mm256_cosd_pd1778
_mm_cosd_ps, _mm256_cosd_ps..................................1779
_mm_cosh_pd, _mm256_cosh_pd.................................1779
_mm_cosh_ps, _mm256_cosh_ps1780
_mm_sin_pd, _mm256_sin_pd......................................1780
_mm_sin_ps, _mm256_sin_ps1781
_mm_sind_pd, _mm256_sind_pd1781
_mm_sind_ps, _mm256_sind_ps...................................1782
_mm_sinh_pd, _mm256_sinh_pd1782
_mm_sinh_ps, _mm256_sinh_ps...................................1783

Contents

25

_mm_tan_pd, _mm256_tan_pd1783
_mm_tan_ps, _mm256_tan_ps1784
_mm_tand_pd, _mm256_tand_pd1784
_mm_tand_ps, _mm256_tand_ps..................................1785
_mm_tanh_pd, _mm256_tanh_pd1785
_mm_tanh_ps, _mm256_tanh_ps..................................1786
_mm_sincos_pd, _mm256_sincos_pd.............................1786
_mm_sincos_ps, _mm256_sincos_ps1787

Libraries..1787
Create Libraries ...1788
Use Intel Shared Libraries ...1789
Using Shared Libraries on macOS...1790
Manage Libraries..1791
Redistribute Libraries When Deploying Applications...........................1792
Resolve References to Shared Libraries ...1792
Intel's Memory Allocator Library ...1794
SIMD Data Layout Templates ...1794

Usage Guidelines: Function Calls and Containers1796
Construct an n_container..1798
Bounds...1800

User-Level Interface...1801
SDLT Primitives (SDLT_PRIMITIVE)1801
soa1d_container..1803
aos1d_container..1806
n_container ..1809
Bounds...1817
Accessors ...1827
Proxy Objects..1832
Number Representation ..1835
Indexes..1840
Convenience and Correctness..1846

Examples..1848
Efficiency with Structure of Arrays Example.....................1848
Complex SDLT Primitive Construction Example.................1851
Forward Dependency Example.......................................1852
Use of Offsets and Methods on a SDLT Primitive Example ..1853
RGB to YUV Conversion Example1855

Intel® C++ Class Libraries ...1856
C++ Classes and SIMD Operations...1857
Capabilities of C++ SIMD Classes ..1860
Integer Vector Classes..1861

Terms and Syntax..1862
Rules for Operators..1863
Assignment Operator ...1865
Logical Operators...1865
Addition and Subtraction Operators................................1867
Multiplication Operators ..1868
Shift Operators..1869
Comparison Operators..1871
Conditional Select Operators ...1872
Debug Operations..1874
Unpack Operators ..1876
Pack Operators..1880
Clear MMX™ State Operator ...1880
Integer Functions for Streaming SIMD Extensions1880

Intel® C++ Compiler Classic Developer Guide and Reference

26

Conversions between Fvec and Ivec1881
Floating-point Vector Classes...1882

Fvec Syntax and Notation ...1883
Data Alignment ...1883
Conversions ..1883
Constructors and Initialization1884
Arithmetic Operators..1885
Minimum and Maximum Operators1889
Logical Operators...1890
Compare Operators..1891
Conditional Select Operators for Fvec Classes1895
Cacheability Support Operators1898
Debug Operations..1898
Load and Store Operators ...1899
Unpack Operators ..1899
Move Mask Operators...1900

Classes Quick Reference ...1900
Programming Example..1906
Intel's valarray Implementation ...1907

Intel's C++ Asynchronous I/O Extensions for Windows......................1909
Intel's C++ Asynchronous I/O Library for Windows...................1910

aio_read...1910
aio_write ..1911
Example for aio_read and aio_write Functions1912
aio_suspend ...1915
Example for aio_suspend Function1915
aio_error ..1916
aio_return ..1917
Example for aio_error and aio_return Functions1917
aio_fsync..1918
aio_cancel ..1919
Example for aio_cancel Function1919
lio_listio ...1921
Example for lio_listio Function1922
Asynchronous I/O Function Errors..................................1923

Intel's C++ Asynchronous I/O Class for Windows* Operating
Systems ...1924

Template Class async_class...1924
get_last_operation_id...1925
wait ...1925
get_status ..1926
get_last_error ...1926
get_error_operation_id...1926
stop_queue...1927
resume_queue ..1927
clear_queue..1927
Example for Using async_class Template Class.................1928

IEEE 754-2008 Binary Floating-Point Conformance Library.................1929
Intel® IEEE 754-2008 Binary Floating-Point Conformance Library

and Usage ..1929
Function List ...1932
Homogeneous General-Computational Operations Functions1935
formatOf General-Computational Operations Functions..............1938
Quiet-Computational Operations Functions1943
Signaling-Computational Operations Functions.........................1945

Contents

27

Non-Computational Operations Functions1949
Intel's Numeric String Conversion Library ..1954

Use Intel's Numeric String Conversion Library..........................1954
Function List ...1956

Macros..1961
ISO Standard Predefined Macros ..1961
Additional Predefined Macros ...1962
Use Predefined Macros to Specify Intel® Compilers............................1971

Pragmas..1972
Intel-Specific Pragma Reference ...1973

alloc_section ...1974
block_loop/noblock_loop...1975
code_align ..1976
distribute_point ...1977
inline, noinline, forceinline...1978
intel omp task ...1980
intel omp taskq ...1981
ivdep ...1982
loop_count..1983
nofusion ...1985
novector ...1985
omp simd early_exit...1986
optimize ...1987
optimization_level..1987
optimization_parameter..1989
parallel/noparallel ..1990
prefetch/noprefetch..1993
simd ..1994
simdoff...1998
unroll/nounroll...1999
unroll_and_jam/nounroll_and_jam...2000
unused ...2001
vector ..2002

Intel-supported Pragma Reference..2006
Error Handling ...2010

Part IV: Compilation
Compilation Overview ...2014
Supported Environment Variables ...2015
Pass Options to the Linker ...2037
Linking Tools and Options ..2039
Specify Alternate Tools and Paths ...2041
Use Configuration Files..2042
Use Response Files ...2043
Global Symbols and Visibility Attributes for Linux* and macOS2044
Save Compiler Information in Your Executable..2046
Link Debug Information...2046

Part V: Optimization and Programming
OpenMP* Support...2048

Add OpenMP* Support ..2048
Parallel Processing Model...2050
Worksharing Using OpenMP* ...2053
Control Thread Allocation ..2060
OpenMP* Pragmas ...2062

Intel® C++ Compiler Classic Developer Guide and Reference

28

OpenMP* Library Support..2067
OpenMP* Run-time Library Routines.......................................2067
Intel® Compiler Extension Routines to OpenMP*2075
OpenMP* Support Libraries ...2077
Use the OpenMP Libraries ...2079
Thread Affinity Interface ...2084
OpenMP* Memory Spaces and Allocators.................................2102

OpenMP* Advanced Issues ..2105
OpenMP* Implementation-Defined Behaviors2107
OpenMP* Examples ..2109

Automatic Parallelization ...2110
Enabling Auto-parallelization ...2114
Programming with Auto-parallelization ..2115
Enabling Further Loop Parallelization for Multicore Platforms2116
Language Support for Auto-parallelization2119

Vectorization..2121
Automatic Vectorization ..2121

Vectorization Programming Guidelines2121
Use Automatic Vectorization ..2126
Vectorization and Loops ..2132
Loop Constructs...2136

Explicit Vector Programming ...2140
User-mandated or SIMD Vectorization.....................................2140
SIMD-Enabled Functions ...2146
SIMD-Enabled Function Pointers...2155
Vectorize a Loop Using the _Simd Keyword..............................2161
Function Annotations and the SIMD Directive for Vectorization ...2162

Guided Auto Parallelism...2164
Using Guided Auto Parallelism..2166
Guided Auto Parallelism Messages ..2168

GAP Message (Diagnostic ID 30506)2169
GAP Message (Diagnostic ID 30513).......................................2170
GAP Message (Diagnostic ID 30515).......................................2170
GAP Message (Diagnostic ID 30519)2171
GAP Message (Diagnostic ID 30521).......................................2172
GAP Message (Diagnostic ID 30522).......................................2173
GAP Message (Diagnostic ID 30523).......................................2174
GAP Message (Diagnostic ID 30525).......................................2175
GAP Message (Diagnostic ID 30526).......................................2176
GAP Message (Diagnostic ID 30528).......................................2177
GAP Message (Diagnostic ID 30531).......................................2178
GAP Message (Diagnostic ID 30532)2179
GAP Message (Diagnostic ID 30533).......................................2181
GAP Message (Diagnostic ID 30534).......................................2182
GAP Message (Diagnostic ID 30535).......................................2183
GAP Message (Diagnostic ID 30536).......................................2183
GAP Message (Diagnostic ID 30537).......................................2184
GAP Message (Diagnostic ID 30538).......................................2186
GAP Message (Diagnostic ID 30753).......................................2188
GAP Message (Diagnostic ID 30754).......................................2191
GAP Message (Diagnostic ID 30755).......................................2193
GAP Message (Diagnostic ID 30756).......................................2194
GAP Message (Diagnostic ID 30757).......................................2196
GAP Message (Diagnostic ID 30758).......................................2198
GAP Message (Diagnostic ID 30759).......................................2199

Contents

29

GAP Message (Diagnostic ID 30760).......................................2200
Profile-Guided Optimization (PGO) ..2202

Profile-Guided Optimization via Hardware Counters...........................2204
Profile an Application with Instrumentation2204
Profile-Guided Optimization Report ...2206
PGO API Support..2207

Resetting Profile Information ...2208
Dumping Profile Information..2209
Interval Profile Dumping ...2210
Resetting the Dynamic Profile Counters...................................2211
Dumping and Resetting Profile Information..............................2211
Getting Coverage Summary Information on Demand2212

High-Level Optimization (HLO) ...2213
Interprocedural Optimization..2213

Use Interprocedural Optimization ...2216
Performance and Large Program Considerations2218
Create a Library from IPO Objects ..2220
Request Compiler Reports with the xi* Tools2221
Inline Expansion of Functions...2222
Inlining Report...2227

Processor Targeting ..2230
CPU Feature Targeting ..2232

Methods to Optimize Code Size ..2234
Intel® C++ Compiler Classic Math Library ..2241

Use the Intel® C++ Compiler Classic Math Library.............................2242
Math Function List ..2246
Trigonometric Functions ..2251
Hyperbolic Functions ..2255
Exponential Functions ...2257
Special Functions ...2261
Nearest Integer Functions ...2265
Remainder Functions ..2267
Miscellaneous Functions ..2268
Complex Functions ...2272
C99 Macros ...2277

Automatically-Aligned Dynamic Allocation ..2277
Automatically-Aligned Dynamic Allocation..2277

Pointer Checker..2280
Pointer Checker Overview..2280
Pointer Checker Feature Summary..2280
Using the Pointer Checker ...2283

Checking Bounds ...2283
Checking for Dangling Pointers ..2284
Checking Arrays...2285
Working with Enabled and Non-Enabled Modules2285
Storing Bounds Information...2286
Passing and Returning Bounds ...2286
Checking Run-Time Library Functions......................................2287
Writing a Wrapper..2287
Checking Custom Memory Allocators2288
Checking Multi-Threaded Code...2289
How the Compiler Defines Bounds Information for Pointers........2289
Finding and Reporting Out-of-Bounds Errors2291

Tools ..2293
PGO Tools ...2293

Intel® C++ Compiler Classic Developer Guide and Reference

30

PGO Tools Overview ...2293
Code Coverage Tool..2294
Test Prioritization Tool...2307
Profmerge and Proforder Tools ...2313
Using Function Order Lists, Function Grouping, Function

Ordering, and Data Ordering Optimizations2317
Comparison of Function Order Lists and IPO Code Layout2322

Compiler Option Mapping Tool..2322

Part VI: Compatibility and Portability
Conformance to the C/C++ Standards ..2325
GCC Compatibility and Interoperability ..2326
Microsoft Compatibility..2328
Port from Microsoft Visual C++* to the Intel® C++ Compiler Classic2331

Modify Your makefile ..2332
Other Considerations ..2334

Port from GCC* to the Intel® C++ Compiler Classic2336
Modify Your makefile ..2337
Other Considerations ..2339

Contents

31

Notices and Disclaimers
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware,
software or service activation. Performance varies depending on system configuration. No product or
component can be absolutely secure. Check with your system manufacturer or retailer or learn more at
[intel.com].

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest
forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from
published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice. Notice revision #20110804

Intel, the Intel logo, Intel Atom, Intel Core, Intel VTune, MMX, Pentium, Xeon, and Intel Xeon Phi are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Portions Copyright © 2001, Hewlett-Packard Development Company, L.P.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.
© Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed
by the express license under which they were provided to you (License). Unless the License provides
otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this software or the
related documents without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other
than those that are expressly stated in the License.

 Intel® C++ Compiler Classic Developer Guide and Reference

32

Intel®C++ Compiler Classic Developer
Guide and Reference
This guide contains information for version 2021.7 of the compiler.

Intel® C++ Compiler Classic (icc) is deprecated and will be removed in a oneAPI release in the second half of
2023. Intel recommends that customers transition now to using the LLVM-based Intel® oneAPI DPC++/C++
Compiler (icx) for continued Windows* and Linux* support, new language support, new language features,
and optimizations. Note that starting with release 2021.7, macOS* support is limited to Mac* computers with
Intel® Processors.

This document contains information about the Intel® C++ Compiler Classic (icc for Linux* and icl for
Windows*) compiler and runtime environment. The Intel® C++ Compiler Classic can be found in the Intel®
oneAPI HPC Toolkit, Intel® oneAPI IoT Toolkit, or as a standalone compiler. More information and
specifications about Intel C/C++ compilers can be found on the Intel® oneAPI DPC++/C++ Compiler product
page and in the Release Notes.

The following are some important sections of the compiler developer guide:

Compiler Setup Compiler Setup explains how to invoke the compiler on the command
line or from within an IDE.

OpenMP* Support The compiler supports many OpenMP* features, including most of
OpenMP* Version TR4: Version 5.0.

Compiler Options Compiler Options provides information about options you can use to
affect optimization, code generation, and more.

Intrinsics Intrinsics let you generate more readable code, simplify instruction
scheduling, reduce debugging, access the instructions that cannot be
generated using the standard constructs of the C and C++ languages,
and more.

Pragmas Pragmas provide the compiler with the instructions for specific tasks,
such as splitting large loops into smaller ones, enabling or disabling
optimization for code, or offloading computation to the target.

Context Sensitive/F1 Help To use the Context Sensitive/F1 Help feature, visit the Download
Documentation: Intel® Compiler (Current and Previous) page and
follow the instructions provided there.

Download Previous Versions of
the Developer Guide and
Reference

Visit the Download Documentation: Intel® Compiler (Current and
Previous) page to download PDF or FAR HTML versions of previous
compiler documentation.

NOTE For the best search experience, use a Google Chrome* or
Internet Explorer* browser to view your downloaded copy of the
Developer Guide and Reference.
If you use Mozilla Firefox*, you may encounter an issue where the
Search tab does not work. As a workaround, you can use the
Contents and Index tabs or a third-party search tool to find your
content.

Intel®C++ Compiler Classic Developer Guide and Reference

33

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/iot-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/oneapi-c-compiler-release-notes.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html

Introducing the Intel® C++
Compiler Classic

Part

I
Using the Intel® C++ Compiler Classic, you can compile and generate applications that can run on Intel® 64
architecture. You can also create programs for the IA-32 architecture on Windows* and Linux*.

Intel® 64 architecture applications can run on the following:

• Windows operating systems for Intel® 64 architecture-based systems.
• Linux operating systems for Intel® 64 architecture-based systems.
• macOS operating systems for Intel® 64 architecture-based systems.

IA-32 architecture applications can run on the following:

• Supported Windows operating systems
• Supported Linux operating systems

Unless specified otherwise, assume the information in this document applies to all supported architectures
and all operating systems.

You can use the compiler in the command-line or in a supported Integrated Development Environment (IDE):

• Microsoft Visual Studio* (Windows only)
• Eclipse*/CDT (Linux only)
• Xcode* (macOS only)

See the Release Notes for complete information on supported architectures, operating systems, and IDEs for
this release.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Feature Requirements
To use these tools and features, you need licensed versions of the tools and you must have an appropriately
supported version of the product edition. For more information, check the product release notes.

NOTE Some features may require additional product installation.

The following table shows components (tools) and where to find additional information on them.

Component More Information

Intel® C++ Compiler Classic More information on tools and features can be
found on the Intel® Developer Zone and the
Software Development Tools pages.Intel® Advisor

Intel® Inspector

Intel® Trace Analyzer and Collector

 Intel® C++ Compiler Classic Developer Guide and Reference

34

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://software.intel.com/content/www/us/en/develop/home.html
https://software.intel.com/content/www/us/en/develop/tools.html

Component More Information

Intel® VTune™ Profiler

The following table lists dependent features and their corresponding required products. For certain compiler
options, the compilation may fail if the option is specified but the required product is not installed. In this
case, remove the option from the command line and recompile.

Feature Requirements

Feature Requirement

Intel® oneAPI Threading Building Blocks (oneTBB) The -tbb, -qtbb, and /Qtbb options require a
oneTBB install.

Intel® oneAPI Math Kernel Library (oneMKL) The -qmkl, -mkl, and /Qmkl options require a
oneMKL install.

Intel® oneAPI Data Analytics Library (oneDAL) The -daal, -qdaal, and /Qdaal options require a
oneDAL install.

Intel® Integrated Performance Primitives (Intel®
IPP)

The -ipp, -qipp, and /Qipp options require an
Intel® IPP install.

Intel® Integrated Performance Primitives
Cryptography (Intel® IPP Cryptography)

Use crypto to link to the Intel® IPP Cryptography
library.

Thread Checking Intel® Inspector

Trace Analyzing and Collecting Intel® Trace Analyzer and Collector

Compiler options related to this feature may require
a set-up script. For further information, see the
product documentation.

Refer to the Release Notes for detailed information about system requirements, late changes to the products,
supported architectures, operating systems, and Integrated Development Environments (IDEs).

Get Help and Support
Windows*
Documentation is available from within the version of Microsoft Visual Studio*. You must install the
documentation on your local system. To use the feature, visit the Download Documentation: Intel® Compiler
(Current and Previous) page and follow the instructions provided there. From the Help menu, choose Intel
Compilers and Libraries to view the installed user and reference documentation.

Linux* and macOS
On Linux and macOS, the documentation has limited integration in the Eclipse*/CDT and Xcode*. In both
cases, the integrated documentation only provides details about where to find the product documentation on
your local system.

Intel® Software Documentation
You can find product documentation for many released products at: https://software.intel.com/
content/www/us/en/develop/documentation.html

Get Help and Support

35

https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html
https://software.intel.com/content/www/us/en/develop/documentation.html
https://software.intel.com/content/www/us/en/develop/documentation.html

Product Website and Support
To find product information, register your product, or contact Intel, visit: https://software.intel.com/
content/www/us/en/develop/support.html

At this site, you will find comprehensive product information, including:

• Links to Get Started, Documentation, Individual Support, and Registration
• Links to information such as white papers, articles, and user forums
• Links to product information
• Links to news and events

Online Service Center
Each purchase of an Intel® Software Development Product includes a year of support services, which includes
priority customer support at our Online Service Center. For more information about the Online Service Center
visit: https://supporttickets.intel.com/servicecenter

NOTE To access support, you must register your product at the Intel® Registration Center: https://
registrationcenter.intel.com/en/products/

Release Notes
For detailed information on system requirements, late changes to the products, supported architectures,
operating systems, and Integrated Development Environments (IDE) see the Release Notes for the product.

Forums
You can find helpful information in the Intel Software user forums. You can also submit questions to the
forums. To see the list of the available forums, go to https://community.intel.com/t5/Software-Development-
Tools/ct-p/software-dev-tools

Related Information
Recommended Additional Reading
You are strongly encouraged to read the following books for in-depth understanding of threading. Each book
discusses general concepts of parallel programming by explaining a particular programming technology:

• For information on Intel® Threading Building Blocks (Intel® TBB): Reinders, James. Intel Threading
Building Blocks: Outfitting C++ for Multi-core Processor Parallelism. O'Reilly, July 2007

• For information on OpenMP* technology: Chapman, Barbara, Gabriele Jost, Ruud van der Pas, and David
J. Kuck (foreword). Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press, October
2007

• For information on Microsoft Win32* Threading (for Windows* users): Akhter, Shameem, and Jason
Roberts. Multi-Core Programming: Increasing Performance through Software Multithreading, Intel Press,
April 2006

Intel does not endorse these books or recommend them over other books on the same subjects.

Additional Product Information
For additional technical product information including white papers, forums, and documentation, visit https://
software.intel.com/content/www/us/en/develop/tools.html

 Intel® C++ Compiler Classic Developer Guide and Reference

36

https://software.intel.com/content/www/us/en/develop/support.html
https://software.intel.com/content/www/us/en/develop/support.html
https://supporttickets.intel.com/servicecenter
https://registrationcenter.intel.com/en/products/
https://registrationcenter.intel.com/en/products/
https://community.intel.com/t5/Software-Development-Tools/ct-p/software-dev-tools
https://community.intel.com/t5/Software-Development-Tools/ct-p/software-dev-tools
https://software.intel.com/content/www/us/en/develop/tools.html
https://software.intel.com/content/www/us/en/develop/tools.html

Additional Language Information
• For information about the C++ standards, visit the C++ website: http://www.isocpp.org/
• For information about the C standards, visit the C website: http://www.open-std.org/jtc1/sc22/wg14/
• For information about the OpenMP* standards, visit the OpenMP website: http://www.openmp.org/

Notational Conventions
Information in this documentation applies to all supported operating systems and architectures unless
otherwise specified. This documentation uses the following conventions:

Notational Conventions

THIS TYPE Indicates language keywords.

this type Indicates command-line or option arguments.

This type Indicates a code example.

This type Indicates what you type as input.

This type Indicates menu names, menu items, button names,
dialog window names, and other user-interface
items.

File > Open Menu names and menu items joined by a greater
than (>) sign to indicate a sequence of actions. For
example, Click File > Open indicates that in the
File menu, you would click Open to perform this
action.

{value | value} Indicates a choice of items or values. You can
usually only choose one of the values in the braces.

[item] Indicates items that are optional.

item [, item]... Indicates that the item preceding the ellipsis (...)
can be repeated.

Intel® C++ This term refers to the name of the common
compiler language supported by the Intel® C++
Compiler Classic.

compiler or the compiler These terms are used when information is not
limited to only one specific compiler, or when it is
not necessary to indicate a specific compiler.

Windows or Windows operating system These terms refer to all supported Microsoft
Windows operating systems.

Linux or Linux operating system These terms refer to all supported Linux operating
systems.

macOS or macOS operating system These terms refer to all supported macOS operating
systems.

Notational Conventions

37

* An asterisk at the end of a word or name indicates
it is a third-party product trademark.

compiler option This term refers to Linux, macOS, or Windows
options, which are used by the compiler to compile
applications.

Additional Conventions Used for Compiler Options

compiler option name shortcuts The following conventions are used as shortcuts
when referencing compiler option names in
descriptions:

• No initial – or /

This shortcut is used for option names that are
the same for Linux and Windows except for the
initial character.

For example, Fa denotes:

• Linux and macOS: -Fa
• Windows: /Fa

• [Q]option-name

This shortcut is used for option names that only
differ because the Windows form starts with a Q.

For example, [Q]ipo denotes:

• Linux and macOS: -ipo
• Windows: /Qipo

• [q or Q]option-name

This shortcut is used for option names that only
differ because the Linux form starts with a q and
the Windows form starts with a Q.

For example, [q or Q]opt-report denotes:

• Linux and macOS: -qopt-report
• Windows: /Qopt-report

More dissimilar compiler option names are shown in
full.

/option or

-option
A slash before an option name indicates the option
is available on Windows. A dash before an option
name indicates the option is available on Linux and
macOS systems. For example:

• Linux and macOS: -help
• Windows: /help

 Intel® C++ Compiler Classic Developer Guide and Reference

38

NOTE If an option is available on all supported
operating systems, no slash or dash appears in
the general description of the option. The slash
and dash will only appear where the option
syntax is described.

/option:argument or

-option=argument
Indicates that an option requires an argument
(parameter). For example, you must specify an
argument for the following options:

• Linux and macOS: -mtune=processor
• Windows: /tune:processor

/option:keyword or

-option=keyword
Indicates that an option requires one of the
keyword values.

/option[:keyword] or

-option[=keyword]

Indicates that the option can be used alone or with
an optional keyword.

option[n] or

option[:n] or

option[=n]

Indicates that the option can be used alone or with
an optional value. For example, in -unroll[=n],
the n can be omitted or a valid value can be
specified for n.

option[-] Indicates that a trailing hyphen disables the option.
For example, /Qglobal_hoist- disables the
Windows option /Qglobal_hoist.

[no]option or

[no-]option
Indicates that no or no- preceding an option
disables the option. For example:

In the Linux and macOS option
-[no-]global_hoist, -global_hoist enables
the option, while -no-global_hoist disables it.

In the Windows
option /[no]traceback, /traceback enables the
option, while /notraceback disables it.

In some options, the no appears later in the option
name. For example, -fno-common disables the
-fcommon option.

Introducing the Intel® C++ Compiler Classic

39

Compiler Setup

Part

II
You can use the Intel® C++ Compiler Classic from the command line, Eclipse, Microsoft Visual Studio, or
Xcode.

These IDEs are described in further detail in their corresponding sections.

See Also
Use the Command Line
Use Eclipse
Use Microsoft Visual Studio
Use Xcode

Use the Command Line
This section provides information about the Command Line Interface (CLI).

Specify the Location of Compiler Components
Before you invoke the compiler, you may need to set certain environment variables that define the location of
compiler-related components. The compiler includes environment configuration scripts to configure your build
and development environment variables:

• On Linux, and macOS, the file is a shell script called setvars.sh.
• On Windows, the file is a batch file called setvars.bat.

NOTE If you are using older Intel® Parallel Studio XE or Intel® System Studio bits, you need to use
compilervars instead of setvars.

Linux and macOS
Set the environment variables before using the compiler by sourcing the shell script setvars.sh. Depending
on the shell, you can use the source command or a . (dot) to source the shell script, according to the
following rules for a .sh script:

Using source:

source /<install-dir>/setvars.sh <arg1> <arg2> … <argn>
Example:

source /opt/intel/oneapi/setvars.sh intel64
Using . (dot):

. /<install-dir>/setvars.sh <arg1> <arg2> … <argn>

 Intel® C++ Compiler Classic Developer Guide and Reference

40

Example:

. /opt/intel/oneapi/setvars.sh intel64
Use source /<install-dir>/setvars.sh --help for more setvars usage information.

The compiler environment script file accepts an optional target architecture argument <arg>:

• intel64: Generate code and use libraries for Intel® 64 architecture-based targets.
• ia32: Generate code and use libraries for IA-32 architecture-based targets.

If you want the setvars.sh script to run automatically in all of your terminal sessions, add the source
setvars.sh command to your startup file. For example, inside your .bash_profile entry for Intel® 64
architecture targets.

If the proper environment variables are not set, errors similar to the following may appear when attempting
to execute a compiled program:

./a.out: error while loading shared libraries:
libimf.so: cannot open shared object file: No such file or directory

Windows
Under normal circumstances, you do not need to run the setvars.bat batch file. The terminal shortcuts in
the Windows Start menu, Intel oneAPI command prompt for <target architecture> for Visual Studio
<year>, set these variables automatically.

For additional information, see Use the Command Line on Windows.

You need to run the setvars batch file if a command line is opened without using one of the provided
Command Prompt menu items in the Start menu, or if you want to use the compiler from a script of your
own.

The setvars batch file inserts DLL directories used by the compiler and libraries at the beginning of the
existing Path. Because these directories appear first, they are searched before any directories that were part
of the original Path provided by Windows (and other applications). This is especially important if the original
Path includes directories with files that have the same names as those added by the compiler and libraries.

The setvars batch file takes multiple optional arguments; the following two arguments are recognized for
compiler and library initialization:

<install-dir>\setvars.bat [<arg1>] [<arg2>]
Where <arg1> is optional and can be one of the following:

• intel64: Generate code and use libraries for Intel® 64 architecture (host and target).
• ia32: Generate code and use libraries for IA-32 architecture (host and target).

The <arg2> is optional. If specified, it is one of the following:

• vs2022: Microsoft Visual Studio 2022
• vs2019: Microsoft Visual Studio 2019
• vs2017: Microsoft Visual Studio 2017.

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release
and will be removed in a future release.

If <arg1> is not specified, the script uses the intel64 argument by default. If <arg2> is not specified, the
script uses the highest installed version of Microsoft Visual Studio detected during the installation procedure.

Compiler Setup

41

See Also
oneAPI Development Environment Setup

Configure Your CPU or GPU System

Invoke the Compiler

Requirements Before Using the Command Line
You may need to set certain environment variables before using the command line. For more information,
see Specify the Location of Compiler Components.

Different Compilers and Drivers
The table below provides the different compiler front-end and driver information.

Compiler Notes Linux Driver Windows Driver

Intel® C++
Compiler Classic

A C++ compiler
that supports an
OpenMP but not
OpenMP offload.

icc for C

icpc for C++

icl

Use the Compiler from the Command Line
Use the compiler with the OS/language specific invocations below.

Linux

Invoke the compiler using icc/icpc to compile C/C++ source files.

• When you invoke the compiler with icc the compiler builds C source files using C libraries and C include
files. If you use icc with a C++ source file, it is compiled as a C++ file. Use icc to link C object files.

• When you invoke the compiler with icpc the compiler builds C++ source files using C++ libraries and C+
+ include files. If you use icpc with a C source file, it is compiled as a C++ file. Use icpc to link C++
object files.

The icc/icpc command:

• Compiles and links the input source file(s).
• Produces one executable file, a.out, in the current directory.

macOS:

Invoke the compiler using icc or icpc to compile C/C++ source files.

• When you invoke the compiler with icc, the compiler builds C source files using C libraries and C include
files. If you use icc with a C++ source file, it is compiled as a C++ file. Use icc to link C object files.

• When you invoke the compiler with icpc the compiler builds C++ source files using C++ libraries and C+
+ include files (libc++ library is used by default). If you use icpc with a C source file, it is compiled as a
C++ file. Use icpc to link C++ object files.

The icc/icpc command:

• Compiles and links the input source file(s).
• Produces one executable file, a.out, in the current directory.

Windows

 Intel® C++ Compiler Classic Developer Guide and Reference

42

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/oneapi-development-environment-setup.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-base-linux/top/before-you-begin.html#before-you-begin_GUID-338EB548-7DB6-410E-B4BF-E65C017389C4

You can invoke the compiler on the command line using icl. This command:

• Compiles and links the input source file(s).
• Produces object file(s) and assigns the names of the respective source file(s), but with a .obj extension.
• Produces one executable file and assigns it the name of the first input file on the command line, but with

a .exe extension.
• Places all the files in the current directory.

When compilation occurs with the compiler, many tools may be called to complete the task that may
reproduce diagnostics unique to the given tool. For instance, the linker may return a message if it cannot
resolve a global reference.

Command Line Syntax
The syntax to invoke the compiler is:

Linux and macOS

icc [option] file1 [file2...]
Windows

icl [option] file1 [file2...]

Argument Description

option Indicates one or more command line options. On Linux and macOS systems, the
compiler recognizes one or more letters preceded by a hyphen (-). On Windows,
options are preceded by a hyphen (-) or slash (/). This includes linker options.

Options are not required when invoking the compiler. The default behavior of the
compiler implies that some options are ON by default when invoking compiler.

file1, file2... Indicates one or more files to be processed by the compiler.

/link (Windows) All options following /link are passed to the linker. Compiler options must precede
link if they are not to be passed to the linker.

Other Methods for Using the Command Line to Invoke the Compiler
• Using makefiles from the Command Line: Use makefiles to specify a number of files with various

paths and to save this information for multiple compilations. For more information on using makefiles, see
Use Makefiles to Compile Your Application.

• Using a Batch File from the Command Line: Create and use a .bat file to execute the compiler with a
desired set of options instead of retyping the command each time you need to recompile.

See Also
Specify the Location of Compiler Components
Understand File Extensions
Use Eclipse
Use Microsoft Visual Studio
Use Xcode
Use Makefiles to Compile Your Application
watch compiler option

Compiler Setup

43

Use the Command Line on Windows
The compiler provides a shortcut to access the command line with the appropriate environment variables
already set.

To invoke the compiler from the command line:

1. Open the Windows Start menu.
2. Scroll down the list of apps (programs) in the Start menu and find the Intel oneAPI 2021 folder.
3. Left click on the folder name and select your component. The command prompts shown are dependent

on the versions of Microsoft Visual Studio you have installed on your machine.
4. Right click on the command prompt icon to pin it to your taskbar. This step is optional.
5. The command line opens.

You can use any command recognized by the Windows command prompt, plus some additional commands.

Because the command line runs within the context of Windows, you can easily switch between the command
line and other applications for Windows or have multiple instances of the command line open simultaneously.

When you are finished working in a command line, use the exit command to close and end the session.

File Extensions

Input File Extensions
The Intel® C++ Compiler Classic recognizes input files with the extensions listed in the following table:

File Name Interpretation Action

file.c C source file Passed to compiler

file.C
file.CC
file.cc
file.cpp
file.cxx

C++ source file Passed to compiler

file.lib
(Windows)

file.a
file.so (Linux
and macOS)

file.dylib
(macOS)

Library file Passed to linker

file.i Preprocessed file Passed to compiler

file.obj
(Windows)

file.o (Linux and
macOS)

Object file Passed to linker

file.asm
(Windows)

Assembly file Passed to assembler

 Intel® C++ Compiler Classic Developer Guide and Reference

44

File Name Interpretation Action

file.s (Linux and
macOS)

file.S (Linux and
macOS)

Output File Extensions
The Intel® C++ Compiler Classic produces output files with the extensions listed in the following table:

File Name Description

file.i Preprocessed file: Produced with the -E option.

file.o (Linux and
macOS)

file.obj
(Windows)

Object file: Produced with the -c (Linux, macOS, and Windows) object. The /Fo
(Windows) or -o (Linux) option allows you to rename the output object file.

file.s (Linux and
macOS)

file.asm
(Windows)

Assembly language file: Produced with the -S option. The /Fa (Windows) or -s
(Linux) option allows you to rename the output assembly file.

a.out (Linux and
macOS)

file.exe
(Windows)

Executable file: Produced by the default compilation.
The /Fe (Windows) or -o (Linux) option allows you to rename the output executable file.

See Also
Invoke the Compiler
Specify Compiler Files

Use Makefiles for Compilation
This topic describes the use of makefiles to compile your application. You can use makefiles to specify a
number of files with various paths, and to save this information for multiple compilations.

Use Makefiles to Store Information for Compilation on Linux or macOS
To run make from the command line using the compiler, make sure that /usr/bin and /usr/local/bin are
in your PATH environment variable.

If you use the C shell, you can edit your .cshrc file and add the following:

setenv PATH /usr/bin:/usr/local/bin:$PATH
To use the compiler, your makefile must include the setting CC=icc. Use the same setting on the command
line to instruct the makefile to use the compiler. If your makefile is written for GCC, you need to change the
command line options that are not recognized by the compiler. Run make, using the following syntax:

make -f yourmakefile
Where -f is the make command option to specify a particular makefile name.

Compiler Setup

45

Use Makefiles to Store Information for Compilation on Windows
To use a makefile to compile your source files, use the nmake command with the following syntax:

nmake /f [makefile_name.mak] CPP=[compiler_name] [LINK32=[linker_name]
Example:

nmake /f your_project.mak CPP=icl LINK32=link

Argument Description

/f The nmake option to specify a makefile.

your_project.mak The makefile used to generate object and executable files.

CPP The preprocessor/compiler that generates object and executable files.
(The name of this macro may be different for your makefile.)

LINK32 The linker that is used.

The nmake command creates object files (.obj) and executable files () from the information specified in the
your_project.mak makefile.

See Also
Modify Your makefile (Linux and macOS)
Modify Your makefile (Windows)

Use Compiler Options
A compiler option is a case-sensitive, command line expression used to change the compiler's default
operation. Compiler options are not required to compile your program, but they can control different aspects
of your application, such as:

• Code generation
• Optimization
• Output file (type, name, location)
• Linking properties
• Size of the executable
• Speed of the executable

Linux and macOS
When you specify compiler options on the command line, the following syntax applies:

[invocation] [option] [@response_file] file1 [file2...]
The invocation is icc.

The option represents zero or more compiler options and the file is any of the following:

• C or C++ source file (.C, .c, .cc, .cpp, .cxx, .c++, .i, .ii)
• Assembly file (.s, .S)
• Object file (.o)
• Static library (.a)

When compiling C language sources, invoke the compiler with icc. When compiling C++ language sources or
a combination of C and C++, invoke the compiler with icpc.

 Intel® C++ Compiler Classic Developer Guide and Reference

46

Windows
When you specify compiler options on the command line, the following syntax applies:

[invocation] [option] [@response_file] file1 [file2 ...] [/link linker_option]
The invocation is icl.

The option represents zero or more compiler options, the linker_option represents zero or more linker
options, and the file is any of the following:

• C or C++ source file (.c, .cc, .ccp, .cxx, .i)
• Assembly file (.asm)
• Object (.obj)
• Static library (.lib)

The optional response_file is a text file that lists the compiler options you want to include during compilation.
See Use Response Files for additional information.

Default Operation
The compiler invokes many options by default. In this example, the compiler includes the option O2 (and
other default options) in the compilation. Using C++ as an example:

Linux and macOS

icpx main.c
Windows

icx main.c
Each time you invoke the compiler, options listed in the corresponding configuration file override any
competing default options. For example, if your configuration file includes the O3 option, the compiler uses
O3 rather than the default O2 option. Use the configuration file to list the options for the compiler to use for
every compilation. See Using Configuration Files.

Options specified in the command line environment variable override any competing default options and
options listed in the configuration file.

Finally, options used on the command line override any competing options that may be specified elsewhere
(default options, options in the configuration file, and options specified in the command line environment
variable). If you specify the option O1 this option setting takes precedence over competing option defaults
and competing options in the configuration files, in addition to the competing options in the command line
environment variable.

Certain #pragma statements in your source code can override competing options specified on the command
line. If a function in your code is preceded by #pragma optimize("", off), then optimization for that
function is turned off. The override is valid even when the O2 optimization is on by default, the O3 is listed in
the configuration file, and the O1 is specified on the command line for the rest of the program.

Use Competing Options
The compiler reads command line options from left to right. If your compilation includes competing options,
then the compiler uses the one furthest to the right. Using C++ as an example:

Linux and macOS

icpc –xSSSE3 main.c file1.c –xSSE4.2 file2.c
Windows

icl /QxSSSE3 main.c file1.c /QxSSE4.2 file2.c

Compiler Setup

47

The compiler sees [Q]xSSSE3 and [Q]xSSE4.2 as two forms of the same option, where only one form can
be used. Since [Q]xSSE4.2 is last (furthest to the right), it will be used.

All options specified on the command line are used to compile each file. The compiler does not compile
individual files with specific options. For example:

Linux and macOS

icc -O3 main.c file1.c -mp1 file2.c
Windows

icl /O3 main.c file1.c /Qprec file2.c
It may seem that main.c and file1.c are compiled with the option O3, and file2.c is compiled with the
-mp1 (Linux and macOS) or /Qprec (Windows) option. This is not correct; all files are compiled with both
options.

A rare exception to this rule is the -x type option on Linux and macOS. Using C++ as an example:

Linux and macOS

icpc -x c file1 -x c++ file2 -x assembler file3
The type argument identifies each file type for the compiler.

Use Options with Arguments
Compiler options can be as simple as a single letter, such as the option E. Many options accept or require
arguments. The O option, for example, accepts a single-value argument that the compiler uses to determine
the degree of optimization. Other options require at least one argument and can accept multiple arguments.
For most options that accept arguments, the compiler warns you if your option and argument are not
recognized. If you specify O9, the compiler issues a warning, then ignores the unrecognized option O9, and
proceeds with the compilation.

The O option does not require an argument, but there are other options that must include an argument. The
I option requires an argument that identifies the directory to add to the include file search path. If you use
this option without an argument, the compiler will not finish its compilation.

Other Forms of Options
You can toggle some options on or off by using the negation convention. For example, the [Q]ipo option
(and many others) includes negation forms, -no-ipo (Linux and macOS) and /Qipo- (Windows), to change
the state of the option.

Option Categories
When you invoke the Intel® C++ Compiler Classic and specify a compiler option, you have a wide range of
choices to influence the compiler's default operation. Intel® C++ Compiler Classic options typically
correspond to one or more of the following categories:

• Advanced Optimization
• Code Generation
• Compatibility
• Compiler Diagnostics
• Component Control
• Data
• Floating Point
• Inlining
• Interprocedural Optimizations (IPO)
• Language

 Intel® C++ Compiler Classic Developer Guide and Reference

48

• Linking/Linker
• Miscellaneous
• OpenMP and Parallel Processing
• Optimization
• Optimization Report
• Output
• Preprocessor

To see the included options in each category, invoke the compiler from the command line with the help
category option. For example:

Linux and macOS

icc -help codegen
Windows

icl /help codegen
The help option prints to stdout with the names and syntax of the options found in the Code Generation
category.

See Also
qopt-report, Qopt-report
Use Configuration Files

Specify Compiler Files

Specify Include Files
The compiler searches the default system areas for include files and items specified by the I compiler option.
The compiler searches directories for include files in the following order:

1. Directories specified by the I option.
2. Directories specified in the environment variables.
3. Default include directories.

Use the -nostdinc (Linux) or X (Windows) option to remove the default directories from the include file
search path.

For example, to direct the compiler to search the path /alt/include instead of the default path, use the
following:

Linux and macOS

icpc -nostdinc -I/alt/include prog1.cpp
Windows

icl /X /I\alt\include prog1.cpp

Specify Assembly Files
You can use the -S and -o options (Linux and macOS) or /Fa option (Windows) to specify an alternate name
for an assembly file. The compiler generates an assembly file named myasm.s (Linux and macOS) or
myasm.asm (Windows):

Linux and macOS

icpc -S -o myasm.s x.cpp

Compiler Setup

49

Windows

icl /Famyasm x.cpp

Specify Object Files
You can use the -c and -o options (Linux and macOS) or /Fo option (Windows) to specify an alternate name
for an object file. In this example, the compiler generates an object file name myobj.o (Linux and macOS) or
myobj.obj (Windows):

Linux and macOS

icpc -c -o myobj.o x.cpp
Windows

icl /Fomyobj x.cpp

See Also
-c compiler option
/Fa compiler option
/Fo compiler option
I compiler option
-o compiler option
-S compiler option
X compiler option
Supported Environment Variables

Convert Projects to Use a Selected Compiler
You can use the command-line interface ICProjConvert<version>.exe to transform your Intel® C++
projects into Microsoft Visual C++* projects, or vice versa. The syntax is:

ICProjConvert<version>.exe <sln_file | prj_files> </VC[:"VCtoolset name"] | /IC[:"ICtoolset
name"]> [/q] [/nologo] [/msvc] [/s] [/f]

Where:

Parameter Description

version The ICProjConvert version number. Values are: 191 or 192.

sln_file A path to the solution file, which should be modified to use a specified
project system.

prj_files A space separated list of project files (or wildcard), which should be
modified to use specified project system.

/VC Convert to use the Microsoft Visual C++ project system.

VCtoolset name The possible values are v141 (Microsoft Visual Studio* 2017), v142
(Microsoft Visual Studio 2019), or v143 (Microsoft Visual Studio 2022).

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel®
oneAPI 2022.1 release, and will be removed in a future release.

/IC Convert to use the Intel® C++ project system.

 Intel® C++ Compiler Classic Developer Guide and Reference

50

Parameter Description

ICtoolset name Such as Intel C++ Compiler 2021.1
Depending on the integration version, the supported name values may be
different.

/q Starts quiet mode, all information messages (except errors) are hidden.

/nologo Suppresses the startup banner.

/msvc Sets the compiler to Microsoft Visual C++.

/s Searches the project files through all subdirectories.

/f Forces an update to the project even if it has an unsupported type or
unsupported properties.

/? or /h Shows help.

Example
Issue the command ICProjConvert<version>.exe *.icproj /s /VC to convert all Intel® C++ project files in
the current directory and its subdirectories to use Microsoft Visual C++.

NOTE If you uninstall the Intel® C++ Compiler Classic, ICProjConvert<version>.exe remains in
the folder Program Files (x86)\Common Files\Intel\shared files\ia32\Bin and you can use
it to transform Intel® C++ projects back into Microsoft Visual C++.

Use Eclipse*
The Intel® C++ Compiler for Linux* provides integrations for the compiler to Eclipse* and C/C++
Development Tooling* (CDT) that let you develop, build, and debug your Intel® C++ projects in an integrated
development environment (IDE).

Eclipse is an open source software development project dedicated to providing a robust, full-featured,
commercial-quality, industry platform for the development of highly integrated tools. It is an extensible, open
source integrated development environment (IDE). CDT is a complete C/C++ IDE for the Eclipse platform,
which allows you to develop, build, and run projects in a visual, interactive environment. CDT is layered on
Eclipse and provides a C/C++ development environment perspective.

Add the Compiler to Eclipse*
This step is needed only if you are manually installing the Intel® C++ Compiler plug-in for Eclipse*.

To add the Intel® C++ Compiler product extension to your Eclipse configuration:

1. Start Eclipse.
2. Select Help > Install New Software.
3. Next to the Work with field, click the Add button. The Add Repository dialog box opens.
4. Click the Archive button and browse to the <install_dir>/compiler/<version>/linux/

ide_support directory. Select the .zip file that starts with com.intel.compiler, then click OK.
5. Select Intel® Software Development Tools > Intel® C++ Compiler Integration, then click OK.
6. Follow the installation instructions.
7. When asked if you want to restart Eclipse, select Yes.

When Eclipse restarts, you can create and work with CDT projects that use the Intel® C++ Compiler.

Use Eclipse*

51

Multi-Version Compiler Support
You can select different versions of the Intel® C++ Compiler for compiling projects with the Eclipse*
Integrated Development Environment (IDE). For a list of the currently supported compiler versions by
platform, refer to the Release Notes.

If multiple versions of the compiler are installed on the system, Eclipse uses the latest version by default. To
select the version of the compiler to build your project:

1. Right click the project and open Properties.
2. In the properties dialog box, select C/C++ Build > Settings.
3. Select the Intel® C++ Compiler Classic for a C++ project tab.
4. Select the row with the desired compiler version.
5. Click Use Selected. Alternatively, click Use Latest to select the latest version of compiler.
6. Click Apply.

The corresponding compiler environment is configured automatically for your project.

Use Settings and Tool Chain Editor to select tools to be used within the toolchain, or set distinct project
properties, like compiler options, to be used with different versions of the compiler.

For any project, you can set the compiler environment by specifying it within Eclipse; this overrides any other
environment specifications for the compiler.

Use Cheat Sheets
The Intel® C++ Compiler Classic integration includes several Eclipse* cheat sheets that can guide you
through various compilation and debugging tasks.

To view a list of available cheat sheets and select one:

1. Select Help > Cheat Sheets.
The Cheat Sheet Selection dialog box opens, displaying a list of available cheat sheets.

2. Select a cheat sheet. Cheat sheets located outside of the Eclipse* integration can be entered in the
Select a cheat sheet from a file or Enter the URL of a cheat sheet.
Intel cheat sheets are located under Intel(R) C++ Compiler. A description of the cheat sheet appears
in the lower pane.

3. To open a cheat sheet, click OK.

The Cheat Sheets view opens in the Eclipse window.

Create a Simple Eclipse Project
The sections below show you how to create a simple project using Eclipse.

Create a New Eclipse Project
To create an Eclipse project:

1. Select File > New > Project... The New Project wizard opens.
2. Expand the C/C++ Project tab and select the appropriate project type. Click Next to continue.
3. For Project name, enter hello_world. Deselect the Use default location to specify a directory for the

new project.
4. In the Project Type list, expand the Executable project type and select Hello World C++ Project

for C++.
5. In the Toolchains list, select Intel C++ Compiler Classic. Click Next.

 Intel® C++ Compiler Classic Developer Guide and Reference

52

NOTE

• If you need to see the toolchains for the compilers that are not locally installed, uncheck Show
project types and toolchains only if they are supported on the platform. You are only able
to view and configure these toolchains if the proper compilers are installed.

• If you have multiple versions of the compiler installed, they appear in the project’s properties under
C/C++ Build > Settings on the Intel® C++ Compiler Classic tab.

6. The Basic Settings page allows specifying template information, including Author and Copyright
notice, which appear as a comment at the top of the generated source file. After entering desired
fields, click Next.

7. The Select Configurations page allows specifying deployment platforms and configurations. By
default, a Debug and Release configuration is created for the selected toolchain. Select no (Deselect
all), multiple, or all (Select all) configurations. To edit project properties, click the Advanced settings
button. Click Finish to create the hello_world project. Configurations can be created after the project
is created by selecting Project > Properties.

8. If the view is not the C/C++ Development Perspective (default), an Open Associated
Perspective dialog box opens. In the C/C++ Perspective, click Yes to proceed.

An entry for your hello_world project appears in the Project Explorer view.

Add a C Source File
To add a source file to the hello_world project:

1. Select the hello_world project in the Project Explorer view.
2. Select File > New > Source File. The New Source File dialog box opens. The dialog box

automatically populates the source folder for the source file to be created. You can change this by
entering a new location or selecting Browse.

3. Enter new_source_file.c in the Source File field.
4. Select a Template from the drop-down list or Configure a new template.
5. Click Finish to add the file to the hello_world project.
6. In the Editor view, add your code for new_source_file.c.
7. When your code is complete, Save your file.

Set Options for a Project or File
You can specify compiler, linker, and archiver options at the project and source file level. Follow these steps
to set options for a project or file:

1. Right-click a project or source file in the Project Explorer.
2. Select Properties. The property pages dialog box opens.
3. Select C/C++ Build > Settings.
4. Select the Tool Settings tab and click an option category for Intel C Compiler, Intel C++ Compiler,

or Intel C++ Linker for a C++ project.
5. Set the options to apply to the project or file.

Compiler Setup

53

NOTE

• Some properties use check boxes, drop-down boxes, or dialog boxes to specify compiler options.
For a description on options properties, hover over the option to display a tooltip. After setting the
desired options in command line syntax, select Apply.

• To specify an option that is not available from the Properties dialog, use C/C++ Build Settings
> Settings > <Compiler> > Command Line. Enter the command line options in the Additional
Options field using command-line syntax and select Apply.

• You can specify option settings for one or more configurations by using the Configuration drop-
down menu.

6. Click Apply and Close.

The compiler applies the selected options, using the selected configurations, when building. To restore default
settings to all properties for the selected configuration, click the Restore Defaults button on any property
page.

Exclude Source Files from a Build
To exclude a source file from a build:

1. Right-click a file or folder in the Project Explorer.
2. Select Resource Configurations > Exclude from build. The Exclude from build dialog box opens.
3. Select one or more build configurations to exclude the file or folder from.
4. Click OK.

The compiler excludes that file or folder when it builds using the selected project configuration.

Build a Project
To build your project:

1. Select the hello_world project in the Project Explorer view.
2. Select Project > Build Project.

See the Build results in the Console view.

For a C/C++ project, use:

**** Build of configuration Debug for project hello_world ****
make all
Building file: ../src/hello_world.cpp
Invoking: Intel(R) C++ Compiler Classic
icpc -g -O0 -MMD -MP -MF"src/hello_world.d" -MT"src/hello_world.d" -c -o "src/hello_world.o"
"../src/hello_world.cpp"
Finished building: ../src/hello_world.cpp

Building target: hello_world
Invoking: Intel C++ Linker
icpc -O0 -o "hello_world" ./src/hello_world.o
Finished building target: hello_world

Build Finished. 0 errors, 0 warnings.

Detailed descriptions of errors, warnings, and other output can be viewed by selecting the Problems tab.

Run a Project
After building a project, you can run your project by following these steps:

1. Select the hello_world project in the Project Explorer view.

 Intel® C++ Compiler Classic Developer Guide and Reference

54

2. Select Run As > Local C/C++ Application.

When the executable runs, the output appears in the Console view.

Error Parser
The Error Parser (selected by default) lets you track compile-time errors in Eclipse. To confirm that the Error
Parser is active:

1. Select the hello_world project in the Project Explorer view.
2. Select Project > Properties.
3. In the Properties dialog box, select C/C++ Build > Settings.
4. Click the Error Parsers tab. Make sure that Intel C++ Error Parser is checked, and CDT Visual C

Error Parser or Microsoft Visual C Error Parser are not checked.
5. Click OK to update your choices, if you have changed any settings.

Use the Error Parser
The Error Parser automatically detects and manages the diagnostics generated by the Intel® C++ Compiler
Classic.

If an error occurring in the hello_world.c program is compiled, for example, #include <xstdio.h>, the
error is reported in the Problems view next to an error marker.

You can double-click each error in the Problems view to highlight the source line, which causes the error in
the Editor view.

Correct the error, then rebuild your project.

Makefiles
This section provides information about makefile project types and exporting makefiles.

Project Types and Makefiles
When you create a new project in Eclipse*, there are Executable, Shared Library, Static Library, or
Makefile project types available for your selection.

• Select Makefile Project if the project already includes a makefile.
• Use Executable, Shared Library, or Static Library Project to build a makefile using options assigned

from property pages specific to the Intel® C++ Compiler Classic.

Export Makefiles
Eclipse can build a makefile that includes Intel® C++ Compiler Classic options for created Executables,
Shared Libraries, or Static Library Projects. When the project is complete, export the makefile and project
source files to another directory, and then build the project from the command line using make.

To export the makefile:

1. Select the project in the Eclipse Project Explorer view.
2. Select File > Export to launch the Export Wizard. The Export dialog box opens, showing the Select

screen.
3. Select General > File system, then click Next. The File System screen opens.
4. Check both the hello_world and Release directories in the left-hand pane. Ensure all project sources

are checked in the right-hand pane.

Compiler Setup

55

NOTE Some files in the right-hand pane may be deselected, such as the hello_world.o object file
and the hello_world executable. Create directory structure for files in the Options section must
be selected to successfully create the export directory. This process applies to project files in the
hello_world directory.

5. Use the Browse button to target the export to an existing directory. Eclipse can create a directory for
full paths entered in the To directory text box. For example, if the /code/makefile is specified as the
export directory, Eclipse creates two new subdirectories:

• /code/makefile/hello_world
• /code/makefile/hello_world/Release

6. Click Finish to complete the export.

Run Make
In a terminal window, change to the /cpp/hello_world/Release directory, then run make by typing: make
clean all.

You should see the following output:

rm -rf ./new_source_file.o ./new_source_file.d hello_world

Building file: ../new_source_file.c
Invoking: Intel(R) C Compiler Classic
icc -O2 -MMD -MP -MF"new_source_file.d" -MT"new_source_file.d" -c -o "new_source_file.o" "../
new_source_file.c"
Finished building: ../new_source_file.c

Building target: hello_world
Invoking: Intel C++ Linker
icc -o "hello_world" ./new_source_file.o
Finished building target: hello_world

This process generates the hello_world executable in the same directory.

Use Intel Libraries with Eclipse*
You can use the compiler with the following Intel Libraries, which that may be included as a part of the
product:

• Intel® oneAPI Data Analytics Library (oneDAL)
• Intel® Integrated Performance Primitives (Intel® IPP)
• Intel® oneAPI Math Kernel Library (oneMKL)
• Intel® oneAPI Threading Building Blocks (oneTBB)

To access these libraries in Eclipse*, use the property pages:

1. Select your project.
2. Open the property pages from Project > Properties and select C/C++ Build > Settings.
3. Select Intel C/C++ Compiler > Performance Library Build Components

The Use Intel® oneAPI Data Analytics Library (oneDAL) property allows enabling the library and bringing
in the associated headers.

• None: Disable Use of oneDAL.
• Use threaded Intel® oneDAL: Link using the threaded version of the library.
• Use non-threaded Intel® oneDAL: Link using the non-threaded version of the library.

The Use Intel® Integrated Performance Primitives Libraries property provides the following options in a
drop-down menu:

• None: Disable use of Intel® IPP.
• Use main libraries set: Link using the main libraries set.

 Intel® C++ Compiler Classic Developer Guide and Reference

56

• Use non-pic version of libraries: Link using the version of the libraries that do not have position-
independent code.

• Use main libraries and cryptography library: Link using main or cryptography libraries.

The Use Intel® oneAPI Math Kernel Library property provides the following options in a drop-down menu:

• None: Disables the use of the oneMKL.
• Use threaded Intel® oneMKL library: Link using the threaded version of the library.
• Use non-threaded Intel® oneMKL library: Link using the non-threaded version of the library.
• Use Intel® oneMKL Cluster and sequential Intel® oneMKL libraries: Link using the oneMKL Cluster

Edition libraries and the sequential oneMKL libraries.

NOTE The option value Use Intel® oneMKL Cluster and sequential Intel® oneMKL libraries is
only available for Intel C Compiler or Intel C++ Compiler.

The Use Intel® oneAPI Threading Building Blocks on the Property page allows enabling the library and
bringing in the associated headers.

For more information, see the oneDAL, Intel® IPP, oneMKL, and oneTBB documentation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Using Microsoft Visual Studio*
You can use the Intel® C++ Compiler within the Microsoft Visual Studio* integrated development
environment (IDE) to develop C++ applications, including static library (.LIB), dynamic link library (.DLL),
and main executable (.EXE) applications. This environment makes it easy to create, debug, and execute
programs. You can build your source code into several types of programs and libraries, using the IDE or from
the command line.

The IDE offers these major advantages:

• Makes application development quicker and easier by providing a visual development environment.
• Provides integration with the native Microsoft Visual Studio debugger.
• Makes other IDE tools available.

Create a New Project

Create a New Project
When you create a project, Microsoft Visual Studio automatically creates a corresponding solution to contain
it. To create a new Intel® C++ project using Microsoft Visual Studio:

NOTE Exact steps may vary depending on the version of Microsoft Visual Studio in use.

1. Select File > New > Project.
2. In the left pane, expand Visual C++ and select Windows Desktop.
3. In the right pane, select Windows Console Application.
4. Accept or specify a project name in the Name field. For this example, use hello32 as the project name.
5. Accept or specify the Location for the project directory. Click OK.

Using Microsoft Visual Studio*

57

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

The hello32 project assumes focus in the Solution Explorer view. The default Microsoft Visual Studio
solution is also named hello32.

Use the Intel® C++ Compiler Classic
To use the compiler with Microsoft Visual C++* (MSVC):

1. Create a MSVC project, or open an existing project.
2. In Solution Explorer, select the project(s) to build with Intel® C++ Compiler Classic.
3. Open Project > Properties.
4. In the left pane, expand the Configuration Properties category and select the General property

page.
5. In the right pane, change the Platform Toolset to <compiler selection>. Alternatively, you can change

the toolset by selecting Project > Intel Compiler > Use Intel C++ Compiler. This sets whichever
version of the compiler that you specify as the toolset for all supported platforms and configurations.

NOTE For C/C++, there are two toolsets: Select Intel C++ Compiler <major version> (example
2021) to invoke icx, or select Intel C++ Compiler <major.minor> (example 19.2) to invoke icl.

6. To add options, go to Project > Properties > C/C++ > Command Line and add new options to the
Additional Options field. Alternatively, you can select options from Intel specific properties. Refer to
complete list of options in the Compiler Options section in this documentation.

7. Rebuild, using either Build > Project only > Rebuild for a single project, or Build > Rebuild
Solution for a solution.

Switch Back to the MSVC Compiler
If your project is using the Intel® C++ Compiler Classic, you can switch back to MSVC:

1. Select your project.
2. Right-click and select Intel Compiler > Use Visual C++ from the context menu.

Verify Use of the Intel® C++ Compiler Classic
To verify the use of the Intel® C++ Compiler Classic:

1. Go to Project > Properties > C/C++ > General.
2. Set Suppress Startup Banner to No. Click OK.
3. Rebuild your application.
4. Look at the Output window.

You should see a message similar to the following when using the Intel® C++ Compiler Classic:

Intel(R) C++ Intel(R) XX Compiler Classic for applications running on XXXX, Version XX.X.X

Unsupported MSVC Project Types
The following project types are not supported:

• Class Library
• CLR Console Application
• CLR Empty Project
• Windows* Forms Application
• Windows Forms Control Library

 Intel® C++ Compiler Classic Developer Guide and Reference

58

Tips for Use
• Create a separate configuration for building with Intel® C++ Compiler Classic:

• After you have created your project and specified it as an Intel project, create a new configuration (for
example, rel_intelc based on Release configuration or debug_intelc based on Debug
configuration).

• Add any special optimization options offered by Intel® C++ Compiler Classic only to this new
configuration (for example, rel_intelc or debug_intelc) through the project property page.

• Build with Intel® C++ Compiler Classic.

Select the Compiler Version
If you have multiple versions of the installed, you can select which version you want from the Compiler
Selection dialog box:

1. Select a project, then go to Tools > Options > Intel Compilers and Libraries > Compilers.
2. Use the Selected Compiler drop-down menu to select the appropriate version of the compiler.
3. Click OK.

See Also
Use Intel® C++ dialog box

Specify a Base Platform Toolset
By default, when your project uses the Intel® C++ Compiler Classic, the Base Platform Toolset property is set
to use that compiler with the build environment. This environment includes paths, libraries, included files,
etc., of the toolset specific to the version of Microsoft Visual Studio* you are using.

You can set the general project level property Base Platform Toolset to use one of the non-Intel installed
platform toolsets as the base.

For example, if you are using Microsoft Visual Studio 2019, and you selected the Intel® C++ Compiler Classic
in the Platform Toolset property, then the Base Platform Toolset uses the Microsoft Visual Studio 2019
environment (v142). If you want to use other environments from Microsoft Visual Studio along with the
Intel® C++ Compiler Classic, set the Base Platform Toolset property to:

• v141 for Microsoft Visual Studio 2017
• v142 for Microsoft Visual Studio 2019
• v143 for Microsoft Visual Studio 2022

NOTE
Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release, and will
be removed in a future release.

This property displays all installed toolsets, not including Intel toolsets.

To set the Base Platform Toolset:

• Using property pages:
1.Select the project and open Project > Properties.
2. In the left pane, select Configuration Properties > General.
3. In the right pane, find Intel Specific > Base Platform Toolset.
4.Select a value from the pop-up menu.

• Using the msbuild.exe command line tool, use the /p:PlatformToolset
and /p:BasePlatformToolset options.

Compiler Setup

59

Example: When the Platform Toolset property is already set to use the Intel® C++ Compiler Classic, to
build a project using the Microsoft Visual Studio 2019 environment use the following command:

Msbuild.exe myproject.vcxproj /p:BasePlatformToolset=v142
Example: To set the Platform Toolset property to use the Intel® C++ Compiler Classic and build a project
using the Microsoft Visual Studio 2019 environment use the following command:

Msbuild.exe myproject.vcxproj /p:PlatformToolset="Intel C++ Compiler 19.2" /
p:BasePlatformToolset=v141

For possible values for the /p:BasePlatformToolset property, see the properties described above.

The next time you build your project with the Intel® C++ Compiler Classic, the option you selected is used to
specify the build environment.

Use Property Pages
The Intel® C++ Compiler Classic includes support for Property Pages to manage both Intel-specific and
general compiler options.

To set compiler options in Microsoft Visual Studio*:

1. Right-click on a project or source file in the Solution Explorer view.
2. Select Properties from the pop-up menu.
3. In the Property Pages dialog box, expand the C/C++ section to view the categories of compiler

options.
4. Click OK to complete your selection.

The option you selected is used in the compilation the next time you build your project.

Use Intel® Libraries with Microsoft Visual Studio*
You can use the compiler with the following Intel® Libraries, which may be included as a part of the product:

• Intel® oneAPI Data Analytics Library (oneDAL)

NOTE This library is only available in the x64 configuration.

• Intel® Integrated Performance Primitives (Intel® IPP)
• Intel® oneAPI Threading Building Blocks (oneTBB)
• Intel® oneAPI Math Kernel Library (oneMKL)

Use the property pages to specify Intel Libraries to use with the selected project configuration. The
functionality supports Intel® C++ and Microsoft Visual C++* project types.

To specify Intel Libraries, select Project > Properties. In Configuration Properties, select Intel
Libraries for oneAPI, then do the following:

1. To use oneDAL change the Use oneDAL settings as follows:

NOTE This library is only available in the x64 configuration.

• No: Disable Use of oneDAL.
• Default Linking Method: Use parallel dynamic oneDAL libraries.
• Multi-threaded Static Library: Use parallel static oneDAL libraries.
• Single-threaded Static Library: Use sequential static oneDAL libraries.
• Multi-threaded DLL: Use parallel dynamic oneDAL libraries.
• Single-threaded DLL: Use sequential dynamic oneDAL libraries.

2. To use Intel® Integrated Performance Primitives, change the Use Intel® IPP settings as follows:

 Intel® C++ Compiler Classic Developer Guide and Reference

60

• No: Disable use of Intel® IPP libraries.
• Default Linking Method: Use dynamic Intel® IPP libraries.
• Static Library: Use static Intel® IPP libraries.
• Dynamic Library: Use dynamic Intel® IPP libraries.

3. To use oneTBB in your project, change the Use oneTBB settings as follows:

• No: Disable use of oneTBB libraries.
• Use oneTBB: Set to Yes to use oneTBB in the application.
• Instrument for use with Analysis Tools: Set to Yes to analyze your release mode application

(not required for debug mode).
4. To use oneMKL in your project, change the Use oneMKL property settings as follows:

• No: Disable use of oneMKL libraries.
• Parallel: Use parallel oneMKL libraries.
• Sequential: Use sequential oneMKL libraries.
• Cluster: Use cluster libraries.

Additional settings for use with the Microsoft Visual C++* Platform Toolset are available on the Intel
Libraries for oneAPI category, found at Tools > Options.

NOTE The Use <library> properties in Microsoft Visual Studio mimic the behavior of the /Qmkl, /
Qdaal, /Qipp and /Qtbb compiler options. The include and library paths to the performance library,
which are installed with the selected compiler, are set up with these properties.

Change the Selected Intel® Performance Libraries
If you have installed multiple versions of the Intel® Performance Libraries, you can specify which version to
use with the Microsoft Visual C++* compiler. To do this:

1. Select Tools > Options.
2. In the left pane, select Intel Compilers and Libraries > Performance Libraries.
3. Select the desired library version from the drop-down boxes in the right pane.

For more information, see the Intel® oneAPI Data Analytics Library (oneDAL), Intel® Integrated Performance
Primitives (Intel® IPP), Intel® oneAPI Threading Building Blocks (oneTBB), and Intel® oneAPI Math Kernel
Library (oneMKL) documentation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Include MPI Support
To specify the type of MPI support you want:

1. Open the project's property pages and select Configuration Properties > Intel Libraries for
oneAPI.

2. Set the property Use oneMKL to Cluster.
3. Set the property Use MPI Library to one of the following values:

• Intel® MPI Library
• MS-MPI

4. Build the project.

Compiler Setup

61

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

The next time you build your project with the Microsoft Visual C++* compiler, it will include support for the
version of MPI that you specified.

Use Guided Auto Parallelism in Microsoft Visual Studio*
The Guided Auto Parallelism (GAP) feature helps you locate portions of your serial code that can be
parallelized. When you enable analysis using GAP, the compiler guides you to places in your code where you
can increase efficiency through automatic parallelization and vectorization.

NOTE GAP is not supported for ifx.

Run Analysis on a Project
You can start analysis from the Microsoft Visual Studio* IDE in several ways:

• From the Tools menu: Select Intel Compiler > Guided Auto Parallelism > Run Analysis...

Starting analysis in this way results in a one-time run for the current project. The default values are taken
from Tools > Options unless you have chosen to override them in the dialog box.

• From the Diagnostics property page: Use the Guided Auto Parallelism Analysis property.

Specifically, choose Project > Properties > C/C++ > Diagnostics and enable analysis using the
Guided Auto Parallelism Analysis property. Enabling analysis in the property page allows you to run an
analysis as part of a normal project Build request in Microsoft Visual Studio*. In this mode, GAP-related
settings in Tools > Options are ignored, in favor of other GAP-related settings available in the property
page.

• From the context menu: Right-click and select Intel Compiler > Guided Auto Parallelism > Run
Analysis....

This is equivalent to using the Guided Auto Parallelism > Run Analysis option on the Tools menu.

To receive advice for auto parallelization, be sure that certain property page settings are correct. Select
Project > Properties > C/C++ > Optimization [Intel C++] and set Parallelization to Yes to enable
auto-parallelization optimization. You may also need to set the Optimization level at option O2 or higher. To
do this, use the Optimization property page.

GAP Scenarios
To illustrate how the various GAP settings work together, consider the following scenarios:

Scenario Result

The GAP analysis setting in the
property pages is set to Enabled.

Analysis always occurs for the project, whenever a regular project
build occurs. Other analysis settings specified in the property pages
are used. Analysis setting in Tools > Options are ignored.

The Gap analysis setting in the
property pages is set to Disabled,
and GAP is run from the Tools
menu.

Analysis occurs for this one run. The default values for this analysis
are taken from Tools > Options and can be overridden in the
dialog box. Options specified in the property pages are also used,
but will be overridden by any specified analysis option.

The GAP analysis setting in the
property pages is set to Disabled,
and GAP options are set in Tools >
Options.

No analysis occurs, unless analysis is explicitly run from the Tools
menu.

 Intel® C++ Compiler Classic Developer Guide and Reference

62

Run Analysis on a File or within a File
Right-click on Guided Auto Parallelism context menu item to run analysis on the following:

• Single file: Select a file and right-click.
• Function (routine):Right-click within the function scope.
• Range of lines: Select one or more lines for analysis and right-click.

See Also
Options: Guided Auto Parallelism dialog box

Guided Auto Parallelism

Using Guided Auto Parallelism

Use Code Coverage in Microsoft Visual Studio*
The code coverage tool provides the ability to determine how much application code is executed when a
specific workload is applied to the application. The tool analyzes static profile information generated by the
compiler, as well as dynamic profile information generated by running an instrumented form of the
application binaries on the workload. The tool can generate a report in HTML-format and export data in both
text- and XML-formatted files. The reports can be further customized to show color-coded, annotated source-
code listings that distinguish between used and unused code.

NOTE Code coverage is not supported for ifx.

To start code coverage:

1. Select Tools > Intel Compiler > Code Coverage...
2. Specify settings for the various phases.
3. Click Run.

The Output window shows the results of the coverage and a general summary of information from the code
coverage.

See Also
Code Coverage dialog box

Code Coverage Settings dialog box

Code Coverage Tool

Use Profile Guided Optimization in Microsoft Visual
Studio*
Profile Guided Optimization (PGO) improves application performance by reorganizing code layouts to reduce
instruction-cache problems, shrinking code size, and reducing branch misprediction. PGO provides
information to the compiler about areas of an application that are most frequently executed. By knowing
these areas, the compiler is able to be more selective and specific in optimizing the application.

NOTE PGO is not supported for ifx.

Compiler Setup

63

To start PGO:

1. Choose Tools > Intel Compiler > Profile Guided Optimization...
2. Specify settings for the various phases.
3. Click Run.

The Output windows show the results of the optimization with a link to the composite log.

See Also
Profile Guided Optimization dialog box

Options: Profile Guided Optimization dialog box

Profile Guided Optimization

Optimization Reports

Enable in Microsoft Visual Studio*
Optimization reports can help you address vectorization and optimization issues.

When you build a solution or project, the compiler generates optimization diagnostics. You can view the
optimization reports in the following windows:

• The Compiler Optimization Report window, either grouped by loops or in a flat format.
• The Compiler Inline Report window.
• The optimization annotations, which are integrated within the source editor.

To enable viewing for the optimization reports:

1. In your project's property pages, select Configuration Properties > C/C++ > Diagnostics [Intel C
++].

2. Set a non-default value for any of the following options:

• Optimization Diagnostics Level
• Optimization Diagnostics Phase
• Optimization Diagnostics Routine

3. Build your project to generate an optimization report.

When the compiler generates optimization diagnostics, the Compiler Optimization Report and the
Compiler Inline Report windows open. The optimization report annotations appear in the source editor.

NOTE You can specify how you want the optimization reporting to appear with the Optimization
Reports dialog box. Access this dialog box by selecting Tools > Options > Intel Compilers and
Libraries > Optimization Reports.

View Reports
When the compiler generates optimization diagnostics, the Compiler Optimization Report and the
Compiler Inline Report windows open, and optimization report annotations appear in the editor.

The Compiler Optimization Report window displays diagnostics for the following phases of the
optimization report:

• PGO
• LNO
• PAR
• VEC

 Intel® C++ Compiler Classic Developer Guide and Reference

64

• Offload (Linux* only)
• OpenMP*
• CG

Information appears in this window grouped by loops, or in a flat format. To switch the presentation format,
click the gear button on the toolbar of the window, and uncheck Group by loops.

In addition to sorting information by clicking column headers and resizing columns, you can use the windows
described in the following table:

Do This To Do This

Double-click a diagnostic. Jump to the corresponding position in the editor.

Click a link in the Inlined into column. Jump to the call site of the function where the loop
is inlined.

Expand or collapse a diagnostic in Group by loops
view.

View detailed information for the diagnostic.

Click on a column header. Sort the information according to that column.

Click the filter button. Select a scope by which to filter the diagnostics
that appear in the window.

The title bar of the Compiler Optimization
Report window shows the applied filter. Labels on
optimization phase filter buttons show how many
diagnostics of each phase are in the current scope.

Click a Compiler Optimization Report window
toolbar button corresponding to an optimization
report phase.

Turn filtering diagnostics on or off for an
optimization phase.

Labels on optimization phase filter buttons show
the total number of diagnostics for each phase.

By default all phases turned on.

Enter text in the search box in the Compiler
Optimization Report window toolbar.

Filter diagnostics using the text pattern.

Diagnostics are filtered when you stop typing.
Pressing Enter saves this pattern in the search
history.

To disable filtering, clear the search box.

To use a pattern from the search history, click on
the down arrow next to the search box.

The Compiler Inline Report window displays diagnostics for the IPO phase of the optimization report.

Information appears in this window in a tree. Each entry in the tree has corresponding information in the
right-hand pane under the Properties tab and the Inlining options tab.

You can use the window as described in the following table:

Do This To Do This

Double-click a diagnostic in the tree, or click on the
source position link under the Properties tab.

Jump to the corresponding position in the editor.

Click Just My Code. Only display functions from your code, filter all
records from files that don't belong to the current
solution file tree.

Right-click on a function body in the editor and
select Intel Compiler > Show Inline report for
function name.

View detailed information for the specified function.

Compiler Setup

65

Do This To Do This

Right-click on a function body in the editor and
select Intel Compiler > Show where function
name in inlined.

Show where the specified function is inlined.

Enter text in the search box in the Compiler Inline
Report window toolbar.

Filter diagnostics using the text pattern.

Diagnostics are filtered when you stop typing.
Pressing Enter saves this pattern in the search
history.

To disable filtering, clear the search box.

To use a pattern from the search history, click on
the down arrow next to the search box.

The Viewing Optimization Notes window in the editor provides context for the diagnostics that the
compiler generates:

• In Caller Site
• In Callee Site
• In Caller and Callee Site

You can use optimization notes as described in the following table:

Do This To Do This

Right-click an optimization note • Expand or collapse the current optimization
note, or all of them.

• Open the Optimization Reports dialog box to
adjust settings for optimization report viewing.
You can view optimization notes in one of the
following locations:

• Caller Site
• Callee Site
• Caller Site and Callee Site

Double-click an optimization note heading. Expand or collapse the current optimization note.

Double-click a diagnostic detail. Jump to the corresponding position in the editor.

Click a hyperlink in the optimization note. Show where the specified function is inlined.

Click the help (?) icon. Get detailed help for the selected diagnostic. The
default browser opens and, if you are connected to
the internet, displays the help topic for this
diagnostic.

Hover the mouse over a collapsed optimization
note.

View a detailed tool tip about that optimization
note.

See Also
Options: Optimization Reports dialog box
qopt-report-phase, Qopt-report-phase

Dialog Box Help
This section provides information about access to dialog boxes and information about compilers, libraries,
and converter dialog boxes.

 Intel® C++ Compiler Classic Developer Guide and Reference

66

Options: Compilers dialog box
To access the Compilers page:

1. Open Tools > Options.
2. In the left pane, select Intel Compilers and Libraries > C++ > Compilers.

Compiler Selection for C++ Classic
Target Platform: Select your target platform.

Platform Toolset/Selected Compiler: Select your compiler for your platform toolset. The left column lists
the platform toolset names. The right column lists combo boxes, which are used to select a compiler. The
default value for all combo boxes in current table is <Latest>.

NOTE The left column contains Intel® C++ Compiler Classic and Intel® oneAPI DPC++/C++ Compiler
options. The Intel C++ Compiler <major.minor> (example 19.2) selects the Intel® C++ Compiler
Classic (icc). The Intel C++ Compiler <major> (example 2021) selects the Intel® oneAPI DPC+
+/C++ Compiler (icx).

Default Options: Sets the default options for a selected compiler. You may specify this setting for each
selected compiler.

Environment: Sets custom environment variables. You may specify this setting for each selected compiler.

NOTE The Environment selection is only available for icx.

Compiler Information: Shows the detail description of the selected compiler.

Reset All: Sets all contents back to the default value on the dialog.

See Also

Use Intel® C++ Compiler Classic dialog box
To access the Use Intel C++ Compiler Classic dialog box, select one or more files in the Solution Explorer,
right-click and select Use Intel C++ Compiler Classic for selected files(s)...

Use this dialog box to change the compiler for one or more selected files to the Intel® C++ Compiler Classic.

Select the configuration(s) to update: Select the desired configuration. Choose from Active
configuration or All configurations. If you select All configurations, the compiler is changed in all
configurations for the currently selected file(s).

Select the Platform Toolset: Select the desired toolset, if multiple platform toolsets are installed.

See Also
Use the Intel® C++ Compiler Classic

Options: Intel Libraries for oneAPI dialog box
Use the Intel Libraries for oneAPI dialog box to specify standalone library versions to use with the
Microsoft Visual C++* compiler.

To access the Intel Libraries for oneAPI dialog box:

Compiler Setup

67

1. Open Tools > Options.
2. Select Intel Compilers and Libraries > Intel Libraries for oneAPI.

In the dialog box, you can select your desired library version from the drop-down box with one of the
following values:

• oneDAL
• Intel IPP
• oneTBB
• oneMKL
• Reset All: Use the latest libraries (default)

NOTE To enable or disable the Intel Libraries for oneAPI, use the property pages located in the
Configuration Properties category.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Use Intel® Libraries for oneAPI

Options: Converter dialog box
To access the Converter page, click Tools > Options and then select Intel Compilers and Libraries > C
++ > Converter.

Use the Converter page to specify which platform toolset to use when upgrading an Intel® C++ solution
(.icproj) from an older version of Microsoft Visual Studio* to a C++ project supported by Microsoft Visual
Studio 2017 or later (.vcxproj). Once a solution is upgraded, the .icproj file is not used and can be
deleted.

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

Win32: Select the desired compiler version to be used when converting projects based on IA-32
architecture.

X64: Select the desired compiler version to be used when converting projects based on x64 architecture.

Reset All: Click this button to use the default platform toolsets.

Options: Optimization Reports dialog box
To access the Optimization Reports page, click Tools > Options and then select Intel Compilers and
Libraries > Optimization Reports. Use this page to specify how you want optimization reporting to appear.

This page, in conjunction with the Diagnostics property page for your project or solution, defines settings
for optimization report viewing in Visual Studio*.

General
Always Show Compiler Inline Report: Specify if the Compiler Inline Report appears after building or
rebuilding your solution or project when inline diagnostics are present.

 Intel® C++ Compiler Classic Developer Guide and Reference

68

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Always Show Compiler Optimization Report: Specify if Compiler Optimization Report appears after
building or rebuilding your solution or project when optimization diagnostics are present. This option has
higher priority than Always Show Compiler Inline Report. If both options are set to True, then this
window has focus by default.

Show Optimization Notes in Text Editor Margin: Specify if optimization notes appear in the editor as
source code annotations.

Optimization Notes in Text Editor
Collapse by Default: Specify if optimization notes appear expanded or collapsed by default.

Show Optimization Notes: Specify if source code annotations appear in the editor.

Site: Specify where optimization notes appear in the editor. Select from one of the following options:

• Caller Site
• Callee Site
• Caller and Callee Sites

See Also
Optimization Reports: Enabling in Visual Studio*

Options: Guided Auto Parallelism dialog box
Use the Guided Auto Parallelism page to specify settings for Guided Auto Parallelism (GAP) analysis.

NOTE The Guided Auto Parallelism dialog box is only available for ifort.

To access the Guided Auto Parallelism page click Tools > Options and then select: Intel Compilers and
Libraries > C++ > Guided Auto Parallelism.

These settings are used when running analysis using Tools > Intel Compiler > Guided Auto
Parallelism > Run Analysis on project...

Guided Auto Parallelism Options
Level of Analysis: Specify the desired level of analysis. Choose Simple, Moderate, Maximum, or
Extreme.

Suppress compiler warnings: Check this box to suppress compiler warnings. Selection adds option W0 to
the compiler command line.

Suppress Remark IDs: Specify one or more remark IDs to suppress. Use a comma to separate IDs.

Send remarks to a file: Check this box to send GAP remarks to a specified text file.

Remarks file: Specify the filename to send GAP remarks to.

Show all GAP configuration and informational dialogs: Check this box to display additional dialog boxes
when you run an analysis.

Reset All: Click this button to restore the previously selected settings.

See Also
Using Guided Auto Parallelism in Microsoft Visual Studio*

Guided Auto Parallelism

Using Guided Auto Parallelism

Compiler Setup

69

Configure Analysis dialog box
Use the Configure Analysis dialog box to specify settings for Guided Auto Parallelism (GAP) analysis and
run the analysis.

To access this dialog box, click Tools > Intel Compiler > Guided Auto Parallelism > Run Analysis...

Configure Analysis Options
Level of Analysis: Specify the desired level of analysis. Choose Simple, Moderate, Maximum, or
Extreme.

Suppress Compiler Warnings: Check this box to suppress compiler warnings. This adds the option W0 to
the compiler command line.

Suppress remark IDs: Specify one or more remark IDs to suppress. Use a comma to separate IDs.

Send remarks to a file: Check this box to send GAP remarks to a specified text file.

Remarks file: Specify the filename where GAP remarks will be sent.

Save these settings as the default (in Tools > Options for Guided Auto Parallelism): Check this box
to save the specified settings as the default settings.

Show this dialog next time (in Tools > Intel Compiler): Check this box to display this dialog box next
time.

When you are done specifying settings, click Run Analysis.

See Also
Auto-Parallelization

Using Guided Auto Parallelism

Using Guided Auto Parallelism in Microsoft Visual Studio*

Options: Guided Auto Parallelism dialog box

Options: Profile Guided Optimization (PGO) dialog box
Use the Profile Guided Optimization page to specify settings for PGO. To access the Profile Guided
Optimization page, click Tools > Options and then select Intel Compilers and Libraries > Profile
Guided Optimization.

Profile Guided Optimization (PGO) Options
Show PGO Dialog: Specify whether to display the Profile Guided Optimization dialog box when you begin
PGO.

See Also
Using Profile Guided Optimization in Microsoft* Visual Studio*

Profile Guided Optimization dialog box

Profile-Guided Optimizations

 Intel® C++ Compiler Classic Developer Guide and Reference

70

Profile Guided Optimization dialog box
This topic has information on the following dialog boxes:

• Profile Guided Optimization (PGO) dialog box
• Application Invocations dialog box
• Edit Command dialog box
• Command dialog box

Profile Guided Optimization dialog box
To access the Profile Guided Optimization dialog box, choose Tools > Intel Compiler > Profile Guided
Optimization.

Use the Profile Guided Optimization dialog box to set the options for profile guided optimization.

Phase 1 - Instrument: This phase produces an instrumented object file for the profile guided optimization.
The command line compiler option for each optimization instrument you choose appears in Compiler
Options.

• Enable Function Ordering in the optimized application: Select this checkbox to enable ordering of
static and extern routines using profile information. This optimization specifies the order in which the
linker should link the functions of your application. This optimization can improve your application
performance by improving code locality and by reducing paging.

• Enable Static Data Layout in the optimized application: Select this checkbox to enable ordering of
static global data items based on profiling information. This optimization specifies the order in which the
linker should link global data of your program. This optimization can improve application performance by
improving the locality of static global data, reduce paging of large data sets, and improve data cache use.

• Instrument with guards for threaded application: Select this checkbox to produce an instrumented
object file that includes the collection of PGO data on applications that use a high level of parallelism.

Selecting an option produces a static profile information file (.spi), but also increases the time needed to do
a parallel build.

Deselect the checkbox to skip this phase to save time running profile guided optimization. When you skip this
phase, you use the existing profile information when running profile guided optimization. For example, you
may want to skip this phase when you change the code to fix a bug and the fix doesn't affect the architecture
of the project.

Phase 2 - Run Instrumented Application(s): This phase runs the instrumented application produced in
the previous phase as well as other applications in the Applications Invocations dialog box. To add a new
application or edit an existing application in the list, click Applications Invocations.

Deselect the checkbox to skip this phase to save time running profile guided optimization. When you skip this
phase, you do not run the applications in the list when running profile guided optimization. For example, you
might want to skip this phase when you change the code to fix a bug and the fix doesn't affect the
architecture of the project.

Phase 3 - Optimize with Profile Data: This phase performs the profile guided optimization.

Deselect the checkbox to skip this phase.

Profile Directory: The directory that contains the profile. Click Edit to edit the profile directory or the
Browse button to browse for the profile directory.

Show this dialog next time: Deselect this checkbox to run profile guided optimization without displaying
this dialog box. The profile guided optimization will use these settings.

Save Settings: Click to save your settings.

Run: Click to start the profile guided optimization.

Compiler Setup

71

Cancel: Click to close this dialog box without starting the profile guided optimization.

Application Invocations dialog box
To access the Application Invocations dialog box, click Application Invocations... in the Profile Guided
Optimization dialog box. Use the Profile Guided Optimization dialog box to configure the application
options for your application as well add additional applications when you run profile guided optimization.

The list of applications comes from the debug settings of the Startup Project.

Merge Environment: Select this checkbox to merge the application environment with the environment
defined by the operating system.

To add, edit, or remove an application, click one of the buttons.

Add: Click to add a new application in the Add Command dialog box.

Duplicate: Click after selecting an application to copy its settings so that you can use a different setting.

Edit: Click after selecting an application to change its settings in the Edit Command dialog box.

Delete: Click to remove the selected application from the list.

OK: Click to save the settings and close this dialog box.

Cancel: Click to discard the settings and close this dialog box.

Add Command dialog box
To access the Add Command dialog box, click Add in the Application Invocations dialog box. Use the
Add Command dialog box to add a new application in the Application Invocations dialog box.

Command: Add a new or edit an existing application. Click Edit to open the Command dialog box with a list
of macros. Click Browse to navigate to another directory that contains the application.

Command Arguments: Enter the arguments required by the application.

Working Directory: Enter a new or edit the working directory for the application. Click Edit to open the
Working Directory dialog box with a list of macros. Click Browse to navigate to working directory of the
application.

Environment: Enter the environment variable required by this application.

Merge Environment: Select this checkbox to merge the application environment with the environment
defined by the operating system.

Load from Debugging Settings: Click to load the debug settings for this application.

OK: Click to save the settings and close this dialog box.

Cancel: Click to discard the settings and close this dialog box.

NOTE The Edit Command and Add Command dialog boxes are similar. To use the Edit Command
dialog box, substitute Edit for Add in the selections above.

Command dialog box
To access the Command dialog box, click Edit in the Edit Command dialog box, or Add in the Add
Command dialog box. Use the Command dialog box to specify or change the macro used in the application
to run as part of the profile guided optimization.

Select a macro from the list and then click one of the buttons.

 Intel® C++ Compiler Classic Developer Guide and Reference

72

Macro: Click to show or close the list of available macros.

Insert: Click to use the selected macro.

OK: Click to save the settings and close this dialog box.

Cancel: Click to discard the settings and close this dialog box.

See Also
Profile-Guided Optimization

Using Profile Guided Optimization in Microsoft Visual Studio*

Options: Profile Guided Optimization

Using Function Order Lists, Function Grouping, Function Ordering, and Data Ordering
Optimizations

Options: Code Coverage dialog box
To access the Code Coverage page, click Tools > Options and then select Intel Compilers and
Libraries > Code Coverage.

Use this page to specify settings for code coverage. These settings are used when you run an analysis.

Codecov Options
Use the available options to:

• Select colors to be used to show covered and uncovered code.
• Enable or disable the progress meter.
• Set the email address and name of the web page owner.

General
Show Code Coverage Dialog: Specify whether to display the Code Coverage dialog box when you begin
code coverage.

Profmerge Options
Suppress Startup Banner: Specify whether version information is displayed.

Verbose: Specify whether additional informational and warning messages should be displayed.

See Also
Using Code Coverage in Microsoft Visual Studio*

Code Coverage dialog box

Code Coverage Tool

Code Coverage dialog box
To access the Code Coverage dialog box, select Tools > Intel Compiler > Code Coverage....

Use the Code Coverage dialog box to set the code coverage feature.

Phase 1 - Instrument: Select this checkbox to compile your code into an instrumented application.

Compiler Setup

73

Select the Instrument with guards for threaded applications checkbox to produce an instrumented
object file that includes the collection of PGO data on applications that use a high level of parallelism.

The compiler option used is shown in Compiler Options.

Deselect the Phase 1 - Instrument checkbox to skip this phase.

Phase 2 - Run Instrumented Application(s): Select this checkbox to run your instrumented application
as well as other applications.

You can specify the options to run with the applications by choosing the Application Invocations... button
to access the Applications Invocations dialog box.

Deselect the Phase 2 - Run Instrumented Application(s) checkbox to skip this phase.

Phase 3 - Generate Report: Select this checkbox to generate a report with the results of running the
instrumented application.

Choose the Settings... button to access the Code Coverage Settings dialog box to configure the settings.

Profile Directory: Where the profile is stored.

Browse: Button to browse for the profile directory.

Show this dialog next time: Choose this button to access the dialog box when you run profile guided
optimization.

Save Settings: Choose this button to save your settings.

Run: Choose this button to start the profile guided optimization.

Cancel: Choose this button to close this dialog box without starting the profile guided optimization.

See Also
Using Code Coverage in Microsoft Visual Studio*
Code Coverage Settings dialog box
code coverage Tool

Code Coverage Settings dialog box
To access the Code Coverage Settings dialog box, choose the Settings button in the Code Coverage
dialog box. Use the Code Coverage Settings dialog box to specify settings for the generated report.

Codecov Options
Additional Options: Any command that you enter in the edit box will be passed through to the tool:
Codecov.exe.

Ignore Object Unwind Handlers: Set to True to ignore the object unwind handlers.

Show Execution Counts: Set to True to show the dynamic execution counts in the report.

Treat Partially-covered Code As Fully-covered: Set to True to treat partially covered code as fully
covered code.

Profmerge Options
Additional Options: Any command that you enter in the edit box will be passed through to the tool:
Profmerge.exe.

Dump Profile Information: Set to True to include profile information in the report.

Exclude Functions: Enter the functions that will be excluded from the profile. The functions must be
separated by a comma (","). A period (".") can be used as a wildcard character in function names.

See Also
Code Coverage dialog box

 Intel® C++ Compiler Classic Developer Guide and Reference

74

Using Code Coverage in the Microsoft Visual Studio* IDE
code coverage Tool

Using Xcode* (macOS)

Create an Xcode* Project
To create a new Xcode* project:

1. Launch the Xcode application.
2. Select File > New > Project...

The Choose a template for your new project window opens.
3. In the left pane, select macOS > Application.
4. Select a template, for example: Command Line Tool, and click Next.
5. Name your project, for example: Hello World, then enter a string for the Organization Name and

Organization Identifier and select a language. Click Next.
6. Specify a directory for your project, and optionally select Create local git repository for this project

to place your project under version control.
7. Click Create.

Xcode creates the named project directory, with an .xcodeproj extension. Your new project directory
contains a main.cpp source file and other project files.

Each Xcode project has its own Project Editor window that displays project source files, targets, and
executables.

See Also

Select the Intel® Compiler
To select the Intel® C++ Compiler Classic:

1. Select the target you want to change and click Build Rules.
2. Add a new rule by clicking Editor > Add Build Rule or pressing the + button.
3. Under Process, choose C source files or C++ source files , depending on your source files.
4. Under Using, select one of the options for the ICC Intel® C++ Compiler:

• Major_Version, such as 2021.1: The most recently installed compiler, even if it is not the latest
release.

• Latest Release: The latest released compiler available on your system. This is useful when you
have multiple installations of the Intel compiler and want to use the version most recently released
by Intel.

• Major_Version.n.nnn: A specific package, such as 2021.1.0.000. This is useful when you have
multiple packages of one major version installed.

NOTE If the Intel® Compiler does not show up in the drop-down list, it may mean that the compiler
does not support your version of Xcode. To enable the Intel® Compiler in Xcode specify the Xcode path
during installation and restart the program. The installer checks for the supported Xcode version and
warns you in the case of an unsupported version.

Using Xcode* (macOS)

75

NOTE
If you select a tool that does not support the source file type, that source file type is processed by a
later rule that specifies that type. For example, even though Objective-C/C++ sources are derived
from C sources, they are built by the Intel® C++ Compiler Classic.

See Also
Setting Compiler Options

Build the Target
A single project can contain multiple targets. The active target determines how your project is built. This
topic describes how to build the target using the Xcode* IDE and documents the build steps using the
xcodebuild command line utility.

NOTE Starting with the 19.0 release of the Intel® C++ Compiler Classic, macOS 32-bit applications
are no longer supported. If you want to compile 32-bit applications, you must use an earlier version of
the compiler and you must use Xcode 9.4 or earlier.

Build Using the Xcode IDE
1. Select the target in the project editor under Targets.
2. Select Product > Build.
3. To view the results of your build, click the Log Navigator button.

You can change the compilation order of the files in an Xcode target. To re-order the files listed under a
target's Compile Sources, click a source file and drag it before, or after other compilations.

Build From the Command Line Using the xcodebuild Utility
You can use the xcodebuild utility to build a target. This utility uses the Xcode project settings to build
target projects from the command line. If you have previously configured your Xcode project to build with
the Intel compiler, xcodebuild invokes it from the command line.

To build from the command line:

1. Check that the Xcode project is configured to use the Intel® C++ Compiler Classic.
2. Launch a terminal window from the finder by selecting Applications > Utilities > Terminal .
3. Change directories to the directory containing the Xcode project file (.xcodeproj).
4. If you have multiple versions of Xcode, use the xcode-select utility to verify the current Xcode version.
5. Issue an xcodebuild command. For example:

xcodebuild -project HelloWorld.xcodeproj -target HelloWorld -configuration Debug
6. Run the program built in the example from the previous step by entering the following:

./build/Debug/HelloWorld
For more information, refer to the xcodebuild man page.

Set the Executable's Architecture
Before building a 64-bit executable from within Xcode, you may need to edit the executable's target
architecture. To change the Architectures setting:

1. Click the target you want to change in the project editor under Targets and select the Build Settings
tab.

 Intel® C++ Compiler Classic Developer Guide and Reference

76

2. Under Architectures, select the desired architecture.

NOTE The Intel® C++ Compiler Classic generates code solely for Intel® architectures.

Set Compiler Options
To use the Xcode* environment to set compiler options, including options specific to Intel® architecture:

1. Select a target.
2. Under the Build Settings tab, click All.
3. Scroll down to the list of ICC Intel® C++ Compiler categories.
4. To set an Intel® C++ Compiler Classic option in the Optimization category, scroll down to display

Optimization.
5. Select a Setting, such as Enable Interprocedural Optimization for Single File Compilation, and

set the option's state. If the Quick Help inspector is visible, information about the selected option
appears under Quick Help.

Tip
Apple* has deprecated the libstdc++ library, make sure you are using the libc++ standard library.

The next time you build your project, the selected options are used in the compilation.

NOTE To view the settings that have changed from the established defaults, select the Levels button
under Build Settings.

Run the Executable
Once you have built your Xcode* project, click the Run button. The output from the executable is displayed.
This button runs the configuration currently associated with the button. Use the Scheme Editor to change
the configuration associated with the button.

Tip To open the Scheme Editor, select Product > Scheme... > Edit Scheme...

Use Dynamic Libraries
Using the Dynamic Libraries does not assume that the Apple* System Integrity Protection feature purges
environment variables, such as DYLD_LIBRARY_PATH, when launching the protected process. Refer to the
https://developer.apple.com/library/archive/documentation/Security/Conceptual/
System_Integrity_Protection_Guide/Introduction/Introduction.html for more information. Xcode must take
this into account and set the proper environment variables in the Xcode environment.

You can build your Xcode project with the -shared-intel compiler option to link with the Intel dynamic
libraries. Build your project with the -qopenmp or -parallel option to link in libiomp5.dylib. If you do
this, you need to set Xcode build option Runpath Search path to an appropriate folder with the compiler
and performance libraries, or specify the DYLD_LIBRARY_PATH environment variable in the Xcode
environment.

To add the environment variable:

1. Open the Scheme Editor and select the Run action.
2. On the Arguments tab, under Environment Variables, click the + button.
3. Add DYLD_LIBRARY_PATH. Set the value to the full path to the Intel compiler's /lib directory.

Compiler Setup

77

NOTE If you build your project with the -shared-intel, -qopenmp, or -parallel compiler option
without setting the DYLD_LIBRARY_PATH environment variable, a library not found error message
results at runtime. Depending on your application, the error message may refer to a library other than
the one noted in this example:

dyld: Library not loaded: libiomp5.dylib
Referenced
from: /Users/test/hello_world
Reason: image not found

Due to the Apple System Integrity Protection you may need to set the DYLD_LIBRARY_PATH explicitly
in the launch string, or configure the Runpath Search path build option.

See Also
shared-intel option
openmp, Qopenmp option
parallel, Qparallel option

Use Intel Libraries with Xcode*
You can use the compiler with the following Intel Libraries, which may be included as a part of the product:

• Intel® oneAPI Data Analytics Library (oneDAL)
• Intel® Integrated Performance Primitives (Intel® IPP)
• Intel® oneAPI Threading Building Blocks (oneTBB)
• Intel® oneAPI Math Kernel Library (oneMKL)

To access these libraries in Xcode, select the target and go to Build Settings > Intel® C++ Compiler
Performance Library Build Components.

To use oneDAL change the Use Intel® oneAPI Data Analytics Library settings as follows:

• None: Disables the use of the oneDAL.
• Use threaded Intel® oneAPI Data Analytics Library: Links using the threaded version of the library.
• Use non-threaded Intel® oneAPI Data Analytics Library: Links using the non-threaded version of the

library.

The Use Intel® oneAPI Threading Building Blocks Library property enables the library and brings in the
associated headers.

The Use Intel Integrated Performance Primitives Libraries property provides the following options in a
drop-down menu:

• None: Disables the use of the Intel® IPP.
• Use main libraries set: Uses all the libraries, except the cryptography libraries.
• Use main libraries and cryptography library: Uses the cryptography and main libraries.

NOTE The cryptography libraries are subject to export laws.

The Use Intel® oneAPI Math Kernel Library property provides the following options in a drop-down menu:

• None: Disables the use of oneMKL.
• Use threaded Intel® oneAPI Math Kernel Library: Links using the threaded version of the library.
• Use non-threaded Intel® oneAPI Math Kernel Library: Links using the non-threaded version of the

library.

 Intel® C++ Compiler Classic Developer Guide and Reference

78

For more information, see the oneDAL, Intel® Integrated Performance Primitives, oneTBB, and oneMKL
documentation.

Compiler Setup

79

Compiler Reference

Part

II
I

C/C++ Calling Conventions
There are a number of calling conventions that set the rules on how arguments are passed to a function and
how the values are returned from the function.

Calling Conventions on Windows*
The following table summarizes the supported calling conventions on Windows*:

Calling Convention Compiler Option Description

__cdecl /Gd This is the default calling convention for C/C
++ programs. It can be specified on a
function with variable arguments.

__stdcall /Gz Standard calling convention used for Win32
API functions.

__fastcall /Gr Fast calling convention that specifies that
arguments are passed in registers rather
than on the stack.

__regcall /Qregcall specifies that
__regcall is the default
calling convention for
functions in the compilation,
unless another calling
convention is specified on a
declaration.

Intel® C++ Compiler calling convention that
specifies that as many arguments as
possible are passed in registers; likewise,
__regcall uses registers whenever possible
to return values. This calling convention is
ignored if specified on a function with
variable arguments.

For more information about the Intel-
compatible vector functions ABI, see the
article Vector Function Application Binary
Interface at https://software.intel.com/
content/www/us/en/develop/download/
vector-simd-function-abi.html.

 Intel® C++ Compiler Classic Developer Guide and Reference

80

https://software.intel.com/content/www/us/en/develop/download/vector-simd-function-abi.html
https://software.intel.com/content/www/us/en/develop/download/vector-simd-function-abi.html
https://software.intel.com/content/www/us/en/develop/download/vector-simd-function-abi.html

Calling Convention Compiler Option Description

For more information about the GCC vector
functions ABI, see the item Libmvec -
vector math library document in the GLIBC
wiki at sourceware.org.

__thiscall none Default calling convention used by C++
member functions that do not use variable
arguments.

__vectorcall /Gv Calling convention that specifies that a
function passing vector type arguments
should utilize vector registers.

Calling Conventions on Linux* and macOS
The following table summarizes the supported calling conventions on Linux* and macOS:

Calling Convention Compiler Option Description

__attribute((cdecl)) none Default calling convention for C/C
++ programs. Can be specified
on a function with variable
arguments.

__attribute((stdcall)) none Calling convention that specifies
the arguments are passed on the
stack. Cannot be specified on a
function with variable arguments.

__attribute((regparm (number))) none On systems based on IA-32
architecture, the regparm
attribute causes the compiler to
pass up to number arguments in
registers EAX, EDX, and ECX
instead of on the stack. Functions
that take a variable number of
arguments will continue to pass
all of their arguments on the
stack.

__attribute__((regcall)) -regcall specifies that __regcall
is the default calling convention
for functions in the compilation,
unless another calling convention
is specified on a declaration.

Intel® C++ Compiler calling
convention that specifies that as
many arguments as possible are
passed in registers; likewise,
__regcall uses registers
whenever possible to return
values. This calling convention is
ignored if specified on a function
with variable arguments.

__attribute__((vectorcall)) none Calling convention that specifies
that a function passing vector
type arguments should utilize
vector registers.

Compiler Reference

81

The __regcall Calling Convention
The __regcall calling convention is unique to the Intel® C++ Compiler and requires some additional
explanation.

To use __regcall, place the keyword before a function declaration. For example:

Example

__regcall int foo (int i, int j);

// Linux* and macOS
__attribute__((regcall)) foo (int I, int j);

Available __regcall Registers
All registers in a __regcall function can be used for parameter passing/returning a value, except those that
are reserved by the compiler. The following table lists the registers that are available in each register class
depending on the default ABI for the compilation. The registers are used in the order shown in the table.

Register Class/
Architecture

IA-32 for
Linux*

IA-32 for
Windows*

Intel® 64 for
Linux*

Intel® 64 for
Windows*

GPR EAX, ECX,
EDX, EDI, ESI

ECX, EDX, EDI, ESI RAX, RCX, RDX,
RDI, RSI, R8, R9,
R10, R11, R12,
R14, R15

RAX, RCX, RDX, RDI,
RSI, R8, R9, R11, R12,
R14, R15

FP ST0 ST0 ST0 ST0

MMX None None None None

XMM XMM0 - XMM7 XMM0 - XMM7 XMM0 - XMM15 XMM0 - XMM15

YMM YMM0 - YMM7 YMM0 - YMM7 YMM0 - YMM15 YMM0 - YMM15

ZMM ZMM0 - ZMM7 ZMM0 - ZMM7 ZMM0 - YMM15 ZMM0 - YMM15

__regcall Data Type Classification
Parameters and return values for __regcall are classified by data type and are passed in the registers of the
classes shown in the following table.

NOTE All types assigned to XMM, YMM, or ZMM in a non-SSE target are passed in the stack.

Type (for both unsigned and
signed types)

IA-32 Intel® 64

bool, char, int, enum,
_Decimal32, long, pointer

GPR GPR

short, __mmask{8,16,32,64} GPR GPR

long long, __int64 See Structured Data Type
Classification Rules

GPR

_Decimal64 XMM GPR

 Intel® C++ Compiler Classic Developer Guide and Reference

82

Type (for both unsigned and
signed types)

IA-32 Intel® 64

long double FP FP

float, double, float128,
_Decimal128

XMM XMM

__m128, __m128i, __m128d XMM XMM

__m256, __m256i, __m256d YMM YMM

__m512, __m512i, __m512d ZMM ZMM

complex type, struct, union See Structured Data Type
Classification Rules

See Structured Data Type
Classification Rules

NOTE For the purpose of structured types, the classification of GPR class is used.

NOTE On systems based on IA-32 architecture, these 64-bit integer types (long long, __int64) get
classified to the GPR class and are passed in two registers, as if they were implemented as a
structure of two 32-bit integer fields.

Types that are smaller in size than registers than registers of their associated class are passed in the lower
part of those registers; for example, float is passed in the lower four bytes of an XMM register.

__regcall Structured Data Type Classification Rules
Structures/unions and complex types are classified similarly to what is described in the x86_64 ABI, with the
following exceptions:

• There is no limitation on the overall size of a structure.
• The register classes for basic types are given in Data Type Classifications.
• For systems based on the IA-32 architecture, classification is performed on four-bytes. For systems based

on other architectures, classification is performed on eight-bytes.

__regcall Placement in Registers or on the Stack
After the classification described in Data Type Classifications and Structured Data Type Classification Rules,
__regcall parameters and return values are either put into registers specified in Available Registers or placed
in memory, according to the following:

• Each chunk (eight bytes on systems based on Intel® 64 architecture or four-bytes on systems based on
IA-32 architecture) of a value of Data Type is assigned a register class. If enough registers from Available
Registers are available, the whole value is passed in registers, otherwise the value is passed using the
stack.

• If the classification were to use one or more register classes, then the registers of these classes from the
table in Available Registers are used, in the order given there.

• If no more registers are available in one of the required register classes, then the whole value is put on
the stack.

Compiler Reference

83

__regcall Registers that Preserve Their Values
The following registers preserve their values across a __regcall call, as long as they were not used for
passing a parameter or returning a value:

Register Class/ABI IA-32 Intel® 64 for Linux* Intel® 64 for Windows*

GPR ESI, EDI, EBX, EBP,
ESP

R12 - R15, RBX, RBP,
RSP

R12 - R15, RBX, RBP, RSP

FP None None None

MMX None None None

XMM XMM4 - XMM7 XMM8 - XMM15 XMM8 - XMM15

YMM XMM4 - XMM7 XMM8 - XMM15 XMM8 - XMM15

ZMM XMM4 - XMM7 XMM8 - XMM15 XMM8 - XMM15

All other registers do not preserve their values across this call.

See Also
Structured Data Type Classification Rules
Data Type Classifications
Available Registers

Compiler Options
This compiler supports many compiler options you can use in your applications.

In this section, we provide the following:

• An alphabetical list of compiler options that includes their short descriptions
• Lists of deprecated and removed options
• General rules for compiler options and the conventions we use when referring to options
• Details about what appears in the compiler option descriptions
• A description of each compiler option. The descriptions appear under the option's functional category.

Within each category, the options are listed in alphabetical order.

For details about new functionality, such as new compiler options, see the Release Notes for the product.

Alphabetical Option List
The following table lists all the current compiler options in alphabetical order.

A, QA Specifies an identifier for an assertion.

alias-const, Qalias-const Determines whether the compiler assumes a parameter of type pointer-
to-const does not alias with a parameter of type pointer-to-non-const.

align Determines whether variables and arrays are naturally aligned.

ansi Enables language compatibility with the gcc option ansi.

ansi-alias, Qansi-alias Enables or disables the use of ANSI aliasing rules in optimizations.

ansi-alias-check, Qansi-alias-
check

Enables or disables the ansi-alias checker.

 Intel® C++ Compiler Classic Developer Guide and Reference

84

arch Tells the compiler which features it may target, including which
instruction sets it may generate.

auto-ilp32, Qauto-ilp32 Instructs the compiler to analyze the program to determine if there are
64-bit pointers that can be safely shrunk into 32-bit pointers and if there
are 64-bit longs (on Linux* systems) that can be safely shrunk into 32-bit
longs.

auto-p32 Instructs the compiler to analyze the program to determine if there are
64-bit pointers that can be safely shrunk to 32-bit pointers.

ax, Qax Tells the compiler to generate multiple, feature-specific auto-dispatch
code paths for Intel® processors if there is a performance benefit.

B Specifies a directory that can be used to find include files, libraries, and
executables.

Bdynamic Enables dynamic linking of libraries at run time.

bigobj Increases the number of sections that an object file can contain.

Bstatic Enables static linking of a user's library.

Bsymbolic Binds references to all global symbols in a program to the definitions
within a user's shared library.

Bsymbolic-functions Binds references to all global function symbols in a program to the
definitions within a user's shared library.

C Places comments in preprocessed source output.

c Prevents linking.

check Checks for certain conditions at run time.

check-pointers, Qcheck-
pointers

Determines whether the compiler checks bounds for memory access
through pointers.

check-pointers-dangling,
Qcheck-pointers-dangling

Determines whether the compiler checks for dangling pointer references.

check-pointers-mpx, Qcheck-
pointers-mpx

Determines whether the compiler checks bounds for memory access
through pointers on processors that support Intel® Memory Protection
Extensions (Intel® MPX).

check-pointers-narrowing,
Qcheck-pointers-narrowing

Determines whether the compiler enables or disables the narrowing of
pointers to structure fields.

check-pointers-
undimensioned, Qcheck-
pointers-undimensioned

Determines whether the compiler checks bounds for memory access
through arrays that are declared without dimensions.

clang-name Specifies the name of the Clang compiler that should be used to set up
the environment for C compilations.

clangxx-name Specifies the name of the Clang++ compiler that should be used to set
up the environment for C++ compilations.

complex-limited-range,
Qcomplex-limited-range

Determines whether the use of basic algebraic expansions of some
arithmetic operations involving data of type COMPLEX is enabled.

cxxlib Determines whether the compiler links using the C++ run-time libraries
and header files provided by gcc.

D Defines a macro name that can be associated with an optional value.

Compiler Reference

85

dD, QdD Same as option -dM, but outputs #define directives in preprocessed
source.

debug (Linux* and macOS*) Enables or disables generation of debugging information.

debug (Windows*) Enables or disables generation of debugging information.

device-math-lib Enables or disables certain device libraries. This is a deprecated option
that may be removed in a future release.

diag, Qdiag Controls the display of diagnostic information during compilation.

diag-dump, Qdiag-dump Tells the compiler to print all enabled diagnostic messages.

diag-enable=power, Qdiag-
enable:power

Controls whether diagnostics are enabled for possibly inefficient code that
may affect power consumption on IA-32 and Intel® 64 architectures.

diag-error-limit, Qdiag-error-
limit

Specifies the maximum number of errors allowed before compilation
stops.

diag-file, Qdiag-file Causes the results of diagnostic analysis to be output to a file.

diag-file-append, Qdiag-file-
append

Causes the results of diagnostic analysis to be appended to a file.

diag-id-numbers, Qdiag-id-
numbers

Determines whether the compiler displays diagnostic messages by using
their ID number values.

diag-once, Qdiag-once Tells the compiler to issue one or more diagnostic messages only once.

dM, QdM Tells the compiler to output macro definitions in effect after
preprocessing.

dN, QdN Same as option -dD, but output #define directives contain only macro
names.

dryrun Specifies that driver tool commands should be shown but not executed.

dumpmachine Displays the target machine and operating system configuration.

dumpversion Displays the version number of the compiler.

dynamiclib Invokes the libtool command to generate dynamic libraries.

dynamic-linker Specifies a dynamic linker other than the default.

E Causes the preprocessor to send output to stdout.

early-template-check Lets you semantically check template function template prototypes before
instantiation.

EH Specifies the model of exception handling to be performed.

EP Causes the preprocessor to send output to stdout, omitting #line
directives.

F (macOS*) Adds a framework directory to the head of an include file search path.

F (Windows*) Specifies the stack reserve amount for the program.

Fa Specifies that an assembly listing file should be generated.

FA Specifies the contents of an assembly listing file.

fabi-version Instructs the compiler to select a specific ABI implementation.

 Intel® C++ Compiler Classic Developer Guide and Reference

86

falias, Oa Determines whether aliasing is assumed in a program.

falign-functions, Qfnalign Tells the compiler to align functions on an optimal byte boundary.

falign-loops, Qalign-loops Aligns loops to a power-of-two byte boundary.

falign-stack Tells the compiler the stack alignment to use on entry to routines. This is
a deprecated option that may be removed in a future release.

fargument-alias, Qalias-args Determines whether function arguments can alias each other.

fargument-noalias-global Tells the compiler that function arguments cannot alias each other and
cannot alias global storage.

fasm-blocks Enables the use of blocks and entire functions of assembly code within a
C or C++ file.

fast Maximizes speed across the entire program.

fast-transcendentals, Qfast-
transcendentals

Enables the compiler to replace calls to transcendental functions with
faster but less precise implementations.

fasynchronous-unwind-tables Determines whether unwind information is precise at an instruction
boundary or at a call boundary.

fblocks Determines whether Apple* blocks are enabled or disabled.

fbuiltin, Oi Enables or disables inline expansion of intrinsic functions.

FC Displays the full path of source files passed to the compiler in diagnostics.

fcf-protection, Qcf-protection Enables Control-flow Enforcement Technology (CET) protection, which
defends your program from certain attacks that exploit vulnerabilities.
This option offers preliminary support for CET.

fcode-asm Produces an assembly listing with machine code annotations.

fcommon Determines whether the compiler treats common symbols as global
definitions.

FD Generates file dependencies related to the Microsoft* C/C++ compiler.

Fd Lets you specify a name for a program database (PDB) file created by the
compiler.

fdata-sections, Gw Places each data item in its own COMDAT section.

fdefer-pop Determines whether the compiler always pops the arguments to each
function call as soon as that function returns.

Fe Specifies the name for a built program or dynamic-link library.

feliminate-unused-debug-
types, Qeliminate-unused-
debug-types

Controls the debug information emitted for types declared in a
compilation unit.

femit-class-debug-always Controls the format and size of debug information generated by the
compiler for C++ classes.

fexceptions Enables exception handling table generation.

fextend-arguments, Qextend-
arguments

Controls how scalar integer arguments are extended in calls to
unprototyped and varargs functions.

Compiler Reference

87

ffat-lto-objects Determines whether a fat link-time optimization (LTO) object, containing
both intermediate language and object code, is generated during an
interprocedural optimization compilation (-c –ipo).

ffnalias, Ow Determines whether aliasing is assumed within functions.

ffreestanding , Qfreestanding Ensures that compilation takes place in a freestanding environment.

ffriend-injection Causes the compiler to inject friend functions into the enclosing
namespace.

ffunction-sections, Gy Places each function in its own COMDAT section.

fgnu89-inline Tells the compiler to use C89 semantics for inline functions when in C99
mode.

fimf-absolute-error, Qimf-
absolute-error

Defines the maximum allowable absolute error for math library function
results.

fimf-accuracy-bits, Qimf-
accuracy-bits

Defines the relative error for math library function results, including
division and square root.

fimf-arch-consistency, Qimf-
arch-consistency

Ensures that the math library functions produce consistent results across
different microarchitectural implementations of the same architecture.

fimf-domain-exclusion, Qimf-
domain-exclusion

Indicates the input arguments domain on which math functions must
provide correct results.

fimf-force-dynamic-target,
Qimf-force-dynamic-target

Instructs the compiler to use run-time dispatch in calls to math functions.

fimf-max-error, Qimf-max-
error

Defines the maximum allowable relative error for math library function
results, including division and square root.

fimf-precision, Qimf-precision Lets you specify a level of accuracy (precision) that the compiler should
use when determining which math library functions to use.

fimf-use-svml, Qimf-use-svml Instructs the compiler to use the Short Vector Math Library (SVML) rather
than the Intel® C++ Compiler Classic Math Library (LIBM) to implement
math library functions.

finline Tells the compiler to inline functions declared with __inline and perform C
++ inlining .

finline-functions Enables function inlining for single file compilation.

finline-limit Lets you specify the maximum size of a function to be inlined.

finstrument-functions,
Qinstrument-functions

Determines whether function entry and exit points are instrumented.

FI Tells the preprocessor to include a specified file name as the header file.

fixed Causes the linker to create a program that can be loaded only at its
preferred base address.

fjump-tables Determines whether jump tables are generated for switch statements.

fkeep-static-consts , Qkeep-
static-consts

Tells the compiler to preserve allocation of variables that are not
referenced in the source.

Fm Tells the linker to generate a link map file. This is a deprecated option
that may be removed in a future release.

 Intel® C++ Compiler Classic Developer Guide and Reference

88

fma, Qfma Determines whether the compiler generates fused multiply-add (FMA)
instructions if such instructions exist on the target processor.

fmath-errno Tells the compiler that errno can be reliably tested after calls to standard
math library functions.

fmerge-constants Determines whether the compiler and linker attempt to merge identical
constants (string constants and floating-point constants) across
compilation units.

fmerge-debug-strings Causes the compiler to pool strings used in debugging information.

fminshared Specifies that a compilation unit is a component of a main program and
should not be linked as part of a shareable object.

fmpc-privatize Enables or disables privatization of all static data for the MultiProcessor
Computing environment (MPC) unified parallel runtime.

fms-dialect Enables support for a language dialect that is compatible with Microsoft
Windows*, while maintaining link compatibility with GCC*.

fmudflap Tells the compiler to instrument risky pointer operations to prevent buffer
overflows and invalid heap use. This is a deprecated option that may be
removed in a future release.

fno-gnu-keywords Tells the compiler to not recognize typeof as a keyword.

fno-implicit-inline-templates Tells the compiler to not emit code for implicit instantiations of inline
templates.

fno-implicit-templates Tells the compiler to not emit code for non-inline templates that are
instantiated implicitly.

fnon-call-exceptions Allows trapping instructions to throw C++ exceptions.

fnon-lvalue-assign Determines whether casts and conditional expressions can be used as
lvalues.

fno-operator-names Disables support for the operator names specified in the standard.

fno-rtti Disables support for run-time type information (RTTI).

fnsplit, Qfnsplit Enables function splitting.

Fo Specifies the name for an object file.

fomit-frame-pointer , Oy Determines whether EBP is used as a general-purpose register in
optimizations.

fopenmp-device-lib Enables or disables certain device libraries for an OpenMP* target.

foptimize-sibling-calls Determines whether the compiler optimizes tail recursive calls.

Fp Lets you specify an alternate path or file name for precompiled header
files.

fpack-struct Specifies that structure members should be packed together.

fpascal-strings Tells the compiler to allow for Pascal-style string literals.

fpermissive Tells the compiler to allow for non-conformant code.

fpic Determines whether the compiler generates position-independent code.

fpie Tells the compiler to generate position-independent code. The generated
code can only be linked into executables.

Compiler Reference

89

fp-model, fp Controls the semantics of floating-point calculations.

fp-port, Qfp-port Rounds floating-point results after floating-point operations.

fprotect-parens, Qprotect-
parens

Determines whether the optimizer honors parentheses when floating-
point expressions are evaluated.

fp-speculation, Qfp-
speculation

Tells the compiler the mode in which to speculate on floating-point
operations.

fp-stack-check, Qfp-stack-
check

Tells the compiler to generate extra code after every function call to
ensure that the floating-point stack is in the expected state.

fp-trap, Qfp-trap Sets the floating-point trapping mode for the main routine.

fp-trap-all, Qfp-trap-all Sets the floating-point trapping mode for all routines.

FR Invokes the Microsoft* C/C++ compiler and tells it to produce a
BSCMAKE .sbr file with complete symbolic information.

freg-struct-return Tells the compiler to return struct and union values in registers when
possible.

fshort-enums Tells the compiler to allocate as many bytes as needed for enumerated
types.

fsource-asm Produces an assembly listing with source code annotations.

fstack-protector Enables or disables stack overflow security checks for certain (or all)
routines.

fstack-security-check Determines whether the compiler generates code that detects some
buffer overruns.

fsyntax-only Tells the compiler to check only for correct syntax.

ftemplate-depth, Qtemplate-
depth

Control the depth in which recursive templates are expanded.

ftls-model Changes the thread local storage (TLS) model.

ftrapuv , Qtrapuv Initializes stack local variables to an unusual value to aid error detection.

ftz, Qftz Flushes denormal results to zero.

funroll-all-loops Unroll all loops even if the number of iterations is uncertain when the loop
is entered.

funsigned-bitfields Determines whether the default bitfield type is changed to unsigned.

funsigned-char Change default char type to unsigned.

fuse-ld Tells the compiler to use a different linker instead of the default linker
(ld).

fverbose-asm Produces an assembly listing with compiler comments, including options
and version information.

fvisibility Specifies the default visibility for global symbols or the visibility for
symbols in a file.

fvisibility-inlines-hidden Causes inline member functions (those defined in the class declaration) to
be marked hidden.

fzero-initialized-in-bss, Qzero-
initialized-in-bss

Determines whether the compiler places in the DATA section any
variables explicitly initialized with zeros.

 Intel® C++ Compiler Classic Developer Guide and Reference

90

g Tells the compiler to generate a level of debugging information in the
object file.

GA Enables faster access to certain thread-local storage (TLS) variables.

gcc, gcc-sys Determines whether certain GNU macros are defined or undefined.

gcc-include-dir Controls whether the gcc-specific include directory is put into the system
include path.

gcc-name Lets you specify the name of the GCC compiler that should be used to set
up the environment for C compilations.

Gd Makes __cdecl the default calling convention.

gdwarf Lets you specify a DWARF Version format when generating debug
information.

Ge Enables stack-checking for all functions. This is a deprecated option that
may be removed in a future release.

GF Enables read-only string-pooling optimization.

Gh Calls a function to aid custom user profiling.

GH Calls a function to aid custom user profiling.

global-hoist, Qglobal-hoist Enables certain optimizations that can move memory loads to a point
earlier in the program execution than where they appear in the source.

Gm Enables a minimal rebuild.

gnu-prefix Lets you specify a prefix that will be added to the names of gnu utilities
called from the compiler.

GR Enables or disables C++ Run Time Type Information (RTTI).

Gr Makes __fastcall the default calling convention.

grecord-gcc-switches Causes the command line options that were used to invoke the compiler
to be appended to the DW_AT_producer attribute in DWARF debugging
information.

GS Determines whether the compiler generates code that detects some
buffer overruns.

Gs Lets you control the threshold at which the stack checking routine is
called or not called.

gsplit-dwarf Creates a separate object file containing DWARF debug information.

GT Enables fiber-safe thread-local storage of data.

guard Enables the control flow protection mechanism.

guide, Qguide Lets you set a level of guidance for auto-vectorization, auto parallelism,
and data transformation.

guide-data-trans, Qguide-
data-trans

Lets you set a level of guidance for data transformation.

guide-file, Qguide-file Causes the results of guided auto parallelism to be output to a file.

guide-file-append, Qguide-
file-append

Causes the results of guided auto parallelism to be appended to a file.

Compiler Reference

91

guide-opts, Qguide-opts Tells the compiler to analyze certain code and generate recommendations
that may improve optimizations.

guide-par, Qguide-par Lets you set a level of guidance for auto parallelism.

guide-vec, Qguide-vec Lets you set a level of guidance for auto-vectorization.

Gv Tells the compiler to use the vector calling convention (__vectorcall) when
passing vector type arguments.

gxx-name Lets you specify the name of the g++ compiler that should be used to set
up the environment for C++ compilations.

GZ Initializes all local variables. This is a deprecated option that may be
removed in a future release.

Gz Makes __stdcall the default calling convention.

H, QH Tells the compiler to display the include file order and continue
compilation.

H (Windows*) Causes the compiler to limit the length of external symbol names. This is
a deprecated option. There is no replacement option.

help Displays all supported compiler options or supported compiler options
within a specified category of options.

help-pragma, Qhelp-pragma Displays all supported pragmas.

homeparams Tells the compiler to store parameters passed in registers to the stack.

hotpatch Tells the compiler to prepare a routine for hotpatching.

I Specifies an additional directory to search for include files.

I- Splits the include path.

icc, Qicl Determines whether certain Intel®-specific compiler macros are defined or
undefined.

idirafter Adds a directory to the second include file search path.

imacros Allows a header to be specified that is included in front of the other
headers in the translation unit.

inline-calloc, Qinline-calloc Tells the compiler to inline calls to calloc() as calls to malloc() and
memset().

inline-factor, Qinline-factor Specifies the percentage multiplier that should be applied to all inlining
options that define upper limits.

inline-forceinline, Qinline-
forceinline

Instructs the compiler to force inlining of functions suggested for inlining
whenever the compiler is capable doing so.

inline-level, Ob Specifies the level of inline function expansion.

inline-max-per-compile,
Qinline-max-per-compile

Specifies the maximum number of times inlining may be applied to an
entire compilation unit.

inline-max-per-routine,
Qinline-max-per-routine

Specifies the maximum number of times the inliner may inline into a
particular routine.

inline-max-size, Qinline-max-
size

Specifies the lower limit for the size of what the inliner considers to be a
large routine.

 Intel® C++ Compiler Classic Developer Guide and Reference

92

inline-max-total-size, Qinline-
max-total-size

Specifies how much larger a routine can normally grow when inline
expansion is performed.

inline-min-caller-growth,
Qinline-min-caller-growth

Lets you specify a function size n for which functions of size <= n do not
contribute to the estimated growth of the caller when inlined.

inline-min-size, Qinline-min-
size

Specifies the upper limit for the size of what the inliner considers to be a
small routine.

intel-extensions, Qintel-
extensions

Enables or disables all Intel® C and Intel® C++ language extensions.

intel-freestanding Lets you compile in the absence of a gcc environment.

intel-freestanding-target-os Lets you specify the target operating system for compilation.

ip, Qip Determines whether additional interprocedural optimizations for single-
file compilation are enabled.

ip-no-inlining, Qip-no-inlining Disables full and partial inlining enabled by interprocedural optimization
options.

ip-no-pinlining, Qip-no-
pinlining

Disables partial inlining enabled by interprocedural optimization options.

ipo, Qipo Enables interprocedural optimization between files.

ipo-c, Qipo-c Tells the compiler to optimize across multiple files and generate a single
object file.

ipo-jobs, Qipo-jobs Specifies the number of commands (jobs) to be executed simultaneously
during the link phase of Interprocedural Optimization (IPO).

ipo-S, Qipo-S Tells the compiler to optimize across multiple files and generate a single
assembly file.

ipo-separate, Qipo-separate Tells the compiler to generate one object file for every source file.

ipp-link, Qipp-link Controls whether the compiler links to static or dynamic threaded Intel®
Integrated Performance Primitives (Intel® IPP) run-time libraries.

iprefix Lets you indicate the prefix for referencing directories that contain header
files.

iquote Adds a directory to the front of the include file search path for files
included with quotes but not brackets.

isystem Specifies a directory to add to the start of the system include path.

iwithprefix Appends a directory to the prefix passed in by -iprefix and puts it on the
include search path at the end of the include directories.

iwithprefixbefore Similar to -iwithprefix except the include directory is placed in the same
place as -I command-line include directories.

J Sets the default character type to unsigned.

Kc++, TP Tells the compiler to process all source or unrecognized file types as C++
source files. This is a deprecated option that may be removed in a future
release.

l Tells the linker to search for a specified library when linking.

L Tells the linker to search for libraries in a specified directory before
searching the standard directories.

Compiler Reference

93

LD Specifies that a program should be linked as a dynamic-link (DLL) library.

link Passes user-specified options directly to the linker at compile time.

m Tells the compiler which features it may target, including which
instruction sets it may generate.

M, QM Tells the compiler to generate makefile dependency lines for each source
file.

m32, m64 , Qm32, Qm64 Tells the compiler to generate code for a specific architecture.

m80387 Specifies whether the compiler can use x87 instructions.

malign-double Determines whether double, long double, and long long types are
naturally aligned. This option is equivalent to specifying option align.

malign-mac68k Aligns structure fields on 2-byte boundaries (m68k compatible).

malign-natural Aligns larger types on natural size-based boundaries (overrides ABI).

malign-power Aligns based on ABI-specified alignment rules.

map-opts, Qmap-opts Maps one or more compiler options to their equivalent on a different
operating system.

march Tells the compiler to generate code for processors that support certain
features.

masm Tells the compiler to generate the assembler output file using a selected
dialect.

mauto-arch, Qauto-arch Tells the compiler to generate multiple, feature-specific auto-dispatch
code paths for x86 architecture processors if there is a performance
benefit.

mbranches-within-32B-
boundaries, Qbranches-
within-32B-boundaries

Tells the compiler to align branches and fused branches on 32-byte
boundaries for better performance.

mcmodel Tells the compiler to use a specific memory model to generate code and
store data.

mconditional-branch,
Qconditional-branch

Lets you identify and fix code that may be vulnerable to speculative
execution side-channel attacks, which can leak your secure data as a
result of bad speculation of a conditional branch direction.

MD Tells the linker to search for unresolved references in a multithreaded,
dynamic-link run-time library.

MD, QMD Preprocess and compile, generating output file containing dependency
information ending with extension .d.

mdynamic-no-pic Generates code that is not position-independent but has position-
independent external references.

MF, QMF Tells the compiler to generate makefile dependency information in a file.

MG, QMG Tells the compiler to generate makefile dependency lines for each source
file.

minstruction, Qinstruction Determines whether MOVBE instructions are generated for certain Intel®
processors.

mlong-double Lets you override the default configuration of the long double data type.

 Intel® C++ Compiler Classic Developer Guide and Reference

94

MM, QMM Tells the compiler to generate makefile dependency lines for each source
file.

MMD, QMMD Tells the compiler to generate an output file containing dependency
information.

momit-leaf-frame-pointer Determines whether the frame pointer is omitted or kept in leaf functions.

MP Tells the compiler to add a phony target for each dependency.

mp1, Qprec Improves floating-point precision and consistency.

MP-force Disables the default heuristics used when compiler option /MP is
specified. This lets you control the number of processes spawned.

MQ Changes the default target rule for dependency generation.

mregparm Lets you control the number registers used to pass integer arguments.

mregparm-version Determines which version of the Application Binary Interface (ABI) is
used for the regparm parameter passing convention.

mstringop-inline-threshold,
Qstringop-inline-threshold

Tells the compiler to not inline calls to buffer manipulation functions such
as memcpy and memset when the number of bytes the functions handle
are known at compile time and greater than the specified value.

mstringop-strategy,
Qstringop-strategy

Lets you override the internal decision heuristic for the particular
algorithm used when implementing buffer manipulation functions such as
memcpy and memset.

MT Tells the linker to search for unresolved references in a multithreaded,
static run-time library.

MT, QMT Changes the default target rule for dependency generation.

mtune, tune Performs optimizations for specific processors but does not cause
extended instruction sets to be used (unlike -march).

multibyte-chars, Qmultibyte-
chars

Determines whether multi-byte characters are supported.

multiple-processes , MP Creates multiple processes that can be used to compile large numbers of
source files at the same time.

noBool Disables the bool keyword.

no-bss-init, Qnobss-init Tells the compiler to place in the DATA section any uninitialized variables
and explicitly zero-initialized variables. This is a deprecated option that
may be removed in a future release.

nodefaultlibs Prevents the compiler from using standard libraries when linking.

no-intel-lib, Qno-intel-lib Disables linking to specified Intel® libraries, or to all Intel® libraries.

no-libgcc Prevents the linking of certain gcc-specific libraries.

nolib-inline Disables inline expansion of standard library or intrinsic functions.

nologo Tells the compiler to not display compiler version information.

nostartfiles Prevents the compiler from using standard startup files when linking.

nostdinc++ Do not search for header files in the standard directories for C++, but
search the other standard directories.

Compiler Reference

95

nostdlib Prevents the compiler from using standard libraries and startup files when
linking.

O Specifies the code optimization for applications.

o Specifies the name for an output file.

Od Disables all optimizations.

Ofast Sets certain aggressive options to improve the speed of your application.

Os Enables optimizations that do not increase code size; it produces smaller
code size than O2.

Ot Enables all speed optimizations.

Ox Enables maximum optimizations.

p Compiles and links for function profiling with gprof(1).

P Tells the compiler to stop the compilation process and write the results to
a file.

par-affinity, Qpar-affinity Specifies thread affinity.

parallel, Qparallel Tells the auto-parallelizer to generate multithreaded code for loops that
can be safely executed in parallel.

parallel-source-info,
Qparallel-source-info

Enables or disables source location emission when OpenMP* or auto-
parallelism code is generated.

par-loops, Qpar-loops Lets you select between old or new implementations of parallel loop
support.

par-num-threads, Qpar-num-
threads

Specifies the number of threads to use in a parallel region.

par-runtime-control, Qpar-
runtime-control

Generates code to perform run-time checks for loops that have symbolic
loop bounds.

par-schedule, Qpar-schedule Lets you specify a scheduling algorithm for loop iterations.

par-threshold, Qpar-threshold Sets a threshold for the auto-parallelization of loops.

pc, Qpc Enables control of floating-point significand precision.

pch Tells the compiler to use appropriate precompiled header files.

pch-create Tells the compiler to create a precompiled header file.

pch-dir Tells the compiler the location for precompiled header files.

pch-use Tells the compiler to use a precompiled header file.

pdbfile Lets you specify the name for a program database (PDB) file created by
the linker.

pie Determines whether the compiler generates position-independent code
that will be linked into an executable.

pragma-optimization-level Specifies which interpretation of the optimization_level pragma should be
used if no prefix is specified.

prec-div, Qprec-div Improves precision of floating-point divides.

prec-sqrt, Qprec-sqrt Improves precision of square root implementations.

 Intel® C++ Compiler Classic Developer Guide and Reference

96

print-multi-lib Prints information about where system libraries should be found.

print-sysroot Prints the target sysroot directory that is used during compilation.

prof-data-order, Qprof-data-
order

Enables or disables data ordering if profiling information is enabled.

prof-dir, Qprof-dir Specifies a directory for profiling information output files.

prof-file, Qprof-file Specifies an alternate file name for the profiling summary files.

prof-func-groups Enables or disables function grouping if profiling information is enabled.

prof-func-order, Qprof-func-
order

Enables or disables function ordering if profiling information is enabled.

prof-gen, Qprof-gen Produces an instrumented object file that can be used in profile guided
optimization.

prof-gen-sampling Tells the compiler to generate debug discriminators in debug output. This
aids in developing more precise sampled profiling output. This is a
deprecated option that may be removed in a future release.

prof-hotness-threshold,
Qprof-hotness-threshold

Lets you set the hotness threshold for function grouping and function
ordering.

prof-src-dir, Qprof-src-dir Determines whether directory information of the source file under
compilation is considered when looking up profile data records.

prof-src-root, Qprof-src-root Lets you use relative directory paths when looking up profile data and
specifies a directory as the base.

prof-src-root-cwd, Qprof-src-
root-cwd

Lets you use relative directory paths when looking up profile data and
specifies the current working directory as the base.

prof-use, Qprof-use Enables the use of profiling information during optimization.

prof-use-sampling Lets you use data files produced by hardware profiling to produce an
optimized executable. This is a deprecated option that may be removed in
a future release.

prof-value-profiling, Qprof-
value-profiling

Controls which values are value profiled.

pthread Tells the compiler to use pthreads library for multithreading support.

Qcov-dir Specifies a directory for profiling information output files that can be used
with the codecov or tselect tool.

Qcov-file Specifies an alternate file name for the profiling summary files that can
be used with the codecov or tselect tool.

Qcov-gen Produces an instrumented object file that can be used with the codecov
or tselect tool.

Qcxx-features Enables standard C++ features without disabling Microsoft* features.

qdaal, Qdaal Tells the compiler to link to certain libraries in the Intel® oneAPI Data
Analytics Library (oneDAL).

Qgcc-dialect Enables support for a limited gcc-compatible dialect on Windows*.

Qinline-dllimport Determines whether dllimport functions are inlined.

Compiler Reference

97

Qinstall Specifies the root directory where the compiler installation was
performed.

qipp, Qipp Tells the compiler to link to some or all of the Intel® Integrated
Performance Primitives (Intel® IPP) libraries.

Qlocation Specifies the directory for supporting tools.

Qlong-double Changes the default size of the long double data type.

qmkl, Qmkl Tells the compiler to link to certain libraries in the Intel® oneAPI Math
Kernel Library (oneMKL). On Windows systems, you must specify this
option at compile time.

Qms Tells the compiler to emulate Microsoft* compatibility bugs.

qopenmp, Qopenmp Enables the parallelizer to generate multi-threaded code based on
OpenMP* directives.

qopenmp-lib, Qopenmp-lib Lets you specify an OpenMP* run-time library to use for linking.

qopenmp-link Controls whether the compiler links to static or dynamic OpenMP* run-
time libraries.

qopenmp-simd, Qopenmp-
simd

Enables or disables OpenMP* SIMD compilation.

qopenmp-stubs, Qopenmp-
stubs

Enables compilation of OpenMP* programs in sequential mode.

qopenmp-threadprivate,
Qopenmp-threadprivate

Lets you specify an OpenMP* threadprivate implementation.

qopt-args-in-regs, Qopt-args-
in-regs

Determines whether calls to routines are optimized by passing
parameters in registers instead of on the stack. This option is deprecated
and will be removed in a future release.

qopt-assume-safe-padding,
Qopt-assume-safe-padding

Determines whether the compiler assumes that variables and dynamically
allocated memory are padded past the end of the object.

qopt-block-factor, Qopt-block-
factor

Lets you specify a loop blocking factor.

qopt-calloc Tells the compiler to substitute a call to _intel_fast_calloc() for a call to
calloc().

qopt-class-analysis, Qopt-
class-analysis

Determines whether C++ class hierarchy information is used to analyze
and resolve C++ virtual function calls at compile time.

qopt-dynamic-align, Qopt-
dynamic-align

Enables or disables dynamic data alignment optimizations.

Qoption Passes options to a specified tool.

qopt-jump-tables, Qopt-
jump-tables

Enables or disables generation of jump tables for switch statements.

qopt-malloc-options Lets you specify an alternate algorithm for malloc().

qopt-matmul, Qopt-matmul Enables or disables a compiler-generated Matrix Multiply (matmul) library
call.

qopt-mem-layout-trans,
Qopt-mem-layout-trans

Controls the level of memory layout transformations performed by the
compiler.

 Intel® C++ Compiler Classic Developer Guide and Reference

98

qopt-multiple-gather-scatter-
by-shuffles, Qopt-multiple-
gather-scatter-by-shuffles

Enables or disables the optimization for multiple adjacent gather/scatter
type vector memory references.

qopt-multi-version-
aggressive, Qopt-multi-
version-aggressive

Tells the compiler to use aggressive multi-versioning to check for pointer
aliasing and scalar replacement.

qopt-prefetch, Qopt-prefetch Enables or disables prefetch insertion optimization.

qopt-prefetch-distance, Qopt-
prefetch-distance

Specifies the prefetch distance to be used for compiler-generated
prefetches inside loops.

qopt-prefetch-issue-excl-hint,
Qopt-prefetch-issue-excl-hint

Supports the prefetchW instruction in Intel® microarchitecture code name
Broadwell and later.

qopt-ra-region-strategy,
Qopt-ra-region-strategy

Selects the method that the register allocator uses to partition each
routine into regions.

qopt-report, Qopt-report Tells the compiler to generate an optimization report.

qopt-report-annotate, Qopt-
report-annotate

Enables the annotated source listing feature and specifies its format.

qopt-report-annotate-
position, Qopt-report-
annotate-position

Enables the annotated source listing feature and specifies the site where
optimization messages appear in the annotated source in inlined cases of
loop optimizations.

qopt-report-embed, Qopt-
report-embed

Determines whether special loop information annotations will be
embedded in the object file and/or the assembly file when it is generated.

qopt-report-file, Qopt-report-
file

Specifies that the output for the optimization report goes to a file, stderr,
or stdout.

qopt-report-filter, Qopt-
report-filter

Tells the compiler to find the indicated parts of your application, and
generate optimization reports for those parts of your application.

qopt-report-format, Qopt-
report-format

Specifies the format for an optimization report.

qopt-report-help, Qopt-
report-help

Displays the optimizer phases available for report generation and a short
description of what is reported at each level.

qopt-report-names, Qopt-
report-names

Specifies whether mangled or unmangled names should appear in the
optimization report.

qopt-report-per-object, Qopt-
report-per-object

Tells the compiler that optimization report information should be
generated in a separate file for each object.

qopt-report-phase, Qopt-
report-phase

Specifies one or more optimizer phases for which optimization reports are
generated.

qopt-report-routine, Qopt-
report-routine

Tells the compiler to generate an optimization report for each of the
routines whose names contain the specified substring.

qopt-streaming-stores, Qopt-
streaming-stores

Enables generation of streaming stores for optimization.

qopt-subscript-in-range,
Qopt-subscript-in-range

Determines whether the compiler assumes that there are no "large"
integers being used or being computed inside loops.

qopt-zmm-usage, Qopt-zmm-
usage

Defines a level of zmm registers usage.

Compiler Reference

99

qoverride-limits, Qoverride-
limits

Lets you override certain internal compiler limits that are intended to
prevent excessive memory usage or compile times for very large,
complex compilation units.

Qpar-adjust-stack Tells the compiler to generate code to adjust the stack size for a fiber-
based main thread.

Qpatchable-addresses Tells the compiler to generate code such that references to statically
assigned addresses can be patched.

Qpchi Enable precompiled header coexistence to reduce build time.

Qsafeseh Registers exception handlers for safe exception handling.

Qsfalign Specifies stack alignment for functions. This is a deprecated option that
may be removed in a future release..

qsimd-honor-fp-model,
Qsimd-honor-fp-model

Tells the compiler to obey the selected floating-point model when
vectorizing SIMD loops.

qsimd-serialize-fp-reduction,
Qsimd-serialize-fp-reduction

Tells the compiler to serialize floating-point reduction when vectorizing
SIMD loops.

qtbb, Qtbb Tells the compiler to link to the Intel® oneAPI Threading Building Blocks
(oneTBB) libraries.

Quse-msasm-symbols Tells the compiler to use a dollar sign ("$") when producing symbol
names.

Qvc Specifies compatibility with Microsoft Visual C++* (MSVC) or Microsoft
Visual Studio*.

Qvla Determines whether variable length arrays are enabled.

rcd, Qrcd Enables fast float-to-integer conversions. This is a deprecated option that
may be removed in a future release.

regcall, Qregcall Tells the compiler that the __regcall calling convention should be used for
functions that do not directly specify a calling convention.

restrict, Qrestrict Determines whether pointer disambiguation is enabled with the restrict
qualifier.

RTC Enables checking for certain run-time conditions.

S Causes the compiler to compile to an assembly file only and not link.

save-temps , Qsave-temps Tells the compiler to save intermediate files created during compilation.

scalar-rep, Qscalar-rep Enables or disables the scalar replacement optimization done by the
compiler as part of loop transformations.

shared Tells the compiler to produce a dynamic shared object instead of an
executable.

shared-intel Causes Intel-provided libraries to be linked in dynamically.

shared-libgcc Links the GNU libgcc library dynamically.

showIncludes Tells the compiler to display a list of the include files.

simd, Qsimd Enables or disables compiler interpretation of simd pragmas.

simd-function-pointers,
Qsimd-function-pointers

Enables or disables pointers to simd-enabled functions.

 Intel® C++ Compiler Classic Developer Guide and Reference

100

sox Tells the compiler to save the compilation options and version number in
the executable file. It also lets you choose whether to include lists of
certain functions .

static Prevents linking with shared libraries.

static-intel Causes Intel-provided libraries to be linked in statically.

static-libgcc Links the GNU libgcc library statically.

staticlib Invokes the libtool command to generate static libraries.

static-libstdc++ Links the GNU libstdc++ library statically.

std, Qstd Tells the compiler to conform to a specific language standard.

stdlib Lets you select the C++ library to be used for linking.

strict-ansi Tells the compiler to implement strict ANSI conformance dialect.

sysroot Specifies the root directory where headers and libraries are located.

T Tells the linker to read link commands from a file.

Tc Tells the compiler to process a file as a C source file.

TC Tells the compiler to process all source or unrecognized file types as C
source files.

Tp Tells the compiler to process a file as a C++ source file.

traceback Tells the compiler to generate extra information in the object file to
provide source file traceback information when a severe error occurs at
run time.

U Undefines any definition currently in effect for the specified macro .

u (Linux*) Tells the compiler the specified symbol is undefined.

u (Windows*) Disables all predefined macros and assertions.

undef Disables all predefined macros .

unroll , Qunroll Tells the compiler the maximum number of times to unroll loops.

unroll-aggressive, Qunroll-
aggressive

Determines whether the compiler uses more aggressive unrolling for
certain loops.

use-asm, Quse-asm Tells the compiler to produce objects through the assembler. This is a
deprecated option that may be removed in a future release.

use-intel-optimized-headers,
Quse-intel-optimized-headers

Determines whether the performance headers directory is added to the
include path search list.

use-msasm Enables the use of blocks and entire functions of assembly code within a
C or C++ file.

V Displays the compiler version information.

V (Windows*) Places the text string specified into the object file being generated by the
compiler.

v Specifies that driver tool commands should be displayed and executed.

vd Enables or suppresses hidden vtordisp members in C++ objects.

Compiler Reference

101

vec, Qvec Enables or disables vectorization.

vecabi, Qvecabi Determines which vector function application binary interface (ABI) the
compiler uses to create or call vector functions.

vec-guard-write, Qvec-guard-
write

Tells the compiler to perform a conditional check in a vectorized loop.

vec-threshold, Qvec-threshold Sets a threshold for the vectorization of loops.

version Tells the compiler to display GCC-style version information.

vmb Selects the smallest representation that the compiler uses for pointers to
members.

vmg Selects the general representation that the compiler uses for pointers to
members.

vmm Enables pointers to class members with single or multiple inheritance.

vms Enables pointers to members of single-inheritance classes.

vmv Enables pointers to members of any inheritance type.

w Disables all warning messages.

w, W Specifies the level of diagnostic messages to be generated by the
compiler.

Wa Passes options to the assembler for processing.

Wabi Determines whether a warning is issued if generated code is not C++ ABI
compliant.

Wall Enables warning and error diagnostics.

watch Tells the compiler to display certain information to the console output
window.

Wbrief Tells the compiler to display a shorter form of diagnostic output.

Wcheck Tells the compiler to perform compile-time code checking for certain
code.

Wcheck-unicode-security Determines whether the compiler performs source code checking for
Unicode vulnerabilities.

Wcomment Determines whether a warning is issued when /* appears in the middle of
a /* */ comment.

Wcontext-limit, Qcontext-limit Set the maximum number of template instantiation contexts shown in
diagnostic.

wd, Qwd Disables a soft diagnostic. This is a deprecated option that may be
removed in a future release.

Wdeprecated Determines whether warnings are issued for deprecated C++ headers.

we, Qwe Changes a soft diagnostic to an error. This is a deprecated option that
may be removed in a future release.

Weffc++, Qeffc++ Enables warnings based on certain C++ programming guidelines.

Werror, WX Changes all warnings to errors.

 Intel® C++ Compiler Classic Developer Guide and Reference

102

Werror-all Causes all warnings and currently enabled remarks to be reported as
errors.

Wextra-tokens Determines whether warnings are issued about extra tokens at the end of
preprocessor directives.

Wformat Determines whether argument checking is enabled for calls to printf,
scanf, and so forth.

Wformat-security Determines whether the compiler issues a warning when the use of
format functions may cause security problems.

Wic-pointer Determines whether warnings are issued for conversions between
pointers to distinct scalar types with the same representation.

Winline Warns when a function that is declared as inline is not inlined.

Wl Passes options to the linker for processing.

WL Tells the compiler to display a shorter form of diagnostic output.

Wmain Determines whether a warning is issued if the return type of main is not
expected.

Wmissing-declarations Determines whether warnings are issued for global functions and
variables without prior declaration.

Wmissing-prototypes Determines whether warnings are issued for missing prototypes.

wn, Qwn Controls the number of errors displayed before compilation stops. This is
a deprecated option that may be removed in a future release.

Wnon-virtual-dtor Tells the compiler to issue a warning when a class appears to be
polymorphic, yet it declares a non-virtual one.

wo, Qwo Tells the compiler to issue one or more diagnostic messages only once.
This is a deprecated option that may be removed in a future release.

Wp Passes options to the preprocessor.

Wp64 Tells the compiler to display diagnostics for 64-bit porting.

Wpch-messages Determines whether the compiler shows precompiled header (PCH)
informational messages.

Wpointer-arith Determines whether warnings are issued for questionable pointer
arithmetic.

Wport Tells the compiler to issue portability diagnostics.

wr, Qwr Changes a soft diagnostic to an remark. This is a deprecated option that
may be removed in a future release.

Wremarks Tells the compiler to display remarks and comments.

Wreorder Tells the compiler to issue a warning when the order of member
initializers does not match the order in which they must be executed.

Wreturn-type Determines whether warnings are issued when a function is declared
without a return type, when the definition of a function returning void
contains a return statement with an expression, or when the closing
brace of a function returning non-void is reached.

Wshadow Determines whether a warning is issued when a variable declaration hides
a previous declaration.

Compiler Reference

103

Wsign-compare Determines whether warnings are issued when a comparison between
signed and unsigned values could produce an incorrect result when the
signed value is converted to unsigned.

Wstrict-aliasing Determines whether warnings are issued for code that might violate the
optimizer's strict aliasing rules.

Wstrict-prototypes Determines whether warnings are issued for functions declared or defined
without specified argument types.

Wtrigraphs Determines whether warnings are issued if any trigraphs are encountered
that might change the meaning of the program.

Wuninitialized Determines whether a warning is issued if a variable is used before being
initialized.

Wunknown-pragmas Determines whether a warning is issued if an unknown #pragma directive
is used.

Wunused-function Determines whether a warning is issued if a declared function is not used.

Wunused-variable Determines whether a warning is issued if a local or non-constant static
variable is unused after being declared.

ww, Qww Changes a soft diagnostic to an warning. This is a deprecated option that
may be removed in a future release.

Wwrite-strings Issues a diagnostic message if const char * is converted to (non-const)
char *.

X Removes standard directories from the include file search path.

x (type option) All source files found subsequent to -x type will be recognized as a
particular type.

x, Qx Tells the compiler which processor features it may target, including which
instruction sets and optimizations it may generate.

xHost, QxHost Tells the compiler to generate instructions for the highest instruction set
available on the compilation host processor.

Xlinker Passes a linker option directly to the linker.

Y- Tells the compiler to ignore all other precompiled header files.

Yc Tells the compiler to create a precompiled header file.

Yd Tells the compiler to add complete debugging information in all object
files created from a precompiled header file when option /Zi or /Z7 is
specified. This is a deprecated option that may be removed in a future
release.

Yu Tells the compiler to use a precompiled header file.

Za Disables Microsoft* Visual C++* compiler language extensions.

Zc Lets you specify ANSI C standard conformance for certain language
features.

Ze Enables Microsoft* Visual C++* compiler language extensions. This is a
deprecated option that may be removed in a future release.

Zg Tells the compiler to generate function prototypes. This is a deprecated
option that may be removed in a future release.

 Intel® C++ Compiler Classic Developer Guide and Reference

104

Zi, Z7 , ZI Tells the compiler to generate full debugging information in either an
object (.obj) file or a project database (PDB) file.

Zl Causes library names to be omitted from the object file.

Zo Enables or disables generation of enhanced debugging information for
optimized code.

Zp Specifies alignment for structures on byte boundaries.

Zs Tells the compiler to check only for correct syntax.

General Rules for Compiler Options
This section describes general rules for compiler options and it contains information about how we refer to
compiler option names in descriptions.

General Rules for Compiler Options
Compiler options may be case sensitive, and may have different meanings depending on their case. For
example, option c prevents linking, but option C places comments in preprocessed source output.

Options specified on the command line apply to all files named on the command line.

Options can take arguments in the form of file names, strings, letters, or numbers. If a string includes
spaces, the string must be enclosed in quotation marks.

Compiler options can appear in any order.

Unless you specify certain options, the command line will both compile and link the files you specify.

You can abbreviate some option names, entering as many characters as are needed to uniquely identify the
option.

Certain options accept one or more keyword arguments following the option name. For example, architecture
option x option accepts several keywords.

To specify multiple keywords, you typically specify the option multiple times.

To disable an option, specify the negative form of the option if one exists.

If there are enabling and disabling versions of an option on the command line, the last one on the command
line takes precedence.

Compiler options remain in effect for the whole compilation unless overridden by a compiler #pragma.

Linux and macOS

You cannot combine options with a single dash. For example, this form is incorrect: -Ec; this form is correct:
-E -c
Windows

You cannot combine options with a single slash. For example: This form is incorrect: /Ec; this form is
correct: /E /c
All compiler options must precede /link options, if any, on the command line.

Compiler options remain in effect for the whole compilation unless overridden by a compiler #pragma.

You can disable one or more optimization options by specifying option /Od last on the command line.

Compiler Reference

105

NOTE
The /Od option is part of a mutually-exclusive group of options that includes /Od, /O1, /O2, /O3,
and /Ox. The last of any of these options specified on the command line will override the previous
options from this group.

How We Refer to Compiler Option Names in Descriptions
Within documentation, compiler option names that are very different are spelled out in full.

However, many compiler option names are very similar except for initial characters. For these options, we
use the following shortcuts when referencing their names in descriptions:

• No initial – or /

This shortcut is used for option names that are the same for Linux and Windows except for the initial
character.

For example, Fa denotes:

• Linux and macOS: -Fa
• Windows: /Fa

• [Q]option-name

This shortcut is used for option names that only differ because the Windows form starts with a Q.

For example, [Q]ipo denotes:

• Linux and macOS: -ipo
• Windows: /Qipo

• [q or Q]option-name

This shortcut is used for option names that only differ because the Linux form starts with a q and the
Windows form starts with a Q.

For example, [q or Q]opt-report denotes:

• Linux and macOS: -qopt-report
• Windows: /Qopt-report

What Appears in the Compiler Option Descriptions
This section contains details about what appears in the option descriptions.

Following sections include individual descriptions of all the current compiler options. The option descriptions
are arranged by functional category. Within each category, the option names are listed in alphabetical order.

Each option description contains the following information:

• The primary name for the option and a short description of the option.
• Architecture Restrictions

This section only appears if there is a known architecture restriction for the option.

Restrictions can appear for any of the following architectures:

• IA-32 architecture
• Intel® 64 architecture

Certain operating systems are not available on all the above architectures. For the latest information,
check your Release Notes.

• Syntax

 Intel® C++ Compiler Classic Developer Guide and Reference

106

This section shows the syntax on Linux* and macOS systems and the syntax on Windows* systems. If the
option is not valid on a particular operating system, it will specify "None".

• Arguments

This section shows any arguments (parameters) that are related to the option. If the option has no
arguments, it will specify "None".

• Default

This section shows the default setting for the option.
• Description

This section shows the full description of the option. It may also include further information on any
applicable arguments.

• IDE Equivalent

This section shows information related to the Intel® Integrated Development Environment (Intel® IDE)
Property Pages on Linux*, macOS, and Windows* systems. It shows on which Property Page the option
appears, and under what category it's listed. The Windows* IDE is Microsoft* Visual Studio* .NET; the
Linux* IDE is Eclipse*; the macOS IDE is Xcode*. If the option has no IDE equivalent, it will specify
"None".

• Alternate Options

This section lists any options that are synonyms for the described option. If there are no alternate option
names, it will show "None".

Some alternate option names are deprecated and may be removed in future releases.

Many options have an older spelling where underscores ("_") instead of hyphens ("-") connect the main
option names. The older spelling is a valid alternate option name.

Some option descriptions may also have the following:

• Example (or Examples)

This section shows one or more examples that demonstrate the option.
• See Also

This section shows where you can get further information on the option or it shows related options.

Optimization Options
This section contains descriptions for compiler options that pertain to optimization.

falias, Oa
Determines whether aliasing is assumed in a program.

Syntax

Linux OS and macOS:

-falias
-fno-alias
Windows OS:

/Oa
/Oa-

Arguments

None

Compiler Reference

107

Default

-falias
or /Oa-

On Linux* and macOS, aliasing is assumed in the program. On Windows*, aliasing is
not assumed in a program.

Description

This option determines whether aliasing is assumed in a program.

If you specify -fno-alias or /Oa, aliasing is not assumed in a program.

If you specify -falias or /Oa-, aliasing is assumed in a program. However, this may affect performance.

IDE Equivalent

Visual Studio: None

Eclipse: Data > Assume No Aliasing in Program

Xcode: Data > Assume No Aliasing in Program

Alternate Options

None

See Also
ffnalias compiler option

fast
Maximizes speed across the entire program.

Syntax

Linux OS:

-fast
macOS:

-fast
Windows OS:

/fast

Arguments

None

Default

OFF The optimizations that maximize speed are not enabled.

Description

This option maximizes speed across the entire program.

It sets the following options:

• On macOS systems: -ipo, -mdynamic-no-pic,-O3, -no-prec-div,-fp-model fast=2, and -xHost
• On Windows* systems: /O3, /Qipo, /Qprec-div-, /fp:fast=2, and /QxHost
• On Linux* systems: -ipo, -O3, -no-prec-div,-static, -fp-model fast=2, and -xHost

 Intel® C++ Compiler Classic Developer Guide and Reference

108

When option fast is specified, you can override the [Q]xHost option setting by specifying a different
processor-specific [Q]x option on the command line. However, the last option specified on the command line
takes precedence.

For example:

• On Linux* systems, if you specify option -fast -xSSE3, option -xSSE3 takes effect. However, if you
specify -xSSE3 -fast, option -xHost takes effect.

• On Windows* systems, if you specify option /fast /QxSSE3, option/QxSSE3 takes effect. However, if you
specify /QxSSE3 /fast, option /QxHost takes effect.

For implications on non-Intel processors, refer to the [Q]xHost documentation.

NOTE
Option fast sets some aggressive optimizations that may not be appropriate for all
applications. The resulting executable may not run on processor types different from the one
on which you compile. You should make sure that you understand the individual
optimization options that are enabled by option fast.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option
xHost, QxHost
 compiler option

x, Qx
 compiler option

fbuiltin, Oi
Enables or disables inline expansion of intrinsic
functions.

Syntax

Linux OS:

-fbuiltin[-name]
-fno-builtin[-name]

macOS:

-fbuiltin[-name]
-fno-builtin[-name]

Compiler Reference

109

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Windows OS:

/Oi[-]
/Qno-builtin-name

Arguments

name Is a list of one or more intrinsic functions. If there is more than one
intrinsic function, they must be separated by commas.

Default

ON Inline expansion of intrinsic functions is enabled.

Description

This option enables or disables inline expansion of one or more intrinsic functions.

If -fno-builtin-name or /Qno-builtin-name is specified, inline expansion is disabled for the named
functions. If name is not specified, -fno-builtin or /Oi- disables inline expansion for all intrinsic functions.

For a list of built-in functions affected by -fbuiltin, search for "built-in functions" in the appropriate gcc*
documentation.

For a list of built-in functions affected by /Oi, search for "/Oi" in the appropriate Microsoft* Visual C/C++*
documentation.

IDE Equivalent

Visual Studio: Optimization > Enable Intrinsic Functions (/Oi)

Eclipse: None

Xcode: None

Alternate Options

None

fdefer-pop
Determines whether the compiler always pops the
arguments to each function call as soon as that
function returns.

Syntax

Linux OS and macOS:

-fdefer-pop
-fno-defer-pop
Windows OS:

None

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

110

Default

-fdefer-pop The compiler uses default optimizations that may result in deferred
clearance of the stack arguments.

Description

This option determines whether the compiler always pops the arguments to each function call as soon as that
function returns.

If you want the compiler to always pop the arguments to each function call as soon as that function returns,
specify -fno-defer-pop.

For processors that must pop arguments after a function call, the compiler normally lets arguments
accumulate on the stack for several function calls and pops them all at once.

IDE Equivalent

None

Alternate Options

None

ffnalias, Ow
Determines whether aliasing is assumed within
functions.

Syntax

Linux OS and macOS:

-ffnalias
-fno-fnalias

Windows OS:

/Ow
/Ow-

Arguments

None

Default

-ffnalias
or /Ow

Aliasing is assumed within functions.

Description

This option determines whether aliasing is assumed within functions.

If you specify -fno-fnalias or /Ow-, aliasing is not assumed within functions, but it is assumed across
calls.

If you specify -ffnalias or /Ow, aliasing is assumed within functions.

IDE Equivalent

None

Compiler Reference

111

Alternate Options

None

See Also
falias compiler option

foptimize-sibling-calls
Determines whether the compiler optimizes tail
recursive calls.

Syntax

Linux OS:

-foptimize-sibling-calls
-fno-optimize-sibling-calls
macOS:

-foptimize-sibling-calls
-fno-optimize-sibling-calls
Windows OS:

None

Arguments

None

Default

-
foptimiz
e-
sibling-
calls

The compiler optimizes tail recursive calls.

Description

This option determines whether the compiler optimizes tail recursive calls. It enables conversion of tail
recursion into loops.

If you do not want to optimize tail recursive calls, specify -fno-optimize-sibling-calls.

Tail recursion is a special form of recursion that doesn't use stack space. In tail recursion, a recursive call is
converted to a GOTO statement that returns to the beginning of the function. In this case, the return value of
the recursive call is only used to be returned. It is not used in another expression. The recursive function is
converted into a loop, which prevents modification of the stack space used.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

112

fprotect-parens, Qprotect-parens
Determines whether the optimizer honors parentheses
when floating-point expressions are evaluated.

Syntax

Linux OS and macOS:

-fprotect-parens
-fno-protect-parens
Windows OS:

/Qprotect-parens
/Qprotect-parens-

Arguments

None

Default

-fno-protect-parens
or
/Qprotect-parens-

Parentheses are ignored when determining the order of expression evaluation.

Description

This option determines whether the optimizer honors parentheses when determining the order of floating-
point expression evaluation.

When option -fprotect-parens (Linux* and macOS) or /Qprotect-parens (Windows*) is specified, the
optimizer will maintain the order of evaluation imposed by parentheses in the code.

When option -fno-protect-parens (Linux* and macOS) or /Qprotect-parens- (Windows*) is specified,
the optimizer may reorder floating-point expressions without regard for parentheses if it produces faster
executing code.

IDE Equivalent

None

Alternate Options

None

Example
Consider the following expression:

A+(B+C)
By default, the parentheses are ignored and the compiler is free to re-order the floating-point operations
based on the optimization level, the setting of option -fp-model (Linux* and macOS) or /fp (Windows*),
etc. to produce faster code. Code that is sensitive to the order of operations may produce different results
(such as with some floating-point computations).

Compiler Reference

113

However, if -fprotect-parens (Linux* and macOS) or /Qprotect-parens (Windows*) is specified,
parentheses around floating-point expressions (including complex floating-point and decimal floating-point)
are honored and the expression will be interpreted following the normal precedence rules, that is, B+C will
be computed first and then added to A.

This may produce slower code than when parentheses are ignored. If floating-point sensitivity is a specific
concern, you should use option -fp-model precise (Linux* and macOS) or /fp:precise (Windows*) to
ensure precision because it controls all optimizations that may affect precision.

See Also
fp-model, fp compiler option

GF
Enables read-only string-pooling optimization.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/GF

Arguments

None

Default

OFF Read/write string-pooling optimization is enabled.

Description

This option enables read only string-pooling optimization.

IDE Equivalent

Visual Studio: Code Generation > Enable String Pooling

Eclipse: None

Xcode: None

Alternate Options

None

nolib-inline
Disables inline expansion of standard library or
intrinsic functions.

Syntax

Linux OS:

-nolib-inline

 Intel® C++ Compiler Classic Developer Guide and Reference

114

macOS:

-nolib-inline

Windows OS:

None

Arguments

None

Default

OFF The compiler inlines many standard library and intrinsic functions.

Description

This option disables inline expansion of standard library or intrinsic functions. It prevents the unexpected
results that can arise from inline expansion of these functions.

IDE Equivalent

Visual Studio: None

Eclipse: Optimization > Disable Intrinsic Inline Expansion

Xcode: Optimization > Disable Intrinsic Inline Expansion

Alternate Options

None

O
Specifies the code optimization for applications.

Syntax

Linux OS:

-O[n]

macOS:

-O[n]

Windows OS:

/O[n]

Arguments

n Is the optimization level. Possible values are 1, 2, or 3. On Linux* and
macOS systems, you can also specify 0.

Default

O2 Optimizes for code speed. This default may change depending on which other compiler options
are specified. For details, see below.

Description

This option specifies the code optimization for applications.

Compiler Reference

115

Option Description

O (Linux* and macOS) This is the same as specifying O2.

O0 (Linux and macOS) Disables all optimizations.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

O1 Enables optimizations for speed and disables some optimizations that
increase code size and affect speed.
To limit code size, this option:

• Enables global optimization; this includes data-flow analysis, code
motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling.

• Disables inlining of some intrinsics.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code
within loops.

O2 Enables optimizations for speed. This is the generally recommended
optimization level.
Vectorization is enabled at O2 and higher levels.

On systems using IA-32 architecture: Some basic loop optimizations such
as Distribution, Predicate Opt, Interchange, multi-versioning, and scalar
replacements are performed.

This option also enables:

• Inlining of intrinsics
• Intra-file interprocedural optimization, which includes:

• inlining
• constant propagation
• forward substitution
• routine attribute propagation
• variable address-taken analysis
• dead static function elimination
• removal of unreferenced variables

• The following capabilities for performance gain:

• constant propagation
• copy propagation
• dead-code elimination
• global register allocation
• global instruction scheduling and control speculation
• loop unrolling
• optimized code selection
• partial redundancy elimination
• strength reduction/induction variable simplification
• variable renaming

 Intel® C++ Compiler Classic Developer Guide and Reference

116

Option Description

• exception handling optimizations
• tail recursions
• peephole optimizations
• structure assignment lowering and optimizations
• dead store elimination

This option may set other options, especially options that optimize for
code speed. This is determined by the compiler, depending on which
operating system and architecture you are using. The options that are set
may change from release to release.

On Linux systems, the -debug inline-debug-info option will be
enabled by default if you compile with optimizations (option -O2 or
higher) and debugging is enabled (option -g).

Many routines in the shared libraries are more highly optimized for Intel®
microprocessors than for non-Intel microprocessors.

O3 Performs O2 optimizations and enables more aggressive loop
transformations such as Fusion, Block-Unroll-and-Jam, and collapsing IF
statements.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

When O3 is used with options -ax or -x (Linux) or with options /Qax
or /Qx (Windows), the compiler performs more aggressive data
dependency analysis than for O2, which may result in longer compilation
times.

The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.

The O3 option is recommended for applications that have loops that
heavily use floating-point calculations and process large data sets.

Many routines in the shared libraries are more highly optimized for Intel®
microprocessors than for non-Intel microprocessors.

The last O option specified on the command line takes precedence over any others.

IDE Equivalent

Visual Studio: Optimization > Optimization

Eclipse: General > Optimization Level

Xcode: General > Optimization Level

Alternate Options

O0 Linux: None
Windows: /Od

See Also
Od compiler option

Compiler Reference

117

Od
Disables all optimizations.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Od

Arguments

None

Default

OFF The compiler performs default optimizations.

Description

This option disables all optimizations. It can be used for selective optimizations, such as a combination of /Od
and /Ob1 (disables all optimizations, but enables inlining).

On IA-32 architecture, this option sets the /Oy- option.

IDE Equivalent

Visual Studio: Optimization > Optimization

Eclipse: None

Xcode: None

Alternate Options

Linux and macOS: -O0
Windows: None

See Also
O compiler option (see O0)

Ofast
Sets certain aggressive options to improve the speed
of your application.

Syntax

Linux OS:

-Ofast
macOS:

-Ofast

 Intel® C++ Compiler Classic Developer Guide and Reference

118

Windows OS:

None

Arguments

None

Default

OFF The aggressive optimizations that improve speed are not enabled.

Description

This option improves the speed of your application.

It sets compiler options -O3, -no-prec-div, and -fp-model fast=2.

On Linux* systems, this option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

See Also
O compiler option
prec-div, Qprec-div compiler option
fast compiler option
fp-model, fp compiler option

Os
Enables optimizations that do not increase code size;
it produces smaller code size than O2.

Syntax

Linux OS:

-Os
macOS:

-Os
Windows OS:

/Os

Arguments

None

Default

OFF Optimizations are made for code speed. However, if O1 is specified, Os is the default.

Compiler Reference

119

Description

This option enables optimizations that do not increase code size; it produces smaller code size than O2. It
disables some optimizations that increase code size for a small speed benefit.

This option tells the compiler to favor transformations that reduce code size over transformations that
produce maximum performance.

IDE Equivalent

Visual Studio: Optimization > Favor Size or Speed

Eclipse: None

Xcode: None

Alternate Options

None

See Also
O compiler option
Ot compiler option

Ot
Enables all speed optimizations.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Ot

Arguments

None

Default

/Ot Optimizations are made for code speed.

If Od is specified, all optimizations are disabled. If O1 is specified, Os is the default.

Description

This option enables all speed optimizations.

IDE Equivalent

Visual Studio: Optimization > Favor Size or Speed

Eclipse: None

Xcode: None

 Intel® C++ Compiler Classic Developer Guide and Reference

120

Alternate Options

None

See Also
O compiler option
Os compiler option

Ox
Enables maximum optimizations.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Ox

Arguments

None

Default

OFF The compiler does not enable optimizations.

Description

The compiler enables maximum optimizations by combining the following options:

• /Ob2
• /Oy
• /Ot
• /Oi

IDE Equivalent

Visual Studio: Optimization > Optimization

Eclipse: None

Xcode: None

Alternate Options

None

Code Generation Options
This section contains descriptions for compiler options that pertain to code generation.

Compiler Reference

121

arch
Tells the compiler which features it may target,
including which instruction sets it may generate.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/arch:code

Arguments

code Indicates to the compiler a feature set that it may target, including which instruction sets it
may generate. Many of the following descriptions refer to Intel® Streaming SIMD Extensions
(Intel® SSE) and Supplemental Streaming SIMD Extensions (SSSE). Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
KNL
KNM
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.

Keyword ICELAKE is deprecated and may be removed in a
future release.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions.

 Intel® C++ Compiler Classic Developer Guide and Reference

122

CORE-AVX-I May generate Float-16 conversion instructions and the
RDRND instruction, Intel® Advanced Vector Extensions
(Intel® AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions.

AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, Intel® SSE4.2, SSE4.1, SSE3, SSE2,
SSE, and SSSE3 instructions.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE,
and SSSE3 instructions.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

SSSE3 May generate SSSE3 instructions and Intel® SSE3, SSE2,
and SSE instructions.

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions.

SSE2 May generate Intel® SSE2 and SSE instructions.

SSE This option has been deprecated; it is now the same as
specifying IA32.

IA32 Generates x86/x87 generic code that is compatible with
IA-32 architecture. Disables any default extended
instruction settings, and any previously set extended
instruction settings. It also disables all feature-specific
optimizations and instructions.

This value is only available on IA-32 architecture.

Default

SSE2 The compiler may generate Intel® SSE2 and SSE instructions.

Description

This option tells the compiler which features it may target, including which instruction sets it may generate.

Code generated with these options should execute on any compatible, non-Intel processor with support for
the corresponding instruction set.

Options /arch and /Qx are mutually exclusive. If both are specified, the compiler uses the last one specified
and generates a warning.

If you specify both the /Qax and /arch options, the compiler will not generate Intel-specific instructions.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Enable Enhanced Instruction Set

Compiler Reference

123

Eclipse

Eclipse: None

Xcode

Xcode: None

Alternate Options

None

See Also
x, Qx compiler option
xHost, QxHost compiler option
ax, Qax compiler option
arch compiler option
march compiler option
m compiler option
m32, m64 compiler option

ax, Qax
Tells the compiler to generate multiple, feature-
specific auto-dispatch code paths for Intel® processors
if there is a performance benefit.

Syntax

Linux OS:

-axcode
macOS:

-axcode
Windows OS:

/Qaxcode

Arguments

code Indicates to the compiler a feature set that it may target, including which instruction sets it
may generate. The following descriptions refer to Intel® Streaming SIMD Extensions (Intel®
SSE) and Supplemental Streaming SIMD Extensions (SSSE). Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.

Keywords KNL and SILVERMONT are only available on
Windows* and Linux* systems.

Keyword ICELAKE is deprecated and may be removed in a
future release.

 Intel® C++ Compiler Classic Developer Guide and Reference

124

ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
KNL
KNM
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE
COMMON-AVX512 May generate Intel® Advanced Vector Extensions 512

(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), as well as the
instructions enabled with CORE-AVX2.

CORE-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), Intel® AVX-512
Doubleword and Quadword Instructions (DQI), Intel®
AVX-512 Byte and Word Instructions (BWI) and Intel®
AVX-512 Vector Length extensions, as well as the
instructions enabled with CORE-AVX2.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors.

CORE-AVX-I May generate Float-16 conversion instructions and the
RDRND instruction, Intel® Advanced Vector Extensions
(Intel® AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors.

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE,
and SSSE3 instructions for Intel processors.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors.

SSSE3 May generate SSSE3 instructions and Intel® SSE3, SSE2,
and SSE instructions for Intel® processors. For macOS
systems, this value is only supported on Intel® 64
architecture. This replaces value T, which is deprecated.

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions for
Intel® processors. This value is not available on macOS
systems.

Compiler Reference

125

SSE2 May generate Intel® SSE2 and SSE instructions for Intel®
processors. This value is not available on macOS systems.

You can specify more than one code value. When specifying more than one code value, each value must be
separated with a comma. See the Examples section below.

Default

OFF No auto-dispatch code is generated. Feature-specific code is generated and is controlled by the
setting of the following compiler options:

• Linux*: -m and -x
• Windows*: /arch and /Qx
• macOS: -x

Description

This option tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel®
processors if there is a performance benefit. It also generates a baseline code path. The Intel feature-specific
auto-dispatch path is usually more optimized than the baseline path. Other options, such as O3, control how
much optimization is performed on the baseline path.

The baseline code path is determined by the architecture specified by options -m or -x (Linux* and macOS)
or options /arch or /Qx (Windows*). While there are defaults for the [Q]x option that depend on the
operating system being used, you can specify an architecture and optimization level for the baseline code
that is higher or lower than the default. The specified architecture becomes the effective minimum
architecture for the baseline code path.

If you specify both the [Q]ax and [Q]x options, the baseline code will only execute on Intel® processors
compatible with the setting specified for the [Q]x.

If you specify both the -ax and -m options (Linux and macOS) or the /Qax and /arch options (Windows),
the baseline code will execute on non-Intel processors compatible with the setting specified for the -m
or /arch option.

If you specify both the -ax and -march options (Linux and macOS), or the /Qax and /arch options
(Windows), the compiler will not generate Intel-specific instructions. This is because specifying -march
disables -ax and specifying /arch disables /Qax.

The [Q]ax option tells the compiler to find opportunities to generate separate versions of functions that take
advantage of features of the specified instruction features.

If the compiler finds such an opportunity, it first checks whether generating a feature-specific version of a
function is likely to result in a performance gain. If this is the case, the compiler generates both a feature-
specific version of a function and a baseline version of the function. At run time, one of the versions is
chosen to execute, depending on the Intel® processor in use. In this way, the program can benefit from
performance gains on more advanced Intel processors, while still working properly on older processors and
non-Intel processors. A non-Intel processor always executes the baseline code path.

You can use more than one of the feature values by combining them. For example, you can specify
-axSSE4.1,SSSE3 (Linux and macOS) or /QaxSSE4.1,SSSE3 (Windows). You cannot combine the old style,
deprecated options and the new options. For example, you cannot specify -axSSE4.1,T (Linux and macOS)
or /QaxSSE4.1,T (Windows).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

 Intel® C++ Compiler Classic Developer Guide and Reference

126

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Add Processor-Optimized Code Path

Eclipse

Eclipse: Code Generation > Add Processor-Optimized Code Path

Xcode

Xcode: Code Generation > Add Processor-Optimized Code Path

Alternate Options

None

Examples
The following shows an example of how to specify this option:

icpc -axSKYLAKE file.cpp ! Linux* and macOSsystems
icl /QaxSKYLAKE file.cpp ! Windows* systems

The following shows an example of how to specify more than one code value:

icpc -axSKYLAKE,BROADWELL file.cpp ! Linux* and macOSsystems
icl /QaxBROADWELL,SKYLAKE file.cpp ! Windows* systems

Note that the comma-separated list must have no spaces between the names.

See Also
x, Qx compiler option
xHost, QxHost compiler option
march compiler option
arch compiler option
m compiler option

EH
Specifies the model of exception handling to be
performed.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/EHtype
/EHtype-

Compiler Reference

127

Arguments

type Specifies the exception handling model. Possible values are:

a Specifies the asynchronous C++ exception
handling model.

s Specifies the synchronous C++ exception
handling model.

c Tells the compiler to assume that extern "C"
functions do not throw exceptions.

r Tells the compiler to always generate
runtime termination checks for all noexcept
functions. IT forces runtime termination
checks in all functions that have a noexcept
attribute.

If you specify c, you must also specify a or s.

Default

OFF Some exception handling is performed by default.

Description

This option specifies the model of exception handling to be performed.

If you specify the negative form of the option, it disables the exception handling performed by type or the
last type if there are two. For example, if you specify /EHsc-, it is interpreted as /EHs.

For more details about option /EH, see the Microsoft documentation.

IDE Equivalent

Windows

Visual Studio: Code Generation > Enable C++ Exceptions

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

/EHsc Linux and macOS: None

Windows: /GX

See Also
Qsafeseh compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

128

fasynchronous-unwind-tables
Determines whether unwind information is precise at
an instruction boundary or at a call boundary.

Syntax

Linux OS:

-fasynchronous-unwind-tables
-fno-asynchronous-unwind-tables
macOS:

-fasynchronous-unwind-tables
-fno-asynchronous-unwind-tables
Windows OS:

None

Arguments

None

Default

Intel® 64 architecture:
-fasynchronous-unwind-tables

The unwind table generated is precise at an instruction boundary,
enabling accurate unwinding at any instruction.

IA-32 architecture (Linux* only):
-fno-asynchronous-unwind-tables

The unwind table generated is precise at call boundaries only.

Description

This option determines whether unwind information is precise at an instruction boundary or at a call
boundary. The compiler generates an unwind table in DWARF2 or DWARF3 format, depending on which
format is supported on your system.

If -fno-asynchronous-unwind-tables is specified, the unwind table is precise at call boundaries only. In
this case, the compiler will avoid creating unwind tables for routines such as the following:

• A C++ routine that does not declare objects with destructors and does not contain calls to routines that
might throw an exception.

• A C/C++ or Fortran routine compiled without -fexceptions, and on Intel® 64 architecture, without
-traceback.

• A C/C++ or Fortran routine compiled with -fexceptions that does not contain calls to routines that
might throw an exception.

IDE Equivalent

None

Alternate Options

None

See Also
fexceptions compiler option

Compiler Reference

129

fcf-protection, Qcf-protection
Enables Intel® Control-Flow Enforcement Technology
(Intel® CET) protection, which defends your program
from certain attacks that exploit vulnerabilities. This
option offers preliminary support for Intel® CET.

Syntax

Linux OS:

-fcf-protection[=keyword]
macOS:

None
Windows OS:

/Qcf-protection[:keyword]

Arguments

keyword Specifies the level of protection the compiler should perform. Possible values are:

shadow_stack Enables shadow stack protection.

branch_tracking Enables endbranch (EB) generation.

full Enables both shadow stack protection and EB generation.

This is the same as specifying this compiler option with no keyword.

none Disables Intel® CET protection.

Default

-fcf-protection=none
or /Qcf-protection:none

No Control-flow Enforcement protection is performed.

Description

This option enables Intel® CET protection, which defends your program from certain attacks that exploit
vulnerabilities.

Intel® CET protections are enforced on processors that support Intel® CET. They are ignored on processors
that do not support Intel® CET, so they are safe to use in programs that might run on a variety of processors.

Specifying shadow_stack helps to protect your program from return-oriented programming (ROP). Return-
oriented programming (ROP) is a technique to exploit computer security defenses such as non-executable
memory and code signing by gaining control of the call stack to modify program control flow and then
execute certain machine instruction sequences.

Specifying branch_tracking helps to protect your program from call/jump-oriented programming (COP/
JOP). Jump-oriented programming (JOP) is a variant of ROP that uses indirect jumps and calls to emulate
return instructions. Call-oriented programming (COP) is a variant of ROP that employs indirect calls.

To get both protections, specify this compiler option with no keyword, or specify -fcf-protection=full
(Linux*) or /Qcf-protection:full (Windows*).

 Intel® C++ Compiler Classic Developer Guide and Reference

130

IDE Equivalent

None

Alternate Options

Linux and macOS: -qcf-protection
Windows: None

fdata-sections, Gw
Places each data item in its own COMDAT section.

Syntax

Linux OS:

-fdata-sections
macOS:

-fdata-sections
Windows OS:

/Gw

Arguments

None

Default

OFF The compiler does not separate functions into COMDATs.

Description

This option places each data item in its own COMDAT section.

When using this compiler option, you can add the linker option -Wl,--gc-sections (LInux)
or /link /OPT:REF (Windows), which will remove all unused code.

NOTE
When you put each data item in its own section, it enables the linker to reorder the sections
for other possible optimization.

Alternate Options

None

See Also
ffunction-sections, Gy compiler option

fexceptions
Enables exception handling table generation.

Compiler Reference

131

Syntax

Linux OS:

-fexceptions
-fno-exceptions
macOS:

-fexceptions
-fno-exceptions
Windows OS:

None

Arguments

None

Default

-fexceptions Exception handling table generation is enabled. Default for C++.

-fno-exceptions Exception handling table generation is disabled. Default for C.

Description

This option enables exception handling table generation. The -fno-exceptions option disables exception
handling table generation, resulting in smaller code. When this option is used, any use of exception handling
constructs (such as try blocks and throw statements) will produce an error. Exception specifications are
parsed but ignored. It also undefines the preprocessor symbol __EXCEPTIONS.

IDE Equivalent

None

Alternate Options

None

ffunction-sections, Gy
Places each function in its own COMDAT section.

Syntax

Linux OS:

-ffunction-sections
macOS:

-ffunction-sections
Windows OS:

/Gy

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

132

Default

OFF The compiler does not separate functions into COMDATs.

Description

This option places each function in its own COMDAT section.

When using this compiler option, you can add the linker option -Wl,--gc-sections (LInux)
or /link /OPT:REF (Windows), which will remove all unused code.

NOTE
When you put each function in its own section, it enables the linker to reorder the sections
for other possible optimization.

IDE Equivalent

Windows

Visual Studio: Code Generation > Enable Function-Level Linking

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
fdata-sections, Gw compiler option

fomit-frame-pointer, Oy
Determines whether EBP is used as a general-purpose
register in optimizations.

Architecture Restrictions

Option /Oy[-] is only available on IA-32 architecture

Syntax

Linux OS:

-fomit-frame-pointer
-fno-omit-frame-pointer
macOS:

-fomit-frame-pointer
-fno-omit-frame-pointer
Windows OS:

/Oy

Compiler Reference

133

/Oy-

Arguments

None

Default

-fomit-frame-pointer
or /Oy

EBP is used as a general-purpose register in optimizations. However, on
Linux* and macOS systems, the default is -fno-omit-frame-pointer if
option -O0 or -g is specified. On Windows* systems, the default is /Oy- if
option /Od is specified.

Description

These options determine whether EBP is used as a general-purpose register in optimizations. Option
-fomit-frame-pointer and option /Oy allows this use. Option -fno-omit-frame-pointer and
option /Oy- disallows it.

Some debuggers expect EBP to be used as a stack frame pointer, and cannot produce a stack backtrace
unless this is so. The -fno-omit-frame-pointer and the /Oy- option directs the compiler to generate code
that maintains and uses EBP as a stack frame pointer for all functions so that a debugger can still produce a
stack backtrace without doing the following:

• For -fno-omit-frame-pointer: turning off optimizations with -O0
• For /Oy-: turning off /O1, /O2, or /O3 optimizations

The -fno-omit-frame-pointer option is set when you specify option -O0 or the -g option. The
-fomit-frame-pointer option is set when you specify option -O1, -O2, or -O3.

The /Oy option is set when you specify the /O1, /O2, or /O3 option. Option /Oy- is set when you specify
the /Od option.

Using the -fno-omit-frame-pointer or /Oy- option reduces the number of available general-purpose
registers by 1, and can result in slightly less efficient code.

NOTE
For Linux* systems:

There is currently an issue with GCC 3.2 exception handling. Therefore, the compiler ignores this
option when GCC 3.2 is installed for C++ and exception handling is turned on (the default).

IDE Equivalent

Visual Studio: Optimization > Omit Frame Pointers

Eclipse: Optimization > Provide Frame Pointer

Xcode: Optimization > Provide Frame Pointer

Alternate Options

Linux and macOS: -fp (this is a deprecated option)

Windows: None

See Also
momit-leaf-frame-pointer compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

134

Gd
Makes __cdecl the default calling convention.

Architecture Restrictions

Not available on IA-32 architecture.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Gd

Arguments

None

Default

ON The default calling convention is __cdecl.

Description

This option makes __cdecl the default calling convention.

IDE Equivalent

Windows

Visual Studio: Advanced > Calling Convention

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
C C++ Calling Conventions

Gr
Makes __fastcall the default calling convention.

Architecture Restrictions

Only available on IA-32 architecture

Compiler Reference

135

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Gr

Arguments

None

Default

OFF The default calling convention is __cdecl

Description

This option makes __fastcall the default calling convention.

IDE Equivalent

Windows

Visual Studio: Advanced > Calling Convention

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
C C++ Calling Conventions

GR
Enables or disables C++ Run Time Type Information
(RTTI).

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/GR

 Intel® C++ Compiler Classic Developer Guide and Reference

136

/GR-

Arguments

None

Default

/GR C++ Run Time Type Information (RTTI) is enabled.

Description

This option enables or disables C++ Run Time Type Information (RTTI).

To disable C++ Run Time Type Information (RTTI), specify option /GR-.

IDE Equivalent

Windows

Visual Studio: Language > Enable Run-Time Type Information

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

guard
Enables the control flow protection mechanism.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/guard:keyword

Arguments

keyword Specifies the the control flow protection mechanism. Possible values are:

cf[-] Tells the compiler to analyze control flow of valid targets for indirect calls and to insert
code to verify the targets at runtime.

To explicitly disable this option, specify /guard:cf-.

Compiler Reference

137

Default

OFF The control flow protection mechanism is disabled.

Description

This option enables the control flow protection mechanism. It tells the compiler to analyze control flow of
valid targets for indirect calls and inserts a call to a checking routine before each indirect call to verify the
target of the given indirect call.

The /guard:cf option must be passed to both the compiler and linker.

Code compiled using /guard:cf can be linked to libraries and object files that are not compiled using the
option.

This option has been added for Microsoft compatibility. It uses the Microsoft implementation.

IDE Equivalent

Windows

Visual Studio: Code Generation > Control Flow Guard

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

Gv
Tells the compiler to use the vector calling convention
(__vectorcall) when passing vector type arguments.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Gv

Arguments

None

Default

OFF The default calling convention is __cdecl.

 Intel® C++ Compiler Classic Developer Guide and Reference

138

Description

This option tells the compiler to use the vector calling convention (__vectorcall) when passing vector type
arguments.

It causes each function in the module to compile as __vectorcall unless the function is declared with a
conflicting attribute, or the name of the function is main.

This option has been added for Microsoft compatibility.

For more details about the __vectorcall calling convention, see the Microsoft documentation.

IDE Equivalent

Windows

Visual Studio: Advanced > Calling Convention

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
C C++ Calling Conventions

Gz
Makes __stdcall the default calling convention.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Gz

Arguments

None

Default

OFF The default calling convention is __cdecl.

Compiler Reference

139

Description

This option makes __stdcall the default calling convention.

IDE Equivalent

Windows

Visual Studio: Advanced > Calling Convention

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
C C++ Calling Conventions

hotpatch
Tells the compiler to prepare a routine for
hotpatching.

Syntax

Linux OS:

-hotpatch[=n]
macOS:

None
Windows OS:

/hotpatch[:n]

Arguments

n An integer specifying the number of bytes the compiler should add
before the function entry point.

Default

OFF The compiler does not prepare routines for hotpatching.

Description

This option tells the compiler to prepare a routine for hotpatching. The compiler inserts nop padding around
function entry points so that the resulting image is hot patchable.

Specifically, the compiler adds nop bytes after each function entry point and enough nop bytes before the
function entry point to fit a direct jump instruction on the target architecture.

If n is specified, it overrides the default number of bytes that the compiler adds before the function entry
point.

 Intel® C++ Compiler Classic Developer Guide and Reference

140

IDE Equivalent

None

Alternate Options

None

m
Tells the compiler which features it may target,
including which instruction sets it may generate.

Syntax

Linux OS and macOS:

-mcode
Windows OS:

None

Arguments

code Indicates to the compiler a feature set that it may target, including
which instruction sets it may generate. Many of the following
descriptions refer to Intel® Streaming SIMD Extensions (Intel® SSE)
and Supplemental Streaming SIMD Extensions (SSSE). Possible values
are:

avx May generate Intel® Advanced Vector
Extensions (Intel® AVX), SSE4.2, SSE4.1,
SSE3, SSE2, SSE, and SSSE3 instructions.

sse4.2 May generate Intel® SSE4.2, SSE4.1, SSE3,
SSE2, SSE, and SSSE3 instructions.

sse4.1 May generate Intel® SSE4.1, SSE3, SSE2,
SSE, and SSSE3 instructions.

ssse3 May generate SSSE3 instructions and Intel®
SSE3, SSE2, and SSE instructions.

sse3 May generate Intel® SSE3, SSE2, and SSE
instructions.

sse2 May generate Intel® SSE2 and SSE
instructions. This value is only available on
Linux systems.

sse This option has been deprecated; it is now
the same as specifying ia32.

ia32 Generates x86/x87 generic code that is
compatible with IA-32 architecture. Disables
any default extended instruction settings,
and any previously set extended instruction
settings. It also disables all feature-specific

Compiler Reference

141

optimizations and instructions. This value is
only available on Linux* systems using IA-32
architecture.

This compiler option also supports many of the -m option settings
available with gcc. For more information on gcc -m settings, see the
gcc documentation.

Default

Linux*
systems:
-msse2
macOS
systems:
-mssse3

For more information on the default values, see Arguments above.

Description

This option tells the compiler which features it may target, including which instruction sets it may generate.

Code generated with these options should execute on any compatible, non-Intel processor with support for
the corresponding instruction set.

Options -x and -m are mutually exclusive. If both are specified, the compiler uses the last one specified and
generates a warning.

Linux* systems: For compatibility with gcc, the compiler allows the following options but they have no effect.
You will get a warning error, but the instructions associated with the name will not be generated. You should
use the suggested replacement options.

gcc Compatibility Option (Linux*) Suggested Replacement Option

-mfma -march=core-avx2

-mbmi, -mavx2, -mlzcnt -march=core-avx2

-mmovbe -march=atom -minstruction=movbe

-mcrc32, -maes, -mpclmul, -mpopcnt -march=corei7

-mvzeroupper -march=corei7-avx

-mfsgsbase, -mrdrnd, -mf16c -march=core-avx-i

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /arch

See Also
x, Qx compiler option
xHost, QxHost compiler option
ax, Qax compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

142

arch compiler option
march compiler option
m32, m64 compiler option

m32, m64, Qm32, Qm64
Tells the compiler to generate code for a specific
architecture.

Syntax

Linux OS:

-m32
-m64
macOS:

-m64
Windows OS:

/Qm32
/Qm64

Arguments

None

Default

OFF The compiler's behavior depends on the host system.

Description

These options tell the compiler to generate code for a specific architecture.

Option Description

-m32 or /Qm32 Tells the compiler to generate code for IA-32
architecture.

-m64 or /Qm64 Tells the compiler to generate code for Intel® 64
architecture.

The -m64 option is the same as macOS option -arch x86_64. This option is not related to the Intel®C++
Compiler option arch.

On Linux* systems, these options are provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

143

m80387
Specifies whether the compiler can use x87
instructions.

Syntax

Linux OS:

-m80387
-mno-80387

macOS:

-m80387
-mno-80387

Windows OS:

None

Arguments

None

Default

-m80387 The compiler may use x87 instructions.

Description

This option specifies whether the compiler can use x87 instructions.

If you specify option -mno-80387, it prevents the compiler from using x87 instructions. If the compiler is
forced to generate x87 instructions, it issues an error message.

IDE Equivalent

None

Alternate Options

-m[no-]x87

march
Tells the compiler to generate code for processors that
support certain features.

Syntax

Linux OS:

-march=processor

macOS:

-march=processor

Windows OS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

144

Arguments

processor Tells the compiler the code it can generate. Possible values are:

alderlake
amberlake
broadwell
cannonlake
cascadelake
coffeelake
cooperlake
goldmont
goldmont-plus
haswell
icelake-client (or
icelake)
icelake-server
ivybridge
kabylake
knl
knm
rocketlake
sandybridge
sapphirerapids
silvermont
skylake
skylake-avx512
tigerlake
tremont
whiskeylake

May generate instructions for processors that support
the specified Intel® processor or microarchitecture code
name.

Keywords knl and silvermont are only available on
Linux* systems.

Keyword icelake is deprecated and may be removed
in a future release.

core-avx2 Generates code for processors that support Intel®
Advanced Vector Extensions 2 (Intel® AVX2), Intel®
AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

core-avx-i Generates code for processors that support Float-16
conversion instructions and the RDRND instruction,
Intel® Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7-avx Generates code for processors that support Intel®
Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7 Generates code for processors that support Intel® SSE4
Efficient Accelerated String and Text Processing
instructions. May also generate code for Intel® SSE4
Vectorizing Compiler and Media Accelerator, Intel®
SSE3, SSE2, SSE, and SSSE3 instructions.

Compiler Reference

145

atom Generates code for processors that support MOVBE
instructions, depending on the setting of option
-minstruction (Linux* and macOS)
or /Qinstruction (Windows*). May also generate
code for SSSE3 instructions and Intel® SSE3, SSE2, and
SSE instructions.

core2 Generates code for the Intel® Core™2 processor family.

pentium4m Generates for Intel® Pentium® 4 processors with MMX
technology.

pentium-m
pentium4
pentium3
pentium

Generates code for Intel® Pentium® processors. Value
pentium3 is only available on Linux* systems.

Default

pentium4 If no architecture option is specified, value pentium4 is used by the compiler to
generate code.

Description

This option tells the compiler to generate code for processors that support certain features.

If you specify both the -ax and -march options, the compiler will not generate Intel-specific instructions.

Specifying -march=pentium4 sets -mtune=pentium4.

For compatibility, a number of historical processor values are also supported, but the generated code will not
differ from the default.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

-march=pentium3 Linux: -xSSE
macOS: None

Windows: None

-march=pentium4
-march=pentium-m

Linux: -xSSE2
macOS: None

Windows: None

-march=core2 Linux: -xSSSE3
macOS: None

 Intel® C++ Compiler Classic Developer Guide and Reference

146

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Windows: None

See Also
xHost, QxHost compiler option
x, Qx compiler option
ax, Qax compiler option
arch compiler option
minstruction, Qinstruction compiler option
m compiler option

masm
Tells the compiler to generate the assembler output
file using a selected dialect.

Syntax

Linux OS:

-masm=dialect
macOS:

None
Windows OS:

None

Arguments

dialect Is the dialect to use for the assembler output file. Possible values are:

att Tells the compiler to generate the assembler
output file using AT&T* syntax.

intel Tells the compiler to generate the assembler
output file using Intel syntax.

Default

-masm=att The compiler generates the assembler output file using AT&T* syntax.

Description

This option tells the compiler to generate the assembler output file using a selected dialect.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

147

mauto-arch, Qauto-arch
Tells the compiler to generate multiple, feature-
specific auto-dispatch code paths for x86 architecture
processors if there is a performance benefit.

Syntax

Linux OS and macOS:

-mauto-arch=value
Windows OS:

/Qauto-arch:value

Arguments

value Is any setting you can specify for option [Q]ax.

Default

OFF No additional execution path is generated.

Description

This option tells the compiler to generate multiple, feature-specific auto-dispatch code paths for x86
architecture processors if there is a performance benefit. It also generates a baseline code path.

This option cannot be used together with any options that may require Intel-specific optimizations (such as
[Q]x or [Q]ax).

IDE Equivalent

None

Alternate Options

None

See Also
ax, Qax compiler option

mbranches-within-32B-boundaries, Qbranches-within-32B-boundaries
Tells the compiler to align branches and fused
branches on 32-byte boundaries for better
performance.

Syntax

Linux OS:

-mbranches-within-32B-boundaries
-mno-branches-within-32B-boundaries
macOS:

-mbranches-within-32B-boundaries
-mno-branches-within-32B-boundaries

 Intel® C++ Compiler Classic Developer Guide and Reference

148

Windows OS:

/Qbranches-within-32B-boundaries
/Qbranches-within-32B-boundaries-

Arguments

None

Default

-mno-branches-within-32B-boundaries
or /Qbranches-within-32B-boundaries-

Branches and fused branches are not aligned on 32-
byte boundaries.

Description

This option tells the compiler to align branches and fused branches on 32-byte boundaries for better
performance.

NOTE
When you use this option, it may affect binary utilities usage experience, such as
debugability.

IDE Equivalent

None

Alternate Options

None

mconditional-branch, Qconditional-branch
Lets you identify and fix code that may be vulnerable
to speculative execution side-channel attacks, which
can leak your secure data as a result of bad
speculation of a conditional branch direction.

Syntax

Linux OS:

-mconditional-branch=keyword

macOS:

-mconditional-branch=keyword

Windows OS:

/Qconditional-branch:keyword

Arguments

keyword Indicates to the compiler what action to take. Possible values are:

keep Tells the compiler to not attempt any vulnerable code detection
or fixing. This is equivalent to not specifying the
-mconditional-branch option.

Compiler Reference

149

pattern-report Tells the compiler to perform a search of vulnerable code
patterns in the compilation and report all occurrences to
stderr.

pattern-fix Tells the compiler to perform a search of vulnerable code
patterns in the compilation and generate code to ensure that
the identified data accesses are not executed speculatively. It
will also report any fixed patterns to stderr.

This setting does not guarantee total mitigation, it only fixes
cases where all components of the vulnerability can be seen or
determined by the compiler. The pattern detection will be more
complete if advanced optimization options are specified or are
in effect, such as option O3 and option -ipo (or /Qipo).

all-fix Tells the compiler to fix all of the vulnerable code so that it is
either not executed speculatively, or there is no observable
side-channel created from their speculative execution. Since it
is a complete mitigation against Spectre variant 1 attacks, this
setting will have the most run-time performance cost.

In contrast to the pattern-fix setting, the compiler will not
attempt to identify the exact conditional branches that may
have led to the mis-speculated execution.

all-fix-lfence This is the same as specifying setting all-fix.

all-fix-cmov Tells the compiler to treat any path where speculative
execution of a memory load creates vulnerability (if
mispredicted). The compiler automatically adds mitigation
code along any vulnerable paths found, but it uses a different
method then the one used for all-fix (or all-fix-lfence).

This method uses CMOVcc instruction execution, which
constrains speculative execution. Thus, it is used for keeping
track of the predicate value, which is updated on each
conditional branch.

To prevent Spectre v.1 attack, each memory load that is
potentially vulnerable is bitwise ORed with the predicate to
mask out the loaded value if the code is on a mispredicted
path.

This is analogous to the Clang compiler's option to do
Speculative Load Hardening.

This setting is only supported on Intel® 64 architecture-based
systems.

Default

-mconditional-branch=keep
and /Qconditional-branch:keep

The compiler does not attempt any vulnerable code
detection or fixing.

 Intel® C++ Compiler Classic Developer Guide and Reference

150

Description

This option lets you identify code that may be vulnerable to speculative execution side-channel attacks,
which can leak your secure data as a result of bad speculation of a conditional branch direction. Depending
on the setting you choose, vulnerabilities may be detected and code may be generated to attempt to mitigate
the security risk.

IDE Equivalent

Visual Studio: Code Generation [Intel C++] > Spectre Variant 1 Mitigation

Eclipse: None

Xcode: None

Alternate Options

None

minstruction, Qinstruction
Determines whether MOVBE instructions are
generated for certain Intel processors.

Syntax

Linux OS and macOS:

-minstruction=[no]movbe
Windows OS:

/Qinstruction:[no]movbe

Arguments

None

Default

–minstruction=nomovbe
or/Qinstruction:nomovbe

The compiler does not generate MOVBE instructions
for Intel Atom® processors.

Description

This option determines whether MOVBE instructions are generated for Intel Atom® processors. To use this
option, you must also specify [Q]xATOM_SSSE3 or [Q]xATOM_SSE4.2.

If -minstruction=movbe or /Qinstruction:movbe is specified, the following occurs:

• MOVBE instructions are generated that are specific to the Intel Atom® processor.
• Generated executables can only be run on Intel Atom® processors or processors that support

Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) or Intel® Streaming SIMD Extensions 4.2
(Intel® SSE4.2) and MOVBE.

If -minstruction=nomovbe or /Qinstruction:nomovbe is specified, the following occurs:

• The compiler optimizes code for the Intel Atom® processor, but it does not generate MOVBE instructions.
• Generated executables can be run on non-Intel Atom® processors that support Intel® SSE3 or Intel®

SSE4.2.

Compiler Reference

151

IDE Equivalent

None

Alternate Options

None

See Also
x, Qx compiler option

momit-leaf-frame-pointer
Determines whether the frame pointer is omitted or
kept in leaf functions.

Syntax

Linux OS:

-momit-leaf-frame-pointer
-mno-omit-leaf-frame-pointer

macOS:

-momit-leaf-frame-pointer
-mno-omit-leaf-frame-pointer

Windows OS:

None

Arguments

None

Default

Varies If you specify option -fomit-frame-pointer (or it is set by default), the default is
-momit-leaf-frame-pointer. If you specify option -fno-omit-frame-pointer, the default is
-mno-omit-leaf-frame-pointer.

Description

This option determines whether the frame pointer is omitted or kept in leaf functions. It is related to option
-f[no-]omit-frame-pointer and the setting for that option has an effect on this option.

Consider the following option combinations:

Option Combination Result

-fomit-frame-pointer -momit-leaf-frame-pointer
or

-fomit-frame-pointer -mno-omit-leaf-frame-pointer

Both combinations are the same as
specifying -fomit-frame-pointer.
Frame pointers are omitted for all
routines.

-fno-omit-frame-pointer -momit-leaf-frame-pointer In this case, the frame pointer is omitted
for leaf routines, but other routines will
keep the frame pointer.

 Intel® C++ Compiler Classic Developer Guide and Reference

152

Option Combination Result

This is the intended effect of option
-momit-leaf-frame-pointer.

-fno-omit-frame-pointer -mno-omit-leaf-frame-pointer In this case,
-mno-omit-leaf-frame-pointer is
ignored since
-fno-omit-frame-pointer retains
frame pointers in all routines .

This combination is the same as
specifying -fno-omit-frame-pointer.

This option is provided for compatibility with gcc.

IDE Equivalent

Visual Studio: None

Eclipse: Optimization > Omit frame pointer for leaf routines

Xcode: Optimization > Provide Frame Pointer For Leaf Routines

Alternate Options

None

See Also
fomit-frame-pointer, Oy compiler option

mregparm
Lets you control the number registers used to pass
integer arguments.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-mregparm=n
macOS:

None
Windows OS:

None

Arguments

n Specifies the number of registers to use when passing integer
arguments. You can specify at most 3 registers. If you specify a
nonzero value for n, you must build all modules, including startup
modules, and all libraries, including system libraries, with the same
value.

Compiler Reference

153

Default

OFF The compiler does not use registers to pass arguments.

Description

Control the number registers used to pass integer arguments. This option is provided for compatibility with
gcc.

IDE Equivalent

None

Alternate Options

None

See Also
mregparm-version compiler option

mregparm-version
Determines which version of the Application Binary
Interface (ABI) is used for the regparm parameter
passing convention.

Syntax

Linux OS:

-mregparm-version=n
macOS:
macOS:

None
Windows OS:

None

Arguments

n Specifies the ABI implementation to use. Possible values are:

0 Tells the compiler to use the most recent ABI
implementation.

1 Tells the compiler to use the ABI
implementation that is compatible with gcc
3.4.6 and icc 15.0.

Default

0 The compiler uses the most recent ABI implementation.

Description

This option determines which version of the Application Binary Interface (ABI) is used for the regparm
parameter passing convention. This option allows compatibility with previous versions of gcc and icc.

 Intel® C++ Compiler Classic Developer Guide and Reference

154

IDE Equivalent

None

Alternate Options

None

See Also
mregparm compiler option

mstringop-inline-threshold, Qstringop-inline-threshold
Tells the compiler to not inline calls to buffer
manipulation functions such as memcpy and memset
when the number of bytes the functions handle are
known at compile time and greater than the specified
value.

Syntax

Linux OS:

-mstringop-inline-threshold=val
macOS:

-mstringop-inline-threshold=val
Windows OS:

/Qstringop-inline-threshold:val

Arguments

val Is a positive 32-bit integer. If the size is greater than val, the compiler
will never inline it.

Default

OFF The compiler uses its own heuristics to determine the default.

Description

This option tells the compiler to not inline calls to buffer manipulation functions such as memcpy and memset
when the number of bytes the functions handle are known at compile time and greater than the specified val.

IDE Equivalent

None

Alternate Options

None

See Also
mstringop-strategy, Qstringop-strategy compiler option

Compiler Reference

155

mstringop-strategy, Qstringop-strategy
Lets you override the internal decision heuristic for the
particular algorithm used when implementing buffer
manipulation functions such as memcpy and memset.

Syntax

Linux OS and macOS:

-mstringop-strategy=alg
Windows OS:

/Qstringop-strategy:alg

Arguments

alg Specifies the algorithm to use. Possible values are:

const_size_loop Tells the compiler to expand the string operations into an inline
loop when the size is known at compile time and it is not
greater than threshold value. Otherwise, the compiler uses its
own heuristics to decide how to implement the string
operation.

libcall Tells the compiler to use a library call when implementing
string operations.

rep Tells the compiler to use its own heuristics to decide what form
of rep movs | stos to use when inlining string operations.

Default

varies If optimization option Os is specified, the default is rep. Otherwise, the default is
const_size_loop.

Description

This option lets you override the internal decision heuristic for the particular algorithm used when
implementing buffer manipulation functions such as memcpy and memset.

This option may have no effect on compiler-generated string functions, for example, a call to memcpy
generated by the compiler to implement an array copy or structure copy.

IDE Equivalent

None

Alternate Options

None

See Also
mstringop-inline-threshold, Qstringop-inline-threshold compiler option
Os compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

156

mtune, tune
Performs optimizations for specific processors but
does not cause extended instruction sets to be used
(unlike -march).

Syntax

Linux OS:

-mtune=processor
macOS:

-mtune=processor
Windows OS:

/tune:processor

Arguments

processor Is the processor for which the compiler should perform optimizations. Possible values
are:

generic Optimizes code for the compiler's default behavior.

alderlake
amberlake
broadwell
cannonlake
cascadelake
coffeelake
cooperlake
goldmont
goldmont-plus
haswell
icelake-client (or
icelake)
icelake-server
ivybridge
kabylake
knl
knm
rocketlake
sandybridge
sapphirerapids
silvermont
skylake
skylake-avx512
tigerlake
tremont
whiskeylake

Optimizes code for processors that support the
specified Intel® processor or microarchitecture code
name.

Keywords knl and silvermont are only available on
Windows* and Linux* systems.

Keyword icelake is deprecated and may be removed
in a future release.

Compiler Reference

157

core-avx2 Optimizes code for processors that support Intel®
Advanced Vector Extensions 2 (Intel® AVX2), Intel®
AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

core-avx-i Optimizes code for processors that support Float-16
conversion instructions and the RDRND instruction,
Intel® Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7-avx Optimizes code for processors that support Intel®
Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7 Optimizes code for processors that support Intel® SSE4
Efficient Accelerated String and Text Processing
instructions. May also generate code for Intel® SSE4
Vectorizing Compiler and Media Accelerator, Intel®
SSE3, SSE2, SSE, and SSSE3 instructions.

atom Optimizes code for processors that support MOVBE
instructions, depending on the setting of option
-minstruction (Linux* and macOS)
or /Qinstruction (Windows*). May also generate
code for SSSE3 instructions and Intel® SSE3, SSE2, and
SSE instructions.

core2 Optimizes for the Intel® Core™2 processor family,
including support for MMX™, Intel® SSE, SSE2, SSE3
and SSSE3 instruction sets.

pentium-mmx Optimizes for Intel® Pentium® with MMX technology.

pentiumpro Optimizes for Intel® Pentium® Pro, Intel Pentium II, and
Intel Pentium III processors.

pentium4m Optimizes for Intel® Pentium® 4 processors with MMX
technology.

pentium-m
pentium4
pentium3
pentium

Optimizes code for Intel® Pentium® processors. Value
pentium3 is only available on Linux* systems.

Default

generic Code is generated for the compiler's default behavior.

Description

This option performs optimizations for specific processors but does not cause extended instruction sets to be
used (unlike -march).

 Intel® C++ Compiler Classic Developer Guide and Reference

158

The resulting executable is backwards compatible and generated code is optimized for specific processors.
For example, code generated with -mtune=core2 or /tune:core2 will run correctly on 4th Generation Intel®
Core™ processors, but it might not run as fast as if it had been generated using -mtune=haswell
or /tune:haswell. Code generated with -mtune=haswell (/tune:haswell) or -mtune=core-avx2
(/tune:core-avx2) will also run correctly on Intel® Core™2 processors, but it might not run as fast as if it
had been generated using -mtune=core2 or /tune:core2. This is in contrast to code generated with
-march=core-avx2 or /arch:core-avx2, which will not run correctly on older processors such as Intel®
Core™2 processors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Windows

Visual Studio: Code Generation [Intel C++] >Intel Processor Microarchitecture-Specific
Optimization

Linux

Eclipse: Code Generation > Intel Processor Microarchitecture-Specific Optimization

OS X

Xcode: Code Generation > Intel Processor Microarchitecture-Specific Optimization

Alternate Options

-mtune Linux: -mcpu (this is a deprecated option)

macOS: None

Windows: None

See Also
march compiler option

Qcxx-features
Enables standard C++ features without disabling
Microsoft* features.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qcxx-features

Compiler Reference

159

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Arguments

None

Default

OFF The compiler enables standard C++ features.

Description

This option enables standard C++ features without disabling Microsoft* features within the bounds of what is
provided in the Microsoft headers and libraries.

This option has the same effect as specifying /EHsc /GR.

IDE Equivalent

None

Alternate Options

None

Qpatchable-addresses
Tells the compiler to generate code such that
references to statically assigned addresses can be
patched.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qpatchable-addresses

Arguments

None

Default

OFF The compiler does not generate patchable addresses.

Description

This option tells the compiler to generate code such that references to statically assigned addresses can be
patched with arbitrary 64-bit addresses.

Normally, the Windows* system compiler that runs on Intel® 64 architecture uses 32-bit relative addressing
to reference statically allocated code and data. That assumes the code or data is within 2GB of the access
point, an assumption that is enforced by the Windows object format.

 Intel® C++ Compiler Classic Developer Guide and Reference

160

However, in some patching systems, it is useful to have the ability to replace a global address with some
other arbitrary 64-bit address, one that might not be within 2GB of the access point.

This option causes the compiler to avoid 32-bit relative addressing in favor of 64-bit direct addressing so that
the addresses can be patched in place without additional code modifications. This option causes code size to
increase, and since 32-bit relative addressing is usually more efficient than 64-bit direct addressing, you may
see a performance impact.

IDE Equivalent

None

Alternate Options

None

Qsafeseh
Registers exception handlers for safe exception
handling.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

None

macOS:

None

Windows OS:

/Qsafeseh[-]

Arguments

None

Default

ON Exception handlers are enabled for safe exception handling.

Description

Registers exception handlers for safe exception handling. It also marks objects as "compatible with the
Registered Exception Handling feature" whether they contain handlers or not. This is important because the
Windows linker will only generate the "special registered EH table" if ALL objects that it is building into an
image are marked as compatible. If any objects are not marked as compatible, the EH table is not generated.

Digital signatures certify security and are required for components that are shipped with Windows, such as
device drivers.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

161

See Also
/EH compiler option

regcall, Qregcall
Tells the compiler that the __regcall calling convention
should be used for functions that do not directly
specify a calling convention.

Syntax

Linux OS:

-regcall
macOS:

-regcall
Windows OS:

/Qregcall

Arguments

None

Default

OFF The __regcall calling convention will only be used if a function explicitly specifies it.

Description

This option tells the compiler that the __regcall calling convention should be used for functions that do not
directly specify a calling convention. This calling convention ensures that as many values as possible are
passed or returned in registers.

It ensures that __regcall is the default calling convention for functions in the compilation, unless another
calling convention is specified in a declaration.

This calling convention is ignored if it is specified for a function with variable arguments.

Note that all __regcall functions must have prototypes.

IDE Equivalent

None

Alternate Options

None

See Also
C/C++ Calling Conventions

x, Qx
Tells the compiler which processor features it may
target, including which instruction sets and
optimizations it may generate.

 Intel® C++ Compiler Classic Developer Guide and Reference

162

Syntax

Linux OS:

-xcode

macOS:

-xcode

Windows OS:

/Qxcode

Arguments

code Specifies a feature set that the compiler can target, including which instruction sets and
optimizations it may generate. Many of the following descriptions refer to Intel® Streaming
SIMD Extensions (Intel® SSE) and Supplemental Streaming SIMD Extensions (Intel® SSSE).
Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
KNL
KNM
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.
Optimizes for the specified Intel® processor or
microarchitecture code name.

Keywords KNL and SILVERMONT are only available on
Windows* and Linux* systems.

Keyword ICELAKE is deprecated and may be removed in a
future release.

COMMON-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), as well as the
instructions enabled with CORE-AVX2. Optimizes for Intel®
processors that support Intel® AVX-512 instructions.

CORE-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), Intel® AVX-512

Compiler Reference

163

Doubleword and Quadword Instructions (DQI), Intel®
AVX-512 Byte and Word Instructions (BWI) and Intel®
AVX-512 Vector Length extensions, as well as the
instructions enabled with CORE-AVX2. Optimizes for Intel®
processors that support Intel® AVX-512 instructions.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors. Optimizes for
Intel® processors that support Intel® AVX2 instructions.

CORE-AVX-I May generate Float-16 conversion instructions and the
RDRND instruction, Intel® Advanced Vector Extensions
(Intel® AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors. Optimizes for
Intel® processors that support Float-16 conversion
instructions and the RDRND instruction.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors. Optimizes for Intel
processors that support Intel® AVX instructions.

SSE4.2 May generate Intel® SSE4 Efficient Accelerated String and
Text Processing instructions, Intel® SSE4 Vectorizing
Compiler and Media Accelerator, and Intel® SSE3, SSE2,
SSE, and SSSE3 instructions for Intel® processors.
Optimizes for Intel processors that support Intel® SSE4.2
instructions.

SSE4.1 May generate Intel® SSE4 Vectorizing Compiler and Media
Accelerator instructions for Intel® processors. May generate
Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3 instructions
for Intel processors that support Intel® SSE4.1 instructions.

ATOM_SSE4.2 May generate MOVBE instructions for Intel® processors,
depending on the setting of option -minstruction (Linux*
and macOS) or /Qinstruction (Windows*). May also
generate Intel® SSE4.2, SSE3, SSE2, and SSE instructions
for Intel processors. Optimizes for Intel Atom® processors
that support Intel® SSE4.2 and MOVBE instructions.

This keyword is only available on Windows* and Linux*
systems.

ATOM_SSSE3 May generate MOVBE instructions for Intel® processors,
depending on the setting of option -minstruction (Linux*
and macOS) or /Qinstruction (Windows*). May also
generate SSSE3, Intel® SSE3, SSE2, and SSE instructions
for Intel processors. Optimizes for Intel Atom® processors
that support Intel® SSE3 and MOVBE instructions.

This keyword is only available on Windows* and Linux*
systems.

 Intel® C++ Compiler Classic Developer Guide and Reference

164

SSSE3 May generate SSSE3 and Intel® SSE3, SSE2, and SSE
instructions for Intel® processors. Optimizes for Intel
processors that support SSSE3 instructions. For macOS
systems, this value is only supported on Intel® 64
architecture. This replaces value T, which is deprecated.

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions for
Intel® processors. Optimizes for Intel processors that
support Intel® SSE3 instructions. This value is not available
on macOS systems.

SSE2 May generate Intel® SSE2 and SSE instructions for Intel®
processors. Optimizes for Intel processors that support
Intel® SSE2 instructions. This value is not available on
macOS systems.

You can also specify a Host. For more information, see option [Q]xHost.

Default

Windows* systems: None
Linux* systems: None
macOS systems: SSSE3

On Windows systems, if neither /Qx nor /arch is specified, the default
is /arch:SSE2.

On Linux systems, if neither -x nor -m is specified, the default is
-msse2.

Description

This option tells the compiler which processor features it may target, including which instruction sets and
optimizations it may generate. It also enables optimizations in addition to Intel feature-specific optimizations.

The specialized code generated by this option may only run on a subset of Intel® processors.

The resulting executables created from these option code values can only be run on Intel® processors that
support the indicated instruction set.

The binaries produced by these code values will run on Intel® processors that support the specified features.

Do not use code values to create binaries that will execute on a processor that is not compatible with the
targeted processor. The resulting program may fail with an illegal instruction exception or display other
unexpected behavior.

Compiling the function main() with any of the code values produces binaries that display a fatal run-time
error if they are executed on unsupported processors, including all non-Intel processors.

Compiler options m and arch produce binaries that should run on processors not made by Intel that
implement the same capabilities as the corresponding Intel® processors.

The -x and /Qx options enable additional optimizations not enabled with options -m or /arch (nor with
options -ax and /Qax).

On Windows systems, options /Qx and /arch are mutually exclusive. If both are specified, the compiler uses
the last one specified and generates a warning. Similarly, on Linux and macOS systems, options -x and -m
are mutually exclusive. If both are specified, the compiler uses the last one specified and generates a
warning.

Compiler Reference

165

NOTE
All settings except SSE2 do a CPU check. However, if you specify option -O0 (Linux* and
macOS) or option /Od (Windows*), no CPU check is performed.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Intel Processor-Specific Optimization

Eclipse

Eclipse: Code Generation > Intel Processor-Specific Optimization

Xcode

Xcode: Code Generation > Intel Processor-Specific Optimization

Alternate Options

None

See Also
xHost, QxHost compiler option
ax, Qax compiler option
arch compiler option
march compiler option
minstruction, Qinstruction compiler option
m compiler option

xHost, QxHost
Tells the compiler to generate instructions for the
highest instruction set available on the compilation
host processor.

Syntax

Linux OS and macOS:

-xHost
Windows OS:

/QxHost

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

166

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Default

Windows* systems: None
Linux* systems: None
macOS systems: -xSSSE3

On Windows systems, if neither /Qx nor /arch is specified, the default
is /arch:SSE2.

On Linux systems, if neither -x nor -m is specified, the default is
-msse2.

Description

This option tells the compiler to generate instructions for the highest instruction set available on the
compilation host processor.

The instructions generated by this compiler option differ depending on the compilation host processor.

The following table describes the effects of specifying the [Q]xHost option and it tells whether the resulting
executable will run on processors different from the host processor.

Descriptions in the table refer to Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® Advanced Vector
Extensions (Intel® AVX), Intel® Streaming SIMD Extensions (Intel® SSE), and Supplemental Streaming SIMD
Extensions (SSSE).

Instruction Set
of Host
Processor

Effects When the -xHost or /QxHost Compiler Option is Specified

Intel® AVX2 When compiling on Intel® processors:

Corresponds to option [Q]xCORE-AVX2. The generated executable will not run on
non-Intel processors and it will not run on Intel® processors that do not support
Intel® AVX2 instructions.

When compiling on non-Intel processors:

Corresponds to option -march=core-avx2 (Linux* and macOS)
or /arch:CORE-AVX2 (Windows*). The generated executable will run on Intel®
processors and non-Intel processors that support at least Intel® AVX2 instructions..
You may see a run-time error if the run-time processor does not support Intel® AVX2
instructions.

Intel® AVX When compiling on Intel® processors:

Corresponds to option [Q]xAVX. The generated executable will not run on non-Intel
processors and it will not run on Intel® processors that do not support Intel® AVX
instructions.

When compiling on non-Intel processors:

Corresponds to option -mavx (Linux and macOS) or /arch:AVX (Windows). The
generated executable will run on Intel® processors and non-Intel processors that
support at least Intel® AVX instructions. You may see a run-time error if the run-time
processor does not support Intel® AVX instructions.

Intel® SSE4.2 When compiling on Intel® processors:

Corresponds to option [Q]xSSE4.2. The generated executable will not run on non-
Intel processors and it will not run on Intel® processors that do not support Intel®
SSE4.2 instructions.

When compiling on non-Intel processors:

Compiler Reference

167

Instruction Set
of Host
Processor

Effects When the -xHost or /QxHost Compiler Option is Specified

Corresponds to option -msse4.2 (Linux and macOS) or /arch:SSE4.2 (Windows).
The generated executable will run on Intel® processors and non-Intel processors that
support at least Intel® SSE4.2 instructions. You may see a run-time error if the run-
time processor does not support Intel® SSE4.2 instructions.

Intel® SSE4.1 When compiling on Intel® processors:

Corresponds to option [Q]xSSE4.1. The generated executable will not run on non-
Intel processors and it will not run on Intel® processors that do not support Intel®
SSE4.1 instructions.

When compiling on non-Intel processors:

Corresponds to option -msse4.1 (Linux and macOS) or /arch:SSE4.1 (Windows).
The generated executable will run on Intel® processors and non-Intel processors that
support at least Intel® SSE4.1 instructions. You may see a run-time error if the run-
time processor does not support Intel® SSE4.1 instructions.

SSSE3 When compiling on Intel® processors:

Corresponds to option [Q]xSSSE3. The generated executable will not run on non-
Intel processors and it will not run on Intel® processors that do not support SSSE3
instructions.

When compiling on non-Intel processors:

Corresponds to option -mssse3 (Linux and macOS) or /arch:SSSE3 (Windows). The
generated executable will run on Intel® processors and non-Intel processors that
support at least SSSE3 instructions. You may see a run-time error if the run-time
processor does not support SSSE3 instructions.

Intel® SSE3 When compiling on Intel® processors:

Corresponds to option [Q]xSSE3. The generated executable will not run on non-Intel
processors and it will not run on Intel® processors that do not support Intel® SSE3
instructions.

When compiling on non-Intel processors:

Corresponds to option -msse3 (Linux and macOS) or /arch:SSE3 (Windows). The
generated executable will run on Intel® processors and non-Intel processors that
support at least Intel® SSE3 instructions. You may see a warning run-time error if
the run-time processor does not support Intel® SSE3 instructions.

Intel® SSE2 When compiling on Intel® processors or non-Intel processors:

Corresponds to option -msse2 (Linux and macOS) or /arch:SSE2 (Windows). The
generated executable will run on Intel® processors and non-Intel processors that
support at least Intel® SSE2 instructions. You may see a run-time error if the run-
time processor does not support Intel® SSE2 instructions.

For more information on other settings for option [Q]x, see that option description.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

 Intel® C++ Compiler Classic Developer Guide and Reference

168

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Notice revision #20201201

IDE Equivalent

Visual Studio: Code Generation > Intel Processor-Specific Optimization

IDE Equivalent

Visual Studio: Code Generation > Intel Processor-Specific Optimization

Eclipse: Code Generation > Intel Processor-Specific Optimization

Xcode: Code Generation > Intel Processor-Specific Optimization

Alternate Options

None

See Also
x, Qx compiler option
ax, Qax compiler option
m compiler option
arch compiler option

Interprocedural Optimization Options
This section contains descriptions for compiler options that pertain to interprocedural optimization.

ffat-lto-objects
Determines whether a fat link-time optimization (LTO)
object, containing both intermediate language and
object code, is generated during an interprocedural
optimization compilation (-c –ipo).

Syntax

Linux OS:

-ffat-lto-objects
-fno-fat-lto-objects
macOS:

None
Windows OS:

None

Arguments

None

Compiler Reference

169

Default

-ffat-lto-objects When -c -ipo is specified, the compiler generates a fat link-time
optimization (LTO) object that has both a true object and a discardable
intermediate language section.

Description

This option determines whether a fat link time optimization (LTO) object, containing both intermediate
language and object code, is generated during an interprocedural optimization compilation (-c -ipo).

During an interprocedural optimization compilation (-c -ipo), the following occurs:

• If you specify -ffat-lto-objects, the compiler generates a fat link-time optimization (LTO) object that
has both a true object and a discardable intermediate language section. This enables both link-time
optimization (LTO) linking and normal linking.

• If you specify -fno-fat-lto-objects, the compiler generates a fat link-time optimization (LTO) object
that only has a discardable intermediate language section; no true object is generated. This option may
improve compilation time.

Note that these files will be inserted into archives in the form in which they were created.

This option is provided for compatibility with gcc. For more information about this option, see the gcc
documentation.

NOTE
Intel's intermediate language representation is not compatible with gcc's intermediate
language representation.

IDE Equivalent

None

Alternate Options

None

See Also
ipo, Qipo compiler option

ip, Qip
Determines whether additional interprocedural
optimizations for single-file compilation are enabled.

Syntax

Linux OS:

-ip
-no-ip
macOS:

-ip
-no-ip

 Intel® C++ Compiler Classic Developer Guide and Reference

170

Windows OS:

/Qip
/Qip-

Arguments

None

Default

OFF Some limited interprocedural optimizations occur, including inline function expansion for calls to
functions defined within the current source file. These optimizations are a subset of full intra-file
interprocedural optimizations. Note that this setting is not the same as -no-ip (Linux* and
macOS) or /Qip- (Windows*).

Description

This option determines whether additional interprocedural optimizations for single-file compilation are
enabled.

The [Q]ip option enables additional interprocedural optimizations for single-file compilation.

Options -no-ip (Linux and macOS) and /Qip- (Windows) may not disable inlining. To ensure that inlining of
user-defined functions is disabled, specify -inline-level=0or -fno-inline (Linux and macOS), or
specify /Ob0 (Windows). To ensure that inliningof compiler intrinsic functions is disabled, specify
-fno-builtin (Linux and macOS) or /Oi- (Windows).

IDE Equivalent

Windows

Visual Studio: Optimization > Interprocedural Optimization

Linux

Eclipse: Optimization > Enable Interprocedural Optimizations for Single File Compilation

OS X

Xcode: Optimization > Enable Interprocedural Optimization for Single File Compilation

Alternate Options

None

See Also
finline-functions compiler option

ip-no-inlining, Qip-no-inlining
Disables full and partial inlining enabled by
interprocedural optimization options.

Syntax

Linux OS:

-ip-no-inlining

Compiler Reference

171

macOS:

-ip-no-inlining

Windows OS:

/Qip-no-inlining

Arguments

None

Default

OFF Inlining enabled by interprocedural optimization options is performed.

Description

This option disables full and partial inlining enabled by the following interprocedural optimization options:

• On Linux* and macOS systems: -ip or -ipo
• On Windows* systems: /Qip, /Qipo, or /Ob2
It has no effect on other interprocedural optimizations.

On Windows systems, this option also has no effect on user-directed inlining specified by option /Ob1.

IDE Equivalent

None

Alternate Options

None

ip-no-pinlining, Qip-no-pinlining
Disables partial inlining enabled by interprocedural
optimization options.

Syntax

Linux OS:

-ip-no-pinlining

macOS:

-ip-no-pinlining

Windows OS:

/Qip-no-pinlining

Arguments

None

Default

OFF Inlining enabled by interprocedural optimization options is performed.

Description

This option disables partial inlining enabled by the following interprocedural optimization options:

 Intel® C++ Compiler Classic Developer Guide and Reference

172

• On Linux* and macOS systems: -ip or -ipo
• On Windows* systems: /Qip or /Qipo
It has no effect on other interprocedural optimizations.

IDE Equivalent

None

Alternate Options

None

ipo, Qipo
Enables interprocedural optimization between files.

Syntax

Linux OS:

-ipo[n]
-no-ipo
macOS:

-ipo[n]
-no-ipo
Windows OS:

/Qipo[n]
/Qipo-

Arguments

n Is an optional integer that specifies the number of object files the
compiler should create. The integer must be greater than or equal to
0.

Default

-no-ipo or /Qipo- Multifile interprocedural optimization is not enabled.

Description

This option enables interprocedural optimization between files. This is also called multifile interprocedural
optimization (multifile IPO) or Whole Program Optimization (WPO).

When you specify this option, the compiler performs inline function expansion for calls to functions defined in
separate files.

You cannot specify the names for the files that are created.

If n is 0, the compiler decides whether to create one or more object files based on an estimate of the size of
the application. It generates one object file for small applications, and two or more object files for large
applications.

If n is greater than 0, the compiler generates n object files, unless n exceeds the number of source files (m),
in which case the compiler generates only m object files.

If you do not specify n, the default is 0.

Compiler Reference

173

NOTE
When you specify option [Q]ipo with option [q or Q]opt-report, IPO information is
generated in the compiler optimization report at link time. After linking, you will see a report
named ipo_out.optrpt in the folder where you linked all of the object files.

IDE Equivalent

Windows

Visual Studio: Optimization > Interprocedural Optimization

Linux

Eclipse: Optimization > Enable Whole Program Optimization

OS X

Xcode: None

Alternate Options

None

ipo-c, Qipo-c
Tells the compiler to optimize across multiple files and
generate a single object file.

Syntax

Linux OS:

-ipo-c
macOS:

-ipo-c
Windows OS:

/Qipo-c

Arguments

None

Default

OFF The compiler does not generate a multifile object file.

Description

This option tells the compiler to optimize across multiple files and generate a single object file (named
ipo_out.o on Linux* and macOS systems; ipo_out.obj on Windows* systems).

It performs the same optimizations as the [Q]ipo option, but compilation stops before the final link stage,
leaving an optimized object file that can be used in further link steps.

IDE Equivalent

None

 Intel® C++ Compiler Classic Developer Guide and Reference

174

Alternate Options

None

See Also
ipo, Qipo compiler option

ipo-jobs, Qipo-jobs
Specifies the number of commands (jobs) to be
executed simultaneously during the link phase of
Interprocedural Optimization (IPO).

Syntax

Linux OS:

-ipo-jobsn
macOS:

-ipo-jobsn
Windows OS:

/Qipo-jobs:n

Arguments

n Is the number of commands (jobs) to run simultaneously. The number
must be greater than or equal to 1.

Default

-ipo-jobs1
or /Qipo-jobs:1

One command (job) is executed in an interprocedural optimization parallel
build.

Description

This option specifies the number of commands (jobs) to be executed simultaneously during the link phase of
Interprocedural Optimization (IPO). It should only be used if the link-time compilation is generating more
than one object. In this case, each object is generated by a separate compilation, which can be done in
parallel.

This option can be affected by the following compiler options:

• [Q]ipo when applications are large enough that the compiler decides to generate multiple object files.
• [Q]ipon when n is greater than 1.
• [Q]ipo-separate

Caution
Be careful when using this option. On a multi-processor system with lots of memory, it can
speed application build time. However, if n is greater than the number of processors, or if
there is not enough memory to avoid thrashing, this option can increase application build
time.

IDE Equivalent

None

Compiler Reference

175

Alternate Options

None

See Also
ipo, Qipo compiler option
ipo-separate, Qipo-separate compiler option

ipo-S, Qipo-S
Tells the compiler to optimize across multiple files and
generate a single assembly file.

Syntax

Linux OS:

-ipo-S
macOS:

-ipo-S
Windows OS:

/Qipo-S

Arguments

None

Default

OFF The compiler does not generate a multifile assembly file.

Description

This option tells the compiler to optimize across multiple files and generate a single assembly file (named
ipo_out.s on Linux* and macOS systems; ipo_out.asm on Windows* systems).

It performs the same optimizations as the [Q]ipo option, but compilation stops before the final link stage,
leaving an optimized assembly file that can be used in further link steps.

IDE Equivalent

None

Alternate Options

None

See Also
ipo, Qipo compiler option

ipo-separate, Qipo-separate
Tells the compiler to generate one object file for every
source file.

 Intel® C++ Compiler Classic Developer Guide and Reference

176

Syntax

Linux OS:

-ipo-separate
macOS:

None
Windows OS:

/Qipo-separate

Arguments

None

Default

OFF The compiler decides whether to create one or more object files.

Description

This option tells the compiler to generate one object file for every source file. It overrides any [Q]ipo option
specification.

IDE Equivalent

None

Alternate Options

None

See Also
ipo, Qipo compiler option

Advanced Optimization Options
This section contains descriptions for compiler options that pertain to advanced optimization.

alias-const, Qalias-const
Determines whether the compiler assumes a
parameter of type pointer-to-const does not alias with
a parameter of type pointer-to-non-const.

Syntax

Linux OS:

-alias-const
-no-alias-const
macOS:

-alias-const
-no-alias-const

Compiler Reference

177

Windows OS:

/Qalias-const
/Qalias-const-

Arguments

None

Default

-no-alias-const
or /Qalias-const-

The compiler uses standard C/C++ rules for the interpretation of const.

Description

This option determines whether the compiler assumes a parameter of type pointer-to-const does not alias
with a parameter of type pointer-to-non-const. It implies an additional attribute for const.

This functionality complies with the input/output buffer rule, which assumes that input and output buffer
arguments do not overlap. This option allows the compiler to do some additional optimizations with those
parameters.

In C99, you can also get the same result if you additionally declare your pointer parameters with the restrict
keyword.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Assume Restrict Semantics for Const

OS X

Xcode: Data > Assume Restrict Semantics for Const

Alternate Options

None

ansi-alias, Qansi-alias
Enables or disables the use of ANSI aliasing rules in
optimizations.

Syntax

Linux OS:

-ansi-alias
-no-ansi-alias
macOS:

-ansi-alias
-no-ansi-alias

 Intel® C++ Compiler Classic Developer Guide and Reference

178

Windows OS:

/Qansi-alias
/Qansi-alias-

Arguments

None

Default

Windows*
systems:
/Qansi-alias-

ANSI aliasing rules are disabled in optimizations.

Linux* and macOS
systems:
-ansi-alias

ANSI aliasing rules are enabled in optimizations.

Description

This option tells the compiler to assume that the program adheres to ISO C Standard aliasability rules.

If your program adheres to the ANSI aliasability rules, this option allows the compiler to optimize more
aggressively. If your program does not adhere to these rules, this option may cause the compiler to generate
incorrect code.

If you are compiling on a Linux* or an macOS system and your program does not adhere to the ANSI
aliasability rules, you can specify -no-ansi-alias to ensure program correctness.

When you specify the [Q]ansi-alias option, the ansi-alias checker is enabled by default. To disable the
ansi-alias checker, you must specify -no-ansi-alias-check (Linux* and macOS)
or /Qansi-alias-check- (Windows*).

IDE Equivalent

Windows

Visual Studio: Language > Enable Use of ANSI Aliasing Rules in Optimizations

Linux

Eclipse: Language > Enable Use of ANSI Aliasing Rules in Optimizations

OS X

Xcode: Language > Enable ANSI Aliasing

Alternate Options

Linux and macOS: -fstrict-aliasing
Windows: None

See Also
ansi-alias-check, Qansi-alias-check
 compiler option

ansi-alias-check, Qansi-alias-check
Enables or disables the ansi-alias checker.

Compiler Reference

179

Syntax

Linux OS:

-ansi-alias-check
-no-ansi-alias-check
macOS:

-ansi-alias-check
-no-ansi-alias-check
Windows OS:

/Qansi-alias-check
/Qansi-alias-check-

Arguments

None

Default

-no-ansi-alias-check
or
/Qansi-alias-check-

The ansi-alias checker is disabled unless option -ansi-alias-check
or /Qansi-alias-check has been specified.

Description

This option enables or disables the ansi-alias checker. The ansi-alias checker checks the source code for
potential violations of ANSI aliasing rules and disables unsafe optimizations related to the code for those
statements that are identified as potential violations.

You can use option –Wstrict-aliasing to identify potential violations.

If the [Q]ansi-alias option has been specified, the ansi-alias checker is enabled by default. You can use
the negative form of the option (see Syntax above) to disable the checker.

IDE Equivalent

None

Alternate Options

None

See Also
ansi-alias, Qansi-alias
 compiler option

Wstrict-aliasing
 compiler option

complex-limited-range, Qcomplex-limited-range
Determines whether the use of basic algebraic
expansions of some arithmetic operations involving
data of type COMPLEX is enabled.

 Intel® C++ Compiler Classic Developer Guide and Reference

180

Syntax

Linux OS:

-complex-limited-range
-no-complex-limited-range

macOS:

-complex-limited-range
-no-complex-limited-range

Windows OS:

/Qcomplex-limited-range
/Qcomplex-limited-range-

Arguments

None

Default

-no-complex-limited-range
or /Qcomplex-limited-range-

Basic algebraic expansions of some arithmetic operations
involving data of type COMPLEX are disabled.

Description

This option determines whether the use of basic algebraic expansions of some arithmetic operations involving
data of type COMPLEX is enabled.

When the option is enabled, this can cause performance improvements in programs that use a lot of
COMPLEX arithmetic. However, values at the extremes of the exponent range may not compute correctly.

IDE Equivalent

Windows

Visual Studio: Floating Point > Limit COMPLEX Range

Linux

Eclipse: Floating Point > Limit COMPLEX Range

OS X

Xcode: Floating Point > Limit COMPLEX Range

Alternate Options

None

fargument-alias, Qalias-args
Determines whether function arguments can alias
each other.

Syntax

Linux OS and macOS:

-fargument-alias

Compiler Reference

181

-fargument-noalias
Windows OS:

/Qalias-args
/Qalias-args-

Arguments

None

Default

-fargument-alias
or
/Qalias-args

Function arguments can alias each other and can alias global storage.

Description

This option determines whether function arguments can alias each other. If you specify
-fargument-noalias or /Qalias-args-, function arguments cannot alias each other, but they can alias
global storage.

On Linux and macOS systems, you can also disable aliasing for global storage, by specifying option
-fargument-noalias-global.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Enable Argument Aliasing

OS X

Xcode: Data > Enable Argument Aliasing

See Also
fargument-noalias-global compiler option

fargument-noalias-global
Tells the compiler that function arguments cannot
alias each other and cannot alias global storage.

Syntax

Linux OS and macOS:

-fargument-noalias-global
Windows OS:

None

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

182

Default

OFF Function arguments can alias each other and can alias global storage.

Description

This option tells the compiler that function arguments cannot alias each other and they cannot alias global
storage.

If you only want to prevent function arguments from being able to alias each other, specify option
-fargument-noalias.

IDE Equivalent

None

Alternate Options

None

See Also
fargument-alias, Qalias-args
 compiler option

ffreestanding, Qfreestanding
Ensures that compilation takes place in a freestanding
environment.

Syntax

Linux OS:

-ffreestanding
macOS:

-ffreestanding
Windows OS:

/Qfreestanding

Arguments

None

Default

OFF Standard libraries are used during compilation.

Description

This option ensures that compilation takes place in a freestanding environment. The compiler assumes that
the standard library may not exist and program startup may not necessarily be at main. This environment
meets the definition of a freestanding environment as described in the C and C++ standard.

An example of an application requiring such an environment is an OS kernel.

Compiler Reference

183

NOTE
When you specify this option, the compiler will not assume the presence of compiler-specific
libraries. It will only generate calls that appear in the source code.

IDE Equivalent

None

Alternate Options

None

fjump-tables
Determines whether jump tables are generated for
switch statements.

Syntax

Linux OS:

-fjump-tables
-fno-jump-tables

macOS:

-fjump-tables
-fno-jump-tables

Windows OS:

None

Arguments

None

Default

-fjump-tables The compiler may use jump tables for switch statements.

Description

This option determines whether jump tables are generated for switch statements.

Option -fno-jump-tables prevents the compiler from generating jump tables for switch statements. This
action is performed unconditionally and independent of any generated code performance consideration.

Option -fno-jump-tables also prevents the compiler from creating switch statements internally as a result
of optimizations.

Use -fno-jump-tables with -fpic when compiling objects that will be loaded in a way where the jump
table relocation cannot be resolved.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

184

See Also
fpic compiler option

ftls-model
Changes the thread local storage (TLS) model.

Syntax

Linux OS:

-ftls-model=model

macOS:

-ftls-model=model

Windows OS:

None

Arguments

model Determines the TLS model used by the compiler. Possible values are:

global-dynamic Generates a generic TLS code. The code can
be used everywhere and the code can access
variables defined anywhere else. This setting
causes the largest size code to be generated
and uses the most run time to produce.

local-dynamic Generates an optimized TLS code. To use
this setting, the thread-local variables must
be defined in the same object in which they
are referenced.

initial-exec Generates a restrictive, optimized TLS code.
To use this setting, the thread-local variables
accessed must be defined in one of the
modules available to the program.

local-exec Generates the most restrictive TLS code. To
use this setting, the thread-local variables
must be defined in the executable.

Default

OFF The compiler uses default heuristics when determining the thread-local storage model.

Description

This option changes the thread local storage (TLS) model. Thread-local storage is a mechanism by which
variables are allocated in a way that causes one instance of the variable per extant thread.

For more information on the thread-storage localization models, see the appropriate GCC* documentation.

For more information on the thread-storage localization models, see the appropriate Clang documentation.

IDE Equivalent

None

Compiler Reference

185

Alternate Options

None

funroll-all-loops
Unroll all loops even if the number of iterations is
uncertain when the loop is entered.

Syntax

Linux OS and macOS:

-funroll-all-loops
Windows OS:

None

Arguments

None

Default

OFF Do not unroll all loops.

Description

Unroll all loops, even if the number of iterations is uncertain when the loop is entered. There may a
performance impact with this option.

IDE Equivalent

None

Alternate Options

None

guide, Qguide
Lets you set a level of guidance for auto-vectorization,
auto parallelism, and data transformation.

Syntax

Linux OS:

-guide[=n]
macOS:

-guide[=n]
Windows OS:

/Qguide[:n]

Arguments

n Is an optional value specifying the level of guidance to be provided.

 Intel® C++ Compiler Classic Developer Guide and Reference

186

The values available are 1 through 4. Value 1 indicates a standard
level of guidance. Value 4 indicates the most advanced level of
guidance. If n is omitted, the default is 4.

Default

OFF You do not receive guidance about how to improve optimizations for
parallelism, vectorization, and data transformation.

Description

This option lets you set a level of guidance (advice) for auto-vectorization, auto parallelism, and data
transformation. It causes the compiler to generate messages suggesting ways to improve these
optimizations.

When this option is specified, the compiler does not produce any objects or executables.

You must also specify the [Q]parallel option to receive auto parallelism guidance.

You can set levels of guidance for the individual guide optimizations by specifying one of the following
options:

[Q]guide-data-trans Provides guidance for data transformation.

[Q]guide-par Provides guidance for auto parallelism.

[Q]guide-vec Provides guidance for auto-vectorization.

If you specify the [Q]guide option and also specify one of the options setting a level of guidance for an
individual guide optimization, the value set for the individual guide optimization will override the setting
specified in [Q]guide.

If you do not specify [Q]guide, but specify one of the options setting a level of guidance for an individual
guide optimization, option [Q]guide is enabled with the greatest value passed among any of the three
individual guide optimizations specified.

In debug mode, this option has no effect unless option O2 (or higher) is explicitly specified in the same
command line.

NOTE
The compiler speculatively performs optimizations as part of guide analysis. As a result,
when you use guided auto-parallelism options with options that produce vectorization or
auto-parallelizer reports (such as option [q or Q]opt-report), the compiler generates
"LOOP WAS VECTORIZED" or similar messages as if the compilation was performed with the
recommended changes.

When compilation is performed with the [Q]guide option, you should use extra caution when
interpreting vectorizer diagnostics and auto-parallelizer diagnostics.

NOTE
You can specify [Q]diag-disable to prevent the compiler from issuing one or more
diagnostic messages.

Compiler Reference

187

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Guided Auto Parallelism Analysis

Eclipse

Eclipse: Compilation Diagnostics > Enable Guided Auto Parallelism Analysis

Xcode

Xcode: Diagnostics > Enable Guided Auto Parallelism Analysis

Alternate Options

None

See Also
guide-data-trans, Qguide-data-trans compiler option
guide-par, Qguide-par compiler option
guide-vec, Qguide-vec compiler option
guide-file, Qguide-file compiler option
guide-file-append, Qguide-file-append compiler option
guide-opts, Qguide-opts compiler option
diag, Qdiag compiler option
qopt-report, Qopt-report compiler option

guide-data-trans, Qguide-data-trans
Lets you set a level of guidance for data
transformation.

Syntax

Linux OS:

-guide-data-trans[=n]

macOS:

-guide-data-trans[=n]

Windows OS:

/Qguide-data-trans[:n]

Arguments

n Is an optional value specifying the level of guidance to be provided.

The values available are 1 through 4. Value 1 indicates a standard
level of guidance. Value 4 indicates the most advanced level of
guidance. If n is omitted, the default is 4.

Default

OFF You do not receive guidance about how to improve optimizations for data
transformation.

 Intel® C++ Compiler Classic Developer Guide and Reference

188

Description

This option lets you set a level of guidance for data transformation. It causes the compiler to generate
messages suggesting ways to improve that optimization.

IDE Equivalent

None

Alternate Options

None

See Also
guide, Qguide compiler option
guide-par, Qguide-par compiler option
guide-vec, Qguide-vec compiler option
guide-file, Qguide-file compiler option

guide-file, Qguide-file
Causes the results of guided auto parallelism to be
output to a file.

Syntax

Linux OS:

-guide-file[=filename]
macOS:

-guide-file[=filename]
Windows OS:

/Qguide-file[:filename]

Arguments

filename Is the name of the file for output. It can include a path.

Default

OFF Messages that are generated by guided auto parallelism are output to stderr.

Description

This option causes the results of guided auto parallelism to be output to a file.

This option is ignored unless you also specify one or more of the following options:

• [Q]guide
• [Q]guide-vec
• [Q]guide-data-trans
• [Q]guide-par
If you do not specify a path, the file is placed in the current working directory.

If there is already a file named filename, it will be overwritten.

Compiler Reference

189

You can include a file extension in filename. For example, if file.txt is specified, the name of the output file is
file.txt. If you do not provide a file extension, the name of the file is filename.guide.

If you do not specify filename, the name of the file is name-of-the-first-source-file.guide. This is also the
name of the file if the name specified for filename conflicts with a source file name provided in the command
line.

NOTE
If you specify the [Q]guide-file option and you also specify option [Q]guide-file-append,
the last option specified on the command line takes precedence.

IDE Equivalent

Windows

Visual Studio: Diagnostics > Emit Guided Auto Parallelism Diagnostics to File

Diagnostics > Guided Auto Parallelism Diagnostics File

Linux

Eclipse: Compilation Diagnostics > Emit Guided Auto Parallelism diagnostics to File

Compilation Diagnostics > Guided Auto Parallelism Report File

OS X

Xcode: Diagnostics > Emit Guided Auto Parallelism diagnostics to File

Diagnostics > Guided Auto Parallelism Report File

Alternate Options

None

Example
The following example shows how to cause guided auto parallelism messages to be output to a file named
my_guided_autopar.guide:

-guide-file=my_guided_autopar ! Linux and macOS systems
/Qguide-file:my_guided_autopar ! Windows systems

See Also
guide, Qguide compiler option
guide-file-append, Qguide-file-append compiler option

guide-file-append, Qguide-file-append
Causes the results of guided auto parallelism to be
appended to a file.

Syntax

Linux OS:

-guide-file-append[=filename]
macOS:

-guide-file-append[=filename]

 Intel® C++ Compiler Classic Developer Guide and Reference

190

Windows OS:

/Qguide-file-append[:filename]

Arguments

filename Is the name of the file to be appended to. It can include a path.

Default

OFF Messages that are generated by guided auto parallelism are output to stderr.

Description

This option causes the results of guided auto parallelism to be appended to a file.

This option is ignored unless you also specify one or more of the following options:

• [Q]guide
• [Q]guide-vec
• [Q]guide-data-trans
• [Q]guide-par
If you do not specify a path, the compiler looks for filename in the current working directory.

If filename is not found, then a new file with that name is created in the current working directory.

If you do not specify a file extension, the name of the file is filename.guide.

If the name specified for filename conflicts with a source file name provided in the command line, the name
of the file is name-of-the-first-source-file.guide.

NOTE
If you specify the [Q]guide-file-append option and you also specify option [Q]guide-file,
the last option specified on the command line takes precedence.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows how to cause guided auto parallelism messages to be appended to a file named
my_messages.txt:

-guide-file-append=my_messages.txt ! Linux and macOS systems
/Qguide-file-append:my_messages.txt ! Windows systems

See Also
guide, Qguide compiler option
guide-file, Qguide-file compiler option

Compiler Reference

191

guide-opts, Qguide-opts
Tells the compiler to analyze certain code and
generate recommendations that may improve
optimizations.

Syntax

Linux OS:

-guide-opts=string
macOS:

-guide-opts=string
Windows OS:

/Qguide-opts:string

Arguments

string Is the text denoting the code to analyze. The string must appear within quotes. It can take
one or more of the following forms:

filename
filename, routine
filename, range [, range]...
filename, routine, range [, range]...

If you specify more than one of the above forms in a string, a semicolon must appear
between each form. If you specify more than one range in a string, a comma must appear
between each range. Optional blanks can follow each parameter in the forms above and
they can also follow each form in a string.

filename Specifies the name of a file to be analyzed. It can include a
path.

If you do not specify a path, the compiler looks for
filename in the current working directory.

routine Specifies the name of a routine to be analyzed. You can
include an identifying parameter.

The name, including any parameter, must be enclosed in
single quotes.

The compiler tries to uniquely identify the routine that
corresponds to the specified routine name. It may select
multiple routines to analyze, especially if the following is
true:

• More than one routine has the specified routine name,
so the routine cannot be uniquely identified.

• No parameter information has been specified to narrow
the number of routines selected as matches.

range Specifies a range of line numbers to analyze in the file or
routine specified. The range must be specified in integers
in the form:

 Intel® C++ Compiler Classic Developer Guide and Reference

192

first_line_number-last_line_number

The hyphen between the line numbers is required.

Default

OFF You do not receive guidance on how to improve optimizations. However, if you specify the
[Q]guide option, the compiler analyzes and generates recommendations for all the code in an
application

Description

This option tells the compiler to analyze certain code and generate recommendations that may improve
optimizations.

This option is ignored unless you also specify one or more of the following options:

• [Q]guide
• [Q]guide-vec
• [Q]guide-data-trans
• [Q]guide-par
When the [Q]guide-opts option is specified, a message is output that includes which parts of the input files
are being analyzed. If a routine is selected to be analyzed, the complete routine name will appear in the
generated message.

When inlining is involved, you should specify callee line numbers. Generated messages also use callee line
numbers.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Guided Auto Parallelism Code Selection Options

Eclipse

Eclipse: Compilation Diagnostics > Guided Auto Parallelism Code Selection

Xcode

Xcode: Diagnostics > Guided Auto Parallelism Code Selection

Alternate Options

None

Example
Consider the following:

Linux*: -guide-opts="v.c, 1-10; v2.c, 1-40, 50-90, 100-200; v5.c, 300-400; x.c, 'funca(int)',
22-44, 55-77, 88-99; y.c, 'funcb'"
Windows*: /Qguide-opts:"v.c, 1-10; v2.c, 1-40, 50-90, 100-200; v5.c, 300-400; x.c, 'funca(int)',
22-44, 55-77, 88-99; y.c, 'funcb'"

The above command causes the following to be analyzed:

file v.c, line numbers 1 to 10
file v2.c, line numbers 1 to 40, 50 to 90, and 100 to 200
file v5.c, line numbers 300 to 400

Compiler Reference

193

file x.c, routine funca with parameter (int), line numbers 22 to 44, 55 to 77, and 88 to 99
file y.c, routine funcb

See Also
guide, Qguide compiler option
guide-data-trans, Qguide-data-trans compiler option
guide-par, Qguide-par compiler option
guide-vec, Qguide-vec compiler option
guide-file, Qguide-file compiler option

guide-par, Qguide-par
Lets you set a level of guidance for auto parallelism.

Syntax

Linux OS:

-guide-par[=n]
macOS:

-guide-par[=n]
Windows OS:

/Qguide-par[:n]

Arguments

n Is an optional value specifying the level of guidance to be provided.

The values available are 1 through 4. Value 1 indicates a standard
level of guidance. Value 4 indicates the most advanced level of
guidance. If n is omitted, the default is 4.

Default

OFF You do not receive guidance about how to improve optimizations for
parallelism.

Description

This option lets you set a level of guidance for auto parallelism. It causes the compiler to generate messages
suggesting ways to improve that optimization.

You must also specify the [Q]parallel option to receive auto parallelism guidance.

IDE Equivalent

None

Alternate Options

None

See Also
guide, Qguide compiler option
guide-data-trans, Qguide-data-trans compiler option
guide-vec, Qguide-vec compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

194

guide-file, Qguide-file compiler option

guide-vec, Qguide-vec
Lets you set a level of guidance for auto-vectorization.

Syntax

Linux OS:

-guide-vec[=n]
macOS:

-guide-vec[=n]
Windows OS:

/Qguide-vec[:n]

Arguments

n Is an optional value specifying the level of guidance to be provided.

The values available are 1 through 4. Value 1 indicates a standard
level of guidance. Value 4 indicates the most advanced level of
guidance. If n is omitted, the default is 4.

Default

OFF You do not receive guidance about how to improve optimizations for
vectorization.

Description

This option lets you set a level of guidance for auto-vectorization. It causes the compiler to generate
messages suggesting ways to improve that optimization.

IDE Equivalent

None

Alternate Options

None

See Also
guide, Qguide compiler option
guide-data-trans, Qguide-data-trans compiler option
guide-par, Qguide-par compiler option
guide-file, Qguide-file compiler option

ipp-link, Qipp-link
Controls whether the compiler links to static or
dynamic threaded Intel® Integrated Performance
Primitives (Intel® IPP) run-time libraries.

Compiler Reference

195

Syntax

Linux OS:

-ipp-link[=lib]
macOS:

-ipp-link[=lib]
Windows OS:

/Qipp-link[:lib]

Arguments

lib Specifies the Intel® IPP library to use. Possible values are:

static Tells the compiler to link to the set of static
run-time libraries.

dynamic Tells the compiler to link to the set of
dynamic threaded run-time libraries.

Default

dynamic The compiler links to the Intel® IPP set of dynamic run-time libraries.
However, if Linux* option -static is specified, the compiler links to the set
of static run-time libraries.

Description

This option controls whether the compiler links to static or dynamic threaded Intel® Integrated Performance
Primitives (Intel® IPP) run-time libraries.

To use this option, you must also specify the [Q]ipp option.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
ipp, Qipp compiler option

qdaal, Qdaal
Tells the compiler to link to certain libraries in the
Intel® oneAPI Data Analytics Library (oneDAL).

 Intel® C++ Compiler Classic Developer Guide and Reference

196

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Syntax

Linux OS:

-qdaal[=lib]

macOS:

-qdaal[=lib]

Windows OS:

/Qdaal[:lib]

Arguments

lib Indicates which oneDAL library files should be linked. Possible values
are:

parallel Tells the compiler to link using the threaded
oneDAL libraries. This is the default if the
option is specified with no lib.

sequential Tells the compiler to link using the non-
threaded oneDAL libraries.

Default

OFF The compiler does not link to the oneDAL.

Description

This option tells the compiler to link to certain libraries in the Intel® oneAPI Data Analytics Library (oneDAL).

On Linux* and macOS systems, the associated oneDAL headers are included when you specify this option.

NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. You do not need to specify a separate link
command.

On Linux* and macOS systems, the driver must add the library names explicitly to the link command.
You must use option -qdaal to perform the link to pull in the dependent libraries.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Performance Library Build Components -> Use Intel® oneAPI Data Analytics Library

Compiler Reference

197

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Xcode

Xcode: Performance Library Build Components -> Use Intel® oneAPI Data Analytics Library

Alternate Options

Linux: -daal (this is a deprecated option)

See Also
Using Intel® Performance Libraries

qipp, Qipp
Tells the compiler to link to some or all of the Intel®
Integrated Performance Primitives (Intel® IPP)
libraries.

Syntax

Linux OS:

-qipp[=lib]
macOS:

-qipp[=lib]
Windows OS:

/Qipp[:lib]

Arguments

lib Indicates the Intel® IPP libraries that the compiler should link to.
Possible values are:

common Tells the compiler to link using the main
libraries set. This is the default if the option
is specified with no lib.

crypto Tells the compiler to link using the Intel®
Integrated Performance Primitives
Cryptography (Intel® IPP Cryptography)
libraries.

nonpic (Linux* only) Tells the compiler to link using the version of
the libraries that do not have position-
independent code.

nonpic_crypto (Linux
only)

Tells the compiler to link using the Intel® IPP
Cryptography libraries. It uses the version of
the libraries that do not have position-
independent code.

Default

OFF The compiler does not link to the Intel® IPP libraries.

 Intel® C++ Compiler Classic Developer Guide and Reference

198

Description

The option tells the compiler to link to some or all of the Intel® IPP libraries and include the Intel® IPP
headers.

The [Q]ipp-link option controls whether the compiler links to static, dynamic threaded, or static threaded
Intel® IPP runtime libraries.

NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. You do not need to specify a separate link
command.

On Linux* and macOS systems, the driver must add the library names explicitly to the link command.
You must use option qipp to perform the link to pull in the dependent libraries.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Performance Library Build Components > Use Intel(R) Integrated Performance Primitives
Libraries

Xcode

Xcode: Performance Library Build Components > Use Intel® Integrated Performance Primitives
Libraries

Alternate Options

Linux: -qipp (this is a deprecated option)

See Also
ipp-link, Qipp-link compiler option

qmkl, Qmkl
Tells the compiler to link to certain libraries in the
Intel® oneAPI Math Kernel Library (oneMKL). On
Windows systems, you must specify this option at
compile time.

Syntax

Linux OS:

-qmkl[=lib]

Compiler Reference

199

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

macOS:

-qmkl[=lib]
Windows OS:

/Qmkl[:lib]

Arguments

lib Indicates which oneMKL library files should be linked. Possible values are:

parallel Tells the compiler to link using the threaded libraries in
oneMKL. This is the default if the option is specified with no
lib.

sequential Tells the compiler to link using the sequential libraries in
oneMKL.

cluster Tells the compiler to link using the cluster-specific libraries
and the sequential libraries in oneMKL. Cluster-specific
libraries are not available for macOS.

Default

OFF The compiler does not link to the oneMKL library.

Description

This option tells the compiler to link to certain libraries in the Intel® oneAPI Math Kernel Library (oneMKL).

On Linux* and macOS systems, dynamic linking is the default when you specify -mkl. To link with oneMKL
statically, you must specify:

-qmkl -static-intel
On Windows* systems, static linking is the default when you specify /Qmkl. To link with oneMKL dynamically,
you must specify:

/Qmkl /MD
For more information about using oneMKL libraries, see the article titled: Intel® oneAPI Math Kernel Library
Link Line Advisor.

NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. On Linux* and macOS systems, the driver
must add the library names explicitly to the link command.

NOTE
If you specify option [q or Q]mkl, or -qmkl=parallel or /Qmkl:parallel, and you also
specify option [Q]tbb, the compiler links to the standard threaded version of oneMKL.

However, if you specify [q or Q]mkl, or -qmkl=parallel or /Qmkl:parallel, and you also specify
option [Q]tbb and option [q or Q]openmp, the compiler links to the OpenMP* threaded version of
oneMKL.

 Intel® C++ Compiler Classic Developer Guide and Reference

200

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html

IDE Equivalent

Visual Studio: None

Eclipse: Performance Library Build Components > Use Intel® oneAPI Math Kernel Library

Xcode: Performance Library Build Components > Use Intel® oneAPI Math Kernel Library

Alternate Options

Linux and macOS: -mkl (this is a deprecated option)

See Also
static-intel compiler option
MD compiler option

qopt-args-in-regs, Qopt-args-in-regs
Determines whether calls to routines are optimized by
passing parameters in registers instead of on the
stack. This is a deprecated option that may be
removed in a future release.

Architecture Restrictions

Only available on IA-32 architecture. IA-32 support has been deprecated, and will be removed in a future
release.

Syntax

Linux OS:

-qopt-args-in-regs[=keyword]

macOS:

None

Windows OS:

/Qopt-args-in-regs[:keyword]

Arguments

keyword Specifies whether the optimization should be performed and under what conditions. Possible
values are:

none The optimization is not performed. No parameters are passed in registers. They
are put on the stack.

seen Causes parameters to be passed in registers when they are passed to routines
whose definition can be seen in the same compilation unit.

all Causes parameters to be passed in registers, whether they are passed to routines
whose definition can be seen in the same compilation unit, or not. This value is
only available on Linux* systems.

Default

-qopt-args-in-regs=seen
or /Qopt-args-in-regs:seen

Parameters are passed in registers when they are passed to routines
whose definition is seen in the same compilation unit.

Compiler Reference

201

Description

This option determines whether calls to routines are optimized by passing parameters in registers instead of
on the stack. It also indicates the conditions when the optimization will be performed.

This is a deprecated option that may be removed in a future release. There is no replacement option.

This option can improve performance for Application Binary Interfaces (ABIs) that require parameters to be
passed in memory and compiled without interprocedural optimization (IPO).

Note that on Linux* systems, if all is specified, a small overhead may be paid when calling "unseen"
routines that have not been compiled with the same option. This is because the call will need to go through a
"thunk" to ensure that parameters are placed back on the stack where the callee expects them.

IDE Equivalent

None

Alternate Options

None

qopt-assume-safe-padding, Qopt-assume-safe-padding
Determines whether the compiler assumes that
variables and dynamically allocated memory are
padded past the end of the object.

Architecture Restrictions

Only available on all architectures that support Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
Foundation instructions

Syntax

Linux OS:

-qopt-assume-safe-padding
-qno-opt-assume-safe-padding
macOS:

-qopt-assume-safe-padding
-qno-opt-assume-safe-padding
Windows OS:

/Qopt-assume-safe-padding
/Qopt-assume-safe-padding-

Arguments

None

Default

-qno-opt-assume-safe-padding
or /Qopt-assume-safe-padding-

The compiler will not assume that variables and dynamically allocated
memory are padded past the end of the object. It will adhere to the
sizes specified in your program.

 Intel® C++ Compiler Classic Developer Guide and Reference

202

Description

This option determines whether the compiler assumes that variables and dynamically allocated memory are
padded past the end of the object.

When you specify option [q or Q]opt-assume-safe-padding, the compiler assumes that variables and
dynamically allocated memory are padded. This means that code can access up to 64 bytes beyond what is
specified in your program.

The compiler does not add any padding for static and automatic objects when this option is used, but it
assumes that code can access up to 64 bytes beyond the end of the object, wherever the object appears in
the program. To satisfy this assumption, you must increase the size of static and automatic objects in your
program when you use this option.

This option may improve performance of memory operations.

IDE Equivalent

None

Alternate Options

None

qopt-block-factor, Qopt-block-factor
Lets you specify a loop blocking factor.

Syntax

Linux OS:

-qopt-block-factor=n
macOS:

-qopt-block-factor=n
Windows OS:

/Qopt-block-factor:n

Arguments

n Is the blocking factor. It must be an integer. The compiler may ignore
the blocking factor if the value is 0 or 1.

Default

OFF The compiler uses default heuristics for loop blocking.

Description

This option lets you specify a loop blocking factor.

IDE Equivalent

Windows

Visual Studio: Diagnostics > Optimization Diagnostic File

Diagnostics > Emit Optimization Diagnostics to File

Compiler Reference

203

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

qopt-calloc
Tells the compiler to substitute a call to
_intel_fast_calloc() for a call to calloc().

Syntax

Linux OS:

-qopt-calloc
-qno-opt-calloc
macOS:

None
Windows OS:

None

Arguments

None

Default

-qno-opt-callocThe compiler does not substitute a call to _intel_fast_calloc() for a call to calloc().

Description

This option tells the compiler to substitute a call to_intel_fast_calloc() for a call to calloc().

This option may increase the performance of long-running programs that use calloc() frequently. It is
recommended for these programs over combinations of options -inline-calloc and
-qopt-malloc-options=3 because this option causes less memory fragmentation.

NOTE
Many routines in the LIBIRC library are more highly optimized for Intel® microprocessors
than for non-Intel microprocessors.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

204

qopt-class-analysis, Qopt-class-analysis
Determines whether C++ class hierarchy information
is used to analyze and resolve C++ virtual function
calls at compile time.

Syntax

Linux OS and macOS:

-qopt-class-analysis
-qno-opt-class-analysis
Windows OS:

/Qopt-class-analysis
/Qopt-class-analysis-

Arguments

None

Default

-qno-opt-class-analysis
or/Qopt-class-analysis-

C++ class hierarchy information is not used to analyze and resolve C+
+ virtual function calls at compile time.

Description

This option determines whether C++ class hierarchy information is used to analyze and resolve C++ virtual
function calls at compile time. The option is turned on by default with the -ipo compiler option, enabling
improved C++ optimization. If a C++ application contains non-standard C++ constructs, such as pointer
down-casting, it may result in different behaviors.

IDE Equivalent

None

Alternate Options

None

qopt-dynamic-align, Qopt-dynamic-align
Enables or disables dynamic data alignment
optimizations.

Syntax

Linux OS:

-qopt-dynamic-align
-qno-opt-dynamic-align
macOS:

-qopt-dynamic-align
-qno-opt-dynamic-align

Compiler Reference

205

Windows OS:

/Qopt-dynamic-align
/Qopt-dynamic-align-

Arguments

None

Default

-qopt-dynamic-align
or /Qopt-dynamic-align

The compiler may generate code dynamically
dependent on alignment. It may do optimizations
based on data location for the best performance. The
result of execution on some algorithms may depend
on data layout.

Description

This option enables or disables dynamic data alignment optimizations.

If you specify -qno-opt-dynamic-align or /Qopt-dynamic-align-, the compiler generates no code
dynamically dependent on alignment. It will not do any optimizations based on data location and results will
depend on the data values themselves.

When you specify [q or Q]qopt-dynamic-align, the compiler may implement conditional optimizations
based on dynamic alignment of the input data. These dynamic alignment optimizations may result in
different bitwise results for aligned and unaligned data with the same values.

Dynamic alignment optimizations can improve the performance of some vectorized code, especially for long
trip count loops, but there is an associated cost of increased code size and compile time. Disabling such
optimizations can improve the performance of some other vectorized code. It may also improve bitwise
reproducibility of results, factoring out data location from possible sources of discrepancy.

IDE Equivalent

None

Alternate Options

None

qopt-jump-tables, Qopt-jump-tables
Enables or disables generation of jump tables for
switch statements.

Syntax

Linux OS:

-qopt-jump-tables=keyword
-qno-opt-jump-tables
macOS:

-qopt-jump-tables=keyword
-qno-opt-jump-tables

 Intel® C++ Compiler Classic Developer Guide and Reference

206

Windows OS:

/Qopt-jump-tables:keyword
/Qopt-jump-tables-

Arguments

keyword Is the instruction for generating jump tables. Possible values are:

never Tells the compiler to never generate jump tables. All switch
statements are implemented as chains of if-then-elses.
This is the same as specifying -qno-opt-jump-tables
(Linux* and macOS) or /Qopt-jump-tables-
(Windows*).

default The compiler uses default heuristics to determine when to
generate jump tables.

large Tells the compiler to generate jump tables up to a certain
pre-defined size (64K entries).

n Must be an integer. Tells the compiler to generate jump
tables up to n entries in size.

Default

-qopt-jump-tables=default
or /Qopt-jump-tables:default

The compiler uses default heuristics to determine
when to generate jump tables for switch statements.

Description

This option enables or disables generation of jump tables for switch statements. When the option is enabled,
it may improve performance for programs with large switch statements.

IDE Equivalent

None

Alternate Options

None

qopt-malloc-options
Lets you specify an alternate algorithm for malloc().

Syntax

Linux OS:

-qopt-malloc-options=n
macOS:

-qopt-malloc-options=n
Windows OS:

None

Compiler Reference

207

Arguments

n Specifies the algorithm to use for malloc(). Possible values are:

0 Tells the compiler to use the default
algorithm for malloc(). This is the default.

1 Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=2 and
M_TRIM_THRESHOLD=0x10000000.

2 Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=2 and
M_TRIM_THRESHOLD=0x40000000.

3 Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=0 and
M_TRIM_THRESHOLD=-1.

4 Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=0,
M_TRIM_THRESHOLD=-1,
M_TOP_PAD=4096.

Default

-qopt-malloc-options=0 The compiler uses the default algorithm when malloc() is called.
No call is made to mallopt().

Description

This option lets you specify an alternate algorithm for malloc().

If you specify a non-zero value for n, it causes alternate configuration parameters to be set for how malloc()
allocates and frees memory. It tells the compiler to insert calls to mallopt() to adjust these parameters to
malloc() for dynamic memory allocation. This may improve speed.

IDE Equivalent

None

Alternate Options

None

See Also
malloc(3) man page

mallopt function (defined in malloc.h)

qopt-matmul, Qopt-matmul
Enables or disables a compiler-generated Matrix
Multiply (matmul) library call.

Syntax

Linux OS:

-qopt-matmul
-qno-opt-matmul

 Intel® C++ Compiler Classic Developer Guide and Reference

208

macOS:

None
Windows OS:

/Qopt-matmul
/Qopt-matmul-

Arguments

None

Default

-qno-opt-matmul
or /Qopt-matmul-

The matmul library call optimization does not occur unless this option is
enabled or certain other compiler options are specified (see below).

Description

This option enables or disables a compiler-generated Matrix Multiply (MATMUL) library call.

The [q or Q]opt-matmul option tells the compiler to identify matrix multiplication loop nests (if any) and
replace them with a matmul library call for improved performance. The resulting executable may improve
performance on Intel® microprocessors.

NOTE
This option is dependent upon the OpenMP* library. If your product does not support
OpenMP, this option will have no effect.

This option has no effect unless option O2 or higher is set.

NOTE
Many routines in the MATMUL library are more highly optimized for Intel® microprocessors
than for non-Intel microprocessors.

IDE Equivalent

Visual Studio

Visual Studio: Optimization > Enable Matrix Multiply Library Call

Eclipse

Eclipse: Optimization > Optimize Matrix Multiplication

Xcode

Xcode: None

Alternate Options

None

See Also
O compiler option

Compiler Reference

209

qopt-mem-layout-trans, Qopt-mem-layout-trans
Controls the level of memory layout transformations
performed by the compiler.

Syntax

Linux OS:

-qopt-mem-layout-trans[=n]
-qno-opt-mem-layout-trans
macOS:

-qopt-mem-layout-trans[=n]
-qno-opt-mem-layout-trans
Windows OS:

/Qopt-mem-layout-trans[:n]
/Qopt-mem-layout-trans-

Arguments

n Is the level of memory layout transformations. Possible values are:

0 Disables memory layout transformations. This is the same
as specifying -qno-opt-mem-layout-trans (Linux* or
macOS) or /Qopt-mem-layout-trans- (Windows*).

1 Enables basic memory layout transformations.

2 Enables more memory layout transformations. This is the
same as specifying [q or Q]opt-mem-layout-trans with
no argument.

3 Enables more memory layout transformations like copy-in/
copy-out of structures for a region of code. You should only
use this setting if your system has more than 4GB of
physical memory per core.

4 Enables more aggressive memory layout transformations.
You should only use this setting if your system has more
than 4GB of physical memory per core.

Default

-qopt-mem-layout-trans=2
or /Qopt-mem-layout-trans:2

The compiler performs moderate memory layout transformations.

Description

This option controls the level of memory layout transformations performed by the compiler. This option can
improve cache reuse and cache locality.

 Intel® C++ Compiler Classic Developer Guide and Reference

210

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

qopt-multi-version-aggressive, Qopt-multi-version-aggressive
Tells the compiler to use aggressive multi-versioning
to check for pointer aliasing and scalar replacement.

Syntax

Linux OS:

-qopt-multi-version-aggressive
-qno-opt-multi-version-aggressive

macOS:

-qopt-multi-version-aggressive
-qno-opt-multi-version-aggressive

Windows OS:

/Qopt-multi-version-aggressive
/Qopt-multi-version-aggressive-

Arguments

None

Default

-qno-opt-multi-version-aggressive
or /Qopt-multi-version-aggressive-

The compiler uses default heuristics when checking
for pointer aliasing and scalar replacement.

Description

This option tells the compiler to use aggressive multi-versioning to check for pointer aliasing and scalar
replacement. This option may improve performance.

The performance can be affected by certain options, such as /arch or /Qx (Windows*) or -m or -x (Linux*
and macOS).

IDE Equivalent

None

Alternate Options

None

Compiler Reference

211

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-scatter-by-shuffles
Enables or disables the optimization for multiple
adjacent gather/scatter type vector memory
references.

Syntax

Linux OS:

-qopt-multiple-gather-scatter-by-shuffles
-qno-opt-multiple-gather-scatter-by-shuffles
macOS:

-qopt-multiple-gather-scatter-by-shuffles
-qno-opt-multiple-gather-scatter-by-shuffles
Windows OS:

/Qopt-multiple-gather-scatter-by-shuffles
/Qopt-multiple-gather-scatter-by-shuffles-

Arguments

None

Default

varies When this option is not specified, the compiler uses default heuristics for
optimization.

Description

This option controls the optimization for multiple adjacent gather/scatter type vector memory references.
This optimization hint is useful for performance tuning. It tries to generate more optimal software sequences
using shuffles.

If you specify this option, the compiler will apply the optimization heuristics. If you specify
-qno-opt-multiple-gather-scatter-by-shuffles
or /Qopt-multiple-gather-scatter-by-shuffles-, the compiler will not apply the optimization.

NOTE
Optimization is affected by optimization compiler options, such as [Q]x, -march (Linux* or
macOS), and /arch (Windows*).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

 Intel® C++ Compiler Classic Developer Guide and Reference

212

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Alternate Options

None

See Also
pragma vector
x, Qx compiler option
march compiler option
arch compiler option

qopt-prefetch, Qopt-prefetch
Enables or disables prefetch insertion optimization.

Syntax

Linux OS:

-qopt-prefetch[=n]
-qno-opt-prefetch

macOS:

-qopt-prefetch[=n]
-qno-opt-prefetch

Windows OS:

/Qopt-prefetch[:n]
/Qopt-prefetch-

Arguments

n Is the level of software prefetching optimization desired. Possible
values are:

0 Disables software prefetching. This is the
same as specifying -qno-opt-prefetch
(Linux* and macOS) or /Qopt-prefetch-
(Windows*).

1 to 5 Enables different levels of software
prefetching. If you do not specify a value for
n, the default is 2. Use lower values to
reduce the amount of prefetching.

Default

-qno-opt-prefetch
or /Qopt-prefetch-

Prefetch insertion optimization is disabled.

Description

This option enables or disables prefetch insertion optimization. The goal of prefetching is to reduce cache
misses by providing hints to the processor about when data should be loaded into the cache.

This option enables prefetching when higher optimization levels are specified.

Compiler Reference

213

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Optimization > Enable Prefetch Insertion

Xcode

Xcode: Optimization > Enable Prefetch Insertion

Alternate Options

None

See Also
qopt-prefetch-distance, Qopt-prefetch-distance compiler option

qopt-prefetch-distance, Qopt-prefetch-distance
Specifies the prefetch distance to be used for
compiler-generated prefetches inside loops.

Syntax

Linux OS:

-qopt-prefetch-distance=n1[, n2]
macOS:

None
Windows OS:

/Qopt-prefetch-distance:n1[, n2]

Arguments

n1, n2 Is the prefetch distance in terms of the number of (possibly-
vectorized) iterations. Possible values are non-negative numbers >=0.

n2 is optional.

n1 = 0 turns off all compiler issued prefetches from memory to L2. n2
= 0 turns off all compiler issued prefetches from L2 to L1. If n2 is
specified and n1 > 0, n1 should be >= n2.

Default

OFF The compiler uses default heuristics to determine the prefetch distance.

Description

This option specifies the prefetch distance to be used for compiler-generated prefetches inside loops. The unit
(n1 and optionally n2) is the number of iterations. If the loop is vectorized by the compiler, the unit is the
number of vectorized iterations.

 Intel® C++ Compiler Classic Developer Guide and Reference

214

The value of n1 will be used as the distance for prefetches from memory to L2 (for example, the vprefetch1
instruction). If n2 is specified, it will be used as the distance for prefetches from L2 to L1 (for example, the
vprefetch0 instruction).

This option is ignored if option -qopt-prefetch=0 (Linux*) or /Qopt-prefetch:0 (Windows*) is specified.

IDE Equivalent

None

Alternate Options

None

Example
Consider the following Linux* examples:

-qopt-prefetch-distance=64,32
The above causes the compiler to use a distance of 64 iterations for memory to L2 prefetches, and a distance
of 32 iterations for L2 to L1 prefetches.

-qopt-prefetch-distance=24
The above causes the compiler to use a distance of 24 iterations for memory to L2 prefetches. The distance
for L2 to L1 prefetches will be determined by the compiler.

-qopt-prefetch-distance=0,4
The above turns off all memory to L2 prefetches inserted by the compiler inside loops. The compiler will use
a distance of 4 iterations for L2 to L1 prefetches.

-qopt-prefetch-distance=16,0
The above causes the compiler to use a distance of 16 iterations for memory to L2 prefetches. No L2 to L1
loop prefetches are issued by the compiler.

See Also
qopt-prefetch, Qopt-prefetch compiler option
prefetch pragma

qopt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint
Supports the prefetchW instruction in Intel®
microarchitecture code name Broadwell and later.

Syntax

Linux OS:

-qopt-prefetch-issue-excl-hint
macOS:

None
Windows OS:

/Qopt-prefetch-issue-excl-hint

Arguments

None

Compiler Reference

215

Default

OFF The compiler does not support the PREFETCHW
instruction for this microarchitecture.

Description

This option supports the PREFETCHW instruction in Intel® microarchitecture code name Broadwell and later.

When you specify this option, you must also specify option [q or Q]opt-prefetch.

The prefetch instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor and invalidates any other cached copy in anticipation of the line being
written to in the future.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-prefetch/Qopt-prefetch compiler option

qopt-ra-region-strategy, Qopt-ra-region-strategy
Selects the method that the register allocator uses to
partition each routine into regions.

Syntax

Linux OS:

-qopt-ra-region-strategy[=keyword]

macOS:

-qopt-ra-region-strategy[=keyword]

Windows OS:

/Qopt-ra-region-strategy[:keyword]

Arguments

keyword Is the method used for partitioning. Possible values are:

routine Creates a single region for each routine.

block Partitions each routine into one region per
basic block.

trace Partitions each routine into one region per
trace.

loop Partitions each routine into one region per
loop.

default The compiler determines which method is
used for partitioning.

 Intel® C++ Compiler Classic Developer Guide and Reference

216

Default

-qopt-ra-region-strategy=default
or /Qopt-ra-region-strategy:default

The compiler determines which method is used for
partitioning. This is also the default if keyword is not
specified.

Description

This option selects the method that the register allocator uses to partition each routine into regions.

When setting default is in effect, the compiler attempts to optimize the tradeoff between compile-time
performance and generated code performance.

This option is only relevant when optimizations are enabled (option O1 or higher).

IDE Equivalent

None

Alternate Options

None

See Also
O compiler option

qopt-streaming-stores, Qopt-streaming-stores
Enables generation of streaming stores for
optimization.

Syntax

Linux OS and macOS:

-qopt-streaming-stores=keyword
-qno-opt-streaming-stores
Windows OS:

/Qopt-streaming-stores:keyword
/Qopt-streaming-stores-

Arguments

keyword Specifies whether streaming stores are generated. Possible values are:

always Enables generation of streaming stores for
optimization. The compiler optimizes under
the assumption that the application is
memory bound.

When this option setting is specified, it is
your responsibility to also insert any fences
as required to ensure correct memory
ordering within a thread or across threads.
One typical way to do this is to insert a
_mm_sfence() intrinsic call just after the

Compiler Reference

217

loops (such as the initialization loop) where
the compiler may insert streaming store
instructions.

never Disables generation of streaming stores for
optimization. Normal stores are performed.
This is the same as specifying
-qno-opt-streaming-stores (Linux*)
or /Qopt-streaming-stores- (Windows*).

auto Lets the compiler decide which instructions
to use.

Default

-qopt-streaming-stores=auto
or /Qopt-streaming-stores:auto

The compiler decides whether to use streaming stores
or normal stores.

Description

This option enables generation of streaming stores for optimization. This method stores data with
instructions that use a non-temporal buffer, which minimizes memory hierarchy pollution.

This option may be useful for applications that can benefit from streaming stores.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows a way to insert fences when specifying -qopt-streaming-stores=always
or /Qopt-streaming-stores:always:

void simple1(double * restrict a, double * restrict b, double * restrict c, double *d, int n)
{
 int i, j;

#pragma omp parallel for
 for (j=0; j<n; j++) {
 a[j] = 1.0;
 b[j] = 2.0;
 c[j] = 0.0;
 }

 _mm_sfence(); // OR _mm_mfence();

#pragma omp parallel for
 for (i=0; i<n; i++)
 a[i] = a[i] + c[i]*b[i];
}

See Also
ax, Qax compiler option
x, Qx compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

218

qopt-subscript-in-range, Qopt-subscript-in-range
Determines whether the compiler assumes that there
are no "large" integers being used or being computed
inside loops.

Syntax

Linux OS:

-qopt-subscript-in-range
-qno-opt-subscript-in-range
macOS:

-qopt-subscript-in-range
-qno-opt-subscript-in-range
Windows OS:

/Qopt-subscript-in-range
/Qopt-subscript-in-range-

Arguments

None

Default

-qno-opt-subscript-in-range
or /Qopt-subscript-in-range-

The compiler assumes there are "large" integers being used or being
computed within loops.

Description

This option determines whether the compiler assumes that there are no "large" integers being used or being
computed inside loops.

If you specify [q or Q]opt-subscript-in-range, the compiler assumes that there are no "large" integers
being used or being computed inside loops. A "large" integer is typically > 231.

This feature can enable more loop transformations.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows how these options can be useful. Variable m is declared as type long (64-bits)
and all other variables inside the subscript are declared as type int (32-bits):

A[i + j + (n + k) * m]

qopt-zmm-usage, Qopt-zmm-usage
Defines a level of zmm registers usage.

Compiler Reference

219

Syntax

Linux OS:

-qopt-zmm-usage=keyword
macOS:

-qopt-zmm-usage=keyword
Windows OS:

/Qopt-zmm-usage:keyword

Arguments

keyword Specifies the level of zmm registers usage. Possible values are:

low Tells the compiler that the compiled program is unlikely to
benefit from zmm registers usage. It specifies that the
compiler should avoid using zmm registers unless it can
prove the gain from their usage.

high Tells the compiler to generate zmm code without
restrictions.

Default

varies The default is low when you specify [Q]xCORE-AVX512.

The default is high when you specify [Q]xCOMMON-AVX512.

Description

This option may provide better code optimization for Intel® processors that are on the Intel®
microarchitecture formerly code-named Skylake.

This option defines a level of zmm registers usage. The low setting causes the compiler to generate code
with zmm registers very carefully, only when the gain from their usage is proven. The high setting causes
the compiler to use much less restrictive heuristics for zmm code generation.

It is not always easy to predict whether the high or the low setting will yield better performance. Programs
that enjoy high performance gains from the use of xmm or ymm registers may expect performance
improvement by moving to use zmm registers. However, some programs that use zmm registers may not
gain as much or may even lose performance. We recommend that you try both option values to measure the
performance of your programs.

This option is ignored if you do not specify an option that enables Intel® AVX-512, such as [Q]xCORE-AVX512
or option [Q]xCOMMON-AVX512.

This option has no effect on loops that use pragma omp simd simdlen(n) or on functions that are generated
by vector specifications specific to CORE-AVX512.

IDE Equivalent

None

Alternate Options

None

See Also
x, Qx compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

220

For more information about simd loops specification and vector function specification, see pragmas omp simd
and omp declare simd in the OpenMP* TR4: Version 5.0 specification.

qoverride-limits, Qoverride-limits
Lets you override certain internal compiler limits that
are intended to prevent excessive memory usage or
compile times for very large, complex compilation
units.

Syntax

Linux OS:

-qoverride-limits
macOS:

-qoverride-limits
Windows OS:

/Qoverride-limits

Arguments

None

Default

OFF Certain internal compiler limits are not overridden. These limits are determined by default
heuristics.

Description

This option provides a way to override certain internal compiler limits that are intended to prevent excessive
memory usage or compile times for very large, complex compilation units.

If this option is not used and your program exceeds one of these internal compiler limits, some optimizations
will be skipped to reduce the memory footprint and compile time. If you chose to create an optimization
report by specifying [q or Q]opt-report, you may see a related diagnostic remark as part of the report.

Specifying this option may substantially increase compile time and/or memory usage.

NOTE
If you use this option, it is your responsibility to ensure that sufficient memory is available.
If there is not sufficient available memory, the compilation may fail.

This option should only be used where there is a specific need; it is not recommended for
inexperienced users.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

221

qtbb, Qtbb
Tells the compiler to link to the Intel® oneAPI
Threading Building Blocks (oneTBB) libraries.

Syntax

Linux OS:

-qtbb
macOS:

-qtbb
Windows OS:

/Qtbb

Arguments

None

Default

OFF The compiler does not link to the oneTBB libraries.

Description

This option tells the compiler to link to the Intel® oneAPI Threading Building Blocks (oneTBB) libraries and
include the oneTBB headers.

NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. You do not need to specify a separate link
command.

On Linux* and macOS systems, the driver must add the library names explicitly to the link command.
You must use option -qtbb to perform the link to pull in the dependent libraries.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Performance Library Build Components > Use Intel® oneAPI Threading Building Blocks

Xcode

Xcode: Performance Library Build Components > Use Intel® oneAPI Threading Building Blocks

Alternate Options

Linux: -tbb (this is a deprecated option)

 Intel® C++ Compiler Classic Developer Guide and Reference

222

Qvla
Determines whether variable length arrays are
enabled.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qvla
/Qvla-

Arguments

None

Default

/Qvla- Variable length arrays are disabled.

Description

This option determines whether variable length arrays (a C99 feature) are enabled.

To enable variable length arrays, you must specify /Qvla.

IDE Equivalent

None

Alternate Options

None

scalar-rep, Qscalar-rep
Enables or disables the scalar replacement
optimization done by the compiler as part of loop
transformations.

Syntax

Linux OS:

-scalar-rep
-no-scalar-rep
macOS:

-scalar-rep
-no-scalar-rep

Compiler Reference

223

Windows OS:

/Qscalar-rep
/Qscalar-rep-

Arguments

None

Default

-scalar-rep
or /Qscalar-rep

Scalar replacement is performed during loop transformation at optimization levels of
O2 and above.

Description

This option enables or disables the scalar replacement optimization done by the compiler as part of loop
transformations. This option takes effect only if you specify an optimization level of O2 or higher.

IDE Equivalent

None

Alternate Options

None

See Also
O compiler option

simd, Qsimd
Enables or disables compiler interpretation of simd
pragmas.

Syntax

Linux OS:

-simd
-no-simd
macOS:

-simd
-no-simd
Windows OS:

/Qsimd
/Qsimd-

Arguments

None

Default

-simd SIMD pragmas are enabled.

 Intel® C++ Compiler Classic Developer Guide and Reference

224

or /Qsimd

Description

This option enables or disables compiler interpretation of simd pragmas.

To disable interpretation of simd pragmas, specify -no-simd (Linux* and macOS) or /Qsimd- (Windows*).
Note that the compiler may still vectorize loops based on its own heuristics (leading to generation of SIMD
instructions) even when -no-simd (or /Qsimd-) is specified.

To disable all compiler vectorization, use the "-no-vec -no-simd" (Linux* and macOS) or
"/Qvec- /Qsimd-" (Windows*) compiler options. The option -no-vec (and /Qvec-) disables all auto-
vectorization, including vectorization of array notation statements. The option -no-simd (and /Qsimd-)
disables vectorization of loops that have simd pragmas.

NOTE
If you specify option -mia32 (Linux*) or option /arch:IA32 (Windows*), simd pragmas are
disabled by default and vector instructions cannot be used. Therefore, you cannot explicitly
enable SIMD pragmas by specifying option [Q]simd.

IDE Equivalent

None

Alternate Options

None

See Also
vec, Qvec compiler option
Function Annotations and the SIMD Directive for Vectorization
simd pragma

simd-function-pointers, Qsimd-function-pointers
Enables or disables pointers to simd-enabled
functions.

Syntax

Linux OS and macOS:

-simd-function-pointers
-no-simd-function-pointers
Windows OS:

/Qsimd-function-pointers
/Qsimd-function-pointers-

Arguments

None

Compiler Reference

225

Default

-no-simd-function-pointers
or
/Qsimd-function-pointers-

Pointers to simd-enabled functions are disabled. Vector specifications can
only be placed in function declarations and definitions.

Description

This option enables or disables pointers to simd-enabled functions.

When option [Q]simd-function-pointers is specified, it defines simd-enabled (vector) function pointers
by placing vector specifications with all usual clauses in function pointer declarations. The vector
specifications must be indicated in an attribute vector declaration or in pragma omp declare simd.

These pointers can enable indirect calls to appropriate vector versions of the function from a simd loop or
another simd-enabled function.

IDE Equivalent

None

Alternate Options

None

unroll, Qunroll
Tells the compiler the maximum number of times to
unroll loops.

Syntax

Linux OS:

-unroll[=n]
macOS:

-unroll[=n]
Windows OS:

/Qunroll[:n]

Arguments

n Is the maximum number of times a loop can be unrolled. To disable loop enrolling, specify 0.

Default

-unroll
or /Qunroll

The compiler uses default heuristics when unrolling loops.

Description

This option tells the compiler the maximum number of times to unroll loops.

If you do not specify n, the optimizer determines how many times loops can be unrolled.

 Intel® C++ Compiler Classic Developer Guide and Reference

226

IDE Equivalent

Windows

Visual Studio: Optimization > Loop Unrolling

Linux

Eclipse: Optimization > Loop Unroll Count

OS X

Xcode: Optimization > Loop Unrolling

Alternate Options

Linux and macOS: -funroll-loops
Windows: None

unroll-aggressive, Qunroll-aggressive
Determines whether the compiler uses more
aggressive unrolling for certain loops.

Syntax

Linux OS:

-unroll-aggressive
-no-unroll-aggressive
macOS:

-unroll-aggressive
-no-unroll-aggressive
Windows OS:

/Qunroll-aggressive
/Qunroll-aggressive-

Arguments

None

Default

-no-unroll-aggressive
or /Qunroll-aggressive-

The compiler uses default heuristics when unrolling loops.

Description

This option determines whether the compiler uses more aggressive unrolling for certain loops. The positive
form of the option may improve performance.

This option enables aggressive, complete unrolling for loops with small constant trip counts.

IDE Equivalent

None

Compiler Reference

227

Alternate Options

None

use-intel-optimized-headers, Quse-intel-optimized-headers
Determines whether the performance headers
directory is added to the include path search list.

Syntax

Linux OS:

-use-intel-optimized-headers
macOS:

-use-intel-optimized-headers
Windows OS:

/Quse-intel-optimized-headers

Arguments

None

Default

-no-use-intel-optimized-headers
or /Quse-intel-optimized-headers-

The performance headers directory is not added to
the include path search list.

Description

This option determines whether the performance headers directory is added to the include path search list.

The performance headers directory is added if you specify [Q]use-intel-optimized-headers. Appropriate
libraries are also linked in, as needed, for proper functionality.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Windows

Visual Studio: Optimization > Use Intel Optimized Headers

Linux

Eclipse: Preprocessor > Use Intel Optimized Headers

OS X

Xcode: Optimization > Use Intel Optimized Headers

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

228

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

See Also
Intel's valarray Implementation

vec, Qvec
Enables or disables vectorization.

Syntax

Linux OS:

-vec
-no-vec
macOS:

-vec
-no-vec
Windows OS:

/Qvec
/Qvec-

Arguments

None

Default

-vec
or /Qvec

Vectorization is enabled if option O2 or higher is in effect.

Description

This option enables or disables vectorization.

To disable vectorization, specify -no-vec (Linux* and macOS) or /Qvec- (Windows*).

To disable interpretation of SIMD pragmas, specify -no-simd (Linux* and macOS) or /Qsimd- (Windows*).

To disable all compiler vectorization, use the "-no-vec -no-simd" (Linux* and macOS) or
"/Qvec- /Qsimd-" (Windows*) compiler options. The option -no-vec (and /Qvec-) disables all auto-
vectorization, including vectorization of array notation statements. The option -no-simd (and /Qsimd-)
disables vectorization of loops that have SIMD pragmas.

NOTE
Using this option enables vectorization at default optimization levels for both Intel®
microprocessors and non-Intel microprocessors. Vectorization may call library routines that
can result in additional performance gain on Intel microprocessors than on non-Intel
microprocessors. The vectorization can also be affected by certain options, such as /arch
(Windows), -m (Linux and macOS), or [Q]x.

IDE Equivalent

None

Compiler Reference

229

Alternate Options

None

See Also
simd, Qsimd compiler option
ax, Qax compiler option
x, Qx compiler option
vec-guard-write, Qvec-guard-write compiler option
vec-threshold, Qvec-threshold compiler option

vec-guard-write, Qvec-guard-write
Tells the compiler to perform a conditional check in a
vectorized loop.

Syntax

Linux OS:

-vec-guard-write
-no-vec-guard-write
macOS:

-vec-guard-write
-no-vec-guard-write
Windows OS:

/Qvec-guard-write
/Qvec-guard-write-

Arguments

None

Default

-vec-guard-write
or /Qvec-guard-write

The compiler performs a conditional check in a vectorized loop.

Description

This option tells the compiler to perform a conditional check in a vectorized loop. This checking avoids
unnecessary stores and may improve performance.

IDE Equivalent

None

Alternate Options

None

vec-threshold, Qvec-threshold
Sets a threshold for the vectorization of loops.

 Intel® C++ Compiler Classic Developer Guide and Reference

230

Syntax

Linux OS:

-vec-threshold[n]

macOS:

-vec-threshold[n]

Windows OS:

/Qvec-threshold[[:]n]

Arguments

n Is an integer whose value is the threshold for the vectorization of
loops. Possible values are 0 through 100.

If n is 0, loops get vectorized always, regardless of computation work
volume.

If n is 100, loops get vectorized when performance gains are predicted
based on the compiler analysis data. Loops get vectorized only if
profitable vector-level parallel execution is almost certain.

The intermediate 1 to 99 values represent the percentage probability
for profitable speed-up. For example, n=50 directs the compiler to
vectorize only if there is a 50% probability of the code speeding up if
executed in vector form.

Default

-vec-threshold100
or /Qvec-threshold100

Loops get vectorized only if profitable vector-level parallel execution is
almost certain. This is also the default if you do not specify n.

Description

This option sets a threshold for the vectorization of loops based on the probability of profitable execution of
the vectorized loop in parallel.

This option is useful for loops whose computation work volume cannot be determined at compile-time. The
threshold is usually relevant when the loop trip count is unknown at compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads versus the
amount of work available to be shared amongst the threads.

IDE Equivalent

Windows

Visual Studio: Optimization > Threshold For Vectorization

Linux

Eclipse: Optimization > Enable Maximum Vector-level Parallelism

OS X

Xcode: Optimization > Enable Maximum Vector-level Parallelism

Alternate Options

None

Compiler Reference

231

vecabi, Qvecabi
Determines which vector function application binary
interface (ABI) the compiler uses to create or call
vector functions.

Syntax

Linux OS and macOS:

-vecabi=keyword
Windows OS:

/Qvecabi:keyword

Arguments

keyword Specifies which vector function ABI to use. Possible values are:

compat Tells the compiler to use the compatibility
vector function ABI. This ABI includes Intel®-
specific features.

cmdtarget Tells the compiler to generate an extended
set of vector functions. The option is very
similar to setting compat. However, for
compat, only one vector function is created,
while for cmdtarget, several vector
functions are created for each vector
specification. Vector variants are created for
targets specified by compiler options [Q]x
and/or [Q]ax. No change is made to the
source code.

gcc Tells the compiler to use the gcc vector
function ABI. Use this setting only in cases
when you want to link with modules
compiled by gcc. This setting is not available
on Windows* systems.

legacy Tells the compiler to use the legacy vector
function ABI. Use this setting if you need to
keep the generated vector function binary
backward compatible with the vectorized
binary generated by older versions of the
Intel® compilers (V13.1 or older).

Default

compat The compiler uses the compatibility vector function ABI.

Description

This option determines which vector function application binary interface (ABI) the compiler uses to create or
call vector functions.

 Intel® C++ Compiler Classic Developer Guide and Reference

232

NOTE
To avoid possible link-time and run-time errors, use identical [Q]vecabi settings when
compiling all files in an application that define or use vector functions, including libraries. If
setting cmdtarget is specified, options [Q]x and/or [Q]ax must have identical values.

Be careful using setting cmdtarget with libraries or program modules/routines with vector function
definitions that cannot be recompiled. In such cases, setting cmdtarget may cause link errors.

On Linux* systems, since the default is compat, you must specify legacy if you need to keep the generated
vector function binary backward compatible with the vectorized binary generated by the previous version of
Intel® compilers.

When cmdtarget is specified, the additional vector function versions are created by copying each vector
specification and changing target processor in the copy. The number of vector functions is determined by the
settings specified in options [Q]x and/or [Q]ax.

For example, suppose we have the following function declaration:

__declspec (vector(processor(core_2_duo_sse4_1))) int foo(int a);
and the following options are specified: -axAVX,CORE-AVX2
The following table shows the different results for the above declaration and option specifications when
setting compat or setting cmdtarget is used:

compat cmdtarget

One vector version is created for Intel® SSE4.1 (by
vector function specification).

Four vector versions are created for the following
targets:

• Intel® SSE2 (default because no -x option is
used)

• Intel® SSE4.1 (by vector function specification)
• Intel® AVX (by the first -ax option value)
• Intel® AVX2 (by the second -ax option value)

For more information about the Intel®-compatible vector functions ABI, see the downloadable PDF titled
Vector Function Application Binary Interface.

For more information about the GCC vector functions ABI, see the item Libmvec - vector math library
document in the GLIBC wiki at sourceware.org.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

Profile Guided Optimization Options
This section contains descriptions for compiler options that pertain to profile-guided optimization.

Compiler Reference

233

https://software.intel.com/content/www/us/en/develop/download/vector-simd-function-abi.html
https://sourceware.org/
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

finstrument-functions, Qinstrument-functions
Determines whether function entry and exit points are
instrumented.

Syntax

Linux OS:

-finstrument-functions
-fno-instrument-functions
macOS:

-finstrument-functions
-fno-instrument-functions
Windows OS:

/Qinstrument-functions
/Qinstrument-functions-

Arguments

None

Default

-fno-instrument-functions
or /Qinstrument-functions-

Function entry and exit points are not instrumented.

Description

This option determines whether function entry and exit points are instrumented. It may increase execution
time.

The following profiling functions are called with the address of the current function and the address of where
the function was called (its "call site"):

• This function is called upon function entry:

•void __cyg_profile_func_enter (void *this_fn,
void *call_site);

• This function is called upon function exit:

•void __cyg_profile_func_exit (void *this_fn,
void *call_site);

These functions can be used to gather more information, such as profiling information or timing information.
Note that it is the user's responsibility to provide these profiling functions.

If you specify -finstrument-functions (Linux* and macOS) or /Qinstrument-functions (Windows*),
function inlining is disabled. If you specify -fno-instrument-functions or /Qinstrument-functions-,
inlining is not disabled.

On Linux and macOS systems, you can use the following attribute to stop an individual function from being
instrumented:

__attribute__((__no_instrument_function__))

 Intel® C++ Compiler Classic Developer Guide and Reference

234

It also stops inlining from being disabled for that individual function.

This option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

fnsplit, Qfnsplit
Enables function splitting.

Syntax

Linux OS:

-fnsplit[=n]
-no-fnsplit
macOS:

None
Windows OS:

/Qfnsplit[:n]
/Qfnsplit-

Arguments

n Is an optional positive integer indicating the threshold number.

The blocks can be placed into a different code segment if they are only
reachable via a conditional branch whose taken probability is less than
the specified n. Branch taken probability is heuristically calculated by
the compiler and can be observed in assembly listings.

The range for n is 0 <= n <= 100.

Default

OFF Function splitting is not enabled. However, function grouping is still
enabled.

Description

This option enables function splitting. If you specify [Q]fnsplit with no n, you must also specify option
[Q]prof-use, or the option will have no effect and no function splitting will occur.

If you specify n, function splitting is enabled and you do not need to specify option [Q]prof-use.

To disable function splitting when you use option [Q]prof-use, specify /Qfnsplit- (Windows*) or
-no-fnsplit (Linux*).

Compiler Reference

235

NOTE
Function splitting is generally not supported when exception handling is turned on for C/C+
+ routines in the stack of called routines. See also -fexceptions (Linux*) and the C/C++
option /EH (Windows*).

IDE Equivalent

Windows

Visual Studio: Code Generation > Disable Function Splitting

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

Linux: -freorder-blocks-and-partition (a gcc option)

Windows: None

Gh
Calls a function to aid custom user profiling.

Syntax

Linux OS and macOS:

None
Windows OS:

/Gh

Arguments

None

Default

OFF The compiler uses the default libraries.

Description

This option calls the __penter function to aid custom user profiling. The prototype for __penter is not
included in any of the standard libraries or Intel-provided libraries. You do not need to provide a prototype
unless you plan to explicitly call __penter.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

236

See Also
GH compiler option

GH
Calls a function to aid custom user profiling.

Syntax

Linux OS and macOS:

None
Windows OS:

/GH

Arguments

None

Default

OFF The compiler uses the default libraries.

Description

This option calls the __pexit function to aid custom user profiling. The prototype for __pexit is not included
in any of the standard libraries or Intel-provided libraries. You do not need to provide a prototype unless you
plan to explicitly call __pexit.

IDE Equivalent

None

Alternate Options

None

See Also
Gh compiler option

p
Compiles and links for function profiling with gprof(1).

Syntax

Linux OS:

-p
macOS:

-p
Windows OS:

None

Arguments

None

Compiler Reference

237

Default

OFF Files are compiled and linked without profiling.

Description

This option compiles and links for function profiling with gprof(1).

When you specify this option, inlining is disabled. However, you can override this by specifying pragma
forceinline, declspec forceinline (Windows*), attribute always_inline (Linux* and macOS), or a compiler
option such as [Q]inline-forceinline.

IDE Equivalent

None

Alternate Options

Linux and macOS: -qp (this is a deprecated option)

Windows: None

prof-data-order, Qprof-data-order
Enables or disables data ordering if profiling
information is enabled.

Syntax

Linux OS:

-prof-data-order
-no-prof-data-order

macOS:

None

Windows OS:

/Qprof-data-order
/Qprof-data-order-

Arguments

None

Default

-no-prof-data-order
or /Qprof-data-order-

Data ordering is disabled.

Description

This option enables or disables data ordering if profiling information is enabled. It controls the use of profiling
information to order static program data items.

For this option to be effective, you must do the following:

• For instrumentation compilation, you must specify option [Q]prof-gen setting globdata.
• For feedback compilation, you must specify the [Q]prof-use option. You must not use multi-file

optimization by specifying options such as [Q]ipo or [Q]ipo-c.

 Intel® C++ Compiler Classic Developer Guide and Reference

238

IDE Equivalent

None

Alternate Options

None

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-func-order, Qprof-func-order compiler option

prof-dir, Qprof-dir
Specifies a directory for profiling information output
files.

Syntax

Linux OS:

-prof-dir dir
macOS:

-prof-dir dir
Windows OS:

/Qprof-dir:dir

Arguments

dir Is the name of the directory. You can specify a relative pathname or
an absolute pathname.

Default

OFF Profiling output files are placed in the directory where the program is compiled.

Description

This option specifies a directory for profiling information output files (*.dyn and *.dpi). The specified
directory must already exist.

You should specify this option using the same directory name for both instrumentation and feedback
compilations. If you move the .dyn files, you need to specify the new path.

Option /Qprof-dir is equivalent to option /Qcov-dir. If you specify both options, the last option specified
on the command line takes precedence.

IDE Equivalent

Windows

Visual Studio: General > Profile Directory

Linux

Eclipse: Optimization > Profile Directory

Compiler Reference

239

OS X

Xcode: None

Alternate Options

None

prof-file, Qprof-file
Specifies an alternate file name for the profiling
summary files.

Syntax

Linux OS:

-prof-file filename
macOS:

-prof-file filename
Windows OS:

/Qprof-file:filename

Arguments

filename Is the name of the profiling summary file.

Default

OFF The profiling summary files have the file name pgopti.*

Description

This option specifies an alternate file name for the profiling summary files. The filename is used as the base
name for files created by different profiling passes.

If you add this option to profmerge, the .dpi file will be named filename.dpi instead of pgopti.dpi.

If you specify this option with option [Q]prof-use, the .dpi file will be named filename.dpi instead of
pgopti.dpi.

Option /Qprof-file is equivalent to option /Qcov-file. If you specify both options, the last option
specified on the command line takes precedence.

NOTE
When you use option [Q]prof-file, you can only specify a file name. If you want to specify
a path (relative or absolute) for filename, you must also use option [Q]prof-dir.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

240

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-dir, Qprof-dir compiler option

prof-func-groups
Enables or disables function grouping if profiling
information is enabled.

Syntax

Linux OS:

-prof-func-groups
-no-prof-func-groups
macOS:

None
Windows OS:

None

Arguments

None

Default

-no-prof-func-groups Function grouping is disabled.

Description

This option enables or disables function grouping if profiling information is enabled.

A "function grouping" is a profiling optimization in which entire routines are placed either in the cold code
section or the hot code section.

If profiling information is enabled by option -prof-use, option -prof-func-groups is set and function
grouping is enabled. However, if you explicitly enable -prof-func-order, function ordering is performed
instead of function grouping.

If you want to disable function grouping when profiling information is enabled, specify
-no-prof-func-groups.

To set the hotness threshold for function grouping, use option -prof-hotness-threshold.

IDE Equivalent

None

See Also
prof-use, Qprof-use compiler option
prof-func-order, Qprof-func-order
 compiler option
prof-hotness-threshold, Qprof-hotness-threshold
 compiler option

Compiler Reference

241

prof-func-order, Qprof-func-order
Enables or disables function ordering if profiling
information is enabled.

Syntax

Linux OS:

-prof-func-order
-no-prof-func-order
macOS:

None
Windows OS:

/Qprof-func-order
/Qprof-func-order-

Arguments

None

Default

-no-prof-func-order
or /Qprof-func-order-

Function ordering is disabled.

Description

This option enables or disables function ordering if profiling information is enabled.

For this option to be effective, you must do the following:

• For instrumentation compilation, you must specify option [Q]prof-gen setting srcpos.
• For feedback compilation, you must specify [Q]prof-use. You must not use multi-file optimization by

specifying options such as [Q]ipo or [Q]ipo-c.

If you enable profiling information by specifying option [Q]prof-use, option [Q]prof-func-groups is set
and function grouping is enabled. However, if you explicitly enable the [Q]prof-func-order option, function
ordering is performed instead of function grouping.

On Linux* systems, this option is only available for Linux linker 2.15.94.0.1, or later.

To set the hotness threshold for function grouping and function ordering, use option
[Q]prof-hotness-threshold.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

242

Example
The following example shows how to use this option on a Windows system:

icl /Qprof-gen:globdata file1.c file2.c /Fe instrumented.exe
 ./instrumented.exe
icl /Qprof-use /Qprof-func-order file1.c file2.c /Fe feedback.exe

The following example shows how to use this option on a Linux system:

icc -prof-gen:globdata file1.c file2.c -o instrumented
 ./instrumented.exe
icc -prof-use -prof-func-order file1.c file2.c -o feedback

See Also
prof-hotness-threshold, Qprof-hotness-threshold compiler option
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-data-order, Qprof-data-order compiler option
prof-func-groups compiler option

prof-gen, Qprof-gen
Produces an instrumented object file that can be used
in profile guided optimization.

Syntax

Linux OS:

-prof-gen[=keyword[, keyword],...]
-no-prof-gen
macOS:

-prof-gen[=keyword[, keyword],...]
-no-prof-gen
Windows OS:

/Qprof-gen[:keyword[,keyword],...]
/Qprof-gen-

Arguments

keyword Specifies details for the instrumented file. Possible values are:

default Produces an instrumented object file. This is
the same as specifying the [Q]prof-gen
option with no keyword.

srcpos Produces an instrumented object file that
includes extra source position information.

globdata Produces an instrumented object file that
includes information for global data layout.

Compiler Reference

243

[no]threadsafe Produces an instrumented object file that
includes the collection of PGO data on
applications that use a high level of
parallelism. If [Q]prof-gen is specified with
no keyword, the default is nothreadsafe.

Default

-no-prof-gen or /Qprof-gen- Profile generation is disabled.

Description

This option produces an instrumented object file that can be used in profile guided optimization. It gets the
execution count of each basic block.

You can specify more than one setting for [Q]prof-gen. For example, you can specify the following:

-prof-gen=srcpos -prof-gen=threadsafe (Linux* and macOS)
-prof-gen=srcpos, threadsafe (this is equivalent to the above)
/Qprof-gen:srcpos /Qprof-gen:threadsafe (Windows*)
/Qprof-gen:srcpos, threadsafe (this is equivalent to the above)

If you specify keyword srcpos or globdata, a static profile information file (.spi) is created. These settings
may increase the time needed to do a parallel build using -prof-gen, because of contention writing the .spi
file.

These options are used in phase 1 of the Profile Guided Optimizer (PGO) to instruct the compiler to produce
instrumented code in your object files in preparation for instrumented execution.

When the [Q]prof-gen option is used to produce an instrumented binary file for profile generation, some
optimizations are disabled. Those optimizations are not disabled for any subsequent profile-guided
compilation with option [Q]prof-use that makes use of the generated profiles.

IDE Equivalent

Windows

Visual Studio: General > Profile Guided Optimization

General > Code Coverage Build Options

Linux

Eclipse: Optimization > Profile Guided Optimization

OS X

Xcode: None

Alternate Options

None

See Also
prof-use, Qprof-use compiler option
Profile an Application with Instrumentation

 Intel® C++ Compiler Classic Developer Guide and Reference

244

prof-gen-sampling
Tells the compiler to generate debug discriminators in
debug output. This aids in developing more precise
sampled profiling output. This is a deprecated option
that may be removed in a future release.

Syntax

Linux OS:

-prof-gen-sampling
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler does not generate debug discriminators in the debug
output.

Description

This option tells the compiler to generate debug discriminators in debug output. Debug discriminators are
used to distinguish code from different basic blocks that have the same source position information. This aids
in developing more precise sampled hardware profiling output.

This is a deprecated option that may be removed in a future release. There is no replacement option.

To build an executable suitable for generating hardware profiled sampled output, compile with the following
options:

 -prof-gen-sampling -g
To use the data files produced by hardware profiling, compile with option -prof-use-sampling.

IDE Equivalent

None

Alternate Options

None

See Also
prof-use-sampling compiler option
g compiler option
Profile an Application with Instrumentation

prof-hotness-threshold, Qprof-hotness-threshold
Lets you set the hotness threshold for function
grouping and function ordering.

Compiler Reference

245

Syntax

Linux OS:

-prof-hotness-threshold=n
macOS:

None
Windows OS:

/Qprof-hotness-threshold:n

Arguments

n Is the hotness threshold. n is a percentage having a value between 0
and 100 inclusive. If you specify 0, there will be no hotness threshold
setting in effect for function grouping and function ordering.

Default

OFF The compiler's default hotness threshold setting of 10 percent is in effect for function
grouping and function ordering.

Description

This option lets you set the hotness threshold for function grouping and function ordering.

The "hotness threshold" is the percentage of functions in the application that should be placed in the
application's hot region. The hot region is the most frequently executed part of the application. By grouping
these functions together into one hot region, they have a greater probability of remaining resident in the
instruction cache. This can enhance the application's performance.

For this option to take effect, you must specify option [Q]prof-use and one of the following:

• On Linux systems: -prof-func-groups or -prof-func-order
• On Windows systems: /Qprof-func-order

IDE Equivalent

None

Alternate Options

None

See Also
prof-use, Qprof-use compiler option
prof-func-groups compiler option
prof-func-order, Qprof-func-order compiler option

prof-src-dir, Qprof-src-dir
Determines whether directory information of the
source file under compilation is considered when
looking up profile data records.

 Intel® C++ Compiler Classic Developer Guide and Reference

246

Syntax

Linux OS:

-prof-src-dir
-no-prof-src-dir
macOS:

-prof-src-dir
-no-prof-src-dir
Windows OS:

/Qprof-src-dir
/Qprof-src-dir-

Arguments

None

Default

[Q]prof-src-dir Directory information is used when looking up profile data records in
the .dpi file.

Description

This option determines whether directory information of the source file under compilation is considered when
looking up profile data records in the .dpi file. To use this option, you must also specify the [Q]prof-use
option.

If the option is enabled, directory information is considered when looking up the profile data records within
the .dpi file. You can specify directory information by using one of the following options:

• Linux and macOS: -prof-src-root or -prof-src-root-cwd
• Windows: /Qprof-src-root or /Qprof-src-root-cwd
If the option is disabled, directory information is ignored and only the name of the file is used to find the
profile data record.

Note that option [Q]prof-src-dir controls how the names of the user's source files get represented within
the .dyn or .dpi files. Option [Q]prof-dir specifies the location of the .dyn or the .dpi files.

IDE Equivalent

None

Alternate Options

None

See Also
prof-use, Qprof-use compiler option
prof-src-root, Qprof-src-root compiler option
prof-src-root-cwd, Qprof-src-root-cwd compiler option

Compiler Reference

247

prof-src-root, Qprof-src-root
Lets you use relative directory paths when looking up
profile data and specifies a directory as the base.

Syntax

Linux OS:

-prof-src-root=dir
macOS:

-prof-src-root=dir
Windows OS:

/Qprof-src-root:dir

Arguments

dir Is the base for the relative paths.

Default

OFF The setting of relevant options determines the path used when looking up profile data records.

Description

This option lets you use relative directory paths when looking up profile data in .dpi files. It lets you specify a
directory as the base. The paths are relative to a base directory specified during the [Q]prof-gen
compilation phase.

This option is available during the following phases of compilation:

• Linux* and macOS systems: -prof-gen and -prof-use phases
• Windows* systems: /Qprof-gen and /Qprof-use phases

When this option is specified during the [Q]prof-gen phase, it stores information into the .dyn or .dpi file.
Then, when .dyn files are merged together or the .dpi file is loaded, only the directory information below the
root directory is used for forming the lookup key.

When this option is specified during the [Q]prof-use phase, it specifies a root directory that replaces the
root directory specified at the [Q]prof-gen phase for forming the lookup keys.

To be effective, this option or option [Q]prof-src-root-cwd must be specified during the [Q]prof-gen
phase. In addition, if one of these options is not specified, absolute paths are used in the .dpi file.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

248

Example
Consider the initial [Q]prof-gen compilation of the source file c:\user1\feature_foo\myproject\common
\glob.c shown below:

Windows*: icl /Qprof-gen /Qprof-src-root=c:\user1\feature_foo\myproject -c common\glob.c
Linux* and macOS: icc -prof-gen -prof-src-root=c:\user1\feature_foo\myproject -c common\glob.c

For the [Q]prof-use phase, the file glob.c could be moved into the directory c:\user2\feature_bar
\myproject\common\glob.c and profile information would be found from the .dpi when using the following:

Windows*: icl /Qprof-use /Qprof-src-root=c:\user2\feature_bar\myproject -c common\glob.c
Linux* and macOS: icc -prof-use -prof-src-root=c:\user2\feature_bar\myproject -c common\glob.c

If you do not use option [Q]prof-src-root during the [Q]prof-gen phase, by default, the [Q]prof-use
compilation can only find the profile data if the file is compiled in the c:\user1\feature_foo\my_project
\common directory.

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-src-dir, Qprof-src-dir compiler option
prof-src-root-cwd, Qprof-src-root-cwd compiler option

prof-src-root-cwd, Qprof-src-root-cwd
Lets you use relative directory paths when looking up
profile data and specifies the current working directory
as the base.

Syntax

Linux OS:

-prof-src-root-cwd

macOS:

-prof-src-root-cwd

Windows OS:

/Qprof-src-root-cwd

Arguments

None

Default

OFF The setting of relevant options determines the path used when looking up profile data records.

Description

This option lets you use relative directory paths when looking up profile data in .dpi files. It specifies the
current working directory as the base. To use this option, you must also specify option [Q]prof-use.

This option is available during the following phases of compilation:

• Linux* and macOS systems: -prof-gen and -prof-use phases

Compiler Reference

249

• Windows* systems: /Qprof-gen and /Qprof-use phases

When this option is specified during the [Q]prof-gen phase, it stores information into the .dyn or .dpi file.
Then, when .dyn files are merged together or the .dpi file is loaded, only the directory information below the
root directory is used for forming the lookup key.

When this option is specified during the [Q]prof-use phase, it specifies a root directory that replaces the
root directory specified at the [Q]prof-gen phase for forming the lookup keys.

To be effective, this option or option [Q]prof-src-root must be specified during the [Q]prof-gen phase.
In addition, if one of these options is not specified, absolute paths are used in the .dpi file.

IDE Equivalent

None

Alternate Options

None

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
prof-src-dir, Qprof-src-dir compiler option
prof-src-root, Qprof-src-root compiler option

prof-use, Qprof-use
Enables the use of profiling information during
optimization.

Syntax

Linux OS:

-prof-use[=keyword]
-no-prof-use
macOS:

-prof-use[=keyword]
-no-prof-use
Windows OS:

/Qprof-use[:keyword]
/Qprof-use-

Arguments

keyword Specifies additional instructions. Possible values are:

weighted Tells the profmerge utility to apply a weighting to
the .dyn file values when creating the .dpi file to
normalize the data counts when the training runs have
differentexecution durations. This argument only has an
effect when the compiler invokes the profmerge utility

 Intel® C++ Compiler Classic Developer Guide and Reference

250

to create the .dpi file. This argument does not have an
effect if the .dpi file was previously created without
weighting.

[no]merge Enables or disables automatic invocation of the
profmerge utility. The default is merge. Note that you
cannot specify both weighted and nomerge. If you try
to specify both values, a warning will be displayed and
nomerge takes precedence.

default Enables the use of profiling information during
optimization. The profmerge utility is invoked by
default. This value is the same as specifying
[Q]prof-use with no argument.

Default

-no-prof-use or /Qprof-use- Profiling information is not used during optimization.

Description

This option enables the use of profiling information (including function splitting and function grouping) during
optimization. It enables option /Qfnsplit (Windows*) and -fnsplit (Linux* and macOS) .

This option instructs the compiler to produce a profile-optimized executable and it merges available profiling
output files into a pgopti.dpi file.

Note that there is no way to turn off function grouping if you enable it using this option.

To set the hotness threshold for function grouping and function ordering, use option
[Q]prof-hotness-threshold.

IDE Equivalent

Windows

Visual Studio: General > Profile Guided Optimization

Linux

Eclipse: Optimization > Profile Guided Optimization

OS X

Xcode: None

Alternate Options

None

See Also
prof-hotness-threshold, Qprof-hotness-threshold compiler option
prof-gen, Qprof-gen compiler option
Profile an Application with Instrumentation

Compiler Reference

251

prof-use-sampling
Lets you use data files produced by hardware profiling
to produce an optimized executable. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

-prof-use-sampling=list
macOS:

None
Windows OS:

None

Arguments

list Is a list of one or more data files. If you specify more than one data
file, they must be separated by colons.

Default

OFF Data files produced by hardware profiling will not be used to produce
an optimized executable.

Description

This option lets you use data files produced by hardware profiling to produce an optimized executable.

This is a deprecated option that may be removed in a future release. There is no replacement option.

The data files are named and produced by using Intel® VTune™.

The executable should have been produced using the following options:

 -prof-gen-sampling -g

IDE Equivalent

None

Alternate Options

None

See Also
prof-gen-sampling compiler option
Profile an Application with Instrumentation

prof-value-profiling, Qprof-value-profiling
Controls which values are value profiled.

 Intel® C++ Compiler Classic Developer Guide and Reference

252

Syntax

Linux OS:

-prof-value-profiling[=keyword]
macOS:

-prof-value-profiling[=keyword]
Windows OS:

/Qprof-value-profiling[:keyword]

Arguments

keyword Controls which type of value profiling is performed. Possible values are:

none Prevents all types of value profiling.

nodivide Prevents value profiling of non-compile time constants used in division or
remainder operations.

noindcall Prevents value profiling of function addresses at indirect call sites.

all Enables all types of value profiling.

You can specify more than one keyword, but they must be separated by commas.

Default

all All value profile types are enabled and value profiling is performed.

Description

This option controls which features are value profiled.

If this option is specified with option [Q]prof-gen, it turns off instrumentation of operations of the specified
type. This also prevents feedback of values for the operations.

If this option is specified with option [Q]prof-use, it turns off feedback of values collected of the specified
type.

If you specify level 2 or higher for option[q or Q]opt-report, the value profiling specialization information
will be reported within the PGO optimization report.

IDE Equivalent

None

Alternate Options

None

See Also
prof-gen, Qprof-gen compiler option
prof-use, Qprof-use compiler option
qopt-report, Qopt-report compiler option

Compiler Reference

253

Qcov-dir
Specifies a directory for profiling information output
files that can be used with the codecov or tselect tool.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qcov-dir:dir

Arguments

dir Is the name of the directory.

Default

OFF Profiling output files are placed in the directory where the program is compiled.

Description

This option specifies a directory for profiling information output files (*.dyn and *.dpi) that can be used with
the code-coverage tool (codecov) or the test prioritization tool (tselect). The specified directory must already
exist.

You should specify this option using the same directory name for both instrumentation and feedback
compilations. If you move the .dyn files, you need to specify the new path.

Option /Qcov-dir is equivalent to option /Qprof-dir. If you specify both options, the last option specified
on the command line takes precedence.

IDE Equivalent

None

Alternate Options

None

See Also
Qcov-gen compiler option
Qcov-file compiler option

Qcov-file
Specifies an alternate file name for the profiling
summary files that can be used with the codecov or
tselect tool.

Syntax

Linux OS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

254

macOS:

None
Windows OS:

/Qcov-file:filename

Arguments

filename Is the name of the profiling summary file.

Default

OFF The profiling summary files have the file name pgopti.*.

Description

This option specifies an alternate file name for the profiling summary files. The file name can be used with
the code-coverage tool (codecov) or the test prioritization tool (tselect).

The filename is used as the base name for the set of files created by different profiling passes.

If you specify this option with option /Qcov-gen, the .spi and .spl files will be named filename.spi and
filename.spl instead of pgopti.spi and pgopti.spl.

Option /Qcov-file is equivalent to option /Qprof-file. If you specify both options, the last option
specified on the command line takes precedence.

IDE Equivalent

None

Alternate Options

None

See Also
Qcov-gen compiler option
Qcov-dir compiler option

Qcov-gen
Produces an instrumented object file that can be used
with the codecov or tselect tool.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qcov-gen
/Qcov-gen-

Compiler Reference

255

Arguments

None

Default

/Qcov-gen- The instrumented object file is not produced.

Description

This option produces an instrumented object file that can be used with the code-coverage tool (codecov) or
the test prioritization tool (tselect). The instrumented code is included in the object file in preparation for
instrumented execution.

This option also creates a static profile information file (.spi) that can be used with the codecov or tselect
tool.

Option /Qcov-gen should be used to minimize the instrumentation overhead if you are interested in using
the instrumentation only for code coverage. You should use /Qprof-gen:srcpos if you intend to use the
collected data for code coverage and profile feedback.

IDE Equivalent

Windows

Visual Studio: General > Code Coverage Build Options

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
Qcov-dir compiler option
Qcov-file compiler option

Optimization Report Options
This section contains descriptions for compiler options that pertain to optimization reports.

qopt-report, Qopt-report
Tells the compiler to generate an optimization report.

Syntax

Linux OS:

-qopt-report[=n]
macOS:

-qopt-report[=n]

 Intel® C++ Compiler Classic Developer Guide and Reference

256

Windows OS:

/Qopt-report[:n]

Arguments

n (Optional) Indicates the level of detail in the report. You can specify
values 0 through 5.

If you specify zero, no report is generated.

For levels n=1 through n=5, each level includes all the information of
the previous level, as well as potentially some additional information.
Level 5 produces the greatest level of detail. If you do not specify n,
the default is level 2, which produces a medium level of detail.

Default

OFF No optimization report is generated.

Description

This option tells the compiler to generate a collection of optimization report files, one per object; this is the
same output produced by option [q or Q]opt-report-per-object.

If you prefer another form of output, you can specify option [q or Q]opt-report-file.

If you specify a level (n) higher than 5, a warning will be displayed and you will get a level 5 report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux* or macOS)
or /Qopt-report-phase:all (Windows*).

For a description of the information that each n level provides, see the Example section in option
[q or Q]opt-report-phase.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Optimization Diagnostic Level

Eclipse

Eclipse: Compilation Diagnostics > Optimization Diagnostic Level

Xcode

Xcode: Diagnostics > Optimization Diagnostic Level

Alternate Options

None

Example
If you only want reports about certain diagnostics, you can use this option with option
[q or Q]opt-report-phase. The phase you specify determines which diagnostics you will receive.

For example, the following examples show how to get reports about certain specific diagnostics.

Compiler Reference

257

To get this specific report Specify

Auto-parallelizer diagnostics Linux* or macOS:
-qopt-report -qopt-report-phase=par
Windows*:
/Qopt-report /Qopt-report-phase:par

OpenMP parallelizer diagnostics Linux* or macOS:
-qopt-report -qopt-report-phase=openmp
Windows*:
/Qopt-report /Qopt-report-phase:openmp

Vectorizer diagnostics Linux* or macOS:
-qopt-report -qopt-report-phase=vec
Windows*:
/Qopt-report /Qopt-report-phase:vec

See Also
qopt-report-file, Qopt-report-file compiler option
qopt-report-per-object, Qopt-report-per-object compiler option
qopt-report-phase, Qopt-report-phase compiler option

qopt-report-annotate, Qopt-report-annotate
Enables the annotated source listing feature and
specifies its format.

Syntax

Linux OS:

-qopt-report-annotate[=keyword]
macOS:

-qopt-report-annotate[=keyword]
Windows OS:

/Qopt-report-annotate[:keyword]

Arguments

keyword Specifies the format for the annotated source listing. You can specify one of the following:

text Indicates that the listing should be in text format. This is the default if you do not
specify keyword.

html Indicates that the listing should be in html format.

Default

OFF No annotated source listing is generated

Description

This option enables the annotated source listing feature and specifies its format. The feature annotates
source files with compiler optimization reports.

 Intel® C++ Compiler Classic Developer Guide and Reference

258

By default, one annotated source file is output per object. The annotated file is written to the same directory
where the object files are generated. If the object file is a temporary file and an executable is generated,
annotated files are placed in the directory where the executable is placed. You cannot generate annotated
files to a directory of your choosing.

However, you can output annotated listings to stdout, stderr, or to a file if you also specify option
[q or Q]opt-report-file.

By default, this option sets option [q or Q]opt-report with default level 2.

The following shows the file extension and listing details for the two possible keywords.

Format Listing Details

text The annotated source listing has an .annot extension. It includes line numbers and
compiler diagnostics placed after correspondent lines. IPO footnotes are inserted at
the end of annotated file.

html The annotated source listing has an .annot.html extension. It includes line numbers
and compiler diagnostics placed after correspondent lines (as the text format does).
It also provides hyperlinks in compiler messages and quick navigation with the
routine list. IPO footnotes are displayed as tooltips.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option
qopt-report-file, Qopt-report-file compiler option
qopt-report-annotate-position, Qopt-report-annotate-position compiler option

qopt-report-annotate-position, Qopt-report-annotate-position
Enables the annotated source listing feature and
specifies the site where optimization messages appear
in the annotated source in inlined cases of loop
optimizations.

Syntax

Linux OS:

-qopt-report-annotate-position=keyword

macOS:

-qopt-report-annotate-position=keyword

Windows OS:

/Qopt-report-annotate-position:keyword

Arguments

keyword Specifies the site where optimization messages appear in the annotated source. You can specify
one of the following:

Compiler Reference

259

caller Indicates that the messages should appear in the caller site.

callee Indicates that the messages should appear in the callee site.

both Indicates that the messages should appear in both the caller and the callee sites.

Default

OFF No annotated source listing is generated

Description

This option enables the annotated source listing feature and specifies the site where optimization messages
appear in the annotated source in inlined cases of loop optimizations.

This option enables option [q or Q]opt-report-annotate if it is not explicitly specified.

If annotated source listing is enabled and this option is not passed to compiler, loop optimizations are placed
in caller position by default.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option
qopt-report-annotate, Qopt-report-annotate compiler option

qopt-report-embed, Qopt-report-embed
Determines whether special loop information
annotations will be embedded in the object file and/or
the assembly file when it is generated.

Syntax

Linux OS:

-qopt-report-embed
-qno-opt-report-embed
macOS:

-qopt-report-embed
-qno-opt-report-embed
Windows OS:

/Qopt-report-embed
/Qopt-report-embed-

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

260

Default

OFF When an assembly file is being generated, special loop information annotations will not be
embedded in the assembly file.

However, if option -g (Linux* and macOS) or /Zi (Windows*) is specified, special loop
information annotations will be embedded in the assembly file unless option
-qno-opt-report-embed (Linux and macOS) or /Qopt-report-embed- (Windows) is specified.

Description

This option determines whether special loop information annotations will be embedded in the object file
and/or the assembly file when it is generated. Specify the positive form of the option to include the
annotations in the assembly file.

If an object file (or executable) is being generated, the annotations will be embedded in the object file (or
executable).

If you use this option, you do not have to specify option [q or Q]opt-report.

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option

qopt-report-file, Qopt-report-file
Specifies that the output for the optimization report
goes to a file, stderr, or stdout.

Syntax

Linux OS:

-qopt-report-file=keyword
macOS:

-qopt-report-file=keyword
Windows OS:

/Qopt-report-file:keyword

Arguments

keyword Specifies the output for the report. You can specify one of the following:

filename Specifies the name of the file where the output should go.

stderr Indicates that the output should go to stderr.

stdout Indicates that the output should go to stdout.

Default

OFF No optimization report is generated.

Compiler Reference

261

Description

This option specifies that the output for the optimization report goes to a file, stderr, or stdout.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux* and macOS)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Optimization Diagnostic File

Diagnostics > Emit Optimization Diagnostic to File

Eclipse

Eclipse: Compilation Diagnostics > Emit Optimization Diagnostics to File

Compilation Diagnostics > Optimization Diagnostics File

Xcode

Xcode: None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option

qopt-report-filter, Qopt-report-filter
Tells the compiler to find the indicated parts of your
application, and generate optimization reports for
those parts of your application.

Syntax

Linux OS:

-qopt-report-filter=string

macOS:

-qopt-report-filter=string

Windows OS:

/Qopt-report-filter:string

Arguments

string Is the information to search for. The string must appear within quotes. It can take one or
more of the following forms:

filename
filename, routine
filename, range [, range]...

 Intel® C++ Compiler Classic Developer Guide and Reference

262

filename, routine, range [, range]...

If you specify more than one of the above forms in a string, a semicolon must appear
between each form. If you specify more than one range in a string, a comma must appear
between each range. Optional blanks can follow each parameter in the forms above and
they can also follow each form in a string.

filename Specifies the name of a file to be found. It can include a
path.

If you do not specify a path, the compiler looks for the
filename in the current working directory.

routine Specifies the name of a routine to be found. You can
include an identifying parameter.

The name, including any parameter, must be enclosed in
single quotes.

The compiler tries to uniquely identify the routine that
corresponds to the specified routine name.

It may select multiple routines to analyze, especially if
more than one routine has the specified routine name, so
the routine cannot be uniquely identified.

range Specifies a range of line numbers to be found in the file or
routine specified. The range must be specified in integers
in the form:

first_line_number-last_line_number

The hyphen between the line numbers is required.

Default

OFF No optimization report is generated.

Description

This option tells the compiler to find the indicated parts of your application, and generate optimization
reports for those parts of your application. Optimization reports will only be generated for the routines that
contain the specified string.

On Linux* and macOS, if you specify both -qopt-report-routine=string1 and
-qopt-report-filter=string2, it is treated as -qopt-report-filter=string1;string2. On
Windows*, if you specify both /Qopt-report-routine:string1 and /Qopt-report-filter:string2, it is
treated as/Qopt-report-filter:string1;string2.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux* and macOS)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

None

Alternate Options

None

Compiler Reference

263

See Also
qopt-report, Qopt-report compiler option

qopt-report-format, Qopt-report-format
Specifies the format for an optimization report.

Syntax

Linux OS:

-qopt-report-format=keyword
macOS:

-qopt-report-format=keyword
Windows OS:

/Qopt-report-format:keyword

Arguments

keyword Specifies the format for the report. You can specify one of the following:

text Indicates that the report should be in text format.

vs Indicates that the report should be in Visual Studio* (IDE) format. The Visual Studio
IDE uses the information to visualize the optimization report in the context of your
program source code.

Default

OFF No optimization report is generated.

Description

This option specifies the format for an optimization report. If you use this option, you must specify either
text or vs.

If you do not specify this option and another option causes an optimization report to be generated, the
default format is text.

If the [q or Q]opt-report-file option is also specified, it will affect where the output goes:

• If filename is specified, output goes to the specified file.
• If stdout is specified, output goes to stdout.
• If stderr is specified, output goes to stderr.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux* and macOS)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

264

See Also
qopt-report, Qopt-report compiler option
qopt-report-file, Qopt-report-file compiler option

qopt-report-help, Qopt-report-help
Displays the optimizer phases available for report
generation and a short description of what is reported
at each level.

Syntax

Linux OS:

-qopt-report-help
Linux OS and macOS:

-qopt-report-help
Windows OS:

/Qopt-report-help

Arguments

None

Default

OFF No optimization report is generated.

Description

This option displays the optimizer phases available for report generation using [q or Q]opt-report-phase,
and a short description of what is reported at each level. No compilation is performed.

To indicate where output should go, you can specify one of the following options:

• [q or Q]opt-report-file
• [q or Q]opt-report-per-object
If you use this option, you do not have to specify option [q or Q]opt-report.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option
qopt-report-phase, Qopt-report-phase compiler option
qopt-report-file, Qopt-report-file compiler option
qopt-report-per-object, Qopt-report-per-object compiler option

Compiler Reference

265

qopt-report-names, Qopt-report-names
Specifies whether mangled or unmangled names
should appear in the optimization report.

Syntax

Linux OS:

-qopt-report-names=keyword
macOS:

-qopt-report-names=keyword
Windows OS:

/Qopt-report-names:keyword

Arguments

keyword Specifies the form for the names. You can specify one of the following:

mangled Indicates that the optimization report should contain mangled
names.

unmangled Indicates that the optimization report should contain unmangled
names.

Default

OFF No optimization report is generated.

Description

This option specifies whether mangled or unmangled names should appear in the optimization report. If you
use this option, you must specify either mangled or unmangled.

If this option is not specified, unmangled names are used by default.

If you specify mangled, encoding (also known as decoration) is added to names in the optimization report.
This is appropriate when you want to match annotations with the assembly listing.

If you specify unmangled, no encoding (or decoration) is added to names in the optimization report. This is
appropriate when you want to match annotations with the source listing.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux* and macOS)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

266

qopt-report-per-object, Qopt-report-per-object
Tells the compiler that optimization report information
should be generated in a separate file for each object.

Syntax

Linux OS:

-qopt-report-per-object
macOS:

-qopt-report-per-object
Windows OS:

/Qopt-report-per-object

Arguments

None

Default

OFF No optimization report is generated.

Description

This option tells the compiler that optimization report information should be generated in a separate file for
each object.

If you specify this option for a single-file compilation, a file with a .optrpt extension is produced for every
object file or assembly file that is generated by the compiler. For a multifile Interprocedural Optimization
(IPO) compilation, one file is produced for each of the N true objects generated in the compilation. If only
one true object file is generated, the optimization report file generated is called ipo_out.optrpt. If multiple
true object files are generated (N>1), the names used are ipo_out1.optprt, ipo_out2.optrpt, …
ipo_outN.optrpt.

The .optrpt files are written to the target directory of the compilation process. If an object or assembly file is
explicitly generated, the corresponding .optrpt file is written to the same directory where the object file is
generated. If the object file is just a temporary file and an executable is generated, the corresponding .optrpt
files are placed in the directory in which the executable is placed.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux* or macOS)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option

Compiler Reference

267

qopt-report-phase, Qopt-report-phase
Specifies one or more optimizer phases for which
optimization reports are generated.

Syntax

Linux OS:

-qopt-report-phase[=list]

macOS:

-qopt-report-phase[=list]

Windows OS:

/Qopt-report-phase[:list]

Arguments

list (Optional) Specifies one or more phases to generate reports for. If you
specify more than one phase, they must be separated with commas.
The values you can specify are:

cg The phase for code generation

ipo The phase for Interprocedural Optimization

loop The phase for loop nest optimization

openmp The phase for OpenMP

par The phase for auto-parallelization

pgo The phase for Profile Guided Optimization

tcollect The phase for trace collection

vec The phase for vectorization

all All optimizer phases. This is the default if
you do not specify list.

Default

OFF No optimization report is generated.

Description

This option specifies one or more optimizer phases for which optimization reports are generated.

For certain phases, you also need to specify other options:

• If you specify phase cg, you must also specify option O1, O2 (default), or O3.
• If you specify phase ipo, you must also specify option [Q]ipo.
• If you specify phase loop, you must also specify option O2 (default) or O3.
• If you specify phase openmp, you must also specify option [q or Q]openmp.
• If you specify phase par, you must also specify option [Q]parallel.
• If you specify phase pgo, you must also specify option [Q]prof-use.
• If you specify phase tcollect, you must also specify option [Q]tcollect.

 Intel® C++ Compiler Classic Developer Guide and Reference

268

• If you specify phase vec, you must also specify option O2 (default) or O3. If you are interested in explicit
vectorization by OpenMP* SIMD, you must also specify option [q or Q]openmp.

To find all phase possibilities, specify option [q or Q]opt-report-help.

If you use this option, you do not have to specify option [q or Q]opt-report.

However, if you want to get more details for each phase, specify option [q or Q]opt-report=n along with
this option and indicate the level of detail you want by specifying an appropriate value for n. (See also the
Example section below.)

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux* or macOS)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Optimization Diagnostic Phase

Eclipse

Eclipse: Compilation Diagnostics > Optimization Diagnostic Phase

Xcode

Xcode: Diagnostics > Optimization Diagnostic Phase

Alternate Options

None

Example
The following shows examples of the details you may receive when you specify one of the optimizer phases
and a particular level (n) for option [q or Q]opt-report. Note that details may change in future releases.

Optimizer phase The level specified in
option[q or Q]opt-report

Description

cg 1 Generates a list of which
intrinsics were lowered and which
memcall optimizations were
performed.

ipo 1 For each compiled routine,
generates a list of the routines
that were inlined into the routine,
called directly by the routine, and
whose calls were deleted.

2 Generates level 1 details, values
for important inlining command
line options, and a list of the
routines that were discovered to
be dead and eliminated.

3 Generates level 2 details, whole
program information, the sizes of
inlined routines, and the reasons
routines were not inlined.

Compiler Reference

269

Optimizer phase The level specified in
option[q or Q]opt-report

Description

4 Generates level 3 details, detailed
footnotes on the reasons why
routines are not inlined, and what
action the user can take to get
them inlined.

loop 1 Reports high-level details about
which optimizations have been
performed on the loop nests
(along with the line number).
Most of the loop optimizations
(like fusion, unroll, unroll & jam,
collapsing, rerolling etc) only
support this level of detail.

2 Generates level 1 details, and
provides more detail on the
metrics and types of references
(like prefetch distance, indirect
prefetches etc) used in
optimizations. Only a few
optimizations (like prefetching,
loop classification framework etc)
support these extra details.

openmp 1 Reports loops, regions, sections,
and tasks successfully
parallelized.

2 Generates level 1 details, and
messages indicating successful
handling of master constructs,
single constructs, critical
constructs, ordered constructs,
atomic pragmas, and so forth.

par 1 Reports which loops were
parallelized.

2 Generates level 1 details, and
reports which loops were not
parallelized along with a short
reason.

3 Generates level 2 details, and
prints the memory locations that
are categorized as private,
shared, reduction, etc..

4 For this phase, this is the same
as specifying level 3.

 Intel® C++ Compiler Classic Developer Guide and Reference

270

Optimizer phase The level specified in
option[q or Q]opt-report

Description

5 Generates level 4 details, and
dependency edges that inhibit
parallelization.

pgo 1 During profile feedback,
generates report status of
feedback (such as, profile used,
no profile available, or unable to
use profile) for each routine
compiled.

2 Generates level 1 details, and
reports which value profile
specializations took place for
indirect calls and arithmetic
operations.

3 Generates level 2 details, and
reports which indirect calls had
profile data, but did not meet the
internal threshold limits for the
percentage or execution count.

tcollect 1 Generates a list of routines and
whether each was selected for
trace collection.

vec 1 Reports which loops were
vectorized.

2 Generates level 1 details and
reports which loops were not
vectorized along with short
reason.

3 Generates level 2 details, and
vectorizer loop summary
information.

4 Generates level 3 details, and
greater detail about vectorized
and non-vectorized loops.

5 Generates level 4 details, and
details about any proven or
assumed data dependences.

See Also
qopt-report, Qopt-report compiler option
qopt-report-help, Qopt-report-help compiler option

Compiler Reference

271

qopt-report-routine, Qopt-report-routine
Tells the compiler to generate an optimization report
for each of the routines whose names contain the
specified substring.

Syntax

Linux OS:

-qopt-report-routine=substring

macOS:

-qopt-report-routine=substring

Windows OS:

/Qopt-report-routine:substring

Arguments

substring Is the text (string) to look for.

Default

OFF No optimization report is generated.

Description

This option tells the compiler to generate an optimization report for each of the routines whose names
contain the specified substring.

You can also specify a sequence of substrings separated by commas. If you do this, the compiler will
generate an optimization report for each of the routines whose name contains one or more of these
substrings.

If you use this option, you do not have to specify option [q or Q]opt-report.

When optimization reporting is enabled, the default is -qopt-report-phase=all (Linux* and macOS)
or /Qopt-report-phase:all (Windows*).

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Optimization Diagnostic Routine

Eclipse

Eclipse: Compilation Diagnostics > Optimization Diagnostic Routine

Xcode

Xcode: None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

272

OpenMP* Options and Parallel Processing Options
This section contains descriptions for compiler options that pertain to offload compilation, OpenMP*, or
parallel processing.

device-math-lib
Enables or disables certain device libraries. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

-device-math-lib=library
-no-device-math-lib=library
macOS:

None
Windows OS:

/device-math-lib:library
/no-device-math-lib:library

Arguments

library Possible values are:

fp32 Links the fp32 device math library.

fp64 Links the fp64 device math library.

To link more than one library, include a comma between the library names.

For example, if you want to link both the fp32 and fp64 device libraries, specify: fp32,
fp64

Default

fp32, fp64 Both the fp32 and fp64 device libraries are linked.

Description

This option enables or disables certain device libraries.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

Alternate Options

None

See Also
fopenmp-device-lib compiler option

Compiler Reference

273

fmpc-privatize
Enables or disables privatization of all static data for
the MultiProcessor Computing environment (MPC)
unified parallel runtime.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS:

-fmpc-privatize
-fno-mpc-privatize

macOS:

None

Windows OS:

None

Arguments

None

Default

-fno-mpc-privatize The privatization of all static data for the MPC unified parallel runtime
is disabled.

Description

This option enables or disables privatization of all static data for the MultiProcessor Computing environment
(MPC) unified parallel runtime.

Option -fmpc-privatize causes calls to extended thread-local-storage (TLS) resolution, run-time routines
that are not supported on standard Linux* distributions.

This option requires installation of another product. For more information, see Feature Requirements.

IDE Equivalent

None

Alternate Options

None

fopenmp-device-lib
Enables or disables certain device libraries for an
OpenMP* target.

Syntax

Linux OS:

-fopenmp-device-lib=library[,library,...]

 Intel® C++ Compiler Classic Developer Guide and Reference

274

-fno-openmp-device-lib=library[,library,...]

macOS:

None

Windows OS:

-fopenmp-device-lib=library[,library,...]
-fopenmp-device-lib=library[,library,...]

Arguments

library Possible values are:

libm-fp32 Enables linking to the fp32 device math
library.

libm-fp64 Enables linking to the fp64 device math
library.

libc Enables linking to the C library.

all Enables linking to libraries libm-fp32, libm-
fp-64, and libc.

To link more than one library, include a comma between the library
names. For example, if you want to link both the libm-fp32 device
library and the C library, specify: libm-fp32,libc.

Do not add spaces between library names.

Note that if you specify "all", it supersedes any additional value you
may specify.

Default

OFF Disables linking to device libraries for this target.

Description

This option enables or disables certain device libraries for an OpenMP* target.

If you specify fno-openmp-device-lib=library, linking to the specified library is disabled for the
OpenMP* target.

Alternate Options

None

par-affinity, Qpar-affinity
Specifies thread affinity.

Syntax

Linux OS:

-par-affinity=[modifier,...]type[,permute][,offset]

macOS:

None

Compiler Reference

275

Windows OS:

/Qpar-affinity:[modifier,...]type[,permute][,offset]

Arguments

modifier Is one of the following values: granularity={fine|thread|core|
tile}, [no]respect, [no]verbose, [no]warnings,
proclist=proc_list. The default is granularity=core, respect,
and noverbose. For information on value proclist, see Thread
Affinity Interface.

type Indicates the thread affinity. This argument is required and must be
one of the following values: compact, disabled, explicit, none,
scatter, logical, physical. The default is none. Values logical
and physical are deprecated. Use compact and scatter,
respectively, with no permute value.

permute Is a positive integer. You cannot use this argument with type setting
explicit, none, or disabled. The default is 0.

offset Is a positive integer. You cannot use this argument with type setting
explicit, none, or disabled. The default is 0.

Default

OFF The thread affinity is determined by the run-time environment.

Description

This option specifies thread affinity, which binds threads to physical processing units. It has the same effect
as environment variable KMP_AFFINITY.

This option overrides the environment variable when both are specified.

This option only has an effect if the following is true:

• You have specified option [Q]parallel or option [q or Q]openmp (or both).
• You are compiling the main program.

NOTE
This option may behave differently on Intel® microprocessors than on non-Intel
microprocessors.

IDE Equivalent

None

Alternate Options

None

See Also
parallel, Qparallel compiler option
qopt-report, Qopt-report compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

276

par-loops, Qpar-loops
Lets you select between old or new implementations
of parallel loop support.

Syntax

Linux OS and macOS:

-par-loops=keyword
Windows OS:

/Qpar-loops:keyword

Arguments

keyword Specifies which implementation to use. Possible values are:

new Enables the new implementation of parallel-
loop support. As a result, parallel C++
range-based loops and collapsing complex
loop stacks will not result in compilation
errors. This is the default.

old Enables the old implementation of parallel-
loop support. This is the same
implementation that was supported in 18.0
and earlier releases.

default This is the same as specifying new.

Default

-par-loops=new
or
/Qpar-loops:new

The compiler uses the new implementation of parallel-loop support. Note that this
setting may not yet be as stable as setting "old" since the implementation is new.

Description

This option lets you select between old or new implementations of parallel loop support.

The new implementation handles parallel C++ range-based loops, and also collapsing of OpenMP* parallel
loops with complicated bounds expressions, for which the previous implementation reported errors.

If your code has a parallel loop that is not handled by the previous implementation, we recommend that you
enable use of the new implementation.

IDE Equivalent

None

Alternate Options

None

par-num-threads, Qpar-num-threads
Specifies the number of threads to use in a parallel
region.

Compiler Reference

277

Syntax

Linux OS:

-par-num-threads=n
macOS:

-par-num-threads=n
Windows OS:

/Qpar-num-threads:n

Arguments

n Is the number of threads to use. It must be a positive integer.

Default

OFF The number of threads to use is determined by the run-time environment.

Description

This option specifies the number of threads to use in a parallel region. It has the same effect as environment
variable OMP_NUM_THREADS.

This option overrides the environment variable when both are specified.

This option only has an effect if the following is true:

• You have specified option [Q]parallel or option [q or Q]openmp (or both).
• You are compiling the main program.

IDE Equivalent

None

Alternate Options

None

See Also
parallel, Qparallel compiler option
qopt-report, Qopt-report compiler option

par-runtime-control, Qpar-runtime-control
Generates code to perform run-time checks for loops
that have symbolic loop bounds.

Syntax

Linux OS:

-par-runtime-control[n]
-no-par-runtime-control
macOS:

-par-runtime-control[n]
-no-par-runtime-control

 Intel® C++ Compiler Classic Developer Guide and Reference

278

Windows OS:

/Qpar-runtime-control[n]
/Qpar-runtime-control-

Arguments

n Is a value denoting what kind of runtime checking to perform. Possible
values are:

0 Performs no runtime check based on auto-
parallelization. This is the same as specifying
-no-par-runtime-control (Linux* and
macOS) or /Qpar-runtime-control-
(Windows*).

1 Generates runtime check code under
conservative mode. This is the default if you
do not specify n.

2 Generates runtime check code under
heuristic mode.

3 Generates runtime check code under
aggressive mode.

Default

-no-par-runtime-control
or /Qpar-runtime-control-

The compiler uses default heuristics when checking loops.

Description

This option generates code to perform run-time checks for loops that have symbolic loop bounds.

If the granularity of a loop is greater than the parallelization threshold, the loop will be executed in parallel.

If you do not specify this option, the compiler may not parallelize loops with symbolic loop bounds if the
compile-time granularity estimation of a loop can not ensure it is beneficial to parallelize the loop.

NOTE
This option may behave differently on Intel® microprocessors than on non-Intel
microprocessors.

IDE Equivalent

None

Alternate Options

None

par-schedule, Qpar-schedule
Lets you specify a scheduling algorithm for loop
iterations.

Compiler Reference

279

Syntax

Linux OS:

-par-schedule-keyword[=n]

macOS:

-par-schedule-keyword[=n]

Windows OS:

/Qpar-schedule-keyword[[:]n]

Arguments

keyword Specifies the scheduling algorithm or tuning method. Possible values are:

auto Lets the compiler or run-time system determine the
scheduling algorithm.

static Divides iterations into contiguous pieces.

static-balanced Divides iterations into even-sized chunks.

static-steal Divides iterations into even-sized chunks, but allows
threads to steal parts of chunks from neighboring threads.

dynamic Gets a set of iterations dynamically.

guided Specifies a minimum number of iterations.

guided-analytical Divides iterations by using exponential distribution or
dynamic distribution.

runtime Defers the scheduling decision until run time.

n Is the size of the chunk or the number of iterations for each chunk.
This setting can only be specified for static, dynamic, and guided. For
more information, see the descriptions of each keyword below.

Default

static-balanced Iterations are divided into even-sized chunks and the chunks are assigned
to the threads in the team in a round-robin fashion in the order of the
thread number.

Description

This option lets you specify a scheduling algorithm for loop iterations. It specifies how iterations are to be
divided among the threads of the team.

This option is only useful when specified with option [Q]parallel.

This option affects performance tuning and can provide better performance during auto-parallelization. It
does nothing if it is used with option [q or Q]openmp.

Option Description

[Q]par-schedule-auto Lets the compiler or run-time system determine the
scheduling algorithm. Any possible mapping may
occur for iterations to threads in the team.

 Intel® C++ Compiler Classic Developer Guide and Reference

280

Option Description

[Q]par-schedule-static Divides iterations into contiguous pieces (chunks) of
size n. The chunks are assigned to threads in the
team in a round-robin fashion in the order of the
thread number. Note that the last chunk to be
assigned may have a smaller number of iterations.

If no n is specified, the iteration space is divided
into chunks that are approximately equal in size,
and each thread is assigned at most one chunk.

[Q]par-schedule-static-balanced Divides iterations into even-sized chunks. The
chunks are assigned to the threads in the team in a
round-robin fashion in the order of the thread
number.

[Q]par-schedule-static-steal Divides iterations into even-sized chunks, but when
a thread completes its chunk, it can steal parts of
chunks assigned to neighboring threads.

Each thread keeps track of L and U, which
represent the lower and upper bounds of its chunks
respectively. Iterations are executed starting from
the lower bound, and simultaneously, L is updated
to represent the new lower bound.

[Q]par-schedule-dynamic Can be used to get a set of iterations dynamically.
Assigns iterations to threads in chunks as the
threads request them. The thread executes the
chunk of iterations, then requests another chunk,
until no chunks remain to be assigned.

As each thread finishes a piece of the iteration
space, it dynamically gets the next set of iterations.
Each chunk contains n iterations, except for the last
chunk to be assigned, which may have fewer
iterations. If no n is specified, the default is 1.

[Q]par-schedule-guided Can be used to specify a minimum number of
iterations. Assigns iterations to threads in chunks as
the threads request them. The thread executes the
chunk of iterations, then requests another chunk,
until no chunks remain to be assigned.

For a chunk of size 1, the size of each chunk is
proportional to the number of unassigned iterations
divided by the number of threads, decreasing to 1.

For an n with value k (greater than 1), the size of
each chunk is determined in the same way with the
restriction that the chunks do not contain fewer
than k iterations (except for the last chunk to be
assigned, which may have fewer than k iterations).
If no n is specified, the default is 1.

Compiler Reference

281

Option Description

[Q]par-schedule-guided-analytical Divides iterations by using exponential distribution
or dynamic distribution. The method depends on
run-time implementation. Loop bounds are
calculated with faster synchronization and chunks
are dynamically dispatched at run time by threads
in the team.

[Q]par-schedule-runtime Defers the scheduling decision until run time. The
scheduling algorithm and chunk size are then taken
from the setting of environment variable
OMP_SCHEDULE.

NOTE
This option may behave differently on Intel® microprocessors than on non-Intel
microprocessors.

IDE Equivalent

None

Alternate Options

None

par-threshold, Qpar-threshold
Sets a threshold for the auto-parallelization of loops.

Syntax

Linux OS:

-par-threshold[n]
macOS:

-par-threshold[n]
Windows OS:

/Qpar-threshold[[:]n]

Arguments

n Is an integer whose value is the threshold for the auto-parallelization
of loops. Possible values are 0 through 100.

If n is 0, loops get auto-parallelized always, regardless of computation
work volume.

If n is 100, loops get auto-parallelized when performance gains are
predicted based on the compiler analysis data. Loops get auto-
parallelized only if profitable parallel execution is almost certain.

 Intel® C++ Compiler Classic Developer Guide and Reference

282

The intermediate 1 to 99 values represent the percentage probability
for profitable speed-up. For example, n=50 directs the compiler to
parallelize only if there is a 50% probability of the code speeding up if
executed in parallel.

Default

-par-threshold100
or /Qpar-threshold100

Loops get auto-parallelized only if profitable parallel execution is almost
certain. This is also the default if you do not specify n.

Description

This option sets a threshold for the auto-parallelization of loops based on the probability of profitable
execution of the loop in parallel. To use this option, you must also specify option [Q]parallel.

This option is useful for loops whose computation work volume cannot be determined at compile-time. The
threshold is usually relevant when the loop trip count is unknown at compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads versus the
amount of work available to be shared amongst the threads.

NOTE
This option may behave differently on Intel® microprocessors than on non-Intel
microprocessors.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Optimization > Auto-Parallelization Threshold

OS X

Xcode: Optimization > Auto-Parallelization Threshold

Alternate Options

None

parallel, Qparallel
Tells the auto-parallelizer to generate multithreaded
code for loops that can be safely executed in parallel.

Syntax

Linux OS:

-parallel
macOS:

-parallel

Compiler Reference

283

Windows OS:

/Qparallel(or /Qpar)

Arguments

None

Default

OFF Multithreaded code is not generated for loops that can be safely executed in parallel.

Description

This option tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in
parallel.

To use this option, you must also specify option O2 or O3.

This option sets option [q or Q]opt-matmul if option O3 is also specified.

NOTE
On macOS systems, when you enable automatic parallelization, you must also set the
DYLD_LIBRARY_PATH environment variable within Xcode* or an error will be displayed.

NOTE
Using this option enables parallelization for both Intel® microprocessors and non-Intel
microprocessors. The resulting executable may get additional performance gain on Intel
microprocessors than on non-Intel microprocessors. The parallelization can also be affected
by certain options, such as /arch or /Qx (Windows*) or -m or -x (Linux* and macOS).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Optimization > Parallelization

Eclipse

Eclipse: Optimization > Parallelization

Xcode

Xcode: Optimization > Parallelization

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

284

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

See Also
qopt-report, Qopt-report compiler option
par-affinity, Qpar-affinity compiler option
par-num-threads, Qpar-num-threads compiler option
par-runtime-control, Qpar-runtime-control compiler option
par-schedule, Qpar-schedule compiler option
qopt-matmul, Qopt-matmul compiler option

parallel-source-info, Qparallel-source-info
Enables or disables source location emission when
OpenMP* or auto-parallelism code is generated.

Syntax

Linux OS:

-parallel-source-info[=n]
-no-parallel-source-info
macOS:

-parallel-source-info[=n]
-no-parallel-source-info
Windows OS:

/Qparallel-source-info
/Qparallel-source-info-[:n]

Arguments

n Is the level of source location emission. Possible values are:

0 Disables the emission of source location
information when OpenMP* code or auto-
parallelism code is generated. This is the
same as specifying
-no-parallel-source-info (Linux* and
macOS) or /Qparallel-source-info-
(Windows*).

1 Tells the compiler to emit routine name and
line information. This is the same as
specifying [Q]parallel-source-info with
no n.

2 Tells the compiler to emit path, file, routine
name, and line information.

Default

-parallel-source-info=1
or
/Qparallel-source-info:1

When OpenMP* code or auto-parallelism code is generated, the routine
name and line information is emitted.

Compiler Reference

285

Description

This option enables or disables source location emission when OpenMP code or auto-parallelism code is
generated. It also lets you set the level of emission.

IDE Equivalent

None

Alternate Options

None

qopenmp, Qopenmp
Enables the parallelizer to generate multi-threaded
code based on OpenMP* directives.

Syntax

Linux OS:

-qopenmp
-qno-openmp
macOS:

-qopenmp
-qno-openmp
Windows OS:

/Qopenmp
/Qopenmp-

Arguments

None

Default

-qno-openmp or /Qopenmp- No OpenMP* multi-threaded code is generated by the compiler.

Description

This option enables the parallelizer to generate multi-threaded code based on OpenMP* directives. The code
can be executed in parallel on both uniprocessor and multiprocessor systems.

This option works with any optimization level. Specifying no optimization (-O0 on Linux* or /Od on
Windows*) helps to debug OpenMP applications.

NOTE
On macOS systems, when you enable OpenMP* API, you must also set the
DYLD_LIBRARY_PATH environment variable within Xcode* or an error will be displayed.

 Intel® C++ Compiler Classic Developer Guide and Reference

286

NOTE
Options that use OpenMP* API are available for both Intel® microprocessors and non-Intel
microprocessors, but these options may perform additional optimizations on Intel®
microprocessors than they perform on non-Intel microprocessors. The list of major, user-
visible OpenMP constructs and features that may perform differently on Intel®
microprocessors versus non-Intel microprocessors include: locks (internal and user visible),
the SINGLE construct, barriers (explicit and implicit), parallel loop scheduling, reductions,
memory allocation, thread affinity, and binding.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Language > OpenMP* Support

Eclipse

Eclipse: Language > Process OpenMP Directives

Xcode

Xcode: Language > Process OpenMP Directives

Alternate Options

Linux and macOS: -fopenmp
Windows: /openmp

See Also
qopenmp-stubs, Qopenmp-stubs compiler option

qopenmp-lib, Qopenmp-lib
Lets you specify an OpenMP* run-time library to use
for linking.

Syntax

Linux OS:

-qopenmp-lib=type
macOS:

-qopenmp-lib=type
Windows OS:

/Qopenmp-lib:type

Compiler Reference

287

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Arguments

type Specifies the type of library to use; it implies compatibility levels. Currently, the only
possible value is:

compat Tells the compiler to use the compatibility OpenMP* run-
time library (libiomp). This setting provides compatibility
with object files created using Microsoft* and GNU*
compilers.

Default

-qopenmp-lib=compat
or /Qopenmp-lib:compat

The compiler uses the compatibility OpenMP* run-time library
(libiomp).

Description

This option lets you specify an OpenMP* run-time library to use for linking.

The compatibility OpenMP run-time libraries are compatible with object files created using the Microsoft*
OpenMP run-time library (vcomp) or the GNU OpenMP run-time library (libgomp).

To use the compatibility OpenMP run-time library, compile and link your application using the compat setting
for option [q or Q]openmp-lib. To use this option, you must also specify one of the following compiler
options:

• Linux* systems: -qopenmp or -qopenmp-stubs
• Windows* systems: /Qopenmp or /Qopenmp-stubs
On Windows* systems, the compatibility OpenMP* run-time library lets you combine OpenMP* object files
compiled with the Microsoft* C/C++ compiler with OpenMP* object files compiled with the Intel® C, Intel® C+
+, or Intel® Fortran compilers. The linking phase results in a single, coherent copy of the run-time library.

On Linux* systems, the compatibility Intel OpenMP* run-time library lets you combine OpenMP* object files
compiled with the GNU* gcc or gfortran compilers with similar OpenMP* object files compiled with the Intel®
C, Intel® C++, or Intel® Fortran Compiler. The linking phase results in a single, coherent copy of the run-time
library.

NOTE The compatibility OpenMP run-time library is not compatible with object files created
using versions of the Intel compilers earlier than 10.0.

NOTE On Windows* systems, this option is processed by the compiler, which adds directives
to the compiled object file that are processed by the linker. On Linux* and macOS systems,
this option is processed by the icc/icpc command that initiates linking, adding library
names explicitly to the link command.

IDE Equivalent

None

Alternate Options

None

See Also
qopenmp, Qopenmp compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

288

qopenmp-stubs, Qopenmp-stubs compiler option

qopenmp-link
Controls whether the compiler links to static or
dynamic OpenMP* run-time libraries.

Syntax

Linux OS:

-qopenmp-link=library
macOS:

-qopenmp-link=library
Windows OS:

None

Arguments

library Specifies the OpenMP library to use. Possible values are:

static Tells the compiler to link to static OpenMP
run-time libraries. Note that static OpenMP
libraries are deprecated.

dynamic Tells the compiler to link to dynamic OpenMP
run-time libraries.

Default

-qopenmp-link=dynamic The compiler links to dynamic OpenMP* run-time libraries.
However, if Linux* option -static is specified, the compiler
links to static OpenMP run-time libraries.

Description

This option controls whether the compiler links to static or dynamic OpenMP* run-time libraries.

To link to the static OpenMP run-time library (RTL) and create a purely static executable, you must specify
-qopenmp-link=static. However, we strongly recommend you use the default setting,
-qopenmp-link=dynamic.

NOTE
Compiler options -static-intel and -shared-intel (Linux* and macOS) have no effect on
which OpenMP run-time library is linked.

NOTE
On Linux* systems, -qopenmp-link=dynamic cannot be used in conjunction with option
-static. If you try to specify both options together, an error will be displayed.

Compiler Reference

289

NOTE
On Linux systems, the OpenMP runtime library depends on using libpthread and libc (libgcc
when compiled with gcc). Libpthread and libc (libgcc) must both be static or both be
dynamic. If both libpthread and libc (libgcc) are static, then the static version of the OpenMP
runtime should be used. If both libpthread and libc (libgcc) are dynamic, then either the
static or dynamic version of the OpenMP runtime may be used.

IDE Equivalent

None

Alternate Options

None

qopenmp-simd, Qopenmp-simd
Enables or disables OpenMP* SIMD compilation.

Syntax

Linux OS:

-qopenmp-simd
-qno-openmp-simd
macOS:

-qopenmp-simd
-qno-openmp-simd
Windows OS:

/Qopenmp-simd
/Qopenmp-simd-

Arguments

None

Default

-qopenmp-simd or /Qopenmp-simd OpenMP* SIMD compilation is enabled if option O2 or higher is in
effect.

OpenMP* SIMD compilation is always disabled at optimization
levels of O1 or lower.

When option O2 or higher is in effect, OpenMP SIMD compilation
can only be disabled by specifying option -qno-openmp-simd
or /Qopenmp-simd-. It is not disabled by specifying option
-qno-openmp or /Qopenmp-.

Description

This option enables or disables OpenMP* SIMD compilation.

 Intel® C++ Compiler Classic Developer Guide and Reference

290

You can use this option if you want to enable or disable the SIMD support with no impact on other OpenMP
features. In this case, no OpenMP runtime library is needed to link and the compiler does not need to
generate OpenMP runtime initialization code.

If you specify this option with the [q or Q]openmp option, it can impact other OpenMP features.

IDE Equivalent

None

Alternate Options

None

Example
Consider the following:

-qno-openmp -qopenmp-simd ! Linux or macOS
/Qopenmp- /Qopenmp-simd ! Windows

The above is equivalent to specifying only [q or Q]openmp-simd. In this case, only SIMD support is
provided, the OpenMP* library is not linked, and only the !$OMP directives related to SIMD are processed.

Consider the following:

-qopenmp -qopenmp-simd ! Linux or macOS
/Qopenmp /Qopenmp-simd ! Windows

In this case, SIMD support is provided, the OpenMP library is linked, and OpenMP runtime initialization code
is generated. Note that when you specify [q or Q]openmp, it implies [q or Q]openmp-simd.

See Also
qopenmp, Qopenmp compiler option
O compiler option

qopenmp-stubs, Qopenmp-stubs
Enables compilation of OpenMP* programs in
sequential mode.

Syntax

Linux OS:

-qopenmp-stubs
macOS:

-qopenmp-stubs
Windows OS:

/Qopenmp-stubs

Arguments

None

Default

OFF The library of OpenMP* function stubs is not linked.

Compiler Reference

291

Description

This option enables compilation of OpenMP* programs in sequential mode. The OpenMP directives are
ignored and a stub OpenMP library is linked.

IDE Equivalent

Windows

Visual Studio: Language > OpenMP Support

Linux

Eclipse: Language > Process OpenMP Directives

OS X

Xcode: Language > Process OpenMP Directives

Alternate Options

None

See Also
qopenmp, Qopenmp compiler option

qopenmp-threadprivate, Qopenmp-threadprivate
Lets you specify an OpenMP* threadprivate
implementation.

Syntax

Linux OS:

-qopenmp-threadprivate=type
macOS:

None
Windows OS:

/Qopenmp-threadprivate:type

Arguments

type Specifies the type of threadprivate implementation. Possible values
are:

legacy Tells the compiler to use the legacy OpenMP*
threadprivate implementation used in the
previous releases of the Intel® compiler. This
setting does not provide compatibility with
the implementation used by other compilers.

compat Tells the compiler to use the compatibility
OpenMP* threadprivate implementation
based on applying the __declspec(thread)
attribute to each threadprivate variable. The
limitations of the attribute on a given

 Intel® C++ Compiler Classic Developer Guide and Reference

292

platform also apply to the threadprivate
implementation. This setting provides
compatibility with the implementation
provided by the Microsoft* and GNU*
compilers.

Default

-qopenmp-threadprivate=legacy
or /Qopenmp-threadprivate:legacy

The compiler uses the legacy OpenMP* threadprivate
implementation used in the previous releases of the Intel
compiler.

Description

This option lets you specify an OpenMP* threadprivate implementation.

The threadprivate implementation of the legacy OpenMP run-time library may not be compatible with object
files created using OpenMP run-time libraries supported in other compilers.

To use this option, you must also specify one of the following compiler options:

• Linux* systems: -qopenmp or -qopenmp-stubs
• Windows* systems: /Qopenmp or /Qopenmp-stubs
The value specified for this option is independent of the value used for the [q or Q]openmp-lib option.

NOTE
On macOS systems, legacy is the only type of threadprivate supported. Option
-qopenmp-threadprivate is not recognized by the compiler.

IDE Equivalent

None

Alternate Options

None

Qpar-adjust-stack
Tells the compiler to generate code to adjust the stack
size for a fiber-based main thread.

Syntax

Linux OS and macOS:

None
Windows OS:

/Qpar-adjust-stack:n

Arguments

n Is the stack size (in bytes) for the fiber-based main thread. It must be
a number equal to or greater than zero.

Compiler Reference

293

Default

/Qpar-adjust-stack:0 No adjustment is made to the main thread stack size.

Description

This option tells the compiler to generate code to adjust the stack size for a fiber-based main thread. This
can reduce the stack size of threads.

For this option to be effective, you must also specify option /Qparallel.

IDE Equivalent

None

Alternate Options

None

See Also
parallel, Qparallel compiler option

Floating-Point Options
This section contains descriptions for compiler options that pertain to floating-point calculations.

fast-transcendentals, Qfast-transcendentals
Enables the compiler to replace calls to transcendental
functions with faster but less precise implementations.

Syntax

Linux OS:

-fast-transcendentals
-no-fast-transcendentals

macOS:

-fast-transcendentals
-no-fast-transcendentals

Windows OS:

/Qfast-transcendentals
/Qfast-transcendentals-

Arguments

None

Default

depends on the setting of
-fp-model (Linux* and
macOS) or /fp (Windows*)

If you do not specify option -[no-]fast-transcendentals or option /
Qfast-transcendentals[-]:

• The default is ON if option -fp-model fast or /fp:fast is specified or
is in effect.

 Intel® C++ Compiler Classic Developer Guide and Reference

294

• The default is OFF if a value-safe setting is specified for -fp-model
or /fp (such as "precise", "source", etc.).

Description

This option enables the compiler to replace calls to transcendental functions with implementations that may
be faster but less precise.

It allows the compiler to perform certain optimizations on transcendental functions, such as replacing
individual calls to sine in a loop with a single call to a less precise vectorized sine library routine. These
optimizations can cause numerical differences that would not otherwise exist if you are also compiling with a
value-safe option such as -fp-model precise (Linux* and macOS*) or /fp:precise (Windows).

For example, you may get different results if you specify option O0 versus option O2, or you may get different
results from calling the same function with the same input at different points in your program. If these kinds
of numerical differences are problematic, consider using option -fimf-use-svml (Linux* and macOS*)
or /Qimf-use-svml (Windows) as an alternative. When used with a value-safe option such as
-fp-model precise or /fp:precise, option -fimf-use-svml or /Qimf-use-svml provides many of the
positive performance benefits of [Q]fast-transcendentals without negatively affecting numeric
consistency. For more details, see the description of option -fimf-use-svml and /Qimf-use-svml.

This option does not affect explicit Short Vector Math Library (SVML) intrinsics. It only affects scalar calls to
the standard math library routines.

You cannot use option -fast-transcendentals with option -fp-model strict and you cannot use
option /Qfast-transcendentals with option /fp:strict.

This option determines the setting for the maximum allowable relative error for math library function results
(max-error) if none of the following options are specified:

• -fimf-accuracy-bits (Linux* and macOS) or /Qimf-accuracy-bits (Windows*)
• -fimf-max-error (Linux and macOS) or /Qimf-max-error (Windows)
• -fimf-precision (Linux and macOS) or /Qimf-precision (Windows)

This option enables extra optimization that only applies to Intel® processors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option
fimf-use-svml, Qimf-use-svml compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option

Compiler Reference

295

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

fimf-absolute-error, Qimf-absolute-error
Defines the maximum allowable absolute error for
math library function results.

Syntax

Linux OS:

-fimf-absolute-error=value[:funclist]
macOS:

-fimf-absolute-error=value[:funclist]
Windows OS:

/Qimf-absolute-error:value[:funclist]

Arguments

value Is a positive, floating-point number. Errors in math library function results may exceed
the maximum relative error (max-error) setting if the absolute-error is less than or
equal to value.

The format for the number is [digits] [.digits] [{ e | E }[sign]digits]

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-absolute-error=0.00001:sin,sinf
(or /Qimf-absolute-error:0.00001:sin,sinf) to specify the maximum allowable
absolute error for both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example you can specify
-fimf-absolute-error=0.00001:/ or /Qimf-absolute-error: 0.00001:/.

Default

Zero ("0") An absolute-error setting of 0 means that the function is bound by the relative error
setting. This is the default behavior.

Description

This option defines the maximum allowable absolute error for math library function results.

This option can improve run-time performance, but it may decrease the accuracy of results.

This option only affects functions that have zero as a possible return value, such as log, sin, asin, etc.

The relative error requirements for a particular function are determined by options that set the maximum
relative error (max-error) and precision. The return value from a function must have a relative error less
than the max-error value, or an absolute error less than the absolute-error value.

 Intel® C++ Compiler Classic Developer Guide and Reference

296

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-absolute-error=0.00001:sin
or /Qimf-absolute-error:0.00001:sin, or -fimf-absolute-error=0.00001:sqrtf
or /Qimf-absolute-error:0.00001:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-accuracy-bits, Qimf-accuracy-bits
Defines the relative error for math library function
results, including division and square root.

Syntax

Linux OS:

-fimf-accuracy-bits=bits[:funclist]
macOS:

-fimf-accuracy-bits=bits[:funclist]
Windows OS:

/Qimf-accuracy-bits:bits[:funclist]

Compiler Reference

297

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Arguments

bits Is a positive, floating-point number indicating the number of correct bits the compiler
should use.

The format for the number is [digits] [.digits] [{ e | E }[sign]digits].

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-accuracy-bits=23:sin,sinf
(or /Qimf-accuracy-bits:23:sin,sinf) to specify the relative error for both the
single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example you can specify
-fimf-accuracy-bits=10.0:/f or /Qimf-accuracy-bits:10.0:/f.

Default

-fimf-precision=medium or /Qimf-
precision:medium

The compiler uses medium precision when calling math library
functions. Note that other options can affect precision; see below
for details.

Description

This option defines the relative error, measured by the number of correct bits, for math library function
results.

The following formula is used to convert bits into ulps: ulps = 2p-1-bits, where p is the number of the target
format mantissa bits (24, 53, and 64 for single, double, and long double, respectively).

This option can affect run-time performance and the accuracy of results.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in the following:

• -fimf-accuracy-bits=23:sinf,cosf,logf or /Qimf-accuracy-bits:23:sinf,cosf,logf
• -fimf-accuracy-bits=52:sqrt,/,trunc or /Qimf-accuracy-bits:52:sqrt,/,trunc
• -fimf-accuracy-bits=10:powf or /Qimf-accuracy-bits:10:powf
If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

• -fimf-precision (Linux* and macOS) or /Qimf-precision (Windows*)
• -fimf-max-error (Linux* and macOS) or /Qimf-max-error (Windows*)
• -fimf-accuracy-bits (Linux and macOS) or /Qimf-accuracy-bits (Windows)

If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

 Intel® C++ Compiler Classic Developer Guide and Reference

298

• [Q]fast-transcendentals
• [Q]prec-div
• [Q]prec-sqrt
• -fp-model (Linux and macOS) or /fp (Windows)

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-arch-consistency, Qimf-arch-consistency
Ensures that the math library functions produce
consistent results across different microarchitectural
implementations of the same architecture.

Syntax

Linux OS:

-fimf-arch-consistency=value[:funclist]
macOS:

-fimf-arch-consistency=value[:funclist]
Windows OS:

/Qimf-arch-consistency:value[:funclist]

Arguments

value Is one of the logical values "true" or "false".

Compiler Reference

299

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-arch-consistency=true:sin,sinf
(or /Qimf-arch-consistency:true:sin,sinf) to specify consistent
results for both the single-precision and double-precision sine
functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify
-fimf-arch-consistency=true:/
or /Qimf-arch-consistency:true:/.

Default

false Implementations of some math library functions may produce slightly different results on
implementations of the same architecture.

Description

This option ensures that the math library functions produce consistent results across different
microarchitectural implementations of the same architecture (for example, across different microarchitectural
implementations of IA-32 architecture). Consistency is only guaranteed for a single binary. Consistency is not
guaranteed across different architectures. For example, consistency is not guaranteed across IA-32
architecture and Intel® 64 architecture.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-arch-consistency=true:sin
or /Qimf-arch-consistency:true:sin, or -fimf-arch-consistency=false:sqrtf
or /Qimf-arch-consistency:false:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

The -fimf-arch-consistency (Linux* and macOS) and /Qimf-arch-consistency (Windows*) option
may decrease run-time performance, but the option will provide bit-wise consistent results on all Intel®
processors and compatible, non-Intel processors, regardless of micro-architecture. This option may not
provide bit-wise consistent results between different architectures.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

 Intel® C++ Compiler Classic Developer Guide and Reference

300

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-domain-exclusion, Qimf-domain-exclusion
Indicates the input arguments domain on which math
functions must provide correct results.

Syntax

Linux OS:

-fimf-domain-exclusion=classlist[:funclist]

macOS:

-fimf-domain-exclusion=classlist[:funclist]

Windows OS:

/Qimf-domain-exclusion:classlist[:funclist]

Arguments

classlist Is one of the following:

• One or more of the following floating-point value classes you can exclude from the
function domain without affecting the correctness of your program. The supported
class names are:

extremes This class is for values which do not lie within the
usual domain of arguments for a given function.

nans This means "x=Nan".

infinities This means "x=infinities".

denormals This means "x=denormal".

zeros This means "x=0".

Each classlist element corresponds to a power of two. The exclusion attribute is the
logical or of the associated powers of two (that is, a bitmask).

Compiler Reference

301

The following shows the current mapping from classlist mnemonics to numerical
values:

extremes 1

nans 2

infinities 4

denormals 8

zeros 16

none 0

all 31

common 15

other combinations bitwise OR of the used values

You must specify the integer value that corresponds to the class that you want to
exclude.

Note that on excluded values, unexpected results may occur.
• One of the following short-hand tokens:

none This means that none of the supported classes are
excluded from the domain. To indicate this token,
specify 0, as in -fimf-domain-exclusion=0
(or /Qimf-domain-exclusion:0).

all This means that all of the supported classes are
excluded from the domain. To indicate this token,
specify 31, as in -fimf-domain-exclusion=31
(or /Qimf-domain-exclusion:31).

common This is the same as specifying
extremes,nans,infinities,denormals. To indicate this
token, specify 15 (1 + 2+ 4 + 8), as in
-fimf-domain-exclusion=15
(or /Qimf-domain-exclusion:15)

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-domain-exclusion=4:sin,sinf
(or /Qimf-domain-exclusion:4:sin,sinf) to specify infinities for both the single-
precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example, you can specify:

-fimf-domain-exclusion=4 or /Qimf-domain-exclusion:4
-fimf-domain-exclusion=5:/,powf or /Qimf-domain-exclusion:5:/,powf

 Intel® C++ Compiler Classic Developer Guide and Reference

302

-fimf-domain-exclusion=23:log,logf,/,sin,cosf
or /Qimf-domain-exclusion:23:log,logf,/,sin,cosf
If you don't specify argument funclist, the domain restrictions apply to all math library
functions.

Default

Zero ("0") The compiler uses default heuristics when calling math library functions.

Description

This option indicates the input arguments domain on which math functions must provide correct results. It
specifies that your program will function correctly if the functions specified in funclist do not produce
standard conforming results on the number classes.

This option can affect run-time performance and the accuracy of results. As more classes are excluded, faster
code sequences can be used.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-domain-exclusion=denormals:sin
or /Qimf-domain-exclusion:denormals:sin, or -fimf-domain-exclusion=extremes:sqrtf
or /Qimf-domain-exclusion:extremes:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

Example
Consider the following single-precision sequence for function exp2f:

Operation: y = exp2f(x)

Accuracy: 1.014 ulp

Instructions: 4 (2 without fix-up)

Compiler Reference

303

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

The following shows the 2-instruction sequence without the fix-up:

vcvtfxpntps2dq zmm1 {k1}, zmm0, 0x50 // zmm1 <-- rndToInt(2^24 * x)
vexp223ps zmm1 {k1}, zmm1 // zmm1 <-- exp2(x)

However, the above 2-instruction sequence will not correctly process NaNs. To process Nans correctly, the
following fix-up must be included following the above instruction sequence:

vpxord zmm2, zmm2, zmm2 // zmm2 <-- 0
vfixupnanps zmm1 {k1}, zmm0, zmm2 {aaaa} // zmm1 <-- QNaN(x) if x is NaN <F>

If the vfixupnanps instruction is not included, the sequence correctly processes any arguments except NaN
values. For example, the following options generate the 2-instruction sequence:

-fimf-domain-exclusion=2:exp2f <- NaN’s are excluded (2 corresponds to NaNs)
-fimf-domain-exclusion=6:exp2f <- NaN’s and infinities are excluded (4 corresponds to
infinities; 2 + 4 = 6)
-fimf-domain-exclusion=7:exp2f <- NaN’s, infinities, and extremes are excluded (1
corresponds to extremes; 2 + 4 + 1 = 7)
-fimf-domain-exclusion=15:exp2f <- NaN’s, infinities, extremes, and denormals are excluded
(8 corresponds to denormals; 2 + 4 + 1 + 8=15)

If the vfixupnanps instruction is included, the sequence correctly processes any arguments including NaN
values. For example, the following options generate the 4-instruction sequence:

-fimf-domain-exclusion=1:exp2f <- only extremes are excluded (1 corresponds to extremes)
-fimf-domain-exclusion=4:exp2f <- only infinities are excluded (4 corresponds to infinities)
-fimf-domain-exclusion=8:exp2f <- only denormals are excluded (8 corresponds to denormals)
-fimf-domain-exclusion=13:exp2f <- only extremes, infinities and denormals are excluded (1 +
4 + 8 = 13)

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-force-dynamic-target, Qimf-force-dynamic-target
Instructs the compiler to use run-time dispatch in calls
to math functions.

Syntax

Linux OS:

-fimf-force-dynamic-target[=funclist]
macOS:

-fimf-force-dynamic-target[=funclist]
Windows OS:

/Qimf-force-dynamic-target[:funclist]

 Intel® C++ Compiler Classic Developer Guide and Reference

304

Arguments

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-dynamic-target=sin,sinf
(or /Qimf-dynamic-target:sin,sinf) to specify run-time dispatch
for both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example, you can specify -fimf-dynamic-target=/
or /Qimf-dynamic-target:/.

Default

OFF Run-time dispatch is not forced in math libraries calls. The compiler can choose to call a CPU-
specific version of a math function if one is available.

Description

This option instructs the compiler to use run-time dispatch in calls to math functions. When this option set to
ON, it lets you force run-time dispatch in math libraries calls.

By default, when this option is set to OFF, the compiler often optimizes math library calls using the target
CPU architecture-specific information available at compile time through the [Q]x and arch compiler options.

If you want to target multiple CPU families with a single application or you prefer to choose a target CPU at
run time, you can force run-time dispatch in math libraries by using this option.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
x, Qx compiler option
arch compiler option
mtune, tune compiler option

Compiler Reference

305

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

fimf-max-error, Qimf-max-error
Defines the maximum allowable relative error for
math library function results, including division and
square root.

Syntax

Linux OS:

-fimf-max-error=ulps[:funclist]
macOS:

-fimf-max-error=ulps[:funclist]
Windows OS:

/Qimf-max-error:ulps[:funclist]

Arguments

ulps Is a positive, floating-point number indicating the maximum allowable
relative error the compiler should use.

The format for the number is [digits] [.digits] [{ e | E }[sign]digits].

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-max-error=4.0:sin,sinf
(or /Qimf-max-error=4.0:sin,sinf) to specify the maximum
allowable relative error for both the single-precision and double-
precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify -fimf-max-error=4.0:/
or /Qimf-max-error:4.0:/.

Default

-fimf-precision=medium or /Qimf-
precision:medium

The compiler uses medium precision when calling math library
functions. Note that other options can affect precision; see below
for details.

Description

This option defines the maximum allowable relative error, measured in ulps, for math library function results.

This option can affect run-time performance and the accuracy of results.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-max-error=4.0:sin or /Qimf-max-error:4.0:sin, or
-fimf-max-error=4.0:sqrtf or /Qimf-max-error:4.0:sqrtf.

 Intel® C++ Compiler Classic Developer Guide and Reference

306

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

• -fimf-precision (Linux* and macOS) or /Qimf-precision (Windows*)
• -fimf-max-error (Linux* and macOS) or /Qimf-max-error (Windows*)
• -fimf-accuracy-bits (Linux and macOS) or /Qimf-accuracy-bits (Windows)

If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

• [Q]fast-transcendentals
• [Q]prec-div
• [Q]prec-sqrt
• -fp-model (Linux and macOS) or /fp (Windows)

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-precision, Qimf-precision compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-precision, Qimf-precision
Lets you specify a level of accuracy (precision) that
the compiler should use when determining which math
library functions to use.

Compiler Reference

307

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Syntax

Linux OS:

-fimf-precision[=value[:funclist]]
macOS:

-fimf-precision[=value[:funclist]]
Windows OS:

/Qimf-precision[:value[:funclist]]

Arguments

value Is one of the following values denoting the desired accuracy:

high This is equivalent to max-error = 1.0.

medium This is equivalent to max-error = 4; this is
the default setting if the option is specified
and value is omitted.

low This is equivalent to accuracy-bits = 11 for
single-precision functions; accuracy-bits =
26 for double-precision functions.

In the above explanations, max-error means option
-fimf-max-error (Linux* and macOS) or /Qimf-max-error
(Windows*); accuracy-bits means option -fimf-accuracy-bits
(Linux* and macOS) or /Qimf-accuracy-bits (Windows*).

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-precision=high:sin,sinf
(or /Qimf-precision:high:sin,sinf) to specify high precision for
both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify -fimf-precision=low:/
or /Qimf-precision:low:/ and -fimf-precision=low:/f
or /Qimf-precision:low:/f.

Default

medium The compiler uses medium precision when calling math library functions. Note that
other options can affect precision; see below for details.

Description

This option lets you specify a level of accuracy (precision) that the compiler should use when determining
which math library functions to use.

 Intel® C++ Compiler Classic Developer Guide and Reference

308

This option can be used to improve run-time performance if reduced accuracy is sufficient for the application,
or it can be used to increase the accuracy of math library functions selected by the compiler.

In general, using a lower precision can improve run-time performance and using a higher precision may
reduce run-time performance.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-precision=low:sin or /Qimf-precision:low:sin, or
-fimf-precision=high:sqrtf or /Qimf-precision:high:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

• -fimf-precision (Linux* and macOS) or /Qimf-precision (Windows*)
• -fimf-max-error (Linux* and macOS) or /Qimf-max-error (Windows*)
• -fimf-accuracy-bits (Linux and macOS) or /Qimf-accuracy-bits (Windows)

If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

• [Q]fast-transcendentals
• [Q]prec-div
• [Q]prec-sqrt
• -fp-model (Linux and macOS) or /fp (Windows)

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-arch-consistency, Qimf-arch-consistency compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fimf-max-error, Qimf-max-error compiler option

Compiler Reference

309

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

fast-transcendentals, Qfast-transcendentals compiler option
prec-div, Qprec-div compiler option
prec-sqrt, Qprec-sqrt compiler option
fp-model, fp compiler option
fimf-use-svml_Qimf-use-svml compiler option

fimf-use-svml, Qimf-use-svml
Instructs the compiler to use the Short Vector Math
Library (SVML) rather than the Intel® C++ Compiler
Classic Math Library (LIBM) to implement math library
functions.

Syntax

Linux OS:

-fimf-use-svml=value[:funclist]
macOS:

-fimf-use-svml=value[:funclist]
Windows OS:

/Qimf-use-svml:value[:funclist]

Arguments

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-use-svmlt=true:sin,sinf
(or /Qimf-use-svml:true:sin,sinf) to specify that both the
single-precision and double-precision sine functions should use SVML.

Default

false Math library functions are implemented using the Intel® C++ Compiler Classic Math Library,
though other compiler options such as -fast-transcendentals or /Qfast-transcendentals
may give the compiler the flexibility to implement math library functions with either LIBM or
SVML.

Description

This option instructs the compiler to implement math library functions using the Short Vector Math Library
(SVML). When you specify -fimf-use-svml=true or /Qimf-use-svml:true, the specific SVML variant
chosen is influenced by other compiler options such as -fimf-precision (Linux* and macOS)
or /Qimf-precision (Windows*) and -fp-model (Linux and macOS) or /fp (Windows). This option has no
effect on math library functions that are implemented in LIBM but not in SVML.

 Intel® C++ Compiler Classic Developer Guide and Reference

310

In value-safe settings of option -fp-model (Linux and macOS) or option /fp (Windows) such as precise, this
option causes a slight decrease in the accuracy of math library functions, because even the high accuracy
SVML functions are slightly less accurate than the corresponding functions in LIBM. Additionally, the SVML
functions might not accurately raise floating-point exceptions, do not maintain errno, and are designed to
work correctly only in round-to-nearest-even rounding mode.

The benefit of using -fimf-use-svml=true or /Qimf-use-svml:true with value-safe settings of
-fp-model (Linux and macOS) or /fp (Windows) is that it can significantly improve performance by enabling
the compiler to efficiently vectorize loops containing calls to math library functions.

If you need to use SVML for a specific math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sqrtf, as in -fimf-use-svml=true:sin or /Qimf-use-svml:true:sin, or
-fimf-use-svml =false:sqrtf or /Qimf-use-svml:false:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
If you specify option -mia32 (Linux*) or option /arch:IA32 (Windows*), vector instructions
cannot be used. Therefore, you cannot use Linux* option -mia32 with option
-fimf-use-svml=true, and you cannot use Windows* option /arch:IA32 with
option /Qimf-use-svml:true.

NOTE
Since SVML functions may raise unexpected floating-point exceptions, be cautious about
using features that enable trapping on floating-point exceptions. For example, be cautious
about specifying option -fimf-use-svml=true with option -fp-trap, or
option /Qimf-use-svml:true with option /Qfp-trap. For some inputs to some math library
functions, such option combinations may cause your program to trap unexpectedly.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option
m compiler option
arch compiler option
fp-trap, Qfp-trap compiler option

Compiler Reference

311

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

fma, Qfma
Determines whether the compiler generates fused
multiply-add (FMA) instructions if such instructions
exist on the target processor.

Syntax

Linux OS:

-fma
-no-fma
macOS:

-fma
-no-fma
Windows OS:

/Qfma
/Qfma-

Arguments

None

Default

-fma
or /Qfma

If the instructions exist on the target processor, the compiler generates fused multiply-
add (FMA) instructions.

However, if you specify -fp-model strict (Linux* and macOS) or /fp:strict
(Windows*), but do not explicitly specify -fma or /Qfma, the default is -no-fma
or /Qfma-.

Description

This option determines whether the compiler generates fused multiply-add (FMA) instructions if such
instructions exist on the target processor. When the [Q]fma option is specified, the compiler may generate
FMA instructions for combining multiply and add operations. When the negative form of the [Q]fma option is
specified, the compiler must generate separate multiply and add instructions with intermediate rounding.

This option has no effect unless setting CORE-AVX2 or higher is specified for option [Q]x,-march (Linux and
macOS), or /arch (Windows).

IDE Equivalent

None

See Also
fp-model, fp compiler option
x, Qx compiler option
ax, Qax compiler option
march compiler option
arch compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

312

fp-model, fp
Controls the semantics of floating-point calculations.

Syntax

Linux OS:

-fp-model=keyword

macOS:

-fp-model=keyword

Windows OS:

/fp:keyword

Arguments

keyword Specifies the semantics to be used. Possible values are:

precise Disables optimizations that are not value-safe on floating-point
data.

fast[=1|2] Enables more aggressive optimizations on floating-point data.

consistent The compiler uses default heuristics to determine results for
different optimization levels or between different processors of
the same architecture.

strict Enables precise and except, disables contractions, and enables
pragma stdc fenv_access.

source Rounds intermediate results to source-defined precision.

double Rounds intermediate results to 53-bit (double) precision.

extended Rounds intermediate results to 64-bit (extended) precision.

[no-]except (Linux* and
macOS) or except[-]
(Windows*)

Determines whether strict floating-point exception semantics are
honored.

Default

-fp-model=fast=1
or /fp:fast=1

The compiler uses more aggressive optimizations on floating-point
calculations.

Description

This option controls the semantics of floating-point calculations.

The keywords can be considered in groups:

• Group A: precise, fast, strict
• Group B: source, double, extended
• Group C: except (or negative forms -no-except or /except-)
• Group D: consistent
You can specify more than one keyword. However, the following rules apply:

Compiler Reference

313

• You cannot specify fast and except together in the same compilation. You can specify any other
combination of group A, group B, and group C.
Since fast is the default, you must not specify except without a group A or group B keyword.

• You should specify only one keyword from group A and only one keyword from group B. If you try to
specify more than one keyword from either group A or group B, the last (rightmost) one takes effect.

• If you specify except more than once, the last (rightmost) one takes effect.
• If you specify consistent and any other keyword from another group, the last (rightmost) one may not

fully override the heuristics set by consistent.

The floating-point (FP) environment is a collection of registers that control the behavior of FP machine
instructions and indicate the current FP status. The floating-point environment may include rounding-mode
controls, exception masks, flush-to-zero controls, exception status flags, and other floating-point related
features.

Option Description

-fp-model=precise or /fp:precise Tells the compiler to strictly adhere to value-safe
optimizations when implementing floating-point
calculations. It disables optimizations that can
change the result of floating-point calculations,
which is required for strict ANSI conformance.

These semantics ensure the reproducibility of
floating-point computations for serial code,
including code vectorized or auto-parallelized by the
compiler, but they may slow performance. They do
not ensure value safety or run-to-run reproducibility
of other parallel code.

Run-to-run reproducibility for floating-point
reductions in OpenMP* code may be obtained for a
fixed number of threads through the
KMP_DETERMINISTIC_REDUCTION environment
variable. For more information about this
environment variable, see topic "Supported
Environment Variables".

The compiler assumes the default floating-point
environment; you are not allowed to modify it.

Intermediate results are computed with the
precision shown in the following table, unless it is
overridden by a keyword from Group B:

Windows Linux macOS

IA-32
architect
ure

Double Extende
d

Not
applicabl
e

Intel® 64
architect
ure

Source Source Source

Floating-point exception semantics are disabled by
default. To enable these semantics, you must also
specify -fp-model=except or /fp:except.

 Intel® C++ Compiler Classic Developer Guide and Reference

314

Option Description

-fp-model=fast[=1|2] or /fp:fast[=1|2] Tells the compiler to use more aggressive
optimizations when implementing floating-point
calculations. These optimizations increase speed,
but may affect the accuracy or reproducibility of
floating-point computations.

Specifying fast is the same as specifying fast=1.
fast=2 may produce faster and less accurate
results.

Floating-point exception semantics are disabled by
default and they cannot be enabled because you
cannot specify fast and except together in the same
compilation. To enable exception semantics, you
must explicitly specify another keyword (see other
keyword descriptions for details).

To enable exception semantics, you must explicitly
specify another keyword (see other keyword
descriptions for details).

-fp-model=consistent or /fp:consistent The compiler uses default heuristics to generate
code that will determine results for different
optimization levels or between different processors
of the same architecture .

For more information, see the article titled:
Consistency of Floating-Point Results using the
Intel® Compiler.

-fp-model=source or /fp:source This option causes intermediate results to be
rounded to the precision defined in the source code.
It also implies keyword precise unless it is
overridden by a keyword from Group A.

Intermediate expressions use the precision of the
operand with higher precision, if any.

long
double

64-bit
precision

80-bit
data
type

15-bit
exponen
t

double 53-bit
precision

64-bit
data
type

11-bit
exponen
t; on
Windows
systems
using
IA-32
architect
ure, the
exponen
t may be
15-bit if
an x87
register

Compiler Reference

315

https://software.intel.com/content/www/us/en/develop/articles/consistency-of-floating-point-results-using-the-intel-compiler.html
https://software.intel.com/content/www/us/en/develop/articles/consistency-of-floating-point-results-using-the-intel-compiler.html

Option Description

is used
to hold
the
value.

float 24-bit
precision

32-bit
data
type

8-bit
exponen
t

The compiler assumes the default floating-point
environment; you are not allowed to modify it.

-fp-model=double or /fp:double This option causes intermediate results to be
rounded as follows:

53-bit (double) precision

64-bit data type

11-bit exponent; on Windows systems using
IA-32 architecture, the exponent may be 15-bit
if an x87 register is used to hold the value.

This option also implies keyword precise unless it
is overridden by a keyword from Group A.

The compiler assumes the default floating-point
environment; you are not allowed to modify it.

-fp-model=extended or /fp:extended This option causes intermediate results to be
rounded as follows:

64-bit (extended) precision

80-bit data type

15-bit exponent

This option also implies keyword precise unless it
is overridden by a keyword from Group A.

The compiler assumes the default floating-point
environment; you are not allowed to modify it.

-fp-model=except or /fp:except Tells the compiler to follow strict floating-point
exception semantics.

The -fp-model and /fp options determine the setting for the maximum allowable relative error for math
library function results (max-error) if none of the following options are specified (the following options are
only available for ifort):

• -fimf-accuracy-bits (Linux* and macOS) or /Qimf-accuracy-bits (Windows*)
• -fimf-max-error (Linux and macOS) or /Qimf-max-error (Windows)
• -fimf-precision (Linux and macOS) or /Qimf-precision (Windows)
• [Q]fast-transcendentals

 Intel® C++ Compiler Classic Developer Guide and Reference

316

Option -fp-model=fast (and /fp:fast) sets option -fimf-precision=medium
(/Qimf-precision:medium) and option -fp-model=precise (and /fp:precise) implies
-fimf-precision=high (and /Qimf-precision:high). Option -fp-model=fast=2 (and /fp:fast2) sets
option -fimf-precision=medium (and /Qimf-precision:medium) and option
-fimf-domain-exclusion=15 (and /Qimf-domain-exclusion=15).

NOTE
In Microsoft* Visual Studio, when you create a Microsoft* Visual C++ project,
option /fp:precise is set by default. It sets the floating-point model to improve consistency
for floating-point operations by disabling certain optimizations that may reduce
performance. To set the option back to the general default /fp:fast, change the IDE project
property for Floating Point Model to Fast.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio: Code Generation>Floating Point Model

Code Generation>Enable Floating Point Exceptions

Code Generation> Floating Point Expression Evaluation

Eclipse: Floating Point > Floating Point Model

Xcode: Floating Point > Floating Point Model

Floating Point > Reliable Floating Point Exceptions Model

Alternate Options

None

See Also
O compiler option (specifically O0)
Od compiler option
mp1, Qprec compiler option
fimf-absolute-error, Qimf-absolute-error compiler option
fimf-accuracy-bits, Qimf-accuracy-bits compiler option
fimf-max-error, Qimf-max-error compiler option
fimf-precision, Qimf-precision compiler option
fimf-domain-exclusion, Qimf-domain-exclusion compiler option
fast-transcendentals, Qfast-transcendentals compiler option
Supported Environment Variables
The article titled: Consistency of Floating-Point Results using the Intel® Compiler

fp-port, Qfp-port
Rounds floating-point results after floating-point
operations.

Compiler Reference

317

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://software.intel.com/content/www/us/en/develop/articles/consistency-of-floating-point-results-using-the-intel-compiler.html

Syntax

Linux OS:

-fp-port
-no-fp-port
macOS:

-fp-port
-no-fp-port
Windows OS:

/Qfp-port
/Qfp-port-

Arguments

None

Default

-no-fp-port
or /Qfp-port-

The default rounding behavior depends on the compiler's code generation decisions
and the precision parameters of the operating system.

Description

This option rounds floating-point results after floating-point operations.

This option is designed to be used with the -mia32 (Linux*) or /arch:IA32 (Windows*) option on a 32-bit
compiler. Under those conditions, the compiler implements floating-point calculations using the x87
instruction set, which uses an internal precision that may be higher than the precision specified in the
program.

By default, the compiler may keep results of floating-point operations in this higher internal precision.
Rounding to program precision occurs at unspecified points. This provides better performance, but the
floating-point results are less deterministic. The [Q]fp-port option rounds floating-point results to user-
specified precision at assignments and type conversions. This has some impact on speed.

When compiling for newer architectures, the compiler implements floating-point calculations with different
instructions, such as Intel® SSE and SSE2. These Intel® Streaming SIMD Extensions round directly to single
precision or double precision at every instruction. In these cases, option [Q]fp-port has no effect.

IDE Equivalent

Windows

Visual Studio: Optimization > Floating-point Precision Improvements

Linux

Eclipse: Floating Point > Round Floating-Point Results

OS X

Xcode: Floating Point > Round Floating-Point Results

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

318

See Also
Floating-point Operations

fp-speculation, Qfp-speculation
Tells the compiler the mode in which to speculate on
floating-point operations.

Syntax

Linux OS:

-fp-speculation=mode
macOS:

-fp-speculation=mode
Windows OS:

/Qfp-speculation:mode

Arguments

mode Is the mode for floating-point operations. Possible values are:

fast Tells the compiler to speculate on floating-
point operations.

safe Tells the compiler to disable speculation if
there is a possibility that the speculation
may cause a floating-point exception.

strict Tells the compiler to disable speculation on
floating-point operations.

off This is the same as specifying strict. This
feature is only available for ifort.

Default

-fp-speculation=fast
or/Qfp-speculation:fast

The compiler speculates on floating-point operations. This is also the
behavior when optimizations are enabled. However, if you specify no
optimizations (-O0 on Linux*; /Od on Windows*), the default is
-fp-speculation=safe (Linux*) or /Qfp-speculation:safe
(Windows*).

Description

This option tells the compiler the mode in which to speculate on floating-point operations.

Disabling speculation may prevent the vectorization of some loops containing conditionals.

IDE Equivalent

Visual Studio: Optimization > Floating-Point Speculation

Eclipse: Floating Point > Floating-Point Speculation

Xcode: Floating Point > Floating-Point Speculation

Compiler Reference

319

Alternate Options

None

fp-stack-check, Qfp-stack-check
Tells the compiler to generate extra code after every
function call to ensure that the floating-point stack is
in the expected state.

Syntax

Linux OS:

-fp-stack-check
macOS:

-fp-stack-check
Windows OS:

/Qfp-stack-check

Arguments

None

Default

OFF There is no checking to ensure that the floating-point (FP) stack is in the expected state.

Description

This option tells the compiler to generate extra code after every function call to ensure that the floating-point
(FP) stack is in the expected state.

By default, there is no checking. So when the FP stack overflows, a NaN value is put into FP calculations and
the program's results differ. Unfortunately, the overflow point can be far away from the point of the actual
bug. This option places code that causes an access violation exception immediately after an incorrect call
occurs, thus making it easier to locate these issues.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Floating Point > Check Floating-point Stack

OS X

Xcode: Floating Point > Check Floating-point Stack

Alternate Options

None

fp-trap, Qfp-trap
Sets the floating-point trapping mode for the main
routine.

 Intel® C++ Compiler Classic Developer Guide and Reference

320

Syntax

Linux OS:

-fp-trap=mode[,mode,...]
macOS:

-fp-trap=mode[,mode,...]
Windows OS:

/Qfp-trap:mode[,mode,...]

Arguments

mode Is the floating-point trapping mode. If you specify more than one
mode value, the list is processed sequentially from left to right.
Possible values are:

[no]divzero Enables or disables the IEEE trap for division
by zero.

[no]inexact Enables or disables the IEEE trap for inexact
result.

[no]invalid Enables or disables the IEEE trap for invalid
operation.

[no]overflow Enables or disables the IEEE trap for
overflow.

[no]underflow Enables or disables the IEEE trap for
underflow.

[no]denormal Enables or disables the trap for denormal.

all Enables all of the above traps.

none Disables all of the above traps.

common Sets the most commonly used IEEE traps:
division by zero, invalid operation, and
overflow.

Default

-fp-trap=none
or/Qfp-trap:none

No traps are enabled when a program starts.

Description

This option sets the floating-point trapping mode for the main routine. It does not set a handler for floating-
point exceptions.

The [no] form of a mode value is only used to modify the meaning of mode values all and common, and can
only be used with one of those values. The [no] form of the option by itself does not explicitly cause a
particular trap to be disabled.

Use mode value inexact with caution. This results in the trap being enabled whenever a floating-point value
cannot be represented exactly, which can cause unexpected results.

Compiler Reference

321

If mode value underflow is specified, the compiler ignores the FTZ (flush-to-zero) bit state of Intel®
Streaming SIMD Extensions (Intel® SSE) floating-point units.

When a DAZ (denormals are zero) bit is set in an Intel® SSE floating-point unit control word, a denormal
operand exception is never generated.

To set the floating-point trapping mode for all routines, specify the[Q]fp-trap-all option.

NOTE
The negative form of the [Q]ftz option can be used to set or reset the FTZ and the DAZ
hardware flags.

IDE Equivalent

Windows

Visual Studio: Code Generation > Unmask Floating Point Exceptions

Configuration Properties->C/C++ > Unmask Floating Point Exceptions

Linux

Eclipse: Floating Point > Initial Exception Mask

OS X

Xcode: Floating Point > Set Initial Exception Mask

Alternate Options

None

See Also
ftz, Qftz compiler option
fp-trap-all, Qfp-trap-all compiler option

fp-trap-all, Qfp-trap-all
Sets the floating-point trapping mode for all routines.

Syntax

Linux OS:

-fp-trap-all=mode[,mode,...]
macOS:

-fp-trap-all=mode[,mode,...]
Windows OS:

/Qfp-trap-all:mode[,mode,...]

Arguments

mode Is the floating-point trapping mode. If you specify more than one
mode value, the list is processed sequentially from left to right.
Possible values are:

 Intel® C++ Compiler Classic Developer Guide and Reference

322

[no]divzero Enables or disables the IEEE trap for division
by zero.

[no]inexact Enables or disables the IEEE trap for inexact
result.

[no]invalid Enables or disables the IEEE trap for invalid
operation.

[no]overflow Enables or disables the IEEE trap for
overflow.

[no]underflow Enables or disables the IEEE trap for
underflow.

[no]denormal Enables or disables the trap for denormal.

all Enables all of the above traps.

none Disables all of the above traps.

common Sets the most commonly used IEEE traps:
division by zero, invalid operation, and
overflow.

Default

-fp-trap-all=none
or
/Qfp-trap-all:none

No traps are enabled for all routines.

Description

This option sets the floating-point trapping mode for the main routine. It does not set a handler for floating-
point exceptions.

The [no] form of a mode value is only used to modify the meaning of mode values all and common, and can
only be used with one of those values. The [no] form of the option by itself does not explicitly cause a
particular trap to be disabled.

Use mode value inexact with caution. This results in the trap being enabled whenever a floating-point value
cannot be represented exactly, which can cause unexpected results.

If mode value underflow is specified, the compiler ignores the FTZ (flush-to-zero) bit state of Intel®
Streaming SIMD Extensions (Intel® SSE) floating-point units.

When a DAZ (denormals are zero) bit is set in an Intel® SSE floating-point unit control word, a denormal
operand exception is never generated.

To set the floating-point trapping mode for the main routine only, specify the [Q]fp-trap option.

NOTE
The negative form of the [Q]ftz option can be used to set or reset the FTZ and the DAZ
hardware flags.

IDE Equivalent

None

Compiler Reference

323

Alternate Options

None

See Also
ftz, Qftz compiler option
fp-trap, Qfp-trap compiler option

ftz, Qftz
Flushes denormal results to zero.

Syntax

Linux OS:

-ftz
-no-ftz

macOS:

-ftz
-no-ftz

Windows OS:

/Qftz
/Qftz-

Arguments

None

Default

-ftz or /Qftz Denormal results are flushed to zero.

Every optimization option O level, except O0, sets
[Q]ftz.

Description

This option flushes denormal results to zero when the application is in the gradual underflow mode. It may
improve performance if the denormal values are not critical to your application's behavior.

The [Q]ftz option has no effect during compile-time optimization.

The [Q]ftz option sets or resets the FTZ and the DAZ hardware flags. If FTZ is ON, denormal results from
floating-point calculations will be set to the value zero. If FTZ is OFF, denormal results remain as is. If DAZ is
ON, denormal values used as input to floating-point instructions will be treated as zero. If DAZ is OFF,
denormal instruction inputs remain as is. Systems using Intel® 64 architecture have both FTZ and DAZ. FTZ
and DAZ are not supported on all IA-32 architectures.

When the [Q]ftz option is used in combination with an SSE-enabling option on systems using IA-32
architecture (for example, the [Q]xSSE2 option), the compiler will insert code in the main routine to set FTZ
and DAZ. When [Q]ftz is used without such an option, the compiler will insert code to conditionally set
FTZ/DAZ based on a run-time processor check.

If you specify option -no-ftz (Linux and macOS) or option /Qftz- (Windows), it prevents the compiler from
inserting any code that might set FTZ or DAZ.

 Intel® C++ Compiler Classic Developer Guide and Reference

324

Option [Q]ftz only has an effect when the main program is being compiled. It sets the FTZ/DAZ mode for
the process. The initial thread and any threads subsequently created by that process will operate in FTZ/DAZ
mode.

If this option produces undesirable results of the numerical behavior of your program, you can turn the
FTZ/DAZ mode off by specifying -no-ftz or /Qftz- in the command line while still benefiting from the O3
optimizations.

NOTE
Option [Q]ftz is a performance option. Setting this option does not guarantee that all
denormals in a program are flushed to zero. The option only causes denormals generated at
run time to be flushed to zero.

IDE Equivalent

Windows

Visual Studio: Optimization > Flush Denormal Results to Zero

Linux

Eclipse: Floating-Point > Flush Denormal Results to Zero

OS X

Xcode: Floating-Point > Flush Denormal Results to Zero

Alternate Options

None

See Also
x, Qx compiler option
Setting the FTZ and DAZ Flags

Ge
Enables stack-checking for all functions. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Ge

Arguments

None

Compiler Reference

325

Default

OFF Stack-checking for all functions is disabled.

Description

This option enables stack-checking for all functions.

This is a deprecated option that may be removed in a future release. The replacement option is /Gs0.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /Gs0

mp1, Qprec
Improves floating-point precision and consistency.

Syntax

Linux OS:

-mp1
macOS:

-mp1
Windows OS:

/Qprec

Arguments

None

Default

OFF The compiler provides good accuracy and run-time performance at the expense of less consistent
floating-point results.

Description

This option improves floating-point consistency. It ensures the out-of-range check of operands of
transcendental functions and improves the accuracy of floating-point compares.

This option prevents the compiler from performing optimizations that change NaN comparison semantics and
causes all values to be truncated to declared precision before they are used in comparisons. It also causes
the compiler to use library routines that give better precision results compared to the X87 transcendental
instructions.

This option disables fewer optimizations and has less impact on performance than option
-fp-model precise (Linux* and macOS) or option /fp:precise (Windows*).

 Intel® C++ Compiler Classic Developer Guide and Reference

326

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: None

Xcode

Xcode: FloatingPoint > Improve Floating-Point Consistency

Alternate Options

None

See Also

pc, Qpc
Enables control of floating-point significand precision.

Syntax

Linux OS:

-pcn
macOS:

-pcn
Windows OS:

/Qpcn

Arguments

n Is the floating-point significand precision. Possible values are:

32 Rounds the significand to 24 bits (single
precision).

64 Rounds the significand to 53 bits (double
precision).

80 Rounds the significand to 64 bits (extended
precision).

Default

-pc80
or /Qpc64

On Linux* and macOS systems, the floating-point significand is rounded to
64 bits.

On Windows* systems, the floating-point significand is rounded to 53 bits.

Description

This option enables control of floating-point significand precision.

Compiler Reference

327

Some floating-point algorithms are sensitive to the accuracy of the significand, or fractional part of the
floating-point value. For example, iterative operations like division and finding the square root can run faster
if you lower the precision with this option.

Note that a change of the default precision control or rounding mode, for example, by using the [Q]pc32
option or by user intervention, may affect the results returned by some of the mathematical functions.

IDE Equivalent

None

Alternate Options

None

prec-div, Qprec-div
Improves precision of floating-point divides.

Syntax

Linux OS:

-prec-div
-no-prec-div
macOS:

-prec-div
-no-prec-div
Windows OS:

/Qprec-div
/Qprec-div-

Arguments

None

Default

OFF Default heuristics are used. The default is not as accurate as full IEEE division, but it is
slightly more accurate than would be obtained when /Qprec-div- or -no-prec-div
is specified.

If you need full IEEE precision for division, you should specify [Q]prec-div.

Description

This option improves precision of floating-point divides. It has a slight impact on speed.

At default optimization levels, the compiler may change floating-point division computations into
multiplication by the reciprocal of the denominator. For example, A/B is computed as A * (1/B) to improve
the speed of the computation.

However, sometimes the value produced by this transformation is not as accurate as full IEEE division. When
it is important to have fully precise IEEE division, use this option to disable the floating-point division-to-
multiplication optimization. The result is more accurate, with some loss of performance.

If you specify -no-prec-div (Linux* and macOS) or /Qprec-div- (Windows*), it enables optimizations
that give slightly less precise results than full IEEE division.

 Intel® C++ Compiler Classic Developer Guide and Reference

328

Option [Q]prec-div is implied by option -fp-model precise (Linux* and macOS) and
option /fp:precise (Windows*).

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp compiler option

prec-sqrt, Qprec-sqrt
Improves precision of square root implementations.

Syntax

Linux OS:

-prec-sqrt
-no-prec-sqrt

macOS:

-prec-sqrt
-no-prec-sqrt

Windows OS:

/Qprec-sqrt
/Qprec-sqrt-

Arguments

None

Default

-no-prec-sqrt
or /Qprec-sqrt-

The compiler uses a faster but less precise implementation of square root.

However, the default is -prec-sqrt or /Qprec-sqrt if any of the following options
are specified: /Od, /fp:precise, or /Qprec on Windows* systems; -O0 or -mp1 on
Linux* and macOS systems.

Description

This option improves precision of square root implementations. It has a slight impact on speed.

This option inhibits any optimizations that can adversely affect the precision of a square root computation.
The result is fully precise square root implementations, with some loss of performance.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

329

qsimd-honor-fp-model, Qsimd-honor-fp-model
Tells the compiler to obey the selected floating-point
model when vectorizing SIMD loops.

Syntax

Linux OS:

-qsimd-honor-fp-model
-qno-simd-honor-fp-model

macOS:

-qsimd-honor-fp-model
-qno-simd-honor-fp-model

Windows OS:

/Qsimd-honor-fp-model
/Qsimd-honor-fp-model-

Arguments

None

Default

-qno-simd-honor-fp-model
or /Qsimd-honor-fp-model-

The compiler performs vectorization of SIMD loops even if it breaks
the floating-point model setting.

Description

The OpenMP* SIMD specification and the setting of compiler option -fp-model (Linux* and macOS) or /fp
(Windows*) can contradict in requirements. When contradiction occurs, the default behavior of the compiler
is to follow the OpenMP* specification and therefore vectorize the loop.

This option lets you override this default behavior - it causes the compiler to follow the -fp-model (or /fp)
specification. This means that the compiler will serialize the loop.

NOTE
This option does not affect automatic vectorization of loops. By default, the compiler uses
-fp-model (Linux* and macOS) or /fp (Windows*) settings for this.

IDE Equivalent

None

Alternate Options

None

See Also
qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction compiler option
fp-model, fp compiler option
simd pragma

 Intel® C++ Compiler Classic Developer Guide and Reference

330

qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction
Tells the compiler to serialize floating-point reduction
when vectorizing SIMD loops.

Syntax

Linux OS:

-qsimd-serialize-fp-reduction
-qno-simd-serialize-fp-reduction
macOS:

-qsimd-serialize-fp-reduction
-qno-simd-serialize-fp-reduction
Windows OS:

/Qsimd-serialize-fp-reduction
/Qsimd-serialize-fp-reduction-

Arguments

None

Default

-qno-simd-serialize-fp-reduction
or /Qsimd-serialize-fp-reduction-

The compiler does not attempt to serialize floating-point
reduction in SIMD loops.

Description

The OpenMP* SIMD reduction specification and the setting of compiler option -fp-model (Linux* and
macOS) or /fp (Windows*) can contradict in requirements. When contradiction occurs, the default behavior
of the compiler is to follow OpenMP* specification and therefore vectorize the loop, including floating-point
reduction.

This option lets you override this default behavior - it causes the compiler to follow the -fp-model (or /fp)
specification. This means that the compiler will serialize the floating-point reduction while vectorizing the rest
of the loop.

NOTE
When [q or Q]simd-honor-fp-model is specified and OpenMP* SIMD reduction specification
is the only thing causing serialization of the entire loop, addition of option
[q or Q]simd-serialize-fp-reduction will result in vectorization of the entire loop except
for reduction calculation, which will be serialized.

NOTE
This option does not affect automatic vectorization of loops. By default, the compiler uses
-fp-model (Linux* and macOS) or /fp (Windows*) settings for this.

Compiler Reference

331

IDE Equivalent

None

Alternate Options

None

See Also
qsimd-honor-fp-model, Qsimd-honor-fp-model compiler option
fp-model, fp compiler option
simd pragma

rcd, Qrcd
Enables fast float-to-integer conversions. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

-rcd
macOS:

-rcd
Windows OS:

/Qrcd

Arguments

None

Default

OFF Floating-point values are truncated when a conversion to an integer is involved.

Description

This option enables fast float-to-integer conversions. It can improve the performance of code that requires
floating-point-to-integer conversions.

This is a deprecated option that may be removed in a future release. There is no replacement option.

The system default floating-point rounding mode is round-to-nearest. However, the C language requires
floating-point values to be truncated when a conversion to an integer is involved. To do this, the compiler
must change the rounding mode to truncation before each floating-point-to-integer conversion and change it
back afterwards.

This option disables the change to truncation of the rounding mode for all floating-point calculations,
including floating point-to-integer conversions. This option can improve performance, but floating-point
conversions to integer will not conform to C semantics.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

 Intel® C++ Compiler Classic Developer Guide and Reference

332

Windows: /QIfist (this is a deprecated option)

Inlining Options
This section contains descriptions for compiler options that pertain to inlining.

fgnu89-inline
Tells the compiler to use C89 semantics for inline
functions when in C99 mode.

Syntax

Linux OS:

-fgnu89-inline
macOS:

-fgnu89-inline
Windows OS:

None

Arguments

None

Default

OFF

Description

This option tells the compiler to use C89 semantics for inline functions when in C99 mode.

IDE Equivalent

None

Alternate Options

None

finline
Tells the compiler to inline functions declared with
__inline and perform C++ inlining.

Syntax

Linux OS:

-finline
-fno-inline
macOS:

-finline
-fno-inline

Compiler Reference

333

Windows OS:

None

Arguments

None

Default

-fno-inline The compiler does not inline functions declared with __inline.

Description

This option tells the compiler to inline functions declared with __inline and perform C++ inlining.

IDE Equivalent

None

Alternate Options

Linux and macOS: -inline-level
Windows: /Ob

finline-functions
Enables function inlining for single file compilation.

Syntax

Linux OS:

-finline-functions
-fno-inline-functions
macOS:

-finline-functions
-fno-inline-functions
Windows OS:

None

Arguments

None

Default

-finline-functionsInterprocedural optimizations occur. However, if you specify -O0, the default is OFF.

Description

This option enables function inlining for single file compilation.

It enables the compiler to perform inline function expansion for calls to functions defined within the current
source file.

The compiler applies a heuristic to perform the function expansion. To specify the size of the function to be
expanded, use the -finline-limit option.

 Intel® C++ Compiler Classic Developer Guide and Reference

334

IDE Equivalent

None

Alternate Options

Linux and macOS: -inline-level=2
Windows: /Ob2

See Also
ip, Qip compiler option
finline-limit compiler option

finline-limit
Lets you specify the maximum size of a function to be
inlined.

Syntax

Linux OS:

-finline-limit=n
macOS:

-finline-limit=n
Windows OS:

None

Arguments

n Must be an integer greater than or equal to zero. It is the maximum
number of lines the function can have to be considered for inlining.

Default

OFF The compiler uses default heuristics when inlining functions.

Description

This option lets you specify the maximum size of a function to be inlined. The compiler inlines smaller
functions, but this option lets you inline large functions. For example, to indicate a large function, you could
specify 100 or 1000 for n.

Note that parts of functions cannot be inlined, only whole functions.

This option is a modification of the -finline-functions option, whose behavior occurs by default.

IDE Equivalent

None

Alternate Options

None

See Also
finline-functions compiler option

Compiler Reference

335

inline-calloc, Qinline-calloc
Tells the compiler to inline calls to calloc() as calls to
malloc() and memset().

Architectures

All

Syntax

Linux OS and macOS:

-inline-calloc
-no-inline-calloc
Windows OS:

/Qinline-calloc
/Qinline-calloc-

Arguments

None

Default

-no-inline-calloc
or/Qinline-calloc-

The compiler inlines calls to calloc() as calls to calloc().

Description

This option tells the compiler to inline calls to calloc() as calls to malloc() and memset(). This enables
additional memset() optimizations. For example, it can enable inlining as a sequence of store operations
when the size is a compile time constant.

NOTE
Many routines in the supplied libraries are more highly optimized for Intel® microprocessors
than for non-Intel microprocessors

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

336

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

inline-factor, Qinline-factor
Specifies the percentage multiplier that should be
applied to all inlining options that define upper limits.

Syntax

Linux OS:

-inline-factor=n
-no-inline-factor
macOS:

-inline-factor=n
-no-inline-factor
Windows OS:

/Qinline-factor:n
/Qinline-factor-

Arguments

n Is a positive integer specifying the percentage value. The default value
is 100 (a factor of 1).

Default

-inline-factor=100
or /Qinline-factor:100

The compiler uses a percentage multiplier of 100.

Description

This option specifies the percentage multiplier that should be applied to all inlining options that define upper
limits:

• [Q]inline-max-size
• [Q]inline-max-total-size
• [Q]inline-max-per-routine
• [Q]inline-max-per-compile
The [Q]inline-factor option takes the default value for each of the above options and multiplies it by n
divided by 100. For example, if 200 is specified, all inlining options that define upper limits are multiplied by
a factor of 2. This option is useful if you do not want to individually increase each option limit.

If you specify -no-inline-factor (Linux* and macOS) or /Qinline-factor- (Windows*), the following
occurs:

• Every function is considered to be a small or medium function; there are no large functions.
• There is no limit to the size a routine may grow when inline expansion is performed.
• There is no limit to the number of times some routine may be inlined into a particular routine.
• There is no limit to the number of times inlining can be applied to a compilation unit.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Compiler Reference

337

Caution
When you use this option to increase default limits, the compiler may do so much additional
inlining that it runs out of memory and terminates with an "out of memory" message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-max-size, Qinline-max-size compiler option
inline-max-total-size, Qinline-max-total-size compiler option
inline-max-per-routine, Qinline-max-per-routine compiler option
inline-max-per-compile, Qinline-max-per-compile compiler option
qopt-report, Qopt-report compiler option

inline-forceinline, Qinline-forceinline
Instructs the compiler to force inlining of functions
suggested for inlining whenever the compiler is
capable doing so.

Syntax

Linux OS:

-inline-forceinline

macOS:

-inline-forceinline

Windows OS:

/Qinline-forceinline

Default

OFF The compiler uses default heuristics for inline routine expansion.

Description

This option instructs the compiler to force inlining of functions suggested for inlining whenever the compiler
is capable doing so.

Without this option, the compiler treats functions declared with the inline keyword as merely being
recommended for inlining. When this option is used, it is as if they were declared with the keyword
__forceinline keyword.

NOTE
Because C++ member functions whose definitions are included in the class declaration are
considered inline functions by default, using this option will also make these member
functions "forceinline" functions.

 Intel® C++ Compiler Classic Developer Guide and Reference

338

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to change the meaning of inline to "forceinline", the compiler may
do so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option

inline-level, Ob
Specifies the level of inline function expansion.

Syntax

Linux OS:

-inline-level=n

macOS:

-inline-level=n

Windows OS:

/Obn

Arguments

n Is the inline function expansion level. Possible values are 0, 1, and 2.

Default

-inline-level=2 or /Ob2 This is the default if option O2 is specified or is in effect by
default. On Windows* systems, this is also the default if option
O3 is specified.

-inline-level=0 or /Ob0 This is the default if option -O0 (Linux* and macOS) or /Od
(Windows*) is specified.

Description

This option specifies the level of inline function expansion. Inlining procedures can greatly improve the run-
time performance of certain programs.

Option Description

-inline-level=0 or /Ob0 Disables inlining of user-defined functions. Note that statement functions
are always inlined.

Compiler Reference

339

Option Description

-inline-level=1 or /Ob1 Enables inlining when an inline keyword or an inline attribute is specified.
Also enables inlining according to the C++ language.

-inline-level=2 or /Ob2 Enables inlining of any function at the compiler's discretion.

IDE Equivalent

Windows

Visual Studio: Optimization > Inline Function Expansion

Linux

Eclipse: Optimization > Inline Function Expansion

OS X

Xcode: Optimization > Inline Function Expansion

Alternate Options

None

inline-max-per-compile, Qinline-max-per-compile
Specifies the maximum number of times inlining may
be applied to an entire compilation unit.

Syntax

Linux OS:

-inline-max-per-compile=n
-no-inline-max-per-compile
macOS:

-inline-max-per-compile=n
-no-inline-max-per-compile
Windows OS:

/Qinline-max-per-compile=n
/Qinline-max-per-compile-

Arguments

n Is a positive integer that specifies the number of times inlining may be
applied.

Default

-no-inline-max-per-compile
or /Qinline-max-per-compile-

The compiler uses default heuristics for inline routine expansion.

 Intel® C++ Compiler Classic Developer Guide and Reference

340

Description

This option the maximum number of times inlining may be applied to an entire compilation unit. It limits the
number of times that inlining can be applied.

For compilations using Interprocedural Optimizations (IPO), the entire compilation is a compilation unit. For
other compilations, a compilation unit is a file.

If you specify -no-inline-max-per-compile (Linux* and macOS) or /Qinline-max-per-compile-
(Windows*), there is no limit to the number of times inlining may be applied to a compilation unit.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-factor, Qinline-factor compiler option
qopt-report, Qopt-report compiler option

inline-max-per-routine, Qinline-max-per-routine
Specifies the maximum number of times the inliner
may inline into a particular routine.

Syntax

Linux OS:

-inline-max-per-routine=n
-no-inline-max-per-routine
macOS:

-inline-max-per-routine=n
-no-inline-max-per-routine
Windows OS:

/Qinline-max-per-routine=n
/Qinline-max-per-routine-

Arguments

n Is a positive integer that specifies the maximum number of times the
inliner may inline into a particular routine.

Compiler Reference

341

Default

-no-inline-max-per-routine
or /Qinline-max-per-routine-

The compiler uses default heuristics for inline routine expansion.

Description

This option specifies the maximum number of times the inliner may inline into a particular routine. It limits
the number of times that inlining can be applied to any routine.

If you specify -no-inline-max-per-routine (Linux* and macOS) or /Qinline-max-per-routine-
(Windows*), there is no limit to the number of times some routine may be inlined into a particular routine.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-factor, Qinline-factor compiler option
qopt-report, Qopt-report compiler option

inline-max-size, Qinline-max-size
Specifies the lower limit for the size of what the inliner
considers to be a large routine.

Syntax

Linux OS:

-inline-max-size=n
-no-inline-max-size
macOS:

-inline-max-size=n
-no-inline-max-size
Windows OS:

/Qinline-max-size=n
/Qinline-max-size-

 Intel® C++ Compiler Classic Developer Guide and Reference

342

Arguments

n Is a positive integer that specifies the minimum size of what the
inliner considers to be a large routine.

Default

-inline-max-size
or /Qinline-max-size

The compiler sets the maximum size (n) dynamically, based on
the platform.

Description

This option specifies the lower limit for the size of what the inliner considers to be a large routine (a
function). The inliner classifies routines as small, medium, or large. This option specifies the boundary
between what the inliner considers to be medium and large-size routines.

The inliner prefers to inline small routines. It has a preference against inlining large routines. So, any large
routine is highly unlikely to be inlined.

If you specify -no-inline-max-size (Linux* and macOS) or /Qinline-max-size- (Windows*), there are
no large routines. Every routine is either a small or medium routine.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-min-size, Qinline-min-size compiler option
inline-factor, Qinline-factor compiler option
qopt-report, Qopt-report compiler option

inline-max-total-size, Qinline-max-total-size
Specifies how much larger a routine can normally
grow when inline expansion is performed.

Syntax

Linux OS:

-inline-max-total-size=n
-no-inline-max-total-size
macOS:

-inline-max-total-size=n

Compiler Reference

343

-no-inline-max-total-size
Windows OS:

/Qinline-max-total-size=n
/Qinline-max-total-size-

Arguments

n Is a positive integer that specifies the permitted increase in the
routine's size when inline expansion is performed.

Default

-no-inline-max-total-size
or /Qinline-max-total-size-

The compiler uses default heuristics for inline routine expansion.

Description

This option specifies how much larger a routine can normally grow when inline expansion is performed. It
limits the potential size of the routine. For example, if 2000 is specified for n, the size of any routine will
normally not increase by more than 2000.

If you specify -no-inline-max-total-size (Linux* and macOS) or /Qinline-max-total-size-
(Windows*), there is no limit to the size a routine may grow when inline expansion is performed.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-factor, Qinline-factor compiler option
qopt-report, Qopt-report compiler option

inline-min-caller-growth, Qinline-min-caller-growth
Lets you specify a function size n for which functions
of size <= n do not contribute to the estimated
growth of the caller when inlined.

Syntax

Linux OS:

-inline-min-caller-growth=n

 Intel® C++ Compiler Classic Developer Guide and Reference

344

macOS:

-inline-min-caller-growth=n
Windows OS:

/Qinline-min-caller-growth=n

Arguments

n Is a non-negative integer. When n > 0, functions with a size of n are
treated as if they are size 0.

Default

-inline-min-caller-growth=0
or /Qinline-min-caller-growth=0

The compiler treats functions as if they have size zero.

Description

This option lets you specify a function size n for which functions of size <= n do not contribute to the
estimated growth of the caller when inlined. It allows you to inline functions that the compiler would
otherwise consider too large to inline.

NOTE
We recommend that you choose a value of n <= 10; otherwise, compile time and code size
may greatly increase.

IDE Equivalent

None

Alternate Options

None

inline-min-size, Qinline-min-size
Specifies the upper limit for the size of what the
inliner considers to be a small routine.

Syntax

Linux OS:

-inline-min-size=n
-no-inline-min-size
macOS:

-inline-min-size=n
-no-inline-min-size
Windows OS:

/Qinline-min-size=n
/Qinline-min-size-

Compiler Reference

345

Arguments

n Is a positive integer that specifies the maximum size of what the
inliner considers to be a small routine.

Default

-no-inline-min-size
or /Qinline-min-size-

The compiler uses default heuristics for inline routine expansion.

Description

This option specifies the upper limit for the size of what the inliner considers to be a small routine (a
function). The inliner classifies routines as small, medium, or large. This option specifies the boundary
between what the inliner considers to be small and medium-size routines.

The inliner has a preference to inline small routines. So, when a routine is smaller than or equal to the
specified size, it is very likely to be inlined.

If you specify -no-inline-min-size (Linux* and macOS) or /Qinline-min-size- (Windows*), there is
no limit to the size of small routines. Every routine is a small routine; there are no medium or large routines.

To see compiler values for important inlining limits, specify option [q or Q]opt-report.

Caution
When you use this option to increase the default limit, the compiler may do so much
additional inlining that it runs out of memory and terminates with an "out of memory"
message.

IDE Equivalent

None

Alternate Options

None

See Also
inline-max-size, Qinline-max-size compiler option
qopt-report, Qopt-report compiler option

Qinline-dllimport
Determines whether dllimport functions are inlined.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qinline-dllimport
/Qinline-dllimport-

 Intel® C++ Compiler Classic Developer Guide and Reference

346

Arguments

None

Default

/Qinline-dllimport The dllimport functions are inlined.

Description

This option determines whether dllimport functions are inlined. To disable dllimport functions from being
inlined, specify /Qinline-dllimport-.

IDE Equivalent

None

Alternate Options

None

Output, Debug, and Precompiled Header Options
This section contains descriptions for compiler options that pertain to output, debugging, or precompiled
headers (PCH).

c
Prevents linking.

Syntax

Linux OS:

-c
macOS:

-c
Windows OS:

/c

Arguments

None

Default

OFF Linking is performed.

Description

This option prevents linking. Compilation stops after the object file is generated.

The compiler generates an object file for each C or C++ source file or preprocessed source file. It also takes
an assembler file and invokes the assembler to generate an object file.

IDE Equivalent

None

Compiler Reference

347

Alternate Options

None

debug (Linux* and macOS)
Enables or disables generation of debugging
information.

Syntax

Linux OS:

-debug [keyword]
macOS:

-debug [keyword]
Windows OS:

None

Arguments

keyword Is the type of debugging information to be generated. Possible values are:

none Disables generation of debugging information.

full or all Generates complete debugging information.

minimal Generates line number information for debugging.

[no]emit_column Determines whether the compiler generates column
number information for debugging.

[no]expr-source-pos Determines whether the compiler generates source position
information at the expression level of granularity.

[no]inline-debug-info Determines whether the compiler generates enhanced
debug information for inlined code.

[no]pubnames Determines whether the compiler generates a DWARF
debug_pubnames section.

[no]semantic-stepping Determines whether the compiler generates enhanced
debug information useful for breakpoints and stepping.

[no]variable-locations Determines whether the compiler generates enhanced
debug information useful in finding scalar local variables.

extended Generates complete debugging information and also sets
keyword values semantic-stepping and variable-
locations.

[no]parallel
(Linux only)

Determines whether the compiler generates parallel debug
code instrumentations useful for thread data sharing and
reentrant call detection.

For information on the non-default settings for these keywords, see the Description section.

 Intel® C++ Compiler Classic Developer Guide and Reference

348

Default

varies Normally, the default is -debug none and no debugging information is
generated. However, on Linux*, the -debug inline-debug-info
option will be enabled by default if you compile with optimizations
(option -O2 or higher) and debugging is enabled (option -g).

Description

This option enables or disables generation of debugging information.

By default, enabling debugging, will disable optimization. To enable both debugging and optimization use the
-debug option together with one of the optimization level options (-O3, -O2 or -O3).

Keywords semantic-stepping, inline-debug-info, variable-locations, and extended can be used in
combination with each other. If conflicting keywords are used in combination, the last one specified on the
command line has precedence.

Option Description

-debug none Disables generation of debugging information.

-debug full or -debug all Generates complete debugging information. It is the same as specifying
-debug with no keyword.

-debug minimal Generates line number information for debugging.

-debug emit_column Generates column number information for debugging.

-debug expr-source-pos Generates source position information at the statement level of
granularity.

-debug inline-debug-info Generates enhanced debug information for inlined code.

On inlined functions, symbols are (by default) associated with the caller.
This option causes symbols for inlined functions to be associated with the
source of the called function.

-debug pubnames The compiler generates a DWARF debug_pubnames section. This provides
a means to list the names of global objects and functions in a compilation
unit.

-debug semantic-stepping Generates enhanced debug information useful for breakpoints and
stepping. It tells the debugger to stop only at machine instructions that
achieve the final effect of a source statement.

For example, in the case of an assignment statement, this might be a
store instruction that assigns a value to a program variable; for a function
call, it might be the machine instruction that executes the call. Other
instructions generated for those source statements are not displayed
during stepping.

This option has no impact unless optimizations have also been enabled.

-debug variable-locations Generates enhanced debug information useful in finding scalar local
variables. It uses a feature of the Dwarf object module known as
"location lists".

Compiler Reference

349

Option Description

This feature allows the run-time locations of local scalar variables to be
specified more accurately; that is, whether, at a given position in the
code, a variable value is found in memory or a machine register.

-debug extended Sets keyword values semantic-stepping and variable-locations. It
also tells the compiler to include column numbers in the line information.

Generates complete debugging information and also sets keyword values
semantic-stepping and variable-locations. This is a more powerful
setting than -debug full or -debug all.

-debug parallel Generates parallel debug code instrumentations needed for the thread
data sharing and reentrant call detection.

For shared data and reentrancy detection, option -qopenmp must be set.

On Linux* systems, debuggers read debug information from executable images. As a result, information is
written to object files and then added to the executable by the linker.

On macOS systems, debuggers read debug information from object files. As a result, the executables don't
contain any debug information. Therefore, if you want to be able to debug on these systems, you must retain
the object files.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Advanced Debugging > Enable Parallel Debug Checks (-debug parallel)

Debug > Enable Expanded Line Number Information (-debug expr-source-pos)

OS X

Xcode: None

Alternate Options

For -debug full, -debug all, or
-debug

Linux and macOS: -g
Windows: /debug:full, /debug:all, or /debug

For -debug variable-locations Linux and macOS: -fvar-tracking
Windows: None

For -debug semantic-stepping Linux and macOS: -fvar-tracking-assignments
Windows: None

See Also
debug (Windows*) compiler option
qopenmp, Qopenmp compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

350

debug (Windows*)
Enables or disables generation of debugging
information.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/debug[:keyword]

Arguments

keyword Is the type of debugging information to be generated. Possible values are:

none Disables generation of debugging information.

full or all Generates complete debugging information.

minimal Generates line number information for debugging.

partial Deprecated. Generates global symbol table information needed for
linking.

[no]expr-
source-pos

Determines whether the compiler generates source position information
at the expression level of granularity.

[no]inline-
debug-info

Determines whether the compiler generates enhanced debug information
for inlined code.

For information on the non-default settings for these keywords, see the Description section.

Default

/debug:none This is the default on the command line and for a release configuration in the IDE.

/debug:all This is the default for a debug configuration in the IDE.

Description

This option enables or disables generation of debugging information. It is passed to the linker.

By default, enabling debugging, will disable optimization. To enable both debugging and optimization use
the /debug option together with one of the optimization level options (/O3, /O2 or /O3).

If conflicting keywords are used in combination, the last one specified on the command line has precedence.

Option Description

/debug:none Disables generation of debugging information.

Compiler Reference

351

Option Description

/debug:full or /debug:all Generates complete debugging information. It produces
symbol table information needed for full symbolic debugging of
unoptimized code and global symbol information needed for
linking. It is the same as specifying /debug with no keyword.

/debug:minimal Generates line number information for debugging.

/debug:partial Generates global symbol table information needed for linking,
but not local symbol table information needed for debugging.
This option is deprecated and is not available in the IDE.

/debug:expr-source-pos Generates source position information at the statement level
of granularity.

/debug:inline-debug-info Generates enhanced debug information for inlined code.

On inlined functions, symbols are (by default) associated with
the caller. This option causes symbols for inlined functions to
be associated with the source of the called function.

IDE Equivalent

Windows

Visual Studio: Debugging > Enable Expanded Line Number Information (/debug:expr-source-pos)

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

For /debug:all or
/debug

Linux and macOS: None
Windows: /Zi

See Also
debug (Linux* and macOS) compiler option

Fa
Specifies that an assembly listing file should be
generated.

Syntax

Linux OS:

-Fa[filename|dir]
macOS:

-Fa[filename|dir]
Windows OS:

/Fa[filename|dir]

 Intel® C++ Compiler Classic Developer Guide and Reference

352

Arguments

filename Is the name of the assembly listing file.

dir Is the directory where the file should be placed. It can include
filename.

Default

OFF No assembly listing file is produced.

Description

This option specifies that an assembly listing file should be generated (optionally named filename).

IDE Equivalent

Windows

Visual Studio: Output Files > ASM List Location

Linux

Eclipse: Output > Generate Assembler Source and Binary Files

OS X

Xcode: Output Files > Filename for Generated Assembler Listing, Output > Generate Assembler
Listing

Alternate Options

Linux and macOS: -S
Windows: /S

FA
Specifies the contents of an assembly listing file.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/FA[specifier]

Arguments

specifier Denotes the contents of the assembly listing file. Possible values are c, s, or cs.

Default

OFF No source or machine code annotations appear in the assembly listing file, if one is produced.

Compiler Reference

353

Description

These options specify what information, in addition to the assembly code, should be generated in the
assembly listing file.

To use this option, you must also specify option /Fa, which causes an assembly listing to be generated.

Option Description

/FA Produces an assembly listing without source or machine code
annotations.

/FAc Produces an assembly listing with machine code annotations.

/FAs Produces an assembly listing with source code annotations.

Note that if you use alternate option -fsource-asm, you must also
specify the -S option.

/FAcs Produces an assembly listing with source and machine code annotations.

IDE Equivalent

Windows

Visual Studio: Output Files > Assembler Output

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

/FAc Linux and macOS: -fcode-asm
Windows: None

/FAs Linux and macOS: -fsource-asm
Windows: None

fasm-blocks
Enables the use of blocks and entire functions of
assembly code within a C or C++ file.

Syntax

Linux OS:

-fasm-blocks
macOS:

-fasm-blocks

 Intel® C++ Compiler Classic Developer Guide and Reference

354

Windows OS:

None

Arguments

None

Default

OFF The compiler allows a GNU*-style inline assembly format.

Description

This option enables the use of blocks and entire functions of assembly code within a C or C++ file.

It allows a Microsoft* MASM-style inline assembly block not a GNU*-style inline assembly block.

On macOS systems, this option is provided for compatibility with the Apple* GNU compiler.

IDE Equivalent

None

Alternate Options

-use-msasm

FC
Displays the full path of source files passed to the
compiler in diagnostics.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/FC

Arguments

None

Default

OFF The compiler does not display the full path of source files passed to the compiler in diagnostics.

Description

Displays the full path of source files passed to the compiler in diagnostics. This option is supported with
Microsoft Visual Studio .NET 2003* or newer.

Compiler Reference

355

IDE Equivalent

Windows

Visual Studio: Advanced > Use Full Paths

Alternate Options

None

fcode-asm
Produces an assembly listing with machine code
annotations.

Syntax

Linux OS:

-fcode-asm
macOS:

-fcode-asm
Windows OS:

None

Arguments

None

Default

OFF No machine code annotations appear in the assembly listing file, if one is produced.

Description

This option produces an assembly listing file with machine code annotations.

The assembly listing file shows the hex machine instructions at the beginning of each line of assembly code.
The file cannot be assembled; the file name is the name of the source file with an extension of .cod.

To use this option, you must also specify option -S, which causes an assembly listing to be generated.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /FAc

See Also
S compiler option

Fd
Lets you specify a name for a program database
(PDB) file created by the compiler.

 Intel® C++ Compiler Classic Developer Guide and Reference

356

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Fd[:filename]

Arguments

filename Is the name for the PDB file. It can include a path. If you do not
specify a file extension, the extension .pdb is used.

Default

OFF No PDB file is created unless you specify option /Zi. If you specify option /Zi and /Fd, the
default filename is vcx0.pdb, where x represents the version of Visual C++, for example
vc100.pdb.

Description

This option lets you specify a name for a program database (PDB) file that is created by the compiler.

A program database (PDB) file holds debugging and project state information that allows incremental linking
of a Debug configuration of your program. A PDB file is created when you build with option /Zi. Option /Fd
has no effect unless you specify option /Zi.

IDE Equivalent

Windows

Visual Studio: Output Files > Program Database File Name

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
Zi, Z7, ZI compiler option
pdbfile compiler option

FD
Generates file dependencies related to the Microsoft*
C/C++ compiler.

Compiler Reference

357

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/FD

Arguments

None

Default

OFF The compiler does not generate Microsoft C/C++-related file dependencies.

Description

This option generates file dependencies related to the Microsoft* C/C++ compiler. It invokes the Microsoft
C/C++ compiler and passes the option to it.

IDE Equivalent

None

Alternate Options

None

Fe
Specifies the name for a built program or dynamic-link
library.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Fe[[:]filename|dir]

Arguments

filename Is the name for the built program or dynamic-link library.

dir Is the directory where the built program or dynamic-link library should
be placed. It can include file.

 Intel® C++ Compiler Classic Developer Guide and Reference

358

Default

OFF The name of the file is the name of the first source file on the command line with file
extension .exe, so file.f becomes file.exe.

Description

This option specifies the name for a built program (.EXE) or a dynamic-link library (.DLL).

You can use this option to specify an alternate name for an executable file. This is especially useful when
compiling and linking a set of input files. You can use the option to give the resulting file a name other than
that of the first input file (source or object) on the command line.

IDE Equivalent

None

Alternate Options

Linux and macOS: -o
Windows: None

Example
In the following example, the command produces an executable file named outfile.exe as a result of
compiling and linking three files: one object file and two C++ source files.

prompt> icl /Feoutfile.exe file1.obj file2.cpp file3.cpp
By default, this command produces an executable file named file1.exe.

See Also
o compiler option

feliminate-unused-debug-types, Qeliminate-unused-debug-types
Controls the debug information emitted for types
declared in a compilation unit.

Syntax

Linux OS:

-feliminate-unused-debug-types
-fno-eliminate-unused-debug-types
macOS:

-feliminate-unused-debug-types
-fno-eliminate-unused-debug-types
Windows OS:

/Qeliminate-unused-debug-types
/Qeliminate-unused-debug-types-

Arguments

None

Compiler Reference

359

Default

-feliminate-unused-debug-types
or
/Qeliminate-unused-debug-types

The compiler emits debug information only for types that are actually
used by a variable/parameter/etc..

Description

This option controls the debug information emitted for types declared in a compilation unit.

If you specify -fno-eliminate-unused-debug-types (Linux and macOS)
or /Qeliminate-unused-debug-types-, it will cause the compiler to emit debug information for all types
present in the sources. This option may cause a large increase in the size of the debug information.

IDE Equivalent

None

Alternate Options

None

femit-class-debug-always
Controls the format and size of debug information
generated by the compiler for C++ classes.

Syntax

Linux OS:

-femit-class-debug-always
-fno-emit-class-debug-always
macOS:

None
Windows OS:

None

Arguments

None

Default

-fno-emit-class-debug-always Causes the compiler to reduce the amount of debug information
generated for C++ classes.

Description

When emission of debug information is enabled, this option will control the format and size of debug
information generated by the compiler for C++ classes. It tells the compiler to generate full debug
information, or it tells the compiler to reduce the amount of debug information it generates.

When you specify the -femit-class-debug-always option, the compiler emits debug information for a C++
class into each object file where the class is used. This option is useful for tools that are not able to resolve
incomplete type descriptions. Note that this option may cause a large increase in the size of the debug
information generated.

 Intel® C++ Compiler Classic Developer Guide and Reference

360

When you specify the -fno-emit-class-debug-always option, the compiler does not emit full debug information
for every instance of C++ class use. In general, this reduces the size of the debugging information generated
for C++ applications without impacting debugging ability when used with debuggers that have corresponding
support, such as gdb.

IDE Equivalent

None

Alternate Options

None

fmerge-constants
Determines whether the compiler and linker attempt
to merge identical constants (string constants and
floating-point constants) across compilation units.

Syntax

Linux OS:

-fmerge-constants
-fno-merge-constants
macOS:

None
Windows OS:

None

Arguments

None

Default

-fmerge-constants The compiler and linker attempt to merge identical constants across
compilation units if the compiler and linker supports it.

Description

This option determines whether the compiler and linker attempt to merge identical constants (string
constants and floating-point constants) across compilation units.

If you do not want the compiler and linker to attempt to merge identical constants across compilation units.
specify -fno-merge-constants.

IDE Equivalent

None

Alternate Options

None

fmerge-debug-strings
Causes the compiler to pool strings used in debugging
information.

Compiler Reference

361

Syntax

Linux OS:

-fmerge-debug-strings
-fno-merge-debug-strings
macOS:

None
Windows OS:

None

Arguments

None

Default

-fmerge-debug-strings The compiler will pool strings used in debugging information.

Description

This option causes the compiler to pool strings used in debugging information. The linker will automatically
retain this pooling.

This option can reduce the size of debug information, but it may produce slightly slower compile and link
times.

This option is only turned on by default if you are using gcc 4.3 or later, where this setting is also the default,
since the generated debug tables require binutils version 2.17 or later to work reliably.

If you do not want the compiler to pool strings used in debugging information, specify option
-fno-merge-debug-strings.

IDE Equivalent

None

Alternate Options

None

Fo
Specifies the name for an object file.

Syntax

Linux OS:

See option o.
macOS:

See option o.
Windows OS:

/Fo[[:]filename|dir]

 Intel® C++ Compiler Classic Developer Guide and Reference

362

Arguments

filename Is the name for the object file.

dir Is the directory where the object file should be placed. It can include
filename.

Default

OFF An object file has the same name as the name of the first source file and a file extension of .obj.

Description

This option specifies the name for an object file.

IDE Equivalent

Windows

Visual Studio: Output Files > Object File Name

Alternate Options

None

See Also
o compiler option

Fp
Lets you specify an alternate path or file name for
precompiled header files.

Syntax

Linux OS:

None

macOS:

None

Windows OS:

/Fp{filename|dir}

Arguments

filename Is the name for the precompiled header file.

dir Is the directory where the precompiled header file should be placed. It
can include filename.

Default

OFF The compiler does not create or use precompiled headers unless you tell it to do so.

Description

This option lets you specify an alternate path or file name for precompiled header files.

Compiler Reference

363

IDE Equivalent

Windows

Visual Studio: Precompiled Headers > Precompiled Header Output File

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

FR
Invokes the Microsoft* C/C++ compiler and tells it to
produce a BSCMAKE .sbr file with complete symbolic
information.

Syntax

Linux OS and macOS:

None
Windows OS:

/FR[filename|dir]

Arguments

filename Is the name for the BSCMAKE .sbr file.

dir Is the directory where the file should be placed. It can include
filename.

Default

OFF The compiler does not invoke the Microsoft* C/C++ compiler to produce a .sbr file.

Description

This option invokes the Microsoft* C/C++ compiler and tells it to produce a BSCMAKE .sbr file with complete
symbolic information.

You can provide a name for the file. If you do not specify a file name, the .sbr file gets the same base name
as the source file.

A synonym for option /FR is option /Fr. Option /Fr is a deprecated option.

IDE Equivalent

Windows

Visual Studio: Browse Information > Browse Information File

Browse Information > Enable Browse Information

 Intel® C++ Compiler Classic Developer Guide and Reference

364

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

fsource-asm
Produces an assembly listing with source code
annotations.

Syntax

Linux OS:

-fsource-asm
macOS:

-fsource-asm
Windows OS:

None

Arguments

None

Default

OFF No source code annotations appear in the assembly listing file, if one is produced.

Description

This option produces an assembly listing file with source code annotations. The assembly listing file shows
the source code as interspersed comments.

To use this option, you must also specify option -S, which causes an assembly listing to be generated.

IDE Equivalent

None

Alternate Options

None

See Also
S compiler option

ftrapuv, Qtrapuv
Initializes stack local variables to an unusual value to
aid error detection.

Compiler Reference

365

Syntax

Linux OS:

-ftrapuv
macOS:

-ftrapuv
Windows OS:

/Qtrapuv

Arguments

None

Default

OFF The compiler does not initialize local variables.

Description

This option initializes stack local variables to an unusual value to aid error detection. Normally, these local
variables should be initialized in the application. It also unmasks the floating-point invalid exception.

The option sets any uninitialized local variables that are allocated on the stack to a value that is typically
interpreted as a very large integer or an invalid address. References to these variables are then likely to
cause run-time errors that can help you detect coding errors.

This option sets option -g (Linux* and macOS) and /Zi or /Z7 (Windows*), which changes the default
optimization level from O2 to -O0 (Linux and macOS) or /Od (Windows). You can override this effect by
explicitly specifying an O option setting.

If option O2 and option -ftrapuv (Linux and macOS) or /Qtrapuv (Windows) are used together, you should
specify option -fp-speculation safe (Linux and macOS) or /Qfp-speculation:safe (Windows) to
prevent exceptions resulting from speculated floating-point operations from being trapped.

For more details on using options -ftrapuv and /Qtrapuv with compiler option O, see the article titled Don't
optimize when using -ftrapuv for uninitialized variable detection.

Another way to detect uninitialized local scalar variables is by specifying keyword uninit for option check.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Run-Time > Initialize Stack Variables to an Unusual Value

OS X

Xcode: Code Generation > Initialize Stack Variables to an Unusual Value

Alternate Options

None

See Also
g compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

366

https://software.intel.com/content/www/us/en/develop/articles/dont-optimize-when-using-ftrapuv-for-uninitialized-variable-detection.html
https://software.intel.com/content/www/us/en/develop/articles/dont-optimize-when-using-ftrapuv-for-uninitialized-variable-detection.html

Zi, Z7, ZI compiler option
O compiler option
check compiler option (see setting uninit)

fverbose-asm
Produces an assembly listing with compiler comments,
including options and version information.

Syntax

Linux OS:

-fverbose-asm
-fno-verbose-asm
macOS:

-fverbose-asm
-fno-verbose-asm
Windows OS:

None

Arguments

None

Default

-fno-verbose-asm No source code annotations appear in the assembly listing file, if one
is produced.

Description

This option produces an assembly listing file with compiler comments, including options and version
information.

To use this option, you must also specify -S, which sets -fverbose-asm.

If you do not want this default when you specify -S, specify -fno-verbose-asm.

IDE Equivalent

None

Alternate Options

None

See Also
S compiler option

g
Tells the compiler to generate a level of debugging
information in the object file.

Compiler Reference

367

Syntax

Linux OS:

-g[n]
macOS:

-g[n]
Windows OS:

See option Zi, Z7, ZI.

Arguments

n Is the level of debugging information to be generated. Possible values
are:

0 Disables generation of symbolic debug
information.

1 Produces minimal debug information for
performing stack traces.

2 Produces complete debug information. This
is the same as specifying -g with no n.

3 Produces extra information that may be
useful for some tools.

Default

-g or -g2 The compiler produces complete debug information.

Description

Option -g tells the compiler to generate symbolic debugging information in the object file, which increases
the size of the object file.

The compiler does not support the generation of debugging information in assemblable files. If you specify
this option, the resulting object file will contain debugging information, but the assemblable file will not.

This option turns off option -O2 and makes option -O0 the default unless option -O2 (or higher) is explicitly
specified in the same command line.

Specifying the -g or -O0 option sets the -fno-omit-frame-pointer option. On Linux*, the -debug inline-
debug-info option will be enabled by default if you compile with optimizations (option -O2 or higher) and
debugging is enabled (option -g).

Specifying the -g or -O0 option sets the -fno-omit-frame-pointer option.

NOTE
When option -g is specified, debugging information is generated in the DWARF Version 3
format. Older versions of some analysis tools may require applications to be built with the
-gdwarf-2 option to ensure correct operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

368

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: General > Include Debug Information

Xcode

Xcode: General > Generate Debug Information

Alternate Options

Linux: None

Windows: /Zi, /Z7, /ZI

See Also
gdwarf compiler option
Zi, Z7, ZI compiler option
debug (Linux* and macOS) compiler option

gdwarf
Lets you specify a DWARF Version format when
generating debug information.

Syntax

Linux OS:

-gdwarf-n
macOS:

-gdwarf-n
Windows OS:

None

Arguments

n Is a value denoting the DWARF Version format to use. Possible values
are:

2 Generates debug information using the
DWARF Version 2 format.

3 Generates debug information using the
DWARF Version 3 format.

4 Generates debug information using the
DWARF Version 4 format. This setting is only
available on Linux*.

Compiler Reference

369

Default

OFF No debug information is generated. However, if compiler option -g is specified, debugging
information is generated in the DWARF Version 3 format.

Description

This option lets you specify a DWARF Version format when generating debug information.

Note that older versions of some analysis tools may require applications to be built with the -gdwarf-2 option
to ensure correct operation.

IDE Equivalent

None

Alternate Options

None

See Also
g compiler option

Gm
Enables a minimal rebuild.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Gm

Arguments

None

Default

OFF Minimal rebuilds are disabled.

Description

This option enables a minimal rebuild.

IDE Equivalent

Windows

Visual Studio: Code Generation > Enable Minimal Rebuild

Linux

Eclipse: None

 Intel® C++ Compiler Classic Developer Guide and Reference

370

OS X

Xcode: None

Alternate Options

None

grecord-gcc-switches
Causes the command line options that were used to
invoke the compiler to be appended to the
DW_AT_producer attribute in DWARF debugging
information.

Syntax

Linux OS:

-grecord-gcc-switches
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The command line options that were used to invoke the compiler are
not appended to the DW_AT_producer attribute in DWARF debugging
information.

Description

This option causes the command line options that were used to invoke the compiler to be appended to the
DW_AT_producer attribute in DWARF debugging information.

The options are concatenated with whitespace separating them from each other and from the compiler
version.

IDE Equivalent

None

Alternate Options

None

gsplit-dwarf
Creates a separate object file containing DWARF
debug information.

Compiler Reference

371

Syntax

Linux OS:

-gsplit-dwarf
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF No separate object file containing DWARF debug information is
created.

Description

This option creates a separate object file containing DWARF debug information. It causes debug information
to be split between the generated object (.o) file and the new DWARF object (.dwo) file.

The DWARF object file is not used by the linker, so this reduces the amount of debug information the linker
must process and it results in a smaller executable file.

For this option to perform correctly, you must use binutils-2.24 or later. To debug the resulting executable,
you must use gdb-7.6.1 or later.

NOTE
If you use the split executable with a tool that does not support the split DWARF format, it
will behave as though the DWARF debug information is absent.

IDE Equivalent

None

Alternate Options

None

map-opts, Qmap-opts
Maps one or more compiler options to their equivalent
on a different operating system.

Syntax

Linux OS:

-map-opts
macOS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

372

Windows OS:

/Qmap-opts

Arguments

None

Default

OFF No platform mappings are performed.

Description

This option maps one or more compiler options to their equivalent on a different operating system. The result
is output to stdout.

On Windows systems, the options you provide are presumed to be Windows options, so the options that are
output to stdout will be Linux equivalents.

On Linux systems, the options you provide are presumed to be Linux options, so the options that are output
to stdout will be Windows equivalents.

The tool can be invoked from the compiler command line or it can be used directly.

No compilation is performed when the option mapping tool is used.

This option is useful if you have both compilers and want to convert scripts or makefiles.

NOTE
Compiler options are mapped to their equivalent on the architecture you are using. For
example, if you are using a processor with Intel® 64 architecture, you will only see
equivalent options that are available on processors with Intel® 64 architecture.

IDE Equivalent

None

Alternate Options

None

Example
The following command line invokes the option mapping tool, which maps the Linux options to Windows-
based options, and then outputs the results to stdout:

icc -map-opts -xP -O2
The following command line invokes the option mapping tool, which maps the Windows options to Linux-
based options, and then outputs the results to stdout:

icl /Qmap-opts /QxP /O2

See Also
Compiler Option Mapping Tool

o
Specifies the name for an output file.

Compiler Reference

373

Syntax

Linux OS:

-o filename
macOS:

-o filename
Windows OS:

See option Fo.

Arguments

filename Is the name for the output file. The space before filename is optional.

Default

OFF The compiler uses the default file name for an output file.

Description

This option specifies the name for an output file as follows:

• If -c is specified, it specifies the name of the generated object file.
• If -S is specified, it specifies the name of the generated assembly listing file.
• If -P is specified, it specifies the name of the generated preprocessor file.

Otherwise, it specifies the name of the executable file.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /Fe

See Also
Fo compiler option
Fe compiler option

pch
Tells the compiler to use appropriate precompiled
header files.

Syntax

Linux OS and macOS:

-pch
Windows OS:

None

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

374

Default

OFF The compiler does not create or use precompiled headers unless you tell it to do so.

Description

This option tells the compiler to use appropriate precompiled header (PCH) files. If none are available, they
are created as sourcefile.pchi. This option is supported for multiple source files.

The -pch option will use PCH files created from other sources if the headers files are the same. For example,
if you compile source1.cpp using -pch, then source1.pchi is created. If you then compile source2.cpp
using -pch, the compiler will use source1.pchi if it detects the same headers.

Caution
Depending on how you organize the header files listed in your sources, this option may
increase compile times.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Precompiled Headers > Automatic Processing for Precompiled Headers

OS X

Xcode: None

Alternate Options

None

Example
Consider the following command line:

icpc -pch source1.cpp source2.cpp
It produces the following output when .pchi files exist:

"source1.cpp": using precompiled header file"source1.pchi"
"source2.cpp": using precompiled header file "source2.pchi"

It produces the following output when .pchi files do not exist:

"source1.cpp": creating precompiled header file "source1.pchi"
"source2.cpp": creating precompiled header file "source2.pchi"

See Also
-pch-create compiler option
-pch-dir compiler option
-pch-use compiler option

pch-create
Tells the compiler to create a precompiled header file.

Compiler Reference

375

Syntax

Linux OS and macOS:

-pch-create filename
Windows OS:

None

Arguments

filename Is the name for the precompiled header file. A space must appear
before the file name. It can include a path.

Default

OFF The compiler does not create or use precompiled headers unless you tell it to do so.

Description

This option tells the compiler to create a precompiled header (PCH) file. It is supported only for single source
file compilations.

Note that the .pchi extension is not automatically appended to the file name.

This option cannot be used in the same compilation as the -pch-use option.

On Windows* systems, option -pch-create is equivalent to the /Yc option.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /Yc

Example
Consider the following command line:

icpc -pch-create /pch/foo.pchi foo.cpp
This creates the precompiled header file "/pch/foo.pchi".

See Also
pch-use compiler option

pch-dir
Tells the compiler the location for precompiled header
files.

Syntax

Linux OS and macOS:

-pch-dir dir
Windows OS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

376

Arguments

dir Is the path for precompiled header files. The path must exist.

Default

OFF The compiler does not create or use precompiled headers unless you tell it to do so.

Description

This option tells the compiler the location for precompiled header files. It denotes where to find precompiled
header files, and where new PCH files should be placed.

This option can be used with the -pch, -pch-create, and -pch-use options.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Precompiled Headers > Precompiled Headers' File Directory

OS X

Xcode: Precompiled Headers > Prefix Header

Alternate Options

None

Example
Consider the following command line:

icpc -pch -pch-dir /pch source32.cpp
It produces the following output:

"source32.cpp": creating precompiled header file /pch/source32.pchi

See Also
pch compiler option
pch-create compiler option
pch-use compiler option

pch-use
Tells the compiler to use a precompiled header file.

Syntax

Linux OS and macOS:

-pch-use filename
Windows OS:

None

Compiler Reference

377

Arguments

filename Is the name of the precompiled header file to use. A space must
appear before the file name. It can include a path.

Default

OFF The compiler does not create or use precompiled headers unless you tell it to do so.

Description

This option tells the compiler to use a precompiled header (PCH) file.

It is supported for multiple source files when all source files use the same .pchi file.

This option cannot be used in the same compilation as the -pch-create option.

To learn how to optimize compile times using the PCH options, see "Using Precompiled Header Files" in the
User's Guide.

On Windows* systems, option -pch-use is equivalent to the /Yu option.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /Yu

Example
Consider the following command line:

icpc -pch-use /pch/source32.pchi source.cpp
It produces the following output:

"source.cpp": using precompiled header file /pch/source32.pchi

See Also
-pch-create compiler option

pdbfile
Lets you specify the name for a program database
(PDB) file created by the linker.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/pdbfile[:filename]

 Intel® C++ Compiler Classic Developer Guide and Reference

378

Arguments

filename Is the name for the PDB file. It can include a path. If you do not
specify a file extension, the extension .pdb is used.

Default

OFF No PDB file is created unless you specify option /Zi. If you specify option /Zi the default
filename is executablename.pdb.

Description

This option lets you specify the name for a program database (PDB) file created by the linker. This option
does not affect where the compiler outputs debug information.

To use this option, you must also specify option /debug:full or /Zi.

If filename is not specified, the default file name used is the name of your file with an extension of .pdb.

IDE Equivalent

None

Alternate Options

None

See Also
Zi, Z7, ZI compiler option
debug compiler option
Fd compiler option

print-multi-lib
Prints information about where system libraries should
be found.

Syntax

Linux OS:

-print-multi-lib
macOS:

-print-multi-lib
Windows OS:

None

Arguments

None

Default

OFF No information is printed unless the option is specified.

Compiler Reference

379

Description

This option prints information about where system libraries should be found, but no compilation occurs. On
Linux* systems, it is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

Qpchi
Enable precompiled header coexistence to reduce
build time.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qpchi
/Qpchi-

Arguments

None

Default

ON The compiler enables precompiled header coexistence.

Description

This option enables precompiled header (PCH) files generated by the Intel® C++ compiler and those
generated by the Microsoft Visual C++* compiler to coexist, which reduces build time.

If build time is not an issue and you do not want an additional set of PCH files on your system,
specify /Qpchi-.

IDE Equivalent

None

Alternate Options

None

Quse-msasm-symbols
Tells the compiler to use a dollar sign ("$") when
producing symbol names.

 Intel® C++ Compiler Classic Developer Guide and Reference

380

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Quse-msasm-symbols

Arguments

None

Default

OFF The compiler uses a period (".") when producing symbol names

Description

This option tells the compiler to use a dollar sign ("$") when producing symbol names.

Use this option if you require symbols in your .asm files to contain characters that are accepted by the MS
assembler.

IDE Equivalent

None

Alternate Options

None

RTC
Enables checking for certain run-time conditions.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/RTCoption

Arguments

option Specifies the condition to check. Possible values are 1, s, u, or c.

Default

OFF No checking is performed for these run-time conditions.

Compiler Reference

381

Description

This option enables checking for certain run-time conditions. Using the /RTC option sets
__MSVC_RUNTIME_CHECKS = 1.

Option Description

/RTC1 This is the same as specifying /RTCsu.

/RTCs Enables run-time checks of the stack frame.

/RTCu Enables run-time checks for unintialized variables.

/RTCc Enables checks for converting to smaller types.

IDE Equivalent

Windows

Visual Studio: Code Generation > Basic Runtime Checks / Smaller Type Check

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

S
Causes the compiler to compile to an assembly file
only and not link.

Syntax

Linux OS:

-S

macOS:

-S

Windows OS:

/S

Arguments

None

Default

OFF Normal compilation and linking occur.

Description

This option causes the compiler to compile to an assembly file only and not link.

 Intel® C++ Compiler Classic Developer Guide and Reference

382

On Linux* and macOS systems, the assembly file name has a .s suffix. On Windows* systems, the assembly
file name has an .asm suffix.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Output Files > Generate Assembler Source File

OS X

Xcode: Output Files > Generate Assembler Source File

Alternate Options

Linux and macOS: None

Windows: /Fa

See Also
Fa compiler option

use-asm, Quse-asm
Tells the compiler to produce objects through the
assembler. This is a deprecated option that may be
removed in a future release.

Syntax

Linux OS:

-use-asm
-no-use-asm

macOS:

-use-asm
-no-use-asm

Windows OS:

/Quse-asm
/Quse-asm-

Arguments

None

Default

OFF The compiler produces objects directly.

Description

This option tells the compiler to produce objects through the assembler.

This is a deprecated option that may be removed in a future release. There is no replacement option.

Compiler Reference

383

IDE Equivalent

None

Alternate Options

None

use-msasm
Enables the use of blocks and entire functions of
assembly code within a C or C++ file.

Syntax

Linux OS:

-use-msasm
macOS:

-use-msasm
Windows OS:

None

Arguments

None

Default

OFF The compiler allows a GNU*-style inline assembly format.

Description

This option enables the use of blocks and entire functions of assembly code within a C or C++ file.

It allows a Microsoft* MASM-style inline assembly block not a GNU*-style inline assembly block.

IDE Equivalent

None

Alternate Options

-fasm-blocks

V (Windows*)
Places the text string specified into the object file
being generated by the compiler.

Syntax

Linux OS and macOS:

None
Windows OS:

/Vstring

 Intel® C++ Compiler Classic Developer Guide and Reference

384

Arguments

string Is the text string to go into the object file.

Default

OFF No text string is placed in the object file.

Description

Places the text string specified into the object file (.obj) being generated by the compiler.

This option places the text string specified into the object file (.obj) being generated by the compiler. The
string also gets propagated into the executable file.

For example, this option is useful if you want to place the version number or copyright information into the
object and executable.

If the string contains a space or tab, the string must be enclosed by double quotation marks ("). A backslash
(\) must precede any double quotation marks contained within the string.

IDE Equivalent

None

Alternate Options

None

Y-
Tells the compiler to ignore all other precompiled
header files.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Y-

Arguments

None

Default

OFF The compiler recognizes precompiled header files when certain compiler options are specified.

Description

This option tells the compiler to ignore all other precompiled header files.

IDE Equivalent

None

Compiler Reference

385

Alternate Options

None

See Also
Yc compiler option
Yu compiler option

Yc
Tells the compiler to create a precompiled header file.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Yc[filename]

Arguments

filename Is the name of a C/C++ header file, which is included in the source
file using an #include preprocessor directive.

Default

OFF The compiler does not create or use precompiled headers unless you tell it to do so.

Description

This option tells the compiler to create a precompiled header (PCH) file. It is supported only for single source
file compilations.

When filename is specified, the compiler creates a precompiled header file from the headers in the C/C++
program up to and including the C/C++ header specified.

If you do not specify filename, the compiler compiles all code up to the end of the source file, or to the point
in the source file where a hdrstop occurs. The default name for the resulting file is the name of the source
file with extension .pchi.

This option cannot be used in the same compilation as the /Yu option.

On Linux* and macOS, option /Yc is equivalent to the -pch-create option.

IDE Equivalent

Windows

Visual Studio: Precompiled Headers > Precompiled Header File

Linux

Eclipse: None

 Intel® C++ Compiler Classic Developer Guide and Reference

386

OS X

Xcode: None

Alternate Options

Linux and macOS: -pch-create
Windows: None

Example
If option /Fp is used, it names the PCH file. For example, consider the following command lines:

icl /c /Ycheader.h /Fpprecomp foo.cpp
icl /c /Yc /Fpprecomp foo.cpp

In both cases, the name of the PCH file is "precomp.pchi".

If the header file name is specified, the file name is based on the header file name. For example:

icl /c /Ycheader.h foo.cpp
In this case, the name of the PCH file is "header.pchi".

If no header file name is specified, the file name is based on the source file name. For example:

icl /c /Yc foo.cpp
In this case, the name of the PCH file is "foo.pchi".

See Also
Yu compiler option
Fp compiler option

Yd
Tells the compiler to add complete debugging
information in all object files created from a
precompiled header file when option /Zi or /Z7 is
specified. This is a deprecated option that may be
removed in a future release.

Syntax

Linux OS and macOS:

None
Windows OS:

/Yd

Arguments

None

Default

OFF If /Zi or /Z7 is specified when you are compiling with a precompiled header file using /Yc
or /Yu, only one .obj file contains the common debugging information.

Compiler Reference

387

Description

This option tells the compiler that complete debugging information should be added to all object files created
from a precompiled header (PCH) file when option /Zi or /Z7 is specified. It affects precompiled header files
that were created by specifying the /Yc option.

This is a deprecated option that may be removed in a future release. There is no replacement option.

Option /Yd has no effect unless option /Zi or /Z7 is specified.

When option /Zi or /Z7 is specified and option /Yd is omitted, the compiler stores common debugging
information in only the first object (.obj) file created from the PCH file. This information is not inserted into
any .obj files subsequently created from the PCH file, only cross-references to the information are inserted.

IDE Equivalent

None

Alternate Options

None

Yu
Tells the compiler to use a precompiled header file.

Syntax

Linux OS:

None

macOS:

None

Windows OS:

/Yu[filename]

Arguments

filename Is the name of a C/C++ header file, which is included in the source
file using an #include preprocessor directive.

Default

OFF The compiler does not use precompiled header files unless it is told to do so.

Description

This option tells the compiler to use a precompiled header (PCH) file.

It is supported for multiple source files when all source files use the same .pchi file.

The compiler treats all code occurring before the header file as precompiled. It skips to just beyond the
#include directive associated with the header file, uses the code contained in the PCH file, and then compiles
all code after filename.

If you do not specify filename, the compiler will use a PCH with a name based on the source file name. If you
specify option /Fp, it will use the PCH specified by that option.

When this option is specified, the compiler ignores all text, including declarations preceding the #include
statement of the specified file.

 Intel® C++ Compiler Classic Developer Guide and Reference

388

This option cannot be used in the same compilation as the /Yc option.

On Linux* and macOS systems, option /Yu is equivalent to the -pch-use option.

IDE Equivalent

Windows

Visual Studio: Precompiled Headers > Precompiled Header

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

Linux and macOS: -pch-use
Windows: None

Example
Consider the following command line:

icl /c /Yuheader.h bar.cpp
In this case, the name of the PCH file used is "header.pchi".

In the following command line, no filename is specified:

icl /Yu bar.cpp
In this case, the name of the PCH file used is "bar.pchi".

In the following command line, no filename is specified, but option /Fp is specified:

icl /Yu /Fpprecomp bar.cpp
In this case, the name of the PCH file used is "precomp.pchi".

See Also
Yc compiler option

Zi, Z7, ZI
Tells the compiler to generate full debugging
information in either an object (.obj) file or a project
database (PDB) file.

Syntax

Linux OS:

See option g.
macOS:

See option g.
Windows OS:

/Zi
/Z7

Compiler Reference

389

/ZI

Arguments

None

Default

OFF No debugging information is produced.

Description

Option /Z7 tells the compiler to generate symbolic debugging information in the object (.obj) file for use with
the debugger. No .pdb file is produced by the compiler.

Option /ZI is a synonym for option /Zi.

The /Zi option tells the compiler to generate symbolic debugging information in a program database (PDB)
file for use with the debugger. Type information is placed in the .pdb file, and not in the .obj file, resulting in
smaller object files in comparison to option /Z7.

When option /Zi is specified, two PDB files are created:

• The compiler creates the program database project.pdb. If you compile a file without a project, the
compiler creates a database named vcx0.pdb, where x represents the major version of Visual C++, for
example vc140.pdb.

This file stores all debugging information for the individual object files and resides in the same directory
as the project makefile. If you want to change this name, use option /Fd.

• The linker creates the program database executablename.pdb.

This file stores all debug information for the .exe file and resides in the debug subdirectory. It contains full
debug information, including function prototypes, not just the type information found in vcx0.pdb.

Both PDB files allow incremental updates. The linker also embeds the path to the .pdb file in the .exe or .dll
file that it creates.

The compiler does not support the generation of debugging information in assemblable files. If you specify
these options, the resulting object file will contain debugging information, but the assemblable file will not.

These options turn off option /O2 and make option /Od the default unless option /O2 (or higher) is explicitly
specified in the same command line.

For more information about the /Z7, /Zi, and /ZI options, see the Microsoft documentation.

IDE Equivalent

Visual Studio

Visual Studio: General > Generate Debug Information

Eclipse

Eclipse: None

Xcode

Xcode: None

Alternate Options

Linux: -g

Windows: None

 Intel® C++ Compiler Classic Developer Guide and Reference

390

See Also
Fd compiler option
g compiler option
debug (Windows*) compiler option

Zo
Enables or disables generation of enhanced debugging
information for optimized code.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Zo
/Zo-

Arguments

None

Default

OFF The compiler does not generate enhanced debugging information for optimized code.

Description

This option enables or disables the generation of additional debugging information for local variables and
inlined routines when code optimizations are enabled. It should be used with option /Zi or /Z7 to allow
improved debugging of optimized code.

Option /Zo enables generation of this enhanced debugging information. Option /Zo- disables this
functionality.

For more information on code optimization, see option /O.

IDE Equivalent

None

Alternate Options

None

See Also
Zi, Z7, ZI compiler option
debug (Windows*) compiler option
O compiler option

Preprocessor Options
This section contains descriptions for compiler options that pertain to preprocessing.

Compiler Reference

391

A, QA
Specifies an identifier for an assertion.

Syntax

Linux OS and macOS:

-Aname[(value)]

Windows OS:

/QAname[(value)]

Arguments

name Is the identifier for the assertion.

value Is an optional value for the assertion. If a value is specified, it must be
within quotes, including the parentheses delimiting it.

Default

OFF Assertions have no identifiers or symbol names.

Description

This option specifies an identifier (symbol name) for an assertion. It is equivalent to an #assert
preprocessing directive.

Note that this option is not the positive form of the C++ /QA- option.

On Linux* systems, because GCC has deprecated assertions, this option has no effect.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: None

OS X

Xcode: Preprocessor > Undefine All Preprocessor Definitions

Alternate Options

None

Example
To make an assertion for the identifier fruit with the associated values orange and banana use the following
command.

On Windows* systems:

icl /QA"fruit(orange,banana)" prog1.cpp
On Linux* systems:

icpc -A"fruit(orange,banana)" prog1.cpp

 Intel® C++ Compiler Classic Developer Guide and Reference

392

On macOS systems:

icl++ -A"fruit(orange,banana)" prog1.cpp
icpc -A"fruit(orange,banana)" prog1.cpp

B
Specifies a directory that can be used to find include
files, libraries, and executables.

Syntax

Linux OS:

-Bdir
macOS:

-Bdir
Windows OS:

None

Arguments

dir Is the directory to be used. If necessary, the compiler adds a directory
separator character at the end of dir.

Default

OFF The compiler looks for files in the directories specified in your PATH environment variable.

Description

This option specifies a directory that can be used to find include files, libraries, and executables.

The compiler uses dir as a prefix.

For include files, the dir is converted to -I/dir/include. This command is added to the front of the includes
passed to the preprocessor.

For libraries, the dir is converted to -L/dir. This command is added to the front of the standard -L inclusions
before system libraries are added.

For executables, if dir contains the name of a tool, such as ld or as, the compiler will use it instead of those
found in the default directories.

The compiler looks for include files in dir /include while library files are looked for in dir.

On Linux* systems, another way to get the behavior of this option is to use the environment variable
GCC_EXEC_PREFIX.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

393

C
Places comments in preprocessed source output.

Syntax

Linux OS:

-C
macOS:

-C
Windows OS:

/C

Arguments

None

Default

OFF No comments are placed in preprocessed source output.

Description

This option places (or preserves) comments in preprocessed source output.

Comments following preprocessing directives, however, are not preserved.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Keep Comments

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

Example
The following commands cause the compiler to preserve comments in the prog1.i preprocessed file.

On Windows* systems:

icl /C /P prog1.cpp prog2.cpp
On Linux* systems:

icpc -C -P prog1.cpp prog2.cpp
On macOS systems:

icpc -C -P prog1.cpp prog2.cpp

 Intel® C++ Compiler Classic Developer Guide and Reference

394

D
Defines a macro name that can be associated with an
optional value.

Syntax

Linux OS:

-Dname[=value]
macOS:

-Dname[=value]
Windows OS:

/Dname[=value]

Arguments

name Is the name of the macro.

value Is an optional integer or an optional character string delimited by
double quotes; for example, Dname=string.

Default

OFF Only default symbols or macros are defined.

Description

Defines a macro name that can be associated with an optional value. This option is equivalent to a #define
preprocessor directive.

If a value is not specified, name is defined as "1".

IDE Equivalent

Windows

Visual Studio: Preprocessor > Preprocessor Definitions

Linux

Eclipse: Preprocessor > Preprocessor Definitions

OS X

Xcode: Preprocessor > Preprocessor Definitions

Alternate Options

None

Example
To define a macro called SIZE with the value 100, enter the following command:

On Windows* systems:

icl /DSIZE=100 prog1.cpp

Compiler Reference

395

On Linux* systems:

icpc -DSIZE=100 prog1.cpp
On macOS systems:

icpc -DSIZE=100 prog1.cpp
If you define a macro, but do not assign a value, the compiler defaults to 1 for the value of the macro.

See Also
Additional Predefined Macros

dD, QdD
Same as option -dM, but outputs #define directives in
preprocessed source.

Syntax

Linux OS:

-dD
macOS:

-dD
Windows OS:

/QdD

Arguments

None

Default

OFF The compiler does not output #define directives.

Description

Same as -dM, but outputs #define directives in preprocessed source. To use this option, you must also
specify the E option.

IDE Equivalent

None

Alternate Options

None

dM, QdM
Tells the compiler to output macro definitions in effect
after preprocessing.

Syntax

Linux OS:

-dM

 Intel® C++ Compiler Classic Developer Guide and Reference

396

macOS:

-dM
Windows OS:

/QdM

Arguments

None

Default

OFF The compiler does not output macro definitions after preprocessing.

Description

This option tells the compiler to output macro definitions in effect after preprocessing. To use this option, you
must also specify option E.

IDE Equivalent

None

Alternate Options

None

See Also
E compiler option

dN, QdN
Same as option -dD, but output #define directives
contain only macro names.

Syntax

Linux OS and macOS:

-dN
Windows OS:

/QdN

Arguments

None

Default

OFF The compiler does not output #define directives.

Description

Same as -dD, but output #define directives contain only macro names. To use this option, you must also
specify option E.

IDE Equivalent

None

Compiler Reference

397

Alternate Options

None

E
Causes the preprocessor to send output to stdout.

Syntax

Linux OS:

-E
macOS:

-E
Windows OS:

/E

Arguments

None

Default

OFF Preprocessed source files are output to the compiler.

Description

This option causes the preprocessor to send output to stdout. Compilation stops when the files have been
preprocessed.

When you specify this option, the compiler's preprocessor expands your source module and writes the result
to stdout. The preprocessed source contains #line directives, which the compiler uses to determine the
source file and line number.

IDE Equivalent

None

Alternate Options

None

Example
To preprocess two source files and write them to stdout, enter the following command:

On Windows* systems:

icl /E prog1.cpp prog2.cpp
On Linux* systems:

icpc -E prog1.cpp prog2.cpp
On macOS systems:

icl -E prog1.cpp prog2.cpp
icpc -E prog1.cpp prog2.cpp

 Intel® C++ Compiler Classic Developer Guide and Reference

398

EP
Causes the preprocessor to send output to stdout,
omitting #line directives.

Syntax

Linux OS:

-EP
macOS:

-EP
Windows OS:

/EP

Arguments

None

Default

OFF Preprocessed source files are output to the compiler.

Description

This option causes the preprocessor to send output to stdout, omitting #line directives.

If you also specify option P or Linux* option F, the preprocessor will write the results (without #line
directives) to a file instead of stdout.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Preprocess Suppress Line Numbers

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

Example
To preprocess to stdout omitting #line directives, enter the following command:

On Windows* systems:

icl /EP prog1.cpp prog2.cpp
On Linux* and macOS systems:

icpc -EP prog1.cpp prog2.cpp

Compiler Reference

399

FI
Tells the preprocessor to include a specified file name
as the header file.

Syntax

Linux OS:

None

macOS:

None

Windows OS:

/FIfilename

Arguments

filename Is the file name to be included as the header file.

Default

OFF The compiler uses default header files.

Description

This option tells the preprocessor to include a specified file name as the header file.

The file specified with /FI is included in the compilation before the first line of the primary source file.

IDE Equivalent

Windows

Visual Studio: Advanced > Forced Include File

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

gcc, gcc-sys
Determines whether certain GNU macros are defined
or undefined.

Syntax

Linux OS:

-gcc
-no-gcc

 Intel® C++ Compiler Classic Developer Guide and Reference

400

-gcc-sys
macOS:

-gcc
-no-gcc
-gcc-sys
Windows OS:

None

Arguments

None

Default

-gcc The compiler defines the GNU macros __GNUC__, __GNUC_MINOR__, and __GNUC_PATCHLEVEL__

Description

This option determines whether the GNU macros __GNUC__, __GNUC_MINOR__, and __GNUC_PATCHLEVEL__
are defined or undefined.

Option Description

-gcc Defines GNU macros.

-no-gcc Undefines GNU macros.

-gcc-sys Defines GNU macros only during compilation of system headers.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Preprocessor > gcc Predefined Macro Enablement

OS X

Xcode: Preprocessor > Predefine gcc Macros

Alternate Options

None

gcc-include-dir
Controls whether the gcc-specific include directory is
put into the system include path.

Syntax

Linux OS:

-gcc-include-dir

Compiler Reference

401

-no-gcc-include-dir
macOS:

None
Windows OS:

None

Arguments

None

Default

-gcc-include-dir The gcc-specific include directory is put into the system include path.

Description

This option controls whether the gcc-specific include directory is put into the system include path.

If you specify -no-gcc-include-dir, the gcc-specific include directory will not be put into the system
include path.

IDE Equivalent

None

Alternate Options

None

H, QH
Tells the compiler to display the include file order and
continue compilation.

Syntax

Linux OS:

-H
macOS:

-H
Windows OS:

/QH

Arguments

None

Default

OFF Compilation occurs as usual.

Description

This option tells the compiler to display the include file order and continue compilation.

 Intel® C++ Compiler Classic Developer Guide and Reference

402

IDE Equivalent

None

Alternate Options

None

I
Specifies an additional directory to search for include
files.

Syntax

Linux OS:

-Idir
macOS:

-Idir
Windows OS:

/Idir

Arguments

dir Is the additional directory for the search.

Default

OFF The default directory is searched for include files.

Description

This option specifies an additional directory to search for include files. To specify multiple directories on the
command line, repeat the include option for each directory.

IDE Equivalent

Windows

Visual Studio: General > Additional Include Directories

Linux

Eclipse: Preprocessor > Additional Include Directories

OS X

Xcode: Preprocessor > Additional Include Directories

Alternate Options

None

I-
Splits the include path.

Compiler Reference

403

Syntax

Linux OS:

-I-
macOS:

-I-
Windows OS:

/I-

Arguments

None

Default

OFF The default directory is searched for include files.

Description

This option splits the include path. It prevents the use of the current directory as the first search directory for
'#include "file"'.

If you specify directories using the I option before you specify option I-, the directories are searched only
for the case of '#include "file"'; they are not searched for '#include <file>'.

If you specify directories using the I option after you specify option I-, these directories are searched for all
'#include' directives.

This option has no effect on option nostdinc++, which searches the standard system directories for header
files.

This option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

See Also
I compiler option
nostdinc++ compiler option

icc, Qicl
Determines whether certain Intel®-specific compiler
macros are defined or undefined.

Syntax

Linux OS:

-icc
-no-icc

 Intel® C++ Compiler Classic Developer Guide and Reference

404

macOS:

-icc
-no-icc
Windows OS:

/Qicl
/Qicl-

Arguments

None

Default

-icc
or /Qicl

The __INTEL_COMPILER macros are set to represent the current version of the compiler.

Description

This option determines whether certain Intel®-specific compiler macros are defined or undefined.

If you specify option -no-icc or /Qicl- , the compiler undefines the __INTEL_COMPILER macros. These
macros are defined by default or by specifying -icc or /Qicl.

IDE Equivalent

None

Alternate Options

None

idirafter
Adds a directory to the second include file search
path.

Syntax

Linux OS:

-idirafterdir
macOS:

-idirafterdir
Windows OS:

None

Arguments

dir Is the name of the directory to add.

Default

OFF Include file search paths include certain default directories.

Compiler Reference

405

Description

This option adds a directory to the second include file search path (after -I).

IDE Equivalent

None

Alternate Options

None

imacros
Allows a header to be specified that is included in front
of the other headers in the translation unit.

Syntax

Linux OS:

-imacros filename
macOS:

-imacros filename
Windows OS:

None

Arguments

filename Name of header file.

Default

OFF

Description

Allows a header to be specified that is included in front of the other headers in the translation unit.

IDE Equivalent

None

Alternate Options

None

iprefix
Lets you indicate the prefix for referencing directories
that contain header files.

Syntax

Linux OS:

-iprefix prefix

 Intel® C++ Compiler Classic Developer Guide and Reference

406

macOS:

-iprefix prefix
Windows OS:

None

Arguments

prefix Is the prefix to use.

Default

OFF No prefix is included.

Description

Options for indicating the prefix for referencing directories containing header files. Use prefix with option
-iwithprefix as a prefix.

IDE Equivalent

None

Alternate Options

None

iquote
Adds a directory to the front of the include file search
path for files included with quotes but not brackets.

Syntax

Linux OS:

-iquote dir
macOS:

-iquote dir
Windows OS:

None

Arguments

dir Is the name of the directory to add.

Default

OFF The compiler does not add a directory to the front of the include file search path.

Description

Add directory to the front of the include file search path for files included with quotes but not brackets.

IDE Equivalent

None

Compiler Reference

407

Alternate Options

None

isystem
Specifies a directory to add to the start of the system
include path.

Syntax

Linux OS:

-isystemdir
macOS:

-isystemdir
Windows OS:

None

Arguments

dir Is the directory to add to the system include path.

Default

OFF The default system include path is used.

Description

This option specifies a directory to add to the system include path. The compiler searches the specified
directory for include files after it searches all directories specified by the -I compiler option but before it
searches the standard system directories.

On Linux* systems, this option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

iwithprefix
Appends a directory to the prefix passed in by -iprefix
and puts it on the include search path at the end of
the include directories.

Syntax

Linux OS:

-iwithprefixdir
macOS:

-iwithprefixdir

 Intel® C++ Compiler Classic Developer Guide and Reference

408

Windows OS:

None

Arguments

dir Is the include directory.

Default

OFF

Description

This option appends a directory to the prefix passed in by -iprefix and puts it on the include search path at
the end of the include directories.

IDE Equivalent

None

Alternate Options

None

iwithprefixbefore
Similar to -iwithprefix except the include directory is
placed in the same place as -I command-line include
directories.

Syntax

Linux OS:

-iwithprefixbeforedir
macOS:

-iwithprefixbeforedir
Windows OS:

None

Arguments

dir Is the include directory.

Default

OFF

Description

Similar to -iwithprefix except the include directory is placed in the same place as -I command-line
include directories.

IDE Equivalent

None

Compiler Reference

409

Alternate Options

None

Kc++, TP
Tells the compiler to process all source or
unrecognized file types as C++ source files. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

-Kc++

macOS:

-Kc++

Windows OS:

/TP

Arguments

None

Default

OFF The compiler uses default rules for determining whether a file is a C++ source file.

Description

This option tells the compiler to process all source or unrecognized file types as C++ source files.

This is a deprecated option that may be removed in a future release. The replacement option for Kc++ is
-x c++; the replacement option for /TP is /Tp<file>.

IDE Equivalent

Windows

Visual Studio: Advanced > Compile As

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

Linux and macOS: -x c++
Windows: /Tp

M, QM
Tells the compiler to generate makefile dependency
lines for each source file.

 Intel® C++ Compiler Classic Developer Guide and Reference

410

Syntax

Linux OS:

-M
macOS:

-M
Windows OS:

/QM

Arguments

None

Default

OFF The compiler does not generate makefile dependency lines for each source file.

Description

This option tells the compiler to generate makefile dependency lines for each source file, based on the
#include lines found in the source file.

IDE Equivalent

None

Alternate Options

None

MD, QMD
Preprocess and compile, generating output file
containing dependency information ending with
extension .d.

Syntax

Linux OS:

-MD
macOS:

-MD
Windows OS:

/QMD

Arguments

None

Default

OFF The compiler does not generate dependency information.

Compiler Reference

411

Description

Preprocess and compile, generating output file containing dependency information ending with extension .d.

IDE Equivalent

None

Alternate Options

None

MF, QMF
Tells the compiler to generate makefile dependency
information in a file.

Syntax

Linux OS:

-MFfilename
macOS:

-MFfilename
Windows OS:

/QMFfilename

Arguments

filename Is the name of the file where the makefile dependency information
should be placed.

Default

OFF The compiler does not generate makefile dependency information in files.

Description

This option tells the compiler to generate makefile dependency information in a file. To use this option, you
must also specify /QM or /QMM.

IDE Equivalent

None

Alternate Options

None

See Also
QM compiler option
QMM compiler option

MG, QMG
Tells the compiler to generate makefile dependency
lines for each source file.

 Intel® C++ Compiler Classic Developer Guide and Reference

412

Syntax

Linux OS:

-MG
macOS:

-MG
Windows OS:

/QMG

Arguments

None

Default

OFF The compiler does not generate makefile dependency information in files.

Description

This option tells the compiler to generate makefile dependency lines for each source file. It is similar to /QM,
but it treats missing header files as generated files.

IDE Equivalent

None

Alternate Options

None

See Also
QM compiler option

MM, QMM
Tells the compiler to generate makefile dependency
lines for each source file.

Syntax

Linux OS:

-MM
macOS:

-MM
Windows OS:

/QMM

Arguments

None

Default

OFF The compiler does not generate makefile dependency information in files.

Compiler Reference

413

Description

This option tells the compiler to generate makefile dependency lines for each source file. It is similar to /QM,
but it does not include system header files.

IDE Equivalent

None

Alternate Options

None

See Also
QM compiler option

MMD, QMMD
Tells the compiler to generate an output file containing
dependency information.

Syntax

Linux OS:

-MMD
macOS:

-MMD
Windows OS:

/QMMD

Arguments

None

Default

OFF The compiler does not generate an output file containing dependency information.

Description

This option tells the compiler to preprocess and compile a file, then generate an output file (with
extension .d) containing dependency information.

It is similar to /QMD, but it does not include system header files.

IDE Equivalent

None

Alternate Options

None

MP
Tells the compiler to add a phony target for each
dependency.

 Intel® C++ Compiler Classic Developer Guide and Reference

414

Syntax

Linux OS:

-MP
macOS:

-MP
Windows OS:

None (see below)

Arguments

None

Default

OFF The compiler does not generate dependency information unless it is told to do so.

Description

This option tells the compiler to add a phony target for each dependency.

Note that this option is not related to Windows* option /MP.

IDE Equivalent

None

Alternate Options

None

MQ
Changes the default target rule for dependency
generation.

Syntax

Linux OS:

-MQtarget
macOS:

-MQtarget
Windows OS:

None

Arguments

target Is the target rule to use.

Default

OFF The default target rule applies to dependency generation.

Compiler Reference

415

Description

This option changes the default target rule for dependency generation. It is similar to -MT, but quotes special
Make characters.

IDE Equivalent

None

Alternate Options

None

MT, QMT
Changes the default target rule for dependency
generation.

Syntax

Linux OS:

-MTtarget

macOS:

-MTtarget

Windows OS:

/QMTtarget

Arguments

target Is the target rule to use.

Default

OFF The default target rule applies to dependency generation.

Description

This option changes the default target rule for dependency generation.

IDE Equivalent

None

Alternate Options

None

nostdinc++
Do not search for header files in the standard
directories for C++, but search the other standard
directories.

Syntax

Linux OS:

-nostdinc++

 Intel® C++ Compiler Classic Developer Guide and Reference

416

macOS:

-nostdinc++
Windows OS:

None

Arguments

None

Default

OFF

Description

Do not search for header files in the standard directories for C++, but search the other standard directories.

IDE Equivalent

None

Alternate Options

None

P
Tells the compiler to stop the compilation process and
write the results to a file.

Syntax

Linux OS:

-P
macOS:

-P
Windows OS:

/P

Arguments

None

Default

OFF Normal compilation is performed.

Description

This option tells the compiler to stop the compilation process after C or C++ source files have been
preprocessed and write the results to files named according to the compiler's default file-naming
conventions.

Compiler Reference

417

On Linux systems, this option causes the preprocessor to expand your source module and direct the output
to a .i file instead of stdout. Unlike the -E option, the output from -P on Linux does not include #line
number directives. By default, the preprocessor creates the name of the output file using the prefix of the
source file name with a .i extension. You can change this by using the -o option.

IDE Equivalent

Visual Studio: Preprocessor > Generate Preprocessed File

Eclipse: None

Xcode: None

Alternate Options

Linux and macOS: -F
Windows: None

pragma-optimization-level
Specifies which interpretation of the optimization_level
pragma should be used if no prefix is specified.

Syntax

Linux OS:

-pragma-optimization-level=interpretation

macOS:

-pragma-optimization-level=interpretation

Windows OS:

None

Arguments

interpretation Compiler-specific interpretation of optimization_level pragma.
Possible values are:

Intel Specify the Intel interpretation.

GCC Specify the GCC interpretation.

Default

-pragma-optimization-level=Intel Use the Intel interpretation of the
optimization_level pragma.

Description

Specifies which interpretation of the optimization_level pragma should be used if no prefix is specified.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

418

u (Windows*)
Disables all predefined macros and assertions.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/u

Arguments

None

Default

OFF Defined preprocessor values are in effect until they are undefined.

Description

This option disables all predefined macros and assertions.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Undefine All Preprocessor Definitions

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

U
Undefines any definition currently in effect for the
specified macro.

Syntax

Linux OS:

-Uname
macOS:

-Uname

Compiler Reference

419

Windows OS:

/Uname

Arguments

name Is the name of the macro to be undefined.

Default

OFF Macro definitions are in effect until they are undefined.

Description

This option undefines any definition currently in effect for the specified macro. It is equivalent to an #undef
preprocessing directive.

On Windows systems, use the /u option to undefine all previously defined preprocessor values.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Undefine Preprocessor Definitions

Linux

Eclipse: Preprocessor > Undefine Preprocessor Definitions

OS X

Xcode: Preprocessor > Undefine Preprocessor Definitions

Alternate Options

None

Example
To undefine a macro, enter the following command:

On Windows* systems:

icl /Uia64 prog1.cpp
On Linux* systems:

icpc -Uia64 prog1.cpp
On macOS systems:

icpc -Uia64 prog1.cpp
If you attempt to undefine an ANSI C macro, the compiler will emit an error:

invalid macro undefinition: <name of macro>

See Also

undef
Disables all predefined macros.

 Intel® C++ Compiler Classic Developer Guide and Reference

420

Syntax

Linux OS:

-undef
macOS:

-undef
Windows OS:

None

Arguments

None

Default

OFF Defined macros are in effect until they are undefined.

Description

This option disables all predefined macros.

IDE Equivalent

None

Alternate Options

None

X
Removes standard directories from the include file
search path.

Syntax

Linux OS:

-X
macOS:

-X
Windows OS:

/X

Arguments

None

Default

OFF Standard directories are in the include file search path.

Description

This option removes standard directories from the include file search path. It prevents the compiler from
searching the default path specified by the INCLUDE environment variable.

Compiler Reference

421

On Linux* and macOS systems, specifying -X (or -noinclude) prevents the compiler from searching
in /usr/include for files specified in an INCLUDE statement.

You can use this option with the I option to prevent the compiler from searching the default path for include
files and direct it to use an alternate path.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Ignore Standard Include Path

Linux

Eclipse: Preprocessor > Ignore Standard Include Path

OS X

Xcode: Preprocessor > Ignore Standard Include Path

Alternate Options

Linux and macOS: -nostdinc
Windows: None

See Also
I compiler option

Component Control Options
This section contains descriptions for compiler options that pertain to component control.

Qinstall
Specifies the root directory where the compiler
installation was performed.

Syntax

Linux OS:

-Qinstalldir
macOS:

-Qinstalldir
Windows OS:

None

Arguments

dir Is the root directory where the installation was performed.

Default

OFF The default root directory for compiler installation is searched for the compiler.

 Intel® C++ Compiler Classic Developer Guide and Reference

422

Description

This option specifies the root directory where the compiler installation was performed. It is useful if you want
to use a different compiler or if you did not use a shell script to set your environment variables.

IDE Equivalent

None

Alternate Options

None

Qlocation
Specifies the directory for supporting tools.

Syntax

Linux OS:

-Qlocation,string,dir
macOS:

-Qlocation,string,dir
Windows OS:

/Qlocation,string,dir

Arguments

string Is the name of the tool.

dir Is the directory (path) where the tool is located.

Default

OFF The compiler looks for tools in a default area.

Description

This option specifies the directory for supporting tools.

string can be any of the following:

• c - Indicates the Intel® C++ Compiler Classic.
• cpp (or fpp) - Indicates the Intel® C++ preprocessor.
• cxxinc - Indicates C++ header files.
• cinc - Indicates C header files.
• asm - Indicates the assembler.
• link - Indicates the linker.
• prof - Indicates the profiler.
• On Windows* systems, the following is also available:

• masm - Indicates the Microsoft assembler.
• On Linux* and macOS systems, the following are also available:

• as - Indicates the assembler.
• gas - Indicates the GNU assembler. This setting is for Linux* only.
• ld - Indicates the loader.

Compiler Reference

423

• gld - Indicates the GNU loader. This setting is for Linux* only.
• lib - Indicates an additional library.
• crt - Indicates the crt%.o files linked into executables to contain the place to start execution.

On Windows and macOS systems, you can also specify a tool command name.

The following shows an example on macOS systems:

-Qlocation,ld,/usr/bin ! This tells the driver to use /usr/bin/ld for the loader
-Qlocation,ld,/usr/bin/gld ! This tells the driver to use /usr/bin/gld as the loader

The following shows an example on Windows* systems:

/Qlocation,link,"c:\Program Files\tools\" ! This tells the driver to use c:\Program
Files\tools\link.exe for the loader
/Qlocation,link,"c:\Program Files\tools\my_link.exe" ! This tells the driver to use c:\Program
Files\tools\my_link.exe as the loader

IDE Equivalent

None

Alternate Options

None

See Also
Qoption compiler option

Qoption
Passes options to a specified tool.

Syntax

Linux OS:

-Qoption,string,options
macOS:

-Qoption,string,options
Windows OS:

/Qoption,string,options

Arguments

string Is the name of the tool.

options Are one or more comma-separated, valid options for the designated
tool.

Note that certain tools may require that options appear within
quotation marks (" ").

Default

OFF No options are passed to tools.

Description

This option passes options to a specified tool.

 Intel® C++ Compiler Classic Developer Guide and Reference

424

If an argument contains a space or tab character, you must enclose the entire argument in quotation marks
(" "). You must separate multiple arguments with commas.

string can be any of the following:

• cpp - Indicates the preprocessor for the compiler.
• c - Indicates the Intel® C++ Compiler Classic.
• asm - Indicates the assembler.
• link - Indicates the linker.
• prof - Indicates the profiler.
• On Windows* systems, the following is also available:

• masm - Indicates the Microsoft assembler.
• On Linux* and macOS systems, the following are also available:

• as - Indicates the assembler.
• gas - Indicates the GNU assembler.
• ld - Indicates the loader.
• gld - Indicates the GNU loader.
• lib - Indicates an additional library.
• crt - Indicates the crt%.o files linked into executables to contain the place to start execution.

IDE Equivalent

None

Alternate Options

None

See Also
Qlocation compiler option

Language Options
This section contains descriptions for compiler options that pertain to language compatibility, conformity, etc.

ansi
Enables language compatibility with the gcc option
ansi.

Syntax

Linux OS:

-ansi
macOS:

-ansi
Windows OS:

None

Arguments

None

Compiler Reference

425

Default

OFF GNU C++ is more strongly supported than ANSI C.

Description

This option enables language compatibility with the gcc option -ansi and provides the same level of ANSI
standard conformance as that option.

This option sets option fmath-errno.

If you want strict ANSI conformance, use the -strict-ansi option.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Language > ANSI Conformance

OS X

Xcode: Language > C Language Dialect and Language > C++ Language Dialect

Alternate Options

None

check
Checks for certain conditions at run time.

Syntax

Linux OS and macOS:

-check=keyword[, keyword...]
Windows OS:

/check:keyword[, keyword...]

Arguments

keyword Specifies the conditions to check. Possible values are:

[no]conversions Determines whether checking occurs for
converting to smaller types. Keyword
conversions enables this checking.

[no]stack Determines whether checking occurs on the
stack frame. Keyword stack enables this
checking. If stack is specified, the stack is
checked for buffer overruns and buffer
underruns. This option also enforces local
variables initialization and stack pointer
verification.

 Intel® C++ Compiler Classic Developer Guide and Reference

426

[no]uninit Determines whether checking occurs for
uninitialized variables. Keyword uninit
enables this checking. If a variable is read
before it is written, a run-time error routine
will be called.

Run-time checking of undefined variables is
only implemented on local, scalar variables.
It is not implemented on dynamically
allocated variables, extern variables or static
variables. It is not implemented on structs,
classes, unions or arrays.

Default

noconversions
nostack
nouninit

No checking is performed for the above run-time conditions.

Description

This option checks for certain conditions at run time.

On Windows* systems, this option disables any default or specified optimizations and applies the /Od level of
optimization. If you specified optimizations, the compiler emits warning diagnostics for the disabled
optimizations.

On Linux* and macOS systems, this option may disable some optimizations.

NOTE
This option requires library support. Depending on the platform, the required library is either
in your operating system run-time environment or in your compiler package.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Runtime > Check Stack Frame (-check=stack)

Runtime > Check Type Conversions (-check=conversions)

Runtime > Check Uninitialized Variables (-check=uninit)

Xcode

Xcode: Runtime > Check Stack Frame (-check=stack)

Runtime > Check Type Conversions (-check=conversions)

Runtime > Check Uninitialized Variables (-check=uninit)

Alternate Options

check:conversionsLinux and macOS: None

Compiler Reference

427

Windows: /RTCc

check:stackLinux and macOS: None

Windows: /RTCs

check:uninitLinux and macOS: None

Windows: /RTCu

early-template-check
Lets you semantically check template function
template prototypes before instantiation.

Syntax

Linux OS and macOS:

-early-template-check
-no-early-template-check
Windows OS:

None

Arguments

None

Default

-no-early-template-checkThe prototype instantiation of function templates and function members of class templates is
deferred.

Description

Lets you semantically check template function template prototypes before instantiation. On Linux* platforms,
gcc 3.4 (or newer) compatibilty modes must be in effect. For all macOS platforms, gcc 4.0 (or newer) is
required.

IDE Equivalent

None

Alternate Options

None

fblocks
Determines whether Apple* blocks are enabled or
disabled.

Syntax

Linux OS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

428

macOS:

-fblocks
-fno-blocks
Windows OS:

None

Arguments

None

Default

-fblocks Apple* blocks are enabled.

Description

This option determines whether Apple* blocks (block variable declarations) are enabled or disabled.

If you want to disable Apple* blocks, specify -fno-blocks.

To use this feature, macOS 10.6 or greater is required.

IDE Equivalent

None

Alternate Options

None

ffriend-injection
Causes the compiler to inject friend functions into the
enclosing namespace.

Syntax

Linux OS and macOS:

-ffriend-injection
-fno-friend-injection
Windows OS:

None

Arguments

None

Default

-fno-friend-injection The compiler does not inject friend functions into the enclosing
namespace. A friend function that is not declared in an enclosing
scope can only be found using argument-dependent lookup.

Description

This option causes the compiler to inject friend functions into the enclosing namespace, so they are visible
outside the scope of the class in which they are declared.

Compiler Reference

429

On Linux systems, in gcc versions 4.1 or later, this is not the default behavior. This option allows
compatibility with gcc 4.0 or earlier.

IDE Equivalent

None

Alternate Options

None

fno-gnu-keywords
Tells the compiler to not recognize typeof as a
keyword.

Syntax

Linux OS:

-fno-gnu-keywords

macOS:

-fno-gnu-keywords

Windows OS:

None

Arguments

None

Default

OFF Keyword typeof is recognized.

Description

Tells the compiler to not recognize typeof as a keyword.

IDE Equivalent

None

Alternate Options

None

fno-implicit-inline-templates
Tells the compiler to not emit code for implicit
instantiations of inline templates.

Syntax

Linux OS:

-fno-implicit-inline-templates

macOS:

-fno-implicit-inline-templates

 Intel® C++ Compiler Classic Developer Guide and Reference

430

Windows OS:

None

Arguments

None

Default

OFF The compiler handles inlines so that compilations, with and without optimization, will need the
same set of explicit instantiations.

Description

This option tells the compiler to not emit code for implicit instantiations of inline templates.

IDE Equivalent

None

Alternate Options

None

fno-implicit-templates
Tells the compiler to not emit code for non-inline
templates that are instantiated implicitly.

Syntax

Linux OS:

-fno-implicit-templates
macOS:

-fno-implicit-templates
Windows OS:

None

Arguments

None

Default

OFF The compiler handles inlines so that compilations, with and without optimization, will need the
same set of explicit instantiations.

Description

This option tells the compiler to not emit code for non-inline templates that are instantiated implicitly, but to
only emit code for explicit instantiations.

IDE Equivalent

None

Compiler Reference

431

Alternate Options

None

fno-operator-names
Disables support for the operator names specified in
the standard.

Syntax

Linux OS:

-fno-operator-names

macOS:

-fno-operator-names

Windows OS:

None

Arguments

None

Default

OFF

Description

Disables support for the operator names specified in the standard.

IDE Equivalent

None

Alternate Options

None

fno-rtti
Disables support for run-time type information (RTTI).

Syntax

Linux OS:

-fno-rtti

macOS:

-fno-rtti

Windows OS:

None

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

432

Default

OFF Support for run-time type information (RTTI) is enabled.

Description

This option disables support for run-time type information (RTTI).

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: None

OS X

Xcode: Language > Enable C++ Runtime Types

Alternate Options

None

fnon-lvalue-assign
Determines whether casts and conditional expressions
can be used as lvalues.

Syntax

Linux OS and macOS:

-fnon-lvalue-assign
-fno-non-lvalue-assign
Windows OS:

None

Arguments

None

Default

-fnon-lvalue-assignThe compiler allows casts and conditional expressions to be used as lvalues.

Description

This option determines whether casts and conditional expressions can be used as lvalues.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

433

fpermissive
Tells the compiler to allow for non-conformant code.

Syntax

Linux OS:

-fpermissive

macOS:

-fpermissive

Windows OS:

None

Arguments

None

Default

OFF

Description

Tells the compiler to allow for non-conformant code.

IDE Equivalent

None

Alternate Options

None

fshort-enums
Tells the compiler to allocate as many bytes as needed
for enumerated types.

Syntax

Linux OS:

-fshort-enums

macOS:

-fshort-enums

Windows OS:

None

Arguments

None

Default

OFF The compiler allocates a default number of bytes for enumerated types.

 Intel® C++ Compiler Classic Developer Guide and Reference

434

Description

This option tells the compiler to allocate as many bytes as needed for enumerated types.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Associate as Many Bytes as Needed for Enumerated Types

OS X

Xcode: Data > Allocate enumerated types

Alternate Options

None

fsyntax-only
Tells the compiler to check only for correct syntax.

Syntax

Linux OS:

-fsyntax-only
macOS:

-fsyntax-only
Windows OS:

None

Arguments

None

Default

OFF Normal compilation is performed.

Description

This option tells the compiler to check only for correct syntax. No object file is produced.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /Zs

Compiler Reference

435

ftemplate-depth, Qtemplate-depth
Control the depth in which recursive templates are
expanded.

Syntax

Linux OS:

-ftemplate-depth=n
macOS:

-ftemplate-depth=n
Windows OS:

/Qtemplate-depth:n

Arguments

n The number of recursive templates that are expanded.

Default

OFF The compiler uses default heuristics for the depth of expansion.

Description

Control the depth in which recursive templates are expanded. On Linux*, this option is supported only by
invoking the compiler with icpc.

IDE Equivalent

None

Alternate Options

None

funsigned-bitfields
Determines whether the default bitfield type is
changed to unsigned.

Syntax

Linux OS:

-funsigned-bitfields
-fno-unsigned-bitfields
macOS:

-funsigned-bitfields
-fno-unsigned-bitfields
Windows OS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

436

Arguments

None

Default

-fno-unsigned-bitfieldsThe default bitfield type is signed.

Description

This option determines whether the default bitfield type is changed to unsigned.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Change Default Bitfield Type to unsigned

OS X

Xcode: Data > Unsigned bitfield Type

Alternate Options

None

funsigned-char
Change default char type to unsigned.

Syntax

Linux OS:

-funsigned-char
macOS:

-funsigned-char
Windows OS:

None

Arguments

None

Default

OFF Do not change default char type to unsigned.

Description

Change default char type to unsigned.

Compiler Reference

437

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Change default char type to unsigned

OS X

Xcode: Data > Unsigned char Type

Alternate Options

None

GZ
Initializes all local variables. This is a deprecated
option that may be removed in a future release.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/GZ

Arguments

None

Default

OFF The compiler does not initialize local variables.

Description

This option initializes all local variables to a non-zero value. To use this option, you must also specify
option /Od.

This is a deprecated option that may be removed in a future release. The replacement option is /RTC1.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /RTC1

 Intel® C++ Compiler Classic Developer Guide and Reference

438

H (Windows*)
Causes the compiler to limit the length of external
symbol names. This is a deprecated option. There is
no replacement option.

Syntax

Linux OS and macOS:

None
Windows OS:

/Hn

Arguments

n Is the maximum number of characters for external symbol names.

Default

OFF The compiler follows default rules for the length of external symbol names.

Description

This option causes the compiler to limit the length of external symbol names to a maximum of n characters.

IDE Equivalent

None

Alternate Options

None

help-pragma, Qhelp-pragma
Displays all supported pragmas.

Syntax

Linux OS:

-help-pragma
macOS:

-help-pragma
Windows OS:

/Qhelp-pragma

Arguments

None

Default

OFF No list is displayed unless this compiler option is specified.

Compiler Reference

439

Description

This option displays all supported pragmas and shows their syntaxes.

IDE Equivalent

None

Alternate Options

None

intel-extensions, Qintel-extensions
Enables or disables all Intel® C and Intel® C++
language extensions.

Syntax

Linux OS and macOS:

-intel-extensions
-no-intel-extensions
Windows OS:

/Qintel-extensions
/Qintel-extensions-

Arguments

None

Default

OFF The Intel® C and Intel® C++ language extensions are enabled.

Description

This option enables or disables all Intel® C and Intel® C++ language extensions.

If you specify the negative form of the option (see above), it disables all Intel® C and Intel® C++ language
extensions.

Note that certain settings for the [Q]std compiler option can enable or disable decimal floating-point
support:

• The following [Q]std settings enable decimal floating-point support: c89, gnu89 (Linux* only), gnu99
(Linux* only)

• The following [Q]std setting disables decimal floating-point support: c99

IDE Equivalent

Visual Studio

Visual Studio: Language > Disable All Intel Language Extensions

Eclipse

Eclipse: Language > Disable All Intel Language Extensions

 Intel® C++ Compiler Classic Developer Guide and Reference

440

Xcode

Xcode: Language > Enable Intel C/C++ language extensions

Alternate Options

None

See Also
std, Qstd compiler option

J
Sets the default character type to unsigned.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/J

Arguments

None

Default

OFF The default character type is signed

Description

This option sets the default character type to unsigned. This option has no effect on character values that
are explicitly declared signed. This option sets _CHAR_UNSIGNED = 1.

IDE Equivalent

Windows

Visual Studio: Language > Default Char Unsigned

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

Compiler Reference

441

restrict, Qrestrict
Determines whether pointer disambiguation is enabled
with the restrict qualifier.

Syntax

Linux OS:

-restrict
-no-restrict
macOS:

-restrict
-no-restrict
Windows OS:

/Qrestrict
/Qrestrict-

Arguments

None

Default

-no-restrict

or
/Qrestrict-

Pointers are not qualified with the restrict keyword.

Description

This option determines whether pointer disambiguation is enabled with the restrict qualifier. Option
-restrict and /Qrestrict enable the recognition of the restrict keyword as defined by the ANSI standard.

By qualifying a pointer with the restrict keyword, you assert that an object accessed by the pointer is only
accessed by that pointer in the given scope. You should use the restrict keyword only when this is true. When
the assertion is true, the restrict option will have no effect on program correctness, but may allow better
optimization.

IDE Equivalent

Windows

Visual Studio: Language > Recognize The Restrict Keyword

Linux

Eclipse: Language > Recognize The Restrict Keyword

OS X

Xcode: Language > Recognize RESTRICT keyword

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

442

See Also
std, Qstd compiler option

std, Qstd
Tells the compiler to conform to a specific language
standard.

Syntax

Linux OS:

-std=val

macOS:

-std=val

Windows OS:

/Qstd:val
/std:val (For Microsoft* compatibility)

Arguments

val Specifies the specific language standard to conform to.

The following values apply to Linux* -std and Windows* /Qstd:

c++2b Enables support for the Working Draft for ISO C++ 2023 DIS
standard.

c++20 Enables support for the 2020 ISO C++ DIS standard.

c++17 Enables support for the 2017 ISO C++ standard with
amendments.

c++14 Enables support for the 2014 ISO C++ standard with
amendments.

c++11 Enables support for the 2011 ISO C++ standard with
amendments.

c++98 and c++03 Enables support for the 1998 ISO C++ standard with
amendments.

c2x Enables support for the Working Draft for ISO C2x standard.

c18 and c17 Enables support for the 2017 ISO C standard.

Support for c17 can also be enabled by value iso9899:2017.

Support for c18 can also be enabled by value iso9899:2018.

c11 Enables support for the 2011 ISO C standard.

Support for this standard can also be enabled by value
iso9899:2011.

c99 Enables support for the 1999 ISO C standard.

Support for this standard can also be enabled by value
iso9899:1999.

Compiler Reference

443

c90 and c89 Enables support for the 1990 ISO C standard.

Support for this standard can also be enabled by value
iso9899:1990.

The following values apply only to Linux -std:

gnu++2b Enables support for the Working Draft for ISO C++ 2023 DIS
standard plus GNU extensions.

gnu++20 Enables support for the 2020 ISO C++ DIS standard plus GNU
extensions.

gnu++17 Enables support for the 2017 ISO C++ standard with
amendments plus GNU extensions.

gnu++14 Enables support for the 2014 ISO C++ standard with
amendments plus GNU extensions.

gnu++11 Enables support for the 2011 ISO C++ standard with
amendments plus GNU extensions.

gnu++98 and gnu++03 Enables support for the 1998 ISO C++ standard with
amendments plus GNU extensions.

gnu2x Enables support for the Working Draft for ISO C2x standard
plus GNU extensions.

gnu18 and gnu17 Enables support for the 2017 ISO C standard plus GNU
extensions.

gnu11 Enables support for the 2011 ISO C standard plus GNU
extensions.

gnu99 Enables support for the 1999 ISO C standard plus GNU
extensions.

gnu90 and gnu89 Enables support for the 1990 ISO C standard plus GNU
extensions.

For possible values for Microsoft*-compatible Windows* /std, see the Microsoft* documentation.

Default

Default for Windows option /Qstd:
OFF

The compiler does not conform to a specific language standard.

Default for Windows option /std:
c++14

Currently, the compiler conforms to the 2014 ISO C++ standard. For
the latest information, see the Microsoft* documentation.

Default for Linux option -std on icc
(Classic C compiler):
c99 or c11

If using GCC5.x or higher, the compiler conforms to c99, which is the
1999 ISO C standard. If using GCC5.0 or lower, the compiler conforms
to c11, which is the 2011 ISO C standard.

Default for Linux option -std on icpc
(Classic C++ compiler):
varies

If using GCC5.x or lower, the compiler conforms to c++98, which is
the 1998 ISO C++ standard. If using GCC6.0 to GCC11.0, the
compiler conforms to c++14, which is the 2014 ISO C++ standard. If
using GCC11.1 or higher, the compiler conforms to c++17, which is
the 2017 ISO C++ standard.

 Intel® C++ Compiler Classic Developer Guide and Reference

444

Description

This option tells the compiler to conform to a specific language standard.

IDE Equivalent

Visual Studio

Visual Studio: Language > C/C++ Language Support

Eclipse

Eclipse: Language > ANSI Conformance

Xcode

Xcode: Language > C Language Dialect and C++ Language Dialect

Alternate Options

None

strict-ansi
Tells the compiler to implement strict ANSI
conformance dialect.

Syntax

Linux OS:

-strict-ansi
macOS:

-strict-ansi
Windows OS:

None

Arguments

None

Default

OFF The compiler conforms to default standards.

Description

This option tells the compiler to implement strict ANSI conformance dialect. On Linux* systems, if you need
to be compatible with gcc, use the -ansi option.

This option sets option fmath-errno, which tells the compiler to assume that the program tests errno after
calls to math library functions. This restricts optimization because it causes the compiler to treat most math
functions as having side effects.

IDE Equivalent

Windows

Visual Studio: None

Compiler Reference

445

Linux

Eclipse: Language > ANSI Conformance

OS X

Xcode: Language > C Language Dialect and Language > C++ Language Dialect

Alternate Options

None

vd
Enables or suppresses hidden vtordisp members in C+
+ objects.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/vdn

Arguments

n Possible values are:

0 Suppresses the creation of the hidden vtordisp members in C++ objects.

1 Enables the creation of hidden vtordisp members in C++ objects when they
are necessary.

2 Enables the hidden vtordisp members for all virtual base classes with virtual
functions. This setting is recommended in the following cases:

• When the only virtual function in your virtual base class is a destructor
• When you want to ensure correct performance of the dynamic_cast

operator on a partially-constructed object

Default

/vd1 The compiler enables the creation of hidden vtordisp members in C++ objects when they are
necessary.

Description

This option enables or suppresses hidden vtordisp members in C++ objects.

This is a compatibility option for the Microsoft Visual C++* option /vdn. For full details about this compiler
option, see the Microsoft* documentation.

IDE Equivalent

None

 Intel® C++ Compiler Classic Developer Guide and Reference

446

Alternate Options

None

vmb
Selects the smallest representation that the compiler
uses for pointers to members.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/vmb

Arguments

None

Default

OFF The compiler uses default rules to represent pointers to members.

Description

This option selects the smallest representation that the compiler uses for pointers to members. Use this
option if you define each class before you declare a pointer to a member of the class.

IDE Equivalent

None

Alternate Options

None

vmg
Selects the general representation that the compiler
uses for pointers to members.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/vmg

Compiler Reference

447

Arguments

None

Default

OFF The compiler uses default rules to represent pointers to members.

Description

This option selects the general representation that the compiler uses for pointers to members. Use this
option if you declare a pointer to a member before you define the corresponding class.

IDE Equivalent

None

Alternate Options

None

vmm
Enables pointers to class members with single or
multiple inheritance.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/vmm

Arguments

None

Default

OFF The compiler uses default rules to represent pointers to members.

Description

This option enables pointers to class members with single or multiple inheritance. To use this option, you
must also specify option /vmg.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

448

vms
Enables pointers to members of single-inheritance
classes.

Syntax

Linux OS:

None

macOS:

None

Windows OS:

/vms

Arguments

None

Default

OFF The compiler uses default rules to represent pointers to members.

Description

This option enables pointers to members of single-inheritance classes. To use this option, you must also
specify option /vmg.

IDE Equivalent

None

Alternate Options

None

x (type option)
All source files found subsequent to -x type will be
recognized as a particular type.

Syntax

Linux OS:

-x type

macOS:

-x type

Windows OS:

None

Arguments

type is the type of source file. Possible values are:

Compiler Reference

449

c++ C++ source file

c++-header C++ header file

c++-cpp-output C++ pre-processed file

c C source file

c-header C header file

cpp-output C pre-processed file

assembler Assembly file

assembler-with-cpp Assembly file that needs to be preprocessed

none Disable recognition, and revert to file extension

Default

none Disable recognition and revert to file extension.

Description

All source files found subsequent to -xtype will be recognized as a particular type.

IDE Equivalent

None

Alternate Options

None

Example
Suppose you want to compile the following C and C++ source files whose extensions are not recognized by
the compiler:

File Name Language

file1.c99 C

file2.cplusplus C++

We will also include these files whose extensions are recognized:

File Name Language

file3.c C

file4.cpp C++

The command-line invocation using the -x option follows:

icpc -x c file1.c99 -x c++ file2.cplusplus -x none file3.c file4.cpp

Za
Disables Microsoft* Visual C++* compiler language
extensions.

 Intel® C++ Compiler Classic Developer Guide and Reference

450

Syntax

Linux OS and macOS:

None
Windows OS:

/Za

Arguments

None

Default

OFF The compiler provides support for extended ANSI C.

Description

This option disables Microsoft* Visual C++* compiler language extensions.

IDE Equivalent

Windows

Visual Studio: Language > Disable Language Extensions

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
Ze compiler option
Zc compiler option

Zc
Lets you specify ANSI C standard conformance for
certain language features.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Zc:arg1[,arg2]

Compiler Reference

451

Arguments

arg Is the language feature for which you want standard conformance.

The settings are compatible with Microsoft* settings for option /Zc.
For a list of supported settings, see the table in the Description section
of this topic.

Default

varies See the table in the Description section of this topic.

Description

This option lets you specify ANSI C standard conformance for certain language features.

If you do not want the default behavior for one or more of the settings, you must specify the negative form
of the setting. For example, if you do not want the forScope or wchar_t default behavior, you should
specify /Zc:forScope-,wchar_t-.

The following table shows the supported Microsoft settings for option /Zc.

/Zc setting name Description

auto[-] Enforces compliance to the new standard meaning for auto (default).
Disabled by /Zc:auto-.

forScope[-] Enforces standard compliance in for-loop scope (default). Disabled by /
Zc:forScope-.

inline[-] Controls inline expansion. Disabled by /Zc:inline- (default).

rvalueCast[-] Enforces Standard C++ explicit type conversion rules. Disabled by /
Zc:rvalueCast- (default).

strictStrings[-] Enforces const qualification for string literals. Disabled by /
Zc:strictStrings- (default).

threadSafeInit[-] Enables thread-safe initialization of local statics (default). Disabled by /
Zc:threadSafeInit-.

throwingNew[-] Enables link with the operator new implementation. Disabled by /
Zc:throwingNew- (default).

trigraphs[-] Enables trigraph character sequences. Disabled by /Zc:trigraphs-
(default).

wchar_t[-] Specifies that wchar_t is a native data type (default). Disabled by /
Zc:wchar_t-.

IDE Equivalent

Windows

Visual Studio: Language > Treat wchar_t as Built-in Type / Force Conformance In For Loop Scope

Language > Enforce type conversion rules (rvalueCast)

Linux

Eclipse: None

 Intel® C++ Compiler Classic Developer Guide and Reference

452

OS X

Xcode: None

Alternate Options

None

Ze
Enables Microsoft* Visual C++* compiler language
extensions. This is a deprecated option that may be
removed in a future release.

Syntax

Linux OS and macOS:

None
Windows OS:

/Ze

Arguments

None

Default

ON The compiler provides support for extended ANSI C.

Description

This option enables Microsoft* Visual C++* compiler language extensions.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

Alternate Options

None

See Also
Zc compiler option
Za compiler option

Zg
Tells the compiler to generate function prototypes.
This is a deprecated option that may be removed in a
future release.

Syntax

Linux OS:

None

Compiler Reference

453

macOS:

None
Windows OS:

/Zg

Arguments

None

Default

OFF The compiler does not create function prototypes.

Description

This option tells the compiler to generate function prototypes.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

Alternate Options

None

Zp
Specifies alignment for structures on byte boundaries.

Syntax

Linux OS:

-Zp[n]
macOS:

-Zp[n]
Windows OS:

/Zp[n]

Arguments

n Is the byte size boundary. Possible values are 1, 2, 4, 8, or 16.

Default

Zp16 Structures are aligned on either size boundary 16 or the boundary that will naturally align them.

Description

This option specifies alignment for structures on byte boundaries.

If you do not specify n, you get Zp16.

 Intel® C++ Compiler Classic Developer Guide and Reference

454

IDE Equivalent

Windows

Visual Studio: Code Generation > Struct Member Alignment

Linux

Eclipse: Data > Structure Member Alignment

OS X

Xcode: Data > Structure Member Alignment

Alternate Options

None

Zs
Tells the compiler to check only for correct syntax.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Zs

Arguments

None

Default

OFF Normal compilation is performed.

Description

This option tells the compiler to check only for correct syntax.

IDE Equivalent

None

Alternate Options

Linux: -syntax, -fsyntax-only
Windows: None

Data Options
This section contains descriptions for compiler options that pertain to the treatment of data.

Compiler Reference

455

align
Determines whether variables and arrays are naturally
aligned.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-align
-noalign
macOS:

-align
-noalign
Windows OS:

None

Arguments

None

Default

-noalign Variables and arrays are aligned according to the gcc model, which means they are aligned to 4-
byte boundaries.

Description

This option determines whether variables and arrays are naturally aligned. Option -align forces the
following natural alignment:

Type Alignment

double 8 bytes

long long 8 bytes

long double 16 bytes

If you are not interacting with system libraries or other libraries that are compiled without -align, this
option can improve performance by reducing misaligned accesses.

This option can also be specified as -m[no-]align-double. The options are equivalent.

Caution
If you are interacting with compatible libraries, this option can improve performance by
reducing misaligned accesses. However, if you are interacting with noncompatible libraries
or libraries that are compiled without option -align, your application may not perform as
expected.

 Intel® C++ Compiler Classic Developer Guide and Reference

456

IDE Equivalent

None

Alternate Options

None

auto-ilp32, Qauto-ilp32
Instructs the compiler to analyze the program to
determine if there are 64-bit pointers that can be
safely shrunk into 32-bit pointers and if there are 64-
bit longs (on Linux* systems) that can be safely
shrunk into 32-bit longs.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS and macOS:

-auto-ilp32
Windows OS:

/Qauto-ilp32

Arguments

None

Default

OFF The optimization is not attempted.

Description

This option instructs the compiler to analyze the program to determine if there are 64-bit pointers that can
be safely shrunk into 32-bit pointers and if there are 64-bit longs (on Linux* systems) that can be safely
shrunk into 32-bit longs.

On macOS systems, you must also specify option -no-pie for the optimization to occur.

For this option to be effective, the compiler must be able to optimize using the [Q]ipo option and must be
able to analyze all library calls or external calls the program makes. This option has no effect on Linux*
systems unless you specify setting SSE3 or higher for option -x.

This option requires that the size of the program executable never exceeds 232 bytes and all data values can
be represented within 32 bits. If the program can run correctly in a 32-bit system, these requirements are
implicitly satisfied. If the program violates these size restrictions, unpredictable behavior may occur.

IDE Equivalent

None

Alternate Options

None

See Also
auto-p32

Compiler Reference

457

 compiler option
pie
 compiler option

ipo, Qipo
 compiler option

parallel, Qparallel
 compiler option

x, Qx
 compiler option

auto-p32
Instructs the compiler to analyze the program to
determine if there are 64-bit pointers that can be
safely shrunk to 32-bit pointers.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS and macOS:

-auto-p32

Windows OS:

None

Arguments

None

Default

OFF The optimization is not performed.

Description

This option instructs the compiler to analyze and transform the program so that 64-bit pointers are shrunk to
32-bit pointers, wherever it is legal and safe to do so.

On macOS systems, you must also specify option -no-pie for the optimization to occur.

For this option to be effective, the compiler must be able to optimize using the -ipo option and it must be
able to analyze all library calls or external calls the program makes. This option has no effect unless you
specify setting SSE3 or higher for option -x.

The application cannot exceed a 32-bit address space; otherwise, unpredictable results can occur.

IDE Equivalent

None

Alternate Options

None

See Also
auto-ilp32, Qauto-ilp32
 compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

458

pie
 compiler option

ipo, Qipo
 compiler option

x, Qx
 compiler option

check-pointers, Qcheck-pointers
Determines whether the compiler checks bounds for
memory access through pointers.

Syntax

Linux OS:

-check-pointers=keyword
macOS:

None
Windows OS:

/Qcheck-pointers:keyword

Arguments

keyword Specifies what type of bounds checking occurs. Possible values are:

none Disables bounds checking. This is the
default.

rw Checks bounds for reads and writes through
pointers.

write Checks bounds for only writes through
pointers.

Default

-check-pointers=none
or /Qcheck-pointers:none

No bounds checking occurs for memory access through pointers.

Description

This option determines whether the compiler checks bounds for memory access through pointers. It enables
checking of all indirect accesses through pointers, and all array accesses.

The compiler may optimize these checks away when it can determine that an access is safe.

When rw or write is specified, the [Q]check-pointers-undimensioned option is set and dimensioned and
undimensioned arrays are checked.

If you do not want undimensioned arrays checked, you must specify option the negative form of the option
(see Syntax above).

This pointer checker feature requires installation of another product. For more information, see Feature
Requirements.

Compiler Reference

459

IDE Equivalent

Windows

Visual Studio: Code Generation > Check Pointers

Linux

Eclipse: Code Generation > Check Pointers

OS X

Xcode: None

Alternate Options

None

See Also
check-pointers-undimensioned, Qcheck-pointers-undimensioned
 compiler option

check-pointers-dangling, Qcheck-pointers-dangling
 compiler option

check-pointers-dangling, Qcheck-pointers-dangling
Determines whether the compiler checks for dangling
pointer references.

Syntax

Linux OS:

-check-pointers-dangling=keyword
macOS:

None
Windows OS:

/Qcheck-pointers-dangling:keyword

Arguments

keyword Specifies what type of dangling pointer checking occurs. Possible
values are:

none Disables checking for dangling pointer
references. This is the default.

heap Checks for dangling pointer references on
the heap.

stack Checks for dangling pointer references on
the stack.

all Checks for dangling pointer references on
the heap and the stack.

 Intel® C++ Compiler Classic Developer Guide and Reference

460

Default

-check-pointers-dangling=none
or
/Qcheck-pointers-dangling:none

No checking occurs for dangling pointer references.

Description

This option determines whether the compiler checks for dangling pointer references.

To use this option, you must also specify the [Q]check-pointers option.

This pointer checker feature requires installation of another product. For more information, see Feature
Requirements.

IDE Equivalent

Windows

Visual Studio: Code Generation > Check Dangling Pointers

Linux

Eclipse: Code Generation > Check Dangling Pointers

OS X

Xcode: None

Alternate Options

None

See Also
check-pointers, Qcheck-pointers
 compiler option

check-pointers-mpx, Qcheck-pointers-mpx
Determines whether the compiler checks bounds for
memory access through pointers on processors that
support Intel® Memory Protection Extensions (Intel®
MPX).

Syntax

Linux OS:

-check-pointers-mpx=keyword
macOS:

None
Windows OS:

/Qcheck-pointers-mpx:keyword

Arguments

keyword Specifies what type of bounds checking occurs. Possible values are:

Compiler Reference

461

none Disables bounds checking. This is the
default.

rw Checks bounds for reads and writes through
pointers.

write Checks bounds for only writes through
pointers.

Default

-check-pointers-mpx=none
or /Qcheck-pointers-mpx:none

No bounds checking occurs for memory access through pointers on
processors that support Intel® MPX.

Description

This option determines whether the compiler checks bounds for memory access through pointers on
processors that support Intel® MPX. It enables checking of all indirect accesses through pointers, and all
array accesses.

The compiler may optimize these checks away when it can determine that an access is safe.

If you specify option [Q]check-pointers along with option [Q]check-pointers-mpx, option
[Q]check-pointers-mpx takes precedence.

If you specify [Q]check-pointers-mpx, you cannot specify option [Q]check-pointers-dangling.

NOTE
This feature requires supporting hardware, OS, and library support. Intel® MPX bounds
exceptions are hardware exceptions that are handled by the OS and run-time library, similar
to the way that a null pointer exception is handled. Pointer Checker detailed reports and
report control functions are not enabled with Intel® MPX, because these require overriding
the OS exception handling.

For more details, see the document titled: Intel® Memory Protection Extensions Enabling Guide.

This pointer checker feature requires installation of another product. For more information, see Feature
Requirements.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Check Pointers

Eclipse

Eclipse: Code Generation > Check Pointers

Xcode

Xcode: None

Alternate Options

None

See Also
check-pointers, Qcheck-pointers

 Intel® C++ Compiler Classic Developer Guide and Reference

462

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-memory-protection-extensions-enabling-guide.html?wapkw=%20Intel%C2%AE%20Memory%20Protection%20Extensions%20Enabling%20Guide

 compiler option
check-pointers-undimensioned, Qcheck-pointers-undimensioned
 compiler option

check-pointers-narrowing, Qcheck-pointers-narrowing
Determines whether the compiler enables or disables
the narrowing of pointers to structure fields.

Syntax

Linux OS:

-check-pointers-narrowing
-no-check-pointers-narrowing
macOS:

None
Windows OS:

/Qcheck-pointers-narrowing
/Qcheck-pointers-narrowing-

Arguments

None

Default

-check-pointers-narrowing
or /Qcheck-pointers-narrowing

The compiler enables the narrowing of pointers to structure fields.

Description

This option determines whether the compiler enables or disables the narrowing of pointers to structure fields.
Narrowing restricts a field pointer so that it can only legally point to that field.

To use this option, you must also specify the [Q]check-pointers option.

Disabling this feature can improve Pointer Checker compatibility with non-ANSI compliant code.

To disable the narrowing of pointers to structure fields, specify the negative form of the option (see Syntax
above).

This pointer checker feature requires installation of another product. For more information, see Feature
Requirements.

IDE Equivalent

None

Alternate Options

None

See Also
check-pointers, Qcheck-pointers
 compiler option

Compiler Reference

463

check-pointers-undimensioned, Qcheck-pointers-undimensioned
Determines whether the compiler checks bounds for
memory access through arrays that are declared
without dimensions.

Syntax

Linux OS:

-check-pointers-undimensioned
-no-check-pointers-undimensioned
macOS:

None
Windows OS:

/Qcheck-pointers-undimensioned
/Qcheck-pointers-undimensioned-

Arguments

None

Default

-check-pointers-undimensioned
or
/Qcheck-pointers-undimensioned

Bounds checking occurs for memory access through arrays that are
declared without dimensions. This checking occurs for both
dimensioned and undimensioned arrays.

Description

This option determines whether the compiler checks bounds for memory access through arrays that are
declared without dimensions.

To use this option, you must also specify the [Q]check-pointers option.

This pointer checker feature requires installation of another product. For more information, see Feature
Requirements.

The default setting, [Q]check-pointers-undimensioned, can cause link time errors for multiple definitions
for non-standard code and it can cause linker warnings for undefined symbols when linking library code that
has not been compiled with pointer checking enabled. In both of these cases, the symbols will contain the
string cp_array_end.

To prevent these issues, disable the checking of undimensioned arrays, by specifying the negative form of
the option (see Syntax above).

Note that even if you specify the negative form of the option, dimensioned arrays are always checked.

IDE Equivalent

Windows

Visual Studio: Code Generation > Turn off Checking for Undimensioned Arrays

Linux

Eclipse: Code Generation > Turn off Checking for Undimensioned Arrays

 Intel® C++ Compiler Classic Developer Guide and Reference

464

OS X

Xcode: None

Alternate Options

None

See Also
check-pointers, Qcheck-pointers
 compiler option

falign-functions, Qfnalign
Tells the compiler to align functions on an optimal
byte boundary.

Syntax

Linux OS:

-falign-functions[=n]
-fno-align-functions
macOS:

-falign-functions[=n]
-fno-align-functions
Windows OS:

/Qfnalign[:n]
/Qfnalign-

Arguments

n Is an optional positive integer initialization expression indicating the
number of bytes for the minimum alignment boundary. It tells the
compiler to align functions on a power-of-2 byte boundary. If you do
not specify n, the compiler aligns the start of functions on 16-byte
boundaries.

The n must be a positive integer less than or equal to 4096. If you
specify a value that is not a power of 2, n will be rounded up to the
nearest power of 2. For example, if 23 is specified for n, functions will
be aligned on 32 byte boundaries.

Default

-fno-align-functions
or /Qfnalign-

The compiler aligns functions on 2-byte boundaries. This is the same as
specifying -falign-functions=2 (Linux* and macOS) or /Qfnalign:2
(Windows*).

Description

This option tells the compiler to align functions on an optimal byte boundary. If you do not specify n, the
compiler aligns the start of functions on 16-byte boundaries.

Compiler Reference

465

IDE Equivalent

None

Alternate Options

None

falign-loops, Qalign-loops
Aligns loops to a power-of-two byte boundary.

Syntax

Linux OS:

-falign-loops[=n]
-fno-align-loops
macOS:

-falign-loops[=n]
-fno-align-loops
Windows OS:

/Qalign-loops[:n]
/Qalign-loops-

Arguments

n Is the optional number of bytes for the minimum alignment boundary. It must be a power of 2
between 1 and 4096, such as 1, 2, 4, 8, 16, 32, 64, 128, and so on.

If you specify 1 for n, no alignment is performed; this is the same as specifying the negative form
of the option.

If you do not specify n, the default alignment is 16 bytes.

Default

-fno-align-loops
or /Qalign-loops-

No special loop alignment is performed.

Description

This option aligns loops to a power-of-two boundary. This alignment may improve performance.

It can be affected by the pragma code_align and attribute code_align.

If code is compiled with the -falign-loops=m (Linux* and macOS) or /Qalign-loops:m (Windows*)
option and a code_align:n pragma precedes a loop, the loop is aligned on a max (m, n) byte boundary. If a
function is modified by a code_align:k pragma and a code_align:n pragma precedes a loop, then both the
function and the loop are aligned on a max (k, n) byte boundary.

IDE Equivalent

None

 Intel® C++ Compiler Classic Developer Guide and Reference

466

Alternate Options

None

See Also
falign-functions, Qfnalign compiler option

falign-stack
Tells the compiler the stack alignment to use on entry
to routines. This is a deprecated option that may be
removed in a future release.

Architecture Restrictions

Only available on IA-32 architecture. IA-32 support is deprecated and will be removed in a future release.

Syntax

Linux OS:

-falign-stack=mode
macOS:

None
Windows OS:

None

Arguments

mode Is the method to use for stack alignment. Possible values are:

assume-4-byte Tells the compiler to assume the stack is aligned on 4-byte
boundaries. The compiler can dynamically adjust the stack
to 16-byte alignment if needed.

maintain-16-byte Tells the compiler to not assume any specific stack
alignment, but attempt to maintain alignment in case the
stack is already aligned. The compiler can dynamically
align the stack if needed. This setting is compatible with
gcc.

assume-16-byte Tells the compiler to assume the stack is aligned on 16-
byte boundaries and to continue to maintain 16-byte
alignment. This setting is compatible with gcc.

Default

-falign-stack=assume-16-byte The compiler assumes the stack is aligned on 16-byte
boundaries and continues to maintain 16-byte alignment.

Description

This option tells the compiler the stack alignment to use on entry to routines.

This is a deprecated option that may be removed in a future release. There is no replacement option.

Compiler Reference

467

IDE Equivalent

None

Alternate Options

None

fcommon
Determines whether the compiler treats common
symbols as global definitions.

Syntax

Linux OS:

-fcommon
-fno-common
macOS:

-fcommon
-fno-common
Windows OS:

None

Arguments

None

Default

-fcommon The compiler does not treat common symbols as global definitions.

Description

This option determines whether the compiler treats common symbols as global definitions and to allocate
memory for each symbol at compile time.

Option -fno-common tells the compiler to treat common symbols as global definitions. When using this
option, you can only have a common variable declared in one module; otherwise, a link time error will occur
for multiple defined symbols.

Normally, a file-scope declaration with no initializer and without the extern or static keyword "int i;" is
represented as a common symbol. Such a symbol is treated as an external reference. However, if no other
compilation unit has a global definition for the name, the linker allocates memory for it.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Allow gprel Addressing of Common Data Variables

OS X

Xcode: Data > Allow gprel Addressing of Common Data Variables

 Intel® C++ Compiler Classic Developer Guide and Reference

468

Alternate Options

None

fextend-arguments, Qextend-arguments
Controls how scalar integer arguments are extended
in calls to unprototyped and varargs functions.

Syntax

Linux OS and macOS:

-fextend-arguments=n
Windows OS:

/Qextend-arguments:n

Arguments

n Specifies the extension for the integer parameters. Possible values
are:

32 Causes unprototyped integer parameters to
be extended to 32 bits.

64 Causes unprototyped integer parameters to
be extended to 64 bits. This value is only
available on Intel® 64 architecture.

Default

-fextend-arguments=32
or /Qextend-arguments:32

Unprototyped integer parameters are extended to 32 bits.

Description

This option controls how scalar integer arguments are extended in calls to unprototyped and varargs
functions.

IDE Equivalent

None

Alternate Options

None

fkeep-static-consts, Qkeep-static-consts
Tells the compiler to preserve allocation of variables
that are not referenced in the source.

Syntax

Linux OS:

-fkeep-static-consts
-fno-keep-static-consts

Compiler Reference

469

macOS:

-fkeep-static-consts
-fno-keep-static-consts
Windows OS:

/Qkeep-static-consts
/Qkeep-static-consts-

Arguments

None

Default

-fno-keep-static-consts
or /Qkeep-static-consts-

If a variable is never referenced in a routine, the variable is discarded
unless optimizations are disabled by option -O0 (Linux* and macOS)
or /Od (Windows*).

Description

This option tells the compiler to preserve allocation of variables that are not referenced in the source.

The negated form can be useful when optimizations are enabled to reduce the memory usage of static data.

IDE Equivalent

None

Alternate Options

None

fmath-errno
Tells the compiler that errno can be reliably tested
after calls to standard math library functions.

Syntax

Linux OS:

-fmath-errno
-fno-math-errno
macOS:

-fmath-errno
-fno-math-errno
Windows OS:

None

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

470

Default

-fno-math-errno The compiler assumes that the program does not test errno after
calls to standard math library functions.

Description

This option tells the compiler to assume that the program tests errno after calls to math library functions.
This restricts optimization because it causes the compiler to treat most math functions as having side effects.

Option -fno-math-errno tells the compiler to assume that the program does not test errno after calls to
math library functions. This frequently allows the compiler to generate faster code. Floating-point code that
relies on IEEE exceptions instead of errno to detect errors can safely use this option to improve
performance.

IDE Equivalent

None

Alternate Options

None

fminshared
Specifies that a compilation unit is a component of a
main program and should not be linked as part of a
shareable object.

Syntax

Linux OS:

-fminshared
macOS:

-fminshared
Windows OS:

None

Arguments

None

Default

OFF Source files are compiled together to form a single object file.

Description

This option specifies that a compilation unit is a component of a main program and should not be linked as
part of a shareable object.

This option allows the compiler to optimize references to defined symbols without special visibility settings.
To ensure that external and common symbol references are optimized, you need to specify visibility hidden
or protected by using the -fvisibility, -fvisibility-hidden, or -fvisibility-protected option.

Compiler Reference

471

Also, the compiler does not need to generate position-independent code for the main program. It can use
absolute addressing, which may reduce the size of the global offset table (GOT) and may reduce memory
traffic.

IDE Equivalent

None

Alternate Options

None

See Also
fvisibility compiler option

fmudflap
Tells the compiler to instrument risky pointer
operations to prevent buffer overflows and invalid
heap use. This is a deprecated option that may be
removed in a future release.

Syntax

Linux OS:

-fmudflap
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler does not instrument risky pointer operations.

Description

Tells the compiler to instrument risky pointer operations to prevent buffer overflows and invalid heap use. It
requires gcc 4.0 or newer.

This is a deprecated option that may be removed in a future release. There is no replacement option. You can
consider using the Pointer Checker options (such as option check-pointers).

When using option fmudflap, you must specify linker option -lmudflap in the link command line to resolve
references to the libmudflap library.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

472

fpack-struct
Specifies that structure members should be packed
together.

Syntax

Linux OS:

-fpack-struct
macOS:

-fpack-struct
Windows OS:

None

Arguments

None

Default

OFF

Description

Specifies that structure members should be packed together.

NOTE
Using this option may result in code that is not usable with standard (system) c and C++
libraries.

IDE Equivalent

None

Alternate Options

Linux and macOS: -Zp1
Windows: None

fpascal-strings
Tells the compiler to allow for Pascal-style string
literals.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-fpascal-strings

Compiler Reference

473

macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler does not allow for Pascal-style string literals.

Description

Tells the compiler to allow for Pascal-style string literals.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: None

OS X

Xcode: Data > Recognize Pascal Strings

Alternate Options

None

fpic
Determines whether the compiler generates position-
independent code.

Syntax

Linux OS:

-fpic
-fno-pic
macOS:

-fpic
-fno-pic
Windows OS:

None

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

474

Default

-fno-pic The compiler does not generate position-independent code.

Description

This option determines whether the compiler generates position-independent code.

Option -fpic specifies full symbol preemption. Global symbol definitions as well as global symbol references
get default (that is, preemptable) visibility unless explicitly specified otherwise.

Option -fpic must be used when building shared objects.

This option can also be specified as -fPIC.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Code Generation > Generate Position Independent Code

OS X

Xcode: None

Alternate Options

None

fpie
Tells the compiler to generate position-independent
code. The generated code can only be linked into
executables.

Syntax

Linux OS:

-fpie
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler does not generate position-independent code for an
executable-only object.

Compiler Reference

475

Description

This option tells the compiler to generate position-independent code. It is similar to -fpic, but code
generated by -fpie can only be linked into an executable.

Because the object is linked into an executable, this option causes better optimization of some symbol
references.

To ensure that run-time libraries are set up properly for the executable, you should also specify option -pie
to the compiler driver on the link command line.

Option -fpie can also be specified as -fPIE.

IDE Equivalent

None

Alternate Options

None

See Also
fpic compiler option
pie compiler option

freg-struct-return
Tells the compiler to return struct and union values in
registers when possible.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-freg-struct-return
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF

Description

This option tells the compiler to return struct and union values in registers when possible.

IDE Equivalent

None

 Intel® C++ Compiler Classic Developer Guide and Reference

476

Alternate Options

None

fstack-protector
Enables or disables stack overflow security checks for
certain (or all) routines.

Syntax

Linux OS:

-fstack-protector[-keyword]
-fno-stack-protector[-keyword]

macOS:

-fstack-protector[-keyword]
-fno-stack-protector[-keyword]

Windows OS:

None

Arguments

keyword Possible values are:

strong When option -fstack-protector-strong is specified, it enables stack
overflow security checks for routines with any type of buffer.

all When option -fstack-protector-all is specified, it enables stack
overflow security checks for every routine.

If no -keyword is specified, option -fstack-protector enables stack overflow security checks for routines
with a string buffer.

Default

-fno-stack-protector,
-fno-stack-protector-strong

No stack overflow security checks are enabled for the relevant
routines.

-fno-stack-protector-all No stack overflow security checks are enabled for any routines.

Description

This option enables or disables stack overflow security checks for certain (or all) routines. A stack overflow
occurs when a program stores more data in a variable on the execution stack than is allocated to the
variable. Writing past the end of a string buffer or using an index for an array that is larger than the array
bound could cause a stack overflow and security violations.

The -fstack-protector options are provided for compatibility with gcc. They use the gcc/glibc
implementation when possible. If the gcc/glibc implementation is not available, they use the Intel
implementation.

For an Intel-specific version of this feature, see option -fstack-security-check.

IDE Equivalent

None

Compiler Reference

477

Alternate Options

None

See Also
fstack-security-check compiler option
GS compiler option

fstack-security-check
Determines whether the compiler generates code that
detects some buffer overruns.

Syntax

Linux OS:

-fstack-security-check
-fno-stack-security-check
macOS:

-fstack-security-check
-fno-stack-security-check
Windows OS:

None

Arguments

None

Default

-fno-stack-security-check The compiler does not detect buffer overruns.

Description

This option determines whether the compiler generates code that detects some buffer overruns that
overwrite the return address. This is a common technique for exploiting code that does not enforce buffer
size restrictions.

This option always uses an Intel implementation.

For a gcc-compliant version of this feature, see option fstack-protector.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /GS

See Also
fstack-protector compiler option
GS compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

478

fvisibility
Specifies the default visibility for global symbols or the
visibility for symbols in a file.

Syntax

Linux OS:

-fvisibility=keyword
-fvisibility-keyword=filename

macOS:

-fvisibility=keyword
-fvisibility-keyword=filename

Windows OS:

None

Arguments

keyword Specifies the visibility setting. Possible values are:

default Sets visibility to default.

extern Sets visibility to extern.

hidden Sets visibility to hidden.

internal Sets visibility to internal.

protected Sets visibility to protected. This value is not
available on macOS systems.

filename Is the pathname of a file containing the list of symbols whose visibility
you want to set. The symbols must be separated by whitespace
(spaces, tabs, or newlines).

Default

-fvisibility=default The compiler sets visibility of symbols to default.

Description

This option specifies the default visibility for global symbols (syntax -fvisibility=keyword) or the visibility
for symbols in a file (syntax -fvisibility-keyword=filename).

Visibility specified by -fvisibility-keyword=filename overrides visibility specified by
-fvisibility=keyword for symbols specified in a file.

Option Description

-fvisibility=default
-fvisibility-default=filename

Sets visibility of symbols to default. This means
other components can reference the symbol, and
the symbol definition can be overridden
(preempted) by a definition of the same name in
another component.

Compiler Reference

479

Option Description

-fvisibility=extern
-fvisibility-extern=filename

Sets visibility of symbols to extern. This means the
symbol is treated as though it is defined in another
component. It also means that the symbol can be
overridden by a definition of the same name in
another component.

-fvisibility=hidden
-fvisibility-hidden=filename

Sets visibility of symbols to hidden. This means that
other components cannot directly reference the
symbol. However, its address may be passed to
other components indirectly.

-fvisibility=internal
-fvisibility-internal=filename

Sets visibility of symbols to internal. This means
that the symbol cannot be referenced outside its
defining component, either directly or indirectly.
The affected functions can never be called from
another module, including through function
pointers.

-fvisibility=protected
-fvisibility-protected=filename

Sets visibility of symbols to protected. This means
other components can reference the symbol, but it
cannot be overridden by a definition of the same
name in another component. This value is not
available on macOS systems.

If an -fvisibility option is specified more than once on the command line, the last specification takes
precedence over any others.

If a symbol appears in more than one visibility filename, the setting with the least visibility takes precedence.

The following shows the precedence of the visibility settings (from greatest to least visibility):

• extern
• default
• protected
• hidden
• internal
Note that extern visibility only applies to functions. If a variable symbol is specified as extern, it is
assumed to be default.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Default Symbol Visibility

OS X

Xcode: Data > Default Symbol Visibility

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

480

Example
A file named prot.txt contains symbols a, b, c, d, and e. Consider the following:

-fvisibility-protected=prot.txt
This option sets protected visibility for all the symbols in the file. It has the same effect as specifying
fvisibility=protected in the declaration for each of the symbols.

fvisibility-inlines-hidden
Causes inline member functions (those defined in the
class declaration) to be marked hidden.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-fvisibility-inlines-hidden
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler does not cause inline member functions to be marked hidden.

Description

Causes inline member functions (those defined in the class declaration) to be marked hidden. This option is
particularly useful for templates.

IDE Equivalent

None

Alternate Options

None

fzero-initialized-in-bss, Qzero-initialized-in-bss
Determines whether the compiler places in the DATA
section any variables explicitly initialized with zeros.

Syntax

Linux OS:

-fzero-initialized-in-bss

Compiler Reference

481

-fno-zero-initialized-in-bss
macOS:

-fzero-initialized-in-bss
-fno-zero-initialized-in-bss
Windows OS:

/Qzero-initialized-in-bss
/Qzero-initialized-in-bss-

Arguments

None

Default

-fno-zero-initialized-in-bss
or /Qzero-initialized-in-bss-

Variables explicitly initialized with zeros are placed in the BSS
section. This can save space in the resulting code.

Description

This option determines whether the compiler places in the DATA section any variables explicitly initialized
with zeros.

If option -fno-zero-initialized-in-bss (Linux* and macOS) or /Qzero-initialized-in-bss-
(Windows*) is specified, the compiler places in the DATA section any variables that are initialized to zero.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Disable Placement of Zero-Initialized Variables in .bss - place in .data instead

OS X

Xcode: Data > Place Zero-Initialized Variables in .bss

Alternate Options

None

GA
Enables faster access to certain thread-local storage
(TLS) variables.

Syntax

Linux OS:

None
macOS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

482

Windows OS:

/GA

Arguments

None

Default

OFF Default access to TLS variables is in effect.

Description

This option enables faster access to certain thread-local storage (TLS) variables. When you compile your
main executable (.EXE) program with this option, it allows faster access to TLS variables declared with the
__declspec(thread) specification.

Note that if you use this option to compile .DLLs, you may get program errors.

IDE Equivalent

Windows

Visual Studio: Optimization > Optimize for Windows Applications

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

Gs
Lets you control the threshold at which the stack
checking routine is called or not called.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Gs[n]

Arguments

n Is the number of bytes that local variables and compiler temporaries
can occupy before stack checking is activated. This is called the
threshold.

Compiler Reference

483

Default

/Gs Stack checking occurs for routines that require more than 4KB (4096 bytes) of stack space. This
is also the default if you do not specify n.

Description

This option lets you control the threshold at which the stack checking routine is called or not called. If a
routine's local stack allocation exceeds the threshold (n), the compiler inserts a __chkstk() call into the
prologue of the routine.

IDE Equivalent

None

Alternate Options

None

GS
Determines whether the compiler generates code that
detects some buffer overruns.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/GS[:keyword]
/GS-

Arguments

keyword Specifies the level of stack protection heuristics used by the compiler. Possible values are:

off Tells the compiler to ignore buffer overruns. This is the same
as specifying /GS-.

partial Tells the compiler to provide a stack protection level that is
compatible with Microsoft* Visual Studio 2008.

strong Tells the compiler to provide full stack security level checking.
This setting is compatible with more recent Microsoft* Visual
Studio stack protection heuristics. This is the same as
specifying /GS with no keyword.

Default

/GS- The compiler does not detect buffer overruns.

 Intel® C++ Compiler Classic Developer Guide and Reference

484

Description

This option determines whether the compiler generates code that detects some buffer overruns that
overwrite a function's return address, exception handler address, or certain types of parameters.

This option has been added for Microsoft compatibility.

Following Visual Studio 2008, the Microsoft implementation of option /GS became more extensive (for
example, more routines are protected). The performance of some programs may be impacted by the newer
heuristics. In such cases, you may see better performance if you specify /GS:partial.

For more details about option /GS, see the Microsoft documentation.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Security Check

Eclipse

Eclipse: None

Xcode

Xcode: None

Alternate Options

Linux and macOS: -fstack-security-check
Windows: None

See Also
fstack-security-check compiler option
fstack-protector compiler option

GT
Enables fiber-safe thread-local storage of data.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/GT

Arguments

None

Default

OFF There is no fiber-safe thread-local storage.

Compiler Reference

485

Description

This option enables fiber-safe thread-local storage (TLS) of data.

IDE Equivalent

Windows

Visual Studio: Optimization > Enable Fiber-safe Optimizations

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

homeparams
Tells the compiler to store parameters passed in
registers to the stack.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/homeparams

Arguments

None

Default

OFF Register parameters are not written to the stack.

Description

This option tells the compiler to store parameters passed in registers to the stack.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

486

malign-double
Determines whether double, long double, and long
long types are naturally aligned. This option is
equivalent to specifying option align.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-malign-double
-mno-align-double
macOS:

None
Windows OS:

None

Arguments

None

Default

-mno-align-double Types are aligned according to the gcc model, which means they are aligned
to 4-byte boundaries.

Description

For details, see the align option.

IDE Equivalent

None

Alternate Options

None

malign-mac68k
Aligns structure fields on 2-byte boundaries (m68k
compatible).

Syntax

Linux OS:

None
macOS:

-malign-mac68k

Compiler Reference

487

Windows OS:

None

Arguments

None

Default

OFF The compiler does not align structure fields on 2-byte boundaries.

Description

This option aligns structure fields on 2-byte boundaries (m68k compatible).

IDE Equivalent

None

Alternate Options

None

malign-natural
Aligns larger types on natural size-based boundaries
(overrides ABI).

Syntax

Linux OS:

None
macOS:

-malign-natural
Windows OS:

None

Arguments

None

Default

OFF The compiler does not align larger types on natural size-based boundaries.

Description

This option aligns larger types on natural size-based boundaries (overrides ABI).

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

488

malign-power
Aligns based on ABI-specified alignment rules.

Syntax

Linux OS:

None
macOS:

-malign-power
Windows OS:

None

Arguments

None

Default

ON The compiler aligns based on ABI-specified alignment rules.

Description

Aligns based on ABI-specified alignment rules.

IDE Equivalent

None

Alternate Options

None

mcmodel
Tells the compiler to use a specific memory model to
generate code and store data.

Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS:

-mcmodel=mem_model
macOS:

None
Windows OS:

None

Arguments

mem_model Is the memory model to use. Possible values are:

Compiler Reference

489

small Tells the compiler to restrict code and data to
the first 2GB of address space. All accesses
of code and data can be done with
Instruction Pointer (IP)-relative addressing.

medium Tells the compiler to restrict code to the first
2GB; it places no memory restriction on
data. Accesses of code can be done with IP-
relative addressing, but accesses of data
must be done with absolute addressing.

large Places no memory restriction on code or
data. All accesses of code and data must be
done with absolute addressing.

Default

-mcmodel=small On systems using Intel® 64 architecture, the compiler restricts code and data to the
first 2GB of address space. Instruction Pointer (IP)-relative addressing can be used to
access code and data.

Description

This option tells the compiler to use a specific memory model to generate code and store data. It can affect
code size and performance. If your program has global and static data with a total size smaller than 2GB,
-mcmodel=small is sufficient. Global and static data larger than 2GB requires-mcmodel=medium or
-mcmodel=large. Allocation of memory larger than 2GB can be done with any setting of -mcmodel.

IP-relative addressing requires only 32 bits, whereas absolute addressing requires 64-bits. IP-relative
addressing is somewhat faster. So, the small memory model has the least impact on performance.

NOTE
When you specify option -mcmodel=medium or -mcmodel=large, it sets option -shared-intel.
This ensures that the correct dynamic versions of the Intel run-time libraries are used.

If you specify option -static-intel while -mcmodel=medium or -mcmodel=large is set, an error will
be displayed.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows how to compile using -mcmodel:

icl -shared-intel -mcmodel=medium -o prog prog.c

See Also
shared-intel compiler option
fpic compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

490

mdynamic-no-pic
Generates code that is not position-independent but
has position-independent external references.

Syntax

Linux OS:

None
macOS:

-mdynamic-no-pic
Windows OS:

None

Arguments

None

Default

OFF All references are generated as position independent.

Description

This option generates code that is not position-independent but has position-independent external
references.

The generated code is suitable for building executables, but it is not suitable for building shared libraries.

This option may reduce code size and produce more efficient code. It overrides the -fpic compiler option.

IDE Equivalent

None

Alternate Options

None

See Also
fpic compiler option

mlong-double
Lets you override the default configuration of the long
double data type.

Syntax

Linux OS:

-mlong-double-n
macOS:

None
Windows OS:

None

Compiler Reference

491

Arguments

n Specifies the size of the long double data type. Possible values are:

64 Specifies that the size of the long double
data type is 64 bits.

80 Specifies that the size of the long double
data type is 80 bits. This is the default.

128 Specifies that the size of the long double
data type is 128 bits.

Default

-mlong-double-80 Specifies that the size of the long double data type is 80 bits.

Description

This option lets you override the default configuration of the long double data type.

When you specify -mlong-double-64, the size of the long double data type is 8 bytes and the macro
__LONG_DOUBLE_64__ is defined.

When you specify -mlong-double-80, the size of the long double data type is 12 bytes on IA-32
architecture and 16 bytes on Intel® 64 architecture.

This option has no effect on floating-point significand precision. That must be specified by using the -pc64 or
-pc80 option.

Note that this option has no effect when you pass arguments. When you pass arguments, the 64-bit long
double data type is treated as the double data type and it is always 64-bit.

Remember to include the math.h and complex.h header files when you use this option.

The following restrictions apply to this option:

• __bultin_* functions using the long double type should not be used in the non-default mode with Intel
compiler libraries.

• long double functions from the 'std' namespace should not be called from C++ sources when the non-
default mode is set.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /Qlong-double

See Also
pc, Qpc
 compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

492

no-bss-init, Qnobss-init
Tells the compiler to place in the DATA section any
uninitialized variables and explicitly zero-initialized
variables. This is a deprecated option that may be
removed in a future release.

Syntax

Linux OS:

-no-bss-init
macOS:

-no-bss-init
Windows OS:

/Qnobss-init

Arguments

None

Default

OFF Uninitialized variables and explicitly zero-initialized variables are placed in the BSS section.

Description

This option tells the compiler to place in the DATA section any uninitialized variables and explicitly zero-
initialized variables.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Disable Placement of Zero-initialized and Uninitialized Variables in .bss - place
in .data instead

OS X

Xcode: Data > Allocate Zero-initialized Variables to .data

Alternate Options

None

noBool
Disables the bool keyword.

Compiler Reference

493

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/noBool

Arguments

None

Default

OFF The bool keyword is enabled.

Description

This option disables the bool keyword.

IDE Equivalent

None

Alternate Options

None

Qlong-double
Changes the default size of the long double data type.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qlong-double

Arguments

None

Default

OFF The default size of the long double data type is 64 bits.

Description

This option changes the default size of the long double data type to 80 bits.

 Intel® C++ Compiler Classic Developer Guide and Reference

494

However, the alignment requirement of the data type is 16 bytes, and its size must be a multiple of its
alignment, so the size of a long double on Windows* is also 16 bytes. Only the lower 10 bytes (80 bits) of
the 16 byte space will have valid data stored in it.

NOTE
Using the Qlong-double command-line option on Windows* platforms requires that any
source code using double extended precision floating-point types (FP80) be carefully
segregated from source code that was not written in a way that considers or supports their
use. When this option is used, source code that makes assumptions or has requirements on
the size or layout of an FP80 value may experience a variety of failures at compile time, link
time, or run time.

The Microsoft* C Standard Library and Microsoft* C++ Standard Template Library do not support FP80
datatypes. In all circumstances where you want to use this option, please check with your library
vendor to determine whether they support FP80 datatype formats.

For example, the Microsoft* compiler and Microsoft*-provided library routines (such as printf or
long double math functions) do not provide support for 80-bit floating-point values and should not
be called from code compiled with the Qlong-double command-line option.

Starting with the Microsoft Visual Studio 2019 version 16.10 release, you may get compilation errors
when using options /std:c++latest together with /Qlong-double in programs that directly or indirectly
include the <complex> header, <xutility> header, or the <cmath> header. To see an example of this,
see the Example section below.

IDE Equivalent

None

Alternate Options

None

Example
In the Note above, we mention an issue with using the options /std:c++latest together with /Qlong-double in
programs that directly or indirectly include the <complex>, <xutility>, or the <cmath> headers. The
following shows an example of this issue:

#include <iostream>
#include <complex>

int main()
{long double ld2 = 1256789.98765432106L;int iNan = isnan(ld2);std::cout << "Hello World!\n"; }

ksh-3.2$ icl -c -EHsc -GR -std:c++latest /Qlong-double /MD test1.cpp
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version xxx
Build xxxx
Copyright (C) 1985-2021 Intel Corporation. All rights reserved.

test1.cpp
c:/Program files/Microsoft Visual Studio/2022/Preview/VC/Tools/MSVC/14.29.30130/include/
xutility(5918): error: no instance of function template "std::_Bit_cast" matches the argument
list
 argument types are: (const long double)
 const auto _Bits = _Bit_cast<_Uint_type>(_Xx);
 ^

Compiler Reference

495

c:/Program files/Microsoft Visual Studio/2022/Preview/VC/Tools/MSVC/14.29.30130/include/
xutility(67): note: this candidate was rejected because at least one template argument could not
be deduced
 _NODISCARD _CONSTEXPR_BIT_CAST _To _Bit_cast(const _From& _Val) noexcept {
 ^
 detected during:
 instantiation of "auto std::_Float_abs_bits(const _Ty &) [with _Ty=long double,
<unnamed>=0]" at line 5967
 instantiation of "bool std::_Is_finite(_Ty) [with _Ty=long double, <unnamed>=0]" at
line 1307 of "c:/Program files/Microsoft Visual Studio/2022/Preview/VC/Tools/MSVC/14.29.30130/
include/cmath"
 instantiation of "_Ty std::_Common_lerp(_Ty, _Ty, _Ty) noexcept [with _Ty=long
double]" at line 1392 of "c:/Program files/Microsoft Visual Studio/2022/Preview/VC/Tools/MSVC/
14.29.30130/include/cmath"

compilation aborted for test1.cpp (code 2)

Qsfalign
Specifies stack alignment for functions. This is a
deprecated option that may be removed in a future
release.

Architecture Restrictions

Only available on IA-32 architecture. IA-32 support is deprecated and will be removed in a future release.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qsfalign[n]

Arguments

n Is the byte size of aligned variables. Possible values are:

8 Specifies that alignment should occur for
functions with 8-byte aligned variables. At
this setting the compiler aligns the stack to
16 bytes if there is any 16-byte or 8-byte
data on the stack. For 8-byte data, the
compiler only aligns the stack if the
alignment will produce a performance
advantage.

16 Specifies that alignment should occur for
functions with 16-byte aligned variables. At
this setting, the compiler only aligns the
stack for 16-byte data. No attempt is made
to align for 8-byte data.

 Intel® C++ Compiler Classic Developer Guide and Reference

496

Default

/Qsfalign8 Alignment occurs for functions with 8-byte aligned variables.

Description

This option specifies stack alignment for functions. It lets you disable the normal optimization that aligns a
stack for 8-byte data.

This is a deprecated option that may be removed in a future release. There is no replacement option.

If you do not specify n, stack alignment occurs for all functions. If you specify /Qsfalign-, no stack
alignment occurs for any function.

IDE Equivalent

None

Alternate Options

None

Compiler Diagnostic Options
This section contains descriptions for compiler options that pertain to compiler diagnostics.

diag, Qdiag
Controls the display of diagnostic information during
compilation.

Syntax

Linux OS:

-diag-type=diag-list

macOS:

-diag-type=diag-list

Windows OS:

/Qdiag-type:diag-list

Arguments

type Is an action to perform on diagnostics. Possible values are:

enable Enables a diagnostic message or a group of
messages. If you specify -diag-enable=all
(Linux* and macOS) or /Qdiag-enable:all
(Windows*), all diagnostic messages shown
in diag-list are enabled.

disable Disables a diagnostic message or a group of
messages. If you specify
-diag-disable=all (Linux* and macOS)
or /Qdiag-disable:all (Windows*), all
diagnostic messages shown in diag-list are
disabled.

Compiler Reference

497

error Tells the compiler to change diagnostics to
errors.

warning Tells the compiler to change diagnostics to
warnings.

remark Tells the compiler to change diagnostics to
remarks (comments).

diag-list Is a diagnostic group or ID value. Possible values are:

driver Specifies diagnostic messages issued by the
compiler driver.

port-linux Specifies diagnostic messages for language
features that may cause errors when porting
to Linux* systems. This diagnostic group is
only available on Windows* systems.

port-win Specifies diagnostic messages for GNU
extensions that may cause errors when
porting to Windows. This diagnostic group is
only available on Linux and macOS systems.

thread Specifies diagnostic messages that help in
thread-enabling a program.

vec Specifies diagnostic messages issued by the
vectorizer.

par Specifies diagnostic messages issued by the
auto-parallelizer (parallel optimizer).

openmp Specifies diagnostic messages issued by the
OpenMP* parallelizer.

warn Specifies diagnostic messages that have a
"warning" severity level.

error Specifies diagnostic messages that have an
"error" severity level.

remark Specifies diagnostic messages that are
remarks or comments.

cpu-dispatch Specifies the CPU dispatch remarks for
diagnostic messages. These remarks are
enabled by default.

id[,id,...] Specifies the ID number of one or more
messages. If you specify more than one
message number, they must be separated by
commas. There can be no intervening white
space between each id.

 Intel® C++ Compiler Classic Developer Guide and Reference

498

tag[,tag,...] Specifies the mnemonic name of one or
more messages. If you specify more than
one mnemonic name, they must be
separated by commas. There can be no
intervening white space between each tag.

The diagnostic messages generated can be affected by certain options,
such as [Q]x, /arch (Windows) or -m (Linux and macOS).

Default

OFF The compiler issues certain diagnostic messages by default.

Description

This option controls the display of diagnostic information during compilation. Diagnostic messages are output
to stderr unless the [Q]diag-file option is specified.

To control the diagnostic information reported by the vectorizer, use options [q or Q]opt-report and
[q or Q]opt-report-phase, phase vec.

To control the diagnostic information reported by the auto-parallelizer, use options [q or Q]opt-report
and [q or Q]opt-report-phase, phase par.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Disable Specific Diagnostics (/Qdiag-disable:id)

Advanced > Disable Specific Warnings (/Qdiag-disable)

Eclipse

Eclipse: Compilation Diagnostics > Disable Specific Diagnostics

Xcode

Xcode: Diagnostics > Disable Specific Diagnostics

Alternate Options

enable vec Linux and macOS: -qopt-report;
-qopt-report -qopt-report-phase=vec
Windows: /Qopt-report;
/Qopt-report /Qopt-report-phase:vec

disable vec Linux and macOS: -qopt-report=0 -qopt-report-phase=vec
Windows: /Qopt-report:0 /Qopt-report-phase:vec

enable par Linux and macOS: -qopt-report;
-qopt-report -qopt-report-phase=par
Windows: /Qopt-report;
/Qopt-report /Qopt-report-phase:par

disable par Linux and macOS: -qopt-report=0 -qopt-report-phase=par
Windows: /Qopt-report:0 /Qopt-report-phase:par

Compiler Reference

499

Example
The following example shows how to enable diagnostic IDs 117, 230 and 450:

-diag-enable=117,230,450 ! Linux and macOSsystems
/Qdiag-enable:117,230,450 ! Windows systems

The following example shows how to change vectorizer diagnostic messages to warnings:

-diag-enable=vec -diag-warning=vec ! Linux and macOSsystems
/Qdiag-enable:vec /Qdiag-warning:vec ! Windows systems

Note that you need to enable the vectorizer diagnostics before you can change them to warnings.

The following example shows how to disable all auto-parallelizer diagnostic messages:

-diag-disable=par ! Linux and macOSsystems
/Qdiag-disable:par ! Windows systems

The following example shows how to change all diagnostic warnings and remarks to errors:

-diag-error=warn,remark ! Linux and macOSsystems
/Qdiag-error:warn,remark ! Windows systems

The following example shows how to get a list of only vectorization diagnostics:

-diag-dump -diag-disable=all -diag-enable=vec ! Linux and macOSsystems
/Qdiag-dump /Qdiag-disable:all /Qdiag-enable:vec ! Windows systems

See Also
diag-dump, Qdiag-dump compiler option
diag-id-numbers, Qdiag-id-numbers compiler option
diag-file, Qdiag-file compiler option
qopt-report, Qopt-report compiler option
x, Qx compiler option

diag-dump, Qdiag-dump
Tells the compiler to print all enabled diagnostic
messages.

Syntax

Linux OS:

-diag-dump
macOS:

-diag-dump
Windows OS:

/Qdiag-dump

Arguments

None

Default

OFF The compiler issues certain diagnostic messages by default.

 Intel® C++ Compiler Classic Developer Guide and Reference

500

Description

This option tells the compiler to print all enabled diagnostic messages. The diagnostic messages are output to
stdout.

This option prints the enabled diagnostics from all possible diagnostics that the compiler can issue, including
any default diagnostics.

If diag-list is specified for the [Q]diag-enable option, the print out will include the diag-list diagnostics.

IDE Equivalent

None

Alternate Options

None

Example
The following example adds vectorizer diagnostic messages to the printout of default diagnostics:

-diag-enable vec -diag-dump ! Linux and macOS systems
/Qdiag-enable:vec /Qdiag-dump ! Windows systems

See Also
diag, Qdiag compiler option

diag-enable=power, Qdiag-enable:power
Controls whether diagnostics are enabled for possibly
inefficient code that may affect power consumption on
IA-32 and Intel® 64 architectures.

Syntax

Linux OS and macOS:

-diag-enable=power
-diag-disable=power
Windows OS:

/Qdiag-enable:power
/Qdiag-disable:power

Arguments

None

Default

-diag-disable=power
or /Qdiag-disable:power

Power consumption diagnostics are disabled.

Description

This option controls whether diagnostics are enabled for possibly inefficient code that may affect power
consumption on IA-32 and Intel® 64 architectures.

Compiler Reference

501

If you specify option -diag-enable=power (Linux* and macOS) or /Qdiag-enable:power (Windows*), the
compiler will detect various API calls with argument values in ranges known to be inefficient for power
consumption. The diagnostic issued will point out the problem argument; for example, "power inefficient use
of 'Sleep' with argument in range [0;10]".

IDE Equivalent

None

Alternate Options

None

diag-error-limit, Qdiag-error-limit
Specifies the maximum number of errors allowed
before compilation stops.

Syntax

Linux OS:

-diag-error-limit=n
-no-diag-error-limit
macOS:

-diag-error-limit=n
-no-diag-error-limit
Windows OS:

/Qdiag-error-limit:n
/Qdiag-error-limit-

Arguments

n Is the maximum number of error-level or fatal-level compiler errors
allowed.

Default

30 A maximum of 30 error-level and fatal-level messages are allowed.

Description

This option specifies the maximum number of errors allowed before compilation stops. It indicates the
maximum number of error-level or fatal-level compiler errors allowed for a file specified on the command
line.

If you specify the negative form of the [Q]diag-error-limit option on the command line, there is no limit
on the number of errors that are allowed.

If the maximum number of errors is reached, a warning message is issued and the next file (if any) on the
command line is compiled.

 Intel® C++ Compiler Classic Developer Guide and Reference

502

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Error Limit

Eclipse

Eclipse: Compilation Diagnostics > Set Error Limit

Xcode

Xcode: Diagnostics > Error Limit

Alternate Options

Linux and macOS: -wn (this is a deprecated option)

Windows: /Qwn (this is a deprecated option)

diag-file, Qdiag-file
Causes the results of diagnostic analysis to be output
to a file.

Syntax

Linux OS:

-diag-file[=filename]

macOS:

None

Windows OS:

/Qdiag-file[:filename]

Arguments

filename Is the name of the file for output.

Default

OFF Diagnostic messages are output to stderr.

Description

This option causes the results of diagnostic analysis to be output to a file. The file is placed in the current
working directory.

You can include a file extension in filename. For example, if file.txt is specified, the name of the output file is
file.txt. If you do not provide a file extension, the name of the file is filename.diag.

If filename is not specified, the name of the file is name-of-the-first-source-file.diag. This is also the name of
the file if the name specified for file conflicts with a source file name provided in the command line.

NOTE
If you specify the [Q]diag-file option and you also specify the [Q]diag-file-append
option, the last option specified on the command line takes precedence.

Compiler Reference

503

IDE Equivalent

Windows

Visual Studio: Diagnostics > Diagnostics File

Diagnostics > Emit Diagnostics to File

Linux

Eclipse: Compilation Diagnostics > Diagnostics File

OS X

Xcode: Diagnostics > Diagnostics File, Diagnostics > Emit Diagnostics to File

Alternate Options

None

Example
The following example shows how to cause diagnostic analysis to be output to a file named
my_diagnostics.diag:

-diag-file=my_diagnostics ! Linux systems
/Qdiag-file:my_diagnostics ! Windows systems

See Also
diag-file-append, Qdiag-file-append compiler option

diag-file-append, Qdiag-file-append
Causes the results of diagnostic analysis to be
appended to a file.

Syntax

Linux OS:

-diag-file-append[=filename]
macOS:

None
Windows OS:

/Qdiag-file-append[:filename]

Arguments

filename Is the name of the file to be appended to. It can include a path.

Default

OFF Diagnostic messages are output to stderr.

Description

This option causes the results of diagnostic analysis to be appended to a file. If you do not specify a path, the
driver will look for filename in the current working directory.

 Intel® C++ Compiler Classic Developer Guide and Reference

504

If filename is not found, then a new file with that name is created in the current working directory. If the
name specified for file conflicts with a source file name provided in the command line, the name of the file is
name-of-the-first-source-file.diag.

NOTE
If you specify the [Q]diag-file-append option and you also specify the [Q]diag-file
option, the last option specified on the command line takes precedence.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows how to cause diagnostic analysis to be appended to a file named
my_diagnostics.txt:

-diag-file-append=my_diagnostics.txt ! Linux systems
/Qdiag-file-append:my_diagnostics.txt ! Windows systems

See Also
diag-file, Qdiag-file compiler option

diag-id-numbers, Qdiag-id-numbers
Determines whether the compiler displays diagnostic
messages by using their ID number values.

Syntax

Linux OS:

-diag-id-numbers
-no-diag-id-numbers
macOS:

-diag-id-numbers
-no-diag-id-numbers
Windows OS:

/Qdiag-id-numbers
/Qdiag-id-numbers-

Arguments

None

Default

-diag-id-numbers
or /Qdiag-id-numbers

The compiler displays diagnostic messages by using their ID number values.

Compiler Reference

505

Description

This option determines whether the compiler displays diagnostic messages by using their ID number values.
If you specify the negative form of the [Q]diag-id-numbers option, mnemonic names are output for driver
diagnostics only.

IDE Equivalent

None

Alternate Options

None

See Also
diag, Qdiag compiler option

diag-once, Qdiag-once
Tells the compiler to issue one or more diagnostic
messages only once.

Syntax

Linux OS:

-diag-onceid[,id,...]

macOS:

-diag-onceid[,id,...]

Windows OS:

/Qdiag-once:id[,id,...]

Arguments

id Is the ID number of the diagnostic message. If you specify more than one message number, they
must be separated by commas. There can be no intervening white space between each id.

Default

OFF The compiler issues certain diagnostic messages by default.

Description

This option tells the compiler to issue one or more diagnostic messages only once.

IDE Equivalent

None

Alternate Options

Linux: -wo (this is a deprecated option)

Windows: /Qwo (this is a deprecated option)

fnon-call-exceptions
Allows trapping instructions to throw C++ exceptions.

 Intel® C++ Compiler Classic Developer Guide and Reference

506

Syntax

Linux OS and macOS:

-fnon-call-exceptions
-fno-non-call-exceptions
Windows OS:

None

Arguments

None

Default

-fno-non-call-exceptionsC++ exceptions are not thrown from trapping instructions.

Description

This option allows trapping instructions to throw C++ exceptions. It allows hardware signals generated by
trapping instructions to be converted into C++ exceptions and caught using the standard C++ exception
handling mechanism. Examples of such signals are SIGFPE (floating-point exception) and SIGSEGV
(segmentation violation).

You must write a signal handler that catches the signal and throws a C++ exception. After that, any
occurrence of that signal within a C++ try block can be caught by a C++ catch handler of the same type as
the C++ exception thrown within the signal handler.

Only signals generated by trapping instructions (that is, memory access instructions and floating-point
instructions) can be caught. Signals that can occur at any time, such as SIGALRM, cannot be caught in this
manner.

IDE Equivalent

None

Alternate Options

None

traceback
Tells the compiler to generate extra information in the
object file to provide source file traceback information
when a severe error occurs at run time.

Syntax

Linux OS:

-traceback
-notraceback
macOS:

-traceback
-notraceback

Compiler Reference

507

Windows OS:

/traceback
/notraceback

Arguments

None

Default

notraceback No extra information is generated in the object file to produce traceback information.

Description

This option tells the compiler to generate extra information in the object file to provide source file traceback
information when a severe error occurs at run time. This is intended for use with C code that is to be linked
into a Fortran program.

When the severe error occurs, source file, routine name, and line number correlation information is displayed
along with call stack hexadecimal addresses (program counter trace).

Note that when a severe error occurs, advanced users can also locate the cause of the error using a map file
and the hexadecimal addresses of the stack displayed when the error occurs.

This option increases the size of the executable program, but has no impact on run-time execution speeds.

It functions independently of the debug option.

On Windows* systems, traceback sets the /Oy- option, which forces the compiler to use EBP as the stack
frame pointer.

On Windows* systems, the linker places the traceback information in the executable image, in a section
named ".trace". To see which sections are in an image, use the command:

link -dump -summary your_app_name.exe
To see more detailed information, use the command:

link -dump -headers your_app_name.exe
On Linux* systems, to display the section headers in the image (including the header for the .trace section, if
any), use the command:

objdump -h your_app_name.exe
On macOS systems, to display the section headers in the image, use the command:

otool -l your_app_name.exe

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Runtime > Generate Traceback Information

OS X

Xcode: Runtime > Generate Traceback Information

 Intel® C++ Compiler Classic Developer Guide and Reference

508

Alternate Options

None

w
Disables all warning messages.

Syntax

Linux OS:

-w

macOS:

-w

Windows OS:

/w

Arguments

None

Default

OFF Default warning messages are enabled.

Description

This option disables all warning messages.

IDE Equivalent

Windows

Visual Studio: General > Warning Level

Linux

Eclipse: General > Warning Level

OS X

Xcode: General > Warning Level

Alternate Options

Linux and macOS: -w0
Windows: /W0

w, W
Specifies the level of diagnostic messages to be
generated by the compiler.

Syntax

Linux OS:

-wn

Compiler Reference

509

macOS:

-wn
Windows OS:

/Wn

Arguments

n Is the level of diagnostic messages to be generated. Possible values
are:

0 Enables diagnostics for errors. Disables
diagnostics for warnings.

1 Enables diagnostics for warnings and errors.

2 Enables diagnostics for warnings and errors.
On Linux* and macOS systems, additional
warnings are enabled. On Windows*
systems, this setting is equivalent to level 1
(n = 1).

3 Enables diagnostics for remarks, warnings,
and errors. Additional warnings are also
enabled above level 2 (n = 2). This level is
recommended for production purposes.

4 Enables diagnostics for all level 3 (n = 3)
warnings plus informational warnings and
remarks, which in most cases can be safely
ignored. This value is only available on
Windows* systems.

5 Enables diagnostics for all remarks,
warnings, and errors. This setting produces
the most diagnostic messages. This value is
only available on Windows* systems.

Default

n=1 The compiler displays diagnostics for warnings and errors.

Description

This option specifies the level of diagnostic messages to be generated by the compiler.

On Windows systems, option /W4 is equivalent to option /Wall.

The -wn, /Wn, and Wall options can override each other. The last option specified on the command line takes
precedence.

IDE Equivalent

Windows

Visual Studio: General > Warning Level

 Intel® C++ Compiler Classic Developer Guide and Reference

510

Linux

Eclipse: General > Warning Level

OS X

Xcode: General > Warning Level

Alternate Options

None

See Also
Wall compiler option

Wabi
Determines whether a warning is issued if generated
code is not C++ ABI compliant.

Syntax

Linux OS:

-Wabi
-Wno-abi
macOS:

-Wabi
-Wno-abi
Windows OS:

None

Arguments

None

Default

-Wno-abi No warning is issued when generated code is not C++ ABI compliant.

Description

This option determines whether a warning is issued if generated code is not C++ ABI compliant.

IDE Equivalent

None

Alternate Options

None

Wall
Enables warning and error diagnostics.

Compiler Reference

511

Syntax

Linux OS:

-Wall

macOS:

-Wall

Windows OS:

/Wall

Arguments

None

Default

OFF Only default warning diagnostics are enabled.

Description

This option enables many warning and error diagnostics.

On Windows* systems, this option is equivalent to the /W4 option. It enables diagnostics for all level 3
warnings plus informational warnings and remarks.

However, on Linux* and macOS systems, this option is similar to gcc option -Wall. It displays all errors and
some of the warnings that are typically reported by gcc option -Wall. If you want to display all warnings,
specify the -w2 or -w3 option. If you want to display remarks and comments, specify the -Wremarks option.

The Wall, -wn, and /Wn options can override each other. The last option specified on the command line takes
precedence.

IDE Equivalent

None

Alternate Options

None

See Also
diag, Qdiag compiler option
Wremarks compiler option
w, W compiler option

Wbrief
Tells the compiler to display a shorter form of
diagnostic output.

Syntax

Linux OS and macOS:

-Wbrief

Windows OS:

/WL

 Intel® C++ Compiler Classic Developer Guide and Reference

512

Arguments

None

Default

OFF The compiler displays its normal diagnostic output.

Description

This option tells the compiler to display a shorter form of diagnostic output. In this form, the original source
line is not displayed and the error message text is not wrapped when too long to fit on a single line.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /WL

Wcheck
Tells the compiler to perform compile-time code
checking for certain code.

Syntax

Linux OS and macOS:

-Wcheck
Windows OS:

/Wcheck

Arguments

None

Default

OFF No compile-time code checking is performed.

Description

This option tells the compiler to perform compile-time code checking for certain code. It specifies to check for
code that exhibits non-portable behavior, represents a possible unintended code sequence, or possibly affects
operation of the program because of a quiet change in the ANSI C Standard.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Compilation Diagnostics > Allow Usage Messages

Compiler Reference

513

OS X

Xcode: Diagnostics > Allow Usage Messages

Alternate Options

None

Wcheck-unicode-security
Determines whether the compiler performs source
code checking for Unicode vulnerabilities.

Syntax

Linux OS:

-Wcheck-unicode-security
-Wno-check-unicode-security
macOS:

-Wcheck-unicode-security
-Wno-check-unicode-security
Windows OS:

/Wcheck-unicode-security
/Wno-check-unicode-security

Arguments

None

Default

Wno-check-unicode-securityThe compiler does not perform source code checking for Unicode vulnerabilities.

Description

This option determines whether the compiler performs source code checking for Unicode vulnerabilities.

Option Wcheck-unicode-security enables Unicode checking. The compiler will detect and warn about
Unicode constructs that can be exploited by using bi-directional formatting codes, zero-width characters in
strings, and use of zero-width characters and homoglyphs in identifiers.

Option Wno-check-unicode-security disables Unicode checking.

IDE Equivalent

Windows

Visual Studio: C/C++ > Diagnostics [Intel C++] > Check Unicode Security

Linux

Eclipse: Intel C++ Compiler Classic > Compilation Diagnostics > Check Unicode Security

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

514

Wcomment
Determines whether a warning is issued when /*
appears in the middle of a /* */ comment.

Syntax

Linux OS:

-Wcomment
-Wno-comment
macOS:

-Wcomment
-Wno-comment
Windows OS:

None

Arguments

None

Default

-Wno-comment No warning is issued when /* appears in the middle of a /* */ comment.

Description

This option determines whether a warning is issued when /* appears in the middle of a /* */ comment.

IDE Equivalent

None

Alternate Options

None

Wcontext-limit, Qcontext-limit
Set the maximum number of template instantiation
contexts shown in diagnostic.

Syntax

Linux OS and macOS:

-Wcontext-limit=n
Windows OS:

/Qcontext-limit:n

Arguments

n Number of template instantiation contexts.

Compiler Reference

515

Default

OFF

Description

Set maximum number of template instantiation contexts shown in diagnostic.

IDE Equivalent

None

Alternate Options

None

wd, Qwd
Disables a soft diagnostic. This is a deprecated option
that may be removed in a future release.

Syntax

Linux OS and macOS:

-wdn[,n]...
Windows OS:

/Qwdn[,n]...

Arguments

n Is the number of the diagnostic to disable.

Default

OFF The compiler returns soft diagnostics as usual.

Description

This option disables the soft diagnostic that corresponds to the specified number.

This is a deprecated option that may be removed in a future release. The replacement option is
[Q]diag-disable.

If you specify more than one n, each n must be separated by a comma.

IDE Equivalent

Windows

Visual Studio: Advanced > Disable Specific Warnings

Linux

Eclipse: None

OS X

Xcode: None

 Intel® C++ Compiler Classic Developer Guide and Reference

516

Alternate Options

Linux and macOS: -diag-disable
Windows: /Qdiag-disable

Wdeprecated
Determines whether warnings are issued for
deprecated C++ headers.

Syntax

Linux OS:

-Wdeprecated
-Wno-deprecated

macOS:

-Wdeprecated
-Wno-deprecated

Windows OS:

None

Arguments

None

Default

-Wdeprecated The compiler issues warnings for deprecated C++ headers.

Description

This option determines whether warnings are issued for deprecated C++ headers. It has no effect in C
compilation mode.

Option -Wdeprecated enables these warnings by defining the __DEPRECATED macro for preprocessor.

To disable warnings for deprecated C++ headers, specify -Wno-deprecated.

IDE Equivalent

None

Alternate Options

None

we, Qwe
Changes a soft diagnostic to an error. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS and macOS:

-weLn[,Ln,...]

Compiler Reference

517

Windows OS:

/QweLn[,Ln,...]

Arguments

Ln Is the number of the diagnostic to be changed.

Default

OFF The compiler returns soft diagnostics as usual.

Description

This option overrides the severity of the soft diagnostic that corresponds to the specified number and
changes it to an error.

This is a deprecated option that may be removed in a future release. The replacement option is
[Q]diag-error.

Soft diagnostics are diagnostic messages that don't prevent the production of an object file; for example,
warnings and remarks.

If you specify more than one Ln, each Ln must be separated by a comma.

IDE Equivalent

None

Alternate Options

Linux and macOS: -diag-error
Windows: /Qdiag-error

Weffc++, Qeffc++
Enables warnings based on certain C++ programming
guidelines.

Syntax

Linux OS:

-Weffc++
macOS:

-Weffc++
Windows OS:

/Qeffc++

Arguments

None

Default

OFF Diagnostics are not enabled.

 Intel® C++ Compiler Classic Developer Guide and Reference

518

Description

This option enables warnings based on certain programming guidelines developed by Scott Meyers in his
books on effective C++ programming. With this option, the compiler emits warnings for these guidelines:

• Use const and inline rather than #define. Note that you will only get this in user code, not system
header code.

• Use <iostream> rather than <stdio.h>.
• Use new and delete rather than malloc and free.
• Use C++ style comments in preference to C style comments. C comments in system headers are not

diagnosed.
• Use delete on pointer members in destructors. The compiler diagnoses any pointer that does not have a

delete.
• Make sure you have a user copy constructor and assignment operator in classes containing pointers.
• Use initialization rather than assignment to members in constructors.
• Make sure the initialization list ordering matches the declartion list ordering in constructors.
• Make sure base classes have virtual destructors.
• Make sure operator= returns *this.
• Make sure prefix forms of increment and decrement return a const object.
• Never overload operators &&, ||, and ,.

NOTE
The warnings generated by this compiler option are based on the following books from Scott
Meyers:

• Effective C++ Second Edition - 50 Specific Ways to Improve Your Programs and Designs
• More Effective C++ - 35 New Ways to Improve Your Programs and Designs

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Compilation Diagnostics > Enable Warnings for Style Guideline Violations

OS X

Xcode: Diagnostics > Report Effective C++ Violations

Alternate Options

None

Werror, WX
Changes all warnings to errors.

Syntax

Linux OS:

-Werror
macOS:

-Werror

Compiler Reference

519

Windows OS:

/WX

Arguments

None

Default

OFF The compiler returns diagnostics as usual.

Description

This option changes all warnings to errors.

IDE Equivalent

Windows

Visual Studio: General > Treat Warnings As Errors

Linux

Eclipse: Compilation Diagnostics > Treat Warnings As Errors

OS X

Xcode: Diagnostics > Treat Warnings As Errors

Alternate Options

Linux and macOS: -diag-error warn
Windows: /Qdiag-error:warn

Werror-all
Causes all warnings and currently enabled remarks to
be reported as errors.

Syntax

Linux OS:

-Werror-all
macOS:

-Werror-all
Windows OS:

/Werror-all

Arguments

None

Default

OFF The compiler returns diagnostics as usual.

 Intel® C++ Compiler Classic Developer Guide and Reference

520

Description

This option causes all warnings and currently enabled remarks to be reported as errors.

To enable display of remarks, specify option -Wremarks.

IDE Equivalent

None

Alternate Options

Linux and macOS: -diag-error warn, remark
Windows: /Qdiag-error:warn, remark

See Also
diag, Qdiag
 compiler option

Wremarks
 compiler option

Wextra-tokens
Determines whether warnings are issued about extra
tokens at the end of preprocessor directives.

Syntax

Linux OS:

-Wextra-tokens
-Wno-extra-tokens
macOS:

-Wextra-tokens
-Wno-extra-tokens
Windows OS:

None

Arguments

None

Default

-Wno-extra-tokens The compiler does not warn about extra tokens at the end of preprocessor
directives.

Description

This option determines whether warnings are issued about extra tokens at the end of preprocessor directives.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

521

Wformat
Determines whether argument checking is enabled for
calls to printf, scanf, and so forth.

Syntax

Linux OS:

-Wformat
-Wno-format
macOS:

-Wformat
-Wno-format
Windows OS:

None

Arguments

None

Default

-Wno-format Argument checking is not enabled for calls to printf, scanf, and so
forth.

Description

This option determines whether argument checking is enabled for calls to printf, scanf, and so forth.

IDE Equivalent

None

Alternate Options

None

Wformat-security
Determines whether the compiler issues a warning
when the use of format functions may cause security
problems.

Syntax

Linux OS:

-Wformat-security
-Wno-format-security
macOS:

-Wformat-security
-Wno-format-security

 Intel® C++ Compiler Classic Developer Guide and Reference

522

Windows OS:

None

Arguments

None

Default

-Wno-format-security No warning is issued when the use of format functions may cause
security problems.

Description

This option determines whether the compiler issues a warning when the use of format functions may cause
security problems.

When -Wformat-security is specified, it warns about uses of format functions where the format string is
not a string literal and there are no format arguments.

IDE Equivalent

None

Alternate Options

None

Wic-pointer
Determines whether warnings are issued for
conversions between pointers to distinct scalar types
with the same representation.

Syntax

Linux OS and macOS:

-Wic-pointer
-Wno-ic-pointer
Windows OS:

None

Arguments

None

Default

-Wic-pointer The compiler issues warnings for conversions between pointers to distinct scalar types
with the same representation.

Description

This option determines whether warnings are issued for conversions between pointers to distinct scalar types
with the same representation.

Compiler Reference

523

For example, consider the following:

void f(int *p) { long *q = p; }
In this case, by default, the compiler issues a warning because of the conversion from pointer to int to
pointer to long.

However, if you specify -Wno-ic-pointer, and long and int values have the same representation on the
target platform, the warning will not be issued.

IDE Equivalent

None

Alternate Options

None

Winline
Warns when a function that is declared as inline is not
inlined.

Syntax

Linux OS:

-Winline
macOS:

-Winline
Windows OS:

None

Arguments

None

Default

OFF No warning is produced when a function that is declared as inline is not inlined.

Description

This option warns when a function that is declared as inline is not inlined.

To see diagnostic messages, including a message about why a particular function was not inlined, you should
generate an optimization report by specifying option -qopt-report=5.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report, Qopt-report compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

524

WL
Tells the compiler to display a shorter form of
diagnostic output.

Syntax

Linux OS and macOS:

See Wbrief.

Windows OS:

/WL

Arguments

None

Default

OFF The compiler displays its normal diagnostic output.

Description

This option tells the compiler to display a shorter form of diagnostic output. In this form, the original source
line is not displayed and the error message text is not wrapped when too long to fit on a single line.

IDE Equivalent

None

Alternate Options

Linux and macOS: -Wbrief
Windows: None

Wmain
Determines whether a warning is issued if the return
type of main is not expected.

Syntax

Linux OS:

-Wmain
-Wno-main

macOS:

-Wmain
-Wno-main

Windows OS:

None

Arguments

None

Compiler Reference

525

Default

-Wno-main No warning is issued if the return type of main is not expected.

Description

This option determines whether a warning is issued if the return type of main is not expected.

IDE Equivalent

None

Alternate Options

None

Wmissing-declarations
Determines whether warnings are issued for global
functions and variables without prior declaration.

Syntax

Linux OS:

-Wmissing-declarations
-Wno-missing-declarations
macOS:

-Wmissing-declarations
-Wno-missing-declarations
Windows OS:

None

Arguments

None

Default

-Wno-missing-declarations No warnings are issued for global functions and variables without prior
declaration.

Description

This option determines whether warnings are issued for global functions and variables without prior
declaration.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

526

Wmissing-prototypes
Determines whether warnings are issued for missing
prototypes.

Syntax

Linux OS:

-Wmissing-prototypes
-Wno-missing-prototypes
macOS:

-Wmissing-prototypes
-Wno-missing-prototypes
Windows OS:

None

Arguments

None

Default

-Wno-missing-prototypes No warnings are issued for missing prototypes.

Description

Determines whether warnings are issued for missing prototypes.

If -Wmissing-prototypes is specified, it tells the compiler to detect global functions that are defined
without a previous prototype declaration.

IDE Equivalent

None

Alternate Options

None

wn, Qwn
Controls the number of errors displayed before
compilation stops. This is a deprecated option that
may be removed in a future release.

Syntax

Linux OS and macOS:

-wnn
Windows OS:

/Qwnn

Compiler Reference

527

Arguments

n Is the number of errors to display.

Default

100 The compiler displays a maximum of 100 errors before aborting compilation.

Description

This option controls the number of errors displayed before compilation stops.

This is a deprecated option that may be removed in a future release. The replacement option is
[Q]diag-error-limit.

IDE Equivalent

Windows

Visual Studio: Diagnostics > Error Limit

Linux

Eclipse: Compilation Diagnostics > Set Error Limit

OS X

Xcode: Diagnostics > Error Limit

Alternate Options

Linux and macOS: -diag-error-limit
Windows: /Qdiag-error-limit

Wnon-virtual-dtor
Tells the compiler to issue a warning when a class
appears to be polymorphic, yet it declares a non-
virtual one.

Syntax

Linux OS and macOS:

-Wnon-virtual-dtor

Windows OS:

None

Arguments

None

Default

OFF The compiler does not issue a warning.

Description

Tells the compiler to issue a warning when a class appears to be polymorphic, yet it declares a non-virtual
one. This option is supported in C++ only.

 Intel® C++ Compiler Classic Developer Guide and Reference

528

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: None

OS X

Xcode: Diagnostics > Report Non-Virtual Destructor

Alternate Options

None

wo, Qwo
Tells the compiler to issue one or more diagnostic
messages only once. This is a deprecated option that
may be removed in a future release.

Syntax

Linux OS and macOS:

-woLn[,Ln,...]
Windows OS:

/QwoLn[,Ln,...]

Arguments

Ln Is the number of the diagnostic.

Default

OFF

Description

Specifies the ID number of one or more messages. If you specify more than one Ln, each Ln must be
separated by a comma.

This is a deprecated option that may be removed in a future release. The replacement option is
[Q]diag-once id.

IDE Equivalent

None

Alternate Options

Linux and macOS: -diag-once id
Windows: /Qdiag-once:id

Compiler Reference

529

Wp64
Tells the compiler to display diagnostics for 64-bit
porting.

Syntax

Linux OS and macOS:

-Wp64
Windows OS:

/Wp64

Arguments

None

Default

OFF The compiler does not display diagnostics for 64-bit porting.

Description

This option tells the compiler to display diagnostics for 64-bit porting.

IDE Equivalent

Windows

Visual Studio: General > Detect 64-bit Portability Issues

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

Wpch-messages
Determines whether the compiler shows precompiled
header (PCH) informational messages.

Syntax

Linux OS and macOS:

-Wpch-messages
-Wno-pch-messages
Windows OS:

/Wpch-messages
-Wpch-messages-

 Intel® C++ Compiler Classic Developer Guide and Reference

530

Arguments

None

Default

Wpch-messages The compiler shows precompiled header (PCH) informational
messages.

Description

This option determines whether the compiler shows precompiled header (PCH) informational messages. By
default, these messages are displayed.

To suppress the display of the PCH informational messages, specify -Wno-pch-messages (Linux* and
macOS) or /Wpch-messages- (Windows*).

IDE Equivalent

Windows

Visual Studio: Precompiled Headers [Intel C++] > Disable Precompiled Header Messages

Linux

Eclipse: Precompiled Headers > Disable Precompiled Header Messages

OS X

Xcode: Precompiled Headers > Disable Precompiled Header Messages

Alternate Options

None

Wpointer-arith
Determines whether warnings are issued for
questionable pointer arithmetic.

Syntax

Linux OS:

-Wpointer-arith
-Wno-pointer-arith
macOS:

-Wpointer-arith
-Wno-pointer-arith
Windows OS:

None

Arguments

None

Compiler Reference

531

Default

-Wno-pointer-arith No warnings are issued for questionable pointer arithmetic.

Description

Determines whether warnings are issued for questionable pointer arithmetic.

IDE Equivalent

None

Alternate Options

None

Wport
Tells the compiler to issue portability diagnostics.

Syntax

Linux OS and macOS:

None
Windows OS:

/Wport

Arguments

None

Default

OFF The compiler issues default diagnostics.

Description

This option tells the compiler to issue portability diagnostics.

IDE Equivalent

None

Alternate Options

None

wr, Qwr
Changes a soft diagnostic to an remark. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS and macOS:

-wrLn[,Ln,...]

 Intel® C++ Compiler Classic Developer Guide and Reference

532

Windows OS:

/QwrLn[,Ln,...]

Arguments

Ln Is the number of the diagnostic to be changed.

Default

OFF The compiler returns soft diagnostics as usual.

Description

This option overrides the severity of the soft diagnostic that corresponds to the specified number and
changes it to a remark.

This is a deprecated option that may be removed in a future release. The replacement option is
[Q]diag-remark.

Soft diagnostics are diagnostic messages that don't prevent the production of an object file; for example,
warnings and remarks.

If you specify more than one Ln, each Ln must be separated by a comma.

IDE Equivalent

None

Alternate Options

Linux and macOS: -diag-remark
Windows: /Qdiag-remark

Wremarks
Tells the compiler to display remarks and comments.

Syntax

Linux OS and macOS:

-Wremarks
Windows OS:

None

Arguments

None

Default

OFF Default warning messages are enabled.

Description

This option tells the compiler to display remarks and comments.

If you want to display warnings and errors, specify the -Wall, -wn, or /Wn option.

Compiler Reference

533

IDE Equivalent

None

Alternate Options

None

See Also
diag, Qdiag compiler option
Wall compiler option
w, W compiler option

Wreorder
Tells the compiler to issue a warning when the order
of member initializers does not match the order in
which they must be executed.

Syntax

Linux OS:

-Wreorder

macOS:

-Wreorder

Windows OS:

None

Arguments

None

Default

OFF The compiler does not issue a warning.

Description

This option tells the compiler to issue a warning when the order of member initializers does not match the
order in which they must be executed. This option is supported for C++ only.

IDE Equivalent

None

Alternate Options

None

Wreturn-type
Determines whether warnings are issued when a
function is declared without a return type, when the
definition of a function returning void contains a
return statement with an expression, or when the
closing brace of a function returning non-void is
reached.

 Intel® C++ Compiler Classic Developer Guide and Reference

534

Syntax

Linux OS:

-Wreturn-type
-Wno-return-type
macOS:

-Wreturn-type
-Wno-return-type
Windows OS:

None

Arguments

None

Default

ON for one condition A warning is issued when the closing brace of a function returning non-void
is reached.

Description

This option determines whether warnings are issued for the following:

• When a function is declared without a return type
• When the definition of a function returning void contains a return statement with an expression
• When the closing brace of a function returning non-void is reached

Specify -Wno-return-type if you do not want to see warnings about the above diagnostics.

IDE Equivalent

None

Alternate Options

None

Wshadow
Determines whether a warning is issued when a
variable declaration hides a previous declaration.

Syntax

Linux OS:

-Wshadow
-Wno-shadow
macOS:

-Wshadow
-Wno-shadow

Compiler Reference

535

Windows OS:

None

Arguments

None

Default

-Wno-shadow No warning is issued when a variable declaration hides a previous
declaration.

Description

This option determines whether a warning is issued when a variable declaration hides a previous declaration.
Same as -ww1599.

IDE Equivalent

None

Alternate Options

None

Wsign-compare
Determines whether warnings are issued when a
comparison between signed and unsigned values could
produce an incorrect result when the signed value is
converted to unsigned.

Syntax

Linux OS:

-Wsign-compare
-Wno-sign-compare
macOS:

-Wsign-compare
-Wno-sign-compare
Windows OS:

None

Arguments

None

Default

-Wno-sign-compare The compiler does not issue these warnings

Description

This option determines whether warnings are issued when a comparison between signed and unsigned values
could produce an incorrect result when the signed value is converted to unsigned.

 Intel® C++ Compiler Classic Developer Guide and Reference

536

On Linux* systems, this option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

Wstrict-aliasing
Determines whether warnings are issued for code that
might violate the optimizer's strict aliasing rules.

Syntax

Linux OS:

-Wstrict-aliasing
-Wno-strict-aliasing
macOS:

-Wstrict-aliasing
-Wno-strict-aliasing
Windows OS:

None

Arguments

None

Default

-Wno-strict-aliasing No warnings are issued for code that might violate the optimizer's
strict aliasing rules.

Description

This option determines whether warnings are issued for code that might violate the optimizer's strict aliasing
rules. These warnings will only be issued if you also specify option -ansi-alias or option
-fstrict-aliasing.

IDE Equivalent

None

Alternate Options

None

See Also
ansi-alias, Qansi-alias
 compiler option

Compiler Reference

537

Wstrict-prototypes
Determines whether warnings are issued for functions
declared or defined without specified argument types.

Syntax

Linux OS:

-Wstrict-prototypes
-Wno-strict-prototypes

macOS:

-Wstrict-prototypes
-Wno-strict-prototypes

Windows OS:

None

Arguments

None

Default

-Wno-strict-prototypes No warnings are issued for functions declared or defined without
specified argument types.

Description

This option determines whether warnings are issued for functions declared or defined without specified
argument types.

IDE Equivalent

None

Alternate Options

None

Wtrigraphs
Determines whether warnings are issued if any
trigraphs are encountered that might change the
meaning of the program.

Syntax

Linux OS:

-Wtrigraphs
-Wno-trigraphs

macOS:

-Wtrigraphs
-Wno-trigraphs

 Intel® C++ Compiler Classic Developer Guide and Reference

538

Windows OS:

None

Arguments

None

Default

-Wno-trigraphs No warnings are issued if any trigraphs are encountered that might change
the meaning of the program.

Description

This option determines whether warnings are issued if any trigraphs are encountered that might change the
meaning of the program.

IDE Equivalent

None

Alternate Options

None

Wuninitialized
Determines whether a warning is issued if a variable is
used before being initialized.

Syntax

Linux OS:

-Wuninitialized
-Wno-uninitialized
macOS:

-Wuninitialized
-Wno-uninitialized
Windows OS:

None

Arguments

None

Default

-Wno-uninitialized No warning is issued if a variable is used before being initialized.

Description

This option determines whether a warning is issued if a variable is used before being initialized. Equivalent to
-ww592 and -wd592.

Compiler Reference

539

IDE Equivalent

None

Alternate Options

-ww592 and -wd592

Wunknown-pragmas
Determines whether a warning is issued if an unknown
#pragma directive is used.

Syntax

Linux OS:

-Wunknown-pragmas
-Wno-unknown-pragmas
macOS:

-Wunknown-pragmas
-Wno-unknown-pragmas
Windows OS:

None

Arguments

None

Default

-Wunknown-pragmas A warning is issued if an unknown #pragma directive is used.

Description

This option determines whether a warning is issued if an unknown #pragma directive is used.

IDE Equivalent

None

Alternate Options

None

Wunused-function
Determines whether a warning is issued if a declared
function is not used.

Syntax

Linux OS:

-Wunused-function
-Wno-unused-function

 Intel® C++ Compiler Classic Developer Guide and Reference

540

macOS:

-Wunused-function
-Wno-unused-function
Windows OS:

None

Arguments

None

Default

-Wno-unused-function No warning is issued if a declared function is not used.

Description

This option determines whether a warning is issued if a declared function is not used.

IDE Equivalent

None

Alternate Options

None

Wunused-variable
Determines whether a warning is issued if a local or
non-constant static variable is unused after being
declared.

Syntax

Linux OS:

-Wunused-variable
-Wno-unused-variable
macOS:

-Wunused-variable
-Wno-unused-variable
Windows OS:

None

Arguments

None

Default

-Wno-unused-variable No warning is issued if a local or non-constant static variable is
unused after being declared.

Compiler Reference

541

Description

This option determines whether a warning is issued if a local or non-constant static variable is unused after
being declared.

IDE Equivalent

None

Alternate Options

None

ww, Qww
Changes a soft diagnostic to an warning. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS and macOS:

-wwLn[,Ln,...]
Windows OS:

/QwwLn[,Ln,...]

Arguments

Ln Is the number of the diagnostic to be changed.

Default

OFF The compiler returns soft diagnostics as usual.

Description

This option overrides the severity of the soft diagnostic that corresponds to the specified number and
changes it to an warning.

This is a deprecated option that may be removed in a future release. The replacement option is
[Q]diag-warning.

Soft diagnostics are diagnostic messages that don't prevent the production of an object file; for example,
warnings and remarks.

If you specify more than one Ln, each Ln must be separated by a comma.

IDE Equivalent

None

Alternate Options

Linux and macOS: -diag-warning
Windows: /Qdiag-warning

 Intel® C++ Compiler Classic Developer Guide and Reference

542

Wwrite-strings
Issues a diagnostic message if const char * is
converted to (non-const) char *.

Syntax

Linux OS:

-Wwrite-strings

macOS:

-Wwrite-strings

Windows OS:

None

Arguments

None

Default

OFF No diagnostic message is issued if const char * is converted to (non-const) char*.

Description

This option issues a diagnostic message if const char* is converted to (non-const) char *.

IDE Equivalent

None

Alternate Options

None

Compatibility Options
This section contains descriptions for compiler options that pertain to language compatibility.

clang-name
Specifies the name of the Clang compiler that should
be used to set up the environment for C compilations.

Syntax

Linux OS and macOS:

-clang-name=name

Windows OS:

None

Arguments

name Is the name of the Clang compiler to use. It can include the path
where the Clang compiler is located.

Compiler Reference

543

Default

OFF The compiler uses the PATH setting to find the Clang compiler and resolve environment settings.

Description

This option specifies the name of the Clang compiler that should be used to set up the environment for C
compilations. If you do not specify a path, the compiler will search the PATH settings for the compiler name
you provide.

This option is helpful when you are referencing a non-standard Clang installation.

The C++ equivalent to option -clang-name is -clangxx-name.

NOTE
This option applies to the Intel compiler running in a CLANG environment. It does not apply
to the Intel CLANG-based compiler.

IDE Equivalent

None

Alternate Options

None

Example
If the following option is specified, the compiler looks for the Clang compiler named foobar in the PATH
setting:

-clang-name=foobar
If the following option is specified, the compiler looks for the Clang compiler named foobar in the path
specified:

-clang-name=/a/b/foobar

See Also
clangxx-name compiler option

clangxx-name
Specifies the name of the Clang++ compiler that
should be used to set up the environment for C++
compilations.

Syntax

Linux OS and macOS:

-clangxx-name=name
Windows OS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

544

Arguments

name Is the name of the Clang++ compiler to use. It can include the path
where the Clang++ compiler is located.

Default

OFF The compiler uses the PATH setting to find the Clang++ compiler and resolve environment
settings.

Description

This option specifies the name of the Clang++ compiler that should be used to set up the environment for C
++ compilations. If you do not specify a path, the compiler will search the PATH settings for the compiler
name you provide.

The C equivalent to option -clangxx-name is -clang-name.

NOTE
This option applies to the Intel compiler running in a CLANG environment. It does not apply
to the Intel CLANG-based compiler.

IDE Equivalent

None

Alternate Options

None

Example
If the following option is specified, the compiler looks for the Clang++ compiler named foobar in the PATH
setting:

-clangxx-name=foobar
If the following option is specified, the compiler looks for the Clang++ compiler named foobar in the path
specified:

-clangxx-name=/a/b/foobar

See Also
clang-name compiler option

fabi-version
Instructs the compiler to select a specific ABI
implementation.

Syntax

Linux OS:

-fabi-version=n
macOS:

-fabi-version=n

Compiler Reference

545

Windows OS:

None

Arguments

n Is the ABI implementation. Possible values are:

0 Requests the latest ABI implementation.

1 Requests the ABI implementation used in gcc
3.2 and gcc 3.3.

2 Requests the ABI implementation used in gcc
3.4 and higher.

Default

Varies The compiler uses the ABI implementation that corresponds to the installed version of gcc.

Description

This option tells the compiler to select a specific ABI implementation. This option is compatible with gcc
option -fabi-version. If you have multiple versions of gcc installed, the compiler may change the value of
n depending on which gcc is detected in your path.

NOTE
gcc 3.2 and 3.3 are not fully ABI-compliant, but gcc 3.4 is highly ABI-compliant.

Caution
Do not mix different values for -fabi-version in one link.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Preprocessor > gcc Compatibility Options

OS X

Xcode: None

Alternate Options

None

fms-dialect
Enables support for a language dialect that is
compatible with Microsoft Windows*, while
maintaining link compatibility with GCC*.

 Intel® C++ Compiler Classic Developer Guide and Reference

546

Syntax

Linux OS:

-fms-dialect[=ver]
macOS:

None
Windows OS:

None

Arguments

ver Indicates that the language dialect should be compatible with a certain
version of Microsoft Visual Studio*. Possible values are:

14.2 Specifies the dialect should be compatible
with Microsoft Visual Studio 2019.

14.1 Specifies the dialect should be compatible
with Microsoft Visual Studio 2017.

NOTE
Support for Microsoft Visual Studio 2017 is deprecated as
of the Intel® oneAPI 2022.1 release, and will be removed in
a future release.

Default

OFF The compiler does not support a language dialect that is compatible with Microsoft Windows.

Description

This option enables support for a limited language dialect that is compatible with Microsoft Windows, while
maintaining link compatibility with GCC. It allows portability of code written on Windows that uses Microsoft
extensions or language features. The code will be compiled with syntax and semantics similar to that used by
the Microsoft Windows compiler, while continuing to produce object files that are link-compatible with the
object files and libraries produced by the GCC compiler and/or by the Intel Compiler without this option.

The -fms-dialect option is intended to be used as an aid in porting code written on Windows. It is not
intended to enable an all-encompassing capability for porting all such code written on Windows seamlessly.
For example, even with this option enabled, there remains a need to support GCC-compatible syntax and
semantics for some language constructs in order to generate object files that are link-time compatible with
those produced by the GCC compiler and/or by the Intel compiler without this option.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /Qgcc-dialect
See Also
Qgcc-dialect compiler option

Compiler Reference

547

gcc-name
Lets you specify the name of the GCC compiler that
should be used to set up the environment for C
compilations.

Syntax

Linux OS:

-gcc-name=name
macOS:

None
Windows OS:

None

Arguments

name Is the name of the GCC compiler to use. It can include the path where
the GCC compiler is located.

Default

OFF The compiler uses the PATH setting to find the GCC compiler and resolve environment settings.

Description

This option lets you specify the name of the GCC compiler that should be used to set up the environment for
C compilations. If you do not specify a path, the compiler will search the PATH settings for the compiler name
you provide.

This option is helpful when you are referencing a non-standard GCC installation, or you have multiple GCC
installations on your system. The compiler will match GCC version values to the GCC compiler you specify.

The C++ equivalent to option -gcc-name is -gxx-name.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Preprocessor > Nonstandard gcc Installation

Xcode

Xcode: None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

548

Example
If the following option is specified, the compiler looks for the GCC compiler named foobar in the PATH
setting:

-gcc-name=foobar
If the following option is specified, the compiler looks for the GCC compiler named foobar in the path
specified:

-gcc-name=/a/b/foobar

See Also
gxx-name compiler option

gnu-prefix
Lets you specify a prefix that will be added to the
names of gnu utilities called from the compiler.

Syntax

Linux OS:

-gnu-prefix=prefix
macOS:

None
Windows OS:

None

Arguments

prefix Is a string that prepends the name of gnu tools called from the
compiler. The value depends on the gnu toolchain used for a particular
operating system. For example, for Wind River* Linux 6.x, the prefix
value will be x86_64-wrs-linux-. You must append a hyphen to
prefix only if the toolchain prefix ends with a hyphen.

You can specify a short name or a pathname:

• short name: -gnu-prefix=prefix

In this case, the compiler calls prefix<gnu_utility> instead of
<gnu_utility>. The utility with this name should be in the PATH
environment variable.

• pathname: -gnu-prefix=/directory_name/prefix

In this case, the compiler calls /directory_name/
prefix<gnu_utility>. The utility with this name will be invoked by
its full pathname.

Default

OFF The compiler calls gnu utilities by their short names, and looks for them in the path specified by
the PATH environment variable.

Compiler Reference

549

Description

This option lets you specify a prefix that will be added to the names of gnu utilities called from the compiler.
This option is available for Linux*-targeted compilers but the host may be either Windows* or Linux*.

If you specify option -gnu-prefix with option -gcc-name (or -gxx-name), the following occurs:

• If a name specified in -gcc-name (or -gxx-name) contains a full path to a binary then option
-gnu-prefix has no effect on the specified name; other binutils will have the prefix.

• Otherwise, option -gnu-prefix is applied to the name specified in -gcc-name (or -gxx-name).

The above approach provides flexibility to specify an alternative gcc name outside of the default toolchain. At
the same time, if a short name is provided in option -gcc-name, it is assumed to be a part of the default
toolchain and a prefix will be added.

Instead of using option -gnu-prefix, you can create symlinks for the short names of gnu utilities in the
toolchain and add them to the PATH. For example, ld--> i686-wrs-linux-gnu-ld.

NOTE
Even though this option is not supported for a Windows-to-Windows native compiler, it is
supported for a Windows-host to Linux-target compiler.

IDE Equivalent

None

Alternate Options

None

Example
Consider that you are setting up the compiler to produce an application for a Wind River* Linux 6.

Assume that your gnu cross toolchain for the target operating system is located in the following directory:

/WRL/60/x86_64-linux/usr/bin/x86_64-wrs-linux
and gnu utilities in the toolchain have prefixx86_64-wrs-linux-.

Assume your sysroot for the target operating system is located in the following directory:

/WRL/60/qemux86-64
To compile your application for Wind River* Linux 6, you must enter the following commands:

export PATH=/WRL/60/x86_64-linux/usr/bin/x86_64-wrs-linux:PATH
icc --sysroot/WRL/60/qemux86-64 -gnu-prefix=x86_64-wrs-linux- app.c

The following examples show what happens when you specify both -gcc-name and -gnu-prefix.

Example 1:

Command line: -gcc-name=foobar –gnu-prefix=em64t-
Actual gcc name used in the compiler: em64t-foobar
ld name used in the icc: em64t-ld

Example 2:

Command line: -gcc-name=/a/b/foobar –gnu-prefix=em64t-
Actual gcc name used in the compiler: /a/b/foobar
ld name used in the icc: em64t-ld

 Intel® C++ Compiler Classic Developer Guide and Reference

550

See Also
gcc-name compiler option
gxx-name compiler option
sysroot compiler option

gxx-name
Lets you specify the name of the g++ compiler that
should be used to set up the environment for C++
compilations.

Syntax

Linux OS:

-gxx-name=name
macOS:

None
Windows OS:

None

Arguments

name Is the name of the g++ compiler to use. It can include the path where
the g++ compiler is located.

Default

OFF The compiler uses the PATH setting to find the g++ compiler and resolve environment settings.

Description

This option lets you specify the name of the g++ compiler that should be used to set up the environment for
C++ compilations. If you do not specify a path, the compiler will search the PATH settings for the compiler
name you provide.

This option is helpful if you have multiple gcc++ installations on your system. The compiler will match gcc++
version values to the gcc++ compiler you specify.

The C equivalent to option -gxx-name is -gcc-name.

NOTE When compiling a C++ file with icpc, g++ is used to get the environment.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

551

Example
If the following option is specified, the compiler looks for the g++ compiler named foobar in the PATH
setting:

-gxx-name=foobar
If the following option is specified, the compiler looks for the g++ compiler named foobar in the path
specified:

-gxx-name=/a/b/foobar

See Also
gcc-name compiler option

Qgcc-dialect
Enables support for a limited gcc-compatible dialect on
Windows*.

Syntax

Linux OS and macOS:

None
Windows OS:

/Qgcc-dialect:ver

Arguments

ver Indicates the version of the gcc compiler that the limited language
dialect should be compatible with. It must be a three-digit number
with a value of 440 or higher. The number will be normalized to reflect
the gcc compiler version numbering scheme. For example, if you
specify 450, it indicates gcc version 4.5.0.

Default

OFF The compiler does not support a language dialect that is compatible with the gcc compiler.

Description

This option enables support for a limited gcc-compatible dialect on Windows*. It allows portability of code
written for the gcc compiler.

This option enables a limited gnu-compatible compiler dialect on Windows. The code will be compiled with
syntax and semantics similar to that used by gcc, while continuing to produce object files that are link-
compatible with the object files and libraries on Windows (that is, object files and libraries produced by the
Microsoft compiler and/or by the Intel compiler without this option).

The /Qgcc-dialect option is intended to be used as an aid in porting code written for the gcc compiler. It is
not intended to enable an all-encompassing capability for porting all such code written for the gcc compiler
seamlessly. For example, even with this option enabled, there remains a need to support Windows-
compatible syntax and semantics for some language constructs in order to generate object files that are link-
time compatible with those produced by the Windows compiler and/or by the Intel compiler without this
option.

 Intel® C++ Compiler Classic Developer Guide and Reference

552

IDE Equivalent

None

Alternate Options

Linux and macOS: -fms-dialect
Windows: None

See Also
fms-dialect
 compiler option

Qms
Tells the compiler to emulate Microsoft* compatibility
bugs.

Syntax

Linux OS and macOS:

None
Windows OS:

/Qmsn

Arguments

n Possible values are:

0 Instructs the compiler to disable some
Microsoft* compatibility bugs. It tells the
compiler to emulate the fewest number of
Microsoft compatibility bugs.

1 Instructs the compiler to enable most
Microsoft compatibility bugs. It tells the
compiler to emulate more Microsoft
compatibility bugs than /Qms0.

2 Instructs the compiler to generate code that
is Microsoft compatible. The compiler
emulates the largest number of Microsoft
compatibility bugs.

Default

/Qms1 The compiler emulates most Microsoft* compatibility bugs.

Description

This option tells the compiler to emulate Microsoft* compatibility bugs.

Caution
When using /Qms0, your program may not compile if it depends on Microsoft headers with
compatibility bugs that are disabled with this option. Use /Qms1 if your compilation fails.

Compiler Reference

553

IDE Equivalent

None

Alternate Options

None

Qvc
Specifies compatibility with Microsoft Visual C++*
(MSVC) or Microsoft Visual Studio*.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Qvc14.2
/Qvc14.1

Arguments

None

Default

varies When the compiler is installed, it detects which version of Microsoft Visual Studio is on your
system. Qvc defaults to the form of the option that is compatible with that version. When multiple
versions of Microsoft Visual Studio are installed, the compiler installation lets you select which
version you want to use. In this case, Qvc defaults to the version you choose.

Description

This option specifies compatibility with MSVC or Microsoft Visual Studio.

Option Description

/Qvc14.2 Specifies compatibility with Microsoft Visual Studio 2019.

/Qvc14.1 Specifies compatibility with Microsoft Visual Studio 2017.

NOTE
Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1
release, and will be removed in a future release.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

554

stdlib
Lets you select the C++ library to be used for linking.

Syntax

Linux OS:

None
macOS:

-stdlib[=keyword]

Windows OS:

None

Arguments

keyword Is the function information to include. Possible values are:

libc++ Links using the libc++ library.

libstdc++ Links using the GNU libstdc++ library.

Default

-stdlib=libc++The compiler links using the libc++ library.

Description

This option lets you select the C++ library to be used for linking. This option is processed by the command
that initiates linking, adding library names explicitly to the link command.

Currently, if you do not specify this option, the libc++ headers and library are used.

NOTE
The IDE provides another possible setting for option -stdlib, which lets you choose the
compiler default rather than a specific library.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: None

Xcode

Xcode: Language > C++ standard library > libstdc++

Language > C++ standard library > libc++

Language > C++ standard library > compiler-default

Compiler Reference

555

Alternate Options

None

vmv
Enables pointers to members of any inheritance type.

Syntax

Linux OS:

None

macOS:

None

Windows OS:

/vmv

Arguments

None

Default

OFF The compiler uses default rules to represent pointers to members.

Description

This option enables pointers to members of any inheritance type. To use this option, you must also specify
option /vmg.

IDE Equivalent

None

Alternate Options

None

Linking or Linker Options
This section contains descriptions for compiler options that pertain to linking or to the linker.

Bdynamic
Enables dynamic linking of libraries at run time.

Syntax

Linux OS:

-Bdynamic

macOS:

None

Windows OS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

556

Arguments

None

Default

OFF Limited dynamic linking occurs.

Description

This option enables dynamic linking of libraries at run time. Smaller executables are created than with static
linking.

This option is placed in the linker command line corresponding to its location on the user command line. It
controls the linking behavior of any library that is passed using the command line.

All libraries on the command line following option -Bdynamic are linked dynamically until the end of the
command line or until a -Bstatic option is encountered. The -Bstatic option enables static linking of
libraries.

IDE Equivalent

None

Alternate Options

None

See Also
Bstatic compiler option

Bstatic
Enables static linking of a user's library.

Syntax

Linux OS:

-Bstatic

macOS:

None

Windows OS:

None

Arguments

None

Default

OFF Default static linking occurs.

Description

This option enables static linking of a user's library.

This option is placed in the linker command line corresponding to its location on the user command line. It
controls the linking behavior of any library that is passed using the command line.

Compiler Reference

557

All libraries on the command line following option -Bstatic are linked statically until the end of the
command line or until a -Bdynamic option is encountered. The -Bdynamic option enables dynamic linking of
libraries.

IDE Equivalent

None

Alternate Options

None

See Also
Bdynamic compiler option

Bsymbolic
Binds references to all global symbols in a program to
the definitions within a user's shared library.

Syntax

Linux OS:

-Bsymbolic
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF When a program is linked to a shared library, it can override the definition within the shared
library.

Description

This option binds references to all global symbols in a program to the definitions within a user's shared
library.

This option is only meaningful on Executable Linkage Format (ELF) platforms that support shared libraries.

Caution
This option can have unintended side-effects of disabling symbol preemption in the shared
library.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

558

See Also
Bsymbolic-functions compiler option

Bsymbolic-functions
Binds references to all global function symbols in a
program to the definitions within a user's shared
library.

Syntax

Linux OS:

-Bsymbolic-functions
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF When a program is linked to a shared library, it can override the definition within the shared
library.

Description

This option binds references to all global function symbols in a program to the definitions within a user's
shared library.

This option is only meaningful on Executable Linkage Format (ELF) platforms that support shared libraries.

Caution
This option can have unintended side-effects of disabling symbol preemption in the shared
library.

IDE Equivalent

None

Alternate Options

None

See Also
Bsymbolic compiler option

cxxlib
Determines whether the compiler links using the C++
run-time libraries and header files provided by gcc.

Compiler Reference

559

Syntax

Linux OS:

-cxxlib[=dir]
-cxxlib-nostd
-no-cxxlib
macOS:

None
Windows OS:

None

Arguments

dir Is an optional top-level location for the gcc binaries and libraries.

Default

C++: -cxxlib
C: -no-cxxlib

For C++, the compiler uses the run-time libraries and headers provided by
gcc. For C, the compiler uses the default run-time libraries and headers and
does not link to any additional C++ run-time libraries and headers.
However, if you specify compiler option -std=gnu++98, the default is
-cxxlib.

Description

This option determines whether the compiler links using the C++ run-time libraries and header files provided
by gcc.

If you specify dir for cxxlib, the compiler uses dir/bin/gcc to setup the environment.

Option -cxxlib=dir can be used with option -gcc-name=name to specify the location dir/bin/name.

Option -cxxlib-nostd prevents the compiler from linking with the standard C++ library.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Preprocessor > gcc Compatibility Options

Xcode

Xcode: None

Alternate Options

None

See Also
gcc-name compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

560

dynamic-linker
Specifies a dynamic linker other than the default.

Syntax

Linux OS:

-dynamic-linker file
macOS:

None
Windows OS:

None

Arguments

file Is the name of the dynamic linker to be used.

Default

OFF The default dynamic linker is used.

Description

This option lets you specify a dynamic linker other than the default.

IDE Equivalent

None

Alternate Options

None

dynamiclib
Invokes the libtool command to generate dynamic
libraries.

Syntax

Linux OS:

None
macOS:

-dynamiclib
Windows OS:

None

Arguments

None

Compiler Reference

561

Default

OFF The compiler produces an executable.

Description

This option invokes the libtool command to generate dynamic libraries.

When passed this option, the compiler uses the libtool command to produce a dynamic library instead of
an executable when linking.

To build static libraries, you should specify option -staticlib or libtool -static <objects>.

IDE Equivalent

None

Alternate Options

None

See Also
staticlib compiler option

F (Windows*)
Specifies the stack reserve amount for the program.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Fn

Arguments

n Is the stack reserve amount. It can be specified as a decimal integer
or as a hexadecimal constant by using a C-style convention (for
example, /F0x1000).

Default

OFF The stack size default is chosen by the operating system.

Description

This option specifies the stack reserve amount for the program. The amount (n) is passed to the linker.

Note that the linker property pages have their own option to do this.

IDE Equivalent

None

 Intel® C++ Compiler Classic Developer Guide and Reference

562

Alternate Options

None

F (macOS)
Adds a framework directory to the head of an include
file search path.

Syntax

Linux OS:

None
macOS:

-Fdir
Windows OS:

None

Arguments

dir Is the name for the framework directory.

Default

OFF The compiler does not add a framework directory to the head of an include file search path.

Description

This option adds a framework directory to the head of an include file search path.

IDE Equivalent

None

Alternate Options

None

fixed
Causes the linker to create a program that can be
loaded only at its preferred base address.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/fixed

Compiler Reference

563

Arguments

None

Default

OFF The compiler uses default methods to load programs.

Description

This option is passed to the linker, causing it to create a program that can be loaded only at its preferred
base address.

IDE Equivalent

None

Alternate Options

None

Fm
Tells the linker to generate a link map file. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Fm[filename|dir]

Arguments

filename Is the name for the link map file.

dir Is the directory where the link map file should be placed. It can
include file.

Default

OFF No link map is generated.

Description

This option tells the linker to generate a link map.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

 Intel® C++ Compiler Classic Developer Guide and Reference

564

Alternate Options

None

fuse-ld
Tells the compiler to use a different linker instead of
the default linker (ld).

Syntax

Linux OS:

-fuse-ld=keyword

macOS:

-fuse-ld=keyword

Windows OS:

None

Arguments

keyword Possible values are:

bfd Tells the compiler to use the bfd linker.

gold Tells the compiler to use the gold linker.

Default

ld The compiler uses the ld linker by default.

Description

This option tells the compiler to use a different linker instead of default linker (ld).

This option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

l
Tells the linker to search for a specified library when
linking.

Syntax

Linux OS:

-lstring

macOS:

-lstring

Compiler Reference

565

Windows OS:

None

Arguments

string Specifies the library (libstring) that the linker should search.

Default

OFF The linker searches for standard libraries in standard directories.

Description

This option tells the linker to search for a specified library when linking.

When resolving references, the linker normally searches for libraries in several standard directories, in
directories specified by the L option, then in the library specified by the l option.

The linker searches and processes libraries and object files in the order they are specified. So, you should
specify this option following the last object file it applies to.

IDE Equivalent

None

Alternate Options

None

See Also
L compiler option

L
Tells the linker to search for libraries in a specified
directory before searching the standard directories.

Syntax

Linux OS:

-Ldir
macOS:

-Ldir
Windows OS:

None

Arguments

dir Is the name of the directory to search for libraries.

Default

OFF The linker searches the standard directories for libraries.

 Intel® C++ Compiler Classic Developer Guide and Reference

566

Description

This option tells the linker to search for libraries in a specified directory before searching for them in the
standard directories.

IDE Equivalent

None

Alternate Options

None

See Also
l compiler option

LD
Specifies that a program should be linked as a
dynamic-link (DLL) library.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/LD
/LDd

Arguments

None

Default

OFF The program is not linked as a dynamic-link (DLL) library.

Description

This option specifies that a program should be linked as a dynamic-link (DLL) library instead of an executable
(.exe) file. You can also specify /LDd, where d indicates a debug version.

IDE Equivalent

None

Alternate Options

None

link
Passes user-specified options directly to the linker at
compile time.

Compiler Reference

567

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/link

Arguments

None

Default

OFF No user-specified options are passed directly to the linker.

Description

This option passes user-specified options directly to the linker at compile time.

All options that appear following /link are passed directly to the linker.

IDE Equivalent

None

Alternate Options

None

See Also
Xlinker compiler option

MD
Tells the linker to search for unresolved references in
a multithreaded, dynamic-link run-time library.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/MD
/MDd

Arguments

None

 Intel® C++ Compiler Classic Developer Guide and Reference

568

Default

OFF The linker searches for unresolved references in a multi-threaded, static run-time library.

Description

This option tells the linker to search for unresolved references in a multithreaded, dynamic-link (DLL) run-
time library. You can also specify /MDd, where d indicates a debug version.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Runtime Library

Eclipse

Eclipse: None

Xcode

Xcode: None

Alternate Options

None

MT
Tells the linker to search for unresolved references in
a multithreaded, static run-time library.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/MT
/MTd

Arguments

None

Default

/MT The linker searches for unresolved references in a multithreaded,
static run-time library.

Description

This option tells the linker to search for unresolved references in a multithreaded, static run-time library. You
can also specify /MTd, where d indicates a debug version.

Compiler Reference

569

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Runtime Library

Eclipse

Eclipse: None

Xcode

Xcode: None

Alternate Options

None

See Also
Qvc compiler option

no-libgcc
Prevents the linking of certain gcc-specific libraries.

Syntax

Linux OS:

-no-libgcc
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF

Description

This option prevents the linking of certain gcc-specific libraries.

This option is not recommended for general use.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

570

nodefaultlibs
Prevents the compiler from using standard libraries
when linking.

Syntax

Linux OS:

-nodefaultlibs
macOS:

-nodefaultlibs
Windows OS:

None

Arguments

None

Default

OFF The standard libraries are linked.

Description

This option prevents the compiler from using standard libraries when linking.On Linux* systems, it is
provided for GNU compatibility.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Libraries > Use no system libraries

OS X

Xcode: None

Alternate Options

None

See Also
nostdlib compiler option

no-intel-lib, Qno-intel-lib
Disables linking to specified Intel® libraries, or to all
Intel® libraries.

Syntax

Linux OS:

-no-intel-lib[=library]

Compiler Reference

571

macOS:

None
Windows OS:

/Qno-intel-lib[:library]

Arguments

library Indicates which Intel® library should not be linked. Possible values are:

libirc Disables linking to the Intel® C/C++ library.

libimf Disables linking to the Intel® C++ Compiler Classic Math
library. This value is only available for Linux*.

libsvml Disables linking to the Intel® Short Vector Math library.

libirng Disables linking to the Random Number Generator library.

libipgo Disables linking to the Profile-Guided Optimization library.

If you specify more than one library, they must be separated by commas.

If library is omitted, the compiler will not link to any of the Intel® libraries shown above.

Default

OFF If this option is not specified, the compiler uses default heuristics for linking to
libraries.

Description

This option disables linking to specified Intel® libraries, or to all Intel® libraries.

IDE Equivalent

None

Alternate Options

None

nostartfiles
Prevents the compiler from using standard startup
files when linking.

Syntax

Linux OS:

-nostartfiles
macOS:

-nostartfiles
Windows OS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

572

Arguments

None

Default

OFF The compiler uses standard startup files when linking.

Description

This option prevents the compiler from using standard startup files when linking.

IDE Equivalent

None

Alternate Options

None

See Also
nostdlib compiler option

nostdlib
Prevents the compiler from using standard libraries
and startup files when linking.

Syntax

Linux OS:

-nostdlib
macOS:

-nostdlib
Windows OS:

None

Arguments

None

Default

OFF The compiler uses standard startup files and standard libraries when linking.

Description

This option prevents the compiler from using standard libraries and startup files when linking. On Linux*
systems, it is provided for GNU compatibility.

This option is not related to option -stdlib.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

573

See Also
nodefaultlibs compiler option
nostartfiles compiler option

pie
Determines whether the compiler generates position-
independent code that will be linked into an
executable.

Syntax

Linux OS:

-pie
-no-pie
macOS:

-pie
-no-pie
Windows OS:

None

Arguments

None

Default

varies On Linux* and on macOS versions less than 10.7, the default is -no-pie. On macOS 10.7 or
greater, the default is -pie.

Description

This option determines whether the compiler generates position-independent code that will be linked into an
executable. To enable generation of position-independent code that will be linked into an executable, specify
-pie.

To disable generation of position-independent code that will be linked into an executable, specify -no-pie.

IDE Equivalent

None

Alternate Options

None

See Also
fpic compiler option

pthread
Tells the compiler to use pthreads library for
multithreading support.

 Intel® C++ Compiler Classic Developer Guide and Reference

574

Syntax

Linux OS:

-pthread
macOS:

-pthread
Windows OS:

None

Arguments

None

Default

OFF The compiler does not use pthreads library for multithreading support.

Description

Tells the compiler to use pthreads library for multithreading support.

IDE Equivalent

None

Alternate Options

None

shared
Tells the compiler to produce a dynamic shared object
instead of an executable.

Syntax

Linux OS:

-shared
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler produces an executable.

Description

This option tells the compiler to produce a dynamic shared object (DSO) instead of an executable. This
includes linking in all libraries dynamically and passing -shared to the linker.

Compiler Reference

575

You must specify option fpic for the compilation of each object file you want to include in the shared library.

IDE Equivalent

None

Alternate Options

None

See Also
dynamiclib compiler option
fpic compiler option
Xlinker compiler option

shared-intel
Causes Intel-provided libraries to be linked in
dynamically.

Syntax

Linux OS:

-shared-intel
macOS:

-shared-intel
Windows OS:

None

Arguments

None

Default

OFF Intel® libraries are linked in statically, with the exception of Intel's OpenMP* runtime support
library, which is linked in dynamically unless you specify option -qopenmp-link=static.

Description

This option causes Intel-provided libraries to be linked in dynamically. It is the opposite of -static-intel.

This option is processed by the icc or icpc command that initiates linking, adding library names explicitly to
the link command.

If you specify option -mcmodel=medium or -mcmodel=large, it sets option -shared-intel.

NOTE
On macOS systems, when you set "Intel Runtime Libraries" to "Dynamic", you must also set
the DYLD_LIBRARY_PATH environment variable within Xcode* or an error will be displayed.

IDE Equivalent

Visual Studio

Visual Studio: None

 Intel® C++ Compiler Classic Developer Guide and Reference

576

Eclipse

Eclipse: None

Xcode

Xcode: Runtime > Intel Runtime Libraries

Alternate Options

None

See Also
static-intel compiler option
qopenmp-link compiler option

shared-libgcc
Links the GNU libgcc library dynamically.

Syntax

Linux OS:

-shared-libgcc
macOS:

None
Windows OS:

None

Arguments

None

Default

-shared-libgcc The compiler links the libgcc library dynamically.

Description

This option links the GNU libgcc library dynamically. It is the opposite of option static-libgcc.

This option is processed by the icc or icpc command that initiates linking, adding library names explicitly to
the link command.

This option is useful when you want to override the default behavior of the static option, which causes all
libraries to be linked statically.

IDE Equivalent

None

Alternate Options

None

See Also
static-libgcc compiler option

Compiler Reference

577

static
Prevents linking with shared libraries.

Syntax

Linux OS:

-static
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler links with shared libraries except as otherwise specified by -static-intel or its
default.

Description

This option prevents linking with shared libraries. It causes the executable to link all libraries statically.

NOTE
This option does not cause static linking of libraries for which no static version is available,
such as the OpenMP run-time libraries on Windows*. These libraries can only be linked
dynamically.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Libraries > Link with static libraries

Xcode

Xcode: None

Alternate Options

None

See Also
static-intel compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

578

static-intel
Causes Intel-provided libraries to be linked in
statically.

Syntax

Linux OS:

-static-intel
macOS:

-static-intel
Windows OS:

None

Arguments

None

Default

ON Intel® libraries are linked in statically, with the exception of Intel's OpenMP* runtime support
library, which is linked in dynamically unless you specify option -qopenmp-link=static.

Description

This option causes Intel-provided libraries to be linked in statically with certain exceptions (see the Default
above). It is the opposite of -shared-intel.

This option is processed by the icc or icpc command that initiates linking, adding library names explicitly to
the link command.

If you specify option -static-intel while option -mcmodel=medium or -mcmodel=large is set, an error
will be displayed.

If you specify option -static-intel and any of the Intel-provided libraries have no static version, a
diagnostic will be displayed.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: None

Xcode

Xcode: Runtime > Intel Runtime Libraries

Alternate Options

None

See Also
shared-intel compiler option
qopenmp-link compiler option

Compiler Reference

579

static-libgcc
Links the GNU libgcc library statically.

Syntax

Linux OS:

-static-libgcc
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler links the GNU libgcc library dynamically.

Description

This option links the GNU libgcc library statically. It is the opposite of option -shared-libgcc.

This option is processed by the icc or icpc command that initiates linking, adding library names explicitly to
the link command.

This option is useful when you want to override the default behavior, which causes the library to be linked
dynamically.

NOTE
If you want to use traceback, you must also link to the static version of the libgcc library.
This library enables printing of backtrace information.

IDE Equivalent

None

Alternate Options

None

See Also
shared-libgcc compiler option
static-libstdc++ compiler option

static-libstdc++
Links the GNU libstdc++ library statically.

 Intel® C++ Compiler Classic Developer Guide and Reference

580

Syntax

Linux OS:

-static-libstdc++
macOS:

None
Windows OS:

None

Arguments

None

Default

OFF The compiler links the GNU libstdc++ library dynamically.

Description

This option links the GNU libstdc++ library statically.

This option is processed by the icc or icpc command that initiates linking, adding library names explicitly to
the link command.

This option is useful when you want to override the default behavior, which causes the library to be linked
dynamically.

IDE Equivalent

None

Alternate Options

None

See Also
static-libgcc compiler option

staticlib
Invokes the libtool command to generate static
libraries.

Syntax

Linux OS:

None
macOS:

-staticlib
Windows OS:

None

Arguments

None

Compiler Reference

581

Default

OFF The compiler produces an executable.

Description

This option invokes the libtool command to generate static libraries. This option is processed by the
command that initiates linking, adding library names explicitly to the link command.

When passed this option, the compiler uses the libtool command to produce a static library instead of an
executable when linking.

To build dynamic libraries, you should specify option -dynamiclib or libtool -dynamic <objects>.

IDE Equivalent

None

Alternate Options

None

See Also
dynamiclib compiler option

T
Tells the linker to read link commands from a file.

Syntax

Linux OS:

-Tfilename

macOS:

None

Windows OS:

None

Arguments

filename Is the name of the file.

Default

OFF The linker does not read link commands from a file.

Description

This option tells the linker to read link commands from a file.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

582

u (Linux*)
Tells the compiler the specified symbol is undefined.

Syntax

Linux OS:

-u symbol
macOS:

-u symbol
Windows OS:

None

Arguments

None

Default

OFF Standard rules are in effect for variables.

Description

This option tells the compiler the specified symbol is undefined.

IDE Equivalent

None

Alternate Options

None

v
Specifies that driver tool commands should be
displayed and executed.

Syntax

Linux OS:

-v [filename]
macOS:

-v [filename]
Windows OS:

None

Arguments

filename Is the name of a source file to be compiled. A space must appear
before the file name.

Compiler Reference

583

Default

OFF No tool commands are shown.

Description

This option specifies that driver tool commands should be displayed and executed.

If you use this option without specifying a source file name, the compiler displays only the version of the
compiler.

IDE Equivalent

None

Alternate Options

None

See Also
dryrun compiler option

Wa
Passes options to the assembler for processing.

Syntax

Linux OS:

-Wa,option1[,option2,...]
macOS:

-Wa,option1[,option2,...]
Windows OS:

None

Arguments

option Is an assembler option. This option is not processed by the driver and
is directly passed to the assembler.

Default

OFF No options are passed to the assembler.

Description

This option passes one or more options to the assembler for processing. If the assembler is not invoked,
these options are ignored.

IDE Equivalent

None

Alternate Options

None

 Intel® C++ Compiler Classic Developer Guide and Reference

584

Wl
Passes options to the linker for processing.

Syntax

Linux OS:

-Wl,option1[,option2,...]

macOS:

-Wl,option1[,option2,...]

Windows OS:

None

Arguments

option Is a linker option. This option is not processed by the driver and is
directly passed to the linker.

Default

OFF No options are passed to the linker.

Description

This option passes one or more options to the linker for processing. If the linker is not invoked, these options
are ignored.

This option is equivalent to specifying option -Qoption,link,options.

IDE Equivalent

None

Alternate Options

None

See Also
Qoption compiler option

Wp
Passes options to the preprocessor.

Syntax

Linux OS:

-Wp,option1[,option2,...]

macOS:

-Wp,option1[,option2,...]

Windows OS:

None

Compiler Reference

585

Arguments

option Is a preprocessor option. This option is not processed by the driver
and is directly passed to the preprocessor.

Default

OFF No options are passed to the preprocessor.

Description

This option passes one or more options to the preprocessor. If the preprocessor is not invoked, these options
are ignored.

This option is equivalent to specifying option -Qoption,cpp, options.

IDE Equivalent

None

Alternate Options

None

See Also
Qoption compiler option

Xlinker
Passes a linker option directly to the linker.

Syntax

Linux OS:

-Xlinker option
macOS:

-Xlinker option
Windows OS:

None

Arguments

option Is a linker option.

Default

OFF No options are passed directly to the linker.

Description

This option passes a linker option directly to the linker. If -Xlinker -shared is specified, only -shared is
passed to the linker and no special work is done to ensure proper linkage for generating a shared object.
-Xlinker just takes whatever arguments are supplied and passes them directly to the linker.

 Intel® C++ Compiler Classic Developer Guide and Reference

586

If you want to pass compound options to the linker, for example "-L $HOME/lib", you must use the
following method:

-Xlinker -L -Xlinker $HOME/lib

IDE Equivalent

Visual Studio: None

Eclipse: Linker > Miscellaneous > Other Options

Xcode: None

Alternate Options

None

See Also
shared compiler option
link compiler option

Zl
Causes library names to be omitted from the object
file.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Zl

Arguments

None

Default

OFF Default or specified library names are included in the object file.

Description

This option causes library names to be omitted from the object file.

IDE Equivalent

Windows

Visual Studio: Advanced > Omit Default Library Names

Linux

Eclipse: None

OS X

Xcode: None

Compiler Reference

587

Alternate Options

None

Miscellaneous Options
This section contains descriptions for compiler options that do not pertain to a specific category.

bigobj
Increases the number of sections that an object file
can contain.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/bigobj

Arguments

None

Default

OFF An object file can hold up to 65,536 (2**16) addressable sections.

Description

This option increases the number of sections that an object file can contain. It increases the address capacity
to 4,294,967,296(2**32).

This option may be helpful for .obj files that can hold more sections, such as machine generated code or code
that makes heavy use of template libraries.

IDE Equivalent

None

Alternate Options

None

dryrun
Specifies that driver tool commands should be shown
but not executed.

Syntax

Linux OS:

-dryrun

 Intel® C++ Compiler Classic Developer Guide and Reference

588

macOS:

-dryrun
Windows OS:

None

Arguments

None

Default

OFF No tool commands are shown, but they are executed.

Description

This option specifies that driver tool commands should be shown but not executed.

IDE Equivalent

None

Alternate Options

None

See Also
v compiler option

dumpmachine
Displays the target machine and operating system
configuration.

Syntax

Linux OS:

-dumpmachine
macOS:

-dumpmachine
Windows OS:

None

Arguments

None

Default

OFF The compiler does not display target machine or operating system information.

Description

This option displays the target machine and operating system configuration. No compilation is performed.

IDE Equivalent

None

Compiler Reference

589

Alternate Options

None

See Also
dumpversion compiler option

dumpversion
Displays the version number of the compiler.

Syntax

Linux OS:

-dumpversion
macOS:

-dumpversion
Windows OS:

None

Arguments

None

Default

OFF The compiler does not display the compiler version number.

Description

This option displays the version number of the compiler. It does not compile your source files.

IDE Equivalent

None

Alternate Options

None

Example
Consider the following command:

icc -dumpversion
If the above is specified when using version 19.1 of the compiler, the compiler displays "19.1".

See Also
dumpmachine compiler option

global-hoist, Qglobal-hoist
Enables certain optimizations that can move memory
loads to a point earlier in the program execution than
where they appear in the source.

 Intel® C++ Compiler Classic Developer Guide and Reference

590

Syntax

Linux OS:

-global-hoist
-no-global-hoist
macOS:

-global-hoist
-no-global-hoist
Windows OS:

/Qglobal-hoist
/Qglobal-hoist-

Arguments

None

Default

-global-hoist
or /Qglobal-hoist

Certain optimizations are enabled that can move memory loads.

Description

This option enables certain optimizations that can move memory loads to a point earlier in the program
execution than where they appear in the source. In most cases, these optimizations are safe and can
improve performance.

The negative form of the option is useful for some applications, such as those that use shared or dynamically
mapped memory, which can fail if a load is moved too early in the execution stream (for example, before the
memory is mapped).

IDE Equivalent

None

Alternate Options

None

help
Displays all supported compiler options or supported
compiler options within a specified category of
options.

Syntax

Linux OS:

-help[category]
macOS:

-help[category]

Compiler Reference

591

Windows OS:

/help[category]

Arguments

category Is a category or class of options to display. Possible values are:

advanced Displays advanced optimization options that
allow fine tuning of compilation or allow
control over advanced features of the
compiler.

codegen Displays Code Generation options.

compatibility Displays options affecting language
compatibility.

component Displays options for component control.

data Displays options related to interpretation of
data in programs or the storage of data.

deprecated Displays options that have been deprecated.

diagnostics Displays options that affect diagnostic
messages displayed by the compiler.

float Displays options that affect floating-point
operations.

help Displays all the available help categories.

inline Displays options that affect inlining.

ipo Displays Interprocedural Optimization (IPO)
options

language Displays options affecting the behavior of the
compiler language features.

link Displays linking or linker options.

misc Displays miscellaneous options that do not fit
within other categories.

openmp Displays OpenMP and parallel processing
options.

opt Displays options that help you optimize code.

output Displays options that provide control over
compiler output.

pgo Displays Profile Guided Optimization (PGO)
options.

preproc Displays options that affect preprocessing
operations.

reports Displays options for optimization reports.

 Intel® C++ Compiler Classic Developer Guide and Reference

592

Default

OFF No list is displayed unless this compiler option is specified.

Description

This option displays all supported compiler options or supported compiler options within a specified category
of options. If you specify category, it will display all available (supported) compiler options in the specified
category.

On Linux* systems, this option can also be specified as --help.

IDE Equivalent

None

Alternate Options

Linux and macOS: None

Windows: /?

intel-freestanding
Lets you compile in the absence of a gcc environment.

Syntax

Linux OS:

-intel-freestanding[=ver]

macOS:

None

Windows OS:

None

Arguments

ver Is a three-digit number that is used to determine the gcc version that
the compiler should be compatible with for compilation. It also sets
the corresponding GNUC macros.

The number will be normalized to reflect the gcc compiler version
numbering scheme. For example, if you specify 493, it indicates the
compiler should be compatible with gcc version 4.9.3.

Default

OFF The compiler uses default heuristics when choosing the gcc environment.

Description

This option lets you compile in the absence of a gcc environment. It disables any external compiler calls
(such as calls to gcc) that the compiler driver normally performs by default.

This option also removes any default search locations for header and library files. So, for successful
compilation and linking, you must provide these search locations.

This option does not affect ld, as, or cpp. They will be used for compilation as needed.

Compiler Reference

593

NOTE
This option does not imply option -nostdinc -nostdlib. If you want to assure a clean
environment for compilation (including removal of Intel-specific header locations and libs),
you should specify -nostdinc and/or -nostdlib.

NOTE
This option is supported for any Linux-target compiler, including a Windows-host to Linux-
target compiler.

IDE Equivalent

None

Alternate Options

None

See Also
intel-freestanding-target-os compiler option
nostdlib compiler option
nostdinc compiler option, which is an alternate option for option X

intel-freestanding-target-os
Lets you specify the target operating system for
compilation.

Syntax

Linux OS:

-intel-freestanding-target-os=os
macOS:

None
Windows OS:

None

Arguments

os Is the target operating system for the Linux compiler.

Currently, the only possible value is linux.

Default

OFF The installed gcc determines the target operating system.

Description

This option lets you specify the target operating system for compilation. It sets option
-intel-freestanding.

 Intel® C++ Compiler Classic Developer Guide and Reference

594

NOTE
This option is supported for any Linux-target compiler, including a Windows-host to Linux-
target compiler.

IDE Equivalent

None

Alternate Options

None

See Also
intel-freestanding compiler option

MP-force
Disables the default heuristics used when compiler
option /MP is specified. This lets you control the
number of processes spawned.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/MP-force

Arguments

None

Default

OFF Default heuristics are used when option /MP is specified.

Description

This option disables the default heuristics used when compiler option /MP:n is specified. You must specify it
when you specify option /MP:n.

Option /MP:n sets the maximum number of processes that can be used to compile large numbers of source
files at the same time. However, default heuristics may cause the number of processes to be less than
specified.

Option /MP-force ensures that n will be the maximum number of processes spawned regardless of other
heuristics which may limit the number of processes.

IDE Equivalent

None

Alternate Options

None

Compiler Reference

595

See Also
multiple-processes, MP compiler option

multibyte-chars, Qmultibyte-chars
Determines whether multi-byte characters are
supported.

Syntax

Linux OS:

-multibyte-chars
-no-multibyte-chars

macOS:

-multibyte-chars
-no-multibyte-chars

Windows OS:

/Qmultibyte-chars
/Qmultibyte-chars-

Arguments

None

Default

-multibyte-chars
or /Qmultibyte-chars

Multi-byte characters are supported.

Description

This option determines whether multi-byte characters are supported.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Language > Support Multibyte Characters in Source

OS X

Xcode: Language > Support Multibyte Characters in Source

Alternate Options

None

multiple-processes, MP
Creates multiple processes that can be used to
compile large numbers of source files at the same
time.

 Intel® C++ Compiler Classic Developer Guide and Reference

596

Syntax

Linux OS:

-multiple-processes[=n]
macOS:

-multiple-processes[=n]
Windows OS:

/MP[:n]

Arguments

n Is the maximum number of processes that the compiler should create.

Default

OFF A single process is used to compile source files.

Description

This option creates multiple processes that can be used to compile large numbers of source files at the same
time. It can improve performance by reducing the time it takes to compile source files on the command line.

This option causes the compiler to create one or more copies of itself, each in a separate process. These
copies simultaneously compile the source files.

If n is not specified for this option, the default value is as follows:

• On Windows* systems, the value is based on the setting of the NUMBER_OF_PROCESSORS environment
variable.

• On Linux* and macOS systems, the value is 2.

This option applies to compilations, but not to linking or link-time code generation.

To override default heuristics, specify option /MP-force. It ensures that n will be the maximum number of
processes created regardless of other heuristics that may limit the number of processes.

IDE Equivalent

Windows

Visual Studio: General > Multi-processor Compilation

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
MP-force compiler option

Compiler Reference

597

nologo
Tells the compiler to not display compiler version
information.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/nologo

Arguments

None

Default

OFF

Description

Tells the compiler to not display compiler version information.

IDE Equivalent

Windows

Visual Studio: General > Suppress Startup Banner

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

print-sysroot
Prints the target sysroot directory that is used during
compilation.

Syntax

Linux OS:

-print-sysroot
macOS:

None

 Intel® C++ Compiler Classic Developer Guide and Reference

598

Windows OS:

None

Arguments

None

Default

OFF Nothing is printed.

Description

This option prints the target sysroot directory that is used during compilation.

This is the target sysroot directory that is specified in an environment file or in option --sysroot. This
option is only effective if a target sysroot has been specified.

This option is provided for compatibility with gcc.

NOTE
Even though this option is not supported for a Windows-to-Windows native compiler, it is
supported for a Windows-host to Linux-target compiler.

IDE Equivalent

None

Alternate Options

None

See Also
sysroot compiler option

save-temps, Qsave-temps
Tells the compiler to save intermediate files created
during compilation.

Syntax

Linux OS:

-save-temps
-no-save-temps
macOS:

-save-temps
-no-save-temps
Windows OS:

/Qsave-temps
/Qsave-temps-

Compiler Reference

599

Arguments

None

Default

Linux* and macOS systems: -no-save-temps
Windows* systems: .obj files are saved

On Linux and macOS systems, the compiler deletes
intermediate files after compilation is completed. On
Windows systems, the compiler saves only
intermediate object files after compilation is
completed.

Description

This option tells the compiler to save intermediate files created during compilation. The names of the files
saved are based on the name of the source file; the files are saved in the current working directory.

If option [Q]save-temps is specified, the following occurs:

• The object .o file (Linux and macOS) or .obj file (Windows) is saved.
• The assembler .s file (Linux and macOS) or .asm file (Windows) is saved if you specified the [Q]use-asm

option.

If -no-save-temps is specified on Linux or macOS systems, the following occurs:

• The .o file is put into /tmp and deleted after calling ld.
• The preprocessed file is not saved after it has been used by the compiler.

If /Qsave-temps- is specified on Windows systems, the following occurs:

• The .obj file is not saved after the linker step.
• The preprocessed file is not saved after it has been used by the compiler.

NOTE
This option only saves intermediate files that are normally created during compilation.

IDE Equivalent

None

Alternate Options

None

Example
If you compile program my_foo.c on a Linux or macOS system and you specify option -save-temps and
option -use-asm, the compilation will produce files my_foo.o and my_foo.s.

If you compile program my_foo.c on a Windows system and you specify option /Qsave-temps and
option /Quse-asm, the compilation will produce files my_foo.o and my_foo.asm.

showIncludes
Tells the compiler to display a list of the include files.

 Intel® C++ Compiler Classic Developer Guide and Reference

600

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/showIncludes

Arguments

None

Default

OFF The compiler does not display a list of the include files.

Description

This option tells the compiler to display a list of the include files. Nested include files (files that are included
from the files that you include) are also displayed.

IDE Equivalent

Windows

Visual Studio: Advanced > Show Includes

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

sox
Tells the compiler to save the compilation options and
version number in the executable file. It also lets you
choose whether to include lists of certain functions.

Syntax

Linux OS:

-sox[=keyword[,keyword]]
-no-sox
macOS:

None

Compiler Reference

601

Windows OS:

None

Arguments

keyword Is the function information to include. Possible values are:

inline Includes a list of the functions that were
inlined in each object.

profile Includes a list of the functions that were
compiled with the -prof-use option and for
which the .dpi file had profile information,
and an indication for each as to whether the
profile information was USED (matched) or
IGNORED (mismatched).

Default

-no-sox The compiler does not save these informational strings in the object file.

Description

This option tells the compiler to save the compilation options and version number in the executable file. It
also lets you choose whether to include lists of certain functions. The information is embedded as a string in
each object file or assembly output.

If you specify option sox with no keyword, the compiler saves the compiler options and version number used
in the compilation of the objects that make up the executable.

When you specify this option, the size of the executable on disk is increased slightly. Each keyword you
specify increases the size of the executable. When you link the object files into an executable file, the linker
places each of the information strings into the header of the executable. It is then possible to use a tool,
such as a strings utility, to determine what options were used to build the executable file.

IDE Equivalent

None

Alternate Options

None

Example
The following commands are equivalent:

-sox=profile -sox=inline
-sox=profile,inline

You can use the negative form of the option to disable and reset the option. For example:

-sox=profile -no-sox -sox=inline ! This means -sox=inline

See Also
prof-use, Qprof-use compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

602

sysroot
Specifies the root directory where headers and
libraries are located.

Syntax

Linux OS:

--sysroot=dir
macOS:

None
Windows OS:

None

Arguments

dir Specifies the local directory that contains copies of target libraries in
the corresponding subdirectories.

Default

Off The compiler uses default settings to search for headers and libraries.

Description

This option specifies the root directory where headers and libraries are located.

For example, if the headers and libraries are normally located in /usr/include and /usr/lib respectively,
--sysroot=/mydir will cause the compiler to search in /mydir/usr/include and /mydir/usr/lib for the
headers and libraries.

This option is provided for compatibility with gcc.

NOTE
Even though this option is not supported for a Windows-to-Windows native compiler, it is
supported for a Windows-host to Linux-target compiler.

IDE Equivalent

None

Alternate Options

None

Tc
Tells the compiler to process a file as a C source file.

Syntax

Linux OS:

None

Compiler Reference

603

macOS:

None

Windows OS:

/Tcfilename

Arguments

filename Is the file name to be processed as a C source file.

Default

OFF The compiler uses default rules for determining whether a file is a C source file.

Description

This option tells the compiler to process a file as a C source file.

IDE Equivalent

None

Alternate Options

None

See Also
TC compiler option
Tp compiler option

TC
Tells the compiler to process all source or
unrecognized file types as C source files.

Syntax

Linux OS:

None

macOS:

None

Windows OS:

/TC

Arguments

None

Default

OFF The compiler uses default rules for determining whether a file is a C source file.

Description

This option tells the compiler to process all source or unrecognized file types as C source files.

 Intel® C++ Compiler Classic Developer Guide and Reference

604

IDE Equivalent

Windows

Visual Studio: Advanced > Compile As

Linux

Eclipse: None

OS X

Xcode: None

Alternate Options

None

See Also
TP compiler option
Tc compiler option

Tp
Tells the compiler to process a file as a C++ source
file.

Syntax

Linux OS:

None
macOS:

None
Windows OS:

/Tpfilename

Arguments

filename Is the file name to be processed as a C++ source file.

Default

OFF The compiler uses default rules for determining whether a file is a C++ source file.

Description

This option tells the compiler to process a file as a C++ source file.

IDE Equivalent

None

Alternate Options

None

See Also
TP compiler option

Compiler Reference

605

Tc compiler option

V
Displays the compiler version information.

Syntax

Linux OS:

-V
macOS:

-V
Windows OS:

/QV

Arguments

None

Default

OFF The compiler version information is not displayed.

Description

This option displays the startup banner, which contains the following compiler information:

• The name of the compiler and its applicable architecture
• The major and minor version of the compiler, the update number, and the package number(for example,

Version 12.1.0.047)
• The specific build and build date (for example, Build <builddate>)
• The copyright date of the software

This option can be placed anywhere on the command line.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: General > Show Startup Banner

OS X

Xcode: General > Show Startup Banner

Alternate Options

None

version
Tells the compiler to display GCC-style version
information.

 Intel® C++ Compiler Classic Developer Guide and Reference

606

Syntax

Linux OS:

--version

macOS:

--version

Windows OS:

None

Arguments

None

Default

OFF

Description

Tells the compiler to display GCC-style version information.

IDE Equivalent

None

Alternate Options

None

watch
Tells the compiler to display certain information to the
console output window.

Syntax

Linux OS:

-watch[=keyword[, keyword...]]
-nowatch

macOS:

-watch[=keyword[, keyword...]]
-nowatch

Windows OS:

/watch[:keyword[, keyword...]]
/nowatch

Arguments

keyword Determines what information is displayed. Possible values are:

none Disables cmd and source.

Compiler Reference

607

[no]cmd Determines whether driver tool commands are displayed and
executed.

[no]source Determines whether the name of the file being compiled is displayed.

all Enables cmd and source.

Default

nowatch Pass information and source file names are not displayed to the console output window.

Description

Tells the compiler to display processing information (pass information and source file names) to the console
output window.

Option watch keyword Description

none Tells the compiler to not display pass information and source file names
to the console output window. This is the same as specifying nowatch.

cmd Tells the compiler to display and execute driver tool commands.

source Tells the compiler to display the name of the file being compiled.

all Tells the compiler to display pass information and source file names to
the console output window. This is the same as specifying watch with no
keyword. For heterogeneous compilation, the tool commands for the host
and the offload compilations will be displayed.

IDE Equivalent

None

Alternate Options

watch cmd Linux and macOS: -v
Windows: None

See Also
v compiler option

Deprecated and Removed Compiler Options
This topic lists deprecated and removed compiler options and suggests replacement options, if any are
available.

For more information on compiler options, see the detailed descriptions of the individual option descriptions
in this section.

Deprecated Options
Occasionally, compiler options are marked as "deprecated." Deprecated options are still supported in the
current release, but are planned to be unsupported in future releases.

The following two tables list options that are currently deprecated.

Note that deprecated options are not limited to these lists.

 Intel® C++ Compiler Classic Developer Guide and Reference

608

Deprecated Linux* and macOSOptions Suggested Replacement

axS axSSE4.1

axT Linux*: axSSSE3
macOS: axSSSE3

fmudflap None; consider using the Pointer Checker options
(such as option check pointers)

Kc++ x c++

march=pentiumii None

march=pentiumiii march=pentium3

mcpu mtune

msse Linux* only: mia32

prof-gen-sampling None

prof-use-sampling None

rcd None

use-asm None

wd diag-disable

we diag-error

wn diag-error-limit

wo diag-once id[,id,...]

wr diag-remark

ww diag-warning

xH xSSE4.2

xS xSSE4.1

xT Linux*: xSSSE3
macOS: xSSSE3

Deprecated Windows* Options Suggested Replacement

arch:SSE arch:IA32

Fr FR

Ge Gs0

GX EHsc

GZ RTC1

H None

Compiler Reference

609

Deprecated Windows* Options Suggested Replacement

QaxS QaxSSE4.1

QaxT QaxSSSE3

QIfist Qrcd

Qrcd None

Qsox None

Quse-asm None

Qwd Qdiag-disable

Qwe Qdiag-error

Qwn Qdiag-error-limit:<n>

Qwo Qdiag-once

Qwr Qdiag-remark

Qww Qdiag-warning

QxH QxSSE4.2

QxS QxSSE4.1

QxT QxSSSE3

Yd Z7, Zi, or Zl

Ze None

Zg None

Removed Options
Some compiler options are no longer supported and have been removed. If you use one of these options, the
compiler issues a warning, ignores the option, and then proceeds with compilation.

The following two tables list options that are no longer supported.

Note that removed options are not limited to these lists.

Removed Linux* and macOSOptions Suggested Replacement

A- undef

0f_check None

alias-args fargument-alias

axB axSSE2

axH axSSE4.2

axi None

 Intel® C++ Compiler Classic Developer Guide and Reference

610

Removed Linux* and macOSOptions Suggested Replacement

axK No exact replacement; upgrade to msse2

axM None

axN Linux*: axSSE2
macOS: None

axP Linux*: axSSE3
macOS: None

axW msse2

c99 std=c99

check-uninit check=uninit

create-pch pch-create

cxxlib-gcc[=dir] cxxlib[=dir]

cxxlib-icc None

export None

export-dir None

F P

falign-stack=mode None; this option is only removed on macOS

fdiv_check None

fms-dialect (macOS only) None

fms-dialect=11
fms-dialect=10
fms-dialect=9

None

fp fno-omit-frame-pointer

fpstkchk fp-stack-check

func-groups prof-func-groups

fvisibility=internal fvisibility=hidden

fwritable-strings None

gcc-version No exact replacement; use gcc-name

guide-profile None

i-dynamic shared-intel

i-static static-intel

inline-debug-info debug inline-debug-info

Compiler Reference

611

Removed Linux* and macOSOptions Suggested Replacement

ipo-obj (and ipo_obj) None

ipp-link=static-thread None

Knopic, -KNOPIC fpic

Kpic, -KPIC fpic

mp fp-model

no-alias-args fargument-noalias

no-c99 std=c89

no-cpprt no-cxxlib

nobss-init no-bss-init

norestrict no-restrict

Ob inline-level

openmp qopenmp

openmp-lib qopenmp-lib

openmp-lib legacy None

openmp-link and qopenmp-link None

openmpP qopenmp

openmp-profile None

openmp-report qopt-report-phase=openmp

openmpS qopenmp-stubs

openmp-simd qopenmp-simd

openmp-stubs qopenmp-stubs

openmp-task qopenmp-task

openmp-threadprivate qopenmp-threadprivate

opt-args-in-regs qopt-args-in-regs

opt-assume-safe-padding qopt-assume-safe-padding

opt-block-factor qopt-block-factor

opt-calloc qopt-calloc

opt-class-analysis qopt-class-analysis

opt-dynamic-align qopt-dynamic-align

opt-gather-scatter-unroll None

 Intel® C++ Compiler Classic Developer Guide and Reference

612

Removed Linux* and macOSOptions Suggested Replacement

opt-jump-tables qopt-jump-tables

opt-malloc-options qopt-malloc-options

opt-matmul qopt-matmul

opt-mem-layout-trans qopt-mem-layout-trans

opt-multi-version-aggressive qopt-multi-version-aggressive

opt-prefetch qopt-prefetch

opt-prefetch-distance qopt-prefetch-distance

opt-ra-region-strategy qopt-ra-region-strategy

opt-report qopt-report

opt-report-embed qopt-report-embed

opt-report-file qopt-report-file

opt-report-filter qopt-report-filter

opt-report-format qopt-report-format

opt-report-help qopt-report-help

opt-report-level qopt-report

opt-report-per-object qopt-report-per-object

opt-report-phase qopt-report-phase

opt-report-routine qopt-report-routine

opt-streaming-cache-evict None

opt-streaming-stores qopt-streaming-stores

opt-subscript-in-range qopt-subscript-in-range

par-report qopt-report-phase=par

prefetch qopt-prefetch

prof-format-32 None

prof-genx prof-gen=srcpos

profile-functions None

profile-loops None

profile-loops-report None

qoffload None

qoffload-arch None

Compiler Reference

613

Removed Linux* and macOSOptions Suggested Replacement

qoffload-attribute-target None

qoffload-option None

qopenmp-offload None

qopenmp-report qopt-report-phase=openmp

qopenmp-task None

qp p

rct None

shared-libcxa shared-libgcc

ssp None

static-libcxa static-libgcc

std=c9x std=c99

syntax fsyntax-only

tcheck None

tpp1 None

tpp2 mtune=itanium2

tpp5 None

tpp6 None

tpp7 mtune=pentium4

tprofile None

use-pch pch-use

vec-report qopt-report-phase=vec

Wpragma-once None

xB xSSE2

xi None

xK No exact replacement; upgrade to msse2

xM None

xN Linux*: xSSE2
macOS: None

xO -msse3

xP Linux*: xSSE3
macOS: None

 Intel® C++ Compiler Classic Developer Guide and Reference

614

Removed Linux* and macOSOptions Suggested Replacement

xSSE3_ATOM xATOM_SSSE3

xSSSE3_ATOM xATOM_SSSE3

xW msse2

Removed Windows* Options Suggested Replacement

debug:parallel None

G5 None

G6 (or GB) None

G7 None

Gf GF

ML[d] Upgrade to MT[d]

Og O1, O2, or O3

Op fp:precise

QA- u

QaxB QaxSSE2

QaxH QaxSSE4.2

Qaxi None

QaxK Upgrade to arch:SSE2

QaxM None

QaxN QaxSSE2

QaxP QaxSSE3

QaxW arch:SSE2

Qc99 Qstd=c99

Qfpstkchk Qfp-stack-check

Qguide-profile None

Qgpu-arch:ivybridge None

QI0f None

QIfdiv None

Qinline-debug-info debug:inline-debug-info

Qipo-obj (and Qipo_obj) None

Compiler Reference

615

Removed Windows* Options Suggested Replacement

Qipp-link:static-thread None

Qmspp None

Qopenmp-lib:legacy None

Qopenmp-link None

Qopenmp-offload None

Qopenmp-profile None

Qopenmp-report Qopt-report-phase:openmp

Qopenmp-task None

Qopt-report-level Qopt-report

Qpar-report Qopt-report-phase:par

Qprefetch Qopt-prefetch

Qprof-format-32 None

Qprof-gen-sampling None

Qprof-genx Qprof-gen=srcpos

Qprofile-functions None

Qprofile-loops None

Qprofile-loops-report None

Qrct None

Qssp None

Qtprofile None

Qtcheck None

Qvc11
Qvc10
Qvc9 and earlier

None

Qvec-report Qopt-report-phase:vec

QxB QxSSE2

Qxi None

QxK Upgrade to arch:SSE2

QxM None

QxN QxSSE2

 Intel® C++ Compiler Classic Developer Guide and Reference

616

Removed Windows* Options Suggested Replacement

QxO arch:SSE3

QxP QxSSE3

QxSSE3_ATOM QxATOM_SSSE3

QxSSSE3_ATOM QxATOM_SSSE3

QxW arch:SSE2

YX None

Zd debug:minimal

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Display Option Information
To display a list of all available compiler options, specify option help on the command line.

To display functional groupings of compiler options, specify a functional category for option help. For
example, to display a list of options that affect diagnostic messages, enter one of the following commands:

Linux and macOS

-help diagnostics
Windows

/help diagnostics
For details on other categories you can specify, see help.

Alternate Compiler Options
This topic lists alternate names for compiler options and show the primary option name. Some of the
alternate option names are deprecated and may be removed in future releases.

For more information on compiler options, see the detailed descriptions of the individual, primary options.

Some of these options are deprecated. For more information, see Deprecated and Removed Options.

Linux

Alternate Linux* and macOS Options Primary Option Name

Code Generation:

-fp -fomit-frame-pointer

-mcpu -mtune

Advanced Optimizations:

-fstrict-aliasing -ansi-alias

Compiler Reference

617

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Alternate Linux* and macOS Options Primary Option Name

-funroll-loops -unroll

Profile Guided Optimization (PGO):

-qp -p (Linux* only)

OpenMP* and Parallel Processing Options:

-fopenmp -qopenmp

Output, Debug, Precompiled Header (PCH):

-fvar-tracking -debug variable-locations

-fvar-tracking-assignments -debug semantic-stepping

Linking or Linker:

-i-dynamic -shared-intel

-i-static -static-intel

Windows

Alternate Windows* Options Primary Option Name

OpenMP* and Parallel Processing Options:

/openmp /Qopenmp

Floating Point:

/QIfist /Qrcd

Portability and GCC-compatible Warning Options
This section discusses portability options and GCC-compatible warning options.

Portability Options

A challenge in porting applications from one compiler to another is making sure that there is support for the
compiler options you use to build your application. The Intel® compiler supports many of the options that are
valid on other compilers you may be using.

The first table lists compiler options that are supported by the Intel® compiler and the GCC Compiler.
Following this table, you will see information about GCC-compatible warning options.

The second table lists compiler options that are supported by the Intel® compiler and the Microsoft C++
Compiler .

Options that are unique to either compiler are not listed in this topic.

Linux

This table lists compiler options that are supported by both the Intel® compiler and the GCC Compiler.

-A

-ansi

-B

 Intel® C++ Compiler Classic Developer Guide and Reference

618

-C

-c

-D

-dD

-dM

-dN

-E

-fargument-noalias

-fargument-noalias-global

-fcf-protection

-fdata-sections

-ffunction-sections

-fmudflap (this is a deprecated option)

-f[no-]builtin

-f[no-]common

-f[no-]freestanding

-f[no-]gnu-keywords

-fno-implicit-inline-templates

-fno-implicit-templates

-f[no-]inline

-f[no-]inline-functions

-f[no-]math-errno

-f[no-]operator-names

-f[no-]stack-protector

-f[no-]unsigned-bitfields

-fpack-struct

-fpermissive

-fPIC

-fpic

-freg-struct-return

-fshort-enums

-fsyntax-only

-ftemplate-depth

Compiler Reference

619

-ftls-model=global-dynamic

-ftls-model=initial-exec

-ftls-model=local-dynamic

-ftls-model=local-exec

-funroll-loops

-funsigned-char

-fverbose-asm

-fvisibility=default

-fvisibility=hidden

-fvisibility=internal

-fvisibility=protected

-H

-help

-I

-idirafter

-imacros

-iprefix

-iwithprefix

-iwithprefixbefore

-l

-L

-M

-malign-double

-march

-mcpu

-MD

-MF

-MG

-MM

-MMD

-m[no-]ieee-fp

-MP

-MQ

 Intel® C++ Compiler Classic Developer Guide and Reference

620

-msse

-msse2

-msse3

-MT

-mtune

-nodefaultlibs

-nostartfiles

-nostdinc

-nostdinc++

-nostdlib

-o

-O

-O0

-O1

-O2

-O3

-Os

-p

-P

-S

-shared

-static

-std

-trigraphs

-U

-u

-v

-V

-w

-Wall

-Werror

-Winline

-W[no-]cast-qual

Compiler Reference

621

-W[no-]comment

-W[no-]comments

-W[no-]deprecated

-W[no-]fatal-errors

-W[no-]format-security

-W[no-]main

-W[no-]missing-declarations

-W[no-]missing-prototypes

-W[no-]overflow

-W[no-]overloaded-virtual

-W[no-]pointer-arith

-W[no-]return-type

-W[no-]strict-prototypes

-W[no-]trigraphs

-W[no-]uninitialized

-W[no-]unknown-pragmas

-W[no-]unused-function

-W[no-]unused-variable

-X

-x assembler-with-cpp

-x c

-x c++

-Xlinker

The Intel® compiler recognizes many GCC-compatible warning options, but many are not documented.

In general, if a GCC-compatible option is accepted by the compiler, but not documented, the implementation
of the option is the same as described in the GCC documentation.

To find the GCC documentation about GCC warning options, you can do any of the following:

• Enter the command:

man gcc
• Check the GCC website.
• Search the web for "gcc warning options".

Windows

This table lists compiler options that are supported by both the Intel® compiler and the Microsoft C++
Compiler.

For complete details about these options, such as the possible values for <n> when it appears below, see the
Microsoft Visual Studio C++ documentation.

 Intel® C++ Compiler Classic Developer Guide and Reference

622

https://gcc.gnu.org/onlinedocs/gcc/

/arch

/C

/c

/D<name>{=|#}<text>

/E

/EH{a|s|c|r}

/EP

/F<n>

/Fa[file]

/FA[{c|s|cs}]

/FC

/Fe<file>

/FI<file>

/Fm[<file>]

/Fo<file>

/fp:<model>

/Fp<file>

/FR[<file>]

/Fr[<file>]

/GA

/Gd

/Ge

/GF

/Gh

/GH

/Gr

/GR[-]

/GS[-]

/Gs[<n>]

/GT

/Gy[-]

/Gz

Compiler Reference

623

/GZ

/H<n>

/help

/I<dir>

/J

/LD

/LDd

/link

/MD

/MDd

/MP

/MT

/MTd

/nologo

/O1

/O2

/Ob<n>

/Od

/Oi[-]

/Os

/Ot

/Ox

/Oy[-]

/P

/QIfist[-]

/RTC{1|c|s|u}

/showIncludes

/TC

/Tc<source file>

/TP

/Tp<source file>

/u

/U<name>

 Intel® C++ Compiler Classic Developer Guide and Reference

624

/V<string>

/vd<n>

/vmb

/vmg

/vmm

/vms

/vmv

/w

/W<n>

/Wall

/wd<n>

/we<n>

/WL

/Wp64

/WX

/X

/Y-

/Yc[<file>]

/Yu[<file>]

/Z7

/Za

/Zc:<arg1>[, <arg2>]

/Ze

/Zg

/Zi

/ZI

/Zl

/Zp[<n>]

/Zs

Compiler Reference

625

Floating-Point Operations
This section contains information about floating-point operations, including IEEE floating-point operations,
and it provides guidelines that can help you improve the performance of floating-point applications.

Programming Tradeoffs in Floating-Point Applications
In general, the programming objectives for floating-point applications fall into the following categories:

• Accuracy: The application produces results that are close to the correct result.
• Reproducibility and portability: The application produces consistent results across different runs,

different sets of build options, different compilers, different platforms, and different architectures.
• Performance: The application produces fast, efficient code.

Based on the goal of an application, you will need to make tradeoffs among these objectives. For example, if
you are developing a 3D graphics engine, performance may be the most important factor to consider, with
reproducibility and accuracy as secondary concerns.

The compiler provides several options that allow you to tune your applications based on specific objectives.
Broadly speaking, there are the floating-point specific options, such as the -fp-model (Linux* and macOS)
or /fp (Windows*) option, and the fast-but-low-accuracy options, such as the [Q]imf-max-error option.
The compiler optimizes and generates code differently when you specify these different compiler options.
Select appropriate compiler options by carefully balancing your programming objectives and making tradeoffs
among these objectives. Some of these options may influence the choice of math routines that are invoked.

Many routines in the libirc, libm, and svml library are more highly optimized for Intel microprocessors than
for non-Intel microprocessors.

Use Floating-Point Options
Take the following code as an example:

float t0, t1, t2;
 ...
t0=t1+t2+4.0f+0.1f;

If you specify the -fp-model extended (Linux and macOS) or /fp:extended (Windows) option in favor of
accuracy, the compiler generates the following assembly code:

fld DWORD PTR _t1
fadd DWORD PTR _t2
fadd DWORD PTR _Cnst4.0
fadd DWORD PTR _Cnst0.1
fstp DWORD PTR _t0

This code maximizes accuracy because it utilizes the highest mantissa precision available on the target
platform. The code performance might suffer when managing the x87 stack, and it might yield results that
cannot be reproduced on other platforms that do not have an equivalent extended precision type.

If you specify the -fp-model source (Linux and macOS) or /fp:source (Windows) option in favor of
reproducibility and portability, the compiler generates the following assembly code:

movss xmm0, DWORD PTR _t1
addss xmm0, DWORD PTR _t2
addss xmm0, DWORD PTR _Cnst4.0
addss xmm0, DWORD PTR _Cnst0.1
movss DWORD PTR _t0, xmm0

 Intel® C++ Compiler Classic Developer Guide and Reference

626

This code maximizes portability by preserving the original order of the computation, and by using the IEEE
single-precision type for all computations. It is not as accurate as the previous implementation, because the
intermediate rounding error is greater compared to extended precision. It is not the highest performance
implementation, because it does not take advantage of the opportunity to pre-compute 4.0f + 0.1f.
If you specify the -fp-model fast (Linux and macOS) or /fp:fast (Windows) option in favor of
performance, the compiler generates the following assembly code:

movss xmm0, DWORD PTR _Cnst4.1
addss xmm0, DWORD PTR _t1
addss xmm0, DWORD PTR _t2
movss DWORD PTR _t0, xmm0

This code maximizes performance using Intel® Streaming SIMD Extensions (Intel® SSE) instructions and pre-
computing 4.0f + 0.1f. It is not as accurate as the first implementation, due to the greater intermediate
rounding error. It does not provide reproducible results like the second implementation, because it must
reorder the addition to pre-compute 4.0f + 0.1f. All compilers, on all platforms, at all optimization levels
do not reorder the addition in the same way.

For many other applications, the considerations may be more complicated.

Use Fast-But-Low-Accuracy Options
The fast-but-low-accuracy options provide an easy way to control the accuracy of mathematical functions and
utilize performance/accuracy tradeoffs offered by the Intel® oneAPI Math Kernel Library (oneMKL). You can
specify accuracy, via a command line interface, for all math functions or a selected set of math functions at
the level more precise than low, medium, or high.

You specify the accuracy requirements as a set of function attributes that the compiler uses for selecting an
appropriate function implementation in the math libraries. Examples using the attribute, max-error, are
presented here. For example, use the following option to specify the relative error of two ULPs for all single,
double, long double, and quad precision functions:

-fimf-max-error=2
To specify twelve bits of accuracy for a sin function, use:

-fimf-accuracy-bits=12:sin
To specify relative error of ten ULPs for a sin function, and four ULPs for other math functions called in the
source file you are compiling, use:

-fimf-max-error=10:sin-fimf-max-error=4
On Windows systems, the compiler defines the default value for the max-error attribute depending on
the /fp option and /Qfast-transcendentals settings. In /fp:fast mode, or if fast but less accurate math
functions are explicitly enabled by /Qfast-transcendentals-, then the compiler sets a max-error=4.0 for
the call. Otherwise, it sets a max-error=0.6.

Dispatching of Math Routines
The compiler optimizes calls to routines from the libm and svml libraries into direct CPU-specific calls, when
the compilation configuration specifies the target CPU where the code is tuned, and if the set of instructions
available for the code compilation is not narrower than the set of instructions available in the tuning target
CPU.

For example:

Compiler Reference

627

• The code containing calls to the exp() library function and compiled with -mtune=corei7-avx (specifies
tuning target CPU that supports Intel® Advanced Vector Extensions (Intel® AVX)) and -QxCORE-AVX2/-
march=core-avx2 (specifies Intel® Advanced Vector Extensions 2 (Intel® AVX2) instructions set) call the
exp() routine that is optimized for processors with Intel® AVX support. This code provides the best
performance for these processors.

• The same code, compiled with -mtune=core-avx2 and -QxAVX/-march=corei7-avx, calls a library
dispatch routine that picks the optimal CPU specific version of the exp() routine in runtime. Dispatching
cannot be avoided because the instruction set does not allow the use of Intel® AVX2. Dynamic dispatching
provides the best performance with the Intel® AVX2 CPU.

In the second example, if some portions of code extend the available instructions set by means of the
_allow_cpu_features() or the _may_i_use_cpu_feature() intrinsic, then the compiler might produce
direct calls to Intel® AVX2 specific versions of exp().

The dispatching optimization applies to the exp() routine, and to the other math routines with CPU specific
implementations in the libraries. The dispatching optimization can be disabled using the
-fimf-force-dynamic-target (or Qimf-force-dynamic-target) option. This option specifies a list of
math routines that are improved with a dynamic dispatcher.

See Also
Using -fp-model(/fp) Options
fimf-max-error, Qimf-max-error compiler option

Floating-point Optimizations
Application performance is an important goal of the Intel® C++ Compiler, even at default optimization levels.
A number of optimizations involve transformations that might affect the floating-point behavior of the
application, such as evaluation of constant expressions at compile time, hoisting invariant expressions out of
loops, or changes in the order of evaluation of expressions. These optimizations usually help the compiler to
produce the most efficient code possible. However, the optimizations might be contrary to the floating-point
requirements of the application.

Some optimizations are not consistent with strict interpretation of the ANSI or ISO standards for C and C++.
Such optimizations can cause differences in rounding and small variations in floating-point results that may
be more or less accurate than the ANSI-conformant result.

The Intel® C++ Compiler provides the -fp-model (Linux* and macOS) or /fp (Windows*) option, which
allows you to control the optimizations performed when you build an application. The option allows you to
specify the compiler rules for:

• Value safety: Whether the compiler may perform transformations that could affect the result. For
example, in the SAFE mode, the compiler won't transform x/x to 1.0 because the value of x at runtime
might be a zero or a NaN . The UNSAFE mode is the default.

• Floating-point expression evaluation: How the compiler should handle the rounding of intermediate
expressions. For example, when double precision is specified, the compiler interprets the statement
t0=4.0f+0.1f+t1+t2; as t0=(float)(4.1+(double)t1+(double)t2);

• Floating-point contractions: Whether the compiler should generate fused multiply-add (FMA)
instructions on processors that support them. When enabled, the compiler may generate FMA instructions
for combining multiply and add operations; when disabled, the compiler must generate separate multiply
and add instructions with intermediate rounding.

• Floating-point environment access: Whether the compiler must account for the possibility that the
program might access the floating-point environment, either by changing the default floating-point control
settings or by reading the floating-point status flags. This is disabled by default. You can use the
-fp-model:strict (Linux* and macOS) /fp:strict (Windows*) option to enable it.

• Precise floating-point exceptions: Whether the compiler should account for the possibility that
floating-point operations might produce an exception. This is disabled by default. You can use
-fp-model:strict (Linux* and macOS) or /fp:strict (Windows*); or -fp-model:except (Linux*
and macOS) or /fp:except (Windows*) to enable it.

 Intel® C++ Compiler Classic Developer Guide and Reference

628

Consider the following example:

double a=1.5; int x=0; ...
 __try {
 int t0=a; //raises inexact
 x=1;
 a*=2;
 } __except(1) {
 printf("SEH Exception: x=%d\n", x);
}

Without precise floating-point exceptions, the result is SEH Exception: x=1; with precision floating-point
exceptions, the result is SEH Exception: x=0.

The following table describes the impact of different keywords of the option on compiler rules and
optimizations:

Keyword Value Safety Floating-Point
Expression
Evaluation

Floating-Point
Contractions

Floating-Point
Environment
Access

Precise
Floating-
Point
Exceptions

precise
source
double
extended

Safe Varies
Source
Double
Extended

Yes No No

strict Safe Varies No Yes Yes

consistent Safe Varies No No No

fast=1
(default)

Unsafe Unknown Yes No No

fast=2 Very unsafe Unknown Yes No No

except
except-

Unaffected
Unaffected

Unaffected
Unaffected

Unaffected
Unaffected

Unaffected
Unaffected

Yes
No

NOTE
It is illegal to specify the except keyword in an unsafe safety mode.

Based on the objectives of an application, you can choose to use different sets of compiler options and
keywords to enable or disable certain optimizations, so that you can get the desired result.

See Also
Using -fp-model (/fp) Option

Use the -fp-model, /fp Option
The -fp-model (Linux and macOS) or /fp (Windows) option allows you to control the optimizations on
floating-point data. You can use this option to tune the performance, level of accuracy, or result consistency
for floating-point applications across platforms and optimization levels.

For applications that do not require support for denormalized numbers, the -fp-model or /fp option can be
combined with the [Q]ftz option to flush denormalized results to zero. This flush can improve runtime
performance on processors based on all Intel® architectures.

Compiler Reference

629

You can use keywords to specify the semantics to be used. The keywords specified for this option may
influence the choice of math routines that are invoked. Many routines in the libirc, libm, and libsvml libraries
are more highly optimized for Intel microprocessors than for non-Intel microprocessors. Possible values of
the keywords are as follows:

Keyword Description

precise Enables value-safe optimizations on floating-point data.

fast[=1|2] Enables more aggressive optimizations on floating-point data.

consistent Enables consistent, reproducible results for different optimization levels
or between different processors of the same architecture. This setting is
equivalent to the use of the following options:

Windows: /fp:precise /Qfma- /Qimf-arch-consistency:true
Linux and macOS: -fp-model precise -no-fma -fimf-arch-
consistency=true

strict Enables precise and except , disables contractions, and enables
pragma stdc fenv_access.

source Rounds intermediate results to source-defined precision and enables
value-safe optimizations.

double Rounds intermediate results to 53-bit (double) precision and enables
value-safe optimizations.

extended Rounds intermediate results to 64-bit (extended) precision and enables
value-safe optimizations.

[no-]except (Linux and
macOS) or
except[-] (Windows)

Determines whether strict floating-point exception semantics are used.

The default value of the option is -fp-model fast=1 or /fp:fast=1, which means that the compiler uses
more aggressive optimizations on floating-point calculations.

NOTE
Using the default option keyword -fp-model fast or /fp:fast, you may get significant differences
in your result depending on whether the compiler uses x87 or Intel® Streaming SIMD Extensions
(Intel® SSE)/Intel® Advanced Vector Extensions (Intel® AVX) instructions to implement floating-point
operations. Results are more consistent when the other option keywords are used.

Several examples are provided to illustrate the usage of the keywords. These examples show:

• A small example of source code.

NOTE
The same source code is considered in all the included examples.

• The semantics that are used to interpret floating-point calculations in the source code.
• One or more possible ways the compiler may interpret the source code.

NOTE
There are several ways that the compiler may interpret the code; we show just some of these
possibilities.

 Intel® C++ Compiler Classic Developer Guide and Reference

630

-fp-model fast or /fp:fast
Example source code:

Example

float t0, t1, t2;
...
t0 = 4.0f + 0.1f + t1 + t2;

When this option is specified, the compiler applies the following semantics:

• Additions may be performed in any order.
• Intermediate expressions may use single, double, or extended double precision.
• The constant addition may be pre-computed, assuming the default rounding mode.

Using these semantics, some possible ways the compiler may interpret the original code are given below:

Example

float t0, t1, t2;
 ...
t0 = (float)((double)t1 + (double)t2) + 4.1f;
float t0, t1, t2;
 ...
t0 = (t1 + t2) + 4.1f;
float t0, t1, t2;
 ...
t0 = (t1 + 4.1f) + t2;

-fp-model extended or /fp:extended
This setting is equivalent to -fp-model precise on Linux operating systems based on the IA-32
architecture.

Example source code:

float t0, t1, t2;
 ...
t0 = 4.0f + 0.1f + t1 + t2;

When this option is specified, the compiler applies the following semantics:

• Additions are performed in program order
• Intermediate expressions use extended double precision
• The constant addition may be pre-computed, assuming the default rounding mode

Using these semantics, a possible way the compiler may interpret the original code is shown below:

float t0, t1, t2;
 ...
t0 = (float)(((long double)4.1 + (long double)t1) + (long double)t2);

-fp-model source or /fp:source
This setting is equivalent to -fp-model precise or /fp:precise on systems based on the Intel® 64
architecture.

Compiler Reference

631

Source code example

float t0, t1, t2;
...
t0 = 4.0f + 0.1f + t1 + t2;

When this option is specified, the compiler applies the following semantics:

• Additions are performed in program order.
• Intermediate expressions use the precision specified in the source code, that is, single precision.
• The constant addition may be pre-computed, assuming the default rounding mode.

Using these semantics, a possible way the compiler may interpret the original code is shown below:

Example

float t0, t1, t2;
 ...
t0 = ((4.1f + t1) + t2);

-fp-model double or /fp:double
This setting is equivalent to -fp-model precise or /fp:precise on Windows systems based on the IA-32
architecture.

Example source code:

float t0, t1, t2;
 ...
t0 = 4.0f + 0.1f + t1 + t2;

When this option is specified, the compiler applies the following semantics:

• Additions are performed in program order
• Intermediate expressions use double precision
• The constant addition may be pre-computed, assuming the default rounding mode

Using these semantics, a possible way the compiler may interpret the original code is shown below:

float t0, t1, t2;
 ...
t0 = (float)(((double)4.1 + (double)t1) + (double)t

-fp-model strict or /fp:strict

Source code example

float t0, t1, t2;
 ...
t0 = 4.0f + 0.1f + t1 + t2;

When this option is specified, the compiler applies the following semantics:

• Additions are performed in program order
• Expression evaluation matches expression evaluation under keyword precise.
• The constant addition is not pre-computed because there is no way to tell what rounding mode will be

active when the program runs.

Using these semantics, a possible way the compiler may interpret the original code is shown below:

 Intel® C++ Compiler Classic Developer Guide and Reference

632

Example

float t0, t1, t2;
 ...
t0 = (float)((((long double)4.0f + (long double)0.1f) + (long double)t1) + (long double)t2);

See Also
fp-model, fp compiler option

Denormal Numbers
A normalized number is a number for which both the exponent (including bias) and the most significant bit of
the mantissa are non-zero. For such numbers, all the bits of the mantissa contribute to the precision of the
representation.

The smallest normalized single-precision floating-point number greater than zero is about 1.1754943-38.
Smaller numbers are possible, but those numbers must be represented with a zero exponent and a mantissa
whose leading bit(s) are zero, which leads to a loss of precision. These numbers are called denormalized
numbers or denormals(newer specifications refer to these as subnormal numbers).

Denormal computations use hardware and/or operating system resources to handle denormals; these can
cost hundreds of clock cycles. Denormal computations take much longer to calculate than normal
computations.

There are several ways to avoid denormals and increase the performance of your application:

• Scale the values into the normalized range.
• Use a higher precision data type with a larger range.
• Flush denormals to zero.

See Also
Reducing Impact of Denormal Exceptions
Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture

Institute of Electrical and Electronics Engineers, Inc*. (IEEE) web site for information about the current
floating-point standards and recommendations

Floating-Point Environment
The floating-point environment is a collection of registers that control the behavior of the floating-point
machine instructions and indicate the current floating-point status. The floating-point environment can
include rounding mode controls, exception masks, flush-to-zero (FTZ) controls, exception status flags, and
other floating-point related features.

For example, bit 15 of the MXCSR register enables the flush-to-zero mode, which controls the masked
response to an single-instruction multiple-data (SIMD) floating-point underflow condition.

The floating-point environment affects most floating-point operations; therefore, correct configuration to
meet your specific needs is important. For example, the exception mask bits define which exceptional
conditions will be raised as exceptions by the processor. In general, the default floating-point environment is
set by the operating system. You don't need to configure the floating-point environment unless the default
floating-point environment does not suit your needs.

There are several methods available if you want to modify the default floating-point environment. For
example, you can use inline assembly, compiler built-in functions, library functions, or command line options.

Changing the default floating-point environment affects runtime results only. This does not affect any
calculations that are pre-computed at compile time.

Compiler Reference

633

If strict reproducibility and consistency are important do not change the floating point environment without
also using either -fp-model strict (Linux* or macOS) or /fp:strict (Windows*) option or pragma
fenv_access.

See Also
Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture

Set the FTZ and DAZ Flags
In Intel® processors, the flush-to-zero (FTZ) and denormals-are-zero (DAZ) flags in the MXCSR register are
used to control floating-point calculations. Intel® Streaming SIMD Extensions (Intel® SSE) and Intel®
Advanced Vector Extensions (Intel® AVX) instructions, including scalar and vector instructions, benefit from
enabling the FTZ and DAZ flags. Floating-point computations using the Intel® SSE and Intel® AVX instructions
are accelerated when the FTZ and DAZ flags are enabled. This improves the application's performance.

Use the [Q]ftz option to flush denormal results to zero when the application is in the gradual underflow
mode. This option may improve performance if the denormal values are not critical to the application's
behavior. The [Q]ftz option, when applied to the main program, sets the FTZ and the DAZ hardware flags.
The negative forms of the [Q]ftz option (-no-ftz for Linux* and macOS*, and /Qftz- for Windows*)
leave the flags as they are.

The following table describes how the compiler processes denormal values based on the status of the FTZ
and DAZ flags:

Flag When set to ON, the
compiler...

When set to OFF, the
compiler...

Supported on

FTZ ...sets denormal results from
floating-point calculations to
zero.

...does not change the
denormal results.

Intel® 64 and
some IA-32
architectures

DAZ ...treats denormal values
used as input to floating-point
instructions as zero.

...does not change the
denormal instruction inputs.

Intel® 64 and
some IA-32
architectures

• FTZ and DAZ are not supported on all IA-32 architectures. The FTZ flag is supported only on IA-32
architectures that support Intel® SSE instructions.

• On systems based on the IA-32 and Intel® 64 architectures, FTZ only applies to Intel® SSE and Intel® AVX
instructions. If the application generates denormals using x87 instructions, FTZ does not apply.

• DAZ and FTZ flags are not compatible with the IEEE 754 standard, and should only be enabled when
compliance to the IEEE standard is not required.

Options for [Q]ftz are performance options. Setting these options does not guarantee that all denormals in
a program are flushed to zero. They only cause denormals generated at run-time to be flushed to zero.

On Intel® 64 and IA-32 systems, the compiler, by default, inserts code into the main routine to set the FTZ
and DAZ flags. When the [Q]ftz option is used on IA-32 systems with the option –msse2 or /arch:sse2,
the compiler inserts code to that conditionally sets the FTZ/DAZ flags based on a run-time processor check.
Using the negative form of [Q]ftz prevents the compiler from inserting any code that sets FTZ or DAZ flags.

When the [Q]ftz option is used in combination with an Intel® SSE-enabling option on systems based on the
IA-32 architecture (for example, -msse2 or /arch:sse2), the compiler inserts code in the main routine to
set FTZ and DAZ. When the option [Q]ftz is used without an Intel® SSE-enabling option, the compiler inserts
code that conditionally sets FTZ or DAZ based on a run-time processor check. The negative form of [Q]ftz
prevents the compiler from inserting any code that might set FTZ or DAZ.

The [Q]ftz option only has an effect when the main program is being compiled. It sets the FTZ/DAZ mode
for the process. The initial thread, and any subsequently created threads, operate in the FTZ/DAZ mode.

On systems based on Intel® 64 and IA-32 architectures, every optimization option O level, except O0, sets
[Q]ftz.

 Intel® C++ Compiler Classic Developer Guide and Reference

634

If this option produces undesirable results of the numerical behavior of the program, turn the FTZ/DAZ mode
off by using the negative form of [Q]ftz in the command line while still benefitting from the O3
optimizations.

Manually set the FTZ flags with the following macros:

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON)
Manually set the DAZ flags with the following macros:

_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON)
The prototypes for these macros are in xmmintrin.h (FTZ) and pmmintrin.h (DAZ).

See Also
ftz, Qftz compiler option

Checking the Floating-point Stack State
On systems based on the IA-32 architecture, when an application calls a function that returns a floating-point
value, the returned floating-point value is supposed to be on the top of the floating-point stack. If the return
value is not used, the compiler must pop the value off of the floating-point stack in order to keep the
floating-point stack in the correct state.

On systems based on Intel® 64 architecture, floating-point values are usually returned in the xmm0 register.
The floating-point stack is used only when the return value is a long double on Linux* and macOS systems.

If the application calls a function without defining or incorrectly defining the function's prototype, the
compiler cannot determine if the function must return a floating-point value. Consequently, the return value
is not popped off the floating-point stack if it is not used. This can cause the floating-point stack to overflow.

The overflow of the stack results in two undesirable situations:

• A NaN value gets involved in the floating-point calculations
• The program results become unpredictable; the point where the program starts making errors can be

arbitrarily far away from the point of the actual error.

For systems based on the IA-32 and Intel® 64 architectures, the [Q]fp-stack-check option checks whether a
program makes a correct call to a function that should return a floating-point value. If an incorrect call is
detected, the option places a code that marks the incorrect call in the program. The [Q]fp-stack-check option
marks the incorrect call and makes it easy to find the error.

NOTE
The [Q]fp-stack-check option causes significant code generation after every function/subroutine call to
ensure that the floating-point stack is maintained in the correct state. Therefore, using this option
slows down the program being compiled. Use the option only as a debugging aid to find floating point
stack underflow/overflow problems, which can be otherwise hard to find.

See Also
fp-stack-check, Qfp-stack-check compiler option

Tuning Performance
This section describes several programming guidelines that can help you improve the performance of
floating-point applications, including:

• Handling Floating-point Array Operations in a Loop Body
• Reducing the Impact of Denormal Exceptions
• Avoiding Mixed Data Type Arithmetic Expressions

Compiler Reference

635

• Using Efficient Data Types

Handling Floating-point Array Operations in a Loop Body
Following the guidelines below will help auto-vectorization of the loop.

• Statements within the loop body may contain float or double operations (typically on arrays). The
following arithmetic operations are supported: addition, subtraction, multiplication, division, negation,
square root, MAX, MIN, and mathematical functions such as SIN and COS.

• Writing to a single-precision scalar/array and a double scalar/array within the same loop decreases the
chance of auto-vectorization due to the differences in the vector length (that is, the number of elements
in the vector register) between float and double types. If auto-vectorization fails, try to avoid using mixed
data types.

NOTE
The special __m64, __m128, and __m256 datatypes are not vectorizable. The loop body cannot contain
any function calls. Use of the Intel® Streaming SIMD Extensions (Intel® SSE) and Intel® Advanced
Vector Extensions (Intel® AVX) intrinsics (for example, mm_add_ps) is not allowed.

Reducing the Impact of Denormal Exceptions
Denormalized floating-point values are those that are too small to be represented in the normal manner; that
is, the mantissa cannot be left-justified. Denormal values require hardware or operating system interventions
to handle the computation, so floating-point computations that result in denormal values may have an
adverse impact on performance.

There are several ways to handle denormals to increase the performance of your application:

• Scale the values into the normalized range
• Use a higher precision data type with a larger range
• Flush denormals to zero

For example, you can translate them to normalized numbers by multiplying them using a large scalar
number, doing the remaining computations in the normal space, then scaling back down to the denormal
range. Consider using this method when the small denormal values benefit the program design.

Consider using a higher precision data type with a larger range; for example, by converting variables
declared as float to be declared as double. Understand that making the change can potentially slow down
your program. Storage requirements will increase, which will increase the amount of time for loading and
storing data from memory. Higher precision data types can also decrease the potential throughput of Intel®
Streaming SIMD Extensions (Intel® SSE) and Intel® Advanced Vector Extensions (Intel® AVX) operations.

If you change the type declaration of a variable, you might also need to change associated library calls,
unless these are generic; ; for example, cos() instead of cosf().. Another strategy that might result in
increased performance is to increase the amount of precision of intermediate values using the
-fp-model [double|extended] option. However, this strategy might not eliminate all denormal
exceptions, so you must experiment with the performance of your application. You should verify that the gain
in performance from eliminating denormals is greater than the overhead of using a data type with higher
precision and greater dynamic range.

In many cases, denormal numbers can be treated safely as zero without adverse effects on program results.
Depending on the target architecture, use flush-to-zero (FTZ) options.

IA-32 and Intel® 64 Architectures

IA-32 and Intel® 64 architectures take advantage of the FTZ (flush-to-zero) and DAZ (denormals-are-zero)
capabilities of Intel® Streaming SIMD Extensions (Intel® SSE) instructions.

 Intel® C++ Compiler Classic Developer Guide and Reference

636

By default, the Intel® C++ Compiler inserts code into the main routine to enable FTZ and DAZ at optimization
levels higher than O0. To enable FTZ and DAZ at O0, compile the source file containing main() PROGRAM
using compiler option [Q]ftz. When the [Q]ftz option is used on IA-32-based systems with the option
–mia32 (Linux*) or /arch:IA32 (Windows*), the compiler inserts code to conditionally enable FTZ and DAZ
flags based on a run-time processor check. IA-32 is not available on macOS*.

NOTE
After using flush-to-zero, ensure that your program still gives correct results when treating denormal
values as zero.

Avoiding Mixed Data Type Arithmetic Expressions
Avoid mixing integer and floating-point (float, double, or long double) data in the same computation.
Expressing all numbers in a floating-point arithmetic expression (assignment statement) as floating-point
values eliminates the need to convert data between fixed and floating-point formats. Expressing all numbers
in an integer arithmetic expression as integer values also achieves this. This improves run-time performance.

For example, assuming that I and J are both int variables, expressing a constant number (2.0) as an integer
value (2) eliminates the need to convert the data. The following examples demonstrate inefficient and
efficient code.

Inefficient code:

int I, J;
 I = J / 2.0
;

Efficient code:

int I, J;
 I = J / 2;

Using Efficient Data Types
In cases where more than one data type can be used for a variable, consider selecting the data types based
on the following hierarchy, listed from most to least efficient:

• char
• short
• int
• long
• long long
• float
• double
• long double

NOTE
In an arithmetic expression, you should avoid mixing integer and floating-point data.

You can use integer data types (int, int long, etc.) in loops to improve floating point performance. Convert
the data type to integer data types, process the data, then convert the data to the old type.

See Also
Programming Guidelines for Vectorization
Setting the FTZ and DAZ Flags

Compiler Reference

637

Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture

IEEE Floating-point Operations

Understanding the IEEE Standard for Floating-point Arithmetic, IEEE 754-2008
This version of the compiler uses a close approximation to the IEEE Standard for Floating-point Arithmetic,
version IEEE 754-2008, unless otherwise stated. This standard is common to many microcomputer-based
systems due to the availability of fast processors that implement the required characteristics.

This section outlines the characteristics of the IEEE 754-2008 standard and its implementation in the
compiler. Except as noted, the description refers to both the IEEE 754-2008 standard and the compiler
implementation.

Floating-point Formats
This IEEE 754-2008 standard specifies formats and methods for Floating-point representation in computer
systems, and recommends formats for data interchange. The exception conditions are defined, and the
standard handling of these conditions is specified below. The binary counterpart Floating-point exception
functions are described in ISO C99. The decimal Floating-point exception functions are defined in the fenv.h
header file. The compiler supports decimal floating point types in C and C++. The decimal floating point
formats are defined in the IEEE 754-2008 standard.

In C, these decimal floating types are supported:

• _Decimal32
• _Decimal64
• _Decimal128
In C++ for Windows and Linux, these decimal classes are supported:

• decimal32
• decimal64
• decimal128

NOTE To use this feature in C++ on Linux, GCC 4.5 or later is required.

The decimal Floating-point is not supported in C++ for macOS.

To ensure correct decimal Floating-point behavior, you must define __STDC_WANT_DEC_FP__ before any
standard headers are included. This is required for the declaration of decimal macros and library functions in
order to ensure correct decimal Floating-point results at run-time.

Example: Linux

#include <iostream>
#define __STDC_WANT_DEC_FP__
#include <decimal/decimal>
typedef std::decimal::decimal32 _Decimal32;
typedef std::decimal::decimal64 _Decimal64;
typedef std::decimal::decimal128 _Decimal128;
#include <dfp754.h>

using namespace std;
using namespace std::decimal;

int main() {

 Intel® C++ Compiler Classic Developer Guide and Reference

638

 std::decimal::decimal32 d = 4.7df;
 std::cout << decimal_to_long_double(d) << std::endl;
 return 0;
}

Example: Windows

#include <iostream>
#define __STDC_WANT_DEC_FP__
#include <decimal>
#include <dfp754.h>

using namespace std;
using namespace std::decimal;

int main() {
 std::decimal::decimal32 d = 4.7df;
 std::cout << decimal_to_long_double(d) << std::endl;
 return 0;
}

Functions to Check Decimal Floating-point Status
Use these Floating-point exception functions to detect exceptions that occur during decimal Floating-point
arithmetic:

Floating-point Functions

Function Brief Description

fe_dec_feclearexcept() Clears the supported Floating-point exceptions.

fe_dec_fegetexceptflag Stores an implementation-defined representation of the states of the
Floating-point status flags.

fe_dec_feraiseexcept Raises the supported Floating-point exceptions.

fe_dec_fesetexceptflag Sets the Floating-point status flags.

fe_dec_fetestexcept() Determines which of a specified subset of the floating point exception
flags are currently set.

Special Values
The following list provides a brief description of the special values that the Intel® C++ Compiler supports.

• Signed Zero: The sign of zero is the same as the sign of a nonzero number. Comparisons consider +0 to
be equal to -0. A signed zero is useful in certain numerical analysis algorithms, but in most applications
the sign of zero is invisible.

• Denormalized Numbers: Denormalized numbers (denormals) fill the gap between the smallest positive
and the smallest negative normalized number, otherwise only (+/-) 0 occurs in the interval. Denormalized
numbers extend the range of computable results by allowing for gradual underflow.

Systems based on the IA-32 architecture support a Denormal Operand status flag. When this is set, at
least one of the input operands to a Floating-point operation is a denormal. The Underflow status flag is
set when a number loses precision and becomes a denormal.

• Signed Infinity: Infinities are the result of arithmetic in the limiting case of operands with arbitrarily
large magnitude. They provide a way to continue when an overflow occurs. The sign of an infinity is
simply the sign you obtain for a finite number in the same operation as the finite number approaches an
infinite value.

Compiler Reference

639

By retrieving the status flags, you can differentiate between an infinity that results from an overflow and
one that results from division by zero. The compiler treats infinity as signed by default. The output value
of infinity is +Infinity or -Infinity.

• Not a Number: Not a Number (NaN) may result from an invalid operation. For example, 0/0 and
SQRT(-1) result in NaN. In general, an operation involving a NaN produces another NaN. Because the
fraction of a NaN is unspecified, there are many possible NaNs

The compiler treats all NaNs identically, but there are two classes of NaNs:

• Signaling NaNs: Have an initial mantissa bit of 0. They usually raise an invalid exception when used in
an operation.

• Quiet NaNs: Have an initial mantissa bit of 1.

The floating-point hardware usually converts a signaling NaN into a quiet NaN during computational
operations. An invalid exception is raised and the resulting Floating-point value is a quiet NaN.

Attributes
Attributes are a way to provide additional information about a declaration to the compiler. The C+11 attribute
syntax is consistent with the C2x standard.

Use Attributes
The compiler supports three ways to add attributes to your program:

• Gnu Syntax

__attribute__((attribute_name(arguments)))
• Microsoft Syntax

__declspec(attribute_name(argument))
• C++11 Standardized Attribute Syntax (part of the C++11 language standard)

[[attribute_name(arguments)]]
[[attribute-namespace :: attribute_name(arguments)]]

Some attributes are available for both Intel® microprocessors and non-Intel microprocessors but they may
perform additional optimizations for Intel® microprocessors than they perform for non-Intel microprocessors.
Refer to the individual attribute name for a detailed description.

align
Directs the compiler to align the variable to a specified
boundary and a specified offset.

Syntax

Windows* OS:

__declspec(align(n[,off]))
Linux* OS:

__attribute__((aligned(n[,off])))
__attribute__((align(n[,off])))
For portability on Linux* OS, you should use the syntax form __attribute__((aligned(n[, off]))). This
form is compatible with the GNU compiler.

 Intel® C++ Compiler Classic Developer Guide and Reference

640

Arguments

n Specifies the alignment. The compiler will align the variable to an n-
byte boundary.

off Optional. Specifies the offset. If this argument is omitted, the value is
0.

Description

This keyword directs the compiler to align the variable to an n-byte boundary with offset off within each n-
byte boundary. The address of the variable is address mod n=off.

NOTE
If you require 8-byte alignment, we recommend you specify 16 for n, instead of 8. When 8
is used, the compiler interprets the value as a suggestion and you may not get the
requested 8-byte alignment, depending on various heuristics.

align_value
Provides the ability to add a pointer alignment value
to a pointer typedef declaration.

Syntax

Windows* OS:

__declspec(align_value(alignment))
Linux* OS:

__attribute__((align_value(alignment)))

Arguments

alignment Specifies the alignment (8, 16, 32, 64, 128, 256,...) for what the
pointer points to.

Description

This keyword can be added to a pointer typedef declaration to specify the alignment value of pointers
declared for that pointer type.

This indicates to the compiler that the data referenced by the designated pointer is aligned by the indicated
value, and the compiler can generate code based on that assumption. If this attribute is used incorrectly, and
the data is not aligned to the designated value, the behavior is undefined.

avoid_false_share
Provides the ability to pad and/or align the defined
variable such that it will not be subject to false cache
line sharing with any other variable.

Syntax

Windows* OS:

__declspec(avoid_false_share(identifier))variable definition

Compiler Reference

641

Linux* OS:

__attribute__((avoid_false_share(identifier)))variable definition

Arguments

identifier Specifies the string that will be used to identify one or more variables.
Variables with the same identifier do not need protection from false
sharing.

variable definition Specifies the variable to be padded or aligned.

Description

This keyword indicates to the compiler that it should allocate the variable through padding and/or alignment
such that it will not share the cache line with other variables unless they share the same identifier. This
keyword must occur on a variable definition in function, global, or namespace scope. It is not permitted on a
non-static class member or on a function argument.

If you specify an identifier, the variable definition does not need to be protected from false sharing with other
variables that are similarly declared with the same identifier. If the variable definition is in function scope, the
scope of the identifier is the current function. If the variable definition is in namespace or global scope, the
scope of the identifier is the current compilation unit.

This keyword is supported for scalars and arrays and is not supported for structure fields, function
arguments, functions, and references.

code_align
Specifies the byte alignment for a routine.

Syntax

Windows* OS:

__declspec(code_align(n))
Linux* OS, macOS:

__attribute__((code_align(n)))

Arguments

n Optional. A positive integer indicating the number of bytes for the
minimum desired alignment boundary. Its value must be a power of 2,
between 1 and 4096, such as 1, 2, 4, 8, and so on.

If you specify 1 for n, no alignment is performed. If you do not specify
n, the default alignment is 16 bytes.

Description

This keyword must be placed on the routine to be aligned.

If anything inside the routine requires specific alignment k, the final routine alignment will be max(n,k).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

 Intel® C++ Compiler Classic Developer Guide and Reference

642

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Notice revision #20201201

See Also
cpu_dispatch, cpu_specific attribute
Processor Targeting

concurrency_safe
Guides the compiler to parallelize more loops and
straight-line code.

Syntax

Windows* OS:

__declspec(concurrency_safe(clause))
Linux* OS:

__attribute__((concurrency_safe(clause)))

Arguments

clause Is one of the following:

cost(cycles): Specifies the execution cycles of the annotated function
for the compiler to perform parallelization profitability analysis while
compiling its enclosing loops or blocks. The value of cycles is a 2-
byte unsigned integer (unsigned short); its maximal value is 2^16-1.
If the cycle count is greater than 2^16-1, you should use profitable.

profitable: Specifies that the loops or blocks that contain calls to the
annotated function are profitable to parallelize.

Description

This keyword indicates to the compiler that there are no incorrect side-effects and no illegal (or improperly
synchronized) memory access interferences among multiple invocations of the annotated function or between
an invocation of this annotated function and other statements in the program, if they are executed
concurrently.

For every function that is marked with this keyword, you must ensure that its side effects (if any) are
acceptable (or expected), and the memory access interferences are properly synchronized.

const
Indicates that a function has no effect other than
returning a value and that it uses only its arguments
to generate that return value.

Syntax

Windows* OS:

__declspec(const)

Compiler Reference

643

Linux* OS:

__attribute__((const))

Arguments

None

Description

This keyword is equivalent to the gcc* attribute const and applies to function declarations.

cpu_dispatch, cpu_specific
Provides the ability to write one or more versions of a
function that execute only on a list of targeted
processors (cpu_dispatch). Provides the ability to
declare that a version of a function is targeted at
particular type(s) of processors (cpu_specific).

Syntax

Windows* OS:

__declspec(cpu_dispatch(cpuid, cpuid, ...))
__declspec(cpu_specific(cpuid))
Linux* OS:

__attribute__((cpu_dispatch(cpuid, cpuid, ...)))
__attribute__((cpu_specific(cpuid)))

Arguments

cpuid Possible values are:

atom: Intel® Atom™ processors with Intel® Supplemental Streaming
SIMD Extensions 3 (Intel® SSSE3)

atom_sse4_2: Intel® Atom™ processors with Intel® Streaming SIMD
Extensions 4.2 (Intel® SSE4.2)

atom_sse4_2_movbe: Intel® Atom™ processors with Intel® Streaming
SIMD Extensions 4.2 (Intel® SSE4.2) with MOVBE instructions enabled

broadwell: This is a synonym for core_5th_gen_avx
core_2nd_gen_avx: 2nd generation Intel® Core™ processor family
with support for Intel® Advanced Vector Extensions (Intel® AVX)

core_3rd_gen_avx: 3rd generation Intel® Core™ processor family with
support for Intel® Advanced Vector Extensions (Intel® AVX) including
the RDRND instruction

core_4th_gen_avx: 4th generation Intel® Core™ processor family with
support for Intel® Advanced Vector Extensions 2 (Intel® AVX2)
including the RDRND instruction

 Intel® C++ Compiler Classic Developer Guide and Reference

644

core_4th_gen_avx_tsx: 4th generation Intel® Core™ processor
family with support for Intel® Advanced Vector Extensions 2 (Intel®
AVX2) including the RDRND instruction, and support for Intel®
Transactional Synchronization Extensions (Intel® TSX)

core_5th_gen_avx: 5th generation Intel® Core™ processor family with
support for Intel® Advanced Vector Extensions 2 (Intel® AVX2)
including the RDSEED and Multi-Precision Add-Carry Instruction
Extensions (ADX) instructions

core_5th_gen_avx_tsx: 5th generation Intel® Core™ processor
family with support for Intel® Advanced Vector Extensions 2 (Intel®
AVX2) including the RDSEED and Multi-Precision Add-Carry Instruction
Extensions (ADX) instructions, and support for Intel® Transactional
Synchronization Extensions (Intel® TSX)

core_aes_pclmulqdq: Intel® Core™ processors with support for
Advanced Encryption Standard (AES) instructions and carry-less
multiplication instruction

core_i7_sse4_2: Intel® Core™ i7 processors with Intel® Streaming
SIMD Extensions 4.2 (Intel® SSE4.2) instructions

generic: Other Intel processors for IA-32 or Intel® 64 architecture or
compatible processors not provided by Intel Corporation

haswell: This is a synonym for core_4th_gen_avx
pentium: Intel® Pentium® processor

pentium_4: Intel® Pentium® 4 processors

pentium_4_sse3: Intel® Pentium® 4 processor with Intel® Streaming
SIMD Extensions 3 (Intel® SSE3) instructions, Intel® Core™ Duo
processors, Intel® Core™ Solo processors

pentium_ii: Intel® Pentium® II processors

pentium_iii: Intel® Pentium® III processors

pentium_iii_no_xmm_regs: Intel® Pentium® III processors with no
XMM registers

pentium_m: Intel® Pentium® M processors

pentium_mmx: Intel® Pentium® processors with MMX™ technology

pentium_pro: Intel® Pentium® Pro processors

Description

Use the cpu_dispatch keyword to provide a list of targeted processors, along with an empty function body/
function stub.

Use the cpu_specific keyword to declare each function version targeted at particular type(s) of processors

These feature are available only for Intel processors based on IA-32 or Intel® 64 architecture. They are not
available for non-Intel processors. Applications built using the manual processor dispatch feature may be
more highly optimized for Intel processors than for non-Intel processors.

See Also
Processor Targeting

Compiler Reference

645

mpx
Directs the compiler to pass Intel® Memory Protection
Extensions (Intel® MPX) bounds information along with
any pointer-typed parameters.

Syntax

Windows* OS:

__declspec(mpx)

Arguments

None

Description

When a function declared with this keyword is called, any pointer-typed parameters passed to the function
will also have Intel® MPX bounds information passed. If the called function returns a pointer-typed object, the
compiler will expect the function to return Intel® MPX bounds information along with the pointer object.
Similarly, if this keyword is applied to a function definition, the function will expect the caller to pass Intel®
MPX bounds information along with any pointer-type parameters. If the function returns a pointer-typed
object, Intel® MPX bounds information will be returned with the object.

NOTE
The usage of this attribute is intended for Windows code that contains hand-written Intel® MPX
enhancements based on Intel® MPX inline assembly or calls to Intel® MPX intrinsics, and where the
user does not wish to enable automatic Intel® MPX code generation.

target
Specifies a target for called functions or variables.

Syntax

Windows* OS:

__declspec(target(target-name))
Linux* OS:

__attribute__((target(target-name)))

Arguments

target-name Specifies the target name. Possible values are:

• arch=corei7
• arch=core2
• arch=atom
• mmx
• sse
• sse2
• sse3
• ssse3

 Intel® C++ Compiler Classic Developer Guide and Reference

646

• sse4
• sse4a
• sse4.1
• sse4.2
• popcnt
• aes
• pclmul
• avx
• avx2
• avx512f

Description

This keyword specifies that the called function or variable is also available on the target. Only functions or
variables marked with this attribute are available on the target, and only these functions can be called on the
target.

vector
Provides the ability to vectorize user-defined functions
and loops.

Syntax

Windows* OS:

__declspec(vector(clauses))
Linux* OS:

__attribute__((vector(clauses)))

Arguments

clauses Is one of the following:

processor clause, in the form processor(cpuid). This clause creates
a vector version of the function for the given target processor (cpuid).
See cpu_dispatch, cpu_specific for a list of supported values. The
default processor is determined by the implicit or explicit process- or
architecture-specific flag in the compiler command line.

vector length clause, in the form vectorlength(n), where n is a
vectorlength (vl) and must be an integer with the value 2, 4, 8, or 16.
This clause tells the compiler that each routine invocation at the call
site should execute the computation equivalent to n times the scalar
function execution.

linear clause, in the form linear(param1:step1 [, param2:step2]
…), where param is a scalar variable and step is a compile-time
integer constant expression. This clause tells the compiler that for
each consecutive invocation of the routine in a serial execution, the
value of param1 is incremented by step1, param2 is incremented by
step2, and so on. If more than one step is specified for a particular
variable, a compile-time error occurs. Multiple linear clauses are
merged as a union.

Compiler Reference

647

uniform clause, in the form uniform(param [, param,]…), where
param is a formal parameter of the specified function. This clause tells
the compiler that the values of the specified arguments can be
broadcast to all iterations as a performance optimization.

mask clause, in the form [no]mask. This clause tells the compiler to
generate a masked vector version of the routine.

Description

This keyword combines with the map operation at the call site to provide the data parallel semantics. When
multiple instances of the vector declaration are invoked in a parallel context, the execution order among
them is not sequenced.

vector_variant
Specifies a vector variant function that corresponds to
its original C/C++ scalar function. This vector variant
function can be invoked under vector context at call
sites.

Syntax

Windows* OS:

__declspec(vector_variant(clauses))
Linux* OS:

__attribute__((vector_variant(clauses)))

Arguments

clauses Is the following:

implements clause, in the form implements (<function declarator>)
[, <simd-clauses>]), where function declarator is the original scalar
function, and simd-clauses is one or more of the clauses allowed for
the vector attribute. The simd-clauses are optional.

Description

This attribute provides a means for programmers to describe the association between the vector variant
function and its corresponding scalar function. The compiler will use the vector variant to replace the scalar
call for a vectorized loop.

The following are restrictions for this attribute:

• A vector variant function can have only one vector_variant annotation.
• A vector variant annotation can have only one implements clause.
• A vector variant annotation applies to only one vector variant function, which must not have both mask

and nomask clauses specified. It can be specified with either mask or nomask; the default is nomask.
• A vector variant function should have the __regcall attribute.

If the user-defined vector variant function is a variant with mask, the mask argument should be the last
argument.

 Intel® C++ Compiler Classic Developer Guide and Reference

648

Example
The following shows an example of a vector variant function:

#include <immintrin.h>
__declspec(noinline)
float MyAdd(float* a, int b) { return *a + b; }
__declspec(vector_variant(implements(MyAdd(float *a, int b)),
 linear(a), vectorlength(8),
 nomask, processor(core_2nd_gen_avx)))
__m256 __regcall MyAddVec(float* v_a, __m128i v_b, __m128i v_b2) {
 __m256i t96 = _mm256_castsi128_si256(v_b);
 __m256i tmp = _mm256_insertf128_si256(t96, v_b2, 1);
 __m256 t95 = _mm256_cvtepi32_ps(tmp);
 return _mm256_add_ps(*((__m256*)v_a), t95);
}
float x[2000], y[2000];
float foo(float y[]) {
#pragma omp simd
 for (int k=0; k< 2000; k++) {
 x[k] = MyAdd(&y[k], k);
 }
 return x[0] + x[1999];

If the return value contains more than one register, the following technique can be used for the correct
definition of the function:

#include <immintrin.h>

typedef struct {
 __m256d r1;
 __m256d r2;
} __m256dx2;

__declspec(noinline)
double MyAdd(double* a, int b) { return *a + b; }

__declspec(vector_variant(implements(MyAdd(double *a, int b)),
 linear(a), vectorlength(8),
 nomask, processor(core_2nd_gen_avx)))
__m256dx2 __regcall MyAddVec(double* v_a, __m128i v_b, __m128i v_b2) {
 __m256d t1 = _mm256_cvtepi32_pd(v_b);
 __m256d t2 = _mm256_cvtepi32_pd(v_b2);
 __m256dx2 ret;
 ret.r1 = _mm256_mul_pd(t1,*((__m256d*)v_a));
 ret.r2 = _mm256_mul_pd(t2,*(((__m256d*)v_a)+1));
 return ret;
}

__declspec(align(32)) double x[2000], y[2000];
double foo(double* y) {
#pragma omp simd
 for (int k=0; k< 2000; k++) {
 x[k] = MyAdd(y, k);
 y++;
 }
 return x[0] + x[1999];
}

Compiler Reference

649

See Also
simd pragma
vector attribute

Intrinsics
This intrinsics section provides an introduction and information on Intel specific intrinsics. The Intel®
Intrinsics Guide provides detailed information and a lookup tool for viewing the available Intel intrinsics.

The following is some general information:

• Intrinsics are assembly-coded functions that let you use C++ function calls and variables in place of
assembly instructions.

• Intrinsics can be used only on the host.
• Intrinsics are expanded inline eliminating function call overhead. Providing the same benefit as using

inline assembly, intrinsics improve code readability, assist instruction scheduling, and help reduce
debugging.

• Intrinsics provide access to instructions that cannot be generated using the standard constructs of the C
and C++ languages.

NOTE
When developing and debugging your program with the Intel® C++ Compiler Classic, compile your
sources with ‑D__INTEL_COMPILER_USE_INTRINSIC_PROTOTYPES to take advantage of improved
compile-time checking of the intrinsics functions. When done be sure to remove this option as it
significantly increases compile time.

Availability of Intrinsics on Intel Processors
Not all Intel® processors support all intrinsics. For information on which intrinsics are supported on Intel®
processors, visit the Product Specification, Processors page. The Processor Spec Finder tool links directly to
all processor documentation and the datasheets list the features, including intrinsics, supported by each
processor.

Details about Intrinsics
All instructions use the following features:

• Registers
• Data Types

Registers
Intel® processors provide special register sets for different instructions.

• Intel® MMX™ instructions use eight 64-bit registers (mm0 to mm7) which are aliased on the floating-point
stack registers.

• Intel® Streaming SIMD Extensions (Intel® SSE) and the Advanced Encryption Standard (AES) instructions
use eight 128-bit registers (xmm0 to xmm7).

• Intel® Advanced Vector Extensions (Intel® AVX) instructions use 256-bit registers which are extensions of
the 128-bit SIMD registers.

• Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instructions use 512-bit registers.

 Intel® C++ Compiler Classic Developer Guide and Reference

650

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://ark.intel.com/content/www/us/en/ark.html#@Processors

Because each of these registers can hold more than one data element, the processor can process more than
one data element simultaneously. This processing capability is also known as single-instruction multiple data
processing (SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a corresponding
C intrinsic that implements that instruction directly. This frees you from managing registers and assembly
programming. Further, the compiler optimizes the instruction scheduling so that your executable runs faster.

Data Types
Intrinsic functions use new C data types as operands, representing the new registers that are used as the
operands to these intrinsic functions.

The following table details for which instructions each of the new data types are available. A 'Yes' indicates
that the data type is available for that group of intrinsics; an 'NA' indicates that the data type is not available
for that group of intrinsics.

Data
Types
-->

Techn
ology

__m64 __m1
28

__m1
28d

__m1
28i

__m25
6

__m25
6d

__m25
6i

__m51
2

__m51
2d

__m51
2i

Intel®

MMX™

Techno
logy
Intrins
ics

Yes NA NA NA NA NA NA NA NA NA

Intel®
Strea
ming
SIMD
Exten
sions
Intrin
sics

Yes Yes NA NA NA NA NA NA NA NA

Intel®
Strea
ming
SIMD
Exten
sions
2
Intrin
sics

Yes Yes Yes Yes NA NA NA NA NA NA

Intel®
Strea
ming
SIMD
Exten
sions

Yes Yes Yes Yes NA NA NA NA NA NA

Compiler Reference

651

Data
Types
-->

Techn
ology

__m64 __m1
28

__m1
28d

__m1
28i

__m25
6

__m25
6d

__m25
6i

__m51
2

__m51
2d

__m51
2i

3
Intrin
sics

Advan
ced
Encry
ption
Stand
ard
Intrin
sics +
Carry-
less
Multip
licatio
n
Intrin
sic

Yes Yes Yes Yes NA NA NA NA NA NA

Half-
Float
Intrin
sics

Yes Yes Yes Yes NA NA NA NA NA NA

Intel®
Advan
ced
Vector
Exten
sions
Intrin
sics

Yes Yes Yes Yes Yes Yes Yes NA NA NA

Intel®
Advan
ced
Vector
Exten
sions
512
Intrin
sics

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

__m64 Data Type
The __m64 data type is used to represent the contents of an MMX register, which is the register that is used
by the MMX™ technology intrinsics. The __m64 data type can hold eight 8-bit values, four 16-bit values, two
32-bit values, or one 64-bit value.

 Intel® C++ Compiler Classic Developer Guide and Reference

652

__m128 Data Types
The __m128 data type is used to represent the contents of a SSE register used by the Intel® Streaming SIMD
Extensions (Intel® SSE) intrinsics.

Conventionally, the __m128 data type can hold four 32-bit floating-point values, while the __m128d data type
can hold two 64-bit floating-point values, and the __m128i data type can hold sixteen 8-bit, eight 16-bit,
four 32-bit, or two 64-bit integer values.

The compiler aligns __m128d and _m128i local and global data to 16-byte boundaries on the stack. To align
integer, float, or double arrays, use the __declspec(align) statement.

Accessing __m128i Data
To access 8-bit data on IA-32 and Intel® 64 architecture-based systems, use the mm_extract intrinsics as
follows:

#define _mm_extract_epi8(x, imm) \
((((imm) & 0x1) == 0) ? \
_mm_extract_epi16((x), (imm) >> 1) & 0xff : \
_mm_extract_epi16(_mm_srli_epi16((x), 8), (imm) >> 1))

To access 16-bit data, use:

int _mm_extract_epi16(__m128i a, int imm)
To access 32-bit data, use:

#define _mm_extract_epi32(x, imm) \
_mm_cvtsi128_si32(_mm_srli_si128((x), 4 * (imm)))

To access 64-bit data (Intel® 64 architecture only), use:

#define _mm_extract_epi64(x, imm) \
_mm_cvtsi128_si64(_mm_srli_si128((x), 8 * (imm)))

__m256 Data Types
The __m256 data type is used to represent the contents of the extended SSE register - the YMM register,
used by the Intel® AVX intrinsics.

The __m256 data type can hold eight 32-bit floating-point values, while the __m256d data type can hold four
64-bit double precision floating-point values, and the __m256i data type can hold thirty-two 8-bit, sixteen
16-bit, eight 32-bit, or four 64-bit integer values. See Details for Intel® AVX Intrinsics for more information.

__m512 Data Types
The __m512 data type is used to represent the contents of the extended SSE register - the ZMM register,
used by the Intel® AVX-512 intrinsics.

The __m512 data type can hold sixteen 32-bit floating-point values, while the __m512d data type can hold
eight 64-bit double precision floating-point values, and the __m512i data type can hold sixty-four 8-bit,
thirty-two 16-bit, sixteen 32-bit, or eight 64-bit integer values. See Overview: Intrinsics for Intel® Advanced
Vector Extensions 512 (Intel® AVX-512) Instructions for more information.

Data Types Usage Guidelines
These data types are not basic ANSI C data types. You must observe the following usage restrictions:

• Use data types as objects in aggregates, such as unions, to access the byte elements and structures.

See Also
__declspec(align) declaration

Compiler Reference

653

Naming and Usage Syntax
Most intrinsic names use the following notational convention:

mm<intrin_op>_<suffix>
The following table explains each item in the syntax.

<intrin_op> Indicates the basic operation of the intrinsic; for example, add for addition and
sub for subtraction.

<suffix> Denotes the type of data the instruction operates on. The first one or two
letters of each suffix denote whether the data is packed (p), extended packed
(ep), or scalar (s). The remaining letters and numbers denote the type, with
notation as follows:

• s single-precision floating point
• d double-precision floating point
• i128 signed 128-bit integer
• i64 signed 64-bit integer
• u64 unsigned 64-bit integer
• i32 signed 32-bit integer
• u32 unsigned 32-bit integer
• i16 signed 16-bit integer
• u16 unsigned 16-bit integer
• i8 signed 8-bit integer
• u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r. Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);
__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the xmm register that holds the value t appears as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to
be immediates (constant integer literals).

 Intel® C++ Compiler Classic Developer Guide and Reference

654

References
See the following publications and internet locations for more information about intrinsics and the Intel®
architectures that support them. You can find all publications on the Intel website.

Internet Location or Publication Description

http://www.intel.com/software/products Technical resource center for hardware designers
and developers; contains links to product pages and
documentation.

Intel® 64 and IA-32 architecture manuals Intel website for Intel® 64 and IA-32 architecture
manuals.

Intel® 64 and IA-32 Architectures Software
Developer's Manual, Volume 2A: Instruction Set
Reference, A-M

Describes the format of the instruction set of Intel®
64 and IA-32 architectures and covers the
instructions from A to M.

Intel® 64 and IA-32 Architectures Software
Developer's Manual, Volume 2B: Instruction Set
Reference, N-U

Describes the format of the instruction set of Intel®
64 and IA-32 architectures and covers the
instructions from N to U.

Intel® 64 and IA-32 Architectures Software
Developer's Manual, Volume 2B: Instruction Set
Reference, V-Z

Describes the format of the instruction set of Intel®
64 and IA-32 architectures and covers the
instructions from V to Z.

https://software.intel.com/sites/landingpage/
IntrinsicsGuide/

An interactive Intrinsics Guide that provides Intel
intrinsic instructions.

Intrinsics for All Intel® Architectures
Most of the intrinsics documented in this section function for all supported Intel® architectures.

Some of the intrinsics documented in this section function across a subset of Intel® architectures.

Integer Arithmetic Intrinsics
The following table lists and describes integer arithmetic intrinsics that you can use across Intel®
architectures.

Intrinsic Syntax Description

Intrinsics for all Supported Intel® Architectures

int abs(int) Returns the absolute value of an integer.

long labs(long) Returns the absolute value of a long integer.

unsigned long _lrotl(unsigned long value,
int shift)

Implements 64-bit left rotate of value by shift
positions.

unsigned long _lrotr(unsigned long value,
int shift)

Implements 64-bit right rotate of value by shift
positions.

unsigned int _rotl(unsigned int value,
int shift)

Implements 32-bit left rotate of value by shift
positions.

unsigned int _rotr(unsigned int value,
int shift)

Implements 32-bit right rotate of value by shift
positions.

Compiler Reference

655

http://www.intel.com
http://www.intel.com/software/products/
http://www.intel.com/products/processor/manuals/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Intrinsics for IA-32 and Intel® 64 Architectures

unsigned short _rotwl(unsigned short
value, int shift)

Implements 16-bit left rotate of value by shift
positions.

unsigned short _rotwr(unsigned short
value, int shift)

Implements 16-bit right rotate of value by shift
positions.

NOTE
Passing a constant shift value in the rotate intrinsics results in higher performance.

Floating-point Intrinsics
The following table lists and describes floating point intrinsics that you can use across all Intel® and
compatible architectures. Floating-point intrinsic functions may invoke library functions that are more highly
optimized for Intel® microprocessors than for non-Intel microprocessors.

Intrinsic Description

double fabs(double) Returns the absolute value of a floating-point value.

double log(double) Returns the natural logarithm ln(x), x>0, with double
precision.

float logf(float) Returns the natural logarithm ln(x), x>0, with single precision.

double log10(double) Returns the base 10 logarithm log10(x), x>0, with double
precision.

float log10f(float) Returns the base 10 logarithm log10(x), x>0, with single
precision.

double exp(double) Returns the exponential function with double precision.

float expf(float) Returns the exponential function with single precision.

double pow(double, double) Returns the value of x to the power y with double precision.

float powf(float, float) Returns the value of x to the power y with single precision.

double sin(double) Returns the sine of x with double precision.

float sinf(float) Returns the sine of x with single precision.

double cos(double) Returns the cosine of x with double precision.

float cosf(float) Returns the cosine of x with single precision.

double tan(double) Returns the tangent of x with double precision.

float tanf(float) Returns the tangent of x with single precision.

double acos(double) Returns the inverse cosine of x with double precision.

float acosf(float) Returns the inverse cosine of x with single precision.

double acosh(double) Compute the inverse hyperbolic cosine of the argument with
double precision.

 Intel® C++ Compiler Classic Developer Guide and Reference

656

Intrinsic Description

float acoshf(float) Compute the inverse hyperbolic cosine of the argument with
single precision.

double asin(double) Compute inverse sine of the argument with double precision.

float asinf(float) Compute inverse sine of the argument with single precision.

double asinh(double) Compute inverse hyperbolic sine of the argument with double
precision.

float asinhf(float) Compute inverse hyperbolic sine of the argument with single
precision.

double atan(double) Compute inverse tangent of the argument with double
precision.

float atanf(float) Compute inverse tangent of the argument with single
precision.

double atanh(double) Compute inverse hyperbolic tangent of the argument with
double precision.

float atanhf(float) Compute inverse hyperbolic tangent of the argument with
single precision.

double cabs(double complex z) Computes absolute value of complex number. The intrinsic
argument is a complex number made up of two double
precision elements, one real and one imaginary. The input
parameter z is made up of two values of double type passed
together as a single argument.

float cabsf(float complex z) Computes absolute value of complex number. The intrinsic
argument is a complex number made up of two single
precision elements, one real and one imaginary. The input
parameter z is made up of two values of float type passed
together as a single argument.

double ceil(double) Computes smallest integral value of double precision argument
not less than the argument.

float ceilf(float) Computes smallest integral value of single precision argument
not less than the argument.

double cosh(double) Computes the hyperbolic cosine of double precision argument.

float coshf(float) Computes the hyperbolic cosine of single precision argument.

float fabsf(float) Computes absolute value of single precision argument.

double floor(double) Computes the largest integral value of the double precision
argument not greater than the argument.

float floorf(float) Computes the largest integral value of the single precision
argument not greater than the argument.

double fmod(double) Computes the floating-point remainder of the division of the
first argument by the second argument with double precision.

float fmodf(float) Computes the floating-point remainder of the division of the
first argument by the second argument with single precision.

Compiler Reference

657

Intrinsic Description

double hypot(double, double) Computes the length of the hypotenuse of a right angled
triangle with double precision.

float hypotf(float, float) Computes the length of the hypotenuse of a right angled
triangle with single precision.

double rint(double) Computes the integral value represented as double using the
IEEE rounding mode.

float rintf(float) Computes the integral value represented with single precision
using the IEEE rounding mode.

double sinh(double) Computes the hyperbolic sine of the double precision
argument.

float sinhf(float) Computes the hyperbolic sine of the single precision argument.

float sqrtf(float) Computes the square root of the single precision argument.

double tanh(double) Computes the hyperbolic tangent of the double precision
argument.

float tanhf(float) Computes the hyperbolic tangent of the single precision
argument.

String and Block Copy Intrinsics
The following table lists and describes string and block copy intrinsics that you can use on systems based on
IA-32 and Intel® 64 architectures. They may invoke library functions that are more highly optimized for Intel®
microprocessors than for non-Intel microprocessors.

NOTE
strncpy() and strncmp() functions are implemented as intrinsics depending on compiler version and
compiler switches like optimization level.

Intrinsic Description

char *_strset(char *, _int32) Sets all characters in a string to a fixed value.

int memcmp(const void *cs, const void
*ct, size_t n)

Compares two regions of memory.

Return:
• <0 if cs<ct
• 0 if cs=ct
• >0 if cs>ct

void *memcpy(void *s, const void *ct,
size_t n)

Copies from memory. Returns s.

void *memset(void *s, int c, size_t n) Sets memory to a fixed value. Returns s.

char *strcat(char *s, const char *ct) Appends to a string. Returns s.

int strcmp(const char *, const char *) Compares two strings. Return <0 if cs<ct, 0 if
cs=ct, or >0 if cs>ct.

 Intel® C++ Compiler Classic Developer Guide and Reference

658

Intrinsic Description

char *strcpy(char *s, const char *ct) Copies a string. Returns s.

size_t strlen(const char *cs) Returns the length of string cs.

int strncmp(char *, char *, int) Compare two strings, but only specified number of
characters.

int strncpy(char *, char *, int) Copies a string, but only specified number of
characters.

Miscellaneous Intrinsics
The following tables list and describe intrinsics that you can use across all Intel® architectures, except where
noted. These intrinsics are available for both Intel® and non-Intel microprocessors but they may perform
additional optimizations for Intel® microprocessors than they perform for non-Intel microprocessors.

NOTE
Casting functions for various INT and FP types for use in intrinsic functions across Intel® architectures
only change the type; they do not convert between integer and floating point values.

Intrinsic Description

Intrinsics for all Supported Intel® Architectures

__cpuid Queries the processor for information about processor type
and supported features. The Intel® C++ Compiler Classic
supports the Microsoft* implementation of this intrinsic. See
the Microsoft documentation for details.

void *_alloca(int) Allocates memory in the local stack frame. The memory is
automatically freed upon return from the function.

int _bit_scan_forward(int x) Returns the bit index of the least significant set bit of x. If x is
0, the result is undefined.

int _bit_scan_reverse(int) Returns the bit index of the most significant set bit of x. If xis
0, the result is undefined.

unsigned char
_BitScanForward(unsigned __int32
*p, unsigned __int32 b);
and for Intel® 64 architecture only:

unsigned char
_BitScanForward64(unsigned
__int32 *p, unsigned __int64 b);

Sets *p to the bit index of the least significant set bit of b or
leaves it unchanged if b is zero. The function returns a non-
zero result when b is non-zero and returns zero when b is
zero.

unsigned char
_BitScanReverse(unsigned __int32
*p, unsigned __int32 b);
and for Intel® 64 architecture only:

Sets *p to the bit index of the most significant set bit of b or
leaves it unchanged if b is zero. The function returns a non-
zero result when b is non-zero and returns zero when b is
zero.

Compiler Reference

659

Intrinsic Description

Intrinsics for all Supported Intel® Architectures

unsigned char
_BitScanReverse64(unsigned
__int32 *p, unsigned __int64 b);

unsigned char _bittest(__int32
*p, __int32 b);
and for Intel® 64 architecture only:

unsigned char _bittest64(__int64
*p, __int64 b);

Returns the bit in position b of the memory addressed by p.

unsigned char
_bittestandcomplement(__int32
*p, __int32 b);
and for Intel® 64 architecture only:

unsigned char
_bittestandcomplement64(__int64
*p, __int64 b);

Returns the bit in position b of the memory addressed by p,
then compliments that bit.

unsigned char
_bittestandreset(__int32 *p,
__int32 b);
and for Intel® 64 architecture only:

unsigned char
_bittestandreset64(__int64 *p,
__int64 b);

Returns the bit in position b of the memory addressed by p,
then resets that bit to 0.

unsigned char
_bittestandset(__int32 *p,
__int32 b);
and for Intel® 64 architecture only:

unsigned char
_bittestandset64(__int64 *p,
__int64 b);

Returns the bit in position b of the memory addressed by p,
then sets the bit to 1.

int _bswap(int) Reverses the byte order of x. Swaps 4 bytes; bits 0-7 are
swapped with bits 24-31, bits 8-15 are swapped with bits
16-23.

__int64 _bswap64(__int64 x) Reverses the byte order of x. Swaps 8 bytes; bits 0-7 are
swapped with bits 56-63, bits 8-15 are swapped with bits
48-55, bits 16-23 are swapped with bits 40-47, and bits 24-31
are swapped with bits 32-39.

 Intel® C++ Compiler Classic Developer Guide and Reference

660

Intrinsic Description

Intrinsics for all Supported Intel® Architectures

unsigned int
__cacheSize(unsigned int
cacheLevel)

__cacheSize(n) returns the size in kilobytes of the cache at
level n. 1 represents the first-level cache. 0 is returned for a
non-existent cache level. For example, an application may
query the cache size and use it to select block sizes in
algorithms that operate on matrices.

void _enable(void) Enables the interrupt.

unsigned __int32
_castf32_u32(float)

Casts float value to unsigned 32-bit integer.

unsigned __int64
_castf64_u64(double)

Casts double value to unsigned 64-bit integer.

float _castu32_f32(unsigned
__int32)

Casts unsigned 32-bit integer to float32.

double _castu64_f64(unsigned
__int64)

Casts unsigned 32-bit integer to float64.

void _disable(void) Disables the interrupt.

int _in_byte(int) Intrinsic that maps to the IA-32 instruction IN. Transfer data
byte from port specified by argument.

int _in_dword(int) Intrinsic that maps to the IA-32 instruction IN. Transfer double
word from port specified by argument.

int _in_word(int) Intrinsic that maps to the IA-32 instruction IN. Transfer word
from port specified by argument.

int _inp(int) Same as _in_byte.

int _inpd(int) Same as _in_dword.

int _inpw(int) Same as _in_word.

int _out_byte(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer data
byte in second argument to port specified by first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer
double word in second argument to port specified by first
argument.

int _out_word(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer word
in second argument to port specified by first argument.

int _outp(int, int) Same as _out_byte.

int _outpw(int, int) Same as _out_word.

int _outpd(int, int) Same as _out_dword.

int _popcnt32(int x) Returns the number of set bits in x.

Compiler Reference

661

Intrinsic Description

Intrinsics for all Supported Intel® Architectures

int _popcnt64(__int64 x) Returns the number of set bits in x.

__int64 _rdpmc(int p) Returns the current value of the 40-bit performance
monitoring counter specified by p.

Intrinsics for IA-32 and Intel® 64 Architectures

__int64 _rdtsc(void) Returns the current value of the processor's 64-bit time stamp
counter.

int _setjmp(jmp_buf) A fast version of setjmp(), which bypasses the termination
handling. Saves the callee-save registers, stack pointer and
return address.

int __pin_value(char
*annotation)

Bypasses code that executes only in PIN mode. Especially useful with
Intel® oneAPI Threading Building Blocks (oneTBB), which adds
specified annotations to the object file so that code is executed in PIN
mode.

_may_i_use_cpu_feature
Queries the processor dynamically at the source level
(this intrinsic does not perform a vendor check) to
determine if processor-specific features are available.

Syntax

extern int _may_i_use_cpu_feature(unsigned __int64);

Arguments

unsigned __int64 An unsigned __int64 bitset representing one or more
cpuid features. The arguments for feature query
accepted by this intrinsic is:

_FEATURE_GENERIC_IA32
_FEATURE_FPU
_FEATURE_CMOV
_FEATURE_MMX
_FEATURE_FXSAVE
_FEATURE_SSE
_FEATURE_SSE2
_FEATURE_SSE3
_FEATURE_SSSE3
_FEATURE_SSE4_1
_FEATURE_SSE4_2
_FEATURE_POPCNT

 Intel® C++ Compiler Classic Developer Guide and Reference

662

_FEATURE_MOVBE
_FEATURE_PCLMULQDQ
_FEATURE_AES
_FEATURE_F16C
_FEATURE_AVX
_FEATURE_RDRND
_FEATURE_FMA
_FEATURE_BMI
_FEATURE_LZCNT
_FEATURE_HLE
_FEATURE_RTM
_FEATURE_AVX2
_FEATURE_ADX
_FEATURE_RDSEED
_FEATURE_AVX512DQ
_FEATURE_AVX512F
_FEATURE_AVX512ER
_FEATURE_AVX512PF
_FEATURE_AVX512CD
_FEATURE_AVX512BW
_FEATURE_AVX512VL
_FEATURE_SHA
_FEATURE_MPX
_FEATURE_AVX512IFMA52
_FEATURE_AVX512VBMI
_FEATURE_AVX512_4FMAPS
_FEATURE_AVX512_4VNNIW

Description

This intrinsic queries the processor on which it is running to check the availability of the given features. This
check is dynamically performed at the point in the source where it is called. For example:

if (_may_i_use_cpu_feature(_FEATURE_SSE4_2)) {
 Use SSE4.2 intrinsics;
} Else {
 Use generic code;
}

Compiler Reference

663

The _may_i_use_feature intrinsic, in this case, dynamically checks if the code is being executed on a
processor that supports SSE4.2, and returns true if it is supported, or false. The _may_i_use_feature also
accepts multiple features within a single argument, for example:

if (_may_i_use_cpu_feature(_FEATURE_SSE |
 _FEATURE_SSE2 |
 _FEATURE_SSE3 |
 _FEATURE_SSSE3 |
 _FEATURE_MOVBE) &&
 !_may_i_use_cpu_feature(_FEATURE_SSE4_1)) {
printf("\nYou are running on an Atom processor."\n");
}

This intrinsic does not perform processor vendor checks that other features do (-m <cpu> type option).

Returns

Result of the feature query, true or false (1 or 0) for whether the set of features is available on the machine
on which the intrinsic is executed.

See Also
m
 compiler option

Processor Targeting

[Q]ax
 compiler option

optimization_parameter

_allow_cpu_features
Tells the compiler that the code region may be
targeted for processors with the specified features.
The compiler may then generate optimized code for
the specified features.

Syntax

extern void _allow_cpu_features(unsigned __int64);

Arguments

unsigned __int64 an unsigned __int64 bitset representing one or more
cpuid features:

_FEATURE_GENERIC_IA32

_FEATURE_FPU

_FEATURE_CMOV

_FEATURE_MMX

_FEATURE_FXSAVE

_FEATURE_SSE

_FEATURE_SSE2

_FEATURE_SSE3

_FEATURE_SSSE3

 Intel® C++ Compiler Classic Developer Guide and Reference

664

_FEATURE_SSE4_1

_FEATURE_SSE4_2

_FEATURE_MOVBE

_FEATURE_POPCNT

_FEATURE_PCLMULQDQ

_FEATURE_AES

_FEATURE_F16C

_FEATURE_AVX

_FEATURE_RDRND

_FEATURE_FMA

_FEATURE_BMI

_FEATURE_LZCNT

_FEATURE_HLE

_FEATURE_RTM

_FEATURE_AVX2

_FEATURE_ADX
_FEATURE_RDSEED
_FEATURE_AVX512DQ
_FEATURE_AVX512F
_FEATURE_AVX512ER
_FEATURE_AVX512PF
_FEATURE_AVX512CD
_FEATURE_AVX512BW
_FEATURE_AVX512VL
_FEATURE_SHA
_FEATURE_MPX
_FEATURE_AVX512IFMA52
_FEATURE_AVX512VBMI
_FEATURE_AVX512_4FMAPS
_FEATURE_AVX512_4VNNIW

Description

Use this intrinsic function to use the specified processor feature at a code block level. The function only
affects the scope of the code following the function call. Ensure that the code block will run only on
processors with the specified features. If the code runs on a processor without the specified feature, the
program may fail with an illegal instruction exception.

The function accepts a single argument that is a bitmask. In cases where one ISA depends on another, the
higher ISA typically implies the lower. For example, the following arguments produce the same assembly
code:

Compiler Reference

665

• _FEATURE_SSE2|_FEATURE_AVX|_FEATURE_AVX512F
• _FEATURE_AVX512F
The argument can only add features to those specified by the [Q]x or -m (Linux* and macOS) or /arch
(Windows*) options, it cannot remove features.

This function does not itself cause the compiler to generate multiple code paths. To do that, you need to use
_may_i_use_cpu_feature().

NOTE
See the Release Notes for the latest information about this function.

To use specified processor features at a function level, use the cpu_dispatch or the cpu_specific attribute
or the optimization_parameter pragma.

To use specified processor features at the file level, use the [Q]x compiler option.

The following example demonstrates how to use this intrinsic function to allow the compiler to generate the
necessary code to use the Advanced Vector Extensions (AVX) and Streaming SIMD Extensions 2 (SSE2)
features in the processor.

#include <string.h>
#include <immintrin.h>

#define MAXIMGS 20
#define MAXNAME 512

typedef struct {
 int x; /* image X axis size */
 int y; /* image Y axis size */
 int bpp; /* image bits */
 char name[MAXNAME]; /* image full filename */
 unsigned char * data; /* pointer to raw byte image data */
} rawimage;

extern rawimage * imagelist[MAXIMGS];
extern int numimages;

rawimage* CreateImage(char * filename)
{
 rawimage* newimage = NULL;
 int i, len, intable;

 intable=0;
 if (numimages!=0) {

 _allow_cpu_features(_FEATURE_SSE2 | _FEATURE_AVX);
 for (i=0; i<numimages; i++) {
 if (!strcmp(filename, imagelist[i]->name)) {
 newimage=imagelist[i];
 intable=1;
 }
 }
 }

 if (!intable) {
 newimage=(rawimage *)malloc(sizeof(rawimage));
 if (newimage != NULL) {

 Intel® C++ Compiler Classic Developer Guide and Reference

666

 strcpy(newimage->name, filename);

 imagelist[numimages]=newimage; /* add new one to the table */
 numimages++; /* increment the number of images */
 }
 }

 return newimage;
}

Returns

Returns nothing.

See Also
_may_i_use_cpu_feature

cpu_dispatch, cpu_specific

optimization_parameter

Processor Targeting

x, Qx

Data Alignment, Memory Allocation Intrinsics, and Inline
Assembly
This section describes features that support usage of the intrinsics.

Alignment Support
Aligning data improves the performance of intrinsics. When using the Intel® Streaming SIMD Extensions
(Intel® SSE) intrinsics, you should align data to 16 bytes in memory operations. Specifically, you must align
__m128 objects as addresses passed to the _mm_load and _mm_store intrinsics. If you want to declare
arrays of floats and treat them as __m128 objects by casting, you need to ensure that the float arrays are
properly aligned.

Use __declspec(align) to direct the compiler to align data more strictly than it otherwise would. For
example, a data object of type int is allocated at a byte address which is a multiple of 4 by default. By using
__declspec(align), you can direct the compiler to instead use an address which is a multiple of 8, 16, or
32 (with the following restriction on IA-32 architecture: 16-byte addresses can be locally or statically
allocated).

You can use this data alignment support as an advantage in optimizing cache line usage. By clustering small
objects that are commonly used together into a struct, and forcing the struct to be allocated at the
beginning of a cache line, you can effectively guarantee that each object is loaded into the cache as soon as
any one is accessed, resulting in a significant performance benefit.

For 16-byte alignment, you can use the macro _MM_ALIGN16, which other compilers can support by including
header files. This macro enables you to write portable code that does not rely on compiler support for
__declspec(align).

Compiler Reference

667

See Also
__declspec(align) declaration

Programming Example includes example of _MM_ALIGN16

Allocating and Freeing Aligned Memory Blocks
To allocate and free aligned blocks of memory use the _mm_malloc and _mm_free intrinsics. These intrinsics
are based on malloc and free, which are in the libirc.a library. You need to include malloc.h. The
syntax for these intrinsics is as follows:

void* _mm_malloc (size_t size, size_t align)
void _mm_free (void *p)
The _mm_malloc routine takes an extra parameter, which is the alignment constraint. This constraint must be
a power of two. The pointer that is returned from _mm_malloc is guaranteed to be aligned on the specified
boundary.

NOTE
Memory that is allocated using _mm_malloc must be freed using _mm_free . Calling free on memory
allocated with _mm_malloc or calling _mm_free on memory allocated with malloc will cause
unpredictable behavior.

Inline Assembly

Microsoft* Style Inline Assembly
The Intel® C++ Compiler supports Microsoft-style inline assembly on Windows*. The Intel® C++ Compiler
supports Microsoft-style inline assembly on Linux* when used with the -use-msasm option. See the
Microsoft documentation for the proper syntax.

GNU*-like Style Inline Assembly (IA-32 architecture and Intel® 64 architecture only)
The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm-keyword [volatile-keyword] (asm-template [asm-interface]) ;
The Intel® C++ Compiler also supports mixing UNIX* and Microsoft* style asms. Use the __asm__ keyword
for GNU-style ASM when using the -use_msasm switch.

NOTE
The Intel® C++ Compiler supports gcc-style inline ASM if the assembler code uses AT&T* System
V/386 syntax.

Syntax Element Description

asm-keyword Assembly statements begin with the keyword asm. Alternatively, either
__asm or __asm__ may be used for compatibility. When mixing UNIX* and
Microsoft* style asm, use the __asm__ keyword.

 Intel® C++ Compiler Classic Developer Guide and Reference

668

Syntax Element Description

The compiler only accepts the __asm__ keyword. The asm and __asm
keywords are reserved for Microsoft* style assembly statements.

volatile-keyword If the optional keyword volatile is given, the asm is volatile. Two volatile
asm statements are never moved past each other, and a reference to a
volatile variable is not moved relative to a volatile asm. Alternate keywords
__volatile and __volatile__ may be used for compatibility.

asm-template The asm-template is a C language ASCII string that specifies how to output
the assembly code for an instruction. Most of the template is a fixed string;
everything but the substitution-directives, if any, is passed through to the
assembler. The syntax for a substitution directive is a % followed by one or
two characters.

asm-interface The asm-interface consists of three parts:

1. An optional output-list
2. An optional input-list
3. An optional clobber-list
These are separated by colon (:) characters. If the output-list is missing,
but an input-list is given, the input list may be preceded by two colons
(::) to take the place of the missing output-list. If the asm-interface is
omitted altogether, the asm statement is considered volatile regardless of
whether a volatile-keyword was specified.

output-list An output-list consists of one or more output-specs separated by commas. For
the purposes of substitution in the asm-template, each output-spec is numbered.
The first operand in the output-list is numbered 0, the second is 1, and so on.
Numbering is continuous through the output-list and into the input-list. The
total number of operands is limited to 30 (i.e. 0-29).

input-list Similar to an output-list, an input-list consists of one or more input-specs
separated by commas. For the purposes of substitution in the asm-template, each
input-spec is numbered, with the numbers continuing from those in the output-
list.

clobber-list A clobber-list tells the compiler that the asm uses or changes a specific machine
register that is either coded directly into the asm or is changed implicitly by the
assembly instruction. The clobber-list is a comma-separated list of clobber-
specs.

input-spec The input-specs tell the compiler about expressions whose values may be needed
by the inserted assembly instruction. In order to describe fully the input requirements
of the asm, you can list input-specs that are not actually referenced in the asm-
template.

clobber-spec Each clobber-spec specifies the name of a single machine register that is
clobbered. The register name may optionally be preceded by a %. You can specify any
valid machine register name. It is also legal to specify "memory" in a clobber-
spec. This prevents the compiler from keeping data cached in registers across the
asm statement.

Compiler Reference

669

When compiling an assembly statement on Linux*, the compiler simply emits the asm-template to the
assembly file after making any necessary operand substitutions. The compiler then calls the GNU* assembler
to generate machine code. In contrast, on Windows* the compiler itself must assemble the text contained in
the asm-template string into machine code. In essence, the compiler contains a built-in assembler.

The compiler’s built-in assembler supports the GNU* .byte directive but does not support other functionality
of the GNU* assembler, so there are limitations in the contents of the asm-template. The following assembler
features are not currently supported.

• Directives other than the .byte directive
• Symbols*

NOTE
* Direct symbol references in the asm-template are not supported. To access a C++ object, use the
asm-interface with a substitution directive.

Example
Incorrect method for accessing a C++ object:

__asm__("addl $5, _x");
Proper method for accessing a C++ object:

__asm__("addl $5, %0" : "+rm" (x));
Additionally, there are some restrictions on the usage of labels. The compiler only allows local labels, and
only references to labels within the same assembly statement are permitted. A local label has the form “N:”,
where N is a non-negative integer. N does not have to be unique, even within the same assembly statement.
To reference the most recent definition of label N, use “Nb”. To reference the next definition of label N, use
“Nf”. In this context, “b” means backward and “f” means forward. For more information, refer to the GNU
assembler documentation.

GNU-style inline assembly statements on Windows* use the same assembly instruction format as on Linux*
which is often referenced as AT&T* assembly syntax. This means that destination operands are on the right
and source operands are on the left. This operand order is the reverse of Intel assembly syntax.

Due to the limitations of the compiler's built-in assembler, many assembly statements that compile and run
on Linux* will not compile on Windows*. On the other hand, assembly statements that compile and run on
Windows* should also compile and run on Linux*.

This feature provides a high-performance alternative to Microsoft-style inline assembly statements when
portability between operating systems is important. Its intended use is in small primitives where high-
performance integration with the surrounding C++ code is essential.

#ifdef _WIN64
#define INT64_PRINTF_FORMAT "I64"
#else
#define __int64 long long
#define INT64_PRINTF_FORMAT "L"
#endif
#include <stdio.h>
typedef struct {
 __int64 lo64;
 __int64 hi64;
} my_i128;
#define ADD128(out, in1, in2) \
 __asm__("addq %2, %0; adcq %3, %1" : \
 "=r"(out.lo64), "=r"(out.hi64) : \

 Intel® C++ Compiler Classic Developer Guide and Reference

670

 "emr" (in2.lo64), "emr"(in2.hi64), \
 "0" (in1.lo64), "1" (in1.hi64));

extern int
main()
{
 my_i128 val1, val2, result;
 val1.lo64 = ~0;
 val1.hi64 = 0;

 val2.hi64 = 65;
 ADD128(result, val1, val2);
 printf("0x%016" INT64_PRINTF_FORMAT "x%016" INT64_PRINTF_FORMAT "x\n",
 val1.hi64, val1.lo64);

 printf("+0x%016" INT64_PRINTF_FORMAT "x%016" INT64_PRINTF_FORMAT "x\n",
 val2.hi64, val2.lo64);

 printf("------------------------------------\n");
 printf("0x%016" INT64_PRINTF_FORMAT "x%016" INT64_PRINTF_FORMAT "x\n",
 result.hi64, result.lo64);
 return 0;
}

This example, written for Intel® 64 architecture, shows how to use a GNU-style inline assembly statement to
add two 128-bit integers. In this example, a 128-bit integer is represented as two __int64 objects in the
my_i128 structure. The inline assembly statement used to implement the addition is contained in the ADD128
macro, which takes three my_i128 arguments representing three 128-bit integers. The first argument is the
output. The next two arguments are the inputs. The example compiles and runs using the Intel® C++
Compiler on Linux* or Windows*, producing the following output.

 0x0000000000000000ffffffffffffffff
+ 0x00000000000000410000000000000001

+ 0x00000000000000420000000000000000

In the GNU-style inline assembly implementation, the asm interface specifies all the inputs, outputs, and side
effects of the asm statement, enabling the compiler to generate very efficient code.

mov r13, 0xffffffffffffffff
mov r12, 0x000000000
add r13, 1
adc r12, 65

It is worth noting that when the compiler generates an assembly file on Windows*, it uses Intel syntax even
though the assembly statement was written using AT&T* assembly syntax.

The compiler moves in1.lo64 into a register to match the constraint of operand 4. Operand 4's constraint of
"0" indicates that it must be assigned the same location as output operand 0. And operand 0's constraint is
"=r", indicating that it must be assigned an integer register. In this case, the compiler chooses r13. In the
same way, the compiler moves in 1.hi64 into register r12.

The constraints for input operands 2 and 3 allow the operands to be assigned a register location ("r"), a
memory location ("m"), or a constant signed 32-bit integer value ("e"). In this case, the compiler chooses to
match operands 2 and 3 with the constant values 1 and 65, enabling the add and adc instructions to utilize
the "register-immediate" forms.

Compiler Reference

671

The same operation is much more expensive using a Microsoft-style inline assembly statement, because the
interface between the assembly statement and the surrounding C++ code is entirely through memory. Using
Microsoft* assembly, the ADD128 macro might be written as follows.

#define ADD128(out, in1, in2) \
 { \
 __asm mov rax, in1.lo64 \
 __asm mov rdx, in1.hi64 \
 __asm add rax, in2.lo64 \
 __asm adc rdx, in2.hi64 \
 __asm mov out.lo64, rax \
 __asm mov out.hi64, rdx \
 }

The compiler must add code before the assembly statement to move the inputs into memory, and it must
add code after the assembly statement to retrieve the outputs from memory. This prevents the compiler
from exploiting some optimization opportunities. Thus, the following assembly code is produced.

 mov QWORD PTR [rsp+32], -1
 mov QWORD PTR [rsp+40], 0
 mov QWORD PTR [rsp+48], 1
 mov QWORD PTR [rsp+56], 65

; Begin ASM

 mov rax, QWORD PTR [rsp+32]
 mov rdx, QWORD PTR [rsp+40]
 add rax, QWORD PTR [rsp+48]
 adc rdx, QWORD PTR [rsp+56]
 mov QWORD PTR [rsp+64], rax
 mov QWORD PTR [rsp+72], rdx

; End ASM

 mov rdx, QWORD PTR [rsp+72]
 mov r8, QWORD PTR [rsp+64]

The operation that took only four instructions and no memory references using GNU-style inline assembly
takes twelve instructions with twelve memory references using Microsoft-style inline assembly.

Intrinsics for Managing Extended Processor States and
Registers
The Intel® C++ Compiler Classic provides twelve intrinsics for managing the extended processor states and
extended registers. These intrinsics are available for IA-32 and Intel® 64 architectures running on supported
operating systems.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The intrinsics map directly to the hardware system instructions described in "Intel® 64 and IA-32
Architectures Software Developer's Manual, volumes 1, 2a, and 2b" and "Intel® Advanced Vector Extensions
Programming Reference".

Functional Overview

The intrinsics for managing the extended processor states and extended registers include:

 Intel® C++ Compiler Classic Developer Guide and Reference

672

https://software.intel.com/content/www/us/en/develop/tools/isa-extensions.html
https://software.intel.com/content/www/us/en/develop/tools/isa-extensions.html

• Two intrinsics to read from and write to the specified extended control register. These intrinsics map to
XGETBV and XSETBV instructions.

• Four intrinsics to save and restore the current state of the x87 FPU, MMX, XMM, and MXCSR registers. These
intrinsics map to FXSAVE, FXSAVE64, FXRSTOR, and FXRSTOR64 instructions.

• Six intrinsics to save and restore the current state of the x87 FPU, MMX, XMM, YMM, and MXCSR registers.
These intrinsics map to XSAVE, XSAVE64, XSAVEOPT, XSAVEOPT64, XRSTOR, and XRSTOR64 instructions.

Intrinsics for Reading and Writing the Content of Extended Control Registers
This group of intrinsics includes two intrinsics to read from and write to extended control registers (XCRs).
Currently, the only such register defined is XCR0, XFEATURE_ENABLED_MASK register. This register specifies
the set of processor states that the operating system enables on that processor, for example x87 FPU states,
SSE states, and other processor extended states that Intel® 64 architecture may introduce in the future.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_xgetbv()
Reads the content of an extended control register.

Syntax

extern unsigned __int64 _xgetbv(unsigned int xcr);

Arguments

xcr An extended control register to be read. Currently, only the value '0' is
allowed.

Description

This intrinsic reads from extended control registers. Currently, the only control register allowed/defined is
(XCR0) XFEATURE_ENABLED_MASK register. The corresponding constant is defined in the immintrin.h file
to refer to this register:

#define _XCR_XFEATURE_ENABLED_MASK 0
This intrinsic maps to XGETBV instruction.

Compiler Reference

673

Returns

Returns the content of a specified extended control register.

_xsetbv()
Writes the given value to a specified extended control
register.

Syntax

extern void _xsetbv(unsigned int xcr, unsigned __int64 val);

Arguments

xcr An extended control register to be written. Currently, only the value '0' is
allowed.

val Value to be written to the specified extended control register.

Description

This intrinsic writes the given value to the specified extended control register. Currently, the only control
register allowed/defined is (XCR0) XFEATURE_ENABLED_MASK register. The corresponding constant is defined
in the immintrin.h file to refer to this register:

#define _XCR_XFEATURE_ENABLED_MASK 0
This intrinsic maps to XSETBV instruction.

Intrinsics for Saving and Restoring the Extended Processor States
To use any of these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsics that map to FXSAVE[64] and FXRSTOR[64] instructions
This group of intrinsics includes four intrinsics to save and restore the current state of the x87 FPU, MMX,
XMM, and MXCSR registers.

These intrinsics accept a memory reference to a 16-byte aligned 512-byte memory chunk. The layout of the
memory is shown below in Table 1.

Table 1 - FXSAVE save area layout.

 Intel® C++ Compiler Classic Developer Guide and Reference

674

Intrinsics that map to XSAVE[64], XSAVEOPT[64], and XRSTOR[64] instructions
This group of intrinsics includes six intrinsics to fully or partially save and restore the current state of the x87
FPU, MMX, XMM, YMM, and MXCSR registers.

These intrinsics accept a memory reference to a 64-byte aligned memory. The layout of the register fields for
the first 512 bytes is the same as the FXSAVE save area layout. The intrinsics saving the states do not write
to bytes 464:511. The save area layout is shown in Tables 2a and 2b below.

The second operand is a save/restore mask specifying the saved/restored extended states. The value of the
mask is ANDed with XFEATURE_ENABLED_MASK(XCR0). A particular extended state is saved/restored only if
the corresponding bit of both save/restore mask and XFEATURE_ENABLED_MASK is set to '1'.

Compiler Reference

675

Table 2a - XSAVE save area layout (first 512 bytes)

Table 2b - XSAVE save area layout for YMM registers

_fxsave()
Saves the states of x87 FPU, MMX, XMM, and MXCSR
registers to memory.

Syntax

extern void _fxsave(void *mem);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

 Intel® C++ Compiler Classic Developer Guide and Reference

676

Description

Saves the states of x87 FPU, MMX, XMM, and MXCSR registers to memory. This intrinsic maps to FXSAVE
instruction.

_fxsave64()
Saves the states of x87 FPU, MMX, XMM, and MXCSR
registers to memory.

Syntax

extern void _fxsave64(void *mem);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

Description

Saves the states of x87 FPU, MMX, XMM, and MXCSR registers to memory. This intrinsic maps to FXSAVE64
instruction.

_fxrstor()
Restores the states of x87 FPU, MMX, XMM, and
MXCSR registers from memory.

Syntax

extern void _fxrstor(void *mem);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

Description

Restores the states of x87 FPU, MMX, XMM, and MXCSR registers from memory. This intrinsic maps to FXRSTOR
instruction.

_fxrstor64()
Restores the states of x87 FPU, MMX, XMM, and
MXCSR registers from memory.

Syntax

extern void _fxrstor64(void *mem);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

Compiler Reference

677

Description

Restores the states of x87 FPU, MMX, XMM, and MXCSR registers from memory. This intrinsic maps to
FXRSTOR64 instruction.

_xsave()/_xsavec()/_xsaves()
Saves the states of x87 FPU, MMX, XMM, YMM, and
MXCSR registers to memory.

Syntax

extern void _xsave(void *mem, unsigned __int64 save_mask);
extern void _xsavec(void *mem, unsigned __int64 save_mask);
extern void _xsaves(void *mem, unsigned __int64 save_mask);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

save_mask A bit mask specifying the extended states to be saved.

Description

Saves the states of x87 FPU, MMX, XMM, YMM, and MXCSR registers to memory. The xsave intrinsic maps to
XSAVE instruction, the xsavec intrinsic maps to XSAVEC instruction, and the xsaves intrinsic maps to
XSAVES instruction. See the Intel® 64 and IA-32 Architectures Software Developer's Manual for information
on how the three instructions differ.

_xsave64()/ _xsavec64()/ _xsaves64()
Saves the states of x87 FPU, MMX, XMM, YMM, and
MXCSR registers to memory.

Syntax

extern void _xsave64(void *mem, unsigned __int64 save_mask);
extern void _xsavec64(void *mem, unsigned __int64 save_mask);
extern void _xsaves64(void *mem, unsigned __int64 save_mask);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

save_mask A bit mask specifying the extended states to be saved.

Description

Saves the states of x87 FPU, MMX, XMM, YMM, and MXCSR registers to memory. The xsave64 intrinsic maps to
XSAVE64 instruction, the xsavec64 intrinsic maps to XSAVEC64 instruction, and the xsaves64 intrinsic maps
to XSAVES64 instruction. See the Intel® 64 and IA-32 Architectures Software Developer's Manual for
information on how the three instructions differ.

 Intel® C++ Compiler Classic Developer Guide and Reference

678

_xsaveopt()
Saves the states of x87 FPU, MMX, XMM, YMM, and
MXCSR registers to memory, optimizing the save
operation if possible.

Syntax

extern void _xsaveopt(void *mem, unsigned __int64 save_mask);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

save_mask A bit mask specifying the extended states to be saved.

Description

Saves the states of x87 FPU, MMX, XMM, YMM, and MXCSR registers to memory, optimizing the save operation
if possible. This intrinsic maps to XSAVEOPT instruction.

_xsaveopt64()
Saves the states of x87 FPU, MMX, XMM, YMM, and
MXCSR registers to memory, optimizing the save
operation if possible.

Syntax

extern void _xsaveopt64(void *mem, unsigned __int64 save_mask);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

save_mask A bit mask specifying the extended states to be saved.

Description

Saves the states of x87 FPU, MMX, XMM, YMM, and MXCSR registers to memory, optimizing the save operation
if possible. This intrinsic maps to XSAVEOPT64 instruction.

_xrstor()/xrstors()
Restores the states of x87 FPU, MMX, XMM, YMM, and
MXCSR registers from memory.

Syntax

extern void _xrstor(void *mem, unsigned __int64 rstor_mask);
extern void _xrstors(const void *mem, unsigned __int64 rstor_mask);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

Compiler Reference

679

rstor_mask A bit mask specifying the extended states to be restored.

Description

Restores the states of x87 FPU, MMX, XMM, YMM, and MXCSR registers from memory. The xrstor intrinsic
maps to XRSTOR instruction, and the xrstors intrinsic maps to XRSTORS instruction. See the Intel® 64 and
IA-32 Architectures Software Developer's Manual for information on how the instructions differ.

_xrstor64()/xrstors64()
Restores the states of x87 FPU, MMX, XMM, YMM, and
MXCSR registers from memory.

Syntax

extern void _xrstor64(void *mem, unsigned __int64 rstor_mask);
extern void _xrstors64(const void *mem, unsigned __int64 rstor_mask);

Arguments

mem A memory reference to FXSAVE area. The 512-bytes memory addressed by
the reference must be 16-bytes aligned.

rstor_mask A bit mask specifying the extended states to be restored.

Description

Restores the states of x87 FPU, MMX, XMM, YMM, and MXCSR registers from memory. The xrstor64 intrinsic
maps to XRSTOR64 instruction, and the xrstors64 intrinsic maps to XRSTORS64 instruction. See the Intel®
64 and IA-32 Architectures Software Developer's Manual for information on how the instructions differ.

Intrinsics for the Short Vector Random Number Generator
Library
The Short Vector Random Number Generator (SVRNG) library provides intrinsics for the IA-32 and Intel® 64
architectures running on supported operating systems. The SVRNG library partially covers both standard C+
+ (as referenced here: http://www.cplusplus.com/reference/random/) and the random number generation
functionality of the Intel® oneAPI Math Kernel Library (oneMKL). The SVRNG library allows users to produce
random numbers using a combination of engines and distributions. Engines are basic generators which
produce uniformly distributed 32-bit or 64-bit unsigned integer numbers. Distributions transform the
sequences of numbers generated by an engine into sequences of numbers with specific random variable
distributions, such as uniform, normal, binomial and others. The distributions support single- or double-
precision floating point and 32-bit signed integer outputs.

Both scalar and vector implementations are available for SVRNG generation functions. Scalar versions return
native C++ data types: float, double, and both 32- and 64-bit integers. Vector versions produce packed
results using SIMD-vector registers via corresponding data types as outlined in Data Types and Calling
Conventions. Scalar versions called in loops can be vectorized by the compiler.

Unlike simple random number generators such as rand(), SVRNG engines and distributions require
initialization routines which allocate memory and pre-compute constants required for fast vector generation.
Finalization routines are provided to deallocate memory. Some engines support skip-ahead and leap-frog
techniques for use in parallel computing environment. The Parallel Computation Support section discusses

 Intel® C++ Compiler Classic Developer Guide and Reference

680

how these are used to obtain a random number sequence in parallel that is identical to the random number
sequence that is generated in the sequential case. Error handling in SVRNG is done via status set and get
functions. Additionally NULL pointers are returned on errors when possible.

SVRNG SIMD-vector functions and corresponding vectorized scalar calls are highly optimized for the following
instructions sets:

• Intel® Streaming SIMD Extensions 2 (Intel® SSE2) (default)
• Intel® Advanced Vector Extensions 2 (Intel® AVX2)
• Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Instructions (on Intel® Many Integrated Core

Architecture (Intel® MIC Architecture) and elsewhere)

Further Reference
The following documents are referenced in this section to provide further detail:

• Developer Reference for Intel® oneAPI Math Kernel Library - C: https://software.intel.com/
content/www/us/en/develop/documentation/onemkl-developer-reference-c/top.html

• Notes for Intel® oneAPI Math Kernel Library Vector Statistics: https://software.intel.com/
content/www/us/en/develop/documentation/onemkl-vsnotes/top.html

• _vectorcall and __regcall demystified: https://software.intel.com/content/www/us/en/develop/articles/
vectorcall-and-regcall-demystified.html

Data Types and Calling Conventions

Data types specific to the Short Vector Random Number Generator (SVRNG) Library
There are two types of SVRNG functions: the initialization and service routines and generation functions. The
initialization and service routines introduce two new data types:

svrng_engine_t A pointer to the engine-specific data structure created by the engine
initialization routine. The structure contains pre-computed constants
necessary for fast and precise random number vector generation by the
engine. The structure size is engine-dependent.

svrng_distribution_t A pointer to the distribution-specific data structure created by the
distribution initialization routine. The structure contains pre-computed
loop invariant constants to perform distribution transformations efficiently.
The structure size is distribution-dependent.

While scalar SVRNG generation functions return native "C" data types (float, double, 32-bit and 64-bit
integers), the SIMD-vector versions produce 1 1 , 2, 4, 8, 16, or 32 packed results in one or several SIMD-
vector registers. A set of SVRNG-specific vector types have been introduced to return these packed results.
These types are CPU-specific and mapped to different numbers of SIMD-registers depending on the
architecture where the program runs:

Type name Number of
packed
values

SSE2 (default) AVX21

Unsigned 32-bit integer

svrng_uint1_t 1 __m128i __m128i

svrng_uint2_t 2 __m128i __m128i

svrng_uint4_t 4 __m128i __m128i

svrng_uint8_t 8 struct { __m128i r[2]; } __m256i

Compiler Reference

681

svrng_uint16_t 16 struct { __m128i r[4]; } struct { __m256i r[2]; }

svrng_uint32_t 32 struct { __m128i r[8]; } struct { __m256i r[4]; }

Unsigned 64-bit integer

svrng_ulong1_t 1 __m128i __m128i

svrng_ulong2_t 2 __m128i __m128i

svrng_ulong4_t 4 struct { __m128i r[2]; } __m256i

svrng_ulong8_t 8 struct { __m128i r[4]; } struct { __m256i r[2]; }

svrng_ulong16_t 16 struct { __m128i r[8]; } struct { __m256i r[4]; }

svrng_ulong32_t 32 struct { __m128i r[16]; } struct { __m256i r[8]; }

Signed 32-bit integer

svrng_int1_t 1 __m128i __m128i

svrng_int2_t 2 __m128i __m128i

svrng_int4_t 4 __m128i __m128i

svrng_int8_t 8 struct { __m128i r[2]; } __m256i

svrng_int16_t 16 struct { __m128i r[4]; } struct { __m256i r[2]; }

svrng_int32_t 32 struct { __m128i r[8]; } struct { __m256i r[4]; }

Single-precision floating point

svrng_float1_t 1 __m128 __m128

svrng_float2_t 2 __m128 __m128

svrng_float4_t 4 __m128 __m128

svrng_float8_t 8 struct { __m128 r[2]; } __m256

svrng_float16_t 16 struct { __m128 r[4]; } struct { __m256 r[2]; }

svrng_float32_t 32 struct { __m128 r[8]; } struct { __m256 r[4]; }

Double-precision floating point

svrng_double1_t 1 __m128d __m128d

svrng_double2_t 2 __m128d __m128d

svrng_double4_t 4 struct { __m128d r[2]; } __m256d

svrng_double8_t 8 struct { __m128d r[4]; } struct { __m256d r[2]; }

svrng_double16_t 16 struct { __m128d r[8]; } struct { __m256d r[4]; }

svrng_double32_t 32 struct { __m128d r[16]; } struct { __m256d r[8]; }

 Intel® C++ Compiler Classic Developer Guide and Reference

682

1 Note that SVRNG does not have optimizations specific to the Intel® Advanced Vector Extensions (Intel®
AVX) instruction set. On hardware that supports Intel® AVX the Intel® Streaming SIMD Extensions 2 (Intel®
SSE2) instruction default versions are called, so you must use the Intel® SSE2 data types to interpret the
results.

SVRNG calling conventions
All SVRNG routines use the regcall calling convention which provides the most use of hardware vector
registers for passing parameters and returning results. See the "C/C++ Calling Conventions" section and the
"_vectorcall and __regcall demystified" article referenced in the Introduction. This avoids unnecessary
memory spills and fills of registers and improves performance.

In addition this convention provides the opportunity to deploy the "vector variant" declaration feature specific
to the Intel® compiler. The declaration specifies a vector variant function that corresponds to its original C/C+
+ scalar function. This vector variant function can be invoked in vector context at the site of the call. See the
vector_variant section for more detail. All SIMD-vector SVRNG intrinsics (except packed length = 1) are
declared in the svrng.h header file as vector_variant to support automatic vectorization.

See Also
Introduction
C/C++ Calling Conventions
vector_variant

Usage Model
A typical usage model for using the intrinsics in the Short Vector Random Number Generator (SVRNG) library
is the same as for standard C++ or Intel® oneAPI Math Kernel Library (oneMKL) vector statistics random
number generator and looks something like the following:

• Include svrng.h header file
• Create and initialize basic SVRNG generator engine, create and initialize distribution (if necessary).
• Call one or more SVRNG generation function.
• Process the output.
• Delete the SVRNG engines and distributions.

On Windows*, users will need to explicitly link the static or dynamic libraries: static: libirng.lib, dynamic:
libirngmd.lib. On Linux* and macOS the compiler driver will link automatically.

The following example demonstrates generation of a random stream that is output of basic generator engine
MT19937 with seed equal to 777. The engine is used to generate two arrays: 1024 uniformly distributed
random numbers between <a = 0.0, b = 4.0> via scalar generator call which should be vectorized by the
compiler and 1024 normally distributed with parameters <mean = 2.0, standard deviation = 1.0> random
numbers in blocks by 16 elements via direct call of SIMD-vector implementation. Delete engines and
distributions after completing the generation. Check status for possible errors happened. The purpose of the
example is to calculate the sample mean for both distributions with the given parameters.

#include <stdio.h>
#include <svrng.h>

int main(void)
{
 int i, st = SVRNG_STATUS_OK;
 double res1[1024], res2[1024];
 double sum1 = 0, sum2 = 0;
 double mean1, mean2;
 svrng_engine_t engine;
 svrng_distribution_t distr1, distr2;

Compiler Reference

683

 /* Create mt19937 engine */
 engine = svrng_new_mt19937_engine(777);

 /* Create uniform distribution */
 distr1 = svrng_new_uniform_distribution_double(0.0, 4.0);

 /* Create normal distribution */
 distr2 = svrng_new_normal_distribution_double(2.0, 1.0);

 /* Scalar generator call, can be vectorized by compiler */
 #pragma ivdep
 #pragma vector always
 for(i = 0; i < 1024; i ++) {
 res1[i] = svrng_generate_double(engine, distr1);
 }

 /* Direct call to SIMD-vector implementation */
 /* generating 16 packed elements */
 for(i = 0; i < 1024; i += 16) {
 ((svrng_double16_t)(&res2[i])) =
 svrng_generate16_double(engine, distr2);
 }

 /* Compute mean values */
 for(i = 0; i < 1024; i++) {
 sum1 += res1[i];
 sum2 += res2[i];
 }

 mean1 = sum1 / 1024.0;
 mean2 = sum2 / 1024.0;

 /* Printing results */
 printf("Sample mean of uniform distribution = %f\n", mean1);
 printf("Sample mean of normal distribution = %f\n", mean2);

 /* Check for resulted status */
 st = svrng_get_status();

 if(st != SVRNG_STATUS_OK) {
 printf("FAILED: status error %d returned\n", st);
 }

 /* Delete distributions */
 svrng_delete_distribution(distr1);
 svrng_delete_distribution(distr2);

 /* Delete engine */
 svrng_delete_engine(engine);

return st;
}

 Intel® C++ Compiler Classic Developer Guide and Reference

684

Another example demonstrates the "skip-ahead" technique which ensures identical random number
sequences in cases of parallel and sequential generation for certain engines. The rand0 engine is being
created and copied to T "threads" with the "skip-ahead" adjustments applied. Each "thread" generates N
uniformly distributed unsigned integer random values and then all LEN=T*N numbers are compared to the
sequential call:

#include <stdio.h>
#include <stdint.h>
#include <svrng.h>

#define LEN 1024
#define T 8
#define N (LEN/T)

int main(void) {
 uint32_t seq_res[LEN+32], parallel_res[LEN+32];
 svrng_engine_t seq_engine;
 svrng_engine_t parallel_engine[T];
 int l, n, t, errs = 0, st = SVRNG_STATUS_OK;

 /* Create sequential engine and distr */
 seq_engine = svrng_new_rand0_engine(777);

 /* Copy existing sequential engine to new T parallel ones */
 /* with t*N offsets using skipahead method */
 for(t = 0; t < T; t++) {
 int thr_offset = t*N;
 parallel_engine[t] = svrng_copy_engine(seq_engine);
 parallel_engine[t] = \
 svrng_skipahead_engine(parallel_engine[t], thr_offset);
 }

 /* Sequential loop using scalar function (can be vectorized) */
 #pragma ivdep
 #pragma vector always
 for(l = 0; l < LEN; l++) {
 seq_res[l] = svrng_generate_uint(seq_engine);
 }

 /* Parallel loop using SIMD-vector function, */
 /* may be spreaded by threads */
 for(t = 0; t < T; t++) {
 for(n = 0; n < N; n += 8) {
 ((svrng_uint8_t)(&(parallel_res[t*N+n]))) = \
 svrng_generate8_uint(parallel_engine[t]);
 }
 }

 /* Compare seq and parallel results */
 for(l = 0; l < LEN; l++) {
 if(parallel_res[l] != seq_res[l]) {
 errs++;
 }
 }

 /* Check for resulted status */
 st = svrng_get_status();

Compiler Reference

685

 /* Print overall result */
 if(st != SVRNG_STATUS_OK) {
 printf("FAILED: status error %d returned\n", st);
 }
 else if(errs) {
 printf("FAILED: %d skipahead errors\n", errs);
 }
 else {
 printf("PASSED\n");
 }

 /* Delete engines */
 svrng_delete_engine(seq_engine);
 for(t = 0; t < T; t++) {
 svrng_delete_engine(parallel_engine[t]);
 }

 return (errs-st);
}

Engine Initialization and Finalization
Unlike the simple rand() function, vector random number generators in the Short Vector Random Number
Generator (SVRNG) library require the initialization of an engine before the first generator run. This is due to
the fact that a number of initialization values called the vector state of the engine must be pre-computed to
perform effective vector generation. Once computed that vector state is retained and updated in memory as
more numbers are generated. When no more random numbers are needed, that memory can be deallocated.
The next few topics provide the functions used to allocate memory, initialize, and deallocate memory for all
supported SVRNG engines.

The SVRNG library supports the following engines from the C++11 standard and the Intel® oneAPI Math
Kernel Library (oneMKL) vector statistics random number generator collection:

• rand0 (C++11 standard)
• rand (C++11 standard)
• mcg31m1 (oneMKL)
• mcg59 (oneMKL)
• mt19937 (oneMKL and C++11 standard)

For more information on the figures of merit for these random number generator engines read the Basic
Random Generator Properties and Testing Results section of the Notes for Intel® oneAPI Math Kernel Library
Vector Statistics document (see the introduction).

For each engine there is a simple and extended version of the initialization function. Simple initialization has
one parameter, the seed, and constructs the rest of the vector state to generate the proper sequence for the
engine type. The extended versions of the initialization functions, with the _ex suffix, use multiple constants
to set generator state values. The application notes in the description of each engine provide more detail on
how these constants are used. The usual case for extended initialization requires enough constants to fill a
SIMD register with 64-bit values on the system which the program is intended to run. The following table
sums up the width (SIMD_WIDTH) of the SIMD registers used by the instructions sets for which the SVRNG
intrinsics are optimized:

Instruction set SIMD_WIDTH

Intel® Streaming SIMD
Extensions 2 (Intel® SSE2)

2

 Intel® C++ Compiler Classic Developer Guide and Reference

686

Instruction set SIMD_WIDTH

Intel® Advanced Vector
Extensions 2 (Intel® AVX2)

4

Intel® Advanced Vector
Extensions 512 (Intel®
AVX-512)

8

See Also
Introduction

svrng_new_rand0_engine/svrng_new_rand0_ex
Routines for allocating memory for a rand0 engine and
initializing with one or multiple seeds

Syntax

svrng_engine_t svrng_new_rand0_engine(uint32_t seed)
svrng_engine_t svrng_new_rand0_engine_ex(int num, uint32_t *pseed)

Input Parameters

seed Initial condition for the engine.

num Number of initialization values for the extended routine. May be 0
(seed set to 1), 1 (seed set to pseed[0]), or SIMD_WIDTH.

pseed Pointer to an array with initialization values for the extended routine.

Description

The svrng_new_rand0_engine function allocates memory for the rand0 engine originated from C++11
standard and initializes it using one seed value. The extended version of the function,
svrng_new_rand0_engine_ex, accepts several values for complex initialization cases where the user needs
to fill the whole vector state with their own constants.

Status flags set

Name Description

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_B
AD_PARAM1

Bad parameter: num

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter: pseed

Return Values

A pointer to an initialized engine or NULL on error.

Application Notes

The rand0 engine is a simple 32-bit multiplicative congruential pseudo-random number generator
represented by formula:

Compiler Reference

687

xi+1 = (a*xi) mod m

multiplier a = 16807 (=75)

modulus m = 2147483647 (=231-1)

Range: [0,MAX), where MAX = m

svrng_new_rand_engine/svrng_new_rand_ex
Routines for allocating memory for a rand engine and
initializing with one or multiple seeds

Syntax

svrng_engine_t svrng_new_rand_engine(uint32_t seed)
svrng_engine_t svrng_new_rand_engine_ex(int num, uint32_t *pseed)

Input Parameters

seed Initial condition for the engine.

num Number of initialization values for the extended routine. May be 0
(seed set to 1), 1 (seed set to pseed[0]), or SIMD_WIDTH.

pseed Pointer to an array with initialization values for the extended routine.

Description

The svrng_new_rand_engine function allocates memory for the rand engine (originated from C++ 11
standard) and initializes it using one seed value. The extended version of the function,
svrng_new_rand_engine_ex, accepts several values for complex initialization cases where the user needs
to fill the whole vector state with their own constants.

Status flags set

Name Description

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_B
AD_PARAM1

Bad parameter: num

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter: pseed

Return Values

A pointer to an initialized engine or NULL on error.

Application Notes

The rand is a simple 32-bit multiplicative congruential pseudo-random number generator represented by
formula:

xi+1 = (a*xi) mod m

multiplier a = 48271

modulus m = 2147483647 (=231-1)

Range: [0,MAX), where MAX = m

 Intel® C++ Compiler Classic Developer Guide and Reference

688

svrng_new_mcg31m1_engine/svrng_new_mcg31m1_ex
Routines for allocating memory for a mcg31m1 engine
and initializing with one or multiple seeds

Syntax

svrng_engine_t svrng_new_mcg31m1_engine(uint32_t seed)
svrng_engine_t svrng_new_mcg31m1_engine_ex(int num, uint32_t *pseed)

Input Parameters

seed Initial condition for the engine.

num Number of initialization values for the extended routine. May be 0
(seed set to 1), 1 (seed set to pseed[0]), or SIMD_WIDTH.

pseed Pointer to an array with initialization values for the extended routine.

Description

The svrng_new_mcg31m1_engine function allocates memory for the mcg31m1 engine (originated from C++
11 standard) and initializes it using one seed value. The extended version of the function,
svrng_new_mcg31m1_engine_ex, accepts several values for complex initialization cases where the user
needs to fill the whole vector state with their own constants.

Status flags set

Name Description

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_B
AD_PARAM1

Bad parameter: num

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter: pseed

Return Values

A pointer to an initialized engine or NULL on error.

Application Notes

The mcg31m1 is a simple 32-bit multiplicative congruential pseudo-random number generator represented
by formula:

xi+1 = (a*xi) mod m

multiplier a = 1132489760

modulus m = 2147483647 (=231-1) Range: [0,MAX), where MAX = m

svrng_new_mcg59_engine/svrng_new_mcg59_ex
Routines for allocating memory for a mcg59 engine
and initializing with one or multiple seeds

Compiler Reference

689

Syntax

svrng_engine_t svrng_new_mcg59_engine(uint32_t seed)
svrng_engine_t svrng_new_mcg59_engine_ex(int num, uint32_t *pseed)

Input Parameters

seed Initial condition for the engine.

num Number of initialization values for the extended routine. May be 0
(seed set to 1), 1 (seed set to pseed[0]), or SIMD_WIDTH.

pseed Pointer to an array with initialization values for the extended routine.

Description

The svrng_new_mcg59_engine function allocates memory for the mcg59 engine (originated from C++ 11
standard) and initializes it using one seed value. The extended version of the function,
svrng_new_mcg59_engine_ex, accepts several values for complex initialization cases where the user needs
to fill the whole vector state with their own constants.

Status flags set

Name Description

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_B
AD_PARAM1

Bad parameter: num

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter: pseed

Return Values

A pointer to an initialized engine or NULL on error.

Application Notes

The mcg59 is a simple 64-bit multiplicative congruential pseudo-random number generator represented by
formula:

xi+1 = (a*xi) mod m

multiplier a = 1313

modulus m = 259 Range: [0,MAX), where MAX = m

svrng_new_mt19937_engine/svrng_new_mt19937_ex
Routines for allocating memory for an mt19937 engine
and initializing with one or multiple seeds

Syntax

svrng_engine_t svrng_new_mt19937_engine(uint32_t seed)
svrng_engine_t svrng_new_mt19937_engine_ex(int num, uint32_t *pseed)

 Intel® C++ Compiler Classic Developer Guide and Reference

690

Input Parameters

seed Initial condition for the engine.

num Number of initialization values for the extended routine. num>=0. See
VSL Notes for further details on extended initialization of the mt19937
engine.

pseed Pointer to an array with initialization values for the extended routine.

Description

The svrng_new_mt19937_engine function allocates memory for the mt19937 engine (from C++ 11
standard) and initializes it using one seed value. The extended version of the function,
svrng_new_mt19937_engine_ex, accepts several values for complex initialization cases. Because the
mt19937 engine has 19937 bits of state in memory, its initialization differs from the other engines. See the
Notes for Intel® oneAPI Math Kernel Library Vector Statistics document for detailed information on this
engine.

Status flags set

Name Description

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_B
AD_PARAM1

Bad parameter: num

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter: pseed

Return Values

A pointer to an initialized engine or NULL on error.

Application Notes

The mt19937 is a Mersenne Twister pseudo-random generator of 32-bit numbers with a state size of 19937
bits that is a modification of twisted generalized feedback shift register generator. Range: [0,MAX), where
MAX = 232.

See Also
Introduction

svrng_delete_engine
Deallocates memory for the specified engine

Syntax

svrng_engine_t svrng_delete_engine(svrng_engine_t engine)

Input Parameters

engine Pointer to the engine to be deallocated.

Description

The svrng_delete_engine function deallocates memory for the specified engine.

Compiler Reference

691

Status flags set

Name Description

SVRNG_STATUS_ERROR_B
AD_ENGINE

Bad engine (NULL pointer)

Return Values

NULL pointer.

Distribution Initialization and Finalization
The Short Vector Random Number Generator (SVRNG) library supports the following distributions:

• uniform (single and double floating point and 32-bit integer)
• normal (single and double floating point)

SVRNG distributions must be initialized before random numbers can be generated. The initialization and
finalization routines in this section allocate memory, pre-compute loop-invariant values and broadcast scalar
constants for fast vector generation. Update functions are also provided to re-compute these numbers
without memory re-allocation. More detail on the figures of merit for these distributions can be found in the
Figures of Merit for Random Number Generators and Testing of Distribution Random Number Generators
sections of the Notes for Intel® oneAPI Math Kernel Library Vector Statistics document referenced in the
Introduction.

See Also
Introduction

svrng_new_uniform_distribution_[int|float|double]/svrng_update_uniform_distribution_[int|
float|double]
Allocates and initializes constants for the uniform
distribution with specified parameters

Syntax

svrng_distribution_t svrng_new_uniform_distribution_int(int a, int b)
svrng_distribution_t svrng_new_uniform_distribution_float(float a, float b)
svrng_distribution_t svrng_new_uniform_distribution_double(double a, double b)
svrng_distribution_t svrng_update_uniform_distribution_int(svrng_distribution_t distr,
int a, int b)
svrng_distribution_t svrng_update_uniform_distribution_float(svrng_distribution_t
distr, float a, float b)
svrng_distribution_t svrng_update_uniform_distribution_double(svrng_distribution_t
distr, double a, double b)

Input Parameters

a Left bound of interval

b Right bound of interval

distr Pointer to the distribution to be updated

 Intel® C++ Compiler Classic Developer Guide and Reference

692

Description

The svrng_new_uniform_distribution_[int|float|double] function allocates memory for a uniform
distribution and pre-computes and broadcasts loop-invariant constants required for vector generation of
uniformly distributed values over the interval [a, b), where a, b are the real left and right bounds of the
interval respectively with a < b. 32-bit int, float and double types are supported. The
svrng_update_uniform_distribution_[int|float|double] functions give the same result, but by
modifying existing distributions instead of allocating memory for new distributions.

Status flags set

Name Description

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_B
AD_PARAMS

a>=b

SVRNG_STATUS_ERROR_B
AD_DISTR

Bad distribution (NULL pointer)

Return Values

A pointer to the distribution created or updated by the function, or NULL on error.

svrng_new_normal_distribution_[float|double]/svrng_update_normal_distribution_[float|
double]
Allocates and initializes constants for the normal
distribution with specified parameters

Syntax

svrng_distribution_t svrng_new_normal_distribution_float(float mean, float stddev)
svrng_distribution_t svrng_new_normal_distribution_double(double mean, double stddev)
svrng_distribution_t svrng_update_normal_distribution_float(svrng_distribution_t
distr, float mean, float stddev)
svrng_distribution_t svrng_update_normal_distribution_double(svrng_distribution_t
distr, double mean, double stddev)

Input Parameters

mean Mean value of the normal distribution.

stddev Standard deviation of the normal distribution

distr Pointer to the distribution to be updated

Description

The svrng_new_normal_distribution_[float|double] functions allocate memory for a normal distribution
of either 32- or 64-bit floating pont numbers with the specified mean and positive, real stddev using the
ICDF method. The function pre-computes and broadcasts loop-invariant constants required for vector
generation. The svrng_update_normal_distribution_[float|double] functions give the same result, but
by modifying existing distributions instead of allocating memory for new distributions.

Compiler Reference

693

Status flags set

Name Description

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter: stddev

SVRNG_STATUS_ERROR_B
AD_DISTR

Bad distribution (NULL pointer)

Return Values

A pointer to the distribution created or updated by the function, or NULL on error.

svrng_delete_distribution
Deallocates memory for the specified distribution

Syntax

svrng_distribution_t svrng_delete_distribution(svrng_distribution_t distr)

Input Parameters

distr Pointer to the distribution to be deallocated.

Description

The svrng_delete_distribution function deallocates memory for the specified distribution.

Status flags set

Name Description

SVRNG_STATUS_ERROR_B
AD_DISTR

distr is a NULL pointer.

Return Values

NULL pointer.

Random Values Generation
Once the engines and distributions are created by the appropriate initialization routines, the SVRNG
generation functions may be called. Both scalar and vector implementations are available. Scalar functions
return random values of native "C" types such as int32_t, uint32_t, uint64_t, float, and double, while
vector functions produce packed results in SIMD registers through CPU-specific types (see the "Data Types
and Calling Conventions" sections). Calls to scalar SVRNG intrinsics in loops can be vectorized by the
compiler via the "vector_variant" feature when the svrng.h header file is used. The compiler vectorizer
replaces scalar calls by a corresponding SIMD version.

See Also
Data Types and Calling Conventions

 Intel® C++ Compiler Classic Developer Guide and Reference

694

svrng_generate[1|2|4|8|16|32]_[uint|ulong]
Generates uniform random bits over the a specified
range

Syntax

uint32_t svrng_generate_uint(svrng_engine_t engine)
svrng_uint1_t svrng_generate1_uint(svrng_engine_t engine)
svrng_uint2_t svrng_generate2_uint(svrng_engine_t engine)
svrng_uint4_t svrng_generate4_uint(svrng_engine_t engine)
svrng_uint8_t svrng_generate8_uint(svrng_engine_t engine)
svrng_uint16_t svrng_generate16_uint(svrng_engine_t engine)
svrng_uint32_t svrng_generate32_uint(svrng_engine_t engine)
uint64_t svrng_generate_ulong(svrng_engine_t engine)
svrng_ulong1_t svrng_generate1_ulong(svrng_engine_t engine)
svrng_ulong2_t svrng_generate2_ulong(svrng_engine_t engine)
svrng_ulong4_t svrng_generate4_ulong(svrng_engine_t engine)
svrng_ulong8_t svrng_generate8_ulong(svrng_engine_t engine)
svrng_ulong16_t svrng_generate16_ulong(svrng_engine_t engine)
svrng_ulong32_t svrng_generate32_ulong(svrng_engine_t engine)

Input Parameters

engine Pointer to the engine.

Description

The svrng_generate[n]_[uint|ulong] functions generate uniform random bits over the range [0, MAX)
with engine-dependent maximum value. The uint versions are available for 32-bit engines only (rand0, rand,
mcg31m1, mt19937), the ulong versions are available for 64-bit engines only (mcg59). The number n if
specified expresses the number of packed unsigned integer elements in returned SIMD registers.

Status flags set

Name Description

SVRNG_STATUS_ERROR_U
NSUPPORTED

Unmatched engine and result type. See the Description section for supported
combinations.

SVRNG_STATUS_ERROR_B
AD_ENGINE

Bad engine (NULL pointer)

Return Values

Unsigned integer random value(s). The svrng_generate_[uint|ulong] functions return a single unsigned
32- or 64-bit integer random value. The svrng_generate[n]_[uint|ulong] functions, for n=1, 2, 4, 8, 16,
or 32 return as many unsigned, 32- or 64-bit integer random values packed in a SIMD register.

Compiler Reference

695

svrng_generate[1|2|4|8|16|32]_[int|float|double]
Generates distributed random values for the specified
engine and distribution

Syntax

int32_t svrng_generate_int(svrng_engine_t engine, svrng_distribution_t distr)
svrng_int1_t svrng_generate1_int(svrng_engine_t engine, svrng_distribution_t distr)
svrng_int2_t svrng_generate2_int(svrng_engine_t engine, svrng_distribution_t distr)
svrng_int4_t svrng_generate4_int(svrng_engine_t engine, svrng_distribution_t distr)
svrng_int8_t svrng_generate8_int(svrng_engine_t engine, svrng_distribution_t distr)
svrng_int16_t svrng_generate16_int(svrng_engine_t engine, svrng_distribution_t distr)
svrng_int32_t svrng_generate32_int(svrng_engine_t engine, svrng_distribution_t distr)
float svrng_generate_float(svrng_engine_t engine, svrng_distribution_t distr)
svrng_float1_t svrng_generate1_float(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_float2_t svrng_generate2_float(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_float4_t svrng_generate4_float(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_float8_t svrng_generate8_float(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_float16_t svrng_generate16_float(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_float32_t svrng_generate32_float(svrng_engine_t engine, svrng_distribution_t
distr)
double svrng_generate_double(svrng_engine_t engine, svrng_distribution_t distr)
svrng_double1_t svrng_generate1_double(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_double2_t svrng_generate2_double(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_double4_t svrng_generate4_double(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_double8_t svrng_generate8_double(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_double16_t svrng_generate16_double(svrng_engine_t engine, svrng_distribution_t
distr)
svrng_double32_t svrng_generate32_double(svrng_engine_t engine, svrng_distribution_t
distr)

Input Parameters

engine Pointer to the engine.

 Intel® C++ Compiler Classic Developer Guide and Reference

696

distr Pointer to the distribution.

Description

The svrng_generate[n]_[int|float|double] functions generate distributed random values based on the
input engine and distribution specified. The output types that are supported—int, float, or double—depend on
the distribution used. The number n if specified expresses the number of packed elements desired in the
returned SIMD registers.

Status flags set

Name Description

SVRNG_STATUS_ERROR_U
NSUPPORTED

Unmatched engine and result type. See the Description section for supported
combinations.

SVRNG_STATUS_ERROR_B
AD_ENGINE

Bad engine (NULL pointer)

SVRNG_STATUS_ERROR_B
AD_DISTR

Bad distribution (NULL pointer)

Return Values

The svrng_generate_[int|long|double] functions return a single random value of the specified type.
The svrng_generate[n]_[int|long|double] functions, for n=1, 2, 4, 8, 16, or 32, return as many signed
random values packed in a SIMD register.

Service Routines
There are two types of service routines available to support the short vector random number generator
library:

1. Functions for parallel computations
2. Error handling functions

Parallel Computation Support
One of the basic requirements for the random number sequences generated by the engines is their mutual
independence and lack of inter-correlation. Even if you want random number samplings to be correlated,
such correlation should be controllable. The Short Vector Random Number Generator (SVRNG) library
provides two techniques: skip-ahead and leap-frog.

Skip-ahead The skip-ahead method splits the original sequence into k non-overlapping
blocks, where k is the number of independent sequences. Each of the sequences
generates random numbers only from the corresponding block of contiguous
random numbers.

Compiler Reference

697

Leap-frog The leap-frog method splits the original sequence into k disjoint subsequences in
such a way that the first stream would generate the random numbers x1, xk+1,
x2k+1, x3k+1, ..., the second stream would generate the random numbers x2, xk
+2, x2k+2, x3k+2, ..., and, finally, the k-th stream would generate the random
numbers xk, x2k, x3k, The multi-dimensional uniformity properties of each
subsequence deteriorate seriously as k grows so this method is only useful if k is
less than about 25.

The following sequence outlines the typical usage model for creating independent sequences of random
numbers in a parallel computation environment:

• Create the original engine
• Create a copy of the original engine in each thread
• Apply one of techniques above to re-initialize the individual engines to provide an independent sequence

on each thread

For detailed information on the use of SVRNG intrinsics in a parallel computation environment see the
Random Streams and RNGs in Parallel Computation section of the Notes for Intel® oneAPI Math Kernel
Library Vector Statistics document listed in Intrinsics for the Short Vector Random Number Generator Library.

Note: Currently skip-ahead and leap-frog methods are supported by the rand0, rand, mcg31m1, and mcg59 engines.
The skip-ahead and leap-frog methods of splitting a stream are not yet implemented for the mt19937 engine, but
mt19937 naturally provides parallel support during initialization. See the MT19937 section of the Notes for Intel®
oneAPI Math Kernel Library Vector Statistics document listed in the introduction. .

See Also
Intrinsics for the Short Vector Random Number Generator Library

 Intel® C++ Compiler Classic Developer Guide and Reference

698

svrng_copy_engine
Allocates memory for a new engine and copies over all
parameters

Syntax

svrng_engine_t svrng_copy_engine(svrng_engine_t orig_engine)

Input Parameters

orig_engine Pointer to the engine to be copied

Description

The svrng_copy_engine function allocates memory for a new engine then copies all parameters from
original engine to the new engine.

Status flags set

Name Description

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_B
AD_ENGINE

Bad engine (NULL pointer)

Return Values

Pointer to the newly created copy of the original engine, or NULL on error.
svrng_skipahead_engine
Re-initialize engine parameters for use of the skip-
ahead method

Syntax

svrng_engine_t svrng_skipahead_engine(svrng_engine_t orig_engine, long long nskip)

Input Parameters

orig_engine Pointer to the engine to be re-initialized using the skip-ahead
technique

nskip Number of skipped elements

Description

Re-initializes engine parameters using the block-splitting ("skip-ahead") method. The function skips a given
number of elements in a random stream. This feature is particularly useful in distributing random numbers
from original random stream across different computational nodes. If the largest number of random numbers
used by a computational node is nskip, then the original random sequence may be split by this function into
non-overlapping blocks of nskip size so that each block corresponds to the respective computational node.
The number of computational nodes is unlimited.

Compiler Reference

699

Status flags set

Name Description

SVRNG_STATUS_ERROR_
NON_SUPPORTED

Memory allocation procedure failure

SVRNG_STATUS_ERROR_B
AD_ENGINE

Bad engine (NULL pointer)

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter: nskip

Return Values

Pointer to the same input engine or NULL on error
svrng_leapfrog_engine
Re-initialize engine parameters for use of the leap-
frog method

Syntax

svrng_engine_t svrng_leapfrog_engine(svrng_engine_t orig_engine, int k, int nstreams)

Input Parameters

orig_engine Pointer to the engine to be re-initialized using the leap-frog technique.

k Index of the computational node, or sequence number.

nstreams Largest number of computational nodes, or stride.

Description

The svrng_skipahead_engine function re-initializes the engine parameters using the leap-frog method.
The leap-frogged engine generates random numbers in a random stream with non-unit stride. This feature is
particularly useful in distributing random numbers from the original stream across the nstreams buffers
without generating the original random sequence with subsequent manual distribution.

Status flags set

Name Description

SVRNG_STATUS_ERROR_U
NSUPPORTED

Function or method non supported

SVRNG_STATUS_ERROR_B
AD_ENGINE

Bad engine (NULL pointer)

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter: k

SVRNG_STATUS_ERROR_B
AD_PARAM3

Bad parameter: nstreams

Return Values

Pointer to the same input engine or NULL on error

 Intel® C++ Compiler Classic Developer Guide and Reference

700

Error Handling
The Short Vector Random Number Generator (SVRNG) library supports error handling via status variables
and corresponding set and get functions. NULL pointers are returned for errors when possible. The following
table contains the status constants defined in svrng.h:

Macro Name Description

SVRNG_STATUS_OK No errors

SVRNG_STATUS_ERROR_B
AD_PARAM1

Bad parameter #1

SVRNG_STATUS_ERROR_B
AD_PARAM2

Bad parameter #2

SVRNG_STATUS_ERROR_B
AD_PARAM3

Bad parameter #3

SVRNG_STATUS_ERROR_B
AD_PARAM4

Bad parameter #4

SVRNG_STATUS_ERROR_B
AD_PARAMS

Bad combination of parameters

SVRNG_STATUS_ERROR_B
AD_ENGINE

Bad engine (NULL pointer)

SVRNG_STATUS_ERROR_B
AD_DISTR

Bad distribution (NULL pointer)

SVRNG_STATUS_ERROR_
MEMORY_ALLOC

Memory allocation failure

SVRNG_STATUS_ERROR_U
NSUPPORTED

Function or method not supported

svrng_set_status
Sets the status variable to a specified value and
returns the previous status value

Syntax

int32_t svrng_set_status(int32_t new_status)

Input Parameters

new_status The new status.

Description

The svrng_set_status function sets the status variable to a specific constant value and returns the
previous status value. See the Error Handling page for a table of values defined in svrng.h.

Return Values

Returns the previous status value.
svrng_get_status
Returns the current status value

Compiler Reference

701

Syntax

int32_t svrng_get_status()

Description

The svrng_get_status function returns the current status value.

Return Values

The current status value.

Intrinsics for Instruction Set Architecture (ISA) Instructions

SERIALIZE

_serialize

Synopsis

void _serialize ()

Header file #include <immintrin.h>
Instruction SERIALIZE
CPUID flags SERIALIZE

Description
Serialize instruction execution, ensuring all modifications to flags, registers, and memory by previous
instructions are completed before the next instruction is fetched.

Technology
Other

Category
General Support

TSXLDTRK

_xresldtrk

Synopsis

void _xresldtrk ()

Header file #include <immintrin.h>
Instruction XRESLDTRK
CPUID flags TSXLDTRK

 Intel® C++ Compiler Classic Developer Guide and Reference

702

Description
Mark the end of a TSX (HLE/RTM) suspend load address tracking region. If this is used inside a suspend load
address tracking region it will end the suspend region and all following load addresses will be added to the
transaction read set. If this is used inside an active transaction but not in a suspend region it will cause
transaction abort. If this is used outside of a transactional region it behaves like a NOP.

Technology
Other

Category
Miscellaneous

_xsusldtrk

Synopsis

void _xsusldtrk ()

Header file #include <immintrin.h>
Instruction XSUSLDTRK
CPUID flags TSXLDTRK

Description
Mark the start of a TSX (HLE/RTM) suspend load address tracking region. If this is used inside a transactional
region, subsequent loads are not added to the read set of the transaction. If this is used inside a suspend
load address tracking region it will cause transaction abort. If this is used outside of a transactional region it
behaves like a NOP.

Technology
Other

Category
Miscellaneous

Intrinsics for Intel® Advanced Matrix Extensions (Intel(R)
AMX) Instructions
Intel® Advanced Matrix Extensions (Intel® AMX) is a new 64-bit programming paradigm consisting of two
components:

• A set of 2-dimensional registers (tiles) representing sub-arrays from a larger 2-dimensional memory
image

• An accelerator that is able to operate on tiles; the first implementation of this accelerator is called TMUL
(tile matrix multiply unit).

The following sections show intrinsics that are available for Intel(R) Advanced Matrix Extension Instructions.

Intrinsic for Intel® Advanced Matrix Extensions AMX-BF16 Instructions
This intrinsic supports tile computational operations on bfloat16 numbers.

Compiler Reference

703

_tile_dpbf16ps

Synopsis

void _tile_dpbf16ps (__tile dst, __tile a, __tile b)

Type TileFloating Point

Header file #include <immintrin.h>
Instruction TDPBF16PS tmm, tmm, tmm
CPUID flags AMXBF16

Description
Compute dot-product of BF16 (16-bit) floating-point pairs in tiles "a" and "b", accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in "dst", and store the 32-bit result back to
tile "dst".

Technology
AMX

Category
Application-Targeted

Operation

FOR m := 0 TO dst.rows - 1
 tmp := dst.row[m]
 FOR k := 0 TO (a.colsb / 4) - 1
 FOR n := 0 TO (dst.colsb / 4) - 1
 tmp.fp32[n] += FP32(a.row[m].bf16[2*k+0]) * FP32(b.row[k].bf16[2*n+0])
 tmp.fp32[n] += FP32(a.row[m].bf16[2*k+1]) * FP32(b.row[k].bf16[2*n+1])
 ENDFOR
 ENDFOR
 write_row_and_zero(dst, m, tmp, dst.colsb)
ENDFOR

zero_upper_rows(dst, dst.rows)
zero_tileconfig_start()

Intrinsics for Intel® Advanced Matrix Extensions AMX-INT8 Instructions
These intrinsics support tile computational operations on 8-bit integers.

_tile_dpbssd

Synopsis

void _tile_dpbssd (__tile dst, __tile a, __tile b)

Type Tile

Header file #include <immintrin.h>

 Intel® C++ Compiler Classic Developer Guide and Reference

704

Instruction TDPBSSD tmm, tmm, tmm
CPUID flags AMXINT8

Description
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent
pairs of signed 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4 intermediate
32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the 32-bit result
back to tile "dst".

Technology
AMX

Category
Application-Targeted

Operation

DEFINE DPBD(c, x, y) {
 tmp1 := SignExtend32(x.byte[0]) * SignExtend32(y.byte[0])
 tmp2 := SignExtend32(x.byte[1]) * SignExtend32(y.byte[1])
 tmp3 := SignExtend32(x.byte[2]) * SignExtend32(y.byte[2])
 tmp4 := SignExtend32(x.byte[3]) * SignExtend32(y.byte[3])

 RETURN c + tmp1 + tmp2 + tmp3 + tmp4
}

FOR m := 0 TO dst.rows - 1
 tmp := dst.row[m]
 FOR k := 0 TO (a.colsb / 4) - 1
 FOR n := 0 TO (dst.colsb / 4) - 1
 tmp.dword[n] := DPBD(tmp.dword[n], a.row[m].dword[k], b.row[k].dword[n])
 ENDFOR
 ENDFOR
 write_row_and_zero(dst, m, tmp, dst.colsb)
ENDFOR

zero_upper_rows(dst, dst.rows)
zero_tileconfig_start()

_tile_dpbsud

Synopsis

void _tile_dpbsud (__tile dst, __tile a, __tile b)

Type Tile

Header file #include <immintrin.h>
Instruction TDPBSUD tmm, tmm, tmm
CPUID flags AMXINT8

Compiler Reference

705

Description
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent
pairs of signed 8-bit integers in "a" with corresponding unsigned 8-bit integers in "b", producing 4
intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the
32-bit result back to tile "dst".

Technology
AMX

Category
Application-Targeted

Operation

DEFINE DPBD(c, x, y) {
 tmp1 := SignExtend32(x.byte[0]) * ZeroExtend32(y.byte[0])
 tmp2 := SignExtend32(x.byte[1]) * ZeroExtend32(y.byte[1])
 tmp3 := SignExtend32(x.byte[2]) * ZeroExtend32(y.byte[2])
 tmp4 := SignExtend32(x.byte[3]) * ZeroExtend32(y.byte[3])

 RETURN c + tmp1 + tmp2 + tmp3 + tmp4
}

FOR m := 0 TO dst.rows - 1
 tmp := dst.row[m]
 FOR k := 0 TO (a.colsb / 4) - 1
 FOR n := 0 TO (dst.colsb / 4) - 1
 tmp.dword[n] := DPBD(tmp.dword[n], a.row[m].dword[k], b.row[k].dword[n])
 ENDFOR
 ENDFOR
 write_row_and_zero(dst, m, tmp, dst.colsb)
ENDFOR

zero_upper_rows(dst, dst.rows)
zero_tileconfig_start()

_tile_dpbusd

Synopsis

void _tile_dpbusd (__tile dst, __tile a, __tile b)

Type Tile

Header file #include <immintrin.h>
Instruction TDPBUSD tmm, tmm, tmm
CPUID flags AMXINT8

Description
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent
pairs of unsigned 8-bit integers in "a" with corresponding signed 8-bit integers in "b", producing 4
intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the
32-bit result back to tile "dst".

 Intel® C++ Compiler Classic Developer Guide and Reference

706

Technology
AMX

Category
Application-Targeted

Operation

DEFINE DPBD(c, x, y) {
 tmp1 := ZeroExtend32(x.byte[0]) * SignExtend32(y.byte[0])
 tmp2 := ZeroExtend32(x.byte[1]) * SignExtend32(y.byte[1])
 tmp3 := ZeroExtend32(x.byte[2]) * SignExtend32(y.byte[2])
 tmp4 := ZeroExtend32(x.byte[3]) * SignExtend32(y.byte[3])

 RETURN c + tmp1 + tmp2 + tmp3 + tmp4
}

FOR m := 0 TO dst.rows - 1
 tmp := dst.row[m]
 FOR k := 0 TO (a.colsb / 4) - 1
 FOR n := 0 TO (dst.colsb / 4) - 1
 tmp.dword[n] := DPBD(tmp.dword[n], a.row[m].dword[k], b.row[k].dword[n])
 ENDFOR
 ENDFOR
 write_row_and_zero(dst, m, tmp, dst.colsb)
ENDFOR

zero_upper_rows(dst, dst.rows)
zero_tileconfig_start()

_tile_dpbuud

Synopsis

void _tile_dpbuud (__tile dst, __tile a, __tile b)

Type Tile

Header file #include <immintrin.h>
Instruction TDPBUUD tmm, tmm, tmm
CPUID flags AMXINT8

Description
Compute dot-product of bytes in tiles with a source/destination accumulator. Multiply groups of 4 adjacent
pairs of unsigned 8-bit integers in "a" with corresponding unsigned 8-bit integers in "b", producing 4
intermediate 32-bit results. Sum these 4 results with the corresponding 32-bit integer in "dst", and store the
32-bit result back to tile "dst".

Technology
AMX

Compiler Reference

707

Category
Application-Targeted

Operation

DEFINE DPBD(c, x, y) {
 tmp1 := ZeroExtend32(x.byte[0]) * ZeroExtend32(y.byte[0])
 tmp2 := ZeroExtend32(x.byte[1]) * ZeroExtend32(y.byte[1])
 tmp3 := ZeroExtend32(x.byte[2]) * ZeroExtend32(y.byte[2])
 tmp4 := ZeroExtend32(x.byte[3]) * ZeroExtend32(y.byte[3])

 RETURN c + tmp1 + tmp2 + tmp3 + tmp4
}

FOR m := 0 TO dst.rows - 1
 tmp := dst.row[m]
 FOR k := 0 TO (a.colsb / 4) - 1
 FOR n := 0 TO (dst.colsb / 4) - 1
 tmp.dword[n] := DPBD(tmp.dword[n], a.row[m].dword[k], b.row[k].dword[n])
 ENDFOR
 ENDFOR
 write_row_and_zero(dst, m, tmp, dst.colsb)
ENDFOR

zero_upper_rows(dst, dst.rows)
zero_tileconfig_start()

Intrinsics for Intel(R) Advanced Matrix Extensions AMX-TILE Instructions
These intrinsics support tile architecture.

_tile_loadconfig

Synopsis

void _tile_loadconfig (const void * mem_addr)

Type Tile

Header file #include <immintrin.h>
Instruction LDTILECFG m512
CPUID flags AMXTILE

Description
Load tile configuration from a 64-byte memory location specified by "mem_addr". The tile configuration
format is specified below, and includes the tile type pallette, the number of bytes per row, and the number of
rows. If the specified pallette_id is zero, that signifies the init state for both the tile config and the tile data,
and the tiles are zeroed. Any invalid configurations will result in #GP fault.

Technology
AMX

 Intel® C++ Compiler Classic Developer Guide and Reference

708

Category
Application-Targeted

Operation

// format of memory payload. each field is a byte.
// 0: palette_id
// 1: startRow (8b)
// 2-15: reserved (must be zero)
// 16-17: tile0.colsb -- bytes_per_row
// 18-19: tile1.colsb
// 20-21: tile2.colsb
// ...
// 46-47: tile15.colsb
// 48: tile0.rows
// 49: tile1.rows
// 50: tile2.rows
// ...
// 63: tile15.rows

_tile_loadd

Synopsis

void _tile_loadd (__tile dst, const void * base, int stride)

Type Tile

Header file #include <immintrin.h>
Instruction TILELOADD tmm, sibmem
CPUID flags AMXTILE

Description
Load tile rows from memory specifieid by "base" address and "stride" into destination tile "dst" using the tile
configuration previously configured via "_tile_loadconfig".

Technology
AMX

Category
Application-Targeted

Operation

start := tileconfig.startRow
IF start == 0 // not restarting, zero incoming state
 tilezero(dst)
FI

nbytes := dst.colsb
DO WHILE start < dst.rows
 memptr := base + start * stride
 write_row_and_zero(dst, start, read_memory(memptr, nbytes), nbytes)

Compiler Reference

709

 start := start + 1
OD

zero_upper_rows(dst, dst.rows)
zero_tileconfig_start()

_tile_release

Synopsis

void _tile_release ()

Type Tile

Header file #include <immintrin.h>
Instruction TILERELEASE
CPUID flags AMXTILE

Description
Release the tile configuration to return to the init state, which releases all storage it currently holds.

Technology
AMX

Category
Application-Targeted

_tile_storeconfig

Synopsis

void _tile_storeconfig (void * mem_addr)

Type Tile

Header file #include <immintrin.h>
Instruction STTILECFG m512
CPUID flags AMXTILE

Description
Stores the current tile configuration to a 64-byte memory location specified by "mem_addr". The tile
configuration format is specified below, and includes the tile type pallette, the number of bytes per row, and
the number of rows. If tiles are not configured, all zeroes will be stored to memory.

Technology
AMX

Category
Application-Targeted

 Intel® C++ Compiler Classic Developer Guide and Reference

710

Operation

// format of memory payload. each field is a byte.
// 0: palette_id
// 1: startRow (8b)
// 2-15: reserved (must be zero)
// 16-17: tile0.colsb -- bytes_per_row
// 18-19: tile1.colsb
// 20-21: tile2.colsb
// ...
// 46-47: tile15.colsb
// 48: tile0.rows
// 49: tile1.rows
// 50: tile2.rows
// ...
// 63: tile15.rows

_tile_stored

Synopsis

void _tile_stored (__tile src, void * base, int stride)

Type Tile

Header file #include <immintrin.h>
Instruction TILESTORED sibmem, tmm
CPUID flags AMXTILE

Description
Store the tile specified by "src" to memory specifieid by "base" address and "stride" using the tile
configuration previously configured via "_tile_loadconfig".

Technology
AMX

Category
Application-Targeted

Operation

start := tileconfig.startRow
DO WHILE start < src.rows
 memptr := base + start * stride
 write_memory(memptr, src.colsb, src.row[start])
 start := start + 1
OD
zero_tileconfig_start()

Compiler Reference

711

_tile_stream_loadd

Synopsis

void _tile_stream_loadd (__tile dst, const void * base, int stride)

Type Tile

Header file #include <immintrin.h>
Instruction TILELOADDT1 tmm, sibmem
CPUID flags AMXTILE

Description
Load tile rows from memory specifieid by "base" address and "stride" into destination tile "dst" using the tile
configuration previously configured via "_tile_loadconfig". This intrinsic provides a hint to the implementation
that the data will likely not be reused in the near future and the data caching can be optimized accordingly.

Technology
AMX

Category
Application-Targeted

Operation

start := tileconfig.startRow
IF start == 0 // not restarting, zero incoming state
 tilezero(dst)
FI

nbytes := dst.colsb
DO WHILE start < dst.rows
 memptr := base + start * stride
 write_row_and_zero(dst, start, read_memory(memptr, nbytes), nbytes)
 start := start + 1
OD

zero_upper_rows(dst, dst.rows)
zero_tileconfig_start()

_tile_zero

Synopsis

void _tile_zero (__tile tdest)

Type Tile

Header file #include <immintrin.h>
Instruction TILEZERO tmm
CPUID flags AMXTILE

 Intel® C++ Compiler Classic Developer Guide and Reference

712

Description
Zero the tile specified by "tdest".

Technology
AMX

Category
Application-Targeted

Operation

nbytes := palette_table[tileconfig.palette_id].bytes_per_row
FOR i := 0 TO palette_table[tileconfig.palette_id].max_rows-1
 FOR j := 0 TO nbytes-1
 tdest.row[i].byte[j] := 0
 ENDFOR
ENDFOR

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) BF16 Instructions
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) BF16 instruction intrinsics are
located in the zmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
a a source vector element
b a second source vector element
k mask used as a selector; depending on the intrinsic, it may be a writemask or a zeromask

_mm_cvtne2ps_pbh

__m128bh _mm_cvtne2ps_pbh (__m128 a, __m128 b)
Instructions: vcvtne2ps2bf16 xmm, xmm, xmm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and stores the results in a single vector dst.

_mm_mask_cvtne2ps_pbh

__m128bh _mm_mask_cvtne2ps_pbh (__m128bh src, __mmask8 k, __m128 a, __m128 b)
Instructions: vcvtne2ps2bf16 xmm {k}, xmm, xmm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and stores the results in a single vector dst using writemask k. Elements are
copied from src when the corresponding mask bit is not set.

Compiler Reference

713

_mm_maskz_cvtne2ps_pbh

__m128bh _mm_maskz_cvtne2ps_pbh (__mmask8 k, __m128 a, __m128 b)
Instructions: vcvtne2ps2bf16 xmm {k}{z}, xmm, xmm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and stores the results in a single vector dst using zeromask k. Elements are
zeroed out when the corresponding mask bit is not set.

_mm256_cvtne2ps_pbh

__m256bh _mm256_cvtne2ps_pbh (__m256 a, __m256 b)
Instructions: vcvtne2ps2bf16 ymm, ymm, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and stores the results in a single vector dst.

_mm256_mask_cvtne2ps_pbh

__m256bh _mm256_mask_cvtne2ps_pbh (__m256bh src, __mmask16 k, __m256 a, __m256 b)
Instructions: vcvtne2ps2bf16 ymm {k}, ymm, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and stores the results in a single vector dst using writemask k. Elements are
copied from src when the corresponding mask bit is not set.

_mm256_maskz_cvtne2ps_pbh

__m256bh _mm256_maskz_cvtne2ps_pbh (__mmask16 k, __m256 a, __m256 b)
Instructions: vcvtne2ps2bf16 ymm {k}{z}, ymm, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and store the results in single vector dst using zeromask k. Elements are zeroed
out when the corresponding mask bit is not set.

_mm512_cvtne2ps_pbh

__m512bh _mm512_cvtne2ps_pbh (__m512 a, __m512 b)
Instructions: vcvtne2ps2bf16 zmm, zmm, zmm

CPUID Flags: AVX512_BF16 + AVX512F

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and stores the results in a single vector dst.

_mm512_mask_cvtne2ps_pbh

__m512bh _mm512_mask_cvtne2ps_pbh (__m512bh src, __mmask32 k, __m512 a, __m512 b)
Instructions: vcvtne2ps2bf16 zmm {k}, zmm, zmm

CPUID Flags: AVX512_BF16 + AVX512F

 Intel® C++ Compiler Classic Developer Guide and Reference

714

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and stores the results in a single vector dst using writemask k. Elements are
copied from src when the corresponding mask bit is not set.

_mm512_maskz_cvtne2ps_pbh

__m512bh _mm512_maskz_cvtne2ps_pbh (__mmask32 k, __m512 a, __m512 b)
Instructions: vcvtne2ps2bf16 zmm {k}{z}, zmm, zmm

CPUID Flags: AVX512_BF16 + AVX512F

Converts packed single-precision (32-bit) floating-point elements in two vectors a and b to packed BF16 (16-
bit) floating-point elements, and stores the results in a single vector dst using zeromask k. Elements are
zeroed out when the corresponding mask bit is not set.

_mm_cvtneps_pbh

__m128bh _mm_cvtneps_pbh (__m128 a)
Instructions: vcvtneps2bf16 xmm, xmm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst.

_mm_mask_cvtneps_pbh

__m128bh _mm_mask_cvtneps_pbh (__m128bh src, __mmask8 k, __m128 a)
Instructions: vcvtneps2bf16 xmm {k}, xmm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst using writemask k. Elements are copied from src when the
corresponding mask bit is not set.

_mm_maskz_cvtneps_pbh

__m128bh _mm_maskz_cvtneps_pbh (__mmask8 k, __m128 a)
Instructions: vcvtneps2bf16 xmm {k}{z}, xmm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst using zeromask k. Elements are zeroed out when the corresponding
mask bit is not set.

_mm256_cvtneps_pbh

__m128bh _mm256_cvtneps_pbh (__m256 a)
Instructions: vcvtneps2bf16 xmm, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst.

Compiler Reference

715

_mm256_mask_cvtneps_pbh

__m128bh _mm256_mask_cvtneps_pbh (__m128bh src, __mmask8 k, __m256 a)
Instructions: vcvtneps2bf16 xmm {k}, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst using writemask k. Elements are copied from src when the
corresponding mask bit is not set.

_mm256_maskz_cvtneps_pbh

__m128bh _mm256_maskz_cvtneps_pbh (__mmask8 k, __m256 a)
Instructions: vcvtneps2bf16 xmm {k}{z}, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst using zeromask k. Elements are zeroed out when the corresponding
mask bit is not set.

_mm512_cvtneps_pbh

__m256bh _mm512_cvtneps_pbh (__m512 a)
Instructions: vcvtneps2bf16 ymm, zmm

CPUID Flags: AVX512_BF16 + AVX512F

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst.

_mm512_mask_cvtneps_pbh

__m256bh _mm512_mask_cvtneps_pbh (__m256bh src, __mmask16 k, __m512 a)
Instructions: vcvtneps2bf16 ymm {k}, zmm

CPUID Flags: AVX512_BF16 + AVX512F

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst using writemask k. Elements are copied from src when the
corresponding mask bit is not set.

_mm512_maskz_cvtneps_pbh

__m256bh _mm512_maskz_cvtneps_pbh (__mmask16 k, __m512 a)
Instructions: vcvtneps2bf16 ymm {k}{z}, zmm

CPUID Flags: AVX512_BF16 + AVX512F

Converts packed single-precision (32-bit) floating-point elements in a to packed BF16 (16-bit) floating-point
elements, and stores the results in dst using zeromask k. Elements are zeroed out when the corresponding
mask bit is not set.

_mm_dpbf16_ps

__m128 _mm_dpbf16_ps (__m128 src, __m128bh a, __m128bh b)
Instructions: vdpbf16ps xmm, xmm, xmm

 Intel® C++ Compiler Classic Developer Guide and Reference

716

CPUID Flags: AVX512_BF16 + AVX512VL

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst.

_mm_mask_dpbf16_ps

__m128 _mm_mask_dpbf16_ps (__m128 src, __mmask8 k, __m128bh a, __m128bh b)
Instructions: vdpbf16ps xmm {k}, xmm, xmm

CPUID Flags: AVX512_BF16 + AVX512VL

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst using
writemask k. Elements are copied from src when the corresponding mask bit is not set.

_mm_maskz_dpbf16_ps

__m128 _mm_maskz_dpbf16_ps (__mmask8 k, __m128 src, __m128bh a, __m128bh b)
Instructions: vdpbf16ps xmm {k}{z}, xmm, xmm

CPUID Flags: AVX512_BF16 + AVX512VL

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst using
zeromask k. Elements are zeroed out when the corresponding mask bit is not set).

_mm256_dpbf16_ps

__m256 _mm256_dpbf16_ps (__m256 src, __m256bh a, __m256bh b)
Instructions: vdpbf16ps ymm, ymm, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst.

_mm256_mask_dpbf16_ps

__m256 _mm256_mask_dpbf16_ps (__m256 src, __mmask8 k, __m256bh a, __m256bh b)
Instructions: vdpbf16ps ymm {k}, ymm, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst using
writemask k. Elements are copied from src when the corresponding mask bit is not set.

_mm256_maskz_dpbf16_ps

__m256 _mm256_maskz_dpbf16_ps (__mmask8 k, __m256 src, __m256bh a, __m256bh b)
Instructions: vdpbf16ps ymm {k}{z}, ymm, ymm

CPUID Flags: AVX512_BF16 + AVX512VL

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst using
zeromask k. Elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

717

_mm512_dpbf16_ps

__m512 _mm512_dpbf16_ps (__m512 src, __m512bh a, __m512bh b)
Instructions: vdpbf16ps zmm, zmm, zmm

CPUID Flags: AVX512_BF16 + AVX512F

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst.

_mm512_mask_dpbf16_ps

__m512 _mm512_mask_dpbf16_ps (__m512 src, __mmask16 k, __m512bh a, __m512bh b)
Instructions: vdpbf16ps zmm {k}, zmm, zmm

CPUID Flags: AVX512_BF16 + AVX512F

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst using
writemask k. Elements are copied from src when the corresponding mask bit is not set.

_mm512_maskz_dpbf16_ps

__m512 _mm512_maskz_dpbf16_ps (__mmask16 k, __m512 src, __m512bh a, __m512bh b)
Instructions: vdpbf16ps zmm {k}{z}, zmm, zmm

CPUID Flags: AVX512_BF16 + AVX512F

Computes the dot-product of BF16 (16-bit) floating-point pairs in a and b, accumulating the intermediate
single-precision (32-bit) floating-point elements with elements in src, and stores the results in dst using
zeromask k. Elements are zeroed out when the corresponding mask bit is not set.

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) 4VNNIW Instructions
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) 4VNNIW instruction intrinsics are
located in the zmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm512_4dpwssd_epi32

__mm512i _mm512_4dpwssd_epi32 (__m512 c, __m512 a0, __m512 a1, __m512 a2, __m512 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator

Instructions: vp4dpwssd zmm1, zmm2+3, m128

Computes 4 vector source-block dot-products of two signed word operands with doubleword accumulation in
c. The memory operand is sequentially selected in each of the four steps.

 Intel® C++ Compiler Classic Developer Guide and Reference

718

_mm512_mask_4dpwssd_epi32

__mm512i _mm512_mask_4dpwssd_epi32 (__m512 c, __mmask16 k, __m512 a0, __m512 a1, __m512 a2,
__m512 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: vp4dpwssd zmm1 {k}, zmm2+3, m128

Computes 4 vector source-block dot-products of two signed word operands with doubleword accumulation
using mask k, with accumulation in c. The memory operand is sequentially selected in each of the four steps.
Elements are copied from c when the corresponding mask bit is not set.

_mm512_maskz_4dpwssd_epi32

__mm512i _mm512_maskz_4dpwssd_epi32 (__m512 c, __mmask16 k, __m512 a0, __m512 a1, __m512 a2,
__m512 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: vp4dpwssd zmm1 {k}, zmm2+3, m128

Computes 4 vector source-block dot-products of two signed word operands with doubleword accumulation
using mask k, with accumulation in c. The memory operand is sequentially selected in each of the four steps.
Elements are zeroed out when the corresponding mask bit is not set.

_mm512_4dpwssds_epi32

__mm512i _mm512_4dpwssds_epi32 (__m512 c, __m512 a0, __m512 a1, __m512 a2, __m512 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator

Instructions: vp4dpwssds zmm1, zmm2+3, m128

Computes 4 vector source-block dot-products of two signed word operands with doubleword accumulation
and signed saturation in c. The memory operand is sequentially selected in each of the four steps.

_mm512_mask_4dpwssds_epi32

__mm512i _mm512_mask_4dpwssds_epi32 (__m512 c, __mmask16 k, __m512 a0, __m512 a1, __m512 a2,
__m512 a3, __m128 * b)

variable definition
an first source block 4 vectors

Compiler Reference

719

variable definition
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: vp4dpwssds zmm1 {k}, zmm2+3, m128

Computes 4 vector source-block dot-products of two signed word operands with doubleword accumulation
and signed saturation using mask k, with accumulation in c. The memory operand is sequentially selected in
each of the four steps. Elements are copied from c when the corresponding mask bit is not set.

_mm512_maskz_4dpwssds_epi32

__mm512i _mm512_maskz_4dpwssds_epi32 (__m512 c, __mmask16 k, __m512 a0, __m512 a1, __m512 a2,
__m512 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: vp4dpwssds zmm1 {k}, zmm2+3, m128

Computes 4 vector source-block dot-products of two signed word operands with doubleword accumulation
and signed saturation using mask k, with accumulation in c. The memory operand is sequentially selected in
each of the four steps. Elements are zeroed out when the corresponding mask bit is not set.

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) 4FMAPS Instructions
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) 4FMAPS instruction intrinsics are
located in the zmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm512_4fmadd_ps

__mm512i _mm512_4fmadd_ps (__m512 c, __m512 a0, __m512 a1, __m512 a2, __m512 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator

Instructions: v4fmaddps zmm1, zmm2+3, m128

Multiplies packed single-precision floating-point values from source register block {a0, a1, a2, a3} by
floating-point values pointed to by b and accumulates the result in c.

 Intel® C++ Compiler Classic Developer Guide and Reference

720

_mm512_mask_4fmadd_ps

__mm512i _mm512_mask_4fmadd_ps (__m512 c, __mmask16 k, __m512 a0, __m512 a1, __m512 a2, __m512
a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: v4fmaddps zmm1 {k}, zmm2+3, m128

Multiplies packed single-precision floating-point values from source register block {a0, a1, a2, a3} using
mask k by floating-point values pointed to by b and accumulates the result in c. Elements are copied from c
when the corresponding mask bit is not set.

_mm512_maskz_4fmadd_ps

__mm512i _mm512 _maskz_4fmadd_ps (__m512 c, __mmask16 k, __m512 a0, __m512 a1, __m512 a2, __m512
a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: v4fmaddps zmm {k}, zmm+3, m128

Multiplies packed single-precision floating-point values from source register block {a0, a1, a2, a3} using
mask k by floating-point values pointed to by b and accumulates the result in c. Elements are zeroed out
when the corresponding mask bit is not set.

_mm512_4fnmadd_ps

__mm512i _mm512_4fnmadd_ps (__m512 c, __m512 a0, __m512 a1, __m512 a2, __m512 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator

Instructions: v4fnmaddps zmm1, zmm2+3, m128

Multiplies and negates packed single-precision floating-point values from source register block {a0, a1, a2,
a3} by floating-point values pointed to by b and accumulates the result in c.

_mm512_mask_4fnmadd_ps

__mm512i _mm512_mask_4fnmadd_ps (__m512 c, __mmask16 k, __m512 a0, __m512 a1, __m512 a2, __m512
a3, __m128 * b)

variable definition
an first source block 4 vectors

Compiler Reference

721

variable definition
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: v4fnmaddps zmm1 {k}, zmm2+3, m128

Multiplies and negates packed single-precision floating-point values from source register block {a0, a1, a2,
a3} using mask k by floating-point values pointed to by b and accumulates the result in c. Elements are
copied from c when the corresponding mask bit is not set.

_mm512_maskz_4fnmadd_ps

__mm512i _mm512_maskz_4fnmadd_ps (__m512 c, __mmask16 k, __m512 a0, __m512 a1, __m512 a2, __m512
a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: v4fnmaddps zmm1 {k}, zmm2+3, m128

Multiplies and negates packed single-precision floating-point values from source register block {a0, a1, a2,
a3} using mask k by floating-point values pointed to by b and accumulates the result in c. Elements are
zeroed out when the corresponding mask bit is not set.

_mm_4fmadd_ss

__mm512i _mm_4fmadd_ss (__m128 c, __m128 a0, __m128 a1, __m128 a2, __m128 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator

Instructions: v4fmaddss xmm1, xmm2+3, m128

Multiplies the lower packed scalar single-precision floating-point values from source register block {a0, a1,
a2, a3} by floating-point values pointed to by b and accumulates the lower element result in c.

_mm_mask_4fmadd_ss

__mm512i _mm_mask_4fmadd_ss (__m128 c, __mmask8 k, __m128 a0, __m128 a1, __m128 a2, __m128 a3,
__m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: v4fmaddss xmm1 {k}, xmm2+3, m128

 Intel® C++ Compiler Classic Developer Guide and Reference

722

Multiplies the lower packed scalar single-precision floating-point values from source register block {a0, a1,
a2, a3} using mask k by floating-point values pointed to by b and accumulates the lower element result in c.
Elements are copied from c when the corresponding mask bit is not set.

_mm_maskz_4fmadd_ss

__mm512i _mm_maskz_4fmadd_ss (__m128 c, __mmask8 k, __m128 a0, __m128 a1, __m128 a2, __m128 a3,
__m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: v4fmaddss xmm1 {k}, xmm2+3, m128

Multiplies the lower packed scalar single-precision floating-point values from source register block {a0, a1,
a2, a3} using mask k by floating-point values pointed to by b and accumulates the lower element result in c.
Elements are zeroed out when the corresponding mask bit is not set.

_mm_4fnmadd_ss

__mm512i _mm_4fnmadd_ss (__m128 c, __m128 a0, __m128 a1, __m128 a2, __m128 a3, __m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator

Instructions: v4fnmaddss xmm1, xmm2+3, m128

Multiplies and negates the lower packed scalar single-precision floating-point values from source register
block {a0, a1, a2, a3} by floating-point values pointed to by b and accumulates the lower element result in
c.

_mm_mask_4fnmadd_ss

__mm512i _mm_mask_4fnmadd_ss (__m128 c, __mmask8 k, __m128 a0, __m128 a1, __m128 a2, __m128 a3,
__m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: v4fnmaddss xmm1 {k}, xmm2+3, m128

Multiplies and negates the lower packed scalar single-precision floating-point values from source register
block {a0, a1, a2, a3} using mask k by floating-point values pointed to by b and accumulates the lower
element result in c. Elements are copied from c when the corresponding mask bit is not set.

Compiler Reference

723

_mm_maskz_4fnmadd_ss

__mm512i _mm_maskz_4fnmadd_ss (__m128 c, __mmask8 k, __m128 a0, __m128 a1, __m128 a2, __m128 a3,
__m128 * b)

variable definition
an first source block 4 vectors
b pointer to the second source block
c third source; accumulator
k mask used as a selector

Instructions: v4fnmaddss xmm1 {k}, xmm2+3, m128

Multiplies and negates the lower packed scalar single-precision floating-point values from source register
block {a0, a1, a2, a3} using mask k by floating-point values pointed to by b and accumulates the lower
element result in c. Elements are zeroed out when the corresponding mask bit is not set.

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) VPOPCNTDQ Instructions
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) VPOPCNTDQ instruction intrinsics
are located in the zmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm512_popcnt_epi32

__mm512i _mm512_popcnt_epi32 (__m512i a)

variable definition
a a source vector

Instructions: vpopcntd zmm1, zmm2

Counts the number of bits set to one in each dword element of a and places it in the corresponding elements
of the result.

_mm512_mask_popcnt_epi32

__mm512i _mm512_mask_popcnt_epi32 (__m512 b, __mmask16 k, __m512i a)

variable definition
a a source vector
b a second source vector

k mask used as a selector

Instructions: vpopcntd zmm1 {k}, zmm2

Counts the number of bits set to one in each dword element of a using mask k and places it in the
corresponding elements of the result. Elements are copied from b when the corresponding mask bit is not
set.

 Intel® C++ Compiler Classic Developer Guide and Reference

724

_mm512_maskz_popcnt_epi32

__mm512i _mm512_maskz_popcnt_epi32 (__mmask16 k, __m512i a)

variable definition
a a source vector
k mask used as a selector

Instructions: vpopcntd zmm1 {k}, zmm2

Counts the number of bits set to one in each dword element of a using mask k and places it in the
corresponding elements of the result. Elements are zeroed out when the corresponding mask bit is not set.

_mm512_popcnt_epi64

__mm512i _mm512_popcnt_epi64 (__m512i a)

variable definition
a a source vector

Instructions: vpopcntd zmm1, zmm2

Counts the number of bits set to one in each quad word element of a and places it in the corresponding
elements of the result.

_mm512_mask_popcnt_epi64

__mm512i _mm512_mask_popcnt_epi64 (__m512 b, __mmask16 k, __m512i a)

variable definition
a a source vector
b a second source vector

k mask used as a selector

Instructions: vpopcntd zmm1 {k}, zmm2

Counts the number of bits set to one in each quad word element of a using mask k and places it in the
corresponding elements of the result. Elements are copied from b when the corresponding mask bit is not
set.

_mm512_maskz_popcnt_epi64

__mm512i _mm512_maskz_popcnt_epi64 (__m512 b, __mmask16 k, __m512 a)

variable definition
a a source vector
b a second source vector

k mask used as a selector

Instructions: vpopcntd zmm2 {k}, zmm2

Counts the number of bits set to one in each quad word element of a using mask k and places it in the
corresponding elements of the result. Elements are zeroed out when the corresponding mask bit is not set.

Compiler Reference

725

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) Additional Instructions

Additional Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Instructions
The additional instructions documented in this section enrich the operations available as part of Intel®
AVX-512 Foundation instructions. A large portion of these instructions can be divided into two groups: Byte
and Word Instructions, and Doubleword and Quadword Instructions. The group of byte and word (8 and 16-
bit) operations, indicated by the AVX512BW and AVX512VBMI CPUID flags, enhance small integer operations.
The group of doubleword and quadword (32 and 64-bit) operations indicated by the AVX512DQ and
AVX512IFMA52 CPUID flags, enhance integer and floating-point operations.

An additional orthogonal capability known as Vector Length Extensions provide for most AVX-512 instructions
to operate on 128 or 256 bits, instead of only 512. Vector Length Extensions can currently be applied to most
Foundation Instructions, the Conflict Detection Instructions as well as the new byte, word, doubleword and
quadword instructions. These AVX-512 Vector Length Extensions are indicated by the AVX512VL CPUID flag.
The use of Vector Length Extensions extends most AVX-512 operations to also operate on XMM (128-bit,
SSE) registers and YMM (256-bit, AVX) registers. The use of Vector Length Extensions allows the capabilities
of EVEX encodings, including the use of mask registers and access to registers 16..31, to be applied to XMM
and YMM registers instead of only to ZMM registers.

Byte and Word Instructions
The byte and word instructions, indicated by the AVX512BW CPUID flag, extend write-masking and zero-
masking to support smaller element sizes. The original AVX-512 Foundation instructions supported such
masking with vector element sizes of 32 or 64 bits. As a 512-bit vector register could hold at most 16 32-bit
elements, a write-mask size of 16 bits was sufficient.

With an instruction indicated by an AVX512BW CPUID flag, a 512-bit vector can hold 64 8-bit elements or 32
16-bit elements, so write masks must be able to hold 64 bits. To support this, two new mask types,
__mmask32 and __mmask64 have been introduced, along with additional maskable intrinsics that operate on
vectors of 8 and 16-bit elements. For example,

__m512i _mm512_mask_abs_epi8(__m512i src, __mmask64 k, __m512i a);
will compute the absolute value of 8-bit elements in a corresponding to the set bits of write mask k.
Elements corresponding to a zero bit in k are blended in from src.

Doubleword and Quadword Instructions
The doubleword and quadword instructions, indicated by the AVX512DQ CPUID flag, consist of additional
instructions along the lines of the Foundation instructions indicated by the AVX512F CPUID flag in that they
operate on 512-bit vectors whose elements are 16 32-bit elements or 8 64-bit elements. Some of these
instructions provide new functionality such as the conversion of floating point numbers to 64-bit integers.
Other instructions promote existing instructions (e.g., vxorps) to use 512-bit registers.

Vector Length Extensions
The vector length extensions indicated by CPUID flag AVX512VL add write-masking, zero-masking, and
embedded broadcast features to 128- and 256-bit vector lengths. So for example,

__m256 _mm256_maskz_add_ps(__mmask8 k, __m256 a, __m256 b);
will add corresponding float32 elements of a and b where the mask bit from k is set, and will produce zero in
the elements where the bit from k is clear.

 Intel® C++ Compiler Classic Developer Guide and Reference

726

Intrinsics for Arithmetic Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

b second source vector element

c third source vector element

_mm_mask_add_pd

__m128d _mm_mask_add_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vaddpd

Add packed double-precision (64-bit) floating-point elements in a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_add_pd

__m128d _mm_maskz_add_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vaddpd

Add packed double-precision (64-bit) floating-point elements in a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_add_pd

__m256d _mm256_mask_add_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vaddpd

Add packed double-precision (64-bit) floating-point elements in a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_add_pd

__m256d _mm256_maskz_add_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vaddpd

Compiler Reference

727

Add packed double-precision (64-bit) floating-point elements in a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_add_ps

__m128 _mm_mask_add_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vaddps

Add packed single-precision (32-bit) floating-point elements in a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_add_ps

__m128 _mm_maskz_add_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vaddps

Add packed single-precision (32-bit) floating-point elements in a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_add_ps

__m256 _mm256_mask_add_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vaddps

Add packed single-precision (32-bit) floating-point elements in a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_add_ps

__m256 _mm256_maskz_add_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vaddps

Add packed single-precision (32-bit) floating-point elements in a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_div_pd

__m128d _mm_mask_div_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vdivpd

Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_div_pd

__m128d _mm_maskz_div_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

728

Instruction(s): vdivpd

Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_div_pd

__m256d _mm256_mask_div_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vdivpd

Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_div_pd

__m256d _mm256_maskz_div_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vdivpd

Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_div_ps

__m128 _mm_mask_div_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vdivps

Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_div_ps

__m128 _mm_maskz_div_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vdivps

Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_div_ps

__m256 _mm256_mask_div_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vdivps

Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_div_ps

__m256 _mm256_maskz_div_ps(__mmask8 k, __m256 a, __m256 b)

Compiler Reference

729

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vdivps

Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_fmadd_pd

__m128d _mm_mask_fmadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132pd, vfmadd213pd, vfmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm_mask3_fmadd_pd

__m128d _mm_mask3_fmadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132pd, vfmadd213pd, vfmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm_maskz_fmadd_pd

__m128d _mm_maskz_fmadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132pd, vfmadd213pd, vfmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_fmadd_pd

__m256d _mm256_mask_fmadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132pd, vfmadd213pd, vfmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm256_mask3_fmadd_pd

__m256d _mm256_mask3_fmadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132pd, vfmadd213pd, vfmadd231pd

 Intel® C++ Compiler Classic Developer Guide and Reference

730

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm256_maskz_fmadd_pd

__m256d _mm256_maskz_fmadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132pd, vfmadd213pd, vfmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_fmadd_ps

__m128 _mm_mask_fmadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132ps, vfmadd213ps, vfmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm_mask3_fmadd_ps

__m128 _mm_mask3_fmadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132ps, vfmadd213ps, vfmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm_maskz_fmadd_ps

__m128 _mm_maskz_fmadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132ps, vfmadd213ps, vfmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_fmadd_ps

__m256 _mm256_mask_fmadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132ps, vfmadd213ps, vfmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

Compiler Reference

731

_mm256_mask3_fmadd_ps

__m256 _mm256_mask3_fmadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132ps, vfmadd213ps, vfmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm256_maskz_fmadd_ps

__m256 _mm256_maskz_fmadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmadd132ps, vfmadd213ps, vfmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to
packed elements in c, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_fmaddsub_pd

__m128d _mm_mask_fmaddsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132pd, vfmaddsub213pd, vfmaddsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using writemask k (elements are
copied from a when the corresponding mask bit is not set).

_mm_mask3_fmaddsub_pd

__m128d _mm_mask3_fmaddsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132pd, vfmaddsub213pd, vfmaddsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using writemask k (elements are
copied from c when the corresponding mask bit is not set).

_mm_maskz_fmaddsub_pd

__m128d _mm_maskz_fmaddsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132pd, vfmaddsub213pd, vfmaddsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_fmaddsub_pd

__m256d _mm256_mask_fmaddsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c)

 Intel® C++ Compiler Classic Developer Guide and Reference

732

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132pd, vfmaddsub213pd, vfmaddsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using writemask k (elements are
copied from a when the corresponding mask bit is not set).

_mm256_mask3_fmaddsub_pd

__m256d _mm256_mask3_fmaddsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132pd, vfmaddsub213pd, vfmaddsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using writemask k (elements are
copied from c when the corresponding mask bit is not set).

_mm256_maskz_fmaddsub_pd

__m256d _mm256_maskz_fmaddsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132pd, vfmaddsub213pd, vfmaddsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_fmaddsub_ps

__m128 _mm_mask_fmaddsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132ps, vfmaddsub213ps, vfmaddsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using writemask k (elements are
copied from a when the corresponding mask bit is not set).

_mm_mask3_fmaddsub_ps

__m128 _mm_mask3_fmaddsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132ps, vfmaddsub213ps, vfmaddsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using writemask k (elements are
copied from c when the corresponding mask bit is not set).

_mm_maskz_fmaddsub_ps

__m128 _mm_maskz_fmaddsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132ps, vfmaddsub213ps, vfmaddsub231ps

Compiler Reference

733

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_fmaddsub_ps

__m256 _mm256_mask_fmaddsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132ps, vfmaddsub213ps, vfmaddsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using writemask k (elements are
copied from a when the corresponding mask bit is not set).

_mm256_mask3_fmaddsub_ps

__m256 _mm256_mask3_fmaddsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132ps, vfmaddsub213ps, vfmaddsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using writemask k (elements are
copied from c when the corresponding mask bit is not set).

_mm256_maskz_fmaddsub_ps

__m256 _mm256_maskz_fmaddsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmaddsub132ps, vfmaddsub213ps, vfmaddsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract
packed elements in c to/from the intermediate result, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_fmsub_pd

__m128d _mm_mask_fmsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132pd, vfmsub213pd, vfmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm_mask3_fmsub_pd

__m128d _mm_mask3_fmsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132pd, vfmsub213pd, vfmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using writemask k (elements are copied from c when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

734

_mm_maskz_fmsub_pd

__m128d _mm_maskz_fmsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132pd, vfmsub213pd, vfmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_fmsub_pd

__m256d _mm256_mask_fmsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132pd, vfmsub213pd, vfmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm256_mask3_fmsub_pd

__m256d _mm256_mask3_fmsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132pd, vfmsub213pd, vfmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm256_maskz_fmsub_pd

__m256d _mm256_maskz_fmsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132pd, vfmsub213pd, vfmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_fmsub_ps

__m128 _mm_mask_fmsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132ps, vfmsub213ps, vfmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm_mask3_fmsub_ps

__m128 _mm_mask3_fmsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k)

Compiler Reference

735

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132ps, vfmsub213ps, vfmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm_maskz_fmsub_ps

__m128 _mm_maskz_fmsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132ps, vfmsub213ps, vfmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_fmsub_ps

__m256 _mm256_mask_fmsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132ps, vfmsub213ps, vfmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm256_mask3_fmsub_ps

__m256 _mm256_mask3_fmsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132ps, vfmsub213ps, vfmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm256_maskz_fmsub_ps

__m256 _mm256_maskz_fmsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsub132ps, vfmsub213ps, vfmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the intermediate result, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_fmsubadd_pd

__m128d _mm_mask_fmsubadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132pd, vfmsubadd213pd, vfmsubadd231pd

 Intel® C++ Compiler Classic Developer Guide and Reference

736

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using writemask k (elements are
copied from a when the corresponding mask bit is not set).

_mm_mask3_fmsubadd_pd

__m128d _mm_mask3_fmsubadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132pd, vfmsubadd213pd, vfmsubadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using writemask k (elements are
copied from c when the corresponding mask bit is not set).

_mm_maskz_fmsubadd_pd

__m128d _mm_maskz_fmsubadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132pd, vfmsubadd213pd, vfmsubadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_fmsubadd_pd

__m256d _mm256_mask_fmsubadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132pd, vfmsubadd213pd, vfmsubadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using writemask k (elements are
copied from a when the corresponding mask bit is not set).

_mm256_mask3_fmsubadd_pd

__m256d _mm256_mask3_fmsubadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132pd, vfmsubadd213pd, vfmsubadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using writemask k (elements are
copied from c when the corresponding mask bit is not set).

_mm256_maskz_fmsubadd_pd

__m256d _mm256_maskz_fmsubadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132pd, vfmsubadd213pd, vfmsubadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

Compiler Reference

737

_mm_mask_fmsubadd_ps

__m128 _mm_mask_fmsubadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132ps, vfmsubadd213ps, vfmsubadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using writemask k (elements are
copied from a when the corresponding mask bit is not set).

_mm_mask3_fmsubadd_ps

__m128 _mm_mask3_fmsubadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132ps, vfmsubadd213ps, vfmsubadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using writemask k (elements are
copied from c when the corresponding mask bit is not set).

_mm_maskz_fmsubadd_ps

__m128 _mm_maskz_fmsubadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132ps, vfmsubadd213ps, vfmsubadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_fmsubadd_ps

__m256 _mm256_mask_fmsubadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132ps, vfmsubadd213ps, vfmsubadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using writemask k (elements are
copied from a when the corresponding mask bit is not set).

_mm256_mask3_fmsubadd_ps

__m256 _mm256_mask3_fmsubadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132ps, vfmsubadd213ps, vfmsubadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using writemask k (elements are
copied from c when the corresponding mask bit is not set).

_mm256_maskz_fmsubadd_ps

__m256 _mm256_maskz_fmsubadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c)

 Intel® C++ Compiler Classic Developer Guide and Reference

738

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfmsubadd132ps, vfmsubadd213ps, vfmsubadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add
packed elements in c from/to the intermediate result, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_fnmadd_pd

__m128d _mm_mask_fnmadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132pd, vfnmadd213pd, vfnmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using writemask k (elements are copied from a when
the corresponding mask bit is not set).

_mm_mask3_fnmadd_pd

__m128d _mm_mask3_fnmadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132pd, vfnmadd213pd, vfnmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using writemask k (elements are copied from c when
the corresponding mask bit is not set).

_mm_maskz_fnmadd_pd

__m128d _mm_maskz_fnmadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132pd, vfnmadd213pd, vfnmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_fnmadd_pd

__m256d _mm256_mask_fnmadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132pd, vfnmadd213pd, vfnmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using writemask k (elements are copied from a when
the corresponding mask bit is not set).

_mm256_mask3_fnmadd_pd

__m256d _mm256_mask3_fnmadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132pd, vfnmadd213pd, vfnmadd231pd

Compiler Reference

739

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using writemask k (elements are copied from c when
the corresponding mask bit is not set).

_mm256_maskz_fnmadd_pd

__m256d _mm256_maskz_fnmadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132pd, vfnmadd213pd, vfnmadd231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_fnmadd_ps

__m128 _mm_mask_fnmadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132ps, vfnmadd213ps, vfnmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using writemask k (elements are copied from a when
the corresponding mask bit is not set).

_mm_mask3_fnmadd_ps

__m128 _mm_mask3_fnmadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132ps, vfnmadd213ps, vfnmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using writemask k (elements are copied from c when
the corresponding mask bit is not set).

_mm_maskz_fnmadd_ps

__m128 _mm_maskz_fnmadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132ps, vfnmadd213ps, vfnmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_fnmadd_ps

__m256 _mm256_mask_fnmadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132ps, vfnmadd213ps, vfnmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using writemask k (elements are copied from a when
the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

740

_mm256_mask3_fnmadd_ps

__m256 _mm256_mask3_fnmadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132ps, vfnmadd213ps, vfnmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using writemask k (elements are copied from c when
the corresponding mask bit is not set).

_mm256_maskz_fnmadd_ps

__m256 _mm256_maskz_fnmadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmadd132ps, vfnmadd213ps, vfnmadd231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate
result to packed elements in c, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_fnmsub_pd

__m128d _mm_mask_fnmsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132pd, vfnmsub213pd, vfnmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using writemask k (elements are copied from a
when the corresponding mask bit is not set).

_mm_mask3_fnmsub_pd

__m128d _mm_mask3_fnmsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132pd, vfnmsub213pd, vfnmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using writemask k (elements are copied from c
when the corresponding mask bit is not set).

_mm_maskz_fnmsub_pd

__m128d _mm_maskz_fnmsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132pd, vfnmsub213pd, vfnmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_fnmsub_pd

__m256d _mm256_mask_fnmsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c)

Compiler Reference

741

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132pd, vfnmsub213pd, vfnmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using writemask k (elements are copied from a
when the corresponding mask bit is not set).

_mm256_mask3_fnmsub_pd

__m256d _mm256_mask3_fnmsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132pd, vfnmsub213pd, vfnmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using writemask k (elements are copied from c
when the corresponding mask bit is not set).

_mm256_maskz_fnmsub_pd

__m256d _mm256_maskz_fnmsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132pd, vfnmsub213pd, vfnmsub231pd

Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_fnmsub_ps

__m128 _mm_mask_fnmsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132ps, vfnmsub213ps, vfnmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using writemask k (elements are copied from a
when the corresponding mask bit is not set).

_mm_mask3_fnmsub_ps

__m128 _mm_mask3_fnmsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132ps, vfnmsub213ps, vfnmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using writemask k (elements are copied from c
when the corresponding mask bit is not set).

_mm_maskz_fnmsub_ps

__m128 _mm_maskz_fnmsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132ps, vfnmsub213ps, vfnmsub231ps

 Intel® C++ Compiler Classic Developer Guide and Reference

742

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_fnmsub_ps

__m256 _mm256_mask_fnmsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132ps, vfnmsub213ps, vfnmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using writemask k (elements are copied from a
when the corresponding mask bit is not set).

_mm256_mask3_fnmsub_ps

__m256 _mm256_mask3_fnmsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132ps, vfnmsub213ps, vfnmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using writemask k (elements are copied from c
when the corresponding mask bit is not set).

_mm256_maskz_fnmsub_ps

__m256 _mm256_maskz_fnmsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfnmsub132ps, vfnmsub213ps, vfnmsub231ps

Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c
from the negated intermediate result, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_max_pd

__m128d _mm_mask_max_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmaxpd

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum
values in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm_maskz_max_pd

__m128d _mm_maskz_max_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmaxpd

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum
values in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

Compiler Reference

743

_mm256_mask_max_pd

__m256d _mm256_mask_max_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmaxpd

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum
values in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm256_maskz_max_pd

__m256d _mm256_maskz_max_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmaxpd

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum
values in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_max_ps

__m128 _mm_mask_max_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmaxps

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum
values in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm_maskz_max_ps

__m128 _mm_maskz_max_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmaxps

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum
values in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_max_ps

__m256 _mm256_mask_max_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmaxps

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum
values in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm256_maskz_max_ps

__m256 _mm256_maskz_max_ps(__mmask8 k, __m256 a, __m256 b)

 Intel® C++ Compiler Classic Developer Guide and Reference

744

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmaxps

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum
values in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_min_pd

__m128d _mm_mask_min_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vminpd

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum
values in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm_maskz_min_pd

__m128d _mm_maskz_min_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vminpd

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum
values in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_min_pd

__m256d _mm256_mask_min_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vminpd

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum
values in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm256_maskz_min_pd

__m256d _mm256_maskz_min_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vminpd

Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum
values in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_min_ps

__m128 _mm_mask_min_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vminps

Compiler Reference

745

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum
values in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm_maskz_min_ps

__m128 _mm_maskz_min_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vminps

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum
values in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_min_ps

__m256 _mm256_mask_min_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vminps

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum
values in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm256_maskz_min_ps

__m256 _mm256_maskz_min_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vminps

Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum
values in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_mul_pd

__m128d _mm_mask_mul_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmulpd

Multiply packed double-precision (64-bit) floating-point elements in a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set). RM.

_mm_maskz_mul_pd

__m128d _mm_maskz_mul_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmulpd

Multiply packed double-precision (64-bit) floating-point elements in a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

746

_mm256_mask_mul_pd

__m256d _mm256_mask_mul_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmulpd

Multiply packed double-precision (64-bit) floating-point elements in a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_mul_pd

__m256d _mm256_maskz_mul_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmulpd

Multiply packed double-precision (64-bit) floating-point elements in a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_mul_ps

__m128 _mm_mask_mul_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmulps

Multiply packed single-precision (32-bit) floating-point elements in a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set). RM.

_mm_maskz_mul_ps

__m128 _mm_maskz_mul_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmulps

Multiply packed single-precision (32-bit) floating-point elements in a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_mul_ps

__m256 _mm256_mask_mul_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmulps

Multiply packed single-precision (32-bit) floating-point elements in a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set). RM.

_mm256_maskz_mul_ps

__m256 _mm256_maskz_mul_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmulps

Multiply packed single-precision (32-bit) floating-point elements in a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

747

_mm_mask_rcp14_pd

__m128d _mm_mask_rcp14_pd(__m128d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14pd

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set). The maximum relative error for this approximation is less than 2^-14.

_mm_maskz_rcp14_pd

__m128d _mm_maskz_rcp14_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14pd

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
The maximum relative error for this approximation is less than 2^-14.

_mm_rcp14_pd

__m128d _mm_rcp14_pd(__m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14pd

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and
return the results. The maximum relative error for this approximation is less than 2^-14.

_mm256_mask_rcp14_pd

__m256d _mm256_mask_rcp14_pd(__m256d src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14pd

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set). The maximum relative error for this approximation is less than 2^-14.

_mm256_maskz_rcp14_pd

__m256d _mm256_maskz_rcp14_pd(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14pd

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
The maximum relative error for this approximation is less than 2^-14.

_mm256_rcp14_pd

__m256d _mm256_rcp14_pd(__m256d a)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

748

Instruction(s): vrcp14pd

Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and
return the results. The maximum relative error for this approximation is less than 2^-14.

_mm_mask_rcp14_ps

__m128 _mm_mask_rcp14_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14ps

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set). The maximum relative error for this approximation is less than 2^-14.

_mm_maskz_rcp14_ps

__m128 _mm_maskz_rcp14_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14ps

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
The maximum relative error for this approximation is less than 2^-14.

_mm_rcp14_ps

__m128 _mm_rcp14_ps(__m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14ps

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and
return the results. The maximum relative error for this approximation is less than 2^-14.

_mm256_mask_rcp14_ps

__m256 _mm256_mask_rcp14_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14ps

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set). The maximum relative error for this approximation is less than 2^-14.

_mm256_maskz_rcp14_ps

__m256 _mm256_maskz_rcp14_ps(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14ps

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
The maximum relative error for this approximation is less than 2^-14.

Compiler Reference

749

_mm256_rcp14_ps

__m256 _mm256_rcp14_ps(__m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrcp14ps

Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and
return the results. The maximum relative error for this approximation is less than 2^-14.

_mm_mask_rsqrt14_pd

__m128d _mm_mask_rsqrt14_pd(__m128d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrsqrt14pd

Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements
in a, and return the results using writemask k (elements are copied from src when the corresponding mask
bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm_maskz_rsqrt14_pd

__m128d _mm_maskz_rsqrt14_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrsqrt14pd

Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements
in a, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_mask_rsqrt14_pd

__m256d _mm256_mask_rsqrt14_pd(__m256d src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrsqrt14pd

Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements
in a, and return the results using writemask k (elements are copied from src when the corresponding mask
bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_maskz_rsqrt14_pd

__m256d _mm256_maskz_rsqrt14_pd(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrsqrt14pd

Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements
in a, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set). The maximum relative error for this approximation is less than 2^-14.

_mm_mask_rsqrt14_ps

__m128 _mm_mask_rsqrt14_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

750

Instruction(s): vrsqrt14ps

Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements
in a, and return the results using writemask k (elements are copied from src when the corresponding mask
bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm_maskz_rsqrt14_ps

__m128 _mm_maskz_rsqrt14_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrsqrt14ps

Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements
in a, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_mask_rsqrt14_ps

__m256 _mm256_mask_rsqrt14_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrsqrt14ps

Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements
in a, and return the results using writemask k (elements are copied from src when the corresponding mask
bit is not set). The maximum relative error for this approximation is less than 2^-14.

_mm256_maskz_rsqrt14_ps

__m256 _mm256_maskz_rsqrt14_ps(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrsqrt14ps

Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements
in a, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set). The maximum relative error for this approximation is less than 2^-14.

_mm_mask_sqrt_pd

__m128d _mm_mask_sqrt_pd(__m128d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsqrtpd

Compute the square root of packed double-precision (64-bit) floating-point elements in a, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sqrt_pd

__m128d _mm_maskz_sqrt_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsqrtpd

Compute the square root of packed double-precision (64-bit) floating-point elements in a, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

751

_mm256_mask_sqrt_pd

__m256d _mm256_mask_sqrt_pd(__m256d src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsqrtpd

Compute the square root of packed double-precision (64-bit) floating-point elements in a, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sqrt_pd

__m256d _mm256_maskz_sqrt_pd(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsqrtpd

Compute the square root of packed double-precision (64-bit) floating-point elements in a, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_sqrt_ps

__m128 _mm_mask_sqrt_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsqrtps

Compute the square root of packed single-precision (32-bit) floating-point elements in a, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sqrt_ps

__m128 _mm_maskz_sqrt_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsqrtps

Compute the square root of packed single-precision (32-bit) floating-point elements in a, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sqrt_ps

__m256 _mm256_mask_sqrt_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsqrtps

Compute the square root of packed single-precision (32-bit) floating-point elements in a, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sqrt_ps

__m256 _mm256_maskz_sqrt_ps(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsqrtps

Compute the square root of packed single-precision (32-bit) floating-point elements in a, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

752

_mm_mask_sub_pd

__m128d _mm_mask_sub_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsubpd

Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit)
floating-point elements in a, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_sub_pd

__m128d _mm_maskz_sub_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsubpd

Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit)
floating-point elements in a, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_sub_pd

__m256d _mm256_mask_sub_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsubpd

Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit)
floating-point elements in a, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_sub_pd

__m256d _mm256_maskz_sub_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsubpd

Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit)
floating-point elements in a, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_sub_ps

__m128 _mm_mask_sub_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsubps

Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit)
floating-point elements in a, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_sub_ps

__m128 _mm_maskz_sub_ps(__mmask8 k, __m128 a, __m128 b)

Compiler Reference

753

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsubps

Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit)
floating-point elements in a, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_sub_ps

__m256 _mm256_mask_sub_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsubps

Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit)
floating-point elements in a, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_sub_ps

__m256 _mm256_maskz_sub_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vsubps

Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit)
floating-point elements in a, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_abs_epi8

__m128i _mm_mask_abs_epi8(__m128i src, __mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpabsb

Compute the absolute value of packed 8-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_abs_epi8

__m128i _mm_maskz_abs_epi8(__mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpabsb

Compute the absolute value of packed 8-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_abs_epi8

__m256i _mm256_mask_abs_epi8(__m256i src, __mmask32 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpabsb

Compute the absolute value of packed 8-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

754

_mm256_maskz_abs_epi8

__m256i _mm256_maskz_abs_epi8(__mmask32 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpabsb

Compute the absolute value of packed 8-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_abs_epi8

__m512i _mm512_abs_epi8(__m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpabsb

Compute the absolute value of packed 8-bit integers in a, and store the unsigned results in the return value.

_mm512_mask_abs_epi8

__m512i _mm512_mask_abs_epi8(__m512i src, __mmask64 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpabsb

Compute the absolute value of packed 8-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_abs_epi8

__m512i _mm512_maskz_abs_epi8(__mmask64 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpabsb

Compute the absolute value of packed 8-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_abs_epi32

__m128i _mm_mask_abs_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsd

Compute the absolute value of packed 32-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_abs_epi32

__m128i _mm_maskz_abs_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsd

Compute the absolute value of packed 32-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

755

_mm256_mask_abs_epi32

__m256i _mm256_mask_abs_epi32(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsd

Compute the absolute value of packed 32-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_abs_epi32

__m256i _mm256_maskz_abs_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsd

Compute the absolute value of packed 32-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_abs_epi64

__m128i _mm_abs_epi64(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsq

Compute the absolute value of packed 64-bit integers in a, and store the unsigned results in the return
value.

_mm_mask_abs_epi64

__m128i _mm_mask_abs_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsq

Compute the absolute value of packed 64-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_abs_epi64

__m128i _mm_maskz_abs_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsq

Compute the absolute value of packed 64-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_abs_epi64

__m256i _mm256_abs_epi64(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsq

Compute the absolute value of packed 64-bit integers in a, and store the unsigned results in the return
value.

 Intel® C++ Compiler Classic Developer Guide and Reference

756

_mm256_mask_abs_epi64

__m256i _mm256_mask_abs_epi64(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsq

Compute the absolute value of packed 64-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_abs_epi64

__m256i _mm256_maskz_abs_epi64(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpabsq

Compute the absolute value of packed 64-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_abs_epi16

__m128i _mm_mask_abs_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpabsw

Compute the absolute value of packed 16-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_abs_epi16

__m128i _mm_maskz_abs_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpabsw

Compute the absolute value of packed 16-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_abs_epi16

__m256i _mm256_mask_abs_epi16(__m256i src, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpabsw

Compute the absolute value of packed 16-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_abs_epi16

__m256i _mm256_maskz_abs_epi16(__mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpabsw

Compute the absolute value of packed 16-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

757

_mm512_abs_epi16

__m512i _mm512_abs_epi16(__m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpabsw

Compute the absolute value of packed 16-bit integers in a, and store the unsigned results in the return
value.

_mm512_mask_abs_epi16

__m512i _mm512_mask_abs_epi16(__m512i src, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpabsw

Compute the absolute value of packed 16-bit integers in a, and store the unsigned results in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_abs_epi16

__m512i _mm512_maskz_abs_epi16(__mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpabsw

Compute the absolute value of packed 16-bit integers in a, and store the unsigned results in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_add_epi8

__m128i _mm_mask_add_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddb

Add packed 8-bit integers in a and b, and return the results using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm_maskz_add_epi8

__m128i _mm_maskz_add_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddb

Add packed 8-bit integers in a and b, and return the results using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm256_mask_add_epi8

__m256i _mm256_mask_add_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddb

 Intel® C++ Compiler Classic Developer Guide and Reference

758

Add packed 8-bit integers in a and b, and return the results using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm256_maskz_add_epi8

__m256i _mm256_maskz_add_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddb

Add packed 8-bit integers in a and b, and return the results using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm512_add_epi8

__m512i _mm512_add_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddb

Add packed 8-bit integers in a and b, and return the results.

_mm512_mask_add_epi8

__m512i _mm512_mask_add_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddb

Add packed 8-bit integers in a and b, and return the results using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm512_maskz_add_epi8

__m512i _mm512_maskz_add_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddb

Add packed 8-bit integers in a and b, and return the results using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm_mask_add_epi32

__m128i _mm_mask_add_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpaddd

Add packed 32-bit integers in a and b, and return the results using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm_maskz_add_epi32

__m128i _mm_maskz_add_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpaddd

Compiler Reference

759

Add packed 32-bit integers in a and b, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_add_epi32

__m256i _mm256_mask_add_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpaddd

Add packed 32-bit integers in a and b, and return the results using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm256_maskz_add_epi32

__m256i _mm256_maskz_add_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpaddd

Add packed 32-bit integers in a and b, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_add_epi64

__m128i _mm_mask_add_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpaddq

Add packed 64-bit integers in a and b, and return the results using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm_maskz_add_epi64

__m128i _mm_maskz_add_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpaddq

Add packed 64-bit integers in a and b, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_add_epi64

__m256i _mm256_mask_add_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpaddq

Add packed 64-bit integers in a and b, and return the results using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm256_maskz_add_epi64

__m256i _mm256_maskz_add_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

760

Instruction(s): vpaddq

Add packed 64-bit integers in a and b, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_adds_epi8

__m128i _mm_mask_adds_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddsb

Add packed 8-bit integers in a and b using saturation, and return the results using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm_maskz_adds_epi8

__m128i _mm_maskz_adds_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddsb

Add packed 8-bit integers in a and b using saturation, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_adds_epi8

__m256i _mm256_mask_adds_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddsb

Add packed 8-bit integers in a and b using saturation, and return the results using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm256_maskz_adds_epi8

__m256i _mm256_maskz_adds_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddsb

Add packed 8-bit integers in a and b using saturation, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_adds_epi8

__m512i _mm512_adds_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddsb

Add packed 8-bit integers in a and b using saturation, and return the results.

_mm512_mask_adds_epi8

__m512i _mm512_mask_adds_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Compiler Reference

761

Instruction(s): vpaddsb

Add packed 8-bit integers in a and b using saturation, and return the results using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm512_maskz_adds_epi8

__m512i _mm512_maskz_adds_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddsb

Add packed 8-bit integers in a and b using saturation, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_adds_epi16

__m128i _mm_mask_adds_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddsw

Add packed 16-bit integers in a and b using saturation, and return the results using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm_maskz_adds_epi16

__m128i _mm_maskz_adds_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddsw

Add packed 16-bit integers in a and b using saturation, and return the results using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm256_mask_adds_epi16

__m256i _mm256_mask_adds_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddsw

Add packed 16-bit integers in a and b using saturation, and return the results using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm256_maskz_adds_epi16

__m256i _mm256_maskz_adds_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddsw

Add packed 16-bit integers in a and b using saturation, and return the results using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm512_adds_epi16

__m512i _mm512_adds_epi16(__m512i a, __m512i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

762

CPUID Flags: AVX512BW

Instruction(s): vpaddsw

Add packed 16-bit integers in a and b using saturation, and return the results.

_mm512_mask_adds_epi16

__m512i _mm512_mask_adds_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddsw

Add packed 16-bit integers in a and b using saturation, and return the results using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm512_maskz_adds_epi16

__m512i _mm512_maskz_adds_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddsw

Add packed 16-bit integers in a and b using saturation, and return the results using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm_mask_adds_epu8

__m128i _mm_mask_adds_epu8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddusb

Add packed unsigned 8-bit integers in a and b using saturation, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_adds_epu8

__m128i _mm_maskz_adds_epu8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddusb

Add packed unsigned 8-bit integers in a and b using saturation, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_adds_epu8

__m256i _mm256_mask_adds_epu8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddusb

Add packed unsigned 8-bit integers in a and b using saturation, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_adds_epu8

__m256i _mm256_maskz_adds_epu8(__mmask32 k, __m256i a, __m256i b)

Compiler Reference

763

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddusb

Add packed unsigned 8-bit integers in a and b using saturation, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_adds_epu8

__m512i _mm512_adds_epu8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddusb

Add packed unsigned 8-bit integers in a and b using saturation, and return the results.

_mm512_mask_adds_epu8

__m512i _mm512_mask_adds_epu8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddusb

Add packed unsigned 8-bit integers in a and b using saturation, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_adds_epu8

__m512i _mm512_maskz_adds_epu8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddusb

Add packed unsigned 8-bit integers in a and b using saturation, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_adds_epu16

__m128i _mm_mask_adds_epu16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddusw

Add packed unsigned 16-bit integers in a and b using saturation, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_adds_epu16

__m128i _mm_maskz_adds_epu16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddusw

Add packed unsigned 16-bit integers in a and b using saturation, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_adds_epu16

__m256i _mm256_mask_adds_epu16(__m256i src, __mmask16 k, __m256i a, __m256i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

764

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddusw

Add packed unsigned 16-bit integers in a and b using saturation, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_adds_epu16

__m256i _mm256_maskz_adds_epu16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddusw

Add packed unsigned 16-bit integers in a and b using saturation, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_adds_epu16

__m512i _mm512_adds_epu16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddusw

Add packed unsigned 16-bit integers in a and b using saturation, and return the results.

_mm512_mask_adds_epu16

__m512i _mm512_mask_adds_epu16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddusw

Add packed unsigned 16-bit integers in a and b using saturation, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_adds_epu16

__m512i _mm512_maskz_adds_epu16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddusw

Add packed unsigned 16-bit integers in a and b using saturation, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_add_epi16

__m128i _mm_mask_add_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddw

Add packed 16-bit integers in a and b, and return the results using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm_maskz_add_epi16

__m128i _mm_maskz_add_epi16(__mmask8 k, __m128i a, __m128i b)

Compiler Reference

765

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddw

Add packed 16-bit integers in a and b, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_add_epi16

__m256i _mm256_mask_add_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddw

Add packed 16-bit integers in a and b, and return the results using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm256_maskz_add_epi16

__m256i _mm256_maskz_add_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpaddw

Add packed 16-bit integers in a and b, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_add_epi16

__m512i _mm512_add_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddw

Add packed 16-bit integers in a and b, and return the results.

_mm512_mask_add_epi16

__m512i _mm512_mask_add_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddw

Add packed 16-bit integers in a and b, and return the results using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_add_epi16

__m512i _mm512_maskz_add_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpaddw

Add packed 16-bit integers in a and b, and return the results using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_avg_epu8

__m128i _mm_mask_avg_epu8(__m128i src, __mmask16 k, __m128i a, __m128i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

766

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpavgb

Average packed unsigned 8-bit integers in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm_maskz_avg_epu8

__m128i _mm_maskz_avg_epu8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpavgb

Average packed unsigned 8-bit integers in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_avg_epu8

__m256i _mm256_mask_avg_epu8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpavgb

Average packed unsigned 8-bit integers in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm256_maskz_avg_epu8

__m256i _mm256_maskz_avg_epu8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpavgb

Average packed unsigned 8-bit integers in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_avg_epu8

__m512i _mm512_avg_epu8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpavgb

Average packed unsigned 8-bit integers in a and b, and return the results.

_mm512_mask_avg_epu8

__m512i _mm512_mask_avg_epu8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpavgb

Average packed unsigned 8-bit integers in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_avg_epu8

__m512i _mm512_maskz_avg_epu8(__mmask64 k, __m512i a, __m512i b)

Compiler Reference

767

CPUID Flags: AVX512BW

Instruction(s): vpavgb

Average packed unsigned 8-bit integers in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_avg_epu16

__m128i _mm_mask_avg_epu16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpavgw

Average packed unsigned 16-bit integers in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm_maskz_avg_epu16

__m128i _mm_maskz_avg_epu16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpavgw

Average packed unsigned 16-bit integers in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_avg_epu16

__m256i _mm256_mask_avg_epu16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpavgw

Average packed unsigned 16-bit integers in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm256_maskz_avg_epu16

__m256i _mm256_maskz_avg_epu16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpavgw

Average packed unsigned 16-bit integers in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_avg_epu16

__m512i _mm512_avg_epu16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpavgw

Average packed unsigned 16-bit integers in a and b, and return the results.

_mm512_mask_avg_epu16

__m512i _mm512_mask_avg_epu16(__m512i src, __mmask32 k, __m512i a, __m512i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

768

CPUID Flags: AVX512BW

Instruction(s): vpavgw

Average packed unsigned 16-bit integers in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_avg_epu16

__m512i _mm512_maskz_avg_epu16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpavgw

Average packed unsigned 16-bit integers in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_maddubs_epi16

__m128i _mm_mask_maddubs_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaddubsw

Multiply packed unsigned 8-bit integers in a by packed signed 8-bit integers in b, producing intermediate
signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the
saturated results in the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_maddubs_epi16

__m128i _mm_maskz_maddubs_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaddubsw

Multiply packed unsigned 8-bit integers in a by packed signed 8-bit integers in b, producing intermediate
signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the
saturated results in the return value using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_mask_maddubs_epi16

__m256i _mm256_mask_maddubs_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaddubsw

Multiply packed unsigned 8-bit integers in a by packed signed 8-bit integers in b, producing intermediate
signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the
saturated results in the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_maddubs_epi16

__m256i _mm256_maskz_maddubs_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaddubsw

Compiler Reference

769

Multiply packed unsigned 8-bit integers in a by packed signed 8-bit integers in b, producing intermediate
signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the
saturated results in the return value using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_maddubs_epi16

__m512i _mm512_maddubs_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaddubsw

Vertically multiply each unsigned 8-bit integer from a with the corresponding signed 8-bit integer from b,
producing intermediate signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit
integers, and pack the saturated results in the return value.

_mm512_mask_maddubs_epi16

__m512i _mm512_mask_maddubs_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaddubsw

Multiply packed unsigned 8-bit integers in a by packed signed 8-bit integers in b, producing intermediate
signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the
saturated results in the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_maddubs_epi16

__m512i _mm512_maskz_maddubs_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaddubsw

Multiply packed unsigned 8-bit integers in a by packed signed 8-bit integers in b, producing intermediate
signed 16-bit integers. Horizontally add adjacent pairs of intermediate signed 16-bit integers, and pack the
saturated results in the return value using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_madd_epi16

__m128i _mm_mask_madd_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaddwd

Multiply packed 16-bit integers in a and b, producing intermediate 32-bit integers. Horizontally add adjacent
pairs of intermediate 32-bit integers, and pack the saturated results in the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_madd_epi16

__m128i _mm_maskz_madd_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaddwd

 Intel® C++ Compiler Classic Developer Guide and Reference

770

Multiply packed 16-bit integers in a and b, producing intermediate 32-bit integers. Horizontally add adjacent
pairs of intermediate 32-bit integers, and pack the saturated results in the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_madd_epi16

__m256i _mm256_mask_madd_epi16(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaddwd

Multiply packed 16-bit integers in a and b, producing intermediate 32-bit integers. Horizontally add adjacent
pairs of intermediate 32-bit integers, and pack the saturated results in the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_madd_epi16

__m256i _mm256_maskz_madd_epi16(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaddwd

Multiply packed 16-bit integers in a and b, producing intermediate 32-bit integers. Horizontally add adjacent
pairs of intermediate 32-bit integers, and pack the saturated results in the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_madd_epi16

__m512i _mm512_madd_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaddwd

Multiply packed 16-bit integers in a and b, producing intermediate 32-bit integers. Horizontally add adjacent
pairs of intermediate 32-bit integers, and pack the saturated results in the return value.

_mm512_mask_madd_epi16

__m512i _mm512_mask_madd_epi16(__m512i src, __mmask16 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaddwd

Multiply packed 16-bit integers in a and b, producing intermediate 32-bit integers. Horizontally add adjacent
pairs of intermediate 32-bit integers, and pack the saturated results in the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_madd_epi16

__m512i _mm512_maskz_madd_epi16(__mmask16 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaddwd

Multiply packed 16-bit integers in a and b, producing intermediate 32-bit integers. Horizontally add adjacent
pairs of intermediate 32-bit integers, and pack the saturated results in the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

771

_mm_mask_max_epi8

__m128i _mm_mask_max_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxsb

Compare packed 8-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_max_epi8

__m128i _mm_maskz_max_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxsb

Compare packed 8-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_max_epi8

__m256i _mm256_mask_max_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxsb

Compare packed 8-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_max_epi8

__m256i _mm256_maskz_max_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxsb

Compare packed 8-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_max_epi8

__m512i _mm512_mask_max_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxsb

Compare packed 8-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_epi8

__m512i _mm512_maskz_max_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxsb

Compare packed 8-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

772

_mm512_max_epi8

__m512i _mm512_max_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxsb

Compare packed 8-bit integers in a and b, and store packed maximum values in the return value.

_mm_mask_max_epi32

__m128i _mm_mask_max_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsd

Compare packed 32-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_max_epi32

__m128i _mm_maskz_max_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsd

Compare packed 32-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_max_epi32

__m256i _mm256_mask_max_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsd

Compare packed 32-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_max_epi32

__m256i _mm256_maskz_max_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsd

Compare packed 32-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_max_epi64

__m128i _mm_mask_max_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsq

Compare packed 64-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

773

_mm_maskz_max_epi64

__m128i _mm_maskz_max_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsq

Compare packed 64-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_max_epi64

__m128i _mm_max_epi64(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsq

Compare packed 64-bit integers in a and b, and store packed maximum values in the return value.

_mm256_mask_max_epi64

__m256i _mm256_mask_max_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsq

Compare packed 64-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_max_epi64

__m256i _mm256_maskz_max_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsq

Compare packed 64-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_max_epi64

__m256i _mm256_max_epi64(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxsq

Compare packed 64-bit integers in a and b, and store packed maximum values in the return value.

_mm_mask_max_epi16

__m128i _mm_mask_max_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxsw

Compare packed 16-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

774

_mm_maskz_max_epi16

__m128i _mm_maskz_max_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxsw

Compare packed 16-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_max_epi16

__m256i _mm256_mask_max_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxsw

Compare packed 16-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_max_epi16

__m256i _mm256_maskz_max_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxsw

Compare packed 16-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_max_epi16

__m512i _mm512_mask_max_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxsw

Compare packed 16-bit integers in a and b, and store packed maximum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_epi16

__m512i _mm512_maskz_max_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxsw

Compare packed 16-bit integers in a and b, and store packed maximum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_max_epi16

__m512i _mm512_max_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxsw

Compare packed 16-bit integers in a and b, and store packed maximum values in the return value.

Compiler Reference

775

_mm_mask_max_epu8

__m128i _mm_mask_max_epu8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxub

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_max_epu8

__m128i _mm_maskz_max_epu8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxub

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_max_epu8

__m256i _mm256_mask_max_epu8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxub

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_max_epu8

__m256i _mm256_maskz_max_epu8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxub

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_max_epu8

__m512i _mm512_mask_max_epu8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxub

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_epu8

__m512i _mm512_maskz_max_epu8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxub

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

776

_mm512_max_epu8

__m512i _mm512_max_epu8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxub

Compare packed unsigned 8-bit integers in a and b, and store packed maximum values in the return value.

_mm_mask_max_epu32

__m128i _mm_mask_max_epu32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxud

Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_max_epu32

__m128i _mm_maskz_max_epu32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxud

Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_max_epu32

__m256i _mm256_mask_max_epu32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxud

Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_max_epu32

__m256i _mm256_maskz_max_epu32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxud

Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_max_epu64

__m128i _mm_mask_max_epu64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxuq

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

777

_mm_maskz_max_epu64

__m128i _mm_maskz_max_epu64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxuq

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_max_epu64

__m128i _mm_max_epu64(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxuq

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in the return value.

_mm256_mask_max_epu64

__m256i _mm256_mask_max_epu64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxuq

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_max_epu64

__m256i _mm256_maskz_max_epu64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxuq

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_max_epu64

__m256i _mm256_max_epu64(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmaxuq

Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in the return value.

_mm_mask_max_epu16

__m128i _mm_mask_max_epu16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxuw

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

778

_mm_maskz_max_epu16

__m128i _mm_maskz_max_epu16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxuw

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_max_epu16

__m256i _mm256_mask_max_epu16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxuw

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_max_epu16

__m256i _mm256_maskz_max_epu16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmaxuw

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_max_epu16

__m512i _mm512_mask_max_epu16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxuw

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_epu16

__m512i _mm512_maskz_max_epu16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxuw

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_max_epu16

__m512i _mm512_max_epu16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmaxuw

Compare packed unsigned 16-bit integers in a and b, and store packed maximum values in the return value.

Compiler Reference

779

_mm_mask_min_epi8

__m128i _mm_mask_min_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminsb

Compare packed 8-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_min_epi8

__m128i _mm_maskz_min_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminsb

Compare packed 8-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_min_epi8

__m256i _mm256_mask_min_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminsb

Compare packed 8-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_min_epi8

__m256i _mm256_maskz_min_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminsb

Compare packed 8-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_min_epi8

__m512i _mm512_mask_min_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminsb

Compare packed 8-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_epi8

__m512i _mm512_maskz_min_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminsb

Compare packed 8-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

780

_mm512_min_epi8

__m512i _mm512_min_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminsb

Compare packed 8-bit integers in a and b, and store packed minimum values in the return value.

_mm_mask_min_epi32

__m128i _mm_mask_min_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsd

Compare packed 32-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_min_epi32

__m128i _mm_maskz_min_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsd

Compare packed 32-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_min_epi32

__m256i _mm256_mask_min_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsd

Compare packed 32-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_min_epi32

__m256i _mm256_maskz_min_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsd

Compare packed 32-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_min_epi64

__m128i _mm_mask_min_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsq

Compare packed 64-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

781

_mm_maskz_min_epi64

__m128i _mm_maskz_min_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsq

Compare packed 64-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_min_epi64

__m128i _mm_min_epi64(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsq

Compare packed 64-bit integers in a and b, and store packed minimum values in the return value.

_mm256_mask_min_epi64

__m256i _mm256_mask_min_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsq

Compare packed 64-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_min_epi64

__m256i _mm256_maskz_min_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsq

Compare packed 64-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_min_epi64

__m256i _mm256_min_epi64(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminsq

Compare packed 64-bit integers in a and b, and store packed minimum values in the return value.

_mm_mask_min_epi16

__m128i _mm_mask_min_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminsw

Compare packed 16-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

782

_mm_maskz_min_epi16

__m128i _mm_maskz_min_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminsw

Compare packed 16-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_min_epi16

__m256i _mm256_mask_min_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminsw

Compare packed 16-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_min_epi16

__m256i _mm256_maskz_min_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminsw

Compare packed 16-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_min_epi16

__m512i _mm512_mask_min_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminsw

Compare packed 16-bit integers in a and b, and store packed minimum values in the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_epi16

__m512i _mm512_maskz_min_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminsw

Compare packed 16-bit integers in a and b, and store packed minimum values in the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_min_epi16

__m512i _mm512_min_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminsw

Compare packed 16-bit integers in a and b, and store packed minimum values in the return value.

Compiler Reference

783

_mm_mask_min_epu8

__m128i _mm_mask_min_epu8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminub

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_min_epu8

__m128i _mm_maskz_min_epu8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminub

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_min_epu8

__m256i _mm256_mask_min_epu8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminub

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_min_epu8

__m256i _mm256_maskz_min_epu8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminub

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_min_epu8

__m512i _mm512_mask_min_epu8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminub

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_epu8

__m512i _mm512_maskz_min_epu8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminub

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

784

_mm512_min_epu8

__m512i _mm512_min_epu8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminub

Compare packed unsigned 8-bit integers in a and b, and store packed minimum values in the return value.

_mm_mask_min_epu32

__m128i _mm_mask_min_epu32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminud

Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_min_epu32

__m128i _mm_maskz_min_epu32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminud

Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_min_epu32

__m256i _mm256_mask_min_epu32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminud

Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_min_epu32

__m256i _mm256_maskz_min_epu32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminud

Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_min_epu64

__m128i _mm_mask_min_epu64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminuq

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

785

_mm_maskz_min_epu64

__m128i _mm_maskz_min_epu64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminuq

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_min_epu64

__m128i _mm_min_epu64(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminuq

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in the return value.

_mm256_mask_min_epu64

__m256i _mm256_mask_min_epu64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminuq

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_min_epu64

__m256i _mm256_maskz_min_epu64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminuq

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_min_epu64

__m256i _mm256_min_epu64(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpminuq

Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in the return value.

_mm_mask_min_epu16

__m128i _mm_mask_min_epu16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminuw

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

786

_mm_maskz_min_epu16

__m128i _mm_maskz_min_epu16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminuw

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_min_epu16

__m256i _mm256_mask_min_epu16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminuw

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_min_epu16

__m256i _mm256_maskz_min_epu16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpminuw

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_min_epu16

__m512i _mm512_mask_min_epu16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminuw

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_epu16

__m512i _mm512_maskz_min_epu16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminuw

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_min_epu16

__m512i _mm512_min_epu16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpminuw

Compare packed unsigned 16-bit integers in a and b, and store packed minimum values in the return value.

Compiler Reference

787

_mm_mask_mul_epi32

__m128i _mm_mask_mul_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmuldq

Multiply the low 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit
results in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm_maskz_mul_epi32

__m128i _mm_maskz_mul_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmuldq

Multiply the low 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit
results in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_mul_epi32

__m256i _mm256_mask_mul_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmuldq

Multiply the low 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit
results in the return value using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm256_maskz_mul_epi32

__m256i _mm256_maskz_mul_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmuldq

Multiply the low 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit
results in the return value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_mulhrs_epi16

__m128i _mm_mask_mulhrs_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhrsw

Multiply packed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each
intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to the return
value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_mulhrs_epi16

__m128i _mm_maskz_mulhrs_epi16(__mmask8 k, __m128i a, __m128i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

788

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhrsw

Multiply packed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each
intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to the return
value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_mulhrs_epi16

__m256i _mm256_mask_mulhrs_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhrsw

Multiply packed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each
intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to the return
value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_mulhrs_epi16

__m256i _mm256_maskz_mulhrs_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhrsw

Multiply packed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each
intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to the return
value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_mulhrs_epi16

__m512i _mm512_mask_mulhrs_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhrsw

Multiply packed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each
intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to the return
value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_mulhrs_epi16

__m512i _mm512_maskz_mulhrs_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhrsw

Multiply packed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each
intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to the return
value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mulhrs_epi16

__m512i _mm512_mulhrs_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhrsw

Compiler Reference

789

Multiply packed 16-bit integers in a and b, producing intermediate signed 32-bit integers. Truncate each
intermediate integer to the 18 most significant bits, round by adding 1, and store bits [16:1] to the return
value.

_mm_mask_mulhi_epu16

__m128i _mm_mask_mulhi_epu16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhuw

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store
the high 16 bits of the intermediate integers in the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm_maskz_mulhi_epu16

__m128i _mm_maskz_mulhi_epu16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhuw

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store
the high 16 bits of the intermediate integers in the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_mulhi_epu16

__m256i _mm256_mask_mulhi_epu16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhuw

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store
the high 16 bits of the intermediate integers in the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm256_maskz_mulhi_epu16

__m256i _mm256_maskz_mulhi_epu16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhuw

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store
the high 16 bits of the intermediate integers in the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_mask_mulhi_epu16

__m512i _mm512_mask_mulhi_epu16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhuw

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store
the high 16 bits of the intermediate integers in the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

790

_mm512_maskz_mulhi_epu16

__m512i _mm512_maskz_mulhi_epu16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhuw

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store
the high 16 bits of the intermediate integers in the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_mulhi_epu16

__m512i _mm512_mulhi_epu16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhuw

Multiply the packed unsigned 16-bit integers in a and b, producing intermediate 32-bit integers, and store
the high 16 bits of the intermediate integers in the return value.

_mm_mask_mulhi_epi16

__m128i _mm_mask_mulhi_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_mulhi_epi16

__m128i _mm_maskz_mulhi_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_mulhi_epi16

__m256i _mm256_mask_mulhi_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmulhw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_mulhi_epi16

__m256i _mm256_maskz_mulhi_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Compiler Reference

791

Instruction(s): vpmulhw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_mulhi_epi16

__m512i _mm512_mask_mulhi_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_maskz_mulhi_epi16

__m512i _mm512_maskz_mulhi_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mulhi_epi16

__m512i _mm512_mulhi_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmulhw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the high 16
bits of the intermediate integers in the return value.

_mm_mask_mullo_epi32

__m128i _mm_mask_mullo_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmulld

Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_mullo_epi32

__m128i _mm_maskz_mullo_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmulld

Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

792

_mm256_mask_mullo_epi32

__m256i _mm256_mask_mullo_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmulld

Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_mullo_epi32

__m256i _mm256_maskz_mullo_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmulld

Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_mullo_epi64

__m128i _mm_mask_mullo_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmullq

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_mullo_epi64

__m128i _mm_maskz_mullo_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmullq

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mullo_epi64

__m128i _mm_mullo_epi64(__m128i a, __m128i b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmullq

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value.

_mm256_mask_mullo_epi64

__m256i _mm256_mask_mullo_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)

Compiler Reference

793

CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmullq

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_mullo_epi64

__m256i _mm256_maskz_mullo_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmullq

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mullo_epi64

__m256i _mm256_mullo_epi64(__m256i a, __m256i b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmullq

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value.

_mm512_mask_mullo_epi64

__m512i _mm512_mask_mullo_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b)
CPUID Flags: AVX512DQ

Instruction(s): vpmullq

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_maskz_mullo_epi64

__m512i _mm512_maskz_mullo_epi64(__mmask8 k, __m512i a, __m512i b)
CPUID Flags: AVX512DQ

Instruction(s): vpmullq

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mullo_epi64

__m512i _mm512_mullo_epi64(__m512i a, __m512i b)
CPUID Flags: AVX512DQ

Instruction(s): vpmullq

 Intel® C++ Compiler Classic Developer Guide and Reference

794

Multiply the packed 64-bit integers in a and b, producing intermediate 128-bit integers, and store the low 64
bits of the intermediate integers in the return value.

_mm_mask_mullo_epi16

__m128i _mm_mask_mullo_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmullw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_mullo_epi16

__m128i _mm_maskz_mullo_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmullw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_mullo_epi16

__m256i _mm256_mask_mullo_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmullw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_mullo_epi16

__m256i _mm256_maskz_mullo_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmullw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_mullo_epi16

__m512i _mm512_mask_mullo_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmullw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16
bits of the intermediate integers in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

Compiler Reference

795

_mm512_maskz_mullo_epi16

__m512i _mm512_maskz_mullo_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmullw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16
bits of the intermediate integers in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mullo_epi16

__m512i _mm512_mullo_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpmullw

Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit integers, and store the low 16
bits of the intermediate integers in the return value.

_mm_mask_mul_epu32

__m128i _mm_mask_mul_epu32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmuludq

Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the
unsigned 64-bit results in the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_mul_epu32

__m128i _mm_maskz_mul_epu32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmuludq

Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the
unsigned 64-bit results in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_mul_epu32

__m256i _mm256_mask_mul_epu32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmuludq

Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the
unsigned 64-bit results in the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_mul_epu32

__m256i _mm256_maskz_mul_epu32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

796

Instruction(s): vpmuludq

Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the
unsigned 64-bit results in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_sub_epi8

__m128i _mm_mask_sub_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubb

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sub_epi8

__m128i _mm_maskz_sub_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubb

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sub_epi8

__m256i _mm256_mask_sub_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubb

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sub_epi8

__m256i _mm256_maskz_sub_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubb

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_sub_epi8

__m512i _mm512_mask_sub_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubb

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sub_epi8

__m512i _mm512_maskz_sub_epi8(__mmask64 k, __m512i a, __m512i b)

Compiler Reference

797

CPUID Flags: AVX512BW

Instruction(s): vpsubb

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_sub_epi8

__m512i _mm512_sub_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubb

Subtract packed 8-bit integers in b from packed 8-bit integers in a, and return the results.

_mm_mask_sub_epi32

__m128i _mm_mask_sub_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsubd

Subtract packed 32-bit integers in b from packed 32-bit integers in a, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sub_epi32

__m128i _mm_maskz_sub_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsubd

Subtract packed 32-bit integers in b from packed 32-bit integers in a, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sub_epi32

__m256i _mm256_mask_sub_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsubd

Subtract packed 32-bit integers in b from packed 32-bit integers in a, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sub_epi32

__m256i _mm256_maskz_sub_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsubd

Subtract packed 32-bit integers in b from packed 32-bit integers in a, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_sub_epi64

__m128i _mm_mask_sub_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

798

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsubq

Subtract packed 64-bit integers in b from packed 64-bit integers in a, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sub_epi64

__m128i _mm_maskz_sub_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsubq

Subtract packed 64-bit integers in b from packed 64-bit integers in a, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sub_epi64

__m256i _mm256_mask_sub_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsubq

Subtract packed 64-bit integers in b from packed 64-bit integers in a, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sub_epi64

__m256i _mm256_maskz_sub_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsubq

Subtract packed 64-bit integers in b from packed 64-bit integers in a, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_subs_epi8

__m128i _mm_mask_subs_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubsb

Subtract packed 8-bit integers in b from packed 8-bit integers in a using saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_subs_epi8

__m128i _mm_maskz_subs_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubsb

Subtract packed 8-bit integers in b from packed 8-bit integers in a using saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

799

_mm256_mask_subs_epi8

__m256i _mm256_mask_subs_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubsb

Subtract packed 8-bit integers in b from packed 8-bit integers in a using saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_subs_epi8

__m256i _mm256_maskz_subs_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubsb

Subtract packed 8-bit integers in b from packed 8-bit integers in a using saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_subs_epi8

__m512i _mm512_mask_subs_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubsb

Subtract packed 8-bit integers in b from packed 8-bit integers in a using saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_subs_epi8

__m512i _mm512_maskz_subs_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubsb

Subtract packed 8-bit integers in b from packed 8-bit integers in a using saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_subs_epi8

__m512i _mm512_subs_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubsb

Subtract packed 8-bit integers in b from packed 8-bit integers in a using saturation, and return the results.

_mm_mask_subs_epi16

__m128i _mm_mask_subs_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubsw

Subtract packed 16-bit integers in b from packed 16-bit integers in a using saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

800

_mm_maskz_subs_epi16

__m128i _mm_maskz_subs_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubsw

Subtract packed 16-bit integers in b from packed 16-bit integers in a using saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_subs_epi16

__m256i _mm256_mask_subs_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubsw

Subtract packed 16-bit integers in b from packed 16-bit integers in a using saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_subs_epi16

__m256i _mm256_maskz_subs_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubsw

Subtract packed 16-bit integers in b from packed 16-bit integers in a using saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_subs_epi16

__m512i _mm512_mask_subs_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubsw

Subtract packed 16-bit integers in b from packed 16-bit integers in a using saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_subs_epi16

__m512i _mm512_maskz_subs_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubsw

Subtract packed 16-bit integers in b from packed 16-bit integers in a using saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_subs_epi16

__m512i _mm512_subs_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubsw

Subtract packed 16-bit integers in b from packed 16-bit integers in a using saturation, and return the results.

Compiler Reference

801

_mm_mask_subs_epu8

__m128i _mm_mask_subs_epu8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubusb

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_subs_epu8

__m128i _mm_maskz_subs_epu8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubusb

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_subs_epu8

__m256i _mm256_mask_subs_epu8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubusb

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_subs_epu8

__m256i _mm256_maskz_subs_epu8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubusb

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_subs_epu8

__m512i _mm512_mask_subs_epu8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubusb

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_subs_epu8

__m512i _mm512_maskz_subs_epu8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubusb

 Intel® C++ Compiler Classic Developer Guide and Reference

802

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_subs_epu8

__m512i _mm512_subs_epu8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubusb

Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit integers in a using saturation, and
return the results.

_mm_mask_subs_epu16

__m128i _mm_mask_subs_epu16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubusw

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_subs_epu16

__m128i _mm_maskz_subs_epu16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubusw

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_subs_epu16

__m256i _mm256_mask_subs_epu16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubusw

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_subs_epu16

__m256i _mm256_maskz_subs_epu16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubusw

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

Compiler Reference

803

_mm512_mask_subs_epu16

__m512i _mm512_mask_subs_epu16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubusw

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_maskz_subs_epu16

__m512i _mm512_maskz_subs_epu16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubusw

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_subs_epu16

__m512i _mm512_subs_epu16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubusw

Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit integers in a using saturation,
and return the results.

_mm_mask_sub_epi16

__m128i _mm_mask_sub_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubw

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sub_epi16

__m128i _mm_maskz_sub_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubw

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sub_epi16

__m256i _mm256_mask_sub_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubw

 Intel® C++ Compiler Classic Developer Guide and Reference

804

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sub_epi16

__m256i _mm256_maskz_sub_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsubw

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_sub_epi16

__m512i _mm512_mask_sub_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubw

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sub_epi16

__m512i _mm512_maskz_sub_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubw

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_sub_epi16

__m512i _mm512_sub_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsubw

Subtract packed 16-bit integers in b from packed 16-bit integers in a, and return the results.

_mm_madd52hi_epu64

__m128i _mm_madd52hi_epu64(__m128i a, __m128i b, __m128i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result.

_mm_mask_madd52hi_epu64

__m128i _mm_mask_madd52hi_epu64(__m128i a, __mmask8 k, __m128i b, __m128i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Compiler Reference

805

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm_maskz_madd52hi_epu64

__m128i _mm_maskz_madd52hi_epu64(__mmask8 k, __m128i a, __m128i b, __m128i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_madd52hi_epu64

__m256i _mm256_madd52hi_epu64(__m256i a, __m256i b, __m256i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result.

_mm256_mask_madd52hi_epu64

__m256i _mm256_mask_madd52hi_epu64(__m256i a, __mmask8 k, __m256i b, __m256i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm256_maskz_madd52hi_epu64

__m256i _mm256_maskz_madd52hi_epu64(__mmask8 k, __m256i a, __m256i b, __m256i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_madd52hi_epu64

__m512i _mm512_madd52hi_epu64(__m512i a, __m512i b, __m512i c);
CPUID Flags: AVX512IFMA52

 Intel® C++ Compiler Classic Developer Guide and Reference

806

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result.

_mm512_mask_madd52hi_epu64

__m512i _mm512_mask_madd52hi_epu64(__m512i a, __mmask8 k, __m512i b, __m512i c);
CPUID Flags: AVX512IFMA52

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm512_maskz_madd52hi_epu64

__m512i _mm512_maskz_madd52hi_epu64(__mmask8 k, __m512i a, __m512i b, __m512i c);
CPUID Flags: AVX512IFMA52

Instruction(s): vpmadd52huq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the high 52-bit unsigned integer from the intermediate result with the corresponding unsigned
64-bit integer in a, and return the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_madd52lo_epu64

__m128i _mm_madd52lo_epu64(__m128i a, __m128i b, __m128i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result.

_mm_mask_madd52lo_epu64

__m128i _mm_mask_madd52lo_epu64(__m128i a, __mmask8 k, __m128i b, __m128i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result using writemask k (elements are copied from a when the corresponding
mask bit is not set).

_mm_maskz_madd52lo_epu64

__m128i _mm_maskz_madd52lo_epu64(__mmask8 k, __m128i a, __m128i b, __m128i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Compiler Reference

807

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_madd52lo_epu64

__m256i _mm256_madd52lo_epu64(__m256i a, __m256i b, __m256i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result.

_mm256_mask_madd52lo_epu64

__m256i _mm256_mask_madd52lo_epu64(__m256i a, __mmask8 k, __m256i b, __m256i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result using writemask k (elements are copied from a when the corresponding
mask bit is not set).

_mm256_maskz_madd52lo_epu64

__m256i _mm256_maskz_madd52lo_epu64(__mmask8 k, __m256i a, __m256i b, __m256i c);
CPUID Flags: AVX512IFMA52, AVX512VL

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_madd52lo_epu64

__m512i _mm512_madd52lo_epu64(__m512i a, __m512i b, __m512i c);
CPUID Flags: AVX512IFMA52

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result.

_mm512_mask_madd52lo_epu64

__m512i _mm512_mask_madd52lo_epu64(__m512i a, __mmask8 k, __m512i b, __m512i c);
CPUID Flags: AVX512IFMA52

 Intel® C++ Compiler Classic Developer Guide and Reference

808

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result using writemask k (elements are copied from a when the corresponding
mask bit is not set).

_mm512_maskz_madd52lo_epu64

__m512i _mm512_maskz_madd52lo_epu64(__mmask8 k, __m512i a, __m512i b, __m512i c);
CPUID Flags: AVX512IFMA52

Instruction(s): vpmadd52luq

Multiply packed unsigned 52-bit integers in each 64-bit element of b and c to form a 104-bit intermediate
result. Add the low 52-bit unsigned integer from the intermediate result with the corresponding unsigned 64-
bit integer in a, and return the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

Intrinsics for Bit Manipulation Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

_mm_lzcnt_epi32

__m128i _mm_lzcnt_epi32(__m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntd

Counts the number of leading zero bits in each packed 32-bit integer in a, and return the results.

_mm_mask_lzcnt_epi32

__m128i _mm_mask_lzcnt_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntd

Counts the number of leading zero bits in each packed 32-bit integer in a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

809

_mm_maskz_lzcnt_epi32

__m128i _mm_maskz_lzcnt_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntd

Counts the number of leading zero bits in each packed 32-bit integer in a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_lzcnt_epi32

__m256i _mm256_lzcnt_epi32(__m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntd

Counts the number of leading zero bits in each packed 32-bit integer in a, and return the results.

_mm256_mask_lzcnt_epi32

__m256i _mm256_mask_lzcnt_epi32(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntd

Counts the number of leading zero bits in each packed 32-bit integer in a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_lzcnt_epi32

__m256i _mm256_maskz_lzcnt_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntd

Counts the number of leading zero bits in each packed 32-bit integer in a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_lzcnt_epi64

__m128i _mm_lzcnt_epi64(__m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntq

Counts the number of leading zero bits in each packed 64-bit integer in a, and return the results.

_mm_mask_lzcnt_epi64

__m128i _mm_mask_lzcnt_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntq

Counts the number of leading zero bits in each packed 64-bit integer in a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

810

_mm_maskz_lzcnt_epi64

__m128i _mm_maskz_lzcnt_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntq

Counts the number of leading zero bits in each packed 64-bit integer in a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_lzcnt_epi64

__m256i _mm256_lzcnt_epi64(__m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntq

Counts the number of leading zero bits in each packed 64-bit integer in a, and return the results.

_mm256_mask_lzcnt_epi64

__m256i _mm256_mask_lzcnt_epi64(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntq

Counts the number of leading zero bits in each packed 64-bit integer in a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_lzcnt_epi64

__m256i _mm256_maskz_lzcnt_epi64(__mmask8 k, __m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vplzcntq

Counts the number of leading zero bits in each packed 64-bit integer in a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_multishift_epi64_epi8

__m128i _mm_multishift_epi64_epi8(__m128i a, __m128i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpmultishiftqb

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value.

_mm_mask_multishift_epi64_epi8

__m128i _mm_mask_multishift_epi64_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpmultishiftqb

Compiler Reference

811

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_multishift_epi64_epi8

__m128i _mm_maskz_multishift_epi64_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpmultishiftqb

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_multishift_epi64_epi8

__m256i _mm256_multishift_epi64_epi8(__m256i a, __m256i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpmultishiftqb

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value.

_mm256_mask_multishift_epi64_epi8

__m256i _mm256_mask_multishift_epi64_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpmultishiftqb

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_multishift_epi64_epi8

__m256i _mm256_maskz_multishift_epi64_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpmultishiftqb

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_multishift_epi64_epi8

__m512i _mm512_multishift_epi64_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512VBMI

Instruction(s): vpmultishiftqb

 Intel® C++ Compiler Classic Developer Guide and Reference

812

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value.

_mm512_mask_multishift_epi64_epi8

__m512i _mm512_mask_multishift_epi64_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512VBMI

Instruction(s): vpmultishiftqb

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_multishift_epi64_epi8

__m512i _mm512_maskz_multishift_epi64_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512VBMI

Instruction(s): vpmultishiftqb

For each 64-bit element in b, select 8 unaligned bytes using a byte-granular shift control within the
corresponding 64-bit element of a, and store the 8 assembled bytes to the corresponding 64-bit element of
the return value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Comparison Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

b second source vector element

imm comparison predicate, which can be any of the following values:

• _MM_CMPINT_EQ - Equal
• _MM_CMPINT_LT - Less than
• _MM_CMPINT_LE - Less than or Equal
• _MM_CMPINT_NE - Not Equal
• _MM_CMPINT_NLT - Not Less than
• _MM_CMPINT_GE - Greater than or Equal
• _MM_CMPINT_NLE - Not Less than or Equal
• _MM_CMPINT_GT - Greater than

Compiler Reference

813

_mm_conflict_epi32

__m128i _mm_conflict_epi32(__m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictd

Test each 32-bit element of a for equality with all other elements in a closer to the least significant element.
Each element's comparison forms a zero extended bit vector in the return value.

_mm_mask_conflict_epi32

__m128i _mm_mask_conflict_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictd

Test each 32-bit element of a for equality with all other elements in a closer to the least significant element
using writemask k (elements are copied from src when the corresponding mask bit is not set). Each
element's comparison forms a zero extended bit vector in the return value.

_mm_maskz_conflict_epi32

__m128i _mm_maskz_conflict_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictd

Test each 32-bit element of a for equality with all other elements in a closer to the least significant element
using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Each element's
comparison forms a zero extended bit vector in the return value.

_mm256_conflict_epi32

__m256i _mm256_conflict_epi32(__m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictd

Test each 32-bit element of a for equality with all other elements in a closer to the least significant element.
Each element's comparison forms a zero extended bit vector in the return value.

_mm256_mask_conflict_epi32

__m256i _mm256_mask_conflict_epi32(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictd

Test each 32-bit element of a for equality with all other elements in a closer to the least significant element
using writemask k (elements are copied from src when the corresponding mask bit is not set). Each
element's comparison forms a zero extended bit vector in the return value.

_mm256_maskz_conflict_epi32

__m256i _mm256_maskz_conflict_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512CD, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

814

Instruction(s): vpconflictd

Test each 32-bit element of a for equality with all other elements in a closer to the least significant element
using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Each element's
comparison forms a zero extended bit vector in the return value.

_mm_conflict_epi64

__m128i _mm_conflict_epi64(__m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictq

Test each 64-bit element of a for equality with all other elements in a closer to the least significant element.
Each element's comparison forms a zero extended bit vector in the return value.

_mm_mask_conflict_epi64

__m128i _mm_mask_conflict_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictq

Test each 64-bit element of a for equality with all other elements in a closer to the least significant element
using writemask k (elements are copied from src when the corresponding mask bit is not set). Each
element's comparison forms a zero extended bit vector in the return value.

_mm_maskz_conflict_epi64

__m128i _mm_maskz_conflict_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictq

Test each 64-bit element of a for equality with all other elements in a closer to the least significant element
using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Each element's
comparison forms a zero extended bit vector in the return value.

_mm256_conflict_epi64

__m256i _mm256_conflict_epi64(__m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictq

Test each 64-bit element of a for equality with all other elements in a closer to the least significant element.
Each element's comparison forms a zero extended bit vector in the return value.

_mm256_mask_conflict_epi64

__m256i _mm256_mask_conflict_epi64(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictq

Test each 64-bit element of a for equality with all other elements in a closer to the least significant element
using writemask k (elements are copied from src when the corresponding mask bit is not set). Each
element's comparison forms a zero extended bit vector in the return value.

Compiler Reference

815

_mm256_maskz_conflict_epi64

__m256i _mm256_maskz_conflict_epi64(__mmask8 k, __m256i a)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpconflictq

Test each 64-bit element of a for equality with all other elements in a closer to the least significant element
using zeromask k (elements are zeroed out when the corresponding mask bit is not set). Each element's
comparison forms a zero extended bit vector in the return value.

_mm_cmp_pd_mask

__mmask8 _mm_cmp_pd_mask(__m128d a, __m128d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcmppd

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison
operand specified by imm, and and put each result in the corresponding bit of the returned mask value.

_mm_mask_cmp_pd_mask

__mmask8 _mm_mask_cmp_pd_mask(__mmask8 k1, __m128d a, __m128d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcmppd

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison
operand specified by imm, and and put each result in the corresponding bit of the returned mask value using
zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cmp_pd_mask

__mmask8 _mm256_cmp_pd_mask(__m256d a, __m256d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcmppd

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison
operand specified by imm, and and put each result in the corresponding bit of the returned mask value.

_mm256_mask_cmp_pd_mask

__mmask8 _mm256_mask_cmp_pd_mask(__mmask8 k1, __m256d a, __m256d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcmppd

Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison
operand specified by imm, and and put each result in the corresponding bit of the returned mask value using
zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm_cmp_ps_mask

__mmask8 _mm_cmp_ps_mask(__m128 a, __m128 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcmpps

 Intel® C++ Compiler Classic Developer Guide and Reference

816

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison
operand specified by imm, and and put each result in the corresponding bit of the returned mask value.

_mm_mask_cmp_ps_mask

__mmask8 _mm_mask_cmp_ps_mask(__mmask8 k1, __m128 a, __m128 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcmpps

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison
operand specified by imm, and and put each result in the corresponding bit of the returned mask value using
zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cmp_ps_mask

__mmask8 _mm256_cmp_ps_mask(__m256 a, __m256 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcmpps

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison
operand specified by imm, and and put each result in the corresponding bit of the returned mask value.

_mm256_mask_cmp_ps_mask

__mmask8 _mm256_mask_cmp_ps_mask(__mmask8 k1, __m256 a, __m256 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcmpps

Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison
operand specified by imm, and and put each result in the corresponding bit of the returned mask value using
zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).

_mm_cmp_epi8_mask

__mmask16 _mm_cmp_epi8_mask(__m128i a, __m128i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm_cmpeq_epi8_mask

__mmask16 _mm_cmpeq_epi8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for equality, and and put each result in the corresponding bit of the
returned mask value.

_mm_cmpge_epi8_mask

__mmask16 _mm_cmpge_epi8_mask(__m128i a, __m128i b)

Compiler Reference

817

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpgt_epi8_mask

__mmask16 _mm_cmpgt_epi8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm_cmple_epi8_mask

__mmask16 _mm_cmple_epi8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmplt_epi8_mask

__mmask16 _mm_cmplt_epi8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm_cmpneq_epi8_mask

__mmask16 _mm_cmpneq_epi8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm_mask_cmp_epi8_mask

__mmask16 _mm_mask_cmp_epi8_mask(__mmask16 k1, __m128i a, __m128i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out
when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

818

_mm_mask_cmpeq_epi8_mask

__mmask16 _mm_mask_cmpeq_epi8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for equality, and and put each result in the corresponding bit of the
returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_cmpge_epi8_mask

__mmask16 _mm_mask_cmpge_epi8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpgt_epi8_mask

__mmask16 _mm_mask_cmpgt_epi8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_cmple_epi8_mask

__mmask16 _mm_mask_cmple_epi8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmplt_epi8_mask

__mmask16 _mm_mask_cmplt_epi8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_cmpneq_epi8_mask

__mmask16 _mm_mask_cmpneq_epi8_mask(__mmask16 k1, __m128i a, __m128i b)

Compiler Reference

819

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_cmp_epi8_mask

__mmask32 _mm256_cmp_epi8_mask(__m256i a, __m256i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm256_cmpeq_epi8_mask

__mmask32 _mm256_cmpeq_epi8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for equality, and and put each result in the corresponding bit of the
returned mask value.

_mm256_cmpge_epi8_mask

__mmask32 _mm256_cmpge_epi8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpgt_epi8_mask

__mmask32 _mm256_cmpgt_epi8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm256_cmple_epi8_mask

__mmask32 _mm256_cmple_epi8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

 Intel® C++ Compiler Classic Developer Guide and Reference

820

_mm256_cmplt_epi8_mask

__mmask32 _mm256_cmplt_epi8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm256_cmpneq_epi8_mask

__mmask32 _mm256_cmpneq_epi8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm256_mask_cmp_epi8_mask

__mmask32 _mm256_mask_cmp_epi8_mask(__mmask32 k1, __m256i a, __m256i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epi8_mask

__mmask32 _mm256_mask_cmpeq_epi8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for equality, and and put each result in the corresponding bit of the
returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_cmpge_epi8_mask

__mmask32 _mm256_mask_cmpge_epi8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpgt_epi8_mask

__mmask32 _mm256_mask_cmpgt_epi8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compiler Reference

821

Compare packed 8-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_cmple_epi8_mask

__mmask32 _mm256_mask_cmple_epi8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmplt_epi8_mask

__mmask32 _mm256_mask_cmplt_epi8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_cmpneq_epi8_mask

__mmask32 _mm256_mask_cmpneq_epi8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

_mm512_cmp_epi8_mask

__mmask64 _mm512_cmp_epi8_mask(__m512i a, __m512i b, const int imm)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm512_cmpeq_epi8_mask

__mmask64 _mm512_cmpeq_epi8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for equality, and and put each result in the corresponding bit of the
returned mask value.

 Intel® C++ Compiler Classic Developer Guide and Reference

822

_mm512_cmpge_epi8_mask

__mmask64 _mm512_cmpge_epi8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmpgt_epi8_mask

__mmask64 _mm512_cmpgt_epi8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm512_cmple_epi8_mask

__mmask64 _mm512_cmple_epi8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmplt_epi8_mask

__mmask64 _mm512_cmplt_epi8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm512_cmpneq_epi8_mask

__mmask64 _mm512_cmpneq_epi8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm512_mask_cmp_epi8_mask

__mmask64 _mm512_mask_cmp_epi8_mask(__mmask64 k1, __m512i a, __m512i b, const int imm)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compiler Reference

823

Compare packed 8-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epi8_mask

__mmask64 _mm512_mask_cmpeq_epi8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for equality, and and put each result in the corresponding bit of the
returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_mask_cmpge_epi8_mask

__mmask64 _mm512_mask_cmpge_epi8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmpgt_epi8_mask

__mmask64 _mm512_mask_cmpgt_epi8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

_mm512_mask_cmple_epi8_mask

__mmask64 _mm512_mask_cmple_epi8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmplt_epi8_mask

__mmask64 _mm512_mask_cmplt_epi8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

824

_mm512_mask_cmpneq_epi8_mask

__mmask64 _mm512_mask_cmpneq_epi8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpb

Compare packed 8-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit is
not set).

_mm_cmp_epi32_mask

__mmask8 _mm_cmp_epi32_mask(__m128i a, __m128i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm_cmpeq_epi32_mask

__mmask8 _mm_cmpeq_epi32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value.

_mm_cmpge_epi32_mask

__mmask8 _mm_cmpge_epi32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpgt_epi32_mask

__mmask8 _mm_cmpgt_epi32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm_cmple_epi32_mask

__mmask8 _mm_cmple_epi32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compiler Reference

825

Compare packed 32-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmplt_epi32_mask

__mmask8 _mm_cmplt_epi32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm_cmpneq_epi32_mask

__mmask8 _mm_cmpneq_epi32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm_mask_cmp_epi32_mask

__mmask8 _mm_mask_cmp_epi32_mask(__mmask8 k1, __m128i a, __m128i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_cmpeq_epi32_mask

__mmask8 _mm_mask_cmpeq_epi32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_cmpge_epi32_mask

__mmask8 _mm_mask_cmpge_epi32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

826

_mm_mask_cmpgt_epi32_mask

__mmask8 _mm_mask_cmpgt_epi32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_cmple_epi32_mask

__mmask8 _mm_mask_cmple_epi32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmplt_epi32_mask

__mmask8 _mm_mask_cmplt_epi32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_cmpneq_epi32_mask

__mmask8 _mm_mask_cmpneq_epi32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cmp_epi32_mask

__mmask8 _mm256_cmp_epi32_mask(__m256i a, __m256i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm256_cmpeq_epi32_mask

__mmask8 _mm256_cmpeq_epi32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

827

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value.

_mm256_cmpge_epi32_mask

__mmask8 _mm256_cmpge_epi32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpgt_epi32_mask

__mmask8 _mm256_cmpgt_epi32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm256_cmple_epi32_mask

__mmask8 _mm256_cmple_epi32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmplt_epi32_mask

__mmask8 _mm256_cmplt_epi32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm256_cmpneq_epi32_mask

__mmask8 _mm256_cmpneq_epi32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm256_mask_cmp_epi32_mask

__mmask8 _mm256_mask_cmp_epi32_mask(__mmask8 k1, __m256i a, __m256i b, const _MM_CMPINT_ENUM imm)

 Intel® C++ Compiler Classic Developer Guide and Reference

828

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epi32_mask

__mmask8 _mm256_mask_cmpeq_epi32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_cmpge_epi32_mask

__mmask8 _mm256_mask_cmpge_epi32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpgt_epi32_mask

__mmask8 _mm256_mask_cmpgt_epi32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_cmple_epi32_mask

__mmask8 _mm256_mask_cmple_epi32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmplt_epi32_mask

__mmask8 _mm256_mask_cmplt_epi32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compiler Reference

829

Compare packed 32-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_cmpneq_epi32_mask

__mmask8 _mm256_mask_cmpneq_epi32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpd

Compare packed 32-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_cmp_epi64_mask

__mmask8 _mm_cmp_epi64_mask(__m128i a, __m128i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm_cmpeq_epi64_mask

__mmask8 _mm_cmpeq_epi64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value.

_mm_cmpge_epi64_mask

__mmask8 _mm_cmpge_epi64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpgt_epi64_mask

__mmask8 _mm_cmpgt_epi64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm_cmple_epi64_mask

__mmask8 _mm_cmple_epi64_mask(__m128i a, __m128i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

830

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmplt_epi64_mask

__mmask8 _mm_cmplt_epi64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm_cmpneq_epi64_mask

__mmask8 _mm_cmpneq_epi64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm_mask_cmp_epi64_mask

__mmask8 _mm_mask_cmp_epi64_mask(__mmask8 k1, __m128i a, __m128i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_cmpeq_epi64_mask

__mmask8 _mm_mask_cmpeq_epi64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_cmpge_epi64_mask

__mmask8 _mm_mask_cmpge_epi64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

Compiler Reference

831

_mm_mask_cmpgt_epi64_mask

__mmask8 _mm_mask_cmpgt_epi64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_cmple_epi64_mask

__mmask8 _mm_mask_cmple_epi64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmplt_epi64_mask

__mmask8 _mm_mask_cmplt_epi64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_cmpneq_epi64_mask

__mmask8 _mm_mask_cmpneq_epi64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cmp_epi64_mask

__mmask8 _mm256_cmp_epi64_mask(__m256i a, __m256i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm256_cmpeq_epi64_mask

__mmask8 _mm256_cmpeq_epi64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

832

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value.

_mm256_cmpge_epi64_mask

__mmask8 _mm256_cmpge_epi64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpgt_epi64_mask

__mmask8 _mm256_cmpgt_epi64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm256_cmple_epi64_mask

__mmask8 _mm256_cmple_epi64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmplt_epi64_mask

__mmask8 _mm256_cmplt_epi64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm256_cmpneq_epi64_mask

__mmask8 _mm256_cmpneq_epi64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm256_mask_cmp_epi64_mask

__mmask8 _mm256_mask_cmp_epi64_mask(__mmask8 k1, __m256i a, __m256i b, const _MM_CMPINT_ENUM imm)

Compiler Reference

833

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epi64_mask

__mmask8 _mm256_mask_cmpeq_epi64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_cmpge_epi64_mask

__mmask8 _mm256_mask_cmpge_epi64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpgt_epi64_mask

__mmask8 _mm256_mask_cmpgt_epi64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_cmple_epi64_mask

__mmask8 _mm256_mask_cmple_epi64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmplt_epi64_mask

__mmask8 _mm256_mask_cmplt_epi64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

 Intel® C++ Compiler Classic Developer Guide and Reference

834

Compare packed 64-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_cmpneq_epi64_mask

__mmask8 _mm256_mask_cmpneq_epi64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpq

Compare packed 64-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_cmp_epu8_mask

__mmask16 _mm_cmp_epu8_mask(__m128i a, __m128i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm_cmpeq_epu8_mask

__mmask16 _mm_cmpeq_epu8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for equality, and and put each result in the corresponding
bit of the returned mask value.

_mm_cmpge_epu8_mask

__mmask16 _mm_cmpge_epu8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpgt_epu8_mask

__mmask16 _mm_cmpgt_epu8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmple_epu8_mask

__mmask16 _mm_cmple_epu8_mask(__m128i a, __m128i b)

Compiler Reference

835

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmplt_epu8_mask

__mmask16 _mm_cmplt_epu8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpneq_epu8_mask

__mmask16 _mm_cmpneq_epu8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_mask_cmp_epu8_mask

__mmask16 _mm_mask_cmp_epu8_mask(__mmask16 k1, __m128i a, __m128i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k1 (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_cmpeq_epu8_mask

__mmask16 _mm_mask_cmpeq_epu8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for equality, and and put each result in the corresponding
bit of the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit
is not set).

_mm_mask_cmpge_epu8_mask

__mmask16 _mm_mask_cmpge_epu8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

836

_mm_mask_cmpgt_epu8_mask

__mmask16 _mm_mask_cmpgt_epu8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmple_epu8_mask

__mmask16 _mm_mask_cmple_epu8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmplt_epu8_mask

__mmask16 _mm_mask_cmplt_epu8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpneq_epu8_mask

__mmask16 _mm_mask_cmpneq_epu8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_cmp_epu8_mask

__mmask32 _mm256_cmp_epu8_mask(__m256i a, __m256i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm256_cmpeq_epu8_mask

__mmask32 _mm256_cmpeq_epu8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Compiler Reference

837

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for equality, and and put each result in the corresponding
bit of the returned mask value.

_mm256_cmpge_epu8_mask

__mmask32 _mm256_cmpge_epu8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpgt_epu8_mask

__mmask32 _mm256_cmpgt_epu8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmple_epu8_mask

__mmask32 _mm256_cmple_epu8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmplt_epu8_mask

__mmask32 _mm256_cmplt_epu8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpneq_epu8_mask

__mmask32 _mm256_cmpneq_epu8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_mask_cmp_epu8_mask

__mmask32 _mm256_mask_cmp_epu8_mask(__mmask32 k1, __m256i a, __m256i b, const int imm)

 Intel® C++ Compiler Classic Developer Guide and Reference

838

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epu8_mask

__mmask32 _mm256_mask_cmpeq_epu8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for equality, and and put each result in the corresponding
bit of the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit
is not set).

_mm256_mask_cmpge_epu8_mask

__mmask32 _mm256_mask_cmpge_epu8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpgt_epu8_mask

__mmask32 _mm256_mask_cmpgt_epu8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmple_epu8_mask

__mmask32 _mm256_mask_cmple_epu8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmplt_epu8_mask

__mmask32 _mm256_mask_cmplt_epu8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compiler Reference

839

Compare packed unsigned 8-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpneq_epu8_mask

__mmask32 _mm256_mask_cmpneq_epu8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_cmp_epu8_mask

__mmask64 _mm512_cmp_epu8_mask(__m512i a, __m512i b, const int imm)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm512_cmpeq_epu8_mask

__mmask64 _mm512_cmpeq_epu8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for equality, and and put each result in the corresponding
bit of the returned mask value.

_mm512_cmpge_epu8_mask

__mmask64 _mm512_cmpge_epu8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmpgt_epu8_mask

__mmask64 _mm512_cmpgt_epu8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmple_epu8_mask

__mmask64 _mm512_cmple_epu8_mask(__m512i a, __m512i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

840

CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmplt_epu8_mask

__mmask64 _mm512_cmplt_epu8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmpneq_epu8_mask

__mmask64 _mm512_cmpneq_epu8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_mask_cmp_epu8_mask

__mmask64 _mm512_mask_cmp_epu8_mask(__mmask64 k1, __m512i a, __m512i b, const int imm)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epu8_mask

__mmask64 _mm512_mask_cmpeq_epu8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for equality, and and put each result in the corresponding
bit of the returned mask value using zeromask k1 (elements are zeroed out when the corresponding mask bit
is not set).

_mm512_mask_cmpge_epu8_mask

__mmask64 _mm512_mask_cmpge_epu8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

Compiler Reference

841

_mm512_mask_cmpgt_epu8_mask

__mmask64 _mm512_mask_cmpgt_epu8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmple_epu8_mask

__mmask64 _mm512_mask_cmple_epu8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmplt_epu8_mask

__mmask64 _mm512_mask_cmplt_epu8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmpneq_epu8_mask

__mmask64 _mm512_mask_cmpneq_epu8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpub

Compare packed unsigned 8-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k1 (elements are zeroed out when the
corresponding mask bit is not set).

_mm_cmp_epu32_mask

__mmask8 _mm_cmp_epu32_mask(__m128i a, __m128i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm_cmpeq_epu32_mask

__mmask8 _mm_cmpeq_epu32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

842

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpge_epu32_mask

__mmask8 _mm_cmpge_epu32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value.

_mm_cmpgt_epu32_mask

__mmask8 _mm_cmpgt_epu32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmple_epu32_mask

__mmask8 _mm_cmple_epu32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmplt_epu32_mask

__mmask8 _mm_cmplt_epu32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpneq_epu32_mask

__mmask8 _mm_cmpneq_epu32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_mask_cmp_epu32_mask

__mmask8 _mm_mask_cmp_epu32_mask(__mmask8 k1, __m128i a, __m128i b, const _MM_CMPINT_ENUM imm)

Compiler Reference

843

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_cmpeq_epu32_mask

__mmask8 _mm_mask_cmpeq_epu32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpge_epu32_mask

__mmask8 _mm_mask_cmpge_epu32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpgt_epu32_mask

__mmask8 _mm_mask_cmpgt_epu32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmple_epu32_mask

__mmask8 _mm_mask_cmple_epu32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmplt_epu32_mask

__mmask8 _mm_mask_cmplt_epu32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

 Intel® C++ Compiler Classic Developer Guide and Reference

844

Compare packed unsigned 32-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpneq_epu32_mask

__mmask8 _mm_mask_cmpneq_epu32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_cmp_epu32_mask

__mmask8 _mm256_cmp_epu32_mask(__m256i a, __m256i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm256_cmpeq_epu32_mask

__mmask8 _mm256_cmpeq_epu32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpge_epu32_mask

__mmask8 _mm256_cmpge_epu32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value.

_mm256_cmpgt_epu32_mask

__mmask8 _mm256_cmpgt_epu32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmple_epu32_mask

__mmask8 _mm256_cmple_epu32_mask(__m256i a, __m256i b)

Compiler Reference

845

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmplt_epu32_mask

__mmask8 _mm256_cmplt_epu32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpneq_epu32_mask

__mmask8 _mm256_cmpneq_epu32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_mask_cmp_epu32_mask

__mmask8 _mm256_mask_cmp_epu32_mask(__mmask8 k1, __m256i a, __m256i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epu32_mask

__mmask8 _mm256_mask_cmpeq_epu32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpge_epu32_mask

__mmask8 _mm256_mask_cmpge_epu32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

846

_mm256_mask_cmpgt_epu32_mask

__mmask8 _mm256_mask_cmpgt_epu32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmple_epu32_mask

__mmask8 _mm256_mask_cmple_epu32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmplt_epu32_mask

__mmask8 _mm256_mask_cmplt_epu32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpneq_epu32_mask

__mmask8 _mm256_mask_cmpneq_epu32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpud

Compare packed unsigned 32-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_cmp_epu64_mask

__mmask8 _mm_cmp_epu64_mask(__m128i a, __m128i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm_cmpeq_epu64_mask

__mmask8 _mm_cmpeq_epu64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

847

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpge_epu64_mask

__mmask8 _mm_cmpge_epu64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value.

_mm_cmpgt_epu64_mask

__mmask8 _mm_cmpgt_epu64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmple_epu64_mask

__mmask8 _mm_cmple_epu64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmplt_epu64_mask

__mmask8 _mm_cmplt_epu64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpneq_epu64_mask

__mmask8 _mm_cmpneq_epu64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_mask_cmp_epu64_mask

__mmask8 _mm_mask_cmp_epu64_mask(__mmask8 k1, __m128i a, __m128i b, const _MM_CMPINT_ENUM imm)

 Intel® C++ Compiler Classic Developer Guide and Reference

848

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_cmpeq_epu64_mask

__mmask8 _mm_mask_cmpeq_epu64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpge_epu64_mask

__mmask8 _mm_mask_cmpge_epu64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpgt_epu64_mask

__mmask8 _mm_mask_cmpgt_epu64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmple_epu64_mask

__mmask8 _mm_mask_cmple_epu64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmplt_epu64_mask

__mmask8 _mm_mask_cmplt_epu64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compiler Reference

849

Compare packed unsigned 64-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpneq_epu64_mask

__mmask8 _mm_mask_cmpneq_epu64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_cmp_epu64_mask

__mmask8 _mm256_cmp_epu64_mask(__m256i a, __m256i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm256_cmpeq_epu64_mask

__mmask8 _mm256_cmpeq_epu64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpge_epu64_mask

__mmask8 _mm256_cmpge_epu64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value.

_mm256_cmpgt_epu64_mask

__mmask8 _mm256_cmpgt_epu64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmple_epu64_mask

__mmask8 _mm256_cmple_epu64_mask(__m256i a, __m256i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

850

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmplt_epu64_mask

__mmask8 _mm256_cmplt_epu64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpneq_epu64_mask

__mmask8 _mm256_cmpneq_epu64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_mask_cmp_epu64_mask

__mmask8 _mm256_mask_cmp_epu64_mask(__mmask8 k1, __m256i a, __m256i b, const _MM_CMPINT_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epu64_mask

__mmask8 _mm256_mask_cmpeq_epu64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpge_epu64_mask

__mmask8 _mm256_mask_cmpge_epu64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

Compiler Reference

851

_mm256_mask_cmpgt_epu64_mask

__mmask8 _mm256_mask_cmpgt_epu64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmple_epu64_mask

__mmask8 _mm256_mask_cmple_epu64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmplt_epu64_mask

__mmask8 _mm256_mask_cmplt_epu64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpneq_epu64_mask

__mmask8 _mm256_mask_cmpneq_epu64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcmpuq

Compare packed unsigned 64-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_cmp_epu16_mask

__mmask8 _mm_cmp_epu16_mask(__m128i a, __m128i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm_cmpeq_epu16_mask

__mmask8 _mm_cmpeq_epu16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

852

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpge_epu16_mask

__mmask8 _mm_cmpge_epu16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value.

_mm_cmpgt_epu16_mask

__mmask8 _mm_cmpgt_epu16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmple_epu16_mask

__mmask8 _mm_cmple_epu16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmplt_epu16_mask

__mmask8 _mm_cmplt_epu16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpneq_epu16_mask

__mmask8 _mm_cmpneq_epu16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_mask_cmp_epu16_mask

__mmask8 _mm_mask_cmp_epu16_mask(__mmask8 k1, __m128i a, __m128i b, const int imm)

Compiler Reference

853

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_cmpeq_epu16_mask

__mmask8 _mm_mask_cmpeq_epu16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpge_epu16_mask

__mmask8 _mm_mask_cmpge_epu16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpgt_epu16_mask

__mmask8 _mm_mask_cmpgt_epu16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmple_epu16_mask

__mmask8 _mm_mask_cmple_epu16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmplt_epu16_mask

__mmask8 _mm_mask_cmplt_epu16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

 Intel® C++ Compiler Classic Developer Guide and Reference

854

Compare packed unsigned 16-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmpneq_epu16_mask

__mmask8 _mm_mask_cmpneq_epu16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_cmp_epu16_mask

__mmask16 _mm256_cmp_epu16_mask(__m256i a, __m256i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm256_cmpeq_epu16_mask

__mmask16 _mm256_cmpeq_epu16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpge_epu16_mask

__mmask16 _mm256_cmpge_epu16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value.

_mm256_cmpgt_epu16_mask

__mmask16 _mm256_cmpgt_epu16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmple_epu16_mask

__mmask16 _mm256_cmple_epu16_mask(__m256i a, __m256i b)

Compiler Reference

855

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmplt_epu16_mask

__mmask16 _mm256_cmplt_epu16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpneq_epu16_mask

__mmask16 _mm256_cmpneq_epu16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_mask_cmp_epu16_mask

__mmask16 _mm256_mask_cmp_epu16_mask(__mmask16 k1, __m256i a, __m256i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epu16_mask

__mmask16 _mm256_mask_cmpeq_epu16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpge_epu16_mask

__mmask16 _mm256_mask_cmpge_epu16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

856

_mm256_mask_cmpgt_epu16_mask

__mmask16 _mm256_mask_cmpgt_epu16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmple_epu16_mask

__mmask16 _mm256_mask_cmple_epu16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmplt_epu16_mask

__mmask16 _mm256_mask_cmplt_epu16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpneq_epu16_mask

__mmask16 _mm256_mask_cmpneq_epu16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_cmp_epu16_mask

__mmask32 _mm512_cmp_epu16_mask(__m512i a, __m512i b, const int imm)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm512_cmpeq_epu16_mask

__mmask32 _mm512_cmpeq_epu16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Compiler Reference

857

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmpge_epu16_mask

__mmask32 _mm512_cmpge_epu16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value.

_mm512_cmpgt_epu16_mask

__mmask32 _mm512_cmpgt_epu16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmple_epu16_mask

__mmask32 _mm512_cmple_epu16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmplt_epu16_mask

__mmask32 _mm512_cmplt_epu16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmpneq_epu16_mask

__mmask32 _mm512_cmpneq_epu16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_mask_cmp_epu16_mask

__mmask32 _mm512_mask_cmp_epu16_mask(__mmask32 k1, __m512i a, __m512i b, const int imm)

 Intel® C++ Compiler Classic Developer Guide and Reference

858

CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b based on the comparison operand specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epu16_mask

__mmask32 _mm512_mask_cmpeq_epu16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for equality, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmpge_epu16_mask

__mmask32 _mm512_mask_cmpge_epu16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than-or-equal, and and put each result in
the corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmpgt_epu16_mask

__mmask32 _mm512_mask_cmpgt_epu16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for greater-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmple_epu16_mask

__mmask32 _mm512_mask_cmple_epu16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmplt_epu16_mask

__mmask32 _mm512_mask_cmplt_epu16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compiler Reference

859

Compare packed unsigned 16-bit integers in a and b for less-than, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmpneq_epu16_mask

__mmask32 _mm512_mask_cmpneq_epu16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpuw

Compare packed unsigned 16-bit integers in a and b for not-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_cmp_epi16_mask

__mmask8 _mm_cmp_epi16_mask(__m128i a, __m128i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm_cmpeq_epi16_mask

__mmask8 _mm_cmpeq_epi16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value.

_mm_cmpge_epi16_mask

__mmask8 _mm_cmpge_epi16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmpgt_epi16_mask

__mmask8 _mm_cmpgt_epi16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm_cmple_epi16_mask

__mmask8 _mm_cmple_epi16_mask(__m128i a, __m128i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

860

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm_cmplt_epi16_mask

__mmask8 _mm_cmplt_epi16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm_cmpneq_epi16_mask

__mmask8 _mm_cmpneq_epi16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm_mask_cmp_epi16_mask

__mmask8 _mm_mask_cmp_epi16_mask(__mmask8 k1, __m128i a, __m128i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_cmpeq_epi16_mask

__mmask8 _mm_mask_cmpeq_epi16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_cmpge_epi16_mask

__mmask8 _mm_mask_cmpge_epi16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

Compiler Reference

861

_mm_mask_cmpgt_epi16_mask

__mmask8 _mm_mask_cmpgt_epi16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_cmple_epi16_mask

__mmask8 _mm_mask_cmple_epi16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cmplt_epi16_mask

__mmask8 _mm_mask_cmplt_epi16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_cmpneq_epi16_mask

__mmask8 _mm_mask_cmpneq_epi16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cmp_epi16_mask

__mmask16 _mm256_cmp_epi16_mask(__m256i a, __m256i b, const int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm256_cmpeq_epi16_mask

__mmask16 _mm256_cmpeq_epi16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

862

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value.

_mm256_cmpge_epi16_mask

__mmask16 _mm256_cmpge_epi16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmpgt_epi16_mask

__mmask16 _mm256_cmpgt_epi16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm256_cmple_epi16_mask

__mmask16 _mm256_cmple_epi16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm256_cmplt_epi16_mask

__mmask16 _mm256_cmplt_epi16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm256_cmpneq_epi16_mask

__mmask16 _mm256_cmpneq_epi16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm256_mask_cmp_epi16_mask

__mmask16 _mm256_mask_cmp_epi16_mask(__mmask16 k1, __m256i a, __m256i b, const int imm)

Compiler Reference

863

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_cmpeq_epi16_mask

__mmask16 _mm256_mask_cmpeq_epi16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_cmpge_epi16_mask

__mmask16 _mm256_mask_cmpge_epi16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmpgt_epi16_mask

__mmask16 _mm256_mask_cmpgt_epi16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_mask_cmple_epi16_mask

__mmask16 _mm256_mask_cmple_epi16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cmplt_epi16_mask

__mmask16 _mm256_mask_cmplt_epi16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

 Intel® C++ Compiler Classic Developer Guide and Reference

864

Compare packed 16-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_cmpneq_epi16_mask

__mmask16 _mm256_mask_cmpneq_epi16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_cmp_epi16_mask

__mmask32 _mm512_cmp_epi16_mask(__m512i a, __m512i b, const int imm)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value.

_mm512_cmpeq_epi16_mask

__mmask32 _mm512_cmpeq_epi16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value.

_mm512_cmpge_epi16_mask

__mmask32 _mm512_cmpge_epi16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmpgt_epi16_mask

__mmask32 _mm512_cmpgt_epi16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value.

_mm512_cmple_epi16_mask

__mmask32 _mm512_cmple_epi16_mask(__m512i a, __m512i b)

Compiler Reference

865

CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value.

_mm512_cmplt_epi16_mask

__mmask32 _mm512_cmplt_epi16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value.

_mm512_cmpneq_epi16_mask

__mmask32 _mm512_cmpneq_epi16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value.

_mm512_mask_cmp_epi16_mask

__mmask32 _mm512_mask_cmp_epi16_mask(__mmask32 k1, __m512i a, __m512i b, const int imm)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b based on the comparison operand specified by imm, and and put
each result in the corresponding bit of the returned mask value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_mask_cmpeq_epi16_mask

__mmask32 _mm512_mask_cmpeq_epi16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for equality, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_mask_cmpge_epi16_mask

__mmask32 _mm512_mask_cmpge_epi16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

866

_mm512_mask_cmpgt_epi16_mask

__mmask32 _mm512_mask_cmpgt_epi16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for greater-than, and and put each result in the corresponding bit
of the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm512_mask_cmple_epi16_mask

__mmask32 _mm512_mask_cmple_epi16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than-or-equal, and and put each result in the
corresponding bit of the returned mask value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_cmplt_epi16_mask

__mmask32 _mm512_mask_cmplt_epi16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for less-than, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_mask_cmpneq_epi16_mask

__mmask32 _mm512_mask_cmpneq_epi16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpcmpw

Compare packed 16-bit integers in a and b for not-equal, and and put each result in the corresponding bit of
the returned mask value using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_test_epi8_mask

__mmask16 _mm_mask_test_epi8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm_test_epi8_mask

__mmask16 _mm_test_epi8_mask(__m128i a, __m128i b)

Compiler Reference

867

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm256_mask_test_epi8_mask

__mmask32 _mm256_mask_test_epi8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm256_test_epi8_mask

__mmask32 _mm256_test_epi8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm512_mask_test_epi8_mask

__mmask64 _mm512_mask_test_epi8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vptestmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm512_test_epi8_mask

__mmask64 _mm512_test_epi8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vptestmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm_mask_test_epi32_mask

__mmask8 _mm_mask_test_epi32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestmd

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

 Intel® C++ Compiler Classic Developer Guide and Reference

868

_mm_test_epi32_mask

__mmask8 _mm_test_epi32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestmd

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm256_mask_test_epi32_mask

__mmask8 _mm256_mask_test_epi32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestmd

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm256_test_epi32_mask

__mmask8 _mm256_test_epi32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestmd

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm_mask_test_epi64_mask

__mmask8 _mm_mask_test_epi64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestmq

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm_test_epi64_mask

__mmask8 _mm_test_epi64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestmq

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm256_mask_test_epi64_mask

__mmask8 _mm256_mask_test_epi64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestmq

Compiler Reference

869

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm256_test_epi64_mask

__mmask8 _mm256_test_epi64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestmq

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm_mask_test_epi16_mask

__mmask8 _mm_mask_test_epi16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm_test_epi16_mask

__mmask8 _mm_test_epi16_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm256_mask_test_epi16_mask

__mmask16 _mm256_mask_test_epi16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm256_test_epi16_mask

__mmask16 _mm256_test_epi16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

 Intel® C++ Compiler Classic Developer Guide and Reference

870

_mm512_mask_test_epi16_mask

__mmask32 _mm512_mask_test_epi16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vptestmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is non-
zero.

_mm512_test_epi16_mask

__mmask32 _mm512_test_epi16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vptestmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is non-zero.

_mm_mask_testn_epi8_mask

__mmask16 _mm_mask_testn_epi8_mask(__mmask16 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestnmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm_testn_epi8_mask

__mmask16 _mm_testn_epi8_mask(__m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestnmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm256_mask_testn_epi8_mask

__mmask32 _mm256_mask_testn_epi8_mask(__mmask32 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestnmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm256_testn_epi8_mask

__mmask32 _mm256_testn_epi8_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestnmb

Compiler Reference

871

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm512_mask_testn_epi8_mask

__mmask64 _mm512_mask_testn_epi8_mask(__mmask64 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vptestnmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm512_testn_epi8_mask

__mmask64 _mm512_testn_epi8_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vptestnmb

Compute the bitwise AND of packed 8-bit integers in a and b, producing intermediate 8-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm_mask_testn_epi32_mask

__mmask8 _mm_mask_testn_epi32_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestnmd

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm_testn_epi32_mask

__mmask8 _mm_testn_epi32_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestnmd

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm256_mask_testn_epi32_mask

__mmask8 _mm256_mask_testn_epi32_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestnmd

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm256_testn_epi32_mask

__mmask8 _mm256_testn_epi32_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

872

Instruction(s): vptestnmd

Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm_mask_testn_epi64_mask

__mmask8 _mm_mask_testn_epi64_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestnmq

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm_testn_epi64_mask

__mmask8 _mm_testn_epi64_mask(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestnmq

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm256_mask_testn_epi64_mask

__mmask8 _mm256_mask_testn_epi64_mask(__mmask8 k1, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestnmq

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm256_testn_epi64_mask

__mmask8 _mm256_testn_epi64_mask(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vptestnmq

Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm_mask_testn_epi16_mask

__mmask8 _mm_mask_testn_epi16_mask(__mmask8 k1, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestnmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm_testn_epi16_mask

__mmask8 _mm_testn_epi16_mask(__m128i a, __m128i b)

Compiler Reference

873

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestnmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm256_mask_testn_epi16_mask

__mmask16 _mm256_mask_testn_epi16_mask(__mmask16 k1, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestnmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm256_testn_epi16_mask

__mmask16 _mm256_testn_epi16_mask(__m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vptestnmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

_mm512_mask_testn_epi16_mask

__mmask32 _mm512_mask_testn_epi16_mask(__mmask32 k1, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vptestnmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value (subject to writemask k) if the intermediate value is zero.

_mm512_testn_epi16_mask

__mmask32 _mm512_testn_epi16_mask(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vptestnmw

Compute the bitwise AND of packed 16-bit integers in a and b, producing intermediate 16-bit values, and set
the corresponding bit in the returned mask value if the intermediate value is zero.

Intrinsics for Conversion Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

 Intel® C++ Compiler Classic Developer Guide and Reference

874

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

rounding Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm_mask_cvtpd_ps

__m128 _mm_mask_cvtpd_ps(__m128 src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2ps

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit)
floating-point elements, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_cvtpd_ps

__m128 _mm_maskz_cvtpd_ps(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2ps

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit)
floating-point elements, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cvtpd_ps

__m128 _mm256_mask_cvtpd_ps(__m128 src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2ps

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit)
floating-point elements, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_cvtpd_ps

__m128 _mm256_maskz_cvtpd_ps(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2ps

Compiler Reference

875

Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit)
floating-point elements, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cvtph_ps

__m128 _mm_mask_cvtph_ps(__m128 src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtph2ps

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit)
floating-point elements, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_cvtph_ps

__m128 _mm_maskz_cvtph_ps(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtph2ps

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit)
floating-point elements, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cvtph_ps

__m256 _mm256_mask_cvtph_ps(__m256 src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtph2ps

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit)
floating-point elements, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_cvtph_ps

__m256 _mm256_maskz_cvtph_ps(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtph2ps

Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit)
floating-point elements, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cvt_roundps_ph

__m128i _mm_mask_cvt_roundps_ph(__m128i src, __mmask8 k, __m128 a, int rounding)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2ph

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit)
floating-point elements, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

876

_mm_mask_cvtps_ph

__m128i _mm_mask_cvtps_ph(__m128i src, __mmask8 k, __m128 a, int rounding)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2ph

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit)
floating-point elements, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_cvt_roundps_ph

__m128i _mm_maskz_cvt_roundps_ph(__mmask8 k, __m128 a, int rounding)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2ph

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit)
floating-point elements, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_maskz_cvtps_ph

__m128i _mm_maskz_cvtps_ph(__mmask8 k, __m128 a, int rounding)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2ph

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit)
floating-point elements, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_cvt_roundps_ph

__m128i _mm256_mask_cvt_roundps_ph(__m128i src, __mmask8 k, __m256 a, int rounding)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2ph

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit)
floating-point elements, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_mask_cvtps_ph

__m128i _mm256_mask_cvtps_ph(__m128i src, __mmask8 k, __m256 a, int rounding)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2ph

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit)
floating-point elements, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_cvt_roundps_ph

__m128i _mm256_maskz_cvt_roundps_ph(__mmask8 k, __m256 a, int rounding)

Compiler Reference

877

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2ph

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit)
floating-point elements, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_maskz_cvtps_ph

__m128i _mm256_maskz_cvtps_ph(__mmask8 k, __m256 a, int rounding)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2ph

Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit)
floating-point elements, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_cvtepi32_pd

__m128d _mm_mask_cvtepi32_pd(__m128d src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtdq2pd

Convert packed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi32_pd

__m128d _mm_maskz_cvtepi32_pd(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtdq2pd

Convert packed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepi32_pd

__m256d _mm256_mask_cvtepi32_pd(__m256d src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtdq2pd

Convert packed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_pd

__m256d _mm256_maskz_cvtepi32_pd(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtdq2pd

Convert packed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

878

_mm_mask_cvtepi32_ps

__m128 _mm_mask_cvtepi32_ps(__m128 src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtdq2ps

Convert packed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi32_ps

__m128 _mm_maskz_cvtepi32_ps(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtdq2ps

Convert packed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepi32_ps

__m256 _mm256_mask_cvtepi32_ps(__m256 src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtdq2ps

Convert packed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_ps

__m256 _mm256_maskz_cvtepi32_ps(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtdq2ps

Convert packed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtpd_epi32

__m128i _mm_mask_cvtpd_epi32(__m128i src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2dq

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtpd_epi32

__m128i _mm_maskz_cvtpd_epi32(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2dq

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

879

_mm256_mask_cvtpd_epi32

__m128i _mm256_mask_cvtpd_epi32(__m128i src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2dq

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtpd_epi32

__m128i _mm256_maskz_cvtpd_epi32(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2dq

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtpd_epi64

__m128i _mm_cvtpd_epi64(__m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results.

_mm_mask_cvtpd_epi64

__m128i _mm_mask_cvtpd_epi64(__m128i src, __mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtpd_epi64

__m128i _mm_maskz_cvtpd_epi64(__mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtpd_epi64

__m256i _mm256_cvtpd_epi64(__m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

880

_mm256_mask_cvtpd_epi64

__m256i _mm256_mask_cvtpd_epi64(__m256i src, __mmask8 k, __m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtpd_epi64

__m256i _mm256_maskz_cvtpd_epi64(__mmask8 k, __m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundpd_epi64

__m512i _mm512_cvt_roundpd_epi64(__m512d a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results.

_mm512_cvtpd_epi64

__m512i _mm512_cvtpd_epi64(__m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results.

_mm512_mask_cvt_roundpd_epi64

__m512i _mm512_mask_cvt_roundpd_epi64(__m512i src, __mmask8 k, __m512d a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtpd_epi64

__m512i _mm512_mask_cvtpd_epi64(__m512i src, __mmask8 k, __m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2qq

Compiler Reference

881

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundpd_epi64

__m512i _mm512_maskz_cvt_roundpd_epi64(__mmask8 k, __m512d a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtpd_epi64

__m512i _mm512_maskz_cvtpd_epi64(__mmask8 k, __m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtpd_epu32

__m128i _mm_cvtpd_epu32(__m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers,
and return the results.

_mm_mask_cvtpd_epu32

__m128i _mm_mask_cvtpd_epu32(__m128i src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_cvtpd_epu32

__m128i _mm_maskz_cvtpd_epu32(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cvtpd_epu32

__m128i _mm256_cvtpd_epu32(__m256d a)

 Intel® C++ Compiler Classic Developer Guide and Reference

882

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers,
and return the results.

_mm256_mask_cvtpd_epu32

__m128i _mm256_mask_cvtpd_epu32(__m128i src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_cvtpd_epu32

__m128i _mm256_maskz_cvtpd_epu32(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_cvtpd_epu64

__m128i _mm_cvtpd_epu64(__m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results.

_mm_mask_cvtpd_epu64

__m128i _mm_mask_cvtpd_epu64(__m128i src, __mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_cvtpd_epu64

__m128i _mm_maskz_cvtpd_epu64(__mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2uqq

Compiler Reference

883

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cvtpd_epu64

__m256i _mm256_cvtpd_epu64(__m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results.

_mm256_mask_cvtpd_epu64

__m256i _mm256_mask_cvtpd_epu64(__m256i src, __mmask8 k, __m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_cvtpd_epu64

__m256i _mm256_maskz_cvtpd_epu64(__mmask8 k, __m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_cvt_roundpd_epu64

__m512i _mm512_cvt_roundpd_epu64(__m512d a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results.

_mm512_cvtpd_epu64

__m512i _mm512_cvtpd_epu64(__m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

884

_mm512_mask_cvt_roundpd_epu64

__m512i _mm512_mask_cvt_roundpd_epu64(__m512i src, __mmask8 k, __m512d a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_mask_cvtpd_epu64

__m512i _mm512_mask_cvtpd_epu64(__m512i src, __mmask8 k, __m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_maskz_cvt_roundpd_epu64

__m512i _mm512_maskz_cvt_roundpd_epu64(__mmask8 k, __m512d a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_maskz_cvtpd_epu64

__m512i _mm512_maskz_cvtpd_epu64(__mmask8 k, __m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_cvtps_epi32

__m128i _mm_mask_cvtps_epi32(__m128i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2dq

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtps_epi32

__m128i _mm_maskz_cvtps_epi32(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

885

Instruction(s): vcvtps2dq

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtps_epi32

__m256i _mm256_mask_cvtps_epi32(__m256i src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2dq

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtps_epi32

__m256i _mm256_maskz_cvtps_epi32(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2dq

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtps_epi64

__m128i _mm_cvtps_epi64(__m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results.

_mm_mask_cvtps_epi64

__m128i _mm_mask_cvtps_epi64(__m128i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtps_epi64

__m128i _mm_maskz_cvtps_epi64(__mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtps_epi64

__m256i _mm256_cvtps_epi64(__m128 a)

 Intel® C++ Compiler Classic Developer Guide and Reference

886

CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results.

_mm256_mask_cvtps_epi64

__m256i _mm256_mask_cvtps_epi64(__m256i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtps_epi64

__m256i _mm256_maskz_cvtps_epi64(__mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundps_epi64

__m512i _mm512_cvt_roundps_epi64(__m256 a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results.

_mm512_cvtps_epi64

__m512i _mm512_cvtps_epi64(__m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results.

_mm512_mask_cvt_roundps_epi64

__m512i _mm512_mask_cvt_roundps_epi64(__m512i src, __mmask8 k, __m256 a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

887

_mm512_mask_cvtps_epi64

__m512i _mm512_mask_cvtps_epi64(__m512i src, __mmask8 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundps_epi64

__m512i _mm512_maskz_cvt_roundps_epi64(__mmask8 k, __m256 a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtps_epi64

__m512i _mm512_maskz_cvtps_epi64(__mmask8 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtps_epu32

__m128i _mm_cvtps_epu32(__m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2udq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and
return the results.

_mm_mask_cvtps_epu32

__m128i _mm_mask_cvtps_epu32(__m128i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2udq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_cvtps_epu32

__m128i _mm_maskz_cvtps_epu32(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2udq

 Intel® C++ Compiler Classic Developer Guide and Reference

888

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtps_epu32

__m256i _mm256_cvtps_epu32(__m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2udq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and
return the results.

_mm256_mask_cvtps_epu32

__m256i _mm256_mask_cvtps_epu32(__m256i src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2udq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_cvtps_epu32

__m256i _mm256_maskz_cvtps_epu32(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtps2udq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtps_epu64

__m128i _mm_cvtps_epu64(__m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results.

_mm_mask_cvtps_epu64

__m128i _mm_mask_cvtps_epu64(__m128i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_cvtps_epu64

__m128i _mm_maskz_cvtps_epu64(__mmask8 k, __m128 a)

Compiler Reference

889

CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtps_epu64

__m256i _mm256_cvtps_epu64(__m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results.

_mm256_mask_cvtps_epu64

__m256i _mm256_mask_cvtps_epu64(__m256i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_cvtps_epu64

__m256i _mm256_maskz_cvtps_epu64(__mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundps_epu64

__m512i _mm512_cvt_roundps_epu64(__m256 a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results.

_mm512_cvtps_epu64

__m512i _mm512_cvtps_epu64(__m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

890

_mm512_mask_cvt_roundps_epu64

__m512i _mm512_mask_cvt_roundps_epu64(__m512i src, __mmask8 k, __m256 a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_mask_cvtps_epu64

__m512i _mm512_mask_cvtps_epu64(__m512i src, __mmask8 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_cvt_roundps_epu64

__m512i _mm512_maskz_cvt_roundps_epu64(__mmask8 k, __m256 a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtps_epu64

__m512i _mm512_maskz_cvtps_epu64(__mmask8 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtepi64_pd

__m128d _mm_cvtepi64_pd(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results.

_mm_mask_cvtepi64_pd

__m128d _mm_mask_cvtepi64_pd(__m128d src, __mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2pd

Compiler Reference

891

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi64_pd

__m128d _mm_maskz_cvtepi64_pd(__mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepi64_pd

__m256d _mm256_cvtepi64_pd(__m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results.

_mm256_mask_cvtepi64_pd

__m256d _mm256_mask_cvtepi64_pd(__m256d src, __mmask8 k, __m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi64_pd

__m256d _mm256_maskz_cvtepi64_pd(__mmask8 k, __m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundepi64_pd

__m512d _mm512_cvt_roundepi64_pd(__m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results.

_mm512_cvtepi64_pd

__m512d _mm512_cvtepi64_pd(__m512i a)
CPUID Flags: AVX512DQ

 Intel® C++ Compiler Classic Developer Guide and Reference

892

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results.

_mm512_mask_cvt_roundepi64_pd

__m512d _mm512_mask_cvt_roundepi64_pd(__m512d src, __mmask8 k, __m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi64_pd

__m512d _mm512_mask_cvtepi64_pd(__m512d src, __mmask8 k, __m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundepi64_pd

__m512d _mm512_maskz_cvt_roundepi64_pd(__mmask8 k, __m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtepi64_pd

__m512d _mm512_maskz_cvtepi64_pd(__mmask8 k, __m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2pd

Convert packed 64-bit integers in a to packed double-precision (64-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtepi64_ps

__m128 _mm_cvtepi64_ps(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results.

_mm_mask_cvtepi64_ps

__m128 _mm_mask_cvtepi64_ps(__m128 src, __mmask8 k, __m128i a)

Compiler Reference

893

CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi64_ps

__m128 _mm_maskz_cvtepi64_ps(__mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepi64_ps

__m128 _mm256_cvtepi64_ps(__m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results.

_mm256_mask_cvtepi64_ps

__m128 _mm256_mask_cvtepi64_ps(__m128 src, __mmask8 k, __m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi64_ps

__m128 _mm256_maskz_cvtepi64_ps(__mmask8 k, __m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundepi64_ps

__m256 _mm512_cvt_roundepi64_ps(__m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

894

_mm512_cvtepi64_ps

__m256 _mm512_cvtepi64_ps(__m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results.

_mm512_mask_cvt_roundepi64_ps

__m256 _mm512_mask_cvt_roundepi64_ps(__m256 src, __mmask8 k, __m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi64_ps

__m256 _mm512_mask_cvtepi64_ps(__m256 src, __mmask8 k, __m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundepi64_ps

__m256 _mm512_maskz_cvt_roundepi64_ps(__mmask8 k, __m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtepi64_ps

__m256 _mm512_maskz_cvtepi64_ps(__mmask8 k, __m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtqq2ps

Convert packed 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvttpd_epi32

__m128i _mm_mask_cvttpd_epi32(__m128i src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2dq

Compiler Reference

895

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm_maskz_cvttpd_epi32

__m128i _mm_maskz_cvttpd_epi32(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2dq

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_mask_cvttpd_epi32

__m128i _mm256_mask_cvttpd_epi32(__m128i src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2dq

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_cvttpd_epi32

__m128i _mm256_maskz_cvttpd_epi32(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2dq

Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_cvttpd_epi64

__m128i _mm_cvttpd_epi64(__m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results.

_mm_mask_cvttpd_epi64

__m128i _mm_mask_cvttpd_epi64(__m128i src, __mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

896

_mm_maskz_cvttpd_epi64

__m128i _mm_maskz_cvttpd_epi64(__mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_cvttpd_epi64

__m256i _mm256_cvttpd_epi64(__m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results.

_mm256_mask_cvttpd_epi64

__m256i _mm256_mask_cvttpd_epi64(__m256i src, __mmask8 k, __m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_cvttpd_epi64

__m256i _mm256_maskz_cvttpd_epi64(__mmask8 k, __m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cvtt_roundpd_epi64

__m512i _mm512_cvtt_roundpd_epi64(__m512d a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results. Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttpd_epi64

__m512i _mm512_cvttpd_epi64(__m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2qq

Compiler Reference

897

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results.

_mm512_mask_cvtt_roundpd_epi64

__m512i _mm512_mask_cvtt_roundpd_epi64(__m512i src, __mmask8 k, __m512d a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_mask_cvttpd_epi64

__m512i _mm512_mask_cvttpd_epi64(__m512i src, __mmask8 k, __m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_maskz_cvtt_roundpd_epi64

__m512i _mm512_maskz_cvtt_roundpd_epi64(__mmask8 k, __m512d a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set). Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvttpd_epi64

__m512i _mm512_maskz_cvttpd_epi64(__mmask8 k, __m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2qq

Convert packed double-precision (64-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_cvttpd_epu32

__m128i _mm_cvttpd_epu32(__m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

898

_mm_mask_cvttpd_epu32

__m128i _mm_mask_cvttpd_epu32(__m128i src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm_maskz_cvttpd_epu32

__m128i _mm_maskz_cvttpd_epu32(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_cvttpd_epu32

__m128i _mm256_cvttpd_epu32(__m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results.

_mm256_mask_cvttpd_epu32

__m128i _mm256_mask_cvttpd_epu32(__m128i src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_cvttpd_epu32

__m128i _mm256_maskz_cvttpd_epu32(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttpd2udq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_cvttpd_epu64

__m128i _mm_cvttpd_epu64(__m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Compiler Reference

899

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results.

_mm_mask_cvttpd_epu64

__m128i _mm_mask_cvttpd_epu64(__m128i src, __mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm_maskz_cvttpd_epu64

__m128i _mm_maskz_cvttpd_epu64(__mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_cvttpd_epu64

__m256i _mm256_cvttpd_epu64(__m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results.

_mm256_mask_cvttpd_epu64

__m256i _mm256_mask_cvttpd_epu64(__m256i src, __mmask8 k, __m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_cvttpd_epu64

__m256i _mm256_maskz_cvttpd_epu64(__mmask8 k, __m256d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

900

_mm512_cvtt_roundpd_epu64

__m512i _mm512_cvtt_roundpd_epu64(__m512d a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results. Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttpd_epu64

__m512i _mm512_cvttpd_epu64(__m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results.

_mm512_mask_cvtt_roundpd_epu64

__m512i _mm512_mask_cvtt_roundpd_epu64(__m512i src, __mmask8 k, __m512d a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_mask_cvttpd_epu64

__m512i _mm512_mask_cvttpd_epu64(__m512i src, __mmask8 k, __m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_maskz_cvtt_roundpd_epu64

__m512i _mm512_maskz_cvtt_roundpd_epu64(__mmask8 k, __m512d a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2uqq

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set). Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvttpd_epu64

__m512i _mm512_maskz_cvttpd_epu64(__mmask8 k, __m512d a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttpd2uqq

Compiler Reference

901

Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_mask_cvttps_epi32

__m128i _mm_mask_cvttps_epi32(__m128i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2dq

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm_maskz_cvttps_epi32

__m128i _mm_maskz_cvttps_epi32(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2dq

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_mask_cvttps_epi32

__m256i _mm256_mask_cvttps_epi32(__m256i src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2dq

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_cvttps_epi32

__m256i _mm256_maskz_cvttps_epi32(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2dq

Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_cvttps_epi64

__m128i _mm_cvttps_epi64(__m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

902

_mm_mask_cvttps_epi64

__m128i _mm_mask_cvttps_epi64(__m128i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm_maskz_cvttps_epi64

__m128i _mm_maskz_cvttps_epi64(__mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_cvttps_epi64

__m256i _mm256_cvttps_epi64(__m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results.

_mm256_mask_cvttps_epi64

__m256i _mm256_mask_cvttps_epi64(__m256i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_cvttps_epi64

__m256i _mm256_maskz_cvttps_epi64(__mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cvtt_roundps_epi64

__m512i _mm512_cvtt_roundps_epi64(__m256 a, int sae)
CPUID Flags: AVX512DQ

Compiler Reference

903

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results. Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttps_epi64

__m512i _mm512_cvttps_epi64(__m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results.

_mm512_mask_cvtt_roundps_epi64

__m512i _mm512_mask_cvtt_roundps_epi64(__m512i src, __mmask8 k, __m256 a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_mask_cvttps_epi64

__m512i _mm512_mask_cvttps_epi64(__m512i src, __mmask8 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_maskz_cvtt_roundps_epi64

__m512i _mm512_maskz_cvtt_roundps_epi64(__mmask8 k, __m256 a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set). Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvttps_epi64

__m512i _mm512_maskz_cvttps_epi64(__mmask8 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2qq

Convert packed single-precision (32-bit) floating-point elements in a to packed 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

904

_mm_cvttps_epu32

__m128i _mm_cvttps_epu32(__m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2udq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results.

_mm_mask_cvttps_epu32

__m128i _mm_mask_cvttps_epu32(__m128i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2udq

Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm_maskz_cvttps_epu32

__m128i _mm_maskz_cvttps_epu32(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2udq

Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_cvttps_epu32

__m256i _mm256_cvttps_epu32(__m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2udq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results.

_mm256_mask_cvttps_epu32

__m256i _mm256_mask_cvttps_epu32(__m256i src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2udq

Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_cvttps_epu32

__m256i _mm256_maskz_cvttps_epu32(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvttps2udq

Compiler Reference

905

Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_cvttps_epu64

__m128i _mm_cvttps_epu64(__m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results.

_mm_mask_cvttps_epu64

__m128i _mm_mask_cvttps_epu64(__m128i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm_maskz_cvttps_epu64

__m128i _mm_maskz_cvttps_epu64(__mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_cvttps_epu64

__m256i _mm256_cvttps_epu64(__m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results.

_mm256_mask_cvttps_epu64

__m256i _mm256_mask_cvttps_epu64(__m256i src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

906

_mm256_maskz_cvttps_epu64

__m256i _mm256_maskz_cvttps_epu64(__mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cvtt_roundps_epu64

__m512i _mm512_cvtt_roundps_epu64(__m256 a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results. Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttps_epu64

__m512i _mm512_cvttps_epu64(__m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results.

_mm512_mask_cvtt_roundps_epu64

__m512i _mm512_mask_cvtt_roundps_epu64(__m512i src, __mmask8 k, __m256 a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_mask_cvttps_epu64

__m512i _mm512_mask_cvttps_epu64(__m512i src, __mmask8 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_maskz_cvtt_roundps_epu64

__m512i _mm512_maskz_cvtt_roundps_epu64(__mmask8 k, __m256 a, int sae)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2uqq

Compiler Reference

907

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set). Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvttps_epu64

__m512i _mm512_maskz_cvttps_epu64(__mmask8 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vcvttps2uqq

Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 64-bit integers with
truncation, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_cvtepu32_pd

__m128d _mm_cvtepu32_pd(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtudq2pd

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results.

_mm_mask_cvtepu32_pd

__m128d _mm_mask_cvtepu32_pd(__m128d src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtudq2pd

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_cvtepu32_pd

__m128d _mm_maskz_cvtepu32_pd(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtudq2pd

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cvtepu32_pd

__m256d _mm256_cvtepu32_pd(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtudq2pd

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

908

_mm256_mask_cvtepu32_pd

__m256d _mm256_mask_cvtepu32_pd(__m256d src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtudq2pd

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_cvtepu32_pd

__m256d _mm256_maskz_cvtepu32_pd(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcvtudq2pd

Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_cvtepu64_pd

__m128d _mm_cvtepu64_pd(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results.

_mm_mask_cvtepu64_pd

__m128d _mm_mask_cvtepu64_pd(__m128d src, __mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_cvtepu64_pd

__m128d _mm_maskz_cvtepu64_pd(__mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cvtepu64_pd

__m256d _mm256_cvtepu64_pd(__m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Compiler Reference

909

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results.

_mm256_mask_cvtepu64_pd

__m256d _mm256_mask_cvtepu64_pd(__m256d src, __mmask8 k, __m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_cvtepu64_pd

__m256d _mm256_maskz_cvtepu64_pd(__mmask8 k, __m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_cvt_roundepu64_pd

__m512d _mm512_cvt_roundepu64_pd(__m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results.

_mm512_cvtepu64_pd

__m512d _mm512_cvtepu64_pd(__m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results.

_mm512_mask_cvt_roundepu64_pd

__m512d _mm512_mask_cvt_roundepu64_pd(__m512d src, __mmask8 k, __m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

910

_mm512_mask_cvtepu64_pd

__m512d _mm512_mask_cvtepu64_pd(__m512d src, __mmask8 k, __m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_maskz_cvt_roundepu64_pd

__m512d _mm512_maskz_cvt_roundepu64_pd(__mmask8 k, __m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_maskz_cvtepu64_pd

__m512d _mm512_maskz_cvtepu64_pd(__mmask8 k, __m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2pd

Convert packed unsigned 64-bit integers in a to packed double-precision (64-bit) floating-point elements,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_cvtepu64_ps

__m128 _mm_cvtepu64_ps(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results.

_mm_mask_cvtepu64_ps

__m128 _mm_mask_cvtepu64_ps(__m128 src, __mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_cvtepu64_ps

__m128 _mm_maskz_cvtepu64_ps(__mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Compiler Reference

911

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepu64_ps

__m128 _mm256_cvtepu64_ps(__m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results.

_mm256_mask_cvtepu64_ps

__m128 _mm256_mask_cvtepu64_ps(__m128 src, __mmask8 k, __m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_cvtepu64_ps

__m128 _mm256_maskz_cvtepu64_ps(__mmask8 k, __m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundepu64_ps

__m256 _mm512_cvt_roundepu64_ps(__m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results.

_mm512_cvtepu64_ps

__m256 _mm512_cvtepu64_ps(__m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results.

_mm512_mask_cvt_roundepu64_ps

__m256 _mm512_mask_cvt_roundepu64_ps(__m256 src, __mmask8 k, __m512i a, int rounding)

 Intel® C++ Compiler Classic Developer Guide and Reference

912

CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_mask_cvtepu64_ps

__m256 _mm512_mask_cvtepu64_ps(__m256 src, __mmask8 k, __m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_cvt_roundepu64_ps

__m256 _mm512_maskz_cvt_roundepu64_ps(__mmask8 k, __m512i a, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtepu64_ps

__m256 _mm512_maskz_cvtepu64_ps(__mmask8 k, __m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vcvtuqq2ps

Convert packed unsigned 64-bit integers in a to packed single-precision (32-bit) floating-point elements, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtepi32_epi8

__m128i _mm_cvtepi32_epi8(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdb

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and return the results.

_mm_mask_cvtepi32_epi8

__m128i _mm_mask_cvtepi32_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdb

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

913

_mm_maskz_cvtepi32_epi8

__m128i _mm_maskz_cvtepi32_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdb

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepi32_epi8

__m128i _mm256_cvtepi32_epi8(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdb

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and return the results.

_mm256_mask_cvtepi32_epi8

__m128i _mm256_mask_cvtepi32_epi8(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdb

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_epi8

__m128i _mm256_maskz_cvtepi32_epi8(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdb

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtepi32_epi16

__m128i _mm_cvtepi32_epi16(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdw

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and return the results.

_mm_mask_cvtepi32_epi16

__m128i _mm_mask_cvtepi32_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdw

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

914

_mm_maskz_cvtepi32_epi16

__m128i _mm_maskz_cvtepi32_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdw

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepi32_epi16

__m128i _mm256_cvtepi32_epi16(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdw

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and return the results.

_mm256_mask_cvtepi32_epi16

__m128i _mm256_mask_cvtepi32_epi16(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdw

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_epi16

__m128i _mm256_maskz_cvtepi32_epi16(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdw

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtepi64_epi8

__m128i _mm_cvtepi64_epi8(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqb

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and return the results.

_mm_mask_cvtepi64_epi8

__m128i _mm_mask_cvtepi64_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqb

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

915

_mm_maskz_cvtepi64_epi8

__m128i _mm_maskz_cvtepi64_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqb

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepi64_epi8

__m128i _mm256_cvtepi64_epi8(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqb

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and return the results.

_mm256_mask_cvtepi64_epi8

__m128i _mm256_mask_cvtepi64_epi8(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqb

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi64_epi8

__m128i _mm256_maskz_cvtepi64_epi8(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqb

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtepi64_epi32

__m128i _mm_cvtepi64_epi32(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqd

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and return the results.

_mm_mask_cvtepi64_epi32

__m128i _mm_mask_cvtepi64_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqd

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

916

_mm_maskz_cvtepi64_epi32

__m128i _mm_maskz_cvtepi64_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqd

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepi64_epi32

__m128i _mm256_cvtepi64_epi32(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqd

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and return the results.

_mm256_mask_cvtepi64_epi32

__m128i _mm256_mask_cvtepi64_epi32(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqd

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi64_epi32

__m128i _mm256_maskz_cvtepi64_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqd

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtepi64_epi16

__m128i _mm_cvtepi64_epi16(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqw

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and return the results.

_mm_mask_cvtepi64_epi16

__m128i _mm_mask_cvtepi64_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqw

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

917

_mm_maskz_cvtepi64_epi16

__m128i _mm_maskz_cvtepi64_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqw

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepi64_epi16

__m128i _mm256_cvtepi64_epi16(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqw

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and return the results.

_mm256_mask_cvtepi64_epi16

__m128i _mm256_mask_cvtepi64_epi16(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqw

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi64_epi16

__m128i _mm256_maskz_cvtepi64_epi16(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqw

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtsepi32_epi8

__m128i _mm_cvtsepi32_epi8(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdb

Convert packed 32-bit integers in a to packed 8-bit integers with signed saturation, and return the results.

_mm_mask_cvtsepi32_epi8

__m128i _mm_mask_cvtsepi32_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdb

Convert packed 32-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

918

_mm_maskz_cvtsepi32_epi8

__m128i _mm_maskz_cvtsepi32_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdb

Convert packed 32-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtsepi32_epi8

__m128i _mm256_cvtsepi32_epi8(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdb

Convert packed 32-bit integers in a to packed 8-bit integers with signed saturation, and return the results.

_mm256_mask_cvtsepi32_epi8

__m128i _mm256_mask_cvtsepi32_epi8(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdb

Convert packed 32-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi32_epi8

__m128i _mm256_maskz_cvtsepi32_epi8(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdb

Convert packed 32-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtsepi32_epi16

__m128i _mm_cvtsepi32_epi16(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdw

Convert packed 32-bit integers in a to packed 16-bit integers with signed saturation, and return the results.

_mm_mask_cvtsepi32_epi16

__m128i _mm_mask_cvtsepi32_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdw

Convert packed 32-bit integers in a to packed 16-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

919

_mm_maskz_cvtsepi32_epi16

__m128i _mm_maskz_cvtsepi32_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdw

Convert packed 32-bit integers in a to packed 16-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtsepi32_epi16

__m128i _mm256_cvtsepi32_epi16(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdw

Convert packed 32-bit integers in a to packed 16-bit integers with signed saturation, and return the results.

_mm256_mask_cvtsepi32_epi16

__m128i _mm256_mask_cvtsepi32_epi16(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdw

Convert packed 32-bit integers in a to packed 16-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi32_epi16

__m128i _mm256_maskz_cvtsepi32_epi16(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdw

Convert packed 32-bit integers in a to packed 16-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtsepi64_epi8

__m128i _mm_cvtsepi64_epi8(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqb

Convert packed 64-bit integers in a to packed 8-bit integers with signed saturation, and return the results.

_mm_mask_cvtsepi64_epi8

__m128i _mm_mask_cvtsepi64_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqb

Convert packed 64-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

920

_mm_maskz_cvtsepi64_epi8

__m128i _mm_maskz_cvtsepi64_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqb

Convert packed 64-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtsepi64_epi8

__m128i _mm256_cvtsepi64_epi8(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqb

Convert packed 64-bit integers in a to packed 8-bit integers with signed saturation, and return the results.

_mm256_mask_cvtsepi64_epi8

__m128i _mm256_mask_cvtsepi64_epi8(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqb

Convert packed 64-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi64_epi8

__m128i _mm256_maskz_cvtsepi64_epi8(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqb

Convert packed 64-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtsepi64_epi32

__m128i _mm_cvtsepi64_epi32(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqd

Convert packed 64-bit integers in a to packed 32-bit integers with signed saturation, and return the results.

_mm_mask_cvtsepi64_epi32

__m128i _mm_mask_cvtsepi64_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqd

Convert packed 64-bit integers in a to packed 32-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

921

_mm_maskz_cvtsepi64_epi32

__m128i _mm_maskz_cvtsepi64_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqd

Convert packed 64-bit integers in a to packed 32-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtsepi64_epi32

__m128i _mm256_cvtsepi64_epi32(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqd

Convert packed 64-bit integers in a to packed 32-bit integers with signed saturation, and return the results.

_mm256_mask_cvtsepi64_epi32

__m128i _mm256_mask_cvtsepi64_epi32(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqd

Convert packed 64-bit integers in a to packed 32-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi64_epi32

__m128i _mm256_maskz_cvtsepi64_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqd

Convert packed 64-bit integers in a to packed 32-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtsepi64_epi16

__m128i _mm_cvtsepi64_epi16(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqw

Convert packed 64-bit integers in a to packed 16-bit integers with signed saturation, and return the results.

_mm_mask_cvtsepi64_epi16

__m128i _mm_mask_cvtsepi64_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqw

Convert packed 64-bit integers in a to packed 16-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

922

_mm_maskz_cvtsepi64_epi16

__m128i _mm_maskz_cvtsepi64_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqw

Convert packed 64-bit integers in a to packed 16-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtsepi64_epi16

__m128i _mm256_cvtsepi64_epi16(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqw

Convert packed 64-bit integers in a to packed 16-bit integers with signed saturation, and return the results.

_mm256_mask_cvtsepi64_epi16

__m128i _mm256_mask_cvtsepi64_epi16(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqw

Convert packed 64-bit integers in a to packed 16-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi64_epi16

__m128i _mm256_maskz_cvtsepi64_epi16(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqw

Convert packed 64-bit integers in a to packed 16-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtsepi16_epi8

__m128i _mm_cvtsepi16_epi8(__m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results.

_mm_mask_cvtsepi16_epi8

__m128i _mm_mask_cvtsepi16_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

923

_mm_maskz_cvtsepi16_epi8

__m128i _mm_maskz_cvtsepi16_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtsepi16_epi8

__m128i _mm256_cvtsepi16_epi8(__m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results.

_mm256_mask_cvtsepi16_epi8

__m128i _mm256_mask_cvtsepi16_epi8(__m128i src, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtsepi16_epi8

__m128i _mm256_maskz_cvtsepi16_epi8(__mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtsepi16_epi8

__m256i _mm512_cvtsepi16_epi8(__m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results.

_mm512_mask_cvtsepi16_epi8

__m256i _mm512_mask_cvtsepi16_epi8(__m256i src, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

924

_mm512_maskz_cvtsepi16_epi8

__m256i _mm512_maskz_cvtsepi16_epi8(__mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepi8_epi32

__m128i _mm_mask_cvtepi8_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxbd

Sign extend packed 8-bit integers in the low 4 bytes of a to packed 32-bit integers, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi8_epi32

__m128i _mm_maskz_cvtepi8_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxbd

Sign extend packed 8-bit integers in the low 4 bytes of a to packed 32-bit integers, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepi8_epi32

__m256i _mm256_mask_cvtepi8_epi32(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxbd

Sign extend packed 8-bit integers in the low 8 bytes of a to packed 32-bit integers, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi8_epi32

__m256i _mm256_maskz_cvtepi8_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxbd

Sign extend packed 8-bit integers in the low 8 bytes of a to packed 32-bit integers, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepi8_epi64

__m128i _mm_mask_cvtepi8_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxbq

Sign extend packed 8-bit integers in the low 2 bytes of a to packed 64-bit integers, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

925

_mm_maskz_cvtepi8_epi64

__m128i _mm_maskz_cvtepi8_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxbq

Sign extend packed 8-bit integers in the low 2 bytes of a to packed 64-bit integers, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepi8_epi64

__m256i _mm256_mask_cvtepi8_epi64(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxbq

Sign extend packed 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi8_epi64

__m256i _mm256_maskz_cvtepi8_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxbq

Sign extend packed 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepi8_epi16

__m128i _mm_mask_cvtepi8_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovsxbw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi8_epi16

__m128i _mm_maskz_cvtepi8_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovsxbw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepi8_epi16

__m256i _mm256_mask_cvtepi8_epi16(__m256i src, __mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovsxbw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

926

_mm256_maskz_cvtepi8_epi16

__m256i _mm256_maskz_cvtepi8_epi16(__mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovsxbw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi8_epi16

__m512i _mm512_cvtepi8_epi16(__m256i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovsxbw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and return the results.

_mm512_mask_cvtepi8_epi16

__m512i _mm512_mask_cvtepi8_epi16(__m512i src, __mmask32 k, __m256i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovsxbw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepi8_epi16

__m512i _mm512_maskz_cvtepi8_epi16(__mmask32 k, __m256i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovsxbw

Sign extend packed 8-bit integers in a to packed 16-bit integers, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepi32_epi64

__m128i _mm_mask_cvtepi32_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxdq

Sign extend packed 32-bit integers in a to packed 64-bit integers, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi32_epi64

__m128i _mm_maskz_cvtepi32_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxdq

Sign extend packed 32-bit integers in a to packed 64-bit integers, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

927

_mm256_mask_cvtepi32_epi64

__m256i _mm256_mask_cvtepi32_epi64(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxdq

Sign extend packed 32-bit integers in a to packed 64-bit integers, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi32_epi64

__m256i _mm256_maskz_cvtepi32_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxdq

Sign extend packed 32-bit integers in a to packed 64-bit integers, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepi16_epi32

__m128i _mm_mask_cvtepi16_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxwd

Sign extend packed 16-bit integers in a to packed 32-bit integers, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi16_epi32

__m128i _mm_maskz_cvtepi16_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxwd

Sign extend packed 16-bit integers in a to packed 32-bit integers, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepi16_epi32

__m256i _mm256_mask_cvtepi16_epi32(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxwd

Sign extend packed 16-bit integers in a to packed 32-bit integers, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi16_epi32

__m256i _mm256_maskz_cvtepi16_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxwd

Sign extend packed 16-bit integers in a to packed 32-bit integers, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

928

_mm_mask_cvtepi16_epi64

__m128i _mm_mask_cvtepi16_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxwq

Sign extend packed 16-bit integers in the low 4 bytes of a to packed 64-bit integers, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi16_epi64

__m128i _mm_maskz_cvtepi16_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxwq

Sign extend packed 16-bit integers in the low 4 bytes of a to packed 64-bit integers, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepi16_epi64

__m256i _mm256_mask_cvtepi16_epi64(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxwq

Sign extend packed 16-bit integers in the low 8 bytes of a to packed 64-bit integers, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi16_epi64

__m256i _mm256_maskz_cvtepi16_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsxwq

Sign extend packed 16-bit integers in the low 8 bytes of a to packed 64-bit integers, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtusepi32_epi8

__m128i _mm_cvtusepi32_epi8(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdb

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results.

_mm_mask_cvtusepi32_epi8

__m128i _mm_mask_cvtusepi32_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdb

Compiler Reference

929

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_cvtusepi32_epi8

__m128i _mm_maskz_cvtusepi32_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdb

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtusepi32_epi8

__m128i _mm256_cvtusepi32_epi8(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdb

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results.

_mm256_mask_cvtusepi32_epi8

__m128i _mm256_mask_cvtusepi32_epi8(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdb

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_cvtusepi32_epi8

__m128i _mm256_maskz_cvtusepi32_epi8(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdb

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtusepi32_epi16

__m128i _mm_cvtusepi32_epi16(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdw

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results.

_mm_mask_cvtusepi32_epi16

__m128i _mm_mask_cvtusepi32_epi16(__m128i src, __mmask8 k, __m128i a)

 Intel® C++ Compiler Classic Developer Guide and Reference

930

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdw

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_cvtusepi32_epi16

__m128i _mm_maskz_cvtusepi32_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdw

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cvtusepi32_epi16

__m128i _mm256_cvtusepi32_epi16(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdw

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results.

_mm256_mask_cvtusepi32_epi16

__m128i _mm256_mask_cvtusepi32_epi16(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdw

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_cvtusepi32_epi16

__m128i _mm256_maskz_cvtusepi32_epi16(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdw

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_cvtusepi64_epi8

__m128i _mm_cvtusepi64_epi8(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqb

Compiler Reference

931

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results.

_mm_mask_cvtusepi64_epi8

__m128i _mm_mask_cvtusepi64_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqb

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_cvtusepi64_epi8

__m128i _mm_maskz_cvtusepi64_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqb

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtusepi64_epi8

__m128i _mm256_cvtusepi64_epi8(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqb

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results.

_mm256_mask_cvtusepi64_epi8

__m128i _mm256_mask_cvtusepi64_epi8(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqb

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_cvtusepi64_epi8

__m128i _mm256_maskz_cvtusepi64_epi8(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqb

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtusepi64_epi32

__m128i _mm_cvtusepi64_epi32(__m128i a)

 Intel® C++ Compiler Classic Developer Guide and Reference

932

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqd

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation,
and return the results.

_mm_mask_cvtusepi64_epi32

__m128i _mm_mask_cvtusepi64_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqd

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_cvtusepi64_epi32

__m128i _mm_maskz_cvtusepi64_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqd

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cvtusepi64_epi32

__m128i _mm256_cvtusepi64_epi32(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqd

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation,
and return the results.

_mm256_mask_cvtusepi64_epi32

__m128i _mm256_mask_cvtusepi64_epi32(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqd

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_cvtusepi64_epi32

__m128i _mm256_maskz_cvtusepi64_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqd

Compiler Reference

933

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_cvtusepi64_epi16

__m128i _mm_cvtusepi64_epi16(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqw

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results.

_mm_mask_cvtusepi64_epi16

__m128i _mm_mask_cvtusepi64_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqw

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_cvtusepi64_epi16

__m128i _mm_maskz_cvtusepi64_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqw

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_cvtusepi64_epi16

__m128i _mm256_cvtusepi64_epi16(__m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqw

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results.

_mm256_mask_cvtusepi64_epi16

__m128i _mm256_mask_cvtusepi64_epi16(__m128i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqw

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

934

_mm256_maskz_cvtusepi64_epi16

__m128i _mm256_maskz_cvtusepi64_epi16(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqw

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_cvtusepi16_epi8

__m128i _mm_cvtusepi16_epi8(__m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results.

_mm_mask_cvtusepi16_epi8

__m128i _mm_mask_cvtusepi16_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_cvtusepi16_epi8

__m128i _mm_maskz_cvtusepi16_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtusepi16_epi8

__m128i _mm256_cvtusepi16_epi8(__m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results.

_mm256_mask_cvtusepi16_epi8

__m128i _mm256_mask_cvtusepi16_epi8(__m128i src, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovuswb

Compiler Reference

935

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_cvtusepi16_epi8

__m128i _mm256_maskz_cvtusepi16_epi8(__mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtusepi16_epi8

__m256i _mm512_cvtusepi16_epi8(__m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results.

_mm512_mask_cvtusepi16_epi8

__m256i _mm512_mask_cvtusepi16_epi8(__m256i src, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_cvtusepi16_epi8

__m256i _mm512_maskz_cvtusepi16_epi8(__mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvtepi16_epi8

__m128i _mm_cvtepi16_epi8(__m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results.

_mm_mask_cvtepi16_epi8

__m128i _mm_mask_cvtepi16_epi8(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

936

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepi16_epi8

__m128i _mm_maskz_cvtepi16_epi8(__mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_cvtepi16_epi8

__m128i _mm256_cvtepi16_epi8(__m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results.

_mm256_mask_cvtepi16_epi8

__m128i _mm256_mask_cvtepi16_epi8(__m128i src, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepi16_epi8

__m128i _mm256_maskz_cvtepi16_epi8(__mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi16_epi8

__m256i _mm512_cvtepi16_epi8(__m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results.

_mm512_mask_cvtepi16_epi8

__m256i _mm512_mask_cvtepi16_epi8(__m256i src, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovwb

Compiler Reference

937

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepi16_epi8

__m256i _mm512_maskz_cvtepi16_epi8(__mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepu8_epi32

__m128i _mm_mask_cvtepu8_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxbd

Zero extend packed unsigned 8-bit integers in the low 4 bytes of a to packed 32-bit integers, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepu8_epi32

__m128i _mm_maskz_cvtepu8_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxbd

Zero extend packed unsigned 8-bit integers in th elow 4 bytes of a to packed 32-bit integers, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepu8_epi32

__m256i _mm256_mask_cvtepu8_epi32(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxbd

Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed 32-bit integers, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepu8_epi32

__m256i _mm256_maskz_cvtepu8_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxbd

Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed 32-bit integers, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepu8_epi64

__m128i _mm_mask_cvtepu8_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

938

Instruction(s): vpmovzxbq

Zero extend packed unsigned 8-bit integers in the low 2 bytes of a to packed 64-bit integers, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepu8_epi64

__m128i _mm_maskz_cvtepu8_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxbq

Zero extend packed unsigned 8-bit integers in the low 2 bytes of a to packed 64-bit integers, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepu8_epi64

__m256i _mm256_mask_cvtepu8_epi64(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxbq

Zero extend packed unsigned 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepu8_epi64

__m256i _mm256_maskz_cvtepu8_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxbq

Zero extend packed unsigned 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepu8_epi16

__m128i _mm_mask_cvtepu8_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovzxbw

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepu8_epi16

__m128i _mm_maskz_cvtepu8_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovzxbw

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepu8_epi16

__m256i _mm256_mask_cvtepu8_epi16(__m256i src, __mmask16 k, __m128i a)

Compiler Reference

939

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovzxbw

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepu8_epi16

__m256i _mm256_maskz_cvtepu8_epi16(__mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovzxbw

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepu8_epi16

__m512i _mm512_cvtepu8_epi16(__m256i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovzxbw

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and return the results.

_mm512_mask_cvtepu8_epi16

__m512i _mm512_mask_cvtepu8_epi16(__m512i src, __mmask32 k, __m256i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovzxbw

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepu8_epi16

__m512i _mm512_maskz_cvtepu8_epi16(__mmask32 k, __m256i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovzxbw

Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepu32_epi64

__m128i _mm_mask_cvtepu32_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxdq

Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepu32_epi64

__m128i _mm_maskz_cvtepu32_epi64(__mmask8 k, __m128i a)

 Intel® C++ Compiler Classic Developer Guide and Reference

940

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxdq

Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepu32_epi64

__m256i _mm256_mask_cvtepu32_epi64(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxdq

Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepu32_epi64

__m256i _mm256_maskz_cvtepu32_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxdq

Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepu16_epi32

__m128i _mm_mask_cvtepu16_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxwd

Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepu16_epi32

__m128i _mm_maskz_cvtepu16_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxwd

Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepu16_epi32

__m256i _mm256_mask_cvtepu16_epi32(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxwd

Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

941

_mm256_maskz_cvtepu16_epi32

__m256i _mm256_maskz_cvtepu16_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxwd

Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_cvtepu16_epi64

__m128i _mm_mask_cvtepu16_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxwq

Zero extend packed unsigned 16-bit integers in the low 4 bytes of a to packed 64-bit integers, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_cvtepu16_epi64

__m128i _mm_maskz_cvtepu16_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxwq

Zero extend packed unsigned 16-bit integers in the low 4 bytes of a to packed 64-bit integers, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_cvtepu16_epi64

__m256i _mm256_mask_cvtepu16_epi64(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxwq

Zero extend packed unsigned 16-bit integers in the low 8 bytes of a to packed 64-bit integers, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_cvtepu16_epi64

__m256i _mm256_maskz_cvtepu16_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovzxwq

Zero extend packed unsigned 16-bit integers in the low 8 bytes of a to packed 64-bit integers, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_packs_epi32

__m128i _mm_mask_packs_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackssdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

942

_mm_maskz_packs_epi32

__m128i _mm_maskz_packs_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackssdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_packs_epi32

__m256i _mm256_mask_packs_epi32(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackssdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_packs_epi32

__m256i _mm256_maskz_packs_epi32(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackssdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_packs_epi32

__m512i _mm512_mask_packs_epi32(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpackssdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_packs_epi32

__m512i _mm512_maskz_packs_epi32(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpackssdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_packs_epi32

__m512i _mm512_packs_epi32(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpackssdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using signed saturation, and return
the results.

Compiler Reference

943

_mm_mask_packs_epi16

__m128i _mm_mask_packs_epi16(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpacksswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_packs_epi16

__m128i _mm_maskz_packs_epi16(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpacksswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_packs_epi16

__m256i _mm256_mask_packs_epi16(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpacksswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_packs_epi16

__m256i _mm256_maskz_packs_epi16(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpacksswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_packs_epi16

__m512i _mm512_mask_packs_epi16(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpacksswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_packs_epi16

__m512i _mm512_maskz_packs_epi16(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpacksswb

 Intel® C++ Compiler Classic Developer Guide and Reference

944

Convert packed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_packs_epi16

__m512i _mm512_packs_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpacksswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using signed saturation, and return the
results.

_mm_mask_packus_epi32

__m128i _mm_mask_packus_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackusdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_packus_epi32

__m128i _mm_maskz_packus_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackusdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_packus_epi32

__m256i _mm256_mask_packus_epi32(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackusdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_packus_epi32

__m256i _mm256_maskz_packus_epi32(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackusdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_packus_epi32

__m512i _mm512_mask_packus_epi32(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Compiler Reference

945

Instruction(s): vpackusdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_packus_epi32

__m512i _mm512_maskz_packus_epi32(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpackusdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_packus_epi32

__m512i _mm512_packus_epi32(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpackusdw

Convert packed 32-bit integers from a and b to packed 16-bit integers using unsigned saturation, and return
the results.

_mm_mask_packus_epi16

__m128i _mm_mask_packus_epi16(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackuswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_packus_epi16

__m128i _mm_maskz_packus_epi16(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackuswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_packus_epi16

__m256i _mm256_mask_packus_epi16(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackuswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_packus_epi16

__m256i _mm256_maskz_packus_epi16(__mmask32 k, __m256i a, __m256i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

946

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpackuswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_packus_epi16

__m512i _mm512_mask_packus_epi16(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpackuswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_packus_epi16

__m512i _mm512_maskz_packus_epi16(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpackuswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_packus_epi16

__m512i _mm512_packus_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpackuswb

Convert packed 16-bit integers from a and b to packed 8-bit integers using unsigned saturation, and return
the results.

_mm_mask_cvtepi32_storeu_epi8

void _mm_mask_cvtepi32_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdb

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi32_storeu_epi8

void _mm256_mask_cvtepi32_storeu_epi8(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdb

Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

Compiler Reference

947

_mm_mask_cvtepi32_storeu_epi16

void _mm_mask_cvtepi32_storeu_epi16(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdw

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi32_storeu_epi16

void _mm256_mask_cvtepi32_storeu_epi16(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovdw

Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_cvtepi64_storeu_epi8

void _mm_mask_cvtepi64_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqb

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi64_storeu_epi8

void _mm256_mask_cvtepi64_storeu_epi8(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqb

Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_cvtepi64_storeu_epi32

void _mm_mask_cvtepi64_storeu_epi32(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqd

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi64_storeu_epi32

void _mm256_mask_cvtepi64_storeu_epi32(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqd

Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

 Intel® C++ Compiler Classic Developer Guide and Reference

948

_mm_mask_cvtepi64_storeu_epi16

void _mm_mask_cvtepi64_storeu_epi16(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqw

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi64_storeu_epi16

void _mm256_mask_cvtepi64_storeu_epi16(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovqw

Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_cvtsepi32_storeu_epi8

void _mm_mask_cvtsepi32_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdb

Convert packed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi32_storeu_epi8

void _mm256_mask_cvtsepi32_storeu_epi8(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdb

Convert packed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_cvtsepi32_storeu_epi16

void _mm_mask_cvtsepi32_storeu_epi16(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdw

Convert packed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi32_storeu_epi16

void _mm256_mask_cvtsepi32_storeu_epi16(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsdw

Convert packed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

Compiler Reference

949

_mm_mask_cvtsepi64_storeu_epi8

void _mm_mask_cvtsepi64_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqb

Convert packed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi64_storeu_epi8

void _mm256_mask_cvtsepi64_storeu_epi8(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqb

Convert packed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_cvtsepi64_storeu_epi32

void _mm_mask_cvtsepi64_storeu_epi32(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqd

Convert packed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi64_storeu_epi32

void _mm256_mask_cvtsepi64_storeu_epi32(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqd

Convert packed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_cvtsepi64_storeu_epi16

void _mm_mask_cvtsepi64_storeu_epi16(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqw

Convert packed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi64_storeu_epi16

void _mm256_mask_cvtsepi64_storeu_epi16(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovsqw

 Intel® C++ Compiler Classic Developer Guide and Reference

950

Convert packed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_cvtsepi16_storeu_epi8

void _mm_mask_cvtsepi16_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtsepi16_storeu_epi8

void _mm256_mask_cvtsepi16_storeu_epi8(void* base_addr, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_mask_cvtsepi16_storeu_epi8

void _mm512_mask_cvtsepi16_storeu_epi8(void* base_addr, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovswb

Convert packed 16-bit integers in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_cvtusepi32_storeu_epi8

void _mm_mask_cvtusepi32_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdb

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm256_mask_cvtusepi32_storeu_epi8

void _mm256_mask_cvtusepi32_storeu_epi8(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdb

Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm_mask_cvtusepi32_storeu_epi16

void _mm_mask_cvtusepi32_storeu_epi16(void* base_addr, __mmask8 k, __m128i a)

Compiler Reference

951

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdw

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm256_mask_cvtusepi32_storeu_epi16

void _mm256_mask_cvtusepi32_storeu_epi16(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusdw

Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm_mask_cvtusepi64_storeu_epi8

void _mm_mask_cvtusepi64_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqb

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm256_mask_cvtusepi64_storeu_epi8

void _mm256_mask_cvtusepi64_storeu_epi8(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqb

Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm_mask_cvtusepi64_storeu_epi32

void _mm_mask_cvtusepi64_storeu_epi32(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqd

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation,
and store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm256_mask_cvtusepi64_storeu_epi32

void _mm256_mask_cvtusepi64_storeu_epi32(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqd

 Intel® C++ Compiler Classic Developer Guide and Reference

952

Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation,
and store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm_mask_cvtusepi64_storeu_epi16

void _mm_mask_cvtusepi64_storeu_epi16(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqw

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm256_mask_cvtusepi64_storeu_epi16

void _mm256_mask_cvtusepi64_storeu_epi16(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpmovusqw

Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation,
and store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm_mask_cvtusepi16_storeu_epi8

void _mm_mask_cvtusepi16_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm256_mask_cvtusepi16_storeu_epi8

void _mm256_mask_cvtusepi16_storeu_epi8(void* base_addr, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

_mm512_mask_cvtusepi16_storeu_epi8

void _mm512_mask_cvtusepi16_storeu_epi8(void* base_addr, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovuswb

Convert packed unsigned 16-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and
store the active results (those with their respective bit set in writemask k) to unaligned memory at
base_addr.

Compiler Reference

953

_mm_mask_cvtepi16_storeu_epi8

void _mm_mask_cvtepi16_storeu_epi8(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_cvtepi16_storeu_epi8

void _mm256_mask_cvtepi16_storeu_epi8(void* base_addr, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_mask_cvtepi16_storeu_epi8

void _mm512_mask_cvtepi16_storeu_epi8(void* base_addr, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovwb

Convert packed 16-bit integers in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

Intrinsics for Load Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

mem_addr pointer to base address in memory

base_addr pointer to base address in memory to begin load or store operation

_mm_mask_expandloadu_pd

__m128d _mm_mask_expandloadu_pd(__m128d src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandpd

 Intel® C++ Compiler Classic Developer Guide and Reference

954

Load as many contiguous double-precision (64-bit) floating-point elements from unaligned memory at
mem_addr as there are ones in the low 2 bits of mask k, and place them in the result element positions
corresponding to the positions of the ones in the mask (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_expandloadu_pd

__m128d _mm_maskz_expandloadu_pd(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandpd

Load as many contiguous double-precision (64-bit) floating-point elements from unaligned memory at
mem_addr as there are ones in the low 2 bits of mask k, and place them in the result element positions
corresponding to the positions of the ones in the mask (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_mask_expandloadu_pd

__m256d _mm256_mask_expandloadu_pd(__m256d src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandpd

Load as many contiguous double-precision (64-bit) floating-point elements from unaligned memory at
mem_addr as there are ones in the low 4 bits of mask k, and place them in the result element positions
corresponding to the positions of the ones in the mask (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_expandloadu_pd

__m256d _mm256_maskz_expandloadu_pd(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandpd

Load as many contiguous double-precision (64-bit) floating-point elements from unaligned memory at
mem_addr as there are ones in the low 4 bits of mask k, and place them in the result element positions
corresponding to the positions of the ones in the mask (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_expandloadu_ps

__m128 _mm_mask_expandloadu_ps(__m128 src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandps

Load as many contiguous single-precision (32-bit) floating-point elements from unaligned memory at
mem_addr as there are ones in the low 4 bits of mask k, and place them in the result element positions
corresponding to the positions of the ones in the mask (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_expandloadu_ps

__m128 _mm_maskz_expandloadu_ps(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

955

Instruction(s): vexpandps

Load as many contiguous single-precision (32-bit) floating-point elements from unaligned memory at
mem_addr as there are ones in the low 4 bits of mask k, and place them in the result element positions
corresponding to the positions of the ones in the mask (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_mask_expandloadu_ps

__m256 _mm256_mask_expandloadu_ps(__m256 src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandps

Load as many contiguous single-precision (32-bit) floating-point elements from unaligned memory at
mem_addr as there are ones in the low 8 bits of mask k, and place them in the result element positions
corresponding to the positions of the ones in the mask (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_expandloadu_ps

__m256 _mm256_maskz_expandloadu_ps(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandps

Load as many contiguous single-precision (32-bit) floating-point elements from unaligned memory at
mem_addr as there are ones in the low 8 bits of mask k, and place them in the result element positions
corresponding to the positions of the ones in the mask (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mmask_i32gather_pd

__m128d _mm_mmask_i32gather_pd(__m128d src, __mmask8 k, __m128i vindex, void const* base_addr,
const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgatherdpd

Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements
are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged into the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mmask_i32gather_pd

__m256d _mm256_mmask_i32gather_pd(__m256d src, __mmask8 k, __m128i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgatherdpd

Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements
are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged into the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

 Intel® C++ Compiler Classic Developer Guide and Reference

956

_mm_mmask_i32gather_ps

__m128 _mm_mmask_i32gather_ps(__m128 src, __mmask8 k, __m128i vindex, void const* base_addr,
const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgatherdps

Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements
are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged into the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mmask_i32gather_ps

__m256 _mm256_mmask_i32gather_ps(__m256 src, __mmask8 k, __m256i vindex, void const* base_addr,
const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgatherdps

Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements
are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged into the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm_mmask_i64gather_pd

__m128d _mm_mmask_i64gather_pd(__m128d src, __mmask8 k, __m128i vindex, void const* base_addr,
const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgatherqpd

Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements
are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged into the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mmask_i64gather_pd

__m256d _mm256_mmask_i64gather_pd(__m256d src, __mmask8 k, __m256i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgatherqpd

Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements
are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged into the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm_mmask_i64gather_ps

__m128 _mm_mmask_i64gather_ps(__m128 src, __mmask8 k, __m128i vindex, void const* base_addr,
const int scale)

CPUID Flags: AVX512F, AVX512VL

Compiler Reference

957

Instruction(s): vgatherqps

Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements
are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged into the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mmask_i64gather_ps

__m128 _mm256_mmask_i64gather_ps(__m128 src, __mmask8 k, __m256i vindex, void const* base_addr,
const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgatherqps

Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements
are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged into the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm_mask_load_pd

__m128d _mm_mask_load_pd(__m128d src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

Load packed double-precision (64-bit) floating-point elements from memory into the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be
aligned on a 16-byte boundary or a general-protection exception may be generated.

_mm_maskz_load_pd

__m128d _mm_maskz_load_pd(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

Load packed double-precision (64-bit) floating-point elements from memory into the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be
aligned on a 16-byte boundary or a general-protection exception may be generated.

_mm256_mask_load_pd

__m256d _mm256_mask_load_pd(__m256d src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

Load packed double-precision (64-bit) floating-point elements from memory into the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be
aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm256_maskz_load_pd

__m256d _mm256_maskz_load_pd(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

958

Instruction(s): vmovapd

Load packed double-precision (64-bit) floating-point elements from memory into the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be
aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm_mask_load_ps

__m128 _mm_mask_load_ps(__m128 src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Load packed single-precision (32-bit) floating-point elements from memory into the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be
aligned on a 16-byte boundary or a general-protection exception may be generated.

_mm_maskz_load_ps

__m128 _mm_maskz_load_ps(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Load packed single-precision (32-bit) floating-point elements from memory into the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be
aligned on a 16-byte boundary or a general-protection exception may be generated.

_mm256_mask_load_ps

__m256 _mm256_mask_load_ps(__m256 src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Load packed single-precision (32-bit) floating-point elements from memory into the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be
aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm256_maskz_load_ps

__m256 _mm256_maskz_load_ps(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Load packed single-precision (32-bit) floating-point elements from memory into the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be
aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm_mask_loadu_pd

__m128d _mm_mask_loadu_pd(__m128d src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovupd

Compiler Reference

959

Load packed double-precision (64-bit) floating-point elements from memoy into the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not
need to be aligned on any particular boundary.

_mm_maskz_loadu_pd

__m128d _mm_maskz_loadu_pd(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovupd

Load packed double-precision (64-bit) floating-point elements from memoy into the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need
to be aligned on any particular boundary.

_mm256_mask_loadu_pd

__m256d _mm256_mask_loadu_pd(__m256d src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovupd

Load packed double-precision (64-bit) floating-point elements from memoy into the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not
need to be aligned on any particular boundary.

_mm256_maskz_loadu_pd

__m256d _mm256_maskz_loadu_pd(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovupd

Load packed double-precision (64-bit) floating-point elements from memoy into the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need
to be aligned on any particular boundary.

_mm_mask_loadu_ps

__m128 _mm_mask_loadu_ps(__m128 src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovups

Load packed single-precision (32-bit) floating-point elements from memory into the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not
need to be aligned on any particular boundary.

_mm_maskz_loadu_ps

__m128 _mm_maskz_loadu_ps(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovups

Load packed single-precision (32-bit) floating-point elements from memory into the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need
to be aligned on any particular boundary.

 Intel® C++ Compiler Classic Developer Guide and Reference

960

_mm256_mask_loadu_ps

__m256 _mm256_mask_loadu_ps(__m256 src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovups

Load packed single-precision (32-bit) floating-point elements from memory into the return value using
writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not
need to be aligned on any particular boundary.

_mm256_maskz_loadu_ps

__m256 _mm256_maskz_loadu_ps(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovups

Load packed single-precision (32-bit) floating-point elements from memory into the return value using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need
to be aligned on any particular boundary.

_mm_mask_load_epi32

__m128i _mm_mask_load_epi32(__m128i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Load packed 32-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a
general-protection exception may be generated.

_mm_maskz_load_epi32

__m128i _mm_maskz_load_epi32(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Load packed 32-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a
general-protection exception may be generated.

_mm256_mask_load_epi32

__m256i _mm256_mask_load_epi32(__m256i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Load packed 32-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a
general-protection exception may be generated.

_mm256_maskz_load_epi32

__m256i _mm256_maskz_load_epi32(__mmask8 k, void const* mem_addr)

Compiler Reference

961

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Load packed 32-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a
general-protection exception may be generated.

_mm_mask_load_epi64

__m128i _mm_mask_load_epi64(__m128i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Load packed 64-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a
general-protection exception may be generated.

_mm_maskz_load_epi64

__m128i _mm_maskz_load_epi64(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Load packed 64-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a
general-protection exception may be generated.

_mm256_mask_load_epi64

__m256i _mm256_mask_load_epi64(__m256i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Load packed 64-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a
general-protection exception may be generated.

_mm256_maskz_load_epi64

__m256i _mm256_maskz_load_epi64(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Load packed 64-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a
general-protection exception may be generated.

_mm_mask_loadu_epi16

__m128i _mm_mask_loadu_epi16(__m128i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

 Intel® C++ Compiler Classic Developer Guide and Reference

962

Load packed 16-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm_maskz_loadu_epi16

__m128i _mm_maskz_loadu_epi16(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Load packed 16-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm256_mask_loadu_epi16

__m256i _mm256_mask_loadu_epi16(__m256i src, __mmask16 k, void const* mem_addr)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Load packed 16-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm256_maskz_loadu_epi16

__m256i _mm256_maskz_loadu_epi16(__mmask16 k, void const* mem_addr)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Load packed 16-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm512_mask_loadu_epi16

__m512i _mm512_mask_loadu_epi16(__m512i src, __mmask32 k, void const* mem_addr)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu16

Load packed 16-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm512_maskz_loadu_epi16

__m512i _mm512_maskz_loadu_epi16(__mmask32 k, void const* mem_addr)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu16

Load packed 16-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

Compiler Reference

963

_mm_mask_loadu_epi32

__m128i _mm_mask_loadu_epi32(__m128i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu32

Load packed 32-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm_maskz_loadu_epi32

__m128i _mm_maskz_loadu_epi32(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu32

Load packed 32-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm256_mask_loadu_epi32

__m256i _mm256_mask_loadu_epi32(__m256i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu32

Load packed 32-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm256_maskz_loadu_epi32

__m256i _mm256_maskz_loadu_epi32(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu32

Load packed 32-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm_mask_loadu_epi64

__m128i _mm_mask_loadu_epi64(__m128i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu64

Load packed 64-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm_maskz_loadu_epi64

__m128i _mm_maskz_loadu_epi64(__mmask8 k, void const* mem_addr)

 Intel® C++ Compiler Classic Developer Guide and Reference

964

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu64

Load packed 64-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm256_mask_loadu_epi64

__m256i _mm256_mask_loadu_epi64(__m256i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu64

Load packed 64-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm256_maskz_loadu_epi64

__m256i _mm256_maskz_loadu_epi64(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu64

Load packed 64-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm_mask_loadu_epi8

__m128i _mm_mask_loadu_epi8(__m128i src, __mmask16 k, void const* mem_addr)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Load packed 8-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm_maskz_loadu_epi8

__m128i _mm_maskz_loadu_epi8(__mmask16 k, void const* mem_addr)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Load packed 8-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm256_mask_loadu_epi8

__m256i _mm256_mask_loadu_epi8(__m256i src, __mmask32 k, void const* mem_addr)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Compiler Reference

965

Load packed 8-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm256_maskz_loadu_epi8

__m256i _mm256_maskz_loadu_epi8(__mmask32 k, void const* mem_addr)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Load packed 8-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm512_mask_loadu_epi8

__m512i _mm512_mask_loadu_epi8(__m512i src, __mmask64 k, void const* mem_addr)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu8

Load packed 8-bit integers from memory into the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm512_maskz_loadu_epi8

__m512i _mm512_maskz_loadu_epi8(__mmask64 k, void const* mem_addr)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu8

Load packed 8-bit integers from memory into the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular
boundary.

_mm_mask_expandloadu_epi32

__m128i _mm_mask_expandloadu_epi32(__m128i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandd

Load as many contiguous 32-bit integers from unaligned memory at mem_addr as there are ones in the low
4 bits of mask k, and place them in the result element positions corresponding to the positions of the ones in
the mask (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_expandloadu_epi32

__m128i _mm_maskz_expandloadu_epi32(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandd

Load as many contiguous 32-bit integers from unaligned memory at mem_addr as there are ones in the low
4 bits of mask k, and place them in the result element positions corresponding to the positions of the ones in
the mask (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

966

_mm256_mask_expandloadu_epi32

__m256i _mm256_mask_expandloadu_epi32(__m256i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandd

Load as many contiguous 32-bit integers from unaligned memory at mem_addr as there are ones in the low
8 bits of mask k, and place them in the result element positions corresponding to the positions of the ones in
the mask (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_expandloadu_epi32

__m256i _mm256_maskz_expandloadu_epi32(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandd

Load as many contiguous 32-bit integers from unaligned memory at mem_addr as there are ones in the low
8 bits of mask k, and place them in the result element positions corresponding to the positions of the ones in
the mask (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_expandloadu_epi64

__m128i _mm_mask_expandloadu_epi64(__m128i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandq

Load as many contiguous 64-bit integers from unaligned memory at mem_addr as there are ones in the low
2 bits of mask k, and place them in the result element positions corresponding to the positions of the ones in
the mask (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_expandloadu_epi64

__m128i _mm_maskz_expandloadu_epi64(__mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandq

Load as many contiguous 64-bit integers from unaligned memory at mem_addr as there are ones in the low
2 bits of mask k, and place them in the result element positions corresponding to the positions of the ones in
the mask (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_expandloadu_epi64

__m256i _mm256_mask_expandloadu_epi64(__m256i src, __mmask8 k, void const* mem_addr)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandq

Load as many contiguous 64-bit integers from unaligned memory at mem_addr as there are ones in the low
4 bits of mask k, and place them in the result element positions corresponding to the positions of the ones in
the mask (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_expandloadu_epi64

__m256i _mm256_maskz_expandloadu_epi64(__mmask8 k, void const* mem_addr)

Compiler Reference

967

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandq

Load as many contiguous 64-bit integers from unaligned memory at mem_addr as there are ones in the low
4 bits of mask k, and place them in the result element positions corresponding to the positions of the ones in
the mask (elements are zeroed out when the corresponding mask bit is not set).

_mm_mmask_i32gather_epi32

__m128i _mm_mmask_i32gather_epi32(__m128i src, __mmask8 k, __m128i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpgatherdd

Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting
at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale).
Gathered elements are merged into the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mmask_i32gather_epi32

__m256i _mm256_mmask_i32gather_epi32(__m256i src, __mmask8 k, __m256i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpgatherdd

Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting
at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale).
Gathered elements are merged into the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm_mmask_i32gather_epi64

__m128i _mm_mmask_i32gather_epi64(__m128i src, __mmask8 k, __m128i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpgatherdq

Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting
at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale).
Gathered elements are merged into the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mmask_i32gather_epi64

__m256i _mm256_mmask_i32gather_epi64(__m256i src, __mmask8 k, __m128i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpgatherdq

Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting
at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale).
Gathered elements are merged into the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

 Intel® C++ Compiler Classic Developer Guide and Reference

968

_mm_mmask_i64gather_epi32

__m128i _mm_mmask_i64gather_epi32(__m128i src, __mmask8 k, __m128i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpgatherqd

Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting
at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale).
Gathered elements are merged into the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mmask_i64gather_epi32

__m128i _mm256_mmask_i64gather_epi32(__m128i src, __mmask8 k, __m256i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpgatherqd

Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting
at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale).
Gathered elements are merged into the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm_mmask_i64gather_epi64

__m128i _mm_mmask_i64gather_epi64(__m128i src, __mmask8 k, __m128i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpgatherqq

Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting
at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale).
Gathered elements are merged into the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mmask_i64gather_epi64

__m256i _mm256_mmask_i64gather_epi64(__m256i src, __mmask8 k, __m256i vindex, void const*
base_addr, const int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpgatherqq

Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting
at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale).
Gathered elements are merged into the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.

Intrinsics for Logical Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.

Compiler Reference

969

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

b second source vector element

c third source vector element

imm comparison predicate, which can be any of the following values:

• _MM_CMPINT_EQ - Equal
• _MM_CMPINT_LT - Less than
• _MM_CMPINT_LE - Less than or Equal
• _MM_CMPINT_NE - Not Equal
• _MM_CMPINT_NLT - Not Less than
• _MM_CMPINT_GE - Greater than or Equal
• _MM_CMPINT_NLE - Not Less than or Equal
• _MM_CMPINT_GT - Greater than

_mm_mask_andnot_pd

__m128d _mm_mask_andnot_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandnpd

Compute the bitwise AND NOT of packed double-precision (64-bit) floating-point elements in a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_andnot_pd

__m128d _mm_maskz_andnot_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandnpd

Compute the bitwise AND NOT of packed double-precision (64-bit) floating-point elements in a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_andnot_pd

__m256d _mm256_mask_andnot_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandnpd

 Intel® C++ Compiler Classic Developer Guide and Reference

970

Compute the bitwise AND NOT of packed double-precision (64-bit) floating-point elements in a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_andnot_pd

__m256d _mm256_maskz_andnot_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandnpd

Compute the bitwise AND NOT of packed double-precision (64-bit) floating-point elements in a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_andnot_pd

__m512d _mm512_andnot_pd(__m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vandnpd

Compute the bitwise AND NOT of packed double-precision (64-bit) floating-point elements in a and b, and
return the results.

_mm512_mask_andnot_pd

__m512d _mm512_mask_andnot_pd(__m512d src, __mmask8 k, __m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vandnpd

Compute the bitwise AND NOT of packed double-precision (64-bit) floating-point elements in a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_andnot_pd

__m512d _mm512_maskz_andnot_pd(__mmask8 k, __m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vandnpd

Compute the bitwise AND NOT of packed double-precision (64-bit) floating-point elements in a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_andnot_ps

__m128 _mm_mask_andnot_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandnps

Compute the bitwise AND NOT of packed single-precision (32-bit) floating-point elements in a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

Compiler Reference

971

_mm_maskz_andnot_ps

__m128 _mm_maskz_andnot_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandnps

Compute the bitwise AND NOT of packed single-precision (32-bit) floating-point elements in a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_andnot_ps

__m256 _mm256_mask_andnot_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandnps

Compute the bitwise AND NOT of packed single-precision (32-bit) floating-point elements in a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_andnot_ps

__m256 _mm256_maskz_andnot_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandnps

Compute the bitwise AND NOT of packed single-precision (32-bit) floating-point elements in a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_andnot_ps

__m512 _mm512_andnot_ps(__m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vandnps

Compute the bitwise AND NOT of packed single-precision (32-bit) floating-point elements in a and b, and
return the results.

_mm512_mask_andnot_ps

__m512 _mm512_mask_andnot_ps(__m512 src, __mmask16 k, __m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vandnps

Compute the bitwise AND NOT of packed single-precision (32-bit) floating-point elements in a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_andnot_ps

__m512 _mm512_maskz_andnot_ps(__mmask16 k, __m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vandnps

 Intel® C++ Compiler Classic Developer Guide and Reference

972

Compute the bitwise AND NOT of packed single-precision (32-bit) floating-point elements in a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_and_pd

__m128d _mm_mask_and_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandpd

Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_and_pd

__m128d _mm_maskz_and_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandpd

Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_and_pd

__m256d _mm256_mask_and_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandpd

Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_and_pd

__m256d _mm256_maskz_and_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandpd

Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_and_pd

__m512d _mm512_and_pd(__m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vandpd

Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in a and b, and return
the results.

_mm512_mask_and_pd

__m512d _mm512_mask_and_pd(__m512d src, __mmask8 k, __m512d a, __m512d b)
CPUID Flags: AVX512DQ

Compiler Reference

973

Instruction(s): vandpd

Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_and_pd

__m512d _mm512_maskz_and_pd(__mmask8 k, __m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vandpd

Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_and_ps

__m128 _mm_mask_and_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandps

Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_and_ps

__m128 _mm_maskz_and_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandps

Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_and_ps

__m256 _mm256_mask_and_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandps

Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_and_ps

__m256 _mm256_maskz_and_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vandps

Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_and_ps

__m512 _mm512_and_ps(__m512 a, __m512 b)

 Intel® C++ Compiler Classic Developer Guide and Reference

974

CPUID Flags: AVX512DQ

Instruction(s): vandps

Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in a and b, and return
the results.

_mm512_mask_and_ps

__m512 _mm512_mask_and_ps(__m512 src, __mmask16 k, __m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vandps

Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_and_ps

__m512 _mm512_maskz_and_ps(__mmask16 k, __m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vandps

Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_or_pd

__m128d _mm_mask_or_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vorpd

Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_or_pd

__m128d _mm_maskz_or_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vorpd

Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_or_pd

__m256d _mm256_mask_or_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vorpd

Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

975

_mm256_maskz_or_pd

__m256d _mm256_maskz_or_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vorpd

Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_or_pd

__m512d _mm512_mask_or_pd(__m512d src, __mmask8 k, __m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vorpd

Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_or_pd

__m512d _mm512_maskz_or_pd(__mmask8 k, __m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vorpd

Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_or_pd

__m512d _mm512_or_pd(__m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vorpd

Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results.

_mm_mask_or_ps

__m128 _mm_mask_or_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vorps

Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_or_ps

__m128 _mm_maskz_or_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vorps

Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

976

_mm256_mask_or_ps

__m256 _mm256_mask_or_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vorps

Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_or_ps

__m256 _mm256_maskz_or_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vorps

Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_or_ps

__m512 _mm512_mask_or_ps(__m512 src, __mmask16 k, __m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vorps

Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_or_ps

__m512 _mm512_maskz_or_ps(__mmask16 k, __m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vorps

Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_or_ps

__m512 _mm512_or_ps(__m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vorps

Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in a and b, and return the
results.

_mm_mask_xor_pd

__m128d _mm_mask_xor_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vxorpd

Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

977

_mm_maskz_xor_pd

__m128d _mm_maskz_xor_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vxorpd

Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_xor_pd

__m256d _mm256_mask_xor_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vxorpd

Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_xor_pd

__m256d _mm256_maskz_xor_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vxorpd

Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_xor_pd

__m512d _mm512_mask_xor_pd(__m512d src, __mmask8 k, __m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vxorpd

Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_xor_pd

__m512d _mm512_maskz_xor_pd(__mmask8 k, __m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vxorpd

Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_xor_pd

__m512d _mm512_xor_pd(__m512d a, __m512d b)
CPUID Flags: AVX512DQ

Instruction(s): vxorpd

 Intel® C++ Compiler Classic Developer Guide and Reference

978

Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in a and b, and return
the results.

_mm_mask_xor_ps

__m128 _mm_mask_xor_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vxorps

Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_xor_ps

__m128 _mm_maskz_xor_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vxorps

Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_xor_ps

__m256 _mm256_mask_xor_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vxorps

Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_xor_ps

__m256 _mm256_maskz_xor_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vxorps

Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_xor_ps

__m512 _mm512_mask_xor_ps(__m512 src, __mmask16 k, __m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vxorps

Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_xor_ps

__m512 _mm512_maskz_xor_ps(__mmask16 k, __m512 a, __m512 b)
CPUID Flags: AVX512DQ

Compiler Reference

979

Instruction(s): vxorps

Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in a and b, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_xor_ps

__m512 _mm512_xor_ps(__m512 a, __m512 b)
CPUID Flags: AVX512DQ

Instruction(s): vxorps

Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in a and b, and return
the results.

_mm_mask_and_epi32

__m128i _mm_mask_and_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandd

Compute the bitwise AND of packed 32-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_and_epi32

__m128i _mm_maskz_and_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandd

Compute the bitwise AND of packed 32-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_and_epi32

__m256i _mm256_mask_and_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandd

Compute the bitwise AND of packed 32-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_and_epi32

__m256i _mm256_maskz_and_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandd

Compute the bitwise AND of packed 32-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_andnot_epi32

__m128i _mm_mask_andnot_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

980

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandnd

Compute the bitwise AND NOT of packed 32-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_andnot_epi32

__m128i _mm_maskz_andnot_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandnd

Compute the bitwise AND NOT of packed 32-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_andnot_epi32

__m256i _mm256_mask_andnot_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandnd

Compute the bitwise AND NOT of packed 32-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_andnot_epi32

__m256i _mm256_maskz_andnot_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandnd

Compute the bitwise AND NOT of packed 32-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_andnot_epi64

__m128i _mm_mask_andnot_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandnq

Compute the bitwise AND NOT of packed 64-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_andnot_epi64

__m128i _mm_maskz_andnot_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandnq

Compute the bitwise AND NOT of packed 64-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

981

_mm256_mask_andnot_epi64

__m256i _mm256_mask_andnot_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandnq

Compute the bitwise AND NOT of packed 64-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_andnot_epi64

__m256i _mm256_maskz_andnot_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandnq

Compute the bitwise AND NOT of packed 64-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_and_epi64

__m128i _mm_mask_and_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandq

Compute the bitwise AND of packed 64-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_and_epi64

__m128i _mm_maskz_and_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandq

Compute the bitwise AND of packed 64-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_and_epi64

__m256i _mm256_mask_and_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandq

Compute the bitwise AND of packed 64-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_and_epi64

__m256i _mm256_maskz_and_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpandq

Compute the bitwise AND of packed 64-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

982

_mm_mask_or_epi32

__m128i _mm_mask_or_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpord

Compute the bitwise OR of packed 32-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_or_epi32

__m128i _mm_maskz_or_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpord

Compute the bitwise OR of packed 32-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_or_epi32

__m256i _mm256_mask_or_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpord

Compute the bitwise OR of packed 32-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_or_epi32

__m256i _mm256_maskz_or_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpord

Compute the bitwise OR of packed 32-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_or_epi64

__m128i _mm_mask_or_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vporq

Compute the bitwise OR of packed 64-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_or_epi64

__m128i _mm_maskz_or_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vporq

Compute the bitwise OR of packed 64-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

983

_mm256_mask_or_epi64

__m256i _mm256_mask_or_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vporq

Compute the bitwise OR of packed 64-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_or_epi64

__m256i _mm256_maskz_or_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vporq

Compute the bitwise OR of packed 64-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_ternarylogic_epi32

__m128i _mm_mask_ternarylogic_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogd

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the
corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value using writemask k at 32-bit granularity (32-bit
elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_ternarylogic_epi32

__m128i _mm_maskz_ternarylogic_epi32(__mmask8 k, __m128i a, __m128i b, __m128i c, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogd

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the
corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value using zeromask k at 32-bit granularity (32-bit
elements are zeroed out when the corresponding mask bit is not set).

_mm_ternarylogic_epi32

__m128i _mm_ternarylogic_epi32(__m128i a, __m128i b, __m128i c, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogd

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the
corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value.

 Intel® C++ Compiler Classic Developer Guide and Reference

984

_mm256_mask_ternarylogic_epi32

__m256i _mm256_mask_ternarylogic_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogd

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the
corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value using writemask k at 32-bit granularity (32-bit
elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_ternarylogic_epi32

__m256i _mm256_maskz_ternarylogic_epi32(__mmask8 k, __m256i a, __m256i b, __m256i c, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogd

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the
corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value using zeromask k at 32-bit granularity (32-bit
elements are zeroed out when the corresponding mask bit is not set).

_mm256_ternarylogic_epi32

__m256i _mm256_ternarylogic_epi32(__m256i a, __m256i b, __m256i c, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogd

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the
corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value.

_mm_mask_ternarylogic_epi64

__m128i _mm_mask_ternarylogic_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogq

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the
corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value using writemask k at 64-bit granularity (64-bit
elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_ternarylogic_epi64

__m128i _mm_maskz_ternarylogic_epi64(__mmask8 k, __m128i a, __m128i b, __m128i c, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogq

Compiler Reference

985

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the
corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value using zeromask k at 64-bit granularity (64-bit
elements are zeroed out when the corresponding mask bit is not set).

_mm_ternarylogic_epi64

__m128i _mm_ternarylogic_epi64(__m128i a, __m128i b, __m128i c, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogq

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the
corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value.

_mm256_mask_ternarylogic_epi64

__m256i _mm256_mask_ternarylogic_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogq

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the
corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value using writemask k at 64-bit granularity (64-bit
elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_ternarylogic_epi64

__m256i _mm256_maskz_ternarylogic_epi64(__mmask8 k, __m256i a, __m256i b, __m256i c, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogq

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the
corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value using zeromask k at 64-bit granularity (64-bit
elements are zeroed out when the corresponding mask bit is not set).

_mm256_ternarylogic_epi64

__m256i _mm256_ternarylogic_epi64(__m256i a, __m256i b, __m256i c, int imm8)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpternlogq

Bitwise ternary logic that provides the capability to implement any three-operand binary function; the
specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the
corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in
imm8 is written to the corresponding bit in the return value.

 Intel® C++ Compiler Classic Developer Guide and Reference

986

_mm_mask_xor_epi32

__m128i _mm_mask_xor_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpxord

Compute the bitwise XOR of packed 32-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_xor_epi32

__m128i _mm_maskz_xor_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpxord

Compute the bitwise XOR of packed 32-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_xor_epi32

__m256i _mm256_mask_xor_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpxord

Compute the bitwise XOR of packed 32-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_xor_epi32

__m256i _mm256_maskz_xor_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpxord

Compute the bitwise XOR of packed 32-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_xor_epi64

__m128i _mm_mask_xor_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpxorq

Compute the bitwise XOR of packed 64-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_xor_epi64

__m128i _mm_maskz_xor_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpxorq

Compute the bitwise XOR of packed 64-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

987

_mm256_mask_xor_epi64

__m256i _mm256_mask_xor_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpxorq

Compute the bitwise XOR of packed 64-bit integers in a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_xor_epi64

__m256i _mm256_maskz_xor_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpxorq

Compute the bitwise XOR of packed 64-bit integers in a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Miscellaneous Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

b second source vector element

c third source vector element

rounding Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

interv Where _MM_MANTISSA_NORM_ENUM can be one of the following:

• _MM_MANT_NORM_1_2 - interval [1, 2)
• _MM_MANT_NORM_p5_2 - interval [1.5, 2)
• _MM_MANT_NORM_p5_1 - interval [1.5, 1)
• _MM_MANT_NORM_p75_1p5 - interval [0.75, 1.5)

 Intel® C++ Compiler Classic Developer Guide and Reference

988

variable definition
sc Where _MM_MANTISSA_SIGN_ENUM can be one of the following:

• _MM_MANT_SIGN_src - sign = sign(SRC)
• _MM_MANT_SIGN_zero - sign = 0
• _MM_MANT_SIGN_nan - DEST = NaN if sign(SRC) = 1

_mm_broadcast_i32x2

__m128i _mm_broadcast_i32x2(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of "dst.

_mm_mask_broadcast_i32x2

__m128i _mm_mask_broadcast_i32x2(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_broadcast_i32x2

__m128i _mm_maskz_broadcast_i32x2(__mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_broadcast_i32x2

__m256i _mm256_broadcast_i32x2(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of "dst.

_mm256_mask_broadcast_i32x2

__m256i _mm256_mask_broadcast_i32x2(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

989

_mm256_maskz_broadcast_i32x2

__m256i _mm256_maskz_broadcast_i32x2(__mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_broadcast_i32x2

__m512i _mm512_broadcast_i32x2(__m128i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of "dst.

_mm512_mask_broadcast_i32x2

__m512i _mm512_mask_broadcast_i32x2(__m512i src, __mmask16 k, __m128i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_i32x2

__m512i _mm512_maskz_broadcast_i32x2(__mmask16 k, __m128i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti32x2

Broadcast the lower 2 packed 32-bit integers from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_broadcast_i32x4

__m256i _mm256_broadcast_i32x4(__m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcasti32x4

Broadcast the 4 packed 32-bit integers from a to all elements of the return value.

_mm256_mask_broadcast_i32x4

__m256i _mm256_mask_broadcast_i32x4(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcasti32x4

Broadcast the 4 packed 32-bit integers from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

990

_mm256_maskz_broadcast_i32x4

__m256i _mm256_maskz_broadcast_i32x4(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcasti32x4

Broadcast the 4 packed 32-bit integers from a to all elements of the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm512_broadcast_i32x8

__m512i _mm512_broadcast_i32x8(__m256i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti32x8

Broadcast the 8 packed 32-bit integers from a to all elements of the return value.

_mm512_mask_broadcast_i32x8

__m512i _mm512_mask_broadcast_i32x8(__m512i src, __mmask16 k, __m256i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti32x8

Broadcast the 8 packed 32-bit integers from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_i32x8

__m512i _mm512_maskz_broadcast_i32x8(__mmask16 k, __m256i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti32x8

Broadcast the 8 packed 32-bit integers from a to all elements of the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm256_broadcast_i64x2

__m256i _mm256_broadcast_i64x2(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti64x2

Broadcast the 2 packed 64-bit integers from a to all elements of the return value.

_mm256_mask_broadcast_i64x2

__m256i _mm256_mask_broadcast_i64x2(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti64x2

Broadcast the 2 packed 64-bit integers from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

991

_mm256_maskz_broadcast_i64x2

__m256i _mm256_maskz_broadcast_i64x2(__mmask8 k, __m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcasti64x2

Broadcast the 2 packed 64-bit integers from a to all elements of the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm512_broadcast_i64x2

__m512i _mm512_broadcast_i64x2(__m128i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti64x2

Broadcast the 2 packed 64-bit integers from a to all elements of the return value.

_mm512_mask_broadcast_i64x2

__m512i _mm512_mask_broadcast_i64x2(__m512i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti64x2

Broadcast the 2 packed 64-bit integers from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_i64x2

__m512i _mm512_maskz_broadcast_i64x2(__mmask8 k, __m128i a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcasti64x2

Broadcast the 2 packed 64-bit integers from a to all elements of the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm256_inserti32x4

__m256i _mm256_inserti32x4(__m256i a, __m128i b, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vinserti32x4

Copy a to the return value, then insert 128 bits (composed of 4 packed 32-bit integers) from b into dst at the
location specified by imm.

_mm256_mask_inserti32x4

__m256i _mm256_mask_inserti32x4(__m256i src, __mmask8 k, __m256i a, __m128i b, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vinserti32x4

Copy a to tmp, then insert 128 bits (composed of 4 packed 32-bit integers) from b into tmp at the location
specified by imm. Store tmp to the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

992

_mm256_maskz_inserti32x4

__m256i _mm256_maskz_inserti32x4(__mmask8 k, __m256i a, __m128i b, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vinserti32x4

Copy a to tmp, then insert 128 bits (composed of 4 packed 32-bit integers) from b into tmp at the location
specified by imm. Store tmp to the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_inserti32x8

__m512i _mm512_inserti32x8(__m512i a, __m256i b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinserti32x8

Copy a to the return value, then insert 256 bits (composed of 8 packed 32-bit integers) from b into dst at the
location specified by imm.

_mm512_mask_inserti32x8

__m512i _mm512_mask_inserti32x8(__m512i src, __mmask16 k, __m512i a, __m256i b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinserti32x8

Copy a to tmp, then insert 256 bits (composed of 8 packed 32-bit integers) from b into tmp at the location
specified by imm. Store tmp to the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_inserti32x8

__m512i _mm512_maskz_inserti32x8(__mmask16 k, __m512i a, __m256i b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinserti32x8

Copy a to tmp, then insert 256 bits (composed of 8 packed 32-bit integers) from b into tmp at the location
specified by imm. Store tmp to the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_inserti64x2

__m256i _mm256_inserti64x2(__m256i a, __m128i b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vinserti64x2

Copy a to the return value, then insert 128 bits (composed of 2 packed 64-bit integers) from b into dst at the
location specified by imm.

_mm256_mask_inserti64x2

__m256i _mm256_mask_inserti64x2(__m256i src, __mmask8 k, __m256i a, __m128i b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Compiler Reference

993

Instruction(s): vinserti64x2

Copy a to tmp, then insert 128 bits (composed of 2 packed 64-bit integers) from b into tmp at the location
specified by imm. Store tmp to the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_inserti64x2

__m256i _mm256_maskz_inserti64x2(__mmask8 k, __m256i a, __m128i b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vinserti64x2

Copy a to tmp, then insert 128 bits (composed of 2 packed 64-bit integers) from b into tmp at the location
specified by imm. Store tmp to the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_inserti64x2

__m512i _mm512_inserti64x2(__m512i a, __m128i b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinserti64x2

Copy a to the return value, then insert 128 bits (composed of 2 packed 64-bit integers) from b into dst at the
location specified by imm.

_mm512_mask_inserti64x2

__m512i _mm512_mask_inserti64x2(__m512i src, __mmask8 k, __m512i a, __m128i b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinserti64x2

Copy a to tmp, then insert 128 bits (composed of 2 packed 64-bit integers) from b into tmp at the location
specified by imm. Store tmp to the return value using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_inserti64x2

__m512i _mm512_maskz_inserti64x2(__mmask8 k, __m512i a, __m128i b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinserti64x2

Copy a to tmp, then insert 128 bits (composed of 2 packed 64-bit integers) from b into tmp at the location
specified by imm. Store tmp to the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_shuffle_i32x4

__m256i _mm256_mask_shuffle_i32x4(__m256i src, __mmask8 k, __m256i a, __m256i b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufi32x4

Shuffle 128-bits (composed of 4 32-bit integers) selected by imm from a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

994

_mm256_maskz_shuffle_i32x4

__m256i _mm256_maskz_shuffle_i32x4(__mmask8 k, __m256i a, __m256i b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufi32x4

Shuffle 128-bits (composed of 4 32-bit integers) selected by imm from a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_shuffle_i32x4

__m256i _mm256_shuffle_i32x4(__m256i a, __m256i b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufi32x4

Shuffle 128-bits (composed of 4 32-bit integers) selected by imm from a and b, and return the results.

_mm256_mask_shuffle_i64x2

__m256i _mm256_mask_shuffle_i64x2(__m256i src, __mmask8 k, __m256i a, __m256i b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufi64x2

Shuffle 128-bits (composed of 2 64-bit integers) selected by imm from a and b, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_shuffle_i64x2

__m256i _mm256_maskz_shuffle_i64x2(__mmask8 k, __m256i a, __m256i b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufi64x2

Shuffle 128-bits (composed of 2 64-bit integers) selected by imm from a and b, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_shuffle_i64x2

__m256i _mm256_shuffle_i64x2(__m256i a, __m256i b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufi64x2

Shuffle 128-bits (composed of 2 64-bit integers) selected by imm from a and b, and return the results.

_mm_mask_blend_pd

__m128d _mm_mask_blend_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vblendmpd

Blend packed double-precision (64-bit) floating-point elements from a and b using control mask k, and return
the results.

Compiler Reference

995

_mm256_mask_blend_pd

__m256d _mm256_mask_blend_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vblendmpd

Blend packed double-precision (64-bit) floating-point elements from a and b using control mask k, and return
the results.

_mm_mask_blend_ps

__m128 _mm_mask_blend_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vblendmps

Blend packed single-precision (32-bit) floating-point elements from a and b using control mask k, and return
the results.

_mm256_mask_blend_ps

__m256 _mm256_mask_blend_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vblendmps

Blend packed single-precision (32-bit) floating-point elements from a and b using control mask k, and return
the results.

_mm256_broadcast_f32x2

__m256 _mm256_broadcast_f32x2(__m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcastf32x2

Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from a to all elements of the
return value.

_mm256_mask_broadcast_f32x2

__m256 _mm256_mask_broadcast_f32x2(__m256 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcastf32x2

Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from a to all elements of the
return value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcast_f32x2

__m256 _mm256_maskz_broadcast_f32x2(__mmask8 k, __m128 a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcastf32x2

Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from a to all elements of the
return value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

996

_mm512_broadcast_f32x2

__m512 _mm512_broadcast_f32x2(__m128 a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf32x2

Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from a to all elements of the
return value.

_mm512_mask_broadcast_f32x2

__m512 _mm512_mask_broadcast_f32x2(__m512 src, __mmask16 k, __m128 a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf32x2

Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from a to all elements of the
return value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_f32x2

__m512 _mm512_maskz_broadcast_f32x2(__mmask16 k, __m128 a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf32x2

Broadcast the lower 2 packed single-precision (32-bit) floating-point elements from a to all elements of the
return value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_broadcast_f32x4

__m256 _mm256_broadcast_f32x4(__m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcastf32x4

Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of the return
value.

_mm256_mask_broadcast_f32x4

__m256 _mm256_mask_broadcast_f32x4(__m256 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcastf32x4

Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of the return
value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcast_f32x4

__m256 _mm256_maskz_broadcast_f32x4(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcastf32x4

Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of the return
value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

997

_mm512_broadcast_f32x8

__m512 _mm512_broadcast_f32x8(__m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf32x8

Broadcast the 8 packed single-precision (32-bit) floating-point elements from a to all elements of the return
value.

_mm512_mask_broadcast_f32x8

__m512 _mm512_mask_broadcast_f32x8(__m512 src, __mmask16 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf32x8

Broadcast the 8 packed single-precision (32-bit) floating-point elements from a to all elements of the return
value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_f32x8

__m512 _mm512_maskz_broadcast_f32x8(__mmask16 k, __m256 a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf32x8

Broadcast the 8 packed single-precision (32-bit) floating-point elements from a to all elements of the return
value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_broadcast_f64x2

__m256d _mm256_broadcast_f64x2(__m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcastf64x2

Broadcast the 2 packed double-precision (64-bit) floating-point elements from a to all elements of the return
value.

_mm256_mask_broadcast_f64x2

__m256d _mm256_mask_broadcast_f64x2(__m256d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcastf64x2

Broadcast the 2 packed double-precision (64-bit) floating-point elements from a to all elements of the return
value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcast_f64x2

__m256d _mm256_maskz_broadcast_f64x2(__mmask8 k, __m128d a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vbroadcastf64x2

 Intel® C++ Compiler Classic Developer Guide and Reference

998

Broadcast the 2 packed double-precision (64-bit) floating-point elements from a to all elements of the return
value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_broadcast_f64x2

__m512d _mm512_broadcast_f64x2(__m128d a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf64x2

Broadcast the 2 packed double-precision (64-bit) floating-point elements from a to all elements of the return
value.

_mm512_mask_broadcast_f64x2

__m512d _mm512_mask_broadcast_f64x2(__m512d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf64x2

Broadcast the 2 packed double-precision (64-bit) floating-point elements from a to all elements of the return
value using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_f64x2

__m512d _mm512_maskz_broadcast_f64x2(__mmask8 k, __m128d a)
CPUID Flags: AVX512DQ

Instruction(s): vbroadcastf64x2

Broadcast the 2 packed double-precision (64-bit) floating-point elements from a to all elements of the return
value using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_broadcastsd_pd

__m256d _mm256_mask_broadcastsd_pd(__m256d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcastsd

Broadcast the low double-precision (64-bit) floating-point element from a to all elements of the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcastsd_pd

__m256d _mm256_maskz_broadcastsd_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcastsd

Broadcast the low double-precision (64-bit) floating-point element from a to all elements of the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_broadcastss_ps

__m128 _mm_mask_broadcastss_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

999

Instruction(s): vbroadcastss

Broadcast the low single-precision (32-bit) floating-point element from a to all elements of the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_broadcastss_ps

__m128 _mm_maskz_broadcastss_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcastss

Broadcast the low single-precision (32-bit) floating-point element from a to all elements of the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_broadcastss_ps

__m256 _mm256_mask_broadcastss_ps(__m256 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcastss

Broadcast the low single-precision (32-bit) floating-point element from a to all elements of the return value
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcastss_ps

__m256 _mm256_maskz_broadcastss_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vbroadcastss

Broadcast the low single-precision (32-bit) floating-point element from a to all elements of the return value
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_compress_pd

__m128d _mm_mask_compress_pd(__m128d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompresspd

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their
respective bit set in writemask k) to the return value, and pass through the remaining elements from src.

_mm_maskz_compress_pd

__m128d _mm_maskz_compress_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompresspd

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their
respective bit set in zeromask k) to the return value, and set the remaining elements to zero.

_mm256_mask_compress_pd

__m256d _mm256_mask_compress_pd(__m256d src, __mmask8 k, __m256d a)

 Intel® C++ Compiler Classic Developer Guide and Reference

1000

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompresspd

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their
respective bit set in writemask k) to the return value, and pass through the remaining elements from src.

_mm256_maskz_compress_pd

__m256d _mm256_maskz_compress_pd(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompresspd

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their
respective bit set in zeromask k) to the return value, and set the remaining elements to zero.

_mm_mask_compress_ps

__m128 _mm_mask_compress_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompressps

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their
respective bit set in writemask k) to the return value, and pass through the remaining elements from src.

_mm_maskz_compress_ps

__m128 _mm_maskz_compress_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompressps

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their
respective bit set in zeromask k) to the return value, and set the remaining elements to zero.

_mm256_mask_compress_ps

__m256 _mm256_mask_compress_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompressps

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their
respective bit set in writemask k) to the return value, and pass through the remaining elements from src.

_mm256_maskz_compress_ps

__m256 _mm256_maskz_compress_ps(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompressps

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their
respective bit set in zeromask k) to the return value, and set the remaining elements to zero.

Compiler Reference

1001

_mm_mask_expand_pd

__m128d _mm_mask_expand_pd(__m128d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandpd

Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective
bit set in mask k), and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_expand_pd

__m128d _mm_maskz_expand_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandpd

Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective
bit set in mask k), and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_mask_expand_pd

__m256d _mm256_mask_expand_pd(__m256d src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandpd

Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective
bit set in mask k), and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_expand_pd

__m256d _mm256_maskz_expand_pd(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandpd

Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective
bit set in mask k), and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_expand_ps

__m128 _mm_mask_expand_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandps

Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective
bit set in mask k), and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_expand_ps

__m128 _mm_maskz_expand_ps(__mmask8 k, __m128 a)

 Intel® C++ Compiler Classic Developer Guide and Reference

1002

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandps

Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective
bit set in mask k), and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_mask_expand_ps

__m256 _mm256_mask_expand_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandps

Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective
bit set in mask k), and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_expand_ps

__m256 _mm256_maskz_expand_ps(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vexpandps

Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective
bit set in mask k), and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_extractf32x4_ps

__m128 _mm256_extractf32x4_ps(__m256 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vextractf32x4

Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected
with imm, and store the result in the return value.

_mm256_mask_extractf32x4_ps

__m128 _mm256_mask_extractf32x4_ps(__m128 src, __mmask8 k, __m256 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vextractf32x4

Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected
with imm, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_extractf32x4_ps

__m128 _mm256_maskz_extractf32x4_ps(__mmask8 k, __m256 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vextractf32x4

Compiler Reference

1003

Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected
with imm, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_extractf32x8_ps

__m256 _mm512_extractf32x8_ps(__m512 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextractf32x8

Extract 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from a, selected
with imm, and store the result in the return value.

_mm512_mask_extractf32x8_ps

__m256 _mm512_mask_extractf32x8_ps(__m256 src, __mmask8 k, __m512 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextractf32x8

Extract 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from a, selected
with imm, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_maskz_extractf32x8_ps

__m256 _mm512_maskz_extractf32x8_ps(__mmask8 k, __m512 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextractf32x8

Extract 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements) from a, selected
with imm, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm256_extractf64x2_pd

__m128d _mm256_extractf64x2_pd(__m256d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vextractf64x2

Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from a, selected
with imm, and store the result in the return value.

_mm256_mask_extractf64x2_pd

__m128d _mm256_mask_extractf64x2_pd(__m128d src, __mmask8 k, __m256d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vextractf64x2

Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from a, selected
with imm, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1004

_mm256_maskz_extractf64x2_pd

__m128d _mm256_maskz_extractf64x2_pd(__mmask8 k, __m256d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vextractf64x2

Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from a, selected
with imm, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_extractf64x2_pd

__m128d _mm512_extractf64x2_pd(__m512d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextractf64x2

Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from a, selected
with imm, and store the result in the return value.

_mm512_mask_extractf64x2_pd

__m128d _mm512_mask_extractf64x2_pd(__m128d src, __mmask8 k, __m512d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextractf64x2

Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from a, selected
with imm, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_maskz_extractf64x2_pd

__m128d _mm512_maskz_extractf64x2_pd(__mmask8 k, __m512d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextractf64x2

Extract 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements) from a, selected
with imm, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_fixupimm_pd

__m128d _mm_fixupimm_pd(__m128d a, __m128d b, __m128i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmpd

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c,
and return the results. imm is used to set the required flags reporting.

_mm_mask_fixupimm_pd

__m128d _mm_mask_fixupimm_pd(__m128d a, __mmask8 k, __m128d b, __m128i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmpd

Compiler Reference

1005

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c,
and return the results using writemask k (elements are copied from a when the corresponding mask bit is
not set). imm is used to set the required flags reporting.

_mm_maskz_fixupimm_pd

__m128d _mm_maskz_fixupimm_pd(__mmask8 k, __m128d a, __m128d b, __m128i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmpd

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set). imm is used to set the required flags reporting.

_mm256_fixupimm_pd

__m256d _mm256_fixupimm_pd(__m256d a, __m256d b, __m256i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmpd

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c,
and return the results. imm is used to set the required flags reporting.

_mm256_mask_fixupimm_pd

__m256d _mm256_mask_fixupimm_pd(__m256d a, __mmask8 k, __m256d b, __m256i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmpd

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c,
and return the results using writemask k (elements are copied from a when the corresponding mask bit is
not set). imm is used to set the required flags reporting.

_mm256_maskz_fixupimm_pd

__m256d _mm256_maskz_fixupimm_pd(__mmask8 k, __m256d a, __m256d b, __m256i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmpd

Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set). imm is used to set the required flags reporting.

_mm_fixupimm_ps

__m128 _mm_fixupimm_ps(__m128 a, __m128 b, __m128i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmps

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c,
and return the results. imm is used to set the required flags reporting.

 Intel® C++ Compiler Classic Developer Guide and Reference

1006

_mm_mask_fixupimm_ps

__m128 _mm_mask_fixupimm_ps(__m128 a, __mmask8 k, __m128 b, __m128i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmps

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c,
and return the results using writemask k (elements are copied from a when the corresponding mask bit is
not set). imm is used to set the required flags reporting.

_mm_maskz_fixupimm_ps

__m128 _mm_maskz_fixupimm_ps(__mmask8 k, __m128 a, __m128 b, __m128i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmps

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set). imm is used to set the required flags reporting.

_mm256_fixupimm_ps

__m256 _mm256_fixupimm_ps(__m256 a, __m256 b, __m256i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmps

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c,
and return the results. imm is used to set the required flags reporting.

_mm256_mask_fixupimm_ps

__m256 _mm256_mask_fixupimm_ps(__m256 a, __mmask8 k, __m256 b, __m256i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmps

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c,
and return the results using writemask k (elements are copied from a when the corresponding mask bit is
not set). imm is used to set the required flags reporting.

_mm256_maskz_fixupimm_ps

__m256 _mm256_maskz_fixupimm_ps(__mmask8 k, __m256 a, __m256 b, __m256i c, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vfixupimmps

Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set). imm is used to set the required flags reporting.

_mm_getexp_pd

__m128d _mm_getexp_pd(__m128d a)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1007

Instruction(s): vgetexppd

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-
precision (64-bit) floating-point number representing the integer exponent, and return the results. This
intrinsic essentially calculates floor(log2(x)) for each element.

_mm_mask_getexp_pd

__m128d _mm_mask_getexp_pd(__m128d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexppd

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-
precision (64-bit) floating-point number representing the integer exponent, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic
essentially calculates floor(log2(x)) for each element.

_mm_maskz_getexp_pd

__m128d _mm_maskz_getexp_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexppd

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-
precision (64-bit) floating-point number representing the integer exponent, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially
calculates floor(log2(x)) for each element.

_mm256_getexp_pd

__m256d _mm256_getexp_pd(__m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexppd

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-
precision (64-bit) floating-point number representing the integer exponent, and return the results. This
intrinsic essentially calculates floor(log2(x)) for each element.

_mm256_mask_getexp_pd

__m256d _mm256_mask_getexp_pd(__m256d src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexppd

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-
precision (64-bit) floating-point number representing the integer exponent, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic
essentially calculates floor(log2(x)) for each element.

_mm256_maskz_getexp_pd

__m256d _mm256_maskz_getexp_pd(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

1008

Instruction(s): vgetexppd

Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-
precision (64-bit) floating-point number representing the integer exponent, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially
calculates floor(log2(x)) for each element.

_mm_getexp_ps

__m128 _mm_getexp_ps(__m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexpps

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-
precision (32-bit) floating-point number representing the integer exponent, and return the results. This
intrinsic essentially calculates floor(log2(x)) for each element.

_mm_mask_getexp_ps

__m128 _mm_mask_getexp_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexpps

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-
precision (32-bit) floating-point number representing the integer exponent, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic
essentially calculates floor(log2(x)) for each element.

_mm_maskz_getexp_ps

__m128 _mm_maskz_getexp_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexpps

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-
precision (32-bit) floating-point number representing the integer exponent, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially
calculates floor(log2(x)) for each element.

_mm256_getexp_ps

__m256 _mm256_getexp_ps(__m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexpps

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-
precision (32-bit) floating-point number representing the integer exponent, and return the results. This
intrinsic essentially calculates floor(log2(x)) for each element.

_mm256_mask_getexp_ps

__m256 _mm256_mask_getexp_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1009

Instruction(s): vgetexpps

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-
precision (32-bit) floating-point number representing the integer exponent, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic
essentially calculates floor(log2(x)) for each element.

_mm256_maskz_getexp_ps

__m256 _mm256_maskz_getexp_ps(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetexpps

Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-
precision (32-bit) floating-point number representing the integer exponent, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially
calculates floor(log2(x)) for each element.

_mm_getmant_pd

__m128d _mm_getmant_pd(__m128d a, _MM_MANTISSA_NORM_ENUM interv, _MM_MANTISSA_SIGN_ENUM sc)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantpd

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and return the
results. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range
defined by interv and the sign depends on sc and the source sign.

_mm_mask_getmant_pd

__m128d _mm_mask_getmant_pd(__m128d src, __mmask8 k, __m128d a, _MM_MANTISSA_NORM_ENUM interv,
_MM_MANTISSA_SIGN_ENUM sc)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantpd

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set). This
intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by
interv and the sign depends on sc and the source sign.

_mm_maskz_getmant_pd

__m128d _mm_maskz_getmant_pd(__mmask8 k, __m128d a, _MM_MANTISSA_NORM_ENUM interv,
_MM_MANTISSA_SIGN_ENUM sc)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantpd

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic
essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and
the sign depends on sc and the source sign.

 Intel® C++ Compiler Classic Developer Guide and Reference

1010

_mm256_getmant_pd

__m256d _mm256_getmant_pd(__m256d a, _MM_MANTISSA_NORM_ENUM interv, _MM_MANTISSA_SIGN_ENUM sc)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantpd

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and return the
results. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range
defined by interv and the sign depends on sc and the source sign.

_mm256_mask_getmant_pd

__m256d _mm256_mask_getmant_pd(__m256d src, __mmask8 k, __m256d a, _MM_MANTISSA_NORM_ENUM
interv, _MM_MANTISSA_SIGN_ENUM sc)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantpd

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set). This
intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by
interv and the sign depends on sc and the source sign.

_mm256_maskz_getmant_pd

__m256d _mm256_maskz_getmant_pd(__mmask8 k, __m256d a, _MM_MANTISSA_NORM_ENUM interv,
_MM_MANTISSA_SIGN_ENUM sc)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantpd

Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic
essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and
the sign depends on sc and the source sign.

_mm_getmant_ps

__m128 _mm_getmant_ps(__m128 a, _MM_MANTISSA_NORM_ENUM interv, _MM_MANTISSA_SIGN_ENUM sc)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantps

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and return the
results. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range
defined by interv and the sign depends on sc and the source sign.

_mm_mask_getmant_ps

__m128 _mm_mask_getmant_ps(__m128 src, __mmask8 k, __m128 a, _MM_MANTISSA_NORM_ENUM interv,
_MM_MANTISSA_SIGN_ENUM sc)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantps

Compiler Reference

1011

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set). This
intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by
interv and the sign depends on sc and the source sign.

_mm_maskz_getmant_ps

__m128 _mm_maskz_getmant_ps(__mmask8 k, __m128 a, _MM_MANTISSA_NORM_ENUM interv,
_MM_MANTISSA_SIGN_ENUM sc)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantps

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic
essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and
the sign depends on sc and the source sign.

_mm256_getmant_ps

__m256 _mm256_getmant_ps(__m256 a, _MM_MANTISSA_NORM_ENUM interv, _MM_MANTISSA_SIGN_ENUM sc)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantps

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and return the
results. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range
defined by interv and the sign depends on sc and the source sign.

_mm256_mask_getmant_ps

__m256 _mm256_mask_getmant_ps(__m256 src, __mmask8 k, __m256 a, _MM_MANTISSA_NORM_ENUM interv,
_MM_MANTISSA_SIGN_ENUM sc)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantps

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set). This
intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by
interv and the sign depends on sc and the source sign.

_mm256_maskz_getmant_ps

__m256 _mm256_maskz_getmant_ps(__mmask8 k, __m256 a, _MM_MANTISSA_NORM_ENUM interv,
_MM_MANTISSA_SIGN_ENUM sc)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vgetmantps

Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic
essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and
the sign depends on sc and the source sign.

_mm256_insertf32x4

__m256 _mm256_insertf32x4(__m256 a, __m128 b, int imm)

 Intel® C++ Compiler Classic Developer Guide and Reference

1012

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vinsertf32x4

Copy a to the return value, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-
point elements) from b into dst at the location specified by imm.

_mm256_mask_insertf32x4

__m256 _mm256_mask_insertf32x4(__m256 src, __mmask8 k, __m256 a, __m128 b, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vinsertf32x4

Copy a to tmp, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements)
from b into tmp at the location specified by imm. Store tmp to the return value using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm256_maskz_insertf32x4

__m256 _mm256_maskz_insertf32x4(__mmask8 k, __m256 a, __m128 b, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vinsertf32x4

Copy a to tmp, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements)
from b into tmp at the location specified by imm. Store tmp to the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm512_insertf32x8

__m512 _mm512_insertf32x8(__m512 a, __m256 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinsertf32x8

Copy a to the return value, then insert 256 bits (composed of 8 packed single-precision (32-bit) floating-
point elements) from b into dst at the location specified by imm.

_mm512_mask_insertf32x8

__m512 _mm512_mask_insertf32x8(__m512 src, __mmask16 k, __m512 a, __m256 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinsertf32x8

Copy a to tmp, then insert 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements)
from b into tmp at the location specified by imm. Store tmp to the return value using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm512_maskz_insertf32x8

__m512 _mm512_maskz_insertf32x8(__mmask16 k, __m512 a, __m256 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinsertf32x8

Compiler Reference

1013

Copy a to tmp, then insert 256 bits (composed of 8 packed single-precision (32-bit) floating-point elements)
from b into tmp at the location specified by imm. Store tmp to the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm256_insertf64x2

__m256d _mm256_insertf64x2(__m256d a, __m128d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vinsertf64x2

Copy a to the return value, then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-
point elements) from b into dst at the location specified by imm.

_mm256_mask_insertf64x2

__m256d _mm256_mask_insertf64x2(__m256d src, __mmask8 k, __m256d a, __m128d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vinsertf64x2

Copy a to tmp, then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements)
from b into tmp at the location specified by imm. Store tmp to the return value using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm256_maskz_insertf64x2

__m256d _mm256_maskz_insertf64x2(__mmask8 k, __m256d a, __m128d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vinsertf64x2

Copy a to tmp, then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements)
from b into tmp at the location specified by imm. Store tmp to the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm512_insertf64x2

__m512d _mm512_insertf64x2(__m512d a, __m128d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinsertf64x2

Copy a to the return value, then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-
point elements) from b into dst at the location specified by imm.

_mm512_mask_insertf64x2

__m512d _mm512_mask_insertf64x2(__m512d src, __mmask8 k, __m512d a, __m128d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinsertf64x2

Copy a to tmp, then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements)
from b into tmp at the location specified by imm. Store tmp to the return value using writemask k (elements
are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1014

_mm512_maskz_insertf64x2

__m512d _mm512_maskz_insertf64x2(__mmask8 k, __m512d a, __m128d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vinsertf64x2

Copy a to tmp, then insert 128 bits (composed of 2 packed double-precision (64-bit) floating-point elements)
from b into tmp at the location specified by imm. Store tmp to the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm_mask2_permutex2var_pd

__m128d _mm_mask2_permutex2var_pd(__m128d a, __m128i idx, __mmask8 k, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2pd

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using writemask k (elements are copied from idx when the
corresponding mask bit is not set)

_mm256_mask2_permutex2var_pd

__m256d _mm256_mask2_permutex2var_pd(__m256d a, __m256i idx, __mmask8 k, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2pd

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using writemask k (elements are copied from idx when the
corresponding mask bit is not set).

_mm_maskz_permutex2var_pd

__m128d _mm_maskz_permutex2var_pd(__mmask8 k, __m128d a, __m128i idx, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2pd, vpermt2pd

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_permutex2var_pd

__m128d _mm_permutex2var_pd(__m128d a, __m128i idx, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2pd, vpermt2pd

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results.

_mm256_maskz_permutex2var_pd

__m256d _mm256_maskz_permutex2var_pd(__mmask8 k, __m256d a, __m256i idx, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1015

Instruction(s): vpermi2pd, vpermt2pd

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_permutex2var_pd

__m256d _mm256_permutex2var_pd(__m256d a, __m256i idx, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2pd, vpermt2pd

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results.

_mm_mask2_permutex2var_ps

__m128 _mm_mask2_permutex2var_ps(__m128 a, __m128i idx, __mmask8 k, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2ps

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using writemask k (elements are copied from idx when the
corresponding mask bit is not set).

_mm256_mask2_permutex2var_ps

__m256 _mm256_mask2_permutex2var_ps(__m256 a, __m256i idx, __mmask8 k, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2ps

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using writemask k (elements are copied from idx when the
corresponding mask bit is not set).

_mm_maskz_permutex2var_ps

__m128 _mm_maskz_permutex2var_ps(__mmask8 k, __m128 a, __m128i idx, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2ps, vpermt2ps

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_permutex2var_ps

__m128 _mm_permutex2var_ps(__m128 a, __m128i idx, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2ps, vpermt2ps

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1016

_mm256_maskz_permutex2var_ps

__m256 _mm256_maskz_permutex2var_ps(__mmask8 k, __m256 a, __m256i idx, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2ps, vpermt2ps

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_permutex2var_ps

__m256 _mm256_permutex2var_ps(__m256 a, __m256i idx, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2ps, vpermt2ps

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results.

_mm_mask_permute_pd

__m128d _mm_mask_permute_pd(__m128d src, __mmask8 k, __m128d a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilpd

Shuffle double-precision (64-bit) floating-point elements in a using the control in imm, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_permutevar_pd

__m128d _mm_mask_permutevar_pd(__m128d src, __mmask8 k, __m128d a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilpd

Shuffle double-precision (64-bit) floating-point elements in a using the control in b, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_permute_pd

__m128d _mm_maskz_permute_pd(__mmask8 k, __m128d a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilpd

Shuffle double-precision (64-bit) floating-point elements in a using the control in imm, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_permutevar_pd

__m128d _mm_maskz_permutevar_pd(__mmask8 k, __m128d a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilpd

Compiler Reference

1017

Shuffle double-precision (64-bit) floating-point elements in a using the control in b, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_permute_pd

__m256d _mm256_mask_permute_pd(__m256d src, __mmask8 k, __m256d a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilpd

Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_mask_permutevar_pd

__m256d _mm256_mask_permutevar_pd(__m256d src, __mmask8 k, __m256d a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilpd

Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_permute_pd

__m256d _mm256_maskz_permute_pd(__mmask8 k, __m256d a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilpd

Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_maskz_permutevar_pd

__m256d _mm256_maskz_permutevar_pd(__mmask8 k, __m256d a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilpd

Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_permute_ps

__m128 _mm_mask_permute_ps(__m128 src, __mmask8 k, __m128 a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilps

Shuffle single-precision (32-bit) floating-point elements in a using the control in imm, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1018

_mm_mask_permutevar_ps

__m128 _mm_mask_permutevar_ps(__m128 src, __mmask8 k, __m128 a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilps

Shuffle single-precision (32-bit) floating-point elements in a using the control in b, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_permute_ps

__m128 _mm_maskz_permute_ps(__mmask8 k, __m128 a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilps

Shuffle single-precision (32-bit) floating-point elements in a using the control in imm, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_permutevar_ps

__m128 _mm_maskz_permutevar_ps(__mmask8 k, __m128 a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilps

Shuffle single-precision (32-bit) floating-point elements in a using the control in b, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_permute_ps

__m256 _mm256_mask_permute_ps(__m256 src, __mmask8 k, __m256 a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilps

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_mask_permutevar_ps

__m256 _mm256_mask_permutevar_ps(__m256 src, __mmask8 k, __m256 a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilps

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_permute_ps

__m256 _mm256_maskz_permute_ps(__mmask8 k, __m256 a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilps

Compiler Reference

1019

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_maskz_permutevar_ps

__m256 _mm256_maskz_permutevar_ps(__mmask8 k, __m256 a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermilps

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_permutex_pd

__m256d _mm256_mask_permutex_pd(__m256d src, __mmask8 k, __m256d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermpd

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the control in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_mask_permutexvar_pd

__m256d _mm256_mask_permutexvar_pd(__m256d src, __mmask8 k, __m256i idx, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermpd

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in
idx, and return the results using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm256_maskz_permutex_pd

__m256d _mm256_maskz_permutex_pd(__mmask8 k, __m256d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermpd

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the control in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_pd

__m256d _mm256_maskz_permutexvar_pd(__mmask8 k, __m256i idx, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermpd

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in
idx, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1020

_mm256_permutex_pd

__m256d _mm256_permutex_pd(__m256d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermpd

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the control in imm, and
return the results.

_mm256_permutexvar_pd

__m256d _mm256_permutexvar_pd(__m256i idx, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermpd

Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in
idx, and return the results.

_mm256_mask_permutexvar_ps

__m256 _mm256_mask_permutexvar_ps(__m256 src, __mmask8 k, __m256i idx, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermps

Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in
idx, and return the results using writemask k (elements are copied from src when the corresponding mask bit
is not set).

_mm256_maskz_permutexvar_ps

__m256 _mm256_maskz_permutexvar_ps(__mmask8 k, __m256i idx, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermps

Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in
idx, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_permutexvar_ps

__m256 _mm256_permutexvar_ps(__m256i idx, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermps

Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in
idx.

_mm_mask_permutex2var_pd

__m128d _mm_mask_permutex2var_pd(__m128d a, __mmask8 k, __m128i idx, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermt2pd

Compiler Reference

1021

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm256_mask_permutex2var_pd

__m256d _mm256_mask_permutex2var_pd(__m256d a, __mmask8 k, __m256i idx, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermt2pd

Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm_mask_permutex2var_ps

__m128 _mm_mask_permutex2var_ps(__m128 a, __mmask8 k, __m128i idx, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermt2ps

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm256_mask_permutex2var_ps

__m256 _mm256_mask_permutex2var_ps(__m256 a, __mmask8 k, __m256i idx, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermt2ps

Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding
selector and index in idx, and return the results using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm_mask_range_pd

__m128d _mm_mask_range_pd(__m128d src, __mmask8 k, __m128d a, __m128d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm_maskz_range_pd

__m128d _mm_maskz_range_pd(__mmask8 k, __m128d a, __m128d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1022

_mm_range_pd

__m128d _mm_range_pd(__m128d a, __m128d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results.

_mm256_mask_range_pd

__m256d _mm256_mask_range_pd(__m256d src, __mmask8 k, __m256d a, __m256d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm256_maskz_range_pd

__m256d _mm256_maskz_range_pd(__mmask8 k, __m256d a, __m256d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_range_pd

__m256d _mm256_range_pd(__m256d a, __m256d b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results.

_mm512_mask_range_pd

__m512d _mm512_mask_range_pd(__m512d src, __mmask8 k, __m512d a, __m512d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_mask_range_round_pd

__m512d _mm512_mask_range_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d b, int imm, int
rounding)

CPUID Flags: AVX512DQ

Compiler Reference

1023

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_range_pd

__m512d _mm512_maskz_range_pd(__mmask8 k, __m512d a, __m512d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_maskz_range_round_pd

__m512d _mm512_maskz_range_round_pd(__mmask8 k, __m512d a, __m512d b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_range_pd

__m512d _mm512_range_pd(__m512d a, __m512d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results.

_mm512_range_round_pd

__m512d _mm512_range_round_pd(__m512d a, __m512d b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangepd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed double-
precision (64-bit) floating-point elements in a and b, and return the results.

_mm_mask_range_ps

__m128 _mm_mask_range_ps(__m128 src, __mmask8 k, __m128 a, __m128 b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1024

_mm_maskz_range_ps

__m128 _mm_maskz_range_ps(__mmask8 k, __m128 a, __m128 b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_range_ps

__m128 _mm_range_ps(__m128 a, __m128 b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results.

_mm256_mask_range_ps

__m256 _mm256_mask_range_ps(__m256 src, __mmask8 k, __m256 a, __m256 b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm256_maskz_range_ps

__m256 _mm256_maskz_range_ps(__mmask8 k, __m256 a, __m256 b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_range_ps

__m256 _mm256_range_ps(__m256 a, __m256 b, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results.

_mm512_mask_range_ps

__m512 _mm512_mask_range_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangeps

Compiler Reference

1025

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_mask_range_round_ps

__m512 _mm512_mask_range_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int imm, int
rounding)

CPUID Flags: AVX512DQ

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_range_ps

__m512 _mm512_maskz_range_ps(__mmask16 k, __m512 a, __m512 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_maskz_range_round_ps

__m512 _mm512_maskz_range_round_ps(__mmask16 k, __m512 a, __m512 b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_range_ps

__m512 _mm512_range_ps(__m512 a, __m512 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results.

_mm512_range_round_ps

__m512 _mm512_range_round_ps(__m512 a, __m512 b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangeps

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for packed single-
precision (32-bit) floating-point elements in a and b, and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1026

_mm_mask_range_round_sd

__m128d _mm_mask_range_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int imm, int
rounding)

CPUID Flags: AVX512DQ

Instruction(s): vrangesd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower double-
precision (64-bit) floating-point element in a and b, store the result in the lower element of the return value
using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element
from a to the upper element of dst.

_mm_mask_range_sd

__m128d _mm_mask_range_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangesd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower double-
precision (64-bit) floating-point element in a and b, store the result in the lower element of the return value
using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element
from a to the upper element of dst.

_mm_maskz_range_round_sd

__m128d _mm_maskz_range_round_sd(__mmask8 k, __m128d a, __m128d b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangesd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower double-
precision (64-bit) floating-point element in a and b, store the result in the lower element of the return value
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a
to the upper element of dst.

_mm_maskz_range_sd

__m128d _mm_maskz_range_sd(__mmask8 k, __m128d a, __m128d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangesd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower double-
precision (64-bit) floating-point element in a and b, store the result in the lower element of the return value
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a
to the upper element of dst.

_mm_range_round_sd

__m128d _mm_range_round_sd(__m128d a, __m128d b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangesd

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower double-
precision (64-bit) floating-point element in a and b, store the result in the lower element of the return value,
and copy the upper element from a to the upper element of dst.

Compiler Reference

1027

_mm_mask_range_round_ss

__m128 _mm_mask_range_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangess

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower single-
precision (32-bit) floating-point element in a and b, store the result in the lower element of the return value
using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed
elements from a to the upper elements of dst.

_mm_mask_range_ss

__m128 _mm_mask_range_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangess

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower single-
precision (32-bit) floating-point element in a and b, store the result in the lower element of the return value
using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed
elements from a to the upper elements of dst.

_mm_maskz_range_round_ss

__m128 _mm_maskz_range_round_ss(__mmask8 k, __m128 a, __m128 b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangess

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower single-
precision (32-bit) floating-point element in a and b, store the result in the lower element of the return value
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed
elements from a to the upper elements of dst.

_mm_maskz_range_ss

__m128 _mm_maskz_range_ss(__mmask8 k, __m128 a, __m128 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vrangess

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower single-
precision (32-bit) floating-point element in a and b, store the result in the lower element of the return value
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed
elements from a to the upper elements of dst.

_mm_range_round_ss

__m128 _mm_range_round_ss(__m128 a, __m128 b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vrangess

Calculate the max, min, absolute max, or absolute min (depending on control in imm) for the lower single-
precision (32-bit) floating-point element in a and b, store the result in the lower element of the return value,
and copy the upper 3 packed elements from a to the upper elements of dst.

 Intel® C++ Compiler Classic Developer Guide and Reference

1028

_mm_mask_reduce_pd

__m128d _mm_mask_reduce_pd(__m128d src, __mmask8 k, __m128d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_reduce_pd

__m128d _mm_maskz_reduce_pd(__mmask8 k, __m128d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_reduce_pd

__m128d _mm_reduce_pd(__m128d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results.

_mm256_mask_reduce_pd

__m256d _mm256_mask_reduce_pd(__m256d src, __mmask8 k, __m256d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_reduce_pd

__m256d _mm256_maskz_reduce_pd(__mmask8 k, __m256d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_reduce_pd

__m256d _mm256_reduce_pd(__m256d a, int imm)

Compiler Reference

1029

CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results.

_mm512_mask_reduce_pd

__m512d _mm512_mask_reduce_pd(__m512d src, __mmask8 k, __m512d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_mask_reduce_round_pd

__m512d _mm512_mask_reduce_round_pd(__m512d src, __mmask8 k, __m512d a, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_reduce_pd

__m512d _mm512_maskz_reduce_pd(__mmask8 k, __m512d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_maskz_reduce_round_pd

__m512d _mm512_maskz_reduce_round_pd(__mmask8 k, __m512d a, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_reduce_pd

__m512d _mm512_reduce_pd(__m512d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducepd

 Intel® C++ Compiler Classic Developer Guide and Reference

1030

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results.

_mm512_reduce_round_pd

__m512d _mm512_reduce_round_pd(__m512d a, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreducepd

Extract the reduced argument of packed double-precision (64-bit) floating-point elements in a by the number
of bits specified by imm, and return the results.

_mm_mask_reduce_ps

__m128 _mm_mask_reduce_ps(__m128 src, __mmask8 k, __m128 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_reduce_ps

__m128 _mm_maskz_reduce_ps(__mmask8 k, __m128 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_reduce_ps

__m128 _mm_reduce_ps(__m128 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results.

_mm256_mask_reduce_ps

__m256 _mm256_mask_reduce_ps(__m256 src, __mmask8 k, __m256 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

Compiler Reference

1031

_mm256_maskz_reduce_ps

__m256 _mm256_maskz_reduce_ps(__mmask8 k, __m256 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_reduce_ps

__m256 _mm256_reduce_ps(__m256 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results.

_mm512_mask_reduce_ps

__m512 _mm512_mask_reduce_ps(__m512 src, __mmask16 k, __m512 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_mask_reduce_round_ps

__m512 _mm512_mask_reduce_round_ps(__m512 src, __mmask16 k, __m512 a, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_reduce_ps

__m512 _mm512_maskz_reduce_ps(__mmask16 k, __m512 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_maskz_reduce_round_ps

__m512 _mm512_maskz_reduce_round_ps(__mmask16 k, __m512 a, int imm, int rounding)
CPUID Flags: AVX512DQ

 Intel® C++ Compiler Classic Developer Guide and Reference

1032

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_reduce_ps

__m512 _mm512_reduce_ps(__m512 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results.

_mm512_reduce_round_ps

__m512 _mm512_reduce_round_ps(__m512 a, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreduceps

Extract the reduced argument of packed single-precision (32-bit) floating-point elements in a by the number
of bits specified by imm, and return the results.

_mm_mask_reduce_round_sd

__m128d _mm_mask_reduce_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int imm, int
rounding)

CPUID Flags: AVX512DQ

Instruction(s): vreducesd

Extract the reduced argument of the lower double-precision (64-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value using writemask k
(the element is copied from src when mask bit 0 is not set), and copy the upper element from b to the upper
element of dst.

_mm_mask_reduce_sd

__m128d _mm_mask_reduce_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducesd

Extract the reduced argument of the lower double-precision (64-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value using writemask k
(the element is copied from src when mask bit 0 is not set), and copy the upper element from b to the upper
element of dst.

_mm_maskz_reduce_round_sd

__m128d _mm_maskz_reduce_round_sd(__mmask8 k, __m128d a, __m128d b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreducesd

Compiler Reference

1033

Extract the reduced argument of the lower double-precision (64-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value using zeromask k
(the element is zeroed out when mask bit 0 is not set), and copy the upper element from b to the upper
element of dst.

_mm_maskz_reduce_sd

__m128d _mm_maskz_reduce_sd(__mmask8 k, __m128d a, __m128d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducesd

Extract the reduced argument of the lower double-precision (64-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value using zeromask k
(the element is zeroed out when mask bit 0 is not set), and copy the upper element from b to the upper
element of dst.

_mm_reduce_round_sd

__m128d _mm_reduce_round_sd(__m128d a, __m128d b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreducesd

Extract the reduced argument of the lower double-precision (64-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value, and copy the
upper element from b to the upper element of dst.

_mm_reduce_sd

__m128d _mm_reduce_sd(__m128d a, __m128d b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducesd

Extract the reduced argument of the lower double-precision (64-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value, and copy the
upper element from b to the upper element of dst.

_mm_mask_reduce_round_ss

__m128 _mm_mask_reduce_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int imm, int
rounding)

CPUID Flags: AVX512DQ

Instruction(s): vreducess

Extract the reduced argument of the lower single-precision (32-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value using writemask k
(the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from b to
the upper elements of dst.

_mm_mask_reduce_ss

__m128 _mm_mask_reduce_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducess

 Intel® C++ Compiler Classic Developer Guide and Reference

1034

Extract the reduced argument of the lower single-precision (32-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value using writemask k
(the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from b to
the upper elements of dst.

_mm_maskz_reduce_round_ss

__m128 _mm_maskz_reduce_round_ss(__mmask8 k, __m128 a, __m128 b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreducess

Extract the reduced argument of the lower single-precision (32-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value using zeromask k
(the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from b to the
upper elements of dst.

_mm_maskz_reduce_ss

__m128 _mm_maskz_reduce_ss(__mmask8 k, __m128 a, __m128 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducess

Extract the reduced argument of the lower single-precision (32-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value using zeromask k
(the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from b to the
upper elements of dst.

_mm_reduce_round_ss

__m128 _mm_reduce_round_ss(__m128 a, __m128 b, int imm, int rounding)
CPUID Flags: AVX512DQ

Instruction(s): vreducess

Extract the reduced argument of the lower single-precision (32-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value, and copy the
upper 3 packed elements from b to the upper elements of dst.

_mm_reduce_ss

__m128 _mm_reduce_ss(__m128 a, __m128 b, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vreducess

Extract the reduced argument of the lower single-precision (32-bit) floating-point element in a by the
number of bits specified by imm, store the result in the lower element of the return value, and copy the
upper 3 packed elements from b to the upper elements of dst.

_mm_mask_roundscale_pd

__m128d _mm_mask_roundscale_pd(__m128d src, __mmask8 k, __m128d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscalepd

Compiler Reference

1035

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified
by imm, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm_maskz_roundscale_pd

__m128d _mm_maskz_roundscale_pd(__mmask8 k, __m128d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscalepd

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified
by imm, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit
is not set).

_mm_roundscale_pd

__m128d _mm_roundscale_pd(__m128d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscalepd

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified
by imm, and return the results.

_mm256_mask_roundscale_pd

__m256d _mm256_mask_roundscale_pd(__m256d src, __mmask8 k, __m256d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscalepd

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified
by imm, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_roundscale_pd

__m256d _mm256_maskz_roundscale_pd(__mmask8 k, __m256d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscalepd

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified
by imm, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit
is not set).

_mm256_roundscale_pd

__m256d _mm256_roundscale_pd(__m256d a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscalepd

Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified
by imm, and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1036

_mm_mask_roundscale_ps

__m128 _mm_mask_roundscale_ps(__m128 src, __mmask8 k, __m128 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscaleps

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by
imm, and return the results using writemask k (elements are copied from src when the corresponding mask
bit is not set).

_mm_maskz_roundscale_ps

__m128 _mm_maskz_roundscale_ps(__mmask8 k, __m128 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscaleps

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by
imm, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_roundscale_ps

__m128 _mm_roundscale_ps(__m128 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscaleps

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by
imm, and return the results.

_mm256_mask_roundscale_ps

__m256 _mm256_mask_roundscale_ps(__m256 src, __mmask8 k, __m256 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscaleps

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by
imm, and return the results using writemask k (elements are copied from src when the corresponding mask
bit is not set).

_mm256_maskz_roundscale_ps

__m256 _mm256_maskz_roundscale_ps(__mmask8 k, __m256 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vrndscaleps

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by
imm, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_roundscale_ps

__m256 _mm256_roundscale_ps(__m256 a, int imm)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1037

Instruction(s): vrndscaleps

Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by
imm, and return the results.

_mm_mask_scalef_pd

__m128d _mm_mask_scalef_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefpd

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_scalef_pd

__m128d _mm_maskz_scalef_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefpd

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_scalef_pd

__m128d _mm_scalef_pd(__m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefpd

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and return the
results.

_mm256_mask_scalef_pd

__m256d _mm256_mask_scalef_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefpd

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_scalef_pd

__m256d _mm256_maskz_scalef_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefpd

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_scalef_pd

__m256d _mm256_scalef_pd(__m256d a, __m256d b)

 Intel® C++ Compiler Classic Developer Guide and Reference

1038

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefpd

Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and return the
results.

_mm_mask_scalef_ps

__m128 _mm_mask_scalef_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefps

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_scalef_ps

__m128 _mm_maskz_scalef_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefps

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_scalef_ps

__m128 _mm_scalef_ps(__m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefps

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and return the
results.

_mm256_mask_scalef_ps

__m256 _mm256_mask_scalef_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefps

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_scalef_ps

__m256 _mm256_maskz_scalef_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefps

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1039

_mm256_scalef_ps

__m256 _mm256_scalef_ps(__m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscalefps

Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and return the
results.

_mm256_mask_shuffle_f32x4

__m256 _mm256_mask_shuffle_f32x4(__m256 src, __mmask8 k, __m256 a, __m256 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshuff32x4

Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm from a
and b, and return the results using writemask k (elements are copied from src when the corresponding mask
bit is not set).

_mm256_maskz_shuffle_f32x4

__m256 _mm256_maskz_shuffle_f32x4(__mmask8 k, __m256 a, __m256 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshuff32x4

Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm from a
and b, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_shuffle_f32x4

__m256 _mm256_shuffle_f32x4(__m256 a, __m256 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshuff32x4

Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm from a
and b, and return the results.

_mm256_mask_shuffle_f64x2

__m256d _mm256_mask_shuffle_f64x2(__m256d src, __mmask8 k, __m256d a, __m256d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshuff64x2

Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm from a
and b, and return the results using writemask k (elements are copied from src when the corresponding mask
bit is not set).

_mm256_maskz_shuffle_f64x2

__m256d _mm256_maskz_shuffle_f64x2(__mmask8 k, __m256d a, __m256d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshuff64x2

 Intel® C++ Compiler Classic Developer Guide and Reference

1040

Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm from a
and b, and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm256_shuffle_f64x2

__m256d _mm256_shuffle_f64x2(__m256d a, __m256d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshuff64x2

Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm from a
and b, and return the results.

_mm_mask_shuffle_pd

__m128d _mm_mask_shuffle_pd(__m128d src, __mmask8 k, __m128d a, __m128d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufpd

Shuffle double-precision (64-bit) floating-point elements using the control in imm, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_shuffle_pd

__m128d _mm_maskz_shuffle_pd(__mmask8 k, __m128d a, __m128d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufpd

Shuffle double-precision (64-bit) floating-point elements using the control in imm, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_shuffle_pd

__m256d _mm256_mask_shuffle_pd(__m256d src, __mmask8 k, __m256d a, __m256d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufpd

Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_shuffle_pd

__m256d _mm256_maskz_shuffle_pd(__mmask8 k, __m256d a, __m256d b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufpd

Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_shuffle_ps

__m128 _mm_mask_shuffle_ps(__m128 src, __mmask8 k, __m128 a, __m128 b, const int imm)

Compiler Reference

1041

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufps

Shuffle single-precision (32-bit) floating-point elements in a using the control in imm, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_shuffle_ps

__m128 _mm_maskz_shuffle_ps(__mmask8 k, __m128 a, __m128 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufps

Shuffle single-precision (32-bit) floating-point elements in a using the control in imm, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_shuffle_ps

__m256 _mm256_mask_shuffle_ps(__m256 src, __mmask8 k, __m256 a, __m256 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufps

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_shuffle_ps

__m256 _mm256_maskz_shuffle_ps(__mmask8 k, __m256 a, __m256 b, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vshufps

Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_unpackhi_pd

__m128d _mm_mask_unpackhi_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpckhpd

Unpack and interleave double-precision (64-bit) floating-point elements from the high half of a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_unpackhi_pd

__m128d _mm_maskz_unpackhi_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpckhpd

Unpack and interleave double-precision (64-bit) floating-point elements from the high half of a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1042

_mm256_mask_unpackhi_pd

__m256d _mm256_mask_unpackhi_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpckhpd

Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit
lane in a and b, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_unpackhi_pd

__m256d _mm256_maskz_unpackhi_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpckhpd

Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit
lane in a and b, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_unpackhi_ps

__m128 _mm_mask_unpackhi_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpckhps

Unpack and interleave single-precision (32-bit) floating-point elements from the high half of a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_unpackhi_ps

__m128 _mm_maskz_unpackhi_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpckhps

Unpack and interleave single-precision (32-bit) floating-point elements from the high half of a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpackhi_ps

__m256 _mm256_mask_unpackhi_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpckhps

Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit
lane in a and b, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_unpackhi_ps

__m256 _mm256_maskz_unpackhi_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1043

Instruction(s): vunpckhps

Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit
lane in a and b, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_unpacklo_pd

__m128d _mm_mask_unpacklo_pd(__m128d src, __mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpcklpd

Unpack and interleave double-precision (64-bit) floating-point elements from the low half of a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_unpacklo_pd

__m128d _mm_maskz_unpacklo_pd(__mmask8 k, __m128d a, __m128d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpcklpd

Unpack and interleave double-precision (64-bit) floating-point elements from the low half of a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpacklo_pd

__m256d _mm256_mask_unpacklo_pd(__m256d src, __mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpcklpd

Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit
lane in a and b, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_unpacklo_pd

__m256d _mm256_maskz_unpacklo_pd(__mmask8 k, __m256d a, __m256d b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpcklpd

Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit
lane in a and b, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_unpacklo_ps

__m128 _mm_mask_unpacklo_ps(__m128 src, __mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpcklps

Unpack and interleave single-precision (32-bit) floating-point elements from the low half of a and b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1044

_mm_maskz_unpacklo_ps

__m128 _mm_maskz_unpacklo_ps(__mmask8 k, __m128 a, __m128 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpcklps

Unpack and interleave single-precision (32-bit) floating-point elements from the low half of a and b, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpacklo_ps

__m256 _mm256_mask_unpacklo_ps(__m256 src, __mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpcklps

Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane
in a and b, and return the results using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm256_maskz_unpacklo_ps

__m256 _mm256_maskz_unpacklo_ps(__mmask8 k, __m256 a, __m256 b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vunpcklps

Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane
in a and b, and return the results using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_alignr_epi32

__m128i _mm_alignr_epi32(__m128i a, __m128i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignd

Concatenate a and b into a 32-byte immediate result, shift the result right by count 32-bit elements, and
store the low 16 bytes (4 elements) in the return value.

_mm_mask_alignr_epi32

__m128i _mm_mask_alignr_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignd

Concatenate a and b into a 32-byte immediate result, shift the result right by count 32-bit elements, and
store the low 16 bytes (4 elements) in the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm_maskz_alignr_epi32

__m128i _mm_maskz_alignr_epi32(__mmask8 k, __m128i a, __m128i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1045

Instruction(s): valignd

Concatenate a and b into a 32-byte immediate result, shift the result right by count 32-bit elements, and
store the low 16 bytes (4 elements) in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_alignr_epi32

__m256i _mm256_alignr_epi32(__m256i a, __m256i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignd

Concatenate a and b into a 64-byte immediate result, shift the result right by count 32-bit elements, and
store the low 32 bytes (8 elements) in the return value.

_mm256_mask_alignr_epi32

__m256i _mm256_mask_alignr_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignd

Concatenate a and b into a 64-byte immediate result, shift the result right by count 32-bit elements, and
store the low 32 bytes (8 elements) in the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm256_maskz_alignr_epi32

__m256i _mm256_maskz_alignr_epi32(__mmask8 k, __m256i a, __m256i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignd

Concatenate a and b into a 64-byte immediate result, shift the result right by count 32-bit elements, and
store the low 32 bytes (8 elements) in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_alignr_epi64

__m128i _mm_alignr_epi64(__m128i a, __m128i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignq

Concatenate a and b into a 32-byte immediate result, shift the result right by count 64-bit elements, and
store the low 16 bytes (2 elements) in the return value.

_mm_mask_alignr_epi64

__m128i _mm_mask_alignr_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignq

Concatenate a and b into a 32-byte immediate result, shift the result right by count 64-bit elements, and
store the low 16 bytes (2 elements) in the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1046

_mm_maskz_alignr_epi64

__m128i _mm_maskz_alignr_epi64(__mmask8 k, __m128i a, __m128i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignq

Concatenate a and b into a 32-byte immediate result, shift the result right by count 64-bit elements, and
store the low 16 bytes (2 elements) in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_alignr_epi64

__m256i _mm256_alignr_epi64(__m256i a, __m256i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignq

Concatenate a and b into a 64-byte immediate result, shift the result right by count 64-bit elements, and
store the low 32 bytes (4 elements) in the return value.

_mm256_mask_alignr_epi64

__m256i _mm256_mask_alignr_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignq

Concatenate a and b into a 64-byte immediate result, shift the result right by count 64-bit elements, and
store the low 32 bytes (4 elements) in the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm256_maskz_alignr_epi64

__m256i _mm256_maskz_alignr_epi64(__mmask8 k, __m256i a, __m256i b, const int count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): valignq

Concatenate a and b into a 64-byte immediate result, shift the result right by count 64-bit elements, and
store the low 32 bytes (4 elements) in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_dbsad_epu8

__m128i _mm_dbsad_epu8(__m128i a, __m128i b, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vdbpsadbw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value.

_mm_mask_dbsad_epu8

__m128i _mm_mask_dbsad_epu8(__m128i src, __mmask8 k, __m128i a, __m128i b, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vdbpsadbw

Compiler Reference

1047

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm_maskz_dbsad_epu8

__m128i _mm_maskz_dbsad_epu8(__mmask8 k, __m128i a, __m128i b, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vdbpsadbw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm256_dbsad_epu8

__m256i _mm256_dbsad_epu8(__m256i a, __m256i b, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vdbpsadbw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value.

_mm256_mask_dbsad_epu8

__m256i _mm256_mask_dbsad_epu8(__m256i src, __mmask16 k, __m256i a, __m256i b, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vdbpsadbw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm256_maskz_dbsad_epu8

__m256i _mm256_maskz_dbsad_epu8(__mmask16 k, __m256i a, __m256i b, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vdbpsadbw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm512_dbsad_epu8

__m512i _mm512_dbsad_epu8(__m512i a, __m512i b, int imm)
CPUID Flags: AVX512BW

Instruction(s): vdbpsadbw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value.

 Intel® C++ Compiler Classic Developer Guide and Reference

1048

_mm512_mask_dbsad_epu8

__m512i _mm512_mask_dbsad_epu8(__m512i src, __mmask32 k, __m512i a, __m512i b, int imm)
CPUID Flags: AVX512BW

Instruction(s): vdbpsadbw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm512_maskz_dbsad_epu8

__m512i _mm512_maskz_dbsad_epu8(__mmask32 k, __m512i a, __m512i b, int imm)
CPUID Flags: AVX512BW

Instruction(s): vdbpsadbw

Compute the sum of absolute differences (SADs) of quadruplets of unsigned 8-bit integers in a compared to
those in b, and store the 16-bit results in the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm256_extracti32x4_epi32

__m128i _mm256_extracti32x4_epi32(__m256i a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vextracti32x4

Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with imm, and store the result in
the return value.

_mm256_mask_extracti32x4_epi32

__m128i _mm256_mask_extracti32x4_epi32(__m128i src, __mmask8 k, __m256i a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vextracti32x4

Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with imm, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_extracti32x4_epi32

__m128i _mm256_maskz_extracti32x4_epi32(__mmask8 k, __m256i a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vextracti32x4

Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with imm, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_extracti32x8_epi32

__m256i _mm512_extracti32x8_epi32(__m512i a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextracti32x8

Compiler Reference

1049

Extract 256 bits (composed of 8 packed 32-bit integers) from a, selected with imm, and store the result in
the return value.

_mm512_mask_extracti32x8_epi32

__m256i _mm512_mask_extracti32x8_epi32(__m256i src, __mmask8 k, __m512i a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextracti32x8

Extract 256 bits (composed of 8 packed 32-bit integers) from a, selected with imm, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_extracti32x8_epi32

__m256i _mm512_maskz_extracti32x8_epi32(__mmask8 k, __m512i a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextracti32x8

Extract 256 bits (composed of 8 packed 32-bit integers) from a, selected with imm, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_extracti64x2_epi64

__m128i _mm256_extracti64x2_epi64(__m256i a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vextracti64x2

Extract 128 bits (composed of 2 packed 64-bit integers) from a, selected with imm, and store the result in
the return value.

_mm256_mask_extracti64x2_epi64

__m128i _mm256_mask_extracti64x2_epi64(__m128i src, __mmask8 k, __m256i a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vextracti64x2

Extract 128 bits (composed of 2 packed 64-bit integers) from a, selected with imm, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_extracti64x2_epi64

__m128i _mm256_maskz_extracti64x2_epi64(__mmask8 k, __m256i a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vextracti64x2

Extract 128 bits (composed of 2 packed 64-bit integers) from a, selected with imm, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_extracti64x2_epi64

__m128i _mm512_extracti64x2_epi64(__m512i a, int imm)
CPUID Flags: AVX512DQ

 Intel® C++ Compiler Classic Developer Guide and Reference

1050

Instruction(s): vextracti64x2

Extract 128 bits (composed of 2 packed 64-bit integers) from a, selected with imm, and store the result in
the return value.

_mm512_mask_extracti64x2_epi64

__m128i _mm512_mask_extracti64x2_epi64(__m128i src, __mmask8 k, __m512i a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextracti64x2

Extract 128 bits (composed of 2 packed 64-bit integers) from a, selected with imm, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_extracti64x2_epi64

__m128i _mm512_maskz_extracti64x2_epi64(__mmask8 k, __m512i a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vextracti64x2

Extract 128 bits (composed of 2 packed 64-bit integers) from a, selected with imm, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_alignr_epi8

__m128i _mm_mask_alignr_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b, const int count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpalignr

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by count
bytes, and store the low 16 bytes in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_alignr_epi8

__m128i _mm_maskz_alignr_epi8(__mmask16 k, __m128i a, __m128i b, const int count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpalignr

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by count
bytes, and store the low 16 bytes in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_alignr_epi8

__m256i _mm256_mask_alignr_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b, const int count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpalignr

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by count
bytes, and store the low 16 bytes in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

Compiler Reference

1051

_mm256_maskz_alignr_epi8

__m256i _mm256_maskz_alignr_epi8(__mmask32 k, __m256i a, __m256i b, const int count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpalignr

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by count
bytes, and store the low 16 bytes in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_alignr_epi8

__m512i _mm512_alignr_epi8(__m512i a, __m512i b, const int count)
CPUID Flags: AVX512BW

Instruction(s): vpalignr

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by count
bytes, and store the low 16 bytes in the return value.

_mm512_mask_alignr_epi8

__m512i _mm512_mask_alignr_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b, const int count)
CPUID Flags: AVX512BW

Instruction(s): vpalignr

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by count
bytes, and store the low 16 bytes in the return value using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_maskz_alignr_epi8

__m512i _mm512_maskz_alignr_epi8(__mmask64 k, __m512i a, __m512i b, const int count)
CPUID Flags: AVX512BW

Instruction(s): vpalignr

Concatenate pairs of 16-byte blocks in a and b into a 32-byte temporary result, shift the result right by count
bytes, and store the low 16 bytes in the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_blend_epi8

__m128i _mm_mask_blend_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpblendmb

Blend packed 8-bit integers from a and b using control mask k, and return the results.

_mm256_mask_blend_epi8

__m256i _mm256_mask_blend_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpblendmb

 Intel® C++ Compiler Classic Developer Guide and Reference

1052

Blend packed 8-bit integers from a and b using control mask k, and return the results.

_mm512_mask_blend_epi8

__m512i _mm512_mask_blend_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpblendmb

Blend packed 8-bit integers from a and b using control mask k, and return the results.

_mm_mask_blend_epi32

__m128i _mm_mask_blend_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpblendmd

Blend packed 32-bit integers from a and b using control mask k, and return the results.

_mm256_mask_blend_epi32

__m256i _mm256_mask_blend_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpblendmd

Blend packed 32-bit integers from a and b using control mask k, and return the results.

_mm_mask_blend_epi64

__m128i _mm_mask_blend_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpblendmq

Blend packed 64-bit integers from a and b using control mask k, and return the results.

_mm256_mask_blend_epi64

__m256i _mm256_mask_blend_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpblendmq

Blend packed 64-bit integers from a and b using control mask k, and return the results.

_mm_mask_blend_epi16

__m128i _mm_mask_blend_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpblendmw

Blend packed 16-bit integers from a and b using control mask k, and return the results.

_mm256_mask_blend_epi16

__m256i _mm256_mask_blend_epi16(__mmask16 k, __m256i a, __m256i b)

Compiler Reference

1053

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpblendmw

Blend packed 16-bit integers from a and b using control mask k, and return the results.

_mm512_mask_blend_epi16

__m512i _mm512_mask_blend_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpblendmw

Blend packed 16-bit integers from a and b using control mask k, and return the results.

_mm_mask_broadcastb_epi8

__m128i _mm_mask_broadcastb_epi8(__m128i src, __mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastb

Broadcast the low packed 8-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_broadcastb_epi8

__m128i _mm_maskz_broadcastb_epi8(__mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastb

Broadcast the low packed 8-bit integer from a to all elements of the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm256_mask_broadcastb_epi8

__m256i _mm256_mask_broadcastb_epi8(__m256i src, __mmask32 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastb

Broadcast the low packed 8-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcastb_epi8

__m256i _mm256_maskz_broadcastb_epi8(__mmask32 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastb

Broadcast the low packed 8-bit integer from a to all elements of the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm512_broadcastb_epi8

__m512i _mm512_broadcastb_epi8(__m128i a)
CPUID Flags: AVX512BW

 Intel® C++ Compiler Classic Developer Guide and Reference

1054

Instruction(s): vpbroadcastb

Broadcast the low packed 8-bit integer from a to all elements of the return value.

_mm512_mask_broadcastb_epi8

__m512i _mm512_mask_broadcastb_epi8(__m512i src, __mmask64 k, __m128i a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastb

Broadcast the low packed 8-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcastb_epi8

__m512i _mm512_maskz_broadcastb_epi8(__mmask64 k, __m128i a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastb

Broadcast the low packed 8-bit integer from a to all elements of the return value using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm_mask_broadcastd_epi32

__m128i _mm_mask_broadcastd_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastd

Broadcast the low packed 32-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_broadcastd_epi32

__m128i _mm_maskz_broadcastd_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastd

Broadcast the low packed 32-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_broadcastd_epi32

__m256i _mm256_mask_broadcastd_epi32(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastd

Broadcast the low packed 32-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcastd_epi32

__m256i _mm256_maskz_broadcastd_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1055

Instruction(s): vpbroadcastd

Broadcast the low packed 32-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_broadcastmb_epi64

__m128i _mm_broadcastmb_epi64(__mmask8 k)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpbroadcastmb2q

Broadcast the low 8-bits from input mask k to all 64-bit elements of the return value.

_mm256_broadcastmb_epi64

__m256i _mm256_broadcastmb_epi64(__mmask8 k)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpbroadcastmb2q

Broadcast the low 8-bits from input mask k to all 64-bit elements of the return value.

_mm_broadcastmw_epi32

__m128i _mm_broadcastmw_epi32(__mmask16 k)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpbroadcastmw2d

Broadcast the low 16-bits from input mask k to all 32-bit elements of the return value.

_mm256_broadcastmw_epi32

__m256i _mm256_broadcastmw_epi32(__mmask16 k)
CPUID Flags: AVX512CD, AVX512VL

Instruction(s): vpbroadcastmw2d

Broadcast the low 16-bits from input mask k to all 32-bit elements of the return value.

_mm_mask_broadcastq_epi64

__m128i _mm_mask_broadcastq_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastq

Broadcast the low packed 64-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_broadcastq_epi64

__m128i _mm_maskz_broadcastq_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastq

 Intel® C++ Compiler Classic Developer Guide and Reference

1056

Broadcast the low packed 64-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_broadcastq_epi64

__m256i _mm256_mask_broadcastq_epi64(__m256i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastq

Broadcast the low packed 64-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcastq_epi64

__m256i _mm256_maskz_broadcastq_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastq

Broadcast the low packed 64-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_broadcastw_epi16

__m128i _mm_mask_broadcastw_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_broadcastw_epi16

__m128i _mm_maskz_broadcastw_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_broadcastw_epi16

__m256i _mm256_mask_broadcastw_epi16(__m256i src, __mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_broadcastw_epi16

__m256i _mm256_maskz_broadcastw_epi16(__mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Compiler Reference

1057

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_broadcastw_epi16

__m512i _mm512_broadcastw_epi16(__m128i a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value.

_mm512_mask_broadcastw_epi16

__m512i _mm512_mask_broadcastw_epi16(__m512i src, __mmask32 k, __m128i a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcastw_epi16

__m512i _mm512_maskz_broadcastw_epi16(__mmask32 k, __m128i a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_compress_epi32

__m128i _mm_mask_compress_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressd

Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to the
return value, and pass through the remaining elements from src.

_mm_maskz_compress_epi32

__m128i _mm_maskz_compress_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressd

Contiguously store the active 32-bit integers in a (those with their respective bit set in zeromask k) to the
return value, and set the remaining elements to zero.

_mm256_mask_compress_epi32

__m256i _mm256_mask_compress_epi32(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

1058

Instruction(s): vpcompressd

Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to the
return value, and pass through the remaining elements from src.

_mm256_maskz_compress_epi32

__m256i _mm256_maskz_compress_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressd

Contiguously store the active 32-bit integers in a (those with their respective bit set in zeromask k) to the
return value, and set the remaining elements to zero.

_mm_mask_compress_epi64

__m128i _mm_mask_compress_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressq

Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to the
return value, and pass through the remaining elements from src.

_mm_maskz_compress_epi64

__m128i _mm_maskz_compress_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressq

Contiguously store the active 64-bit integers in a (those with their respective bit set in zeromask k) to the
return value, and set the remaining elements to zero.

_mm256_mask_compress_epi64

__m256i _mm256_mask_compress_epi64(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressq

Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to the
return value, and pass through the remaining elements from src.

_mm256_maskz_compress_epi64

__m256i _mm256_maskz_compress_epi64(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressq

Contiguously store the active 64-bit integers in a (those with their respective bit set in zeromask k) to the
return value, and set the remaining elements to zero.

_mm256_mask_permutexvar_epi32

__m256i _mm256_mask_permutexvar_epi32(__m256i src, __mmask8 k, __m256i idx, __m256i a)

Compiler Reference

1059

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermd

Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_epi32

__m256i _mm256_maskz_permutexvar_epi32(__mmask8 k, __m256i idx, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermd

Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_permutexvar_epi32

__m256i _mm256_permutexvar_epi32(__m256i idx, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermd

Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and return the results.

_mm_mask2_permutex2var_epi32

__m128i _mm_mask2_permutex2var_epi32(__m128i a, __m128i idx, __mmask8 k, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2d

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm256_mask2_permutex2var_epi32

__m256i _mm256_mask2_permutex2var_epi32(__m256i a, __m256i idx, __mmask8 k, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2d

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm_maskz_permutex2var_epi32

__m128i _mm_maskz_permutex2var_epi32(__mmask8 k, __m128i a, __m128i idx, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2d, vpermt2d

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_permutex2var_epi32

__m128i _mm_permutex2var_epi32(__m128i a, __m128i idx, __m128i b)

 Intel® C++ Compiler Classic Developer Guide and Reference

1060

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2d, vpermt2d

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results.

_mm256_maskz_permutex2var_epi32

__m256i _mm256_maskz_permutex2var_epi32(__mmask8 k, __m256i a, __m256i idx, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2d, vpermt2d

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_permutex2var_epi32

__m256i _mm256_permutex2var_epi32(__m256i a, __m256i idx, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2d, vpermt2d

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results.

_mm_mask2_permutex2var_epi64

__m128i _mm_mask2_permutex2var_epi64(__m128i a, __m128i idx, __mmask8 k, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2q

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm256_mask2_permutex2var_epi64

__m256i _mm256_mask2_permutex2var_epi64(__m256i a, __m256i idx, __mmask8 k, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2q

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm_maskz_permutex2var_epi64

__m128i _mm_maskz_permutex2var_epi64(__mmask8 k, __m128i a, __m128i idx, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2q, vpermt2q

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1061

_mm_permutex2var_epi64

__m128i _mm_permutex2var_epi64(__m128i a, __m128i idx, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2q, vpermt2q

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results.

_mm256_maskz_permutex2var_epi64

__m256i _mm256_maskz_permutex2var_epi64(__mmask8 k, __m256i a, __m256i idx, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2q, vpermt2q

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_permutex2var_epi64

__m256i _mm256_permutex2var_epi64(__m256i a, __m256i idx, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermi2q, vpermt2q

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results.

_mm_mask2_permutex2var_epi16

__m128i _mm_mask2_permutex2var_epi16(__m128i a, __m128i idx, __mmask8 k, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermi2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm256_mask2_permutex2var_epi16

__m256i _mm256_mask2_permutex2var_epi16(__m256i a, __m256i idx, __mmask16 k, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermi2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_epi16

__m512i _mm512_mask2_permutex2var_epi16(__m512i a, __m512i idx, __mmask32 k, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpermi2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from idx when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1062

_mm_maskz_permutex2var_epi16

__m128i _mm_maskz_permutex2var_epi16(__mmask8 k, __m128i a, __m128i idx, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermi2w, vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_permutex2var_epi16

__m128i _mm_permutex2var_epi16(__m128i a, __m128i idx, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermi2w, vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results.

_mm256_maskz_permutex2var_epi16

__m256i _mm256_maskz_permutex2var_epi16(__mmask16 k, __m256i a, __m256i idx, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermi2w, vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_permutex2var_epi16

__m256i _mm256_permutex2var_epi16(__m256i a, __m256i idx, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermi2w, vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results.

_mm512_maskz_permutex2var_epi16

__m512i _mm512_maskz_permutex2var_epi16(__mmask32 k, __m512i a, __m512i idx, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpermi2w, vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutex2var_epi16

__m512i _mm512_permutex2var_epi16(__m512i a, __m512i idx, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpermi2w, vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results.

Compiler Reference

1063

_mm256_mask_permutex_epi64

__m256i _mm256_mask_permutex_epi64(__m256i src, __mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermq

Shuffle 64-bit integers in a across lanes lanes using the control in imm, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_permutexvar_epi64

__m256i _mm256_mask_permutexvar_epi64(__m256i src, __mmask8 k, __m256i idx, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermq

Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_permutex_epi64

__m256i _mm256_maskz_permutex_epi64(__mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermq

Shuffle 64-bit integers in a across lanes using the control in imm, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_epi64

__m256i _mm256_maskz_permutexvar_epi64(__mmask8 k, __m256i idx, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermq

Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_permutex_epi64

__m256i _mm256_permutex_epi64(__m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermq

Shuffle 64-bit integers in a across lanes using the control in imm, and return the results.

_mm256_permutexvar_epi64

__m256i _mm256_permutexvar_epi64(__m256i idx, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermq

Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1064

_mm_mask_permutex2var_epi32

__m128i _mm_mask_permutex2var_epi32(__m128i a, __mmask8 k, __m128i idx, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermt2d

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex2var_epi32

__m256i _mm256_mask_permutex2var_epi32(__m256i a, __mmask8 k, __m256i idx, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermt2d

Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm_mask_permutex2var_epi64

__m128i _mm_mask_permutex2var_epi64(__m128i a, __mmask8 k, __m128i idx, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermt2q

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex2var_epi64

__m256i _mm256_mask_permutex2var_epi64(__m256i a, __mmask8 k, __m256i idx, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpermt2q

Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm_mask_permutex2var_epi16

__m128i _mm_mask_permutex2var_epi16(__m128i a, __mmask8 k, __m128i idx, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask_permutex2var_epi16

__m256i _mm256_mask_permutex2var_epi16(__m256i a, __mmask16 k, __m256i idx, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from a when the corresponding mask bit is not set).

Compiler Reference

1065

_mm512_mask_permutex2var_epi16

__m512i _mm512_mask_permutex2var_epi16(__m512i a, __mmask32 k, __m512i idx, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpermt2w

Shuffle 16-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the results using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm_mask_permutexvar_epi16

__m128i _mm_mask_permutexvar_epi16(__m128i src, __mmask8 k, __m128i idx, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_permutexvar_epi16

__m128i _mm_maskz_permutexvar_epi16(__mmask8 k, __m128i idx, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_permutexvar_epi16

__m128i _mm_permutexvar_epi16(__m128i idx, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results.

_mm256_mask_permutexvar_epi16

__m256i _mm256_mask_permutexvar_epi16(__m256i src, __mmask16 k, __m256i idx, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_epi16

__m256i _mm256_maskz_permutexvar_epi16(__mmask16 k, __m256i idx, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1066

_mm256_permutexvar_epi16

__m256i _mm256_permutexvar_epi16(__m256i idx, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results.

_mm512_mask_permutexvar_epi16

__m512i _mm512_mask_permutexvar_epi16(__m512i src, __mmask32 k, __m512i idx, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutexvar_epi16

__m512i _mm512_maskz_permutexvar_epi16(__mmask32 k, __m512i idx, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutexvar_epi16

__m512i _mm512_permutexvar_epi16(__m512i idx, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpermw

Shuffle 16-bit integers in a across lanes using the corresponding index in idx, and return the results.

_mm_mask_expand_epi32

__m128i _mm_mask_expand_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandd

Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_expand_epi32

__m128i _mm_maskz_expand_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandd

Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1067

_mm256_mask_expand_epi32

__m256i _mm256_mask_expand_epi32(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandd

Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_expand_epi32

__m256i _mm256_maskz_expand_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandd

Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_expand_epi64

__m128i _mm_mask_expand_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandq

Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_expand_epi64

__m128i _mm_maskz_expand_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandq

Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_expand_epi64

__m256i _mm256_mask_expand_epi64(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandq

Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_expand_epi64

__m256i _mm256_maskz_expand_epi64(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpexpandq

Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1068

_mm_movm_epi8

__m128i _mm_movm_epi8(__mmask16 k)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovm2b

Set each packed 8-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm256_movm_epi8

__m256i _mm256_movm_epi8(__mmask32 k)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovm2b

Set each packed 8-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm512_movm_epi8

__m512i _mm512_movm_epi8(__mmask64 k)
CPUID Flags: AVX512BW

Instruction(s): vpmovm2b

Set each packed 8-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm_movm_epi32

__m128i _mm_movm_epi32(__mmask8 k)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmovm2d

Set each packed 32-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm256_movm_epi32

__m256i _mm256_movm_epi32(__mmask8 k)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmovm2d

Set each packed 32-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm512_movm_epi32

__m512i _mm512_movm_epi32(__mmask16 k)
CPUID Flags: AVX512DQ

Instruction(s): vpmovm2d

Set each packed 32-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

Compiler Reference

1069

_mm_movm_epi64

__m128i _mm_movm_epi64(__mmask8 k)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmovm2q

Set each packed 64-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm256_movm_epi64

__m256i _mm256_movm_epi64(__mmask8 k)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmovm2q

Set each packed 64-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm512_movm_epi64

__m512i _mm512_movm_epi64(__mmask8 k)
CPUID Flags: AVX512DQ

Instruction(s): vpmovm2q

Set each packed 64-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm_movm_epi16

__m128i _mm_movm_epi16(__mmask8 k)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovm2w

Set each packed 16-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm256_movm_epi16

__m256i _mm256_movm_epi16(__mmask16 k)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovm2w

Set each packed 16-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm512_movm_epi16

__m512i _mm512_movm_epi16(__mmask32 k)
CPUID Flags: AVX512BW

Instruction(s): vpmovm2w

 Intel® C++ Compiler Classic Developer Guide and Reference

1070

Set each packed 16-bit integer in the return value to all ones or all zeros based on the value of the
corresponding bit in k.

_mm512_sad_epu8

__m512i _mm512_sad_epu8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpsadbw

Compute the absolute differences of packed unsigned 8-bit integers in a and b, then horizontally sum each
consecutive 8 differences to produce four unsigned 16-bit integers, and pack these unsigned 16-bit integers
in the low 16 bits of 64-bit elements in the return value.

_mm_mask_shuffle_epi8

__m128i _mm_mask_shuffle_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshufb

Shuffle packed 8-bit integers in a according to shuffle control mask in the corresponding 8-bit element of b,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm_maskz_shuffle_epi8

__m128i _mm_maskz_shuffle_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshufb

Shuffle packed 8-bit integers in a according to shuffle control mask in the corresponding 8-bit element of b,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm256_mask_shuffle_epi8

__m256i _mm256_mask_shuffle_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshufb

Shuffle packed 8-bit integers in a according to shuffle control mask in the corresponding 8-bit element of b,
and return the results using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm256_maskz_shuffle_epi8

__m256i _mm256_maskz_shuffle_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshufb

Shuffle packed 8-bit integers in a according to shuffle control mask in the corresponding 8-bit element of b,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

Compiler Reference

1071

_mm512_mask_shuffle_epi8

__m512i _mm512_mask_shuffle_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpshufb

Shuffle 8-bit integers in a within 128-bit lanes using the control in the corresponding 8-bit element of b, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_shuffle_epi8

__m512i _mm512_maskz_shuffle_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpshufb

Shuffle packed 8-bit integers in a according to shuffle control mask in the corresponding 8-bit element of b,
and return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_shuffle_epi8

__m512i _mm512_shuffle_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpshufb

Shuffle packed 8-bit integers in a according to shuffle control mask in the corresponding 8-bit element of b,
and return the results.

_mm_mask_shuffle_epi32

__m128i _mm_mask_shuffle_epi32(__m128i src, __mmask8 k, __m128i a, _MM_PERM_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpshufd

Shuffle 32-bit integers in a using the control in imm, and return the results using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm_maskz_shuffle_epi32

__m128i _mm_maskz_shuffle_epi32(__mmask8 k, __m128i a, _MM_PERM_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpshufd

Shuffle 32-bit integers in a using the control in imm, and return the results using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_shuffle_epi32

__m256i _mm256_mask_shuffle_epi32(__m256i src, __mmask8 k, __m256i a, _MM_PERM_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpshufd

 Intel® C++ Compiler Classic Developer Guide and Reference

1072

Shuffle 32-bit integers in a within 128-bit lanes using the control in imm, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_shuffle_epi32

__m256i _mm256_maskz_shuffle_epi32(__mmask8 k, __m256i a, _MM_PERM_ENUM imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpshufd

Shuffle 32-bit integers in a within 128-bit lanes using the control in imm, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_shufflehi_epi16

__m128i _mm_mask_shufflehi_epi16(__m128i src, __mmask8 k, __m128i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshufhw

Shuffle 16-bit integers in the high 64 bits of a using the control in imm. Store the results in the high 64 bits
of the return value, with the low 64 bits being copied from from a to dst, using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm_maskz_shufflehi_epi16

__m128i _mm_maskz_shufflehi_epi16(__mmask8 k, __m128i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshufhw

Shuffle 16-bit integers in the high 64 bits of a using the control in imm. Store the results in the high 64 bits
of the return value, with the low 64 bits being copied from from a to dst, using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_shufflehi_epi16

__m256i _mm256_mask_shufflehi_epi16(__m256i src, __mmask16 k, __m256i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshufhw

Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the high 64 bits of 128-bit lanes of the return value, with the low 64 bits of 128-bit lanes being copied from
from a to dst, using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_shufflehi_epi16

__m256i _mm256_maskz_shufflehi_epi16(__mmask16 k, __m256i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshufhw

Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the high 64 bits of 128-bit lanes of the return value, with the low 64 bits of 128-bit lanes being copied from
from a to dst, using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1073

_mm512_mask_shufflehi_epi16

__m512i _mm512_mask_shufflehi_epi16(__m512i src, __mmask32 k, __m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpshufhw

Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the high 64 bits of 128-bit lanes of the return value, with the low 64 bits of 128-bit lanes being copied from
from a to dst, using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_shufflehi_epi16

__m512i _mm512_maskz_shufflehi_epi16(__mmask32 k, __m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpshufhw

Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the high 64 bits of 128-bit lanes of the return value, with the low 64 bits of 128-bit lanes being copied from
from a to dst, using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_shufflehi_epi16

__m512i _mm512_shufflehi_epi16(__m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpshufhw

Shuffle 16-bit integers in the high 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the high 64 bits of 128-bit lanes of the return value, with the low 64 bits of 128-bit lanes being copied from
from a to dst.

_mm_mask_shufflelo_epi16

__m128i _mm_mask_shufflelo_epi16(__m128i src, __mmask8 k, __m128i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshuflw

Shuffle 16-bit integers in the low 64 bits of a using the control in imm. Store the results in the low 64 bits of
the return value, with the high 64 bits being copied from from a to dst, using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm_maskz_shufflelo_epi16

__m128i _mm_maskz_shufflelo_epi16(__mmask8 k, __m128i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshuflw

Shuffle 16-bit integers in the low 64 bits of a using the control in imm. Store the results in the low 64 bits of
the return value, with the high 64 bits being copied from from a to dst, using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_mask_shufflelo_epi16

__m256i _mm256_mask_shufflelo_epi16(__m256i src, __mmask16 k, __m256i a, int imm)

 Intel® C++ Compiler Classic Developer Guide and Reference

1074

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshuflw

Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the low 64 bits of 128-bit lanes of the return value, with the high 64 bits of 128-bit lanes being copied from
from a to dst, using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_shufflelo_epi16

__m256i _mm256_maskz_shufflelo_epi16(__mmask16 k, __m256i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpshuflw

Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the low 64 bits of 128-bit lanes of the return value, with the high 64 bits of 128-bit lanes being copied from
from a to dst, using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_shufflelo_epi16

__m512i _mm512_mask_shufflelo_epi16(__m512i src, __mmask32 k, __m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpshuflw

Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the low 64 bits of 128-bit lanes of the return value, with the high 64 bits of 128-bit lanes being copied from
from a to dst, using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_shufflelo_epi16

__m512i _mm512_maskz_shufflelo_epi16(__mmask32 k, __m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpshuflw

Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the low 64 bits of 128-bit lanes of the return value, with the high 64 bits of 128-bit lanes being copied from
from a to dst, using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_shufflelo_epi16

__m512i _mm512_shufflelo_epi16(__m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpshuflw

Shuffle 16-bit integers in the low 64 bits of 128-bit lanes of a using the control in imm. Store the results in
the low 64 bits of 128-bit lanes of the return value, with the high 64 bits of 128-bit lanes being copied from
from a to dst.

_mm_mask_unpackhi_epi8

__m128i _mm_mask_unpackhi_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpckhbw

Compiler Reference

1075

Unpack and interleave 8-bit integers from the high half of a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_unpackhi_epi8

__m128i _mm_maskz_unpackhi_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpckhbw

Unpack and interleave 8-bit integers from the high half of a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpackhi_epi8

__m256i _mm256_mask_unpackhi_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpckhbw

Unpack and interleave 8-bit integers from the high half of each 128-bit lane in a and b, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_epi8

__m256i _mm256_maskz_unpackhi_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpckhbw

Unpack and interleave 8-bit integers from the high half of each 128-bit lane in a and b, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_unpackhi_epi8

__m512i _mm512_mask_unpackhi_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpckhbw

Unpack and interleave 8-bit integers from the high half of each 128-bit lane in a and b, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpackhi_epi8

__m512i _mm512_maskz_unpackhi_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpckhbw

Unpack and interleave 8-bit integers from the high half of each 128-bit lane in a and b, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpackhi_epi8

__m512i _mm512_unpackhi_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

 Intel® C++ Compiler Classic Developer Guide and Reference

1076

Instruction(s): vpunpckhbw

Unpack and interleave 8-bit integers from the high half of each 128-bit lane in a and b, and return the
results.

_mm_mask_unpackhi_epi32

__m128i _mm_mask_unpackhi_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckhdq

Unpack and interleave 32-bit integers from the high half of a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_unpackhi_epi32

__m128i _mm_maskz_unpackhi_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckhdq

Unpack and interleave 32-bit integers from the high half of a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpackhi_epi32

__m256i _mm256_mask_unpackhi_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckhdq

Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_epi32

__m256i _mm256_maskz_unpackhi_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckhdq

Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_unpackhi_epi64

__m128i _mm_mask_unpackhi_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckhqdq

Unpack and interleave 64-bit integers from the high half of a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_unpackhi_epi64

__m128i _mm_maskz_unpackhi_epi64(__mmask8 k, __m128i a, __m128i b)

Compiler Reference

1077

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckhqdq

Unpack and interleave 64-bit integers from the high half of a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpackhi_epi64

__m256i _mm256_mask_unpackhi_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckhqdq

Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_unpackhi_epi64

__m256i _mm256_maskz_unpackhi_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckhqdq

Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_unpackhi_epi16

__m128i _mm_mask_unpackhi_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpckhwd

Unpack and interleave 16-bit integers from the high half of a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_unpackhi_epi16

__m128i _mm_maskz_unpackhi_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpckhwd

Unpack and interleave 16-bit integers from the high half of a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpackhi_epi16

__m256i _mm256_mask_unpackhi_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpckhwd

Unpack and interleave 16-bit integers from the high half of each 128-bit lane in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1078

_mm256_maskz_unpackhi_epi16

__m256i _mm256_maskz_unpackhi_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpckhwd

Unpack and interleave 16-bit integers from the high half of each 128-bit lane in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_unpackhi_epi16

__m512i _mm512_mask_unpackhi_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpckhwd

Unpack and interleave 16-bit integers from the high half of each 128-bit lane in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpackhi_epi16

__m512i _mm512_maskz_unpackhi_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpckhwd

Unpack and interleave 16-bit integers from the high half of each 128-bit lane in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpackhi_epi16

__m512i _mm512_unpackhi_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpckhwd

Unpack and interleave 16-bit integers from the high half of each 128-bit lane in a and b, and return the
results.

_mm_mask_unpacklo_epi8

__m128i _mm_mask_unpacklo_epi8(__m128i src, __mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpcklbw

Unpack and interleave 8-bit integers from the low half of a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_unpacklo_epi8

__m128i _mm_maskz_unpacklo_epi8(__mmask16 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpcklbw

Unpack and interleave 8-bit integers from the low half of a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1079

_mm256_mask_unpacklo_epi8

__m256i _mm256_mask_unpacklo_epi8(__m256i src, __mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpcklbw

Unpack and interleave 8-bit integers from the low half of each 128-bit lane in a and b, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_epi8

__m256i _mm256_maskz_unpacklo_epi8(__mmask32 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpcklbw

Unpack and interleave 8-bit integers from the low half of each 128-bit lane in a and b, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_unpacklo_epi8

__m512i _mm512_mask_unpacklo_epi8(__m512i src, __mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpcklbw

Unpack and interleave 8-bit integers from the low half of each 128-bit lane in a and b, and return the results
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpacklo_epi8

__m512i _mm512_maskz_unpacklo_epi8(__mmask64 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpcklbw

Unpack and interleave 8-bit integers from the low half of each 128-bit lane in a and b, and return the results
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpacklo_epi8

__m512i _mm512_unpacklo_epi8(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpcklbw

Unpack and interleave 8-bit integers from the low half of each 128-bit lane in a and b, and return the results.

_mm_mask_unpacklo_epi32

__m128i _mm_mask_unpacklo_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckldq

Unpack and interleave 32-bit integers from the low half of a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1080

_mm_maskz_unpacklo_epi32

__m128i _mm_maskz_unpacklo_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckldq

Unpack and interleave 32-bit integers from the low half of a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpacklo_epi32

__m256i _mm256_mask_unpacklo_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckldq

Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_epi32

__m256i _mm256_maskz_unpacklo_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpckldq

Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_unpacklo_epi64

__m128i _mm_mask_unpacklo_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpcklqdq

Unpack and interleave 64-bit integers from the low half of a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_unpacklo_epi64

__m128i _mm_maskz_unpacklo_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpcklqdq

Unpack and interleave 64-bit integers from the low half of a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpacklo_epi64

__m256i _mm256_mask_unpacklo_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpcklqdq

Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1081

_mm256_maskz_unpacklo_epi64

__m256i _mm256_maskz_unpacklo_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpunpcklqdq

Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_unpacklo_epi16

__m128i _mm_mask_unpacklo_epi16(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpcklwd

Unpack and interleave 16-bit integers from the low half of a and b, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_unpacklo_epi16

__m128i _mm_maskz_unpacklo_epi16(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpcklwd

Unpack and interleave 16-bit integers from the low half of a and b, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_unpacklo_epi16

__m256i _mm256_mask_unpacklo_epi16(__m256i src, __mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpcklwd

Unpack and interleave 16-bit integers from the low half of each 128-bit lane in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_unpacklo_epi16

__m256i _mm256_maskz_unpacklo_epi16(__mmask16 k, __m256i a, __m256i b)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpunpcklwd

Unpack and interleave 16-bit integers from the low half of each 128-bit lane in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_unpacklo_epi16

__m512i _mm512_mask_unpacklo_epi16(__m512i src, __mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpcklwd

Unpack and interleave 16-bit integers from the low half of each 128-bit lane in a and b, and return the
results using writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1082

_mm512_maskz_unpacklo_epi16

__m512i _mm512_maskz_unpacklo_epi16(__mmask32 k, __m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpcklwd

Unpack and interleave 16-bit integers from the low half of each 128-bit lane in a and b, and return the
results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpacklo_epi16

__m512i _mm512_unpacklo_epi16(__m512i a, __m512i b)
CPUID Flags: AVX512BW

Instruction(s): vpunpcklwd

Unpack and interleave 16-bit integers from the low half of each 128-bit lane in a and b, and return the
results.

_mm512_kunpackd

__mmask64 _mm512_kunpackd(__mmask64 a, __mmask64 b)
CPUID Flags: AVX512BW

Instruction(s): kunpckdq

Unpack and interleave 32 bits from masks a and b, and return the 64-bit result.

_mm512_kunpackw

__mmask32 _mm512_kunpackw(__mmask32 a, __mmask32 b)
CPUID Flags: AVX512BW

Instruction(s): kunpckwd

Unpack and interleave 16 bits from masks a and b, and store the 32-bit result in k.

_mm_fpclass_pd_mask

__mmask8 _mm_fpclass_pd_mask(__m128d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vfpclasspd

Test packed double-precision (64-bit) floating-point elements in a for special categories specified by imm,
and and put each result in the corresponding bit of the returned mask value.

_mm_mask_fpclass_pd_mask

__mmask8 _mm_mask_fpclass_pd_mask(__mmask8 k1, __m128d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vfpclasspd

Test packed double-precision (64-bit) floating-point elements in a for special categories specified by imm,
and and put each result in the corresponding bit of the returned mask value using zeromask k1 (elements
are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1083

_mm256_fpclass_pd_mask

__mmask8 _mm256_fpclass_pd_mask(__m256d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vfpclasspd

Test packed double-precision (64-bit) floating-point elements in a for special categories specified by imm,
and and put each result in the corresponding bit of the returned mask value.

_mm256_mask_fpclass_pd_mask

__mmask8 _mm256_mask_fpclass_pd_mask(__mmask8 k1, __m256d a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vfpclasspd

Test packed double-precision (64-bit) floating-point elements in a for special categories specified by imm,
and and put each result in the corresponding bit of the returned mask value using zeromask k1 (elements
are zeroed out when the corresponding mask bit is not set).

_mm512_fpclass_pd_mask

__mmask8 _mm512_fpclass_pd_mask(__m512d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vfpclasspd

Test packed double-precision (64-bit) floating-point elements in a for special categories specified by imm,
and and put each result in the corresponding bit of the returned mask value.

_mm512_mask_fpclass_pd_mask

__mmask8 _mm512_mask_fpclass_pd_mask(__mmask8 k1, __m512d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vfpclasspd

Test packed double-precision (64-bit) floating-point elements in a for special categories specified by imm,
and and put each result in the corresponding bit of the returned mask value using zeromask k1 (elements
are zeroed out when the corresponding mask bit is not set).

_mm_fpclass_ps_mask

__mmask8 _mm_fpclass_ps_mask(__m128 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vfpclassps

Test packed single-precision (32-bit) floating-point elements in a for special categories specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm_mask_fpclass_ps_mask

__mmask8 _mm_mask_fpclass_ps_mask(__mmask8 k1, __m128 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vfpclassps

 Intel® C++ Compiler Classic Developer Guide and Reference

1084

Test packed single-precision (32-bit) floating-point elements in a for special categories specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k1 (elements are
zeroed out when the corresponding mask bit is not set).

_mm256_fpclass_ps_mask

__mmask8 _mm256_fpclass_ps_mask(__m256 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vfpclassps

Test packed single-precision (32-bit) floating-point elements in a for special categories specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm256_mask_fpclass_ps_mask

__mmask8 _mm256_mask_fpclass_ps_mask(__mmask8 k1, __m256 a, int imm)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vfpclassps

Test packed single-precision (32-bit) floating-point elements in a for special categories specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k1 (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_fpclass_ps_mask

__mmask16 _mm512_fpclass_ps_mask(__m512 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vfpclassps

Test packed single-precision (32-bit) floating-point elements in a for special categories specified by imm, and
and put each result in the corresponding bit of the returned mask value.

_mm512_mask_fpclass_ps_mask

__mmask16 _mm512_mask_fpclass_ps_mask(__mmask16 k1, __m512 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vfpclassps

Test packed single-precision (32-bit) floating-point elements in a for special categories specified by imm, and
and put each result in the corresponding bit of the returned mask value using zeromask k1 (elements are
zeroed out when the corresponding mask bit is not set).

_mm_fpclass_sd_mask

__mmask8 _mm_fpclass_sd_mask(__m128d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vfpclasssd

Test the lower double-precision (64-bit) floating-point element in a for special categories specified by imm,
and and put the result in the returned mask value.

Compiler Reference

1085

_mm_mask_fpclass_sd_mask

__mmask8 _mm_mask_fpclass_sd_mask(__mmask8 k1, __m128d a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vfpclasssd

Test the lower double-precision (64-bit) floating-point element in a for special categories specified by imm,
and and put the result in the returned mask value using zeromask k1 (the element is zeroed out when mask
bit 0 is not set).

_mm_fpclass_ss_mask

__mmask8 _mm_fpclass_ss_mask(__m128 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vfpclassss

Test the lower single-precision (32-bit) floating-point element in a for special categories specified by imm,
and store the result in mask vector "k.

_mm_mask_fpclass_ss_mask

__mmask8 _mm_mask_fpclass_ss_mask(__mmask8 k1, __m128 a, int imm)
CPUID Flags: AVX512DQ

Instruction(s): vfpclassss

Test the lower single-precision (32-bit) floating-point element in a for special categories specified by imm,
and and put the result in the returned mask value using zeromask k1 (the element is zeroed out when mask
bit 0 is not set).

_mm_movepi8_mask

__mmask16 _mm_movepi8_mask(__m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovb2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 8-bit
integer in a.

_mm256_movepi8_mask

__mmask32 _mm256_movepi8_mask(__m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovb2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 8-bit
integer in a.

_mm512_movepi8_mask

__mmask64 _mm512_movepi8_mask(__m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovb2m

 Intel® C++ Compiler Classic Developer Guide and Reference

1086

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 8-bit
integer in a.

_mm_movepi32_mask

__mmask8 _mm_movepi32_mask(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmovd2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 32-bit
integer in a.

_mm256_movepi32_mask

__mmask8 _mm256_movepi32_mask(__m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmovd2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 32-bit
integer in a.

_mm512_movepi32_mask

__mmask16 _mm512_movepi32_mask(__m512i a)
CPUID Flags: AVX512DQ

Instruction(s): vpmovd2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 32-bit
integer in a.

_mm_movepi64_mask

__mmask8 _mm_movepi64_mask(__m128i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmovq2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 64-bit
integer in a.

_mm256_movepi64_mask

__mmask8 _mm256_movepi64_mask(__m256i a)
CPUID Flags: AVX512DQ, AVX512VL

Instruction(s): vpmovq2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 64-bit
integer in a.

_mm512_movepi64_mask

__mmask8 _mm512_movepi64_mask(__m512i a)
CPUID Flags: AVX512DQ

Compiler Reference

1087

Instruction(s): vpmovq2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 64-bit
integer in a.

_mm_movepi16_mask

__mmask8 _mm_movepi16_mask(__m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovw2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 16-bit
integer in a.

_mm256_movepi16_mask

__mmask16 _mm256_movepi16_mask(__m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpmovw2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 16-bit
integer in a.

_mm512_movepi16_mask

__mmask32 _mm512_movepi16_mask(__m512i a)
CPUID Flags: AVX512BW

Instruction(s): vpmovw2m

Set each bit of the returned mask value based on the most significant bit of the corresponding packed 16-bit
integer in a.

_mm_permutexvar_epi8

__m128i _mm_permutexvar_epi8(__m128i idx, __m128i a)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermb

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and return the result.

_mm_mask_permutexvar_epi8

__m128i _mm_mask_permutexvar_epi8(__m128i src, __mmask16 k, __m128i idx, __m128i a)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermb

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and return the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_permutexvar_epi8

__m128i _mm_maskz_permutexvar_epi8(__mmask16 k, __m128i idx, __m128i a)
CPUID Flags: AVX512VBMI, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

1088

Instruction(s): vpermb

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and return the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_permutexvar_epi8

__m256i _mm256_permutexvar_epi8(__m256i idx, __m256i a)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermb

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and return the result.

_mm256_mask_permutexvar_epi8

__m256i _mm256_mask_permutexvar_epi8(__m256i src, __mmask32 k, __m256i idx, __m256i a)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermb

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and return the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_permutexvar_epi8

__m256i _mm256_maskz_permutexvar_epi8(__mmask32 k, __m256i idx, __m256i a)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermb

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and return the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutexvar_epi8

__m512i _mm512_permutexvar_epi8(__m512i idx, __m512i a)
CPUID Flags: AVX512VBMI

Instruction(s): vpermb

Shuffle 8-bit integers in a and b across lanes using the corresponding selector and index in idx, and return
the result.

_mm512_mask_permutexvar_epi8

__m512i _mm512_mask_permutexvar_epi8(__m512i src, __mmask64 k, __m512i idx, __m512i a)
CPUID Flags: AVX512VBMI

Instruction(s): vpermb

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and return the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutexvar_epi8

__m512i _mm512_maskz_permutexvar_epi8(__mmask64 k, __m512i idx, __m512i a)
CPUID Flags: AVX512VBMI

Compiler Reference

1089

Instruction(s): vpermb

Shuffle 8-bit integers in a across lanes using the corresponding index in idx, and return the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_permutex2var_epi8

__m128i _mm_permutex2var_epi8(__m128i a, __m128i idx, __m128i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermi2b

Shuffle 8-bit integers in a and b using the corresponding index in idx, and return the result.

_mm_mask_permutex2var_epi8

__m128i _mm_mask_permutex2var_epi8(__m128i a, __mmask16 k, __m128i idx, __m128i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermt2b

Shuffle 8-bit integers in a and b using the corresponding index in idx, and return the result using writemask
k (elements are copied from a when the corresponding mask bit is not set).

_mm_mask2_permutex2var_epi8

__m128i _mm_mask2_permutex2var_epi8(__m128i a, __m128i idx, __mmask16 k, __m128i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermi2b

Shuffle 8-bit integers in a and b using the corresponding index in idx, and return the result using writemask
k (elements are copied from idx when the corresponding mask bit is not set).

_mm_maskz_permutex2var_epi8

__m128i _mm_maskz_permutex2var_epi8(__mmask16 k, __m128i a, __m128i idx, __m128i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermi2b, vpermt2b

Shuffle 8-bit integers in a and b using the corresponding index in idx, and return the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_permutex2var_epi8

__m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermi2b

Shuffle 8-bit integers in a and b across lanes using the corresponding index in idx, and return the result.

_mm256_mask_permutex2var_epi8

__m256i _mm256_mask_permutex2var_epi8(__m256i a, __mmask32 k, __m256i idx, __m256i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermt2b

 Intel® C++ Compiler Classic Developer Guide and Reference

1090

Shuffle 8-bit integers in a and b across lanes using the corresponding index in idx, and return the result
using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm256_mask2_permutex2var_epi8

__m256i _mm256_mask2_permutex2var_epi8(__m256i a, __m256i idx, __mmask32 k, __m256i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermi2b

Shuffle 8-bit integers in a and b across lanes using the corresponding index in idx, and return the result
using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm256_maskz_permutex2var_epi8

__m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b)
CPUID Flags: AVX512VBMI, AVX512VL

Instruction(s): vpermi2b, vpermt2b

Shuffle 8-bit integers in a and b across lanes using the corresponding index in idx, and return the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutex2var_epi8

__m512i _mm512_permutex2var_epi8(__m512i a, __m512i idx, __m512i b)
CPUID Flags: AVX512VBMI

Instruction(s): vpermi2b

Shuffle 8-bit integers in a and b across lanes using the corresponding index in idx, and return the result.

_mm512_mask_permutex2var_epi8

__m512i _mm512_mask_permutex2var_epi8(__m512i a, __mmask64 k, __m512i idx, __m512i b)
CPUID Flags: AVX512VBMI

Instruction(s): vpermt2b

Shuffle 8-bit integers in a and b across lanes using the corresponding index in idx, and return the result
using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_epi8

__m512i _mm512_mask2_permutex2var_epi8(__m512i a, __m512i idx, __mmask64 k, __m512i b)
CPUID Flags: AVX512VBMI

Instruction(s): vpermi2b

Shuffle 8-bit integers in a and b across lanes using the corresponding index in idx, and return the result
using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm512_maskz_permutex2var_epi8

__m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512i a, __m512i idx, __m512i b)
CPUID Flags: AVX512VBMI

Instruction(s): vpermi2b, vpermt2b

Compiler Reference

1091

Shuffle 8-bit integers in a and b across lanes using the corresponding index in idx, and return the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Move Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

_mm_mask_mov_pd

__m128d _mm_mask_mov_pd(__m128d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

Move packed double-precision (64-bit) floating-point elements from a to the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_mov_pd

__m128d _mm_maskz_mov_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

Move packed double-precision (64-bit) floating-point elements from a into the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_mov_pd

__m256d _mm256_mask_mov_pd(__m256d src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

Move packed double-precision (64-bit) floating-point elements from a to the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_mov_pd

__m256d _mm256_maskz_mov_pd(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

 Intel® C++ Compiler Classic Developer Guide and Reference

1092

Move packed double-precision (64-bit) floating-point elements from a into the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_mov_ps

__m128 _mm_mask_mov_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Move packed single-precision (32-bit) floating-point elements from a to the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_mov_ps

__m128 _mm_maskz_mov_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Move packed single-precision (32-bit) floating-point elements from a into the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_mov_ps

__m256 _mm256_mask_mov_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Move packed single-precision (32-bit) floating-point elements from a to the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_mov_ps

__m256 _mm256_maskz_mov_ps(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Move packed single-precision (32-bit) floating-point elements from a into the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_movedup_pd

__m128d _mm_mask_movedup_pd(__m128d src, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovddup

Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_movedup_pd

__m128d _mm_maskz_movedup_pd(__mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1093

Instruction(s): vmovddup

Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_movedup_pd

__m256d _mm256_mask_movedup_pd(__m256d src, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovddup

Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_movedup_pd

__m256d _mm256_maskz_movedup_pd(__mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovddup

Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_movehdup_ps

__m128 _mm_mask_movehdup_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovshdup

Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_movehdup_ps

__m128 _mm_maskz_movehdup_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovshdup

Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_movehdup_ps

__m256 _mm256_mask_movehdup_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovshdup

Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_movehdup_ps

__m256 _mm256_maskz_movehdup_ps(__mmask8 k, __m256 a)

 Intel® C++ Compiler Classic Developer Guide and Reference

1094

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovshdup

Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_moveldup_ps

__m128 _mm_mask_moveldup_ps(__m128 src, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovsldup

Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_moveldup_ps

__m128 _mm_maskz_moveldup_ps(__mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovsldup

Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_moveldup_ps

__m256 _mm256_mask_moveldup_ps(__m256 src, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovsldup

Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_moveldup_ps

__m256 _mm256_maskz_moveldup_ps(__mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovsldup

Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_mov_epi32

__m128i _mm_mask_mov_epi32(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Move packed 32-bit integers from a to the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

Compiler Reference

1095

_mm_maskz_mov_epi32

__m128i _mm_maskz_mov_epi32(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Move packed 32-bit integers from a into the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm256_mask_mov_epi32

__m256i _mm256_mask_mov_epi32(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Move packed 32-bit integers from a to the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm256_maskz_mov_epi32

__m256i _mm256_maskz_mov_epi32(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Move packed 32-bit integers from a into the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm_mask_mov_epi64

__m128i _mm_mask_mov_epi64(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Move packed 64-bit integers from a to the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm_maskz_mov_epi64

__m128i _mm_maskz_mov_epi64(__mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Move packed 64-bit integers from a into the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm256_mask_mov_epi64

__m256i _mm256_mask_mov_epi64(__m256i src, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Move packed 64-bit integers from a to the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1096

_mm256_maskz_mov_epi64

__m256i _mm256_maskz_mov_epi64(__mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Move packed 64-bit integers from a into the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm_mask_mov_epi16

__m128i _mm_mask_mov_epi16(__m128i src, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Move packed 16-bit integers from a into the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm_maskz_mov_epi16

__m128i _mm_maskz_mov_epi16(__mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Move packed 16-bit integers from a into the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm256_mask_mov_epi16

__m256i _mm256_mask_mov_epi16(__m256i src, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Move packed 16-bit integers from a into the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm256_maskz_mov_epi16

__m256i _mm256_maskz_mov_epi16(__mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Move packed 16-bit integers from a into the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm512_mask_mov_epi16

__m512i _mm512_mask_mov_epi16(__m512i src, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu16

Move packed 16-bit integers from a into the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

Compiler Reference

1097

_mm512_maskz_mov_epi16

__m512i _mm512_maskz_mov_epi16(__mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu16

Move packed 16-bit integers from a into the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm_mask_mov_epi8

__m128i _mm_mask_mov_epi8(__m128i src, __mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Move packed 8-bit integers from a into the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm_maskz_mov_epi8

__m128i _mm_maskz_mov_epi8(__mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Move packed 8-bit integers from a into the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_mask_mov_epi8

__m256i _mm256_mask_mov_epi8(__m256i src, __mmask32 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Move packed 8-bit integers from a into the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm256_maskz_mov_epi8

__m256i _mm256_maskz_mov_epi8(__mmask32 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Move packed 8-bit integers from a into the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_mov_epi8

__m512i _mm512_mask_mov_epi8(__m512i src, __mmask64 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu8

 Intel® C++ Compiler Classic Developer Guide and Reference

1098

Move packed 8-bit integers from a into the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm512_maskz_mov_epi8

__m512i _mm512_maskz_mov_epi8(__mmask64 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu8

Move packed 8-bit integers from a into the return value using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

Intrinsics for Set Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

_mm_mask_set1_epi8

__m128i _mm_mask_set1_epi8(__m128i src, __mmask16 k, char a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastb

Broadcast 8-bit integer a to all elements of the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm_maskz_set1_epi8

__m128i _mm_maskz_set1_epi8(__mmask16 k, char a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastb

Broadcast 8-bit integer a to all elements of the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm256_mask_set1_epi8

__m256i _mm256_mask_set1_epi8(__m256i src, __mmask32 k, char a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastb

Compiler Reference

1099

Broadcast 8-bit integer a to all elements of the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm256_maskz_set1_epi8

__m256i _mm256_maskz_set1_epi8(__mmask32 k, char a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastb

Broadcast 8-bit integer a to all elements of the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm512_mask_set1_epi8

__m512i _mm512_mask_set1_epi8(__m512i src, __mmask64 k, char a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastb

Broadcast 8-bit integer a to all elements of the return value using writemask k (elements are copied from src
when the corresponding mask bit is not set).

_mm512_maskz_set1_epi8

__m512i _mm512_maskz_set1_epi8(__mmask64 k, char a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastb

Broadcast 8-bit integer a to all elements of the return value using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm_mask_set1_epi32

__m128i _mm_mask_set1_epi32(__m128i src, __mmask8 k, int a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastd

Broadcast 32-bit integer a to all elements of the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm_maskz_set1_epi32

__m128i _mm_maskz_set1_epi32(__mmask8 k, int a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastd

Broadcast 32-bit integer a to all elements of the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_set1_epi32

__m256i _mm256_mask_set1_epi32(__m256i src, __mmask8 k, int a)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

1100

Instruction(s): vpbroadcastd

Broadcast 32-bit integer a to all elements of the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm256_maskz_set1_epi32

__m256i _mm256_maskz_set1_epi32(__mmask8 k, int a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastd

Broadcast 32-bit integer a to all elements of the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_set1_epi64

__m128i _mm_mask_set1_epi64(__m128i src, __mmask8 k, __int64 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastq

Broadcast 64-bit integer a to all elements of the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm_maskz_set1_epi64

__m128i _mm_maskz_set1_epi64(__mmask8 k, __int64 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastq

Broadcast 64-bit integer a to all elements of the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm256_mask_set1_epi64

__m256i _mm256_mask_set1_epi64(__m256i src, __mmask8 k, __int64 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastq

Broadcast 64-bit integer a to all elements of the return value using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm256_maskz_set1_epi64

__m256i _mm256_maskz_set1_epi64(__mmask8 k, __int64 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpbroadcastq

Broadcast 64-bit integer a to all elements of the return value using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mask_set1_epi16

__m128i _mm_mask_set1_epi16(__m128i src, __mmask8 k, short a)

Compiler Reference

1101

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_set1_epi16

__m128i _mm_maskz_set1_epi16(__mmask8 k, short a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_set1_epi16

__m256i _mm256_mask_set1_epi16(__m256i src, __mmask16 k, short a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_set1_epi16

__m256i _mm256_maskz_set1_epi16(__mmask16 k, short a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_set1_epi16

__m512i _mm512_mask_set1_epi16(__m512i src, __mmask32 k, short a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_set1_epi16

__m512i _mm512_maskz_set1_epi16(__mmask32 k, short a)
CPUID Flags: AVX512BW

Instruction(s): vpbroadcastw

Broadcast the low packed 16-bit integer from a to all elements of the return value using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1102

Intrinsics for Shift Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
src source element to use based on writemask result

k writemask used as a selector

a first source vector element

b second source vector element

_mm_mask_rol_epi32

__m128i _mm_mask_rol_epi32(__m128i src, __mmask8 k, __m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprold

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_rol_epi32

__m128i _mm_maskz_rol_epi32(__mmask8 k, __m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprold

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_rol_epi32

__m128i _mm_rol_epi32(__m128i a, int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprold

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm, and
return the results.

_mm256_mask_rol_epi32

__m256i _mm256_mask_rol_epi32(__m256i src, __mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprold

Compiler Reference

1103

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_rol_epi32

__m256i _mm256_maskz_rol_epi32(__mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprold

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_rol_epi32

__m256i _mm256_rol_epi32(__m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprold

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm, and
return the results.

_mm_mask_rol_epi64

__m128i _mm_mask_rol_epi64(__m128i src, __mmask8 k, __m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_rol_epi64

__m128i _mm_maskz_rol_epi64(__mmask8 k, __m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_rol_epi64

__m128i _mm_rol_epi64(__m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm, and
return the results.

_mm256_mask_rol_epi64

__m256i _mm256_mask_rol_epi64(__m256i src, __mmask8 k, __m256i a, const int imm)

 Intel® C++ Compiler Classic Developer Guide and Reference

1104

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_rol_epi64

__m256i _mm256_maskz_rol_epi64(__mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_rol_epi64

__m256i _mm256_rol_epi64(__m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm, and
return the results.

_mm_mask_rolv_epi32

__m128i _mm_mask_rolv_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvd

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_rolv_epi32

__m128i _mm_maskz_rolv_epi32(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvd

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_rolv_epi32

__m128i _mm_rolv_epi32(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvd

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results.

Compiler Reference

1105

_mm256_mask_rolv_epi32

__m256i _mm256_mask_rolv_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvd

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_rolv_epi32

__m256i _mm256_maskz_rolv_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvd

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_rolv_epi32

__m256i _mm256_rolv_epi32(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvd

Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results.

_mm_mask_rolv_epi64

__m128i _mm_mask_rolv_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_rolv_epi64

__m128i _mm_maskz_rolv_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_rolv_epi64

__m128i _mm_rolv_epi64(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

1106

Instruction(s): vprolvq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results.

_mm256_mask_rolv_epi64

__m256i _mm256_mask_rolv_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_rolv_epi64

__m256i _mm256_maskz_rolv_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_rolv_epi64

__m256i _mm256_rolv_epi64(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprolvq

Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the
corresponding element of b, and return the results.

_mm_mask_ror_epi32

__m128i _mm_mask_ror_epi32(__m128i src, __mmask8 k, __m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprord

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_ror_epi32

__m128i _mm_maskz_ror_epi32(__mmask8 k, __m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprord

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1107

_mm_ror_epi32

__m128i _mm_ror_epi32(__m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprord

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm, and
return the results.

_mm256_mask_ror_epi32

__m256i _mm256_mask_ror_epi32(__m256i src, __mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprord

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_ror_epi32

__m256i _mm256_maskz_ror_epi32(__mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprord

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_ror_epi32

__m256i _mm256_ror_epi32(__m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprord

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm, and
return the results.

_mm_mask_ror_epi64

__m128i _mm_mask_ror_epi64(__m128i src, __mmask8 k, __m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm_maskz_ror_epi64

__m128i _mm_maskz_ror_epi64(__mmask8 k, __m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorq

 Intel® C++ Compiler Classic Developer Guide and Reference

1108

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_ror_epi64

__m128i _mm_ror_epi64(__m128i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm, and
return the results.

_mm256_mask_ror_epi64

__m256i _mm256_mask_ror_epi64(__m256i src, __mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm, and
return the results using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm256_maskz_ror_epi64

__m256i _mm256_maskz_ror_epi64(__mmask8 k, __m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm, and
return the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_ror_epi64

__m256i _mm256_ror_epi64(__m256i a, const int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm, and
return the results.

_mm_mask_rorv_epi32

__m128i _mm_mask_rorv_epi32(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvd

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_rorv_epi32

__m128i _mm_maskz_rorv_epi32(__mmask8 k, __m128i a, __m128i b)

Compiler Reference

1109

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvd

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_rorv_epi32

__m128i _mm_rorv_epi32(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvd

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results.

_mm256_mask_rorv_epi32

__m256i _mm256_mask_rorv_epi32(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvd

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_rorv_epi32

__m256i _mm256_maskz_rorv_epi32(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvd

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_rorv_epi32

__m256i _mm256_rorv_epi32(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvd

Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results.

_mm_mask_rorv_epi64

__m128i _mm_mask_rorv_epi64(__m128i src, __mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvq

 Intel® C++ Compiler Classic Developer Guide and Reference

1110

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm_maskz_rorv_epi64

__m128i _mm_maskz_rorv_epi64(__mmask8 k, __m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_rorv_epi64

__m128i _mm_rorv_epi64(__m128i a, __m128i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results.

_mm256_mask_rorv_epi64

__m256i _mm256_mask_rorv_epi64(__m256i src, __mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm256_maskz_rorv_epi64

__m256i _mm256_maskz_rorv_epi64(__mmask8 k, __m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_rorv_epi64

__m256i _mm256_rorv_epi64(__m256i a, __m256i b)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vprorvq

Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the
corresponding element of b, and return the results.

Compiler Reference

1111

_mm_mask_sll_epi32

__m128i _mm_mask_sll_epi32(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpslld

Shift packed 32-bit integers in a left by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_slli_epi32

__m128i _mm_mask_slli_epi32(__m128i src, __mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpslld

Shift packed 32-bit integers in a left by imm while shifting in zeros, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sll_epi32

__m128i _mm_maskz_sll_epi32(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpslld

Shift packed 32-bit integers in a left by count while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_slli_epi32

__m128i _mm_maskz_slli_epi32(__mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpslld

Shift packed 32-bit integers in a left by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sll_epi32

__m256i _mm256_mask_sll_epi32(__m256i src, __mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpslld

Shift packed 32-bit integers in a left by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_slli_epi32

__m256i _mm256_mask_slli_epi32(__m256i src, __mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpslld

Shift packed 32-bit integers in a left by imm while shifting in zeros, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1112

_mm256_maskz_sll_epi32

__m256i _mm256_maskz_sll_epi32(__mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpslld

Shift packed 32-bit integers in a left by count while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_slli_epi32

__m256i _mm256_maskz_slli_epi32(__mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpslld

Shift packed 32-bit integers in a left by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_bslli_epi128

__m512i _mm512_bslli_epi128(__m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpslldq

Shift 128-bit lanes in a left by imm bytes while shifting in zeros, and return the results.

_mm_mask_sll_epi64

__m128i _mm_mask_sll_epi64(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllq

Shift packed 64-bit integers in a left by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_slli_epi64

__m128i _mm_mask_slli_epi64(__m128i src, __mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllq

Shift packed 64-bit integers in a left by imm while shifting in zeros, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sll_epi64

__m128i _mm_maskz_sll_epi64(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllq

Shift packed 64-bit integers in a left by count while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1113

_mm_maskz_slli_epi64

__m128i _mm_maskz_slli_epi64(__mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllq

Shift packed 64-bit integers in a left by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sll_epi64

__m256i _mm256_mask_sll_epi64(__m256i src, __mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllq

Shift packed 64-bit integers in a left by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_slli_epi64

__m256i _mm256_mask_slli_epi64(__m256i src, __mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllq

Shift packed 64-bit integers in a left by imm while shifting in zeros, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sll_epi64

__m256i _mm256_maskz_sll_epi64(__mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllq

Shift packed 64-bit integers in a left by count while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_slli_epi64

__m256i _mm256_maskz_slli_epi64(__mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllq

Shift packed 64-bit integers in a left by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_sllv_epi32

__m128i _mm_mask_sllv_epi32(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllvd

 Intel® C++ Compiler Classic Developer Guide and Reference

1114

Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_sllv_epi32

__m128i _mm_maskz_sllv_epi32(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllvd

Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_mask_sllv_epi32

__m256i _mm256_mask_sllv_epi32(__m256i src, __mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllvd

Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_sllv_epi32

__m256i _mm256_maskz_sllv_epi32(__mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllvd

Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_sllv_epi64

__m128i _mm_mask_sllv_epi64(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllvq

Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_sllv_epi64

__m128i _mm_maskz_sllv_epi64(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllvq

Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

Compiler Reference

1115

_mm256_mask_sllv_epi64

__m256i _mm256_mask_sllv_epi64(__m256i src, __mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllvq

Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_sllv_epi64

__m256i _mm256_maskz_sllv_epi64(__mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsllvq

Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_sllv_epi16

__m128i _mm_mask_sllv_epi16(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_sllv_epi16

__m128i _mm_maskz_sllv_epi16(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_sllv_epi16

__m128i _mm_sllv_epi16(__m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results.

_mm256_mask_sllv_epi16

__m256i _mm256_mask_sllv_epi16(__m256i src, __mmask16 k, __m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

1116

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_sllv_epi16

__m256i _mm256_maskz_sllv_epi16(__mmask16 k, __m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_sllv_epi16

__m256i _mm256_sllv_epi16(__m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results.

_mm512_mask_sllv_epi16

__m512i _mm512_mask_sllv_epi16(__m512i src, __mmask32 k, __m512i a, __m512i count)
CPUID Flags: AVX512BW

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_sllv_epi16

__m512i _mm512_maskz_sllv_epi16(__mmask32 k, __m512i a, __m512i count)
CPUID Flags: AVX512BW

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_sllv_epi16

__m512i _mm512_sllv_epi16(__m512i a, __m512i count)
CPUID Flags: AVX512BW

Instruction(s): vpsllvw

Shift packed 16-bit integers in a left by the amount specified by the corresponding element in count while
shifting in zeros, and return the results.

Compiler Reference

1117

_mm_mask_sll_epi16

__m128i _mm_mask_sll_epi16(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_slli_epi16

__m128i _mm_mask_slli_epi16(__m128i src, __mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by imm while shifting in zeros, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sll_epi16

__m128i _mm_maskz_sll_epi16(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by count while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_slli_epi16

__m128i _mm_maskz_slli_epi16(__mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sll_epi16

__m256i _mm256_mask_sll_epi16(__m256i src, __mmask16 k, __m256i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_slli_epi16

__m256i _mm256_mask_slli_epi16(__m256i src, __mmask16 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by imm while shifting in zeros, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1118

_mm256_maskz_sll_epi16

__m256i _mm256_maskz_sll_epi16(__mmask16 k, __m256i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by count while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_slli_epi16

__m256i _mm256_maskz_slli_epi16(__mmask16 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_sll_epi16

__m512i _mm512_mask_sll_epi16(__m512i src, __mmask32 k, __m512i a, __m128i count)
CPUID Flags: AVX512BW

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_slli_epi16

__m512i _mm512_mask_slli_epi16(__m512i src, __mmask32 k, __m512i a, unsigned int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by imm while shifting in zeros, and return the results using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sll_epi16

__m512i _mm512_maskz_sll_epi16(__mmask32 k, __m512i a, __m128i count)
CPUID Flags: AVX512BW

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by count while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_slli_epi16

__m512i _mm512_maskz_slli_epi16(__mmask32 k, __m512i a, unsigned int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1119

_mm512_sll_epi16

__m512i _mm512_sll_epi16(__m512i a, __m128i count)
CPUID Flags: AVX512BW

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by count while shifting in zeros, and return the results.

_mm512_slli_epi16

__m512i _mm512_slli_epi16(__m512i a, unsigned int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsllw

Shift packed 16-bit integers in a left by imm while shifting in zeros, and return the results.

_mm_mask_sra_epi32

__m128i _mm_mask_sra_epi32(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrad

Shift packed 32-bit integers in a right by count while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_srai_epi32

__m128i _mm_mask_srai_epi32(__m128i src, __mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrad

Shift packed 32-bit integers in a right by imm while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sra_epi32

__m128i _mm_maskz_sra_epi32(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrad

Shift packed 32-bit integers in a right by count while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_srai_epi32

__m128i _mm_maskz_srai_epi32(__mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrad

Shift packed 32-bit integers in a right by imm while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1120

_mm256_mask_sra_epi32

__m256i _mm256_mask_sra_epi32(__m256i src, __mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrad

Shift packed 32-bit integers in a right by count while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srai_epi32

__m256i _mm256_mask_srai_epi32(__m256i src, __mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrad

Shift packed 32-bit integers in a right by imm while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sra_epi32

__m256i _mm256_maskz_sra_epi32(__mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrad

Shift packed 32-bit integers in a right by count while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srai_epi32

__m256i _mm256_maskz_srai_epi32(__mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrad

Shift packed 32-bit integers in a right by imm while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_sra_epi64

__m128i _mm_mask_sra_epi64(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by count while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_srai_epi64

__m128i _mm_mask_srai_epi64(__m128i src, __mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by imm while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1121

_mm_maskz_sra_epi64

__m128i _mm_maskz_sra_epi64(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by count while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_srai_epi64

__m128i _mm_maskz_srai_epi64(__mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by imm while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_sra_epi64

__m128i _mm_sra_epi64(__m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by count while shifting in sign bits, and return the results.

_mm_srai_epi64

__m128i _mm_srai_epi64(__m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by imm while shifting in sign bits, and return the results.

_mm256_mask_sra_epi64

__m256i _mm256_mask_sra_epi64(__m256i src, __mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by count while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srai_epi64

__m256i _mm256_mask_srai_epi64(__m256i src, __mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by imm while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1122

_mm256_maskz_sra_epi64

__m256i _mm256_maskz_sra_epi64(__mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by count while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srai_epi64

__m256i _mm256_maskz_srai_epi64(__mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by imm while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_sra_epi64

__m256i _mm256_sra_epi64(__m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by count while shifting in sign bits, and return the results.

_mm256_srai_epi64

__m256i _mm256_srai_epi64(__m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsraq

Shift packed 64-bit integers in a right by imm while shifting in sign bits, and return the results.

_mm_mask_srav_epi32

__m128i _mm_mask_srav_epi32(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravd

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_srav_epi32

__m128i _mm_maskz_srav_epi32(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravd

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

Compiler Reference

1123

_mm256_mask_srav_epi32

__m256i _mm256_mask_srav_epi32(__m256i src, __mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravd

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_srav_epi32

__m256i _mm256_maskz_srav_epi32(__mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravd

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_mask_srav_epi64

__m128i _mm_mask_srav_epi64(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_srav_epi64

__m128i _mm_maskz_srav_epi64(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_srav_epi64

__m128i _mm_srav_epi64(__m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results.

_mm256_mask_srav_epi64

__m256i _mm256_mask_srav_epi64(__m256i src, __mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

1124

Instruction(s): vpsravq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_srav_epi64

__m256i _mm256_maskz_srav_epi64(__mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_srav_epi64

__m256i _mm256_srav_epi64(__m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsravq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results.

_mm_mask_srav_epi16

__m128i _mm_mask_srav_epi16(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_srav_epi16

__m128i _mm_maskz_srav_epi16(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_srav_epi16

__m128i _mm_srav_epi16(__m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results.

Compiler Reference

1125

_mm256_mask_srav_epi16

__m256i _mm256_mask_srav_epi16(__m256i src, __mmask16 k, __m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_srav_epi16

__m256i _mm256_maskz_srav_epi16(__mmask16 k, __m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm256_srav_epi16

__m256i _mm256_srav_epi16(__m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results.

_mm512_mask_srav_epi16

__m512i _mm512_mask_srav_epi16(__m512i src, __mmask32 k, __m512i a, __m512i count)
CPUID Flags: AVX512BW

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_srav_epi16

__m512i _mm512_maskz_srav_epi16(__mmask32 k, __m512i a, __m512i count)
CPUID Flags: AVX512BW

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_srav_epi16

__m512i _mm512_srav_epi16(__m512i a, __m512i count)
CPUID Flags: AVX512BW

 Intel® C++ Compiler Classic Developer Guide and Reference

1126

Instruction(s): vpsravw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and return the results.

_mm_mask_sra_epi16

__m128i _mm_mask_sra_epi16(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by count while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_srai_epi16

__m128i _mm_mask_srai_epi16(__m128i src, __mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by imm while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_sra_epi16

__m128i _mm_maskz_sra_epi16(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by count while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_srai_epi16

__m128i _mm_maskz_srai_epi16(__mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by imm while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_sra_epi16

__m256i _mm256_mask_sra_epi16(__m256i src, __mmask16 k, __m256i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by count while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srai_epi16

__m256i _mm256_mask_srai_epi16(__m256i src, __mmask16 k, __m256i a, unsigned int imm)

Compiler Reference

1127

CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by imm while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_sra_epi16

__m256i _mm256_maskz_sra_epi16(__mmask16 k, __m256i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by count while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srai_epi16

__m256i _mm256_maskz_srai_epi16(__mmask16 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by imm while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_sra_epi16

__m512i _mm512_mask_sra_epi16(__m512i src, __mmask32 k, __m512i a, __m128i count)
CPUID Flags: AVX512BW

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by count while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_srai_epi16

__m512i _mm512_mask_srai_epi16(__m512i src, __mmask32 k, __m512i a, unsigned int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by imm while shifting in sign bits, and return the results using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sra_epi16

__m512i _mm512_maskz_sra_epi16(__mmask32 k, __m512i a, __m128i count)
CPUID Flags: AVX512BW

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by count while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1128

_mm512_maskz_srai_epi16

__m512i _mm512_maskz_srai_epi16(__mmask32 k, __m512i a, unsigned int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by imm while shifting in sign bits, and return the results using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_sra_epi16

__m512i _mm512_sra_epi16(__m512i a, __m128i count)
CPUID Flags: AVX512BW

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by count while shifting in sign bits, and return the results.

_mm512_srai_epi16

__m512i _mm512_srai_epi16(__m512i a, unsigned int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsraw

Shift packed 16-bit integers in a right by imm while shifting in sign bits, and return the results.

_mm_mask_srl_epi32

__m128i _mm_mask_srl_epi32(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrld

Shift packed 32-bit integers in a right by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_srli_epi32

__m128i _mm_mask_srli_epi32(__m128i src, __mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrld

Shift packed 32-bit integers in a right by imm while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_srl_epi32

__m128i _mm_maskz_srl_epi32(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrld

Shift packed 32-bit integers in a right by count while shifting in zeros, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1129

_mm_maskz_srli_epi32

__m128i _mm_maskz_srli_epi32(__mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrld

Shift packed 32-bit integers in a right by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_srl_epi32

__m256i _mm256_mask_srl_epi32(__m256i src, __mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrld

Shift packed 32-bit integers in a right by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srli_epi32

__m256i _mm256_mask_srli_epi32(__m256i src, __mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrld

Shift packed 32-bit integers in a right by imm while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_srl_epi32

__m256i _mm256_maskz_srl_epi32(__mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrld

Shift packed 32-bit integers in a right by count while shifting in zeros, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srli_epi32

__m256i _mm256_maskz_srli_epi32(__mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrld

Shift packed 32-bit integers in a right by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_bsrli_epi128

__m512i _mm512_bsrli_epi128(__m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsrldq

Shift 128-bit lanes in a right by imm bytes while shifting in zeros, and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1130

_mm_mask_srl_epi64

__m128i _mm_mask_srl_epi64(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlq

Shift packed 64-bit integers in a right by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_srli_epi64

__m128i _mm_mask_srli_epi64(__m128i src, __mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlq

Shift packed 64-bit integers in a right by imm while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_srl_epi64

__m128i _mm_maskz_srl_epi64(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlq

Shift packed 64-bit integers in a right by count while shifting in zeros, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_srli_epi64

__m128i _mm_maskz_srli_epi64(__mmask8 k, __m128i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlq

Shift packed 64-bit integers in a right by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_srl_epi64

__m256i _mm256_mask_srl_epi64(__m256i src, __mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlq

Shift packed 64-bit integers in a right by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srli_epi64

__m256i _mm256_mask_srli_epi64(__m256i src, __mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlq

Shift packed 64-bit integers in a right by imm while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1131

_mm256_maskz_srl_epi64

__m256i _mm256_maskz_srl_epi64(__mmask8 k, __m256i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlq

Shift packed 64-bit integers in a right by count while shifting in zeros, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srli_epi64

__m256i _mm256_maskz_srli_epi64(__mmask8 k, __m256i a, unsigned int imm)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlq

Shift packed 64-bit integers in a right by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_srlv_epi32

__m128i _mm_mask_srlv_epi32(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlvd

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_srlv_epi32

__m128i _mm_maskz_srlv_epi32(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlvd

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_mask_srlv_epi32

__m256i _mm256_mask_srlv_epi32(__m256i src, __mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlvd

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_srlv_epi32

__m256i _mm256_maskz_srlv_epi32(__mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

 Intel® C++ Compiler Classic Developer Guide and Reference

1132

Instruction(s): vpsrlvd

Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_srlv_epi64

__m128i _mm_mask_srlv_epi64(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlvq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_srlv_epi64

__m128i _mm_maskz_srlv_epi64(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlvq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_mask_srlv_epi64

__m256i _mm256_mask_srlv_epi64(__m256i src, __mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlvq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_srlv_epi64

__m256i _mm256_maskz_srlv_epi64(__mmask8 k, __m256i a, __m256i count)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpsrlvq

Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_mask_srlv_epi16

__m128i _mm_mask_srlv_epi16(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlvw

Compiler Reference

1133

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm_maskz_srlv_epi16

__m128i _mm_maskz_srlv_epi16(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlvw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_srlv_epi16

__m128i _mm_srlv_epi16(__m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlvw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results.

_mm256_mask_srlv_epi16

__m256i _mm256_mask_srlv_epi16(__m256i src, __mmask16 k, __m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlvw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm256_maskz_srlv_epi16

__m256i _mm256_maskz_srlv_epi16(__mmask16 k, __m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlvw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm256_srlv_epi16

__m256i _mm256_srlv_epi16(__m256i a, __m256i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlvw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1134

_mm512_mask_srlv_epi16

__m512i _mm512_mask_srlv_epi16(__m512i src, __mmask32 k, __m512i a, __m512i count)
CPUID Flags: AVX512BW

Instruction(s): vpsrlvw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_srlv_epi16

__m512i _mm512_maskz_srlv_epi16(__mmask32 k, __m512i a, __m512i count)
CPUID Flags: AVX512BW

Instruction(s): vpsrlvw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_srlv_epi16

__m512i _mm512_srlv_epi16(__m512i a, __m512i count)
CPUID Flags: AVX512BW

Instruction(s): vpsrlvw

Shift packed 16-bit integers in a right by the amount specified by the corresponding element in count while
shifting in zeros, and return the results.

_mm_mask_srl_epi16

__m128i _mm_mask_srl_epi16(__m128i src, __mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_mask_srli_epi16

__m128i _mm_mask_srli_epi16(__m128i src, __mmask8 k, __m128i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by imm while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm_maskz_srl_epi16

__m128i _mm_maskz_srl_epi16(__mmask8 k, __m128i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlw

Compiler Reference

1135

Shift packed 16-bit integers in a right by count while shifting in zeros, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm_maskz_srli_epi16

__m128i _mm_maskz_srli_epi16(__mmask8 k, __m128i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm256_mask_srl_epi16

__m256i _mm256_mask_srl_epi16(__m256i src, __mmask16 k, __m256i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_mask_srli_epi16

__m256i _mm256_mask_srli_epi16(__m256i src, __mmask16 k, __m256i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by imm while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm256_maskz_srl_epi16

__m256i _mm256_maskz_srl_epi16(__mmask16 k, __m256i a, __m128i count)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by count while shifting in zeros, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm256_maskz_srli_epi16

__m256i _mm256_maskz_srli_epi16(__mmask16 k, __m256i a, int imm)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_srl_epi16

__m512i _mm512_mask_srl_epi16(__m512i src, __mmask32 k, __m512i a, __m128i count)
CPUID Flags: AVX512BW

 Intel® C++ Compiler Classic Developer Guide and Reference

1136

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by count while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_srli_epi16

__m512i _mm512_mask_srli_epi16(__m512i src, __mmask32 k, __m512i a, unsigned int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by imm while shifting in zeros, and return the results using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_srl_epi16

__m512i _mm512_maskz_srl_epi16(__mmask32 k, __m512i a, __m128i count)
CPUID Flags: AVX512BW

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by count while shifting in zeros, and return the results using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_srli_epi16

__m512i _mm512_maskz_srli_epi16(__mmask32 k, __m512i a, int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by imm while shifting in zeros, and return the results using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_srl_epi16

__m512i _mm512_srl_epi16(__m512i a, __m128i count)
CPUID Flags: AVX512BW

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by count while shifting in zeros, and return the results.

_mm512_srli_epi16

__m512i _mm512_srli_epi16(__m512i a, unsigned int imm)
CPUID Flags: AVX512BW

Instruction(s): vpsrlw

Shift packed 16-bit integers in a right by imm while shifting in zeros, and return the results.

Intrinsics for Store Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.

Compiler Reference

1137

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

variable definition
base_addr pointer to base address in memory to begin load or store operation

mem_addr pointer to base address in memory

k writemask used as a selector

a first source vector element

_mm_mask_compressstoreu_pd

void _mm_mask_compressstoreu_pd(void* base_addr, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompresspd

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their
respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_compressstoreu_pd

void _mm256_mask_compressstoreu_pd(void* base_addr, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompresspd

Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their
respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_compressstoreu_ps

void _mm_mask_compressstoreu_ps(void* base_addr, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompressps

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their
respective bit set in writemask k) to unaligned memory at base_addr.

_mm256_mask_compressstoreu_ps

void _mm256_mask_compressstoreu_ps(void* base_addr, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vcompressps

Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their
respective bit set in writemask k) to unaligned memory at base_addr.

_mm_mask_store_pd

void _mm_mask_store_pd(void* mem_addr, __mmask8 k, __m128d a)

 Intel® C++ Compiler Classic Developer Guide and Reference

1138

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k.
mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.

_mm256_mask_store_pd

void _mm256_mask_store_pd(void* mem_addr, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovapd

Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k.
mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm_mask_store_ps

void _mm_mask_store_ps(void* mem_addr, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k.
mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.

_mm256_mask_store_ps

void _mm256_mask_store_ps(void* mem_addr, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovaps

Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k.
mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.

_mm_mask_storeu_pd

void _mm_mask_storeu_pd(void* mem_addr, __mmask8 k, __m128d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovupd

Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k.
mem_addr does not need to be aligned on any particular boundary.

_mm256_mask_storeu_pd

void _mm256_mask_storeu_pd(void* mem_addr, __mmask8 k, __m256d a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovupd

Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k.
mem_addr does not need to be aligned on any particular boundary.

Compiler Reference

1139

_mm_mask_storeu_ps

void _mm_mask_storeu_ps(void* mem_addr, __mmask8 k, __m128 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovups

Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k.
mem_addr does not need to be aligned on any particular boundary.

_mm256_mask_storeu_ps

void _mm256_mask_storeu_ps(void* mem_addr, __mmask8 k, __m256 a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovups

Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k.
mem_addr does not need to be aligned on any particular boundary.

_mm_i32scatter_pd

void _mm_i32scatter_pd(void* base_addr, __m128i vindex, __m128d a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterdpd

Scatter double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm_mask_i32scatter_pd

void _mm_mask_i32scatter_pd(void* base_addr, __mmask8 k, __m128i vindex, __m128d a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterdpd

Scatter double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_i32scatter_pd

void _mm256_i32scatter_pd(void* base_addr, __m128i vindex, __m256d a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterdpd

Scatter double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm256_mask_i32scatter_pd

void _mm256_mask_i32scatter_pd(void* base_addr, __mmask8 k, __m128i vindex, __m256d a, const int
scale)

 Intel® C++ Compiler Classic Developer Guide and Reference

1140

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterdpd

Scatter double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

_mm_i32scatter_ps

void _mm_i32scatter_ps(void* base_addr, __m128i vindex, __m128 a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterdps

Scatter single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm_mask_i32scatter_ps

void _mm_mask_i32scatter_ps(void* base_addr, __mmask8 k, __m128i vindex, __m128 a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterdps

Scatter single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_i32scatter_ps

void _mm256_i32scatter_ps(void* base_addr, __m256i vindex, __m256 a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterdps

Scatter single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm256_mask_i32scatter_ps

void _mm256_mask_i32scatter_ps(void* base_addr, __mmask8 k, __m256i vindex, __m256 a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterdps

Scatter single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

Compiler Reference

1141

_mm_i64scatter_pd

void _mm_i64scatter_pd(void* base_addr, __m128i vindex, __m128d a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterqpd

Scatter double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm_mask_i64scatter_pd

void _mm_mask_i64scatter_pd(void* base_addr, __mmask8 k, __m128i vindex, __m128d a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterqpd

Scatter double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_i64scatter_pd

void _mm256_i64scatter_pd(void* base_addr, __m256i vindex, __m256d a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterqpd

Scatter double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.

_mm256_mask_i64scatter_pd

void _mm256_mask_i64scatter_pd(void* base_addr, __mmask8 k, __m256i vindex, __m256d a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterqpd

Scatter double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

_mm_i64scatter_ps

void _mm_i64scatter_ps(void* base_addr, __m128i vindex, __m128 a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterqps

Scatter single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

 Intel® C++ Compiler Classic Developer Guide and Reference

1142

_mm_mask_i64scatter_ps

void _mm_mask_i64scatter_ps(void* base_addr, __mmask8 k, __m128i vindex, __m128 a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterqps

Scatter single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_i64scatter_ps

void _mm256_i64scatter_ps(void* base_addr, __m256i vindex, __m128 a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterqps

Scatter single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

_mm256_mask_i64scatter_ps

void _mm256_mask_i64scatter_ps(void* base_addr, __mmask8 k, __m256i vindex, __m128 a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vscatterqps

Scatter single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding
mask bit is not set). scale should be 1, 2, 4 or 8.

_mm_mask_store_epi32

void _mm_mask_store_epi32(void* mem_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Store packed 32-bit integers from a into memory using writemask k. mem_addr must be aligned on a 16-
byte boundary or a general-protection exception may be generated.

_mm256_mask_store_epi32

void _mm256_mask_store_epi32(void* mem_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa32

Store packed 32-bit integers from a into memory using writemask k. mem_addr must be aligned on a 32-
byte boundary or a general-protection exception may be generated.

Compiler Reference

1143

_mm_mask_store_epi64

void _mm_mask_store_epi64(void* mem_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Store packed 64-bit integers from a into memory using writemask k. mem_addr must be aligned on a 16-
byte boundary or a general-protection exception may be generated.

_mm256_mask_store_epi64

void _mm256_mask_store_epi64(void* mem_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqa64

Store packed 64-bit integers from a into memory using writemask k. mem_addr must be aligned on a 32-
byte boundary or a general-protection exception may be generated.

_mm_mask_storeu_epi16

void _mm_mask_storeu_epi16(void* mem_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Store packed 16-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

_mm256_mask_storeu_epi16

void _mm256_mask_storeu_epi16(void* mem_addr, __mmask16 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu16

Store packed 16-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

_mm512_mask_storeu_epi16

void _mm512_mask_storeu_epi16(void* mem_addr, __mmask32 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu16

Store packed 16-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

_mm_mask_storeu_epi32

void _mm_mask_storeu_epi32(void* mem_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu32

Store packed 32-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

 Intel® C++ Compiler Classic Developer Guide and Reference

1144

_mm256_mask_storeu_epi32

void _mm256_mask_storeu_epi32(void* mem_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu32

Store packed 32-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

_mm_mask_storeu_epi64

void _mm_mask_storeu_epi64(void* mem_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu64

Store packed 64-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

_mm256_mask_storeu_epi64

void _mm256_mask_storeu_epi64(void* mem_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vmovdqu64

Store packed 64-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

_mm_mask_storeu_epi8

void _mm_mask_storeu_epi8(void* mem_addr, __mmask16 k, __m128i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Store packed 8-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

_mm256_mask_storeu_epi8

void _mm256_mask_storeu_epi8(void* mem_addr, __mmask32 k, __m256i a)
CPUID Flags: AVX512BW, AVX512VL

Instruction(s): vmovdqu8

Store packed 8-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

_mm512_mask_storeu_epi8

void _mm512_mask_storeu_epi8(void* mem_addr, __mmask64 k, __m512i a)
CPUID Flags: AVX512BW

Instruction(s): vmovdqu8

Store packed 8-bit integers from a into memory using writemask k. mem_addr does not need to be aligned
on any particular boundary.

Compiler Reference

1145

_mm_mask_compressstoreu_epi32

void _mm_mask_compressstoreu_epi32(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressd

Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to
unaligned memory at base_addr.

_mm256_mask_compressstoreu_epi32

void _mm256_mask_compressstoreu_epi32(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressd

Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to
unaligned memory at base_addr.

_mm_mask_compressstoreu_epi64

void _mm_mask_compressstoreu_epi64(void* base_addr, __mmask8 k, __m128i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressq

Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to
unaligned memory at base_addr.

_mm256_mask_compressstoreu_epi64

void _mm256_mask_compressstoreu_epi64(void* base_addr, __mmask8 k, __m256i a)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpcompressq

Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to
unaligned memory at base_addr.

_mm_i32scatter_epi32

void _mm_i32scatter_epi32(void* base_addr, __m128i vindex, __m128i a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterdd

Scatter 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale). scale should be 1, 2, 4 or 8.

_mm_mask_i32scatter_epi32

void _mm_mask_i32scatter_epi32(void* base_addr, __mmask8 k, __m128i vindex, __m128i a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterdd

 Intel® C++ Compiler Classic Developer Guide and Reference

1146

Scatter 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1,
2, 4 or 8.

_mm256_i32scatter_epi32

void _mm256_i32scatter_epi32(void* base_addr, __m256i vindex, __m256i a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterdd

Scatter 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale). scale should be 1, 2, 4 or 8.

_mm256_mask_i32scatter_epi32

void _mm256_mask_i32scatter_epi32(void* base_addr, __mmask8 k, __m256i vindex, __m256i a, const
int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterdd

Scatter 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1,
2, 4 or 8.

_mm_i32scatter_epi64

void _mm_i32scatter_epi64(void* base_addr, __m128i vindex, __m128i a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterdq

Scatter 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale). scale should be 1, 2, 4 or 8.

_mm_mask_i32scatter_epi64

void _mm_mask_i32scatter_epi64(void* base_addr, __mmask8 k, __m128i vindex, __m128i a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterdq

Scatter 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1,
2, 4 or 8.

_mm256_i32scatter_epi64

void _mm256_i32scatter_epi64(void* base_addr, __m128i vindex, __m256i a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Compiler Reference

1147

Instruction(s): vpscatterdq

Scatter 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale). scale should be 1, 2, 4 or 8.

_mm256_mask_i32scatter_epi64

void _mm256_mask_i32scatter_epi64(void* base_addr, __mmask8 k, __m128i vindex, __m256i a, const
int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterdq

Scatter 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1,
2, 4 or 8.

_mm_i64scatter_epi32

void _mm_i64scatter_epi32(void* base_addr, __m128i vindex, __m128i a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterqd

Scatter 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale). scale should be 1, 2, 4 or 8.

_mm_mask_i64scatter_epi32

void _mm_mask_i64scatter_epi32(void* base_addr, __mmask8 k, __m128i vindex, __m128i a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterqd

Scatter 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1,
2, 4 or 8.

_mm256_i64scatter_epi32

void _mm256_i64scatter_epi32(void* base_addr, __m256i vindex, __m128i a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterqd

Scatter 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale). scale should be 1, 2, 4 or 8.

_mm256_mask_i64scatter_epi32

void _mm256_mask_i64scatter_epi32(void* base_addr, __mmask8 k, __m256i vindex, __m128i a, const
int scale)

 Intel® C++ Compiler Classic Developer Guide and Reference

1148

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterqd

Scatter 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1,
2, 4 or 8.

_mm_i64scatter_epi64

void _mm_i64scatter_epi64(void* base_addr, __m128i vindex, __m128i a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterqq

Scatter 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale). scale should be 1, 2, 4 or 8.

_mm_mask_i64scatter_epi64

void _mm_mask_i64scatter_epi64(void* base_addr, __mmask8 k, __m128i vindex, __m128i a, const int
scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterqq

Scatter 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1,
2, 4 or 8.

_mm256_i64scatter_epi64

void _mm256_i64scatter_epi64(void* base_addr, __m256i vindex, __m256i a, const int scale)
CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterqq

Scatter 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale). scale should be 1, 2, 4 or 8.

_mm256_mask_i64scatter_epi64

void _mm256_mask_i64scatter_epi64(void* base_addr, __mmask8 k, __m256i vindex, __m256i a, const
int scale)

CPUID Flags: AVX512F, AVX512VL

Instruction(s): vpscatterqq

Scatter 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1,
2, 4 or 8.

Compiler Reference

1149

Intrinsics for Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) Instructions

Functional Overview
Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Instructions extend Intel® Advanced
Vector Extensions (Intel® AVX) and Intel® Advanced Vector Extensions 2 (Intel® AVX2) by promoting most of
the 256-bit SIMD instructions with 512-bit numeric processing capabilities.

The Intel® AVX-512 instructions follow the same programming model as the Intel® AVX2 instructions,
providing enhanced functionality for broadcast, embedded masking to enable predication, embedded floating
point rounding control, embedded floating-point fault suppression, scatter instructions, high speed math
instructions, and compact representation of large displacement values. Unlike Intel® SSE and Intel® AVX,
which cannot be mixed without performance penalties, the mixing of Intel® AVX and Intel® AVX-512
instructions is supported without penalty.

Intel® AVX-512 intrinsics are supported on IA-32 and Intel® 64 architectures built from 32nm process
technology. They map directly to the new Intel® AVX-512 instructions and other enhanced 128-bit and 256-
bit SIMD instructions.

Intel® AVX-512 Registers
512-bit Register state is managed by the operating system using XSAVE / XRSTOR / XSAVEOPT instructions,
introduced in 45nm Intel® 64 processors (see Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

• Support for sixteen new 512-bit SIMD registers in 64-bit mode (for a total of 32 SIMD registers,
representing 2K of register space, ZMM0 through ZMM31).

• Support for eight new opmask registers (k0 through k7) used for conditional execution and efficient
merging of destination operands.

Intel® AVX registers YMM0-YMM15 map into Intel® AVX-512 registers ZMM0-ZMM15, very much like Intel® SSE
registers map into Intel® AVX registers. In processors with Intel® AVX-512 support, Intel® AVX and Intel®
AVX2 instructions operate on the lower 128- or 256-bits of the first sixteen ZMM registers.

Prefix Instruction Encoding Support for Intel® AVX-512
A new encoding prefix (referred to as EVEX) to support additional vector length encoding up to 512 bits. The
EVEX prefix builds upon the foundations of VEX prefix, to provide compact, efficient encoding for functionality
available to VEX encoding while enhancing vector capabilities.

The Intel® AVX-512 intrinsic functions use three C data types as operands, representing the new registers
used as operands to the intrinsic functions. These are __m512, __m512d, and __m512i data types. The
__m512 data type is used to represent the contents of the extended SSE register, the ZMM register, used by
the Intel® AVX-512 intrinsics. The __m512 data type can hold sixteen 32-bit floating-point values. The
__m512d data type can hold eight 64-bit double precision floating-point values. The __m512i data type can
hold sixty-four 8-bit, thirty-two 16-bit, sixteen 32-bit, or eight 64-bit integer values.

The compiler aligns the __m512, __m512d, and __m512i local and global data to 64-byte boundaries on the
stack. To align integer, float, or double arrays, use the __declspec(align) statement.

 Intel® C++ Compiler Classic Developer Guide and Reference

1150

Data Types for Intel® AVX-512 Intrinsics
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
Intel® AVX-512 intrinsics have vector variants that use __m128, __m128i, __m128d, __m256, __m256i,
__m256d, __m512, __m512i, and __m512d data types.

Naming and Usage Syntax
Most Intel® AVX-512 intrinsic names use the following notational convention:

mm512[<maskprefix>]_<intrin_op>_<suffix>
The following table explains each item in the syntax.

_mm512 Prefix representing the size of the largest vector in the operation considering any of the
parameters or the result.

<maskprefix> When present, indicates write-masked (_mask) or zero-masked (_maskz) predication.

<intrin_op> Indicates the basic operation of the intrinsic; for example, add for addition and sub for
subtraction.

<suffix> Denotes the type of data the instruction operates on. The first one or two letters of each
suffix denote whether the data is packed (p), extended packed (ep), or scalar (s). The
remaining letters and numbers denote the type, with notation as follows:

• s: single-precision floating point
• d: double-precision floating point
• i512: signed 512-bit integer
• i256: signed 256-bit integer
• i128: signed 128-bit integer
• i64: signed 64-bit integer
• u64: unsigned 64-bit integer
• i32: signed 32-bit integer
• u32: unsigned 32-bit integer
• i16: signed 16-bit integer
• u16: unsigned 16-bit integer
• i8: signed 8-bit integer
• u8: unsigned 8-bit integer

Programs can pack eight double precision and sixteen single precision floating-point numbers within the 512-
bit vectors, as well as eight 64-bit and sixteen 32-bit integers. This enables processing of twice the number
of data elements that Intel® AVX or Intel® AVX2 can process with a single instruction and four times the
capabilities of Intel® SSE.

Example: Write-Masking
Write-masking allows an intrinsic to perform its operation on selected SIMD elements of a source operand,
with blending of the other elements from an additional SIMD operand. Consider the declarations below,
where the write-mask k has a 1 in the even numbered bit positions 0, 3, 5, 7, 9, 11, 13 and 15, and a 0 in
the odd numbered bit positions.

__m512 res, src, a, b;
__mmask16 k = 0x5555;

Compiler Reference

1151

Then, given an intrinsic invocation such as this:

res = _mm512_mask_add_ps(src, k, a, b);
every even-numbered float32 element of the result res is computed as the sum of the corresponding
elements in a and b, while every odd-numbered element is passed through (i.e., blended) from the
corresponding float32 element in src.

Typical write-masked intrinsics are declared with a parameter order such that the values to be blended (src in
the example above) are in the first parameter, and the write mask k immediately follows this parameter.
Some intrinsics provide the blended values from a different SIMD parameter, for example:
_mm512_mask2_permutex2var_epi32. In this case too, the mask will follow that parameter.

Example: Zero-Masking
Zero-masking is a simplified form of write-masking where there are no blended values. Instead result
elements corresponding to zero bits in the write mask are simply set to zero. Given:

res = _mm512_maskz_add_ps(k, a, b);
the float32 elements of res corresponding to zeros in the write-mask k, are set to zero. The elements
corresponding to ones in k, have the expected sum of corresponding elements in a and b.

Zero-masked intrinsics are typically declared with the write-mask as the first parameter, as there is no
parameter for blended values.

Example: Embedded Rounding and Suppress All Exceptions (SAE)
Embedded rounding allows the floating point rounding mode to be explicitly specified for an individual
operation, without having to modify the rounding controls in the MXCSR control register. The Suppress All
Exceptions feature allows signaling of FP exceptions to be suppressed.

AVX-512 provides these capabilities on most 512-bit and scalar floating point operations. An intrinsic
supporting these features will typically have "_round" in its name, for example:

__m512d _mm512_add_round_pd(__m512d a, __m512d b, int rounding);
To specify round-towards-zero and SAE, an invocation would appear as follows:

__m512d res, a, b;
res = _mm512_add_round_pd(a, b, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);

Example: Embedded Broadcasting
Embedded broadcasting allows a single value to be broadcast across a source operand, without requiring an
extra instruction. The "set1" family of intrinsics represent a broadcast operation, and the compiler can embed
such operations into the EVEX prefix of an AVX-512 instruction. For example,

__m512 res, a;
res = _mm512_add_ps(a, _mm512_set1_ps(3.0f));

will add 3.0 to each float32 element of a.

See Also

Details of Intrinsics (general)
__declspec(align)
 declaration

Intel® AVX site at https://software.intel.com/en-us/isa-extensions
Details of Intel® Advanced Vector Extensions Intrinsics

 Intel® C++ Compiler Classic Developer Guide and Reference

1152

https://software.intel.com/en-us/isa-extensions

Intrinsics for Arithmetic Operations

Intrinsics for Addition Operations

Intrinsics for FP Addition Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_add_round_pd,
_mm512_mask_add_round_pd,
_mm512_maskz_add_round_pd

Add rounded float64 vectors. VADDPD

_mm512_add_pd,
_mm512_mask_add_pd,
_mm512_maskz_add_pd

Add rounded float64 vectors. VADDPD

_mm512_add_round_ps,
_mm512_mask_add_round_ps,
_mm512_maskz_add_round_ps

Add rounded float32 vectors. VADDPS

_mm512_add_ps,
_mm512_mask_add_ps,
_mm512_maskz_add_ps

Add rounded float32 vectors. VADDPS

_mm_add_round_sd,
_mm_mask_add_round_sd,
_mm_maskz_add_round_sd

Add scalar float64 vectors. VADDSD

_mm_mask_add_sd,
_mm_maskz_add_sd

Add scalar float64 vectors. VADDSD

_mm_add_round_ss,
_mm_mask_add_round_ss,
_mm_maskz_add_round_ss

Add scalar float32 vectors. VADDSS

_mm_mask_add_ss,
_mm_maskz_add_ss

Add scalar float32 vectors. VADDPD

variable definition
k writemask used as a selector

a first source vector element

Compiler Reference

1153

variable definition
b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_add_pd

extern __m512d __cdecl _mm512_add_pd(__m512d a, __m512d b);
Adds packed float64 elements in a and b, and stores the result.

_mm512_mask_add_pd

extern __m512d __cdecl _mm512_mask_add_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Adds packed float64 elements in a and b, and stores the result using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_add_pd

extern __m512d __cdecl _mm512_maskz_add_pd(__mmask8 k, __m512d a, __m512d b);
Adds packed float64 elements in a and b, and stores the result using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_add_round_pd

extern __m512d __cdecl _mm512_add_round_pd(__m512d a, __m512d b, int round);
Adds packed float64 elements in a and b using rounding control round, and stores the result.

_mm512_mask_add_round_pd

extern __m512d __cdecl _mm512_mask_add_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d b,
int round);

Adds packed float64 elements in a and b using rounding control round, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_add_round_pd

extern __m512d __cdecl _mm512_maskz_add_round_pd(__mmask8 k, __m512d a, __m512d b, int round);
Adds packed float64 elements in a and b using rounding control round, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_add_ps

extern __m512 __cdecl _mm512_add_ps(__m512 a, __m512 b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1154

Adds packed float32 elements in a and b, and stores the result.

_mm512_mask_add_ps

extern __m512 __cdecl _mm512_mask_add_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Adds packed float32 elements in a and b, and stores the result using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_add_ps

extern __m512 __cdecl _mm512_maskz_add_ps(__mmask16 k, __m512 a, __m512 b);
Adds packed float32 elements in a and b, and stores the result using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_add_round_ps

extern __m512 __cdecl _mm512_add_round_ps(__m512 a, __m512 b, int round);
Adds packed float32 elements in a and b using rounding control round, and stores the result.

_mm512_mask_add_round_ps

extern __m512 __cdecl _mm512_mask_add_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int
round);

Adds packed float32 elements in a and b using rounding control round, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_add_round_ps

extern __m512 __cdecl _mm512_maskz_add_round_ps(__mmask16 k, __m512 a, __m512 b, int round);
Adds packed float32 elements in a and b using rounding control round, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm_add_round_sd

extern __m128d __cdecl _mm_add_round_sd(__m128d a, __m128d b, int round);
Adds the lower float64 element in a and b using rounding control round, stores the result in the lower
destination element, and copies the upper element from a to the upper destination element.

_mm_mask_add_round_sd

extern __m128d __cdecl _mm_mask_add_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int
round);

Adds the lower float64 element in a and b using rounding control round, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper element from a to the upper destination element.

_mm_maskz_add_round_sd

extern __m128d __cdecl _mm_maskz_add_round_sd(__mmask8 k, __m128d a, __m128d b, int round);
Adds the lower float64 element in a and b using rounding control round, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper element from a to the upper destination element.

Compiler Reference

1155

_mm_mask_add_sd

extern __m128d __cdecl _mm_mask_add_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Adds the lower float64 element in a and b, stores the result in the lower destination element using writemask
k (the element is copied from src when mask bit 0 is not set), and copies the upper element from a to the
upper destination element.

_mm_maskz_add_sd

extern __m128d __cdecl _mm_maskz_add_sd(__mmask8 k, __m128d a, __m128d b);
Adds the lower float64 element in a and b, stores the result in the lower destination element using zeromask
k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from a to the upper
destination element.

_mm_add_round_ss

extern __m128 __cdecl _mm_add_round_ss(__m128 a, __m128 b, int round);
Add the lower float32 element in a and b using rounding control round, stores the result in the lower
destination element, and copies the upper three packed elements from a to the upper destination elements.

_mm_mask_add_round_ss

extern __m128 __cdecl _mm_mask_add_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Add the lower float32 element in a and b using rounding control round, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper three packed elements from a to the upper destination elements.

_mm_maskz_add_round_ss

extern __m128 __cdecl _mm_maskz_add_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Add the lower float32 element in a and b using rounding control round, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper three packed elements from a to the upper destination elements.

_mm_mask_add_ss

extern __m128 __cdecl _mm_mask_add_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Add the lower float32 element in a and b, stores the result in the lower destination element using writemask
k (the element is copied from src when mask bit 0 is not set), and copies the upper three packed elements
from a to the upper destination elements.

_mm_maskz_add_ss

extern __m128 __cdecl _mm_maskz_add_ss(__mmask8 k, __m128 a, __m128 b);
Add the lower float32 element in a and b, stores the result in the lower destination element using zeromask k
(the element is zeroed out when mask bit 0 is not set), and copies the upper three packed elements from a
to the upper destination elements.

 Intel® C++ Compiler Classic Developer Guide and Reference

1156

Intrinsics for Integer Addition Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_add_epi32,
_mm512_mask_add_epi32,
_mm512_maskz_add_epi32

Add int32 vectors. VPADDD

_mm512_add_epi64,
_mm512_mask_add_epi64,
_mm512_maskz_add_epi64

Add int64 vectors. VPADDQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_add_epi32

extern __m512i __cdecl _mm512_add_epi32(__m512i a, __m512i b);
Adds packed int32 elements in a and b, and stores the result.

_mm512_mask_add_epi32

extern __m512i __cdecl _mm512_mask_add_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Adds packed int32 elements in a and b, and stores the result using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_add_epi32

extern __m512i __cdecl _mm512_maskz_add_epi32(__mmask16 k, __m512i a, __m512i b);
Adds packed int32 elements in a and b, and stores the result using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_add_epi64

extern __m512i __cdecl _mm512_add_epi64(__m512i a, __m512i b);
Adds packed int64 elements in a and b, and stores the result.

Compiler Reference

1157

_mm512_mask_add_epi64

extern __m512i __cdecl _mm512_mask_add_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Adds packed int64 elements in a and b, and stores the result using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_add_epi64

extern __m512i __cdecl _mm512_maskz_add_epi64(__mmask8 k, __m512i a, __m512i b);
Adds packed int64 elements in a and b, and stores the result using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

Intrinsics for Determining Minimum and Maximum Values

Intrinsics for Determining Minimum and Maximum FP Values

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_max_round_pd_mm512_mask_max
_round_pd_mm512_maskz_max_round_pd
_mm512_max_pd_mm512_mask_max_pd_mm
512_maskz_max_pd

Calculate maximum of rounded
float64 values.

VMAXPD

_mm512_max_round_ps_mm512_mask_max
_round_ps_mm512_maskz_max_round_ps
_mm512_max_ps_mm512_mask_max_ps_mm
512_maskz_max_ps

Calculate maximum of rounded
float32 values.

VMAXPS

_mm_mask_max_sd_mm_maskz_max_sd
_mm_max_round_sd,
_mm_mask_max_round_sd,
_mm_maskz_max_round_sd

Calculate maximum of scalar
float64 values.

VMAXSD

_mm_mask_max_ss_mm_maskz_max_ss
_mm_max_round_ss,
_mm_mask_max_round_ss,
_mm_maskz_max_round_ss

Calculate maximum of scalar
float32 values.

VMAXSS

_mm512_min_pd, _mm512_mask_min_pd,
_mm512_maskz_min_pd

Calculate minimum of packed
float64 values.

VMINPD

 Intel® C++ Compiler Classic Developer Guide and Reference

1158

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_min_round_pd,
_mm512_mask_min_round_pd,
_mm512_maskz_min_round_pd

_mm512_min_ps, _mm512_mask_min_ps,
_mm512_maskz_min_ps
_mm512_min_round_ps,
_mm512_mask_min_round_ps,
_mm512_maskz_min_round_ps

Calculate minimum of packed
float32 values.

VMINPS

_mm_mask_min_sd_mm_maskz_min_sd
_mm_min_round_sd,
_mm_mask_min_round_sd,
_mm_maskz_min_round_sd

Calculate minimum of scalar float64
values.

VMINSD

_mm_mask_min_ss_mm_maskz_min_ss
_mm_min_round_ss,
_mm_mask_min_round_ss,
_mm_maskz_min_round_ss

Calculate minimum of scalar float32
values.

VMINSS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_max_pd

extern __m512d __cdecl _mm512_max_pd(__m512d a, __m512d b);
Compares packed float64 elements in a and b, and stores packed maximum values.

_mm512_mask_max_pd

extern __m512d __cdecl _mm512_mask_max_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);

Compiler Reference

1159

Compares packed float64 elements in a and b, and stores packed maximum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_pd

extern __m512d __cdecl _mm512_maskz_max_pd(__mmask8 k, __m512d a, __m512d b);
Compares packed float64 elements in a and b, and stores packed maximum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_max_round_pd

extern __m512d __cdecl _mm512_max_round_pd(__m512d a, __m512d b, int round);
Compares packed float64 elements in a and b, and stores packed maximum values.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_mask_max_round_pd

extern __m512d __cdecl _mm512_mask_max_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d b,
int round);

Compares packed float64 elements in a and b, and stores packed maximum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_maskz_max_round_pd

extern __m512d __cdecl _mm512_maskz_max_round_pd(__mmask8 k, __m512d a, __m512d b, int round);
Compares packed float64 elements in a and b, and stores packed maximum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_max_ps

extern __m512 __cdecl _mm512_max_ps(__m512 a, __m512 b);
Compares packed float32 elements in a and b, and stores packed maximum values.

_mm512_mask_max_ps

extern __m512 __cdecl _mm512_mask_max_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1160

Compares packed float32 elements in a and b, and stores packed maximum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_ps

extern __m512 __cdecl _mm512_maskz_max_ps(__mmask16 k, __m512 a, __m512 b);
Compares packed float32 elements in a and b, and stores packed maximum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_max_round_ps

extern __m512 __cdecl _mm512_max_round_ps(__m512 a, __m512 b, int round);
Compares packed float32 elements in a and b, and stores packed maximum values.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_mask_max_round_ps

extern __m512 __cdecl _mm512_mask_max_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int
round);

Compares packed float32 elements in a and b, and stores packed maximum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_maskz_max_round_ps

extern __m512 __cdecl _mm512_maskz_max_round_ps(__mmask16 k, __m512 a, __m512 b, int round);
Compares packed float32 elements in a and b, and stores packed maximum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_max_sd

extern __m128d __cdecl _mm_mask_max_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Compares the lower float64 elements in a and b, stores the maximum value in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper element
from a to the upper destination element.

Compiler Reference

1161

_mm_maskz_max_sd

extern __m128d __cdecl _mm_maskz_max_sd(__mmask8 k, __m128d a, __m128d b);
Compares the lower float64 elements in a and b, stores the maximum value in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
a to the upper destination element.

_mm_max_round_sd

extern __m128d __cdecl _mm_max_round_sd(__m128d a, __m128d b, int round);
Compares the lower float64 elements in a and b, stores the maximum value in the lower destination
element, and copies the upper element from a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_max_round_sd

extern __m128d __cdecl _mm_mask_max_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int
round);

Compares the lower float64 elements in a and b, stores the maximum value in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper element
from a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_maskz_max_round_sd

extern __m128d __cdecl _mm_maskz_max_round_sd(__mmask8 k, __m128d a, __m128d b, int round);
Compares the lower float64 elements in a and b, stores the maximum value in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_max_ss

extern __m128 __cdecl _mm_mask_max_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Compares the lower float32 elements in a and b, stores the maximum value in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper element
from a to the upper destination element.

 Intel® C++ Compiler Classic Developer Guide and Reference

1162

_mm_maskz_max_ss

extern __m128 __cdecl _mm_maskz_max_ss(__mmask8 k, __m128 a, __m128 b);
Compares the lower float32 elements in a and b, stores the maximum value in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
a to the upper destination element.

_mm_max_round_ss

extern __m128 __cdecl _mm_max_round_ss(__m128 a, __m128 b, int round);
Compares the lower float32 elements in a and b, stores the maximum value in the lower destination
element, and copies the upper element from a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_max_round_ss

extern __m128 __cdecl _mm_mask_max_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Compares the lower float32 elements in a and b, stores the maximum value in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper element
from a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_maskz_max_round_ss

extern __m128 __cdecl _mm_maskz_max_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Compares the lower float32 elements in a and b, stores the maximum value in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_min_pd

extern __m512d __cdecl _mm512_min_pd(__m512d a, __m512d b);
Compares packed float64 elements in a and b, and stores packed minimum values.

_mm512_mask_min_pd

extern __m512d __cdecl _mm512_mask_min_pd(__m512d src, __mmask8 k, __m512d a,__m512d b);

Compiler Reference

1163

Compares packed float64 elements in a and b, and stores packed minimum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_pd

extern __m512d __cdecl _mm512_maskz_min_pd(__mmask8 k, __m512d a, __m512d b);
Compares packed float64 elements in a and b, and store packed minimum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_min_round_pd

extern __m512d __cdecl _mm512_min_round_pd(__m512d a, __m512d b, int round);
Compares packed float64 elements in a and b, and stores packed minimum values.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_mask_min_round_pd

extern __m512d __cdecl _mm512_mask_min_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d b,
int round);

Compares packed float64 elements in a and b, and stores packed minimum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_maskz_min_round_pd

extern __m512d __cdecl _mm512_maskz_min_round_pd(__mmask8 k, __m512d a, __m512d b, int round);
Compares packed float64 elements in a and b, and stores packed minimum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_min_ps

extern __m512 __cdecl _mm512_min_ps(__m512 a, __m512 b);
Compares packed float32 elements in a and b, and stores packed minimum values.

_mm512_mask_min_ps

extern __m512 __cdecl _mm512_mask_min_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1164

Compares packed float32 elements in a and b, and stores packed minimum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_ps

extern __m512 __cdecl _mm512_maskz_min_ps(__mmask16 k, __m512 a, __m512 b;
Compares packed float32 elements in a and b, and store packed minimum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_min_round_ps

extern __m512 __cdecl _mm512_min_round_ps(__m512 a, __m512 b, int round);
Compares packed float32 elements in a and b, and stores packed minimum values.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_mask_min_round_ps

extern __m512 __cdecl _mm512_mask_min_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int
round);

Compares packed float32 elements in a and b, and stores packed minimum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_maskz_min_round_ps

extern __m512 __cdecl _mm512_maskz_min_round_ps(__mmask16 k, __m512 a, __m512 b, int round);
Compares packed float32 elements in a and b, and stores packed minimum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_min_sd

extern __m128d __cdecl _mm_mask_min_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Compares the lower float64 elements in a and b, stores the minimum value in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper element
from a to the upper destination element.

Compiler Reference

1165

_mm_maskz_min_sd

extern __m128d __cdecl _mm_maskz_min_sd(__mmask8 k, __m128d a, __m128d b);
Compares the lower float64 elements in a and b, stores the minimum value in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
a to the upper destination element.

_mm_min_round_sd

extern __m128d __cdecl _mm_min_round_sd(__m128d a, __m128d b, int round);
Compares the lower float64 elements in a and b, stores the minimum value in the lower destination element,
and copies the upper element from a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_min_round_sd

extern __m128d __cdecl _mm_mask_min_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int
round);

Compares the lower float64 elements in a and b, stores the minimum value in the lower destination element
of using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper
element from a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_maskz_min_round_sd

extern __m128d __cdecl _mm_maskz_min_round_sd(__mmask8 k, __m128d a, __m128d b, int round);
Compares the lower float64 elements in a and b, stores the minimum value in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_min_ss

extern __m128 __cdecl _mm_mask_min_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Compares the lower float32 elements in a and b, stores the minimum value in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper element
from a to the upper destination element.

 Intel® C++ Compiler Classic Developer Guide and Reference

1166

_mm_maskz_min_ss

extern __m128 __cdecl _mm_maskz_min_ss(__mmask8 k, __m128 a, __m128 b);
Compares the lower float32 elements in a and b, stores the minimum value in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
a to the upper destination element.

_mm_min_round_ss

extern __m128 __cdecl _mm_min_round_ss(__m128 a, __m128 b, int round);
Compares the lower float32 elements in a and b, stores the minimum value in the lower destination element,
and copies the upper element from a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_min_round_ss

extern __m128 __cdecl _mm_mask_min_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Compares the lower float32 elements in a and b, stores the minimum value in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper element
from a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_maskz_min_round_ss

extern __m128 __cdecl _mm_maskz_min_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Compares the lower float32 elements in a and b, stores the minimum value in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
a to the upper destination element.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

Intrinsics for Determining Minimum and Maximum Integer Values

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Compiler Reference

1167

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_max_epi32,
_mm512_mask_max_epi32,
_mm512_maskz_max_epi32

Calculate maximum of packed int32
values.

VPMAXSD

_mm512_min_epi32,
_mm512_mask_min_epi32,
_mm512_maskz_min_epi32

Calculate minimum of packed int32
values.

VPMINSD

_mm512_max_epu32,
_mm512_mask_max_epu32,
_mm512_maskz_max_epu32

Calculate maximum of unpacked
int32 values.

VPMAXUD

_mm512_min_epu32,
_mm512_mask_min_epu32,
_mm512_maskz_min_epu32

Calculate minimum of unpacked
int32 values.

VPMINUD

_mm512_max_epi64,
_mm512_mask_max_epi64,
_mm512_maskz_max_epi64

Calculate maximum of packed
signed int64 values.

VPMAXSQ

_mm512_max_epu64,
_mm512_mask_max_epu64,
_mm512_maskz_max_epu64

Calculate maximum of unpacked
unsigned int64 values.

VPMAXUQ

_mm512_min_epi64,
_mm512_mask_min_epi64,
_mm512_maskz_min_epi64

Calculate minimum of packed signed
int64 values.

VPMINSQ

_mm512_min_epu64,
_mm512_mask_min_epu64,
_mm512_maskz_min_epu64

Calculate minimum of unpacked
unsigned int64 values.

VPMINUQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_max_epi32

extern __m512i __cdecl _mm512_max_epi32(__m512i a, __m512i b);
Compares packed int32 elements in a and b, and stores packed maximum values.

_mm512_mask_max_epi32

extern __m512i __cdecl _mm512_mask_max_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1168

Compares packed int32 elements in a and b, and stores packed maximum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_epi32

extern __m512i __cdecl _mm512_maskz_max_epi32(__mmask16 k, __m512i a, __m512i b);
Compares packed int32 elements in a and b, and stores packed maximum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_max_epi64

extern __m512i __cdecl _mm512_max_epi64(__m512i a, __m512i b);
Compares packed int64 elements in a and b, and stores packed maximum values.

_mm512_mask_max_epi64

extern __m512i __cdecl _mm512_mask_max_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Compares packed int64 elements in a and b, and stores packed maximum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_epi64

extern __m512i __cdecl _mm512_maskz_max_epi64(__mmask8 k, __m512i a, __m512i b);
Compares packed int64 elements in a and b, and stores packed maximum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_max_epu32

extern __m512i __cdecl _mm512_max_epu32(__m512i a,__m512i b);
Compares packed uint32 elements in a and b, and stores packed maximum values.

_mm512_mask_max_epu32

extern __m512i __cdecl _mm512_mask_max_epu32(__m512i src, __mmask16 k, __m512i a,__m512i b);
Compares packed uint32 elements in a and b, and stores packed maximum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_epu32

extern __m512i __cdecl _mm512_maskz_max_epu32(__mmask16 k, __m512i a, __m512i b);
Compares packed uint32 elements in a and b, and stores packed maximum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_max_epu64

extern __m512i __cdecl _mm512_max_epu64(__m512i a, __m512i b);
Compares packed uint64 elements in a and b, and stores packed maximum values.

Compiler Reference

1169

_mm512_mask_max_epu64

extern __m512i __cdecl _mm512_mask_max_epu64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Compares packed uint64 elements in a and b, and stores packed maximum values in using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_max_epu64

extern __m512i __cdecl _mm512_maskz_max_epu64(__mmask8 k, __m512i a, __m512i b);
Compares packed uint64 elements in a and b, and stores packed maximum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_min_epi32

extern __m512i __cdecl _mm512_min_epi32(__m512i a, __m512i b);
Compares packed int32 elements in a and b, and stores packed minimum values.

_mm512_mask_min_epi32

extern __m512i __cdecl _mm512_mask_min_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Compares packed int32 elements in a and b, and stores packed minimum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_epi32

extern __m512i __cdecl _mm512_maskz_min_epi32(__mmask16 k, __m512i a, __m512i b);
Compares packed int32 elements in a and b, and stores packed minimum values using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

_mm512_min_epi64

extern __m512i __cdecl _mm512_min_epi64(__m512i a, __m512i b);
Compares packed int64 elements in a and b, and stores packed minimum values.

_mm512_mask_min_epi64

extern __m512i __cdecl _mm512_mask_min_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Compares packed int64 elements in a and b, and stores packed minimum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_epi64

extern __m512i __cdecl _mm512_maskz_min_epi64(__mmask8 k, __m512i a, __m512i b);
Compares packed int64 elements in a and b, and stores packed minimum values using zeromask k (elements
are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1170

_mm512_min_epu32

extern __m512i __cdecl _mm512_min_epu32(__m512i a, __m512i b);
Compares packed uint32 elements in a and b, and stores packed minimum values.

_mm512_mask_min_epu32

extern __m512i __cdecl _mm512_mask_min_epu32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Compares packed uint32 elements in a and b, and stores packed minimum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_epu32

extern __m512i __cdecl _mm512_maskz_min_epu32(__mmask16 k, __m512i a, __m512i b);
Compares packed uint32 elements in a and b, and stores packed minimum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_min_epu64

extern __m512i __cdecl _mm512_min_epu64(__m512i a, __m512i b);
Compares packed uint64 elements in a and b, and stores packed minimum values.

_mm512_mask_min_epu64

extern __m512i __cdecl _mm512_mask_min_epu64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Compares packed uint64 elements in a and b, and stores packed minimum values using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_min_epu64

extern __m512i __cdecl _mm512_maskz_min_epu64(__mmask8 k, __m512i a, __m512i b);
Compares packed uint64 elements in a and b, and stores packed minimum values using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for FP Fused Multiply-Add (FMA) Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_fmadd_pd,
_mm512_mask3_fmadd_pd,
_mm512_mask_fmadd_pd,
_mm512_maskz_fmadd_pd

Multiplies float64 element vector
elements, then adds the
intermediate result to float64 vector
elements.

VFMADD132PD

Compiler Reference

1171

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_fmadd_round_pd,
_mm512_mask3_fmadd_round_pd,
_mm512_mask_fmadd_round_pd,
_mm512_maskz_fmadd_round_pd

_mm512_fmadd_ps,
_mm512_mask3_fmadd_ps,
_mm512_mask_fmadd_ps,
_mm512_maskz_fmadd_ps
_mm512_fmadd_round_ps,
_mm512_mask3_fmadd_round_ps,
_mm512_mask_fmadd_round_ps,
_mm512_maskz_fmadd_round_ps

Multiplies float32 element vector
elements, then adds the
intermediate result to float32 vector
elements.

VFMADD132PS

_mm_mask3_fmadd_sd,
_mm_mask_fmadd_sd,
_mm_maskz_fmadd_sd
_mm_mask3_fmadd_round_sd,
_mm_mask_fmadd_round_sd,
_mm_maskz_fmadd_round_sd

Multiplies float64 element vector
elements, then adds the
intermediate result to float64 vector
elements.

VFMADD132SD

_mm_mask3_fmadd_ss,
_mm_mask_fmadd_ss,
_mm_maskz_fmadd_ss
_mm_mask3_fmadd_round_ss,
_mm_mask_fmadd_round_ss,
_mm_maskz_fmadd_round_ss

Multiplies float32 element vector
elements, then adds the
intermediate result to float32 vector
elements.

VFMADD132SS

_mm512_fmaddsub_pd,
_mm512_mask3_fmaddsub_pd,
_mm512_mask_fmaddsub_pd,
_mm512_maskz_fmaddsub_pd
_mm512_fmaddsub_round_pd,
_mm512_mask3_fmaddsub_round_pd,
_mm512_mask_fmaddsub_round_pd,
_mm512_maskz_fmaddsub_round_pd

Multiplies float64 element vector
elements, then alternatively add
and subtract to/from the
intermediate result.

VFMADDSUB132PD

_mm512_fmaddsub_ps,
_mm512_mask3_fmaddsub_ps,
_mm512_mask_fmaddsub_ps,
_mm512_maskz_fmaddsub_ps
_mm512_fmaddsub_round_ps,
_mm512_mask3_fmaddsub_round_ps,
_mm512_mask_fmaddsub_round_ps,
_mm512_maskz_fmaddsub_round_ps

Multiplies float32 element vector
elements, then alternatively add
and subtract to/from the
intermediate result.

VFMADDSUB132PS

 Intel® C++ Compiler Classic Developer Guide and Reference

1172

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_fmsub_pd,
_mm512_mask3_fmsub_pd,
_mm512_mask_fmsub_pd,
_mm512_maskz_fmsub_pd
_mm512_fmsub_round_pd,
_mm512_mask3_fmsub_round_pd,
_mm512_mask_fmsub_round_pd,
_mm512_maskz_fmsub_round_pd

Multiplies packed float64 element
vector elements, then subtracts the
intermediate result to float64 vector
elements.

VFMSUB132PD

_mm512_fmsub_ps,
_mm512_mask3_fmsub_ps,
_mm512_mask_fmsub_ps,
_mm512_maskz_fmsub_ps
_mm512_fmsub_round_ps,
_mm512_mask3_fmsub_round_ps,
_mm512_mask_fmsub_round_ps,
_mm512_maskz_fmsub_round_ps

Multiplies packed float32 element
vector elements, then subtracts the
intermediate result to float32 vector
elements.

VFMSUB132PS

_mm_mask3_fmsub_sd,
_mm_mask_fmsub_sd,
_mm_maskz_fmsub_sd
_mm_mask3_fmsub_round_sd,
_mm_mask_fmsub_round_sd,
_mm_maskz_fmsub_round_sd

Multiplies scalar float64 element
vector elements, then subtracts the
intermediate result to float64 vector
elements.

VFMSUB132SD

_mm_mask3_fmsub_ss,
_mm_mask_fmsub_ss,
_mm_maskz_fmsub_ss
_mm_mask3_fmsub_round_ss,
_mm_mask_fmsub_round_ss,
_mm_maskz_fmsub_round_ss

Multiplies scalar float32 element
vector elements, then subtracts the
intermediate result to float32 vector
elements.

VFMSUB132SS

_mm512_fmsubadd_pd,
_mm512_mask3_fmsubadd_pd,
_mm512_mask_fmsubadd_pd,
_mm512_maskz_fmsubadd_pd
_mm512_fmsubadd_round_pd,
_mm512_mask3_fmsubadd_round_pd,
_mm512_mask_fmsubadd_round_pd,
_mm512_maskz_fmsubadd_round_pd

Multiplies float64 element vector
elements, then alternatively
subtract and add to/from the
intermediate result.

VFMSUBADD132PD

_mm512_fmsubadd_ps,
_mm512_mask3_fmsubadd_ps,
_mm512_mask_fmsubadd_ps,
_mm512_maskz_fmsubadd_ps

Multiplies float32 element vector
elements, then alternatively
subtract and add to/from the
intermediate result.

VFMSUBADD132PS

Compiler Reference

1173

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_fmsubadd_round_ps,
_mm512_mask3_fmsubadd_round_ps,
_mm512_mask_fmsubadd_round_ps,
_mm512_maskz_fmsubadd_round_ps

_mm512_fnmadd_pd,
_mm512_mask3_fnmadd_pd,
_mm512_mask_fnmadd_pd,
_mm512_maskz_fnmadd_pd
_mm512_fnmadd_round_pd,
_mm512_mask3_fnmadd_round_pd,
_mm512_mask_fnmadd_round_pd,
_mm512_maskz_fnmadd_round_pd

Multiplies packed float64 element
vector elements, then adds the
negated intermediate result to
float64 vector elements.

VFNMADD132PD

_mm512_fnmadd_ps,
_mm512_mask3_fnmadd_ps,
_mm512_maskz_fnmadd_ps,
_mm512_mask_fnmadd_ps
_mm512_fnmadd_round_ps, ,
_mm512_mask3_fnmadd_round_ps,
_mm512_mask_fnmadd_round_ps,
_mm512_maskz_fnmadd_round_ps

Multiplies packed float32 element
vector elements, then adds the
negated intermediate result to
float32 vector elements.

VFNMADD132PS

_mm_mask3_fnmadd_round_sd,
_mm_mask_fnmadd_round_sd,
_mm_maskz_fnmadd_round_sd
_mm_maskz_fnmadd_sd,
_mm_mask_fnmadd_sd,
_mm_mask3_fnmadd_sd

Multiplies scalar float64 element
vector elements, then adds the
negated intermediate result to
float64 vector elements.

VFNMADD132SD

_mm_mask3_fnmadd_ss,
_mm_mask_fnmadd_ss,
_mm_maskz_fnmadd_ss
_mm_mask3_fnmadd_round_ss,
_mm_mask_fnmadd_round_ss,
_mm_maskz_fnmadd_round_ss

Multiplies scalar float32 element
vector elements, then adds the
negated intermediate result to
float32 vector elements.

VFNMADD132SS

_mm512_fnmsub_pd,
_mm512_mask3_fnmsub_pd,
_mm512_mask_fnmsub_pd,
_mm512_maskz_fnmsub_pd
_mm512_fnmsub_round_pd,
_mm512_mask3_fnmsub_round_pd,
_mm512_mask_fnmsub_round_pd,
_mm512_maskz_fnmsub_round_pd

Multiplies packed float64 element
vector elements, then subtracts the
negated intermediate result to
float64 vector elements.

VFNMSUB132PD

 Intel® C++ Compiler Classic Developer Guide and Reference

1174

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_fnmsub_ps,
_mm512_mask3_fnmsub_ps,
_mm512_maskz_fnmsub_ps,
_mm512_mask_fnmsub_ps
_mm512_fnmsub_round_ps,
_mm512_mask3_fnmsub_round_ps,
_mm512_maskz_fnmsub_round_ps,
_mm512_mask_fnmsub_round_ps

Multiplies packed float32 element
vector elements, then subtracts the
negated intermediate result to
float32 vector elements.

VFNMSUB132PS

_mm_maskz_fnmsub_round_sd,
_mm_mask_fnmsub_round_sd,
_mm_mask3_fnmsub_round_sd
_mm_mask_fnmsub_sd,
_mm_mask3_fnmsub_sd,
_mm_maskz_fnmsub_sd

Multiplies scalar float64 element
vector elements, then subtracts the
negated intermediate result to
float64 vector elements.

VFNMSUB132SD

_mm_maskz_fnmsub_round_ss,
_mm_mask_fnmsub_round_ss,
_mm_mask3_fnmsub_round_ss
_mm_mask_fnmsub_ss,
_mm_maskz_fnmsub_ss,
_mm_mask3_fnmsub_ss

Multiplies scalar float32 element
vector elements, then subtracts the
negated intermediate result to
float32 vector elements.

VFNMSUB132SS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_fmadd_pd

extern __m512d __cdecl _mm512_fmadd_pd(__m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result.

Compiler Reference

1175

_mm512_mask_fmadd_pd

extern __m512d __cdecl _mm512_mask_fmadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask3_fmadd_pd

extern __m512d __cdecl _mm512_mask3_fmadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
Multiplies packed float64 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_maskz_fmadd_pd

extern __m512d __cdecl _mm512_maskz_fmadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_fmadd_round_pd

extern __m512d __cdecl _mm512_fmadd_round_pd(__m512d a, __m512d b, __m512d c, int round);
Multiplies packed float64 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result.

_mm512_mask_fmadd_round_pd

extern __m512d __cdecl _mm512_mask_fmadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c,
int round);

Multiplies packed float64 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask3_fmadd_round_pd

extern __m512d __cdecl _mm512_mask3_fmadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k,
int round);

Multiplies packed float64 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_maskz_fmadd_round_pd

extern __m512d __cdecl _mm512_maskz_fmadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c,
int round);

Multiplies packed float64 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_fmadd_round_ps

extern __m512 __cdecl _mm512_fmadd_round_ps(__m512 a, __m512 b, __m512 c, int round);
Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1176

_mm512_mask_fmadd_round_ps

extern __m512 __cdecl _mm512_mask_fmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int
round);

Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask3_fmadd_round_ps

extern __m512 __cdecl _mm512_mask3_fmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int
round);

Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_maskz_fmadd_round_ps

extern __m512 __cdecl _mm512_maskz_fmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c,
const int round);

Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result a using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_fmadd_ps

extern __m512 __cdecl _mm512_fmadd_ps(__m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result.

_mm512_mask_fmadd_ps

extern __m512 __cdecl _mm512_mask_fmadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask3_fmadd_ps

extern __m512 __cdecl _mm512_mask3_fmadd_ps(__m512, __m512 b, __m512 c, __mmask16 k);
Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_maskz_fmadd_ps

extern __m512 __cdecl _mm512_maskz_fmadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_fmadd_round_ps

extern __m512 __cdecl _mm512_fmadd_round_ps(__m512 a, __m512 b, __m512 c, int round);
Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result.

Compiler Reference

1177

_mm512_mask_fmadd_round_ps

extern __m512 __cdecl _mm512_mask_fmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int
round);

Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask3_fmadd_round_ps

extern __m512 __cdecl _mm512_mask3_fmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int
round);

Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm512_maskz_fmadd_round_ps

extern __m512 __cdecl _mm512_maskz_fmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int
round);

Multiplies packed float32 elements in a and b, adds the intermediate result to packed elements in c, and
stores the result a using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_fmadd_sd

extern __m128d __cdecl _mm_mask_fmadd_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
Multiplies lower float64 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using writemask k (the element is copied from a when mask bit 0 is
not set), and copies upper element from a to upper destination element.

_mm_mask3_fmadd_sd

extern __m128d __cdecl _mm_mask3_fmadd_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
Multiplies lower float64 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using writemask k (the element is copied from c when mask bit 0 is
not set), and copies upper element from a to upper destination element.

_mm_maskz_fmadd_sd

extern __m128d __cdecl _mm_maskz_fmadd_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
Multiplies lower float64 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not
set), and copies upper element from a to upper destination element.

_mm_mask_fmadd_round_sd

extern __m128d __cdecl _mm_mask_fmadd_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int
round);

Multiplies lower float64 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using writemask k (the element is copied from a when mask bit 0 is
not set), and copies upper element from a to upper destination element.

 Intel® C++ Compiler Classic Developer Guide and Reference

1178

_mm_mask3_fmadd_round_sd

extern __m128d __cdecl _mm_mask3_fmadd_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int
round);

Multiplies lower float64 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using writemask k (the element is copied from c when mask bit 0 is
not set), and copies upper element from a to upper destination element.

_mm_maskz_fmadd_round_sd

extern __m128d __cdecl _mm_maskz_fmadd_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int
round);

Multiplies lower float64 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not
set), and copies upper element from a to upper destination element.

_mm_mask_fmadd_ss

extern __m128 __cdecl _mm_mask_fmadd_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using writemask k (the element is copied from a when mask bit 0 is
not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask3_fmadd_ss

extern __m128 __cdecl _mm_mask3_fmadd_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
Multiplies lower float32 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower element using writemask k (the element is copied from c when mask bit 0 is not set), and
copies upper three packed elements from a to upper destination elements.

_mm_maskz_fmadd_ss

extern __m128 __cdecl _mm_maskz_fmadd_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not
set), and copies upper three packed elements from a to upper destination elements.

_mm_mask_fmadd_round_ss

extern __m128 __cdecl _mm_mask_fmadd_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int
round);

Multiplies lower float32 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using writemask k (the element is copied from a when mask bit 0 is
not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask3_fmadd_round_ss

extern __m128 __cdecl _mm_mask3_fmadd_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int
round);

Multiplies lower float32 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using writemask k (the element is copied from c when mask bit 0 is
not set), and copies upper three packed elements from a to upper destination elements.

Compiler Reference

1179

_mm_maskz_fmadd_round_ss

extern __m128 __cdecl _mm_maskz_fmadd_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int
round);

Multiplies lower float32 elements in a and b, and adds the intermediate result to lower element in c. Stores
the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not
set), and copies upper three packed elements from a to upper destination elements.

_mm512_fmaddsub_pd

extern __m512d __cdecl _mm512_fmaddsub_pd(__m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result.

_mm512_mask_fmaddsub_pd

extern __m512d __cdecl _mm512_mask_fmaddsub_pd(__m512d, __mmask8 k, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm512_mask3_fmaddsub_pd

extern __m512d __cdecl _mm512_mask3_fmaddsub_pd(__m512d a, __m512d k, __m512d b, __mmask8 c);
Multiplies packed float64 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm512_maskz_fmaddsub_pd

extern __m512d __cdecl _mm512_maskz_fmaddsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_fmaddsub_round_pd

extern __m512d __cdecl _mm512_fmsubadd_round_pd(__m512d a, __m512d b, __m512d c, int round);
Multiplies packed float64 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result.

_mm512_mask_fmaddsub_round_pd

extern __m512d __cdecl _mm512_mask_fmsubadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d
c, int round);

Multiplies packed float64 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm512_mask3_fmaddsub_round_pd

extern __m512d __cdecl _mm512_mask3_fmsubadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8
k, int round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1180

Multiplies packed float64 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm512_maskz_fmaddsub_round_pd

extern __m512d __cdecl _mm512_maskz_fmsubadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d
c, int round);

Multiplies packed float64 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_fmaddsub_ps

extern __m512 __cdecl _mm512_fmaddsub_ps(__m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result.

_mm512_mask_fmaddsub_ps

extern __m512 __cdecl _mm512_mask_fmaddsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm512_mask3_fmaddsub_ps

extern __m512 __cdecl _mm512_mask3_fmaddsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
Multiplies packed float32 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm512_maskz_fmaddsub_ps

extern __m512 __cdecl _mm512_maskz_fmaddsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_fmaddsub_round_ps

extern __m512 __cdecl _mm512_fmaddsub_round_ps(__m512 a, __m512 b, __m512 c, int round);
Multiplies packed float32 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result.

_mm512_mask_fmaddsub_round_ps

extern __m512 __cdecl _mm512_mask_fmaddsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c,
int round);

Multiplies packed float32 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

Compiler Reference

1181

_mm512_mask3_fmaddsub_round_ps

extern __m512 __cdecl _mm512_mask3_fmaddsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k,
int round);

Multiplies packed float32 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm512_maskz_fmaddsub_round_ps

extern __m512 __cdecl _mm512_maskz_fmaddsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c,
int round);

Multiplies packed float32 elements in a and b, alternatively add and subtract packed elements in c to/from
the intermediate result, and stores the result using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_fmsub_pd

extern __m512d __cdecl _mm512_fmsub_pd(__m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result.

_mm512_mask_fmsub_pd

extern __m512d __cdecl _mm512_mask_fmsub_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using writemask k (elements are copied from a when the corresponding mask bit is not
set).

_mm512_mask3_fmsub_pd

extern __m512d __cdecl _mm512_mask3_fmsub_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using writemask k (elements are copied from c when the corresponding mask bit is not
set).

_mm512_maskz_fmsub_pd

extern __m512d __cdecl _mm512_maskz_fmsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_fmsub_round_pd

extern __m512d __cdecl _mm512_fmsub_round_pd(__m512d a, __m512d b, __m512d c, int round);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1182

_mm512_mask_fmsub_round_pd

extern __m512d __cdecl _mm512_mask_fmsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c,
int round);

Multiplies packed float64 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using writemask k (elements are copied from a when the corresponding mask bit is not
set).

_mm512_mask3_fmsub_round_pd

extern __m512d __cdecl _mm512_mask3_fmsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k,
int round);

Multiplies packed float64 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using writemask k (elements are copied from c when the corresponding mask bit is not
set).

_mm512_maskz_fmsub_round_pd

extern __m512d __cdecl _mm512_maskz_fmsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c,
int round);

Multiplies packed float64 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_fmsub_ps

extern __m512 __cdecl _mm512_fmsub_ps(__m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result.

_mm512_mask_fmsub_ps

extern __m512 __cdecl _mm512_mask_fmsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using writemask k (elements are copied from a when the corresponding mask bit is not
set).

_mm512_mask3_fmsub_ps

extern __m512 __cdecl _mm512_mask3_fmsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using writemask k (elements are copied from c when the corresponding mask bit is not
set).

_mm512_maskz_fmsub_ps

extern __m512 __cdecl _mm512_maskz_fmsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

Compiler Reference

1183

_mm512_fmsub_round_ps

extern __m512 __cdecl _mm512_fmsub_round_ps(__m512 a, __m512 b, __m512 c, int round);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result.

_mm512_mask_fmsub_round_ps

extern __m512 __cdecl _mm512_mask_fmsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int
round);

Multiplies packed float32 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using writemask k (elements are copied from a when the corresponding mask bit is not
set).

_mm512_mask3_fmsub_round_ps

extern __m512 __cdecl _mm512_mask3_fmsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int
round);

Multiplies packed float32 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using writemask k (elements are copied from c when the corresponding mask bit is not
set).

_mm512_maskz_fmsub_round_ps

extern __m512 __cdecl _mm512_maskz_fmsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int
round);

Multiplies packed float32 elements in a and b, subtracts packed elements in c from the intermediate result,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_fmsub_sd

extern __m128d __cdecl _mm_mask_fmsub_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
Multiplies lower float64 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using writemask k (the element is copied from a when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_mask3_fmsub_sd

extern __m128d __cdecl _mm_mask3_fmsub_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
Multiplies lower float64 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using writemask k (the element is copied from c when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_maskz_fmsub_sd

extern __m128d __cdecl _mm_maskz_fmsub_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
Multiplies lower float64 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper element from a to upper destination element.

 Intel® C++ Compiler Classic Developer Guide and Reference

1184

_mm_mask_fmsub_round_sd

extern __m128d __cdecl _mm_mask_fmsub_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int
round);

Multiplies lower float64 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using writemask k (the element is copied from a when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_mask3_fmsub_round_sd

extern __m128d __cdecl _mm_mask3_fmsub_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int
round);

Multiplies lower float64 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using writemask k (the element is copied from c when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_maskz_fmsub_round_sd

extern __m128d __cdecl _mm_maskz_fmsub_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int
round);

Multiplies lower float64 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper element from a to upper destination element.

_mm_mask_fmsub_ss

extern __m128 __cdecl _mm_mask_fmsub_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using writemask k (the element is copied from a when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask3_fmsub_ss

extern __m128 __cdecl _mm_mask3_fmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using writemask k (the element is copied from c when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_maskz_fmsub_ss

extern __m128 __cdecl _mm_maskz_fmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask_fmsub_round_ss

extern __m128 __cdecl _mm_mask_fmsub_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int
round);

Multiplies lower float32 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using writemask k (the element is copied from a when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

Compiler Reference

1185

_mm_mask3_fmsub_round_ss

extern __m128 __cdecl _mm_mask3_fmsub_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int
round);

Multiplies lower float32 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using writemask k (the element is copied from c when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_maskz_fmsub_round_ss

extern __m128 __cdecl _mm_maskz_fmsub_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int
round);

Multiplies lower float32 elements in a and b, and subtracts lower element in c from the intermediate result.
Stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper three packed elements from a to upper destination elements.

_mm512_fmsubadd_pd

extern __m512d __cdecl _mm512_fmsubadd_pd(__m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result.

_mm512_mask_fmsubadd_pd

extern __m512d __cdecl _mm512_mask_fmsubadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm512_mask3_fmsubadd_pd

extern __m512d __cdecl _mm512_mask3_fmsubadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
Multiplies packed float64 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm512_maskz_fmsubadd_pd

extern __m512d __cdecl _mm512_maskz_fmsubadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result destination using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

_mm512_fmsubadd_round_pd

extern __m512d __cdecl _mm512_fmaddsub_round_pd(__m512d a, __m512d b, __m512d c, int round);
Multiplies packed float64 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result.

_mm512_mask_fmsubadd_round_pd

extern __m512d __cdecl _mm512_mask_fmaddsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d
c, int round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1186

Multiplies packed float64 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm512_mask3_fmsubadd_round_pd

extern __m512d __cdecl _mm512_mask3_fmaddsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8
k, int round);

Multiplies packed float64 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm512_maskz_fmsubadd_round_pd

extern __m512d __cdecl _mm512_maskz_fmaddsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d
c, int round);

Multiplies packed float64 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_fmsubadd_ps

extern __m512 __cdecl _mm512_fmsubadd_ps(__m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result.

_mm512_mask_fmsubadd_ps

extern __m512 __cdecl _mm512_mask_fmsubadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm512_mask3_fmsubadd_ps

extern __m512 __cdecl _mm512_mask3_fmsubadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
Multiplies packed float32 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm512_maskz_fmsubadd_ps

extern __m512 __cdecl _mm512_maskz_fmsubadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_fmsubadd_round_ps

extern __m512 __cdecl _mm512_fmsubadd_round_ps(__m512 a, __m512 b, __m512 c, int round);
Multiplies packed float32 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result.

Compiler Reference

1187

_mm512_mask_fmsubadd_round_ps

extern __m512 __cdecl _mm512_mask_fmsubadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c,
int round);

Multiplies packed float32 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using writemask k (elements are copied from a when the
corresponding mask bit is not set).

_mm512_mask3_fmsubadd_round_ps

extern __m512 __cdecl _mm512_mask3_fmsubadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k,
int round);

Multiplies packed float32 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using writemask k (elements are copied from c when the
corresponding mask bit is not set).

_mm512_maskz_fmsubadd_round_ps

extern __m512 __cdecl _mm512_maskz_fmsubadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c,
int round);

Multiplies packed float32 elements in a and b, alternatively subtract and add packed elements in c from/to
the intermediate result, and stores the result using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_fnmadd_pd

extern __m512d __cdecl _mm512_fnmadd_pd(__m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result.

_mm512_mask_fnmadd_pd

extern __m512d __cdecl _mm512_mask_fnmadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using writemask k (elements are copied from a when the corresponding mask bit is not
set).

_mm512_mask3_fnmadd_pd

extern __m512d __cdecl _mm512_mask3_fnmadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
Multiplies packed float64 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using writemask k (elements are copied from c when the corresponding mask bit is not
set).

_mm512_maskz_fnmadd_pd

extern __m512d __cdecl _mm512_maskz_fnmadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1188

_mm512_fnmadd_round_pd

extern __m512d __cdecl _mm512_fnmadd_round_pd(__m512d a, __m512d b, __m512d c, int round);
Multiplies packed float64 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result.

_mm512_mask_fnmadd_round_pd

extern __m512d __cdecl _mm512_mask_fnmadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c,
int round);

Multiplies packed float64 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using writemask k (elements are copied from a when the corresponding mask bit is not
set).

_mm512_mask3_fnmadd_round_pd

extern __m512d __cdecl _mm512_mask3_fnmadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k,
int round);

Multiplies packed float64 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using writemask k (elements are copied from c when the corresponding mask bit is not
set).

_mm512_maskz_fnmadd_round_pd

extern __m512d __cdecl _mm512_maskz_fnmadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c,
int round);

Multiplies packed float64 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_fnmadd_ps

extern __m512 __cdecl _mm512_fnmadd_ps(__m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result.

_mm512_mask_fnmadd_ps

extern __m512 __cdecl _mm512_mask_fnmadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using writemask k (elements are copied from a when the corresponding mask bit is not
set).

_mm512_mask3_fnmadd_ps

extern __m512 __cdecl _mm512_mask3_fnmadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
Multiplies packed float32 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using writemask k (elements are copied from c when the corresponding mask bit is not
set).

_mm512_maskz_fnmadd_ps

extern __m512 __cdecl _mm512_maskz_fnmadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);

Compiler Reference

1189

Multiplies packed float32 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_fnmadd_round_ps

extern __m512 __cdecl _mm512_fnmadd_round_ps(__m512 a, __m512 b, __m512 c, int round);
Multiplies packed float32 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result.

_mm512_mask_fnmadd_round_ps

extern __m512 __cdecl _mm512_mask_fnmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int
round);

Multiplies packed float32 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using writemask k (elements are copied from a when the corresponding mask bit is not
set).

_mm512_mask3_fnmadd_round_ps

extern __m512 __cdecl _mm512_mask3_fnmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k,
int round);

Multiplies packed float32 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using writemask k (elements are copied from c when the corresponding mask bit is not
set).

_mm512_maskz_fnmadd_round_ps

extern __m512 __cdecl _mm512_maskz_fnmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c,
int round);

Multiplies packed float32 elements in a and b, adds the negated intermediate result to packed elements in c,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm_mask_fnmadd_sd

extern __m128d __cdecl _mm_mask_fnmadd_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
Multiplies lower float64 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using writemask k (the element is copied from a when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_mask3_fnmadd_sd

extern __m128d __cdecl _mm_mask3_fnmadd_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
Multiplies lower float64 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using writemask k (the element is copied from c when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_maskz_fnmadd_sd

extern __m128d __cdecl _mm_maskz_fnmadd_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);

 Intel® C++ Compiler Classic Developer Guide and Reference

1190

Multiplies lower float64 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper element from a to upper destination element.

_mm_mask_fnmadd_round_sd

extern __m128d __cdecl _mm_mask_fnmadd_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int
round);

Multiplies lower float64 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using writemask k (the element is copied from a when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_mask3_fnmadd_round_sd

extern __m128d __cdecl _mm_mask3_fnmadd_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k,
int round);

Multiplies lower float64 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using writemask k (the element is copied from c when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_maskz_fnmadd_round_sd

extern __m128d __cdecl _mm_maskz_fnmadd_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c,
int round);

Multiplies lower float64 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper element from a to upper destination element.

_mm_mask_fnmadd_ss

extern __m128 __cdecl _mm_mask_fnmadd_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using writemask k (the element is copied from a when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask3_fnmadd_ss

extern __m128 __cdecl _mm_mask3_fnmadd_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
Multiplies lower float32 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using writemask k (the element is copied from c when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_maskz_fnmadd_ss

extern __m128 __cdecl _mm_maskz_fnmadd_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask_fnmadd_round_ss

extern __m128 __cdecl _mm_mask_fnmadd_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int
round);

Compiler Reference

1191

Multiplies lower float32 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using writemask k (the element is copied from a when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask3_fnmadd_round_ss

extern __m128 __cdecl _mm_mask3_fnmadd_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int
round);

Multiplies lower float32 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using writemask k (the element is copied from c when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_maskz_fnmadd_round_ss

extern __m128 __cdecl _mm_maskz_fnmadd_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int
round);

Multiplies lower float32 elements in a and b, and adds the negated intermediate result to lower element in c.
Stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper three packed elements from a to upper destination elements.

_mm512_fnmsub_pd

extern __m512d __cdecl _mm512_fnmsub_pd(__m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result.

_mm512_mask_fnmsub_pd

extern __m512d __cdecl _mm512_mask_fnmsub_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using writemask k (elements are copied from a when the corresponding mask bit
is not set).

_mm512_mask3_fnmsub_pd

extern __m512d __cdecl _mm512_mask3_fnmsub_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using writemask k (elements are copied from c when the corresponding mask bit
is not set).

_mm512_maskz_fnmsub_pd

extern __m512d __cdecl _mm512_maskz_fnmsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm512_fnmsub_round_pd

extern __m512d __cdecl _mm512_fnmsub_round_pd(__m512d a, __m512d b, __m512d c, int round);
Multiplies packed float64 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1192

_mm512_mask_fnmsub_round_pd

extern __m512d __cdecl _mm512_mask_fnmsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c,
int round);

Multiplies packed float64 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using writemask k (elements are copied from a when the corresponding mask bit
is not set).

_mm512_mask3_fnmsub_round_pd

extern __m512d __cdecl _mm512_mask3_fnmsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k,
int round);

Multiplies packed float64 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using writemask k (elements are copied from c when the corresponding mask bit
is not set).

_mm512_maskz_fnmsub_round_pd

extern __m512d __cdecl _mm512_maskz_fnmsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c,
int round);

Multiplies packed float64 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm512_fnmsub_ps

extern __m512 __cdecl _mm512_fnmsub_ps(__m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result.

_mm512_mask_fnmsub_ps

extern __m512 __cdecl _mm512_mask_fnmsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using writemask k (elements are copied from a when the corresponding mask bit
is not set).

_mm512_mask3_fnmsub_ps

extern __m512 __cdecl _mm512_mask3_fnmsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using writemask k (elements are copied from c when the corresponding mask bit
is not set).

_mm512_maskz_fnmsub_ps

extern __m512 __cdecl _mm512_maskz_fnmsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

Compiler Reference

1193

_mm512_fnmsub_round_ps

extern __m512 __cdecl _mm512_fnmsub_round_ps(__m512 a, __m512 b, __m512 c, int round);
Multiplies packed float32 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result.

_mm512_mask_fnmsub_round_ps

extern __m512 __cdecl _mm512_mask_fnmsub_round_ps(__m512 c, __mmask16 k, __m512 a, __m512 b, int
round);

Multiplies packed float32 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using writemask k (elements are copied from a when the corresponding mask bit
is not set).

_mm512_mask3_fnmsub_round_ps

extern __m512 __cdecl _mm512_mask3_fnmsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k,
int round);

Multiplies packed float32 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using writemask k (elements are copied from c when the corresponding mask bit
is not set).

_mm512_maskz_fnmsub_round_ps

extern __m512 __cdecl _mm512_maskz_fnmsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c,
int round);

Multiplies packed float32 elements in a and b, subtracts packed elements in c from the negated intermediate
result, and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_mask_fnmsub_sd

extern __m128d __cdecl _mm_mask_fnmsub_sd(__m128d c, __mmask8 k, __m128d a, __m128d b);
Multiplies lower float64 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using writemask k (the element is copied from c when
mask bit 0 is not set), and copies upper element from a to upper destination element.

_mm_mask3_fnmsub_sd

extern __m128d __cdecl _mm_mask3_fnmsub_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
Multiplies lower float64 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using writemask k (the element is copied from c when
mask bit 0 is not set), and copies upper element from a to upper destination element.

_mm_maskz_fnmsub_sd

extern __m128d __cdecl _mm_maskz_fnmsub_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
Multiplies lower float64 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result lower destination element using zeromask k (the element is zeroed out when mask
bit 0 is not set), and copies upper element from a to upper destination element.

 Intel® C++ Compiler Classic Developer Guide and Reference

1194

_mm_mask_fnmsub_ss

extern __m128 __cdecl _mm_mask_fnmsub_ss(__m128 c, __mmask8 k, __m128 a, __m128 b);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using writemask k (the element is copied from c when
mask bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask3_fnmsub_ss

extern __m128 __cdecl _mm_mask3_fnmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element, and copies upper element from a to upper destination
element using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm_maskz_fnmsub_ss

extern __m128 __cdecl _mm_maskz_fnmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using zeromask k (the element is zeroed out when
mask bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask_fnmsub_round_ss

extern __m128 __cdecl _mm_mask_fnmsub_round_ss(__m128 c, __mmask8 k, __m128 a, __m128 b, int
round);

Multiplies lower float32 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using writemask k (the element is copied from c when
mask bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask3_fnmsub_round_ss

extern __m128 __cdecl _mm_mask3_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int
round);

Multiplies lower float32 elements in a and b, subtract lower element in c from the negated intermediate
result, Stores the result in lower destination element, and copies upper element from a to upper destination
element using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm_maskz_fnmsub_round_ss

extern __m128 __cdecl _mm_maskz_fnmsub_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int
round);

Multiplies lower float32 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using zeromask k (the element is zeroed out when
mask bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask_fnmsub_round_sd

extern __m128d __cdecl _mm_mask_fnmsub_round_sd(__m128d c, __mmask8 k, __m128d a, __m128d b, int
round);

Multiplies lower float64 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using writemask k (the element is copied from c when
mask bit 0 is not set), and copies upper element from a to upper destination element.

Compiler Reference

1195

_mm_mask3_fnmsub_round_sd

extern __m128d __cdecl _mm_mask3_fnmsub_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k,
int round);

Multiplies lower float64 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using writemask k (the element is copied from c when
mask bit 0 is not set), and copies upper element from a to upper destination element.

_mm_maskz_fnmsub_round_sd

extern __m128d __cdecl _mm_maskz_fnmsub_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c,
int round);

Multiplies lower float64 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result lower destination element using zeromask k (the element is zeroed out when mask
bit 0 is not set), and copies upper element from a to upper destination element.

_mm_mask_fnmsub_ss

extern __m128 __cdecl _mm_mask_fnmsub_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using writemask k (the element is copied from c when
mask bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

_mm_mask3_fnmsub_ss

extern __m128 __cdecl _mm_mask3_fnmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element, and copies upper element from a to upper destination
element using writemask k (elements are copied from c when the corresponding mask bit is not set).

_mm_maskz_fnmsub_ss

extern __m128 __cdecl _mm_maskz_fnmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
Multiplies lower float32 elements in a and b, and subtracts lower element in c from the negated intermediate
result. Stores the result in lower destination element using zeromask k (the element is zeroed out when
mask bit 0 is not set), and copies upper three packed elements from a to upper destination elements.

Intrinsics for Multiplication Operations

Intrinsics for FP Multiplication Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

 Intel® C++ Compiler Classic Developer Guide and Reference

1196

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm_mul_round_sd,
_mm_mask_mul_round_sd,
_mm_maskz_mul_round_sd
_mm_mask_mul_sd,
_mm_maskz_mul_sd

Multiplies rounded vectors. VMULSD

_mm_mul_round_ss,
_mm_mask_mul_round_ss,
_mm_maskz_mul_round_ss
_mm_mask_mul_ss,
_mm_maskz_mul_ss

Multiplies rounded vectors. VMULSS

_mm512_mul_round_pd,
_mm512_mask_mul_round_pd,
_mm512_maskz_mul_round_pd
_mm512_mul_pd,
_mm512_mask_mul_pd,
_mm512_maskz_mul_pd

Multiplies rounded float64
vectors.

VMULPD

_mm512_mul_round_ps,
_mm512_mask_mul_round_ps,
_mm512_maskz_mul_round_ps
_mm512_mul_ps,
_mm512_mask_mul_ps,
_mm512_maskz_mul_ps

Multiplies rounded float32
vectors.

VMULPS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_mul_pd

extern __m512d __cdecl _mm512_mul_pd(__m512d a, __m512d b);

Compiler Reference

1197

Multiplies packed float64 elements in a and b, stores the result.

_mm512_mask_mul_pd

extern __m512d __cdecl _mm512_mask_mul_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Multiplies packed float64 elements in a and b, stores the result using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_mul_pd

extern __m512d __cdecl _mm512_maskz_mul_pd(__mmask8 k, __m512d a, __m512d b);
Multiplies packed float64 elements in a and b, stores the result using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_mul_round_pd

extern __m512d __cdecl _mm512_mul_round_pd(__m512d a, __m512d b, int round);
Multiplies packed float64 elements in a and b, stores the result.

_mm512_mask_mul_round_pd

extern __m512d __cdecl _mm512_mask_mul_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d b,
int round);

Multiplies packed float64 elements in a and b, stores the result using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_mul_round_pd

extern __m512d __cdecl _mm512_maskz_mul_round_pd(__mmask8 k, __m512d a, __m512d b, int round);
Multiplies packed float64 elements in a and b, stores the result using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_mul_ps

extern __m512 __cdecl _mm512_mul_ps(__m512 a, __m512 b);
Multiplies packed float32 elements in a and b, stores the result.

_mm512_mask_mul_ps

extern __m512 __cdecl _mm512_mask_mul_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Multiplies packed float32 elements in a and b, stores the result using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_mul_ps

extern __m512 __cdecl _mm512_maskz_mul_ps(__mmask16 k, __m512 a, __m512 b);
Multiplies packed float32 elements in a and b, stores the result using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_mul_round_ps

extern __m512 __cdecl _mm512_mul_round_ps(__m512 a, __m512 b, int round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1198

Multiplies packed float32 elements in a and b, stores the result.

_mm512_mask_mul_round_ps

extern __m512 __cdecl _mm512_mask_mul_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int
round);

Multiplies packed float32 elements in a and b, stores the result using writemask k (elements are copied from
src when the corresponding mask bit is not set).

_mm512_maskz_mul_round_ps

extern __m512 __cdecl _mm512_maskz_mul_round_ps(__mmask16 k, __m512 a, __m512 b, int round);
Multiplies packed float32 elements in a and b, stores the result using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm_mul_round_sd

extern __m128d __cdecl _mm_mul_round_sd(__m128d a, __m128d b, int round);
Multiplies the lower float64 element in a and b, stores the result in the lower destination element, and copy
the upper element from a to the upper destination element.

_mm_mask_mul_round_sd

extern __m128d __cdecl _mm_mask_mul_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int
round);

Multiplies the lower float64 element in a and b, stores the result in the lower destination element using
writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a
to the upper destination element.

_mm_maskz_mul_round_sd

extern __m128d __cdecl _mm_maskz_mul_round_sd(__mmask8 k, __m128d a, __m128d b, int round);
Multiplies the lower float64 element in a and b, stores the result in the lower destination element using
zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to
the upper destination element.

_mm_mask_mul_sd

extern __m128d __cdecl _mm_mask_mul_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Multiplies the lower float64 element in a and b, stores the result in the lower destination element using
writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a
to the upper destination element.

_mm_maskz_mul_sd

extern __m128d __cdecl _mm_maskz_mul_sd(__mmask8 k, __m128d a, __m128d b);
Multiplies the lower float64 element in a and b, stores the result in the lower destination element using
zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to
the upper destination element.

Compiler Reference

1199

_mm_mul_round_ss

extern __m128 __cdecl _mm_mul_round_ss(__m128 a, __m128 b, int round);
Multiplies the lower float32 element in a and b, stores the result in the lower destination element, and copy
the upper three packed elements from a to the upper destination elements.

_mm_mask_mul_round_ss

extern __m128 __cdecl _mm_mask_mul_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Multiplies the lower float32 element in a and b, stores the result in the lower destination element using
writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper three packed
elements from a to the upper destination elements.

_mm_maskz_mul_round_ss

extern __m128 __cdecl _mm_maskz_mul_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Multiplies the lower float32 element in a and b, stores the result in the lower destination element using
zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper three packed
elements from a to the upper destination elements.

_mm_mask_mul_ss

extern __m128 __cdecl _mm_mask_mul_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Multiplies the lower float32 element in a and b, stores the result in the lower destination element using
writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper three packed
elements from a to the upper destination elements.

_mm_maskz_mul_ss

extern __m128 __cdecl _mm_maskz_mul_ss(__mmask8 k, __m128 a, __m128 b);
Multiplies the lower float32 element in a and b, stores the result in the lower destination element using
zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper three packed
elements from a to the upper destination elements.

Intrinsics for Integer Multiplication Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_mul_epi32,
_mm512_mask_mul_epi32,
_mm512_maskz_mul_epi32

Multiplies alternating int32
vectors together to produce
int64.

VPMULDQ

 Intel® C++ Compiler Classic Developer Guide and Reference

1200

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_mul_epu32,
_mm512_mask_mul_epu32,
_mm512_maskz_mul_epu32

Multiplies alternating unsigned
int32 vectors together to produce
int64.

VPMULUDQ

_mm512_mullo_epi32,
_mm512_mask_mullo_epi32

Multiplies int32 vectors together
to produce int64.

VPMULLD

_mm512_mullox_epi64,
_mm512_mask_mullox_epi64

Multiplies int64 vectors together
to produce int64.

None.

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_mul_epi32

extern __m512i __cdecl _mm512_mul_epi32(__m512i a, __m512i b);
Multiplies the low int32 elements from each packed 64-bit element in a and b, and stores the signed 64-bit
result.

_mm512_mask_mul_epi32

extern __m512i __cdecl _mm512_mask_mul_epi32(__m512i src, __mmask8 k, __m512i a, __m512i b);
Multiplies the low int32 elements from each packed 64-bit element in a and b, and stores the signed 64-bit
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_mul_epi32

extern __m512i __cdecl _mm512_maskz_mul_epi32(__mmask8 k, __m512i a, __m512i b);
Multiplies the low int32 elements from each packed 64-bit element in a and b, and stores the signed 64-bit
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mullo_epi32

extern __m512i __cdecl _mm512_mullo_epi32(__m512i a, __m512i b);
Multiplies the packed int32 elements in a and b, producing intermediate int64 elements, and stores the low
32 bits of the intermediate integers.

_mm512_mask_mullo_epi32

extern __m512i __cdecl _mm512_mask_mullo_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Multiplies the packed int32 elements in a and b, producing intermediate int64 elements, and stores the low
32 bits of the intermediate integers in destination using writemask k (elements are copied from src when the
corresponding mask bit is not set).

Compiler Reference

1201

_mm512_mul_epu32

extern __m512i __cdecl _mm512_mul_epu32(__m512i a, __m512i b);
Multiplies the low unsigned int32 elements from each packed 64-bit element in a and b, and stores the
unsigned 64-bit result.

_mm512_mask_mul_epu32

extern __m512i __cdecl _mm512_mask_mul_epu32(__m512i src, __mmask8 k, __m512i a, __m512i b);
Multiplies the low unsigned int32 elements from each packed 64-bit element in a and b, and stores the
unsigned 64-bit result using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_maskz_mul_epu32

extern __m512i __cdecl _mm512_maskz_mul_epu32(__mmask8 k, __m512i a, __m512i b);
Multiplies the low unsigned int32 elements from each packed 64-bit element in a and b, and stores the
unsigned 64-bit result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_mullox_epi64

extern __m512i __cdecl _mm512_mullox_epi64(__m512i a, __m512i b);
Multiplies each packed int64 element in a and b, and selects the low bits of each product.

_mm512_mask_mullox_epi64

extern __m512i __cdecl _mm512_mask_mullox_epi64(__m512i, __mmask8 k, __m512i a, __m512i b);
Multiplies each packed int64 element in a and b, and selects the low bits of each product, using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Subtraction Operations

Intrinsics for FP Subtraction Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_sub_pd,
_mm512_mask_sub_pd,
_mm512_maskz_sub_pd
_mm512_sub_round_pd,
_mm512_mask_sub_round_pd,
_mm512_maskz_sub_round_pd

Subtracts float64 vectors. VSUBPD

 Intel® C++ Compiler Classic Developer Guide and Reference

1202

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_sub_ps,
_mm512_mask_sub_ps,
_mm512_maskz_sub_ps
_mm512_sub_round_ps,
_mm512_mask_sub_round_ps,
_mm512_maskz_sub_round_ps

Subtracts float32 vectors. VSUBPS

_mm_mask_sub_sd,
_mm_maskz_sub_sd
_mm_sub_round_sd,
_mm_mask_sub_round_sd,
_mm_maskz_sub_round_sd

Subtracts float64 vectors. VSUBSD

_mm_mask_sub_ss,
_mm_maskz_sub_ss
_mm_sub_round_ss,
_mm_mask_sub_round_ss,
_mm_maskz_sub_round_ss

Subtracts float32 vectors. VSUBSS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_sub_pd

extern __m512d __cdecl _mm512_sub_pd(__m512d a, __m512d b);
Subtracts packed float64 elements in vector b from vector a, and stores the result.

_mm512_mask_sub_pd

extern __m512d __cdecl _mm512_mask_sub_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Subtracts packed float64 elements in b from packed float64 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1203

_mm512_maskz_sub_pd

extern __m512d __cdecl _mm512_maskz_sub_pd(__mmask8 k, __m512d a, __m512d b);
Subtracts packed float64 elements in b from packed float64 elements in a, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_sub_round_pd

extern __m512d __cdecl _mm512_sub_round_pd(__m512d a, __m512d b, int round);
Subtracts packed float64 elements in b from packed float64 elements in ausing rounding control round, and
stores the result.

_mm512_mask_sub_round_pd

extern __m512d __cdecl _mm512_mask_sub_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d b,
int round);

Subtracts packed float64 elements in b from packed float64 elements in a using rounding control round, and
stores the result using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_sub_round_pd

extern __m512d __cdecl _mm512_maskz_sub_round_pd(__mmask8 k, __m512d a, __m512d b, int round);
Subtracts packed float64 elements in b from packed float64 elements in a using rounding control round, and
stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_sub_ps

extern __m512 __cdecl _mm512_sub_ps(__m512 a, __m512 b);
Subtracts packed float32 elements in b from packed float32 elements in a, and stores the result.

_mm512_mask_sub_ps

extern __m512 __cdecl _mm512_mask_sub_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Subtracts packed float32 elements in b from packed float32 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sub_ps

extern __m512 __cdecl _mm512_maskz_sub_ps(__mmask16 k, __m512 a, __m512 b);
Subtracts packed float32 elements in b from packed float32 elements in a, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_sub_round_ps

extern __m512 __cdecl _mm512_sub_round_ps(__m512 a, __m512 b, int round);
Subtracts packed float32 elements in b from packed float32 elements in a, and stores the result.

_mm512_mask_sub_round_ps

extern __m512 __cdecl _mm512_mask_sub_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int
round);

Subtracts packed float32 elements in b from packed float32 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1204

_mm512_maskz_sub_round_ps

extern __m512 __cdecl _mm512_maskz_sub_round_ps(__mmask16 k, __m512 a, __m512 b, int round);
Subtracts packed float32 elements in b from packed float32 elements in a using rounding control round, and
stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_sub_sd

extern __m128d __cdecl _mm_mask_sub_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Subtracts the lower float64 element in b from the lower float64 element in a, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper element from a to the upper destination element.

_mm_maskz_sub_sd

extern __m128d __cdecl _mm_maskz_sub_sd(__mmask8 k, __m128d a, __m128d b);
Subtracts the lower float64 element in b from the lower float64 element in a, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper element from a to the upper destination element.

_mm_sub_round_sd

extern __m128d __cdecl _mm_sub_round_sd(__m128d a, __m128d b, int round);
Subtracts the lower float64 element in b from the lower float64 element in a, stores the result in the lower
destination element, and copies the upper element from a to the upper destination element.

_mm_mask_sub_round_sd

extern __m128d __cdecl _mm_mask_sub_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int
round);

Subtracts the lower float64 element in b from the lower float64 element in a using rounding control round,
stores the result in the lower destination element using writemask k (the element is copied from src when
mask bit 0 is not set), and copies the upper element from a to the upper destination element.

_mm_maskz_sub_round_sd

extern __m128d __cdecl _mm_maskz_sub_round_sd(__mmask8 k, __m128d a, __m128d b, int round);
Subtracts the lower float64 element in b from the lower float64 element in a, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper element from a to the upper destination element.

_mm_sub_round_ss

extern __m128 __cdecl _mm_sub_round_ss(__m128 a, __m128 b, int round);
Subtracts the lower float32 element in b from the lower float32 element in a, stores the result in the lower
destination element, and copies the upper three packed elements from a to the upper destination elements.

_mm_mask_sub_round_ss

extern __m128 __cdecl _mm_mask_sub_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Compiler Reference

1205

Subtracts the lower float32 element in b from the lower float32 element in a, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper three packed elements from a to the upper destination elements.

_mm_maskz_sub_round_ss

extern __m128 __cdecl _mm_maskz_sub_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Subtracts the lower float32 element in b from the lower float32 element in a, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper three packed elements from a to the upper destination elements.

_mm_mask_sub_ss

extern __m128 __cdecl _mm_mask_sub_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Subtracts the lower float32 element in b from the lower float32 element in a, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper three packed elements from a to the upper destination elements.

_mm_maskz_sub_ss

extern __m128 __cdecl _mm_maskz_sub_ss(__mmask8 k, __m128 a, __m128 b);
Subtracts the lower float32 element in b from the lower float32 element in a, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper three packed elements from a to the upper destination elements.

_mm_sub_round_ss

extern __m128 __cdecl _mm_sub_round_ss(__m128 a, __m128 b, int round);
Subtracts the lower float32 element in b from the lower float32 element in a, stores the result in the lower
destination element, and copy the upper three packed elements from a to the upper destination elements.

_mm_mask_sub_round_ss

extern __m128 __cdecl _mm_mask_sub_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Subtract the lower float32 element in b from the lower float32 element in a, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper three packed elements from a to the upper destination elements.

_mm_maskz_sub_round_ss

extern __m128 __cdecl _mm_maskz_sub_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Subtracts the lower float32 element in b from the lower float32 element in a, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper three packed elements from a to the upper destination elements.

Intrinsics for Integer Subtraction Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

 Intel® C++ Compiler Classic Developer Guide and Reference

1206

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_sub_epi32,
_mm512_maskz_sub_epi32

Subtracts int32 elements. VPSUBD

_mm512_sub_epi64,
_mm512_mask_sub_epi64,
_mm512_maskz_sub_epi64

Subtracts int64 elements. VPSUBQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_sub_epi32

extern __m512i __cdecl _mm512_sub_epi32(__m512i a, __m512i b);
Subtracts packed 32-bit integers in b from packed 32-bit integers in a, and stores the result.

_mm512_maskz_sub_epi32

extern __m512i __cdecl _mm512_maskz_sub_epi32(__mmask16 k, __m512i a, __m512i b);
Subtracts packed 32-bit integers in b from packed 32-bit integers in a, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_sub_epi64

extern __m512i __cdecl _mm512_sub_epi64(__m512i a, __m512i b);
Subtracts packed 64-bit integers in b from packed 64-bit integers in a, and stores the result.

_mm512_mask_sub_epi64

extern __m512i __cdecl _mm512_mask_sub_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Subtracts packed 64-bit integers in b from packed 64-bit integers in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sub_epi64

extern __m512i __cdecl _mm512_maskz_sub_epi64(__mmask8 k, __m512i a, __m512i b);
Subtracts packed 64-bit integers in b from packed 64-bit integers in a, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Other Mathematics Operations

Compiler Reference

1207

Intrinsics for FP Division Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_div_round_pd,
_mm512_mask_div_round
_pd,
_mm512_maskz_div_roun
d_pd
_mm512_div_pd,
_mm512_mask_div_pd,
_mm512_maskz_div_pd

Calculates quotient of a rounded
division operation of packed float64
elements.

VDIVPD

_mm512_div_round_ps,
_mm512_mask_div_round
_ps,
_mm512_maskz_div_roun
d_ps
_mm512_div_ps,
_mm512_mask_div_ps,
_mm512_maskz_div_ps

Calculates quotient of a rounded
division operation of packed float32
elements.

VDIVPS

_mm_div_round_sd,
_mm_mask_div_round_sd
,
_mm_maskz_div_round_s
d
_mm_mask_div_sd,
_mm_maskz_div_sd

Calculates quotient of a rounded
division operation of scalar float64
elements.

VDIVSD

_mm_div_round_ss,
_mm_mask_div_round_ss
,
_mm_maskz_div_round_s
s
_mm_mask_div_ss,
_mm_maskz_div_ss

Calculates quotient of a rounded
division operation of scalar float32
elements.

VDIVSS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

 Intel® C++ Compiler Classic Developer Guide and Reference

1208

variable definition
src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_div_pd

extern __m512d __cdecl _mm512_div_pd(__m512d a, __m512d b);
Divides packed float64 elements in a by packed elements in b, and stores the result.

_mm512_mask_div_pd

extern __m512d __cdecl _mm512_mask_div_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Divides packed float64 elements in a by packed elements in b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_div_pd

extern __m512d __cdecl _mm512_maskz_div_pd(__mmask8 k, __m512d a, __m512d b);
Divides packed float64 elements in a by packed elements in b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_div_round_pd

extern __m512d __cdecl _mm512_div_round_pd(__m512d a, __m512d b, int round);
Divides packed float64 elements in a by packed elements in b, and stores the result.

_mm512_mask_div_round_pd

extern __m512d __cdecl _mm512_mask_div_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d b,
int round);

Divides packed float64 elements in a by packed elements in b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_div_round_pd

extern __m512d __cdecl _mm512_maskz_div_round_pd(__mmask8 k, __m512d a, __m512d b, int round);
Divides packed float64 elements in a by packed elements in b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_div_ps

extern __m512 __cdecl _mm512_div_ps(__m512 a, __m512 b);
Divides packed float32 elements in a by packed elements in b, and stores the result.

Compiler Reference

1209

_mm512_mask_div_ps

extern __m512 __cdecl _mm512_mask_div_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Divides packed float32 elements in a by packed elements in b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_div_ps

extern __m512 __cdecl _mm512_maskz_div__ps(__mmask16 k, __m512 a, __m512 b);
Divides packed float32 elements in a by packed elements in b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_div_round_ps

extern __m512 __cdecl _mm512_div_round_ps(__m512 a, __m512 b, int round);
Divides packed float32 elements in a by packed elements in b, and stores the result.

_mm512_mask_div_round_ps

extern __m512 __cdecl _mm512_mask_div_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int
round);

Divides packed float32 elements in a by packed elements in b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_div_round_ps

extern __m512 __cdecl _mm512_maskz_div_round_ps(__mmask16 k, __m512 a, __m512 b, int round);
Divides packed float32 elements in a by packed elements in b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_div_sd

extern __m128d __cdecl _mm_mask_div_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Divides the lower float64 element in a by the lower float64 element in b, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper element from a to the upper destination element.

_mm_maskz_div_sd

extern __m128d __cdecl _mm_maskz_div_sd(__mmask8 k, __m128d a, __m128d b);
Divides the lower float64 element in a by the lower float64 element in b, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper element from a to the upper destination element.

_mm_div_round_sd

extern __m128d __cdecl _mm_div_round_sd(__m128d a, __m128d b, int round);
Divides the lower float64 element in a by the lower float64 element in b, stores the result in the lower
destination element, and copies the upper element from a to the upper destination element.

_mm_mask_div_round_sd

extern __m128d __cdecl _mm_maskz_div_round_sd(__mmask8 src, __m128d k, __m128d a, int round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1210

Divides the lower float64 element in a by the lower float64 element in b, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper element from a to the upper destination element.

_mm_maskz_div_round_sd

extern __m128d __cdecl _mm_mask_div_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Divides the lower float64 element in a by the lower float64 element in b, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper element from a to the upper destination element.

_mm_div_round_ss

extern __m128 __cdecl _mm_div_round_ss(__m128 a, __m128 b, int round);
Divides the lower float32 element in a by the lower float32 element in b, stores the result in the lower
destination element, and copies the upper three packed elements from a to the upper destination elements.

_mm_mask_div_round_ss

extern __m128 __cdecl _mm_mask_div_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Divides the lower float32 element in a by the lower float32 element in b, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper three packed elements from a to the upper destination elements.

_mm_maskz_div_round_ss

extern __m128 __cdecl _mm_maskz_div_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Divides the lower float32 element in a by the lower float32 element in b, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper three packed elements from a to the upper destination elements.

_mm_mask_div_ss

extern __m128 __cdecl _mm_mask_div_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Divides the lower float32 element in a by the lower float32 element in b, stores the result in the lower
destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copies the upper three packed elements from a to the upper destination elements.

_mm_maskz_div_ss

extern __m128 __cdecl _mm_maskz_div_ss(__mmask8 k, __m128 a, __m128 b);
Divides the lower float32 element in a by the lower float32 element in b, stores the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the
upper three packed elements from a to the upper destination elements.

Intrinsics for Absolute Value Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Compiler Reference

1211

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_abs_epi32,
_mm512_mask_abs_epi32,
_mm512_maskz_abs_epi32

Computes absolute value of int32
vector elements.

VPABSD

_mm512_abs_epi64,
_mm512_mask_abs_epi64,
_mm512_maskz_abs_epi64

Computes absolute value of int64
vector elements.

VPABSQ

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

_mm512_abs_epi32

extern __m512i __cdecl _mm512_abs_epi32(__m512i a);
Computes absolute value of packed int32 elements in a, and stores unsigned results in destination.

_mm512_mask_abs_epi32

extern __m512i __cdecl _mm512_mask_abs_epi32(__m512i src, __mmask16 k, __m512i a);
Computes absolute value of packed int32 elements in a, and stores unsigned results in destination using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_abs_epi32

extern __m512i __cdecl _mm512_maskz_abs_epi32(__mmask16 k, __m512i a);
Computes absolute value of packed int32 elements in a, and stores unsigned results in destination using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_abs_epi64

extern __m512i __cdecl _mm512_abs_epi64(__m512i a);
Computes absolute value of packed int64 elements in a, and stores unsigned results in destination.

_mm512_mask_abs_epi64

extern __m512i __cdecl _mm512_mask_abs_epi64(__m512i src, __mmask8 k, __m512i a);
Computes absolute value of packed int64 elements in a, and stores unsigned results in destination using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_abs_epi64

extern __m512i __cdecl _mm512_maskz_abs_epi64(__mmask8 k, __m512i a);
Computes absolute value of packed int64 elements in a, and stores unsigned results in destination using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1212

Intrinsics for Scale Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_scalef_pd,
_mm512_mask_scalef_pd,
_mm512_maskz_scalef_pd
_mm512_scalef_round_pd,
_mm512_mask_scalef_round_pd,
_mm512_maskz_scalef_round_pd

Scale packed float64 values with
float64 values.

VSCALEFPD

_mm512_scalef_ps,
_mm512_mask_scalef_ps,
_mm512_maskz_scalef_ps
_mm512_scalef_round_ps,
_mm512_mask_scalef_round_ps,
_mm512_maskz_scalef_round_ps

Scale packed float32 values with
float32 values.

VSCALEFSD

_mm_scalef_sd,
_mm_mask_scalef_sd,
_mm_maskz_scalef_sd
_mm_scalef_round_sd,
_mm_mask_scalef_round_sd,
_mm_maskz_scalef_round_sd

Scale scalar float64 values with
float64 values.

VSCALEFPS

_mm_scalef_round_ss,
_mm_mask_scalef_round_ss,
_mm_maskz_scalef_round_ss
_mm_scalef_ss,
_mm_mask_scalef_ss,
_mm_maskz_scalef_ss

Scale scalar float32 values with
float32 values.

VSCALEFSS

_mm512_roundscale_pd,
_mm512_mask_roundscale_pd,
_mm512_maskz_roundscale_pd

Scale packed float64 values with
float64 values.

VRNDSCALEPD

_mm512_roundscale_ps,
_mm512_mask_roundscale_ps,
_mm512_maskz_roundscale_ps

Scale packed float32 values with
float32 values.

VRNDSCALEPS

_mm_roundscale_sd,
_mm_mask_roundscale_sd,
_mm_maskz_roundscale_sd

Scale scalar float64 values with
float64 values.

VRNDSCALESD

Compiler Reference

1213

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm_roundscale_round_sd,
_mm_mask_roundscale_round_sd,
_mm_maskz_roundscale_round_sd

_mm_roundscale_ss,
_mm_mask_roundscale_ss,
_mm_maskz_roundscale_ss
_mm_roundscale_round_ss,
_mm_mask_roundscale_round_ss,
_mm_maskz_roundscale_round_ss

Scale scalar float32 values with
float32 values.

VRNDSCALE

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

imm 8-bit immediate integer specifies offset for destination

_mm512_roundscale_pd

extern __m512d __cdecl _mm512_roundscale_pd(__m512d a, int imm);
Performs a floating point scale of packed float64 elements in a to the number of fraction bits specified by
imm, and stores the result.

_mm512_mask_roundscale_pd

extern __m512d __cdecl _mm512_mask_roundscale_pd(__m512d src, __mmask8 k, __m512d a, int imm);
Performs a floating point scale of packed float64 elements in a to the number of fraction bits specified by
imm, and stores the result using writemask k (elements are copied from src when the corresponding mask
bit is not set).

_mm512_maskz_roundscale_pd

extern __m512d __cdecl _mm512_maskz_roundscale_pd(__mmask8 k, __m512d a, int imm);

 Intel® C++ Compiler Classic Developer Guide and Reference

1214

Performs a floating point scale of packed float64 elements in a to the number of fraction bits specified by
imm, and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm512_roundscale_ps

extern __m512 __cdecl _mm512_roundscale_ps(__m512 a, int imm);
Performs a floating point scale of packed float32 elements in a to the number of fraction bits specified by
imm, and stores the result.

_mm512_mask_roundscale_ps

extern __m512 __cdecl _mm512_mask_roundscale_ps(__m512 src, __mmask16 k, __m512 a, int imm);
Performs a floating point scale of packed float32 elements in a to the number of fraction bits specified by
imm, and stores the result using writemask k (elements are copied from src when the corresponding mask
bit is not set).

_mm512_maskz_roundscale_ps

extern __m512 __cdecl _mm512_maskz_roundscale_ps(__mmask16 k, __m512 a, int imm);
Performs a floating point scale of packed float32 elements in a to the number of fraction bits specified by
imm, and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm_roundscale_round_sd

extern __m128d __cdecl _mm_roundscale_round_sd(__m128d a, __m128d b, const int imm, const int
round);

Rounds the lower float64 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element, and copies the upper element from b to the upper destination element.

_mm_mask_roundscale_round_sd

extern __m128d __cdecl _mm_mask_roundscale_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d
b, const int imm, const int round);

Rounds the lower float64 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element using writemask k (the element is copied from src when mask bit 0 is not set),
and copies the upper element from b to the upper destination element.

_mm_maskz_roundscale_round_sd

extern __m128d __cdecl _mm_maskz_roundscale_round_sd(__mmask8 k, __m128d a, __m128d b, const int
imm, const int round);

Rounds the lower float64 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and
copies the upper element from b to the upper destination element.

_mm_roundscale_sd

extern __m128d __cdecl _mm_roundscale_sd(__m128d a, __m128d b, const int imm);
Rounds the lower float64 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element, and copies the upper element from b to the upper destination element.

Compiler Reference

1215

_mm_mask_roundscale_sd

extern __m128d __cdecl _mm_mask_roundscale_sd(__m128d old, __mmask8 k, __m128d a, __m128d b,
const int imm);

Rounds the lower float64 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element using writemask k (the element is copied from src when mask bit 0 is not set),
and copies the upper element from b to the upper destination element.

_mm_maskz_roundscale_sd

extern __m128d __cdecl _mm_maskz_roundscale_sd(__mmask8 k, __m128d a, __m128d b, const int imm);
Rounds the lower float64 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and
copies the upper element from b to the upper destination element.

_mm_roundscale_round_ss

extern __m128 __cdecl _mm_roundscale_round_ss(__m128 a, __m128 b, const int imm, const int
round);

Rounds the lower float32 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element, and copies the upper three packed elements from b to the upper destination
elements.

_mm_mask_roundscale_round_ss

extern __m128 __cdecl _mm_mask_roundscale_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b,
const int imm, const int round);

Rounds the lower float32 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element using writemask k (the element is copied from src when mask bit 0 is not set),
and copies the upper three packed elements from b to the upper destination elements.

_mm_maskz_roundscale_round_ss

extern __m128 __cdecl _mm_maskz_roundscale_round_ss(__mmask8 k, __m128 a, __m128 b, const int
imm, const int round);

Rounds the lower float32 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and
copies the upper three packed elements from b to the upper destination elements.

_mm_roundscale_ss

extern __m128 __cdecl _mm_roundscale_ss(__m128 a, __m128 b, const int imm);
Rounds the lower float32 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element, and copies the upper three packed elements from b to the upper destination
elements.

_mm_mask_roundscale_ss

extern __m128 __cdecl _mm_mask_roundscale_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, const
int imm);

 Intel® C++ Compiler Classic Developer Guide and Reference

1216

Rounds the lower float32 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element using writemask k (the element is copied from src when mask bit 0 is not set),
and copies the upper three packed elements from b to the upper destination elements.

_mm_maskz_roundscale_ss

extern __m128 __cdecl _mm_maskz_roundscale_ss(__mmask8 k, __m128 a, __m128 b, const int imm);
Rounds the lower float32 element in a to the number of fraction bits specified by imm, stores the result in
the lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and
copies the upper three packed elements from b to the upper destination elements.

_mm512_scalef_pd

extern __m512d __cdecl _mm512_scalef_pd(__m512d a, __m512d b);
Performs a floating point scale of the packed float64 elements in source a by multiplying by 2b, and stores
the result.

_mm512_mask_scalef_pd

extern __m512d __cdecl _mm512_mask_scalef_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Performs a floating point scale of the packed float64 elements in source a by multiplying by 2b, and stores
the result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_scalef_pd

extern __m512d __cdecl _mm512_maskz_scalef_pd(__mmask8 k, __m512d a, __m512d b);
Performs a floating point scale of the packed float64 elements in source a by multiplying by 2b, and stores
the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_scalef_round_pd

extern __m512d __cdecl _mm512_scalef_round_pd(__m512d a, __m512d b, int round);
Performs a floating point scale of the rounded packed float64 elements in source a by multiplying by 2b, and
stores the result.

_mm512_mask_scalef_round_pd

extern __m512d __cdecl _mm512_mask_scalef_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d
b, int round);

Performs a floating point scale of the rounded packed float64 elements in source a by multiplying by 2b, and
stores the result using writemask k (elements are copied from src when the corresponding mask bit is not
set).

_mm512_maskz_scalef_round_pd

extern __m512d __cdecl _mm512_maskz_scalef_round_pd(__mmask8 k, __m512d a, __m512d b, int round);
Performs a floating point scale of the rounded packed float64 elements in source a by multiplying by 2b, and
stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_scalef_ps

extern __m512 __cdecl _mm512_scalef_ps(__m512 a, __m512 b);

Compiler Reference

1217

Performs a floating point scale of the packed float32 elements in source a by multiplying by 2b, and stores
the result.

_mm512_mask_scalef_ps

extern __m512 __cdecl _mm512_mask_scalef_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Performs a floating point scale of the packed float32 elements in source a by multiplying by 2b, and stores
the result, using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_scalef_ps

extern __m512 __cdecl _mm512_maskz_scalef_ps(__mmask16 k, __m512 a, __m512 b);
Performs a floating point scale of the packed single-precision (64-bit) floating-point elements in source a by
multiplying by 2b, and stores the result, using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_scalef_round_ps

extern __m512 __cdecl _mm512_scalef_round_ps(__m512 a, __m512 b, int round);
Performs a floating point scale of the rounded packed single-precision (64-bit) floating-point elements in
source a by multiplying by 2b, and stores the results.

_mm512_mask_scalef_round_ps

extern __m512 __cdecl _mm512_mask_scalef_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b,
int round);

Performs a floating point scale of the rounded packed single-precision (64-bit) floating-point elements in
source a by multiplying by 2b, and stores the results, using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_maskz_scalef_round_ps

extern __m512 __cdecl _mm512_maskz_scalef_round_ps(__mmask16 k, __m512 a, __m512 b, int round);
Performs a floating point scale of the rounded packed single-precision (64-bit) floating-point elements in
source a by multiplying by 2b, and stores the results, using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm_scalef_round_sd

extern __m128d __cdecl _mm_scalef_round_sd(__m128d a, __m128d b, int round);
Performs a floating point scale of the rounded scalar float64 elements in source a by multiplying by 2b, stores
the result in the lower destination element, and copies the upper element from b to the upper destination
element.

_mm_mask_scalef_round_sd

extern __m128d __cdecl _mm_mask_scalef_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b,
int round);

Performs a floating point scale of the rounded scalar float64 elements in source a by multiplying by 2b, stores
the result in the lower destination element using writemask k (the element is copied from src when mask bit
0 is not set), and copies the upper element from b to the upper destination element.

 Intel® C++ Compiler Classic Developer Guide and Reference

1218

_mm_maskz_scalef_round_sd

extern __m128d __cdecl _mm_maskz_scalef_round_sd(__mmask8 k, __m128d a, __m128d b, int round);
Performs a floating point scale of the rounded scalar float64 elements in source a by multiplying by 2b, stores
the result in the lower destination element using zeromask k (the element is zeroed out when mask bit 0 is
not set), and copies the upper element from b to the upper destination element.

_mm_scalef_sd

extern __m128d __cdecl _mm_scalef_sd(__m128d a, __m128d b);
Performs a floating point scale of the scalar float64 elements in source a using values from b, stores the
result in the lower destination element, and copies the upper element from b to the upper destination
element.

_mm_mask_scalef_sd

extern __m128d __cdecl _mm_mask_scalef_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Performs a floating point scale of the scalar float64 elements in source a using values from b, stores the
result in the lower destination element using writemask k (the element is copied from src when mask bit 0 is
not set), and copies the upper element from b to the upper destination element.

_mm_maskz_scalef_sd

extern __m128d __cdecl _mm_maskz_scalef_sd(__mmask8 k, __m128d a, __m128d b);
Performs a floating point scale of the scalar float64 elements in source a using values from b, stores the
result in the lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not
set), and copies the upper element from b to the upper destination element.

_mm_scalef_round_ss

extern __m128 __cdecl _mm_scalef_round_ss(__m128 a, __m128 b, int round);
Performs a floating point scale of the rounded scalar float32 elements in source a by multiplying by 2b, stores
the result in the lower destination element, and copies the upper element from b to the upper destination
elements.

_mm_mask_scalef_round_ss

extern __m128 __cdecl _mm_mask_scalef_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Performs a floating point scale of the rounded scalar float32 elements in source a by multiplying by 2b, stores
the result in the lower destination element using writemask k (the element is copied from src when mask bit
0 is not set), and copies the upper three packed elements from b to the upper destination elements.

_mm_maskz_scalef_round_ss

extern __m128 __cdecl _mm_maskz_scalef_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Performs a floating point scale of the rounded scalar float32 elements in source a by multiplying by 2b, stores
the result in the lower destination element using zeromask k (the element is zeroed out when mask bit 0 is
not set), and copies the upper three packed elements from b to the upper destination elements.

Compiler Reference

1219

_mm_scalef_ss

extern __m128 __cdecl _mm_scalef_ss(__m128 a, __m128 b);
Performs a floating point scale of the scalar float32 elements in source a using values from b, stores the
result in the lower destination element, and copies the upper three packed elements from b to the upper
destination elements.

_mm_mask_scalef_ss

extern __m128 __cdecl _mm_mask_scalef_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Performs a floating point scale of the scalar float32 elements in source a using values from b, stores the
result in the lower destination element, using writemask k (the element is copied from src when mask bit 0 is
not set), and copies the upper three packed elements from b to the upper destination elements.

_mm_maskz_scalef_ss

extern __m128 __cdecl _mm_maskz_scalef_ss(__mmask8 k, __m128 a, __m128 b);
Performs a floating point scale of the scalar float32 elements in source a using values from b, stores the
result in the lower destination element, using zeromask k (the element is zeroed out when mask bit 0 is not
set), and copies the upper three packed elements from b to the upper destination elements.

Intrinsics for Blend Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

NOTE
The opmask register is not used as a writemask for these instructions. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between first source or
second source using the value of the related mask bit ('0' for the first source operand, '1' for the
second source operand), the elements with corresponding mask bit value of '0' in the destination
operand are zeroed.

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_mask_blend_pd Blend float64 vector elements
using instruction mask.

VBLENDMPD

_mm512_mask_blend_ps Blend float32 vector elements
using instruction mask.

VBLENDMPS

_mm512_mask_blend_epi32 Blend int32 vectors using
instruction mask.

VPBLENDMD

_mm512_mask_blend_epi64 Blend int64 vectors using
instruction mask.

VPBLENDMQ

 Intel® C++ Compiler Classic Developer Guide and Reference

1220

variable definition
k instruction mask used as a selector

a first source vector element

b second source vector element

_mm512_mask_blend_pd

extern m512d __cdecl _mm512_mask_blend_pd(__mmask8 k, __m512d a, __m512d b);
Performs element-by-element blending of float64 source vectors a and b, using the instruction mask k as
selector.

The result is written into float64 vector destination register.

_mm512_mask_blend_ps

 extern m512 __cdecl _mm512_mask_blend_ps(__mmask16 k, __m512 a, __m512 b);
Performs element-by-element blending of float32 source vectors a and b, using the instruction mask k as
selector.

The result is written into an float32 vector register.

_mm512_mask_blend_epi32

extern m512i __cdecl _mm512_mask_blend_epi32(__mmask16 k, __m512i a, __m512i b);
Performs element-by-element blending of int32 source vectors a and b, using the instruction mask k as
selector.

The result is written into an int32 vector register.

_mm512_mask_blend_epi64

extern m512i __cdecl _mm512_mask_blend_epi64(__mmask8 k, __m512i a, __m512i b);
Performs element-by-element blending of int64 source vectors a and b, using the instruction mask k as
selector.

The result is written into an int64 vector register.

Intrinsics for Bit Manipulation Operations

Intrinsics for Integer Bit Manipulation and Conflict Detection Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Compiler Reference

1221

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_lzcnt_epi32,
_mm512_mask_lzcnt_epi32,
_mm512_maskz_lzcnt_epi32

Counts the leading zero bits in source
int32 elements.

VPLZCNTD

_mm512_lzcnt_epi64,
_mm512_mask_lzcnt_epi64,
_mm512_maskz_lzcnt_epi64

Counts the leading zero bits in source
int64 elements.

VPLZCNTQ

_mm512_ternarylogic_epi32,
_mm512_mask_ternarylogic_epi
32,
_mm512_maskz_ternarylogic_ep
i32

Implements three-operand binary
function specified by immediate value.

VPTERNLOGD

_mm512_ternarylogic_epi64,
_mm512_mask_ternarylogic_epi
64,
_mm512_maskz_ternarylogic_ep
i64

Implements three-operand binary
function specified by immediate value.

VPTERNLOGQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

c third source vector element

imm8 binary function specifier

src source element to use based on writemask result

_mm512_lzcnt_epi32

extern __m512i __cdecl _mm512_lzcnt_epi32(__m512i a);
Counts the number of leading zero bits in each packed 32-bit integer in a, and store the results in
destination.

_mm512_mask_lzcnt_epi32

extern __m512i __cdecl _mm512_mask_lzcnt_epi32(__m512i src, __mmask16 k, __m512i a);
Counts the number of leading zero bits in each packed 32-bit integer in a, and store the results in destination
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_lzcnt_epi32

extern __m512i __cdecl _mm512_maskz_lzcnt_epi32(__mmask16 k, __m512i a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1222

Counts the number of leading zero bits in each packed 32-bit integer in a, and store the results in destination
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_lzcnt_epi64

extern __m512i __cdecl _mm512_lzcnt_epi64(__m512i a);
Counts the number of leading zero bits in each packed 64-bit integer in a, and store the results.

_mm512_mask_lzcnt_epi64

extern __m512i __cdecl _mm512_mask_lzcnt_epi64(__m512i src, __mmask8 k, __m512i a);
Counts the number of leading zero bits in each packed 64-bit integer in a, and store the results in using
writemask k.

Elements are copied from src when the corresponding mask bit is not set.

_mm512_maskz_lzcnt_epi64

extern __m512i __cdecl _mm512_maskz_lzcnt_epi64(__mmask8 k, __m512i a);
Counts the number of leading zero bits in each packed 64-bit integer in a, and store the results in destination
using zeromask k.

Elements are zeroed out when the corresponding mask bit is not set.

_mm512_ternarylogic_epi32

extern __m512i __cdecl _mm512_ternarylogic_epi32(__m512i a, __m512i b, __m512i c, int imm8);
Bitwise ternary logic to implement three-operand binary functions; the specific binary function is specified by
value in imm8.

For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit
index into imm8, and the value at that bit in imm8 is written to the corresponding destination bit.

_mm512_mask_ternarylogic_epi32

extern __m512i __cdecl _mm512_mask_ternarylogic_epi32(__m512i a, __mmask16 k, __m512i, __m512i
b, int imm8);

Bitwise ternary logic to implement three-operand binary functions; the specific binary function is specified by
value in imm8.

For each bit in each packed 32-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit
index into imm8, and the value at that bit in imm8 is written to the corresponding destination bit using
writemask k at 32-bit granularity (32-bit elements are copied from src when the corresponding mask bit is
not set).

_mm512_maskz_ternarylogic_epi32

extern __m512i __cdecl _mm512_maskz_ternarylogic_epi32(__mmask16 k, __m512i a, __m512i b,
__m512i c, int imm8);

Bitwise ternary logic to implement three-operand binary functions; the specific binary function is specified by
value in imm8.

Compiler Reference

1223

For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit
index into imm8, and the value at that bit in imm8 is written to the corresponding destination bit using
zeromask k at 32-bit granularity (32-bit elements are zeroed out when the corresponding mask bit is not
set).

_mm512_ternarylogic_epi64

extern __m512i __cdecl _mm512_ternarylogic_epi64(__m512i a, __m512i b, __m512i c, int imm8);
Bitwise ternary logic to implement three-operand binary functions; the specific binary function is specified by
value in imm8.

For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3-bit
index into imm8, and the value at that bit in imm8 is written to the corresponding destination bit.

_mm512_mask_ternarylogic_epi64

extern __m512i __cdecl _mm512_mask_ternarylogic_epi64(__m512i src, __mmask8 k, __m512i a,
__m512i b, int imm8);

Bitwise ternary logic to implement three-operand binary functions; the specific binary function is specified by
value in imm8.

For each bit in each packed 64-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit
index into imm8, and the value at that bit in imm8 is written to the corresponding destination bit using
writemask k at 64-bit granularity (64-bit elements are copied from src when the corresponding mask bit is
not set).

_mm512_maskz_ternarylogic_epi64

extern __m512i __cdecl _mm512_maskz_ternarylogic_epi64(__mmask8 k, __m512i a, __m512i b, __m512i
c, int imm8);

Bitwise ternary logic to implement three-operand binary functions; the specific binary function is specified by
value in imm8.

For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit
index into imm8, and the value at that bit in imm8 is written to the corresponding destination bit using
zeromask k at 64-bit granularity (64-bit elements are zeroed out when the corresponding mask bit is not
set).

Intrinsics for Bitwise Logical Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

 Intel® C++ Compiler Classic Developer Guide and Reference

1224

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_and_epi32,
_mm512_mask_and_epi32_mm512_ma
skz_and_epi32

Computes the bitwise AND of packed int32
elements.

VPANDD

_mm512_and_epi64,
_mm512_mask_and_epi64,
_mm512_maskz_and_epi64

Computes the bitwise AND of packed int64
elements.

VPANDQ

_mm512_or_epi32,
_mm512_mask_or_epi32,
_mm512_maskz_or_epi32

Computes the bitwise OR of packed int32
elements.

VPORD

_mm512_or_epi64,
_mm512_mask_or_epi64,
_mm512_maskz_or_epi64

Computes the bitwise OR of packed int64
elements.

VPORQ

_mm512_andnot_epi32,
_mm512_mask_andnot_epi32,
_mm512_maskz_andnot_epi32

Computes the bitwise AND NOT of packed
int32 elements.

VPANDND

_mm512_andnot_epi64,
_mm512_mask_andnot_epi64,
_mm512_maskz_andnot_epi64

Computes the bitwise AND NOT of packed
int64 elements.

VPANDNQ

_mm512_xor_epi32,
_mm512_mask_xor_epi32,
_mm512_maskz_xor_epi32

Computes the bitwise XOR of packed int 32
elements.

VPXORD

_mm512_xor_epi64,
_mm512_mask_xor_epi64,
_mm512_maskz_xor_epi64

Computes the bitwise XOR of packed int64
elements.

VPXORQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_and_epi32

extern __m512i __cdecl _mm512_and_epi32(__m512i a, __m512i b);
Computes the bitwise AND of packed 32-bit integers in a and b, and stores the result.

_mm512_mask_and_epi32

extern __m512i __cdecl _mm512_mask_and_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);

Compiler Reference

1225

Computes the bitwise AND of packed 32-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_and_epi32

extern __m512i __cdecl _mm512_maskz_and_epi32(__mmask16 k, __m512i a, __m512i b);
Computes the bitwise AND of packed 32-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_and_epi64

extern __m512i __cdecl _mm512_and_epi64(__m512i a, __m512i b);
Computes the bitwise AND of 512 bits (composed of packed 64-bit integers) in a and b, and stores the result.

_mm512_mask_and_epi64

extern __m512i __cdecl _mm512_mask_and_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Computes the bitwise AND of packed 64-bit integers in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_and_epi64

extern __m512i __cdecl _mm512_maskz_and_epi64(__mmask8 k, __m512i a, __m512i b);
Computes the bitwise AND of packed 64-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_andnot_epi32

extern __m512i __cdecl _mm512_andnot_epi32(__m512i a, __m512i b);
Computes the bitwise AND NOT of packed 32-bit integers in a and b, and stores the result.

_mm512_mask_andnot_epi32

extern __m512i __cdecl _mm512_mask_andnot_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Computes the bitwise AND NOT of packed 32-bit integers in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_andnot_epi32

extern __m512i __cdecl _mm512_maskz_andnot_epi32(__mmask16 k, __m512i a, __m512i b);
Computes the bitwise AND NOT of packed 32-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_andnot_epi64

extern __m512i __cdecl _mm512_andnot_epi64(__m512i a, __m512i b);
Computes the bitwise AND NOT of 512 bits (composed of packed 64-bit integers) in a and b, and stores the
result.

_mm512_mask_andnot_epi64

extern __m512i __cdecl _mm512_mask_andnot_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Computes the bitwise AND NOT of packed 64-bit integers in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1226

_mm512_maskz_andnot_epi64

extern __m512i __cdecl _mm512_maskz_andnot_epi64(__mmask8 k, __m512i a, __m512i b);
Computes the bitwise AND NOT of packed 64-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_or_epi32

extern __m512i __cdecl _mm512_or_epi32(__m512i a, __m512i b);
Computes the bitwise OR of packed 32-bit integers in a and b, and stores the result.

_mm512_mask_or_epi32

extern __m512i __cdecl _mm512_mask_or_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Computes the bitwise OR of packed 32-bit integers in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_or_epi32

extern __m512i __cdecl _mm512_maskz_or_epi32(__mmask16 k, __m512i a, __m512i b);
Computes the bitwise OR of packed 32-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_or_epi64

extern __m512i __cdecl _mm512_or_epi64(__m512i a, __m512i b);
Computes the bitwise OR of packed 64-bit integers in a and b, and store the result.

_mm512_mask_or_epi64

extern __m512i __cdecl _mm512_mask_or_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Computes the bitwise OR of packed 64-bit integers in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_or_epi64

extern __m512i __cdecl _mm512_maskz_or_epi64(__mmask8 k, __m512i a, __m512i b);
Computes the bitwise OR of packed 64-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_xor_epi32

extern __m512i __cdecl _mm512_xor_epi32(__m512i a, __m512i b);
Computes the bitwise XOR of packed 32-bit integers in a and b, and stores the result.

_mm512_mask_xor_epi32

extern __m512i __cdecl _mm512_mask_xor_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Computes the bitwise XOR of packed 32-bit integers in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_xor_epi32

extern __m512i __cdecl _mm512_maskz_xor_epi32(__mmask16 k, __m512i a, __m512i b);

Compiler Reference

1227

Computes the bitwise XOR of packed 32-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_xor_epi64

extern __m512i __cdecl _mm512_xor_epi64(__m512i a, __m512i b);
Computes the bitwise XOR of packed 64-bit integers in a and b, and stores the result.

_mm512_mask_xor_epi64

extern __m512i __cdecl _mm512_mask_xor_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Computes the bitwise XOR of packed 64-bit integers in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_xor_epi64

extern __m512i __cdecl _mm512_maskz_xor_epi64(__mmask8 k, __m512i a, __m512i b);
Computes the bitwise XOR of packed 64-bit integers in a and b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Integer Bit Rotation Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_rol_epi32,
_mm512_mask_rol_epi32,
_mm512_maskz_rol_epi32

Rotates bits of int32 source
elements left by specified count.

VPROLD

_mm512_rol_epi64,
_mm512_mask_rol_epi64,
_mm512_maskz_rol_epi64

Rotates bits of int64 source
elements left by specified count.

VPROLQ

_mm512_rolv_epi32,
_mm512_mask_rolv_epi32,
_mm512_maskz_rolv_epi32

Rotates bits of int32 source
elements left by specified count.

VPROLVD

_mm512_rolv_epi64,
_mm512_mask_rolv_epi64,
_mm512_maskz_rolv_epi64

Rotates bits of int64 source
elements left by specified count.

VPROLVQ

_mm512_ror_epi32,
_mm512_mask_ror_epi32,
_mm512_maskz_ror_epi32

Rotates bits of int32 source
elements right by specified count.

VPRORD

_mm512_ror_epi64,
_mm512_mask_ror_epi64,
_mm512_maskz_ror_epi64

Rotates bits of int64 source
elements right by specified count.

VPRORQ

 Intel® C++ Compiler Classic Developer Guide and Reference

1228

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_rorv_epi32,
_mm512_mask_rorv_epi32,
_mm512_maskz_rorv_epi32

Rotates bits of int32 source
elements right by specified count.

VPRORVD

_mm512_rorv_epi64,
_mm512_mask_rorv_epi64,
_mm512_maskz_rorv_epi64

Rotates bits of int64 source
elements right by specified count.

VPRORVQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

imm 8-bit immediate integer specifies offset for destination

_mm512_rol_epi32

extern __m512i __cdecl _mm512_rol_epi32(__m512i a, const int imm);
Rotates bits in each packed int32 element in a to the left by the number of bits specified in imm, and stores
the results.

_mm512_mask_rol_epi32

extern __m512i __cdecl _mm512_mask_rol_epi32(__m512i src, __mmask16 k, __m512i a, const int imm);
Rotates bits in each packed int32 element in a to the left by the number of bits specified in imm, and stores
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_rol_epi32

extern __m512i __cdecl _mm512_maskz_rol_epi32(__mmask16 k, __m512i a, const int imm);
Rotates bits in each packed int32 element in a to the left by the number of bits specified in imm, and stores
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_rol_epi64

extern __m512i __cdecl _mm512_rol_epi64(__m512i a, const int imm);
Rotates bits in each packed int64 element in a to the left by the number of bits specified in imm, and stores
the results.

_mm512_mask_rol_epi64

extern __m512i __cdecl _mm512_mask_rol_epi64(__m512i src, __mmask8 k, __m512i a, const int imm);
Rotates bits in each packed int64 element in a to the left by the number of bits specified in imm, and stores
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1229

_mm512_maskz_rol_epi64

extern __m512i __cdecl _mm512_maskz_rol_epi64(__mmask8 k, __m512i a, const int imm);
Rotates bits in each packed int64 element in a to the left by the number of bits specified in imm, and stores
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_rolv_epi32

extern __m512i __cdecl _mm512_rolv_epi32(__m512i a, __m512i b);
Rotates bits in each packed int32 element in a to the left by the number of bits specified in the corresponding
element of b, and stores the results.

_mm512_mask_rolv_epi32

extern __m512i __cdecl _mm512_mask_rolv_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Rotates bits in each packed int32 element in a to the left by the number of bits specified in the corresponding
element of b, and stores the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_rolv_epi32

extern __m512i __cdecl _mm512_maskz_rolv_epi32(__mmask16 k, __m512i a, __m512i b);
Rotates bits in each packed int32 element in a to the left by the number of bits specified in the corresponding
element of b, and stores the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_rolv_epi64

extern __m512i __cdecl _mm512_rolv_epi64(__m512i a, __m512i b);
Rotates bits in each packed int64 element in a to the left by the number of bits specified in the corresponding
element of b, and stores the results.

_mm512_mask_rolv_epi64

extern __m512i __cdecl _mm512_mask_rolv_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Rotates bits in each packed int64 element in a to the left by the number of bits specified in the corresponding
element of b, and stores the results using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_rolv_epi64

extern __m512i __cdecl _mm512_maskz_rolv_epi64(__mmask8 k, __m512i a, __m512i b);
Rotates bits in each packed int64 element in a to the left by the number of bits specified in the corresponding
element of b, and stores the results using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_ror_epi32

extern __m512i __cdecl _mm512_ror_epi32(__m512i a, int imm);
Rotates bits in each packed int32 element in a to the right by the number of bits specified in imm, and stores
the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1230

_mm512_mask_ror_epi32

extern __m512i __cdecl _mm512_mask_ror_epi32(__m512i src, __mmask16 k, __m512i a, int imm);
Rotates bits in each packed int32 element in a to the right by the number of bits specified in imm, and stores
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_ror_epi32

extern __m512i __cdecl _mm512_maskz_ror_epi32(__mmask16 k, __m512i a, int imm);
Rotates bits in each packed int32 element in a to the right by the number of bits specified in imm, and stores
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_ror_epi64

extern __m512i __cdecl _mm512_ror_epi64(__m512i a, int imm);
Rotates bits in each packed int64 element in a to the right by the number of bits specified in imm, and stores
the results.

_mm512_mask_ror_epi64

extern __m512i __cdecl _mm512_mask_ror_epi64(__m512i src, __mmask8 k, __m512i a, int imm);
Rotates bits in each packed int64 element in a to the right by the number of bits specified in imm, and stores
the results using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_ror_epi64

extern __m512i __cdecl _mm512_maskz_ror_epi64(__mmask8 k, __m512i a, int imm);
Rotates bits in each packed int64 element in a to the right by the number of bits specified in imm, and stores
the results using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_rorv_epi32

extern __m512i __cdecl _mm512_rorv_epi32(__m512i a, __m512i b);
Rotates bits in each packed int32 element in a to the right by the number of bits specified in the
corresponding element of b, and stores the results.

_mm512_mask_rorv_epi32

extern __m512i __cdecl _mm512_mask_rorv_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b);
Rotates bits in each packed int32 element in a to the right by the number of bits specified in the
corresponding element of b, and stores the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_maskz_rorv_epi32

extern __m512i __cdecl _mm512_maskz_rorv_epi32(__mmask16 k, __m512i a, __m512i b);
Rotates bits in each packed int32 element in a to the right by the number of bits specified in the
corresponding element of b, and stores the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_rorv_epi64

extern __m512i __cdecl _mm512_rorv_epi64(__m512i a, __m512i b);

Compiler Reference

1231

Rotates bits in each packed int64 element in a to the right by the number of bits specified in the
corresponding element of b, and stores the results.

_mm512_mask_rorv_epi64

extern __m512i __cdecl _mm512_mask_rorv_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Rotates bits in each packed int64 element in a to the right by the number of bits specified in the
corresponding element of b, and stores the results using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_maskz_rorv_epi64

extern __m512i __cdecl _mm512_maskz_rorv_epi64(__mmask8 k, __m512i a, __m512i b);
Rotates bits in each packed int64 element in a to the right by the number of bits specified in the
corresponding element of b, and stores the results using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

Intrinsics for Integer Bit Shift Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_sll_epi32,
_mm512_mask_sll_epi32,
_mm512_maskz_sll_epi32
_mm512_slli_epi32,
_mm512_mask_slli_epi32,
_mm512_maskz_slli_epi32

Logical left shift of int32
elements.

VPSLLD

_mm512_srl_epi32,
_mm512_mask_srl_epi32,
_mm512_maskz_srl_epi32
_mm512_srli_epi32,
_mm512_mask_srli_epi32,
_mm512_maskz_srli_epi32

Logical right shift of int32
elements.

VPSRLD

_mm512_sll_epi64,
_mm512_mask_sll_epi64,
_mm512_maskz_sll_epi64
_mm512_slli_epi64,
_mm512_mask_slli_epi64,
_mm512_maskz_slli_epi64

Logical left shift of int64
elements.

VPSLLQ

_mm512_srl_epi64,
_mm512_mask_srl_epi64,
_mm512_maskz_srl_epi64

Logical right shift of int64
elements.

VPSRLQ

 Intel® C++ Compiler Classic Developer Guide and Reference

1232

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_srli_epi64,
_mm512_mask_srli_epi64,
_mm512_maskz_srli_epi64

_mm512_sllv_epi32,
_mm512_mask_sllv_epi32,
_mm512_maskz_sllv_epi32

Variable logical left shift of int32
elements.

VPSLLVD

_mm512_srlv_epi32,
_mm512_mask_srlv_epi32,
_mm512_maskz_srlv_epi32

Variable logical right shift of
int32 elements.

VPSRLVD

_mm512_sllv_epi64,
_mm512_mask_sllv_epi64,
_mm512_maskz_sllv_epi64

Variable logical bit shift left of
int64 elements.

VPSLLVQ

_mm512_srlv_epi64,
_mm512_mask_srlv_epi64,
_mm512_maskz_srlv_epi64

Variable logical bit shift right of
int64 elements.

VPSRLVQ

_mm512_sra_epi32,
_mm512_mask_sra_epi32,
_mm512_maskz_sra_epi32
_mm512_srai_epi32,
_mm512_mask_srai_epi32,
_mm512_maskz_srai_epi32

Arithmetic right shift of int32
elements.

VPSRAD

_mm512_srav_epi32,
_mm512_mask_srav_epi32,
_mm512_maskz_srav_epi32

Variable arithmetic right shift of
int32 elements.

VPSRAVD

_mm512_srav_epi64,
_mm512_mask_srav_epi64,
_mm512_maskz_srav_epi64

Variable arithmetic bit shift right
of int64 elements.

VPSRAVQ

_mm512_sra_epi64,
_mm512_mask_sra_epi64,
_mm512_maskz_sra_epi64
_mm512_srai_epi64,
_mm512_mask_srai_epi64,
_mm512_maskz_srai_epi64

Arithmetic right shift of int64
elements.

VPSRAQ

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

count specifies the number of bits for shift operation

Compiler Reference

1233

variable definition
imm 8-bit immediate integer specifies offset for destination

_mm512_sll_epi32

extern __m512i __cdecl _mm512_sll_epi32(__m512i a, __m128i count);
Shifts packed int32 elements in a left by count while shifting in zeros, and stores the result.

_mm512_mask_sll_epi32

extern __m512i __cdecl _mm512_mask_sll_epi32(__m512i src, __mmask16 k, __m512i a, __m128i count);
Shifts packed int32 elements in a left by count while shifting in zeros, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sll_epi32

extern __m512i __cdecl _mm512_maskz_sll_epi32(__mmask16 k, __m512i a, __m128i count);
Shifts packed int32 elements in a left by count while shifting in zeros, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_slli_epi32

extern __m512i __cdecl _mm512_slli_epi32(__m512i a, unsigned int imm);
Shifts packed int32 elements in a left by imm while shifting in zeros, and stores the result.

_mm512_mask_slli_epi32

extern __m512i __cdecl _mm512_mask_slli_epi32(__m512i src, __mmask16 k, __m512i a, unsigned int
imm);

Shifts packed int32 elements in a left by imm while shifting in zeros, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_slli_epi32

extern __m512i __cdecl _mm512_maskz_slli_epi32(__mmask16 k, __m512i a, unsigned int imm);
Shifts packed int32 elements in a left by imm while shifting in zeros, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_sll_epi64

extern __m512i __cdecl _mm512_sll_epi64(__m512i a, __m128i count);
Shifts packed int64 elements in a left by count while shifting in zeros, and stores the result.

_mm512_mask_sll_epi64

extern __m512i __cdecl _mm512_mask_sll_epi64(__m512i src, __mmask8 k, __m512i a, __m128i count);
Shifts packed int64 elements in a left by count while shifting in zeros, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1234

_mm512_maskz_sll_epi64

extern __m512i __cdecl _mm512_maskz_sll_epi64(__mmask8 k, __m512i a, __m128i count);
Shifts packed int64 elements in a left by count while shifting in zeros, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_slli_epi64

extern __m512i __cdecl _mm512_slli_epi64(__m512i a, unsigned int imm);
Shifts packed int64 elements in a left by imm while shifting in zeros, and stores the result.

_mm512_mask_slli_epi64

extern __m512i __cdecl _mm512_mask_slli_epi64(__m512i src, __mmask8 k, __m512i a, unsigned int
imm);

Shifts packed int64 elements in a left by imm while shifting in zeros, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_slli_epi64

extern __m512i __cdecl _mm512_maskz_slli_epi64(__mmask8 k, __m512i a, unsigned int imm);
Shifts packed int64 elements in a left by imm while shifting in zeros, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_sllv_epi32

extern __m512i __cdecl _mm512_sllv_epi32(__m512i a, __m512i count);
Shifts packed int32 elements in a left by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result.

_mm512_mask_sllv_epi32

extern __m512i __cdecl _mm512_mask_sllv_epi32(__m512i src, __mmask16 k, __m512i a, __m512i
count);

Shifts packed int32 elements in a left by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_sllv_epi32

extern __m512i __cdecl _mm512_maskz_sllv_epi32(__mmask16 k, __m512i a, __m512i count);
Shifts packed int32 elements in a left by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_sllv_epi64

extern __m512i __cdecl _mm512_sllv_epi64(__m512i a, __m512i count);

Compiler Reference

1235

Shifts packed int64 elements in a left by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result.

_mm512_mask_sllv_epi64

extern __m512i __cdecl _mm512_mask_sllv_epi64(__m512i src, __mmask8 k, __m512i a, __m512i count);
Shifts packed int64 elements in a left by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_sllv_epi64

extern __m512i __cdecl _mm512_maskz_sllv_epi64(__mmask8 k, __m512i a, __m512i count);
Shifts packed int64 elements in a left by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_sra_epi32

extern __m512i __cdecl _mm512_sra_epi32(__m512i a, __m128i count);
Shifts packed int32 elements in a right by count while shifting in sign bits, and stores the result.

_mm512_mask_sra_epi32

extern __m512i __cdecl _mm512_mask_sra_epi32(__m512i src, __mmask16 k, __m512i a, __m128i count);
Shifts packed int32 elements in a right by count while shifting in sign bits, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sra_epi32

extern __m512i __cdecl _mm512_maskz_sra_epi32(__mmask16 k, __m512i a, __m128i count);
Shifts packed int32 elements in a right by count while shifting in sign bits, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_sra_epi64

extern __m512i __cdecl _mm512_sra_epi64(__m512i a, __m128i count);
Shifts packed int64 elements in a right by count while shifting in sign bits, and stores the result.

_mm512_mask_sra_epi64

extern __m512i __cdecl _mm512_mask_sra_epi64(__m512i src, __mmask8 k, __m512i a, __m128i count);
Shifts packed int64 elements in a right by count while shifting in sign bits, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_sra_epi64

extern __m512i __cdecl _mm512_maskz_sra_epi64(__mmask8 k, __m512i a, __m128i count);

 Intel® C++ Compiler Classic Developer Guide and Reference

1236

Shifts packed int64 elements in a right by count while shifting in sign bits, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_srai_epi32

extern __m512i __cdecl _mm512_srai_epi32(__m512i a, unsigned int imm);
Shifts packed int32 elements in a right by imm while shifting in sign bits, and stores the result.

_mm512_mask_srai_epi32

extern __m512i __cdecl _mm512_mask_srai_epi32(__m512i src, __mmask16 k, __m512i a, unsigned int
imm);

Shifts packed int32 elements in a right by imm while shifting in sign bits, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_srai_epi32

extern __m512i __cdecl _mm512_maskz_srai_epi32(__mmask16 k, __m512i a, unsigned int imm);
Shifts packed int32 elements in a right by imm while shifting in sign bits, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_srai_epi64

extern __m512i __cdecl _mm512_srai_epi64(__m512i a, unsigned int imm);
Shifts packed int64 elements in a right by imm while shifting in sign bits, and stores the result.

_mm512_mask_srai_epi64

extern __m512i __cdecl _mm512_mask_srai_epi64(__m512i src, __mmask8 k, __m512i a, unsigned int
imm);

Shifts packed int64 elements in a right by imm while shifting in sign bits, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_srai_epi64

extern __m512i __cdecl _mm512_maskz_srai_epi64(__mmask8 k, __m512i a, unsigned int imm);
Shifts packed int64 elements in a right by imm while shifting in sign bits, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_srav_epi32

extern __m512i __cdecl _mm512_srav_epi32(__m512i a, __m512i count);
Shifts packed int32 elements in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and stores the result.

_mm512_mask_srav_epi32

extern __m512i __cdecl _mm512_mask_srav_epi32(__m512i src, __mmask16 k, __m512i a, __m512i
count);

Compiler Reference

1237

Shifts packed int32 elements in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_srav_epi32

extern __m512i __cdecl _mm512_maskz_srav_epi32(__mmask16 k, __m512i a, __m512i count);
Shifts packed int32 elements in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_srav_epi64

extern __m512i __cdecl _mm512_srav_epi64(__m512i a, __m512i count);
Shifts packed int64 elements in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and stores the result.

_mm512_mask_srav_epi64

extern __m512i __cdecl _mm512_mask_srav_epi64(__m512i src, __mmask8 k, __m512i a, __m512i count);
Shifts packed int64 elements in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_srav_epi64

extern __m512i __cdecl _mm512_maskz_srav_epi64(__mmask8 k, __m512i a, __m512i count);
Shifts packed int64 elements in a right by the amount specified by the corresponding element in count while
shifting in sign bits, and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_srl_epi32

extern __m512i __cdecl _mm512_srl_epi32(__m512i a, __m128i count);
Shifts packed int32 elements in a right by count while shifting in zeros, and stores the result.

_mm512_mask_srl_epi32

extern __m512i __cdecl _mm512_mask_srl_epi32(__m512i src, __mmask16 k, __m512i a, __m128i count);
Shifts packed int32 elements in a right by count while shifting in zeros, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_srl_epi32

extern __m512i __cdecl _mm512_maskz_srl_epi32(__mmask16 k, __m512i a, __m128i count);
Shifts packed int32 elements in a right by count while shifting in zeros, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1238

_mm512_srli_epi32

extern __m512i __cdecl _mm512_srli_epi32(__m512i a, unsigned int imm);
Shifts packed int32 elements in a right by imm while shifting in zeros, and stores the result.

_mm512_mask_srli_epi32

extern __m512i __cdecl _mm512_mask_srli_epi32(__m512i src, __mmask16 k, __m512i a, unsigned int
imm);

Shifts packed int32 elements in a right by imm while shifting in zeros, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_srli_epi32

extern __m512i __cdecl _mm512_maskz_srli_epi32(__mmask16 k, __m512i a, unsigned int imm);
Shifts packed int32 elements in a right by imm while shifting in zeros, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_srl_epi64

extern __m512i __cdecl _mm512_srl_epi64(__m512i a, __m128i count);
Shifts packed int64 elements in a right by count while shifting in zeros, and stores the result.

_mm512_mask_srl_epi64

extern __m512i __cdecl _mm512_mask_srl_epi64(__m512i src, __mmask8 k, __m512i a, __m128i count);
Shifts packed int64 elements in a right by count while shifting in zeros, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_srl_epi64

extern __m512i __cdecl _mm512_maskz_srl_epi64(__mmask8 k, __m512i a, __m128i count);
Shifts packed int64 elements in a right by count while shifting in zeros, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_srli_epi64

extern __m512i __cdecl _mm512_srli_epi64(__m512i a, unsigned int imm);
Shifts packed int64 elements in a right by imm while shifting in zeros, and stores the result.

_mm512_mask_srli_epi64

extern __m512i __cdecl _mm512_mask_srli_epi64(__m512i src, __mmask8 k, __m512i a, unsigned int
imm);

Shifts packed int64 elements in a right by imm while shifting in zeros, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1239

_mm512_maskz_srli_epi64

extern __m512i __cdecl _mm512_maskz_srli_epi64(__mmask8 k, __m512i a, unsigned int imm);
Shifts packed int64 elements in a right by imm while shifting in zeros, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_srlv_epi32

extern __m512i __cdecl _mm512_srlv_epi32(__m512i a, __m512i count);
Shifts packed int32 elements in a right by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result.

_mm512_mask_srlv_epi32

extern __m512i __cdecl _mm512_mask_srlv_epi32(__m512i src, __mmask16 k, __m512i a, __m512i
count);

Shifts packed int32 elements in a right by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_srlv_epi32

extern __m512i __cdecl _mm512_maskz_srlv_epi32(__mmask16 k, __m512i a, __m512i count);
Shifts packed int32 elements in a right by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_srlv_epi64

extern __m512i __cdecl _mm512_srlv_epi64(__m512i a, __m512i count);
Shifts packed int64 elements in a right by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result.

_mm512_mask_srlv_epi64

extern __m512i __cdecl _mm512_mask_srlv_epi64(__m512i src, __mmask8 k, __m512i a, __m512i count);
Shifts packed int64 elements in a right by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_srlv_epi64

extern __m512i __cdecl _mm512_maskz_srlv_epi64(__mmask8 k, __m512i a, __m512i count);
Shifts packed int64 elements in a right by the amount specified by the corresponding element in count while
shifting in zeros, and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1240

Intrinsics for Broadcast Operations

Intrinsics for FP Broadcast Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_broadcast_f32x4,
_mm512_mask_broadcast_f32x4,
_mm512_maskz_broadcast_f32x4

Broadcast float32 element to four
destination locations.

VBROADCASTF32X4

_mm512_broadcast_f64x4,
_mm512_mask_broadcast_f64x4,
_mm512_maskz_broadcast_f64x4

Broadcast float64 element to four
destination locations.

VBROADCASTF64X4

_mm512_broadcastsd_pd,
_mm512_mask_broadcastsd_pd,
_mm512_maskz_broadcastsd_pd

Broadcast packed float64 element to
all destination locations.

VBROADCASTSD

_mm512_broadcastss_ps,
_mm512_mask_broadcastss_ps,
_mm512_maskz_broadcastss_ps

Broadcast packed float32 element to
all destination locations.

VBROADCASTSS

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

_mm512_broadcast_f32x4

extern __m512 __cdecl _mm512_broadcast_f32x4(__m128 a);
Broadcasts four packed float32 elements from a to all destination elements.

_mm512_mask_broadcast_f32x4

extern __m512 __cdecl _mm512_mask_broadcast_f32x4(__m512 src, __mmask16 k, __m128 a);
Broadcasts four packed float32 elements from a to all destination elements using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_f32x4

extern __m512 __cdecl _mm512_maskz_broadcast_f32x4(__mmask16 k, __m128 a);

Compiler Reference

1241

Broadcasts four packed float32 elements from a to all destination elements using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_broadcast_f64x4

extern __m512d __cdecl _mm512_broadcast_f64x4(__m256d a);
Broadcasts four packed float64 elements from a to all destination elements.

_mm512_mask_broadcast_f64x4

extern __m512d __cdecl _mm512_mask_broadcast_f64x4(__m512d src, __mmask8 k, __m256d a);
Broadcasts four packed float64 elements from a to all destination elements using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_f64x4

extern __m512d __cdecl _mm512_maskz_broadcast_f64x4(__mmask8 k, __m256d a);
Broadcasts four packed float64 elements from a to all destination elements using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_broadcastsd_pd

extern __m512d __cdecl _mm512_broadcastsd_pd(__m128d a);
Broadcasts low float64 element from a to all destination elements.

_mm512_mask_broadcastsd_pd

extern __m512d __cdecl _mm512_mask_broadcastsd_pd(__m512d src, __mmask8 k, __m128d a);
Broadcasts low float64 element from a to all destination elements using writemask k (elements are copied
from src when the corresponding mask bit is not set).

_mm512_maskz_broadcastsd_pd

extern __m512d __cdecl _mm512_maskz_broadcastsd_pd(__mmask8 k, __m128d a);
Broadcasts low float64 element from a to all destination elements using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

_mm512_broadcastss_ps

extern __m512 __cdecl _mm512_broadcastss_ps(__m128 a);
Broadcasts low float32 element from a to all destination elements.

_mm512_mask_broadcastss_ps

extern __m512 __cdecl _mm512_mask_broadcastss_ps(__m512 src, __mmask16 k, __m128 a);
Broadcasts low float32 element from a to all destination elements using writemask k (elements are copied
from src when the corresponding mask bit is not set).

_mm512_maskz_broadcastss_ps

extern __m512 __cdecl _mm512_maskz_broadcastss_ps(__mmask16 k, __m128 a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1242

Broadcasts low float32 element from a to all destination elements using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

Intrinsics for Integer Broadcast Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_broadcast_i32x4,
_mm512_mask_broadcast_i32x4
,
_mm512_maskz_broadcast_i32x
4

Broadcasts source int32 element to
four destinations.

VBROADCASTI32X4

_mm512_broadcast_i64x4,
_mm512_mask_broadcast_i64x4
,
_mm512_maskz_broadcast_i64x
4

Broadcasts source int64 element to
four destinations.

VBROADCASTI64X4

_mm512_broadcastd_epi32,
_mm512_mask_broadcastd_epi3
2,
_mm512_maskz_broadcastd_epi
32

Broadcasts source int32 element to
doubleword destinations.

VPBROADCASTD

_mm512_broadcastq_epi64,
_mm512_mask_broadcastq_epi6
4,
_mm512_maskz_broadcastq_epi
64

Broadcasts source int64 element to
quadword destinations.

VPBROADCASTQ

_mm512_broadcastmb_epi64 Broadcasts low byte from input mask
to all int64 destination elements.

VPBROADCASTMB2Q

_mm512_broadcastmw_epi32 Broadcasts low word from input
mask to all int32 destination
elements.

VPBROADCASTMD2W

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

Compiler Reference

1243

_mm512_broadcast_i32x4

extern __m512i __cdecl _mm512_broadcast_i32x4(__m128i a);
Broadcasts four packed int32 elements from a to all destination elements.

_mm512_mask_broadcast_i32x4

extern __m512i __cdecl _mm512_mask_broadcast_i32x4(__m512i src, __mmask16 k, __m128i a);
Broadcasts four packed int32 elements from a to all destination elements using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_i32x4

extern __m512i __cdecl _mm512_maskz_broadcast_i32x4(__mmask16 k, __m128i a);
Broadcasts four packed int32 elements from a to all destination elements using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_broadcast_i64x4

extern __m512i __cdecl _mm512_broadcast_i64x4(__m256i a);
Broadcasts four packed int64 elements from a to all destination elements.

_mm512_mask_broadcast_i64x4

extern __m512i __cdecl _mm512_mask_broadcast_i64x4(__m512i src, __mmask8 k, __m256i a);
Broadcasts four packed int64 elements from a to all destination elements using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcast_i64x4

extern __m512i __cdecl _mm512_maskz_broadcast_i64x4(__mmask8 k, __m256i a);
Broadcasts four packed int64 elements from a to all destination elements using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_broadcastd_epi32

extern __m512i __cdecl _mm512_broadcastd_epi32(__m128i a);
Broadcasts low packed 32-bit integer from a to all elements.

_mm512_mask_broadcastd_epi32

extern __m512i __cdecl _mm512_mask_broadcastd_epi32(__m512i src, __mmask16 k, __m128i a);
Broadcasts low packed 32-bit integer from a to all destination elements using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcastd_epi32

extern __m512i __cdecl _mm512_maskz_broadcastd_epi32(__mmask16 k, __m128i a);
Broadcasts low packed 32-bit integer from a to all destination elements using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1244

_mm512_broadcastq_epi64

extern __m512i __cdecl _mm512_broadcastq_epi64(__m128i a);
Broadcasts low packed 64-bit integer from a to all destination elements.

_mm512_mask_broadcastq_epi64

extern __m512i __cdecl _mm512_mask_broadcastq_epi64(__m512i src, __mmask8 k, __m128i a);
Broadcasts low packed 64-bit integer from a to all destination elements using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_broadcastq_epi64

extern __m512i __cdecl _mm512_maskz_broadcastq_epi64(__mmask8 k, __m128i a);
Broadcasts low packed 64-bit integer from a to all destination elements using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_broadcastmw_epi32

extern __m512i __cdecl _mm512_broadcastmw_epi32(__mmask16 k);
Broadcasts low 16-bits from input mask k to all 32-bit elements of destination.

_mm512_broadcastmb_epi64

extern __m512i __cdecl _mm512_broadcastmb_epi64(__mmask8 k);
Broadcasts the low 8-bits from input mask k to all 64-bit elements of destination.

Intrinsics for Comparison Operations

Intrinsics for FP Comparison Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_cmp_round_pd_mask,
_mm512_mask_cmp_round_pd_mask
_mm512_cmp_pd_mask,
_mm512_mask_cmp_pd_mask,
_mm512_cmp_round_pd_mask,

Compares float64 vector elements
based on comparison operand.

VCMPPD

Compiler Reference

1245

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_mask_cmp_round_pd_mask,
_mm512_cmpeq_pd_mask,
_mm512_mask_cmpeq_pd_mask,
_mm512_cmple_pd_mask,
_mm512_mask_cmple_pd_mask,
_mm512_cmplt_pd_mask,
_mm512_mask_cmplt_pd_mask,
_mm512_cmpneq_pd_mask,
_mm512_cmplt_pd_mask,
_mm512_cmpneq_pd_mask,
_mm512_mask_cmpneq_pd_mask,
_mm512_cmpnle_pd_mask,
_mm512_mask_cmpnle_pd_mask,
_mm512_cmpnlt_pd_mask,
_mm512_mask_cmpnlt_pd_mask,
_mm512_cmpord_pd_mask,
_mm512_mask_cmpord_pd_mask,
_mm512_cmpunord_pd_mask,
_mm512_mask_cmpunord_pd_mask

_mm512_cmp_round_ps_mask,
_mm512_mask_cmp_round_ps_mask
_mm512_cmp_ps_mask,
_mm512_mask_cmp_ps_mask,
_mm512_cmp_round_ps_mask,
_mm512_mask_cmp_round_ps_mask,
_mm512_cmpeq_ps_mask,
_mm512_mask_cmpeq_ps_mask,
_mm512_cmple_ps_mask,
_mm512_mask_cmple_ps_mask,
_mm512_cmplt_ps_mask,
_mm512_mask_cmplt_ps_mask,
_mm512_cmpneq_ps_mask,
_mm512_mask_cmpneq_ps_mask,
_mm512_cmpnle_ps_mask,
_mm512_mask_cmpnle_ps_mask,
_mm512_cmpnlt_ps_mask,
_mm512_mask_cmpnlt_ps_mask,
_mm512_cmpord_ps_mask,
_mm512_mask_cmpord_ps_mask,
_mm512_cmpunord_ps_mask,
_mm512_mask_cmpunord_ps_mask

Compares float32 vector elements
based on comparison operand.

VCMPPS

_mm_cmp_sd_mask,
_mm_mask_cmp_sd_mask,
_mm_cmp_round_sd_mask,
_mm_mask_cmp_sd_mask

Compares lower float64 vector
elements based on comparison
operand.

VCMPSD

 Intel® C++ Compiler Classic Developer Guide and Reference

1246

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm_cmp_ss_mask,
_mm_mask_cmp_ss_mask,
_mm_cmp_round_ss_mask,
_mm_mask_cmp_ss_mask

Compares lower float32 vector
elements based on comparison
operand.

VCMPSS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

imm comparison predicate, which can be any of the following values:

• _MM_CMPINT_EQ - Equal
• _MM_CMPINT_LT - Less than
• _MM_CMPINT_LE - Less than or Equal
• _MM_CMPINT_NE - Not Equal
• _MM_CMPINT_NLT - Not Less than
• _MM_CMPINT_GE - Greater than or Equal
• _MM_CMPINT_NLE - Not Less than or Equal
• _MM_CMPINT_GT - Greater than

_mm512_cmp_pd_mask

extern __mmask8 __cdecl _mm512_cmp_pd_mask(__m512d a, __m512d b, const int imm);
Compares float64 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector.

_mm512_cmp_round_pd_mask

extern __mmask8 __cdecl _mm512_cmp_round_pd_mask(__m512d a, __m512d b, const int imm, const int
round);

Compares float64 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector.

Compiler Reference

1247

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_mask_cmp_round_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmp_round_pd_mask(__mmask8 k, __m512d a, __m512d b, const
int imm, const int round);

Compares float64 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_mask_cmp_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmp_pd_mask(__mmask8 k, __m512d a, __m512d b, const int imm);
Compares float64 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpeq_pd_mask

extern __mmask8 __cdecl _mm512_cmp_pd_mask(__m512d a, __m512d b);
Compares float64 elements in a and b for equality.

The result is stored in mask vector.

_mm512_mask_cmpeq_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmpeq_pd_mask(__mmask8 k, __m512d a, __m512d b);
Compares float64 elements in a and b for equality.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmple_pd_mask

extern __mmask8 __cdecl _mm512_cmple_pd_mask(__m512d a, __m512d b);
Compares float64 elements in a and b for less-than-or-equal.

The result is stored in mask vector.

_mm512_mask_cmple_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmple_pd_mask(__mmask8 k, __m512d a, __m512d b);
Compares float64 elements in a and b for less-than-or-equal.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1248

_mm512_cmplt_pd_mask

extern __mmask8 __cdecl _mm512_cmplt_pd_mask(__m512d a, __m512d b);
Compares float64 elements in a and b for less-than.

The result is stored in mask vector.

_mm512_mask_cmplt_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmplt_pd_mask(__mmask8 k, __m512d a, __m512d b);
Compares float64 elements in a and b for less-than.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpneq_pd_mask

extern __mmask8 __cdecl _mm512_cmpneq_pd_mask(__m512d a, __m512d b);
Compares float64 elements in a and b for not-equal.

The result is stored in mask vector.

_mm512_mask_cmpneq_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmpneq_pd_mask(__mmask8 k, __m512d a, __m512d b);
Compares float64 elements in a and b for not-equal.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpnle_pd_mask

extern __mmask8 __cdecl _mm512_cmpnle_pd_mask(__m512d a, __m512d b);
Compares float64 elements in a and b for not-less-than-or-equal.

The result is stored in mask vector.

_mm512_mask_cmpnle_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmpnle_pd_mask(__mmask8 k, __m512d a, __m512d b);
Compares float64 elements in a and b for not-less-than-or-equal.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpnlt_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmpnlt_pd_mask(__m512d a, __m512d b);
Compares float64 elements in a and b for not-less-than.

The result is stored in mask vector.

_mm512_mask_cmpnlt_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmpnlt_pd_mask(__mmask8 k, __m512d a, __m512d b);

Compiler Reference

1249

Compares float64 elements in a and b for not-less-than.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpord_pd_mask

extern __mmask8 __cdecl _mm512_cmpord_pd_mask(__m512d a, __m512d b);
Compares float64 elements in a and b to see if neither is NaN.

The result is stored in mask vector.

_mm512_mask_cmpord_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmpord_pd_mask(__mmask8 k, __m512d a, __m512d b);
Compares float64 elements in a and b to see if neither is NaN.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpunord_pd_mask

extern __mmask8 __cdecl _mm512_cmpunord_pd_mask(__m512d a, __m512d b);
Compares float64 elements in a and b to see if either is NaN.

The result is stored in mask vector.

_mm512_mask_cmpord_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmpord_pd_mask(__mmask8 k, __m512d a, __m512d b);
Compares float64 elements in a and b to see if neither is NaN.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_mask_cmpunord_pd_mask

extern __mmask8 __cdecl _mm512_mask_cmpord_pd_mask(__mmask8 k, __m512d a, __m512d b);
Compares float64 elements in a and b to see if either is NaN.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmp_ps_mask

extern __mmask16 __cdecl _mm512_cmp_ps_mask(__m512 a, __m512 b, const int imm);
Compares float32 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector.

_mm512_mask_cmp_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmp_ps_mask(__mmask16 k, __m512 a, __m512 b, const int imm);
Compares float32 elements in a and b based on the comparison operand specified by imm.

 Intel® C++ Compiler Classic Developer Guide and Reference

1250

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmp_round_ps_mask

extern __mmask16 __cdecl _mm512_cmp_round_ps_mask(__m512 a, __m512 b, const int imm, const int
round);

Compares float32 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_mask_cmp_round_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmp_round_ps_mask(__mmask16 k, __m512 a, __m512 b, const
int imm, const int round);

Compares float32 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm512_cmpeq_ps_mask

extern __mmask16 __cdecl _mm512_cmpeq_ps_mask(__m512 a, __m512 b);
Compares float32 elements in a and b for equality.

The result is stored in mask vector.

_mm512_mask_cmpeq_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmpeq_ps_mask(__mmask16 k, __m512 a, __m512 b);
Compares float32 elements in a and b for equality.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmple_ps_mask

extern __mmask16 __cdecl _mm512_cmple_ps_mask(__m512 a, __m512 b);
Compares float32 elements in a and b for less-than-or-equal.

The result is stored in mask vector.

_mm512_mask_cmple_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmple_ps_mask(__mmask16 k, __m512 a, __m512 b);
Compares float32 elements in a and b for less-than-or-equal.

Compiler Reference

1251

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpunord_ps_mask

extern __mmask16 __cdecl _mm512_cmpunord_ps_mask(__m512 a, __m512 b);
Compares float32 elements in a and b to see if either is NaN.

The result is stored in mask vector.

_mm512_mask_cmpunord_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmpunord_ps_mask(__mmask16 k, __m512 a, __m512 b);
Compares float32 elements in a and b to see if neither is NaN.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmplt_ps_mask

extern __mmask16 __cdecl _mm512_cmplt_ps_mask(__m512 a, __m512 b);
Compares float32 elements in a and b for less-than.

The result is stored in mask vector.

_mm512_mask_cmplt_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmplt_ps_mask(__mmask16 k, __m512 a, __m512 b);
Compares float32 elements in a and b for less-than.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpneq_ps_mask

extern __mmask16 __cdecl _mm512_cmpneq_ps_mask(__m512 a, __m512 b);
Compares float32 elements in a and b for not-equal.

The result is stored in mask vector.

_mm512_mask_cmpneq_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmpneq_ps_mask(__mmask16 k, __m512 a, __m512 b, const int
round);

Compares float32 elements in a and b for not-equal.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpnle_ps_mask

extern __mmask16 __cdecl _mm512_cmpnle_ps_mask(__m512 a, __m512 b);
Compares float32 elements in a and b for not-less-than-or-equal.

The result is stored in mask vector.

 Intel® C++ Compiler Classic Developer Guide and Reference

1252

_mm512_mask_cmpnle_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmpnle_ps_mask(__mmask16 k, __m512 a, __m512 b);
Compares float32 elements in a and b for not-less-than-or-equal.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpnlt_ps_mask

extern __mmask16 __cdecl _mm512_cmpnlt_ps_mask(__m512 a, __m512 b);
Compares float32 elements in a and b for not-less-than.

The result is stored in mask vector.

_mm512_mask_cmpnlt_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmpnlt_ps_mask(__mmask16 k, __m512 a, __m512 b);
Compares float32 elements in a and b for not-less-than.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm512_cmpord_ps_mask

extern __mmask16 __cdecl _mm512_cmpord_ps_mask(__m512 a, __m512 b);
Compares float32 elements in a and b to see if either is NaN.

The result is stored in mask vector.

_mm512_mask_cmpord_ps_mask

extern __mmask16 __cdecl _mm512_mask_cmpord_ps_mask(__mmask16 k, __m512 a, __m512 b);
Compares float32 elements in a and b to see if either is NaN.

The result is stored in mask vector using zeromask k (elements are zeroed out when the corresponding mask
bit is not set).

_mm_cmp_round_sd_mask

extern __mmask8 __cdecl _mm_cmp_round_sd_mask(__m128d a, __m128d b, const int imm, const round);
Compares lower float64 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_cmp_round_sd_mask

extern __mmask8 __cdecl _mm_mask_cmp_round_sd_mask(__mmask8 k, __m128d a, __m128d b, const int
imm, const int round);

Compares lower float64 elements in a and b based on the comparison operand specified by imm, and store
the result in mask vector k using zeromask k (the element is zeroed out when mask bit 0 is not set).

Compiler Reference

1253

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_cmp_sd_mask

extern __mmask8 __cdecl _mm_cmp_sd_mask(__m128d a, __m128d b, const int imm);
Compares lower float64 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector.

_mm_mask_cmp_sd_mask

extern __mmask8 __cdecl _mm_mask_cmp_sd_mask(__mmask8 k, __m128d a, __m128d b, const int imm);
Compares lower float64 elements in a and b based on the comparison operand specified by imm

The result is stored in mask vector using zeromask k (the element is zeroed out when mask bit 0 is not set).

_mm_cmp_round_ss_mask

extern __mmask8 __cdecl _mm_cmp_round_ss_mask(__m128 a, __m128 b, const int imm, const int
round);

Compares lower float32 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector.

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_mask_cmp_round_ss_mask

extern __mmask8 __cdecl _mm_mask_cmp_round_ss_mask(__mmask8 k, __m128 a, __m128 b, const int
imm, const int round);

Compares lower float32 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector using zeromask k (the element is zeroed out when mask bit 0 is not set).

NOTE
Pass __MM_FROUND_NO_EXC to round to suppress all exceptions.

_mm_cmp_ss_mask

extern __mmask8 __cdecl _mm_cmp_ss_mask(__m128 a, __m128 b, const int imm);
Compares lower float32 elements in a and b based on the comparison operand specified by imm.

The result is stored in mask vector.

_mm_mask_cmp_ss_mask

extern __mmask8 __cdecl _mm_mask_cmp_ss_mask(__mmask8 k, __m128 a, __m128 b, const int imm);
Compares lower float32 elements in a and b based on the comparison operand specified by imm.

 Intel® C++ Compiler Classic Developer Guide and Reference

1254

The result is stored in mask vector using zeromask k (the element is zeroed out when mask bit 0 is not set).

Intrinsics for Integer Comparison Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_cmp_epi32_mask
_mm512_cmpeq_epi32_mask,
_mm512_cmpge_epi32_mask,
_mm512_cmpgt_epi32_mask,
_mm512_cmple_epi32_mask,
_mm512_cmplt_epi32_mask,
_mm512_cmpneq_epi32_mask,
_mm512_mask_cmp_epi32_mas
k,
_mm512_mask_cmpeq_epi32_m
ask,
_mm512_mask_cmpge_epi32_m
ask,
_mm512_mask_cmpgt_epi32_m
ask,
_mm512_mask_cmple_epi32_m
ask,
_mm512_mask_cmplt_epi32_m
ask,
_mm512_mask_cmpneq_epi32_
mask

Compare signed int32 elements
based on the comparison operand.

VPCMPD

_mm512_cmp_epi64_mask,
_mm512_mask_cmp_epi64_mas
k
_mm512_cmpeq_epi64_mask,
_mm512_cmpge_epi64_mask,
_mm512_cmpgt_epi64_mask,
_mm512_cmple_epi64_mask,
_mm512_cmplt_epi64_mask,
_mm512_cmpneq_epi64_mask,
_mm512_mask_cmp_epi64_mas
k,
_mm512_mask_cmpeq_epi64_m
ask,
_mm512_mask_cmpge_epi64_m
ask,

Compare signed int64 elements
based on the comparison operand.

VPCMPQ

Compiler Reference

1255

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_mask_cmpgt_epi64_m
ask,
_mm512_mask_cmple_epi64_m
ask,
_mm512_mask_cmplt_epi64_m
ask,
_mm512_mask_cmpneq_epi64_
mask

_mm512_cmp_epu32_mask
_mm512_cmpeq_epu32_mask,
_mm512_cmpge_epu32_mask,
_mm512_cmpgt_epu32_mask,
_mm512_cmple_epu32_mask,
_mm512_cmplt_epu32_mask,
_mm512_cmpneq_epu32_mask,
_mm512_mask_cmp_epu32_mas
k,
_mm512_mask_cmpeq_epu32_m
ask,
_mm512_mask_cmpge_epu32_m
ask,
_mm512_mask_cmpgt_epu32_m
ask,
_mm512_mask_cmple_epu32_m
ask,
_mm512_mask_cmplt_epu32_m
ask,
_mm512_mask_cmpneq_epu32_
mask

Compare unsigned int32 elements
based on the comparison operand.

VPCMPUD

_mm512_cmp_epu64_mask,
_mm512_mask_cmp_epu64_mas
k
_mm512_cmpeq_epu64_mask,
_mm512_cmpge_epu64_mask,
_mm512_cmpgt_epu64_mask,
_mm512_cmple_epu64_mask,
_mm512_cmplt_epu64_mask,
_mm512_cmpneq_epu64_mask,
_mm512_mask_cmp_epu64_mas
k,
_mm512_mask_cmpeq_epu64_m
ask,
_mm512_mask_cmpge_epu64_m
ask,
_mm512_mask_cmpgt_epu64_m

Compare unsigned int64 elements
based on the comparison operand.

VPCMPUQ

 Intel® C++ Compiler Classic Developer Guide and Reference

1256

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

ask,
_mm512_mask_cmple_epu64_m
ask,
_mm512_mask_cmplt_epu64_m
ask,
_mm512_mask_cmpneq_epu64_
mask

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

imm comparison operand

src source element

_mm_comi_round_sd

extern int __cdecl _mm_comi_round_sd(__m128d a, __m128d b, const int imm, const int sae);
Compare the lower double-precision (64-bit) floating-point element in a and b based on the comparison
operand specified by imm, and return the boolean result (0 or 1).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm_comi_round_ss

extern int __cdecl _mm_comi_round_ss(__m128 a, __m128 b, const int imm, const int sae);
Compare the lower single-precision (32-bit) floating-point element in a and b based on the comparison
operand specified by imm, and return the boolean result (0 or 1).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cmp_epi32_mask

extern __mmask16 __cdecl _mm512_cmp_epi32_mask(__m512i a, __m512i b, const int imm);
Compare packed int32 elements in a and b based on the comparison operand specified by imm, and store
the results in mask vector k.

Compiler Reference

1257

_mm512_mask_cmp_epi32_mask

extern __mmask16 __cdecl _mm512_mask_cmp_epi32_mask(__mmask16 k, __m512i a, __m512i b, const int
imm);

Compare packed int32 elements in a and b based on the comparison operand specified by imm, and store
the results in mask vector k using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm512_cmpeq_epi32_mask

extern __mmask16 __cdecl _mm512_cmpeq_epi32_mask(__m512i a, __m512i b);
Compare packed int32 elements in a and b for equality, and store the results in mask vector k.

_mm512_mask_cmpeq_epi32_mask

 extern __mmask16 __cdecl _mm512_mask_cmpeq_epi32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed int32 elements in a and b for equality, and store the results in mask vector k using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpge_epi32_mask

extern __mmask16 __cdecl _mm512_cmpge_epi32_mask(__m512i a, __m512i b);
Compare packed int32 elements in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_mask_cmpge_epi32_mask

extern __mmask16 __cdecl _mm512_mask_cmpge_epi32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed int32 elements in a and b for greater-than-or-equal, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpgt_epi32_mask

extern __mmask16 __cdecl _mm512_cmpgt_epi32_mask(__m512i a, __m512i b);
Compare packed int32 elements in a and b for greater-than, and store the results in mask vector k.

_mm512_mask_cmpgt_epi32_mask

extern __mmask16 __cdecl _mm512_mask_cmpgt_epi32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed int32 elements in a and b for greater-than, and store the results in mask vector k using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmple_epi32_mask

extern __mmask16 __cdecl _mm512_cmple_epi32_mask(__m512i a, __m512i b);
Compare packed int32 elements in a and b for less-than-or-equal, and store the results in mask vector k.

 Intel® C++ Compiler Classic Developer Guide and Reference

1258

_mm512_mask_cmple_epi32_mask

extern __mmask16 __cdecl _mm512_mask_cmple_epi32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed int32 elements in a and b for less-than, and store the results in mask vector k using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmplt_epi32_mask

extern __mmask16 __cdecl _mm512_cmplt_epi32_mask(__m512i a, __m512i b);
Compare packed int32 elements in a and b for less-than, and store the results in mask vector k.

_mm512_mask_cmplt_epi32_mask

extern __mmask16 __cdecl _mm512_mask_cmplt_epi32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed int32 elements in a and b for less-than-or-equal, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpneq_epi32_mask

extern __mmask16 __cdecl _mm512_cmpneq_epi32_mask(__m512i a, __m512i b);
Compare packed int32 elements in a and b for not-equal, and store the results in mask vector k.

_mm512_mask_cmpneq_epi32_mask

extern __mmask16 __cdecl _mm512_mask_cmpneq_epi32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed int32 elements in a and b for not-equal, and store the results in mask vector k using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmp_epi64_mask

extern __mmask8 __cdecl _mm512_cmp_epi64_mask(__m512i a, __m512i b, const int imm);
Compare packed int64 elements in a and b based on the comparison operand specified by imm, and store
the results in mask vector k.

_mm512_mask_cmp_epi64_mask

extern __mmask8 __cdecl _mm512_mask_cmp_epi64_mask(__mmask8 k, __m512i a, __m512i b, const int
imm);

Compare packed int64 elements in a and b based on the comparison operand specified by imm, and store
the results in mask vector k using zeromask k (elements are zeroed out when the corresponding mask bit is
not set).

_mm512_cmpeq_epi64_mask

extern __mmask8 __cdecl _mm512_cmpeq_epi64_mask(__m512i a, __m512i b);
Compare packed int64 elements in a and b for equality, and store the results in mask vector k.

Compiler Reference

1259

_mm512_mask_cmpeq_epi64_mask

extern __mmask8 __cdecl _mm512_mask_cmpeq_epi64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed int64 elements in a and b for equality, and store the results in mask vector k using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpge_epi64_mask

extern __mmask8 __cdecl _mm512_cmpge_epi64_mask(__m512i a, __m512i b);
Compare packed int64 elements in a and b for greater-than-or-equal, and store the results in mask vector k.

_mm512_mask_cmpge_epi64_mask

extern __mmask8 __cdecl _mm512_mask_cmpge_epi64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed int64 elements in a and b for greater-than-or-equal, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpgt_epi64_mask

extern __mmask8 __cdecl _mm512_cmpgt_epi64_mask(__m512i a, __m512i b);
Compare packed int64 elements in a and b for greater-than, and store the results in mask vector k.

_mm512_mask_cmpgt_epi64_mask

extern __mmask8 __cdecl _mm512_mask_cmpgt_epi64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed int64 elements in a and b for greater-than, and store the results in mask vector k using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmple_epi64_mask

extern __mmask8 __cdecl _mm512_cmple_epi64_mask(__m512i a, __m512i b);
Compare packed int64 elements in a and b for less-than-or-equal, and store the results in mask vector k.

_mm512_mask_cmple_epi64_mask

extern __mmask8 __cdecl _mm512_mask_cmple_epi64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed int64 elements in a and b for less-than-or-equal, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmplt_epi64_mask

extern __mmask8 __cdecl _mm512_cmplt_epi64_mask(__m512i a, __m512i b);
Compare packed int64 elements in a and b for less-than, and store the results in mask vector k.

_mm512_mask_cmplt_epi64_mask

extern __mmask8 __cdecl _mm512_mask_cmplt_epi64_mask(__mmask8 k, __m512i a, __m512i b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1260

Compare packed int64 elements in a and b for less-than, and store the results in mask vector k using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpneq_epi64_mask

extern __mmask8 __cdecl _mm512_cmpneq_epi64_mask(__m512i a, __m512i b);
Compare packed int64 elements in a and b for not-equal, and store the results in mask vector k.

_mm512_mask_cmpneq_epi64_mask

extern __mmask8 __cdecl _mm512_mask_cmpneq_epi64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed int64 elements in a and b for not-equal, and store the results in mask vector k using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmp_epu32_mask

extern __mmask16 __cdecl _mm512_cmp_epu32_mask(__m512i a, __m512i b, const int imm);
Compare packed unsigned int32 elements in a and b based on the comparison operand specified by imm,
and store the results in mask vector k.

_mm512_mask_cmp_epu32_mask

extern __mmask16 __cdecl _mm512_mask_cmp_epu32_mask(__mmask16 k, __m512i a, __m512i b, const int
imm);

Compare packed unsigned int32 elements in a and b based on the comparison operand specified by imm,
and store the results in mask vector k using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_cmpeq_epu32_mask

extern __mmask16 __cdecl _mm512_cmpeq_epu32_mask(__m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for equality, and store the results in mask vector k.

_mm512_mask_cmpeq_epu32_mask

extern __mmask16 __cdecl _mm512_mask_cmpeq_epu32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for equality, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpge_epu32_mask

extern __mmask16 __cdecl _mm512_cmpge_epu32_mask(__m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for greater-than-or-equal, and store the results in mask
vector k.

_mm512_mask_cmpge_epu32_mask

extern __mmask16 __cdecl _mm512_mask_cmpge_epu32_mask(__mmask16 k, __m512i a, __m512i b);

Compiler Reference

1261

Compare packed unsigned int32 elements in a and b for greater-than-or-equal, and store the results in mask
vector k using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpgt_epu32_mask

extern __mmask16 __cdecl _mm512_cmpgt_epu32_mask(__m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for greater-than, and store the results in mask vector k.

_mm512_mask_cmpgt_epu32_mask

extern __mmask16 __cdecl _mm512_mask_cmpgt_epu32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for greater-than, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmple_epu32_mask

extern __mmask16 __cdecl _mm512_cmple_epu32_mask(__m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for less-than-or-equal, and store the results in mask
vector k.

_mm512_mask_cmple_epu32_mask

extern __mmask16 __cdecl _mm512_mask_cmple_epu32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for less-than, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmplt_epu32_mask

extern __mmask16 __cdecl _mm512_cmplt_epu32_mask(__m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for less-than, and store the results in mask vector k.

_mm512_mask_cmplt_epu32_mask

extern __mmask16 __cdecl _mm512_mask_cmplt_epu32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for less-than-or-equal, and store the results in mask
vector k using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpneq_epu32_mask

extern __mmask16 __cdecl _mm512_cmpneq_epu32_mask(__m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for not-equal, and store the results in mask vector k.

_mm512_mask_cmpneq_epu32_mask

extern __mmask16 __cdecl _mm512_mask_cmpneq_epu32_mask(__mmask16 k, __m512i a, __m512i b);
Compare packed unsigned int32 elements in a and b for not-equal, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1262

_mm512_cmp_epu64_mask

extern __mmask8 __cdecl _mm512_cmp_epu64_mask(__m512i a, __m512i b, const _MM_CMPINT_ENUM imm);
Compare packed unsigned int64 elements in a and b based on the comparison operand specified by imm,
and store the results in mask vector k.

_mm512_mask_cmp_epu64_mask

extern __mmask8 __cdecl _mm512_mask_cmp_epu64_mask(__mmask8 k, __m512i a, __m512i b, const
_MM_CMPINT_ENUM imm);

Compare packed unsigned int64 elements in a and b based on the comparison operand specified by imm,
and store the results in mask vector k using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_cmpge_epu64_mask

extern __mmask8 __cdecl _mm512_cmpge_epu64_mask(__m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for greater-than-or-equal, and store the results in mask
vector k.

_mm512_mask_cmpge_epu64_mask

extern __mmask8 __cdecl _mm512_mask_cmpge_epu64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for greater-than-or-equal, and store the results in mask
vector k using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpgt_epu64_mask

extern __mmask8 __cdecl _mm512_cmpgt_epu64_mask(__m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for greater-than, and store the results in mask vector k.

_mm512_mask_cmpgt_epu64_mask

extern __mmask8 __cdecl _mm512_mask_cmpgt_epu64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for greater-than, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmple_epu64_mask

extern __mmask8 __cdecl _mm512_cmple_epu64_mask(__m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for less-than-or-equal, and store the results in mask
vector k.

_mm512_mask_cmple_epu64_mask

extern __mmask8 __cdecl _mm512_mask_cmple_epu64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for less-than-or-equal, and store the results in mask
vector k using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1263

_mm512_cmplt_epu64_mask

extern __mmask8 __cdecl _mm512_cmplt_epu64_mask(__m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for less-than, and store the results in mask vector k.

_mm512_mask_cmplt_epu64_mask

extern __mmask8 __cdecl _mm512_mask_cmplt_epu64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for less-than, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpeq_epu64_mask

extern __mmask8 __cdecl _mm512_cmpeq_epu64_mask(__m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for equality, and store the results in mask vector k.

_mm512_mask_cmpeq_epu64_mask

extern __mmask8 __cdecl _mm512_mask_cmpeq_epu64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for equality, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cmpneq_epu64_mask

extern __mmask8 __cdecl _mm512_cmpneq_epu64_mask(__m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for not-equal, and store the results in mask vector k.

_mm512_mask_cmpneq_epu64_mask

extern __mmask8 __cdecl _mm512_mask_cmpneq_epu64_mask(__mmask8 k, __m512i a, __m512i b);
Compare packed unsigned int64 elements in a and b for not-equal, and store the results in mask vector k
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Compression Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_mask_compress_pd,
_mm512_maskz_compress_pd

Contiguously store active float32
elements.

VCOMPRESSPD

 Intel® C++ Compiler Classic Developer Guide and Reference

1264

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_mask_compress_ps,
_mm512_maskz_compress_ps

Contiguously store active float64
elements.

VCOMPRESSPS

_mm512_mask_compress_epi32,
_mm512_maskz_compress_epi32,
_mm512_mask_compressstoreu_epi32

Contiguously store active int32
elements.

VPCOMPRESSD

_mm512_mask_compress_epi64,
_mm512_maskz_compress_epi64

Contiguously store active int64
elements.

VPCOMPRESSQ

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

base_addr pointer to base address in memory to begin load or store operation

_mm512_mask_compress_pd

extern __m512d __cdecl _mm512_mask_compress_pd(__m512d a, __mmask8 k, __m512d src);
Contiguously stores the active float64 elements in a (those with their respective bit set in writemask k) to
destination, and passes through the remaining elements from src.

_mm512_maskz_compress_pd

extern __m512d __cdecl _mm512_maskz_compress_pd(__mmask8 k, __m512d a);
Contiguously stores the active float64 elements in a (those with their respective bit set in zeromask k) to
destination, and set the remaining elements to zero.

_mm512_mask_compress_ps

extern __m512 __cdecl _mm512_mask_compress_ps(__m512 a, __mmask16 k, __m512 src);
Contiguously stores the active float32 elements in a (those with their respective bit set in writemask k) to
destination, and passes through the remaining elements from src.

_mm512_maskz_compress_ps

extern __m512 __cdecl _mm512_maskz_compress_ps(__mmask16 k, __m512 a);
Contiguously stores the active float32 elements in a (those with their respective bit set in zeromask k) to
destination, and set the remaining elements to zero.

_mm512_mask_compressstoreu_pd

extern void __cdecl _mm512_mask_compressstoreu_pd(void* base_addr, __mmask8 k, __m512d a);

Compiler Reference

1265

Contiguously stores the active float64 elements in a (those with their respective bit set in writemask k) to
unaligned memory at base_addr.

_mm512_mask_compressstoreu_ps

extern void __cdecl _mm512_mask_compressstoreu_ps(void* base_addr, __mmask16 k, __m512 a);
Contiguously stores the active float32 elements in a (those with their respective bit set in writemask k) to
unaligned memory at base_addr.

_mm512_mask_compress_epi32

extern __m512i __cdecl _mm512_mask_compress_epi32(__m512i a, __mmask16 k, __m512i src);
Contiguously stores the active int32 elements in a (those with their respective bit set in writemask k) to
destination, and passes through the remaining elements from src.

_mm512_maskz_compress_epi32

extern __m512i __cdecl _mm512_maskz_compress_epi32(__mmask16 k, __m512i a);
Contiguously stores the active int32 elements in a (those with their respective bit set in zeromask k) to
destination, and set the remaining elements to zero.

_mm512_mask_compress_epi64

extern __m512i __cdecl _mm512_mask_compress_epi64(__m512i a, __mmask8 k, __m512i src);
Contiguously stores the active int64 elements in a (those with their respective bit set in writemask k) to
destination, and passes through the remaining elements from src.

_mm512_maskz_compress_epi64

extern __m512i __cdecl _mm512_maskz_compress_epi64(__mmask8 k, __m512i a);
Contiguously stores the active int64 elements in a (those with their respective bit set in zeromask k) to
destination, and set the remaining elements to zero.

_mm512_mask_compressstoreu_epi32

extern void __cdecl _mm512_mask_compressstoreu_epi32(void* base_addr, __mmask16 k, __m512i a);
Contiguously stores the active int32 elements in a (those with their respective bit set in writemask k) to
unaligned memory at base_addr.

_mm512_mask_compressstoreu_epi64

extern void __cdecl _mm512_mask_compressstoreu_epi64(void* base_addr, __mmask8 k, __m512i a);
Contiguously stores the active int64 elements in a (those with their respective bit set in writemask k) to
unaligned memory at base_addr.

Intrinsics for Conversion Operations

 Intel® C++ Compiler Classic Developer Guide and Reference

1266

Intrinsics for FP Conversion Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_cvtps_pd_mm512_mask_cv
tps_pd_mm512_maskz_cvtps_pd
_mm512_cvt_roundps_pd,
_mm512_mask_cvt_roundps_pd,
_mm512_maskz_cvt_roundps_pd

Converts rounded float32 to
float 64.

VCVTPS2PD

_mm512_cvt_roundps_epi32,
_mm512_mask_cvt_roundps_epi32,
_mm512_maskz_cvt_roundps_epi3
2
_mm512_cvtt_roundps_epi32,
_mm512_mask_cvtt_roundps_epi3
2,
_mm512_maskz_cvtt_roundps_epi
32

Converts rounded float32 to
int32.

VCVTPS2DQ/VCVTTPS2DQ

_mm512_cvt_roundps_epu32,
_mm512_mask_cvt_roundps_epu32,
_mm512_maskz_cvt_roundps_epu3
2
_mm512_cvtt_roundps_epu32,
_mm512_mask_cvtt_roundps_epu3
2,
_mm512_maskz_cvtt_roundps_epu
32

Converts rounded float32 to
unsigned int32.

VCVTPS2UDQ/VCVTTPS2UDQ

_mm_cvt_roundsd_i32,
_mm_cvt_roundsd_i64
_mm_cvtt_roundsd_i32,
_mm_cvtt_roundsd_i64

Converts rounded scalar float64
to int32/int64.

VCVTSD2SI/VCVTTSD2SI

_mm_cvt_roundsd_u32,
_mm_cvt_roundsd_u64
_mm_cvtt_roundsd_u32,
_mm_cvtt_roundsd_u64

Converts rounded scalar float64
to unsigned int32/int64.

VCVTSD2USI/VCVTTSD2USI

_mm_cvt_roundss_i32,
_mm_cvt_roundss_i64
_mm_cvtt_roundss_i32,
_mm_cvtt_roundss_i64

Converts rounded scalar float32
to int32/int64.

VCVTSS2SI/VCVTTSS2SI

Compiler Reference

1267

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm_cvt_roundss_u32,
_mm_cvt_roundss_u64
_mm_cvtt_roundss_u32,
_mm_cvtt_roundss_u64

Converts rounded scalar float32
to unsigned int32/int64.

VCVTSS2USI/VCVTTSS2USI

_mm512_cvtpd_ps_mm512_mask_cv
tpd_ps_mm512_maskz_cvtpd_ps
_mm512_cvt_roundpd_ps,
_mm512_mask_cvt_roundpd_ps,
_mm512_maskz_cvt_roundpd_ps

Converts rounded float64 to
float32.

VCVTPD2PS

_mm512_cvt_roundpd_epi32,
_mm512_mask_cvt_roundpd_epi32,
_mm512_maskz_cvt_roundpd_epi3
2
_mm512_cvtt_roundpd_epi32,
_mm512_mask_cvtt_roundpd_epi3
2,
_mm512_maskz_cvtt_roundpd_epi
32

Converts rounded float64 to
int32.

VCVTPD2DQ/VCVTTPD2DQ

_mm512_cvt_roundpd_epu32,
_mm512_mask_cvt_roundpd_epu32,
_mm512_maskz_cvt_roundpd_epu3
2
_mm512_cvtt_roundpd_epu32,
_mm512_mask_cvtt_roundpd_epu3
2,
_mm512_maskz_cvtt_roundpd_epu
32

Converts rounded float64 to
unsigned int32.

VCVTPD2UDQ/VCVTTPD2UDQ

_mm512_cvtph_ps_mm512_mask_cv
tph_ps_mm512_maskz_cvtph_ps
_mm512_cvt_roundph_ps,
_mm512_mask_cvt_roundph_ps,
_mm512_maskz_cvt_roundph_ps

Converts rounded float64 to
float32.

VCVTPH2PS

_mm512_cvt_roundps_ph,
_mm512_mask_cvt_roundps_ph,
_mm512_maskz_cvt_roundps_ph

Converts rounded float32 to
scalar float32.

VCVTPS2PH

_mm_mask_cvtss_sd_mm_maskz_cv
tss_sd
_mm_cvt_roundss_sd,
_mm_mask_cvt_roundss_sd,
_mm_maskz_cvt_roundss_sd

Converts rounded scalar float32
to scalar float64.

VCVTSS2SD

 Intel® C++ Compiler Classic Developer Guide and Reference

1268

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm_cvt_roundsd_ss,
_mm_mask_cvt_roundsd_ss,
_mm_maskz_cvt_roundsd_ss

Converts rounded scalar float64
to scalar float32.

VCVTSD2SS

_mm512_cvtepu32_ps_mm512_mask
_cvtepu32_ps_mm512_maskz_cvte
pu32_ps
_mm512_cvt_roundepu32_ps_mm51
2_mask_cvt_roundepu32_ps_mm51
2_maskz_cvt_roundepu32_ps

Converts packed unsigned int32
to float32.

VCVTUDQ2PS

_mm512_cvtss_f32 Extracts a float32 value from
the first vector element of an
__m512. It does so in the most
efficient manner possible in the
context used.

MOVSS/VMOVSS

_mm512_cvtsd_f64 Extracts a float64 value from
first vector element of an
__m512d. It does so in the
most efficient manner possible
in the context used.

MOVSD/VMOVSD

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_cvt_roundpd_ps

extern __m256 __cdecl _mm512_cvt_roundpd_ps(__m512d a, int round);
Converts float64 elements in a to float32 elements, and stores the result.

_mm512_mask_cvt_roundpd_ps

extern __m256 __cdecl _mm512_mask_cvt_roundpd_ps(__m256 src, __mmask8 k, __m512d a, int round);

Compiler Reference

1269

Converts float64 elements in a to float32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundpd_ps

extern __m256 __cdecl _mm512_maskz_cvt_roundpd_ps(__mmask8 k, __m512d a, int round);
Converts float64 elements in a to float32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvtpd_ps

extern __m256 __cdecl _mm512_cvt_pd_ps(__m512d a);
Converts float64 elements in a to float32 elements, and stores the result.

_mm512_mask_cvtpd_ps

extern __m256 __cdecl _mm512_mask_cvt_pd_ps(__m256 src, __mmask8 k, __m512d a);
Converts float64 elements in a to float32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtpd_ps

extern __m256 __cdecl _mm512_maskz_cvt_pd_ps(__mmask8 k, __m512d a);
Converts float64 elements in a to float32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundpd_epi32

extern __m512i __cdecl _mm512_cvt_roundpd_epi32(__m512d a, int round);
Converts float64 elements in a to int32 elements, and stores the results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvt_roundpd_epi32

extern __m512i __cdecl _mm512_mask_cvt_roundpd_epi32(__m256i src, __mmask8 k, __m512d a, int
round);

Converts float64 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvt_roundpd_epi32

extern __m512i __cdecl _mm512_maskz_cvt_roundpd_epi32(__mmask8 k, __m512d a, int round);
Converts float64 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1270

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvtpd_epi32

extern __m512i __cdecl _mm512_cvtpd_epi32(__m512d a);
Converts float64 elements in a int32 elements, and stores the result.

_mm512_mask_cvtpd_epi32

extern __m512i __cdecl _mm512_mask_cvtpd_epi32(__m256i src, __mmask8 k, __m512d a);
Converts float64 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtpd_epi32

extern __m512i __cdecl _mm512_maskz_cvtpd_epi32(__mmask8 k, __m512d a);
Converts float64 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvtt_roundpd_epi32

extern __m512i __cdecl _mm512_cvtt_roundpd_epi32(__m512d a, int round);
Converts float32 elements in a to int32 elements, and stores the results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvtt_roundpd_epi32

extern __m512i __cdecl _mm512_mask_cvtt_roundpd_epi32(__m256i src, __mmask8 k, __m512d a, int
round);

Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvtt_roundpd_epi32

extern __m512i __cdecl _mm512_maskz_cvtt_roundpd_epi32(__mmask8 k, __m512d a, int round);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

Compiler Reference

1271

_mm512_cvttpd_epi32

extern __m512i __cdecl _mm512_cvttpd_epi32(__m512d a);
Converts float64 elements in a int32 elements, and stores the result.

_mm512_mask_cvttpd_epi32

extern __m512i __cdecl _mm512_mask_cvttpd_epi32(__m256i src, __mmask8 k, __m512d a);
Converts float64 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvttpd_epi32

extern __m512i __cdecl _mm512_maskz_cvttpd_epi32(__mmask8 k, __m512d a);
Converts float64 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundpd_epu32

extern __m512i __cdecl _mm512_cvt_roundpd_epu32(__m512 a, int round);
Converts float64 elements in a to int32 elements, and stores the results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvt_roundpd_epu32

extern __m512i __cdecl _mm512_mask_cvt_roundpd_epu32(__m256i src, __mmask16 k, __m512 a, int
round);

Converts float64 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvt_roundpd_epu32

extern __m512i __cdecl _mm512_maskz_cvt_roundpd_epu32(__mmask16 k, __m512 a, int round);
Converts float64 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvtpd_epu32

extern __m512i __cdecl _mm512_cvtpd_epu32(__m512 a);
Converts float64 elements in a int32 elements, and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1272

_mm512_mask_cvtpd_epu32

extern __m512i __cdecl _mm512_mask_cvtpd_epu32(__m256i src, __mmask16 k, __m512 a);
Converts float64 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtpd_epu32

extern __m512i __cdecl _mm512_maskz_cvtpd_epu32(__mmask16 k, __m512 a);
Converts float64 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvtt_roundpd_epu32

extern __m512i __cdecl _mm512_cvtt_roundpd_epu32(__m512 a, int round);
Converts float64 elements in a to int32 elements, and stores the results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvtt_roundpd_epu32

extern __m512i __cdecl _mm512_mask_cvtt_roundpd_epu32(__m256i src, __mmask16 k, __m512 a, int
round);

Converts float64 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvtt_roundpd_epu32

extern __m512i __cdecl _mm512_maskz_cvtt_roundpd_epu32(__mmask16 k, __m512 a, int round);
Converts float64 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttpd_epu32

extern __m512i __cdecl _mm512_cvttpd_epu32(__m512 a);
Converts float64 elements in a int32 elements, and stores the result.

_mm512_mask_cvttpd_epu32

extern __m512i __cdecl _mm512_mask_cvttpd_epu32(__m256i src, __mmask16 k, __m512 a);
Converts float64 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

Compiler Reference

1273

_mm512_maskz_cvttpd_epu32

extern __m512i __cdecl _mm512_maskz_cvttpd_epu32(__mmask16 k, __m512 a);
Converts float64 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvtph_ps

extern __m512 __cdecl _mm512_cvtph_ps(__m256i a);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the
results.

_mm512_mask_cvtph_ps

extern __m512 __cdecl _mm512_mask_cvtph_ps(__m512 src, __mmask16 k, __m256i a);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtph_ps

extern __m512 __cdecl _mm512_maskz_cvtph_ps(__mmask16 k, __m256i a);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundph_ps

extern __m512 __cdecl _mm512_cvt_roundph_ps(__m256i a, int round);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the
result.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvt_roundph_ps

extern __m512 __cdecl _mm512_mask_cvt_roundph_ps(__m512 src, __mmask16 k, __m256i a, int round);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvt_roundph_ps

extern __m512 __cdecl _mm512_maskz_cvt_roundph_ps(__mmask16 k, __m256i a, int round);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1274

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvt_roundps_ph

extern __m256i __cdecl _mm512_cvt_roundps_ph(__m512 a, int round);
Converts float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores the
results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvt_roundps_ph

extern __m256i __cdecl _mm512_mask_cvt_roundps_ph(__m256i src, __mmask16 k, __m512 a, int round);
Converts float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvt_roundps_ph

extern __m256i __cdecl _mm512_maskz_cvt_roundps_ph(__mmask16 k, __m512 a, int round);
Converts float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvtph_ps

extern __m256i __cdecl _mm512_cvtps_ph(__m512 a);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the
results.

_mm512_mask_cvtph_ps

extern __m256i __cdecl _mm512_mask_cvtps_ph(__m256i src, __mmask16 k, __m512 a);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtph_ps

extern __m256i __cdecl _mm512_maskz_cvtps_ph(__mmask16 k, __m512 a);
Converts packed half-precision (16-bit) floating-point elements in a to float32 elements, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1275

_mm512_cvt_roundps_pd

extern __m512d __cdecl _mm512_cvt_roundps_pd(__m256 a, int round);
Converts float32 elements in a to float64 elements, and stores the results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvt_roundps_pd

extern __m512d __cdecl _mm512_mask_cvt_roundps_pd(__m512d src, __mmask8 k, __m256 a, int round);
Converts float32 elements in a to float64 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvt_roundps_pd

extern __m512d __cdecl _mm512_maskz_cvt_roundps_pd(__mmask8 k, __m256 a, int round);
Converts float32 elements in a to float64 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvtps_pd

extern __m512d __cdecl _mm512_cvt_ps_pd(__m256 a);
Converts float32 elements in a to float64 elements, and stores the result.

_mm512_mask_cvtps_pd

extern __m512d __cdecl _mm512_mask_cvt_ps_pd(__m512d src, __mmask8 k, __m256 a);
Converts float32 elements in a to float64 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtps_pd

extern __m512d __cdecl _mm512_maskz_cvt_ps_pd(__mmask8 k, __m256 a);
Converts float32 elements in a to float64 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundps_epi32

extern __m512i __cdecl _mm512_cvt_roundps_epi32(__m512 a, int round);
Converts float32 elements in a to int32 elements, and stores the results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1276

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvt_roundps_epi32

extern __m512i __cdecl _mm512_mask_cvt_roundps_epi32(__m512i src, __mmask16 k, __m512 a, int
round);

Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvt_roundps_epi32

extern __m512i __cdecl _mm512_maskz_cvt_roundps_epi32(__mmask16 k, __m512 a, int round);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvtps_epi32

extern __m512i __cdecl _mm512_cvtps_epi32(__m512 a);
Converts float32 elements in a int32 elements, and stores the result.

_mm512_mask_cvtps_epi32

extern __m512i __cdecl _mm512_mask_cvtps_epi32(__m512i src, __mmask16 k, __m512 a);
Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtps_epi32

extern __m512i __cdecl _mm512_maskz_cvtps_epi32(__mmask16 k, __m512 a);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvtt_roundps_epi32

extern __m512i __cdecl _mm512_cvtt_roundps_epi32(__m512 a, int round);
Converts float32 elements in a to int32 elements, and stores the results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

Compiler Reference

1277

_mm512_mask_cvtt_roundps_epi32

extern __m512i __cdecl _mm512_mask_cvtt_roundps_epi32(__m512i src, __mmask16 k, __m512 a, int
round);

Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvtt_roundps_epi32

extern __m512i __cdecl _mm512_maskz_cvtt_roundps_epi32(__mmask16 k, __m512 a, int round);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttps_epi32

extern __m512i __cdecl _mm512_cvttps_epi32(__m512 a);
Converts float32 elements in a int32 elements, and stores the result.

_mm512_mask_cvttps_epi32

extern __m512i __cdecl _mm512_mask_cvttps_epi32(__m512i src, __mmask16 k, __m512 a);
Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvttps_epi32

extern __m512i __cdecl _mm512_maskz_cvttps_epi32(__mmask16 k, __m512 a);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundps_epu32

extern __m512i __cdecl _mm512_cvt_roundps_epu32(__m512 a, int round);
Converts float32 elements in a to int32 elements, and stores the results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvt_roundps_epu32

extern __m512i __cdecl _mm512_mask_cvt_roundps_epu32(__m512i src, __mmask16 k, __m512 a, int
round);

Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1278

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvt_roundps_epu32

extern __m512i __cdecl _mm512_maskz_cvt_roundps_epu32(__mmask16 k, __m512 a, int round);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvtps_epu32

extern __m512i __cdecl _mm512_cvtps_epu32(__m512 a);
Converts float32 elements in a int32 elements, and stores the result.

_mm512_mask_cvtps_epu32

extern __m512i __cdecl _mm512_mask_cvtps_epu32(__m512i src, __mmask16 k, __m512 a);
Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtps_epu32

extern __m512i __cdecl _mm512_maskz_cvtps_epu32(__mmask16 k, __m512 a);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_cvtt_roundps_epu32

extern __m512i __cdecl _mm512_cvtt_roundps_epu32(__m512 a, int round);
Converts float32 elements in a to int32 elements, and stores the results.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvtt_roundps_epu32

extern __m512i __cdecl _mm512_mask_cvtt_roundps_epu32(__m512i src, __mmask16 k, __m512 a, int
round);

Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

Compiler Reference

1279

_mm512_maskz_cvtt_roundps_epu32

extern __m512i __cdecl _mm512_maskz_cvtt_roundps_epu32(__mmask16 k, __m512 a, int round);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttps_epu32

extern __m512i __cdecl _mm512_cvttps_epu32(__m512 a);
Converts float32 elements in a int32 elements, and stores the result.

_mm512_mask_cvttps_epu32

extern __m512i __cdecl _mm512_mask_cvttps_epu32(__m512i src, __mmask16 k, __m512 a);
Converts float32 elements in a to int32 elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvttps_epu32

extern __m512i __cdecl _mm512_maskz_cvttps_epu32(__mmask16 k, __m512 a);
Converts float32 elements in a to int32 elements, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_cvt_roundss_sd

extern __m128d __cdecl _mm_cvt_roundss_sd(__m128d a, __m128 b, int round);
Converts the lower float32 element in b to a float64 element, stores the result in the lower destination
element, and copies the upper element from a to the upper destination element .

_mm_mask_cvt_roundss_sd

extern __m128d __cdecl _mm_mask_cvt_roundss_sd(__m128d src, __mmask8 k, __m128d a, __m128 b, int
round);

Converts the lower float32 element in b to a float64 element, stores the result in the lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper
element from a to the upper destination element.

_mm_maskz_cvt_roundss_sd

extern __m128d __cdecl _mm_maskz_cvt_roundss_sd(__mmask8 k, __m128d a, __m128 b, int round);
Converts the lower float32 element in b to a float64 element, store the result in the lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper
element from a to the upper destination element.

_mm_mask_cvtss_sd

extern __m128d __cdecl _mm_mask_cvt_ss_sd(__m128d src, __mmask8 k, __m128d a, __m128 b);
Converts the lower float32 element in b to a float64 element, stores the result in the lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper
element from a to the upper destination element.

 Intel® C++ Compiler Classic Developer Guide and Reference

1280

_mm_maskz_cvtss_sd

extern __m128d __cdecl _mm_maskz_cvt_ss_sd(__mmask8 k, __m128d a, __m128 b);
Converts the lower float32 element in b to a float64 element, stores the result in the lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper
element from a to the upper destination element.

_mm_cvt_roundsd_ss

extern __m128 __cdecl _mm_cvt_roundsd_ss(__m128 a, __m128d b, int round);
Converts float64 elements in b to a single-precision (64-bit) floating-point elements, stores the result in the
lower destination element, and copies the upper element from a to the upper destination element .

_mm_mask_cvt_roundsd_ss

extern __m128 __cdecl _mm_mask_cvt_roundsd_ss(__m128 src, __mmask8 k, __m128 a, __m128d b, int
round);

Converts float64 elements in b to a single-precision (64-bit) floating-point elements, stores the result in the
lower destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copy the upper element from a to the upper destination element.

_mm_maskz_cvt_roundsd_ss

extern __m128 __cdecl _mm_maskz_cvt_roundsd_ss(__mmask8 k, __m128 a, __m128d b, int round);
Converts float64 elements in b to a single-precision (64-bit) floating-point elements, the result in the lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the
upper element from a to the upper destination element.

_mm_mask_cvtsd_ss

extern __m128 __cdecl _mm_mask_cvt_sd_ss(__m128 src, __mmask8 k, __m128 a, __m128d b);
Converts float64 elements in b to a single-precision (64-bit) floating-point elements, stores the result in the
lower destination element using writemask k (the element is copied from src when mask bit 0 is not set), and
copy the upper element from a to the upper destination element.

_mm_maskz_cvtsd_ss

extern __m128 __cdecl _mm_maskz_cvt_sd_ss(__mmask8 k, __m128 a, __m128d b);
Converts float64 elements in b to a single-precision (64-bit) floating-point elements, stores the result in the
lower destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy
the upper element from a to the upper destination element.

_mm_cvt_roundsd_i32 / _mm_cvt_roundsd_si32

extern int __cdecl _mm_cvt_roundsd_i32(__m128d a, int round);
extern int __cdecl _mm_cvt_roundsd_si32(__m128d a, int round);

_mm_cvt_sd_i32 / _mm_cvt_sd_si32

extern __int64 __cdecl _mm_cvt_sd_i32(__m128d);
extern __int64 __cdecl _mm_cvt_sd_i64(__m128d);

_mm_cvt_roundsd_i64 / _mm_cvt_roundsd_si64

extern __int64 __cdecl _mm_cvt_roundsd_i64(__m128d, int round);
extern __int64 __cdecl _mm_cvt_roundsd_si64(__m128d, int round);

Compiler Reference

1281

_mm_cvti64 / _mm_cvtsd_si64

extern __m128d __cdecl _mm_cvt_i64_sd(__m128d a, __int64);
extern __m128d __cdecl _mm_cvt_si64_sd(__m128d a, __int64);

_mm_cvt_roundsd_u32 / _mm_cvt_roundsd_u64

extern unsigned int __cdecl _mm_cvt_roundsd_u32(__m128d a, int round);
extern unsigned __int64 __cdecl _mm_cvt_roundsd_u64(__m128d a, int round);

_mm_cvt_sd_u32 / _mm_cvt_sd_u64

extern unsigned int __cdecl _mm_cvt_sd_u32(__m128d a);
extern unsigned __int64 __cdecl _mm_cvt_sd_u64(__m128d a);

_mm_cvt_roundsd_i32 / _mm_cvt_roundsd_si32

extern int __cdecl _mm_cvt_roundsd_i32(__m128d a, int round);
extern int __cdecl _mm_cvt_roundsd_si32(__m128d a, int round);

_mm_cvtt_sd_i32 / _mm_cvtt_sd_si32

extern __int64 __cdecl _mm_cvtt_sd_i32(__m128d);
extern __int64 __cdecl _mm_cvtt_sd_i64(__m128d);

_mm_cvtt_roundsd_i64 / _mm_cvtt_roundsd_si64

extern __int64 __cdecl _mm_cvtt_roundsd_i64(__m128d, int round);
extern __int64 __cdecl _mm_cvtt_roundsd_si64(__m128d, int round);

_mm_cvtti64 / _mm_cvttsd_si64

extern __m128d __cdecl _mm_cvtt_i64_sd(__m128d a, __int64);
extern __m128d __cdecl _mm_cvtt_si64_sd(__m128d a, __int64);

_mm_cvtt_roundsd_u32 / _mm_cvtt_roundsd_u64

extern unsigned int __cdecl _mm_cvtt_roundsd_u32(__m128d a, int round);
extern unsigned __int64 __cdecl _mm_cvtt_roundsd_u64(__m128d a, int round);

_mm_cvtt_sd_u32 / _mm_cvtt_sd_u64

extern unsigned int __cdecl _mm_cvtt_sd_u32(__m128d a);
extern unsigned __int64 __cdecl _mm_cvtt_sd_u64(__m128d a);

_mm_cvt_roundss_i32 / _mm_cvt_roundss_si32

extern int __cdecl _mm_cvt_roundss_i32(__m128d a, int round);
extern int __cdecl _mm_cvt_roundss_si32(__m128d a, int round);

_mm_cvt_ss_i32 / _mm_cvt_ss_si32

extern __int64 __cdecl _mm_cvt_ss_i32(__m128d);
extern __int64 __cdecl _mm_cvt_ss_i64(__m128d);

 Intel® C++ Compiler Classic Developer Guide and Reference

1282

_mm_cvt_roundss_i64 / _mm_cvt_roundss_si64

extern __int64 __cdecl _mm_cvt_roundss_i64(__m128d, int round);
extern __int64 __cdecl _mm_cvt_roundss_si64(__m128d, int round);

_mm_cvti64 / _mm_cvtss_si64

extern __m128d __cdecl _mm_cvt_i64_sd(__m128d a, __int64);
extern __m128d __cdecl _mm_cvt_si64_sd(__m128d a, __int64);

_mm_cvt_roundss_u32 / _mm_cvt_roundss_u64

extern unsigned int __cdecl _mm_cvt_roundss_u32(__m128d a, int round);
extern unsigned __int64 __cdecl _mm_cvt_roundss_u64(__m128d a, int round);

_mm_cvt_ss_u32 / _mm_cvt_ss_u64

extern unsigned int __cdecl _mm_cvt_ss_u32(__m128d a);
extern unsigned __int64 __cdecl _mm_cvt_ss_u64(__m128d a);

_mm_cvt_roundss_i32 / _mm_cvt_roundss_si32

extern int __cdecl _mm_cvt_roundss_i32(__m128d a, int round);
extern int __cdecl _mm_cvt_roundss_si32(__m128d a, int round);

_mm_cvtt_ss_i32 / _mm_cvtt_ss_si32

extern __int64 __cdecl _mm_cvtt_ss_i32(__m128d);
extern __int64 __cdecl _mm_cvtt_ss_i64(__m128d);

_mm_cvtt_roundss_i64 / _mm_cvtt_roundss_si64

extern __int64 __cdecl _mm_cvtt_roundss_i64(__m128d, int round);
extern __int64 __cdecl _mm_cvtt_roundss_si64(__m128d, int round);

_mm_cvtti64 / _mm_cvttss_si64

extern __m128d __cdecl _mm_cvtt_i64_sd(__m128d a, __int64);
extern __m128d __cdecl _mm_cvtt_si64_sd(__m128d a, __int64);

_mm_cvtt_roundss_u32 / _mm_cvtt_roundss_u64

extern unsigned int __cdecl _mm_cvtt_roundss_u32(__m128d a, int round);
extern unsigned __int64 __cdecl _mm_cvtt_roundss_u64(__m128d a, int round);

_mm_cvtt_ss_u32 / _mm_cvtt_ss_u64

extern unsigned int __cdecl _mm_cvtt_ss_u32(__m128d a);
extern unsigned __int64 __cdecl _mm_cvtt_ss_u64(__m128d a);

_mm512_cvtss_f32

float _mm512_cvtss_f32(__m512 a);

Compiler Reference

1283

_mm512_cvtsd_f64

double _mm512_cvtsd_f64(__m512d a);

Intrinsics for Integer Conversion Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_cvtepi8_epi32,
_mm512_mask_cvtepi8_epi32,
_mm512_maskz_cvtepi8_epi32

Up-converts int8 to int32. VPMOVSXBD

_mm512_cvtepi8_epi64,
_mm512_mask_cvtepi8_epi64,
_mm512_maskz_cvtepi8_epi64

Up-converts int8 to int64. VPMOVSXBQ

_mm512_cvtepi16_epi32,
_mm512_mask_cvtepi16_epi32,
_mm512_maskz_cvtepi16_epi32

Up-converts int16 to int32. VPMOVSXWD

_mm512_cvtepi16_epi64,
_mm512_mask_cvtepi16_epi64,
_mm512_maskz_cvtepi16_epi64

Up-converts int16 to int64. VPMOVSXWQ

_mm512_cvtepi32_epi8,
_mm512_mask_cvtepi32_epi8,
_mm512_maskz_cvtepi32_epi8

Down-converts int32 to int8. VPMOVDB

_mm512_cvtsepi32_epi8,
_mm512_mask_cvtsepi32_epi8,
_mm512_maskz_cvtsepi32_epi8

Down-converts signed int32
to int8.

VPMOVSDB

_mm512_cvtusepi32_epi8,
_mm512_mask_cvtusepi32_epi8,
_mm512_maskz_cvtusepi32_epi8

Down-converts unsigned
int32 to int8.

VPMOVUSDB

_mm512_cvtepi32_epi16,
_mm512_mask_cvtepi32_epi16,
_mm512_maskz_cvtepi32_epi16

Down-converts int32 to
int16.

VPMOVDW

_mm512_cvtsepi32_epi16,
_mm512_mask_cvtsepi32_epi16,
_mm512_maskz_cvtsepi32_epi16

Down-converts signed int32
to int16.

VPMOVSDW

_mm512_cvtusepi32_epi16,
_mm512_mask_cvtusepi32_epi16,
_mm512_maskz_cvtusepi32_epi16

Down-converts unsigned
int32 to int16.

VPMOVUSDW

 Intel® C++ Compiler Classic Developer Guide and Reference

1284

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_cvtepi32_epi64,
_mm512_mask_cvtepi32_epi64,
_mm512_maskz_cvtepi32_epi64

Up-converts int32 to int64. VPMOVSXDQ

_mm512_cvtepi64_epi8,
_mm512_mask_cvtepi64_epi8,
_mm512_maskz_cvtepi64_epi8

Down-converts int64 to int8. VPMOVQB

_mm512_cvtsepi64_epi8,
_mm512_mask_cvtsepi64_epi8,
_mm512_maskz_cvtsepi64_epi8

Down-converts signed int64
to int8.

VPMOVSQB

_mm512_cvtusepi64_epi8,
_mm512_mask_cvtusepi64_epi8,
_mm512_maskz_cvtusepi64_epi8

Down-converts unsigned
int64 to int8.

VPMOVUSQB

_mm512_cvtepi64_epi16,
_mm512_mask_cvtepi64_epi16,
_mm512_maskz_cvtepi64_epi16

Down-converts int64 to
int16.

VPMOVQW

_mm512_cvtsepi64_epi16,
_mm512_mask_cvtsepi64_epi16,
_mm512_maskz_cvtsepi64_epi16

Down-converts signed int64
to int16.

VPMOVSQW

_mm512_cvtusepi64_epi16,
_mm512_mask_cvtusepi64_epi16,
_mm512_maskz_cvtusepi64_epi16

Down-converts unsigned
int64 to int16.

VPMOVUSQW

_mm512_cvtepi64_epi32,
_mm512_mask_cvtepi64_epi32,
_mm512_maskz_cvtepi64_epi32

Down-converts int64 to
int32.

VPMOVQD

_mm512_cvtsepi64_epi32,
_mm512_mask_cvtsepi64_epi32,
_mm512_maskz_cvtsepi64_epi32

Down-converts signed int64
to int32.

VPMOVSQD

_mm512_cvtusepi64_epi32,
_mm512_mask_cvtusepi64_epi32,
_mm512_maskz_cvtusepi64_epi32

Down-converts unsigned
int64 to int32.

VPMOVUSQD

_mm512_cvtepu8_epi64,
_mm512_mask_cvtepu8_epi64,
_mm512_maskz_cvtepu8_epi64

Up-converts unsigned int8 to
int64.

VPMOVZXBQ

_mm512_cvtepu16_epi32,
_mm512_mask_cvtepu16_epi32,
_mm512_maskz_cvtepu16_epi32

Up-converts unsigned int16
to int32.

VPMOVZXWD

_mm512_cvtepu32_epi64,
_mm512_mask_cvtepu32_epi64,
_mm512_maskz_cvtepu32_epi64

Up-converts unsigned int32
to int64.

VPMOVZXDQ

Compiler Reference

1285

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_cvtepi32_pd,
_mm512_mask_cvtepi32_pd,
_mm512_maskz_cvtepi32_pd

Converts int32 to float64. VCVTDQ2PD

_mm512_cvt_roundepi32_ps,
_mm512_mask_cvt_roundepi32_ps,
_mm512_maskz_cvt_roundepi32_ps

Converts int32 to float32. VCVTDQ2PS

_mm512_cvt_roundepu32_ps,
_mm512_mask_cvt_roundepu32_ps,
_mm512_maskz_cvt_roundepu32_ps

Converts unsigned int32 to
float32.

VCVTUDQ2PS

_mm512_cvtepu32_pd,
_mm512_mask_cvtepu32_pd,
_mm512_maskz_cvtepu32_pd

Converts unsigned int32 to
float64.

VCVTUQD2PD

_mm_cvtu32_sd Converts unsigned int32 to
scalar float64.

VCVTUSI2SD

_mm_cvt_roundi64_sd,
_mm_cvt_roundu64_sd

Converts rounded int64 to
scalar float64.

VCVTSI2SD

_mm_cvt_roundi32_ss,
_mm_cvt_roundi64_ss

Converts unsigned int32 to
scalar float32.

VCVTSI2SS

_mm_cvt_roundu32_ss,
_mm_cvt_roundu64_ss

Converts rounded int64 to
scalar float32.

VCVTUSI2SS

_mm512_cvtsi512_si32 Moves the least significant
vector element to a scalar
32-bit integer.

MOVD/VMOVD

variable definition
k zeromask used as a selector

k writemask used as a selector

a first source vector element

b second source vector element

c third source vector element

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

 Intel® C++ Compiler Classic Developer Guide and Reference

1286

src source element

_mm512_cvt_roundpd_epi32

 extern __m256i __cdecl _mm512_cvt_roundpd_epi32(__m512d a, int round);
Converts packed float64 elements in a to packed 32-bit integers, and stores the result.

_mm512_cvtpd_epi32

 extern __m256i __cdecl _mm512_cvtpd_epi32(__m512d a);
Converts packed float64 elements in a to packed 32-bit integers, and stores the result.

_mm512_mask_cvt_roundpd_epi32

 extern __m256i __cdecl _mm512_mask_cvt_roundpd_epi32(__m256i src, __mmask8 k, __m512d a, int
round);

Converts packed float64 elements in a to packed 32-bit integers, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtpd_epi32

 extern __m256i __cdecl _mm512_mask_cvtpd_epi32(__m256i src, __mmask8 k, __m512d a);
Converts packed float64 elements in a to packed 32-bit integers, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundpd_epi32

 extern __m256i __cdecl _mm512_maskz_cvt_roundpd_epi32(__mmask8 k, __m512d a, int round);
Converts packed float64 elements in a to packed 32-bit integers, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtpd_epi32

 extern __m256i __cdecl _mm512_maskz_cvtpd_epi32(__mmask8 k, __m512d a);
Converts packed float64 elements in a to packed 32-bit integers, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundpd_epu32

 extern __m256i __cdecl _mm512_cvt_roundpd_epu32(__m512d a, int round);
Converts packed float64 elements in a to packed unsigned 32-bit integers, and stores the result.

_mm512_cvtpd_epu32

 extern __m256i __cdecl _mm512_cvtpd_epu32(__m512d a);
Converts packed float64 elements in a to packed unsigned 32-bit integers, and stores the result.

Compiler Reference

1287

_mm512_mask_cvt_roundpd_epu32

 extern __m256i __cdecl _mm512_mask_cvt_roundpd_epu32(__m256i src, __mmask8 k, __m512d a, int
round);

Converts packed float64 elements in a to packed unsigned 32-bit integers, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtpd_epu32

 extern __m256i __cdecl _mm512_mask_cvtpd_epu32(__m256i src, __mmask8 k, __m512d a);
Converts packed float64 elements in a to packed unsigned 32-bit integers, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundpd_epu32

 extern __m256i __cdecl _mm512_maskz_cvt_roundpd_epu32(__mmask8 k, __m512d a, int round);
Converts packed float64 elements in a to packed unsigned 32-bit integers, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtpd_epu32

 extern __m256i __cdecl _mm512_maskz_cvtpd_epu32(__mmask8 k, __m512d a);
Converts packed float64 elements in a to packed unsigned 32-bit integers, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundps_epi32

 extern __m512i __cdecl _mm512_cvt_roundps_epi32(__m512 a, int round);
Converts packed float32 elements in a to packed 32-bit integers, and stores the result.

_mm512_cvtps_epi32

 extern __m512i __cdecl _mm512_cvtps_epi32(__m512 a);
Converts packed float32 elements in a to packed 32-bit integers, and stores the result.

_mm512_mask_cvt_roundps_epi32

 extern __m512i __cdecl _mm512_mask_cvt_roundps_epi32(__m512i src, __mmask16 k, __m512 a, int
round);

Converts packed float32 elements in a to packed 32-bit integers, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtps_epi32

 extern __m512i __cdecl _mm512_mask_cvtps_epi32(__m512i src, __mmask16 k, __m512 a);
Converts packed float32 elements in a to packed 32-bit integers, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1288

_mm512_maskz_cvt_roundps_epi32

 extern __m512i __cdecl _mm512_maskz_cvt_roundps_epi32(__mmask16 k, __m512 a, int round);
Converts packed float32 elements in a to packed 32-bit integers, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtps_epi32

 extern __m512i __cdecl _mm512_maskz_cvtps_epi32(__mmask16 k, __m512 a);
Converts packed float32 elements in a to packed 32-bit integers, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvt_roundps_ph

 extern __m256i __cdecl _mm512_cvt_roundps_ph(__m512 a, int round);
Converts packed float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores
the result.

_mm512_cvtps_ph

 extern __m256i __cdecl _mm512_cvtps_ph(__m512 a, int round);
Converts packed float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores
the result.

_mm512_mask_cvt_roundps_ph

 extern __m256i __cdecl _mm512_mask_cvt_roundps_ph(__m256i src, __mmask16 k, __m512 a, int
round);

Converts packed float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores
the result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtps_ph

 extern __m256i __cdecl _mm512_mask_cvtps_ph(__m256i src, __mmask16 k, __m512 a, int round);
Converts packed float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores
the result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundps_ph

 extern __m256i __cdecl _mm512_maskz_cvt_roundps_ph(__mmask16 k, __m512 a, int round);
Converts packed float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores
the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtps_ph

 extern __m256i __cdecl _mm512_maskz_cvtps_ph(__mmask16 k, __m512 a, int round);
Converts packed float32 elements in a to packed half-precision (16-bit) floating-point elements, and stores
the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1289

_mm512_cvt_roundps_epu32

 extern __m512i __cdecl _mm512_cvt_roundps_epu32(__m512 a, int round);
Converts packed float32 elements in a to packed unsigned 32-bit integers, and stores the result.

_mm512_cvtps_epu32

 extern __m512i __cdecl _mm512_cvtps_epu32(__m512 a);
Converts packed float32 elements in a to packed unsigned 32-bit integers, and stores the result.

_mm512_mask_cvt_roundps_epu32

 extern __m512i __cdecl _mm512_mask_cvt_roundps_epu32(__m512i src, __mmask16 k, __m512 a, int
round);

Converts packed float32 elements in a to packed unsigned 32-bit integers, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtps_epu32

 extern __m512i __cdecl _mm512_mask_cvtps_epu32(__m512i src, __mmask16 k, __m512 a);
Converts packed float32 elements in a to packed unsigned 32-bit integers, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvt_roundps_epu32

 extern __m512i __cdecl _mm512_maskz_cvt_roundps_epu32(__mmask16 k, __m512 a, int round);
Converts packed float32 elements in a to packed unsigned 32-bit integers, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_maskz_cvtps_epu32

 extern __m512i __cdecl _mm512_maskz_cvtps_epu32(__mmask16 k, __m512 a);
Converts packed float32 elements in a to packed unsigned 32-bit integers, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm_cvt_roundsd_i32

 extern int __cdecl _mm_cvt_roundsd_i32(__m128d, int);
Convert the lower float64 element in a to a 32-bit integer, and stores the result.

_mm_cvt_roundsd_i64

 extern __int64 __cdecl _mm_cvt_roundsd_i64(__m128d, int);
Convert the lower float64 element in a to a 64-bit integer, and stores the result.

_mm_cvt_roundsd_si32

 extern int __cdecl _mm_cvt_roundsd_i32(__m128d, int);

 Intel® C++ Compiler Classic Developer Guide and Reference

1290

Convert the lower float64 element in a to a 32-bit integer, and stores the result.

_mm_cvt_roundsd_si64

 extern __int64 __cdecl _mm_cvt_roundsd_i64(__m128d, int);
Convert the lower float64 element in a to a 64-bit integer, and stores the result.

_mm_cvtsd_i32

 extern int __cdecl _mm_cvtsd_i32(__m128d, int);
Convert the lower float64 element in a to a 32-bit integer, and stores the result.

_mm_cvtsd_i64

 extern __int64 __cdecl _mm_cvtsd_i64(__m128d, int);
Convert the lower float64 element in a to a 64-bit integer, and stores the result.

_mm_cvt_roundsd_ss

 extern __m128 __cdecl _mm_cvtsd_ss(__m128 a, __m128d b, int round);
Convert the lower float64 element in b to a float32 element, and stores the result in the lower destination
element, and copies the upper three packed elements from a to the upper destination elements.

_mm_mask_cvt_roundsd_ss

 extern __m128 __cdecl _mm_mask_cvt_roundsd_ss(__m128 src, __mmask8 k, __m128 a, __m128d b,
int round);

Convert the lower float64 element in b to a float32 element, and stores the result in the lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper
element from a to the upper destination element.

_mm_mask_cvtsd_ss

 extern __m128 __cdecl _mm_mask_cvtsd_ss(__m128 src, __mmask8 k, __m128 a, __m128d b, int
round);

Convert the lower float64 element in b to a float32 element, and stores the result in the lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper
element from a to the upper destination element.

_mm_maskz_cvt_roundsd_ss

 extern __m128 __cdecl _mm_maskz_cvt_roundsd_ss(__mmask8 k, __m128 a, __m128d b, int round);
Convert the lower float64 element in b to a float32 element, and stores the result in the lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper three
packed elements from a to the upper destination elements.

_mm_maskz_cvtsd_ss

 extern __m128 __cdecl _mm_maskz_cvtsd_ss(__mmask8 k, __m128 a, __m128d b, int round);

Compiler Reference

1291

Convert the lower float64 element in b to a float32 element, and stores the result in the lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper three
packed elements from a to the upper destination elements.

_mm_cvt_roundsd_u32

 extern unsigned int __cdecl _mm_cvt_roundsd_u32(__m128d a, int round);
Convert the lower float64 element in a to an unsigned 32-bit integer, and stores the result.

_mm_cvt_roundsd_u64

 extern unsigned __int64 __cdecl _mm_cvt_roundsd_u64(__m128d a, int round);
Convert the lower float64 element in a to an unsigned 64-bit integer, and stores the result.

_mm_cvtsd_u32

 extern unsigned int __cdecl _mm_cvtsd_u32(__m128d a);
Convert the lower float64 element in a to an unsigned 32-bit integer, and stores the result.

_mm_cvtsd_u64

 extern unsigned __int64 __cdecl _mm_cvtsd_u64(__m128d a);
Convert the lower float64 element in a to an unsigned 64-bit integer, and stores the result.

_mm_cvt_roundss_i32

 extern int __cdecl _mm_cvt_roundss_i32(__m128 a, int round);
Convert the lower float32 element in a to a 32-bit integer, and stores the result.

_mm_cvt_roundss_i64

 extern __int64 __cdecl _mm_cvt_roundss_i64(__m128 a, int round);
Convert the lower float32 element in a to a 64-bit integer, and stores the result.

_mm_cvt_roundss_si32

 extern int __cdecl _mm_cvt_roundss_si32(__m128 a, int round);
Convert the lower float32 element in a to a 32-bit integer, and stores the result.

_mm_cvt_roundss_si64

 extern __int64 __cdecl _mm_cvt_roundss_si64(__m128 a, int round);
Convert the lower float32 element in a to a 64-bit integer, and stores the result.

_mm_cvtss_i32

 extern

 Intel® C++ Compiler Classic Developer Guide and Reference

1292

Convert the lower float32 element in a to a 32-bit integer, and stores the result.

_mm_cvtss_i64

 extern
Convert the lower float32 element in a to a 64-bit integer, and stores the result.

_mm_cvt_roundss_u32

 extern unsigned int __cdecl _mm_cvt_roundss_u32(__m128 a, int round);
Convert the lower float32 element in a to an unsigned 32-bit integer, and stores the result.

_mm_cvt_roundss_u64

 extern unsigned __int64 __cdecl _mm_cvt_roundss_u64(__m128 a, int round);
Convert the lower float32 element in a to an unsigned 64-bit integer, and stores the result.

_mm_cvtss_u32

 extern unsigned int __cdecl _mm_cvtss_u32(__m128 a);
Convert the lower float32 element in a to an unsigned 32-bit integer, and stores the result.

_mm_cvtss_u64

 extern unsigned __int64 __cdecl _mm_cvtss_u64(__m128 a);
Convert the lower float32 element in a to an unsigned 64-bit integer, and stores the result.

_mm512_cvtt_roundpd_epi32

 extern __m256i __cdecl _mm512_cvtt_roundpd_epi32(__m512d a, int round);
Converts packed float64 elements in a to packed int32 elements with truncation, and stores the result.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttpd_epi32

 extern __m256i __cdecl _mm512_cvttpd_epi32(__m512d a);
Converts packed float64 elements in a to packed int32 elements with truncation, and stores the result in dst.

_mm512_mask_cvtt_roundpd_epi32

 extern __m256i __cdecl _mm512_mask_cvtt_roundpd_epi32(__m256i src, __mmask8 k, __m512d a,
int round);

Converts packed float64 elements in a to packed int32 elements with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1293

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvttpd_epi32

 extern __m256i __cdecl _mm512_mask_cvttpd_epi32(__m256i src, __mmask8 k, __m512d a, int
round);

Converts packed float64 elements in a to packed int32 elements with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtt_roundpd_epi32

 extern __m256i __cdecl _mm512_maskz_cvtt_roundpd_epi32(__mmask8 k, __m512d a, int round);
Converts packed float64 elements in a to packed int32 elements with truncation, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvttpd_epi32

 extern __m256i __cdecl _mm512_maskz_cvttpd_epi32(__mmask8 k, __m512d a);
Converts packed float64 elements in a to packed int32 elements with truncation, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtt_roundpd_epu32

 extern __m256i __cdecl _mm512_cvtt_roundpd_epu32(__m512d a, int round);
Converts packed float64 elements in a to packed unsigned int32 elements with truncation, and stores the
result.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttpd_epu32

 extern __m256i __cdecl _mm512_cvttpd_epu32(__m512d a);
Converts packed float64 elements in a to packed unsigned int32 elements with truncation, and stores the
result.

_mm512_mask_cvtt_roundpd_epu32

 extern __m256i __cdecl _mm512_mask_cvtt_roundpd_epu32(__m256i src, __mmask8 k, __m512d a,
int round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1294

Converts packed float64 elements in a to packed unsigned int32 elements with truncation, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvttpd_epu32

 extern __m256i __cdecl _mm512_mask_cvttpd_epu32(__m256i src, __mmask8 k, __m512d a);
Converts packed float64 elements in a to packed unsigned int32 elements with truncation, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtt_roundpd_epu32

 extern __m256i __cdecl _mm512_maskz_cvtt_roundpd_epu32(__mmask8 k, __m512d a, int round);
Converts packed float64 elements in a to packed unsigned int32 elements with truncation, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvttpd_epu32

 extern __m256i __cdecl _mm512_maskz_cvtt_roundpd_epu32(__mmask8 k, __m512d a);
Converts packed float64 elements in a to packed unsigned int32 elements with truncation, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtt_roundps_epi32

 extern __m512i __cdecl _mm512_cvtt_roundps_epi32(__m512 a, int round);
Converts packed float32 elements in a to packed int32 elements with truncation, and stores the result.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttps_epi32

 extern __m512i __cdecl _mm512_cvttps_epi32(__m512 a);
Converts packed float32 elements in a to packed int32 elements with truncation, and stores the result.

_mm512_mask_cvtt_roundps_epi32

 extern __m512i __cdecl _mm512_mask_cvtt_roundps_epi32(__m512i src, __mmask16 k, __m512 a,
int round);

Compiler Reference

1295

Converts packed float32 elements in a to packed int32 elements with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvttps_epi32

 extern __m512i __cdecl _mm512_mask_cvttps_epi32(__m512i src, __mmask16 k, __m512 a);
Converts packed float32 elements in a to packed int32 elements with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtt_roundps_epi32

 extern __m512i __cdecl _mm512_maskz_cvtt_roundps_epi32(__mmask16 k, __m512 a, int round);
Converts packed float32 elements in a to packed int32 elements with truncation, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvttps_epi32

 extern __m512i __cdecl _mm512_maskz_cvttps_epi32(__mmask16 k, __m512 a);
Converts packed float32 elements in a to packed int32 elements with truncation, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtt_roundps_epu32

 extern __m512i __cdecl _mm512_cvtt_roundps_epu32(__m512 a, int round);
Converts packed float32 elements in a to packed unsigned int32 elements with truncation, and stores the
result.

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_cvttps_epu32

 extern __m512i __cdecl _mm512_cvttps_epu32(__m512 a);
Converts packed float32 elements in a to packed unsigned int32 elements with truncation, and stores the
result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1296

_mm512_mask_cvtt_roundps_epu32

 extern __m512i __cdecl _mm512_mask_cvtt_roundps_epu32(__m512i src, __mmask16 k, __m512 a,
int round);

Converts packed float32 elements in a to packed unsigned int32 elements with truncation, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_mask_cvttps_epu32

 extern __m512i __cdecl _mm512_mask_cvttps_epu32(__m512i src, __mmask16 k, __m512 a);
Converts packed double-precision (32-bit) floating-point elements in a to packed unsigned int32 elements
with truncation, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_cvtt_roundps_epu32

 extern __m512i __cdecl _mm512_maskz_cvtt_roundps_epu32(__mmask16 k, __m512 a, int round);
Converts packed float32 elements in a to packed unsigned int32 elements with truncation, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
Pass __MM_FROUND_NO_EXC to sae to suppress all exceptions.

_mm512_maskz_cvttps_epu32

 extern __m512i __cdecl _mm512_maskz_cvttps_epu32(__mmask16 k, __m512 a);
Converts packed double-precision (32-bit) floating-point elements in a to packed unsigned int32 elements
with truncation, and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm_cvtt_roundsd_i32

 extern int __cdecl _mm_cvtt_roundsd_i32(__m128d a, int round);
Convert the lower float64 element in a to a 32-bit integer with truncation, and stores the result.

_mm_cvtt_roundsd_i64

 extern __int64 __cdecl _mm_cvtt_roundsd_i64(__m128d a, int round);
Convert the lower float64 element in a to a 64-bit integer with truncation, and stores the result.

_mm_cvtt_roundsd_si32

 extern int __cdecl _mm_cvtt_roundsd_si32(__m128d a, int round);

Compiler Reference

1297

Convert the lower float64 element in a to a 32-bit integer with truncation, and stores the result.

_mm_cvtt_roundsd_si64

 extern __int64 __cdecl _mm_cvtt_roundsd_si64(__m128d a, int round);
Convert the lower float64 element in a to a 64-bit integer with truncation, and stores the result.

_mm_cvttsd_i32

 extern int __cdecl _mm_cvttsd_i32(__m128d a);
Convert the lower float64 element in a to a 32-bit integer with truncation, and stores the result.

_mm_cvttsd_i64

 extern __int64 __cdecl _mm_cvttsd_i64(__m128d a);
Convert the lower float64 element in a to a 64-bit integer with truncation, and stores the result.

_mm_cvtt_roundsd_u32

 extern unsigned int __cdecl _mm_cvtt_roundsd_u32(__m128d a, int);
Convert the lower float64 element in a to an unsigned 32-bit integer with truncation, and stores the result.

_mm_cvtt_roundsd_u64

 extern unsigned __int64 __cdecl _mm_cvtt_roundsd_u64(__m128d a, int);
Convert the lower float64 element in a to an unsigned 64-bit integer with truncation, and stores the result.

_mm_cvttsd_u32

 extern unsigned int __cdecl _mm_cvtt_u32(__m128d a, int);
Convert the lower float64 element in a to an unsigned 32-bit integer with truncation, and stores the result.

_mm_cvttsd_u64

 extern unsigned __int64 __cdecl _mm_cvttsd_u64(__m128d a, int);
Convert the lower float64 element in a to an unsigned 64-bit integer with truncation, and stores the result.

_mm_cvtt_roundss_i32

 extern int __cdecl _mm_cvtt_roundss_i32(__m128 a, int);
Convert the lower float32 element in a to a 32-bit integer with truncation, and stores the result.

_mm_cvtt_roundss_i64

 extern __int64 __cdecl _mm_cvtt_roundss_i64(__m128 a, int);
Convert the lower float32 element in a to a 64-bit integer with truncation, and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1298

_mm_cvtt_roundss_si32

 extern int __cdecl _mm_cvtt_roundss_si32(__m128 a, int);
Convert the lower float32 element in a to a 32-bit integer with truncation, and stores the result.

_mm_cvtt_roundss_si64

 extern __int64 __cdecl _mm_cvtt_roundss_si64(__m128 a, int);
Convert the lower float32 element in a to a 64-bit integer with truncation, and stores the result.

_mm_cvttss_i32

 extern int __cdecl _mm_cvttss_i32(__m128 a);
Convert the lower float32 element in a to a 32-bit integer with truncation, and stores the result.

_mm_cvttss_i64

 extern __int64 __cdecl _mm_cvttss_i64(__m128 a);
Convert the lower float32 element in a to a 64-bit integer with truncation, and stores the result.

_mm_cvtt_roundss_u32

 extern unsigned int __cdecl _mm_cvtt_roundss_u32(__m128 a, int);
Convert the lower float32 element in a to an unsigned 32-bit integer with truncation, and stores the result.

_mm_cvtt_roundss_u64

 extern unsigned __int64 __cdecl _mm_cvtt_roundss_u64(__m128, int);
Convert the lower float32 element in a to an unsigned 64-bit integer with truncation, and stores the result.

_mm_cvttss_u32

 extern unsigned int __cdecl _mm_cvttss_u32(__m128 a);
Convert the lower float32 element in a to an unsigned 32-bit integer with truncation, and stores the result.

_mm_cvttss_u64

 extern unsigned __int64 __cdecl _mm_cvttss_u64(__m128);
Convert the lower float32 element in a to an unsigned 64-bit integer with truncation, and stores the result.

_mm512_cvtepi32_epi8

 extern __m128i __cdecl _mm512_cvtepi32_epi8(__m512i a);
Converts packed int32 elements in a to packed 8-bit integers with truncation, and stores the result.

_mm512_mask_cvtepi32_epi8

 extern __m128i __cdecl _mm512_mask_cvtepi32_epi8(__m128i src, __mmask16 k, __m512i a);

Compiler Reference

1299

Converts packed int32 elements in a to packed 8-bit integers with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi32_storeu_epi8

 extern void __cdecl _mm512_mask_cvtepi32_storeu_epi8(void* base_addr, __mmask16 k, __m512i
a);

Converts packed int32 elements in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtepi32_epi8

 extern __m128i __cdecl _mm512_maskz_cvtepi32_epi8(__mmask16 k, __m512i a);
Converts packed int32 elements in a to packed 8-bit integers with truncation, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi32_epi16

 extern __m256i __cdecl _mm512_cvtepi32_epi16(__m512i a);
Converts packed int32 elements in a to packed 16-bit integers with truncation, and stores the result.

_mm512_mask_cvtepi32_epi16

 extern __m256i __cdecl _mm512_mask_cvtepi32_epi16(__m256i src, __mmask16 k, __m512i a);
Converts packed int32 elements in a to packed 16-bit integers with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi32_storeu_epi16

 extern void __cdecl _mm512_mask_cvtepi32_storeu_epi16(void* base_addr, __mmask16 k, __m512i
a);

Converts packed int32 elements in a to packed 16-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtepi32_epi16

 extern __m256i __cdecl _mm512_maskz_cvtepi32_epi16(__mmask16 k, __m512i a);
Converts packed int32 elements in a to packed 16-bit integers with truncation, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi64_epi8

 extern __m128i __cdecl _mm512_cvtepi64_epi8(__m512i a);
Converts packed int64 elements in a to packed 8-bit integers with truncation, and stores the result.

_mm512_mask_cvtepi64_epi8

 extern __m128i __cdecl _mm512_mask_cvtepi64_epi8(__m128i src, __mmask8 k, __m512i a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1300

Converts packed int64 elements in a to packed 8-bit integers with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi64_storeu_epi8

 extern void __cdecl _mm512_mask_cvtepi64_storeu_epi8(void* base_addr, __mmask8 k, __m512i
a);

Converts packed int64 elements in a to packed 8-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtepi64_epi8

 extern __m128i __cdecl _mm512_maskz_cvtepi64_epi8(__mmask8 k, __m512i a);
Converts packed int64 elements in a to packed 8-bit integers with truncation, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi64_epi32

 extern __m256i __cdecl _mm512_cvtepi64_epi32(__m512i a);
Converts packed int64 elements in a to packed int32 elements with truncation, and stores the result.

_mm512_mask_cvtepi64_epi32

 extern __m256i __cdecl _mm512_mask_cvtepi64_epi32(__m256i src, __mmask8 k, __m512i a);
Converts packed int64 elements in a to packed int32 elements with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi64_storeu_epi32

 extern void __cdecl _mm512_mask_cvtepi64_storeu_epi32(void* base_addr, __mmask8 k, __m512i
a);

Converts packed int64 elements in a to packed int32 elements with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtepi64_epi32

 extern __m256i __cdecl _mm512_maskz_cvtepi64_epi32(__mmask8 k, __m512i a);
Converts packed int64 elements in a to packed int32 elements with truncation, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi64_epi16

 extern __m128i __cdecl _mm512_cvtepi64_epi16(__m512i a);
Converts packed int64 elements in a to packed 16-bit integers with truncation, and stores the result.

_mm512_mask_cvtepi64_epi16

 extern __m128i __cdecl _mm512_mask_cvtepi64_epi16(__m128i src, __mmask8 k, __m512i a);

Compiler Reference

1301

Converts packed int64 elements in a to packed 16-bit integers with truncation, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtepi64_storeu_epi16

 extern void __cdecl _mm512_mask_cvtepi64_storeu_epi16(void* base_addr, __mmask8 k, __m512i
a);

Converts packed int64 elements in a to packed 16-bit integers with truncation, and store the active results
(those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtepi64_epi16

 extern __m128i __cdecl _mm512_maskz_cvtepi64_epi16(__mmask8 k, __m512i a);
Converts packed int64 elements in a to packed 16-bit integers with truncation, and stores the result in dst
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtsepi32_epi8

 extern __m128i __cdecl _mm512_cvtsepi32_epi8(__m512i a);
Converts packed int32 elements in a to packed 8-bit integers with signed saturation, and stores the result.

_mm512_mask_cvtsepi32_epi8

 extern __m128i __cdecl _mm512_mask_cvtsepi32_epi8(__m128i src, __mmask16 k, __m512i a);
Converts packed int32 elements in a to packed 8-bit integers with signed saturation, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtsepi32_storeu_epi8

 extern void __cdecl _mm512_mask_cvtsepi32_storeu_epi8(void* base_addr, __mmask16 k, __m512i
a);

Converts packed int32 elements in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtsepi32_epi8

 extern __m128i __cdecl _mm512_maskz_cvtsepi32_epi8(__mmask16 k, __m512i a);
Converts packed int32 elements in a to packed 8-bit integers with signed saturation, and stores the result in
dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtsepi32_epi16

 extern __m256i __cdecl _mm512_cvtsepi32_epi16(__m512i a);
Converts packed int32 elements in a to packed 16-bit integers with signed saturation, and stores the result.

_mm512_mask_cvtsepi32_epi16

 extern __m256i __cdecl _mm512_mask_cvtsepi32_epi16(__m256i src, __mmask16 k, __m512i a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1302

Converts packed int32 elements in a to packed 16-bit integers with signed saturation, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtsepi32_storeu_epi16

 extern void __cdecl _mm512_mask_cvtsepi32_storeu_epi16(void* base_addr, __mmask16 k,
__m512i a);

Converts packed int32 elements in a to packed 16-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtsepi32_epi16

 extern __m256i __cdecl _mm512_maskz_cvtsepi32_epi16(__mmask16 k, __m512i a);
Converts packed int32 elements in a to packed 16-bit integers with signed saturation, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtsepi64_epi8

 extern __m128i __cdecl _mm512_cvtsepi64_epi8(__m512i a);
Converts packed int64 elements in a to packed 8-bit integers with signed saturation, and stores the result.

_mm512_mask_cvtsepi64_epi8

 extern __m128i __cdecl _mm512_mask_cvtsepi64_epi8(__m128i src, __mmask8 k, __m512i a);
Converts packed int64 elements in a to packed 8-bit integers with signed saturation, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtsepi64_storeu_epi8

 extern void __cdecl _mm512_mask_cvtsepi64_storeu_epi8(void* base_addr, __mmask8 k, __m512i
a);

Converts packed int64 elements in a to packed 8-bit integers with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtsepi64_epi8

 extern __m128i __cdecl _mm512_maskz_cvtsepi64_epi8(__mmask8 k, __m512i a);
Converts packed int64 elements in a to packed 8-bit integers with signed saturation, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtsepi64_epi32

 extern __m256i __cdecl _mm512_cvtsepi64_epi32(__m512i a);
Converts packed int64 elements in a to packed int32 elements with signed saturation, and stores the result.

_mm512_mask_cvtsepi64_epi32

 extern __m256i __cdecl _mm512_mask_cvtsepi64_epi32(__m256i src, __mmask8 k, __m512i a);

Compiler Reference

1303

Converts packed int64 elements in a to packed int32 elements with signed saturation, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtsepi64_storeu_epi32

 extern void __cdecl _mm512_mask_cvtsepi64_storeu_epi32(void* base_addr, __mmask8 k, __m512i
a);

Converts packed int64 elements in a to packed int32 elements with signed saturation, and store the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtsepi64_epi32

 extern __m256i __cdecl _mm512_maskz_cvtsepi64_epi32(__mmask8 k, __m512i a);
Converts packed int64 elements in a to packed int32 elements with signed saturation, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtsepi64_epi16

 extern __m128i __cdecl _mm512_cvtsepi64_epi16(__m512i a);
Converts packed int64 elements in a to packed 16-bit integers with signed saturation, and stores the result.

_mm512_mask_cvtsepi64_epi16

 extern __m128i __cdecl _mm512_mask_cvtsepi64_epi16(__m128i src, __mmask8 k, __m512i a);
Converts packed int64 elements in a to packed 16-bit integers with signed saturation, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_mask_cvtsepi64_storeu_epi16

 extern void __cdecl _mm512_mask_cvtsepi64_storeu_epi16(void* base_addr, __mmask8 k, __m512i
a);

Converts packed int64 elements in a to packed 16-bit integers with signed saturation, and stores the active
results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtsepi64_epi16

 extern __m128i __cdecl _mm512_maskz_cvtsepi64_epi16(__mmask8 k, __m512i a);
Converts packed int64 elements in a to packed 16-bit integers with signed saturation, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi8_epi32

 extern __m512i __cdecl _mm512_cvtepi8_epi32(__m128i a);
Sign extend packed 8-bit integers in a to packed 32-bit integers, and stores the result.

_mm512_mask_cvtepi8_epi32

 extern __m512i __cdecl _mm512_mask_cvtepi8_epi32(__m512i src, __mmask16 k, __m128i a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1304

Sign extend packed 8-bit integers in a to packed 32-bit integers, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepi8_epi32

 extern __m512i __cdecl _mm512_maskz_cvtepi8_epi32(__mmask16 k, __m128i a);
Sign extend packed 8-bit integers in a to packed 32-bit integers, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi8_epi64

 extern __m512i __cdecl _mm512_cvtepi8_epi64(__m128i a);
Sign extend packed 8-bit integers in the low 8 bytes of a to packed int64 elements, and stores the result.

_mm512_mask_cvtepi8_epi64

 extern __m512i __cdecl _mm512_mask_cvtepi8_epi64(__m512i src, __mmask8 k, __m128i a);
Sign extend packed 8-bit integers in the low 8 bytes of a to packed int64 elements, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepi8_epi64

 extern __m512i __cdecl _mm512_maskz_cvtepi8_epi64(__mmask8 k, __m128i a);
Sign extend packed 8-bit integers in the low 8 bytes of a to packed int64 elements, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi32_epi64

 extern __m512i __cdecl _mm512_cvtepi32_epi64(__m256i a);
Sign extend packed int32 elements in a to packed int64 elements, and stores the result.

_mm512_mask_cvtepi32_epi64

 extern __m512i __cdecl _mm512_mask_cvtepi32_epi64(__m512i src, __mmask8 k, __m256i a);
Sign extend packed int32 elements in a to packed int64 elements, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepi32_epi64

 extern __m512i __cdecl _mm512_maskz_cvtepi32_epi64(__mmask8 k, __m256i a);
Sign extend packed int32 elements in a to packed int64 elements, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi16_epi32

 extern __m512i __cdecl _mm512_cvtepi16_epi32(__m256i a);
Sign extend packed 16-bit integers in a to packed 32-bit integers, and stores the result.

Compiler Reference

1305

_mm512_mask_cvtepi16_epi32

 extern __m512i __cdecl _mm512_mask_cvtepi16_epi32(__m512i src, __mmask16 k, __m256i a);
Sign extend packed 16-bit integers in a to packed 32-bit integers, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepi16_epi32

 extern __m512i __cdecl _mm512_maskz_cvtepi16_epi32(__mmask16 k, __m256i a);
Sign extend packed 16-bit integers in a to packed 32-bit integers, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepi16_epi64

 extern __m512i __cdecl _mm512_cvtepi16_epi64(__m128i a);
Sign extend packed 16-bit integers in a to packed int64 elements, and stores the result.

_mm512_mask_cvtepi16_epi64

 extern __m512i __cdecl _mm512_mask_cvtepi16_epi64(__m512i src, __mmask8 k, __m128i a);
Sign extend packed 16-bit integers in a to packed int64 elements, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepi16_epi64

 extern __m512i __cdecl _mm512_maskz_cvtepi16_epi64(__mmask8 k, __m128i a);
Sign extend packed 16-bit integers in a to packed int64 elements, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtusepi32_epi8

 extern __m128i __cdecl _mm512_cvtusepi32_epi8(__m512i a);
Converts packed unsigned int32 elements in a to packed unsigned 8-bit integers with unsigned saturation,
and stores the result.

_mm512_mask_cvtusepi32_epi8

 extern __m128i __cdecl _mm512_mask_cvtusepi32_epi8(__m128i src, __mmask16 k, __m512i a);
Converts packed unsigned int32 elements in a to packed unsigned 8-bit integers with unsigned saturation,
and stores the result using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_mask_cvtusepi32_storeu_epi8

 extern void __cdecl _mm512_mask_cvtusepi32_storeu_epi8(void* base_addr, __mmask16 k,
__m512i a);

Converts packed unsigned int32 elements in a to packed 8-bit integers with unsigned saturation, and store
the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

 Intel® C++ Compiler Classic Developer Guide and Reference

1306

_mm512_maskz_cvtusepi32_epi8

 extern __m128i __cdecl _mm512_maskz_cvtusepi32_epi8(__mmask16 k, __m512i a);
Converts packed unsigned int32 elements in a to packed unsigned 8-bit integers with unsigned saturation,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_cvtusepi32_epi16

 extern __m256i __cdecl _mm512_cvtusepi32_epi16(__m512i a);
Converts packed unsigned int32 elements in a to packed unsigned 16-bit integers with unsigned saturation,
and stores the result.

_mm512_mask_cvtusepi32_epi16

 extern __m256i __cdecl _mm512_mask_cvtusepi32_epi16(__m256i src, __mmask16 k, __m512i a);
Converts packed unsigned int32 elements in a to packed unsigned 16-bit integers with unsigned saturation,
and stores the result using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_mask_cvtusepi32_storeu_epi16

 extern void __cdecl _mm512_mask_cvtusepi32_storeu_epi16(void* base_addr, __mmask16 k,
__m512i a);

Converts packed unsigned int32 elements in a to packed 16-bit integers with unsigned saturation, and store
the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtusepi32_epi16

 extern __m256i __cdecl _mm512_maskz_cvtusepi32_epi16(__mmask16 k, __m512i a);
Converts packed unsigned int32 elements in a to packed unsigned 16-bit integers with unsigned saturation,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_cvtusepi64_epi8

 extern __m128i __cdecl _mm512_cvtusepi64_epi8(__m512i a);
Converts packed unsigned int64 elements in a to packed unsigned 8-bit integers with unsigned saturation,
and stores the result.

_mm512_mask_cvtusepi64_epi8

 extern __m128i __cdecl _mm512_mask_cvtusepi64_epi8(__m128i src, __mmask8 k, __m512i a);
Converts packed unsigned int64 elements in a to packed unsigned 8-bit integers with unsigned saturation,
and stores the result using writemask k (elements are copied from src when the corresponding mask bit is
not set).

Compiler Reference

1307

_mm512_mask_cvtusepi64_storeu_epi8

 extern void __cdecl _mm512_mask_cvtusepi64_storeu_epi8(void* base_addr, __mmask8 k, __m512i
a);

Converts packed unsigned int64 elements in a to packed 8-bit integers with unsigned saturation, and store
the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtusepi64_epi8

 extern __m128i __cdecl _mm512_maskz_cvtusepi64_epi8(__mmask8 k, __m512i a);
Converts packed unsigned int64 elements in a to packed unsigned 8-bit integers with unsigned saturation,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_cvtusepi64_epi32

 extern __m256i __cdecl _mm512_cvtusepi64_epi32(__m512i a);
Converts packed unsigned int64 elements in a to packed unsigned int32 elements with unsigned saturation,
and stores the result.

_mm512_mask_cvtusepi64_epi32

 extern __m256i __cdecl _mm512_mask_cvtusepi64_epi32(__m256i src, __mmask8 k, __m512i a);
Converts packed unsigned int64 elements in a to packed unsigned int32 elements with unsigned saturation,
and stores the result using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_mask_cvtusepi64_storeu_epi32

 extern void __cdecl _mm512_mask_cvtusepi64_storeu_epi32(void* base_addr, __mmask8 k,
__m512i a);

Converts packed unsigned int64 elements in a to packed int32 elements with unsigned saturation, and store
the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtusepi64_epi32

 extern __m256i __cdecl _mm512_maskz_cvtusepi64_epi32(__mmask8 k, __m512i a);
Converts packed unsigned int64 elements in a to packed unsigned int32 elements with unsigned saturation,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_cvtusepi64_epi16

 extern __m128i __cdecl _mm512_cvtusepi64_epi16(__m512i a);
Converts packed unsigned int64 elements in a to packed unsigned 16-bit integers with unsigned saturation,
and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1308

_mm512_mask_cvtusepi64_epi16

 extern __m128i __cdecl _mm512_mask_cvtusepi64_epi16(__m128i src, __mmask8 k, __m512i a);
Converts packed unsigned int64 elements in a to packed unsigned 16-bit integers with unsigned saturation,
and stores the result using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_mask_cvtusepi64_storeu_epi16

 extern void __cdecl _mm512_mask_cvtusepi64_storeu_epi16(void* base_addr, __mmask8 k,
__m512i a);

Converts packed unsigned int64 elements in a to packed 16-bit integers with unsigned saturation, and store
the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.

_mm512_maskz_cvtusepi64_epi16

 extern __m128i __cdecl _mm512_maskz_cvtusepi64_epi16(__mmask8 k, __m512i a);
Converts packed unsigned int64 elements in a to packed unsigned 16-bit integers with unsigned saturation,
and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_cvtepu8_epi32

 extern __m512i __cdecl _mm512_cvtepu8_epi32(__m128i a);
Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, and stores the result.

_mm512_mask_cvtepu8_epi32

 extern __m512i __cdecl _mm512_mask_cvtepu8_epi32(__m512i src, __mmask16 k, __m128i a);
Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepu8_epi32

 extern __m512i __cdecl _mm512_maskz_cvtepu8_epi32(__mmask16 k, __m128i a);
Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepu8_epi64

 extern __m512i __cdecl _mm512_cvtepu8_epi64(__m128i a);
Zero extend packed unsigned 8-bit integers in the low 8 byte sof a to packed int64 elements, and stores the
result.

_mm512_mask_cvtepu8_epi64

 extern __m512i __cdecl _mm512_mask_cvtepu8_epi64(__m512i src, __mmask8 k, __m128i a);
Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed int64 elements, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1309

_mm512_maskz_cvtepu8_epi64

 extern __m512i __cdecl _mm512_maskz_cvtepu8_epi64(__mmask8 k, __m128i a);
Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed int64 elements, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepu32_epi64

 extern __m512i __cdecl _mm512_cvtepu32_epi64(__m256i a);
Zero extend packed unsigned int32 elements in a to packed int64 elements, and stores the result.

_mm512_mask_cvtepu32_epi64

 extern __m512i __cdecl _mm512_mask_cvtepu32_epi64(__m512i src, __mmask8 k, __m256i a);
Zero extend packed unsigned int32 elements in a to packed int64 elements, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepu32_epi64

 extern __m512i __cdecl _mm512_maskz_cvtepu32_epi64(__mmask8 k, __m256i a);
Zero extend packed unsigned int32 elements in a to packed int64 elements, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepu16_epi32

 extern __m512i __cdecl _mm512_cvtepu16_epi32(__m256i a);
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and stores the result.

_mm512_mask_cvtepu16_epi32

 extern __m512i __cdecl _mm512_mask_cvtepu16_epi32(__m512i src, __mmask16 k, __m256i a);
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepu16_epi32

 extern __m512i __cdecl _mm512_maskz_cvtepu16_epi32(__mmask16 k, __m256i a);
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtepu16_epi64

 extern __m512i __cdecl _mm512_cvtepu16_epi64(__m128i a);
Zero extend packed unsigned 16-bit integers in a to packed int64 elements, and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1310

_mm512_mask_cvtepu16_epi64

 extern __m512i __cdecl _mm512_mask_cvtepu16_epi64(__m512i src, __mmask8 k, __m128i a);
Zero extend packed unsigned 16-bit integers in a to packed int64 elements, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_cvtepu16_epi64

 extern __m512i __cdecl _mm512_maskz_cvtepu16_epi64(__mmask8 k, __m128i a);
Zero extend packed unsigned 16-bit integers in a to packed int64 elements, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_cvtsi512_si32

 int _mm512_cvtsi512_si32(__m512i a);
Moves the least significant 32 bits of a to a 32-bit integer.

Intrinsics for Expand and Load Operations

Intrinsics for FP Expand and Load Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_expand_pd,
_mm512_mask_expand_pd,
_mm512_maskz_expand_pd

Load packed float64 values from
dense memory.

VEXPANDPD

_mm512_mask_expandloadu_pd,
_mm512_maskz_expandloadu_p
d

Load packed float64 values from
dense memory.

VEXPANDPD

_mm512_expand_ps,
_mm512_mask_expand_ps,
_mm512_maskz_expand_ps

Load packed float32 values from
dense memory.

VEXPANDPS

_mm512_mask_expandloadu_ps,
_mm512_maskz_expandloadu_p
s

Load packed float32 values from
dense memory.

VEXPANDPS

variable definition
k writemask used as a selector

Compiler Reference

1311

variable definition
a first source vector element

src source element to use based on writemask result

mem_addr pointer to memory address

_mm512_expand_pd

extern __m512d __cdecl _mm512_expand_pd(__m512d a);
Loads contiguous active float64 elements from a (those with their respective bit set in mask k), and stores
the result.

_mm512_mask_expand_pd

extern __m512d __cdecl _mm512_mask_expand_pd(__m512d src, __mmask8 k, __m512d a);
Loads contiguous active float64 elements from a (those with their respective bit set in mask k), and stores
the result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_expand_pd

extern __m512d __cdecl _mm512_maskz_expand_pd(__mmask8 k, __m512d a);
Loads contiguous active float64 elements from a (those with their respective bit set in mask k), and stores
the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_expand_ps

extern __m512 __cdecl _mm512_expand_ps(__m512 a);
Loads contiguous active float32 elements from a (those with their respective bit set in mask k), and stores
the result.

_mm512_mask_expand_ps

extern __m512 __cdecl _mm512_mask_expand_ps(__m512 src, __mmask16 k, __m512 a);
Loads contiguous active float32 elements from a (those with their respective bit set in mask k), and stores
the result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_expand_ps

extern __m512 __cdecl _mm512_maskz_expand_ps(__mmask16 k, __m512 a);
Loads contiguous active float32 elements from a (those with their respective bit set in mask k), and stores
the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_expandloadu_pd

extern __m512d __cdecl _mm512_mask_expandloadu_pd(__m512d src, __mmask8 k, void * mem_addr);
Loads contiguous active float64 elements from unaligned memory at mem_addr (those with their respective
bit set in mask k), and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1312

_mm512_maskz_expandloadu_pd

extern __m512d __cdecl _mm512_maskz_expandloadu_pd(__mmask8 k, void * mem_addr);
Loads contiguous active float64 elements from unaligned memory at mem_addr (those with their respective
bit set in mask k), and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_mask_expandloadu_ps

extern __m512 __cdecl _mm512_mask_expandloadu_ps(__m512 src, __mmask16 k, void * mem_addr);
Loads contiguous active float32 elements from unaligned memory at mem_addr (those with their respective
bit set in mask k), and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_expandloadu_ps

extern __m512 __cdecl _mm512_maskz_expandloadu_ps(__mmask16 k, void * mem_addr);
Loads contiguous active float32 elements from unaligned memory at mem_addr (those with their respective
bit set in mask k), and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

Intrinsics for Integer Expand and Load Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_mask_expandloadu_epi32,
_mm512_maskz_expandloadu_epi32
_mm512_mask_expand_epi32,
_mm512_maskz_expand_epi32

Load packed int32 values
from dense memory or
register.

VPEXPANDD

_mm512_mask_expandloadu_epi64,
_mm512_maskz_expandloadu_epi64
_mm512_mask_expand_epi64,
_mm512_maskz_expand_epi64

Load packed int64 values
from dense memory or
register.

VPEXPANDQ

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

mem_addr pointer to base address in memory

Compiler Reference

1313

_mm512_mask_expand_epi32

extern __m512i __cdecl _mm512_mask_expand_epi32(__m512i src, __mmask16 k, __m512i a);
Loads contiguous active int32 elements from a (those with their respective bit set in mask k), and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_expand_epi32

extern __m512i __cdecl _mm512_maskz_expand_epi32(__mmask16 k, __m512i a);
Loads contiguous active int32 elements from a (those with their respective bit set in mask k), and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_mask_expandloadu_epi32

extern __m512i __cdecl _mm512_mask_expandloadu_epi32(__m512i src, __mmask16 k, void * mem_addr);
Loads contiguous active int32 elements from unaligned memory at mem_addr (those with their respective bit
set in mask k), and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_expandloadu_epi32

extern __m512i __cdecl _mm512_maskz_expandloadu_epi32(__mmask16 k, void * mem_addr);
Loads contiguous active int32 elements from unaligned memory at mem_addr (those with their respective bit
set in mask k), and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_mask_expandloadu_epi64

extern __m512i __cdecl _mm512_mask_expandloadu_epi64(__m512i src, __mmask8 k, void * mem_addr);
Loads contiguous active int64 elements from unaligned memory at mem_addr (those with their respective bit
set in mask k), and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_expandloadu_epi64

extern __m512i __cdecl _mm512_maskz_expandloadu_epi64(__mmask8 k, void * mem_addr);
Loads contiguous active int64 elements from unaligned memory at mem_addr (those with their respective bit
set in mask k), and stores the result using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_mask_expand_epi64

extern __m512i __cdecl _mm512_mask_expand_epi64(__m512i src, __mmask8 k, __m512i a);
Loads contiguous active int64 elements from a (those with their respective bit set in mask k), and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_expand_epi64

extern __m512i __cdecl _mm512_maskz_expand_epi64(__mmask8 k, __m512i a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1314

Loads contiguous active int64 elements from a (those with their respective bit set in mask k), and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Gather and Scatter Operations

Intrinsics for FP Gather and Scatter Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_i32gather_pd,
_mm512_mask_i32gather_pd

Gathers double-precision (64-bit)
floating-point elements from memory
with 32-bit integer indices.

VGATHERDPD

_mm512_i32gather_ps,
_mm512_mask_i32gather_ps

Gathers single-precision (32-bit)
vector elements from memory with
32-bit integer indices.

VGATHERDPS

_mm512_i32extgather_ps,
_mm512_mask_i32extgather_ps

Up-converts single-precision (32-bit)
floating-point elements from memory
with 32-bit integer indices.

VGATHERDPS

_mm512_i64gather_pd,
_mm512_mask_i64gather_pd

Gathers double-precision (64-bit)
floating-point elements from memory
with 64-bit integer indices.

VGATHERQPD

_mm512_i64gather_ps,
_mm512_mask_i64gather_ps

Gathers single-precision (32-bit)
vector elements from memory with
64-bit integer indices.

VGATHERQPS

_mm512_prefetch_i32gather_pd,
_mm512_mask_prefetch_i32gather_
pd

Gathers prefetch double-precision
(64-bit) floating-point elements with
32-bit integer indices.

VGATHERPF0DPD,
VGATHERPF1DPD

_mm512_prefetch_i32gather_ps,
_mm512_mask_prefetch_i32gather_
ps

Gathers prefetch double-precision
(64-bit) floating-point elements with
32-bit integer indices.

VGATHERPF0DPS,
VGATHERPF1DPS

_mm512_prefetch_i64gather_pd,
_mm512_mask_prefetch_i64gather_
pd

Gathers prefetch double-precision
(64-bit) floating-point elements with
64-bit integer indices.

VGATHERPF0QPD,
VGATHERPF1QPD

_mm512_prefetch_i64gather_ps,
_mm512_mask_prefetch_i64gather_
ps

Gathers prefetch double-precision
(64-bit) floating-point elements with
64-bit integer indices.

VGATHERPF0QPS,
VGATHERPF1QPS

Compiler Reference

1315

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_i32scatter_pd,
_mm512_mask_i32scatter_pd

Scatters double-precision (64-bit)
floating-point elements from memory
with 32-bit integer indices.

VSCATTERDPD

_mm512_i32scatter_ps,
_mm512_mask_i32scatter_ps

Scatters single-precision (32-bit)
floating-point elements from memory
with 32-bit integer indices.

VSCATTERDPD

_mm512_i32extscatter_ps,
_mm512_mask_i32extscatter_ps

Down-converts single-precision (32-
bit) floating-point elements from
memory with 32-bit integer indices.

VSCATTERDPS

_mm512_i64scatter_pd,
_mm512_mask_i64scatter_pd

Scatters double-precision (64-bit)
floating-point elements from memory
with 64-bit integer indices.

VSCATTERQPD

_mm512_i64scatter_ps,
_mm512_mask_i64scatter_ps

Scatters single-precision (32-bit)
floating-point elements from memory
with 64-bit integer indices.

VSCATTERQPS

_mm512_prefetch_i32scatter_pd,
_mm512_mask_prefetch_i32scatter
_pd

Scatters prefetch double-precision
(64-bit) floating-point elements with
32-bit integer indices.

VSCATTERPF0DPD,
VSCATTERPF1DPD

_mm512_prefetch_i32scatter_ps,
_mm512_mask_prefetch_i32scatter
_ps

Scatters prefetch double-precision
(64-bit) floating-point elements with
32-bit integer indices.

VSCATTERPF0DPS,
VSCATTERPF1DPS

_mm512_prefetch_i64scatter_pd,
_mm512_mask_prefetch_i64scatter
_pd

Scatters prefetch double-precision
(64-bit) floating-point elements with
64-bit integer indices.

VSCATTERPF0QPD,
VSCATTERPF1QPD

_mm512_prefetch_i64scatter_ps,
_mm512_mask_prefetch_i64scatter
_ps

Scatters prefetch double-precision
(64-bit) floating-point elements with
64-bit integer indices.

VSCATTERPF0QPS,
VSCATTERPF1QPS

variable definition
vindex a vector of indices

base_addr a pointer to the base address in memory

scale a compilation-time literal constant that is used as the vector indices scale. Possible values are
1, 2, 4, or 8.

k mask used as a selector

a first source vector element

src source element to use based on the mask result

upconv Where _MM_UPCONV_PS_ENUM is the following:

 Intel® C++ Compiler Classic Developer Guide and Reference

1316

variable definition

• _MM_UPCONV_PS_NONE - no conversion

index a vector containing indexes in memory mv

downconv Where _MM_DOWNCONV_PS_ENUM is the following:

• _MM_DOWNCONV_PS_NONE - no conversion

hint Indicates which cache level to bring values into. _MM_HINT_ENUM is the following:

• _MM_HINT_NONE 0x0 - Off

_mm512_i32gather_pd

__m512d _mm512_i32gather_pd (__m256i vindex, void const* base_addr, int scale)
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements
are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is
scaled by the factor in scale).

_mm512_mask_i32gather_pd

__m512d _mm512_mask_i32gather_pd (__m512d src, __mmask8 k, __m256i vindex, void const*
base_addr, int scale)

Gathers double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements
are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged with src using mask k. When the corresponding
mask bit is not set, elements are copied from src.

_mm512_i32gather_ps

__m512 _mm512_i32gather_ps (__m512i vindex, void const* base_addr, int scale)
Gathers single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements
are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is
scaled by the factor in scale).

_mm512_mask_i32gather_ps

__m512 _mm512_mask_i32gather_ps (__m512 src, __mmask16 k, __m512i vindex, void const* base_addr,
int scale)

Gathers single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements
are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged with src using mask k. When the corresponding
mask bit is not set, elements are copied from src.

_mm512_i32extgather_ps

__m512 _mm512_i32extgather_ps (__m512i index, void const * mv, _MM_UPCONV_PS_ENUM upconv, int
scale, int hint)

Up-converts 16 memory locations starting at location mv using packed 32-bit integer indices stored in index
scaled by scale using upconv to single-precision (32-bit) floating-point elements and stores them in dst.

Compiler Reference

1317

_mm512_mask_i32extgather_ps

__m512 _mm512_mask_i32extgather_ps (__m512 src, __mmask16 k, __m512i index, void const * mv,
_MM_UPCONV_PS_ENUM upconv, int scale, int hint)

Up-converts 16 single-precision memory locations starting at location mv at packed 32-bit integer indices
stored in index scaled by scale using upconv to single-precision (32-bit) floating-point elements and merges
them with src using mask k. When the corresponding mask bit is not set, elements are copied from src.

_mm512_i64gather_pd

__m512d _mm512_i64gather_pd (__m512i vindex, void const* base_addr, int scale)
Gathers double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements
are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is
scaled by the factor in scale).

_mm512_mask_i64gather_pd

__m512d _mm512_mask_i64gather_pd (__m512d src, __mmask8 k, __m512i vindex, void const*
base_addr, int scale)

Gathers double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements
are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged with src using mask k. When the corresponding
mask bit is not set, elements are copied from src.

_mm512_i64gather_ps

__m256 _mm512_i64gather_ps (__m512i vindex, void const* base_addr, int scale)
Gathers single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements
are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is
scaled by the factor in scale).

_mm512_mask_i64gather_ps

__m256 _mm512_mask_i64gather_ps (__m256 src, __mmask8 k, __m512i vindex, void const* base_addr,
int scale)

Gathers single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements
are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is
scaled by the factor in scale). Gathered elements are merged with src using mask k. When the corresponding
mask bit is not set, elements are copied from src.

_mm512_prefetch_i32gather_pd

void _mm512_prefetch_i32gather_pd (__m256i vindex, void const* base_addr, int scale, int hint)
Prefetches double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit
elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale).

_mm512_mask_prefetch_i32gather_pd

void _mm512_mask_prefetch_i32gather_pd (__m256i vindex, __mmask8 mask, void const* base_addr,
int scale, int hint)

Prefetches double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit
elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale). Gathered elements are merged with cache using mask k. Elements are
brought into cache only when their corresponding mask bits are set.

 Intel® C++ Compiler Classic Developer Guide and Reference

1318

_mm512_prefetch_i32gather_ps

void _mm512_prefetch_i32gather_ps (__m512i index, void const* mv, int scale, int hint)
Prefetches 16 single-precision (32-bit) floating-point elements in memory starting at location mv at packed
32-bit integer indices stored in index (each index is scaled by the factor in scale).

_mm512_mask_prefetch_i32gather_ps

void _mm512_mask_prefetch_i32gather_ps (__m512i vindex, __mmask16 mask, void const* base_addr,
int scale, int hint)

Prefetches single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit
elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale). Gathered elements are merged with cache using mask k. Elements are
brought into cache only when their corresponding mask bits are set.

_mm512_prefetch_i64gather_pd

void _mm512_prefetch_i64gather_pd (__m512i vindex, void const* base_addr, int scale, int hint)
Prefetches double-precision (64-bit) floating-point elements from memory into cache level specified by hint
using 64-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 64-
bit element in vindex (each index is scaled by the factor in scale).

_mm512_mask_prefetch_i64gather_pd

void _mm512_mask_prefetch_i64gather_pd (__m512i vindex, __mmask8 mask, void const* base_addr,
int scale, int hint)

Prefetches double-precision (64-bit) floating-point elements from memory into cache level specified by hint
using 64-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 64-
bit element in vindex (each index is scaled by the factor in scale). Prefetched elements are merged with
cache using mask k. Elements are brought into cache only when their corresponding mask bits are set.

_mm512_prefetch_i64gather_ps

void _mm512_prefetch_i32gather_pd (__m256i vindex, void const* base_addr, int scale, int hint)
Prefetches single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit
elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale).

_mm512_mask_prefetch_i64gather_ps

void _mm512_mask_prefetch_i64gather_ps (__m512i vindex, __mmask8 mask, void const* base_addr,
int scale, int hint)

Prefetches single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit
elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale). Gathered elements are merged with cache using mask k. Elements are
brought into cache only when their corresponding mask bits are set.

_mm512_i32scatter_pd

void _mm512_i32scatter_pd (void* base_addr, __m256i vindex, __m512d a, int scale)
Scatters double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale).

Compiler Reference

1319

_mm512_mask_i32scatter_pd

void _mm512_mask_i32scatter_pd (void* base_addr, __mmask8 k, __m256i vindex, __m512d a, int
scale)

Scatters double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k. Elements are brought into cache only when their
corresponding mask bits are set.

_mm512_i32scatter_ps

void _mm512_i32scatter_ps (void* base_addr, __m512i vindex, __m512 a, int scale)
Scatters single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale).

_mm512_mask_i32scatter_ps

void _mm512_mask_i32scatter_ps (void* base_addr, __mmask16 k, __m512i vindex, __m512 a, int
scale)

Scatters single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k. Elements are brought into cache only when their
corresponding mask bits are set.

_mm512_i32extscatter_ps

void _mm512_i32extscatter_ps (void * mv, __m512i index, __m512 v1, _MM_DOWNCONV_PS_ENUM
downconv, int scale, int hint)

Down-converts 16 packed single-precision (32-bit) floating-point elements in v1 and stores them in memory
locations starting at location mv at packed 32-bit integer indices stored in index scaled by scale using
downconv.

_mm512_mask_i32extscatter_ps

void _mm512_mask_i32extscatter_ps (void * mv, __mmask16 k, __m512i index, __m512 v1,
_MM_DOWNCONV_PS_ENUM downconv, int scale, int hint)

Down-converts 16 packed single-precision (32-bit) floating-point elements in v1 according to downconv and
stores them in memory locations starting at location mv at packed 32-bit integer indices stored in index
scaled by scale using mask k. Elements are brought into cache only when their corresponding mask bits are
set.

_mm512_i64scatter_pd

void _mm512_i64scatter_pd (void* base_addr, __m512i vindex, __m512d a, int scale)
Scatters double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale).

_mm512_mask_i64scatter_pd

void _mm512_mask_i64scatter_pd (void* base_addr, __mmask8 k, __m512i vindex, __m512d a, int
scale)

 Intel® C++ Compiler Classic Developer Guide and Reference

1320

Scatters double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k. Elements are brought into cache only when their
corresponding mask bits are set.

_mm512_i64scatter_ps

void _mm512_i64scatter_ps (void* base_addr, __m512i vindex, __m256 a, int scale)
Scatters single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale).

_mm512_mask_i64scatter_ps

void _mm512_mask_i64scatter_ps (void* base_addr, __mmask8 k, __m512i vindex, __m256 a, int scale)
Scatters single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit
elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each
index is scaled by the factor in scale) subject to mask k. Elements are brought into cache only when their
corresponding mask bits are set.

_mm512_prefetch_i32scatter_pd

void _mm512_prefetch_i32scatter_pd (void* base_addr, __m256i vindex, int scale, int hint)
Prefetches double-precision (64-bit) floating-point elements with intent to write using 32-bit indices. 64-bit
elements are brought into cache from addresses starting at base_addr and offset by each 32-bit element in
vindex (each index is scaled by the factor in scale).

_mm512_mask_prefetch_i32scatter_pd

extern void __cdecl _mm512_mask_prefetch_i32gather_pd(__m256i vindex, __mmask8 k, void const*
base_addr, int scale, int hint);

Prefetches double-precision (64-bit) floating-point elements with intent to write using 32-bit indices. 64-bit
elements are brought into cache from addresses starting at base_addr and offset by each 32-bit element in
vindex (each index is scaled by the factor in scale) subject to mask k. Elements are brought into cache only
when their corresponding mask bits are set.

_mm512_prefetch_i32scatter_ps

void _mm512_prefetch_i32scatter_ps (void* mv, __m512i index, int scale, int hint)
Prefetches 16 single-precision (32-bit) floating-point elements in memory starting at location mv at packed
32-bit integer indices stored in index scaled by scale.

_mm512_mask_prefetch_i32scatter_ps

void _mm512_mask_prefetch_i32scatter_ps (void* mv, __mmask16 k, __m512i index, int scale, int
hint)

Prefetches 16 single-precision (32-bit) floating-point elements in memory starting at location mv at packed
32-bit integer indices stored in index scaled by scale. Elements are brought into cache only when their
corresponding mask bits in mask k are set.

_mm512_prefetch_i64scatter_pd

void _mm512_prefetch_i64scatter_pd (void* base_addr, __m512i vindex, int scale, int hint)

Compiler Reference

1321

Prefetches double-precision (64-bit) floating-point elements with intent to write into memory using 64-bit
indices. 64-bit elements are brought into cache from addresses starting at base_addr and offset by each 64-
bit element in vindex (each index is scaled by the factor in scale).

_mm512_mask_prefetch_i64scatter_pd

void _mm512_mask_prefetch_i64scatter_pd (void* base_addr, __mmask8 mask, __m512i vindex, int
scale, int hint)

Prefetches double-precision (64-bit) floating-point elements with intent to write into memory using 64-bit
indices. 64-bit elements are brought into cache from addresses starting at base_addr and offset by each 64-
bit element in vindex (each index is scaled by the factor in scale) subject to mask k. Elements are brought
into cache only when their corresponding mask bits are set.

_mm512_prefetch_i64scatter_ps

void _mm512_prefetch_i64scatter_ps (void* base_addr, __m512i vindex, int scale, int hint)
Prefetches single-precision (32-bit) floating-point elements with intent to write into memory using 64-bit
indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in
vindex (each index is scaled by the factor in scale).

_mm512_mask_prefetch_i64scatter_ps

void _mm512_mask_prefetch_i64scatter_ps (void* base_addr, __mmask8 mask, __m512i vindex, int
scale, int hint)

Prefetches single-precision (32-bit) floating-point elements with intent to write into memory using 64-bit
indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in
vindex (each index is scaled by the factor in scale) subject to mask k. Elements are brought into cache only
when their corresponding mask bits are set.

Intrinsics for Integer Gather and Scatter Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_i32gather_epi32,
_mm512_mask_i32gather_epi32

Gathers 32-bit integers from memory
using 32-bit indices.

VPGATHERDD

_mm512_i32gather_epi64,
_mm512_mask_i32gather_epi64

Gathers 64-bit integers from memory
using 32-bit indices.

VPGATHERDQ

_mm512_i64gather_epi32,
_mm512_mask_i64gather_epi32

Gathers 32-bit integers from memory
using 64-bit indices.

VPGATHERQD

_mm512_i64gather_epi64,
_mm512_mask_i64gather_epi64

Gathers 64-bit integers from memory
using 64-bit indices.

VPGATHERQQ

_mm512_i32scatter_epi32,
_mm512_mask_i32scatter_epi32

Scatters 32-bit integers into memory
using 32-bit indices.

VPSCATTERDD

 Intel® C++ Compiler Classic Developer Guide and Reference

1322

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_i32scatter_epi64,
_mm512_mask_i32scatter_epi64

Scatters 64-bit integers into memory
using 32-bit indices.

VPSCATTERDQ

_mm512_i64scatter_epi32,
_mm512_mask_i64scatter_epi32

Scatters 32-bit integers into memory
using 64-bit indices.

VPSCATTERQD

_mm512_i64scatter_epi64,
_mm512_mask_i64scatter_epi64

Scatters 64-bit integers into memory
using 64-bit indices.

VPSCATTERQQ

variable definition
vindex a vector of indices

base_addr a pointer to the base address in memory

scale a compilation-time literal constant that is used as the vector indices scale. Possible values are
1, 2, 4, or 8.

k mask used as a selector

a first source vector element

src source element to use based on the mask result

_mm512_i32gather_epi32

__m512i _mm512_i32gather_epi32(__m512i vindex, void const* base_addr, int scale)
Gathers 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale).

_mm512_mask_i32gather_epi32

__m512i _mm512_mask_i32gather_epi32(__m512i src, __mmask16 k, __m512i vindex, void const*
base_addr, int scale)

Gathers 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale). Gathered elements are merged with src using mask k. When the corresponding mask bit is not set,
elements are copied from src.

_mm512_i32gather_epi64

__m512i _mm512_mask_i32gather_epi64 (__m512i src, __mmask8 k, __m256i vindex, void const*
base_addr, int scale)

Gathers 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale).

Compiler Reference

1323

_mm512_mask_i32gather_epi64

__m512i _mm512_mask_i32gather_epi64 (__m512i src, __mmask8 k, __m256i vindex, void const*
base_addr, int scale)

Gathers 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale). Gathered elements are merged with src using mask k. When the corresponding mask bit is not set,
elements are copied from src.

_mm512_i64gather_epi32

__m256i _mm512_i64gather_epi32 (__m512i vindex, void const* base_addr, int scale)
Gathers 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale).

_mm512_mask_i64gather_epi32

__m256i _mm512_mask_i64gather_epi32 (__m256i src, __mmask8 k, __m512i vindex, void const*
base_addr, int scale)

Gathers 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale). Gathered elements are merged with src using mask k. When the corresponding mask bit is not set,
elements are copied from src.

_mm512_i64gather_epi64

__m512i _mm512_i64gather_epi64 (__m512i vindex, void const* base_addr, int scale)
Gathers 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale).

_mm512_mask_i64gather_epi64

__m512i _mm512_mask_i64gather_epi64 (__m512i src, __mmask8 k, __m512i vindex, void const*
base_addr, int scale)

Gathers 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale). Gathered elements are merged with src using mask k. When the corresponding mask bit is not set,
elements are copied from src.

_mm512_i32scatter_epi32

void mm512_i32scatter_epi32(void* base_addr, __m512i vindex, __m512i a, int scale)
Scatters 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale).

_mm512_mask_i32scatter_epi32

void _mm512_mask_i32scatter_epi32(void* base_addr, __mmask16 k, __m512i vindex, __m512i a, int
scale

Scatters 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k. When the corresponding mask bit is not set, elements are not stored.

 Intel® C++ Compiler Classic Developer Guide and Reference

1324

_mm512_i32scatter_epi64

void _mm512_i32scatter_epi64 (void* base_addr, __m256i vindex, __m512i a, int scale)
Scatters 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in
scale).

_mm512_mask_i32scatter_epi64

void _mm512_mask_i32scatter_epi64 (void* base_addr, __mmask8 k, __m256i vindex, __m512i a, int
scale)

Scatters 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k. When the corresponding mask bit is not set, elements are not stored.

_mm512_i64scatter_epi32

void _mm512_i64scatter_epi32 (void* base_addr, __m512i vindex, __m256i a, int scale)
Scatters 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale).

_mm512_mask_i64scatter_epi32

void _mm512_mask_i64scatter_epi32 (void* base_addr, __mmask8 k, __m512i vindex, __m256i a, int
scale)

Scatters 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k. When the corresponding mask bit is not set, elements are not stored.

_mm512_i64scatter_epi64

void _mm512_i64scatter_epi64 (void* base_addr, __m512i vindex, __m512i a, int scale)
Scatters 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in
scale).

_mm512_mask_i64scatter_epi64

void _mm512_mask_i64scatter_epi64 (void* base_addr, __mmask8 k, __m512i vindex, __m512i a, int
scale)

Scatters 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses
starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale)
subject to mask k. When the corresponding mask bit is not set, elements are not stored.

Intrinsics for Insert and Extract Operations

Intrinsics for FP Insert and Extract Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Compiler Reference

1325

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_extractf32x4_ps,
_mm512_mask_extractf32x4_ps,
_mm512_maskz_extractf32x4_ps

Extract float32 values. VEXTRACTF32X4

_mm512_extractf64x4_pd_mm512_m
ask_extractf64x4_pd,
_mm512_maskz_extractf64x4_pd

Extract float64 values. VEXTRACTF64X4

_mm_extract_ps Extract packed float32 values. EXTRACTPS

_mm512_getmant_pd,
_mm512_mask_getmant_pd,
_mm512_maskz_getmant_pd
_mm512_getmant_round_pd,
_mm512_mask_getmant_round_pd,
_mm512_maskz_getmant_round_pd

Extract float64 vector of
normalized mantissas from
float64 vector.

VGETMANTPD

_mm512_getmant_ps,
_mm512_mask_getmant_ps,
_mm512_maskz_getmant_ps
_mm512_getmant_round_ps,
_mm512_mask_getmant_round_ps,
_mm512_maskz_getmant_round_ps

Extract float32 vector of
normalized mantissas from
float32 vector.

VGETMANTPS

_mm512_getmant_ss,
_mm512_mask_getmant_ss,
_mm512_maskz_getmant_ss
_mm512_getmant_round_ss,
_mm512_mask_getmant_round_ss,
_mm512_maskz_getmant_round_ss

Extract float32 vector of
normalized mantissas from
float32 scalar.

VGETMANTSS

_mm512_getmant_sd,
_mm512_mask_getmant_sd,
_mm512_maskz_getmant_sd
_mm512_getmant_round_sd,
_mm512_mask_getmant_round_sd,
_mm512_maskz_getmant_round_sd

Extract float64 of normalized
mantissas from float64 scalar.

VGETMANTSD

_mm512_insertf32x4,
_mm512_mask_insertf32x4,
_mm512_maskz_insertf32x4

Insert float32 values. VINSERTF32X4

_mm512_insertf64x4,
_mm512_mask_insertf64x4,
_mm512_mask_insertf64x4

Insert float64 values. VINSERTF64X4

_mm_insert_ps Insert scalar float32 values. VINSERTPS/INSERTPS

 Intel® C++ Compiler Classic Developer Guide and Reference

1326

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

imm 8-bit immediate integer specifies offset for destination

tmp temporary storage location used during operation

interval Where _MM_MANTISSA_NORM_ENUM can be one of the following:

• _MM_MANT_NORM_1_2 - interval [1, 2)
• _MM_MANT_NORM_p5_2 - interval [1.5, 2)
• _MM_MANT_NORM_p5_1 - interval [1.5, 1)
• _MM_MANT_NORM_p75_1p5 - interval [0.75, 1.5)

sign Where _MM_MANTISSA_SIGN_ENUM can be one of the following:

• _MM_MANT_SIGN_src - sign = sign(SRC)
• _MM_MANT_SIGN_zero - sign = 0
• _MM_MANT_SIGN_nan - DEST = NaN if sign(SRC) = 1

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_extractf32x4_ps

extern __m128 __cdecl _mm512_extractf32x4_ps(__m512 a, int imm);
Extracts 128 bits (composed of four packed float32 elements) from a, selected with imm, and stores the
result.

_mm512_mask_extractf32x4_ps

extern __m128 __cdecl _mm512_mask_extractf32x4_ps(__m128 src, __mmask8 k, __m512 a, int imm);
Extracts 128 bits (composed of four packed float32 elements) from a, selected with imm, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_extractf32x4_ps

extern __m128 __cdecl _mm512_maskz_extractf32x4_ps(__mmask8 k, __m512, int imm);
Extracts 128 bits (composed of four packed float32 elements) from a, selected with imm, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1327

_mm512_extractf64x4_pd

extern __m256d __cdecl _mm512_extractf64x4_pd(__m512d a, int imm);
Extracts 256 bits (composed of four packed float64 elements) from a, selected with imm, and stores the
result.

_mm512_mask_extractf64x4_pd

extern __m256d __cdecl _mm512_mask_extractf64x4_pd(__m256d src, __mmask8 k, __m512d a, int imm);
Extracts 256 bits (composed of four packed float64 elements) from a, selected with imm, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_extractf64x4_pd

extern __m256d __cdecl _mm512_maskz_extractf64x4_pd(__mmask8 k, __m512d a, int imm);
Extracts 256 bits (composed of four packed float64 elements) from a, selected with imm, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_insertf32x4

extern __m512 __cdecl _mm512_insertf32x4(__m512 a, __m128 b, int imm);
Copies a to destination, then inserts 128 bits (composed of four packed float32 elements) from b into
destination at the location specified by imm.

_mm512_mask_insertf32x4

extern __m512 __cdecl _mm512_mask_insertf32x4(__m512 src, __mmask16 k, __m512 a, __m128 b, int
imm);

Copies a to destination, then inserts 128 bits (composed of four packed float32 elements) from b into
destination at the location specified by imm.

_mm512_maskz_insertf32x4

extern __m512 __cdecl _mm512_maskz_insertf32x4(__mmask16 k, __m512 a, __m128 b, int imm);
Copies a to tmp, then inserts 128 bits (composed of four packed float32 elements) from b into tmp at the
location specified by imm. Stores tmp to destination using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_insertf64x4

extern __m512d __cdecl _mm512_insertf64x4(__m512d a, __m256d b, int imm);
Copies a to tmp, then inserts 128 bits (composed of four packed float32 elements) from b into tmp at the
location specified by imm. Stores tmp to destination using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_insertf64x4

extern __m512d __cdecl _mm512_mask_insertf64x4(__m512d src, __mmask8 k, __m512d a, __m256d b,
int imm);

Copies a to destination, then inserts 256 bits (composed of four packed float64 elements) from b into
destination at the location specified by imm.

 Intel® C++ Compiler Classic Developer Guide and Reference

1328

_mm512_maskz_insertf64x4

extern __m512d __cdecl _mm512_maskz_insertf64x4(__mmask8 k, __m512d a, __m256d b, int imm);
Copies a to tmp, then inserts 256 bits (composed of four packed float64 elements) from b into tmp at the
location specified by imm. Store tmp to destination using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_getmant_pd

extern __m512d __cdecl _mm512_getmant_pd(__m512d a, _MM_MANTISSA_NORM_ENUM interval,
_MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of packed float64 elements in a, and stores the result. This intrinsic essentially
calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the
sign depends on sign and the source sign.

_mm512_mask_getmant_pd

extern __m512d __cdecl _mm512_mask_getmant_pd(__m512d src, __mmask8 k, __m512d a,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of packed float64 elements in a, and stores the result. This intrinsic essentially
calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the
sign depends on sign and the source sign.

_mm512_maskz_getmant_pd

extern __m512d __cdecl _mm512_maskz_getmant_pd(__mmask8 k, __m512d a, _MM_MANTISSA_NORM_ENUM
interval, _MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of packed float64 elements in a, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates
±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the sign depends
on sign and the source sign.

_mm512_getmant_round_pd

extern __m512d __cdecl _mm512_getmant_round_pd(__m512d a, _MM_MANTISSA_NORM_ENUM interval,
_MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of packed float64 elements in a, and stores the result. This intrinsic essentially
calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the
sign depends on sign and the source sign.

_mm512_mask_getmant_round_pd

extern __m512d __cdecl _mm512_mask_getmant_round_pd(__m512d src, __mmask8 k, __m512d a,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of packed float64 elements in a, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates
±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the sign depends
on sign and the source sign.

_mm512_maskz_getmant_round_pd

extern __m512d __cdecl _mm512_maskz_getmant_round_pd(__mmask8 k, __m512d a,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

Compiler Reference

1329

Normalizes the mantissas of packed float64 elements in a, and stores the result using zeromask k (elements
are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|
x.significand|, where k depends on the interval range defined by interval and the sign depends on sign
and the source sign.

_mm512_getmant_ps

extern __m512 __cdecl _mm512_getmant_ps(__m512 a, _MM_MANTISSA_NORM_ENUM interval,
_MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of packed float32 elements in a, and stores the result. This intrinsic essentially
calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the
sign depends on sign and the source sign.

_mm512_mask_getmant_ps

extern __m512 __cdecl _mm512_mask_getmant_ps(__m512 src, __mmask16 k, __m512 a,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of packed float32 elements in a, and stores the result. This intrinsic essentially
calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the
sign depends on sign and the source sign.

_mm512_maskz_getmant_ps

extern __m512 __cdecl _mm512_maskz_getmant_ps(__mmask16 k, __m512 a, _MM_MANTISSA_NORM_ENUM
interval, _MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of packed float32 elements in a, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates
±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the sign depends
on sign and the source sign.

_mm512_getmant_round_ps

extern __m512 __cdecl _mm512_getmant_round_ps(__m512 a, _MM_MANTISSA_NORM_ENUM interval,
_MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of packed float32 elements in a, and stores the result. This intrinsic essentially
calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the
sign depends on sign and the source sign.

_mm512_mask_getmant_round_ps

extern __m512 __cdecl _mm512_mask_getmant_round_ps(__m512 src, __mmask16 k, __m512 a,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of packed float32 elements in a, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates
±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the sign depends
on sign and the source sign.

_mm512_maskz_getmant_round_ps

extern __m512 __cdecl _mm512_maskz_getmant_round_ps(__mmask16 k, __m512 a,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1330

Normalizes the mantissas of packed float32 elements in a, and stores the result using zeromask k (elements
are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|
x.significand|, where k depends on the interval range defined by interval and the sign depends on sign
and the source sign.

_mm_getmant_round_sd

extern __m128d __cdecl _mm_getmant_round_sd(__m128d a, __m128d b, _MM_MANTISSA_NORM_ENUM
interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of the lower float64 element in a, stores the result in the lower destination
element, and copies the upper element from b to the upper destination element. This intrinsic essentially
calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the
sign depends on sign and the source sign.

_mm_mask_getmant_round_sd

extern __m128d __cdecl _mm_mask_getmant_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of the lower float64 element in a, store the result in the lower destination element,
and copies the upper element from b to the upper destination element. This intrinsic essentially calculates
±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the sign depends
on sign and the source sign.

_mm_maskz_getmant_round_sd

extern __m128d __cdecl _mm_maskz_getmant_round_sd(__mmask8 k, __m128d a, __m128d b,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of the lower float64 element in a, stores the result in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper element
from b to the upper destination element. This intrinsic essentially calculates ±(2^k)*|x.significand|,
where k depends on the interval range defined by interval and the sign depends on sign and the source sign.

_mm_getmant_sd

extern __m128d __cdecl _mm_getmant_sd(__m128d a, __m128d b, _MM_MANTISSA_NORM_ENUM interval,
_MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of the lower float64 element in a, store the result in the lower destination element,
and copies the upper element from b to the upper destination element. This intrinsic essentially calculates
±(2^k)*|x.significand|, where k depends on the interval range defined by interval and the sign depends
on sign and the source sign.

_mm_mask_getmant_sd

extern __m128d __cdecl _mm_mask_getmant_sd(__m128d a, __mmask8 k, __m128d b, __m128d c,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign);

Normalize the mantissas of the lower float64 element in a, store the result in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element
from b to the upper destination element. This intrinsic essentially calculates ±(2^k)*|x.significand|,
where k depends on the interval range defined by interval and the sign depends on sign and the source sign.

Compiler Reference

1331

_mm_maskz_getmant_sd

extern __m128d __cdecl _mm_maskz_getmant_sd(__mmask8 k, __m128d a, __m128d b,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of the lower float64 element in a, stores the result in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper element from
b to the upper destination element. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k
depends on the interval range defined by interval and the sign depends on sign and the source sign.

_mm_getmant_round_ss

extern __m128 __cdecl _mm_getmant_round_ss(__m128 a, __m128 b, _MM_MANTISSA_NORM_ENUM interval,
_MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of the lower float32 element in a, stores the result in the lower destination
element, and copies the upper three packed elements from b to the upper destination elements. This intrinsic
essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval
and the sign depends on sign and the source sign.

_mm_mask_getmant_round_ss

extern __m128 __cdecl _mm_mask_getmant_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of the lower float32 element in a, stores the result in the lower destination
element, and copies the upper three packed elements from b to the upper destination elements. This intrinsic
essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval
and the sign depends on sign and the source sign.

_mm_maskz_getmant_round_ss

extern __m128 __cdecl _mm_maskz_getmant_round_ss(__mmask8 k, __m128 a, __m128 b,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign, int round);

Normalizes the mantissas of the lower float32 element in a, stores the result in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper three
packed elements from b to the upper destination elements. This intrinsic essentially calculates ±(2^k)*|
x.significand|, where k depends on the interval range defined by interval and the sign depends on sign
and the source sign.

_mm_getmant_ss

extern __m128 __cdecl _mm_getmant_ss(__m128 a, __m128 b, _MM_MANTISSA_NORM_ENUM interval,
_MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of the lower float32 element in a, stores the result in the lower destination
element, and copies the upper three packed elements from b to the upper destination elements. This intrinsic
essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interval
and the sign depends on sign and the source sign.

_mm_mask_getmant_ss

extern __m128 __cdecl _mm_mask_getmant_ss(__m128 a, __mmask8 k, __m128 b, __m128 c,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign);

 Intel® C++ Compiler Classic Developer Guide and Reference

1332

Normalizes the mantissas of the lower float32 element in a, stores the result in the lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies the upper three
packed elements from b to the upper destination elements. This intrinsic essentially calculates ±(2^k)*|
x.significand|, where k depends on the interval range defined by interval and the sign depends on sign
and the source sign.

_mm_maskz_getmant_ss

extern __m128 __cdecl _mm_maskz_getmant_ss(__mmask8 k, __m128 a, __m128 b,
_MM_MANTISSA_NORM_ENUM interval, _MM_MANTISSA_SIGN_ENUM sign);

Normalizes the mantissas of the lower float32 element in a, stores the result in the lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies the upper three packed
elements from b to the upper destination elements. This intrinsic essentially calculates ±(2^k)*|
x.significand|, where k depends on the interval range defined by interval and the sign depends on sign
and the source sign.

Intrinsics for Integer Insert and Extract Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_extracti32x4_epi32,
_mm512_mask_extracti32x4_epi32,
_mm512_maskz_extracti32x4_epi32

Extracts int32 values. VEXTRACTI32X4

_mm512_extracti64x4_epi64,
_mm512_mask_extracti64x4_epi64,
_mm512_maskz_extracti64x4_epi64

Extracts int64 values. VEXTRACTI64X4

_mm512_inserti32x4_epi32,
_mm512_mask_inserti32x4_epi32,
_mm512_maskz_inserti32x4_epi32

Inserts int32 values. VINSERTI32X4

_mm512_inserti64x4_epi64,
_mm512_mask_inserti64x4_epi64,
_mm512_maskz_inserti64x4_epi64

Inserts int64 values. VINSERTI64X4

variable definition
k writemask used as a selector

a first source vector element

mem_addr pointer to base address in memory

src source element to use based on writemask result

Compiler Reference

1333

variable definition
tmp temporary location specified by imm

imm specifies temporary location tmp

_mm512_extracti32x4_epi32

extern __m128i __cdecl _mm512_extracti32x4_epi32(__m512i a, int imm);
Extracts 128 bits (composed of four packed 32-bit integers) from a, selected with imm, and stores the result.

_mm512_mask_extracti32x4_epi32

extern __m128i __cdecl _mm512_mask_extracti32x4_epi32(__m128i src, __mmask8 k, __m512i a, int
imm);

Extracts 128 bits (composed of four packed 32-bit integers) from a, selected with imm, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_extracti32x4_epi32

extern __m128i __cdecl _mm512_maskz_extracti32x4_epi32(__mmask8 k, __m512i a, int imm);
Extracts 128 bits (composed of four packed 32-bit integers) from a, selected with imm, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_extracti64x4_epi64

extern __m256i __cdecl _mm512_extracti64x4_epi64(__m512i a, int imm);
Extracts 256 bits (composed of four packed int64 elements) from a, selected with imm, and stores the
result.

_mm512_mask_extracti64x4_epi64

extern __m256i __cdecl _mm512_mask_extracti64x4_epi64(__m256i src, __mmask8 k, __m512i a, int
imm);

Extracts 256 bits (composed of four packed int64 elements) from a, selected with imm, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_extracti64x4_epi64

extern __m256i __cdecl _mm512_maskz_extracti64x4_epi64(__mmask8 k, __m512i a, int imm);
Extracts 256 bits (composed of four packed int64 elements) from a, selected with imm, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_inserti32x4

extern __m512i __cdecl _mm512_inserti32x4(__m512i a, __m128i b, int imm);

 Intel® C++ Compiler Classic Developer Guide and Reference

1334

Copies a to destination, then inserts 128 bits (composed of four packed 32-bit integers) from b into
destination at the location specified by imm.

_mm512_mask_inserti32x4

extern __m512i __cdecl _mm512_mask_inserti32x4(__m512i src, __mmask16 k, __m512i a, __m128i b,
int imm);

Copies a to tmp, then inserts 128 bits (composed of four packed 32-bit integers) from b into tmp at the
location specified by imm. Store tmp to using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_inserti32x4

extern __m512i __cdecl _mm512_maskz_inserti32x4(__mmask16 k, __m512i a, __m128i b, int imm);
Copies a to tmp, then inserts 256 bits (composed of four packed double-precision (64-bit) floating-point
elements) from b into tmp at the location specified by imm.

Store tmp to destination using zeromask k (elements are zeroed out when the corresponding mask bit is not
set).

_mm512_inserti64x4

extern __m512i __cdecl _mm512_inserti64x4(__m512i a, __m256i b, int imm);
Copies a to tmp, then inserts 256 bits (composed of four packed int64 elements) from b into tmp at the
location specified by imm.

_mm512_mask_inserti64x4

extern __m512i __cdecl _mm512_mask_inserti64x4(__m512i src, __mmask8 k, __m512i a, __m256i b,
int imm);

Copies a to tmp, then inserts 256 bits (composed of four packed int64 elements) from b into tmp at the
location specified by imm. Store tmp to using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_inserti64x4

extern __m512i __cdecl _mm512_maskz_inserti64x4(__mmask8 k, __m512i a, __m256i b, int imm);
Copies a to tmp, then inserts 128 bits (composed of four packed 32-bit integers) from b into tmp at the
location specified by imm. Store tmp to using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

Intrinsics for Load and Store Operations

Intrinsics for FP Loads and Store Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Compiler Reference

1335

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_load_pd,
_mm512_mask_load_pd,
_mm512_maskz_load_pd
_mm512_store_pd,
_mm512_mask_store_pd

Load/store aligned float64 values
from memory.

MOVAPD

_mm512_load_ps,
_mm512_mask_load_ps,
_mm512_maskz_load_ps
_mm512_store_ps,
_mm512_mask_store_ps

Load/store aligned float32 values
from memory.

MOVAPS

_mm_mask_load_sd,
_mm_maskz_load_sd
_mm_mask_store_sd

Load/store lower float64 values
from memory.

VMOVSD

_mm_mask_load_ss,
_mm_maskz_load_ss
_mm_mask_store_ss

Load/store lower float32 values
from memory.

VMOVSS

_mm512_loadu_pd,
_mm512_mask_loadu_pd,
_mm512_maskz_loadu_pd
_mm512_storeu_pd,
_mm512_mask_storeu_pd

Load/store unaligned float64
values from memory.

VMOVUPD

_mm512_loadu_ps ,
_mm512_mask_loadu_ps,
_mm512_maskz_loadu_ps
_mm512_storeu_ps,
_mm512_mask_storeu_ps

Load/store unaligned float32
values from memory.

VMOVUPS

_mm512_stream_pd Store float64 values using non-
temporal hint.

VMOVNTPD

_mm512_stream_ps Store float32 values using non-
temporal hint.

VMOVNTPS

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

mem_addr pointer to base address in memory

 Intel® C++ Compiler Classic Developer Guide and Reference

1336

_mm512_load_pd

extern __m512d __cdecl _mm512_load_pd(void const* mem_addr);
Loads 512-bits (composed of eight packed float64 elements) from mem_addr into destination.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_load_pd

extern __m512d __cdecl _mm512_mask_load_pd(__m512d src, __mmask8 k, void const* mem_addr);
Loads packed float64 elements from mem_addr into destination using writemask k (elements are copied
from src when the corresponding mask bit is not set).

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_maskz_load_pd

extern __m512d __cdecl _mm512_maskz_load_pd(__mmask8 k, void const* mem_addr);
Loads packed float64 elements from mem_addr into destination using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_load_ps

extern __m512 __cdecl _mm512_load_ps(void const* mem_addr);
Loads 512-bits (composed of sixteen packed float32 elements) from mem_addr into destination.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_load_ps

extern __m512 __cdecl _mm512_mask_load_ps(__m512 src, __mmask16 k, void const* mem_addr);
Loads packed float32 elements from mem_addr into destination using writemask k (elements are copied
from src when the corresponding mask bit is not set).

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_maskz_load_ps

extern __m512 __cdecl _mm512_maskz_load_ps(__mmask16 k, void const* mem_addr);
Loads packed float32 elements from mem_addr into destination using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm_mask_load_sd

extern __m128d __cdecl _mm_mask_load_sd(__m128d src, __mmask8 k, const double* mem_addr);
Loads float64 element from mem_addr into lower element of destination using writemask k (the element is
copied from src when mask bit 0 is not set), and sets upper destination element to zero.

mem_addr must be aligned on a 16-byte boundary or a general-protection exception will be generated.

_mm_maskz_load_sd

extern __m128d __cdecl _mm_maskz_load_sd(__mmask8 k, const double* mem_addr);

Compiler Reference

1337

Loads a float64 element from mem_addr into lower destination element using zeromask k (the element is
zeroed out when mask bit 0 is not set), and sets upper destination elements to zero.

mem_addr must be aligned on a 16-byte boundary or a general-protection exception will be generated.

_mm_mask_load_ss

extern __m128 __cdecl _mm_mask_load_ss(__m128 src, __mmask8 k, const float* mem_addr);
Loads float32 element from mem_addr into lower destination element using writemask k (the element is
copied from src when mask bit 0 is not set), and sets upper destination elements to zero.

mem_addr must be aligned on a 16-byte boundary or a general-protection exception will be generated.

_mm_maskz_load_ss

extern __m128 __cdecl _mm_maskz_load_ss(__mmask8 k, const float* mem_addr);
Loads float32 element from mem_addr into lower element of destination using zeromask k (the element is
zeroed out when mask bit 0 is not set), and sets upper destination elements to zero.

mem_addr must be aligned on a 16-byte boundary or a general-protection exception will be generated.

_mm512_loadu_pd

extern __m512d __cdecl _mm512_loadu_pd(void const* mem_addr);
Loads 512-bits (composed of eight packed float64 elements) from mem_addr into destination.

mem_addr does not need to be aligned on any particular boundary.

_mm512_mask_loadu_pd

extern __m512d __cdecl _mm512_mask_loadu_pd(__m512d src, __mmask8 k, void const* mem_addr);
Loads packed float64 elements from mem_addr into destination using writemask k (elements are copied
from src when the corresponding mask bit is not set).

mem_addr does not need to be aligned on any particular boundary.

_mm512_maskz_loadu_pd

extern __m512d __cdecl _mm512_maskz_loadu_pd(__mmask8 k, void const* mem_addr);
Loads packed float64 elements from mem_addr into destination using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

mem_addr does not need to be aligned on any particular boundary.

_mm512_loadu_ps

extern __m512 __cdecl _mm512_loadu_ps(void const* mem_addr);
Loads 512-bits (composed of sixteen packed float32 elements) from mem_addr into destination.

_mm512_mask_loadu_ps

extern __m512 __cdecl _mm512_mask_loadu_ps(__m512 src, __mmask16 k, void const* mem_addr);
Loads packed float32 elements from mem_addr into destination using writemask k (elements are copied
from src when the corresponding mask bit is not set).

_mm512_maskz_loadu_ps

extern __m512 __cdecl _mm512_maskz_loadu_ps(__mmask16 k, void const* mem_addr);

 Intel® C++ Compiler Classic Developer Guide and Reference

1338

Loads packed float32 elements from mem_addr into destination using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

mem_addr does not need to be aligned on any particular boundary.

_mm512_store_pd

extern void __cdecl _mm512_store_pd(void* mem_addr, __m512d a);
Stores 512-bits (composed of eight packed float64 elements) from a into mem_addr.

_mm512_mask_store_pd

extern void __cdecl _mm512_mask_store_pd(void* mem_addr, __mmask8 k, __m512d a);
Stores packed float64 elements from a into mem_addr using writemask k.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_store_ps

extern void __cdecl _mm512_store_ps(void* mem_addr, __m512 a);
Store 512-bits (composed of sixteen packed float32 elements) from a into mem_addr.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_store_ps

extern void __cdecl _mm512_mask_store_ps(void* mem_addr, __mmask16 k, __m512 a);
Store packed float32 elements from a into mem_addr using writemask k.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_stream_pd

extern void __cdecl _mm512_stream_pd(void* mem_addr, __m512d a);
Stores 512-bits (composed of eight packed float64 elements) from a into mem_addr using a non-temporal
memory hint.

_mm512_stream_ps

extern void __cdecl _mm512_stream_ps(void* mem_addr, __m512 a);
Stores 512-bits (composed of sixteen packed float32 elements) from a into mem_addr using a non-temporal
memory hint.

_mm_mask_store_sd

extern void __cdecl _mm_mask_store_sd(double* mem_addr, __mmask8 k, __m128d a);
Stores lower float64 element from a into mem_addr using writemask k.

mem_addr must be aligned on a 16-byte boundary or a general-protection exception will be generated.

_mm_mask_store_ss

extern void __cdecl _mm_mask_store_ss(float* mem_addr, __mmask8 k, __m128 a);
Stores lower float32 element from a into mem_addr using writemask k.

mem_addr must be aligned on a 16-byte boundary or a general-protection exception will be generated.

Compiler Reference

1339

_mm512_storeu_pd

extern void __cdecl _mm512_storeu_pd(void* mem_addr, __m512d a);
Stores 512-bits (composed of eight packed float64 elements) from a into mem_addr.

mem_addr does not need to be aligned on any particular boundary.

_mm512_mask_storeu_pd

extern void __cdecl _mm512_mask_storeu_pd(void* mem_addr, __mmask8 k, __m512d a);
Stores packed float64 elements from a into mem_addr using writemask k.

mem_addr does not need to be aligned on any particular boundary.

_mm512_storeu_ps

extern void __cdecl _mm512_storeu_ps(void* mem_addr, __m512 a);
Stores 512-bits (composed of sixteen packed float32 elements) from a into mem_addr.

mem_addr does not need to be aligned on any particular boundary.

_mm512_mask_storeu_ps

extern void __cdecl _mm512_mask_storeu_ps(void* mem_addr, __mmask16 k, __m512 a);
Stores packed float32 elements from a into mem_addr using writemask k.

Intrinsics for Integer Load and Store Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_load_epi32,
_mm512_mask_load_epi32,
_mm512_maskz_load_epi32

Load packed int32 elements from
memory

VMOVDQA32

_mm512_load_epi64,
_mm512_mask_load_epi64,
_mm512_maskz_load_epi64

Load packed int64 elements from
memory

VMOVDQA64

_mm512_loadu_si512 Unaligned load of 512-bit scalar
integer

VMOVDQU32

_mm512_mask_loadu_epi32,
_mm512_maskz_loadu_epi32

Unaligned load of packed int32
elements

VMOVDQU32

_mm512_mask_loadu_epi64,
_mm512_maskz_loadu_epi64

Unaligned load of packed int64
elements

VMOVDQU64

 Intel® C++ Compiler Classic Developer Guide and Reference

1340

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_stream_load_si512 Load double quadword using
non-temporal aligned hint.

MOVNTDQA

_mm512_mask_storeu_epi64 Store unaligned packed int64
elements

VMOVDQU64

_mm512_stream_si512 Store packed integer values
using non-temporal hint.

VMOVNTDQA

variable definition
k writemask used as a selector

a first source vector element

mem_addr pointer to base address in memory

src source element to use based on writemask result

_mm512_load_si512

extern __m512i __cdecl _mm512_load_si512(void const* mem_addr);
Load 512-bits of integer data from memory into destination.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_loadu_si512

extern __m512i __cdecl _mm512_loadu_si512(void const* mem_addr);
Load 512-bits of integer data from memory into destination.

mem_addr does not need to be aligned on any particular boundary.

_mm512_load_epi32

extern __m512i __cdecl _mm512_load_epi32(void const* mem_addr);
Load 512-bits (composed of sixteen packed 32-bit integers) from memory into destination.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_load_epi32

extern __m512i __cdecl _mm512_mask_load_epi32(__m512i src, __mmask16 k, void const* mem_addr);
Load packed int32 elements from memory into destination using writemask k (elements are copied from src
when the corresponding mask bit is not set).

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_maskz_load_epi32

extern __m512i __cdecl _mm512_maskz_load_epi32(__mmask16 k, void const* mem_addr);

Compiler Reference

1341

Load packed int32 elements from memory into destination using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_load_epi64

extern __m512i __cdecl _mm512_load_epi64(void const* mem_addr);
Load 512-bits (composed of eight packed int64 elements) from memory into destination.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_load_epi64

extern __m512i __cdecl _mm512_mask_load_epi64(__m512i src, __mmask8 k, void const* mem_addr);
Load packed int64 elements from memory into destination using writemask k (elements are copied from src
when the corresponding mask bit is not set).

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_maskz_load_epi64

extern __m512i __cdecl _mm512_maskz_load_epi64(__mmask8 k, void const* mem_addr);
Load packed int64 elements from memory into destination using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_loadu_epi32

extern __m512i __cdecl _mm512_mask_loadu_epi32(__m512i src, __mmask16 k, void const* mem_addr);
Load packed int32 elements from memory into destination using writemask k (elements are copied from src
when the corresponding mask bit is not set).

mem_addr does not need to be aligned on any particular boundary.

_mm512_maskz_loadu_epi32

extern __m512i __cdecl _mm512_maskz_loadu_epi32(__mmask16 k, void const* mem_addr);
Load packed int32 elements from memory into destination using zeromask k (elements are zeroed out when
the corresponding mask bit is not set).

mem_addr does not need to be aligned on any particular boundary.

_mm512_mask_loadu_epi64

extern __m512i __cdecl _mm512_mask_loadu_epi64(__m512i src, __mmask8 k, void const* mem_addr);
Load packed int64 elements from memory into destination using writemask k (elements are copied from src
when the corresponding mask bit is not set).

mem_addr does not need to be aligned on any particular boundary.

 Intel® C++ Compiler Classic Developer Guide and Reference

1342

_mm512_stream_load_si512

extern __m512i __cdecl _mm512_stream_load_si512(void * mem_addr);
Load 512-bits of integer data from memory into destination using a non-temporal memory hint.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_store_epi32

extern void __cdecl _mm512_store_epi32(void* mem_addr, __m512i a);
Store 512-bits (composed of sixteen packed 32-bit integers) from a into memory.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_store_epi32

extern void __cdecl _mm512_mask_store_epi32(void* mem_addr, __mmask16 k, __m512i a);
Store packed int32 elements from a into memory using writemask k.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_store_si512

extern void __cdecl _mm512_store_si512(void* mem_addr, __m512i a);
Store 512-bits of integer data from a into memory.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_store_epi64

extern void __cdecl _mm512_store_epi64(void* mem_addr, __m512i a);
Store 512-bits (composed of eight packed int64 elements) from a into memory.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_store_epi64

extern void __cdecl _mm512_mask_store_epi64(void* mem_addr, __mmask8 k, __m512i a);
Store packed int64 elements from a into memory using writemask k.

mem_addr must be aligned on a 64-byte boundary or a general-protection exception will be generated.

_mm512_mask_storeu_epi32

extern void __cdecl _mm512_mask_storeu_epi32(void* mem_addr, __mmask16 k, __m512i a);
Store packed int32 elements from a into memory using writemask k.

mem_addr does not need to be aligned on any particular boundary.

_mm512_mask_storeu_epi64

extern void __cdecl _mm512_mask_storeu_epi64(void* mem_addr, __mmask8 k, __m512i a);
Store packed int64 elements from a into memory using writemask k.

Compiler Reference

1343

mem_addr does not need to be aligned on any particular boundary.

_mm512_storeu_si512

extern void __cdecl _mm512_storeu_si512(void* mem_addr, __m512i a);
Store 512-bits of integer data from a into memory.

mem_addr does not need to be aligned on any particular boundary.

_mm512_stream_si512

extern void __cdecl _mm512_stream_si512(void* mem_addr, __m512i a);
Store 512-bits of integer data from a into memory using a non-temporal memory hint.

Intrinsics for Miscellaneous Operations

Intrinsics for Miscellaneous FP Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_fixupimm_pd,
_mm512_mask_fixupimm_pd,
_mm512_maskz_fixupimm_pd
_mm512_fixupimm_round_pd,
_mm512_mask_fixupimm_round_pd,
_mm512_maskz_fixupimm_round_pd

Fixes up packed float64
elements.

VFIXUPIMMPD

_mm512_fixupimm_ps,
_mm512_mask_fixupimm_ps,
_mm512_maskz_fixupimm_ps
_mm512_fixupimm_round_ps,
_mm512_mask_fixupimm_round_ps,
_mm512_maskz_fixupimm_round_ps

Fixes up packed float32
elements.

VFIXUPIMMPS

_mm_fixupimm_round_sd,
_mm_mask_fixupimm_round_sd,
_mm_maskz_fixupimm_round_sd

Fixes up scalar float64 elements. VFIXUPIMMSD

_mm_fixupimm_round_ss,
_mm_mask_fixupimm_round_ss,
_mm_maskz_fixupimm_round_ss

Fixes up scalar float32 elements. VFIXUPIMMSS

 Intel® C++ Compiler Classic Developer Guide and Reference

1344

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm_getexp_round_pd,
_mm_mask_getexp_round_pd,
_mm_maskz_getexp_round_pd
_mm_maskz_getexp_round_pd

Converts exponent of each
packed float64 element to a
rounded float64 number
representing the integer
exponent.

VGETEXPPD

_mm_getexp_round_ps,
_mm_mask_getexp_round_ps,
_mm_maskz_getexp_round_ps
_mm_maskz_getexp_round_ps

Converts exponent of each
packed float32 element to a
rounded float32 number
representing the integer
exponent.

VGETEXPPS

_mm_getexp_round_sd,
_mm_mask_getexp_round_sd,
_mm_maskz_getexp_round_sd
_mm_getexp_round_sd,
_mm_mask_getexp_round_sd,
_mm_maskz_getexp_round_sd

Converts exponent of each
scalar float64 element to a
rounded scalar float64 number
representing the integer
exponent.

VGETEXPSD

_mm_getexp_round_ss,
_mm_mask_getexp_round_ss,
_mm_maskz_getexp_round_ss

Converts exponent of each
scalar float32 element to a
rounded scalar float32 number
representing the integer
exponent.

VGETEXPSS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

c third source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

src source element

imm reporting flag

src source element

Compiler Reference

1345

_mm512_fixupimm_pd

extern __m512d __cdecl _mm512_fixupimm_pd(__m512d a, __m512d b, __m512i c, int imm);
Fixes up packed float64 elements in a and b using packed 64-bit integers in c, and stores the result.

imm is used to set the required flags reporting.

_mm512_mask_fixupimm_pd

extern __m512d __cdecl _mm512_mask_fixupimm_pd(__m512d a, __mmask8 k, __m512d b, __m512i c, int
imm);

Fixes up packed float64 elements in a and b using packed 64-bit integers in c, and stores the result using
writemask k (elements are copied from a when the corresponding mask bit is not set).

imm is used to set the required flags reporting.

_mm512_maskz_fixupimm_pd

extern __m512d __cdecl _mm512_maskz_fixupimm_pd(__mmask8 k, __m512d a, __m512d b, __m512i c, int
imm);

Fixes up packed float64 elements in a and b using packed 64-bit integers in c, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

imm is used to set the required flags reporting.

_mm512_fixupimm_round_pd

extern __m512d __cdecl _mm512_fixupimm_round_pd(__m512d a, __m512d b, __m512i c, int imm, int
round);

Fixes up packed float64 elements in a and b using packed 64-bit integers in c, and stores the result.

imm is used to set the required flags reporting.

_mm512_mask_fixupimm_round_pd

extern __m512d __cdecl _mm512_mask_fixupimm_round_pd(__m512d a, __mmask8 k, __m512d b, __m512i
c, int imm, int round);

Fixes up packed float64 elements in a and b using packed 64-bit integers in c, and stores the result using
writemask k (elements are copied from a when the corresponding mask bit is not set).

imm is used to set the required flags reporting.

_mm512_maskz_fixupimm_round_pd

extern __m512d __cdecl _mm512_maskz_fixupimm_round_pd(__mmask8 k, __m512d a, __m512d b, __m512i
c, int imm, int round);

Fixes up packed float64 elements in a and b using packed 64-bit integers in c, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

imm is used to set the required flags reporting.

_mm512_fixupimm_ps

extern __m512 __cdecl _mm512_fixupimm_ps(__m512 a, __m512 b, __m512i c, int imm);
Fixes up packed float32 elements in a and b using packed 32-bit integers in c, and stores the result. imm is
used to set the required flags reporting.

 Intel® C++ Compiler Classic Developer Guide and Reference

1346

_mm512_mask_fixupimm_ps

extern __m512 __cdecl _mm512_mask_fixupimm_ps(__m512 a, __mmask16 k, __m512 b, __m512i c, int
imm);

Fixes up packed float32 elements in a and b using packed 32-bit integers in c, and stores the result using
writemask k (elements are copied from a when the corresponding mask bit is not set).

imm is used to set the required flags reporting.

_mm512_maskz_fixupimm_ps

extern __m512 __cdecl _mm512_maskz_fixupimm_ps(__mmask16 k, __m512 a, __m512 b, __m512i c, int
imm);

Fixes up packed float32 elements in a and b using packed 32-bit integers in c, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

imm is used to set the required flags reporting.

_mm512_fixupimm_round_ps

extern __m512 __cdecl _mm512_fixupimm_round_ps(__m512 a, __m512 b, __m512i c, int imm, int
round);

Fixes up packed float32 elements in a and b using packed 32-bit integers in c, and stores the result. imm is
used to set the required flags reporting.

_mm512_mask_fixupimm_round_ps

extern __m512 __cdecl _mm512_mask_fixupimm_round_ps(__m512 a, __mmask16 k, __m512 b, __m512i,
int imm, int round);

Fixes up packed float32 elements in a and b using packed 32-bit integers in c, and stores the result using
writemask k (elements are copied from a when the corresponding mask bit is not set).

imm is used to set the required flags reporting.

_mm512_maskz_fixupimm_round_ps

extern __m512 __cdecl _mm512_maskz_fixupimm_round_ps(__mmask16 k, __m512 a, __m512 b, __m512i,
int imm, int round);

Fixes up packed float32 elements in a and b using packed 32-bit integers in c, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

imm is used to set the required flags reporting.

_mm_fixupimm_sd

extern __m128d __cdecl _mm_fixupimm_sd(__m128d a, __m128d b, __m128i c, int imm);
Fixes up lower float64 elements in a and b using lower 64-bit integer in c, stores the result in lower
destination element, and copies upper element from a to upper destination element.

imm is used to set the required flags reporting.

_mm_mask_fixupimm_sd

extern __m128d __cdecl _mm_mask_fixupimm_sd(__m128d a, __mmask8 k, __m128d b, __m128i c, int
imm);

Compiler Reference

1347

Fixes up lower float64 elements in a and b using lower 64-bit integer in c, stores the result in lower
destination element using writemask k (the element is copied from a when mask bit 0 is not set), and copies
upper element from a to upper destination element.

imm is used to set the required flags reporting.

_mm_maskz_fixupimm_sd

extern __m128d __cdecl _mm_maskz_fixupimm_sd(__mmask8 k, __m128d a, __m128d b, __m128i c, int
imm);

Fixes up lower float64 elements in a and b using lower 64-bit integer in c, stores the result in lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies
upper element from a to upper destination element.

imm is used to set the required flags reporting.

_mm_fixupimm_round_sd

extern __m128d __cdecl _mm_fixupimm_round_sd(__m128d a, __m128d b, __m128i c, int imm, int
round);

Fixes up lower float64 elements in a and b using lower 64-bit integer in c, stores the result in lower
destination element, and copies upper element from a to upper destination element.

imm is used to set the required flags reporting.

_mm_mask_fixupimm_round_sd

extern __m128d __cdecl _mm_mask_fixupimm_round_sd(__m128d a, __mmask8 k, __m128d b, __m128i c,
int imm, int round);

Fixes up lower float64 elements in a and b using lower 64-bit integer in c, stores the result in lower
destination element using writemask k (the element is copied from a when mask bit 0 is not set), and copies
upper element from a to upper destination element.

imm is used to set the required flags reporting.

_mm_maskz_fixupimm_round_sd

extern __m128d __cdecl _mm_maskz_fixupimm_round_sd(__mmask8 k, __m128d a, __m128d b, __m128i c,
int imm, int round);

Fixes up lower float64 elements in a and b using lower 64-bit integer in c, stores the result in lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies
upper element from a to upper destination element.

imm is used to set the required flags reporting.

_mm_fixupimm_round_ss

extern __m128 __cdecl _mm_fixupimm_round_ss(__m128 a, __m128 b, __m128i c, int imm, int round);
Fixes up lower float32 elements in a and b using lower 32-bit integer in c, stores the result in lower
destination element, and copies upper three packed elements from a to upper destination elements.

imm is used to set the required flags reporting.

_mm_mask_fixupimm_round_ss

extern __m128 __cdecl _mm_mask_fixupimm_round_ss(__m128 a, __mmask8 k, __m128 b, __m128i c, int
imm, int round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1348

Fixes up lower float32 elements in a and b using lower 32-bit integer in c, stores the result in lower
destination element using writemask k (the element is copied from a when mask bit 0 is not set), and copies
upper three packed elements from a to upper destination elements.

imm is used to set the required flags reporting.

_mm_maskz_fixupimm_round_ss

extern __m128 __cdecl _mm_maskz_fixupimm_round_ss(__mmask8 k, __m128 a, __m128 b, __m128i c, int
imm, int round);

Fixes up lower float32 elements in a and b using lower 32-bit integer in c, stores the result in lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies
upper three packed elements from a to upper destination elements.

imm is used to set the required flags reporting.

_mm_fixupimm_ss

extern __m128 __cdecl _mm_fixupimm_ss(__m128 a, __m128 b, __m128i c, int imm);
Fixes up lower float32 elements in a and b using lower 32-bit integer in c, stores the result in lower
destination element, and copies upper three packed elements from a to upper destination elements.

imm is used to set the required flags reporting.

_mm_mask_fixupimm_ss

extern __m128 __cdecl _mm_mask_fixupimm_ss(__m128 a, __mmask8 k, __m128 b, __m128i c, int imm);
Fixes up lower float32 elements in a and b using lower 32-bit integer in c, stores the result in lower
destination element using writemask k (the element is copied from a when mask bit 0 is not set), and copies
upper three packed elements from a to upper destination elements.

imm is used to set the required flags reporting.

_mm_maskz_fixupimm_ss

extern __m128 __cdecl _mm_maskz_fixupimm_ss(__mmask8 k, __m128 a, __m128 b, __m128i c, int imm);
Fixes up lower float32 elements in a and b using lower 32-bit integer in c, stores the result in lower
destination element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies
upper three packed elements from a to upper destination elements.

imm is used to set the required flags reporting.

_mm512_getexp_pd

extern __m512d __cdecl _mm512_getexp_pd(__m512d a);
Converts the exponent of each packed float64 element in a to a float64 number representing the integer
exponent, and stores the result. This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_mask_getexp_pd

extern __m512d __cdecl _mm512_mask_getexp_pd(__m512d src, __mmask8 k, __m512d a);
Converts the exponent of each packed float64 element in a to a float64 number representing the integer
exponent, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

Compiler Reference

1349

_mm512_maskz_getexp_pd

extern __m512d __cdecl _mm512_maskz_getexp_pd(__mmask8 k, __m512d a);
Converts the exponent of each packed float64 element in a to a float64 number representing the integer
exponent, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_getexp_round_pd

extern __m512d __cdecl _mm512_getexp_round_pd(__m512d a, int round);
Converts the exponent of each packed float64 element in a to a float64 number representing the integer
exponent, and stores the result. This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_mask_getexp_round_pd

extern __m512d __cdecl _mm512_mask_getexp_round_pd(__m512d src, __mmask8 a, __m512d, int round);
Converts the exponent of each packed float64 element in a to a float64 number representing the integer
exponent, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_maskz_getexp_round_pd

extern __m512d __cdecl _mm512_maskz_getexp_round_pd(__mmask8 k, __m512d a, int round);
Converts the exponent of each packed float64 element in a to a float64 number representing the integer
exponent, and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit
is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_getexp_ps

extern __m512 __cdecl _mm512_getexp_ps(__m512 a);
Converts the exponent of each packed float32 element in a to a float32 number representing the integer
exponent, and stores the result. This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_mask_getexp_ps

extern __m512 __cdecl _mm512_mask_getexp_ps(__m512 src, __mmask16 k, __m512 a);
Converts the exponent of each packed float32 element in a to a float32 number representing the integer
exponent, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_maskz_getexp_ps

extern __m512d __cdecl _mm512_maskz_getexp_ps(__mmask16 k, __m512 a);
Converts the exponent of each packed float32 element in a to a float32 number representing the integer
exponent, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_getexp_round_ps

extern __m512 __cdecl _mm512_getexp_round_ps(__m512 a, int round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1350

Converts the exponent of each packed float32 element in a to a float32 number representing the integer
exponent, and stores the result. This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_mask_getexp_round_ps

extern __m512 __cdecl _mm512_mask_getexp_round_ps(__m512 src, __mmask16 k, __m512 a, int round);
Converts the exponent of each packed float32 element in a to a float32 number representing the integer
exponent, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm512_maskz_getexp_round_ps

extern __m512 __cdecl _mm512_maskz_getexp_round_ps(__mmask16 k, __m512 a, int round);
Converts the exponent of each packed float32 element in a to a float32 number representing the integer
exponent, and stores the result using zeromask k (elements are zeroed out when the corresponding mask bit
is not set). This intrinsic essentially calculates floor(log2(x)) for each element.

_mm_getexp_round_sd

extern __m128d __cdecl _mm_getexp_round_sd(__m128d a, __m128d b, int round);
Converts lower exponent of float64 element in b to a float64 number representing the integer exponent,
stores the result in lower destination element, and copies upper element from a to upper destination
element. This intrinsic essentially calculates floor(log2(x)) for lower element.

_mm_mask_getexp_round_sd

extern __m128d __cdecl _mm_mask_getexp_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b,
int round);

Converts lower exponent of float64 element in b to a float64 number representing the integer exponent,
stores the result in lower destination element, and copies upper element from a to upper destination
element. This intrinsic essentially calculates floor(log2(x)) for lower element.

_mm_maskz_getexp_round_sd

extern __m128d __cdecl _mm_maskz_getexp_round_sd(__mmask8 k, __m128d a, __m128d b, int round);
Converts lower exponent of float64 element in b to a float64 number representing the integer exponent,
stores the result in lower destination element using writemask k (the element is copied from src when mask
bit 0 is not set), and copies upper element from a to upper destination element. This intrinsic essentially
calculates floor(log2(x)) for lower element.

_mm_getexp_sd

extern __m128d __cdecl _mm_getexp_sd(__m128d a, __m128d b);
Converts lower exponent of float64 element in b to a float64 number representing the integer exponent,
stores the result in lower destination element, and copies upper element from a to upper destination
element. This intrinsic essentially calculates floor(log2(x)) for lower element.

_mm_mask_getexp_sd

extern __m128d __cdecl _mm_mask_getexp_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);

Compiler Reference

1351

Converts lower exponent of float64 element in b to a float64 number representing the integer exponent,
stores the result in lower destination element using writemask k (the element is copied from src when mask
bit 0 is not set), and copies upper element from a to upper destination element. This intrinsic essentially
calculates floor(log2(x)) for lower element.

_mm_maskz_getexp_sd

extern __m128d __cdecl _mm_maskz_getexp_sd(__mmask8 k, __m128d a, __m128d b);
Converts lower exponent of float64 element in b to a float64 number representing the integer exponent,
stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper element from a to upper destination element. This intrinsic essentially calculates
floor(log2(x)) for lower element.

_mm_getexp_round_ss

extern __m128 __cdecl _mm_getexp_round_ss(__m128 a, __m128 b, int round);
Converts lower exponent of float32 element in b to a float32 number representing the integer exponent,
stores the result in lower destination element, and copies upper three packed elements from a to upper
destination elements. This intrinsic essentially calculates floor(log2(x)) for lower element.

_mm_mask_getexp_round_ss

extern __m128 __cdecl _mm_mask_getexp_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

Converts lower exponent of float32 element in b to a float32 number representing the integer exponent,
stores the result in lower destination element using writemask k (the element is copied from src when mask
bit 0 is not set), and copies upper three packed elements from a to upper elements. This intrinsic essentially
calculates floor(log2(x)) for lower element.

_mm_maskz_getexp_round_ss

extern __m128 __cdecl _mm_maskz_getexp_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Converts lower exponent of float32 element in b to a float32 number representing the integer exponent,
stores the result in lower destination element using writemask k (the element is copied from src when mask
bit 0 is not set), and copies upper three packed elements from a to upper elements. This intrinsic essentially
calculates floor(log2(x)) for lower element.

_mm_getexp_ss

extern __m128 __cdecl _mm_getexp_ss(__m128 a, __m128 b);
Converts lower exponent of float32 element in b to a float32 number representing the integer exponent,
stores the result in lower destination element, and copies upper three packed elements from a to upper
destination elements. This intrinsic essentially calculates floor(log2(x)) for lower element.

_mm_mask_getexp_ss

extern __m128 __cdecl _mm_mask_getexp_ss(__m128 src, __mmask8 k, __m128 a, __m128b);
Converts lower exponent of float32 element in b to a float32 number representing the integer exponent,
stores the result in lower destination element using writemask k (the element is copied from src when mask
bit 0 is not set), and copies upper three packed elements from a to upper destination elements. This intrinsic
essentially calculates floor(log2(x)) for lower element.

 Intel® C++ Compiler Classic Developer Guide and Reference

1352

_mm_maskz_getexp_ss

extern __m128 __cdecl _mm_maskz_getexp_ss(__mmask8 k, __m128 a, __m128 b);
Converts lower exponent of float32 element in b to a float32 number representing the integer exponent,
stores the result in lower destination element using zeromask k (the element is zeroed out when mask bit 0
is not set), and copies upper three packed elements from a to upper destination elements. This intrinsic
essentially calculates floor(log2(x)) for lower element.

Intrinsics for Miscellaneous Integer Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_alignr_epi32,
_mm512_mask_alignr_epi32,
_mm512_maskz_alignr_epi32

Aligns elements of two source
vectors depending on bits in a
mask.

VALIGND

_mm512_alignr_epi64,
_mm512_mask_alignr_epi64,
_mm512_maskz_alignr_epi64

Aligns elements of two source
vectors depending on bits in a
mask.

VALIGNQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

count specifies the number of bits for shift operation

_mm512_alignr_epi32

extern __m512i __cdecl _mm512_alignr_epi32(__m512i a, __m512i b, const int count);
Concatenates vector elements from a and b into a 128-byte immediate result, shifts the result right by count
of 32-bit elements, and stores the low 64 bytes (sixteen elements).

_mm512_mask_alignr_epi32

extern __m512i __cdecl _mm512_mask_alignr_epi32(__m512i src, __mmask16 k, __m512i a, __m512i b,
const int count);

Concatenates vector elements from a and b into a 128-byte immediate result, shifts the result right by count
of 32-bit elements, and stores the low 64 bytes (sixteen elements) using writemask k (elements are copied
from src when the corresponding mask bit is not set).

Compiler Reference

1353

_mm512_maskz_alignr_epi32

extern __m512i __cdecl _mm512_maskz_alignr_epi32(__mmask16 k, __m512i a, __m512i b, const int
count);

Concatenates vector elements from a and b into a 128-byte immediate result, shifts the result right by count
of 32-bit elements, and stores the low 64 bytes (sixteen elements) using zeromask k (elements are zeroed
out when the corresponding mask bit is not set).

_mm512_alignr_epi64

extern __m512i __cdecl _mm512_alignr_epi64(__m512i a, __m512i b, const int count);
Concatenates vector elements from a and b into a 128-byte immediate result, shifts the result right by count
of 64-bit elements, and stores the low 64 bytes (eight elements).

_mm512_mask_alignr_epi64

extern __m512i __cdecl _mm512_mask_alignr_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b,
const int count);

Concatenates vector elements from a and b into a 128-byte immediate result, shifts the result right by count
of 64-bit elements, and stores the low 64 bytes (eight elements) using writemask k (elements are copied
from src when the corresponding mask bit is not set).

_mm512_maskz_alignr_epi64

extern __m512i __cdecl _mm512_maskz_alignr_epi64(__mmask8 k, __m512i a, __m512i b, const int
count);

Concatenates vector elements from a and b into a 128-byte immediate result, shifts the result right by count
of 64-bit elements, and stores the low 64 bytes (eight elements) using zeromask k (elements are zeroed out
when the corresponding mask bit is not set).

Intrinsics for Move Operations

Intrinsics for FP Move Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_mask_mov_pd,
_mm512_maskz_mov_pd

Moves packed float64 elements. VMOVAPD

_mm512_mask_mov_ps,
_mm512_maskz_mov_ps

Moves packed float32 elements. VMOVAPS

 Intel® C++ Compiler Classic Developer Guide and Reference

1354

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm_mask_move_sd,
_mm_maskz_move_sd

Moves scalar float64 elements. VMOVSD

_mm_mask_move_ss,
_mm_maskz_move_ss

Moves scalar float32 elements. VMOVSS

_mm512_movedup_pd,
_mm512_mask_movedup_pd,
_mm512_maskz_movedup_pd

Duplicates even-indexed float64
elements.

VMOVDDUP

_mm512_movehdup_ps,
_mm512_mask_movehdup_ps,
_mm512_maskz_movehdup_ps

Duplicates odd-indexed float32
elements.

VMOVSHDUP

_mm512_moveldup_ps,
_mm512_mask_moveldup_ps,
_mm512_maskz_moveldup_ps

Moves lower float32 element. VMOVSLDUP

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_mask_mov_pd

extern __m512d __cdecl _mm512_mask_mov_pd(__m512d src, __mmask8 k, __m512d a);
Moves packed float64 elements from a using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_mov_pd

extern __m512d __cdecl _mm512_maskz_mov_pd(__mmask8 k, __m512d a);
Moves packed float64 elements from a using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

_mm512_mask_mov_ps

extern __m512 __cdecl _mm512_mask_mov_ps(__m512 src, __mmask16 k, __m512 a);
Moves packed float32 elements from a using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_mov_ps

extern __m512 __cdecl _mm512_maskz_mov_ps(__mmask16 k, __m512 a);
Moves packed float32 elements from a using zeromask k (elements are zeroed out when the corresponding
mask bit is not set).

Compiler Reference

1355

_mm512_movedup_pd

extern __m512d __cdecl _mm512_movedup_pd(__m512d a);
Duplicates even-indexed float64 elements from a, and stores the result.

_mm512_mask_movedup_pd

extern __m512d __cdecl _mm512_mask_movedup_pd(__m512d src, __mmask8 k, __m512d a);
Duplicates even-indexed float64 elements from a, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_movedup_pd

extern __m512d __cdecl _mm512_maskz_movedup_pd(__mmask8 k, __m512d a);
Duplicates even-indexed float64 elements from a, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_move_sd

extern __m128d __cdecl _mm_mask_move_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Moves lower float64 element from b to lower destination element using writemask k (the element is copied
from src when mask bit 0 is not set), and copy upper element from a to upper destination element.

_mm_maskz_move_sd

extern __m128d __cdecl _mm_maskz_move_sd(__mmask8 k, __m128d a, __m128d b);
Moves lower float64 element from b to lower destination element using zeromask k (the element is zeroed
out when mask bit 0 is not set), and copy upper element from a to upper destination element.

_mm512_movehdup_ps

extern __m512 __cdecl _mm512_movehdup_ps(__m512 a);
Duplicates odd-indexed float32 elements from a, and stores the result.

_mm512_mask_movehdup_ps

extern __m512 __cdecl _mm512_mask_movehdup_ps(__m512 src, __mmask16 k, __m512 a);
Duplicates odd-indexed float32 elements from a, and store the result using writemask k (elements are copied
from src when the corresponding mask bit is not set).

_mm512_maskz_movehdup_ps

extern __m512 __cdecl _mm512_maskz_movehdup_ps(__mmask16 k, __m512 a);
Duplicates odd-indexed float32 elements from a, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm512_moveldup_ps

extern __m512 __cdecl _mm512_moveldup_ps(__m512 a);
Duplicates even-indexed float32 elements from a, and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1356

_mm512_mask_moveldup_ps

extern __m512 __cdecl _mm512_mask_moveldup_ps(__m512 src, __mmask16 k, __m512 a);
Duplicates even-indexed float32 elements from a, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_maskz_moveldup_ps

extern __m512 __cdecl _mm512_maskz_moveldup_ps(__mmask16 k, __m512 a);
Duplicates even-indexed float32 elements from a, and stores the result using zeromask k (elements are
zeroed out when the corresponding mask bit is not set).

_mm_mask_move_ss

extern __m128 __cdecl _mm_mask_move_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Moves lower float32 element from b to lower destination element using writemask k (the element is copied
from src when mask bit 0 is not set), and copies upper three packed elements from a to upper destination
elements.

_mm_maskz_move_ss

extern __m128 __cdecl _mm_maskz_move_ss(__mmask8 k, __m128 a, __m128 b);
Moves lower float32 element from b to lower destination element using zeromask k (the element is zeroed
out when mask bit 0 is not set), and copies upper three packed elements from a to upper destination
elements.

Intrinsics for Integer Move Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_mask_mov_epi32,
_mm512_maskz_mov_epi32

Move packed int32 elements. VMOVDQA32

_mm512_mask_mov_epi64,
_mm512_maskz_mov_epi64

Move packed int64 elements. VMOVQA64

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

_mm512_mask_mov_epi32

extern __m512i __cdecl _mm512_mask_mov_epi32(__m512i a, __mmask16 k, __m512i src);

Compiler Reference

1357

Move packed int32 elements from a to destination using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_mov_epi32

extern __m512i __cdecl _mm512_maskz_mov_epi32(__mmask16 k, __m512i a);
Move packed int32 elements from a to destination using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_mask_mov_epi64

extern __m512i __cdecl _mm512_mask_mov_epi64(__m512i a, __mmask16 k, __m512i src);
Move packed int64 elements from a to destination using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_mov_epi64

extern __m512i __cdecl _mm512_maskz_mov_epi64(__mmask8 k, __m512i a);
Move packed int64 elements from a to destination using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

Intrinsics for Pack and Unpack Operations

Intrinsics for FP Pack and Unpack Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_unpackhi_pd,
_mm512_mask_unpackhi_pd,
_mm512_maskz_unpackhi_pd

Unpacks and interleaves high
packed float64 values.

VPUNPCKHPD

_mm512_unpackhi_ps,
_mm512_mask_unpackhi_ps,
_mm512_maskz_unpackhi_ps

Unpacks and interleaves high
packed float32 values.

VPUNPCKHPS

_mm512_unpacklo_pd,
_mm512_mask_unpacklo_pd,
_mm512_maskz_unpacklo_pd

Unpacks and interleaves low
packed float64 values.

VPUNPCKLPD

_mm512_unpacklo_ps,
_mm512_mask_unpacklo_ps,
_mm512_maskz_unpacklo_ps

Unpacks and interleaves low
packed float32 values.

VPUNPCKLPS

 Intel® C++ Compiler Classic Developer Guide and Reference

1358

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_unpackhi_pd

extern __m512d __cdecl _mm512_unpackhi_pd(__m512d a, __m512d b);
Unpacks and interleaves float64 elements from the high half of each 128-bit lane in a and b, and stores the
result.

_mm512_mask_unpackhi_pd

extern __m512d __cdecl _mm512_mask_unpackhi_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Unpacks and interleaves float64 elements from the high half of each 128-bit lane in a and b, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpackhi_pd

extern __m512d __cdecl _mm512_maskz_unpackhi_pd(__mmask8 k, __m512d a, __m512d b);
Unpacks and interleaves float64 elements from the high half of each 128-bit lane in a and b, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpackhi_ps

extern __m512 __cdecl _mm512_unpackhi_ps(__m512 a, __m512 b);
Unpacks and interleaves float32 elements from the high half of each 128-bit lane in a and b, and stores the
result.

_mm512_mask_unpackhi_ps

extern __m512 __cdecl _mm512_mask_unpackhi_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Unpacks and interleaves float32 elements from the high half of each 128-bit lane in a and b, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpackhi_ps

extern __m512 __cdecl _mm512_maskz_unpackhi_ps(__mmask16 k, __m512 a, __m512 b);
Unpacks and interleaves float32 elements from the high half of each 128-bit lane in a and b, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpacklo_pd

extern __m512d __cdecl _mm512_unpacklo_pd(__m512d a, __m512d b);
Unpacks and interleaves float64 elements from the low half of each 128-bit lane in a and b, and stores the
result.

Compiler Reference

1359

_mm512_mask_unpacklo_pd

extern __m512d __cdecl _mm512_mask_unpacklo_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Unpacks and interleaves float64 elements from the low half of each 128-bit lane in a and b, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpacklo_pd

extern __m512d __cdecl _mm512_maskz_unpacklo_pd(__mmask8 k, __m512d a, __m512d b);
Unpacks and interleaves float64 elements from the low half of each 128-bit lane in a and b, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpacklo_ps

extern __m512 __cdecl _mm512_unpacklo_ps(__m512 a, __m512 b);
Unpacks and interleaves float32 elements from the low half of each 128-bit lane in a and b, and stores the
result.

_mm512_mask_unpacklo_ps

extern __m512 __cdecl _mm512_mask_unpacklo_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Unpacks and interleaves float32 elements from the low half of each 128-bit lane in a and b, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpacklo_ps

extern __m512 __cdecl _mm512_maskz_unpacklo_ps(__mmask16 k, __m512 a, __m512 b);
Unpacks and interleaves float32 elements from the low half of each 128-bit lane in a and b, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Integer Pack and Unpack Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_unpackhi_epi32,
_mm512_mask_unpackhi_epi32,
_mm512_maskz_unpackhi_epi3
2

Unpacks and interleaves high
packed int32 values.

VPUNPCKHQD, VUNPCKHQD,
UNPCKHQD

_mm512_unpackhi_epi64,
_mm512_mask_unpackhi_epi64,
_mm512_maskz_unpackhi_epi6
4

Unpacks and interleaves high
packed int64 values.

VPUNPCKHQDQ, VUNPCKHQDQ,
UNPCKHQDQ

 Intel® C++ Compiler Classic Developer Guide and Reference

1360

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_unpacklo_epi32,
_mm512_mask_unpacklo_epi32,
_mm512_maskz_unpacklo_epi3
2

Unpacks and interleaves low
packed int32 values.

VPUNPCKLQD, VUNPCKLQD,
UNPCKLQD

_mm512_unpacklo_epi64,
_mm512_mask_unpacklo_epi64,
_mm512_maskz_unpacklo_epi6
4

Unpacks and interleaves low
packed int64 values.

VPUNPCKLQDQ, VUNPCKLQDQ,
UNPCKLQDQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_unpackhi_epi32

extern __m512i __cdecl _mm512_unpackhi_epi32(__m512i a, __m512i b);
Unpacks and interleaves int32 elements from the high half of each 128-bit lane in a and b, and stores the
result.

_mm512_mask_unpackhi_epi32

extern __m512i __cdecl _mm512_mask_unpackhi_epi32(__m512i src, __mmask16 k, __m512i a, __m512i
b);

Unpacks and interleaves int32 elements from the high half of each 128-bit lane in a and b, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpackhi_epi32

extern __m512i __cdecl _mm512_maskz_unpackhi_epi32(__mmask16 k, __m512i a, __m512i b);
Unpacks and interleaves int32 elements from the high half of each 128-bit lane in a and b, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpackhi_epi64

extern __m512i __cdecl _mm512_unpackhi_epi64(__m512i a, __m512i b);
Unpacks and interleaves int64 elements from the high half of each 128-bit lane in a and b, and stores the
result.

_mm512_mask_unpackhi_epi64

extern __m512i __cdecl _mm512_mask_unpackhi_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Unpacks and interleaves int64 elements from the high half of each 128-bit lane in a and b, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1361

_mm512_maskz_unpackhi_epi64

extern __m512i __cdecl _mm512_maskz_unpackhi_epi64(__mmask8 k, __m512i a, __m512i b);
Unpacks and interleaves int64 elements from the high half of each 128-bit lane in a and b, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpacklo_epi32

extern __m512i __cdecl _mm512_unpacklo_epi32(__m512i a, __m512i b);
Unpacks and interleaves int32 elements from the low half of each 128-bit lane in a and b, and stores the
result.

_mm512_mask_unpacklo_epi32

extern __m512i __cdecl _mm512_mask_unpacklo_epi32(__m512i src, __mmask16 k, __m512i a, __m512i
b);

Unpacks and interleaves int32 elements from the low half of each 128-bit lane in a and b, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpacklo_epi32

extern __m512i __cdecl _mm512_maskz_unpacklo_epi32(__mmask16 k, __m512i a, __m512i b);
Unpacks and interleaves int32 elements from the low half of each 128-bit lane in a and b, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_unpacklo_epi64

extern __m512i __cdecl _mm512_unpacklo_epi64(__m512i a, __m512i b);
Unpacks and interleaves int64 elements from the low half of each 128-bit lane in a and b, and stores the
result.

_mm512_mask_unpacklo_epi64

extern __m512i __cdecl _mm512_mask_unpacklo_epi64(__m512i src, __mmask8 k, __m512i a, __m512i b);
Unpacks and interleaves int64 elements from the low half of each 128-bit lane in a and b, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_unpacklo_epi64

extern __m512i __cdecl _mm512_maskz_unpacklo_epi64(__mmask8 k, __m512i a, __m512i b);
Unpacks and interleaves int64 elements from the low half of each 128-bit lane in a and b, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Permutation Operations

Intrinsics for FP Permutation Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

 Intel® C++ Compiler Classic Developer Guide and Reference

1362

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_permutex2var_pd,
_mm512_mask_permutex2var_pd,
_mm512_mask2_permutex2var_pd
,
_mm512_maskz_permutex2var_pd

Shuffle float64 elements across lanes. VPERMI2PD

_mm512_permutex2var_ps,
_mm512_mask_permutex2var_ps,
_mm512_mask2_permutex2var_ps
,
_mm512_maskz_permutex2var_ps

Shuffle float32 elements across lanes. VPERMI2PS

_mm512_permute_pd,
_mm512_mask_permute_pd,
_mm512_maskz_permute_pd

Shuffle float64 elements within 128-
bit lanes.

VPERMILPD, VPERMPD

_mm512_permutevar_pd,
_mm512_mask_permutevar_pd,
_mm512_maskz_permutevar_pd

Shuffle float64 elements within 128-
bit lanes.

VPERMPD

_mm512_permutex_pd,
_mm512_mask_permutex_pd,
_mm512_maskz_permutex_pd

Shuffle float64 elements within lanes. VPERMPD

_mm512_permutexvar_pd,
_mm512_mask_permutexvar_pd,
_mm512_maskz_permutexvar_pd

Shuffle float64 elements across lanes. VPERMPD

_mm512_permute_ps,
_mm512_mask_permute_ps,
_mm512_maskz_permute_ps

Shuffle float32 elements within lanes. VPERMILPS

_mm512_permutevar_ps,
_mm512_mask_permutevar_ps,
_mm512_maskz_permutevar_ps

Shuffle float32 elements within lanes. VPERMPS, VPERMILPS

_mm512_permutexvar_ps,
_mm512_mask_permutexvar_ps,
_mm512_maskz_permutexvar_ps

Shuffle float32 elements across lanes. VPERMPS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

idx index

Compiler Reference

1363

variable definition

_mm512_permutex2var_pd

extern __m512d __cdecl _mm512_permutex2var_pd(__m512d a, __m512i idx, __m512d b);
Shuffles float64 elements in a and b across lanes using the corresponding selector and index in idx, and
stores the result.

_mm512_mask_permutex2var_pd

extern __m512d __cdecl _mm512_mask_permutex2var_pd(__m512d a, __mmask8 k, __m512i idx, __m512d
b);

Shuffles float64 elements in a and b across lanes using the corresponding selector and index in idx, and
stores the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_pd

extern __m512d __cdecl _mm512_mask2_permutex2var_pd(__m512d a, __m512i idx, __mmask8 k, __m512d
b);

Shuffles float64 elements in a and b across lanes using the corresponding selector and index in idx, and
stores the results using writemask k (elements are copied from idx when the corresponding mask bit is not
set)

_mm512_maskz_permutex2var_pd

extern __m512d __cdecl _mm512_maskz_permutex2var_pd(__mmask8 k, __m512d a, __m512i idx, __m512d
b);

Shuffles float64 elements in a and b across lanes using the corresponding selector and index in idx, and
stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutex2var_ps

extern __m512 __cdecl _mm512_permutex2var_ps(__m512 a, __m512i idx, __m512 b);
Shuffles float32 elements in a and b across lanes using the corresponding selector and index in idx, and
stores the result.

_mm512_mask2_permutex2var_ps

extern __m512 __cdecl _mm512_mask_permutex2var_ps(__m512 a, __mmask16 k, __m512i idx, __m512 b);
Shuffles float32 elements in a and b across lanes using the corresponding selector and index in idx, and
stores the result using writemask k (elements are copied from idx when the corresponding mask bit is not
set).

_mm512_mask_permutex2var_ps

extern __m512 __cdecl _mm512_mask2_permutex2var_ps(__m512 a, __m512i idx, __mmask16 k, __m512 b);
Shuffles float32 elements in a and b across lanes using the corresponding selector and index in idx, and
stores the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1364

_mm512_maskz_permutex2var_ps

extern __m512 __cdecl _mm512_maskz_permutex2var_ps(__mmask16 k, __m512 a, __m512i idx, __m512 b);
Shuffles float32 elements in a and b across lanes using the corresponding selector and index in idx, and
stores the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permute_pd

extern __m512d __cdecl _mm512_permute_pd(__m512d a, const int imm);
Shuffles float64 elements in a within 128-bit lanes using the control in imm, and stores the result.

_mm512_mask_permute_pd

extern __m512d __cdecl _mm512_mask_permute_pd(__m512d src, __mmask8 k, __m512d a, const int imm);
Shuffles float64 elements in a within 128-bit lanes using the control in imm, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permute_pd

extern __m512d __cdecl _mm512_maskz_permute_pd(__mmask8 k, __m512d a, const int imm);
Shuffles float64 elements in a within 128-bit lanes using the control in imm, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutevar_pd

extern __m512d __cdecl _mm512_permutevar_pd(__m512d a, __m512i b);
Shuffles float64 elements in a within 128-bit lanes using the control in b, and stores the result.

_mm512_mask_permutevar_pd

extern __m512d __cdecl _mm512_mask_permutevar_pd(__m512d src, __mmask8 k, __m512d a, __m512i b);
Shuffles float64 elements in a within 128-bit lanes using the control in b, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutevar_pd

extern __m512d __cdecl _mm512_maskz_permutevar_pd(__mmask8 k, __m512d a, __m512i b);
Shuffles float64 elements in a within 128-bit lanes using the control in b, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permute_ps

extern __m512 __cdecl _mm512_permute_ps(__m512 a, const int imm);
Shuffles float32 elements in a within 128-bit lanes using the control in imm, and stores the result.

_mm512_mask_permute_ps

extern __m512 __cdecl _mm512_mask_permute_ps(__m512 src, __mmask16 k, __m512 a, const int imm);
Shuffles float32 elements in a within 128-bit lanes using the control in imm, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1365

_mm512_maskz_permute_ps

extern __m512 __cdecl _mm512_maskz_permute_ps(__mmask16 k, __m512 a, const int imm);
Shuffles float32 elements in a within 128-bit lanes using the control in imm, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutevar_ps

extern __m512 __cdecl _mm512_permutevar_ps(__m512 a, __m512i b);
Shuffles float32 elements in a within 128-bit lanes using the control in b, and stores the result.

_mm512_mask_permutevar_ps

extern __m512 __cdecl _mm512_mask_permutevar_ps(__m512 src, __mmask16 k, __m512 a, __m512i b);
Shuffles float32 elements in a within 128-bit lanes using the control in b, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutevar_ps

extern __m512 __cdecl _mm512_maskz_permutevar_ps(__mmask16 k, __m512 a, __m512i b);
Shuffles float32 elements in a within 128-bit lanes using the control in b, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutex_pd

extern __m512d __cdecl _mm512_permutex_pd(__m512d a, const int imm);
Shuffles float64 elements in a within 256-bit lanes using the control in imm, and stores the result.

_mm512_mask_permutex_pd

extern __m512d __cdecl _mm512_mask_permutex_pd(__m512d src, __mmask8 k, __m512d a, const int
imm);

Shuffles float64 elements in a within 256-bit lanes using the control in imm, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutex_pd

extern __m512d __cdecl _mm512_maskz_permutex_pd(__mmask8 k, __m512d a, const int imm);
Shuffles float64 elements in a within 256-bit lanes using the control in imm, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutexvar_pd

extern __m512d __cdecl _mm512_permutexvar_pd(__m512i idx, __m512d a);
Shuffles float64 elements in a across lanes using the corresponding index in idx, and stores the result.

_mm512_mask_permutexvar_pd

extern __m512d __cdecl _mm512_mask_permutexvar_pd(__m512d src, __mmask8 k, __m512i idx, __m512d
a);

Shuffles float64 elements in a across lanes using the corresponding index in idx, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1366

_mm512_maskz_permutexvar_pd

extern __m512d __cdecl _mm512_maskz_permutexvar_pd(__mmask8 k, __m512i idx, __m512d a);
Shuffles float64 elements in a across lanes using the corresponding index in idx, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutexvar_ps

extern __m512 __cdecl _mm512_permutexvar_ps(__m512i idx, __m512 a);
Shuffles float32 elements in a across lanes using the corresponding index in idx, and stores the result.

_mm512_mask_permutexvar_ps

extern __m512 __cdecl _mm512_mask_permutexvar_ps(__m512 src, __mmask16 k, __m512i idx, __m512 a);
Shuffles float32 elements in a across lanes using the corresponding index in idx, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutexvar_ps

extern __m512 __cdecl _mm512_maskz_permutexvar_ps(__mmask16 k, __m512i idx, __m512 a);
Shuffles float32 elements in a across lanes using the corresponding index in idx, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Integer Permutation Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_permutex2var_epi32,
_mm512_mask_permutex2var_epi3
2,
_mm512_mask2_permutex2var_epi
32,
_mm512_maskz_permutex2var_epi
32

Shuffle int32 elements across
lanes.

VPERMI2D

_mm512_permutex2var_epi64,
_mm512_mask_permutex2var_epi6
4,
_mm512_mask2_permutex2var_epi
64,
_mm512_maskz_permutex2var_epi
64

Shuffle int64 elements across
lanes.

VPERMI2Q, VPERMT2Q

Compiler Reference

1367

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_permutevar_epi32,
_mm512_mask_permutevar_epi32
_mm512_permutexvar_epi32,
_mm512_mask_permutexvar_epi32
,
_mm512_maskz_permutexvar_epi3
2

Shuffle int32 elements across
lanes.

VPERMD

_mm512_permutex_epi64,
_mm512_mask_permutex_epi64,
_mm512_maskz_permutex_epi64
_mm512_permutexvar_epi64,
_mm512_mask_permutexvar_epi64
,
_mm512_maskz_permutexvar_epi6
4

Shuffle int64 elements across
lanes.

VPERMQ

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

idx int32 vector containing indices in memory

_mm512_permutevar_epi32

extern __m512i __cdecl _mm512_permutevar_epi32(__m512i a, __m512i idx);
Shuffle int32 elements in a across lanes using the corresponding index in idx, and stores the result.

NOTE
This intrinsic shuffles across 128-bit lanes, unlike past intrinsics that use the permutevar name. This
intrinsic is identical to _mm512_mask_permutexvar_epi32, and it is recommended that you use that
intrinsic name.

_mm512_mask_permutevar_epi32

extern __m512i __cdecl _mm512_mask_permutevar_epi32(__m512i src, __mmask16 k, __m512i a, __m512i
idx);

Shuffle int32 elements in a across lanes using the corresponding index in idx, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1368

NOTE
This intrinsic shuffles across 128-bit lanes, unlike past intrinsics that use the permutevar name. This
intrinsic is identical to _mm512_mask_permutexvar_epi32, and it is recommended that you use that
intrinsic name.

_mm512_permutexvar_epi32

extern __m512i __cdecl _mm512_permutexvar_epi32(__m512i idx, __m512i a);
Shuffles int32 elements in a across lanes using the corresponding index in idx, and stores the result.

_mm512_mask_permutexvar_epi32

extern __m512i __cdecl _mm512_mask_permutexvar_epi32(__m512i src, __mmask16 k, __m512i idx,
__m512i a);

Shuffles int32 elements in a across lanes using the corresponding index in idx, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutexvar_epi32

extern __m512i __cdecl _mm512_maskz_permutexvar_epi32(__mmask16 k, __m512i idx, __m512i a);
Shuffles int32 elements in a across lanes using the corresponding index in idx, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutex2var_epi32

extern __m512i __cdecl _mm512_permutex2var_epi32(__m512i a, __m512i idx, __m512i b);
Shuffles int32 elements in a and b across lanes using the corresponding selector and index in idx, and stores
the result.

_mm512_mask_permutex2var_epi32

extern __m512i __cdecl _mm512_mask_permutex2var_epi32(__m512i a, __mmask16 k, __m512i idx,
__m512i b);

Shuffles int32 elements in a and b across lanes using the corresponding selector and index in idx, and stores
the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_epi32

extern __m512i __cdecl _mm512_mask2_permutex2var_epi32(__m512i a, __m512i idx, __mmask16 k,
__m512i b);

Shuffles int32 elements in a and b across lanes using the corresponding selector and index in idx, and stores
the result using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm512_maskz_permutex2var_epi32

extern __m512i __cdecl _mm512_maskz_permutex2var_epi32(__mmask16 k, __m512i a, __m512i idx,
__m512i b);

Shuffles int32 elements in a and b across lanes using the corresponding selector and index in idx, and stores
the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Compiler Reference

1369

_mm512_permutex2var_epi64

extern __m512i __cdecl _mm512_permutex2var_epi64(__m512i a, __m512i idx, __m512i b);
Shuffles int64 elements in a and b across lanes using the corresponding selector and index in idx, and stores
the result.

_mm512_mask_permutex2var_epi64

extern __m512i __cdecl _mm512_mask_permutex2var_epi64(__m512i a, __mmask8 k, __m512i idx,
__m512i b);

Shuffles int64 elements in a and b across lanes using the corresponding selector and index in idx, and stores
the result using writemask k (elements are copied from a when the corresponding mask bit is not set).

_mm512_mask2_permutex2var_epi64

extern __m512i __cdecl _mm512_mask2_permutex2var_epi64(__m512i a, __m512i idx, __mmask8 k,
__m512i b);

Shuffles int64 elements in a and b across lanes using the corresponding selector and index in idx, and stores
the result using writemask k (elements are copied from idx when the corresponding mask bit is not set).

_mm512_maskz_permutex2var_epi64

extern __m512i __cdecl _mm512_maskz_permutex2var_epi64(__mmask8 k, __m512i a, __m512i idx,
__m512i b);

Shuffles int64 elements in a and b across lanes using the corresponding selector and index in idx, and stores
the result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutex_epi64

extern __m512i __cdecl _mm512_permutex_epi64(__m512i a, const int imm);
Shuffles int64 elements in a within 256-bit lanes using the control in imm, and stores the result.

_mm512_mask_permutex_epi64

extern __m512i __cdecl _mm512_mask_permutex_epi64(__m512i src, __mmask8 k, __m512i a, const int
imm);

Shuffles int64 elements in a within 256-bit lanes using the control in imm, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutex_epi64

extern __m512i __cdecl _mm512_maskz_permutex_epi64(__mmask8 k, __m512i a, const int imm);
Shuffles int64 elements in a within 256-bit lanes using the control in imm, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_permutexvar_epi64

extern __m512i __cdecl _mm512_permutexvar_epi64(__m512i idx, __m512i a);
Shuffles int64 elements in a across lanes using the corresponding index idx, and stores the result.

_mm512_mask_permutexvar_epi64

extern __m512i __cdecl _mm512_mask_permutexvar_epi64(__m512i src, __mmask8 k, __m512i idx,
__m512i a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1370

Shuffles int64 elements in a across lanes using the corresponding index idx, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_permutexvar_epi64

extern __m512i __cdecl _mm512_maskz_permutexvar_epi64(__mmask8 k, __m512i idx, __m512i a);
Shuffles int64 elements in a across lanes using the corresponding index idx, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Reduction Operations

Intrinsics for FP Reduction Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_reduce_add_pd,
_mm512_mask_reduce_add_pd

Reduce float64 elements by addition. None.

_mm512_reduce_add_ps,
_mm512_mask_reduce_add_ps

Reduce float32 elements by addition. None.

_mm512_reduce_max_pd,
_mm512_mask_reduce_max_pd

Reduce float64 elements by
maximum.

None.

_mm512_reduce_max_ps,
_mm512_mask_reduce_max_ps

Reduce float32 elements by
maximum.

None.

_mm512_reduce_min_pd,
_mm512_mask_reduce_min_pd

Reduce float64 elements by
minimum.

None.

_mm512_reduce_min_ps,
_mm512_mask_reduce_min_ps

Reduce float32 elements by
minimum.

None.

_mm512_reduce_mul_pd,
_mm512_mask_reduce_mul_pd

Reduce float64 elements by
multiplication.

None.

_mm512_reduce_mul_ps,
_mm512_mask_reduce_mul_ps

Reduce float32 elements by
multiplication.

None.

variable definition
k writemask

Compiler Reference

1371

variable definition
a first source vector element

_mm512_reduce_add_pd

extern double __cdecl _mm512_reduce_add_pd(__m512d a);
Reduces packed float64 elements in a by addition.

Returns the sum of all elements in a.

_mm512_mask_reduce_add_pd

extern double __cdecl _mm512_mask_reduce_add_pd(__mmask8 k, __m512d a);
Reduces packed float64 elements in a by addition using writemask k.

Returns the sum of all active elements in a.

_mm512_reduce_add_ps

extern float __cdecl _mm512_reduce_add_ps(__m512 a);
Reduces packed float32 elements in a by addition.

Returns the sum of all elements in a.

_mm512_mask_reduce_add_ps

extern float __cdecl _mm512_mask_reduce_add_ps(__mmask16 k, __m512 a);
Reduces packed float32 elements in a by addition using writemask k.

Returns the sum of all active elements in a.

_mm512_reduce_max_pd

extern double __cdecl _mm512_reduce_max_pd(__m512d a);
Reduces packed float64 elements in a by maximum.

Returns the maximum of all elements in a.

_mm512_mask_reduce_max_pd

extern double __cdecl _mm512_mask_reduce_max_pd(__mmask8 k, __m512d a);
Reduces packed float64 elements in a by maximum, using writemask k.

Returns the maximum of all active elements in a.

_mm512_reduce_max_ps

extern float __cdecl _mm512_reduce_max_ps(__m512 a);
Reduces packed float32 elements in a by maximum.

Returns the maximum of all elements in a.

_mm512_mask_reduce_max_ps

extern float __cdecl _mm512_mask_reduce_max_ps(__mmask16 k, __m512 a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1372

Reduces packed float32 elements in a by maximum, using writemask k.

Returns the maximum of all active elements in a.

_mm512_reduce_min_pd

extern double __cdecl _mm512_reduce_min_pd(__m512d a);
Reduces packed float64 elements in a by minimum.

Returns the minimum of all elements in a.

_mm512_mask_reduce_min_pd

extern double __cdecl _mm512_mask_reduce_min_pd(__mmask8 k, __m512d a);
Reduces packed float64 elements in a by minimum, using writemask k.

Returns the minimum of all active elements in a.

_mm512_reduce_min_ps

extern float __cdecl _mm512_reduce_min_ps(__m512 a);
Reduces packed float32 elements in a by minimum.

Returns the minimum of all elements in a.

_mm512_mask_reduce_min_ps

extern float __cdecl _mm512_mask_reduce_min_ps(__mmask16 k, __m512 a);
Reduces packed float32 elements in a by minimum, using writemask k.

Returns the minimum of all active elements in a.

_mm512_reduce_mul_pd

extern double __cdecl _mm512_reduce_mul_pd(__m512d a);
Reduces packed float64 elements in a by multiplication.

Returns the product of all elements in a.

_mm512_mask_reduce_mul_pd

extern double __cdecl _mm512_mask_reduce_mul_pd(__mmask8 k, __m512d a);
Reduces packed float64 elements in a by multiplication, using writemask k.

Returns the product of all active elements in a.

_mm512_reduce_mul_ps

extern float __cdecl _mm512_reduce_mul_ps(__m512 a);
Reduces packed float32 elements in a by multiplication.

Returns the product of all elements in a.

_mm512_mask_reduce_mul_ps

extern float __cdecl _mm512_mask_reduce_mul_ps(__mmask16 k, __m512 a);

Compiler Reference

1373

Reduces packed float32 elements in a by multiplication, using writemask k.

Returns the product of all active elements in a.

Intrinsics for Integer Reduction Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_reduce_add_epi32,
_mm512_mask_reduce_add_epi32

Reduces int32 elements of an addition
operation.

None.

_mm512_reduce_add_epi64,
_mm512_mask_reduce_add_epi64

Reduces int64 elements of an addition
operation.

None.

_mm512_reduce_mul_epi32,
_mm512_mask_reduce_mul_epi32

Reduces int32 elements of a multiplication
operation.

None.

_mm512_reduce_mul_epi64,
_mm512_mask_reduce_mul_epi64

Reduces int64 elements of a multiplication
operation.

None.

_mm512_reduce_min_epi32,
_mm512_mask_reduce_min_epi32

Reduces signed int32 elements of a
minimum value operation.

None.

_mm512_reduce_min_epi64,
_mm512_mask_reduce_min_epi64

Reduces signed int64 elements of a
minimum value operation.

None.

_mm512_reduce_min_epu32,
_mm512_mask_reduce_min_epu32

Reduces unsigned int32 elements of a
minimum value operation.

None.

_mm512_reduce_min_epu64,
_mm512_mask_reduce_min_epu64

Reduces unsigned int64 elements of a
minimum value operation.

None.

_mm512_reduce_max_epi32,
_mm512_mask_reduce_max_epi32

Reduces signed int32 elements of a
maximum value operation.

None.

_mm512_reduce_max_epi64,
_mm512_mask_reduce_max_epi64

Reduces signed int64 elements of a
maximum value operation.

None.

_mm512_reduce_max_epu32,
_mm512_mask_reduce_max_epu32

Reduces unsigned int32 elements of a
maximum value operation.

None.

_mm512_reduce_max_epu64,
_mm512_mask_reduce_max_epu64

Reduces unsigned int64 elements of a
maximum value operation.

None.

_mm512_reduce_or_epi32,
_mm512_mask_reduce_or_epi32

Reduces int32 elements of a bitwise OR
operation.

None.

 Intel® C++ Compiler Classic Developer Guide and Reference

1374

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_reduce_or_epi64,
_mm512_mask_reduce_or_epi64

Reduces int64 elements of a bitwise OR
operation.

None.

_mm512_reduce_and_epi32,
_mm512_mask_reduce_and_epi32

Reduces int32 elements of a bitwise AND
operation.

None.

_mm512_reduce_and_epi64,
_mm512_mask_reduce_and_epi64

Reduces int64 elements of a bitwise AND
operation.

None.

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

_mm512_reduce_and_epi32

extern int __cdecl _mm512_reduce_and_epi32(__m512i a);
Reduces the packed int32 elements in a by bitwise AND.

Returns the bitwise AND of all elements in a.

_mm512_mask_reduce_and_epi32

extern int __cdecl _mm512_mask_reduce_and_epi32(__mmask16 k, __m512i a);
Reduces the packed int32 elements in a by bitwise AND using mask k.

Returns the bitwise AND of all active elements in a.

_mm512_reduce_and_epi64

extern __int64 __cdecl _mm512_reduce_and_epi64(__m512i a);
Reduces the packed int64 elements in a by bitwise AND.

Returns the bitwise AND of all elements in a.

_mm512_mask_reduce_and_epi64

extern __int64 __cdecl _mm512_mask_reduce_and_epi64(__mmask8 k, __m512i a);
Reduces the packed int64 elements in a by bitwise AND using mask k.

Only those elements in the source registers with the corresponding bit set in vector mask k are used for
computing. Elements in a with corresponding bit clear in k are copied as is to the resulting vector.

Returns the bitwise AND of all active elements in a.

_mm512_reduce_add_epi32

extern int __cdecl _mm512_reduce_add_epi32(__m512i a);
Reduces the packed int32 elements in a by addition.

Compiler Reference

1375

Returns the sum of all elements in a.

_mm512_mask_reduce_add_epi32

extern int __cdecl _mm512_mask_reduce_add_epi32(__mmask16 k, __m512i a);
Reduces the packed int32 elements in a by addition using mask k.

Returns the sum of all active elements in a.

_mm512_reduce_add_epi64

extern __int64 __cdecl _mm512_reduce_add_epi64(__m512i a);
Reduces the packed int64 elements in a by addition.

Returns the sum of all elements in a.

_mm512_mask_reduce_add_epi64

extern __int64 __cdecl _mm512_mask_reduce_add_epi64(__mmask8 k, __m512i a);
Reduce the packed int64 elements in a by addition, using mask k.

Only those elements in the source registers with the corresponding bit set in vector mask k are used for
computing. Elements in a with corresponding bit clear in k are copied as is to the resulting vector.

Returns the sum of all active elements in a.

_mm512_reduce_max_epi32

extern int __cdecl _mm512_reduce_max_epi32(__m512i a);
Reduce the packed int32 elements in a by maximum.

Returns the maximum of all elements in a.

_mm512_mask_reduce_max_epi32

extern int __cdecl _mm512_mask_reduce_max_epi32(__mmask16 k, __m512i a);
Reduce the packed int32 elements in a by maximum using mask k.

Returns the maximum of all active elements in a.

_mm512_reduce_max_epi64

extern __int64 __cdecl _mm512_reduce_max_epi64(__m512i a);
Reduce the packed int64 elements in a by maximum.

Returns the maximum of all elements in a.

_mm512_mask_reduce_max_epi64

extern __int64 __cdecl _mm512_mask_reduce_max_epi64(__mmask8 k, __m512i a);
Reduce the packed int64 elements in a by maximum using mask k.

Only those elements in the source registers with the corresponding bit set in vector mask k are used for
computing. Elements in a with corresponding bit clear in k are copied as is to the resulting vector.

Returns the maximum of all active elements in a.

 Intel® C++ Compiler Classic Developer Guide and Reference

1376

_mm512_reduce_max_epu32

extern unsigned int __cdecl _mm512_reduce_max_epu32(__m512i a);
Reduce the packed unsigned int32 elements in a by maximum.

Returns the maximum of all elements in a.

_mm512_mask_reduce_max_epu32

extern unsigned int __cdecl _mm512_mask_reduce_max_epu32(__mmask16 k, __m512i a);
Reduce the packed unsigned int32 elements in a by maximum using mask k.

Returns the maximum of all active elements in a.

_mm512_reduce_max_epu64

extern unsigned __int64 __cdecl _mm512_reduce_max_epu64(__m512i a);
Reduce the packed unsigned int64 elements in a by maximum.

Returns the maximum of all elements in a.

_mm512_mask_reduce_max_epu64

extern unsigned __int64 __cdecl _mm512_mask_reduce_max_epu64(__mmask8 k, __m512i a);
Reduce the packed unsigned int64 elements in a by maximum using mask k.

Only those elements in the source registers with the corresponding bit set in vector mask k are used for
computing. Elements in a with corresponding bit clear in k are copied as is to the resulting vector.

Returns the maximum of all active elements in a.

_mm512_reduce_min_epi32

extern int __cdecl _mm512_reduce_min_epi32(__m512i a);
Reduce the packed int32 elements in a by minimum.

Returns the minimum of all elements in a.

_mm512_mask_reduce_min_epi32

extern int __cdecl _mm512_mask_reduce_min_epi32(__mmask16 k, __m512i a);
Reduce the packed int32 elements in a by maximum using mask k.

Returns the minimum of all active elements in a.

_mm512_reduce_min_epi64

extern __int64 __cdecl _mm512_reduce_min_epi64(__m512i a);
Reduce the packed int64 elements in a by minimum.

Returns the minimum of all elements in a.

_mm512_mask_reduce_min_epi64

extern __int64 __cdecl _mm512_mask_reduce_min_epi64(__mmask8 k, __m512i a);
Reduce the packed int64 elements in a by maximum, using mask k.

Only those elements in the source registers with the corresponding bit set in vector mask k are used for
computing. Elements in a with corresponding bit clear in k are copied as is to the resulting vector.

Compiler Reference

1377

Returns the minimum of all active elements in a.

_mm512_reduce_min_epu32

extern unsigned int __cdecl _mm512_reduce_min_epu32(__m512i a);
Reduce the packed unsigned int32 elements in a by minimum.

Returns the minimum of all elements in a.

_mm512_mask_reduce_min_epu32

extern unsigned int __cdecl _mm512_mask_reduce_min_epu32(__mmask16 k, __m512i a);
Reduce the packed unsigned int32 elements in a by maximum using mask k.

Returns the minimum of all active elements in a.

_mm512_reduce_min_epu64

extern unsigned __int64 __cdecl _mm512_reduce_min_epu64(__m512i a);
Reduce the packed unsigned int64 elements in a by minimum.

Returns the minimum of all elements in a.

_mm512_mask_reduce_min_epu64

extern unsigned __int64 __cdecl _mm512_mask_reduce_min_epu64(__mmask8 k, __m512i a);
Reduce the packed unsigned int64 elements in a by minimum using mask k.

Only those elements in the source registers with the corresponding bit set in vector mask k are used for
computing. Elements in a with corresponding bit clear in k are copied as is to the resulting vector.

Returns the minimum of all active elements in a.

_mm512_reduce_mul_epi32

extern int __cdecl _mm512_reduce_mul_epi32(__m512i a);
Reduce the packed int32 elements in a by multiplication.

Returns the product of all elements in a.

_mm512_mask_reduce_mul_epi32

extern int __cdecl _mm512_mask_reduce_mul_epi32(__mmask16 k, __m512i a);
Reduce the packed int32 elements in a by multiplication using mask k.

Returns the product of all active elements in a.

_mm512_reduce_mul_epi64

extern __int64 __cdecl _mm512_reduce_mul_epi64(__m512i a);
Reduce the packed int64 elements in a by multiplication.

Returns the product of all elements in a.

_mm512_mask_reduce_mul_epi64

extern __int64 __cdecl _mm512_mask_reduce_mul_epi64(__mmask8 k, __m512i a);
Reduce the packed int64 elements in a by multiplication using mask k.

 Intel® C++ Compiler Classic Developer Guide and Reference

1378

Only those elements in the source registers with the corresponding bit set in vector mask k are used for
computing. Elements in a with corresponding bit clear in k are copied as is to the resulting vector.

Returns the product of all active elements in a.

_mm512_reduce_or_epi32

extern int __cdecl _mm512_reduce_or_epi32(__m512i a);
Reduce the packed int32 elements in a by bitwise OR.

Returns the bitwise OR of all elements in a.

_mm512_mask_reduce_or_epi32

extern int __cdecl _mm512_mask_reduce_or_epi32(__mmask16 k, __m512i a);
Reduce the packed int32 elements in a by bitwise OR using mask k.

Returns the bitwise OR of all active elements in a.

_mm512_reduce_or_epi64

extern __int64 __cdecl _mm512_reduce_or_epi64(__m512i a);
Reduce the packed int64 elements in a by bitwise OR.

Returns the bitwise OR of all elements in a.

_mm512_mask_reduce_or_epi64

extern __int64 __cdecl _mm512_mask_reduce_or_epi64(__mmask8 k, __m512i a);
Reduce the packed int64 elements in a by bitwise OR using mask k.

Only those elements in the source registers with the corresponding bit set in vector mask k are used for
computing. Elements in a with corresponding bit clear in k are copied as is to the resulting vector.

Returns the bitwise OR of all active elements in a.

Intrinsics for Set Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Setting Vectors of Undefined Value

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_undefined Returns vector of type __m512i
with undefined elements.

None.

_mm512_undefined_epi32 Returns vector of type __m512i
with undefined elements.

None.

Compiler Reference

1379

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_undefined_pd Returns vector of type __m512d
with undefined elements.

None.

_mm512_undefined_ps Returns vector of type __m512 with
undefined elements.

None.

_mm512_set1_pd Broadcast float64 element to all
destination elements.

None.

_mm512_set1_ps Broadcast float32 element to all
destination elements.

None.

_mm512_set4_pd Broadcast float64 element to
destination elements with repeated
four element sequence.

None.

_mm512_set4_ps Broadcast float32 element to
destination elements with repeated
four element sequence.

None.

_mm512_set_pd Broadcast packed float64 elements
with supplied values.

None.

_mm512_set_ps Broadcast packed float32 elements
with supplied values.

None.

_mm512_setr4_pd Broadcast packed float64 elements
with the repeated four element
sequence in reverse order.

None.

_mm512_setr4_ps Broadcast packed float32 elements
with the repeated four element
sequence in reverse order.

None.

_mm512_setr_pd Broadcast packed float64 elements
with supplied values in reverse
order.

None.

_mm512_setr_ps Broadcast packed float32 elements
with supplied values in reverse
order.

None.

_mm512_setzero_pd Returns vector of type __m512d
with all elements set to zero.

VXORPD

_mm512_setzero_ps Returns vector of type __m512 with
all elements set to zero.

VXORPS

_mm512_undefined_pd Returns vector of type __m512d
with undefined elements.

None.

_mm512_undefined_ps Returns vector of type __m512 with
undefined elements.

None.

 Intel® C++ Compiler Classic Developer Guide and Reference

1380

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_set1_epi8 Broadcast 8-bit integer a to all
destination elements.

VPBROADCASTB

_mm512_set1_epi32,
_mm512_mask_set1_epi32,
_mm512_maskz_set1_epi32

Broadcast a single int32 element to
all destination elements.

VPBROADCASTD

_mm512_set1_epi64,
_mm512_mask_set1_epi64,
_mm512_maskz_set1_epi64

Broadcast a single int64 element to
all destination elements.

VPBROADCASTQ

_mm512_set1_epi16 Broadcast a single int16 element to
all destination elements

VPBROADCASTW

_mm512_set4_epi32 Broadcast packed int32 elements
with repeated four element
sequence.

None.

_mm512_set4_epi64 Broadcast packed int64 elements in
with repeated four element
sequence.

None.

_mm512_set_epi32 Broadcast packed int32 elements
with supplied values.

None.

_mm512_set_epi64 Broadcast packed int64 elements
with supplied values.

None.

_mm512_setr4_epi32 Broadcast packed int32 elements
with repeated four element
sequence in reverse order.

None.

_mm512_setr4_epi64 Broadcast packed int64 elements
with repeated four element
sequence in reverse order.

None.

_mm512_setr_epi32 Broadcast packed int32 elements
with supplied values in reverse
order.

None.

_mm512_setr_epi64 Broadcast packed int64 elements
with supplied values in reverse
order.

None.

_mm512_setzero_epi32
_mm512_setzero_si512

Returns vector of type __m512i
with all elements set to zero.

VPXOR

variable definition
k writemask used as a selector

a first source vector element

Compiler Reference

1381

variable definition
e elements for set operation

a, b, c, d elements for set operation

_mm512_set1_pd

extern __m512d __cdecl _mm512_set1_pd(double a);
Broadcasts float64 value a to all destination elements.

_mm512_set1_ps

extern __m512 __cdecl _mm512_set1_ps(float a);
Broadcasts float32 value a to all destination elements.

_mm512_set4_pd

extern __m512d __cdecl _mm512_set4_pd(double d, double c, double b, double a);
Sets packed float64 elements in destination with the repeated four element sequence (dcba dcba).

_mm512_set4_ps

extern __m512 __cdecl _mm512_set4_ps(float d, float c, float b, float a);
Sets packed float32 elements in destination with the repeated four element sequence. (dcba dcba dcba
dcba).

_mm512_set_pd

extern __m512 __cdecl _mm512_set_pd(float e7, float e6, float e5, float e4, float e3, float e2,
float e1, float e0);

Sets packed float64 elements in destination with supplied values.

_mm512_set_ps

extern __m512 __cdecl _mm512_set_ps(float e15, float e14, float e13, float e12, float e11, float
e10, float e9, float e8, float e7, float e6, float e5, float e4, float e3, float e2, float e1,
float e0);

Sets packed float32 elements in destination with supplied values.

_mm512_setr4_pd

extern __m512d __cdecl _mm512_setr4_pd(double a, double b, double c, double d);
Broadcast packed float64 elements in destination with the repeated four element sequence in reverse order.

_mm512_setr4_ps

extern __m512 __cdecl _mm512_setr4_ps(float a, float b, float c, float d);
Sets packed float32 elements in destination with the repeated four element sequence in reverse order.

 Intel® C++ Compiler Classic Developer Guide and Reference

1382

_mm512_setr_pd

extern __m512d __cdecl _mm512_setr_pd(double e0, double e1, double e2, double e3, double e4,
double e5, double e6, double e7);

Sets packed float64 elements in destination with supplied values in reverse order.

_mm512_setr_ps

extern __m512 __cdecl _mm512_setr_ps(float e0, float e1, float e2, float e3, float e4, float e5,
float e6, float e7, float e8, float e9, float e10, float e11, float e12, float e13, float e14,
float e15);

Sets packed float32 elements in destination with supplied values in reverse order.

_mm512_setzero_pd

extern __m512 __cdecl _mm512_setzero_pd(void);
Returns vector of type __m512d with all elements set to zero.

_mm512_setzero_ps

extern __m512 __cdecl _mm512_setzero_ps(void);
Returns vector of type __m512 with all elements set to zero.

_mm512_undefined_pd

extern __m512 __cdecl _mm512_undefined_pd(void)
Returns vector of type __m512d with undefined elements.

_mm512_undefined_ps

extern __m512 __cdecl _mm512_undefined_ps(void)
Returns vector of type __m512 with undefined elements.

_mm512_set1_epi16

extern __m512i __cdecl _mm512_set1_epi16(short a);
Broadcast int16 a to all destination elements.

_mm512_set1_epi8

extern __m512i __cdecl _mm512_set1_epi8(char a);
Broadcasts int8 a to all destination elements.

_mm512_set1_epi32

extern __m512i __cdecl _mm512_set1_epi32(int a);
Broadcasts int32 a to all destination elements.

Compiler Reference

1383

_mm512_mask_set1_epi32

extern __m512i __cdecl _mm512_mask_set1_epi32(__m512i src, __mmask16 k, int a);
Broadcasts int32 a to all destination elements using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_set1_epi32

extern __m512i __cdecl _mm512_maskz_set1_epi32(__mmask16 k, int a);
Broadcasts int32 a to all destination elements using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_set1_epi64

extern __m512i __cdecl _mm512_set1_epi64(__int64 a);
Broadcasts int64 a to all destination elements.

_mm512_mask_set1_epi64

extern __m512i __cdecl _mm512_mask_set1_epi64(__m512i src, __mmask8 k, __int64 a);
Broadcasts int64 a to all destination elements using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_maskz_set1_epi64

extern __m512i __cdecl _mm512_maskz_set1_epi64(__mmask8 k, __int64 a);
Broadcasts int64 a to all destination elements using zeromask k (elements are zeroed out when the
corresponding mask bit is not set).

_mm512_set4_epi32

extern __m512i __cdecl _mm512_set4_epi32(int d, int c, int b, int a);
Sets packed int32 in destination with the repeated four element sequence.

_mm512_set4_epi64

extern __m512i __cdecl _mm512_set4_epi64(__int64 d, __int64 c, __int64 b, __int64 a);
Sets packed int64 in destination with the repeated four element sequence.

_mm512_set_epi32

extern __m512i __cdecl _mm512_set_epi32(int e15, int e14, int e13, int e12, int e11, int e10,
int e9, int e8, int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0);

Sets packed int32 in destination with supplied values.

_mm512_set_epi64

extern __m512i __cdecl _mm512_set_epi64(__int64 e7, __int64 e6, __int64 e5, __int64 e4, __int64
e3, __int64 e2, __int64 e1, __int64 e0);

 Intel® C++ Compiler Classic Developer Guide and Reference

1384

Sets packed int64 in destination with supplied values.

_mm512_setr4_epi32

extern __m512i __cdecl _mm512_setr4_epi32(int a, int b, int c, int d);
Sets packed int32 in destination with the repeated four element sequence in reverse order.

_mm512_setr4_epi64

extern __m512i __cdecl _mm512_setr4_epi64(__int64 a, __int64 b, __int64 c, __int64 d);
Sets packed int64 in destination with the repeated four element sequence in reverse order.

_mm512_setr_epi32

extern __m512i __cdecl _mm512_setr4_epi32(int a, int b, int c, int d);
Sets packed int32 in destination with supplied values in reverse order.

_mm512_setr_epi64

extern __m512i __cdecl _mm512_setr_epi64(__int64 e0, __int64 e1, __int64 e2, __int64 e3, __int64
e4, __int64 e5, __int64 e6, __int64 e7);

Sets packed int64 in destination with supplied values in reverse order.

_mm512_setzero_epi32

extern __m512 __cdecl _mm512_setzero(void);
Returns vector of type __m512i with all elements set to zero.

_mm512_setzero_si512

extern __m512 __cdecl _mm512_setzero(void);
Returns vector of type __m512i with all elements set to zero.

_mm512_undefined_epi32

extern __m512 __cdecl _mm512_undefined_epi32(void);
Returns vector of type __m512i with undefined elements.

_mm512_setzero

extern __m512 __cdecl _mm512_setzero(void);
Returns vector of type __m512 with all elements set to zero.

_mm512_undefined

extern __m512 __cdecl _mm512_undefined(void);
Returns vector of type __m512 with undefined elements.

Compiler Reference

1385

Intrinsics for Shuffle Operations

Intrinsics for FP Shuffle Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_shuffle_pd,
_mm512_mask_shuffle_pd,
_mm512_maskz_shuffle_pd

Shuffle float64 values. VSHUFPD

_mm512_shuffle_ps,
_mm512_mask_shuffle_ps,
_mm512_maskz_shuffle_ps

Shuffle float32 values. VSHUFPS

_mm512_shuffle_f64x2,
_mm512_mask_shuffle_f64x2,
_mm512_maskz_shuffle_f64x2

Shuffle float64 values and store
using mask.

VSHUFF64X2

_mm512_shuffle_f32x4,
_mm512_mask_shuffle_f32x4,
_mm512_maskz_shuffle_f32x4

Shuffle float32 values and store
using mask.

VSHUFF32X4

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

imm vector element selector

_mm512_shuffle_f32x4

extern __m512 __cdecl _mm512_shuffle_f32x4(__m512 a, __m512 b, const int imm);
Shuffles four float32 elements from a and b, selected by imm, and stores the result.

_mm512_mask_shuffle_f32x4

extern __m512 __cdecl _mm512_mask_shuffle_f32x4(__m512 src, __mmask16 k, __m512 a, __m512 b,
const int imm);

Shuffles four float32 elements from a and b, selected by imm, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1386

_mm512_maskz_shuffle_f32x4

extern __m512 __cdecl _mm512_maskz_shuffle_f32x4(__mmask16 k, __m512 a, __m512 b, const int imm);
Shuffles four float32 elements from a and b, selected by imm, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_shuffle_f64x2

extern __m512d __cdecl _mm512_shuffle_f64x2(__m512d a, __m512d b, const int imm);
Shuffles 128-bits (composed of two float64 elements from a and b, selected by imm, and stores the result.

_mm512_mask_shuffle_f64x2

extern __m512d __cdecl _mm512_mask_shuffle_f64x2(__m512d src, __mmask8 k, __m512d a, __m512d b,
const int imm);

Shuffles 128-bits (composed of two float64 elements from a and b, selected by imm, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_shuffle_f64x2

extern __m512d __cdecl _mm512_maskz_shuffle_f64x2(__mmask8 k, __m512d a, __m512d b, const int
imm);

Shuffles 128-bits (composed of two float64 elements from a and b, selected by imm, and stores the result
using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_shuffle_pd

extern __m512d __cdecl _mm512_shuffle_pd(__m512d a, __m512d b, const int imm);
Shuffles float64 elements from vectors a and b within 128-bit lanes using the control in imm, and stores the
result.

_mm512_mask_shuffle_pd

extern __m512d __cdecl _mm512_mask_shuffle_pd(__m512d src, __mmask8 k, __m512d a, __m512d b,
const int imm);

Shuffle float64 elements from vectors a and b within 128-bit lanes using the control in imm, and stores the
result using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_shuffle_pd

extern __m512d __cdecl _mm512_maskz_shuffle_pd(__mmask8 k, __m512d a, __m512d b, const int imm);
Shuffle float64 elements from vectors a and b within 128-bit lanes using the control in imm, and stores the
result using zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_shuffle_ps

extern __m512 __cdecl _mm512_shuffle_ps(__m512 a, __m512 b, const int imm);
Shuffles float32 elements from vectors a and b within 128-bit lanes using the control in imm, and stores the
result.

_mm512_mask_shuffle_ps

extern __m512 __cdecl _mm512_mask_shuffle_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, const
int imm);

Compiler Reference

1387

Shuffle float32 elements from vectors a and b within 128-bit lanes using the control in imm, and stores the
result using writemask k.

Elements are copied from src when the corresponding mask bit is not set.

_mm512_maskz_shuffle_ps

extern __m512 __cdecl _mm512_maskz_shuffle_ps(__mmask16 k, __m512 a, __m512 b, const int imm);
Shuffle float32 elements from vectors a and b within 128-bit lanes using the control in imm, and stores the
result using zeromask k.

Elements are zeroed out when the corresponding mask bit is not set.

Intrinsics for Integer Shuffle Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_shuffle_epi32,
_mm512_mask_shuffle_epi32,
_mm512_maskz_shuffle_epi32

Shuffle int32 vectors within 128-
bit lanes using control value.

VPSHUFD

_mm512_shuffle_i32x4,
_mm512_mask_shuffle_i32x4,
_mm512_maskz_shuffle_i32x4

Shuffle four int32 values by
specified value.

VSHUFI32X4

_mm512_shuffle_i64x2,
_mm512_mask_shuffle_i64x2,
_mm512_maskz_shuffle_i64x2

Shuffle two int64 values by
specified value.

VSHUFI64X2

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

imm control value for shuffle operation

_mm512_shuffle_epi32

extern __m512i _cdecl __m512_shuffle_epi32(__m512i a, _MM_PERM_ENUM imm);
Shuffles int32 in a within 128-bit lanes using the control in imm, and stores the result.

_mm512_mask_shuffle_epi32

extern __m512i _cdecl __m512_mask_shuffle_epi32(__m512i src, __mmask16 k, __m512i a,
_MM_PERM_ENUM imm);

 Intel® C++ Compiler Classic Developer Guide and Reference

1388

Shuffles int32 in a within 128-bit lanes using the control in imm, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_shuffle_epi32

extern__m512i _cdecl __m512_maskz_shuffle_epi32(__mmask16 k, __m512i a, _MM_PERM_ENUM imm);
Shuffles int32 in a within 128-bit lanes using the control in imm, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_shuffle_i32x4

extern __m512i _cdecl __m512_shuffle_i32x4(__m512i a, __m512i b, _MM_PERM_ENUM imm);
Shuffles 128-bits (composed of four int32) selected by imm from a and b, and stores the result.

_mm512_mask_shuffle_i32x4

extern __m512i _cdecl __m512_mask_shuffle_i32x4(__m512i src, __mmask16 k, __m512i a, __m512i b,
_MM_PERM_ENUM imm);

Shuffles 128-bits (composed of four int32) selected by imm from a and b, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_shuffle_i32x4

extern __m512i _cdecl __m512_maskz_shuffle_i32x4(__mmask16 k, __m512i a, __m512i b,
_MM_PERM_ENUM imm);

Shuffles 128-bits (composed of four int32) selected by imm from a and b, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

_mm512_shuffle_i64x2

extern __m512i _cdecl __m512_shuffle_i64x2(__m512i a, __m512i b, _MM_PERM_ENUM imm);
Shuffles 128-bits (composed of two int64) selected by imm from a and b, and stores the result.

_mm512_mask_shuffle_i64x2

extern __m512i _cdecl __m512_mask_shuffle_i64x2(__m512i src, __mmask8 k, __m512i b, __m512i b,
_MM_PERM_ENUM imm);

Shuffles 128-bits (composed of two int64) selected by imm from a and b, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_shuffle_i64x2

extern __m512i _cdecl __m512_maskz_shuffle_i64x2(__mmask8 k, __m512i a, __m512i b, _MM_PERM_ENUM
imm);

Shuffles 128-bits (composed of two int64) selected by imm from a and b, and stores the result using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Intrinsics for Test Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Compiler Reference

1389

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_conflict_epi32,
_mm512_mask_conflict_epi32,
_mm512_maskz_conflict_epi32

Test int32 elements for
equality.

VPCONFLICTD

_mm512_conflict_epi64,
_mm512_mask_conflict_epi64,
_mm512_maskz_conflict_epi64

Test int64 elements for
equality.

VPCONFLICTQ

_mm512_test_epi32_mask,
_mm512_mask_test_epi32_mask

Performs a bitwise logical
AND operation and stores
the logical comparison
result.

VPTESTMD

_mm512_testn_epi32_mask,
_mm512_mask_testn_epi32_mask

Performs a bitwise logical
AND NOT operation and
stores the logical
comparison result.

VPTESTNMD

_mm512_test_epi64_mask,
_mm512_mask_test_epi64_mask

Performs a bitwise logical
AND operation and stores
the logical comparison
result.

VPTESTMQ

_mm512_testn_epi64_mask,
_mm512_mask_testn_epi64_mask

Performs a bitwise logical
AND NOT operation and
stores the logical
comparison result.

VPTESTNMQ

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_conflict_epi32

extern __m512i __cdecl _mm512_conflict_epi32(__m512i a);
Tests each 32-bit element of a for equality with all other elements in a closer to the least significant bit.

Each element's comparison forms a zero extended bit vector in the destination.

_mm512_mask_conflict_epi32

extern __m512i __cdecl _mm512_mask_conflict_epi32(__m512i src, __mmask16 k, __m512i a);
Tests each 32-bit element of a for equality with all other elements in a closer to the least significant bit using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Each element's comparison forms a zero extended bit vector in the destination.

 Intel® C++ Compiler Classic Developer Guide and Reference

1390

_mm512_maskz_conflict_epi32

extern __m512i __cdecl _mm512_maskz_conflict_epi32(__mmask16 k, __m512i a);
Tests each 32-bit element of a for equality with other elements in a closer to the least significant bit using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Each element's comparison forms a zero extended bit vector in the destination.

_mm512_conflict_epi64

extern __m512i __cdecl _mm512_conflict_epi64(__m512i a);
Tests each 64-bit element of a for equality with other elements in a closer to the least significant bit.

Each element's comparison forms a zero extended bit vector in the destination.

_mm512_mask_conflict_epi64

extern __m512i __cdecl _mm512_mask_conflict_epi64(__m512i src, __mmask8 k, __m512i a);
Tests each 64-bit element of a for equality with other elements in a closer to the least significant bit using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Each element's comparison forms a zero extended bit vector in the destination.

_mm512_maskz_conflict_epi64

extern __m512i __cdecl _mm512_maskz_conflict_epi64(__mmask8 k, __m512i a);
Tests each 64-bit element of a for equality with other elements in a closer to the least significant bit using
zeromask k (elements are zeroed out when the corresponding mask bit is not set).

Each element's comparison forms a zero extended bit vector the destination.

_mm512_test_epi32_mask

extern __mmask16 __cdecl _mm512_test_epi32_mask(__m512i a, __m512i b);
Computes the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and
sets the corresponding bit in result mask k if the intermediate value is non-zero.

_mm512_mask_test_epi32_mask

extern __mmask16 __cdecl _mm512_mask_test_epi32_mask(__mmask16 k, __m512i a, __m512i b);
Computes the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and
sets the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.

_mm512_test_epi64_mask

extern __mmask8 __cdecl _mm512_test_epi64_mask(__m512i a, __m512i b);
Computes the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and
sets the corresponding bit in result mask k if the intermediate value is non-zero.

Compiler Reference

1391

_mm512_mask_test_epi64_mask

extern __mmask8 __cdecl _mm512_mask_test_epi64_mask(__mmask8 k, __m512i a, __m512i b);
Computes the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and
sets the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.

_mm512_testn_epi32_mask

extern __mmask16 __cdecl _mm512_testn_epi32_mask(__m512i a, __m512i b);
Computes the bitwise AND NOT of packed 32-bit integers in a and b, producing intermediate 32-bit values,
and sets the corresponding bit in result mask k if the intermediate value is zero.

_mm512_mask_testn_epi32_mask

extern __mmask16 __cdecl _mm512_mask_testn_epi32_mask(__mmask16 k, __m512i a, __m512i b);
Computes the bitwise AND NOT of packed 32-bit integers in a and b, producing intermediate 32-bit values,
and sets the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.

_mm512_testn_epi64_mask

extern __mmask8 __cdecl _mm512_testn_epi64_mask(__m512i a, __m512i b);
Computes the bitwise AND NOT of packed 64-bit integers in a and b, producing intermediate 64-bit values,
and sets the corresponding bit in result mask k if the intermediate value is zero.

_mm512_mask_testn_epi64_mask

extern __mmask8 __cdecl _mm512_mask_testn_epi64_mask(__mmask8 k, __m512i a, __m512i b);
Computes the bitwise AND NOT of packed 64-bit integers in a and b, producing intermediate 64-bit values,
and sets the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.

Intrinsics for Typecast Operations
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

NOTE
These intrinsics are used for compilation and do not generate any instructions.

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_castpd512_pd128 Casts from larger type to smaller
type.

None.

 Intel® C++ Compiler Classic Developer Guide and Reference

1392

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_castps512_ps128 Casts from larger type to smaller
type.

None.

_mm512_castsi512_si128 Casts from larger type to smaller
type.

None.

_mm512_castpd512_pd256 Casts from larger type to smaller
type.

None.

_mm512_castps512_ps256 Casts from larger type to smaller
type.

None.

_mm512_castsi512_si256 Casts from larger type to smaller
type.

None.

_mm512_castpd256_pd512 Casts from smaller type to larger
type.

None.

_mm512_castps128_ps512 Casts from smaller type to larger
type.

None.

_mm512_castsi128_si512 Casts from smaller type to larger
type.

None.

_mm512_castpd256_pd512 Casts from smaller type to larger
type.

None.

_mm512_castps256_ps512 Casts from smaller type to larger
type.

None.

_mm512_castsi256_si512 Casts from smaller type to larger
type.

None.

_mm512_castpd_ps Casts from smaller type to larger
type.

None.

_mm512_castpd_si512 Casts from smaller type to larger
type.

None.

_mm512_castps_pd Casts from smaller type to larger
type.

None.

_mm512_castps_si512 Casts from smaller type to larger
type.

None.

_mm512_castsi512_pd Casts from smaller type to larger
type.

None.

_mm512_castsi512_ps Casts from smaller type to larger
type.

None.

variable definition
a vector element for casting operation

Compiler Reference

1393

_mm512_castpd_ps

extern __m512 __cdecl _mm512_castpd_ps(__m512d a);
Casts vector a of type __m512d to type __m512, with no change in value.

_mm512_castpd_si512

extern __m512i __cdecl _mm512_castpd_si512(__m512d a);
Casts vector a of type __m512d to type __m512i, with no change in value.

_mm512_castps_pd

extern __m512d __cdecl _mm512_castps_pd(__m512 a);
Casts vector a of type __m512 to type __m512d, with no change in value.

_mm512_castps_si512

extern __m512i __cdecl _mm512_castps_si512(__m512 a);
Casts vector a of type __m512 to type __m512i, with no change in value.

_mm512_castpd128_pd512

extern __m512d __cdecl _mm512_castpd128_pd512(__m128d a);
Casts vector a of type __m128d to type __m512d.

NOTE
The upper 384-bits of the result are undefined.

_mm512_castpd256_pd512

extern __m512d __cdecl _mm512_castpd256_pd512(__m256d a);
Casts vector a of type __m256d to type __m512d.

NOTE
The upper 256-bits of the result are undefined.

_mm512_castpd512_pd128

extern __m128d __cdecl _mm512_castpd512_pd128(__m512d a);
Casts vector a of type __m512d to type __m128d.

_mm512_castps512_ps128

extern __m128 __cdecl _mm512_castps512_ps128(__m512 a);
Casts vector a of type __m512 to type __m128.

 Intel® C++ Compiler Classic Developer Guide and Reference

1394

_mm512_castpd512_pd256

extern __m256d __cdecl _mm512_castpd512_pd256(__m512d a);
Casts vector a of type __m512d to type __m256d.

_mm512_castps128_ps512

extern __m512 __cdecl _mm512_castps128_ps512(__m128 a);
Casts vector a of type __m128 to type __m512.

NOTE
The upper 384-bits of the result are undefined.

_mm512_castps256_ps512

extern __m512 __cdecl _mm512_castps256_ps512(__m256 a);
Casts vector a of type __m256 to type __m512.

NOTE
The upper 256-bits of the result are undefined.

_mm512_castps512_ps256

extern __m256 __cdecl _mm512_castps512_ps256(__m512 a);
Casts vector a of type __m512 to type __m256.

_mm512_castsi128_si512

extern __m512i __cdecl _mm512_castsi128_si512(__m128i a);
Casts vector a of type __m128i to type __m512i.

NOTE
The upper 384-bits of the result are undefined.

_mm512_castsi256_si512

extern __m512i __cdecl _mm512_castsi256_si512(__m256i a);
Casts vector a of type __m256i to type __m512i.

NOTE
The upper 256-bits of the result are undefined.

Compiler Reference

1395

_mm512_castsi512_pd

extern __m512d __cdecl _mm512_castsi512_pd(__m512i a);
Casts vector a of type __m512i to type __m512d, with no change in value.

_mm512_castsi512_ps

extern __m512 __cdecl _mm512_castsi512_ps(__m512i a);
Casts vector a of type __m512i to type __m512, with no change in value.

_mm512_castsi512_si128

extern __m128i __cdecl _mm512_castsi512_si128(__m512i a);
Casts vector a of type __m512d to type __m256d.

_mm512_castsi512_si256

extern __m256i __cdecl _mm512_castsi512_si256(__m512i a);
Casts vector a of type __m512i to type __m256i.

Intrinsics for Vector Mask Operations

The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_kand Bitwise logical AND masks. KANDW

_mm512_kandn Bitwise logical AND NOT masks. KANDNW

_mm512_kmov Move to and from mask
registers.

KMOVW

_mm512_kunpackb Unpack mask registers. KUNPCKBW

_mm512_knot Bitwise logical NOT masks. KNOTW

_mm512_kor Bitwise logical OR masks. KORW

_mm512_kortestc
_mm512_kortestz

Bitwise logical OR mask and set
flag.

KORTESTW

_mm512_kxnor Bitwise logical XNOR masks. KXNORW

_mm512_kxor Bitwise logical XOR masks. KXORW

 Intel® C++ Compiler Classic Developer Guide and Reference

1396

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

_mm512_kand

extern __mmask16 __cdecl _mm512_kand(__mmask16 a, __mmask16 b);
Computes the bitwise AND of 16-bit masks a and b, and stores the result in k.

_mm512_kandn

extern __mmask16 __cdecl _mm512_kandn(__mmask16 a, __mmask16 b);
Computes the bitwise AND NOT of 16-bit masks a and b, and stores the result in k.

_mm512_knot

extern __mmask16 __cdecl _mm512_knot(__mmask16 a);
Computes the bitwise NOT of 16-bit mask a, and stores the result in k.

_mm512_kor

extern __mmask16 __cdecl _mm512_kor(__mmask16 a, __mmask16 b);
Computes the bitwise OR of 16-bit masks a and b, and stores the result in k.

_mm512_kxnor

extern __mmask16 __cdecl _mm512_kxnor(__mmask16 a, __mmask16 b);
Computes the bitwise XNOR of 16-bit masks a and b, and stores the result in k.

_mm512_kxor

extern __mmask16 __cdecl _mm512_kxor(__mmask16 a, __mmask16 b);
Computes the bitwise XOR of 16-bit masks a and b, and stores the result in k.

_mm512_kmov

extern __mmask16 __cdecl _mm512_kmov(__mmask16 a);
Copies 16-bit mask a to k.

_mm512_kunpackb

extern __mmask16 __cdecl _mm512_kunpackb(__mmask16 a, __mmask16 b);
Unpacks and interleaves eight bits from 16-bit masks a and b, and stores the 16-bit result in mask register.

Compiler Reference

1397

Intrinsics for Later Generation Intel® Core™ Processor
Instruction Extensions
This section discusses intrinsics for 3rd and 4th generation Intel® Core™ Processor instruction extensions,
intrinsics for converting half floats, intrinsics that generate random numbers, intrinsics for multi-precision
arithmetic, and intrinsics that allow reads and writes to the FS base and GS base registers.

Intrinsics for 3rd Generation Intel® Core™ Processor Instruction Extensions
The 3rd Generation Intel® Core™ Processor Instruction Extension intrinsics are assembly-coded functions that
call on 3rd Generation Intel® Core™ Processor Instructions that include new vector SIMD and scalar
instructions targeted for Intel® 64 architecture processors in process technology smaller than 32nm.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Functional Overview
The 3rd Generation Intel® Core™ Processor Instruction Extensions include:

• Four intrinsics that map to two hardware instructions VCVTPS2PH and VCVTPH2PS performing 16-bit
floating-point data type conversion to and from single-precision floating-point data type. The intrinsics for
conversion to packed 16-bit floating-point values from packed single-precision floating-point values also
provide rounding control using an immediate byte.

• Three intrinsics that map to the hardware instruction RDRAND. The intrinsics generate random numbers of
16/32/64 bit wide random integers.

• Eight intrinsics that map to the hardware instructions RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE.
The intrinsics allow software that works in the 64-bit environment to read and write the FS base and GS
base registers at all privileged levels.

Intrinsics for 4th Generation Intel® Core™ Processor Instruction Extensions
The 4th Generation Intel® Core™ Processor Instruction Extensions intrinsics are assembly-coded functions that
call on 4th Generation Intel® Core™ Processor Instructions that include scalar instructions targeted for Intel®
64 architecture processors in process technology smaller than 32nm.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Functional Overview
The 4th Generation Intel® Core™ Processor Instruction Extensions include:

• Four intrinsics that map to two hardware instructions ADOX and ADCX performing 32-bit or 64-bit
arithmetic operations with flags.

• One intrinsic that maps to the hardware instruction, PREFETCHW. This intrinsic allows data to be to
prefetched into the cache in anticipation of a write. This intrinsic can be found in the Cacheability Support
Intrinsics section.

• Three intrinsics that map to the hardware instruction RDSEED. The intrinsics generate random numbers of
16/32/64 bit wide random integers.

Intrinsics for Converting Half Floats that Map to 3rd Generation Intel® Core™ Processor
Instructions
There are four intrinsics for converting the half-float values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1398

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
These intrinsics convert packed half-precision values starting from the first CPUs with the Intel® AVX
instructions support that do not really have any special instructions performing FP16 conversions. Therefore,
the intrinsics are lowered to runtime library function calls and map to 3rd Generation Intel® Core™ Processor
instructions only when such a processor is specified as target CPU using the -Qx<CPU>/-x<CPU> option,
where <CPU> is the name of a CPU with support of 3rd Generation Intel® Core™ Processor Instruction
Extensions.

See Also
Intrinsics for Converting Half Floats

_mm_cvtph_ps()
Converts four half-precision (16-bit) floating point
values to single-precision floating point values. The
corresponding 3rd Generation Intel® Core™ Processor
extension instruction is VCVTPH2PS.

Syntax

extern __m128 _mm_cvtph_ps(__m128i x, int imm);

Arguments

X a vector containing four 16-bit FP values

Imm a conversion control constant

Description

This intrinsic converts four half-precision (16-bit) floating point values to single-precision floating point
values.

Returns

A vector containing four single-precision floating point elements.

_mm256_cvtph_ps()
Converts eight half-precision (16-bit) floating point
values to single-precision floating point values. The
corresponding 3rd Generation Intel® Core™ Processor
extension instruction is VCVTPH2PS.

Syntax

extern __m256 _mm256_cvtph_ps(__m128i x);

Arguments

x a vector containing eight 16-bit FP values

Description

This intrinsic converts eight half-precision (16-bit) floating point values to single-precision floating point
values.

Returns

A vector containing eight single-precision floating point elements.

Compiler Reference

1399

_mm_cvtps_ph()
Converts four single-precision floating point values to
half-precision (16-bit) floating point values. The
corresponding 3rd Generation Intel® Core™ Processor
extension instruction is VCVTPS2PH.

Syntax

extern __m128i _mm_cvtps_ph(__m128 x, int imm);

Arguments

X a vector containing four single-precision FP values

Imm a conversion control constant

Description

This intrinsic converts four single-precision floating point values to half-precision (16-bit) floating point
values.

Returns

A vector containing eight half-precision (16-bit) floating point elements.

_mm256_cvtps_ph()
Converts eight single-precision floating point values to
half-precision (16-bit) floating point values. The
corresponding 3rd Generation Intel® Core™ Processor
extension instruction is VCVTPS2PH.

Syntax

extern __m128i _mm_cvtps_ph(__m256 x, int imm);

Arguments

X a vector containing eight single-precision FP values

Imm a conversion control constant

Description

This intrinsic converts eight single-precision floating point values to half-precision (16-bit) floating point
values.

Intrinsics that Generate Random Numbers of 16/32/64 Bit Wide Random Integers
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

RDRAND
There are three intrinsics returning a hardware-generated random value.

 Intel® C++ Compiler Classic Developer Guide and Reference

1400

These intrinsics are mapped to a single RDRAND instruction. The exception is the intrinsic
_rdrand64_step(), which is mapped to two 32-bit RDRAND instructions and several shift and conditional
jump/move instructions on 32-bit platforms.

RDSEED
There are three intrinsics returning a hardware-generated random value.

These intrinsics are mapped to a code-sequence based on the RDSEED instruction. The result code depends
on the context in which the intrinsics were used and on the target OS.

_rdrand16_step(), _rdrand32_step(), _rdrand64_step()
Generate random numbers of 16/32/64 bit wide
random integers. These intrinsics are mapped to the
hardware instruction RDRAND.

Syntax

extern int _rdrand16_step(unsigned short *random_val);

extern int _rdrand32_step(unsigned int *random_val);

extern int _rdrand64_step(unsigned __int64 *random_val);

Description

These intrinsics generate random numbers of 16/32/64 bit wide random integers. The generated random
value is written to the given memory location and the success status is returned: '1' if the hardware returned
a valid random value, and '0' otherwise.

Returns

1 : if the hardware returns a 16/32/64 random value.

0 : if the hardware does not return any random value.

_rdseed16_step/ _rdseed32_step/ _rdseed64_step
Generates random numbers of 16/32/64 bit wide
random integers. The corresponding 4th Generation
Intel® Core™ instruction is RDSEED.

Syntax

extern int _rdseed16_step(unsigned short *random_val);
extern int _rdseed32_step(unsigned int *random_val);
extern int _rdseed64_step(unsigned __int64 *random_val);

Parameters

*random_val Random value written to the given memory location

Description

These intrinsics generate random numbers of 16/32/64 bit wide random integers. These intrinsics are
mapped to a code-sequence based on the RDSEED instruction. The result code depends on the context in
which the intrinsics were used and on the target operating system.

Compiler Reference

1401

NOTE
The _rdrand64_step() intrinsic can be used only on systems with the 64-bit registers support.

The generated random value is written to the given memory location and the success status is returned: '1' if
the hardware returned a valid random value, and '0' otherwise.

NOTE The difference between RDSEED and RDRAND intrinsics is that RDSEED intrinsics meet the NIST
SP 800-90B and NIST SP 800-90C standards, while the RDRAND meets the NIST SP 800-90A standard.

Returns

The generated random value is written to the given memory location and the success status is returned.
Returns '1' if the hardware returns a random 16/32/64 bit value (success). Returns '0' otherwise (failure).

Intrinsics for Multi-Precision Arithmetic

_addcarry_u32(), _addcarry_u64()
Computes sum of two 32/64 bit wide unsigned integer
values and a carry-in and returns the value of carry-
out produced by the sum. The corresponding 4th
Generation Intel® Core™ Processor extension
instructions are ADCX and ADOX.

Syntax

extern unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned int
src2, unsigned int *sum_out);
extern unsigned char _addcarry_u64(unsigned char c_in, unsigned __int64 src1, unsigned
__int64 src2, unsigned __int64 *sum_out);

Parameters

c_in Value used for determining carry-in value

src1 32/64 bit source integer

src2 32/64 bit source integer

*sum_out Pointer to memory location where result is stored

Description

The intrinsic computes sum of two 32/64 bit wide integer values, src1 and src2, and a carry-in value. The
carry-in value is considered '1' for any non-zero c_in input value or '0' otherwise. The sum is stored to a
memory location referenced by sum_out argument:

*sum_out = src1 + src2 + (c_in !=0 ? 1 : 0)

NOTE
This intrinsic does not perform validity checking of the memory address pointed to by sum_out, thus it
cannot be used to find out if the sum produces carry-out without storing result of the sum.

 Intel® C++ Compiler Classic Developer Guide and Reference

1402

Returns

Returns the value of the intrinsic is a carry-out value generated by sum. The sum result is stored into
memory location pointed by sum_out argument.

_addcarryx_u32(), _addcarryx_u64()
Computes sum of two 32/64 bit wide unsigned integer
values and a carry-in and returns the value of carry-
out produced by the sum. The corresponding 4th
Generation Intel® Core™ Processor extension
instructions are ADCX and ADOX.

Syntax

extern unsigned char _addcarryx_u32(unsigned char c_in, unsigned int src1, unsigned int
src2, unsigned int *sum_out);
extern unsigned char _addcarryx_u64(unsigned char c_in, unsigned __int64 src1, unsigned
__int64 src2, unsigned __int64 *sum_out);

Parameters

c_in Value used for determining carry-in value

src1 32/64 bit source integer

src2 32/64 bit source integer

*sum_out Pointer to memory location where result is stored

Description

Computes the sum of two 32/64 bit wide integer values (src1, src2) and a carry-in value. The carry-in value
is considered '1' for any non-zero c_in input value, or '0' otherwise. The sum is stored to a memory location
referenced by sum_out argument:

*sum_out = src1 + src2 + (c_in !=0 ? 1 : 0)

NOTE
This intrinsic does not perform validity checking of the memory address pointed to by sum_out, thus it
cannot be used to find out if the sum produces carry-out without storing result of the sum.

The intrinsic is translated to either ADCX/ADOX instruction, chosen by the compiler. By design, these
instructions allow running of two interleaved add-with-carry instruction sequences in parallel via using ADCX
and ADOX instructions for these sequences respectively.

Returns

Returns carry-out value generated by the sum. The sum result is stored into memory location pointed by
sum_out argument.

Compiler Reference

1403

_subborrow_u32(), _subborrow_u64()
Computes sum of 32/64 bit unsigned integer value
with borrow-in value and then subtracts the result
from a 32/64 bit unsigned integer value. The
corresponding 4th Generation Intel® Core™ Processor
extension instruction is V.

Syntax

extern unsigned char _subborrow_u32(unsigned char b_in, unsigned int src1, unsigned int
src2, unsigned int *diff_out);
extern unsigned char _subborrow_u64(unsigned char b_in, unsigned __int64 src1, unsigned
__int64 src2, unsigned __int64 *diff_out);

Parameters

b_in Borrow-in value for addition operation

src1 32/64 bit source integer for addition operation

src2 32/64 bit source integer for subtraction operation

*diff_out Pointer to memory location where result is stored

Description

Computes the sum of a 32/64 bit wide unsigned integer value src2 and a borrow-in value b_in and then
subtracts result of the sum from 32/64 bit wide unsigned integer value src1. The borrow-in value is
considered '1' for any non-zero b_in input value, or '0' otherwise. The difference is then stored to a memory
location referenced by diff_out argument:

 *diff_out = src1 - (src2 + (b_in !=0 ? 1 : 0))

NOTE
This intrinsic does not perform validity checking of the memory address pointed to by diff_out, thus it
cannot be used to find out if a subtraction produces borrow-out without storing the result of the
subtraction.

Returns

Returns borrow-out value generated by subtraction operation. The result of the subtraction is stored into
memory location pointed by diff_out argument.

Intrinsics that Allow Reading from and Writing to the FS Base and GS Base Registers
There are eight intrinsics that allow reading and writing the value of the FS base and GS base registers at all
privilege levels and in 64-bit mode only.

These intrinsics are mapped to corresponding 3rd Generation Intel® Core™ Processor extension instructions.

_readfsbase_u32(), _readfsbase_u64()
Read the value of the FS base register. Both intrinsics
are mapped to RDFSBASE instruction.

 Intel® C++ Compiler Classic Developer Guide and Reference

1404

Syntax

extern unsigned int _readfsbase_u32();
extern unsigned __int64 _readfsbase_u64();

Description

These intrinsics read the value of the FS base register.

Returns

The value of the FS base segment register.

_readgsbase_u32(), _readgsbase_u64()
Read the value of the GS base register. Both intrinsics
are mapped to RDGSBASE instruction.

Syntax

extern unsigned int _readgsbase_u32();
extern unsigned int _readgsbase_u32();

Description

These intrinsics read the value of the GS base register.

Returns

The value of the GS base segment register.

_writefsbase_u32(), _writefsbase_u64()
Write the value to the FS base register. Both intrinsics
are mapped to WRFSBASE instruction.

Syntax

extern void _writefsbase_u32(int 32 val);
extern void _writefsbase_u64(unsigned __int64 val);

Arguments

val the value to be written to the FS base register

Description

These intrinsics write the given value to the FS segment base register.

_writegsbase_u32(), _writegsbase_u64()
Write the value to the GS base register. Both intrinsics
are mapped to WRGSBASE instruction.

Syntax

_writegsbase_u32(int 32 val)
extern void _writegsbase_u64(unsigned __int64 val);

Compiler Reference

1405

Arguments

val the value to be written to the GS base register

Description

These intrinsics write the given value to the GS segment base register.

Intrinsics for Intel® Advanced Vector Extensions 2 (Intel®
AVX2)
Intel® Advanced Vector Extensions 2 (Intel® AVX2) extends Intel® Advanced Vector Extensions (Intel® AVX) by
promoting most of the 128-bit SIMD integer instructions with 256-bit numeric processing capabilities. The
Intel® AVX2 instructions follow the same programming model as the Intel® AVX instructions.

Intel® AVX2 also provides enhanced functionality for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data
elements from memory.

Intel® AVX2 intrinsics have vector variants that use __m128, __m128i, __m256, and __m256i data types.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The Intel® AVX2 intrinsics are supported on IA-32 and Intel® 64 architectures built from 32nm process
technology. They map directly to the Intel® AVX2 new instructions and other enhanced 128-bit SIMD
instructions.

Functional Overview
Intel® AVX2 instructions promote the vast majority of 128-bit integer SIMD instruction sets to operate with
256-bit wide YMM registers. Intel® AVX2 instructions are encoded using the VEX prefix and require the same
operating system support as Intel® AVX. Generally, most of the promoted 256-bit vector integer instructions
follow the 128-bit lane operation, similar to the promoted 256-bit floating-point SIMD instructions in Intel®
AVX.

The Intel® AVX2 instructions may be broadly categorized as follows:

• Intel® AVX complementary integer instructions: Intel® AVX2 instructions complement the Intel® AVX
instructions that are typed for integer operations with a full complement of equivalent instructions for
operating with integer data elements.

• BROADCAST and PERMUTE instructions: These instructions provide cross-lane functionality for floating-
point and integer operations. In addition, some of the Intel® AVX2 256-bit vector integer instructions
promoted from legacy SSE instruction sets also exhibiting cross-lane behavior fall into this category; for
example, instructions of the VPMOVZ/VPMOVS family.

• SHIFT instructions: Intel® AVX2 vector SHIFT instructions operate with per-element shift count and
support data element sizes of 32- and 64-bits.

• GATHER instructions: The Intel® AVX2 vector GATHER instructions are used for fetching non-contiguous
data elements from memory using vector-index memory addressing. They introduce a new memory
addressing form consisting of a base register and multiple indices specified by a vector register (XMM or
YMM). Data element sizes of 32- and 64-bits are supported as well as data types for floating-point and
integer elements.

See Also
Instruction Set Architecture (ISA) site at https://software.intel.com/content/www/us/en/develop/
tools/isa-extensions.html
Details about the Intel® AVX Intrinsics

 Intel® C++ Compiler Classic Developer Guide and Reference

1406

https://software.intel.com/content/www/us/en/develop/tools/isa-extensions.html
https://software.intel.com/content/www/us/en/develop/tools/isa-extensions.html

Intrinsics for Arithmetic Operations

_mm256_abs_epi8/16/32
Computes the absolute value of the signed packed
integer data elements of a given vector. The
corresponding Intel® AVX2 instruction is VPABSB,
VPABSW, or VPABSD.

Syntax

extern __m256i _mm256_abs_epi8(__m256i s1);
extern __m256i _mm256_abs_epi16(__m256i s1);
extern __m256i _mm256_abs_epi32(__m256i s1);

Arguments

s1 integer source vector used for the operation

Description

Computes the absolute value of each data element, either signed bytes, 16-bit words, or 32-bit integers, of
the source vector and stores the UNSIGNED results in the destination vector.

Returns

Result of the operation.

_mm256_add_epi8/16/32/64
Adds signed/unsigned packed 8/16/32/64-bit integer
data elements of two vectors. The corresponding
Intel® AVX2 instruction is VPADDB, VPADDW, VPADDD, or
VPADDQ.

Syntax

extern __m256i _mm256_add_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_add_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_add_epi32(__m256i s1, __m256i s2);
extern __m256i _mm256_add_epi64(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Adds packed signed/unsigned 8-, 16-, 32-, or 64-bit integers from source vector s1 and corresponding bits of
source vector s2 and stores the packed integer result in the destination vector. When an individual result is
too large to be represented in 8/16/32/64 bits (overflow), the result is wrapped around and the low
8/16/32/64 bits are written to the destination vector (that is, the carry is ignored).

You must control the range of values operated upon to prevent undetected overflow conditions.

Compiler Reference

1407

Returns

Result of the addition operation.

_mm256_adds_epi8/16
Adds the signed 8/16-bit integer data elements with
saturation of two vectors. The corresponding Intel®
AVX2 instruction is VPADDSB or VPADDSW.

Syntax

extern __m256i _mm256_adds_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_adds_epi16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD add of the packed, signed, 8- or 16-bit integer data elements with saturation from the first
source vector, s1, and corresponding elements of the second source vector, s2, and stores the packed integer
results in the destination vector. When an individual byte/word result is beyond the range of a signed byte/
word integer (that is, greater than 7FH/7FFFH or less than 80H/8000H), the saturated value of 7FH/7FFFH or
80H/8000H, respectively, is written to the destination vector.

Returns

Result of the addition operation.

_mm256_adds_epu8/16
Adds the unsigned 8/16-bit integer data elements with
saturation of two vectors. The corresponding Intel®
AVX2 instruction is VPADDUSB or VPADDUSW.

Syntax

extern __m256i _mm256_adds_epu8(__m256i s1, __m256i s2);
extern __m256i _mm256_adds_epu16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD add of the packed, unsigned, 8- or 16-bit integer data elements with saturation from the
first source vector, s1, and corresponding elements of the second source vector, s2, and stores the packed
integer results in the destination vector. When an individual byte/word result is beyond the range of a
unsigned byte/word integer (that is, greater than FFH/FFFFH), the saturated value of FFH/FFFFH,
respectively, is written to the destination vector.

 Intel® C++ Compiler Classic Developer Guide and Reference

1408

Returns

Result of the addition operation.

_mm256_sub_epi8/16/32/64
Subtracts signed/unsigned packed 8/16/32/64-bit
integer data elements of two vectors. The
corresponding Intel® AVX2 instruction is VPSUBB,
VPSUBW, VPADDD, or VPSUBQ.

Syntax

extern __m256i _mm256_sub_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_sub_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_sub_epi32(__m256i s1, __m256i s2);
extern __m256i _mm256_sub_epi64(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Subtracts packed signed/unsigned 8-, 16-, 32-, or 64-bit integers of the second source vector s2 from
corresponding bits of the first source vector s1 and stores the packed integer result in the destination vector.
When an individual result is too large to be represented in 8/16/32/64 bits (overflow), the result is wrapped
around and the low 8/16/32/64 bits are written to the destination vector (that is, the carry is ignored).

You must control the range of values operated upon to prevent undetected overflow conditions.

Returns

Result of the subtraction operation.

_mm256_subs_epi8/16
Subtracts the signed 8/16-bit integer data elements
with saturation of two vectors. The corresponding
Intel® AVX2 instruction is VPSUBSB or VPSUBSW.

Syntax

extern __m256i _mm256_subs_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_subs_epi16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Compiler Reference

1409

Description

Performs a SIMD subtract of the packed, signed, 8- or 16-bit integer data elements with saturation of the
second source vector s2 from the corresponding elements of the first source vector s1 and stores the packed
integer results in the destination vector. When an individual byte/word result is beyond the range of a signed
byte/word integer (that is, greater than 7FH/7FFFH or less than 80H/8000H), the saturated value of 7FH/
7FFFH or 80H/8000H, respectively, is written to the destination vector.

Returns

Result of the subtraction operation.

_mm256_subs_epu8/16
Subtracts the unsigned 8/16-bit integer data elements
with saturation of two vectors. The corresponding
Intel® AVX2 instruction is VPSUBUSB or VPSUBUSW.

Syntax

extern __m256i _mm256_subs_epu8(__m256i s1, __m256i s2);
extern __m256i _mm256_subs_epu16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD subtract of the packed, unsigned, 8- or 16-bit integer data elements with saturation of the
second source vector s2 from the corresponding elements of the first source vector s1 and stores the packed
integer results in the destination vector. When an individual byte/word result is less than zero (that is, 00H/
0000H), the saturated value of 00H/0000H is written to the destination vector.

Returns

Result of the subtraction operation.

_mm256_avg_epu8/16
Computes the average of unsigned 8/16-bit integer
data elements of two vectors. The corresponding
Intel® AVX2 instruction is VPAVGB or VPAVGW.

Syntax

extern __m256i _mm256_avg_epu8(__m256i s1, __m256i s2);
extern __m256i _mm256_avg_epu16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1410

Description

Performs a SIMD average of the packed unsigned integers from source vector s2 and source vector s1 and
stores the results in the destination vector. For each corresponding pair of data elements in the first and
second vectors, the elements are added together, a 1 is added to the temporary sum, and that result is
shifted right by one bit position.

Returns

Result of the operation.

_mm256_hadd_epi16/32
Horizontally adds adjacent signed packed 16/32-bit
integer data elements of two vectors. The
corresponding Intel® AVX2 instruction is VPHADDW or
VPHADDD.

Syntax

extern __m256i _mm256_hadd_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_hadd_epi32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Adds two adjacent 16- or 32-bit signed integers horizontally from source vectors, s1 and s2 and packs the 16
or 32-bit signed results to the destination vector.

Horizontal addition of two adjacent data elements of the low 16- or 32-bytes of the first and second source
vectors are packed into the low 16- or 32-bytes of the destination vector. Horizontal addition of two adjacent
data elements of the high 16- or 32-bytes of the first and second source vectors are packed into the high 16-
or 32-bytes of the destination vector.

Returns

Result of the horizontal addition operation.

_mm256_hadds_epi16
Horizontally adds adjacent signed packed 16-bit
integer data elements of two vectors with saturation.
The corresponding Intel® AVX2 instruction is
VPHADDSW.

Syntax

extern __m256i _mm256_hadds_epi16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Compiler Reference

1411

Description

Adds two adjacent, signed 16-bit integers horizontally from the source vectors s1 and s2, saturates the
signed results, and packs the signed, saturated 16-bit results to the destination vector.

Returns

Result of the horizontal addition operation with saturation.

_mm256_hsub_epi16/32
Horizontally subtracts adjacent signed packed 16/32-
bit integer data elements of two vectors. The
corresponding Intel® AVX2 instruction is VPHSUBW or
VPHSUBD.

Syntax

extern __m256i _mm256_hsub_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_hsub_epi32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs horizontal subtraction on each adjacent pair of 16- or 32-bit signed integers by subtracting the
most significant word from the least significant word of each pair source vectors s2 and s2, and packs the
signed 16- or 32-bit results to the destination vector.

Returns

Result of the horizontal subtraction operation.

_mm256_hsubs_epi16
Horizontally subtracts adjacent signed packed 16-bit
integer data elements of two vectors with saturation.
The corresponding Intel® AVX2 instruction is
VPHSUBSW.

Syntax

extern __m256i _mm256_hsubs_epi16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the most
significant word from the least significant word of each pair in source vectors s1 and s2. The signed,
saturated 16-bit results are packed to the destination vector.

 Intel® C++ Compiler Classic Developer Guide and Reference

1412

Returns

Result of the horizontal subtraction operation with saturation.

_mm256_madd_epi16
Multiplies signed packed 16-bit integer data elements
of two vectors. The corresponding Intel® AVX2
instruction is VPMADDW.

Syntax

extern __m256i _mm256_madd_epi16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Multiplies individual, signed 16-bit integers of source vector s1 by the corresponding signed 16-bit integers of
source vector s2, producing temporary, signed, 32-bit [doubleword] results. The adjacent doubleword results
are then summed and stored in the destination vector.

For example, the corresponding low-order words (15:0) and (31-16) in s2 and s1 vectors are multiplied,
and the doubleword results are added together and stored in the low doubleword of the destination vector
(31-0). The same operation is performed on the other pairs of adjacent words.

Returns

Result of the multiplication operation.

_mm256_maddubs_epi16
Multiplies unsigned packed 16-bit integer data
elements of one vector with signed elements of
second vector. The corresponding Intel® AVX2
instruction is VPMADDUBSW.

Syntax

extern __m256i _mm256_maddubs_epi16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Multiplies vertically each unsigned byte of source vector s1 with the corresponding signed byte of source
vector s2, producing intermediate, signed 16-bit integers. Each adjacent pair of signed words is added, and
the saturated result is packed to the destination vector.

For example, the lowest-order bytes (bits 7:0) in s1 and s2 vectors are multiplied and the intermediate
signed word result is added with the corresponding intermediate result from the 2nd lowest-order bytes (bits
15:8) of the vectors. The sign-saturated result is stored in the lowest word of the destination vector (15:0).
The same operation is performed on the other pairs of adjacent bytes.

Compiler Reference

1413

Returns

Result of the multiplication operation.

_mm256_mul_epi32
Multiplies two vectors with packed doubleword signed
integer values. The corresponding Intel® AVX2
instruction is VPMULDQ.

Syntax

extern __m256i _mm256_mul_epi32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Multiplies the value of packed signed doubleword integer in source vector s1 by the value in source vector s2
and stores the result in the destination vector.

When a quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around
and the low 64 bits are written to the destination element (that is, the carry is ignored).

Returns

Result of the multiplication operation.

_mm256_mul_epu32
Multiplies two vectors with packed doubleword
unsigned integer values. The corresponding Intel®
AVX2 instruction is VPMULUDQ.

Syntax

extern __m256i _mm256_mul_epu32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Multiplies the value of packed unsigned doubleword integer in source vector s1 by the value in source vector
s2 and stores the result in the destination vector.

When a quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around
and the low 64 bits are written to the destination element (that is, the carry is ignored).

Returns

Result of the multiplication operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1414

_mm256_mulhi_epi16
Multiplies signed packed 16/32-bit integer data
elements of two vectors and stores high bits. The
corresponding Intel® AVX2 instruction is VPMULHW.

Syntax

extern __m256i _mm256_mulhi_epi16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD signed multiply of the packed signed 16-bit integers in source vectors s1 and s2 and stores
the high 16 bits of each intermediate 32-bit result in the destination vector.

Returns

Result of the multiplication operation.

_mm256_mulhi_epu16
Multiplies unsigned packed 16/32-bit integer data
elements of two vectors and stores high bits. The
corresponding Intel® AVX2 instruction is VPMULHUW.

Syntax

extern __m256i _mm256_mulhi_epu16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD unsigned multiply of the packed unsigned 16-bit integers in source vectors s1 and s2 and
stores the high 16 bits of each intermediate 32-bit result in the destination vector.

Returns

Result of the multiplication operation.

_mm256_mullo_epi16/32
Multiplies signed packed 16/32-bit integer data
elements of two vectors and stores low bits. The
corresponding Intel® AVX2 instruction is VPMULLW or
VPMULLD.

Syntax

extern __m256i _mm256_mullo_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_mullo_epi32(__m256i s1, __m256i s2);

Compiler Reference

1415

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD signed multiply of the packed signed 16- or 32-bit integers in source vectors s1 and s2 and
stores the low 16- or 32-bits of each intermediate 32- or 64-bit result in the destination vector.

Returns

Result of the multiplication operation.

_mm256_mulhrs_epi16
Multiplies extended packed unsigned integers of two
vectors with round and scale. The corresponding Intel®
AVX2 instruction is VPMULHRSW.

Syntax

extern __m256i _mm256_mulhrs_epi16(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Vertically multiplies each signed 16-bit integer from s1vector with the corresponding signed 16-bit integer of
s2 vector, producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer is truncated to
the 18 most-significant-bits. Rounding is performed by adding 1 to the least-significant-bit of the 18-bit
intermediate result.

The final result is obtained by selecting the 16 bits immediately to the right of the most-significant-bit of
each 18-bit intermediate result and packing them to the destination operand.

Returns

Result of the multiply, round, and scale operation.

_mm256_sign_epi8/16/32
Changes the sign of elements in one source vector
depending on the sign of corresponding element in
other source vector. The corresponding Intel® AVX2
instruction is VPSIGNB, VPSIGNW, or VPSIGND.

Syntax

extern __m256i _mm256_sign_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_sign_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_sign_epi32(__m256i s1, __m256i s2);

 Intel® C++ Compiler Classic Developer Guide and Reference

1416

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Modifies the sign of data elements in the source vector s1 depending on the sign of corresponding element in
vector s2 as follows:

• If sign of data element in s2 vector is < 0 then the sign of corresponding data element in vector s1 is
made negative.

• If sign of data element in s2 vector is > 0 then the sign of corresponding data element in vector s1 is left
unchanged.

• If the data element in s2 vector is = 0 then the corresponding data element in vector s1 is set to 0.

The _mm256_sign_epi8 intrinsic operates on 8-bit signed bytes. The _mm256_sign_epi16 intrinsic operates
on 16-bit signed words. The _mm256_sign_epi32 intrinsic operates on 32-bit signed integers.

Returns

Result of the operation.

_mm256_mpsadbw_epu8
Performs multiple sum of absolute differences on
extended packed unsigned integer values ofs two
vectors. The corresponding Intel® AVX2 instruction is
VMPSADBW.

Syntax

extern __m256i _mm256_mpsadbw_epu8(__m256i s1, __m256i s2, const int mask);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

mask integer constant specifying offset

Description

Performs multiple sum operations of the absolute difference of blocks of four packed unsigned bytes of vector
s2 with sequential blocks of four packed unsigned bytes in vector s1. The offset granularity in both vectors is
32 bits.

The sum-absolute-difference (SAD) operation is repeated 16 times by the intrinsic between the s2 vector
with a fixed offset and a variable s1 vector where the offset is shifted by eight bits for each SAD operation.
The integer constant specified in mask provides bit fields that specify the initial offset for s2 and s1 vectors.
Each 16-bit result of eight SAD operations is written to the respective word in the result vector.

Returns

Result of the multiple sum-absolute-difference operation.

Compiler Reference

1417

_mm256_sad_epu8
Computes sum of absolute differences between
extended packed unsigned values of two vectors. The
corresponding Intel® AVX2 instruction is VPSADBW.

Syntax

extern __m256i _mm256_sad_epu8(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Computes the absolute value of the difference of packed groups of eight unsigned byte integers from the
source vectors s1 and s2. Four blocks of eight differences are stored at specific locations in the destination
vector. Remaining bits in the destination vector are set to zero.

Returns

Result of the single sum-absolute-difference operation.

Intrinsics for Arithmetic Shift Operations

_mm256_sra_epi16/32
Arithmetic shift of word/doubleword elements to right
according to specified number. The corresponding
Intel® AVX2 instruction is VPSRAW, or VPSRAD.

Syntax

extern __m256i _mm256_sra_epi16(__m256i s1, __m128i count);
extern __m256i _mm256_sra_epi32(__m256i s1, __m128i count);

Arguments

s1 integer source vector used for the operation

count 128-bit memory location used for the operation

Description

Performs an arithmetic shift of bits in the individual data elements (16-bit word or 32-bit doubleword) in the
first source vector s1 to the right by the number of bits specified in count. The empty high-order bits are
filled with the initial value of the sign bit. If the value specified by count is greater than 15/31/63 (depending
on the intrinsic being used), the destination vector is filled with the initial value of the sign bit.

The count argument is a 128-bit memory location. Note that only the first 64-bits of a 128-bit count operand
are checked to compute the count.

Returns

Result of the right-shift operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1418

_mm256_srai_epi16/32
Arithmetic shift of word/doubleword elements to right
according to specified number. The corresponding
Intel® AVX2 instruction is VPSRAW or VPSRAD.

Syntax

extern __m256i _mm256_srai_epi16(__m256i s1, const int count);
extern __m256i _mm256_srai_epi32(__m256i s1, const int count);

Arguments

s1 integer source vector used for the operation

count 8-bit immediate used for the operation

Description

Performs an arithmetic shift of 16-bit [word] or 32-bit [doubleword] elements within a 128-bit lane of source
vector s1 to the right by the number of bits specified in count. The empty high-order bits are filled with the
initial value of the sign bit. If the value specified by count is greater than 15 or 31, the whole destination
vector is filled with the initial value of the sign bit. The count argument is an 8-bit immediate.

Returns

Result of the right-shift operation.

_mm256_srav_epi32
Arithmetic shift of doubleword elements to right
according variable values. The corresponding Intel®
AVX2 instruction is VPSRAVD.

Syntax

extern __m256i _mm256_srav_epi32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector providing variable values for
shift operation

Description

Performs an arithmetic shift of 32 bits (doublewords) in the individual data elements in source vector s1 to
the right by the count value of corresponding data elements in source vector s2. As the bits in the data
elements are shifted right, the empty high-order bits are filled with the initial value of the sign bit.

The count values are specified individually in each data element of the second source vector. If the unsigned
integer value specified in the respective data element of the second source vector is greater than 31 (for a
doubleword), then the destination data elements are filled with the initial value of the sign bit.

Returns

Result of the right-shift operation.

Compiler Reference

1419

_mm_srav_epi32
Arithmetic shift of doubleword elements to right
according variable values. The corresponding Intel®
AVX2 instruction is VPSRAVD.

Syntax

extern __m128i _mm_srav_epi32(__m128i s1, __m128i s2);

Arguments

s1 128-bit integer source vector used for the operation

s2 128-bit integer source vector providing variable
values for shift operation

Description

Performs an arithmetic shift of the 32 bits (doublewords) in the individual data elements in source vector s1
to the right by the count value of corresponding data elements in source vector s2. As the bits in the data
elements are shifted right, the empty high-order bits are filled with the initial value of the sign bit.

The count values are specified individually in each data element of the second source vector. If the unsigned
integer value specified in the respective data element of the second source vector is greater than 31 (for a
doubleword), then the destination data elements are filled with the initial value of the sign bit.

Returns

Result of the right-shift operation.

Intrinsics for Blend Operations

_mm_blend_epi32, _mm256_blend_epi16/32
Conditionally blends data elements of source vector
depending on bits in a mask. The corresponding Intel®
AVX2 instruction is VPBLENDD or VPBLENDW.

Syntax

extern __m128i _mm_blend_epi32(__m128i s1, __m128i s2, const int mask);
extern __m256i _mm256_blend_epi16(__m256i s1, __m256i s2, const int mask);
extern __m256i _mm256_blend_epi32(__m256i s1, __m256i s2, const int mask);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

mask 8-bit immediate used for the operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1420

Description

Performs a blend operation by conditionally copying 16/32-bit [word/doubleword] elements from source
vectors s2 and s1, depending on mask bits defined in mask. The mask bits are the least significant 8 bits in
mask when the 256-bit intrinsics, _mm256_blend_epi16/_mm256_blend_epi32, are used, and 4 bits when
the 128-bit intrinsic, _mm_blend_epi32, is used.

Each word/doubleword element of the destination vector is copied from the corresponding word/doubleword
element in s2 if a mask bit is 1, or is copied from the corresponding word/doubleword element in s1 if a
mask bit is 0.

Returns

Result of the blend operation.

_mm256_blendv_epi8
Conditionally blends word elements of source vector
depending on bits in a mask vector. The
corresponding Intel® AVX2 instruction is VPBLENDVB.

Syntax

extern __m256i _mm256_blendv_epi8(__m256i s1, __m256i s2, __m256i mask);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

mask integer vector used for the operation

Description

Performs a blend operation by conditionally copying 8-bit byte elements from source vectors s2 and s1,
depending on mask bits defined in mask vector. The mask bits are the most significant bit in each byte
element of mask.

Each byte element of the destination vector is copied from the corresponding byte element in s2 if a mask bit
is 1, or the corresponding byte element in s1 if a mask bit is 0.

Returns

Result of the blend operation.

Intrinsics for Bitwise Operations

_mm256_and_si256
Performs bitwise logical AND operation on signed
integer vectors. The corresponding Intel® AVX2
instruction is VPAND.

Syntax

extern __m256i _mm256_and_si256(__m256i s1, __m256i s2);

Compiler Reference

1421

Arguments

s1 signed integer vector used for the operation

s2 signed integer vector also used for the operation

Description

Performs a bitwise logical AND operation of the signed integer elements of source vector s1 and
corresponding elements in source vector s2, and stores the result in the destination vector. If the
corresponding bits of the first and second vectors are 1, each bit of the result is set to 1, otherwise it is set
to 0.

Returns

Result of the bitwise logical AND operation.

_mm256_andnot_si256
Performs bitwise logical AND NOT operation on signed
integer vectors. The corresponding Intel® AVX2
instruction is VPANDN.

Syntax

extern __m256i _mm256_andnot_si256(__m256i s1, __m256i s2);

Arguments

s1 signed integer vector used for the operation

s2 signed integer vector also used for the operation

Description

Performs a bitwise logical NOT operation on source vector s1 then performs bitwise AND with source vector
s2 and stores the result in the destination vector. If the corresponding bit in the first vector is 0 and the
corresponding bit in the second vector is 1, each bit of the result is set to 1, otherwise it is set to 0.

Returns

Result of the bitwise logical AND NOT operation.

_mm256_or_si256
Performs bitwise logical OR operation on signed
integer vectors. The corresponding Intel® AVX2
instruction is VPOR.

Syntax

extern __m256i _mm256_or_si256(__m256i s1, __m256i s2);

Arguments

s1 signed integer vector used for the operation

s2 signed integer vector also used for the operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1422

Description

Performs a bitwise logical OR operation of the signed integer elements of source vector s2 and the
corresponding elements in source vector s1 and stores the result in the destination vector. If either of the
corresponding bits of the first and second vectors are 1, each bit of the result is set to 1, otherwise it is set
to 0.

Returns

Result of the bitwise logical OR operation.

_mm256_xor_si256
Performs bitwise logical XOR operation on signed
integer vectors. The corresponding Intel® AVX2
instruction is VPXOR.

Syntax

extern __m256i _mm256_xor_si256(__m256i s1, __m256i s2);

Arguments

s1 signed integer vector used for the operation

s2 signed integer vector also used for the operation

Description

Performs a bitwise logical XOR operation of the signed integer elements of source vector s2 and the
corresponding elements in source vector s1 and stores the result in the destination vector. If the
corresponding bits of the first and second vectors differ, each bit of the result is set to 1, otherwise it is set to
0.

Returns

Result of the bitwise logical XOR operation.

Intrinsics for Broadcast Operations

_mm_broadcastss_ps, _mm256_broadcastss_ps
Take the low packed single-precision floating-point
data element from the source operand and broadcast
to all elements of the result vector. The corresponding
Intel® AVX2 instruction is VBROADCASTSS.

Syntax

extern __m128 _mm_broadcastss_ps(__m128 val);
extern __m256 _mm256_broadcastss_ps(__m128 val);

Arguments

val __m128 vector containing the 32-bit element to be
broadcasted

Compiler Reference

1423

Description

Takes the low packed single-precision floating-point (float32) data element from the source operand and
broadcasts it to all elements of the result vector. The source operand is __m128; only the low 32 bits of this
operand are broadcasted.

Returns

Return result of the broadcast operation.

_mm256_broadcastsd_pd
Takes the low packed double-precision floating-point
data element from the source operand and broadcast
to all elements of the result vector. The corresponding
Intel® AVX2 instruction is VBROADCASTSD.

Syntax

extern __m256d _mm256_broadcastsd_pd(__m128d val);

Arguments

val __m128 vector containing the 64-bit element to be
broadcasted

Description

Takes the low packed double-precision floating-point (float64) data element from the source operand and
broadcasts it to all elements of the result vector. The source operand is __m128d; only the low 64 bits of this
operand are broadcasted.

The 128-bit version of this intrinsics is _mm_broadcastsd_pd. The intrinsic's syntax is extern __m128d
_mm_broadcastsd_pd(__m128d val); This intrinsic is an alias for _mm_movedup_pd() intrinsic. Please, see
Double-precision Floating-point Vector Intrinsics for details.

Returns

Return result of the broadcast operation.

_mm_broadcastb_epi8, _mm256_broadcastb_epi8
Take byte elements from the source operand and
broadcast to all elements of the result vector. The
corresponding Intel® AVX2 instruction is
VPBROADCASTB.

Syntax

extern __m128i _mm_broadcastb_epi8(__m128i val);
extern __m256i _mm256_broadcastb_epi8(__m128i val);

Arguments

val __m128i vector containing the elements to be
broadcasted

Description

Takes a byte integer in the low bits of the source operand and broadcasts to all elements of the result vector.

 Intel® C++ Compiler Classic Developer Guide and Reference

1424

Returns

Returns result of the broadcast operation.

_mm_broadcastw_epi16, _mm256_broadcastw_epi16
Take word elements from the source operand and
broadcast to all elements of the result vector. The
corresponding Intel® AVX2 instruction is
VPBROADCASTW.

Syntax

extern __m128i _mm_broadcastw_epi16(__m128i val);
extern __m256i _mm256_broadcastw_epi16(__m128i val);

Arguments

val __m128i vector containing the elements to be
broadcasted

Description

Takes a word integer in the low bits of the source operand and broadcasts to all eight or sixteen elements of
the result vector.

Returns

Returns result of the broadcast operation.

_mm_broadcastd_epi32, _mm256_broadcastd_epi32
Take doublewords from the source operand and
broadcast to all elements of the result vector. The
corresponding Intel® AVX2 instruction is
VPBROADCASTD.

Syntax

extern __m128i _mm_broadcastd_epi32(__m128i val);
extern __m256i _mm256_broadcastd_epi32(__m128i val);

Arguments

val __m128i vector containing 32-bit element to be
broadcasted

Description

Takes a dword integer in the low bits of the source operand and broadcasts to all elements of the result
vector.

Returns

Returns result of the broadcast operation.

Compiler Reference

1425

_mm_broadcastq_epi64, _mm256_broadcastq_epi64
Take qwords from the source operand and broadcast
to all elements of the result vector. The corresponding
Intel® AVX2 instruction is VPBROADCASTQ.

Syntax

extern __m128i _mm_broadcastq_epi64(__m128i val);
extern __m256i _mm256_broadcastq_epi64(__m128i val);

Arguments

val __m128i vector containing 64-bit element to be
broadcasted

Description

Takes a qword integer in the low bits of the source operand and broadcasts to all elements of the result
vector.

Returns

Returns result of the broadcast operation.

_mm256_broadcastsi128_si256
Takes 128-bit data from the source operand and
broadcasts it to all 128-bit elements of the result 256-
bit vector. The corresponding Intel® AVX2 instructions
are VBROADCASTI128 and VPERM2I128.

Syntax

extern __m256i _mm256_broadcastsi128_si256(__m128i val);

Arguments

val the value to be broadcasted

Description

Takes 128-bit data from the source operand and broadcasts it to all 128-bit elements of the result 256-bit
vector.

Returns

Returns result of the broadcast operation.

Intrinsics for Compare Operations

_mm256_cmpeq_epi8/16/32/64
Compares packed bytes/words/doublewords/
quadwords of two source vectors. The corresponding
Intel® AVX2 instruction is VPCMPEQB, VPCMPEQW,
VPCMPEQD, or VPCMPEQQ.

 Intel® C++ Compiler Classic Developer Guide and Reference

1426

Syntax

extern __m256i _mm256_cmpeq_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_cmpeq_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_cmpeq_epi32(__m256i s1, __m256i s2);
extern __m256i _mm256_cmpeq_epi64(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD compare for equality of packed bytes, words, doublewords, or quadwords in source vectors
s1 and s2. If a pair of data elements is equal, the corresponding data element in the destination vector is set
to all 1s. If a pair of data elements is unequal, the corresponding data element in the destination vector is
set to 0.

Returns

Destination vector with result of the compare equal operation.

_mm256_cmpgt_epi8/16/32/64
Compares packed bytes/words/doublewords/
quadwords of two source vectors. The corresponding
Intel® AVX2 instruction is VPCMPGTB, VPCMPGTW,
VPCMPGTD, or VPCMPGTQ.

Syntax

extern __m256i _mm256_cmpgt_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_cmpgt_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_cmpgt_epi32(__m256i s1, __m256i s2);
extern __m256i _mm256_cmpgt_epi64(__m256i s1, __m256i s2);

Arguments

s1 integer destination vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD signed compare to determine which of the data elements [packed bytes, words,
doublewords, or quadwords] in destination vector s1 is greater than the corresponding element in the source
vector s2.

For each pair of data elements in s1 and s2, if the s1 data element is greater than the corresponding element
in s2, then the corresponding element in the destination vector is set to all 1s. If the s1 data element is less
than the corresponding data element in s2, then the corresponding data element in destination vector is set
to all 0s.

If the data elements are equal, the destination vector is set to 0.

Compiler Reference

1427

Returns

Destination vector with result of the compare greater-than operation.

_mm256_max_epi8/16/32
Determines the maximum value between two vectors
with packed signed byte/word/doubleword integers.
The corresponding Intel® AVX2 instruction is VPMAXSB,
VPMAXSW, or VPMAXSD.

Syntax

extern __m256i _mm256_max_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_max_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_max_epi32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD compare of the packed signed byte, word, or doubleword integers in source vectors s1 and
s2 and returns the maximum value for each pair of integers to the destination vector.

Returns

Destination vector with result of the compare operation.

_mm256_max_epu8/16/32
Determines the maximum value between two vectors
with packed unsigned byte/word/doubleword integers.
The corresponding Intel® AVX2 instruction is VPMAXUB,
VPMAXUW, or VPMAXUD.

Syntax

extern __m256i _mm256_max_epu8(__m256i s1, __m256i s2);
extern __m256i _mm256_max_epu16(__m256i s1, __m256i s2);
extern __m256i _mm256_max_epu32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD compare of the packed unsigned byte, word, or doubleword integers in source vectors s1
and s2 and returns the maximum value for each pair of integers to the destination vector.

Returns

Destination vector with result of the compare operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1428

_mm256_min_epi8/16/32
Determines the minimum value between two vectors
with packed signed byte/word/doubleword integers.
The corresponding Intel® AVX2 instruction is VPMINSB,
VPMINSW, or VPMINSD.

Syntax

extern __m256i _mm256_min_epi8(__m256i s1, __m256i s2);
extern __m256i _mm256_min_epi16(__m256i s1, __m256i s2);
extern __m256i _mm256_min_epi32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD compare of the packed signed byte, word, or doubleword integers in source vectors s1 and
s2 and returns the minimum value for each pair of integers to the destination vector.

Returns

Destination vector with result of the compare operation.

_mm256_min_epu8/16/32
Determines the minimum value between two vectors
with packed unsigned byte/word/doubleword integers.
The corresponding Intel® AVX2 instruction is VPMINUB,
VPMINUW, or VPMINUD.

Syntax

extern __m256i _mm256_min_epu8(__m256i s1, __m256i s2);
extern __m256i _mm256_min_epu16(__m256i s1, __m256i s2);
extern __m256i _mm256_min_epu32(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

Description

Performs a SIMD compare of the packed unsigned byte, word, or doubleword integers in source vectors s1
and s2 and returns the minimum value for each pair of integers to the destination vector.

Returns

Destination vector with result of the compare operation.

Compiler Reference

1429

Intrinsics for Fused Multiply Add Operations

_mm_fmadd_pd, _mm256_fmadd_pd
Multiply-adds packed double-precision floating-point
values using three float64 vectors. The corresponding
FMA instruction is VFMADD<XXX>PD, where XXX could
be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128d _mm_fmadd_pd(__m128d a, __m128d b, __m128d c);
For 256-bit vector

extern __m256d _mm256_fmadd_pd(__m256d a, __m256d b, __m256d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of SIMD multiply-add computation on packed double-precision floating-point values using
three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are multiplied
and the infinite precision intermediate results are added to corresponding values in the third operand, after
which the final results are rounded to the nearest float64 values.

The compiler defaults to using the VFMADD213PD instruction and uses the other forms VFMADD132PD or
VFMADD231PD only if a low level optimization decides it is useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the multiply-add operation.

_mm_fmadd_ps, _mm256_fmadd_ps
Multiply-adds packed single-precision floating-point
values using three float32 vectors. The corresponding
FMA instruction is VFMADD<XXX>PS, where XXX could
be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128 _mm_fmadd_ps(__m128 a, __m128 b, __m128 c);
For 256-bit vector

extern __m256 _mm256_fmadd_ps(__m256 a, __m256 b, __m256 c);

 Intel® C++ Compiler Classic Developer Guide and Reference

1430

Arguments

a float32 vector used for the operation

b float32 vector also used for the operation

c float32 vector also used for the operation

Description

Performs a set of SIMD multiply-add computation on packed single-precision floating-point values using three
source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are multiplied and the
infinite precision intermediate results are added to corresponding values in the third operand, after which the
final results are rounded to the nearest float32 values.

The compiler defaults to using the VFMADD213PS instruction and uses the other forms VFMADD132PS or
VFMADD231PS only if a low level optimization decides it is useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the multiply-add operation.

_mm_fmadd_sd
Multiply-adds scalar double-precision floating-point
values using three float64 vectors. The corresponding
FMA instruction is VFMADD<XXX>SD, where XXX could
be 132, 213, or 231.

Syntax

extern __m128d _mm_fmadd_sd(__m128d a, __m128d b, __m128d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of scalar SIMD multiply-add computation on scalar double-precision floating-point values in
the low 32-bits of three source operands, a, b, and c. The float64 values in two operands, a and b, are
multiplied and the infinite precision intermediate result is obtained. The float64 value in the third operand, c,
is added to the infinite precision intermediate result. The final result is rounded to the nearest float64 value.

The compiler defaults to using the VFMADD213SD instruction and uses the other forms VFMADD132SD or
VFMADD231SD only if a low level optimization decides it is useful/necessary. For example, the compiler could
change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the multiply-add operation.

Compiler Reference

1431

_mm_fmadd_ss
Multiply-adds scalar single-precision floating-point
values using three float32vectors. The corresponding
FMA instruction is VFMADD<XXX>SS, where XXX could
be 132, 213, or 231.

Syntax

extern __m128 _mm_fmadd_ss(__m128 a, __m128 b, __m128 c);

Arguments

a float32 vector used for the operation

b float32 vector also used for the operation

c float32 vector also used for the operation

Description

Performs a set of scalar SIMD multiply-add computation on scalar single-precision floating-point values in the
low 32-bits of three source operands, a, b, and c. The float32 values in two operands, a and b, are multiplied
and the infinite precision intermediate result is obtained. The float32 value in the third operand, c, is added
to the infinite precision intermediate result. The final result is rounded to the nearest float32 value.

The compiler defaults to using the VFMADD213SS instruction and uses the other forms VFMADD132SS or
VFMADD231SS only if a low level optimization decides it is useful/necessary. For example, the compiler could
change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the multiply-add operation.

_mm_fmaddsub_pd, _mm256_fmaddsub_pd
Multiply-adds and subtracts packed double-precision
floating-point values using three float64 vectors. The
corresponding FMA instruction is VFMADDSUB<XXX>PD,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128d _mm_fmaddsub_pd(__m128d a, __m128d b, __m128d c);
For 256-bit vector

extern __m256d _mm256_fmaddsub_pd(__m256d a, __m256d b, __m256d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1432

Description

Performs a set of SIMD multiply-add-subtract computation on packed double-precision floating-point values
using three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are
multiplied and infinite precision intermediate results are obtained. The odd values in the third operand, c, are
added to the intermediate results while the even values are subtracted from them. The final results are
rounded to the nearest float64 values.

The compiler defaults to using the VFMADDSUB213PD instruction and uses the other forms VFMADDSUB132PD
or VFMADDSUB231PD only if a low-level optimization decides it is useful or necessary. For example, the
compiler could change the default if it finds that another instruction form saves a register or eliminates a
move.

Returns

Result of the multiply-add-subtract operation.

_mm_fmaddsub_ps, _mm256_fmaddsub_ps
Multiply-adds and subtracts packed single-precision
floating-point values using three float32 vectors. The
corresponding FMA instruction is VFMADDSUB<XXX>PS,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128 _mm_fmaddsub_ps(__m128 a, __m128 b, __m128 c);
For 256-bit vector

extern __m256 _mm256_fmaddsub_ps(__m256 a, __m256 b, __m256 c);

Arguments

a float32 vector used for the operation

b float32 vector also used for the operation

c float32 vector also used for the operation

Description

Performs a set of SIMD multiply-add-subtract computation on packed single-precision floating-point values
using three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are
multiplied and infinite precision intermediate results are obtained. The odd values in the third operand, c, are
added to the intermediate results while the even values are subtracted from them. The final results are
rounded to the nearest float32 values.

The compiler defaults to using the VFMADDSUB213PS instruction and uses the other forms VFMADDSUB132PS
or VFMADDSUB231PS only if a low level optimization decides it is useful or necessary. For example, the
compiler could change the default if it finds that another instruction form saves a register or eliminates a
move.

Returns

Result of the multiply-add-subtract operation.

Compiler Reference

1433

_mm_fmsub_pd, _mm256_fmsub_pd
Multiply-subtracts packed double-precision floating-
point values using three float64 vectors. The
corresponding FMA instruction is VFMSUB<XXX>PD,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128d _mm_fmsub_pd(__m128d a, __m128d b, __m128d c);
For 256-bit vector

extern __m256d _mm256_fmsub_pd(__m256d a, __m256d b, __m256d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of SIMD multiply-subtract computation on packed double-precision floating-point values using
three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are multiplied
and the infinite precision intermediate results are obtained. From the infinite precision intermediate results,
the values in the third operand, c, are subtracted. The final results are rounded to the nearest float64 values.

The compiler defaults to using the VFMSUB213PD instruction and uses the other forms VFMSUB132PD or
VFMSUB231PD only if a low level optimization decides it is useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the multiply-subtract operation.

_mm_fmsub_ps, _mm256_fmsub_ps
Multiply-subtracts packed single-precision floating-
point values using three float32 vectors. The
corresponding FMA instruction is VFMSUB<XXX>PS,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128 _mm_fmsub_ps(__m128 a, __m128 b, __m128 c);
For 256-bit vector

extern __m256 _mm256_fmsub_ps(__m256 a, __m256 b, __m256 c);

Arguments

a float32 vector used for the operation

b float32 vector also used for the operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1434

c float32 vector also used for the operation

Description

Performs a set of SIMD multiply-subtract computation on packed single-precision floating-point values using
three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are multiplied
and the infinite precision intermediate results are obtained. From the infinite precision intermediate results,
the values in the third operand, c, are subtracted. The final results are rounded to the nearest float32 values.

The compiler defaults to using the VFMSUB213PS instruction and uses the other forms VFMSUB132PS or
VFMSUB231PS only if a low level optimization decides it is useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the multiply-subtract operation.

_mm_fmsub_sd
Multiply-subtracts scalar double-precision floating-
point values using three float64 vectors. The
corresponding FMA instruction is VFMSUB<XXX>SD,
where XXX could be 132, 213, or 231.

Syntax

extern __m128d _mm_fmsub_sd(__m128d a, __m128d b, __m128d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of scalar SIMD multiply-subtract computation on scalar double-precision floating-point values
in the low 64-bits of three source operands, a, b, and c. The float64 values in two operands, a and b, are
multiplied and the infinite precision intermediate result is obtained. From the infinite precision intermediate
result, the float64 value in the third operand, c, is subtracted. The final result is rounded to the nearest
float64 value.

The compiler defaults to using the VFMSUB213SD instruction and uses the other forms VFMSUB132SD or
VFMSUB231SD only if a low level optimization decides it is useful/necessary. For example, the compiler could
change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the multiply-subtract operation.

_mm_fmsub_ss
Multiply-subtracts scalar single-precision floating-point
values using three float32vectors. The corresponding
FMA instruction is VFMSUB<XXX>SS, where XXX could
be 132, 213, or 231.

Compiler Reference

1435

Syntax

extern __m128 _mm_fmsub_ss(__m128 a, __m128 b, __m128 c);

Arguments

a float32 vector used for the operation

b float32 vector also used for the operation

c float32 vector also used for the operation

Description

Performs a set of scalar SIMD multiply-subtract computation on scalar single-precision floating-point values
in the low 32-bits of three source operands, a, b, and c. The float32 values in two operands, a and b, are
multiplied and the infinite precision intermediate result is obtained. From the infinite precision intermediate
result, the float32 value in the third operand, c, is subtracted. The final result is rounded to the nearest
float32 value.

The compiler defaults to using the VFMSUB213SS instruction and uses the other forms VFMSUB132SS or
VFMSUB231SS only if a low level optimization decides it is useful/necessary. For example, the compiler could
change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the multiply-subtract operation.

_mm_fmsubadd_pd, _mm256_fmsubadd_pd
Multiply-subtracts and adds packed double-precision
floating-point values using three float64 vectors. The
corresponding FMA instruction is VFMSUBADD<XXX>PD,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128d _mm_fmsubadd_pd(__m128d a, __m128d b, __m128d c);
For 256-bit vector

extern __m256d _mm256_fmsubadd_pd(__m256d a, __m256d b, __m256d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of SIMD multiply-subtract-add computation on packed double-precision floating-point values
using three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are
multiplied and infinite precision intermediate results are obtained. The odd values in the third operand, c, are
subtracted from the intermediate results while the even values are added to them. The final results are
rounded to the nearest float64 values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1436

The compiler defaults to using the VFMSUBADD213PD instruction and uses the other forms VFMSUBADD132PD
or VFMSUBSADD231PD only if a low-level optimization decides it is useful or necessary. For example, the
compiler could change the default if it finds that another instruction form saves a register or eliminates a
move.

Returns

Result of the multiply-subtract-add operation.

_mm_fmsubadd_ps, _mm256_fmsubadd_ps
Multiply-subtracts and adds packed single-precision
floating-point values using three float32 vectors. The
corresponding FMA instruction is VFMSUBADD<XXX>PS,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128 _mm_fmsubadd_ps(__m128 a, __m128 b, __m128 c);
For 256-bit vector

extern __m256 _mm256_fmsubadd_ps(__m256 a, __m256 b, __m256 c);

Arguments

a float32 vector used for the operation

b float32 vector also used for the operation

c float32 vector also used for the operation

Description

Performs a set of SIMD multiply-subtract-add computation on packed single-precision floating-point values
using three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are
multiplied and infinite precision intermediate results are obtained. The odd values in the third operand, c, are
subtracted from the intermediate results while the even values are added to them. The final results are
rounded to the nearest float32 values.

The compiler defaults to using the VFMSUBADD213PS instruction and uses the other forms VFMSUBADD132PS
or VFMSUBADDS231PS only if a low level optimization decides it is useful or necessary. For example, the
compiler could change the default if it finds that another instruction form saves a register or eliminates a
move.

Returns

Result of the multiply-add-subtract operation.

_mm_fnmadd_pd, _mm256_fnmadd_pd
Multiply-adds negated packed double-precision
floating-point values of three float64 vectors. The
corresponding FMA instruction is VFNMADD<XXX>PD,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128d _mm_fnmadd_pd(__m128d a, __m128d b, __m128d c);

Compiler Reference

1437

For 256-bit vector

extern __m256d _mm256_fnmadd_pd(__m256d a, __m256d b, __m256d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of SIMD negated multiply-add computation on packed double-precision floating-point values
using three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are
multiplied and the negated infinite precision intermediate results are added to the values in the third
operand, c, after which the final results are rounded to the nearest float64 values.

The compiler defaults to using the VFNMADD213PD instruction and uses the other forms VFNMADD132PD or
VFNMADD231PD only if a low level optimization decides it as useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the negated multiply-add operation.

_mm_fnmadd_ps, _mm256_fnmadd_ps
Multiply-adds negated packed single-precision
floating-point values of three float32 vectors. The
corresponding FMA instruction is VFNMADD<XXX>PS,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128 _mm_fnmadd_ps(__m128 a, __m128 b, __m128 c);
For 256-bit vector

extern __m256 _mm256_fnmadd_ps(__m256 a, __m256 b, __m256 c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of SIMD negated multiply-add computation on packed single-precision floating-point values
using three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are
multiplied and the negated infinite precision intermediate results are added to the values in the third
operand, c, after which the final results are rounded to the nearest float32 values.

The compiler defaults to using the VFNMADD213PS instruction and uses the other forms VFNMADD132PS or
VFNMADD231PS only if a low level optimization decides it as useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

 Intel® C++ Compiler Classic Developer Guide and Reference

1438

Returns

Result of the negated multiply-add operation.

_mm_fnmadd_sd
Multiply-adds negated scalar double-precision floating-
point values of three float64 vectors. The
corresponding FMA instruction is VFNMADD<XXX>SD,
where XXX could be 132, 213, or 231.

Syntax

extern __m128d _mm_fnmadd_sd(__m128d a, __m128d b, __m128d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of scalar SIMD negated multiply-add computation on scalar double-precision floating-point
values in the low 64-bits of three source operands, a, b, and c. The float64 values in two operands, a and b,
are multiplied and the negated infinite precision intermediate result obtained is added to the float64 value in
the third operand, c. The final result is rounded to the nearest float64 value.

The compiler defaults to using the VFNMADD213SD instruction and uses the other forms VFNMADD132SD or
VFNMADD231SD only if a low level optimization decides it as useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the negated multiply-add operation.

_mm_fnmadd_ss
Multiply-adds negated scalar single-precision floating-
point values of three float32 vectors. The
corresponding FMA instruction is VFNMADD<XXX>SS,
where XXX could be 132, 213, or 231.

Syntax

extern __m128 _mm_fnmadd_ss(__m128 a, __m128 b, __m128 c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Compiler Reference

1439

Description

Performs a set of scalar SIMD negated multiply-add computation on scalar single-precision floating-point
values in the low 32-bits of three source operands, a, b, and c. The float32 values in two operands, a and b,
are multiplied and the negated infinite precision intermediate result obtained is added to the float32 value in
the third operand, c. The final result is rounded to the nearest float32 value.

The compiler defaults to using the VFNMADD213SS instruction and uses the other forms VFNMADD132SS or
VFNMADD231SS only if a low level optimization decides it as useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the negated multiply-add operation.

_mm_fnmsub_pd, _mm256_fnmsub_pd
Multiply-subtracts negated packed double-precision
floating-point values of three float64 vectors. The
corresponding FMA instruction is VFNMSUB<XXX>PD,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128d _mm_fnmsub_pd(__m128d a, __m128d b, __m128d c);
For 256-bit vector

extern __m256d _mm256_fnmsub_pd(__m256d a, __m256d b, __m256d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Description

Performs a set of SIMD negated multiply-subtract computation on packed double-precision floating-point
values using three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are
multiplied and the negated infinite precision intermediate result is obtained. From this intermediate result the
value in the third operand, c, is subtracted, after which the final results are rounded to the nearest float64
values.

The compiler defaults to using the VFNMSUB213PD instruction and uses the other forms VFNMSUB132PD or
VFNMSUB231PD only if a low level optimization decides it is useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the negated multiply-subtract operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1440

_mm_fnmsub_ps, _mm256_fnmsub_ps
Multiply-subtracts negated packed single-precision
floating-point values of three float32 vectors. The
corresponding FMA instruction is VFNMSUB<XXX>PS,
where XXX could be 132, 213, or 231.

Syntax

For 128-bit vector

extern __m128 _mm_fnmsub_ps(__m128 a, __m128 b, __m128 c);
For 256-bit vector

extern __m256 _mm256_fnmsub_ps(__m256 a, __m256 b, __m256 c);

Arguments

a float32 vector used for the operation

b float32 vector also used for the operation

c float32 vector also used for the operation

Description

Performs a set of SIMD negated multiply-subtract computation on packed single-precision floating-point
values using three source vectors/operands, a, b, and c. Corresponding values in two operands, a and b, are
multiplied and the negated infinite precision intermediate result is obtained. From this intermediate result the
value in the third operand, c, is subtracted, after which the final results are rounded to the nearest float32
values.

The compiler defaults to using the VFNMSUB213PS instruction and uses the other forms VFNMSUB132PS or
VFNMSUB231PS only if a low level optimization decides it is useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the negated multiply-subtract operation.

_mm_fnmsub_sd
Multiply-subtracts negated scalar double-precision
floating-point values of three float64 vectors. The
corresponding FMA instruction is VFNMSUB<XXX>SD,
where XXX could be 132, 213, or 231.

Syntax

extern __m128d _mm_fnmsub_sd(__m128d a, __m128d b, __m128d c);

Arguments

a float64 vector used for the operation

b float64 vector also used for the operation

c float64 vector also used for the operation

Compiler Reference

1441

Description

Performs a set of scalar SIMD negated multiply-subtract computation on scalar double-precision floating-
point values in the low 64-bits of three source operands, a, b, and c. The float64 values in two operands, a
and b, are multiplied and the negated infinite precision intermediate result is obtained. From this negated
intermediate result, the float64 value in the third operand, c, is subtracted. The final result is rounded to the
nearest float64 value.

The compiler defaults to using the VFNMSUB213SD instruction and uses the other forms VFNMSUB132SD or
VFNMSUB231SD only if a low level optimization decides it is useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the negated multiply-subtract operation.

_mm_fnmsub_ss
Multiply-subtracts negated scalar single-precision
floating-point values of three float32 vectors. The
corresponding FMA instruction is VFNMSUB<XXX>SS,
where XXX could be 132, 213, or 231.

Syntax

extern __m128 _mm_fnmsub_ss(__m128 a, __m128 b, __m128 c);

Arguments

a float32 vector used for the operation

b float32 vector also used for the operation

c float32 vector also used for the operation

Description

Performs a set of scalar SIMD negated multiply-subtract computation on scalar single-precision floating-point
values in the low 32-bits of three source operands, a, b, and c. The float32 values in two operands, a and b,
are multiplied and the negated infinite precision intermediate result is obtained. From this negated
intermediate result, the float32 value in the third operand, c, is subtracted. The final result is rounded to the
nearest float32 value.

The compiler defaults to using the VFNMSUB213SS instruction and uses the other forms VFNMSUB132SS or
VFNMSUB231SS only if a low level optimization decides it is useful or necessary. For example, the compiler
could change the default if it finds that another instruction form saves a register or eliminates a move.

Returns

Result of the negated multiply-subtract operation.

Intrinsics for GATHER Operations

 Intel® C++ Compiler Classic Developer Guide and Reference

1442

_mm_mask_i32gather_pd, _mm256_mask_i32gather_pd
Gathers 2/4 packed double-precision floating point
values from memory referenced by the given base
address, dword indices and scale, and using the given
double-precision FP mask values. The corresponding
Intel® AVX2 instruction is VGATHERDPD.

Syntax

extern __m128d _mm_mask_i32gather_pd(__m128d def_vals, double const * base, __m128i
vindex __m128d vmask, const int scale);
extern __m256d _mm256_mask_i32gather_pd(__m256d def_vals, double const * base, __m128i
vindex __m256d vmask, const int scale);

Arguments

def_vals the vector of double-precision FP values copied to the
destination when the corresponding element of the
double-precision FP mask is '0'.

base the base address used to reference the loaded FP
elements.

vindex the vector of dword indices used to reference the
loaded FP elements.

vmask the vector of FP elements used as a vector mask; only
the most significant bit of each data element is used
as a mask.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics conditionally load 2/4 packed double-precision floating-point values from memory using dword
indices according to mask values and updates the destination operand.

Below is the pseudo-code for the intrinsics:

_mm_mask_i32gather_pd():

result[63:0] = (vmask[63]==1) ? (mem[base+vindex[31:0]*scale]) : (def_vals[63:0]);
result[127:64] = (vmask[127]==1) ? (mem[base+vindex[63:32]*scale]) : (def_vals[127:64]);

_mm256_mask_i32gather_pd():

result[63:0] = (vmask[63]==1) ? (mem[base+vindex[31:0]*scale]) : (def_vals[63:0]);
result[127:64] = (vmask[127]==1) ? (mem[base+vindex[63:32]*scale]) : (def_vals[127:64]);
result[191:128] = (vmask[191]==1) ? (mem[base+vindex[95:64]*scale]) : (def_vals[191:128]);
result[255:192] = (vmask[255]==1) ? (mem[base+vindex[127:96]*scale]) : (def_vals[255:192]);

Returns

A 128/256-bit vector with conditionally gathered double-precision FP values.

Compiler Reference

1443

_mm_i32gather_pd, _mm256_i32gather_pd
Gathers 2/4 packed double-precision floating point
values from memory referenced by the given base
address, dword indices and scale. The corresponding
Intel® AVX2 instruction is VGATHERDPD.

Syntax

extern __m128d _mm_i32gather_pd(double const * base, __m128i vindex, const int scale);
extern __m256d _mm256_i32gather_pd(double const * base, __m128i vindex, const int
scale);

Arguments

base the base address used to reference the loaded FP
elements.

vindex the vector of dword indices used to reference the
loaded FP elements.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics load 2/4 packed double-precision floating-point values from memory using dword indices and
updates the destination operand.

Below is the pseudo-code for the intrinsics:

_mm_i32gather_pd():

result[63:0] = mem[base+vindex[31:0]*scale];
result[127:64] = mem[base+vindex[63:32]*scale];

_mm256_i32gather_pd():

result[63:0] = mem[base+vindex[31:0]*scale];
result[127:64] = mem[base+vindex[63:32]*scale];
result[191:128] = mem[base+vindex[95:64]*scale];
result[255:192] = mem[base+vindex[127:96]*scale];

Returns

A 128/256-bit vector with unconditionally gathered double-precision FP values.

_mm_mask_i64gather_pd, _mm256_mask_i64gather_pd
Gathers 2/4 packed double-precision floating point
values from memory referenced by the given base
address, qword indices and scale, and using the given
double precision FP mask values. The corresponding
Intel® AVX2 instruction is VGATHERQPD.

Syntax

extern __m128d _mm_mask_i64gather_pd(__m128d def_vals, double const * base, __m128i
vindex __m128d vmask, const int scale);

 Intel® C++ Compiler Classic Developer Guide and Reference

1444

extern __m256d _mm256_mask_i64gather_pd(__m256d def_vals, double const * base, __m128i
vindex __m256d vmask, const int scale);

Arguments

def_vals the vector of double-precision FP values copied to the
destination when the corresponding element of the
double-precision FP mask is '0'.

base the base address used to reference the loaded FP
elements.

vindex the vector of qword indices used to reference the
loaded FP elements.

vmask the vector of FP elements used as a vector mask; only
the most significant bit of each data element is used
as a mask.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics conditionally load 2/4 packed double-precision floating-point values from memory using qword
indices according to mask values.

Below is the pseudo-code for the intrinsics:

_mm_mask_i64gather_pd():

result[63:0] = (vmask[63]==1) ? (mem[base+vindex[63:0]*scale]) : (def_vals[63:0]);
result[127:64] = (vmask[127]==1) ? (mem[base+vindex[127:64]*scale]) : (def_vals[127:64]);

_mm256_mask_i64gather_pd():

result[63:0] = (vmask[63]==1) ? (mem[base+vindex[63:0]*scale]) : (def_vals[63:0]);
result[127:64] = (vmask[127]==1) ? (mem[base+vindex[127:64]*scale]) : (def_vals[127:64]);
result[191:128] = (vmask[191]==1) ? (mem[base+vindex[191:128]*scale]) : (def_vals[191:128]);
result[255:192] = (vmask[255]==1) ? (mem[base+vindex[255:192]*scale]) : (def_vals[255:192]);

Returns

A 128/256-bit vector with conditionally gathered double-precision values.

_mm_i64gather_pd, _mm256_i64gather_pd
Gathers 2/4 packed double-precision floating point
values from memory referenced by the given base
address, qword indices, and scale. The corresponding
Intel® AVX2 instruction is VGATHERQPD.

Syntax

extern __m128d _mm_i64gather_pd(double const * base, __m128i vindex, const int scale);
extern __m256d _mm256_mask_i64gather_pd(double const * base, __m128i vindex, const int
scale);

Compiler Reference

1445

Arguments

base the base address used to reference the loaded FP
elements.

vindex the vector of qword indices used to reference the
loaded FP elements.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics load 2/4 packed double-precision floating-point values from memory using qword indices and
updates the destination operand.

Below is the pseudo-code for the intrinsics:

_mm_i64gather_pd():

result[63:0] = mem[base+vindex[63:0]*scale];
result[127:64] = mem[base+vindex[127:64]*scale];

_mm256_i64gather_pd():

result[63:0] = mem[base+vindex[63:0]*scale];
result[127:64] = mem[base+vindex[127:64]*scale];
result[191:128] = mem[base+vindex[191:128]*scale];
result[255:192] = mem[base+vindex[255:192]*scale];

Returns

A 128/256-bit vector with unconditionally gathered double-precision FP values.

_mm_mask_i32gather_ps, _mm256_mask_i32gather_ps
Gathers 2/4 packed single-precision floating point
values from memory referenced by the given base
address, dword indices and scale, and using the given
single-precision FP mask values. The corresponding
Intel® AVX2 instruction is VGATHERDPS.

Syntax

extern __m128 _mm_mask_i32gather_ps(__m128 def_vals, float const * base, __m128i vindex
__m128 vmask, const int scale);
extern __m256 _mm256_mask_i32gather_ps(__m256 def_vals, float const * base, __m256i
vindex __m256 vmask, const int scale);

Arguments

def_vals the vector of single-precision FP values copied to the
destination when the corresponding element of the
single-precision FP mask is '0'.

base the base address used to reference the loaded FP
elements.

 Intel® C++ Compiler Classic Developer Guide and Reference

1446

vindex the vector of dword indices used to reference the
loaded FP elements.

vmask the vector of FP elements used as a vector mask; only
the most significant bit of each data element is used
as a mask.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics conditionally load 2/4 packed single-precision floating-point values from memory using dword
indices according to mask values.

Below is the pseudo-code for the intrinsics:

_mm_mask_i32gather_ps():

result[31:0] = (vmask[31]==1) ? (mem[base+vindex[31:0]*scale]) : (def_vals[31:0]);
result[63:32] = (vmask[63]==1) ? (mem[base+vindex[63:32]*scale]) : (def_vals[63:32]);
result[95:64] = (vmask[95]==1) ? (mem[base+vindex[95:64]*scale]) : (def_vals[95:64]);
result127:96] = (vmask[127]==1) ? (mem[base+vindex[127:96]*scale]) : (def_vals[127:96]);

_mm256_mask_i32gather_ps():

result[31:0] = (vmask[31]==1) ? (mem[base+vindex[31:0]*scale]) : (def_vals[31:0]);
result[63:32] = (vmask[63]==1) ? (mem[base+vindex[63:32]*scale]) : (def_vals[63:32]);
result[95:64] = (vmask[95]==1) ? (mem[base+vindex[95:64]*scale]) : (def_vals[95:64]);
result127:96] = (vmask[127]==1) ? (mem[base+vindex[127:96]*scale]) : (def_vals[127:96]);
result[159:128] = (vmask[159]==1) ? (mem[base+vindex[159:128]*scale]) : (def_vals[159:128]);
result[191:160] = (vmask[191]==1) ? (mem[base+vindex[191:160]*scale]) : (def_vals[191:160]);
result[223:192] = (vmask[223]==1) ? (mem[base+vindex[223:192]*scale]) : (def_vals[223:192]);
result[255:224] = (vmask[255]==1) ? (mem[base+vindex[255:224]*scale]) : (def_vals[255:224]);

Returns

A 128/256-bit vector with conditionally gathered single-precision FP values.

_mm_i32gather_ps, _mm256_i32gather_ps
Gathers 2/4 packed single-precision floating point
values from memory referenced by the given base
address, dword indices, and scale. The corresponding
Intel® AVX2 instruction is VGATHERDPS.

Syntax

extern __m128 _mm_mask_i32gather_ps(float const * base, __m128i vindex, const int
scale);
extern __m256 _mm256_mask_i32gather_ps(float const * base, __m256i vindex, const int
scale);

Arguments

base the base address used to reference the loaded FP
elements.

Compiler Reference

1447

vindex the vector of dword indices used to reference the
loaded FP elements.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics load 2/4 packed single-precision floating-point values from memory using dword indices.

Below is the pseudo-code for the intrinsics:

_mm_i32gather_ps():

result[31:0] = mem[base+vindex[31:0]*scale];
result[63:32] = mem[base+vindex[63:32]*scale];
result[95:64] = mem[base+vindex[95:64]*scale];
result127:96] = mem[base+vindex[127:96]*scale];

_mm256_i32gather_ps():

result[31:0] = mem[base+vindex[31:0]*scale];
result[63:32] = mem[base+vindex[63:32]*scale];
result[95:64] = mem[base+vindex[95:64]*scale];
result127:96] = mem[base+vindex[127:96]*scale];
result[159:128] = mem[base+vindex[159:128]*scale];
result[191:160] = mem[base+vindex[191:160]*scale];
result[223:192] = mem[base+vindex[223:192]*scale];
result[255:224] = mem[base+vindex[255:224]*scale];

Returns

A 128/256-bit vector with unconditionally gathered single-precision FP values.

_mm_mask_i64gather_ps, _mm256_mask_i64gather_ps
Gathers 2/4 packed single-precision floating point
values from memory referenced by the given base
address, qword indices and scale, and using the given
single-precision FP mask values. The corresponding
Intel® AVX2 instruction is VGATHERQPS.

Syntax

extern __m128 _mm_mask_i64gather_ps(__m128 def_vals, float const * base, __m128i
vindex, __m128 vmask, const int scale);
extern __m128 _mm256_mask_i64gather_ps(float const * base, __m256i vindex, __m256i
vmask, const int scale);

Arguments

def_vals the vector of single-precision FP values copied to the
destination when the corresponding element of the
single-precision FP mask is '0'.

base the base address used to reference the loaded FP
elements.

 Intel® C++ Compiler Classic Developer Guide and Reference

1448

vindex the vector of qword indices used to reference the
loaded FP elements.

vmask the vector of FP elements used as a vector mask; only
the most significant bit of each data element is used
as a mask.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics conditionally load 2/4 packed single-precision floating-point values from memory using qword
indices and updates the destination operand. The intrinsic _mm_mask_i64gather_ps() also sets the upper
64-bits of the result to '0'.

Below is the pseudo-code for the intrinsics:

_mm_mask_i64gather_ps():

result[31:0] = (vmask[31]==1) ? (mem[base+vindex[63:0]*scale]) : (def_vals[31:0]);
result[63:32] = (vmask[63]==1) ? (mem[base+vindex[127:64]*scale]) : (def_vals[63:32]);
result[127:64] = 0;

_mm256_mask_i64gather_ps():

result[31:0] = (vmask[31]==1) ? (mem[base+vindex[63:0]*scale]) : (def_vals[31:0]);
result[63:32] = (vmask[63]==1) ? (mem[base+vindex[127:64]*scale]) : (def_vals[63:32]);
result[95:64] = (vmask[95]==1) ? (mem[base+vindex[191:128]*scale]) : (def_vals[95:64]);
result[127:96] = (vmask[127]==1) ? (mem[base+vindex[255:192]*scale]) : (def_vals[127:96]);

Returns

A 256/128-bit vector with conditionally gathered single-precision FP values.

_mm_i64gather_ps, _mm256_i64gather_ps
Gathers 2/4 packed single-precision floating point
values from memory referenced by the given base
address, qword indices and scale. The corresponding
Intel® AVX2 instruction is VGATHERQPS.

Syntax

extern __m128 _mm_mask_i64gather_ps(float const * base, __m128i vindex, const int
scale);
extern __m128 _mm256_mask_i64gather_ps(float const * base, __m256i vindex, const int
scale);

Arguments

base the base address used to reference the loaded FP
elements.

vindex the vector of qword indices used to reference the
loaded FP elements.

Compiler Reference

1449

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics load 2/4 packed single-precision floating-point values from memory using qword indices and
updates the destination operand. The intrinsic _mm_i64gather_ps() also sets the upper 64-bits of the result
to '0'.

Below is the pseudo-code for the intrinsics:

_mm_i64gather_ps():

result[31:0] = mem[base+vindex[63:0]*scale];
result[63:32] = mem[base+vindex[127:64]*scale];
result[127:64] = 0;

_mm256_i64gather_ps():

result[31:0] = mem[base+vindex[63:0]*scale];
result[63:32] = mem[base+vindex[127:64]*scale];
result[95:64] = mem[base+vindex[191:128]*scale];
result[127:96] = mem[base+vindex[255:192]*scale];

Returns

A 128/256-bit vector with unconditionally gathered single-precision FP values.

_mm_mask_i32gather_epi32, _mm256_mask_i32gather_epi32
Gathers 2/4 doubleword values from memory
referenced by the given base address, dword indices,
and scale, using the given dword mask values. The
corresponding Intel® AVX2 instruction is VPGATHERDD.

Syntax

extern __m128i _mm_mask_i32gather_epi32(__m128i def_vals, int const * base, __m128i
vindex, __m128i vmask, const int scale);
extern __m256i _mm256_mask_i32gather_epi32(__m256i def_vals, int const * base, __m256i
vindex, __m256i vmask, const int scale);

Arguments

def_val the vector of dword values copied to the destination
when the corresponding element of the vector mask
is '0'.

base the base address used to reference the loaded dword
elements.

vindex the vector of dword indices used to reference the
loaded dword elements.

vmask the vector of dword elements used as a vector mask;
only the most significant bit of each dword is used as
a mask.

 Intel® C++ Compiler Classic Developer Guide and Reference

1450

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics conditionally loads 2/4 doubleword values from memory referenced by the given base address,
dword indices and scale, and using the given dword mask values.

Below is the pseudo-code for the intrinsics:

_mm_mask_i32gather_epi32():

result[31:0] = (vmask[31]==1) ? (mem[base+vindex[31:0]*scale]) : (def_vals[31:0]);
result[63:32] = (vmask[63]==1) ? (mem[base+vindex[63:32]*scale]) : (def_vals[63:32]);
result[95:64] = (vmask[95]==1) ? (mem[base+vindex[95:64]*scale]) : (def_vals[95:64]);
result127:96] = (vmask[127]==1) ? (mem[base+vindex[127:96]*scale]) : (def_vals[127:96]);

_mm256_mask_i32gather_epi32():

result[31:0] = (vmask[31]==1) ? (mem[base+vindex[31:0]*scale]) : (def_vals[31:0]);
result[63:32] = (vmask[63]==1) ? (mem[base+vindex[63:32]*scale]) : (def_vals[63:32]);
result[95:64] = (vmask[95]==1) ? (mem[base+vindex[95:64]*scale]) : (def_vals[95:64]);
result127:96] = (vmask[127]==1) ? (mem[base+vindex[127:96]*scale]) : (def_vals[127:96]);
result[159:128] = (vmask[159]==1) ? (mem[base+vindex[159:128]*scale]) : (def_vals[159:128]);
result[191:160] = (vmask[191]==1) ? (mem[base+vindex[191:160]*scale]) : (def_vals[191:160]);
result[223:192] = (vmask[223]==1) ? (mem[base+vindex[223:192]*scale]) : (def_vals[223:192]);
result[255:224] = (vmask[255]==1) ? (mem[base+vindex[255:224]*scale]) : (def_vals[255:224]);

Returns

A 128/256 vector with conditionally gathered integer32 values.

_mm_i32gather_epi32, _mm256_i32gather_epi32
Gathers 2/4 doubleword values from memory
referenced by the given base address, dword indices,
and scale. The corresponding Intel® AVX2 instruction
is VPGATHERDD.

Syntax

extern __m128i _mm_i32gather_epi32(int const * base, __m128i vindex, const int scale);
extern __m256i _mm256_i32gather_epi32(int const * base, __m256i vindex, const int
scale);

Arguments

base the base address used to reference the loaded dword
elements.

vindex the vector of dword indices used to reference the
loaded dword elements.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Compiler Reference

1451

Description

The intrinsics load 2/4 doubleword values from memory using the base address, qword indices, and 32-bit
scale.

Below is the pseudo-code for the intrinsics:

_mm_i32gather_epi32():

result[31:0] = mem[base+vindex[31:0]*scale];
result[63:32] = mem[base+vindex[63:32]*scale];
result[95:64] = mem[base+vindex[95:64]*scale];
result127:96] = mem[base+vindex[127:96]*scale];

_mm256_i32gather_epi32():

result[31:0] = mem[base+vindex[31:0]*scale];
result[63:32] = mem[base+vindex[63:32]*scale];
result[95:64] = mem[base+vindex[95:64]*scale];
result127:96] = mem[base+vindex[127:96]*scale];
result[159:128] = mem[base+vindex[159:128]*scale];
result[191:160] = mem[base+vindex[191:160]*scale];
result[223:192] = mem[base+vindex[223:192]*scale];
result[255:224] = mem[base+vindex[255:224]*scale];

Returns

A 128/256-bit vector with unconditionally gathered integer32 values.

_mm_mask_i32gather_epi64,_mm256_mask_i32gather_epi64
Gathers 2/4 quadword values from memory
referenced by the given base address, dword indices,
and scale, and using the given qword mask values.
The corresponding Intel® AVX2 instruction is
VPGATHERDQ.

Syntax

extern __m128i _mm_mask_i32gather_epi64(__m128i def_vals, __int64 const * base, __m128i
vindex, __m128i vmask, const int scale);
extern __m256i _mm256_mask_i32gather_epi64(__m256i def_vals, __int64 const * base,
__m128i vindex, __m256i vmask, const int scale);

Arguments

def_val the vector of qword values copied to the destination
when the corresponding element of the vector mask
is '0'.

base the base address used to reference the loaded qword
elements.

vindex the vector of dword indices used to reference the
loaded qword elements.

vmask the vector of qword elements used as a vector mask;
only the most significant bit of each qword is used as
a mask.

 Intel® C++ Compiler Classic Developer Guide and Reference

1452

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics conditionally load 2/4 quadword values from memory referenced by the given base address,
dword indices and scale, and using the given qword mask values.

Below is the pseudo-code for the intrinsics:

_mm_mask_i32gather_epi64():

result[63:0] = (vmask[63]==1) ? (mem[base+vindex[31:0]*scale]) : (def_vals[63:0]);
result[127:64] = (vmask[127]==1) ? (mem[base+vindex[63:32]*scale]) : (def_vals[127:64]);

_mm256_mask_i32gather_epi64():

result[63:0] = (vmask[63]==1) ? (mem[base+vindex[31:0]*scale]) : (def_vals[63:0]);
result[127:64] = (vmask[127]==1) ? (mem[base+vindex[63:32]*scale]) : (def_vals[127:64]);
result[191:128] = (vmask[191]==1) ? (mem[base+vindex[95:64]*scale]) : (def_vals[191:128]);
result[255:192] = (vmask[255]==1) ? (mem[base+vindex[127:96]*scale]) : (def_vals[255:192]);

Returns

A 256/128-bit vector with conditionally gathered interger64 values.

_mm_i32gather_epi64,_mm256_i32gather_epi64
Gathers 2/4 quadword values from memory
referenced by the given base address, dword indices
and scale. The corresponding Intel® AVX2 instruction
is VPGATHERDQ.

Syntax

extern __m128i _mm_i32gather_epi64(__int64 const * base, __m128i vindex, const int
scale);
extern __m256i _mm256_i32gather_epi64(__int64 const * base, __m128i vindex, const int
scale);

Arguments

base the base address used to reference the loaded qword
elements.

vindex the vector of dword indices used to reference the
loaded qword elements.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics load 2/4 quadword values from memory using the base address, dword indices, and 64-bit
scale.

Below is the pseudo-code for the intrinsics:

Compiler Reference

1453

_mm_i32gather_epi64():

result[63:0] = mem[base+vindex[31:0]*scale];
result[127:64] = mem[base+vindex[63:32]*scale];

_mm256_i32gather_epi64():

result[63:0] = mem[base+vindex[31:0]*scale];
result[127:64] = mem[base+vindex[63:32]*scale];
result[191:128] = mem[base+vindex[95:64]*scale];
result[255:192] = mem[base+vindex[127:96]*scale];

Returns

A 128/256-bit vector with unconditionally gathered integer64 values.

_mm_mask_i64gather_epi32,_mm256_mask_i64gather_epi32
Gathers 2/4 doubleword values from memory
referenced by the given base address, qword indices
and scale, and using the given dword mask values.
The corresponding Intel® AVX2 instruction is
VPGATHERQD.

Syntax

extern __m128i _mm_mask_i64gather_epi32(__m128i def_vals, int const * base, __m128i
vindex, __m128i vmask, const int scale);
extern __m256i _mm256_mask_i64gather_epi32(__m128i def_vals, int const * base, __m256i
vindex, __m128i vmask, const int scale);

Arguments

def_val the vector of dword values copied to the destination
when the corresponding element of the vector mask
is '0'.

base the base address used to reference the loaded dword
elements.

vindex the vector of qword indices used to reference the
loaded dword elements.

vmask the vector of dword elements used as a vector mask;
only the most significant bit of each dword is used as
a mask.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics conditionally load 2/4 doubleword values from memory using the base address, qword indices
and 32-bit scale. The intrinsic _mm_mask_i64gather_epi32() also sets the upper 64-bits of the result to '0'.

Below is the pseudo-code for the intrinsics:

 Intel® C++ Compiler Classic Developer Guide and Reference

1454

_mm_mask_i64gather_epi32():

result[31:0] = (vmask[31]==1) ? (mem[base+vindex[63:0]*scale]) : (def_vals[31:0]);
result[63:32] = (vmask[63]==1) ? (mem[base+vindex[127:64]*scale]) : (def_vals[63:32]);
result[127:64] = 0;

_mm256_mask_i64gather_epi32():

result[31:0] = (vmask[31]==1) ? (mem[base+vindex[63:0]*scale]) : (def_vals[31:0]);
result[63:32] = (vmask[63]==1) ? (mem[base+vindex[127:64]*scale]) : (def_vals[63:32]);
result[95:64] = (vmask[95]==1) ? (mem[base+vindex[191:128]*scale]) : (def_vals[95:64]);
result[127:96] = (vmask[127]==1) ? (mem[base+vindex[255:192]*scale]) : (def_vals[127:96]);

Returns

A 128/256-bit vector with conditionally gathered integer32 values.

_mm_i64gather_epi32,_mm256_i64gather_epi32
Gathers 2/4 doubleword values from memory
referenced by the given base address, qword indices,
and scale. The corresponding Intel® AVX2 instruction
is VPGATHERQD.

Syntax

extern __m128i _mm_i64gather_epi32(int const * base, __m128i vindex, const int scale);
extern __m128i _mm256_i64gather_epi32(int const * base, __m256i vindex, const int
scale);

Arguments

base the base address used to reference the loaded dword
elements.

vindex the vector of qword indices used to reference the
loaded dword elements.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics load 2/4 doubleword values from memory using the base address, qword indices, and 32-bit
scale. The intrinsic _mm_i64gather_epi32() also sets the upper 64-bits of the result to '0'.

Below is the pseudo-code for the intrinsics:

_mm_i64gather_epi32():

result[31:0] = mem[base+vindex[63:0]*scale];
result[63:32] = mem[base+vindex[127:64]*scale];
result[127:64] = 0;

_mm256_i64gather_epi32():

result[31:0] = mem[base+vindex[63:0]*scale];
result[63:32] = mem[base+vindex[127:64]*scale];
result[95:64] = mem[base+vindex[191:128]*scale];
result[127:96] = mem[base+vindex[255:192]*scale];

Compiler Reference

1455

Returns

A 128/256-bit vector with unconditionally gathered integer32 values.

_mm_mask_i64gather_epi64,_mm256_mask_i64gather_epi64
Gathers 2/4 quadword values from memory
referenced by the given base address, qword indices
and scale, and using the given qword mask values.
The corresponding Intel® AVX2 instruction is
VPGATHERQQ.

Syntax

extern __m128i _mm_mask_i64gather_epi64(__m128i def_vals, __int64 const * base, __m128i
vindex, __m128i vmask, const int scale);
extern __m256i _mm256_mask_i64gather_epi64(__m128i def_vals, __int64 const * base,
__m256i vindex, __m256i vmask, const int scale);

Arguments

def_val the vector of qword values copied to the destination
when the corresponding element of the vector mask
is '0'.

base the base address used to reference the loaded qword
elements.

vindex the vector of qword indices used to reference the
loaded qword elements.

vmask the vector of qword elements used as a vector mask;
only the most significant bit of each qword is used as
a mask.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics conditionally load 2/4 quadword values from memory using the base address, qword indices
and 64-bit scale.

Below is the pseudo-code for the intrinsics:

_mm_mask_i64gather_epi64():

result[63:0] = (vmask[63]==1) ? (mem[base+vindex[63:0]*scale]) : (def_vals[63:0]);
result[127:64] = (vmask[127]==1) ? (mem[base+vindex[127:64]*scale]) : (def_vals[127:64]);

_mm256_mask_i64gather_epi64():

result[63:0] = (vmask[63]==1) ? (mem[base+vindex[63:0]*scale]) : (def_vals[63:0]);
result[127:64] = (vmask[127]==1) ? (mem[base+vindex[127:64]*scale]) : (def_vals[127:64]);
result[191:128] = (vmask[191]==1) ? (mem[base+vindex[191:128]*scale]) : (def_vals[191:128]);
result[255:192] = (vmask[255]==1) ? (mem[base+vindex[255:192]*scale]) : (def_vals[255:192]);

Returns

A 128/256-bit vector with conditionally gathered integer64 values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1456

_mm_i64gather_epi64,_mm256_i64gather_epi64
Gathers 2/4 quadword values from memory
referenced by the given base address, qword indices,
and scale. The corresponding Intel® AVX2 instruction
is VPGATHERQQ.

Syntax

extern __m128i _mm_i64gather_epi64(__int64 const * base, __m128i vindex, const int
scale);
extern __m256i _mm256_i64gather_epi64(__int64 const * base, __m256i vindex, const int
scale);

Arguments

base the base address used to reference the loaded qword
elements.

vindex the vector of qword indices used to reference the
loaded qword elements.

scale The compilation time literal constant, which is used as
the vector indices scale to address the loaded
elements. Possible values are one of the following: 1,
2, 4, 8.

Description

The intrinsics load 2/4 quadword values from memory using the base address, qword indices, and 64-bit
scale.

Below is the pseudo-code for the intrinsics:

_mm_i64gather_epi64():

result[63:0] = mem[base+vindex[63:0]*scale];
result[127:64] = mem[base+vindex[127:64]*scale];

_mm256_i64gather_epi64():

result[63:0] = mem[base+vindex[63:0]*scale];
result[127:64] = mem[base+vindex[127:64]*scale];
result[191:128] = mem[base+vindex[191:128]*scale];
result[255:192] = mem[base+vindex[255:192]*scale];

Returns

A 128/256-bit vector with unconditionally gathered integer64 values.

Intrinsics for Logical Shift Operations

_mm256_sll_epi16/32/64
Logical shift of word/doubleword/quadword elements
to left according to specified number. The
corresponding Intel® AVX2 instruction is VPSLLW,
VPSLLD, or VPSLLQ.

Compiler Reference

1457

Syntax

extern __m256i _mm256_sll_epi16(__m256i s1, __m128i count);
extern __m256i _mm256_sll_epi32(__m256i s1, __m128i count);
extern __m256i _mm256_sll_epi64(__m256i s1, __m128i count);

Arguments

s1 integer source vector used for the operation

count 128-bit memory location used for the operation

Description

Performs logical shift of bits in the individual data elements (16-bit word, 32-bit doubleword, or 64-bit
quadword) in source vector s1 to the left by the number of bits specified in count. The empty low-order bytes
are cleared (set to all '0'). If the value specified by count is greater than 15/31/63 (depending on the
intrinsic being used), the destination vector is set to all '0'.

The count argument is a 128-bit memory location. Note that only the first 64-bits of a 128-bit count operand
are checked to compute the count.

Returns

Result of the left-shift operation.

_mm256_slli_epi16/32/64
Logical shift of word/doubleword/quadword elements
to left according to specified number. The
corresponding Intel® AVX2 instruction is VPSLLW,
VPSLLD, or VPSLLQ.

Syntax

extern __m256i _mm256_slli_epi16(__m256i s1, int count);
extern __m256i _mm256_slli_epi32(__m256i s1, int count);
extern __m256i _mm256_slli_epi64(__m256i s1, int count);

Arguments

s1 integer source vector used for the operation

count 8-bit immediate used for the operation

Description

Performs a logical shift of bits in the individual data elements (words, doublewords, or quadword) in source
vector s1 to the left by the number of bits specified in count. The empty low-order bytes are cleared (set to
all '0'). If the value specified by count is greater than 15/31/63 (depending on the intrinsic being used), the
destination vector is set to all 0s. The count argument is an 8-bit immediate.

Returns

Result of the left-shift operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1458

_mm256_sllv_epi32/64
Logical shift of doubleword/quadword elements to left
according variable values. The corresponding Intel®
AVX2 instruction is VPSLLVD or VPSLLVQ.

Syntax

extern __m256i _mm256_sllv_epi32(__m256i s1, __m256i s2);
extern __m256i _mm256_sllv_epi64(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector providing variable values for
shift operation

Description

Performs a logical shift of 32 or 64 bits (doublewords, or quadword) in the individual data elements in source
vector s1 to the left by the count value of corresponding data elements in source vector s2. As the bits in the
data elements are shifted left, the empty low-order bits are cleared (set to '0').

The count values are specified individually in each data element of the second source vector. If the unsigned
integer value specified in the respective data element of the second source vector is greater than 31 (for a
doubleword), or 63 (for a quadword), then the destination data elements are set to '0'.

Returns

Result of the left-shift operation.

_mm_sllv_epi32/64
Logical shift of word/doubleword elements in a 128-bit
vector to left according variable values. The
corresponding Intel® AVX2 instruction is VPSLLVD or
VPSLLVQ.

Syntax

extern __m128i _mm_sllv_epi32(__m128i s1, __m128i s2);
extern __m128i _mm_sllv_epi64(__m128i s1, __m128i s2);

Arguments

s1 128-bit integer source vector used for the operation

s2 128-bit integer source vector providing variable
values for shift operation

Description

Performs a logical shift of 32 or 64 bits (doublewords, or quadword) in the individual data elements in source
vector s1 to the left by the count value of corresponding data elements in source vector s2. As the bits in the
data elements are shifted left, the empty low-order bits are cleared (set to '0').

The count values are specified individually in each data element of the second source vector. If the unsigned
integer value specified in the respective data element of the second source vector is greater than 31 (for a
doubleword), or 63 (for a quadword), then the destination data elements are set to '0'.

Compiler Reference

1459

Returns

Result of the left-shift operation.

_mm256_slli_si256
Logical shift of byte elements to left according to
specified number. The corresponding Intel® AVX2
instruction is VPSLLDQ.

Syntax

extern __m256i _mm256_slli_si256(__m256i s1, const int count);

Arguments

s1 integer source vector used for the operation

count 8-bit immediate used for the operation

Description

Performs a logical shift of 8-bit [byte] elements within a 128-bit lane of the source vector s1 to the left by
the number of bytes specified in count. The empty low-order bytes are cleared (set to all '0'). If the value
specified by count is greater than 15, the destination vector is set to all 0s. The count argument is an 8-bit
immediate.

Returns

Result of the left-shift operation.

_mm256_srli_si256
Logical shift of byte elements to right according to
specified number. The corresponding Intel® AVX2
instruction is VPSRLDQ.

Syntax

extern __m256i _mm256_srli_si256(__m256i s1, const int count);

Arguments

s1 integer source vector used for the operation

count 8-bit immediate used for the operation

Description

Performs a logical shift of 8-bit [byte] elements within a 128-bit lane of source vector s1 to the right by the
number of bytes specified in count. The empty low-order bytes are cleared (set to all '0'). If the value
specified by count is greater than 15, the destination vector is set to all '0'. The count argument is an 8-bit
immediate.

Returns

Result of the right-shift operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1460

_mm256_srl_epi16/32/64
Logical shift of word/doubleword/quadword elements
to right according to specified number. The
corresponding Intel® AVX2 instruction is VPSRLW,
VPSRLD, or VPSRLQ.

Syntax

extern __m256i _mm256_srl_epi16(__m256i s1, __m128i count);
extern __m256i _mm256_srl_epi32(__m256i s1, __m128i count);
extern __m256i _mm256_srl_epi64(__m256i s1, __m128i count);

Arguments

s1 integer source vector used for the operation

count 128-bit memory location used for the operation

Description

Performs a logical shift of the bits in the individual data elements (16-bit word, 32-bit doubleword, or 64-bit
quadword) in source vector s1 to the right by the number of bits specified in count. The empty low-order
bytes are cleared (set to all '0'). If the value specified by count is greater than 15/31/63 (depending on the
intrinsic being used), the destination vector is set to all '0'.

The count argument is a 128-bit memory location. Note that only the first 64-bits of a 128-bit count operand
are checked to compute the count.

Returns

Result of the right-shift operation.

_mm256_srli_epi16/32/64
Logical shift of word/doubleword/quadword elements
to right according to specified number. The
corresponding Intel® AVX2 instruction is VPSRLW,
VPSRLD, or VPSRLQ.

Syntax

extern __m256i _mm256_srli_epi16(__m256i s1, int count);
extern __m256i _mm256_srli_epi32(__m256i s1, int count);
extern __m256i _mm256_srli_epi64(__m256i s1, int count);

Arguments

s1 integer source vector used for the operation

count 8-bit immediate used for the operation

Description

Performs a logical shift of bits in the individual data elements (16-bit word, 32-bit doubleword, or 64-bit
quadword) in source vector s1 to the right by the number of bits specified in count. The empty low-order
bytes are cleared (set to all '0'). If the value specified by count is greater than 15/31/63 (depending on the
intrinsic being used), the destination vector is set to all '0'. The count argument is an 8-bit immediate.

Compiler Reference

1461

Returns

Result of the right-shift operation.

_mm256_srlv_epi32/64
Logical shift of doubleword/quadword elements to
right according variable values. The corresponding
Intel® AVX2 instruction is VPSRLVD or VPSRLVQ.

Syntax

extern __m256i _mm256_srlv_epi32(__m256i s1, __m256i s2);
extern __m256i _mm256_srlv_epi64(__m256i s1, __m256i s2);

Arguments

s1 integer source vector used for the operation

s2 integer source vector providing variable values for
shift operation

Description

Performs a logical shift of 32 or 64 bits (doublewords, or quadword) in the individual data elements in source
vector s1 to the right by the count value of corresponding data elements in source vector s2. As the bits in
the data elements are shifted right, the empty low-order bits are cleared (set to '0').

The count values are specified individually in each data element of the second source vector. If the unsigned
integer value specified in the respective data element of the second source vector is greater than 31 (for a
doubleword), or 63 (for a quadword), then the destination data elements are set to '0'.

Returns

Result of the right-shift operation.

_mm_srlv_epi32/64
Logical shift of word/doubleword elements in a 128-bit
vector to right according variable values. The
corresponding Intel® AVX2 instruction is VPSRLVD or
VPSRLVQ.

Syntax

extern __m128i _mm_srlv_epi32(__m128i s1, __m128i s2);
extern __m128i _mm_srlv_epi64(__m128i s1, __m128i s2);

Arguments

s1 128-bit integer source vector used for the operation

s2 128-bit integer source vector providing variable
values for shift operation

Description

Performs a logical shift of 32 or 64 bits (doublewords, or quadword) in the individual data elements in source
vector s1 to the right by the count value of corresponding data elements in the source vector s2. As the bits
in the data elements are shifted right, the empty low-order bits are cleared (set to '0').

 Intel® C++ Compiler Classic Developer Guide and Reference

1462

The count values are specified individually in each data element of the second source vector. If the unsigned
integer value specified in the respective data element of the second source vector is greater than 31 (for a
doubleword), or 63 (for a quadword), then the destination data element are set to '0'.

Returns

Result of the right-shift operation.

Intrinsics for Insert/Extract Operations

_mm256_inserti128_si256
Inserts 128-bits of packed integer data of the second
source vector into the destination vector at a 128-bit
offset from imm8[0]. The corresponding Intel® AVX2
instruction is VINSERTI128.

Syntax

extern __m256i _mm256_inserti128_si256(__m256i a, __m128i b, const int mask);

Arguments

a integer source vector

b integer source vector

mask integer constant specifying offset

Description

Inserts 128-bits of packed integer data from the second source operand (third operand) into the destination
operand (first operand) at a 128-bit offset from imm8[0]. The remaining portions of the destination are
written by the corresponding fields of the first source operand (second operand). The high 7 bits of the
immediate are ignored.

Returns

_mm256_extracti128_si256
Extracts 128-bits of packed integer data of the second
source vector into the destination vector at a 128-bit
offset from imm8[0]. The corresponding Intel® AVX2
instruction is VEXTRACTI128.

Syntax

extern __m128i _mm256_extracti128_si256(__m256i a, int offset);

Arguments

a integer source vector

offset integer constant specifying offset

Description

Extract 128 bits (composed of integer data) from a, selected with imm, and store the result in dst.

Compiler Reference

1463

Extracts 128-bits of packed integer data from source vector a with offset. The remaining portions of the
destination are written by the corresponding fields of the source vector. The destination may be either an
XMM register or a 128-bit memory location. The high 7 bits of the immediate are ignored.

Returns

_mm256_insert_epi8/16/32/64
Insert 8/16/32/64-bit integer into a vector of integers
at the position specified by index.

Syntax

extern __m256i _mm256_insert_epi8(__m256i a, int8 i, const int index);
extern __m256i _mm256_insert_epi16(__m256i a, int16 i, const int index);
extern __m256i _mm256_insert_epi32(__m256i a, int32 i, const int index);
extern __m256i _mm256_insert_epi64(__m256i a, int64 i, const int index);

Arguments

a integer source vector

i integer value to insert

offset integer constant specifying offset

Description

Insert an integer value, i into the corresponding position of an integer source vector, a, and return the
resulting vector.

_mm256_extract_epi8/16/32/64
Extract integer byte or word from packed integer
array element selected by index.

Syntax

extern int _mm256_extract_epi8(__m256i a, int offset);
extern int _mm256_extract_epi16(__m256i a, int offset);
extern int _mm256_extract_epi32(__m256i a, int offset);
extern int _mm256_extract_epi64(__m256i a, int offset);

Arguments

a integer source vector

offset integer constant specifying offset

Description

Returns extracted 8/16/32/64 bits of data of the source vector at offset position. Offset counts with element
size granularity.

Upper bits of returned integer value are cleared.

 Intel® C++ Compiler Classic Developer Guide and Reference

1464

Intrinsics for Masked Load/Store Operations

_mm_maskload_epi32/64, _mm256_maskload_epi32/64
Conditionally loads dwords/qwords from the specified
memory location, depending on the mask bits
associated with each data element. The corresponding
Intel® AVX2 instruction is VPMASKMOVD or
VPMASKMOVQ.

Syntax

extern __m128i _mm_maskload_epi32(int const * addr, __m128i mask);
extern __m256i _mm256_maskload_epi32(int const * addr, __m256i mask);
extern __m128i _mm_maskload_epi64(__int64 const * addr, __m128i mask);
extern __m256i _mm256_maskload_epi64(__int64 const * addr, __m256i mask);

Arguments

addr pointer to data to be loaded

mask integer source vector

Description

Conditionally loads 32/64-bit data elements from the memory referenced by the addr and stores it into the
corresponding data element of the result vector. If an element of mask is 0, the 32/64-bit zero is written to
the corresponding element of the result vector. The mask bit for each data element is the most significant bit
of that element in mask.

Returns

Result of the masked load operation.

_mm_maskstore_epi32/64, _mm256_maskstore_epi32/64
Conditionally stores dwords/qwords from the source
vector to the specified memory location, depending on
the given mask bits associated with each data
element. The corresponding Intel® AVX2 instruction is
VPMASKMOVD or VPMASKMOVQ.

Syntax

extern void _mm_maskstore_epi32(int * addr, __m128i vmask, __m128i val);
extern void _mm256_maskstore_epi32(int * addr, __m256i vmask, __m256i val);
extern void _mm_maskstore_epi64(__int64 * addr, __m128i vmask, __m128i val);
extern void _mm256_maskstore_epi64(__int64 * addr, __m256i vmask, __m256i val);

Arguments

addr pointer to data to be loaded

vmask vector mask. If element of vmask is 0, then the value
in the memory is unchanged

Compiler Reference

1465

val location from where the elements are written to
vector located in memory and referenced by "addr"

Description

Conditionally stores 32/64-bit data elements from the source vector into the corresponding elements of the
vector in memory referenced by addr. If an element of mask is 0, corresponding element of the result vector
in memory stays unchanged. Only the most significant bit of each element in the vector mask is used.

Returns

Result of the masked store operation.

Intrinsics for Miscellaneous Operations

_mm256_alignr_epi8
Aligns elements of two source vectors depending on
bits in a mask. The corresponding Intel® AVX2
instruction is VPALIGNR.

Syntax

extern __m256i _mm256_alignr_epi8(__m256i s1, __m256i s2, const int mask);

Arguments

s1 integer source vector used for the operation

s2 integer source vector used for the operation

mask 8-bit immediate bits used for the operation

Description

Performs an alignment operation by concatenating two blocks of 16-byte data from the first and second
source vectors, s1 and s2, into an intermediate 32-byte composite, shifting the composite at byte granularity
to the right by a constant immediate specified by mask, and extracting the right-aligned 16-byte result into
the destination vector. The immediate value is considered unsigned.

 Intel® C++ Compiler Classic Developer Guide and Reference

1466

Returns

Result of the alignment operation.

_mm256_movemask_epi8
Moves byte mask from source vector. The
corresponding Intel® AVX2 instruction is VPMOVMSKB.

Syntax

extern int _mm256_movemask_epi8(__m256i s1);

Arguments

s1 integer source vector used for the operation.

Description

Creates a mask from the most significant bit of each byte of source vector s1 and stores the result in the in
the returned doubleword value/mask.

Returns

Result of the move mask operation.

_mm256_stream_load_si256
Loads 256-bit data from memory using non-temporal
aligned hint. The corresponding Intel® AVX2
instruction is VMOVNTDQA.

Syntax

extern __m256i _mm256_stream_load_si256(__m256i const *);

Arguments

s1 integer source vector used for the operation.

Description

Loads 256-bit data from the source operand to the destination operand using a non-temporal hint if the
memory source is write combining memory type.

Intrinsics for Operations to Manipulate Integer Data at Bit-Granularity

_bextr_u32/64
Extracts contiguous bits from the first source operand
to the destination using an index value and length
value specified in the second source operand. The
corresponding Intel® AVX2 instruction is BEXTR.

Syntax

extern unsigned int _bextr_u32(unsigned int source, unsigned int sb, unsigned int bl);
extern unsigned __int64 _bextr_u64(unsigned __int64 s1, unsigned int sb, unsigned int
bl);

Compiler Reference

1467

Arguments

source the source from where the bits are extracted

sb start bit, the number of the bit from where the
contiguous bits are extracted

bl bit length, the number of bits to be extracted

Description

Extracts contiguous bits from the first source operand to the destination using an index value and length
value specified in the second source operand. The extracted bits are written to the destination starting from
the least significant bit. All higher order bits in the destination starting at bit position bl are zeroed. The
destination is cleared if no bits are extracted.

Returns

Result of the operation.

_blsi_u32/64
Extracts the lowest set bit from the source operand
and set the corresponding bit in the destination. The
corresponding Intel® AVX2 instruction is BLSI.

Syntax

extern unsigned int _blsi_u32(unsigned int source);
extern unsigned __int64 _blsi_u64(unsigned __int64 source);

Arguments

source the source from where the bits are extracted

Description

Extracts the lowest set bit from the source operand and sets the corresponding bit in the destination. All
other bits in the destination are set to 0. If no bits are set in the source operand, all the bits in the
destination are set to 0.

Returns

Result of the operation.

_blsmsk_u32/64
Sets all the lower bits of the destination to “1” up to
and including lowest set bit (=1) in the source
operand. The corresponding Intel® AVX2 instruction is
BLSMSK.

Syntax

extern unsigned int _blsmsk_u32(unsigned int s1);
extern unsigned __int64 _blsmsk_u64(unsigned __int64 s1);

 Intel® C++ Compiler Classic Developer Guide and Reference

1468

Arguments

s1 the source operand used for the operation

Description

Sets all the lower bits of the destination to “1” up to and including lowest set bit (=1) in the source operand.
If source operand is 0, all bits of the destination are set to 1.

Returns

Result of the operation

_blsr_u32/64
Copies all bits from the source operand to the
destination and resets (=0) the bit position in the
destination that corresponds to the lowest set bit of
the source operand. The corresponding Intel® AVX2
instruction is BLSR.

Syntax

extern unsigned int _blsr_u32(unsigned int s1);
extern unsigned __int64 _blsr_u64(unsigned __int64 s1);

Arguments

s1 the source operand from where the bits are copied

Description

Copies all bits from the source operand to the destination and resets (=0) the bit position in the destination
that corresponds to the lowest set bit of the source operand.

Returns

Result of the operation

_bzhi_u32/64
Copies the bits of the first source operand into the
destination and clears the higher bits in the
destination according to the index value specified by
the second source operand. The corresponding Intel®
AVX2 instruction is BZHI.

Syntax

extern unsigned int _bzhi_u32(unsigned int source, unsigned int index);
extern unsigned __int64 _bzhi_u64(unsigned __int64 source, unsigned int index);

Arguments

source the source operand from where the bits are copied

index index value according to which the bits are copied

Compiler Reference

1469

Description

Copies the bits of the first source operand into the destination and clears the higher bits in the destination
according to the index value. The index value is specified by bits 7:0 of the second source operand.

Returns

Result of the operation.

_pext_u32/64
Transfer either contiguous or non-contiguous bits in
the first source operand to contiguous low order bit
positions in the destination according to the mask
values. The corresponding Intel® AVX2 instruction is
PEXT.

Syntax

extern unsigned int _pext_u32(unsigned int source, unsigned int mask);
extern unsigned __int64 _pext_u64(unsigned __int64 s1, unsigned __int64 mask);

Arguments

source the source operand from where the bits are
transferred

mask mask value according to which the bits are
transferred

Description

The intrinsics use a mask in the second source operand to transfer either contiguous or non-contiguous bits
in the first source operand to contiguous, low-order bit positions in the destination. For each bit set in the
mask, the intrinsic extracts the corresponding bits from the first source operand and writes them into
contiguous lower bits of the destination. The remaining upper bits of the destination are set to 0.

Returns

Result of the operation

_pdep_u32/64
Transfer/scatter contiguous low order bits in the first
source operand into the destination according to the
mask in the second source operand. The
corresponding Intel® AVX2 instruction is PDEP.

Syntax

extern unsigned int _pdep_u32(unsigned int source, unsigned int mask);
extern unsigned __int64 _pdep_u64(unsigned __int64 source, unsigned __int64 mask);

Arguments

source the source operand from where the bits are
transferred

 Intel® C++ Compiler Classic Developer Guide and Reference

1470

mask the mask value according to which the bits are
transferred

Description

The intrinsics use a mask in the second source operand to transfer/scatter contiguous, low-order bits in the
first source operand into the destination. It takes the low bits from the first source operand and deposit them
in the destination at the corresponding bit locations that are set in the mask. All other bits (bits not set in
mask) in the destination are set to 0.

Returns

Result of the operation

_lzcnt_u32/64
Counts the number of leading zero bits in a source
operand. Returns operand size as output when source
operand is zero. The corresponding Intel® AVX2
instruction is LZCNT.

Syntax

extern unsigned int _lzcnt_u32(unsigned int source);
extern unsigned __int64 _lzcnt_u64(unsigned __int64 source);

Arguments

source the source operand used for the operation

Description

Counts the number of leading most significant zero bits in a source operand returning the result into a
destination when source operand is 0.

Returns

Result of the operation.

_tzcnt_u32/64
Counts the number of trailing least significant zero
bits in source operand and returns the result in
destination. When source operand is 0, it returns its
size in bits. The corresponding Intel® AVX2 instruction
is TZCNT.

Syntax

extern unsigned int _tzcnt_u32(unsigned int source);
extern unsigned __int64 _tzcnt_u64(unsigned __int64 source);

Arguments

source the source operand used for the operation

Description

Searches the source operand for the least significant set bit. If a least significant 1 bit is found, its bit index
is returned, otherwise the result is the number of bits in the operand size.

Compiler Reference

1471

Returns

Result of the operation.

Intrinsics for Pack/Unpack Operations

_mm256_packs_epi16/32
Pack signed word/doubleword integers to signed byte/
words integers and saturates. The corresponding
Intel® AVX2 instruction is VPACKSSWB or VPACKSSDW.

Syntax

extern __m256i _mm256_packs_epi16(__m256i a, __m256i b);
extern __m256i _mm256_packs_epi32(__m256i a, __m256i b);

Arguments

a integer source vector used for the operation

b integer source vector used for the operation

Description

The _mm256_packs_epi16 intrinsic converts 16 packed signed word integers from the first and the second
source operands into 32 packed signed byte integers. The _mm256_packs_epi32 intrinsic converts eight
packed signed doubleword integers from the first and the second source operands into 16 packed signed
word integers.

Returns

Result of the pack operation.

_mm256_packus_epi16/32
Pack signed word/doubleword integers to unsigned
byte/word integers and saturates. The corresponding
Intel® AVX2 instruction is VPACKUSWB or VPACKUSDW.

Syntax

extern __m256i _mm256_packus_epi16(__m256i a, __m256i b);
extern __m256i _mm256_packus_epi32(__m256i a, __m256i b);

Arguments

a integer source operand used for the operation

b integer source operand used for the operation

Description

The _mm256_packus_epi16 intrinsic converts 16 packed signed word integers from source operands a and b
into 32 packed unsigned byte integers. The _mm256_packus_epi32 intrinsic converts eight packed signed
doubleword integers from the source operands a and b into 16 packed unsigned word integers.

 Intel® C++ Compiler Classic Developer Guide and Reference

1472

Returns

Result of the pack operation.

_mm256_unpackhi_epi8/16/32/64
Unpacks and interleaves the high-order data elements
of the source vector with the high-order data elements
in the destination vector. The corresponding Intel®
AVX2 instruction is VPUNPCKHBW, VPUNPCKHWD,
VPUNPCKHDQ, or VPUNPCKHQDQ.

Syntax

extern __m256i _mm256_unpackhi_epi8(__m256i a, __m256i b);
extern __m256i _mm256_unpackhi_epi16(__m256i a, __m256i b);
extern __m256i _mm256_unpackhi_epi32(__m256i a, __m256i b);
extern __m256i _mm256_unpackhi_epi64(__m256i a, __m256i b);

Arguments

a integer source operand used for the operation

b integer source operand used for the operation

Description

Unpacks and interleaves the high-order signed or unsigned data elements (bytes, words, doublewords, and
quadwords) of the source vector and the high-order signed or unsigned data elements (bytes, words,
doublewords, and quadwords) in the destination vector. The low-order data elements are ignored.

Returns

Result of the interleave operation

_mm256_unpacklo_epi8/16/32/64
Unpacks and interleaves the low-order data elements
of the source vector with the low-order data elements
in the destination vector. The corresponding Intel®
AVX2 instruction is VPUNPCKLBW, VPUNPCKLWD,
VPUNPCKLDQ, or VPUNPCKLQDQ.

Syntax

extern __m256i _mm256_unpacklo_epi8(__m256i a, __m256i b);
extern __m256i _mm256_unpacklo_epi16(__m256i a, __m256i b);
extern __m256i _mm256_unpacklo_epi32(__m256i a, __m256i b);
extern __m256i _mm256_unpacklo_epi64(__m256i a, __m256i b);

Arguments

a integer source vector used for the operation

b integer source vector used for the operation

Compiler Reference

1473

Description

Unpacks and interleaves the low-order signed or unsigned data elements (bytes, words, doublewords, and
quadwords) of the source vector and the low-order signed or unsigned data elements (bytes, words,
doublewords, and quadwords) in the destination operand. The high-order data elements are ignored.

Returns

Result of the interleave operation

Intrinsics for Packed Move with Extend Operations

_mm256_cvtepi8_epi16/32/64
Performs packed move with sign-extend on 8-bit
signed integers to 16/32/64-bit integers. The
corresponding Intel® AVX2 instruction is
VPMOVSXBW,VPMOVSXBD, or VPMOVSXBQ.

Syntax

extern __m256i _mm256_cvtepi8_epi16(__m128i s1);
extern __m256i _mm256_cvtepi8_epi32(__m128i s1);
extern __m256i _mm256_cvtepi8_epi64(__m128i s1);

Arguments

s1 128-bit integer source vector used for the operation

Description

Performs a packed move with sign-extend operation to convert 8-bit [byte] integers in the low bytes of the
source vector, s1, to 16-bit [word], 32-bit [doubleword], or 64-bit [quadword] integers, which are stored as
packed signed word/doubleword/quadword integers in the destination vector.

Returns

Result of the sign-extend operation.

_mm256_cvtepi16_epi32/64
Performs packed move with sign-extend on 16-bit
signed integers to 32/64-bit integers. The
corresponding Intel® AVX2 instruction is VPMOVSXWD
orVPMOVSXWQ.

Syntax

extern __m256i _mm256_cvtepi16_epi32(__m128i s1);
extern __m256i _mm256_cvtepi16_epi64(__m128i s1);

Arguments

s1 128-bit integer source vector used for the operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1474

Description

Performs a packed move with sign-extend operation to convert 16-bit [word] integers in the low bytes of the
source vector, s1, to 32-bit [doubleword] or 64-bit [quadword] integers and stored as packed signed
doubleword/quadword integers in the destination vector.

Returns

Result of the sign-extend operation.

_mm256_cvtepi32_epi64
Performs packed move with sign-extend on 32-bit
signed integers to 64-bit integers. The corresponding
Intel® AVX2 instruction is VPMOVSXDQ.

Syntax

extern __m256i _mm256_cvtepi32_epi64(__m128i s1);

Arguments

s1 128-bit integer source vector used for the operation

Description

Performs a packed move with sign-extend operation to convert 32-bit [doubleword] integers in the low bytes
of the source vector, s1, to 64-bit [quadword] integers and stored as packed signed quadword integers in the
destination vector.

Returns

Result of the sign-extend operation.

_mm256_cvtepu8_epi16/32/64
Performs packed move with zero-extend on 8-bit
unsigned integers to 16/32/64-bit integers. The
corresponding Intel® AVX2 instruction is
VPMOVZXBW,VPMOVZXBD, or VPMOVZXBQ.

Syntax

extern __m256i _mm256_cvtepu8_epi16(__m128i s1);
extern __m256i _mm256_cvtepu8_epi32(__m128i s1);
extern __m256i _mm256_cvtepu8_epi64(__m128i s1);

Arguments

s1 128-bit integer source vector used for the operation

Description

Performs a packed move with zero-extend operation to convert 8-bit [byte] integers in the low bytes of the
source vector, s1, to 16-bit [word], 32-bit [doubleword], or 64-bit [quadword] integers and stored as packed
unsigned word/doubleword/quadword integers in the destination vector.

Returns

Result of the zero-extend operation.

Compiler Reference

1475

_mm256_cvtepu16_epi32/64
Performs packed move with zero-extend on 16-bit
unsigned integers to 32/64-bit integers. The
corresponding Intel® AVX2 instruction is VPMOVZXWD or
VPMOVZXWQ.

Syntax

extern __m256i _mm256_cvtepu16_epi32(__m128i s1);
extern __m256i _mm256_cvtepu16_epi64(__m128i s1);

Arguments

s1 128-bit integer source vector used for the operation

Description

Performs a packed move with zero-extend operation to convert 16-bit [word] integers in the low bytes of the
source vector, s1, to 32-bit [doubleword] or 64-bit [quadword] integers and stored as packed signed
doubleword/quadword integers in the destination vector.

Returns

Result of the zero-extend operation.

_mm256_cvtepu32_epi64
Performs packed move with zero-extend on 32-bit
unsigned integers to 64-bit integers. The
corresponding Intel® AVX2 instruction is VPMOVZXDQ.

Syntax

extern __m256i _mm256_cvtepu32_epi64(__m128i s1);

Arguments

s1 128-bit integer source vector used for the operation

Description

Performs a packed move with zero-extend operation to convert 32-bit [doubleword] integers in the low bytes
of the source vector, s1, to 64-bit [quadword] integers and stored as packed signed quadword integers in the
destination vector.

Returns

Result of the zero-extend operation.

Intrinsics for Permute Operations

_mm256_permutevar8x32_epi32
Permutes doubleword elements of the source vector
into the destination vector. The corresponding Intel®
AVX2 instruction is VPERMD.

 Intel® C++ Compiler Classic Developer Guide and Reference

1476

Syntax

extern __m256i _mm256_permutevar8x32_epi32(__m256i val, __m256i offsets);

Arguments

val the vector of 32-bit integer elements to be permuted

offsets the vector of eight 3-bit offsets (specifying values in
range [0 - 7]) for the permuted elements of 256-bit
vector

Description

Use the offset values in each dword element of the vector offsets to select a dword element from the source
vector val. The result element is copied to the corresponding element of destination vector. The intrinsic does
NOT allow to copy the same element of the source vector to more than one element of the destination vector.

Below is the pseudo-code for the intrinsic:

RESULT[31:0] <- (VAL[255:0] >> (OFFSETS[2:0] * 32))[31:0];
RESULT[63:32] <- (VAL[255:0] >> (OFFSETS[34:32] * 32))[31:0];
RESULT[95:64] <- (VAL[255:0] >> (OFFSETS[66:64] * 32))[31:0];
RESULT[127:96] <- (VAL[255:0] >> (OFFSETS[98:96] * 32))[31:0];
RESULT[159:128] <- (VAL[255:0] >> (OFFSETS[130:128] * 32))[31:0];
RESULT[191:160] <- (VAL[255:0] >> (OFFSETS[162:160] * 32))[31:0];
RESULT[223:192] <- (VAL[255:0] >> (OFFSETS[194:192] * 32))[31:0];
RESULT[255:224] <- (VAL[255:0] >> (OFFSETS[226:224] * 32))[31:0];

Returns

Result of the permute operation.

_mm256_permutevar8x32_ps
Permutes single-precision floating-point elements of
the source vector into the destination vector. The
corresponding Intel® AVX2 instruction is VPERMPS.

Syntax

extern __m256i _mm256_permutevar8x32_ps(__m256 val, __m256i offsets);

Arguments

val the vector of 32-bit single-precision floating-point
elements to be permuted

offsets the vector of eight 3-bit offsets (specifying values in
range [0 - 7]) for the permuted elements of 256-bit
vector

Description

Use the offset values in each dword element of the vector offsets to select a single-precision floating-point
element from the source vector val. The result element is copied to the corresponding element of destination
vector. The intrinsic does NOT allow to copy the same element of the source vector to more than one element
of the destination vector.

Compiler Reference

1477

Below is the pseudo-code for the intrinsic:

RESULT[31:0] <- (VAL[255:0] >> (OFFSETS[2:0] * 32))[31:0];
RESULT[63:32] <- (VAL[255:0] >> (OFFSETS[34:32] * 32))[31:0];
RESULT[95:64] <- (VAL[255:0] >> (OFFSETS[66:64] * 32))[31:0];
RESULT[127:96] <- (VAL[255:0] >> (OFFSETS[98:96] * 32))[31:0];
RESULT[159:128] <- (VAL[255:0] >> (OFFSETS[130:128] * 32))[31:0];
RESULT[191:160] <- (VAL[255:0] >> (OFFSETS[162:160] * 32))[31:0];
RESULT[223:192] <- (VAL[255:0] >> (OFFSETS[194:192] * 32))[31:0];
RESULT[255:224] <- (VAL[255:0] >> (OFFSETS[226:224] * 32))[31:0];

Returns

Result of the permute operation.

_mm256_permute4x64_epi64
Permutes quadword integer values of the source
vector into the destination vector. The corresponding
Intel® AVX2 instruction is VPERMQ.

Syntax

extern __m256i _mm256_permute4x64_epi64(__m256i val, const int control);

Arguments

val the vector of 64-bit quadword integer elements to be
permuted

control an integer specified as an 8-bit immediate

Description

Use two-bit index values in the immediate byte to select a qword integer element from the source vector val.
The result element is copied to the corresponding element of destination vector. The intrinsic allows to copy
the same element of the source vector to more than one element of the destination vector.

Below is the pseudo-code for the intrinsic:

RESULT[63:0] <- (VAL[255:0] >> (CONTROL[1:0] * 64))[63:0];
RESULT[127:64] <- (VAL[255:0] >> (CONTROL[3:2] * 64))[63:0];
RESULT[191:128] <- (VAL[255:0] >> (CONTROL[5:4] * 64))[63:0];
RESULT[255:192] <- (VAL[255:0] >> (CONTROL[7:6] * 64))[63:0];

Returns

Result of the permute operation.

_mm256_permute4x64_pd
Permutes quadword double-precision floating-point
values of the source vector into the destination vector.
The corresponding Intel® AVX2 instruction is VPERMPD.

Syntax

extern __m256i _mm256_permute4x64_epi64(__m256d val, const int control);

 Intel® C++ Compiler Classic Developer Guide and Reference

1478

Arguments

val the vector of 64-bit qword double-precision floating-
point elements to be permuted

control an integer specified as an 8-bit immediate

Description

Use two-bit index values in the immediate byte to select a qword double-precision floating-point element
from the source vector val. The result element is copied to the corresponding element of destination vector.
The intrinsic allows to copy the same element of the source vector to more than one element of the
destination vector.

Below is the pseudo-code for the intrinsic:

RESULT[63:0] <- (VAL[255:0] >> (CONTROL[1:0] * 64))[63:0];
RESULT[127:64] <- (VAL[255:0] >> (CONTROL[3:2] * 64))[63:0];
RESULT[191:128] <- (VAL[255:0] >> (CONTROL[5:4] * 64))[63:0];
RESULT[255:192] <- (VAL[255:0] >> (CONTROL[7:6] * 64))[63:0];

Returns

Result of the permute operation.

_mm256_permute2x128_si256
Permutes 128-bit integer data from the first source
vector and the second source vector in the destination
vector. The corresponding Intel® AVX2 instruction is
VPERM2I128.

Syntax

extern __m256i _mm256_permute2x128_si256(__m256i a, __m256i b, int control);

Arguments

a integer source vector

b integer source vector

control 8-bit immediate used for the operation

Description

Permutes 128-bit integer data from source vector a and source vector b using bits in the 8-bit immediate and
stores results in the destination vector.

Compiler Reference

1479

Returns

Result of the permute operation.

Intrinsics for Shuffle Operations

_mm256_shuffle_epi8
Shuffles bytes in the first source vector according to
the shuffle control mask in the second source vector.
The corresponding Intel® AVX2 instruction is VPSHUFB.

Syntax

extern __m256i _mm256_shuffle_epi8(__m256i a, __m256i b);

Arguments

a integer source vector

b integer source vector

Description

Performs shuffle operations of the signed or unsigned 8-bit integers in the source vector as specified by the
shuffle control mask in the second source operand.

Below is the pseudocode interpreting a, b, and r as arrays of unsigned 8-bit integers:

for (i = 0; i < 16; i++){
 if (b[i] & 0x80){
 r[i] = 0;
 }
 else{
 r[i] = a[b[i] & 0x0F];
 }
 if (b[16+i] & 0x80){
 r[16+i] = 0;
 }
 else{
 r[16+i] = a[16+(b[16+i] & 0x0F)];
 }
}

 Intel® C++ Compiler Classic Developer Guide and Reference

1480

Returns

Result of the shuffle operation.

_mm256_shuffle_epi32
Conditionally shuffles doublewords of the source
vector in the destination vector at the locations
selected with the immediate control operand. The
corresponding Intel® AVX2 instruction is VPSHUFD.

Syntax

extern __m256i _mm256_shuffle_epi32(__m256i val, const int control);

Arguments

val integer source vector

control immediate control operand

Description

Performs shuffle operations of the signed or unsigned 32-bit integers in the source vector as specified by the
control operand. The shuffle value must be an immediate.

Returns

Result of the shuffle operation.

_mm256_shufflehi_epi16
Shuffles the upper 4 high signed or unsigned words in
each 128-bit lane of the source operand according to
the shuffle control operand. The low qwords in each of
2 128-bit lanes of the source operand are copied to
the corresponding low qwords of the result value. The
corresponding Intel® AVX 2 instruction is VPSHUFHW.

Syntax

extern __m256i _mm256_shufflehi_epi16(__m256i val, const int control);

Arguments

val integer source operand

control immediate control mask

Description

Shuffles the upper four high signed or unsigned words in each 128-bit lane of the source operand according
to the shuffle control operand. The low qwords in each of two 128-bit lanes of the source operand are copied
to the corresponding low qwords of the result value. The shuffle control operand must be an immediate.

Below is the pseudo-code for the intrinsic:

RESULT[63:0] <- VAL[63:0]
RESULT[79:64] <- (VAL >> (CONTROL[1:0] *16))[79:64]
RESULT[95:80] <- (VAL >> (CONTROL[3:2] * 16))[79:64]
RESULT[111:96] <- (VAL >> (CONTROL[5:4] * 16))[79:64]
RESULT[127:112] <- (VAL >> (CONTROL[7:6] * 16))[79:64]

Compiler Reference

1481

RESULT[191:128] <- VAL[191:128]
RESULT[207192] <- (VAL >> (CONTROL[1:0] *16))[207:192]
RESULT[223:208] <- (VAL >> (CONTROL[3:2] * 16))[207:192]
RESULT[239:224] <- (VAL >> (CONTROL[5:4] * 16))[207:192]

RESULT[255:240] <- (VAL >> (CONTROL[7:6] * 16))[207:192]

Returns

Result of the shuffle operation.

_mm256_shufflelo_epi16
Shuffles the low 4 signed or unsigned words in each
128-bit lane of the source operand according to the
shuffle control operand. The high qwords in each of 2
128-bit lanes of the source operand are copied to the
corresponding high qwords of the result value. The
corresponding Intel® AVX 2 instruction is VPSHUFLW.

Syntax

extern __m256i _mm256_shufflelo_epi16(__m256i val, const int control);

Arguments

val integer source vector

control immediate control operand

Description

Shuffles the low four signed or unsigned words in each 128-bit lane of the source operand according to the
shuffle control operand. The high qwords in each of 2 128-bit lanes of the source operand are copied to the
corresponding high qwords of the result value. The shuffle value must be an immediate.

Below is the pseudo-code for the intrinsic:

RESULT[15:0] <- (VAL >> (CONTROL[1:0] *16))[15:0]
RESULT[31:16] <- (VAL >> (CONTROL[3:2] * 16))[15:0]
RESULT[47:32] <- (VAL >> (CONTROL[5:4] * 16))[15:0]
RESULT[63:48] <- (VAL >> (CONTROL[7:6] * 16))[15:0]
RESULT[127:64] <- VAL[127:64]
RESULT[143:128] <- (VAL >> (CONTROL[1:0] *16))[143:128]
RESULT[159:144] <- (VAL >> (CONTROL[3:2] * 16))[143:128]
RESULT[175:160] <- (VAL >> (CONTROL[5:4] * 16))[143:128]
RESULT[191:176] <- (VAL >> (CONTROL[7:6] * 16))[143:128]

RESULT[255:192] <- VAL[255:192]

Returns

Result of the shuffle operation.

Intrinsics for Intel® Transactional Synchronization Extensions (Intel® TSX)

Intel® Transactional Synchronization Extensions (Intel® TSX) Overview

 Intel® C++ Compiler Classic Developer Guide and Reference

1482

Intel® Transactional Synchronization Extensions (Intel® TSX) allow the processor to determine dynamically
whether threads need to serialize through lock-protected critical sections, and to perform serialization only
when required. This lets the processor to expose and exploit concurrence hidden in an application due to
dynamically unnecessary synchronization.

With Intel® TSX, programmer-specified code regions (also referred to as transactional regions) are executed
transactionally. If the transactional execution completes successfully, then all memory operations performed
within the transactional region will appear to have occurred instantaneously when viewed from other logical
processors. A processor makes architectural updates performed within the region visible to other logical
processors only on a successful commit, a process referred to as an atomic commit.

Intel® TSX also provides an XTEST instruction, allowing software to query whether the logical processor is
transactionally executing in a transactional region identified by either Hardware Lock Elision (HLE) or
Restricted Transactional Memory (RTM).

Since a successful transactional execution ensures an atomic commit, the processor executes the code region
optimistically without explicit synchronization. If synchronization was unnecessary for that specific execution,
execution can commit without any cross-thread serialization. If the processor cannot commit atomically, the
optimistic execution fails. When this happens, the processor will roll back the execution, a process referred to
as a transactional abort. On a transactional abort, the processor will discard all updates performed in the
region, restore architectural state to appear as if the optimistic execution never occurred, and resume
execution non-transactionally.

A processor can perform a transactional abort for numerous reasons. A primary cause is due to conflicting
accesses between the transactionally executing logical processor and another logical processor. Such
conflicting accesses may prevent a successful transactional execution. Memory addresses read from within a
transactional region constitute the read-set of the transactional region and addresses written to within the
transactional region constitute the write-set of the transactional region. Intel® TSX maintains the read- and
write-sets at the granularity of a cache line. A conflicting access occurs if another logical processor either
reads a location that is part of the transactional region’s write-set or writes a location that is a part of either
the read- or write-set of the transactional region.

Conflicting access typically means serialization is required for this code region. Intel® TSX detects data
conflicts at the granularity of a cache line, so unrelated data locations placed in the same cache line will be
detected as conflicts. Transactional aborts may also occur due to limited transactional resources. The amount
of data accessed in the region may exceed an implementation-specific capacity. Some instructions and
system events may also cause transactional aborts. Frequent transactional aborts cause wasted cycles.

Intel® TSX provide two software interfaces to specify regions of code for transactional execution.

Hardware Lock Elision (HLE)

HLE is a legacy-compatible instruction set extension (comprising the XACQUIRE and XRELEASE prefixes) to
specify transactional regions. HLE is for programmers who prefer the backward compatibility of the
conventional mutual-exclusion programming model and would like to run HLE-enabled software on legacy
hardware, but would like to take advantage of new lock elision capabilities on hardware with HLE support.

NOTE
Hardware Lock Elision (HLE) intrinsic functions apply to C/C++ applications for Windows* only.

Restricted Transactional Memory (RTM)

RTM is a new instruction set interface (comprising the XBEGIN, XEND, and XABORT instructions) for
programmers to define transactional regions in a more flexible manner than that possible with HLE.

RTM is for programmers who prefer a flexible interface to the transactional execution hardware.

Intel® Transactional Synchronization Extensions (Intel® TSX) Programming Considerations
Typical programmer-identified regions are expected to transactionally execute and commit successfully.
However, Intel® Transactional Synchronization Extensions (Intel® TSX) does not provide any such guarantee.
A transactional execution may abort for many reasons. To take full advantage of the transactional
capabilities, programmers should take into account programming considerations to increase the probability of
their transactional execution committing successfully.

Compiler Reference

1483

This section discusses various events that may cause transactional aborts. The architecture ensures that
updates performed within a transaction that subsequently aborts execution will not become visible: Only a
committed transactional execution updates architectural state. Transactional aborts never cause functional
failures and only affect performance.

Instruction Based Considerations
Programmers can use any instruction safely inside a transaction, Hardware Lock Elision (HLE) or Restricted
Transactional Memory (RTM) and can use transactions at any privilege level. Some instructions will always
abort the transactional execution and cause execution to seamlessly and safely transition to a non-
transactional path.

Intel® TSX allows for most common instructions to be used inside transactions without causing aborts. The
following operations inside a transaction do not typically cause an abort:

• Operations on the instruction pointer register.
• Operations on general purpose registers (GPRs).
• Operations on the status flags (CF, OF, SF, PF, AF, and ZF).
• Operations on XMM and YMM registers.
• Operations on the MXCSR register.

NOTE
Programmers must be careful when intermixing Intel® Supplemental Streaming Extensions (Intel®
SSE) and Intel® Advanced Vector Extensions (Intel® AVX) operations inside a transactional region.
Intermixing Intel® SSE instructions accessing XMM registers and Intel® AVX instructions accessing YMM
registers may cause transactions to abort.

Programmers may use REP/REPNE prefixed string operations inside transactions. However, long strings may
cause aborts. Further, the use of CLD and STD instructions may cause aborts if they change the value of the
DF flag. If DF is '1', the STD instruction will not cause an abort. Similarly, if DF is '0', the CLD instruction will
not cause an abort.

Instructions not enumerated here as causing abort when used inside a transaction will typically not cause a
transaction to abort (examples include but are not limited to MFENCE, LFENCE, SFENCE, RDTSC, RDTSCP,
etc.).

The following instructions will abort transactional execution on any implementation:

• XABORT
• CPUID
• PAUSE
In some implementations, the following instructions may always cause transactional aborts. These
instructions are not expected to be commonly used inside typical transactional regions. Programmers must
not rely on these instructions to force a transactional abort, since whether they cause transactional aborts is
implementation dependent.

• Operations on X87 and MMX™ architecture state. This includes all MMX™ and X87 instructions, including the
FXRSTOR and FXSAVE instructions.

• Update to non-status portion of EFLAGS:CLI, STI, POPFD, POPFQ, CLTS.
• Instructions that update segment registers, debug registers and/or control registers:MOV to DS/

ES/FS/GS/SS, POPDS/ES/FS/GS/SS, LDS, LES, LFS, LGS, LSS, SWAPGS, WRFSBASE, WRGSBASE, LGDT, SGDT,
LIDT, SIDT, LLDT, SLDT, LTR, STR, Far CALL, Far JMP, Far RET, IRET, MOV to DRx, MOV to CR0/CR2/
CR3/CR4/CR8, and LMSW.

• Ring transitions:SYSENTER, SYSCALL, SYSEXIT, and SYSRET.

 Intel® C++ Compiler Classic Developer Guide and Reference

1484

• TLB and Cacheability control:CLFLUSH, INVD, WBINVD, INVLPG, INVPCID, and memory instructions
with a non-temporal hint (MOVNTDQA, MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS, and MOVNTQ).

• Processor state save:XSAVE, XSAVEOPT, and XRSTOR.
• Interrupts:INTn, INTO.
• IO:IN, INS, REP INS, OUT, OUTS, REP OUTS and their variants.
• VMX: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, VMXON,

INVEPT, and INVVPID.
• SMX:GETSEC, UD2, RSM, RDMSR, WRMSR, HLT, MONITOR, MWAIT, XSETBV, VZEROUPPER, MASKMOVQ, and V/

MASKMOVDQU.

Runtime Considerations
In addition to instruction-based considerations, runtime events may cause transactional execution to abort.
These may be due to data access patterns or micro-architectural implementation causes. The following list is
not a comprehensive discussion of all abort causes:

Any fault or trap in a transaction that must be exposed to software will be suppressed. Transactional
execution will abort and execution will transition to a nontransactional execution as if the fault or trap had
never occurred. If any exception is not masked, that will result in a transactional abort and it will be as if the
exception had never occurred.

Synchronous exception events (#DE, #OF, #NP, #SS, #GP, #BR, #UD, #AC, #XF, #PF, #NM, #TS, #MF,
#DB, #BP/INT3) that occur during transactional execution may cause an execution not to commit
transactionally, and require a non-transactional execution. These events are suppressed as if they had never
occurred. With HLE, since the non-transactional code path is identical to the transactional code path, these
events will typically re-appear when the instruction that caused the exception is re-executed non-
transactionally, causing the associated synchronous events to be delivered appropriately in the non-
transactional execution.

Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during transactional execution may cause
the transactional execution to abort and transition to nontransactional execution. The asynchronous events
will be queued and handled after the transactional abort is processed.

Transactions only support write-back cacheable memory type operations. A transaction may always abort if it
includes operations on any other memory type. This includes instruction fetches to UC memory type.

Memory accesses within a transactional region may require the processor to set the Accessed and Dirty flags
of the referenced page table entry. The behavior of how the processor handles this is implementation
specific. Some implementations may allow the updates to these flags to become externally visible even if the
transactional region subsequently aborts. Some Intel® TSX implementations may choose to abort the
transactional execution if these flags need to be updated. Further, a processor's page-table walk may
generate accesses to its own transactionally written but uncommitted state. Some Intel® TSX
implementations may choose to abort the execution of a transactional region in such situations. The
architecture ensures that if the transactional region aborts, the transactionally written state will not be made
architecturally visible through the behavior of structures such as TLBs.

Executing self-modifying code transactionally may also cause transactional aborts. Programmers must
continue to follow Intel recommended guidelines for writing self-modifying and cross-modifying code even
when employing HLE and RTM.

While an implementation of RTM and HLE will typically provide sufficient resources for executing common
transactional regions, implementation constraints and excessive sizes for transactional regions may cause a
transactional execution to abort and transition to a non-transactional execution. The architecture provides no
guarantee of the amount of resources available to do transactional execution and does not guarantee that a
transactional execution will ever succeed.

Compiler Reference

1485

Conflicting requests to a cache line accessed within a transactional region may prevent the transaction from
executing successfully. For example, if logical processor P0 reads line A in a transactional region and another
logical processor P1 writes A (either inside or outside a transactional region) then logical processor P0 may
abort if logical processor P1’s write interferes with processor P0's ability to execute transactionally.

Similarly, if P0 writes line A in a transactional region and P1 reads or writes A (either inside or outside a
transactional region), then P0 may abort if P1's access to A interferes with P0's ability to execute
transactionally. Other coherence traffic may at times appear as conflicting requests and may cause aborts.
While these false conflicts may happen, they are expected to be uncommon. The conflict resolution policy to
determine whether P0 or P1 aborts in the above scenarios implementation specific.

Intrinsics for Restricted Transactional Memory Operations

Restricted Transactional Memory Overview

Restricted Transactional Memory (RTM) provides a software interface for transactional execution. RTM
provides three new instructions— XBEGIN, XEND, and XABORT—for programmers to start, commit, and abort
transactional execution.

The programmer uses the XBEGIN instruction to specify the start of the transactional code region and the
XEND instruction to specify the end of the transactional code region. The XBEGIN instruction takes an operand
that provides a relative offset to the fallback instruction address if the RTM region could not be successfully
executed transactionally.

A processor may abort RTM transactional execution for many reasons. The hardware automatically detects
transactional abort conditions and restarts execution from the fallback instruction address with the
architectural state corresponding to that at the start of the XBEGIN instruction and the EAX register updated
to describe the abort status.

The XABORT instruction allows programmers to abort the execution of an RTM region explicitly. The XABORT
instruction takes an 8-bit immediate argument that is loaded into the EAX register becoming available to
software following an RTM abort.

RTM instructions do not have any data memory location associated with them. While the hardware provides
no guarantees as to whether an RTM region will ever successfully commit transactionally, most transactions
that follow the recommended guidelines are expected to successfully commit transactionally.

Programmers must always provide an alternative code sequence in the fallback path to guarantee the code
completes execution. This may be as simple as acquiring a lock and executing the specified code region non-
transactionally. Further, a transaction that always aborts on a given implementation may complete
transactionally on a future implementation. Therefore, programmers must ensure the code paths for the
transactional region and the alternative code sequence are functionally tested.

Detection of RTM Support
A processor supports RTM execution if CPUID.07H.EBX.RTM [bit 11] = 1. An application must check if the
processor supports RTM before it uses the RTM instructions (XBEGIN, XEND, XABORT). These instructions will
generate a #UD exception when used on a processor that does not support RTM.

RTM Abort Status Definition
RTM uses the EAX register to communicate abort status to software. Following an RTM abort the EAX register
has the following definition.

EAX register bit
position

Meaning

0 Set if abort caused by XABORT instruction.

1 If set, the transaction may succeed on a retry. This bit is always clear if bit '0' is set.

 Intel® C++ Compiler Classic Developer Guide and Reference

1486

EAX register bit
position

Meaning

2 Set if another logical processor conflicted with a memory address that was part of
the transaction that aborted.

3 Set if an internal buffer overflowed.

4 Set if a debug breakpoint was hit.

5 Set if an abort occurred during execution of a nested transaction.

23:6 Reserved.

31:24 XABORT argument (only valid if bit '0' set, otherwise reserved).

The EAX abort status for RTM only provides the cause for aborts. It does not by itself encode whether an
abort or commit occurred for the RTM region. The value of EAX can be '0' following an RTM abort. For
example, a CPUID instruction when used inside an RTM region causes a transactional abort and may not
satisfy the requirements for setting any of the EAX bits. This may result in an EAX value of '0'.

RTM Memory Ordering
A successful RTM commit causes all memory operations in the RTM region to appear to execute atomically. A
successfully committed RTM region consisting of an XBEGIN followed by an XEND, even with no memory
operations in the RTM region, has the same ordering semantics as a LOCK prefixed instruction. The XBEGIN
instruction does not have fencing semantics. However, if an RTM execution aborts, all memory updates from
within the RTM region are discarded and never made visible to any other logical processor.

See Also
Intel® Transactional Synchronization Extensions Programming Considerations

_xtest
Queries whether the processor is executing in a
transactional region identified by restricted
transactional memory (RTM) or hardware lock elision
(HLE). The corresponding Intel® AVX2 instruction is
XTEST.

Syntax

unsigned char _xtest(void);

Arguments

None.

Description

Queries the RTM or HLE execution status. If the xtest function is called inside an RTM or an active HLE
region, then the ZF flag is cleared, else it is set.

NOTE
A processor supports the xtest instruction if it supports either HLE or RTM. An application must check
either of these feature flags before using the xtest instruction. While the HLE prefixes are ignored on
processors that do not support HLE, this instruction will generate a #UD exception when used on a
processor that does not support either HLE or RTM.

Compiler Reference

1487

Returns

Result of the query.

_xbegin
Specifies the start of a restricted transactional
memory (RTM) code region and returns a value
indicating status. The corresponding Intel® AVX2
instruction is XBEGIN.

Syntax

unsigned int _xbegin(void);

Arguments

None.

Description

Starts a RTM code region and returns a value indicating transaction successfully started or status from a
transaction abort.

If the logical processor was not already in transactional execution, then the xbegin instruction causes the
logical processor to start transactional execution. The xbegin instruction that transitions the logical
processor into transactional execution is referred to as the outermost xbegin instruction.

The xbegin instruction specifies a relative offset to the fallback code path executed following a transactional
abort. To promote proper program structure, this is not exposed in C++ code and the intrinsic function
operates as if it invoked the following model code:

__inline unsigned int _xbegin() {
 unsigned status;
 __asm {
 move eax, 0xFFFFFFFF
 xbegin _txnL1
 _txnL1:
 move status, eax
 }
 return status;
}

When a transaction is successfully created the function will return 0xFFFFFFFF, which is never a valid status
code for an aborted transaction. If the transaction aborts for any reason, the logical processor discards all
architectural register and memory updates performed during the transaction execution and restores the
architectural state to that corresponding to the outermost xbegin instruction. The EAX register is then
updated with the status code of the aborted transaction, which can be used to transfer control to a fallback
handler.

The instruction also specifies a relative offset to compute the address of the fallback code path following a
transactional abort. On an RTM abort, the logical processor discards all architectural register and memory
updates performed during the RTM execution and restores architectural state to that corresponding to the
outermost xbegin instruction. The abort destination operand of the xbegin instruction is targeted to the
following instruction so that there is no change in control flow whether the transaction aborts or not.

Returns

Returns value indicating transaction successfully started or status from a transaction abort.

 Intel® C++ Compiler Classic Developer Guide and Reference

1488

_xend
Specifies the end of a restricted transactional memory
(RTM) code region. The corresponding Intel® AVX2
instruction is XEND.

Syntax

void _xend(void);

Arguments

None.

Description

Specifies the end of restricted transactional memory code region. If this is the outermost transaction
(including this xend instruction, the number of xbegin matches the number of xend instructions) then the
processor will attempt to commit processor state automatically.

If the commit fails, the processor will rollback all register and memory updates performed during the RTM
execution.

The logical processor will resume execution at the fallback address computed from the outermost xbegin
instruction. The EAX register is updated to reflect RTM abort information. When xend is executed outside a
transaction will cause a general protection fault (#GP).

The model instruction sequence for xend support is:

__inline void _xend() {
 __asm { xend }
}

Returns

Result of the query.

_xabort
Forces a restricted transactional memory (RTM) region
to abort. The corresponding Intel® AVX2 instruction is
XABORT.

Syntax

void _xabort(const unsigned int imm);

Arguments

None.

Description

Forces a RTM region to abort. All outstanding transactions are aborted and the logical processor resumes
execution at the fallback address computed through the outermost xbegin transaction.

The EAX register is updated to reflect an xabort instruction caused the abort, and the imm8 argument will
be provided in the upper eight bits of the return value (EAX register bits 31:24) containing the indicated
immediate value. The argument of xabort function must be a compile time constant.

The model instruction sequence for xabort support is:

__inline void _xabort() { __asm { xabort } }

Compiler Reference

1489

Returns

Result of the query.

Intrinsics for Hardware Lock Elision Operations

Hardware Lock Elision Overview

NOTE
Hardware Lock Elision (HLE) intrinsic functions apply to C/C++ applications for Windows* only.

Hardware Lock Elision (HLE) provides a legacy compatible instruction set interface for transactional
execution. HLE provides two new instruction prefix hints: XACQUIRE and XRELEASE.

The programmer uses the XACQUIRE prefix in front of the instruction that is used to acquire the lock that is
protecting the critical section. The processor treats the indication as a hint to elide the write associated with
the lock acquire operation. Even though the lock acquire has an associated write operation to the lock, the
processor does not add the address of the lock to the transactional region’s write-set nor does it issue any
write requests to the lock. Instead, the address of the lock is added to the read-set and the logical processor
enters transactional execution. If the lock was available before the XACQUIRE prefixed instruction, all other
processors will continue to see it as available afterwards. Since the transactionally executing logical processor
neither added the address of the lock to its write-set, nor performed externally visible write operations to it,
other logical processors can read the lock without causing a data conflict. This allows other logical processors
to enter and concurrently execute the lock-protected section. The processor automatically detects data
conflicts that occur during the transactional execution and will perform a transactional abort if necessary.

The hardware ensures program order of operations on the lock, even though the eliding processor did not
perform external write operations to the lock. If the eliding processor itself reads the value of the lock in the
critical section, it will appear as if the processor had acquired the lock (the read will return the non-elided
value). This behavior makes an HLE execution functionally equivalent to an execution without the HLE
prefixes.

The programmer uses the XRELEASE prefix in front of the instruction that is used to release the lock
protecting the critical section. This involves a write to the lock. If the instruction is restoring the value of the
lock to the value it had prior to the XACQUIRE prefixed lock-acquire operation on the same lock, the
processor elides the external write request associated with the release of the lock and does not add the
address of the lock to the write-set. The processor then attempts to commit the transactional execution.

If multiple threads execute critical sections protected by the same lock, but they do not perform conflicting
data operations, the threads can execute concurrently and without serialization. Even though the software
uses lock acquisition operations on a common lock, the hardware recognizes this, elides the lock, and
executes the critical sections on the two threads without requiring any communication through the lock — if
such communication was dynamically unnecessary.

If the processor is unable to execute the region transactionally, it will execute the region non-transactionally
and without elision. HLE-enabled software has the same forward progress guarantees as the underlying non-
HLE lock-based execution. For successful HLE execution, the lock and the critical section code must follow
certain guidelines. These guidelines only affect performance; not following these guidelines will not cause
functional failure.

Hardware without HLE support will ignore the XACQUIRE and XRELEASE prefix hints and will not perform any
elision. These prefixes correspond to the REPNE/REPE IA-32 architecture prefixes ignored on the instructions
where XACQUIRE and XRELEASE are valid. Importantly, HLE is compatible with the existing lock-based
programming model. Improper use of hints will not cause functional bugs though it may expose latent bugs
already in the code.

See Also
Intel® Transactional Synchronization Extensions Programming Considerations

 Intel® C++ Compiler Classic Developer Guide and Reference

1490

HLE Acquire _InterlockedCompareExchange Functions
Performs an atomic compare-and-exchange operation
on the specified values and attempts to begin a HLE
transaction if supported by the executing platform.
This intrinsic function applies to C/C++ applications
for Windows only.

Syntax

long _InterlockedCompareExchange_HLEAcquire(long volatile *Destination, long Exchange,
long Comparand);
__int64 _InterlockedCompareExchange64_HLEAcquire(__int64 volatile *Destination, __int64
Exchange, __int64 Comparand);
void * _InterlockedCompareExchangePointer_HLEAcquire(void * volatile *Destination, void
* Exchange, void * Comparand);

Parameters

Destination [in, out] pointer to the destination value

Exchange [in] value which will be written at Destination if the comparison matches.

Comparand [in] value to compare to the value referenced by Destination.

Description

Performs an atomic compare-and-exchange operation on the specified values, and also attempts to begin a
HLE transaction if the executing platform supports it.

These functions compare two specified values and replaces one of them with a third value if the compared
values are equal.

Returns

Returns the initial value referenced by the Destination parameter.

HLE Acquire _InterlockedExchangeAdd Functions
Performs an atomic addition of two values and
attempts to begin a HLE transaction if supported by
the executing platform. This intrinsic function applies
to C/C++ applications for Windows only.

Syntax

long _InterlockedExchangeAdd_HLEAcquire(long volatile *Addend, long Value);
__int64 _InterlockedExchangeAdd64_HLEAcquire(__int64 volatile *Addend, __int64 Value);

Parameters

Addend [in, out] pointer to the addend which will be replaced with the result of the
addition

Value [in] value to be added to the value referenced by the Addendparameter

Description

Performs an atomic addition of two values, and also attempts to begin a HLE transaction if the executing
platform supports it.

Compiler Reference

1491

Returns

The function returns the initial value referenced by the Addend parameter.

HLE Release _InterlockedCompareExchange Functions
Performs an atomic compare-and-exchange operation
on the specified values and releases pending active
HLE transaction. This intrinsic function applies to C/C+
+ applications for Windows only.

Syntax

long _InterlockedCompareExchange_HLERelease(long volatile *Destination, long Exchange,
long Comparand);
__int64 _InterlockedCompareExchange64_HLERelease(__int64 volatile *Destination, __int64
Exchange, __int64 Comparand);
void * _InterlockedCompareExchangePointer_HLERelease(void * volatile *Destination, void
* Exchange, void * Comparand);

Parameters

Destination [in, out] pointer to the destination value

Exchange [in] value which will be written at Destination if the comparison matches.

Comparand [in] value to compare to the value referenced by Destination.

Description

Performs an atomic compare-and-exchange operation on the specified values and releases a pending HLE
transaction (if one is active).

The function compares two specified values and replaces one of them with a third value if the compared
values are equal.

Returns

Returns the initial value referenced by the Destination parameter.

HLE Release _InterlockedExchangeAdd Functions
Performs an atomic addition of two values and
releases pending active HLE transaction. This intrinsic
function applies to C/C++ applications for Windows
only.

Syntax

long _InterlockedExchangeAdd_HLERelease(long volatile *Addend, long Value);
__int64 _InterlockedExchangeAdd64_HLERelease(__int64 volatile *Addend, __int64 Value);

Parameters

Addend [in, out] pointer to the addend which will be replaced with the result of the
addition

Value [in] value to be added to the value referenced by the Addend parameter

 Intel® C++ Compiler Classic Developer Guide and Reference

1492

Description

Performs an atomic addition of two values and releases a pending HLE transaction (if one is active).

Returns

Returns the initial value referenced by the Addend parameter.

HLE Release _Store Functions
Stores the specified value at the specified address and
releases pending active HLE transaction. This intrinsic
function applies to C/C++ applications for Windows
only.

Syntax

void _Store_HLERelease(long volatile *Destination, long Value);
void _Store64_HLERelease(__int64 volatile *Destination, __int64 Value);
void _StorePointer_HLERelease(void * volatile *Destination, void * Value);

Parameters

Destination[out] pointer to the destination value

Value [in] value to store at Destination.

Description

Stores the specified value at the specified address and releases a pending HLE transaction if one is active.

Returns

Nothing.

Function Prototype and Macro Definitions
To use the prototypes and macro definitions shown in Group 1, include the immintrin.h file as follows:

#include <immintrin.h>
Group 1: Function Prototypes:

unsigned int _xbegin(void);
void _xend(void);
void _xabort(const unsigned int imm);
unsigned char _xtest(void);

The following macro definitions are included in the immintrin.h header file:

Group 1: Macro Definitions:

#define _XBEGIN_STARTED (~0u)
#define _XABORT_EXPLICIT (1 << 0)
#define _XABORT_RETRY (1 << 1)
#define _XABORT_CONFLICT (1 << 2)
#define _XABORT_CAPACITY (1 << 3)
#define _XABORT_DEBUG (1 << 4)
#define _XABORT_NESTED (1 << 5)

Group 2: Function Macros

Compiler Reference

1493

The following function Macros are not included in immintrin.h header file. If you want to use them, you
need to define them in your applications.

For the HW with RTM support

#define __try_transaction(x) if ((x =_xbegin()) == _XBEGIN_STARTED)
#define __try_else _xend() } else
#define __transaction_abort(c) _xabort(c)

For the HW with no RTM support

#define __try_transaction(x) if (0) {
#define __try_else } else
#define __transaction_abort(c)

x is an unsigned integer type local variable for programmers to access RTM transaction abort code and holds
the return value of _xbegin(). c is an unsigned integer compile-time constant value that is returned in the
upper bits of x when _xabort(c) is executed.

A usage sample code of macros

 foo() { // user macros
int status;
__try_transaction (status) {
,,, ,,, ,,,
transaction code ….
 }
__try_else {
if (status & _XABORT_CONFLICT) {
 … code
}
}
}

Pseudo-ASM code

foo() { or eax 0xffffffff
xbegin L1 L1: mov status, eax
cmp eax 0xffffffff jnz
L2 transaction code

// when abort happens, HW restarts from L1
xend jmp L3 L2: abort
handler code L3: ret
}

The compiler will convert the macros to the instruction sequence with a proper branching for speculative
execution path and alternative execution path.

The above example is similar to the usage example, except __try_transaction and __try_else macros
are used instead of RTM intrinsic functions.

Intrinsics for Intel® Advanced Vector Extensions
Intel® Advanced Vector Extensions (Intel® AVX) intrinsics are assembly-coded functions that call on Intel®
AVX instructions, which are new vector SIMD instruction extensions for IA-32 and Intel® 64 architectures.
Intel® AVX intrinsics are architecturally similar to Intel® Streaming SIMD Extensions (Intel® SSE) and double-
precision floating-point portions of Intel® Streaming SIMD Extensions 2 (Intel® SSE2).

 Intel® C++ Compiler Classic Developer Guide and Reference

1494

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
Intel® AVX intrinsics introduce 256-bit vector processing capability, and are supported on IA-32 and Intel® 64
architectures built from 32nm process technology and beyond. They map directly to Intel® AVX new
instructions and other enhanced 128-bit SIMD instructions.

The first generation Intel® AVX provides 256-bit SIMD register support, 256-bit vector floating-point
instructions, enhancements to 128-bit SIMD instructions, and support for three and four operand syntax.

Functional Overview
Intel® AVX provides comprehensive functional improvements over previous generations of SIMD instruction
extensions. The functional improvements include:

• 256-bit floating-point arithmetic primitives: Intel® AVX enhances existing 128-bit floating-point
arithmetic instructions with 256-bit capabilities for floating-point processing.

• Enhancements for flexible SIMD data movements: Intel® AVX provides a number of new data
movement primitives to enable efficient SIMD programming in relation to loading non-unit-strided data
into SIMD registers, intra-register SIMD data manipulation, conditional expression and branch handling,
etc. Enhancements for SIMD data movement primitives cover 256-bit and 128-bit vector floating-point
data, and across 128-bit integer SIMD data processing using VEX-encoded instructions.

See Also
Instruction Set Architecture (ISA) site at https://software.intel.com/en-us/isa-extensions
Details about the Intel® AVX Intrinsics

Details of Intel® Advanced Vector Extensions Intrinsics
Intel® Advanced Vector Extensions (Intel® AVX) intrinsics map directly to Intel® AVX instructions and other
enhanced 128-bit single-instruction multiple data processing (SIMD) instructions. Intel® AVX instructions are
architecturally similar to extensions of the existing Intel® 64 architecture-based vector streaming SIMD
portions of Intel® Streaming SIMD Extensions (Intel® SSE) instructions, and double-precision floating-point
portions of Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions. However, Intel® AVX introduces
the following architectural enhancements:

• Support for 256-bit wide vectors and SIMD register set.
• Instruction syntax support three and four operand syntax, to improve instruction programming flexibility

and efficiency for new instruction extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to

simplify compiler vectorization of high-level language expressions.
• Instruction encoding format using a new prefix (referred to as VEX) to provide compact, efficient encoding

for three-operand syntax, vector lengths, compaction of legacy SIMD prefixes and REX functionality.
• Intel® AVX data types allow packing of up to 32 elements in a register if bytes are used. The number of

elements depends upon the element type: eight single-precision floating point types or four double-
precision floating point types.

Intel® Advanced Vector Extensions Registers
Intel® AVX adds 16 registers (YMM0-YMM15), each 256 bits wide, aliased onto the 16 SIMD (XMM0-XMM15)
registers. The Intel® AVX new instructions operate on the YMM registers. Intel® AVX extends certain existing
instructions to operate on the YMM registers, defining a new way of encoding up to three sources and one
destination in a single instruction.

Compiler Reference

1495

https://software.intel.com/en-us/isa-extensions

Because each of these registers can hold more than one data element, the processor can process more than
one data element simultaneously. This processing capability is also known as single-instruction multiple data
processing (SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a corresponding
C intrinsic that implements that instruction directly. This frees you from managing registers and assembly
programming. Further, the compiler optimizes the instruction scheduling so that your executable runs faster.

Intel® Advanced Vector Extensions Types
The Intel® AVX intrinsic functions use three new C data types as operands, representing the new registers
used as operands to the intrinsic functions. These are __m256, __m256d, and __m256i data types.

The __m256 data type is used to represent the contents of the extended SSE register, the YMM register, used
by the Intel® AVX intrinsics. The __m256 data type can hold eight 32-bit floating-point values.

The __m256d data type can hold four 64-bit double precision floating-point values.

The __m256i data type can hold thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit integer values.

The compiler aligns the __m256, __m256d, and __m256i local and global data to 32-byte boundaries on the
stack. To align integer, float, or double arrays, use the __declspec(align) statement.

The Intel® AVX intrinsics also use Intel® SSE2 data types like __m128, __m128d, and __m128i for some
operations. See Details of Intrinsics topic for more information.

VEX Prefix Instruction Encoding Support for Intel® AVX
Intel® AVX introduces a new prefix, referred to as VEX, in the Intel® 64 and IA-32 instruction encoding
format. Instruction encoding using the VEX prefix provides several capabilities:

• direct encoding of a register operand within the VEX prefix.
• efficient encoding of instruction syntax operating on 128-bit and 256-bit register sets.
• compaction of REX prefix functionality.
• compaction of SIMD prefix functionality and escape byte encoding.

 Intel® C++ Compiler Classic Developer Guide and Reference

1496

• providing relaxed memory alignment requirements for most VEX-encoded SIMD numeric and data
processing instruction semantics with memory operand as compared to instructions encoded using SIMD
prefixes.

The VEX prefix encoding applies to SIMD instructions operating on YMM registers, XMM registers, and in
some cases with a general-purpose register as one of the operands. The VEX prefix is not supported for
instructions operating on MMX™ or x87 registers.

It is recommended to use Intel® AVX intrinsics with option [Q]xAVX, because their corresponding instructions
are encoded with the VEX-prefix. The [Q]xAVX option forces other packed instructions to be encoded with
VEX too. As a result there are fewer performance stalls due to Intel® AVX to legacy Intel® SSE code
transitions.

Naming and Usage Syntax
Most Intel® AVX intrinsic names use the following notational convention:

mm256<intrin_op>_<suffix>(<data type> <parameter1>, <data type> <parameter2>, <data type>
<parameter3>)

The following table explains each item in the syntax.

_mm256/
_mm128

Prefix representing the size of the result. Usually, this corresponds to the Intel® AVX vector register
size of 256 bits, but certain comparison and conversion intrinsics yield a 128-bit result.

<intrin_op> Indicates the basic operation of the intrinsic; for example, add for addition and sub for subtraction.

<suffix> Denotes the type of data the instruction operates on. The first one or two letters of each suffix
denote whether the data is packed (p), extended packed (ep), or scalar (s). The remaining letters
and numbers denote the type, with notation as follows:

• s: single-precision floating point
• d: double-precision floating point
• i128: signed 128-bit integer
• i64: signed 64-bit integer
• u64: unsigned 64-bit integer
• i32: signed 32-bit integer
• u32: unsigned 32-bit integer
• i16: signed 16-bit integer
• u16: unsigned 16-bit integer
• i8: signed 8-bit integer
• u8: unsigned 8-bit integer
• ps: packed single-precision floating point
• pd: packed double-precision floating point
• sd: scalar double-precision floating point
• epi32: extended packed 32-bit integer
• si256: scalar 256-bit integer

<data type> Parameter data types: __m256, __m256d, __m256i, __m128, __m128d, __m128i, const,
int, etc.

<parameter1
>

Represents a source vector register: m1/s1/a

<parameter2
>

Represents another source vector register: m2/s2/b

<parameter3
>

Represents an integer value: mask/select/offset

Compiler Reference

1497

The third parameter is an integer value whose bits represent a conditionality based on
which the intrinsic performs an operation.

Example Usage
extern __m256d _mm256_add_pd(__m256d m1, __m256d m2);

where,

add indicates that an addition operation must be performed

pd indicates packed double-precision floating-point value

The packed values are represented in right-to-left order, with the lowest value used for scalar operations.
Consider the following example operation:

double a[4] = {1.0, 2.0, 3.0, 4.0};
__m256d t = _mm256_load_pd(a);

The result is the following:

__m256d t = _mm256_set_pd(4.0, 3.0, 2.0, 1.0);
In other words, the YMM register that holds the value t appears as follows:

The “ scalar ” element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to
be immediates (constant integer literals).

See Also
__declspec(align) declaration

Details of Intrinsics (general)

Intrinsics for Arithmetic Operations

_mm256_add_pd
Adds float64 vectors. The corresponding Intel® AVX
instruction is VADDPD.

Syntax

extern __m256d _mm256_add_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1498

Description

Performs a SIMD addition of four packed double-precision floating-point elements (float64 elements) in the
first source vector m1 with four float64 elements in the second source vector m2.

Returns

Result of the addition operation.

_mm256_add_ps
Adds float32 vectors. The corresponding Intel® AVX
instruction is VADDPS.

Syntax

extern __m256 _mm256_add_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a SIMD addition of eight packed single-precision floating-point elements (float32 elements) in the
first source vector m1 with eight float32 elements in the second source vector m2.

Returns

Result of the addition operation.

_mm256_addsub_pd
Adds odd float64 elements and subtracts even float64
elements of vectors. The corresponding Intel® AVX
instruction is VADDSUBPD.

Syntax

extern __m256d _mm256_addsub_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a SIMD addition of the odd packed double-precision floating-point elements (float64 elements) from
the first source vector m1 to the odd float64 elements of the second source vector m2.

Simultaneously, the intrinsic performs subtraction of the even double-precision floating-point elements of the
second source vector m2 from the even float64 elements of the first source vector m1.

Returns

Result of the operation is stored in the result vector, which is returned by the intrinsic.

Compiler Reference

1499

_mm256_addsub_ps
Adds odd float32 elements and subtracts even float32
elements of vectors. The corresponding Intel® AVX
instruction is VADDSUBPS.

Syntax

extern __m256 _mm256_addsub_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a SIMD addition of the odd single-precision floating-point elements (float32 elements) in the first
source vector m1 with the odd float32 elements in the second source vector m2.

Simultaneously, the intrinsic performs subtraction of the even single-precision floating-point elements
(float32 elements) in the second source vector, m2, from the even float32 elements in the first source vector,
m1.

Returns

Result of the operation stored in the result vector.

_mm256_hadd_pd
Adds horizontal pairs of float64 elements of two
vectors. The corresponding Intel® AVX instruction is
VHADDPD.

Syntax

extern __m256d _mm256_hadd_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a SIMD addition of adjacent (horizontal) pairs of double-precision floating-point elements (float64
elements) ins the first source vector m1 with adjacent pairs of float64 elements in the second source vector
m2.

Returns

Result of the addition operation.

_mm256_hadd_ps
Adds horizontal pairs of float32 elements of two
vectors. The corresponding Intel® AVX instruction is
VHADDPS.

 Intel® C++ Compiler Classic Developer Guide and Reference

1500

Syntax

extern __m256 _mm256_hadd_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a SIMD addition of adjacent (horizontal) pairs of single-precision floating-point elements (float32
elements) in the first source vector m1 with adjacent pairs of float32 elements in the second source vector
m2.

Returns

Returns the result of the addition operation.

_mm256_sub_pd
Subtracts float64 vectors. The corresponding Intel®
AVX instruction is VSUBPD.

Syntax

extern __m256d _mm256_sub_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a SIMD subtraction of four packed double-precision floating-point elements (float64 elements) of
the second source vector m2 from the first source vector m1.

Returns

Returns the result of the subtraction operation.

_mm256_sub_ps
Subtracts float32 vectors. The corresponding Intel®
AVX instruction is VSUBPS.

Syntax

extern __m256 _mm256_sub_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Compiler Reference

1501

Description

Performs a SIMD subtraction of eight packed single-precision floating-point elements (float32 elements) of
the second source vector m2 from the first source vector m1.

Returns

Returns the result of the subtraction operation.

_mm256_hsub_pd
Subtracts horizontal pairs of float64 elements of two
vectors. The corresponding Intel® AVX instruction is
VHSUBPD.

Syntax

extern __m256d _mm256_hsub_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a SIMD subtraction of adjacent (horizontal) pairs of double-precision floating-point elements
(float64 elements) in the second source vector m2 from adjacent pairs of float64 elements in the first source
vector m1.

Returns

Result of the subtraction operation.

_mm256_hsub_ps
Subtracts horizontal pairs of float32 elements of two
vectors. The corresponding Intel® AVX instruction is
VHSUBPS.

Syntax

extern __m256 _mm256_hsub_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a SIMD subtraction of adjacent (horizontal) pairs of single-precision floating-point elements (float32
elements) in the second source vector m2 from adjacent pairs of float32 elements in the first source vector
m1.

Returns

Returns the result of the subtraction operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1502

_mm256_mul_pd
Multiplies float64 vectors. The corresponding Intel®
AVX instruction is VMULPD.

Syntax

extern __m256d _mm256_mul_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a SIMD multiplication of four packed double-precision floating-point elements (float64 elements) in
the first source vector, m1 , with four float64 elements in the second source vector, m2.

Returns

Result of the multiplication operation.

_mm256_mul_ps
Multiplies float32 vectors. The corresponding Intel®
AVX instruction is VMULPS.

Syntax

extern __m256 _mm256_mul_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a SIMD multiplication of eight packed single-precision floating-point elements (float32 elements) in
the first source vector m1 with eight float32 elements in the second source vector m2.

Returns

Result of the multiplication operation.

_mm256_div_pd
Divides float64 vectors. The corresponding Intel® AVX
instruction is VDIVPD.

Syntax

extern __m256d _mm256_div_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

Compiler Reference

1503

m2 float64 vector also used for the operation

Description

Performs a SIMD division of four packed double-precision floating-point elements (float64 elements) in the
first source vector m1 with four float64 elements in the second source vector m2.

Returns

Result of the division operation.

_mm256_div_ps
Divides float32 vectors. The corresponding Intel® AVX
instruction is VDIVPS.

Syntax

extern __m256 _mm256_div_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a SIMD division of eight packed single-precision floating-point elements (float32 elements) in the
first source vector m1 with eight float32 elements in the second source vector m2.

Returns

Result of the division operation.

_mm256_dp_ps
Calculates the dot product of float32 vectors. The
corresponding Intel® AVX instruction is VDPPS.

Syntax

extern __m256 _mm256_dp_ps(__m256 m1, __m256 m2, const int mask);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

mask a constant of integer type where the high four bits of
the mask determine how the resultant elements are
summed and the low four bits determine whether the
summed resultant value is to be broadcast to the
destination vector or not

Description

First performs a SIMD multiplication of the lower four packed single-precision floating-point elements (float32
elements) from the first source vector m1 with corresponding elements in the second source vector m2.

 Intel® C++ Compiler Classic Developer Guide and Reference

1504

Each of the four resulting single-precision elements is conditionally summed depending on the high four bits
in the mask parameter.

The resulting summed value is broadcast to each of the lower 4 positions in the destination vector, if the
corresponding lower bit of the mask is "1". If the corresponding lower bit of the mask is zero, the
corresponding lower element in the destination vector is set to zero.

The process is then replicated with the high elements of the source vectors.

Returns

Result of the operation.

_mm256_sqrt_pd
Computes the square root of double-precision floating
point values. The corresponding Intel® AVX instruction
is VSQRTPD.

Syntax

extern __m256d _mm256_sqrt_pd(__m256d a);

Arguments

a float64 source vector

Description

Performs a SIMD computation of the square roots of the two or four packed double-precision floating-point
values (float64 values) in the source vector and returns the result of the square root operation.

Returns

Result of the square root operation.

_mm256_sqrt_ps
Computes the square root of single-precision floating
point values. The corresponding Intel® AVX instruction
is VSQRTPS.

Syntax

extern __m256 _mm256_sqrt_ps(__m256 a);

Arguments

a float32 source vector

Description

Performs a SIMD computation of the square roots of the eight packed single-precision floating-point values
(float32 values) in the source vector and returns the result of the square root operation.

Returns

Result of the square root operation.

Compiler Reference

1505

_mm256_rsqrt_ps
Computes approximate reciprocals of square roots of
float32 values.The corresponding Intel® AVX
instruction is VRSQRTPS.

Syntax

extern __m256 _mm256_rsqrt_ps(__m256 a);

Arguments

a float32 source vector

Description

Performs a computation of the reciprocal of the square roots of eight single-precision floating point elements
of the source vector a and returns the result as a vector.

Returns

Result of the reciprocal square root operation.

_mm256_rcp_ps
Computes approximate reciprocals of float32 values.
The corresponding Intel® AVX instruction is VRCPPS.

Syntax

extern __m256 _mm256_rcp_ps(__m256 a);

Arguments

a float32 source vector

Description

Performs a computation of the reciprocal of eight single-precision floating point elements of the source vector
a and returns the result as a vector.

Returns

Result of the reciprocal operation.

Intrinsics for Bitwise Operations

_mm256_and_pd
Performs bitwise logical AND operation on float64
vectors. The corresponding Intel® AVX instruction is
VANDPD.

Syntax

extern __m256d _mm256_and_pd(__m256d m1, __m256d m2);

 Intel® C++ Compiler Classic Developer Guide and Reference

1506

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a bitwise logical AND of the four packed double-precision floating-point elements (float64 elements)
of the first source vector m1, and corresponding elements in the second source vector m2.

Returns

Result of the bitwise operation.

_mm256_and_ps
Performs bitwise logical AND operation on float32
vectors. The corresponding Intel® AVX instruction is
VANDPS.

Syntax

extern __m256 _mm256_and_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a bitwise logical AND of the eight packed single-precision floating-point elements (float32 elements)
of the first source vector m1, and corresponding elements in the second source vector m2.

Returns

Result of the bitwise operation.

_mm256_andnot_pd
Performs bitwise logical AND NOT operation on float64
vectors. The corresponding Intel® AVX instruction is
VANDNPD.

Syntax

extern __m256d _mm256_andnot_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a bitwise logical AND NOT of the four packed double-precision floating-point elements (float64
elements) of the first source vector m1, and corresponding elements in the second source vector m2.

Compiler Reference

1507

Returns

Result of the bitwise operation.

_mm256_andnot_ps
Performs bitwise logical AND NOT operation on float32
vectors.The corresponding Intel® AVX instruction is
VANDNPS.

Syntax

extern __m256 _mm256_andnot_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a bitwise logical AND NOT of the eight packed single-precision floating-point elements (float32
elements) of the first source vector m1, and corresponding elements in the second source vector m2.

Returns

Result of the bitwise operation.

_mm256_or_pd
Performs bitwise logical OR operation on float64
vectors. The corresponding Intel® AVX instruction is
VORPD.

Syntax

extern __m256d _mm256_or_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a bitwise logical OR of the four packed double-precision floating-point elements (float64 elements)
of the first source vector m1, and corresponding elements in the second source vector m2.

Returns

Result of the bitwise operation.

_mm256_or_ps
Performs bitwise logical OR operation on float32
vectors. The corresponding Intel® AVX instruction is
VORPS.

 Intel® C++ Compiler Classic Developer Guide and Reference

1508

Syntax

extern __m256 _mm256_or_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a bitwise logical OR of the eight packed single-precision floating-point elements (float32 elements)
of the first source vector m1, and corresponding elements in the second source vector m2.

Returns

Result of the bitwise operation.

_mm256_xor_pd
Performs bitwise logical XOR operation on float64
vectors. The corresponding Intel® AVX instruction is
VXORPD.

Syntax

extern __m256d _mm256_xor_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a bitwise logical XOR of the four packed double-precision floating-point elements (float64 elements)
of the first source vector m1, and corresponding elements in the second source vector m2.

Returns

Result of the bitwise operation.

_mm256_xor_ps
Performs bitwise logical XOR operation on float32
vectors. The corresponding Intel® AVX instruction is
VXORPS.

Syntax

extern __m256 _mm256_xor_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Compiler Reference

1509

Description

Performs a bitwise logical XOR of the eight packed single-precision floating-point elements (float32 elements)
of the first source vector m1, and corresponding elements in the second source vector, m2.

Returns

Result of the bitwise operation.

Intrinsics for Blend and Conditional Merge Operations

_mm256_blend_pd
Performs a conditional blend/merge of float64 vectors.
The corresponding Intel® AVX instruction is VBLENDPD.

Syntax

extern __m256d _mm256_blend_pd(__m256d m1, __m256d m2, const int mask);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

mask a constant of integer type that is the mask for the
operation

Description

Performs a conditional merge of four packed double-precision floating point elements (float64 elements) of
two vectors according to the immediate bits of the mask parameter.

The mask parameter defines a constant integer. The immediate bits [3:0] in the mask determine from which
source vector elements are copied into the resulting vector.

If the bits in mask are “1” then the corresponding elements of the second source vector are copied into the
resulting vector. If the bits are “0” then the corresponding elements of the first source vector are copied into
the resulting vector. Thus a merging/blending of the elements of the two source vectors occurs when this
intrinsic is used.

Returns

Result of the merge/blend operation.

_mm256_blend_ps
Performs a conditional blend/merge of float32 vectors.
The corresponding Intel® AVX instruction is VBLENDPS.

Syntax

extern __m256 _mm256_blend_ps(__m256 m1, __m256 m2, const int mask);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1510

mask a constant of integer type that is the mask for the
operation

Description

Performs a conditional merge of eight packed single-precision floating point elements (float32 elements) of
two vectors according to the immediate bits of the mask parameter.

The mask parameter defines a constant integer. The immediate bits [7:0] in the mask determine from which
source vector elements are copied into the resulting vector.

If the bits in mask are “1” then the corresponding elements of the second source vector are copied into the
resulting vector. If the bits are “0” then the corresponding elements of the first source vector are copied into
the resulting vector. Thus a merging/blending of the elements of the two source vectors occurs when this
intrinsic is used.

Returns

Result of the merge/blend operation.

_mm256_blendv_pd
Performs conditional blend/merge of float64 vectors.
The corresponding Intel® AVX instruction is
VBLENDVPD.

Syntax

extern __m256d _mm256_blendv_pd(__m256d m1, __m256d m2, __m256d mask);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

mask float64 vector with mask for the operation

Description

Performs a conditional merge of four packed double-precision floating point elements (float64 elements) of
two vectors according to the most significant bits of the mask parameter elements.

The mask parameter defines a mask for the operation. The most significant bit of the corresponding double-
precision floating-point elements in the mask determines whether the corresponding double-precision
floating-point element in the resulting vector is copied from the second source or first source.

If the bit in the mask is “1” then the corresponding element of the second source vector is copied into the
resulting vector. If the bit is “0” then the corresponding element of the first source vector is copied into the
resulting vector. Thus a merging/blending of the elements of the two source vectors occurs when this
intrinsic is used.

Returns

Result of the blend operation.

_mm256_blendv_ps
Performs conditional blend/merge of float32 vectors.
The corresponding Intel® AVX instruction is
VBLENDVPS.

Compiler Reference

1511

Syntax

extern __m256 _mm256_blendv_ps(__m256 m1, __m256 m2, __m256 mask);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

mask float32 vector with the mask for the operation;
defined such that the “1” in the most significant bits
of an element indicate that corresponding elements of
the second source vector are copied into the result,
while “0” bits indicate that corresponding elements of
the first source vector are copied into the result

Description

Performs a conditional merge of eight packed single-precision floating point elements (float32 elements) of
two vectors according to the most significant bits of the mask parameter.

The mask parameter defines a mask for the operation. The most significant bit of the corresponding single-
precision floating-point elements in the mask determines whether the corresponding single-precision
floating-point element in the resulting vector is copied from the second source or first source.

If the bit in the mask is “1” then the corresponding element of the second source vector is copied into the
resulting vector. If the bit is “0” then the corresponding element of the first source vector is copied into the
resulting vector. Thus a merging/blending of the elements of the two source vectors occurs when this
intrinsic is used.

Returns

Result of the blend operation.

Intrinsics for Compare Operations

_mm_cmp_pd, _mm256_cmp_pd
Compares packed 128-bit and 256-bit float64 vector
elements. The corresponding Intel® AVX instruction is
VCMPPD.

Syntax

extern __m128d _mm_cmp_pd(__m128d m1, __m128d m2, const int predicate);
extern __m256d _mm256_cmp_pd(__m256d m1, __m256d m2, const int predicate);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

predicate an immediate operand that specifies the type of
comparison to be performed of the packed values;
see immintrin.h file for the values to specify the
type of comparison

 Intel® C++ Compiler Classic Developer Guide and Reference

1512

Description

Performs a SIMD compare of the four packed double-precision floating-point (float64) values in the first
source operand, m1, and the second source operand, m2, and returns the results of the comparison.

The _mm_cmp_pd intrinsic is used for comparing 128-bit float64 values while the _m256_cmp_pd intrinsic is
used for comparing 256-bit float64 values.

The comparison predicate parameter (immediate) specifies the type of comparison performed on each of the
pairs of packed values.

Returns

Result of the compare operation.

_mm_cmp_ps, _mm256_cmp_ps
Compares packed float32 elements of two vectors.
The corresponding Intel® AVX instruction is VCMPPS.

Syntax

extern __m128 _mm_cmp_ps(__m128 m1, __m128 m2, const int predicate);
extern __m256 _mm256_cmp_ps(__m256 m1, __m256 m2, const int predicate);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

predicate an immediate operand that specifies the type of
comparison to be performed of the packed values;
see immintrin.h file for the values to specify the
type of comparison

Description

Performs a SIMD compare of the eight packed single-precision floating-point (float32) values in the first
source operand, m1, and the second source operand, m2, and returns the results of the comparison.

The _mm_cmp_ps intrinsic is used for comparing 128-bit float32 values while the _mm256_cmp_ps intrinsic is
used for comparing 256-bit float32 values.

The comparison predicate parameter (immediate) specifies the type of comparison performed on each of the
pairs of packed values.

Returns

Result of the compare operation.

_mm_cmp_sd
Compares scalar float64 vectors. The corresponding
Intel® AVX instruction is VCMPSD.

Syntax

extern __m128d _mm_cmp_sd(__m128d m1, __m128d m2, const int predicate);

Compiler Reference

1513

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

predicate an immediate operand that specifies the type of
comparison to be performed of the packed values;
see immintrin.h file for the values to specify the
type of comparison

Description

Performs a compare operation of the low double-precision floating-point values (float64 values) in the first
source operand, m1, and the second source operand, m2, and returns the result.

The comparison predicate parameter (immediate operand) specifies the type of comparison performed on
each of the pairs of values.

Returns

Result of the compare operation.

_mm_cmp_ss
Compares scalar float32 values. The corresponding
Intel® AVX instruction is VCMPSS.

Syntax

extern __m128 _mm_cmp_ss(__m128 m1, __m128 m2, const int predicate);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

predicate an immediate operand that specifies the type of
comparison to be performed of the packed values;
see immintrin.h file for the values to specify the
type of comparison

Description

Performs a compare operation of the low single-precision floating-point values (float32 values) in the first
source operand, m1, and the second source operand, m2, and returns the results.

The comparison predicate parameter (immediate) specifies the type of comparison performed.

Returns

Result of the compare operation.

Intrinsics for Conversion Operations

 Intel® C++ Compiler Classic Developer Guide and Reference

1514

_mm256_cvtepi32_pd
Converts extended packed 32-bit integer values to
packed double-precision floating point values.The
corresponding Intel® AVX instruction is VCVTDQ2PD.

Syntax

extern __m256 _mm256_cvtepi32_pd(__m128i m1);

Arguments

m1 integer source vector/operand

Description

Converts four packed signed doubleword integers in the source vector m1 into four packed double-precision
floating-point values.

Returns

Result of the conversion operation.

_mm256_cvtepi32_ps
Converts extended packed 32-bit integer values to
packed single-precision floating point values. The
corresponding Intel® AVX instruction is VCVTDQ2PS.

Syntax

extern __m256 _mm256_cvtepi32_ps(__m256i m1);

Arguments

m1 integer source vector /operand

Description

Converts eight packed signed doubleword integers in the source vector m1 to eight packed single-precision
floating-point values.

Returns

Result of the conversion operation.

_mm256_cvtpd_epi32
Converts packed double-precision float values to
extended 32-bit integer values.The corresponding
Intel® AVX instruction is VCVTPD2DQ.

Syntax

extern __m128i _mm256_cvtpd_epi32(__m256d m1);

Arguments

m1 float64 source vector

Compiler Reference

1515

Description

Converts four packed double-precision floating-point values in the source vector m1 to four packed signed
doubleword integer (extended 32-bit integer) values in the destination.

Returns

Result of the conversion operation.

_mm256_cvtps_epi32
Converts packed single-precision float values to
extended 32-bit integer values. The corresponding
Intel® AVX instruction is VCVTPS2DQ.

Syntax

extern __m256i _mm256_cvtps_epi32(__m256 m1);

Arguments

m1 float32 source vector

Description

Converts eight packed single-precision floating point values in the source vector m1 to eight signed
doubleword integer (extended 32-bit integer) values.

Returns

Result of the conversion operation.

_mm256_cvtpd_ps
Converts packed float64 values to packed float32
values. The corresponding Intel® AVX instruction is
VCVTPD2PS.

Syntax

extern __m128 _mm256_cvtpd_ps(__m256d m1);

Arguments

m1 float64 source vector

Description

Converts four packed double-precision floating point values (float64 values) in the source vector m1 to eight
packed single-precision floating-point values (float32 values).

Returns

Result of the conversion operation.

_mm256_cvtps_pd
Converts packed float32 values to packed floati64
values. The corresponding Intel® AVX instruction is
VCVTPS2PD.

 Intel® C++ Compiler Classic Developer Guide and Reference

1516

Syntax

extern __m256d _mm256_cvtps_pd(__m128 m1);

Arguments

m1 128-bit float32 source vector

Description

Converts four packed single-precision floating point values (float32 values) in the source vector m1 to four
packed double-precision floating point values (float64 values).

Returns

Result of the conversion operation.

_mm256_cvttp_epi32
Converts packed float64 values to truncated extended
32-bit integer values. The corresponding Intel® AVX
instruction is VCVTTPD2DQ.

Syntax

extern __m128i _mm256_cvttpd_epi32(__m256d m1);

Arguments

m1 float64 source vector

Description

Converts four packed double-precision floating-point values (float64 values) in the source vector to four
packed signed doubleword integer (extended 32-bit integer) values in the destination.

When a conversion is inexact, a truncated (round towards zero) value is returned. If a converted result is
larger than the maximum signed doubleword integer, the floating-point invalid exception is raised. If this
exception is masked, the indefinite integer value (80000000H) is returned.

Returns

Result of the conversion operation.

_mm256_cvttps_epi32
Converts packed float32 values to truncated extended
32-bit integer values. The corresponding Intel® AVX
instruction is VCVTTPS2DQ.

Syntax

extern __m256i _mm256_cvttps_epi32(__m256 m1);

Arguments

m1 float32 source vector

Compiler Reference

1517

Description

Converts eight packed single-precision floating-point values (float32 values) in the source vector to eight
packed signed doubleword integer (extended 32-bit integer) values in the destination.

When a conversion is inexact, a truncated (round towards zero) value is returned. If a converted result is
larger than the maximum signed doubleword integer, the floating-point invalid exception is raised; if this
exception is masked, the indefinite integer value (80000000H) is returned.

Returns

Result of the conversion operation.

_mm256_cvtsi256_si32
Extracts a 32-bit integer value.

Syntax

int _mm256_cvtsi256_si32(__m256i a);

Arguments

a 256-bit integer source vector

Description

Copies the least significant 32 bits of a to a 32-bit integer.

Returns

Result of the conversion operation.

_mm256_cvtsd_f64
Extracts a double precision floating point value.

Syntax

double _mm256_cvtsd_f64(__m256d a);

Arguments

a float64 source vector

Description

This intrinsic extracts a double precision floating point value from the first vector element of an __m256d. It
does so in the most efficient manner possible in the context used.

Returns

Result of the conversion operation.

_mm256_cvtss_f32
Extracts a single precision floating point value.

Syntax

float _mm256_cvtss_f32(__m256 a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1518

Arguments

a float32 source vector

Description

Extracts a single precision floating point value from the first vector element of an __m256. It does so in the
most efficient manner possible in the context used.

Returns

Result of the conversion operation.

Intrinsics to Determine Minimum and Maximum Values

_mm256_max_pd
Determines the maximum of float64 vectors. The
corresponding Intel® AVX instruction is VMAXPD.

Syntax

extern __m256d _mm256_max_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a SIMD compare of the packed double-precision floating-point (float64) elements in the first source
vector m1 and the second source vector m2, and returns the maximum value for each pair.

Returns

Maximum value of the compare operation.

_mm256_max_ps
Determines the maximum of float32 vectors. The
corresponding Intel® AVX instruction is VMAXPS.

Syntax

extern __m256 _mm256_max_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a SIMD compare of the packed single-precision floating-point (float32) elements in the first source
vector m1 and the second source vector m2, and returns the maximum value for each pair.

Compiler Reference

1519

Returns

Maximum value of the compare operation.

_mm256_min_pd
Determines the minimum of float64 vectors. The
corresponding Intel® AVX instruction is VMINPD.

Syntax

extern __m256d _mm256_min_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

Description

Performs a SIMD compare of the packed double-precision floating-point (float64) elements in the first source
vector m1 and the second source vector m2, and returns the minimum value for each pair.

Returns

Minimum value of the compare operation.

_mm256_min_ps
Determines the minimum of float32 vectors.The
corresponding Intel® AVX instruction is VMINPS.

Syntax

extern __m256 _mm256_min_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

Description

Performs a SIMD compare of the packed single-precision floating-point (float32) elements in the first source
vector m1 and the second source vector m2, and returns the minimum value for each pair.

Returns

Minimum value of the compare operation.

Intrinsics for Load and Store Operations

_mm256_broadcast_pd
Loads and broadcasts packed double-precision floating
point values.The corresponding Intel® AVX instruction
is VBROADCASTF128.

 Intel® C++ Compiler Classic Developer Guide and Reference

1520

Syntax

extern __m256d _mm256_broadcast_pd(__m128d const *a);

Arguments

*a pointer to a memory location that can hold constant
float64 values

Description

Loads 128-bit float64 values from the specified address pointed to by a, and broadcasts it to two elements in
the destination 256-bit vector.

Returns

Result of the load and broadcast operation.

_mm256_broadcast_ps
Loads and broadcasts packed single-precision floating
point values. The corresponding Intel® AVX instruction
is VBROADCASTF128.

Syntax

extern __m256 _mm256_broadcast_ps(__m128 const *a);

Arguments

*a pointer to a memory location that can hold
constant 128-bit float32 values

Description

Loads 128-bit float32 values from the specified address pointed to by a, and broadcasts it to all elements in
the destination 256-bit vector.

Returns

Result of the load and broadcast operation.

_mm256_broadcast_sd
Loads and broadcasts scalar double-precision floating
point values to a 256-bit destination operand. The
corresponding Intel® AVX instruction is
VBROADCASTSD.

Syntax

extern __m256d _mm256_broadcast_sd(double const *a);

Arguments

*a pointer to a memory location that can hold constant
scalar float64 values

Description

Loads scalar double-precision floating-point values from the specified address a, and broadcasts it to all four
elements in the destination vector.

Compiler Reference

1521

Returns

Result of the load and broadcast operation.

_mm256_broadcast_ss, _mm_broadcast_ss
Loads and broadcasts 256/128-bit scalar single-
precision floating point values to a 256/128-bit
destination operand. The corresponding Intel® AVX
instruction is VBROADCASTSS.

Syntax

extern __m256 _mm256_broadcast_ss(float const *a);
extern __m128 _mm_broadcast_ss(float const *a);

Arguments

*a pointer to a memory location that can hold constant
256-bit or 128-bit float32 values

Description

Loads scalar single-precision floating-point values from the specified address pointed to by a, and broadcasts
it to elements in the destination vector.

The _m256_broadcast_ss intrinsic broadcasts the loaded values to all eight elements in the 256-bit
destination vector.

The _mm_broadcast_ss intrinsic broadcasts the loaded values to all four elements in the 128-bit destination
vector.

Returns

Result of the load and broadcast operation.

_mm256_load_pd
Moves packed double-precision floating point values
from aligned memory location to a destination vector.
The corresponding Intel® AVX instruction isVMOVAPD.

Syntax

extern __m256d _mm256_load_pd(double const *a);

Arguments

*a pointer to a memory location that can hold constant
float64 values; the address must be 32-byte aligned

Description

Loads packed double-precision floating point values (float64 values) from the 256-bit aligned memory
location pointed to by a, into a destination float64 vector, which is retured by the intrinsic.

Returns

A 256-bit vector with float64 values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1522

_mm256_load_ps
Moves packed single-precision floating point values
from aligned memory location to a destination vector.
The corresponding Intel® AVX instruction isVMOVAPS.

Syntax

extern __m256 _mm256_load_ps(float const *a);

Arguments

*a pointer to a memory location that can hold constant
float32 values; the address must be 32-byte aligned

Description

Loads packed single-precision floating point values (float32 values) from the 256-bit aligned memory location
pointed to by a, into a destination float32 vector, which is retured by the intrinsic.

Returns

A 256-bit vector with float32 values.

_mm256_load_si256
Moves integer values from aligned memory location to
a destination vector. The corresponding Intel® AVX
instruction isVMOVDQA.

Syntax

extern __m256i _mm256_load_si256(__m256i const *a);

Arguments

*a pointer to a memory location that can hold constant
integer values; the address must be 32-byte aligned

Description

Loads integer values from the 256-bit aligned memory location pointed to by *a, into a destination integer
vector, which is returned by the intrinsic.

Returns

A 256-bit vector with integer values.

_mm256_loadu_pd
Moves packed double-precision floating point values
from unaligned memory location to a destination
vector. The corresponding Intel® AVX instruction is
VMOVUPD.

Syntax

extern __m256d _mm256_loadu_pd(double const *a);

Compiler Reference

1523

Arguments

*a pointer to a memory location that can hold constant
float64 values;

Description

Loads packed double-precision floating point values (float64 values) from the 256-bit unaligned memory
location pointed to by a, into a destination float64 vector, which is retured by the intrinsic.

Returns

A 256-bit vector with float64 values.

_mm256_loadu_ps
Moves packed single-precision floating point values
from unaligned memory location to a destination
vector. The corresponding Intel® AVX instruction
isVMOVUPS.

Syntax

extern __m256 _mm256_loadu_ps(float const *a);

Arguments

*a pointer to a memory location that can hold constant
float32 values

Description

Loads packed single-precision floating point values (float32 values) from the 256-bit unaligned memory
location pointed to by a, into a destination float32 vector, which is retured by the intrinsic.

Returns

A 256-bit vector with float32 values.

_mm256_loadu_si256
Moves integer values from unaligned memory location
to a destination vector. The corresponding Intel® AVX
instruction isVMOVDQU.

Syntax

extern __m256i _mm256_loadu_si256(__m256i const *a);

Arguments

*a pointer to a memory location that can hold
constant integer values

Description

Loads integer values from the 256-bit unaligned memory location pointed to by *a, into a destination integer
vector, which is returned by the intrinsic.

Returns

A 256-bit vector with integer values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1524

_mm256_maskload_pd, _mm_maskload_pd
Loads packed double-precision floating point values
according to mask values. The corresponding Intel®
AVX instruction is VMASKMOVPD.

Syntax

extern __m256d _mm256_maskload_pd(double const *a, __m256i mask);
extern __m128d _mm_maskload_pd(double const *a, __m128i mask);

Arguments

*a pointer to a 256/128-bit memory location that can
hold constant float64 values

mask integer value calculated based on the most-
significant-bit of each quadword of a mask register

Description

Loads packed double-precision floating point (float64) values from the 256/128-bit memory location pointed
to by a, into a destination register using the mask value.

The mask is calculated from the most significant bit of each qword of the mask register. If any of the bits of
the mask is set to zero, the corresponding value from the memory location is not loaded, and the
corresponding field of the destination vector is set to zero.

Returns

A 256/128-bit register with float64 values.

_mm256_maskload_ps, _mm_maskload_ps
Loads packed single-precision floating point values
according to mask values. The corresponding Intel®
AVX instruction is VMASKMOVPS.

Syntax

extern __m256 _mm256_maskload_ps(float const *a, __m256i mask);
extern __m128 _mm_maskload_ps(float const *a, __m128i mask);

Arguments

*a pointer to a 256/128-bit memory location that can
hold constant float32 values

mask integer value calculated based on the most-
significant-bit of each doubleword of a mask register

Description

Loads packed single-precision floating point (float32) values from the 256/128-bit memory location pointed
to by a, into a destination register using the mask value.

The mask is calculated from the most significant bit of each dword of the mask register. If any of the bits of
the mask is set to zero, the corresponding value from the memory location is not loaded, and the
corresponding field of the destination vector is set to zero.

Compiler Reference

1525

Returns

A 256/128-bit register with float32 values.

_mm256_store_pd
Moves packed double-precision floating point values
from a float64 vector to an aligned memory location.
The corresponding Intel® AVX instruction isVMOVAPD.

Syntax

extern void _mm256_store_pd(double *a, __m256d b);

Arguments

*a pointer to a memory location that can hold
double-precision floating point (float64) values;
the address must be 32-byte aligned

b float64 vector

Description

Performs a store operation by moving packed double-precision floating point values (float64 values) from a
float64 vector, b, to a 256-bit aligned memory location, pointed to by a.

Returns

Nothing

_mm256_store_ps
Moves packed single-precision floating point values
from a float32 vector to an aligned memory location.
The corresponding Intel® AVX instruction isVMOVAPS.

Syntax

extern void _mm256_store_ps(float *a, __m256 b);

Arguments

*a pointer to a memory location that can hold single-
precision floating point (float32) values; the address
must be 32-byte aligned

b float32 vector

Description

Performs a store operation by moving packed single-precision floating point values (float32 values) from a
float32 vector, b, to a 256-bit aligned memory location, pointed to by a.

Returns

Nothing.

 Intel® C++ Compiler Classic Developer Guide and Reference

1526

_mm256_store_si256
Moves values from a integer vector to an aligned
memory location. The corresponding Intel® AVX
instruction is VMOVDQA.

Syntax

extern void _mm256_store_si256(__m256i *a, __m256i b);

Arguments

*a pointer to a memory location that can hold scalar
integer values; the address must be 32-byte aligned.

b integer vector

Description

Performs a store operation by moving integer values from a 256-bit integer vector, b, to a 256-bit aligned
memory location, pointed to by a.

Returns

Nothing.

_mm256_storeu_pd
Moves packed double-precision floating point values
from a float64 vector to an unaligned memory
location. The corresponding Intel® AVX instruction
isVMOVUPD.

Syntax

extern void _mm256_storeu_pd(double *a, __m256d b);

Arguments

*a pointer to a memory location that can hold double-
precision floating point (float64) values

b float64 vector

Description

Performs a store operation by moving packed double-precision floating point values (float64 values) from a
float64 vector, b, to a 256-bit unaligned memory location, pointed to by a.

Returns

Nothing.

_mm256_storeu_ps
Moves packed single-precision floating point values
from a float32 vector to an unaligned memory
location. The corresponding Intel® AVX instruction
isVMOVUPS.

Compiler Reference

1527

Syntax

extern void _mm256_storeu_ps(float *a, __m256 b);

Arguments

*a pointer to a memory location that can hold single-
precision floating point (float32) values

b float32 vector

Description

Performs a store operation by moving packed single-precision floating point values (float32 values) from a
float32 vector, b, to a 256-bit unaligned memory location, pointed to by a.

Returns

Nothing.

_mm256_storeu_si256
Moves values from a integer vector to an unaligned
memory location. The corresponding Intel® AVX
instruction is VMOVDQU.

Syntax

extern void _mm256_storeu_si256(__m256i *a, __m256i b);

Arguments

*a pointer to a memory location that can hold scalar
integer values

b integer vector

Description

Performs a store operation by moving integer values from a 256-bit integer vector, b, to a 256-bit unaligned
memory location, pointed to by a.

Returns

Nothing.

_mm256_stream_pd
Moves packed double-precision floating-point values
using non-temporal hint. The corresponding Intel®
AVX instruction is VMOVNTPD.

Syntax

extern void _mm256_stream_pd(double *p, __m256d a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1528

Arguments

*p pointer to a memory location that can hold double-
precision floating point (float64) values; the address
must be 32-byte aligned

a float64 vector

Description

Performs a store operation by moving packed double-precision floating point values (float64 values) from a
float64 vector, a, to a 256-bit aligned memory location, pointed to by p, using a non-temporal hint to prevent
caching of the data during the write to memory.

Returns

Result of the streaming/store operation.

_mm256_stream_ps
Moves packed single-precision floating-point values
using non-temporal hint. The corresponding Intel®
AVX instruction is VMOVNTPS.

Syntax

extern void _mm256_stream_ps(float *p, __m256 a);

Arguments

*p pointer to a memory location that can hold single-
precision floating point (float32) values; the address
must be 32-byte aligned

a float32 vector

Description

Performs a store operation by moving packed single-precision floating point values (float32 values) from a
float32 vector, a, to a 256-bit aligned memory location, pointed to by p, using a non-temporal hint to prevent
caching of the data during the write to memory.

Returns

Result of the streaming/store operation.

_mm256_stream_si256
Moves packed integer values using non-temporal hint.
The corresponding Intel® AVX instruction is VMOVNTDQ.

Syntax

extern void _mm256_stream_si256(__m256i *p, __m256i a);

Arguments

*p pointer to a memory location that can hold scalar
integer values; the address must be 32-byte aligned

Compiler Reference

1529

a integer vector

Description

Performs a store operation by moving scalar integer values from an integer vector a, to a 256-bit aligned
memory location, pointed to by p, using a non-temporal hint to prevent caching of the data during the write
to memory.

Returns

Result of the streaming/store operation.

_mm256_maskstore_pd, _mm_maskstore_pd
Stores packed double-precision floating point values
according to mask values. The corresponding Intel®
AVX instruction is VMASKMOVPD.

Syntax

extern void _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);
extern void _mm_maskstore_pd(double *a, __m128i mask, __m128d b);

Arguments

*a pointer to a 256/128-bit memory location that can
hold constant double-precision floating point (float64)
values

mask integer value calculated based on the most-
significant-bit of each quadword of a mask register

b a 256/128-bit float64 vector

Description

Performs a store operation by moving packed double-precision floating point (float64) values from a vector,
b, to a 256/128-bit memory location, pointed to by a, using a mask.

The mask is calculated from the most significant bit of each qword of the mask register. If any of the bits of
the mask are set to zero, the corresponding value from the float64 vector is not loaded, and the
corresponding field of the destination memory location is left unchanged.

NOTE
Stores are atomic. Faults do not occur for memory locations for which all corresponding mask bits are
set to zero.

Returns

Nothing.

_mm256_maskstore_ps, _mm_maskstore_ps
Stores packed single-precision floating point values
according to mask values. The corresponding Intel®
AVX instruction is VMASKMOVPS.

 Intel® C++ Compiler Classic Developer Guide and Reference

1530

Syntax

extern void _mm256_maskstore_ps(float *a, __m256i mask, __m256 b);
extern void _mm_maskstore_ps(float *a, __m128i mask, __m128 b);

Arguments

*a pointer to a 256/128-bit memory location that can
hold constant single-precision floating point (float32)
values

mask integer value calculated based on the most-
significant-bit of each quadword of a mask register

b a 256/128-bit float32 vector

Description

Performs a store operation by moving packed single-precision floating point (float32) values from a vector, b,
to a 256/128-bit memory location, pointed to by a, using a mask.

The mask is calculated from the most significant bit of each qword of the mask register. If any of the bits of
the mask are set to zero, the corresponding value from the float32 vector is not loaded, and the
corresponding field of the destination memory location is left unchanged.

NOTE
Stores are atomic. Faults do not occur for memory locations for which all corresponding mask bits are
set to zero.

Returns

Nothing.

Intrinsics for Miscellaneous Operations

_mm256_extractf128_pd
Extracts 128-bit packed float64 values. The
corresponding Intel® AVX instruction is
VEXTRACTF128.

Syntax

extern __m128d _mm256_extractf128_pd(__m256d m1, const int offset);

Arguments

m1 float64 source vector

offset a constant integer value that represents the 128-bit
offset from where extraction must start

Description

Extracts 128-bit packed double-precision floating point values (float64 values) from the source vector m1,
starting from the location specified by the value in the offset parameter.

Compiler Reference

1531

Returns

Result of the extraction operation.

_mm256_extractf128_ps
Extracts 128-bit float32 values. The corresponding
Intel® AVX instruction is VEXTRACTF128.

Syntax

extern __m128 _mm256_extractf128_ps(__m256 m1, const int offset);

Arguments

m1 float32 source vector

offset a constant integer value that represents the 128-bit
offset from where extraction must start

Description

Extracts 128-bit packed single-precision floating point values (float32 values) from the source vector m1,
starting from the location specified by the value in the offset parameter.

Returns

Result of the extraction operation.

_mm256_extractf128_si256
Extracts 128-bit scalar integer values. The
corresponding Intel® AVX instruction is
VEXTRACTF128.

Syntax

extern __m128i _mm256_extractf128_si256(__m256i m1, const int offset);

Arguments

m1 integer source vector

offset a constant integer value that represents the offset
from where extraction must start

Description

Extracts 128-bit scalar integer values from the source vector m1, starting from the location specified by the
value in the offset parameter.

Returns

Result of the extraction operation.

_mm256_insertf128_pd
Inserts 128 bits of packed float64 values. The
corresponding Intel® AVX instruction is VINSERTF128.

 Intel® C++ Compiler Classic Developer Guide and Reference

1532

Syntax

extern __m256d _mm256_insertf128_pd(__m256d a, __m128d b, int offset);

Arguments

a 256-bit float64 source vector

b 128-bit float64 source vector

offset an integer value that represents the 128-bit offset
where the insertion must start

Description

Performs an insertion of 128 bits of packed double-precision floating-point values (float64 values) from the
second source vector b into a destination at a 128-bit offset specified by the offset parameter. The remaining
portions of the destination are written by the corresponding elements of the first source vector a.

Returns

Result of the insertion operation.

_mm256_insertf128_ps
Inserts 128 bits of packed float32 values. The
corresponding Intel® AVX instruction is VINSERTF128.

Syntax

extern __m256 _mm256_insertf128_ps(__m256 a, __m128 b, int offset);

Arguments

a 256-bit float32 source vector

b 128-bit float32 source vector

offset an integer value that represents the 128-bit offset
where the insertion must start

Description

Performs an insertion of 128 bits of packed single-precision floating-point values (float32 values) from the
second source vector b, into a destination at a 128-bit offset specified by the offset parameter. The remaining
portions of the destination are written by the corresponding elements of the first source vector a.

Returns

Result of the insertion operation.

_mm256_insertf128_si256
Inserts 128 bits of packed scalar integer values . The
corresponding Intel® AVX instruction is VINSERTF128.

Syntax

extern __m256i _mm256_insertf128_si256(__m256i a, __m128i b, int offset);

Compiler Reference

1533

Arguments

a 256-bit integer source vector

b 128-bit integer source vector

offset an integer value that represents the 128-bit offset
where the insertion must start

Description

Performs an insertion of 128 bits of packed scalar integer values from the second source vector b, into a
destination at a 128-bit offset specified by the offset parameter. The remaining portions of the destination
are written by the corresponding elements of the first source vector a.

Returns

Result of the insertion operation.

_mm256_lddqu_si256
Moves unaligned integer from memory. The
corresponding Intel® AVX instruction is VLDDQU.

Syntax

extern __m256i _mm256_lddqu_si256(__m256i const *a);

Arguments

*a points to a memory location from where
unaligned integer value must be moved

Description

Fetches 32 bytes of data, starting at a memory address specified by the a parameter, and places them in a
destination. This intrinsic calls the corresponding instruction VLDDQU, which performs an operation
functionally similar to the VMOVDQU instruction.

Returns

Result of the move operation.

_mm256_movedup_pd
Duplicates even-indexed double-precision floating
point values. The corresponding Intel® AVX instruction
is VMOVDDUP.

Syntax

extern __m256d _mm256_movedup_pd(__m256d a);

Arguments

a float64 source vector

Description

Performs a duplication of even-indexed double-precision floating-point values (float64 values) in the source
vector a, and returns the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1534

Returns

Result of the duplication operation.

_mm256_movehdup_ps
Duplicates odd-indexed single-precision floating point
values. The corresponding Intel® AVX instruction is
VMOVSHDUP.

Syntax

extern __m256 _mm256_movehdup_ps(__m256 a);

Arguments

a float32 source vector

Description

Performs a duplication of odd-indexed single-precision floating-point values (float32 values) in the source
vector a, and returns the result.

Returns

Result of the duplication operation.

_mm256_moveldup_ps
Duplicates even-indexed single-precision floating point
values. The corresponding Intel® AVX instruction is
VMOVSLDUP.

Syntax

extern __m256 _mm256_moveldup_ps(__m256 a);

Arguments

a float32 source vector

Description

Performs a duplication of even-indexed single-precision floating-point values (float32 values) in the source
vector a, and returns the result.

Returns

Result of the duplication operation.

_mm256_movemask_pd
Extracts float64 sign mask. The corresponding Intel®
AVX instruction is VMOVMSKPD.

Syntax

extern int _mm256_movemask_pd(__m256d a);

Compiler Reference

1535

Arguments

a float64 source vector

Description

Performs an extract operation of sign bits from four double-precision floating point elements (float64
elements) of the source vector a, and composes them into bitmasks.

Returns

An integer bitmask of four meaningful bits.

_mm256_movemask_ps
Extracts float32 sign mask. The corresponding Intel®
AVX instruction is VMOVMSKPS.

Syntax

extern int _mm256_movemask_ps(__m256 a;

Arguments

a float32 source vector

Description

Performs an extract operation of sign bits from eight single-precision floating point elements (float32
elements) of the source vector a, and composes them into bitmasks.

Returns

An integer bitmask of eight meaningful bits.

_mm256_round_pd
Rounds off double-precision floating point values to
nearest upper/lower integer depending on rounding
mode. The corresponding Intel® AVX instruction
isVROUNDPD.

Syntax

extern __m256d _mm256_round_pd(__m256d a, int iRoundMode);

Arguments

a float64 vector

iRoundMode A hexadecimal value dependent on rounding mode:

• For rounding off to upper integer, the value is 0x0A
• For rounding off to lower integer, the value is 0x09

 Intel® C++ Compiler Classic Developer Guide and Reference

1536

Description

Rounds off the elements of a float64 vector a to the nearest upper/lower integer value. Two shortcuts, in the
form of #defines, are used to achieve these two separate operations:

#define _mm256_ceil_pd(a) _mm256_round_pd((a), 0x0A)
#define _mm256_floor_pd(a) _mm256_round_pd((a), 0x09)

These #defines tell the preprocessor to replace all instances of _mm256_ceil_pd(a) with
_mm256_round_pd((a), 0x0A) and all instances of _mm256_floor_pd(a) with
_mm256_round_pd((a), 0x09).

For example, if you write the following:

__m256 a, b;
a = _mm256_ceil_pd(b);

the preprocessor will modify it to:

a = _mm256_round_pd(b, 0x0a);
The Precision Floating Point Exception is signaled according to the (immediate operand) iRoundMode value.

Returns

Result of the rounding off operation as a vector with double-precision floating point values.

_mm256_round_ps
Rounds off single-precision floating point values to
nearest upper/lower integer depending on rounding
mode. The corresponding Intel® AVX instruction
isVROUNDPS.

Syntax

extern __m256 _mm256_round_ps(__m256 a, int iRoundMode);

Arguments

a float32 vector

iRoundMode A hexadecimal value dependent on rounding mode:

• For rounding off to upper integer, the value is 0x0A
• For rounding off to lower integer, the value is 0x09

Description

Rounds off the elements of a float32 vector a to the nearest upper/lower integer value. Two shortcuts, in the
form of #defines, are used to achieve these two separate operations:

#define _mm256_ceil_ps(a) _mm256_round_ps((a), 0x0A)
#define _mm256_floor_ps(a) _mm256_round_ps((a), 0x09)

These #defines tells the preprocessor to replace all instances of _mm256_ceil_ps(a) with
_mm256_round_ps((a), 0x0A) and all instances of _mm256_floor_ps(a) with
_mm256_round_ps((a), 0x09).

For example, if you write the following:

__m256 a, b;
a = _mm256_ceil_ps(b);

Compiler Reference

1537

the preprocessor will modify it to:

a = _mm256_round_ps(b, 0x0a);
The Precision Floating Point Exception is signaled according to the (immediate operand) iRoundMode value.

Returns

Result of the rounding off operation as a vector with single-precision floating point values.

_mm256_set_pd
Initializes 256-bit vector with float64 values. No
corresponding Intel® AVX instruction.

Syntax

extern __m256d _mm256_set_pd(double, double, double, double);

Arguments

double a float64 value to be initialized into the 256-bit
vector; there are four double parameters, one for
each float64 vector element

Description

Initializes a 256-bit vector with double-precision floating point values (float64 values) as specified by the
double parameter.

Returns

A float64 vector initialized with specified double-precision floating point values.

_mm256_set_ps
Initializes 256-bit vector with float32 values. No
corresponding Intel® AVX instruction.

Syntax

extern __m256 _mm256_set_ps(float, float, float, float, float, float, float, float);

Arguments

float a float32 value to be initialized into the 256-bit
vector; there are eight float parameters, one for each
float32 vector element

Description

Initializes a 256-bit vector with single-precision floating point values (float32 values) as specified by the float
parameter.

Returns

A float32 vector initialized with specified single-precision floating point values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1538

_mm256_set_epi8/16/32/64x
Initializes 256-bit vector with integer values. No
corresponding Intel® AVX instruction.

Syntax

extern __m256i _mm256_set_epi8(char e31, char e30, char e29, char e28, char e27, char
e26, char e25, char e24, char e23, char e22, char e21, char e20, char e19, char e18,
char e17, char e16, char e15, char e14, char e13, char e12, char e11, char e10, char
e9, char e8, char e7, char e6, char e5, char e4, char e3, char e2, char e1, char e0);
extern __m256i _mm256_set_epi316(short e15, short e14, short e13, short e12, short e11,
short e10, short e9, short e8, short e7, short e6, short e5, short e4, short e3, short
e2, short e1, short e0);
extern __m256i _mm256_set_epi32(int e7, int e6, int e5, int e4, int e3, int e2, int e1,
int e0);
extern __m256i _mm256_set_epi64x(__int64 e3, __int64 e2, __int64 e1, __int64 e0);

Arguments

en An 8/16/32/64-bit integer value to be initialized into
the 256-bit vector. For each variant, there is one
integer parameter for each 8/16/32/64-bit integer
vector element.

Description

Initializes a 256-bit vector with extended packed integer values (8/16/32/64-bit values) as specified by the
en parameter.

Returns

An 8/16/32/64-bit integer vector initialized with specified extended packed integer values.

_mm256_setr_pd
Initializes 256-bit vector with float64 values in reverse
of specified order. No corresponding Intel® AVX
instruction.

Syntax

extern __m256d _mm256_setr_pd(double, double, double, double);

Arguments

double a float64 value to be initialized into the 256-bit
vector; there are four double parameters, one for
each float64 vector element

Description

Initializes a 256-bit vector with double-precision floating point values (float64 values) in reverse order as
specified by the double parameter.

Returns

A float64 vector initialized with specified double-precision floating point values in reverse.

Compiler Reference

1539

_mm256_setr_ps
Initializes 256-bit vector with float32 values in reverse
of specified order. No corresponding Intel® AVX
instruction.

Syntax

extern __m256 _mm256_setr_ps(float, float, float, float, float, float, float, float);

Arguments

float a float32 value to be initialized into the 256-bit
vector; there are eight float parameters, one for each
float32 vector element

Description

Initializes a 256-bit vector with single-precision floating point values (float32 values) in reverse order as
specified by the float parameter.

Returns

A float32 vector initialized with specified single-precision floating point values in reverse.

_mm256_setr_epi32
Initializes 256-bit vector with integer values in reverse
of specified order. No corresponding Intel® AVX
instruction.

Syntax

extern __m256i _mm256_setr_epi32(int, int, int, int, int, int, int, int);
extern __m256i _mm256_setr_epi8(char e31, char e30, char e29, char e28, char e27, char
e26, char e25, char e24, char e23, char e22, char e21, char e20, char e19, char e18,
char e17, char e16, char e15, char e14, char e13, char e12, char e11, char e10, char
e9, char e8, char e7, char e6, char e5, char e4, char e3, char e2, char e1, char e0);
extern __m256i _mm256_setr_epi316(short e15, short e14, short e13, short e12, short
e11, short e10, short e9, short e8, short e7, short e6, short e5, short e4, short e3,
short e2, short e1, short e0);
extern __m256i _mm256_setr_epi32(int e7, int e6, int e5, int e4, int e3, int e2, int
e1, int e0);
extern __m256i _mm256_setr_epi64x(__int64 e3, __int64 e2, __int64 e1, __int64 e0);

Arguments

en An 8/16/32/64-bit integer value to be initialized into
the 256-bit vector. For each variant, there is one
integer parameter for each 8/16/32/64-bit integer
vector element.

Description

Initializes a 256-bit vector with extended packed integer values (8/16/32/64-bit values), in reverse order, as
specified by the en parameter.

 Intel® C++ Compiler Classic Developer Guide and Reference

1540

Returns

An 8/16/32/64-bit integer vector initialized with specified extended packed integer values in reverse.

_mm256_set1_pd
Initializes 256-bit vector with scalar double-precision
floating point values. No corresponding Intel® AVX
instruction.

Syntax

extern __m256d _mm256_set1_pd(double);

Arguments

double a float64 value to be initialized into the 256-bit
vector; there is one double parameter to initialize
each float64 vector element

Description

Initializes a 256-bit vector with scalar double-precision floating point values (float64 values) as specified by
the double parameter.

Returns

A float64 vector with all elements set to the specified scalar double-precision floating point value.

_mm256_set1_ps
Initializes 256-bit vector with scalar single-precision
floating point values. No corresponding Intel® AVX
instruction.

Syntax

extern __m256 _mm256_set1_ps(float);

Arguments

float a float32 value to be initialized into the 256-bit
vector; there is one float parameter to initialize each
float32 vector element

Description

Initializes a 256-bit vector with scalar single-precision floating point values (float32 values) as specified by
the float parameter.

Returns

A float32 vector with all elements set to the specified scalar single-precision floating point value.

_mm256_set1_epi32
Initializes 256-bit vector with scalar integer values. No
corresponding Intel® AVX instruction.

Syntax

extern __m256i _mm256_set1_epi8(char a);

Compiler Reference

1541

extern __m256i _mm256_set1_epi16(short a);
extern __m256i _mm256_set1_epi32(int a);
extern __m256i _mm256_set1_epi64x(long long a);

Arguments

a An 8/16/32/64-bit integer value to be initialized into
the 256-bit vector. For each variant, there is one
integer parameter for each 8/16/32/64-bit integer
vector element.

Description

Initializes a 256-bit vector with scalar integer values (8/16/32/64-bit values) as specified by the a parameter.

Returns

An 8/16/32/64-bit integer vector with all elements set to the specified scalar integer value.

_mm256_setzero_pd
Sets float64 YMM registers to zero. No corresponding
Intel® AVX instruction.

Syntax

extern __m256d _mm256_setzero_pd(void);

Arguments

None

Description

Sets all the elements of a float64 vector to zero and returns the float64 vector. This is a utility intrinsic that
helps during programming.

Returns

A float64 vector with all elements set to zero.

_mm256_setzero_ps
Sets float32 YMM registers to zero. No corresponding
Intel® AVX instruction.

Syntax

extern __m256 _mm256_setzero_ps(void);

Arguments

None

Description

Sets all the elements of a float32 vector to zero and returns the float32 vector. This is a utility intrinsic that
helps during programming.

Returns

A float32 vector with all elements set to zero.

 Intel® C++ Compiler Classic Developer Guide and Reference

1542

_mm256_setzero_si256
Sets integer YMM registers to zero. No corresponding
Intel® AVX instruction.

Syntax

extern __m256i _mm256_setzero_si256(void);

Arguments

None

Description

Sets all the elements of an integer vector to zero and returns the integer vector. This is a utility intrinsic that
helps during programming.

Returns

An integer vector with all elements set to zero.

_mm256_zeroall
Zeroes all YMM registers. The corresponding Intel®
AVX instruction is VZEROALL.

Syntax

extern void _mm256_zeroall(void);

Arguments

None

Description

Zeroes all YMM registers. This intrinsic is useful to clear all the YMM registers when transitioning between
Intel® Advanced Vector Extensions (Intel® AVX) instructions and legacy Intel® Supplemental SIMD Extensions
(Intel® SSE) instructions.

There is no transition penalty if an application clears the bits of all YMM registers (sets to ‘0’) via VZEROALL,
the corresponding instruction for this intrinsic, before transitioning between Intel® Advanced Vector
Extensions (Intel® AVX) instructions and legacy Intel® Supplemental SIMD Extensions (Intel® SSE)
instructions.

Returns

Nothing

_mm256_zeroupper
Zeroes the upper bits of the YMM registers. The
corresponding Intel® AVX instruction is VZEROUPPER.

Syntax

extern void _mm256_zeroupper(void);

Arguments

None

Compiler Reference

1543

Description

Zeroes the upper 128 bits of all YMM registers. The lower 128 bits that correspond to the XMM registers are
left unmodified.

This intrinsic is useful to clear the upper bits of the YMM registers when transitioning between Intel® Advanced
Vector Extensions (Intel® AVX) instructions and legacy Intel® Supplemental SIMD Extensions (Intel® SSE)
instructions. There is no transition penalty if an application clears the upper bits of all YMM registers (sets to
‘0’) via VZEROUPPER, the corresponding instruction for this intrinsic, before transitioning between Intel®
Advanced Vector Extensions (Intel® AVX) instructions and legacy Intel® Supplemental SIMD Extensions
(Intel® SSE) instructions.

Returns

Result of the operation.

Intrinsics for Packed Test Operations

_mm256_testz_si256
Performs a packed bit test of two integer vectors to
set the ZF flag. The corresponding Intel® AVX
instruction is VPTEST.

Syntax

extern int _mm256_testz_si256(__m256i s1, __m256i s2);

Arguments

s1 first source integer vector

s2 second source integer vector

Description

Allows setting of the ZF flag. The ZF flag is set based on the result of a bitwise AND operation between the
first and second source vectors. The corresponding instruction VPTEST sets the ZF flag if all the resulting bits
are 0. If the resulting bits are non-zeros, the instruction clears the ZF flag.

Returns

Non-zero if ZF flag is set

Zero if the ZF flag is not set

_mm256_testc_si256
Performs a packed bit test of two integer vectors to
set the CF flag. The corresponding Intel® AVX
instruction is VPTEST.

Syntax

extern int _mm256_testc_si256(__m256i s1, __m256i s2);

Arguments

s1 first source integer vector

 Intel® C++ Compiler Classic Developer Guide and Reference

1544

s2 second source integer vector

Description

Allows setting of the CF flag. The CF flag is set based on the result of a bitwise AND and logical NOT
operation between the first and second source vectors. The corresponding instruction, VPTEST, sets the CF
flag if all the resulting bits are 0. If the resulting bits are non-zeros, the instruction clears the CF flag.

Returns

Non-zero if CF flag is set

Zero if the CF flag is not set

_mm256_testnzc_si256
Performs a packed bit test of two integer vectors to
set ZF and CF flags. The corresponding Intel® AVX
instruction is VPTEST.

Syntax

extern int _mm256_testnzc_si256(__m256i s1, __m256i s2);

Arguments

s1 first source integer vector

s2 second source integer vector

Description

Performs a packed bit test of s1 and s2 vectors using VTESTPDs1, s2 instruction and checks the status of the
ZF and CF flags. The intrinsic returns 1 if both ZF and CF flags are not 1 (that is, both flags are not set),
otherwise returns 0 (that is, one of the flags is set) .

The VTESTPD instruction performs a bitwise comparison of all the sign bits of the integer elements in the first
source operand and corresponding sign bits in the second source operand. If the AND of the first source
operand sign bits with the second source operand sign bits produces all zeros, the ZF flag is set else the ZF
flag is clear. If the AND of the inverted first source operand sign bits with the second source operand sign bits
produces all zeros the CF flag is set, else the CF flag is clear.

Returns

1: indicates that both ZF and CF flags are clear

0: indicates that either ZF or CF flag is set

_mm256_testz_pd, _mm_testz_pd
Performs a packed bit test of two float64 256-bit or
128-bit vectors to set the ZF flag. The corresponding
Intel® AVX instruction is VTESTPD.

Syntax

extern int _mm256_testz_pd(__m256d s1, __m256d s2);
extern int _mm_testz_pd(__m128d s1, __m128d s2);

Compiler Reference

1545

Arguments

s1 first float64 source vector

s2 second float64 source vector

Description

Compute the bitwise AND of the two vectors s1 and s2, representing double-precision (64-bit) floating-point
elements, producing an intermediate value, and set ZF to 1 if the sign bit of each 64-bit element in the
intermediate value is zero, otherwise set ZF to 0. Compute the bitwise AND NOT of s1 and s2, producing an
intermediate value, and set CF to 1 if the sign bit of each 64-bit element in the intermediate value is zero,
otherwise set CF to 0. Return the ZF value.

NOTE
Intel® Advanced Vector Extensions (Intel® AVX) instructions include a full compliment of
128-bit SIMD instructions. Such Intel® AVX instructions, with vector length of 128-bits,
zeroes the upper 128 bits of the YMM register. The lower 128 bits of the YMM register is
aliased to the corresponding SIMD XMM register.

Returns

Non-zero if ZF flag is set

Zero if the ZF flag is not set

_mm256_testz_ps, _mm_testz_ps
Performs a packed bit test of two float32 256-bit or
128-bit vectors to set the ZF flag. The corresponding
Intel® AVX instruction is VTESTPS.

Syntax

extern int _mm256_testz_ps(__m256 s1, __m256 s2);
extern int _mm_testz_ps(__m128 s1, __m128 s2);

Arguments

s1 first source float32 vector

s2 second source float32 vector

Description

Compute the bitwise AND of the two vectors s1 and s2, representing single-precision (32-bit) floating-point
elements, producing an intermediate value, and set ZF to 1 if the sign bit of each 32-bit element in the
intermediate value is zero, otherwise set ZF to 0. Compute the bitwise AND NOT of s1 and s2, producing an
intermediate value, and set CF to 1 if the sign bit of each 32-bit element in the intermediate value is zero,
otherwise set CF to 0. Return the ZF value.

 Intel® C++ Compiler Classic Developer Guide and Reference

1546

NOTE
Intel® Advanced Vector Extensions (Intel® AVX) instructions include a full compliment of 128-bit SIMD
instructions. Such Intel® AVX instructions, with vector length of 128-bits, zeroes the upper 128 bits of
the YMM register. The lower 128 bits of the YMM register is aliased to the corresponding SIMD XMM
register.

Returns

Non-zero if ZF flag is set

Zero if the ZF flag is not set

_mm256_testc_pd, _mm_testc_pd
Performs a packed bit test of two 256-bit or 128-bit
float64 vectors to set the CF flag. The corresponding
Intel® AVX instruction is VTESTPD.

Syntax

extern int _mm256_testc_pd(__m256d s1, __m256d s2);
extern int _mm_testc_pd(__m128d s1, __m128d s2);

Arguments

s1 first source float64 vector

s2 second source float64 vector

Description

Compute the bitwise AND of the two vectors s1 and s2, representing double-precision (64-bit) floating-point
elements, producing an intermediate value, and set ZF to 1 if the sign bit of each 64-bit element in the
intermediate value is zero, otherwise set ZF to 0. Compute the bitwise AND NOT of s1 and s2, producing an
intermediate value, and set CF to 1 if the sign bit of each 64-bit element in the intermediate value is zero,
otherwise set CF to 0. Return the CF value.

NOTE
Intel® Advanced Vector Extensions (Intel® AVX) instructions include a full compliment of 128-bit SIMD
instructions. Such Intel® AVX instructions, with vector length of 128-bits, zeroes the upper 128 bits of
the YMM register. The lower 128 bits of the YMM register is aliased to the corresponding SIMD XMM
register.

Returns

Non-zero if CF flag is set

Zero if the CF flag is not set

_mm256_testc_ps, _mm_testc_ps
Performs a packed bit test of two 256-bit or 128-bit
float32 vectors to set the CF flag. The corresponding
Intel® AVX instruction is VTESTPS.

Compiler Reference

1547

Syntax

extern int _mm256_testc_ps(__m256 s1, __m256 s2);
extern int _mm_testc_ps(__m128 s1, __m128 s2);

Arguments

s1 first source float32 vector

s2 second source float32 vector

Description

Compute the bitwise AND of the two vectors s1 and s2, representing single-precision (32-bit) floating-point
elements, producing an intermediate value, and set ZF to 1 if the sign bit of each 32-bit element in the
intermediate value is zero, otherwise set ZF to 0. Compute the bitwise AND NOT of s1 and s2, producing an
intermediate value, and set CF to 1 if the sign bit of each 32-bit element in the intermediate value is zero,
otherwise set CF to 0. Return the ZF value.

NOTE
Intel® Advanced Vector Extensions (Intel® AVX) instructions include a full compliment of 128-bit SIMD
instructions. Such Intel® AVX instructions, with vector length of 128-bits, zeroes the upper 128 bits of
the YMM register. The lower 128 bits of the YMM register is aliased to the corresponding SIMD XMM
register.

Returns

Non-zero if CF flag is set

Zero if the CF flag is not set

_mm256_testnzc_pd, _mm_testnzc_pd
Performs a packed bit test of two 256-bit float64 or
128-bit float64 vectors to check ZF and CF flag
settings. The corresponding Intel® AVX instruction is
VTESTPD.

Syntax

extern int _mm256_testnzc_pd(__m256d s1, __m256d s2);
extern int _mm_testnzc_pd(__m128d s1, __m256d s2);

Arguments

s1 first source float64 vector

s2 second source float64 vector

Description

Performs a packed bit test of s1 and s2 vectors using VTESTPDs1, s2 instruction and checks the status of the
ZF and CF flags. The intrinsic returns 1 if both ZF and CF flags are not 1 (that is, both flags are not set),
otherwise returns 0 (that is, one of the flags is set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1548

The VTESTPD instruction performs a bitwise comparison of all the sign bits of the double-precision elements
in the first source operand and corresponding sign bits in the second source operand. If the AND of the first
source operand sign bits with the second source operand sign bits produces all zeros, the ZF flag is set else
the ZF flag is clear. If the AND of the inverted first source operand sign bits with the second source operand
sign bits produces all zeros the CF flag is set, else the CF flag is clear.

The _mm_testnzc_pd intrinsic checks the ZF and CF flags according to results of the 128-bit float64 source
vectors. The _m256_testnzc_pd intrinsic checks the ZF and CF flags according to the results of the 256-bit
float64 source vectors.

NOTE
Intel® Advanced Vector Extensions (Intel® AVX) instructions include a full compliment of 128-bit SIMD
instructions. Such Intel® AVX instructions, with vector length of 128-bits, zeroes the upper 128 bits of
the YMM register. The lower 128 bits of the YMM register is aliased to the corresponding SIMD XMM
register.

Returns

1: indicates that both ZF and CF flags are clear

0: indicates that either ZF or CF flag is set

_mm256_testnzc_ps, _mm_testnzc_ps
Performs a packed bit test of two 256-bit or 128-bit
float32 vectors to check ZF and CF flag settings. The
corresponding Intel® AVX instruction is VTESTPS.

Syntax

extern int _mm256_testnzc_ps(__m256 s1, __m256 s2);
extern int _mm_testnzc_ps(__m128 s1, __m128 s2);

Arguments

s1 first source float32 vector

s2 second source float32 vector

Description

Performs a packed bit test of s1 and s2 vectors using VTESTPDs1, s2 instruction and checks the status of the
ZF and CF flags. The intrinsic returns 1 if both ZF and CF flags are not 1 (that is, both flags are not set),
otherwise returns 0 (that is, one of the flags is set).

The VTESTPD instruction performs a bitwise comparison of all the sign bits of the single-precision elements in
the first source operand and corresponding sign bits in the second source operand. If the AND of the first
source operand sign bits with the second source operand sign bits produces all zeros, the ZF flag is set else
the ZF flag is clear. If the AND of the inverted first source operand sign bits with the second source operand
sign bits produces all zeros the CF flag is set, else the CF flag is clear.

The _mm_testnzc_ps intrinsic checks the ZF and CF flags according to results of the 128-bit float32 source
vectors. The _m256_testnzc_ps intrinsic checks the ZF and CF flags according to the results of the 256-bit
float32 source vectors.

Compiler Reference

1549

NOTE
Intel® Advanced Vector Extensions (Intel® AVX) instructions include a full compliment of 128-bit SIMD
instructions. Such Intel® AVX instructions, with vector length of 128-bits, zeroes the upper 128 bits of
the YMM register. The lower 128 bits of the YMM register is aliased to the corresponding SIMD XMM
register.

Returns

1: indicates that both ZF and CF flags are clear

0: indicates that either ZF or CF flag is set

Intrinsics for Permute Operations

_mm256_permute_pd, _mm_permute_pd
Permutes 256-bit or 128-bit float64 values into a 256-
bit or 128-bit destination vector. The corresponding
Intel® AVX instruction is VPERMILPD.

Syntax

extern __m256d _mm256_permute_pd(__m256d m1, int control);
extern __m128d _mm_permute_pd(__m128d m1, int control);

Arguments

m1 a 256-bit or 128-bit float64 vector

control an integer specified as an 8-bit immediate;

• for the 256-bit m1 vector this integer contains four
1-bit control fields in the low 4 bits of the
immediate

• for the 128-bit m1 vector this integer contains two
1-bit control fields in the low 2 bits of the
immediate

Description

The _mm256_permute_pd intrinsic permutes double-precision floating point elements (float64 elements) in
the 256-bit source vector m1, according to a specified 1-bit control field, control, and stores the result in a
destination vector.

The _mm_permute_pd intrinsic permutes double-precision floating point elements (float64 elements) in the
128-bit source vector m1, according to a specified 1-bit control field, control, and stores the result in a
destination vector.

Returns

A 256-bit or 128-bit float64 vector with permuted values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1550

_mm256_permute_ps, _mm_permute_ps
Permutes 256-bit or 128-bit float32 values into a 256-
bit or 128-bit destination vector. The corresponding
Intel® AVX instruction is VPERMILPS.

Syntax

extern __m256 _mm256_permute_ps(__m256 m1, int control);
extern __m128 _mm_permute_ps(__m128 m1, int control);

Arguments

m1 a 256-bit or 128-bit float32 vector

control an integer specified as an 8-bit immediate;

• for the 256-bit m1 vector this integer contains four
2-bit control fields in the low 8 bits of the
immediate

• for the 128-bit m1 vector this integer contains two
2-bit control fields in the low 4 bits of the
immediate

Description

The _mm256_permute_ps intrinsic permutes single-precision floating point elements (float32 elements) in
the 256-bit source vector m1, according to a specified 2-bit control field, control, and stores the result in a
destination vector.

The _mm_permute_ps intrinsic permutes single-precision floating point elements (float32 elements) in the
128-bit source vector m1, according to a specified 2-bit control field, control, and stores the result in a
destination vector.

Returns

A 256-bit or 128-bit float32 vector with permuted values.

_mm256_permutevar_pd, _mm_permutevar_pd
Permutes float64 values into a 256-bit or 128-bit
destination vector. The corresponding Intel® AVX
instruction is VPERMILPD.

Syntax

extern __m256d _mm256_permutevar_pd(__m256d m1, __m256i control);
extern __m128d _mm_permutevar_pd(__m128d m1, __m128i control);

Arguments

m1 a 256-bit or 128-bit float64 vector

control a vector with 1-bit control fields, one for each
corresponding element of the source vector

Compiler Reference

1551

• for the 256-bit m1 source vector this control
vector contains four 1-bit control fields in the low 4
bits of the immediate

• for the 128-bit m1 source vector this control
vector contains two 1-bit control fields in the low 2
bits of the immediate

Description

Permutes double-precision floating-point values in the source vector, m1, according to the the 1-bit control
fields in the low bytes of corresponding elements of a shuffle control. The result is stored in a destination
vector.

Returns

A 256-bit or 128-bit float64 vector with permuted values.

_mm_permutevar_ps, _mm256_permutevar_ps
Permutes float32 values into a 256-bit or 128-bit
destination vector. The corresponding Intel® AVX
instruction is VPERMILPS.

Syntax

extern __m256 _mm256_permutevar_ps(__m256 m1, __m256i control);
extern __m128 _mm_permutevar_ps(__m128 m1, __m128i control);

Arguments

m1 a 256-bit or 128-bit float32 vector

control a vector with 2-bit control fields, one for each
corresponding element of the source vector

• for the 256-bit m1 source vector this control
vector contains eight 2-bit control fields

• for the 128-bit m1 source vector this control
vector contains four 2-bit control fields

Description

Permutes single-precision floating-point values in the source vector, m1, according to the the 2-bit control
fields in the low bytes of corresponding elements of a shuffle control. The result is stored in a destination
vector.

Returns

A 256-bit or 128-bit float32 vector with permuted values.

_mm256_permute2f128_pd
Permutes 128-bit double-precision floating point
containing fields into a 256-bit destination vector. The
corresponding Intel® AVX instruction is VPERM2F128.

Syntax

extern __m256d _mm256_permute2f128_pd(__m256d m1, __m256d m2, int control);

 Intel® C++ Compiler Classic Developer Guide and Reference

1552

Arguments

m1 a 256-bit float64 source vector

m2 a 256-bit float64 source vector

control an immediate byte that specifies two 2-bit control
fields and two additional bits which specify zeroing
behavior.

Description

Permutes 128-bit floating-point-containing fields from the first source vector m1 and second source vector
m2, by using bits in the 8-bit control argument.

Returns

A 256-bit float64 vector with permuted values.

_mm256_permute2f128_ps
Permutes 128-bit single-precision floating point
containing fields into a 256-bit destination vector. The
corresponding Intel® AVX instruction is VPERM2F128.

Syntax

extern __m256 _mm256_permute2f128_ps(__m256 m1, __m256 m2, int control);

Arguments

m1 a 256-bit float32 source vector

m2 a 256-bit float32 source vector

control an immediate byte that specifies two 2-bit control
fields and two additional bits which specify zeroing
behavior.

Description

Permutes 128-bit floating-point-containing fields from the first source vector m1 and second source vector
m2, by using bits in the 8-bit control argument.

Returns

A 256-bit float32 vector with permuted values.

_mm256_permute2f128_si256
Permutes 128-bit integer containing fields into a 256-
bit destination vector. The corresponding Intel® AVX
instruction is VPERM2F128.

Syntax

extern __m256i _mm256_permute2f128_si256(__m256i m1, __m256i m2, int control);

Compiler Reference

1553

Arguments

m1 a 256-bit integer source vector

m2 a 256-bit integer source vector

control an immediate byte that specifies two 2-bit control
fields and two additional bits which specify zeroing
behavior.

Description

Permutes 128-bit integer-containing fields from the first source vector m1 and second source vector m2, by
using bits in the 8-bit control argument.

Returns

A 256-bit integer vector with permuted values.

Intrinsics for Shuffle Operations

_mm256_shuffle_pd
Shuffles float64 vectors. The corresponding Intel® AVX
instruction is VSHUFPD.

Syntax

extern __m256d _mm256_shuffle_pd(__m256d m1, __m256d m2, const int select);

Arguments

m1 float64 vector used for the operation

m2 float64 vector also used for the operation

select a constant of integer type that determines which
elements of the source vectors are moved to the
result

Description

Moves or shuffles either of the two packed double-precision floating-point elements (float64 elements) from
the double quadword in the source vectors to the low and high quadwords of the double quadword of the
result.

The elements of the first source vector are moved to the low quadword while the elements of the second
source vector are moved to the high quadword of the result. The constant defined by the select parameter
determines which of the two elements of the source vectors are moved to the result.

Returns

Result of the shuffle operation.

_mm256_shuffle_ps
Shuffles float32 vectors. The corresponding Intel® AVX
instruction is VSHUFPS.

 Intel® C++ Compiler Classic Developer Guide and Reference

1554

Syntax

extern __m256 _mm256_shuffle_ps(__m256 m1, __m256 m2, const int select);

Arguments

m1 float32 vector used for the operation

m2 float32 vector also used for the operation

select a constant of integer type which determines which
elements of the source vectors move to the result

Description

Moves or shuffles two of the packed single-precision floating-point elements (float32 elements) from the
double quadword in the source vectors to the low and high quadwords of the double quadword of the result.

The elements of the first source vector are moved to the low quadword while the elements of the second
source vector are moved to the high quadword of the result. The constant defined by the select parameter
determines which of the two elements of the source vectors are moved to the result.

Returns

Result of the shuffle operation.

Intrinsics for Unpack and Interleave Operations

_mm256_unpackhi_pd
Unpacks and interleaves high packed double-precision
floating point values. The corresponding Intel® AVX
instruction is VUNPCKHPD.

Syntax

extern __m256d _mm256_unpackhi_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 source vector

m2 float64 source vector

Description

Performs an interleaved unpack operation of high double-precision floating point values of the two source
vectors m1 and m2, and returns the result of the operation.

Returns

A vector with unpacked interleaved double-precision floating point values.

_mm256_unpackhi_ps
Unpacks and interleaves high packed single-precision
floating point values. The corresponding Intel® AVX
instruction is VUNPCKHPS.

Compiler Reference

1555

Syntax

extern __m256 _mm256_unpackhi_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 source vector

m2 float32 source vector

Description

Performs an interleaved unpack operation of high single-precision floating point values of the two source
vectors m1 and m2, and returns the result of the operation.

Returns

A vector with unpacked interleaved single-precision floating point values.

_mm256_unpacklo_pd
Unpacks and interleaves low packed double-precision
floating point values. The corresponding Intel® AVX
instruction is VUNPCKLPD.

Syntax

extern __m256d _mm256_unpacklo_pd(__m256d m1, __m256d m2);

Arguments

m1 float64 source vector

m2 float64 source vector

Description

Performs an interleaved unpack operation of low double-precision floating point values of the two source
vectors m1 and m2, and returns the result of the operation.

Returns

A vector with unpacked interleaved double-precision floating point values.

_mm256_unpacklo_ps
Unpacks and interleaves low packed single-precision
floating point values. The corresponding Intel® AVX
instruction is VUNPCKLPS.

Syntax

extern __m256 _mm256_unpacklo_ps(__m256 m1, __m256 m2);

Arguments

m1 float32 source vector

m2 float32 source vector

 Intel® C++ Compiler Classic Developer Guide and Reference

1556

Description

Performs an interleaved unpack operation of low single-precision floating point values of the two source
vectors m1 and m2, and returns the result of the operation.

Returns

A vector with unpacked interleaved single-precision floating point values.

Support Intrinsics for Vector Typecasting Operations

_mm256_castpd_ps
Typecasts double-precision floating point values to
single-precision floating point values. No
corresponding Intel® AVX instruction.

Syntax

extern __m256 _mm256_castpd_ps(__m256d a);

Arguments

a float64 source vector

Description

Performs a typecast operation from double-precision floating point values (float64 values) to single-precision
floating point values (float32 values). This intrinsic does not introduce extra moves to the generated code.
Source operand bits are passed unchanged to the result.

Returns

A vector with single-precision floating point values.

_mm256_castps_pd
Typecasts single-precision floating point values to
double-precision floating point values. No
corresponding Intel® AVX instruction.

Syntax

extern __m256d _mm256_castps_pd(__m256 a);

Arguments

a float32 source vector

Description

Performs a typecast operation from single-precision floating point values (float32 values) to double-precision
floating point values (float64 values). This intrinsic does not introduce extra moves to the generated code.
Source operand bits are passed unchanged to the result.

Returns

A vector with double-precision floating point values.

Compiler Reference

1557

_mm256_castpd_si256
Typecasts double-precision floating point values to
integer values. No corresponding Intel® AVX
instruction.

Syntax

extern __m256i _mm256_castpd_si256(__m256d a);

Arguments

a float64 source vector

Description

Performs a typecast operation from double-precision floating point values (float64 values) to integer values.
This intrinsic does not introduce extra moves to the generated code. Source operand bits are passed
unchanged to the result.

Returns

A vector with 256-bit integer values.

_mm256_castps_si256
Typecasts single-precision floating point values to
integer values. No corresponding Intel® AVX
instruction.

Syntax

extern __m256i _mm256_castps_si256(__m256 a);

Arguments

a float32 source vector

Description

Performs a typecast operation from single-precision floating point values (float32 values) to integer values.
This intrinsic does not introduce extra moves to the generated code. Source operand bits are passed
unchanged to the result.

Returns

A vector with 256-bit integer values.

_mm256_castsi256_pd
Typecasts 256-bit integer values to double-precision
floating point values. No corresponding Intel® AVX
instruction.

Syntax

extern __m256d _mm256_castsi256_pd(__m256i a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1558

Arguments

a 256-bit integer vector

Description

Performs a typecast operation from 256-bit integer values to double-precision floating point values (float64
values). This intrinsic does not introduce extra moves to the generated code. Source operand bits are passed
unchanged to the result.

Returns

A vector with double-precision floating point values.

_mm256_castsi256_ps
Typecasts 256-bit integer values to single-precision
floating point values. No corresponding Intel® AVX
instruction.

Syntax

extern __m256 _mm256_castsi256_ps(__m256i a);

Arguments

a 256-bit integer source vector

Description

Performs a typecast operation from 256-bit integer values to single-precision floating point values (float32
values). This intrinsic does not introduce extra moves to the generated code. Source operand bits are passed
unchanged to the result.

Returns

A vector with single-precision floating point values.

_mm256_castpd128_pd256
Typecasts 128-bit double-precision floating point
values to 256-bit double-precision floating point
values. No corresponding Intel® AVX instruction.

Syntax

extern __m256d _mm256_castpd128_pd256(__m128d a);

Arguments

a 128-bit float64 vector

Description

Performs a typecast operation from 128-bit double-precision floating point values to 256-bit double-precision
floating point values.

The lower 128-bits of the 256-bit resulting vector contains the source vector values; the upper 128-bits of
the resulting vector are undefined. This intrinsic does not introduce extra moves to the generated code.

Compiler Reference

1559

Returns

A vector with 256-bit double-precision floating point values. The upper bits of the resulting vector are
undefined.

_mm256_castpd256_pd128
Typecasts 256-bit double-precision floating point
values to 128-bit double-precision floating point
values. No corresponding Intel® AVX instruction.

Syntax

extern __m128d _mm256_castpd256_pd128(__m256d a);

Arguments

a 256-bit float64 source vector

Description

Performs a typecast operation from 256-bit double-precision floating point values to 128-bit double-precision
floating point values.

The lower 128-bits of the source vector are passed unchanged to the result. This intrinsic does not introduce
extra moves to the generated code.

Returns

A vector with 128-bit double-precision floating point values.

_mm256_castps128_ps256
Typecasts 128-bit single-precision floating point
values to 256-bit single-precision floating point values.
No corresponding Intel® AVX instruction.

Syntax

extern __m256 _mm256_castps128_ps256(__m128 a);

Arguments

a 128-bit float32 source vector

Description

Performs a typecast operation from 128-bit single-precision floating point values to 256-bit single-precision
floating point values.

The lower 128-bits of the 256-bit resulting vector contains the source vector values; the upper 128-bits of
the resulting vector are undefined. This intrinsic does not introduce extra moves to the generated code.

Returns

A vector with 256-bit single-precision floating point values. The upper bits of the resulting vector are
undefined.

 Intel® C++ Compiler Classic Developer Guide and Reference

1560

_mm256_castps256_ps128
Typecasts 256-bit single-precision floating point
values to 128-bit single-precision floating point values.
No corresponding Intel® AVX instruction.

Syntax

extern __m128 _mm256_castps256_ps128(__m256 a);

Arguments

a 256-bit float32 source vector

Description

Performs a typecast operation from 256-bit single-precision floating point values to 128-bit single-precision
floating point values.

The lower 128-bits of the source vector are passed unchanged to the result. This intrinsic does not introduce
extra moves to the generated code.

Returns

A vector with 128-bit single-precision floating point values.

_mm256_castsi128_si256
Typecasts 128-bit integer values to 256-bit integer
values. No corresponding Intel® AVX instruction.

Syntax

extern __m256i _mm256_castsi128_si256(__m128i a);

Arguments

a 128-bit integer source vector

Description

Performs a typecast operation from 128-bit integer values to 256-bit integer values.

The lower 128-bits of the 256-bit resulting vector contains the source vector values; the upper 128-bits of
the resulting vector are undefined. This intrinsic does not introduce extra moves to the generated code.

Returns

A vector with 256-bit integer values. The upper bits of the resulting vector are undefined.

_mm256_castsi256_si128
Typecasts 256-bit integer values to 128-bit integer
values. No corresponding Intel® AVX instruction.

Syntax

extern __m128i _mm256_castsi256_si128(__m256i a);

Compiler Reference

1561

Arguments

a 256-bit integer source vector

Description

Performs a typecast operation from 256-bit integer values to 128-bit integer values.

The lower 128-bits of the source vector are passed unchanged to the result. This intrinsic does not introduce
extra moves to the generated code.

Returns

A vector with 128-bit integer values.

Intrinsics Generating Vectors of Undefined Values

_mm256_undefined_ps()
Returns a vector of eight single precision floating point
elements. No corresponding Intel® AVX instruction.

Syntax

extern __m256 _mm256_undefined_ps(void);

Description

This intrinsic returns a vector of eight single precision floating point elements. The content of the vector is
not specified. The prototype of this intrinsic is in the immintrin.h header file.

Returns

A vector of eight single precision floating point elements.

See Also
Intrinsics Returning Vectors of Undefined Values

_mm256_undefined_pd()
Returns a vector of four double precision floating point
elements. No corresponding Intel® AVX instruction.

Syntax

extern __m256d _mm256_undefined_pd(void);

Description

This intrinsic returns a vector of four double precision floating point elements. The content of the vector is
not specified. The prototype of this intrinsic is in the immintrin.h header file.

Returns

A vector of four double precision floating point elements.

See Also
Intrinsics Returning Vectors of Undefined Values

 Intel® C++ Compiler Classic Developer Guide and Reference

1562

_mm256_undefined_si256
Returns a vector of eight packed doubleword integer
elements. No corresponding Intel® AVX instruction.

Syntax

extern __m256i _mm256_undefined_si256(void);

Description

This intrinsic returns a vector of eight packed doubleword integer elements. The content of the vector is not
specified. The prototype of this intrinsic is in the immintrin.h header file.

Returns

A vector of eight packed doubleword integer elements.

See Also
Intrinsics Returning Vectors of Undefined Values

Intrinsics for Intel® Streaming SIMD Extensions 4 (Intel®
SSE4)
The intrinsics in this section correspond to Intel® Streaming SIMD Extensions 4 (Intel® SSE4) instructions.

Efficient Accelerated String and Text Processing

Overview: Efficient Accelerated String and Text Processing

The intrinsics in this section correspond to Intel® Streaming SIMD Extensions 4 (Intel® SSE4) Efficient
Accelerated String and Text Processing instructions.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Packed Compare Intrinsics

These Intel® Streaming SIMD Extensions (Intel® SSE4) intrinsics perform packed comparisons. Some of these
intrinsics could map to more than one instruction; the Intel® C++ Compiler selects the instruction to
generate.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® SSE4 Instruction

_mm_cmpestri Packed comparison, generates
index

PCMPESTRI

_mm_cmpestrm Packed comparison, generates
mask

PCMPESTRM

Compiler Reference

1563

Intrinsic Name Operation Corresponding
Intel® SSE4 Instruction

_mm_cmpistri Packed comparison, generates
index

PCMPISTRI

_mm_cmpistrm Packed comparison, generates
mask

PCMPISTRM

_mm_cmpestrz Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestrc Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestrs Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestro Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestra Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpistrz Packed comparison PCMPISTRM orPCMPISTRI

_mm_cmpistrc Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistrs Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistro Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistra Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpestri
int _mm_cmpestri(__m128i src1, int len1, __m128i src2, int len2, const int mode);
Performs a packed comparison of string data with explicit lengths, generating an index and storing the result
in ECX.

_mm_cmpestrm
__m128i _mm_cmpestrm(__m128i src1, int len1, __m128i src2, int len2, const int mode);
Performs a packed comparison of string data with explicit lengths, generating a mask and storing the result
in XMM0.

_mm_cmpistri
int _mm_cmpistri(__m128i src1, __m128i src2, const int mode);
Performs a packed comparison of string data with implicit lengths, generating an index and storing the result
in ECX.

_mm_cmpistrm
__m128i _mm_cmpistrm(__m128i src1, __m128i src2, const int mode);
Performs a packed comparison of string data with implicit lengths, generating a mask and storing the result
in XMM0.

 Intel® C++ Compiler Classic Developer Guide and Reference

1564

_mm_cmpestrz
int _mm_cmpestrz(__m128i src1, int len1, __m128i src2, int len2, const int mode);
Performs a packed comparison of string data with explicit lengths. Returns '1' if ZFlag == 1, otherwise '0'.

_mm_cmpestrc
int _mm_cmpestrc(__m128i src1, int len1, __m128i src2, int len2, const int mode);
Performs a packed comparison of string data with explicit lengths. Returns '1' if CFlag == 1, otherwise '0'.

_mm_cmpestrs
int _mm_cmpestrs(__m128i src1, int len1, __m128i src2, int len2, const int mode);
Performs a packed comparison of string data with explicit lengths. Returns '1' if SFlag == 1, otherwise '0'.

_mm_cmpestro
int _mm_cmpestro(__m128i src1, int len1, __m128i src2, int len2, const int mode);
Performs a packed comparison of string data with explicit lengths. Returns '1' if OFlag == 1, otherwise '0'.

_mm_cmpestra
int _mm_cmpestra(__m128i src1, int len1, __m128i src2, int len2, const int mode);
Performs a packed comparison of string data with explicit lengths. Returns '1' if CFlag == 0 and ZFlag ==
0, otherwise '0'.

_mm_cmpistrz
int _mm_cmpistrz(__m128i src1, __m128i src2, const int mode);
Performs a packed comparison of string data with implicit lengths. Returns '1' if (ZFlag == 1), otherwise
'0'.

_mm_cmpistrc
int _mm_cmpistrc(__m128i src1, __m128i src2, const int mode);
Performs a packed comparison of string data with implicit lengths. Returns '1' if (CFlag == 1), otherwise
'0'.

_mm_cmpistrs
int _mm_cmpistrs(__m128i src1, __m128i src2, const int mode);
Performs a packed comparison of string data with implicit lengths. Returns '1' if (SFlag == 1), otherwise
'0'.

_mm_cmpistro
int _mm_cmpistro(__m128i src1, __m128i src2, const int mode);
Performs a packed comparison of string data with implicit lengths. Returns '1' if (OFlag == 1), otherwise
'0'.

Compiler Reference

1565

_mm_cmpistra
int _mm_cmpistra(__m128i src1, __m128i src2, const int mode);
Performs a packed comparison of string data with implicit lengths. Returns '1' if (ZFlag == 0 and CFlag
== 0), otherwise '0'.

Application Targeted Accelerators Intrinsics

These Intel® Streaming SIMD Extensions (Intel® SSE4) intrinsics extend the capabilities of Intel®
architectures by adding performance-optimized, low-latency, lower power fixed-function accelerators on the
processor die to benefit specific applications.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
Intrinsics marked with * are implemented only on Intel® 64 architecture. The rest of the intrinsics are
implemented on both IA-32 and Intel® 64 architectures.

Intrinsic Name Operation Corresponding
Intel® SSE4
Instruction

_mm_popcnt_u32 Counts number of set bits in a data
operation

POPCNT

_mm_popcnt_u64* Counts number of set bits in a data
operation

POPCNT

_mm_crc32_u8 Accumulates cyclic redundancy
check

CRC32

_mm_crc32_u16 Performs cyclic redundancy check CRC32

_mm_crc32_u32 Performs cyclic redundancy check CRC32

_mm_crc32_u64* Performs cyclic redundancy check CRC32

_mm_popcnt_u32
unsigned int _mm_popcnt_u32(unsigned int v);
Counts the number of set bits in a data operation.

_mm_popcnt_u64
__int64 _mm_popcnt_u64(unsigned __int64 v);
Counts the number of set bits in a data operation.

NOTE
Use only on Intel® 64 architecture.

_mm_crc32_u8
unsigned int _mm_crc32_u8(unsigned int crc, unsigned char v);

 Intel® C++ Compiler Classic Developer Guide and Reference

1566

Starting with initial value in the first operand, accumulates CRC32 value for the second operand and stores
the result in the destination operand. Accumulates CRC32 on r/m8.

_mm_crc32_u16
unsigned int _mm_crc32_u16(unsigned int crc, unsigned short v);
Starting with initial value in the first operand, accumulates CRC32 value for the second operand and stores
the result in the destination operand. Accumulates CRC32 on r/m16.

_mm_crc32_u32
unsigned int _mm_crc32_u32(unsigned int crc, unsigned int v);
Starting with initial value in the first operand, accumulates CRC32 value for the second operand and stores
the result in the destination operand. Accumulates CRC32 on r/m32.

_mm_crc32_u64
unsigned __int64 _mm_crc32_u64(unsigned __int64 crc, unsigned __int64 v);
Starting with initial value in the first operand, accumulates CRC32 value for the second operand and stores
the result in the destination operand. Accumulates CRC32 on r/m64.

NOTE
Use only on Intel® 64 architecture.

Vectorizing Compiler and Media Accelerators

Overview: Vectorizing Compiler and Media Accelerators

The intrinsics in this section correspond to Intel® Streaming SIMD Extensions 4 (Intel® SSE4) Vectorizing
Compiler and Media Accelerators instructions.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Packed Blending Intrinsics

These Intel® Streaming SIMD Extensions 4 (Intel® SSE4) intrinsics pack multiple operations in a single
instruction. Blending conditionally copies one field in the source onto the corresponding field in the
destination. The prototypes for these intrinsics are in the smmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Syntax Operation Corresponding
Intel® SSE4
Instruction

__m128 _mm_blend_ps(__m128 v1, __m128 v2, const int mask)Selects single precision float
data from two sources using
constant mask

BLENDPS

Compiler Reference

1567

Intrinsic Syntax Operation Corresponding
Intel® SSE4
Instruction

__m128d _mm_blend_pd(__m128d v1, __m128d v2, const int mask)Selects double precision float
data from two sources using
constant mask

BLENDPD

__m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3)Selects single precision float
data from two sources using
variable mask

BLENDVPS

__m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3)Selects double precision float
data from two sources using
variable mask

BLENDVPD

__m128i _mm_blendv_epi8(__m128i v1, __m128i v2, __m128i mask)Selects integer bytes from two
sources using variable mask

PBLENDVB

__m128i _mm_blend_epi16(__m128i v1, __m128i v2, const int mask)Selects integer words from two
sources using constant mask

PBLENDW

Floating Point Dot Product Intrinsics

These Intel® Streaming SIMD Extensions (Intel® SSE4) intrinsics enable floating point single-precision and
double-precision dot products. The prototypes for these intrinsics are in the smmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Operation Corresponding
Intel® SSE4 Instruction

_mm_dp_pd Double-precision dot product DPPD

_mm_dp_ps Single-precision dot product DPPS

_mm_dp_pd
__m128d _mm_dp_pd(__m128d a, __m128d b, const int mask);
Calculates the dot product of double-precision packed values with mask-defined summing and zeroing of the
parts of the result.

_mm_dp_ps
__m128 _mm_dp_ps(__m128 a, __m128 b, const int mask);
Calculates the dot product of single-precision packed values with mask-defined summing and zeroing of the
parts of the result.

Packed Format Conversion Intrinsics

These Intel® Streaming SIMD Extensions 4 (Intel® SSE4) intrinsics convert a packed integer to a zero-
extended or sign-extended integer with wider type. The prototypes for these intrinsics are in the
smmintrin.h file.

 Intel® C++ Compiler Classic Developer Guide and Reference

1568

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Syntax Operation Corresponding
Intel® SSE4
Instruction

__m128i _mm_cvtepi8_epi32(__m128i a) Sign extend four bytes into four
doublewords

PMOVSXBD

__m128i _mm_cvtepi8_epi64 (__m128i a) Sign extend two bytes into two
quadwords

PMOVSXBQ

__m128i _mm_cvtepi8_epi16(__m128i a) Sign extend eight bytes into
eight words

PMOVSXBW

__m128i _mm_cvtepi32_epi64(__m128i a) Sign extend two doublewords
into two quadwords

PMOVSXDQ

__m128i _mm_cvtepi16_epi32(__m128i a) Sign extend four words into
four doublewords

PMOVSXWD

__m128i _mm_cvtepi16_epi64(__m128i a) Sign extend two words into two
quadwords

PMOVSXWQ

__m128i _mm_cvtepu8_epi32(__m128i a) Zero extend four bytes into four
doublewords

PMOVZXBD

__m128i _mm_cvtepu8_epi64(__m128i a) Zero extend two bytes into two
quadwords

PMOVZXBQ

__m128i _mm_cvtepu8_epi16(__m128i a) Zero extend eight bytes into
eight words

PMOVZXBW

__m128i _mm_cvtepu32_epi64(__m128i a) Zero extend two doublewords
into two quadwords

PMOVZXDQ

__m128i _mm_cvtepu16_epi32(__m128i a) Zero extend four words into
four doublewords

PMOVZXWD

__m128i _mm_cvtepu16_epi64(__m128i a) Zero extend two words into two
quadwords

PMOVZXWQ

Packed Integer Min/Max Intrinsics

These Intel® Streaming SIMD Extensions 4 (Intel® SSE4) intrinsics compare packed integers in the
destination operand and the source operand, and return the minimum or maximum for each packed operand
in the destination operand. The prototypes for these intrinsics are in the smmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Compiler Reference

1569

Intrinsic Syntax Operation Corresponding
Intel® SSE4
Instruction

__m128i _mm_max_epi8(__m128i a, __m128i b) Calculates maximum of
signed packed integer
bytes

PMAXSB

__m128i _mm_max_epi32(__m128i a, __m128i b) Calculates maximum of
signed packed integer
doublewords

PMAXSD

__m128i _mm_max_epu32(__m128i a, __m128i b) Calculates maximum of
unsigned packed integer
doublewords

PMAXUD

__m128i _mm_max_epu16(__m128i a, __m128i b) Calculates maximum of
unsigned packed integer
words

PMAXUW

__m128i _mm_min_epi8(__m128i a, __m128i b) Calculates minimum of
signed packed integer
bytes

PMINSB

__m128i _mm_min_epi32(__m128i a, __m128i b) Calculates minimum of
signed packed integer
doublewords

PMINSD

__m128i _mm_min_epu32(__m128i a, __m128i b) Calculates minimum of
unsigned packed integer
double words

PMINUD

__m128i _mm_min_epu16(__m128i a, __m128i b) Calculates minimum of
unsigned packed integer
words

PMINUW

Floating Point Rounding Intrinsics

These Intel® Streaming SIMD Extensions 4 (Intel® SSE4) rounding intrinsics cover scalar and packed single-
precision and double-precision floating-point operands. The prototypes for these intrinsics are in the
smmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The floor and ceil intrinsics correspond to the definitions of floor and ceil in the ISO 9899:1999
standard for the C programming language.

Intrinsic Syntax Operation Corresponding
Intel® SSE4
Instruction

__m128d _mm_round_pd(__m128d s1, int iRoundMode)
__m128d _mm_floor_pd(__m128d s1)
__m128d _mm_ceil_pd(__m128d s1)

Packed double-precision float
rounding

ROUNDPD

 Intel® C++ Compiler Classic Developer Guide and Reference

1570

Intrinsic Syntax Operation Corresponding
Intel® SSE4
Instruction

__m128 _mm_round_ps(__m128 s1, int iRoundMode)
__m128 _mm_floor_ps(__m128 s1)
__m128 _mm_ceil_ps(__m128 s1)

Packed single-precision float
rounding

ROUNDPS

__m128d _mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)
__m128d _mm_floor_sd(__m128d dst, __m128d s1)
__m128d _mm_ceil_sd(__m128d dst, __m128d s1)

Single double-precision float
rounding

ROUNDSD

__m128 _mm_round_ss(__m128 dst, __m128d s1, int iRoundMode)
__m128 _mm_floor_ss(__m128d dst, __m128 s1)
__m128 _mm_ceil_ss(__m128d dst, __m128 s1)

Single single-precision float
rounding

ROUNDSS

DWORD Multiply Intrinsics

These Intel® Streaming SIMD Extensions (Intel® SSE4) DWORD multiply intrinsics are designed to aid
vectorization. They enable four simultaneous 32-bit by 32-bit multiplies. The prototypes for these intrinsics
are in the smmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Syntax Operation Corresponding
Intel® SSE4
Instruction

__m128i _mm_mul_epi32(__m128i a, __m128i b)Packed integer 32-bit
multiplication of two low pairs
of operands producing two 64-
bit results

PMULDQ

__m128i _mm_mullo_epi32(__m128i a, __m128i b)Packed integer 32-bit
multiplication with truncation of
upper halves of results

PMULLD

Register Insertion/Extraction Intrinsics

These Intel® Streaming SIMD Extensions (Intel® SSE4) intrinsics enable data insertion and extraction
between general purpose registers and XMM registers. The prototypes for these intrinsics are in the
smmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
Intrinsics marked with * are implemented only on Intel® 64 architectures. The rest of the intrinsics are
implemented on both IA-32 and Intel® 64 architectures.

Compiler Reference

1571

Intrinsic Syntax Operation Corresponding
Intel® SSE4
Instruction

__m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx)Insert single precision float into
packed single precision array
element selected by index.

INSERTPS

int _mm_extract_ps(__m128 src, const int ndx)Extract single precision float from
packed single precision array
element selected by index.

EXTRACTPS

__m128i _mm_insert_epi8(__m128i s1, int s2, const int ndx)Insert integer byte into packed
integer array element selected by
index.

PINSRB

int _mm_extract_epi8(__m128i src, const int ndx)Extract integer byte from packed
integer array element selected by
index.

PEXTRB

int _mm_extract_epi16(__m128i src, int ndx)Extract integer word from packed
integer array element selected by
index.

PEXTRW

__m128i _mm_insert_epi32(__m128i s1, int s2, const int ndx)Insert integer doubleword into
packed integer array element
selected by index.

PINSRD

int _mm_extract_epi32(__m128i src, const int ndx)Extract integer doubleword from
packed integer array element
selected by index.

PEXTRD

__m128i _mm_insert_epi64(__m128i s2, int s, const int ndx)*Insert integer quadword into
packed integer array element
selected by index. Use only on
Intel® 64 architectures.

PINSRQ

__int64 _mm_extract_epi64(__m128i src, const int ndx)*Extract integer quad word from
packed integer array element
selected by index. Use only on
Intel® 64 architectures.

PEXTRQ

Test Intrinsics

These Intel® Streaming SIMD Extensions (Intel® SSE4) intrinsics perform packed integer 128-bit
comparisons. The prototypes for these intrinsics are in the smmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® SSE4 Instruction

_mm_testz_si128 Checks for all zeros in specified bits
of a 128-bit value

PTEST

_mm_testc_si128 Checks for all ones in specified bits of
a 128-bit value

PTEST

 Intel® C++ Compiler Classic Developer Guide and Reference

1572

Intrinsic Name Operation Corresponding
Intel® SSE4 Instruction

_mm_testnzc_si128 Checks for at least one '0' and at
least one '1' in the specified bits of a
128-bit value

PTEST

_mm_testz_si128
int _mm_testz_si128(__m128i s1, __m128i s2);
Returns '1' if the bitwise AND operation on s1 and s2 results in all zeros, else returns '0'. That is,

_mm_testz_si128 := ((s1 & s2) == 0 ? 1 : 0)
This intrinsic checks if the ZF flag equals '1' as a result of the instruction PTEST s1, s2. For example, it
allows you to check if all set bits in s2 (mask) are zeros in s1.

Corresponding instruction: PTEST

_mm_testc_si128
int _mm_testc_si128(__m128i s1, __m128i s2);
Returns '1' if the bitwise AND operation on s2 and logical NOT s1 results in all zeros, else returns '0'. That is,

_mm_testc_si128 := ((~s1 & s2) == 0 ? 1 : 0)
This intrinsic checks if the CF flag equals '1' as a result of the instruction PTEST s1, s2. For example it
allows you to check if all set bits in s2 (mask) are also set in s1.

Corresponding instruction: PTEST

_mm_testnzc_si128
int _mm_testnzc_si128(__m128i s1, __m128i s2);
Returns '1' if the following conditions are true: bitwise operation of s1 AND s2 does not equal all zeros and
bitwise operation of NOT s1 AND s2 does not equal all zeros, otherwise returns '0'. That is,

_mm_testnzc_si128 := (((s1 & s2) != 0 && (~s1 & s2) != 0) ? 1 : 0)
This intrinsic checks if both the CF and ZF flags are not '1' as a result of the instruction PTEST s1, s2. For
example, it allows you to check that the result has both zeros and ones in s1 on positions specified as set
bits in s2 (mask).

Corresponding instruction: PTEST

Packed DWORD to Unsigned WORD Intrinsic

The prototype for this Intel® Streaming SIMD Extensions (Intel® SSE4) intrinsic is in the smmintrin.h file.

To use this intrinsic, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_packus_epi32
__m128i _mm_packus_epi32(__m128i m1, __m128i m2);
Converts eight packed signed doublewords into eight packed unsigned words, using unsigned saturation to
handle overflow condition.

Corresponding instruction: PACKUSDW

Compiler Reference

1573

Packed Compare for Equal Intrinsic

The prototype for this Intel® Streaming SIMD Extensions (Intel® SSE4) intrinsic is in the smmintrin.h file.

To use this intrinsic, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_cmpeq_epi64
__m128i _mm_cmpeq_epi64(__m128i a, __m128i b);
Performs a packed integer 64-bit comparison for equality. The intrinsic fills the corresponding parts of the
result with zeroes or ones based on equality.

Corresponding instruction: PCMPEQQ

Cacheability Support Intrinsic

The prototype for this Intel® Streaming SIMD Extensions (Intel® SSE4) intrinsic is in the smmintrin.h file.

To use this intrinsic, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_stream_load_si128
extern __m128i _mm_stream_load_si128(__m128i* v1);
Loads __m128 data from a 16-byte aligned address, v1, to the destination operand, m128i without polluting
the caches.

Corresponding instruction: MOVNTDQA

Intrinsics for Intel® Supplemental Streaming SIMD
Extensions 3 (SSSE3)
Intel® C++ intrinsics listed in this section correspond to the Supplemental Streaming SIMD Extensions 3
(SSSE3) instructions. The prototypes for these intrinsics are in tmmintrin.h.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The topics in this section summarize these intrinsics.

Addition Intrinsics
These Supplemental Streaming SIMD Extensions 3 (SSSE3) intrinsics are used for horizontal addition. The
prototypes for these intrinsics are in tmmintrin.h.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_hadd_epi16
extern __m128i _mm_hadd_epi16(__m128i a, __m128i b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1574

Adds horizontally packed signed words. Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {
r[i] = a[2*i] + a[2i+1];
r[i+4] = b[2*i] + b[2*i+1];
}

_mm_hadd_epi32
extern __m128i _mm_hadd_epi32(__m128i a, __m128i b);
Adds horizontally packed signed doublewords. Interpreting a, b, and r as arrays of 32-bit signed integers:

for (i = 0; i < 2; i++) {
r[i] = a[2*i] + a[2i+1];
r[i+2] = b[2*i] + b[2*i+1];
}

_mm_hadds_epi16
extern __m128i _mm_hadds_epi16(__m128i a, __m128i b);
Adds horizontally packed signed words with signed saturation. Interpreting a, b, and r as arrays of 16-bit
signed integers:

for (i = 0; i < 4; i++) {
r[i] = signed_saturate_to_word(a[2*i] + a[2i+1]);
r[i+4] = signed_saturate_to_word(b[2*i] + b[2*i+1]);
}

_mm_hadd_pi16
extern __m64 _mm_hadd_pi16(__m64 a, __m64 b);
Adds horizontally packed signed words. Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {
r[i] = a[2*i] + a[2i+1];
r[i+2] = b[2*i] + b[2*i+1];
}

_mm_hadd_pi32
extern __m64 _mm_hadd_pi32(__m64 a, __m64 b);
Adds horizontally packed signed doublewords. Interpreting a, b, and r as arrays of 32-bit signed integers:

r[0] = a[1] + a[0];
r[1] = b[1] + b[0];

_mm_hadds_pi16
extern __m64 _mm_hadds_pi16(__m64 a, __m64 b);
Adds horizontally packed signed words with signed saturation. Interpreting a, b, and r as arrays of 16-bit
signed integers:

for (i = 0; i < 2; i++) {
r[i] = signed_saturate_to_word(a[2*i] + a[2i+1]);
r[i+2] = signed_saturate_to_word(b[2*i] + b[2*i+1]);
}

Compiler Reference

1575

Subtraction Intrinsics
These Supplemental Streaming SIMD Extensions 3 (SSSE3) intrinsics are used for horizontal subtraction. The
prototypes for these intrinsics are in tmmintrin.h.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_hsub_epi16
extern __m128i _mm_hsub_epi16(__m128i a, __m128i b);
Subtract horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {
r[i] = a[2*i] - a[2i+1];
r[i+4] = b[2*i] - b[2*i+1];
}

_mm_hsub_epi32
extern __m128i _mm_hsub_epi32(__m128i a, __m128i b);
Subtracts horizontally packed signed doublewords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

for (i = 0; i < 2; i++) {
r[i] = a[2*i] - a[2i+1];
r[i+2] = b[2*i] - b[2*i+1];
}

_mm_hsubs_epi16
extern __m128i _mm_hsubs_epi16(__m128i a, __m128i b);
Subtracts horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {
r[i] = signed_saturate_to_word(a[2*i] - a[2i+1]);
r[i+4] = signed_saturate_to_word(b[2*i] - b[2*i+1]);
}

_mm_hsub_pi16
extern __m64 _mm_hsub_pi16(__m64 a, __m64 b);
Subtracts horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {
r[i] = a[2*i] - a[2i+1];
r[i+2] = b[2*i] - b[2*i+1];
}

 Intel® C++ Compiler Classic Developer Guide and Reference

1576

_mm_hsub_pi32
extern __m64 _mm_hsub_pi32(__m64 a, __m64 b);
Subtracts horizontally packed signed doublewords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

r[0] = a[0] - a[1];
r[1] = b[0] - b[1];

_mm_hsubs_pi16
extern __m64 _mm_hsubs_pi16(__m64 a, __m64 b);
Subtracts horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {
r[i] = signed_saturate_to_word(a[2*i] - a[2i+1]);
r[i+2] = signed_saturate_to_word(b[2*i] - b[2*i+1]);
}

Multiplication Intrinsics
These Supplemental Streaming SIMD Extensions 3 (SSSE3) intrinsics are used for multiplication. The
prototypes for these intrinsics are in tmmintrin.h.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_maddubs_epi16
extern __m128i _mm_maddubs_epi16(__m128i a, __m128i b);
Multiplies signed and unsigned bytes, adds horizontal pair of signed words, and packs saturated signed
words.

Interpreting a as array of unsigned 8-bit integers, b as arrays of signed 8-bit integers, and r as arrays of 16-
bit signed integers:

for (i = 0; i < 8; i++) {
r[i] = signed_saturate_to_word(a[2*i+1] * b[2*i+1] + a[2*i]*b[2*i]);
}

_mm_maddubs_pi16
extern __m64 _mm_maddubs_pi16(__m64 a, __m64 b);
Multiplies signed and unsigned bytes, adds horizontal pair of signed words, and packs saturated signed
words.

Interpreting a as array of unsigned 8-bit integers, b as arrays of signed 8-bit integers, and r as arrays of 16-
bit signed integers:

for (i = 0; i < 4; i++) {
r[i] = signed_saturate_to_word(a[2*i+1] * b[2*i+1] + a[2*i]*b[2*i]);
}

Compiler Reference

1577

_mm_mulhrs_epi16
extern __m128i _mm_mulhrs_epi16(__m128i a, __m128i b);
Multiplies signed words, scales and rounds signed doublewords, and packs high 16-bits.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {
r[i] = (((int32)((a[i] * b[i]) >> 14) + 1) >> 1) & 0xFFFF;
}

_mm_mulhrs_pi16
extern __m64 _mm_mulhrs_pi16(__m64 a, __m64 b);
Multiplies signed words, scales and rounds signed doublewords, and packs high 16-bits.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 4; i++) {
r[i] = (((int32)((a[i] * b[i]) >> 14) + 1) >> 1) & 0xFFFF;
}

Absolute Value Intrinsics
These Supplemental Streaming SIMD Extensions 3 (SSSE3) intrinsics are used to compute absolute values.
The prototypes for these intrinsics are in tmmintrin.h.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_abs_epi8
extern __m128i _mm_abs_epi8(__m128i a);
Computes absolute value of signed bytes. Interpreting a and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++) {
r[i] = abs(a[i]);
}

_mm_abs_epi16
extern __m128i _mm_abs_epi16(__m128i a);
Computes absolute value of signed words. Interpreting a and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {
r[i] = abs(a[i]);
}

_mm_abs_epi32
extern __m128i _mm_abs_epi32(__m128i a);
Computes absolute value of signed doublewords. Interpreting a and r as arrays of signed 32-bit integers:

for (i = 0; i < 4; i++) {
r[i] = abs(a[i]);
}

 Intel® C++ Compiler Classic Developer Guide and Reference

1578

_mm_abs_pi8
extern __m64 _mm_abs_pi8(__m64 a);
Computes absolute value of signed bytes. Interpreting a and r as arrays of signed 8-bit integers:

for (i = 0; i < 8; i++) {
r[i] = abs(a[i]);
}

_mm_abs_pi16
extern __m64 _mm_abs_pi16(__m64 a);
Computes absolute value of signed words. Interpreting a and r as arrays of signed 16-bit integers:

for (i = 0; i < 4; i++) {
r[i] = abs(a[i]);
}

_mm_abs_pi32
extern __m64 _mm_abs_pi32(__m64 a);
Computes absolute value of signed doublewords. Interpreting a and r as arrays of signed 32-bit integers:

for (i = 0; i < 2; i++) {
r[i] = abs(a[i]);
}

Shuffle Intrinsics
These Supplemental Streaming SIMD Extensions 3 (SSSE3) intrinsics are used to perform shuffle operations.
The prototypes for these intrinsics are in tmmintrin.h.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_shuffle_epi8
extern __m128i _mm_shuffle_epi8(__m128i a, __m128i b);
Shuffle bytes from a according to contents of b.

Interpreting a, b, and r as arrays of unsigned 8-bit integers:

for (i = 0; i < 16; i++){
 if (b[i] & 0x80){
 r[i] = 0;
 }
 else {
 r[i] = a[b[i] & 0x0F];
 }
}

_mm_shuffle_pi8
extern __m64 _mm_shuffle_pi8(__m64 a, __m64 b);
Shuffle bytes from a according to contents of b.

Compiler Reference

1579

Interpreting a, b, and r as arrays of unsigned 8-bit integers:

for (i = 0; i < 8; i++){
 if (b[i] & 0x80){
 r[i] = 0;
 }
else {
 r[i] = a[b[i] & 0x07];
 }
}

Concatenate Intrinsics
These Supplemental Streaming SIMD Extensions 3 (SSSE3) intrinsics are used concatenation. The prototypes
for these intrinsics are in tmmintrin.h.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_alignr_epi8
extern __m128i _mm_alignr_epi8(__m128i a, __m128i b, int n);
Concatenates a and b, extracts byte-aligned result shifted to the right by n.

Interpreting t1 as 256-bit unsigned integer, a, b, and r as 128-bit unsigned integers:

t1[255:128] = a;
t1[127:0] = b;
t1[255:0] = t1[255:0] >> (8 * n); // unsigned shift
r[127:0] = t1[127:0];

_mm_alignr_pi8
extern __m64 _mm_alignr_pi8(__m64 a, __m64 b, int n);
Concatenates a and b, extracts byte-aligned result shifted to the right by n.

Interpreting t1 as 128-bit unsigned integer, a, b, and r as 64-bit unsigned integers:

t1[127:64] = a;
t1[63:0] = b;
t1[127:0] = t1[127:0] >> (8 * n); // unsigned shift
r[63:0] = t1[63:0];

Negation Intrinsics
These Supplemental Streaming SIMD Extensions 3 (SSSE3) intrinsics are used for negation. The prototypes
for these intrinsics are in tmmintrin.h.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_sign_epi8
extern __m128i _mm_sign_epi8(__m128i a, __m128i b);
Negates packed bytes in a if corresponding sign in b is less than zero.

 Intel® C++ Compiler Classic Developer Guide and Reference

1580

Interpreting a, b, and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++){
 if (b[i] < 0){
 r[i] = -a[i];
 }
 else
 if (b[i] == 0){
 r[i] = 0;
 }
 else {
 r[i] = a[i];
 }
}

_mm_sign_epi16
extern __m128i _mm_sign_epi16(__m128i a, __m128i b);
Negates packed words in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++){
 if (b[i] < 0){
 r[i] = -a[i];
 }
else
 if (b[i] == 0){
 r[i] = 0;
 }
 else
 {
 r[i] = a[i];
 }
}

_mm_sign_epi32
extern __m128i _mm_sign_epi32(__m128i a, __m128i b);
Negates packed doublewords in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 32-bit integers:

for (i = 0; i < 4; i++){
 if (b[i] < 0){
 r[i] = -a[i];
 }
 else
 if (b[i] == 0){
 r[i] = 0;
 }
 else {
 r[i] = a[i];
 }
}

Compiler Reference

1581

_mm_sign_pi8
extern __m64 _mm_sign_pi8(__m64 a, __m64 b);
Negates packed bytes in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++){
 if (b[i] < 0){
 r[i] = -a[i];
 }
 else
 if (b[i] == 0){
 r[i] = 0;
 }
 else {
 r[i] = a[i];
 }
}

_mm_sign_pi16
extern __m64 _mm_sign_pi16(__m64 a, __m64 b);
Negates packed words in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++){
 if (b[i] < 0){
 r[i] = -a[i];
 }
 else
 if (b[i] == 0){
 r[i] = 0;
 }
 else {
 r[i] = a[i];
 }
}

_mm_sign_pi32
extern __m64 _mm_sign_pi32(__m64 a, __m64 b);
Negates packed doublewords in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 32-bit integers:

for (i = 0; i < 2; i++){
 if (b[i] < 0){
 r[i] = -a[i];
 }
 else
 if (b[i] == 0){
 r[i] = 0;
 }
 else {
 r[i] = a[i];
 }
}

 Intel® C++ Compiler Classic Developer Guide and Reference

1582

Intrinsics for Intel® Streaming SIMD Extensions 3 (Intel®
SSE3)
The Intel® C++ intrinsics listed in this section are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (Intel® SSE3). The prototypes for these intrinsics are in the pmmintrin.h
header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The topics in this section summarize these intrinsics.

Integer Vector Intrinsic
The integer vector intrinsic listed here is designed for the Intel® Pentium® 4 processor with Streaming SIMD
Extensions 3 (Intel® SSE3). The prototype for this intrinsic is in the pmmintrin.h header file.

To use this intrinsic, include the immintrin.h file as follows:

#include <immintrin.h>
R represents the register into which the returns are placed.

_mm_lddqu_si128
__m128i _mm_lddqu_si128(__m128i const *p);
Loads an unaligned 128-bit value. This differs from MOVDQU in that it can provide higher performance in some
cases. However, it also may provide lower performance than MOVDQU if the memory value being read was just
written.

R

*p;

Single-precision Floating-point Vector Intrinsics
The single-precision floating-point vector intrinsics listed here are designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (Intel® SSE3). The prototypes for these intrinsics are in the
pmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in the registers R0, R1, R2, and R3.

Intrinsic Name Operation Corresponding Intel®
SSE3 Instruction

_mm_addsub_ps Subtract and add ADDSUBPS

_mm_hadd_ps Add HADDPS

_mm_hsub_ps Subtracts HSUBPS

_mm_movehdup_ps Duplicates MOVSHDUP

Compiler Reference

1583

Intrinsic Name Operation Corresponding Intel®
SSE3 Instruction

_mm_moveldup_ps Duplicates MOVSLDUP

_mm_addsub_ps
extern __m128 _mm_addsub_ps(__m128 a, __m128 b);
Subtracts even vector elements while adding odd vector elements.

R0 R1 R2 R3

a0 - b0; a1 + b1; a2 - b2; a3 + b3;

_mm_hadd_ps
extern __m128 _mm_hadd_ps(__m128 a, __m128 b);
Adds adjacent vector elements.

R0 R1 R2 R3

a0 + a1; a2 + a3; b0 + b1; b2 + b3;

_mm_hsub_ps
extern __m128 _mm_hsub_ps(__m128 a, __m128 b);
Subtracts adjacent vector elements.

R0 R1 R2 R3

a0 - a1; a2 - a3; b0 - b1; b2 - b3;

_mm_movehdup_ps
extern __m128 _mm_movehdup_ps(__m128 a);
Duplicates odd vector elements into even vector elements.

R0 R1 R2 R3

a1; a1; a3; a3;

_mm_moveldup_ps
extern __m128 _mm_moveldup_ps(__m128 a);
Duplicates even vector elements into odd vector elements.

R0 R1 R2 R3

a0; a0; a2; a2;

 Intel® C++ Compiler Classic Developer Guide and Reference

1584

Double-precision Floating-point Vector Intrinsics
The double-precision floating-point intrinsics listed here are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (Intel® SSE3). The prototypes for these intrinsics are in the pmmintrin.h
header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in the registers R0 and R1.

Intrinsic Name Operation Corresponding Intel® SSE3
Instruction

_mm_addsub_pd Subtract and add ADDSUBPD

_mm_hadd_pd Add HADDPD

_mm_hsub_pd Subtract HSUBPD

_mm_loaddup_pd Duplicate MOVDDUP

_mm_movedup_pd Duplicate MOVDDUP

_mm_addsub_pd
extern __m128d _mm_addsub_pd(__m128d a, __m128d b);
Adds upper vector element while subtracting lower vector element.

R0 R1

a0 - b0; a1 + b1;

_mm_hadd_pd
extern __m128d _mm_hadd_pd(__m128d a, __m128d b);
Adds adjacent vector elements.

R0 R1

a0 + a1; b0 + b1;

_mm_hsub_pd
extern __m128d _mm_hsub_pd(__m128d a, __m128d b);
Subtracts adjacent vector elements.

R0 R1

a0 - a1; b0 - b1;

Compiler Reference

1585

_mm_loaddup_pd
extern __m128d _mm_loaddup_pd(double const * dp);
Duplicates a double value into upper and lower vector elements.

R0 R1

*dp; *dp;

_mm_movedup_pd
extern __m128d _mm_movedup_pd(__m128d a);
Duplicates lower vector element into upper vector element.

R0 R1

a0; a0;

Miscellaneous Intrinsics
The intrinsics listed here are designed for the Intel® Pentium® 4 processor with Streaming SIMD Extensions 3
(Intel® SSE3). The prototypes for these intrinsics are in the pmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_mm_monitor
extern void _mm_monitor(void const *p, unsigned extensions, unsigned hints);
Generates the MONITOR instruction. This sets up an address range for the monitor hardware using p to
provide the logical address, and will be passed to the monitor instruction in register EAX. The extensions
parameter contains optional extensions to the monitor hardware which will be passed in ECX. The hints
parameter will contain hints to the monitor hardware, which will be passed in EDX. A non-zero value for
extensions will cause a general protection fault.

_mm_mwait
extern void _mm_mwait(unsigned extensions, unsigned hints);
Generates the MWAIT instruction. This instruction is a hint that allows the processor to stop execution and
enter an implementation-dependent optimized state until occurrence of a class of events. In future processor
designs, extensions and hints parameters may be used to convey additional information to the processor. All
non-zero values of extensions and hints are reserved. A non-zero value for extensions will cause a general
protection fault.

Intrinsics for Intel® Streaming SIMD Extensions 2 (Intel®
SSE2)
This section describes the C++ language-level features supporting the Intel® Streaming SIMD Extensions 2
(Intel® SSE2) in the Intel® C++ Compiler Classic. The features are divided into two categories:

• Floating-Point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the double-precision floating-point data type (__m128d).

 Intel® C++ Compiler Classic Developer Guide and Reference

1586

• Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and initialization
intrinsics for the extended-precision integer data type (__m128i).

The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

NOTE
There are no intrinsics for floating-point move operations. To move data from one register to another,
a simple assignment, A = B, suffices, where A and B are the source and target registers for the move
operation.

Some intrinsics are "composites" - they require more than one instruction to implement them. Intrinsics that
require one instruction to implement them are referred to as "simple".

You should be familiar with the hardware features provided by Intel® SSE2 when writing programs with the
intrinsics. The following are three important issues to keep in mind:

• Certain intrinsics, such as _mm_loadr_pd and _mm_cmpgt_sd, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful of their
implementation cost.

• Data loaded or stored as __m128d objects must be generally 16-byte-aligned.
• Some intrinsics require that their argument be immediates, that is, constant integers (literals), due to the

nature of the instruction.

Macro Functions
The macro function intrinsics listed here were designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (Intel® SSE3). They are also compatible with Streaming SIMD Extensions 2 (Intel® SSE2).

The prototypes for these intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

_MM_SET_DENORMALS_ZERO_MODE
_MM_SET_DENORMALS_ZERO_MODE(x);
Macro arguments: either _MM_DENORMALS_ZERO_ON, _MM_DENORMALS_ZERO_OFF.
This macro causes "denormals are zero" mode to be turned ON or OFF by setting the appropriate bit of the
control register.

_MM_GET_DENORMALS_ZERO_MODE
_MM_GET_DENORMALS_ZERO_MODE();
No arguments.

This macro returns the current value of the denormals are zero mode bit of the control register.

Floating-point Intrinsics

Compiler Reference

1587

Arithmetic Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for floating-point arithmetic operations are listed
in this topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in a register. The information about what is placed in each
register appears in the tables below, in the detailed explanation for each intrinsic. For each intrinsic, the
resulting register is represented by R0 and R1, where R0 and R1 each represent one piece of the result
register.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_add_sd Addition ADDSD

_mm_add_pd Addition ADDPD

_mm_sub_sd Subtraction SUBSD

_mm_sub_pd Subtraction SUBPD

_mm_mul_sd Multiplication MULSD

_mm_mul_pd Multiplication MULPD

_mm_div_sd Division DIVSD

_mm_div_pd Division DIVPD

_mm_sqrt_sd Computes Square Root SQRTSD

_mm_sqrt_pd Computes Square Root SQRTPD

_mm_min_sd Computes Minimum MINSD

_mm_min_pd Computes Minimum MINPD

_mm_max_sd Computes Maximum MAXSD

_mm_max_pd Computes Maximum MAXPD

_mm_add_sd
__m128d _mm_add_sd(__m128d a, __m128d b);
Adds the lower double-precision FP (floating-point) values of a and b; the upper double-precision FP value is
passed through from a.

R0 R1

a0 + b0 a1

_mm_add_pd
__m128d _mm_add_pd(__m128d a, __m128d b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1588

Adds the two DP FP values of a and b.

R0 R1

a0 + b0 a1 + b1

_mm_sub_sd
__m128d _mm_sub_sd(__m128d a, __m128d b);
Subtracts the lower DP FP value of b from a. The upper DP FP value is passed through from a.

R0 R1

a0 - b0 a1

_mm_sub_pd
__m128d _mm_sub_pd(__m128d a, __m128d b);
Subtracts the two DP FP values of b from a.

R0 R1

a0 - b0 a1 - b1

_mm_mul_sd
__m128d _mm_mul_sd(__m128d a, __m128d b);
Multiplies the lower DP FP values of a and b. The upper DP FP is passed through from a.

R0 R1

a0 * b0 a1

_mm_mul_pd
__m128d _mm_mul_pd(__m128d a, __m128d b);
Multiplies the two DP FP values of a and b.

R0 R1

a0 * b0 a1 * b1

_mm_div_sd
__m128d _mm_div_sd(__m128d a, __m128d b);
Divides the lower DP FP values of a and b. The upper DP FP value is passed through from a.

R0 R1

a0 / b0 a1

Compiler Reference

1589

_mm_div_pd
__m128d _mm_div_pd(__m128d a, __m128d b);
Divides the two DP FP values of a and b.

R0 R1

a0 / b0 a1 / b1

_mm_sqrt_sd
__m128d _mm_sqrt_sd(__m128d a, __m128d b);
Computes the square root of the lower DP FP value of b. The upper DP FP value is passed through from a.

R0 R1

sqrt(b0) a1

_mm_sqrt_pd
__m128d _mm_sqrt_pd(__m128d a);
Computes the square root of the two DP FP values of a.

R0 R1

sqrt(a0) sqrt(a1)

_mm_min_sd
__m128d _mm_min_sd(__m128d a, __m128d b);
Computes the minimum of the lower DP FP values of a and b. The upper DP FP value is passed through from
a.

R0 R1

min (a0, b0) a1

_mm_min_pd
__m128d _mm_min_pd(__m128d a, __m128d b);
Computes the minima of the two DP FP values of a and b.

R0 R1

min (a0, b0) min(a1, b1)

_mm_max_sd
__m128d _mm_max_sd(__m128d a, __m128d b);
Computes the maximum of the lower DP FP values of a and b. The upper DP FP value is passed through from
a.

 Intel® C++ Compiler Classic Developer Guide and Reference

1590

R0 R1

max (a0, b0) a1

_mm_max_pd
__m128d _mm_max_pd(__m128d a, __m128d b);
Computes the maxima of the two DP FP values of a and b.

R0 R1

max (a0, b0) max (a1, b1)

Logical Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for floating-point logical operations are listed in
the following table. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation for each intrinsic. For each intrinsic, the
resulting register is represented by R0 and R1, where R0 and R1 each represent one piece of the result
register.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_and_pd Computes AND ANDPD

_mm_andnot_pd Computes AND and NOT ANDNPD

_mm_or_pd Computes OR ORPD

_mm_xor_pd Computes XOR XORPD

_mm_and_pd
__m128d _mm_and_pd(__m128d a, __m128d b);
Computes the bitwise AND of the two DP FP values of a and b.

R0 R1

a0 & b0 a1 & b1

_mm_andnot_pd
__m128d _mm_andnot_pd(__m128d a, __m128d b);
Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a.

Compiler Reference

1591

R0 R1

(~a0) & b0 (~a1) & b1

_mm_or_pd
__m128d _mm_or_pd(__m128d a, __m128d b);
Computes the bitwise OR of the two DP FP values of a and b.

R0 R1

a0 | b0 a1 | b1

_mm_xor_pd
__m128d _mm_xor_pd(__m128d a, __m128d b);
Computes the bitwise XOR of the two DP FP values of a and b.

R0 R1

a0 ^ b0 a1 ^ b1

Compare Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for floating-point comparision operations are
listed in the following table. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
Each comparison intrinsic performs a comparison of a and b. For the packed form, the two double-precision
FP values of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower double-
precision FP values of a and b are compared, and a 64-bit mask is returned; the upper double-precision FP
value is passed through from a.

The mask is set to 0xffffffffffffffff for each element where the comparison is true, and set to 0x0
where the comparison is false. The r following the instruction name indicates that the operands to the
instruction are reversed in the actual implementation.

The results of each intrinsic operation are placed in a register. The information about what is placed in each
register appears in the tables below, in the detailed explanation for each intrinsic. For each intrinsic, the
resulting register is represented by R, R0, and R1, where R, R0, and R1 each represent one piece of the result
register.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_cmpeq_pd Equality CMPEQPD

_mm_cmplt_pd Less Than CMPLTPD

_mm_cmple_pd Less Than or Equal CMPLEPD

_mm_cmpgt_pd Greater Than CMPLTPDr

 Intel® C++ Compiler Classic Developer Guide and Reference

1592

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_cmpge_pd Greater Than or Equal CMPLEPDr

_mm_cmpord_pd Ordered CMPORDPD

_mm_cmpunord_pd Unordered CMPUNORDPD

_mm_cmpneq_pd Inequality CMPNEQPD

_mm_cmpnlt_pd Not Less Than CMPNLTPD

_mm_cmpnle_pd Not Less Than or Equal CMPNLEPD

_mm_cmpngt_pd Not Greater Than CMPNLTPDr

_mm_cmpnge_pd Not Greater Than or Equal CMPNLEPDr

_mm_cmpeq_sd Equality CMPEQSD

_mm_cmplt_sd Less Than CMPLTSD

_mm_cmple_sd Less Than or Equal CMPLESD

_mm_cmpgt_sd Greater Than CMPLTSDr

_mm_cmpge_sd Greater Than or Equal CMPLESDr

_mm_cmpord_sd Ordered CMPORDSD

_mm_cmpunord_sd Unordered CMPUNORDSD

_mm_cmpneq_sd Inequality CMPNEQSD

_mm_cmpnlt_sd Not Less Than CMPNLTSD

_mm_cmpnle_sd Not Less Than or Equal CMPNLESD

_mm_cmpngt_sd Not Greater Than CMPNLTSDr

_mm_cmpnge_sd Not Greater Than or Equal CMPNLESDr

_mm_comieq_sd Equality COMISD

_mm_comilt_sd Less Than COMISD

_mm_comile_sd Less Than or Equal COMISD

_mm_comigt_sd Greater Than COMISD

_mm_comige_sd Greater Than or Equal COMISD

_mm_comineq_sd Not Equal COMISD

_mm_ucomieq_sd Equality UCOMISD

_mm_ucomilt_sd Less Than UCOMISD

_mm_ucomile_sd Less Than or Equal UCOMISD

Compiler Reference

1593

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_ucomigt_sd Greater Than UCOMISD

_mm_ucomige_sd Greater Than or Equal UCOMISD

_mm_ucomineq_sd Not Equal UCOMISD

_mm_cmpeq_pd
__m128d _mm_cmpeq_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for equality.

R0 R1

(a0 == b0) ? 0xffffffffffffffff : 0x0 (a1 == b1) ? 0xffffffffffffffff : 0x0

_mm_cmplt_pd
__m128d _mm_cmplt_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for a less than b.

R0 R1

(a0 < b0) ? 0xffffffffffffffff : 0x0 (a1 < b1) ? 0xffffffffffffffff : 0x0

_mm_cmple_pd
__m128d _mm_cmple_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for a less than or equal to b.

R0 R1

(a0 <= b0) ? 0xffffffffffffffff : 0x0 (a1 <= b1) ? 0xffffffffffffffff : 0x0

_mm_cmpgt_pd
__m128d _mm_cmpgt_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for a greater than b.

R0 R1

(a0 > b0) ? 0xffffffffffffffff : 0x0 (a1 > b1) ? 0xffffffffffffffff : 0x0

_mm_cmpge_pd
__m128d _mm_cmpge_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for a greater than or equal to b.

 Intel® C++ Compiler Classic Developer Guide and Reference

1594

R0 R1

(a0 >= b0) ? 0xffffffffffffffff : 0x0 (a1 >= b1) ? 0xffffffffffffffff : 0x0

_mm_cmpord_pd
__m128d _mm_cmpord_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for ordered.

R0 R1

(a0 ord b0) ? 0xffffffffffffffff : 0x0 (a1 ord b1) ? 0xffffffffffffffff : 0x0

_mm_cmpunord_pd
__m128d _mm_cmpunord_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for unordered.

R0 R1

(a0 unord b0) ? 0xffffffffffffffff : 0x0 (a1 unord b1) ? 0xffffffffffffffff : 0x0

_mm_cmpneq_pd
__m128d _mm_cmpneq_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for inequality.

R0 R1

(a0 != b0) ? 0xffffffffffffffff : 0x0 (a1 != b1) ? 0xffffffffffffffff : 0x0

_mm_cmpnlt_pd
__m128d _mm_cmpnlt_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for a not less than b.

R0 R1

!(a0 < b0) ? 0xffffffffffffffff : 0x0 !(a1 < b1) ? 0xffffffffffffffff : 0x0

_mm_cmpnle_pd
__m128d _mm_cmpnle_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for a not less than or equal to b.

R0 R1

!(a0 <= b0) ? 0xffffffffffffffff : 0x0 !(a1 <= b1) ? 0xffffffffffffffff : 0x0

Compiler Reference

1595

_mm_cmpngt_pd
__m128d _mm_cmpngt_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for a not greater than b.

b
R0

R1

!(a0 > b0) ? 0xffffffffffffffff : 0x0 !(a1 > b1) ? 0xffffffffffffffff : 0x0

_mm_cmpnge_pd
__m128d _mm_cmpnge_pd(__m128d a, __m128d b);
Compares the two DP FP values of a and b for a not greater than or equal to b.

R0 R1

!(a0 >= b0) ? 0xffffffffffffffff : 0x0 !(a1 >= b1) ? 0xffffffffffffffff : 0x0

_mm_cmpeq_sd
__m128d _mm_cmpeq_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for equality. The upper DP FP value is passed through from a.

R0 R1

(a0 == b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmplt_sd
__m128d _mm_cmplt_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a less than b. The upper DP FP value is passed through from
a.

R0 R1

(a0 < b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmple_sd
__m128d _mm_cmple_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a less than or equal to b. The upper DP FP value is passed
through from a.

R0 R1

(a0 <= b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmpgt_sd
__m128d _mm_cmpgt_sd(__m128d a, __m128d b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1596

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP value is passed through
from a.

R0 R1

(a0 > b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmpge_sd
__m128d _mm_cmpge_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a greater than or equal to b. The upper DP FP value is passed
through from a.

R0 R1

(a0 >= b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmpord_sd
__m128d _mm_cmpord_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for ordered. The upper DP FP value is passed through from a.

R0 R1

(a0 ord b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmpunord_sd
__m128d _mm_cmpunord_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for unordered. The upper DP FP value is passed through from a.

R0 R1

(a0 unord b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmpneq_sd
__m128d _mm_cmpneq_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for inequality. The upper DP FP value is passed through from a.

R0 R1

(a0 != b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmpnlt_sd
__m128d _mm_cmpnlt_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a not less than b. The upper DP FP value is passed through
from a.

Compiler Reference

1597

R0 R1

!(a0 < b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmpnle_sd
__m128d _mm_cmpnle_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a not less than or equal to b. The upper DP FP value is passed
through from a.

R0 R1

!(a0 <= b0) ? 0xffffffffffffffff : 0x0	 a1

_mm_cmpngt_sd
__m128d _mm_cmpngt_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP value is passed
through from a.

R0 R1

!(a0 > b0) ? 0xffffffffffffffff : 0x0 a1

_mm_cmpnge_sd
__m128d _mm_cmpnge_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a not greater than or equal to b. The upper DP FP value is
passed through from a.

R0 R1

!(a0 >= b0) ? 0xffffffffffffffff : 0x0 a1

_mm_comieq_sd
int _mm_comieq_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise, 0
is returned.

R

(a0 == b0) ? 0x1 : 0x0

_mm_comilt_sd
int _mm_comilt_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise, 0 is
returned.

 Intel® C++ Compiler Classic Developer Guide and Reference

1598

R

(a0 < b0) ? 0x1 : 0x0

_mm_comile_sd
int _mm_comile_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is
returned. Otherwise, 0 is returned.

R

(a0 <= b0) ? 0x1 : 0x0

_mm_comigt_sd
int _mm_comigt_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise, 0 is returned.

R

(a0 > b0) ? 0x1 : 0x0

_mm_comige_sd
int _mm_comige_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or equal to b,
1 is returned. Otherwise, 0 is returned.

R

(a0 >= b0) ? 0x1 : 0x0

_mm_comineq_sd
int _mm_comineq_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise, 0 is returned.

R

(a0 != b0) ? 0x1 : 0x0

_mm_ucomieq_sd
int _mm_ucomieq_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise, 0
is returned.

Compiler Reference

1599

R

(a0 == b0) ? 0x1 : 0x0

_mm_ucomilt_sd
int _mm_ucomilt_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise, 0 is
returned.

R

(a0 < b0) ? 0x1 : 0x0

_mm_ucomile_sd
int _mm_ucomile_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is
returned. Otherwise, 0 is returned.

R

(a0 <= b0) ? 0x1 : 0x0

_mm_ucomigt_sd
int _mm_ucomigt_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise, 0 is returned.

R

(a0 > b0) ? 0x1 : 0x0

_mm_ucomige_sd
int _mm_ucomige_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or equal to b,
1 is returned. Otherwise, 0 is returned.

R

(a0 >= b0) ? 0x1 : 0x0

_mm_ucomineq_sd
int _mm_ucomineq_sd(__m128d a, __m128d b);
Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise, 0 is returned.

 Intel® C++ Compiler Classic Developer Guide and Reference

1600

R

(a0 != b0) ? 0x1 : 0x0

Conversion Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for floating-point conversion operations are listed
in this topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions, such as those performed by the _mm_cvtpd_ps intrinsic, result in a loss of precision. The
rounding mode used in such cases is determined by the value in the MXCSR register. The default rounding
mode is round-to-nearest.

NOTE
The rounding mode used by the C and C++ languages when performing a type conversion is to
truncate. The _mm_cvttpd_epi32 and _mm_cvttsd_si32 intrinsics use the truncate rounding mode
regardless of the mode specified by the MXCSR register.

The results of each intrinsic operation are placed in a register. The information about what is placed in each
register appears in the tables below, in the detailed explanation for each intrinsic. For each intrinsic, the
resulting register is represented by R, R0, R1, R2, and R3, where each represent the registers in which results
are placed.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_cvtpd_ps Convert DP FP to SP FP CVTPD2PS

_mm_cvtps_pd Convert from SP FP to DP FP CVTPS2PD

_mm_cvtepi32_pd Convert lower integer values to
DP FP

CVTDQ2PD

_mm_cvtpd_epi32 Convert DP FP values to integer
values

CVTPD2DQ

_mm_cvtsd_si32 Convert lower DP FP value to
integer value

CVTSD2SI

_mm_cvtsd_ss Convert lower DP FP value to SP
FP

CVTSD2SS

_mm_cvtsi32_sd Convert signed integer value to
DP FP

CVTSI2SD

_mm_cvtss_sd Convert lower SP FP value to DP
FP

CVTSS2SD

_mm_cvttpd_epi32 Convert DP FP values to signed
integers

CVTTPD2DQ

Compiler Reference

1601

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_cvttsd_si32 Convert lower DP FP to signed
integer

CVTTSD2SI

_mm_cvtpd_pi32 Convert two DP FP values to
signed integer values

CVTPD2PI

_mm_cvttpd_pi32 Convert two DP FP values to
signed integer values using
truncate

CVTTPD2PI

_mm_cvtpi32_pd Convert two signed integer
values to DP FP

CVTPI2PD

_mm_cvtsd_f64 Extract DP FP value from first
vector element

None

_mm_cvtpd_ps
__m128 _mm_cvtpd_ps(__m128d a);
Converts the two DP FP values of a to SP FP values.

R0 R1 R2 R3

(float) a0 (float) a1 0.0 0.0

_mm_cvtps_pd
__m128d _mm_cvtps_pd(__m128 a);
Converts the lower two SP FP values of a to DP FP values.

R0 R1

(double) a0 (double) a1

_mm_cvtepi32_pd
__m128d _mm_cvtepi32_pd(__m128i a);
Converts the lower two signed 32-bit integer values of a to DP FP values.

R0 R1

(double) a0 (double) a1

_mm_cvtpd_epi32
__m128i _mm_cvtpd_epi32(__m128d a);
Converts the two DP FP values of a to 32-bit signed integer values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1602

R0 R1 R2 R3

(int) a0 (int) a1 0x0 0x0

_mm_cvtsd_si32
int _mm_cvtsd_si32(__m128d a);
Converts the lower DP FP value of a to a 32-bit signed integer value.

R

(int) a0

_mm_cvtsd_ss
__m128 _mm_cvtsd_ss(__m128 a, __m128d b);
Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a are passed through.

R0 R1 R2 R3

(float) b0 a1 a2 a3

_mm_cvtsi32_sd
__m128d _mm_cvtsi32_sd(__m128d a, int b);
Converts the signed integer value in b to a DP FP value. The upper DP FP value in a is passed through.

R0 R1

(double) b a1

_mm_cvtss_sd
__m128d _mm_cvtss_sd(__m128d a, __m128 b);
Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in a is passed through.

R0 R1

(double) b0 a1

_mm_cvttpd_epi32
__m128i _mm_cvttpd_epi32(__m128d a);
Converts the two DP FP values of a to 32-bit signed integers using truncate.

R0 R1 R2 R3

(int) a0 (int) a1 0x0 0x0

Compiler Reference

1603

_mm_cvttsd_si32
int _mm_cvttsd_si32(__m128d a);
Converts the lower DP FP value of a to a 32-bit signed integer using truncate.

R

(int) a0

_mm_cvtpd_pi32
__m64 _mm_cvtpd_pi32(__m128d a);
Converts the two DP FP values of a to 32-bit signed integer values.

R0 R1

(int)a0 (int) a1

_mm_cvttpd_pi32
__m64 _mm_cvttpd_pi32(__m128d a);
Converts the two DP FP values of a to 32-bit signed integer values using truncate.

R0 R1

(int)a0 (int) a1

_mm_cvtpi32_pd
__m128d _mm_cvtpi32_pd(__m64 a);
Converts the two 32-bit signed integer values of a to DP FP values.

R0 R1

(double)a0 (double)a1

_mm_cvtsd_f64
double _mm_cvtsd_f64(__m128d a);
This intrinsic extracts a double precision floating point value from the first vector element of an __m128d. It
does so in the most efficient manner possible in the context used.

NOTE
This intrinsic does not map to any specific Intel® SSE2 instruction.

Load Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for floating-point load operations are listed in
this topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

 Intel® C++ Compiler Classic Developer Guide and Reference

1604

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The load and set operations are similar in that both initialize __m128d data. However, the set operations take
a double argument and are intended for initialization with constants, while the load operations take a double
pointer argument and are intended to mimic the instructions for loading data from memory.

The results of each intrinsic operation are placed in a register. The information about what is placed in each
register appears in the tables below, in the detailed explanation for each intrinsic. For each intrinsic, the
resulting register is represented by R0 and R1, where R0 and R1 each represent one piece of the result
register.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_load_pd Loads two DP FP values MOVAPD
_mm_load1_pd Loads a single DP FP value, copying to both

elements
MOVSD + shuffling

_mm_loadr_pd Loads two DP FP values in reverse order MOVAPD + shuffling

_mm_loadu_pd Loads two DP FP values MOVUPD
_mm_load_sd Loads a DP FP value, sets upper DP FP to zero MOVSD
_mm_loadh_pd Loads a DP FP value as the upper DP FP value of

the result
MOVHPD

_mm_loadl_pd Loads a DP FP value as the lower DP FP value of
the result

MOVLPD

_mm_load_pd
__m128d _mm_load_pd(double const*dp);
Loads two DP FP values. The address p must be 16-byte aligned.

R0 R1

p[0] p[1]

_mm_load1_pd
__m128d _mm_load1_pd(double const*dp);
Loads a single DP FP value, copying to both elements. The address p need not be 16-byte aligned.

R0 R1

*p *p

_mm_loadr_pd
__m128d _mm_loadr_pd(double const*dp);
Loads two DP FP values in reverse order. The address p must be 16-byte aligned.

Compiler Reference

1605

R0 R1

p[1] p[0]

_mm_loadu_pd
__m128d _mm_loadu_pd(double const*dp);
Loads two DP FP values. The address p need not be 16-byte aligned.

R0 R1

p[0] p[1]

_mm_load_sd
__m128d _mm_load_sd(double const*dp);
Loads a DP FP value. The upper DP FP is set to zero. The address p need not be 16-byte aligned.

R0 R1

*p 0.0

_mm_loadh_pd
__m128d _mm_loadh_pd(__m128d a, double const*dp);
Loads a DP FP value as the upper DP FP value of the result. The lower DP FP value is passed through from a.
The address p need not be 16-byte aligned.

R0 R1

a0 *p

_mm_loadl_pd
__m128d _mm_loadl_pd(__m128d a, double const*dp);
Loads a DP FP value as the lower DP FP value of the result. The upper DP FP value is passed through from a.
The address p need not be 16-byte aligned.

R0 R1

*p a1

Set Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for floating-point set operations are listed in this
topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

 Intel® C++ Compiler Classic Developer Guide and Reference

1606

The load and set operations are similar in that both initialize __m128d data. However, the set operations take
a double argument and are intended for initialization with constants, while the load operations take a double
pointer argument and are intended to mimic the instructions for loading data from memory.

Some of the these intrinsics are composite intrinsics because they require more than one instruction to
implement them.

The results of each intrinsic operation are placed in a register. The information about what is placed in each
register appears in the tables below, in the detailed explanation for each intrinsic. For each intrinsic, the
resulting register is represented by R0 and R1, where R0 and R1 each represent one piece of the result
register.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_set_sd Sets lower DP FP value to w and
upper to zero

Composite

_mm_set1_pd Sets two DP FP values to w Composite

_mm_set_pd Sets lower DP FP to x and upper
to w

Composite

_mm_setr_pd Sets lower DP FP to w and upper
to x

Composite

_mm_setzero_pd Sets two DP FP values to zero XORPD

_mm_move_sd Sets lower DP FP value to the
lower DP FP value of b

MOVSD

_mm_set_sd
__m128d _mm_set_sd(double w);
Sets the lower DP FP value to w and sets the upper DP FP value to zero.

R0 R1

w 0.0

_mm_set1_pd
__m128d _mm_set1_pd(double w);
Sets the two DP FP values to w.

R0 R1

w w

_mm_set_pd
__m128d _mm_set_pd(double w, double x);
Sets the lower DP FP value to x and sets the upper DP FP value to w.

Compiler Reference

1607

R0 R1

x w

_mm_setr_pd
__m128d _mm_setr_pd(double w, double x);
Sets the lower DP FP value to w and sets the upper DP FP value to x. r0 := w r1 := x

R0 R1

w x

_mm_setzero_pd
__m128d _mm_setzero_pd(void);
Sets the two DP FP values to zero.

R0 R1

0.0 0.0

_mm_move_sd
__m128d _mm_move_sd(__m128d a, __m128d b);
Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP value is passed through from a.

R0 R1

b0 a1

Store Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for floating-point store operations are listed in
this topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The store operations assign the initialized data to the address.

The detailed description of each intrinsic contains a table detailing the returns. In these tables, dp[n] is an
access to the n element of the result.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_stream_pd Store MOVNTPD

_mm_store_sd Store MOVSD

_mm_store1_pd Store MOVAPD + shuffling

_mm_store_pd Store MOVAPD

 Intel® C++ Compiler Classic Developer Guide and Reference

1608

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_storeu_pd Store MOVUPD

_mm_storer_pd Store MOVAPD + shuffling

_mm_storeh_pd Store MOVHPD

_mm_storel_pd Store MOVLPD

_mm_store_sd
void _mm_store_sd(double *dp, __m128d a);
Stores the lower DP FP value of a. The address dp needs not be 16-byte aligned.

*dp

a0

_mm_store1_pd
void _mm_store1_pd(double *dp, __m128d a);
Stores the lower DP FP value of a twice. The address dp must be 16-byte aligned.

dp[0] dp[1]

a0 a0

_mm_store_pd
void _mm_store_pd(double *dp, __m128d a);
Stores two DP FP values. The address dp must be 16-byte aligned.

dp[0] dp[1]

a0 a1

_mm_storeu_pd
void _mm_storeu_pd(double *dp, __m128d a);
Stores two DP FP values. The address dp need not be 16-byte aligned.

dp[0] dp[1]

a0 a1

_mm_storer_pd
void _mm_storer_pd(double *dp, __m128d a);
Stores two DP FP values in reverse order. The address dp must be 16-byte aligned.

Compiler Reference

1609

dp[0] dp[1]

a1 a0

_mm_storeh_pd
void _mm_storeh_pd(double *dp, __m128d a);
Stores the upper DP FP value of a.

*dp

a1

void _mm_storel_pd(double *dp, __m128d a);
Stores the lower DP FP value of a.

*dp

a0

Integer Intrinsics

Arithmetic Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer arithmetic operations are listed in this
topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, R1, ..., R15 represent
the registers in which results are placed.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_add_epi8 Addition PADDB

_mm_add_epi16 Addition PADDW

_mm_add_epi32 Addition PADDD

_mm_add_si64 Addition PADDQ

_mm_add_epi64 Addition PADDQ

_mm_adds_epi8 Addition PADDSB

_mm_adds_epi16 Addition PADDSW

_mm_adds_epu8 Addition PADDUSB

_mm_adds_epu16 Addition PADDUSW

 Intel® C++ Compiler Classic Developer Guide and Reference

1610

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_avg_epu8 Computes Average PAVGB

_mm_avg_epu16 Computes Average PAVGW

_mm_madd_epi16 Multiplication and Addition PMADDWD

_mm_max_epi16 Computes Maxima PMAXSW

_mm_max_epu8 Computes Maxima PMAXUB

_mm_min_epi16 Computes Minima PMINSW

_mm_min_epu8 Computes Minima PMINUB

_mm_mulhi_epi16 Multiplication PMULHW

_mm_mulhi_epu16 Multiplication PMULHUW

_mm_mullo_epi16 Multiplication PMULLW

_mm_mul_su32 Multiplication PMULUDQ

_mm_mul_epu32 Multiplication PMULUDQ

_mm_sad_epu8 Computes Difference/Adds PSADBW

_mm_sub_epi8 Subtraction PSUBB

_mm_sub_epi16 Subtraction PSUBW

_mm_sub_epi32 Subtraction PSUBD

_mm_sub_si64 Subtraction PSUBQ

_mm_sub_epi64 Subtraction PSUBQ

_mm_subs_epi8 Subtraction PSUBSB

_mm_subs_epi16 Subtraction PSUBSW

_mm_subs_epu8 Subtraction PSUBUSB

_mm_subs_epu16 Subtraction PSUBUSW

_mm_add_epi8
__m128i _mm_add_epi8(__m128i a, __m128i b);
Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit integers in b.

R0 R1 ... R15

a0 + b0 a1 + b1; ... a15 + b15

Compiler Reference

1611

_mm_add_epi16
__m128i _mm_add_epi16(__m128i a, __m128i b);
Adds the eight signed or unsigned 16-bit integers in a to the eight signed or unsigned 16-bit integers in b.

R0 R1 ... R7

a0 + b0 a1 + b1 ... a7 + b7

_mm_add_epi32
__m128i _mm_add_epi32(__m128i a, __m128i b);
Adds the four signed or unsigned 32-bit integers in a to the four signed or unsigned 32-bit integers in b.

R0 R1 R2 R3

a0 + b0 a1 + b1 a2 + b2 a3 + b3

_mm_add_si64
__m64 _mm_add_si64(__m64 a, __m64 b);
Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer b.

R0

a + b

_mm_add_epi64
__m128i _mm_add_epi64(__m128i a, __m128i b);
Adds the two signed or unsigned 64-bit integers in a to the two signed or unsigned 64-bit integers in b.

R0 R1

a0 + b0 a1 + b1

_mm_adds_epi8
__m128i _mm_adds_epi8(__m128i a, __m128i b);
Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using saturating arithmetic.

R0 R1 ... R15

SignedSaturate (a0
+ b0)

SignedSaturate (a1
+ b1)

... SignedSaturate (a15
+ b15)

_mm_adds_epi16
__m128i _mm_adds_epi16(__m128i a, __m128i b);
Adds the eight signed 16-bit integers in a to the eight signed 16-bit integers in b using saturating arithmetic.

 Intel® C++ Compiler Classic Developer Guide and Reference

1612

R0 R1 ... R7

SignedSaturate (a0
+ b0)

SignedSaturate (a1
+ b1)

... SignedSaturate (a7
+ b7)

_mm_adds_epu8
__m128i _mm_adds_epu8(__m128i a, __m128i b);
Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using saturating arithmetic.

R0 R1 ... R15

UnsignedSaturate
(a0 + b0)

UnsignedSaturate
(a1 + b1)

... UnsignedSaturate
(a15 + b15)

_mm_adds_epu16
__m128i _mm_adds_epu16(__m128i a, __m128i b);
Adds the eight unsigned 16-bit integers in a to the eight unsigned 16-bit integers in b using saturating
arithmetic.

R0 R1 ... R7

UnsignedSaturate
(a0 + b0)

UnsignedSaturate
(a1 + b1)

... UnsignedSaturate
(a7 + b7)

_mm_avg_epu8
__m128i _mm_avg_epu8(__m128i a, __m128i b);
Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-bit integers in b and
rounds.

R0 R1 ... R15

(a0 + b0) / 2 (a1 + b1) / 2 ... (a15 + b15) / 2

_mm_avg_epi16
__m128i _mm_avg_epu16(__m128i a, __m128i b);
Computes the average of the eight unsigned 16-bit integers in a and the eight unsigned 16-bit integers in b
and rounds.

R0 R1 ... R7

(a0 + b0) / 2 (a1 + b1) / 2 ... (a7 + b7) / 2

_mm_madd_epi16
__m128i _mm_madd_epi16(__m128i a, __m128i b);
Multiplies the eight signed 16-bit integers from a by the eight signed 16-bit integers from b. Adds the signed
32-bit integer results pairwise and packs the four signed 32-bit integer results.

Compiler Reference

1613

R0 R1 R2 R3

(a0 * b0) + (a1 *
b1)

(a2 * b2) + (a3 *
b3)

(a4 * b4) + (a5 *
b5)

(a6 * b6) + (a7 *
b7)

_mm_max_epi16
__m128i _mm_max_epi16(__m128i a, __m128i b);
Computes the pairwise maxima of the eight signed 16-bit integers from a and the eight signed 16-bit
integers from b.

R0 R1 ... R7

max(a0, b0) max(a1, b1) ... max(a7, b7)

_mm_max_epu8
__m128i _mm_max_epu8(__m128i a, __m128i b);
Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit integers
from b.

R0 R1 ... R15

max(a0, b0) max(a1, b1) ... max(a15, b15)

_mm_min_epi16
__m128i _mm_min_epi16(__m128i a, __m128i b);
Computes the pairwise minima of the eight signed 16-bit integers from a and the eight signed 16-bit integers
from b.

R0 R1 ... R7

min(a0, b0) min(a1, b1) ... min(a7, b7)

_mm_min_epu8
__m128i _mm_min_epu8(__m128i a, __m128i b);
Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit integers
from b.

R0 R1 ... R15

min(a0, b0) min(a1, b1) ... min(a15, b15)

_mm_mulhi_epi16
__m128i _mm_mulhi_epi16(__m128i a, __m128i b);
Multiplies the eight signed 16-bit integers from a by the eight signed 16-bit integers from b. Packs the upper
16-bits of the eight signed 32-bit results.

 Intel® C++ Compiler Classic Developer Guide and Reference

1614

R0 R1 ... R7

(a0 * b0)[31:16] (a1 * b1)[31:16] ... (a7 * b7)[31:16]

_mm_mulhi_epu16
__m128i _mm_mulhi_epu16(__m128i a, __m128i b);
Multiplies the eight unsigned 16-bit integers from a by the eight unsigned 16-bit integers from b. Packs the
upper 16-bits of the eight unsigned 32-bit results.

R0 R1 ... R7

(a0 * b0)[31:16] (a1 * b1)[31:16] ... (a7 * b7)[31:16]

_mm_mullo_epi16
__m128i _mm_mullo_epi16(__m128i a, __m128i b);
Multiplies the eight signed or unsigned 16-bit integers from a by the eight signed or unsigned 16-bit integers
from b. Packs the lower 16-bits of the eight signed or unsigned 32-bit results.

R0 R1 ... R7

(a0 * b0)[15:0] (a1 * b1)[15:0] ... (a7 * b7)[15:0]

_mm_mul_su32
__m64 _mm_mul_su32(__m64 a, __m64 b);
Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and returns the 64-bit integer
result.

R0

a0 * b0

_mm_mul_epu32
__m128i _mm_mul_epu32(__m128i a, __m128i b);
Multiplies two unsigned 32-bit integers from a by two unsigned 32-bit integers from b. Packs the two
unsigned 64-bit integer results.

R0 R1

a0 * b0 a2 * b2

_mm_sad_epu8
__m128i _mm_sad_epu8(__m128i a, __m128i b);
Computes the absolute difference of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit integers
from b. Sums the upper eight differences and lower eight differences, and packs the resulting two unsigned
16-bit integers into the upper and lower 64-bit elements.

Compiler Reference

1615

R0 R1 to R3 R4 R5 to R7

abs(a0 - b0) +
abs(a1 - b1) +...+
abs(a7 - b7)

0x0 abs(a8 - b8) +
abs(a9 - b9) +...+
abs(a15 - b15)

0x0

_mm_sub_epi8
__m128i _mm_sub_epi8(__m128i a, __m128i b);
Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or unsigned 8-bit integers of a.

R0 R1 ... R15

a0 - b0 a1 - b1 ... a15 - b15

_mm_sub_epi16
__m128i _mm_sub_epi16(__m128i a, __m128i b);
Subtracts the eight signed or unsigned 16-bit integers of b from the eight signed or unsigned 16-bit integers
of a.

R0 R1 ... R7

a0 - b0 a1 - b1 ... a7 - b7

_mm_sub_epi32
__m128i _mm_sub_epi32(__m128i a, __m128i b);
Subtracts the four signed or unsigned 32-bit integers of b from the four signed or unsigned 32-bit integers of
a.

R0 R1 R2 R3

a0 - b0 a1 - b1 a2 - b2 a3 - b3

_mm_sub_si64
__m64 _mm_sub_si64 (__m64 a, __m64 b);
Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit integer a.

R

a - b

_mm_sub_epi64
__m128i _mm_sub_epi64(__m128i a, __m128i b);
Subtracts the two signed or unsigned 64-bit integers in b from the two signed or unsigned 64-bit integers in
a.

 Intel® C++ Compiler Classic Developer Guide and Reference

1616

R0 R1

a0 - b0 a1 - b1

_mm_subs_epi8
__m128i _mm_subs_epi8(__m128i a, __m128i b);
Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a using saturating arithmetic.

R0 R1 ... R15

SignedSaturate (a0
- b0)

SignedSaturate (a1
- b1)

... SignedSaturate (a15
- b15)

_mm_subs_epi16
__m128i _mm_subs_epi16(__m128i a, __m128i b);
Subtracts the eight signed 16-bit integers of b from the eight signed 16-bit integers of a using saturating
arithmetic.

R0 R1 ... R15

SignedSaturate (a0
- b0)

SignedSaturate (a1
- b1)

... SignedSaturate (a7
- b7)

_mm_subs_epu8
__m128i _mm_subs_epu8(__m128i a, __m128i b);
Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of a using saturating
arithmetic.

R0 R1 ... R15

UnsignedSaturate
(a0 - b0)

UnsignedSaturate
(a1 - b1)

... UnsignedSaturate
(a15 - b15)

_mm_subs_epu16
__m128i _mm_subs_epu16(__m128i a, __m128i b);
Subtracts the eight unsigned 16-bit integers of b from the eight unsigned 16-bit integers of a using
saturating arithmetic.

R0 R1 ... R7

UnsignedSaturate
(a0 - b0)

UnsignedSaturate
(a1 - b1)

... UnsignedSaturate
(a7 - b7)

Logical Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer logical operations are listed in this
topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

Compiler Reference

1617

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in register R. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_and_si128 Computes AND PAND

_mm_andnot_si128 Computes AND and NOT PANDN

_mm_or_si128 Computes OR POR

_mm_xor_si128 Computes XOR PXOR

_mm_and_si128
__m128i _mm_and_si128(__m128i a, __m128i b);
Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.

R0

a & b

_mm_andnot_si128
__m128i _mm_andnot_si128(__m128i a, __m128i b);
Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a.

R0

(~a) & b

_mm_or_si128
__m128i _mm_or_si128(__m128i a, __m128i b);
Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.

R0

a | b

_mm_xor_si128
__m128i _mm_xor_si128(__m128i a, __m128i b);
Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.

R0

a ^ b

 Intel® C++ Compiler Classic Developer Guide and Reference

1618

Shift Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer shift operations are listed in this
topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, R1...R7 represent the
registers in which results are placed.

NOTE
The count argument is one shift count that applies to all elements of the operand being shifted. It is
not a vector shift count that shifts each element by a different amount.

Intrinsic Operation Shift Type Corresponding
Intel® SSE2
Instruction

_mm_slli_si128 Shift left Logical PSLLDQ

_mm_slli_epi16 Shift left Logical PSLLW

_mm_sll_epi16 Shift left Logical PSLLW

_mm_slli_epi32 Shift left Logical PSLLD

_mm_sll_epi32 Shift left Logical PSLLD

_mm_slli_epi64 Shift left Logical PSLLQ

_mm_sll_epi64 Shift left Logical PSLLQ

_mm_srai_epi16 Shift right Arithmetic PSRAW

_mm_sra_epi16 Shift right Arithmetic PSRAW

_mm_srai_epi32 Shift right Arithmetic PSRAD

_mm_sra_epi32 Shift right Arithmetic PSRAD

_mm_srli_si128 Shift right Logical PSRLDQ

_mm_srli_epi16 Shift right Logical PSRLW

_mm_srl_epi16 Shift right Logical PSRLW

_mm_srli_epi32 Shift right Logical PSRLD

_mm_srl_epi32 Shift right Logical PSRLD

_mm_srli_epi64 Shift right Logical PSRLQ

_mm_srl_epi64 Shift right Logical PSRLQ

Compiler Reference

1619

_mm_slli_si128
__m128i _mm_slli_si128(__m128i a, int imm);
Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate.

R

a << (imm * 8)

_mm_slli_epi16
__m128i _mm_slli_epi16(__m128i a, int count);
Shifts the eight signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

R0 R1 ... R7

a0 << count a1 << count ... a7 << count

_mm_sll_epi16
__m128i _mm_sll_epi16(__m128i a, __m128i count);
Shifts the eight signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

R0 R1 ... R7

a0 << count a1 << count ... a7 << count

_mm_slli_epi32
__m128i _mm_slli_epi32(__m128i a, int count);
Shifts the four signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

R0 R1 R2 R3

a0 << count a1 << count a2 << count a3 << count

_mm_sll_epi32
__m128i _mm_sll_epi32(__m128i a, __m128i count);
Shifts the four signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

R0 R1 R2 R3

a0 << count a1 << count a2 << count a3 << count

_mm_slli_epi64
__m128i _mm_slli_epi64(__m128i a, int count);
Shifts the two signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

 Intel® C++ Compiler Classic Developer Guide and Reference

1620

R0 R1

a0 << count a1 << count

_mm_sll_epi64
__m128i _mm_sll_epi64(__m128i a, __m128i count);
Shifts the two signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

R0 R1

a0 << count a1 << count

_mm_srai_epi16
__m128i _mm_srai_epi16(__m128i a, int count);
Shifts the eight signed 16-bit integers in a right by count bits while shifting in the sign bit.

R0 R1 ... R7

a0 >> count a1 >> count ... a7 >> count

_mm_sra_epi16
__m128i _mm_sra_epi16(__m128i a, __m128i count);
Shifts the eight signed 16-bit integers in a right by count bits while shifting in the sign bit.

R0 R1 ... R7

a0 >> count a1 >> count ... a7 >> count

_mm_srai_epi32
__m128i _mm_srai_epi32(__m128i a, int count);
Shifts the four signed 32-bit integers in a right by count bits while shifting in the sign bit.

R0 R1 R2 R3

a0 >> count a1 >> count a2 >> count a3 >> count

_mm_sra_epi32
__m128i _mm_sra_epi32(__m128i a, __m128i count);
Shifts the four signed 32-bit integers in a right by count bits while shifting in the sign bit.

R0 R1 R2 R3

a0 >> count a1 >> count a2 >> count a3 >> count

Compiler Reference

1621

_mm_srli_si128
__m128i _mm_srli_si128(__m128i a, int imm);
Shifts the 128-bit value in a right by imm bytes while shifting in zeros. imm must be an immediate.

R

srl(a, imm*8)

_mm_srli_epi16
__m128i _mm_srli_epi16(__m128i a, int count);
Shifts the eight signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

R0 R1 ... R7

srl(a0, count) srl(a1, count) ... srl(a7, count)

_mm_srl_epi16
__m128i _mm_srl_epi16(__m128i a, __m128i count);
Shifts the eight signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

R0 R1 ... R7

srl(a0, count) srl(a1, count) ... srl(a7, count)

_mm_srli_epi32
__m128i _mm_srli_epi32(__m128i a, int count);
Shifts the four signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

R0 R1 R2 R3

srl(a0, count) srl(a1, count) srl(a2, count) srl(a3, count)

_mm_srl_epi32
__m128i _mm_srl_epi32(__m128i a, __m128i count);
Shifts the four signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

R0 R1 R2 R3

srl(a0, count) srl(a1, count) srl(a2, count) srl(a3, count)

_mm_srli_epi64
__m128i _mm_srli_epi64(__m128i a, int count)
Shifts the two signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

 Intel® C++ Compiler Classic Developer Guide and Reference

1622

R0 R1

srl(a0, count) srl(a1, count)

_mm_srl_epi64
__m128i _mm_srl_epi64(__m128i a, __m128i count)
Shifts the two signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

R0 R1

srl(a0, count) srl(a1, count)

Compare Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer comparison operations are listed in
this topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, R1, ...,R15 represent
the registers in which results are placed.

Intrinsic Name Operation Corresponding Intel® SSE2
Instruction

_mm_cmpeq_epi8 Equality PCMPEQB

_mm_cmpeq_epi16 Equality PCMPEQW

_mm_cmpeq_epi32 Equality PCMPEQD

_mm_cmpgt_epi8 Greater Than PCMPGTB

_mm_cmpgt_epi16 Greater Than PCMPGTW

_mm_cmpgt_epi32 Greater Than PCMPGTD

_mm_cmplt_epi8 Less Than PCMPGTBr

_mm_cmplt_epi16 Less Than PCMPGTWr

_mm_cmplt_epi32 Less Than PCMPGTDr

_mm_cmpeq_epi8
__m128i _mm_cmpeq_epi8(__m128i a, __m128i b);
Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or unsigned 8-bit integers in b for
equality.

Compiler Reference

1623

R0 R1 ... R15

(a0 == b0) ? 0xff :
0x0

(a1 == b1) ? 0xff :
0x0

... (a15 == b15) ?
0xff : 0x0

_mm_cmpeq_epi16
__m128i _mm_cmpeq_epi16(__m128i a, __m128i b);
Compares the eight signed or unsigned 16-bit integers in a and the eight signed or unsigned 16-bit integers
in b for equality.

R0 R1 ... R7

(a0 == b0) ?
0xffff : 0x0

(a1 == b1) ?
0xffff : 0x0

... (a7 == b7) ?
0xffff : 0x0

_mm_cmpeq_epi32
__m128i _mm_cmpeq_epi32(__m128i a, __m128i b);
Compares the four signed or unsigned 32-bit integers in a and the four signed or unsigned 32-bit integers in
b for equality.

R0 R1 R2 R3

(a0 == b0) ?
0xffffffff : 0x0

(a1 == b1) ?
0xffffffff : 0x0

(a2 == b2) ?
0xffffffff : 0x0

(a3 == b3) ?
0xffffffff : 0x0

_mm_cmpgt_epi8
__m128i _mm_cmpgt_epi8(__m128i a, __m128i b);
Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for greater than.

R0 R1 ... R15

(a0 > b0) ? 0xff :
0x0

(a1 > b1) ? 0xff :
0x0

... (a15 > b15) ?
0xff : 0x0

_mm_cmpgt_epi16
__m128i _mm_cmpgt_epi16(__m128i a, __m128i b);
Compares the eight signed 16-bit integers in a and the eight signed 16-bit integers in b for greater than.

R0 R1 ... R7

(a0 > b0) ?
0xffff : 0x0

(a1 > b1) ?
0xffff : 0x0

... (a7 > b7) ?
0xffff : 0x0

_mm_cmpgt_epi32
__m128i _mm_cmpgt_epi32(__m128i a, __m128i b);
Compares the four signed 32-bit integers in a and the four signed 32-bit integers in b for greater than.

 Intel® C++ Compiler Classic Developer Guide and Reference

1624

R0 R1 R2 R3

(a0 > b0) ?
0xffffffff : 0x0

(a1 > b1) ?
0xffffffff : 0x0

(a2 > b2) ?
0xffffffff : 0x0

(a3 > b3) ?
0xffffffff : 0x0

_mm_cmplt_epi8
__m128i _mm_cmplt_epi8(__m128i a, __m128i b);
Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for less than.

R0 R1 ... R15

(a0 < b0) ? 0xff :
0x0

(a1 < b1) ? 0xff :
0x0

... (a15 < b15) ?
0xff : 0x0

_mm_cmplt_epi16
__m128i _mm_cmplt_epi16(__m128i a, __m128i b);
Compares the eight signed 16-bit integers in a and the eight signed 16-bit integers in b for less than.

R0 R1 ... R7

(a0 < b0) ?
0xffff : 0x0

(a1 < b1) ?
0xffff : 0x0

... (a7 < b7) ?
0xffff : 0x0

_mm_cmplt_epi32
__m128i _mm_cmplt_epi32(__m128i a, __m128i b);
Compares the four signed 32-bit integers in a and the four signed 32-bit integers in b for less than.

R0 R1 R2 R3

(a0 < b0) ?
0xffffffff : 0x0

(a1 < b1) ?
0xffffffff : 0x0

(a2 < b2) ?
0xffffffff : 0x0

(a3 < b3) ?
0xffffffff : 0x0

Conversion Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer conversion operations are listed in
this topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, R1, R2, and R3
represent the registers in which results are placed.

Intrinsics marked with * are implemented only on Intel® 64 architecture. The rest of the intrinsics are
implemented on both IA-32 and Intel® 64 architectures.

Compiler Reference

1625

Intrinsic Name Operation Corresponding Intel® SSE2
Instruction

_mm_cvtsi64_sd* Convert and pass through CVTSI2SD

_mm_cvtsd_si64* Convert according to rounding CVTSD2SI

_mm_cvttsd_si64* Convert using truncation CVTTSD2SI

_mm_cvtepi32_ps Convert to SP FP None

_mm_cvtps_epi32 Convert from SP FP None

_mm_cvttps_epi32 Convert from SP FP using
truncate

None

_mm_cvtsi64_sd
__m128d _mm_cvtsi64_sd(__m128d a, __int64 b);
Converts the signed 64-bit integer value in b to a DP FP value. The upper DP FP value in a is passed through.

NOTE
Use only on Intel® 64 architectures.

R0 R1

(double)b a1

_mm_cvtsd_si64
__int64 _mm_cvtsd_si64(__m128d a);
Converts the lower DP FP value of a to a 64-bit signed integer value according to the current rounding mode.

NOTE
Use only on Intel® 64 architectures.

R

(__int64) a0

_mm_cvttsd_si64
__int64 _mm_cvttsd_si64(__m128d a);
Converts the lower DP FP value of a to a 64-bit signed integer value using truncation.

NOTE
Use only on Intel® 64 architectures.

 Intel® C++ Compiler Classic Developer Guide and Reference

1626

R

(__int64) a0

_mm_cvtepi32_ps
__m128 _mm_cvtepi32_ps(__m128i a);
Converts the four signed 32-bit integer values of a to SP FP values.

R0 R1 R2 R3

(float) a0 (float) a1 (float) a2 (float) a3

_mm_cvtps_epi32
__m128i _mm_cvtps_epi32(__m128 a);
Converts the four SP FP values of a to signed 32-bit integer values.

R0 R1 R2 R3

(int) a0 (int) a1 (int) a2 (int) a3

_mm_cvttps_epi32
__m128i _mm_cvttps_epi32(__m128 a);
Converts the four SP FP values of a to signed 32 bit integer values using truncate.

R0 R1 R2 R3

(int) a0 (int) a1 (int) a2 (int) a3

Move Intrinsics

The Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer move operations are listed in this
topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, R1, R2 and R3
represent the registers in which results are placed.

Intrinsic Name Operation Corresponding Intel® SSE2
Instruction

_mm_cvtsi32_si128 Move and zero MOVD

_mm_cvtsi64_si128 Move and zero MOVQ

_mm_cvtsi128_si32 Move lowest 32 bits MOVD

_mm_cvtsi128_si64 Move lowest 64 bits MOVQ

Compiler Reference

1627

_mm_cvtsi32_si128
__m128i _mm_cvtsi32_si128(int a);
Moves 32-bit integer a to the least significant 32 bits of an __m128i object. Zeroes the upper 96 bits of the
__m128i object.

R0 R1 R2 R3

a 0x0 0x0 0x0

_mm_cvtsi64_si128
__m128i _mm_cvtsi64_si128(__int64 a);
Moves 64-bit integer a to the lower 64 bits of an __m128i object, zeroing the upper bits.

R0 R1

a 0x0

_mm_cvtsi128_si32
int _mm_cvtsi128_si32(__m128i a);
Moves the least significant 32 bits of a to a 32-bit integer.

R

a0

_mm_cvtsi128_si64
__int64 _mm_cvtsi128_si64(__m128i a);
Moves the lower 64 bits of a to a 64-bit integer.

R

a0

Load Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer load operations are listed in this topic.
The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, and R1 represent the
registers in which results are placed.

Intrinsic Name Operation Corresponding Intel® SSE2
Instruction

_mm_load_si128 Load MOVDQA

 Intel® C++ Compiler Classic Developer Guide and Reference

1628

Intrinsic Name Operation Corresponding Intel® SSE2
Instruction

_mm_loadu_si128 Load MOVDQU

_mm_loadl_epi64 Load and zero MOVQ

_mm_load_si128
__m128i _mm_load_si128(__m128i const*p);
Loads 128-bit value. Address p must be 16-byte aligned.

R

*p

_mm_loadu_si128
__m128i _mm_loadu_si128(__m128i const*p);
Loads 128-bit value. Address p not need be 16-byte aligned.

R

*p

_mm_loadl_epi64
__m128i _mm_loadl_epi64(__m128i const*p);
Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result, zeroing the upper 64
bits of the result.

R0 R1

*p[63:0] 0x0

Set Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer set operations are listed in this topic.
These intrinsics are composite intrinsics because they require more than one instruction to implement them.
The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, R1...R15 represent
the registers in which results are placed.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_set_epi64 Set two integer values Composite

Compiler Reference

1629

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_set_epi64x Set two integer values Composite

_mm_set_epi32 Set four integer values Composite

_mm_set_epi16 Set eight integer values Composite

_mm_set_epi8 Set sixteen integer values Composite

_mm_set1_epi64 Set two integer values Composite

_mm_set1_epi64x Set two integer values Composite

_mm_set1_epi32 Set four integer values Composite

_mm_set1_epi16 Set eight integer values Composite

_mm_set1_epi8 Set sixteen integer values Composite

_mm_setr_epi64 Set two integer values in reverse
order

Composite

_mm_setr_epi32 Set four integer values in reverse
order

Composite

_mm_setr_epi16 Set eight integer values in
reverse order

Composite

_mm_setr_epi8 Set sixteen integer values in
reverse order

Composite

_mm_setzero_si128 Set to zero Composite

_mm_set_epi64
__m128i _mm_set_epi64(__m64 q1, __m64 q0);
Sets the two 64-bit integer values.

R0 R1

q0 q1

_mm_set_epi64x
__m128i _mm_set_epi64x(__int64 b, __int64 a);
Sets the two 64-bit integer values.

R0 R1

a b

_mm_set_epi32
__m128i _mm_set_epi32(int i3, int i2, int i1, int i0);

 Intel® C++ Compiler Classic Developer Guide and Reference

1630

Sets the four signed 32-bit integer values.

R0 R1 R2 R3

i0 i1 i2 i3

_mm_set_epi16
__m128i _mm_set_epi16(short w7, short w6, short w5, short w4, short w3, short w2, short
w1, short w0);
Sets the eight signed 16-bit integer values.

R0 R1 ... R7

w0 w1 ... w7

_mm_set_epi8
__m128i _mm_set_epi8(char b15, char b14, char b13, char b12, char b11, char b10, char
b9, char b8, char b7, char b6, char b5, char b4, char b3, char b2, char b1, char b0);
Sets the 16 signed 8-bit integer values.

R0 R1 ... R15

b0 b1 ... b15

_mm_set1_epi64
__m128i _mm_set1_epi64(__m64 q);
Sets the two 64-bit integer values to q.

R0 R1

q q

_mm_set1_epi64x
__m128i _mm_set1_epi64x(__int64 a);
Sets the two 64-bit integer values to a.

R0 R1

a a

_mm_set1_epi32
__m128i _mm_set1_epi32(int i);
Sets the four signed 32-bit integer values to i.

Compiler Reference

1631

R0 R1 R2 R3

i i i i

_mm_set1_epi16
__m128i _mm_set1_epi16(short w);
Sets the eight signed 16-bit integer values to w.

R0 R1 ... R7

w w w w

_mm_set1_epi8
__m128i _mm_set1_epi8(char b);
Sets the 16 signed 8-bit integer values to b.

R0 R1 ... R15

b b b b

_mm_setr_epi64
__m128i _mm_setr_epi64(__m64 q0, __m64 q1);
Sets the two 64-bit integer values in reverse order.

R0 R1

q0 q1

_mm_setr_epi32
__m128i _mm_setr_epi32(int i0, int i1, int i2, int i3);
Sets the four signed 32-bit integer values in reverse order.

R0 R1 R2 R3

i0 i1 i2 i3

_mm_setr_epi16
__m128i _mm_setr_epi16(short w0, short w1, short w2, short w3, short w4, short w5,
short w6, short w7);
Sets the eight signed 16-bit integer values in reverse order.

R0 R1 ... R7

w0 w1 ... w7

 Intel® C++ Compiler Classic Developer Guide and Reference

1632

_mm_setr_epi8
__m128i _mm_setr_epi8(char b0, char b1, char b2, char b3, char b4, char b5, char b6,
char b7, char b8, char b9, char b10, char b11, char b12, char b13, char b14, char b15);
Sets the 16 signed 8-bit integer values in reverse order.

R0 R1 ... R15

b0 b1 ... b15

_mm_setzero_si128
__m128i _mm_setzero_si128();
Sets the 128-bit value to zero.

R

0x0

Store Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for integer store operations are listed in this
topic. The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The detailed description of each intrinsic contains a table detailing the returns. In these tables, p is an access
to the result.

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_stream_si128 Store MOVNTDQ

_mm_stream_si32 Store MOVNTI

_mm_store_si128 Store MOVDQA

_mm_storeu_si128 Store MOVDQU

_mm_maskmoveu_si128 Conditional store MASKMOVDQU

_mm_storel_epi64 Store lowest MOVQ

_mm_stream_si128
void _mm_stream_si128(__m128i *p, __m128i a);
Stores the data in a to the address p without polluting the caches. If the cache line containing address p is
already in the cache, the cache will be updated. Address p must be 16 byte aligned.

*p

a

Compiler Reference

1633

_mm_stream_si32
void _mm_stream_si32(int *p, int a);
Stores the data in a to the address p without polluting the caches. If the cache line containing address p is
already in the cache, the cache will be updated.

*p

a

_mm_store_si128
void _mm_store_si128(__m128i *p, __m128i b);
Stores 128-bit value. Address p must be 16 byte aligned.

*p

a

_mm_storeu_si128
void _mm_storeu_si128(__m128i *p, __m128i b);
Stores 128-bit value. Address p need not be 16-byte aligned.

*p

a

_mm_maskmoveu_si128
void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p);
Conditionally store byte elements of d to address p. The high bit of each byte in the selector n determines
whether the corresponding byte in d will be stored. Address p need not be 16-byte aligned.

if (n0[7]) if (n1[7] ... if (n15[7])

p[0] := d0 p[1] := d1 ... p[15] := d15

_mm_storel_epi64
void _mm_storel_epi64(__m128i *p, __m128i a);
Stores the lower 64 bits of the value pointed to by p.

*p[63:0]

a0

Miscellaneous Functions and Intrinsics

 Intel® C++ Compiler Classic Developer Guide and Reference

1634

Cacheability Support Intrinsics

The prototypes for Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for cacheability support are in
the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® SSE2 Instruction

_mm_stream_pd Store MOVNTPD

_mm256_stream_pd Store VMOVNTPD

_mm_stream_si128 Store MOVNTDQ

_mm256_stream_si256 Store VMOVNTDQ

_mm_stream_si32 Store MOVNTI

_mm_stream_si64* Store MOVNTI

_mm_clflush Flush CLFLUSH

_mm_clflushopt Flush CLFLUSHOPT

_mm_lfence Guarantee visibility LFENCE

_mm_mfence Guarantee visibility MFENCE

_mm_stream_pd
void _mm_stream_pd(double *p, __m128d a);
Stores the data in a to the address p without polluting caches. The address p must be 16-byte (128-bit
version) aligned. If the cache line containing address p is already in the cache, the cache will be updated.
p[0] := a0 p[1] := a1

p[0] p[1]

a0 a1

_mm256_stream_pd
void _mm256_stream_pd(double *p, __m256d a);
Stores the data in a to the address p without polluting caches. The address p must be 32-byte (VEX.256
encoded version) aligned. If the cache line containing address p is already in the cache, the cache will be
updated. p[0] := a0 p[1] := a1

p[0] p[1]

a0 a1

Compiler Reference

1635

_mm_stream_si128
void _mm_stream_si128(__m128i *p, __m128i a);
Stores the data in a to the address p without polluting the caches. If the cache line containing address p is
already in the cache, the cache will be updated. Address p must be 16-byte (128-bit version) aligned.

*p

a

_mm256_stream_si256
void _mm256_stream_si256(__m256i *p, __m256i a);
Stores the data in a to the address p without polluting the caches. If the cache line containing address p is
already in the cache, the cache will be updated. Address p must be 32-byte (VEX.256 encoded version)
aligned.

*p

a

_mm_stream_si32
void _mm_stream_si32(int *p, int a);
Stores the 32-bit integer data in a to the address p without polluting the caches. If the cache line containing
address p is already in the cache, the cache will be updated.

*p

a

_mm_stream_si64
void _mm_stream_si64(__int64 *p, __int64 a);
Stores the 64-bit integer data in a to the address p without polluting the caches. If the cache line containing
address p is already in the cache, the cache is updated.

*p

a

_mm_clflush
void _mm_clflush(void const*p);
Cache line containing p is flushed and invalidated from all caches in the coherency domain.

*p

a

 Intel® C++ Compiler Classic Developer Guide and Reference

1636

_mm_clflushopt
void _mm_clflushopt(void const *p);
Cache line containing p is flushed and invalidated from all caches in the coherency domain. This optimized
version of the _mm_clflush is available if indicated by the CPUID feature flag CLFLUSHOPT.

*p

a

_mm_lfence
void _mm_lfence(void);
Guarantees that every load instruction that precedes, in program order, the load fence instruction is globally
visible before any load instruction which follows the fence in program order.

_mm_mfence
void _mm_mfence(void);
Guarantees that every memory access that precedes, in program order, the memory fence instruction is
globally visible before any memory instruction which follows the fence in program order.

Miscellaneous Intrinsics

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsics for miscellaneous operations are listed in the
following table followed by descriptions.

The prototypes for Intel® SSE2 intrinsics are in the emmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Operation Corresponding Intel® SSE 2
Instruction

_mm_packs_epi16 Packed Saturation PACKSSWB

_mm_packs_epi32 Packed Saturation PACKSSDW

_mm_packus_epi16 Packed Saturation PACKUSWB

_mm_extract_epi16 Extraction PEXTRW

_mm_insert_epi16 Insertion PINSRW

_mm_movemask_epi8 Mask Creation PMOVMSKB

_mm_shuffle_epi32 Shuffle PSHUFD

_mm_shufflehi_epi16 Shuffle PSHUFHW

_mm_shufflelo_epi16 Shuffle PSHUFLW

_mm_unpackhi_epi8 Interleave PUNPCKHBW

_mm_unpackhi_epi16 Interleave PUNPCKHWD

Compiler Reference

1637

Intrinsic Operation Corresponding Intel® SSE 2
Instruction

_mm_unpackhi_epi32 Interleave PUNPCKHDQ

_mm_unpackhi_epi64 Interleave PUNPCKHQDQ

_mm_unpacklo_epi8 Interleave PUNPCKLBW

_mm_unpacklo_epi16 Interleave PUNPCKLWD

_mm_unpacklo_epi32 Interleave PUNPCKLDQ

_mm_unpacklo_epi64 Interleave PUNPCKLQDQ

_mm_movepi64_pi64 Move MOVDQ2Q

_mm_movpi64_epi64 Move MOVDQ2Q

_mm_move_epi64 Move MOVQ

_mm_unpackhi_pd Interleave UNPCKHPD

_mm_unpacklo_pd Interleave UNPCKLPD

_mm_movemask_pd Create mask MOVMSKPD

_mm_shuffle_pd Select values SHUFPD

_mm_packs_epi16
__m128i _mm_packs_epi16(__m128i a, __m128i b);
Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.

R0 ... R7 R8 ... R15

Signed
Saturate(a0)

... Signed
Saturate(a7)

Signed
Saturate(b0)

... Signed
Saturate(b7)

_mm_packs_epi32
__m128i _mm_packs_epi32(__m128i a, __m128i b);
Packs the eight signed 32-bit integers from a and b into signed 16-bit integers and saturates.

R0 ... R3 R4 ... R7

Signed
Saturate(a0)

... Signed
Saturate(a3)

Signed
Saturate(b0)

... Signed
Saturate(b3)

_mm_packus_epi16
__m128i _mm_packus_epi16(__m128i a, __m128i b);
Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and saturates.

 Intel® C++ Compiler Classic Developer Guide and Reference

1638

R0 ... R7 R8 ... R15

Unsigned
Saturate(a0)

... Unsigned
Saturate(a7)

Unsigned
Saturate(b0)

... Unsigned
Saturate(b15
)

_mm_extract_epi16
int _mm_extract_epi16(__m128i a, int imm);
Extracts the selected signed or unsigned 16-bit integer from a and zero extends. The selector imm must be
an immediate.

R0

(imm == 0) ? a0: ((imm == 1) ? a1: ... (imm==7) ? a7)

_mm_insert_epi16
__m128i _mm_insert_epi16(__m128i a, int b, int imm);
Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The selector imm must be an
immediate.

R0 R1 ... R7

(imm == 0) ? b :
a0;

(imm == 1) ? b :
a1;

... (imm == 7) ? b :
a7;

_mm_movemask_epi8
int _mm_movemask_epi8(__m128i a);
Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and zero
extends the upper bits.

R0

a15[7] << 15 | a14[7] << 14 | ... a1[7] << 1 | a0[7]

_mm_shuffle_epi32
__m128i _mm_shuffle_epi32(__m128i a, int imm);
Shuffles the four signed or unsigned 32-bit integers in a as specified by imm. The shuffle value, imm, must
be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

_mm_shufflehi_epi16
__m128i _mm_shufflehi_epi16(__m128i a, int imm);
Shuffles the upper four signed or unsigned 16-bit integers in a as specified by imm. The shuffle value, imm,
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

Compiler Reference

1639

_mm_shufflelo_epi16
__m128i _mm_shufflelo_epi16(__m128i a, int imm);
Shuffles the lower four signed or unsigned 16-bit integers in a as specified by imm. The shuffle value, imm,
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

_mm_unpackhi_epi8
__m128i _mm_unpackhi_epi8(__m128i a, __m128i b);
Interleaves the upper eight signed or unsigned 8-bit integers in a with the upper eight signed or unsigned 8-
bit integers in b.

R0 R1 R2 R3 ... R14 R15

a8 b8 a9 b9 ... a15 b15

_mm_unpackhi_epi16
__m128i _mm_unpackhi_epi16(__m128i a, __m128i b);
Interleaves the upper four signed or unsigned 16-bit integers in a with the upper four signed or unsigned 16-
bit integers in b.

R0 R1 R2 R3 R4 R5 R6 R
7

a4 b4 a5 b5 a6 b6 a7 b
7

_mm_unpackhi_epi32
__m128i _mm_unpackhi_epi32(__m128i a, __m128i b);
Interleaves the upper two signed or unsigned 32-bit integers in a with the upper two signed or unsigned 32-
bit integers in b.

R0 R1 R2 R3

a2 b2 a3 b3

_mm_unpackhi_epi64
__m128i _mm_unpackhi_epi64(__m128i a, __m128i b);
Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or unsigned 64-bit integer
in b.

R0 R1

a1 b1

_mm_unpacklo_epi8
__m128i _mm_unpacklo_epi8(__m128i a, __m128i b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1640

Interleaves the lower eight signed or unsigned 8-bit integers in a with the lower eight signed or unsigned 8-
bit integers in b.

R0 R1 R2 R3 ... R14 R15

a0 b0 a1 b1 ... a7 b7

_mm_unpacklo_epi16
__m128i _mm_unpacklo_epi16(__m128i a, __m128i b);
Interleaves the lower four signed or unsigned 16-bit integers in a with the lower four signed or unsigned 16-
bit integers in b.

R0 R1 R2 R3 R4 R5 R6 R7

a0 b0 a1 b1 a2 b2 a3 b3

_mm_unpacklo_epi32
__m128i _mm_unpacklo_epi32(__m128i a, __m128i b);
Interleaves the lower two signed or unsigned 32-bit integers in a with the lower two signed or unsigned 32-
bit integers in b.

R0 R1 R2 R3

a0 b0 a1 b1

_mm_unpacklo_epi64
__m128i _mm_unpacklo_epi64(__m128i a, __m128i b);
Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or unsigned 64-bit integer
in b.

R0 R1

a0 b0

_mm_movepi64_pi64
__m64 _mm_movepi64_pi64(__m128i a);
Returns the lower 64 bits of a as an __m64 type.

R0

a0

_mm_movpi64_pi64
__m128i _mm_movpi64_pi64(__m64 a);
Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.

Compiler Reference

1641

R0 R1

a0 0X0

_mm_move_epi64
__m128i _mm_move_epi64(__m128i a);
Moves the lower 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.

R0 R1

a0 0X0

_mm_unpackhi_pd
__m128d _mm_unpackhi_pd(__m128d a, __m128d b);
Interleaves the upper DP FP values of a and b.

R0 R1

a1 b1

_mm_unpacklo_pd
__m128d _mm_unpacklo_pd(__m128d a, __m128d b);
Interleaves the lower DP FP values of a and b.

R0 R1

a0 b0

_mm_movemask_pd
int _mm_movemask_pd(__m128d a);
Creates a two-bit mask from the sign bits of the two DP FP values of a.

R

sign(a1) << 1 | sign(a0)

_mm_shuffle_pd
__m128d _mm_shuffle_pd(__m128d a, __m128d b, int i)
Selects two specific DP FP values from a and b, based on the mask i. The mask must be an immediate. See
Macro Function for Shuffle for a description of the shuffle semantics.

Casting Support Intrinsics

Intel® C++ Compiler supports casting between various single-precision, double-precision, and integer vector
types. These intrinsics do not convert values; they change one data type to another without changing the
value.

 Intel® C++ Compiler Classic Developer Guide and Reference

1642

The intrinsics for casting support do not have any corresponding Intel® Streaming SIMD Extensions 2 (Intel®
SSE2) instructions. The syntax for the Casting Support intrinsics are as follows:

__m128 _mm_castpd_ps(__m128d in);
__m128i _mm_castpd_si128(__m128d in);
__m128d _mm_castps_pd(__m128 in);
__m128i _mm_castps_si128(__m128 in);
__m128 _mm_castsi128_ps(__m128i in);
__m128d _mm_castsi128_pd(__m128i in);

Pause Intrinsic

The prototype for this Intel® Streaming SIMD Extensions 2 (Intel® SSE2) intrinsic is in the xmmintrin.h
header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

PAUSE Intrinsic
void _mm_pause(void);
The pause intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, the pause intrinsic improves the speed at which
the code detects the release of the lock and provides especially significant performance gain.

The execution of the next instruction is delayed for an implementation-specific amount of time. The PAUSE
instruction does not modify the architectural state. For dynamic scheduling, the PAUSE instruction reduces
the penalty of exiting from the spin-loop.

Example of loop with the PAUSE instruction:

In this example, the program spins until memory location A matches the value in register eax. The code
sequence that follows shows a test-and-test-and-set.

spin_loop:pause
cmp eax, A
jne spin_loop

In this example, the spin occurs only after the attempt to get a lock has failed.

get_lock: mov eax, 1
xchg eax, A ; Try to get lock
cmp eax, 0 ; Test if successful
jne spin_loop

Critical Section

// critical_section code
mov A, 0 ; Release lock
jmp continue
spin_loop: pause;
// spin-loop hint
cmp 0, A ;
// check lock availability

Compiler Reference

1643

jne spin_loop
jmp get_lock
// continue: other code

NOTE
The first branch is predicted to fall-through to the critical section in anticipation of successfully gaining
access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing IA-32 architecture-based processor generations, a
test for processor type (a CPUID test) is not needed. All legacy processors execute PAUSE instruction
as a NOP, but in processors that use the PAUSE instruction as a hint there can be significant
performance benefit.

Macro Function for Shuffle

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) provide a macro function to help create constants that
describe shuffle operations. The macro takes two small integers (in the range of 0 to 1) and combines them
into an 2-bit immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

You can view the two integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

Intrinsics Returning Vectors of Undefined Values

These intrinsics generate vectors of undefined values. The result of the intrinsics is usually used as an
argument to another intrinsic that requires all operands to be initialized, and when the content of a particular
argument does not matter.

 Intel® C++ Compiler Classic Developer Guide and Reference

1644

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
For example, you can use such an intrinsic when you need to calculate a sum of packed double-precision
floating-point values located in the xmm register. To avoid unnecessary moves, you can use the following
code to obtain the required result at the low 64 bits:

__m128d HILO = doSomeWork();
__m128d HI = _mm_unpackhi_pd(HILO, _mm_undefined_pd());
__m128d result = _mm_add_sd(HI, HILO);

_mm_undefined_pd
extern __m128d _mm_undefined_pd(void);
Returns a vector of two double precision floating point elements. The content of the vector is not specified.

_mm_undefined_si128
extern __m128i _mm_undefined_si128(void);
Returns a vector of four packed doubleword integer elements. The content of the vector is not specified.

See Also
_mm256_undefined_si128() Returns a vector of eight packed doubleword integer elements. No
corresponding Intel® AVX instruction.
_mm256_undefined_pd() Returns a vector of four double precision floating point elements. No
corresponding Intel® AVX instruction.

Intrinsics for Intel® Streaming SIMD Extensions (Intel® SSE)
This section describes the C++ language-level features supporting the Intel® Streaming SIMD Extensions
(Intel® SSE) in the Intel® C++ Compiler Classic. The prototypes for Intel® SSE intrinsics are in the
xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The following topics summarize these intrinsics.

Details about Intel® Streaming SIMD Extensions Intrinsics
Intel® Streaming SIMD Extensions (Intel® SSE) instructions use the following features:

• Registers – Enable packed data of up to 128 bits in length for optimal SIMD processing
• Data Types – Enable packing of up to 16 elements of data in one register

Registers
Intel® Streaming SIMD Extensions use eight 128-bit registers (XMM0 to XMM7).

Because each of these registers can hold more than one data element, the processor can process more than
one data element simultaneously. This processing capability is also known as single-instruction multiple data
processing (SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a corresponding
C intrinsic that implements that instruction directly. This frees you from managing registers and assembly
programming. Further, the compiler optimizes the instruction scheduling so that your executable runs faster.

Compiler Reference

1645

NOTE
The MM and XMM registers are the SIMD registers used by the systems based on IA-32 architecture to
implement MMX™ technology and Intel® SSE or Intel® Streaming SIMD Extensions 2 (Intel® SSE2).

Data Types
These intrinsic functions use four new C data types as operands, representing the new registers that are
used as the operands to these intrinsic functions.

New Data Types
The following table details for which instructions each of the new data types are available.

New Data Type Intel® Streaming
SIMD Extensions
Intrinsics

Intel® Streaming
SIMD Extensions 2
Intrinsics

Intel® Streaming
SIMD Extensions 3
Intrinsics

__m64 Available Available Available

__m128 Available Available Available

__m128d Not available Available Available

__m128i Not available Available Available

__m128 Data Types
The __m128 data type is used to represent the contents of a Intel® SSE register used by Intel® SSE intrinsics.
The __m128 data type can hold four 32-bit floating-point values.

The __m128d data type can hold two 64-bit floating-point values.

The __m128i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer values.

The compiler aligns __m128d and __m128ilocal and global data to 16-byte boundaries on the stack. To align
integer, float, or double arrays, you can use the __declspec(align) statement.

Data Types Usage Guidelines
These data types are not basic ANSI C data types. You must observe the following usage restrictions:

• Use data types only on either side of an assignment, as a return value, or as a parameter. You cannot use
it with other arithmetic expressions (+, -, etc).

• Use data types as objects in aggregates, such as unions, to access the byte elements and structures.
• Use data types only with the respective intrinsics described in this documentation.

Accessing __m128i Data
To access 8-bit data:

#define _mm_extract_epi8(x, imm) \
((((imm) & 0x1) == 0) ? \
 _mm_extract_epi16((x), (imm) >> 1) & 0xff : \
 _mm_extract_epi16(_mm_srli_epi16((x), 8), (imm) >> 1))

For 16-bit data, use the following intrinsic:

int _mm_extract_epi16(__m128i a, int imm)

 Intel® C++ Compiler Classic Developer Guide and Reference

1646

To access 32-bit data:

#define _mm_extract_epi32(x, imm) \
 _mm_cvtsi128_si32(_mm_srli_si128((x), 4 * (imm)))

See Also
__declspec(align) declaration

Writing Programs with Intel® Streaming SIMD Extensions (Intel® SSE) Intrinsics
You should be familiar with the hardware features provided by Intel® Streaming SIMD Extensions (Intel® SSE)
when writing programs with the intrinsics. The following are four important issues to keep in mind:

• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful that they may consist
of more than one machine-language instruction.

• Floating-point data loaded or stored as __m128 objects must be generally 16-byte-aligned.
• Some intrinsics require that their argument be immediates, that is, constant integers (literals), due to the

nature of the instruction.
• The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined. Therefore,

FP operations using NaN arguments will not match the expected behavior of the corresponding assembly
instructions.

Arithmetic Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for arithmetic operations are in
the xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in a register. This register is illustrated for each intrinsic
with R0-R3. R0, R1, R2, and R3 each represent one of the four 32-bit pieces of the result register.

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_add_ss Addition ADDSS

_mm_add_ps Addition ADDPS

_mm_sub_ss Subtraction SUBSS

_mm_sub_ps Subtraction SUBPS

_mm_mul_ss Multiplication MULSS

_mm_mul_ps Multiplication MULPS

_mm_div_ss Division DIVSS

_mm_div_ps Division DIVPS

_mm_sqrt_ss Squared Root SQRTSS

Compiler Reference

1647

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_sqrt_ps Squared Root SQRTPS

_mm_rcp_ss Reciprocal RCPSS

_mm_rcp_ps Reciprocal RCPPS

_mm_rsqrt_ss Reciprocal Squared Root RSQRTSS

_mm_rsqrt_ps Reciprocal Squared Root RSQRTPS

_mm_min_ss Computes Minimum MINSS

_mm_min_ps Computes Minimum MINPS

_mm_max_ss Computes Maximum MAXSS

_mm_max_ps Computes Maximum MAXPS

_mm_add_ss
__m128 _mm_add_ss(__m128 a, __m128 b);
Adds the lower single-precision, floating-point (FP) values of a and b; the upper three single-precision FP
values are passed through from a.

R0 R1 R2 R3

a0 + b0 a1 a2 a3

_mm_add_ps
__m128 _mm_add_ps(__m128 a, __m128 b);
Adds the four single-precision FP values of a and b.

R0 R1 R2 R3

a0 +b0 a1 + b1 a2 + b2 a3 + b3

_mm_sub_ss
__m128 _mm_sub_ss(__m128 a, __m128 b);
Subtracts the lower single-precision FP values of a and b. The upper three single-precision FP values are
passed through from a.

R0 R1 R2 R3

a0 - b0 a1 a2 a3

_mm_sub_ps
__m128 _mm_sub_ps(__m128 a, __m128 b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1648

Subtracts the four single-precision FP values of a and b.

R0 R1 R2 R3

a0 - b0 a1 - b1 a2 - b2 a3 - b3

_mm_mul_ss
__m128 _mm_mul_ss(__m128 a, __m128 b);
Multiplies the lower single-precision FP values of a and b; the upper three single-precision FP values are
passed through from a.

R0 R1 R2 R3

a0 * b0 a1 a2 a3

_mm_mul_ps
__m128 _mm_mul_ps(__m128 a, __m128 b);
Multiplies the four single-precision FP values of a and b.

R0 R1 R2 R3

a0 * b0 a1 * b1 a2 * b2 a3 * b3

_mm_div_ss
__m128 _mm_div_ss(__m128 a, __m128 b);
Divides the lower single-precision FP values of a and b; the upper three single-precision FP values are passed
through from a.

R0 R1 R2 R3

a0 / b0 a1 a2 a3

_mm_div_ps
__m128 _mm_div_ps(__m128 a, __m128 b);
Divides the four single-precision FP values of a and b.

R0 R1 R2 R3

a0 / b0 a1 / b1 a2 / b2 a3 / b3

_mm_sqrt_ss
__m128 _mm_sqrt_ss(__m128 a);
Computes the square root of the lower single-precision FP value of a ; the upper three single-precision FP
values are passed through.

Compiler Reference

1649

R0 R1 R2 R3

sqrt(a0) a1 a2 a3

_mm_sqrt_ps
__m128 _mm_sqrt_ps(__m128 a);
Computes the square roots of the four single-precision FP values of a.

R0 R1 R2 R3

sqrt(a0) sqrt(a1) sqrt(a2) sqrt(a3)

_mm_rcp_ss
__m128 _mm_rcp_ss(__m128 a);
Computes the approximation of the reciprocal of the lower single-precision FP value of a; the upper the
single-precision FP values are passed through.

R0 R1 R2 R3

recip(a0) a1 a2 a3

_mm_rcp_ps
__m128 _mm_rcp_ps(__m128 a);
Computes the approximations of reciprocals of the four single-precision FP values of a.

R0 R1 R2 R3

recip(a0) recip(a1) recip(a2) recip(a3)

_mm_rsqrt_ss
__m128 _mm_rsqrt_ss(__m128 a);
Computes the approximation of the reciprocal of the square root of the lower single-precision FP value of a;
the upper three single-precision FP values are passed through.

R0 R1 R2 R3

recip(sqrt(a0)) a1 a2 a3

_mm_rsqrt_ps
__m128 _mm_rsqrt_ps(__m128 a);
Computes the approximations of the reciprocals of the square roots of the four single-precision FP values of
a.

R0 R1 R2 R3

recip(sqrt(a0)) recip(sqrt(a1)) recip(sqrt(a2)) recip(sqrt(a3))

 Intel® C++ Compiler Classic Developer Guide and Reference

1650

_mm_min_ss
__m128 _mm_min_ss(__m128 a, __m128 b);
Computes the minimum of the lower single-precision FP values of a and b; the upper three single-precision
FP values are passed through from a.

R0 R1 R2 R3

min(a0, b0) a1 a2 a3

_mm_min_ps
__m128 _mm_min_ps(__m128 a, __m128 b);
Computes the minimum of the four single-precision FP values of a and b.

R0 R1 R2 R3

min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

_mm_max_ss
__m128 _mm_max_ss(__m128 a, __m128 b);
Computes the maximum of the lower single-precision FP values of a and b; the upper three single-precision
FP values are passed through from a.

R0 R1 R2 R3

max(a0, b0) a1 a2 a3

_mm_max_ps
__m128 _mm_max_ps(__m128 a, __m128 b);
Computes the maximum of the four single-precision FP values of a and b.

R0 R1 R2 R3

max(a0, b0) max(a1, b1) max(a2, b2) max(a3, b3)

Logical Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for logical operations are in the
xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in a register. This register is illustrated for each intrinsic
with R0-R3. R0, R1, R2, and R3 each represent one of the four 32-bit pieces of the result register.

Compiler Reference

1651

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_and_ps Bitwise AND ANDPS

_mm_andnot_ps Bitwise ANDNOT ANDNPS

_mm_or_ps Bitwise OR ORPS

_mm_xor_ps Bitwise Exclusive OR XORPS

_mm_and_ps
__m128 _mm_and_ps(__m128 a, __m128 b);
Computes the bitwise AND of the four SP FP values of a and b.

R0 R1 R2 R3

a0 & b0 a1 & b1 a2 & b2 a3 & b3

_mm_andnot_ps
__m128 _mm_andnot_ps(__m128 a, __m128 b);
Computes the bitwise AND-NOT of the four SP FP values of a and b.

R0 R1 R2 R3

~a0 & b0 ~a1 & b1 ~a2 & b2 ~a3 & b3

_mm_or_ps
__m128 _mm_or_ps(__m128 a, __m128 b);
Computes the bitwise OR of the four SP FP values of a and b.

R0 R1 R2 R3

a0 | b0 a1 | b1 a2 | b2 a3 | b3

_mm_xor_ps
__m128 _mm_xor_ps(__m128 a, __m128 b);
Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

R0 R1 R2 R3

a0 ^ b0 a1 ^ b1 a2 ^ b2 a3 ^ b3

Compare Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for comparison operations are in
the xmmintrin.h header file.

 Intel® C++ Compiler Classic Developer Guide and Reference

1652

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
Each comparison intrinsic performs a comparison of a and b. For the packed form, the four single-precision
FP values of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower single-
precision FP values of a and b are compared, and a 32-bit mask is returned; the upper three single-precision
FP values are passed through from a. The mask is set to 0xffffffff for each element where the
comparison is true and 0x0 where the comparison is false.

The results of each intrinsic operation are placed in a register. This register is illustrated for each intrinsic
with R or R0-R3. R0, R1, R2, and R3 each represent one of the four 32-bit pieces of the result register.

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_cmpeq_ss Equal CMPEQSS

_mm_cmpeq_ps Equal CMPEQPS

_mm_cmplt_ss Less Than CMPLTSS

_mm_cmplt_ps Less Than CMPLTPS

_mm_cmple_ss Less Than or Equal CMPLESS

_mm_cmple_ps Less Than or Equal CMPLEPS

_mm_cmpgt_ss Greater Than CMPLTSS

_mm_cmpgt_ps Greater Than CMPLTPS

_mm_cmpge_ss Greater Than or Equal CMPLESS

_mm_cmpge_ps Greater Than or Equal CMPLEPS

_mm_cmpneq_ss Not Equal CMPNEQSS

_mm_cmpneq_ps Not Equal CMPNEQPS

_mm_cmpnlt_ss Not Less Than CMPNLTSS

_mm_cmpnlt_ps Not Less Than CMPNLTPS

_mm_cmpnle_ss Not Less Than or Equal CMPNLESS

_mm_cmpnle_ps Not Less Than or Equal CMPNLEPS

_mm_cmpngt_ss Not Greater Than CMPNLTSS

_mm_cmpngt_ps Not Greater Than CMPNLTPS

_mm_cmpnge_ss Not Greater Than or Equal CMPNLESS

_mm_cmpnge_ps Not Greater Than or Equal CMPNLEPS

_mm_cmpord_ss Ordered CMPORDSS

_mm_cmpord_ps Ordered CMPORDPS

_mm_cmpunord_ss Unordered CMPUNORDSS

Compiler Reference

1653

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_cmpunord_ps Unordered CMPUNORDPS

_mm_comieq_ss Equal COMISS

_mm_comilt_ss Less Than COMISS

_mm_comile_ss Less Than or Equal COMISS

_mm_comigt_ss Greater Than COMISS

_mm_comige_ss Greater Than or Equal COMISS

_mm_comineq_ss Not Equal COMISS

_mm_ucomieq_ss Equal UCOMISS

_mm_ucomilt_ss Less Than UCOMISS

_mm_ucomile_ss Less Than or Equal UCOMISS

_mm_ucomigt_ss Greater Than UCOMISS

_mm_ucomige_ss Greater Than or Equal UCOMISS

_mm_ucomineq_ss Not Equal UCOMISS

_mm_cmpeq_ss
__m128 __cdecl _mm_cmpeq_ss(__m128 a, __m128 b);
Compares for equality.

R0 R1 R2 R3

(a0 == b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpeq_ps
__m128 _mm_cmpeq_ps(__m128 a, __m128 b);
Compares for equality.

R0 R1 R2 R3

(a0 == b0) ?
0xffffffff : 0x0

(a1 == b1) ?
0xffffffff : 0x0

(a2 == b2) ?
0xffffffff : 0x0

(a3 == b3) ?
0xffffffff : 0x0

_mm_cmplt_ss
__m128 _mm_cmplt_ss(__m128 a, __m128 b);
Compares for less-than.

 Intel® C++ Compiler Classic Developer Guide and Reference

1654

R0 R1 R2 R3

(a0 < b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmplt_ps
__m128 _mm_cmplt_ps(__m128 a, __m128 b);
Compares for less-than.

R0 R1 R2 R3

(a0 < b0) ?
0xffffffff : 0x0

(a1 < b1) ?
0xffffffff : 0x0

(a2 < b2) ?
0xffffffff : 0x0

(a3 < b3) ?
0xffffffff : 0x0

_mm_cmple_ss
__m128 _mm_cmple_ss(__m128 a, __m128 b);
Compares for less-than-or-equal.

R0 R1 R2 R3

(a0 <= b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmple_ps
__m128 _mm_cmple_ps(__m128 a, __m128 b);
Compares for less-than-or-equal.

R0 R1 R2 R3

(a0 <= b0) ?
0xffffffff : 0x0

(a1 <= b1) ?
0xffffffff : 0x0

(a2 <= b2) ?
0xffffffff : 0x0

(a3 <= b3) ?
0xffffffff : 0x0

_mm_cmpgt_ss
__m128 _mm_cmpgt_ss(__m128 a, __m128 b);
Compares for greater-than.

R0 R1 R2 R3

(a0 > b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpgt_ps
__m128 _mm_cmpgt_ps(__m128 a, __m128 b);
Compares for greater-than.

Compiler Reference

1655

R0 R1 R2 R3

(a0 > b0) ?
0xffffffff : 0x0

(a1 > b1) ?
0xffffffff : 0x0

(a2 > b2) ?
0xffffffff : 0x0

(a3 > b3) ?
0xffffffff : 0x0

_mm_cmpge_ss
__m128 _mm_cmpge_ss(__m128 a, __m128 b);
Compares for greater-than-or-equal.

R0 R1 R2 R3

(a0 >= b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpge_ps
__m128 _mm_cmpge_ps(__m128 a, __m128 b);
Compares for greater-than-or-equal.

R0 R1 R2 R3

(a0 >= b0) ?
0xffffffff : 0x0

(a1 >= b1) ?
0xffffffff : 0x0

(a2 >= b2) ?
0xffffffff : 0x0

(a3 >= b3) ?
0xffffffff : 0x0

_mm_cmpneq_ss
__m128 _mm_cmpneq_ss(__m128 a, __m128 b);
Compares for inequality.

R0 R1 R2 R3

(a0 != b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpneq_ps
__m128 _mm_cmpneq_ps(__m128 a, __m128 b);
Compares for inequality.

R0 R1 R2 R3

(a0 != b0) ?
0xffffffff : 0x0

(a1 != b1) ?
0xffffffff : 0x0

(a2 != b2) ?
0xffffffff : 0x0

(a3 != b3) ?
0xffffffff : 0x0

_mm_cmpnlt_ss
__m128 _mm_cmpnlt_ss(__m128 a, __m128 b);
Compares for not-less-than.

 Intel® C++ Compiler Classic Developer Guide and Reference

1656

R0 R1 R2 R3

!(a0 < b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpnlt_ps
__m128 _mm_cmpnlt_ps(__m128 a, __m128 b);
Compares for not-less-than.

R0 R1 R2 R3

!(a0 < b0) ?
0xffffffff : 0x0

!(a1 < b1) ?
0xffffffff : 0x0

!(a2 < b2) ?
0xffffffff : 0x0

!(a3 < b3) ?
0xffffffff : 0x0

_mm_cmpnle_ss
__m128 _mm_cmpnle_ss(__m128 a, __m128 b);
Compares for not-less-than-or-equal.

R0 R1 R2 R3

!(a0 <= b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpnle_ps
__m128 _mm_cmpnle_ps(__m128 a, __m128 b);
Compares for not-less-than-or-equal.

R0 R1 R2 R3

!(a0 <= b0) ?
0xffffffff : 0x0

!(a1 <= b1) ?
0xffffffff : 0x0

!(a2 <= b2) ?
0xffffffff : 0x0

!(a3 <= b3) ?
0xffffffff : 0x0

_mm_cmpngt_ss
__m128 _mm_cmpngt_ss(__m128 a, __m128 b);
Compares for not-greater-than.

R0 R1 R2 R3

!(a0 > b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpngt_ps
__m128 _mm_cmpngt_ps(__m128 a, __m128 b);
Compares for not-greater-than.

Compiler Reference

1657

R0 R1 R2 R3

!(a0 > b0) ?
0xffffffff : 0x0

!(a1 > b1) ?
0xffffffff : 0x0

!(a2 > b2) ?
0xffffffff : 0x0

!(a3 > b3) ?
0xffffffff : 0x0

_mm_cmpnge_ss
__m128 _mm_cmpnge_ss(__m128 a, __m128 b);
Compares for not-greater-than-or-equal.

R0 R1 R2 R3

!(a0 >= b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpnge_ps
__m128 _mm_cmpnge_ps(__m128 a, __m128 b);
Compares for not-greater-than-or-equal.

R0 R1 R2 R3

!(a0 >= b0) ?
0xffffffff : 0x0

!(a1 >= b1) ?
0xffffffff : 0x0

!(a2 >= b2) ?
0xffffffff : 0x0

!(a3 >= b3) ?
0xffffffff : 0x0

_mm_cmpord_ss
__m128 _mm_cmpord_ss(__m128 a, __m128 b);
Compares for ordered.

R0 R1 R2 R3

(a0 ord? b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpord_ps
__m128 _mm_cmpord_ps(__m128 a, __m128 b);
Compares for ordered.

R0 R1 R2 R3

(a0 ord? b0) ?
0xffffffff : 0x0

(a1 ord? b1) ?
0xffffffff : 0x0

(a2 ord? b2) ?
0xffffffff : 0x0

(a3 ord? b3) ?
0xffffffff : 0x0

_mm_cmpunord_ss
__m128 _mm_cmpunord_ss(__m128 a, __m128 b);
Compares for unordered.

 Intel® C++ Compiler Classic Developer Guide and Reference

1658

R0 R1 R2 R3

(a0 unord? b0) ?
0xffffffff : 0x0

a1 a2 a3

_mm_cmpunord_ps
__m128 _mm_cmpunord_ps(__m128 a, __m128 b);
Compares for unordered.

R0 R1 R2 R3

(a0 unord? b0) ?
0xffffffff : 0x0

(a1 unord? b1) ?
0xffffffff : 0x0

(a2 unord? b2) ?
0xffffffff : 0x0

(a3 unord? b3) ?
0xffffffff : 0x0

_mm_comieq_ss
int _mm_comieq_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise, 0
is returned.

R

(a0 == b0) ? 0x1 : 0x0

_mm_comilt_ss
int _mm_comilt_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise, 0 is
returned.

R

(a0 < b0) ? 0x1 : 0x0

_mm_comile_ss
int _mm_comile_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is
returned. Otherwise, 0 is returned.

R

(a0 <= b0) ? 0x1 : 0x0

_mm_comigt_ss
int _mm_comigt_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise, 0 is returned.

Compiler Reference

1659

R

(a0 > b0) ? 0x1 : 0x0

_mm_comige_ss
int _mm_comige_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or equal to b,
1 is returned. Otherwise, 0 is returned.

R

(a0 >= b0) ? 0x1 : 0x0

_mm_comineq_ss
int _mm_comineq_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise, 0 is returned.

R

(a0 != b0) ? 0x1 : 0x0

_mm_ucomieq_ss
int _mm_ucomieq_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise, 0
is returned.

R

(a0 == b0) ? 0x1 : 0x0

_mm_ucomilt_ss
int _mm_ucomilt_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise, 0 is
returned.

R

(a0 < b0) ? 0x1 : 0x0

_mm_ucomile_ss
int _mm_ucomile_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is
returned. Otherwise, 0 is returned.

 Intel® C++ Compiler Classic Developer Guide and Reference

1660

R

(a0 <= b0) ? 0x1 : 0x0

_mm_ucomigt_ss
int _mm_ucomigt_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a greater than b. If a is greater than or equal to b, 1 is
returned. Otherwise, 0 is returned.

R

(a0 > b0) ? 0x1 : 0x0

_mm_ucominge_ss
int _mm_ucomige_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or equal to b,
1 is returned. Otherwise, 0 is returned.

R

(a0 >= b0) ? 0x1 : 0x0

_mm_ucomineq_ss
int _mm_ucomineq_ss(__m128 a, __m128 b);
Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise, 0 is returned.

R

r := (a0 != b0) ? 0x1 : 0x0

Conversion Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for conversion operations are in
the xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in a register. This register is illustrated for each intrinsic
with R or R0-R3. R0, R1, R2, and R3 each represent one of the four 32-bit pieces of the result register.

Intrinsics marked with * are available only on Intel® 64 architecture. The rest of the intrinsics can be
implemented on both IA-32 and Intel® 64 architectures.

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_cvtss_si32 Convert to 32-bit integer CVTSS2SI

Compiler Reference

1661

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_cvtss_si64* Convert to 64-bit integer CVTSS2SI

_mm_cvtps_pi32 Convert to two 32-bit integers CVTPS2PI

_mm_cvttss_si32 Convert to 32-bit integer CVTTSS2SI

_mm_cvttss_si64* Convert to 64-bit integer CVTTSS2SI

_mm_cvttps_pi32 Convert to two 32-bit integers CVTTPS2PI

_mm_cvtsi32_ss Convert from 32-bit integer CVTSI2SS

_mm_cvtsi64_ss* Convert from 64-bit integer CVTSI2SS

_mm_cvtpi32_ps Convert from two 32-bit integers CVTTPI2PS

_mm_cvtpi16_ps Convert from four 16-bit integers composite

_mm_cvtpu16_ps Convert from four 16-bit integers composite

_mm_cvtpi8_ps Convert from four 8-bit integers composite

_mm_cvtpu8_ps Convert from four 8-bit integers composite

_mm_cvtpi32x2_ps Convert from four 32-bit integers composite

_mm_cvtps_pi16 Convert to four 16-bit integers composite

_mm_cvtps_pi8 Convert to four 8-bit integers composite

_mm_cvtss_f32 Extract composite

_mm_cvtss_si32
int _mm_cvtss_si32(__m128 a);
Converts the lower SP FP value of a to a 32-bit integer according to the current rounding mode.

R

(int)a0

_mm_cvtss_si64
__int64 _mm_cvtss_si64(__m128 a);
Converts the lower SP FP value of a to a 64-bit signed integer according to the current rounding mode.

NOTE
Use only on Intel® 64 architecture.

 Intel® C++ Compiler Classic Developer Guide and Reference

1662

R

(__int64)a0

_mm_cvtps_pi32
__m64 _mm_cvtps_pi32(__m128 a);
Converts the two lower SP FP values of a to two 32-bit integers according to the current rounding mode,
returning the integers in packed form.

R0 R1

(int)a0 (int)a1

_mm_cvttss_si32
int _mm_cvttss_si32(__m128 a);
Converts the lower SP FP value of a to a 32-bit integer with truncation.

R

(int)a0

_mm_cvttss_si64
__int64 _mm_cvttss_si64(__m128 a);
Converts the lower SP FP value of a to a 64-bit signed integer with truncation.

NOTE
Use only on Intel® 64 architecture.

R

(__int64)a0

_mm_cvttps_pi32
__m64 _mm_cvttps_pi32(__m128 a);
Converts the two lower SP FP values of a to two 32-bit integer with truncation, returning the integers in
packed form.

R0 R1

(int)a0 (int)a1

_mm_cvtsi32_ss
__m128 _mm_cvtsi32_ss(__m128 a, int b);

Compiler Reference

1663

Converts the 32-bit integer value b to an SP FP value; the upper three SP FP values are passed through from
a.

R0 R1 R2 R3

(float)b a1 a2 a3

_mm_cvtsi64_ss
__m128 _mm_cvtsi64_ss(__m128 a, __int64 b);
Converts the signed 64-bit integer value b to an SP FP value; the upper three SP FP values are passed
through from a.

NOTE
Use only on Intel® 64 architecture.

R0 R1 R2 R3

(float)b a1 a2 a3

_mm_cvtpi32_ps
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b);
Converts the two 32-bit integer values in packed form in b to two SP FP values; the upper two SP FP values
are passed through from a.

R0 R1 R2 R3

(float)b0 (float)b1 a2 a3

_mm_cvtpi16_ps
__m128 _mm_cvtpi16_ps(__m64 a);
Converts the four 16-bit signed integer values in a to four SP FP values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)a2 (float)a3

_mm_cvtpu16_ps
__m128 _mm_cvtpu16_ps(__m64 a);
Converts the four 16-bit unsigned integer values in a to four SP FP values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)a2 (float)a3

 Intel® C++ Compiler Classic Developer Guide and Reference

1664

_mm_cvtpi8_ps
__m128 _mm_cvtpi8_ps(__m64 a);
Converts the lower four 8-bit signed integer values in a to four SP FP values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)a2 (float)a3

_mm_cvtpu8_ps
__m128 _mm_cvtpu8_ps(__m64 a);
Converts the lower four 8-bit unsigned integer values in a to four SP FP values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)a2 (float)a3

_mm_cvtpi32x2_ps
__m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b);
Converts the two 32-bit signed integer values in a and the two 32-bit signed integer values in b to four SP FP
values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)b0 (float)b1

_mm_cvtps_pi16
__m64 _mm_cvtps_pi16(__m128 a);
Converts the four SP FP values in a to four signed 16-bit integer values.

R0 R1 R2 R3

(short)a0 (short)a1 (short)a2 (short)a3

_mm_cvtps_pi8
__m64 _mm_cvtps_pi8(__m128 a);
Converts the four SP FP values in a to the lower four signed 8-bit integer values of the result.

R0 R1 R2 R3

(char)a0 (char)a1 (char)a2 (char)a3

_mm_cvtss_f32
float _mm_cvtss_f32(__m128 a);
Extracts a SP floating-point value from the first vector element of an __m128. It does so in the most efficient
manner possible in the context used.

Compiler Reference

1665

Load Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for load operations are in the
xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in a register. This register is illustrated for each intrinsic
with R0-R3. R0, R1, R2, and R3 each represent one of the four 32-bit pieces of the result register.

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_loadh_pi Load high MOVHPS reg, mem

_mm_loadl_pi Load low MOVLPS reg, mem

_mm_load_ss Load the low value and clear the
three high values

MOVSS

_mm_load1_ps Load one value into all four
words

MOVSS + Shuffling

_mm_load_ps Load four values, address aligned MOVAPS

_mm_loadu_ps Load four values, address
unaligned

MOVUPS

_mm_loadr_ps Load four values in reverse MOVAPS + Shuffling

_mm_loadh_pi
__m128 _mm_loadh_pi(__m128 a, __m64 const *p);
Sets the upper two SP FP values with 64 bits of data loaded from the address p; the lower two values are
passed through from a.

R0 R1 R2 R3

a0 a1 *p0 *p1

_mm_loadl_pi
__m128 _mm_loadl_pi(__m128 a, __m64 const *p);
Sets the lower two SP FP values with 64 bits of data loaded from the address p; the upper two values are
passed through from a.

R0 R1 R2 R3

a0 a1 *p0 *p1

R0 R1 R2 R3

*p0 *p1 a2 a3

 Intel® C++ Compiler Classic Developer Guide and Reference

1666

_mm_load_ss
__m128 _mm_load_ss(float * p);
Loads a SP FP value into the low word and clears the upper three words.

R0 R1 R2 R3

*p 0.0 0.0 0.0

_mm_load1_ps
__m128 _mm_load1_ps(float * p);
Loads a SP FP value, copying it into all four words.

R0 R1 R2 R3

*p *p *p *p

_mm_load_ps
__m128 _mm_load_ps(float * p);
Loads four SP FP values. The address must be 16-byte-aligned.

R0 R1 R2 R3

p[0] p[1] p[2] p[3]

_mm_loadu_ps
__m128 _mm_loadu_ps(float * p);
Loads four SP FP values. The address need not be 16-byte-aligned.

R0 R1 R2 R3

p[0] p[1] p[2] p[3]

_mm_loadr_ps
__m128 _mm_loadr_ps(float * p);
Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

R0 R1 R2 R3

p[3] p[2] p[1] p[0]

Set Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for set operations are in the
xmmintrin.h header file.

Compiler Reference

1667

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R0, R1, R2, and R3
represent the registers in which results are placed.

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_set_ss Set the low value and clear the
three high values

Composite

_mm_set1_ps Set all four words with the same
value

Composite

_mm_set_ps Set four values, address aligned Composite

_mm_setr_ps Set four values, in reverse order Composite

_mm_setzero_ps Clear all four values Composite

_mm_set_ss
__m128 _mm_set_ss(float w);
Sets the low word of a SP FP value to w and clears the upper three words.

R0 R1 R2 R3

w 0.0 0.0 0.0

_mm_set1_ps
__m128 _mm_set1_ps(float w);
Sets the four SP FP values to w.

R0 R1 R2 R3

w w w w

_mm_set_ps
__m128 _mm_set_ps(float z, float y, float x, float w);
Sets the four SP FP values to the inputs w, x, y, and z.

R0 R1 R2 R3

w x y z

_mm_setr_ps
__m128 _mm_setr_ps(float z, float y, float x, float w);
Sets the four SP FP values to the inputs w, x, y, and z in reverse order.

 Intel® C++ Compiler Classic Developer Guide and Reference

1668

R0 R1 R2 R3

z y x w

_mm_setzero_ps
__m128 _mm_setzero_ps(void);
Clears the four SP FP values.

R0 R1 R2 R3

0.0 0.0 0.0 0.0

Store Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for store operations are in the
xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The description for each intrinsic contains a table detailing the returns. In these tables, p[n] is an access to
the n element of the result.

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_storeh_pi Store high MOVHPS mem, reg

_mm_storel_pi Store low MOVLPS mem, reg

_mm_store_ss Store the low value MOVSS

_mm_store1_ps Store the low value across all
four words, address aligned

Shuffling + MOVSS

_mm_store_ps Store four values, address
aligned

MOVAPS

_mm_storeu_ps Store four values, address
unaligned

MOVUPS

_mm_storer_ps Store four values, in reverse
order

MOVAPS + Shuffling

_mm_storeh_pi
void _mm_storeh_pi(__m64 *p, __m128 a);
Stores the upper two SP FP values to the address p.

*p0 *p1

a2 a3

Compiler Reference

1669

_mm_storel_pi
void _mm_storel_pi(__m64 *p, __m128 a);
Stores the lower two SP FP values of a to the address p.

*p0 *p1

a0 a1

_mm_store_ss
void _mm_store_ss(float * p, __m128 a);
Stores the lower SP FP value.

*p

a0

_mm_store1_ps
void _mm_store1_ps(float * p, __m128 a);
Stores the lower SP FP value across four words.

p[0] p[1] p[2] p[3]

a0 a0 a0 a0

_mm_store_ps
void _mm_store_ps(float *p, __m128 a);
Stores four SP FP values. The address must be 16-byte-aligned.

p[0] p[1] p[2] p[3]

a0 a1 a2 a3

_mm_storeu_ps
void _mm_storeu_ps(float *p, __m128 a);
Stores four SP FP values. The address need not be 16-byte-aligned.

p[0] p[1] p[2] p[3]

a0 a1 a2 a3

_mm_storer_ps
void _mm_storer_ps(float * p, __m128 a);
Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

 Intel® C++ Compiler Classic Developer Guide and Reference

1670

p[0] p[1] p[2] p[3]

a3 a2 a1 a0

Cacheability Support Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for cacheability support are in
the xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_prefetch Load PREFETCH

_mm_stream_pi Store MOVNTQ

_mm_stream_ps Store MOVNTPS

_mm256_stream_ps Store VMOVNTPS

_mm_sfence Store fence SFENCE

_mm_prefetch
void _mm_prefetch(char const*a, int sel);
Loads one cache line of data from address a to a location "closer" to the processor. The value sel specifies
the type of prefetch operation: the constants _MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2, _MM_HINT_NTA,
and _MM_HINT_ET0 should be used for systems based on IA-32 architecture, and correspond to the type of
prefetch instruction.

NOTE
The _MM_HINT_ET0 hint lowers the intrinsic being to the instruction PREFETCHW, which is not included
in Intel® SSE instructions. Check if the target CPU supports the PREFETCHW instruction before using
_MM_HINT_ET0.

_mm_stream_pi
void _mm_stream_pi(__m64 *p, __m64 a);
Stores the data in a to the address p without polluting the caches. This intrinsic requires you to empty the
multimedia state for the MMX™ register. See the topic The EMMS Instruction: Why You Need It.

_mm_stream_ps
void _mm_stream_ps(float *p, __m128 a);
Stores the data in a to the address p without polluting the caches. The address must be 16-byte-aligned.

Compiler Reference

1671

_mm256_stream_ps
void _mm256_stream_ps(float *p, __m256 a);
Stores the data in a to the address p without polluting the caches. The address must be 32-byte (VEX.256
encoded version) aligned.

_mm_sfence
void _mm_sfence(void);
Guarantees that every preceding store is globally visible before any subsequent store.

See Also
The EMMS Instruction: Why You Need It

Integer Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for integer operations are in the
xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, R1, ..., R7 represent
the registers in which results are placed.

Before using these intrinsics, you must empty the multimedia state for the MMX™ technology register. See
The EMMS Instruction: Why You Need It for more details.

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_extract_pi16 Extract one of four words PEXTRW

_mm_insert_pi16 Insert word PINSRW

_mm_max_pi16 Compute maximum PMAXSW

_mm_max_pu8 Compute maximum, unsigned PMAXUB

_mm_min_pi16 Compute minimum PMINSW

_mm_min_pu8 Compute minimum, unsigned PMINUB

_mm_movemask_pi8 Create eight-bit mask PMOVMSKB

_mm_mulhi_pu16 Multiply, return high bits PMULHUW

_mm_shuffle_pi16 Return a combination of four
words

PSHUFW

_mm_maskmove_si64 Conditional Store MASKMOVQ

_mm_avg_pu8 Compute rounded average PAVGB

_mm_avg_pu16 Compute rounded average PAVGW

 Intel® C++ Compiler Classic Developer Guide and Reference

1672

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_sad_pu8 Compute sum of absolute
differences

PSADBW

_mm_extract_pi16
int _mm_extract_pi16(__m64 a, int n);
Extracts one of the four words of a. The selector n must be an immediate.

R

(n==0) ? a0 : ((n==1) ? a1 : ((n==2) ? a2 : a3))

_mm_insert_pi16
__m64 _mm_insert_pi16(__m64 a, int d, int n);
Inserts word d into one of four words of a. The selector n must be an immediate.

R0 R1 R2 R3

(n==0) ? d : a0; (n==1) ? d : a1; (n==2) ? d : a2; (n==3) ? d : a3;

_mm_max_pi16
__m64 _mm_max_pi16(__m64 a, __m64 b);
Computes the element-wise maximum of the words in a and b.

R0 R1 R2 R3

min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

_mm_max_pu8
__m64 _mm_max_pu8(__m64 a, __m64 b);
Computes the element-wise maximum of the unsigned bytes in a and b.

R0 R1 ... R7

min(a0, b0) min(a1, b1) ... min(a7, b7)

_mm_min_pi16
__m64 _mm_min_pi16(__m64 a, __m64 b);
Computes the element-wise minimum of the words in a and b.

R0 R1 R2 R3

min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

Compiler Reference

1673

_mm_min_pu8
__m64 _mm_min_pu8(__m64 a, __m64 b);
Computes the element-wise minimum of the unsigned bytes in a and b.

R0 R1 ... R7

min(a0, b0) min(a1, b1) ... min(a7, b7)

_mm_movemask_pi8
__m64 _mm_movemask_pi8(__m64 b);
Creates an 8-bit mask from the most significant bits of the bytes in a.

R

sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

_mm_mulhi_pu16
__m64 _mm_mulhi_pu16(__m64 a, __m64 b);
Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit intermediate results.

R0 R1 R2 R3

hiword(a0 * b0) hiword(a1 * b1) hiword(a2 * b2) hiword(a3 * b3)

_mm_shuffle_pi16
__m64 _mm_shuffle_pi16(__m64 a, int n);
Returns a combination of the four words of a. The selector n must be an immediate.

R0 R1 R2 R3

word (n&0x3) of a word ((n>>2)&0x3)
of a

word ((n>>4)&0x3)
of a

word ((n>>6)&0x3)
of a

_mm_maskmove_si64
void _mm_maskmove_si64(__m64 d, __m64 n, char *p);
Conditionally stores byte elements of d to address p. The high bit of each byte in the selector p determines
whether the corresponding byte in d will be stored.

if (sign(n0)) if (sign(n1)) ... if (sign(n7))

p[0] := d0 p[1] := d1 ... p[7] := d7

_mm_avg_pu8
__m64 _mm_avg_pu8(__m64 a, __m64 b);
Computes the (rounded) averages of the unsigned bytes in a and b.

 Intel® C++ Compiler Classic Developer Guide and Reference

1674

R0 R1 ... R7

(t >> 1) | (t &
0x01), where t =
(unsigned char)a0 +
(unsigned char)b0

(t >> 1) | (t &
0x01), where t =
(unsigned char)a1 +
(unsigned char)b1

... ((t >> 1) | (t &
0x01)), where t =
(unsigned char)a7 +
(unsigned char)b7

_mm_avg_pu16
__m64 _mm_avg_pu16(__m64 a, __m64 b);
Computes the (rounded) averages of the unsigned short in a and b.

R0 R1 ... R7

(t >> 1) | (t &
0x01), where t =
(unsigned int)a0 +
(unsigned int)b0

(t >> 1) | (t &
0x01), where t =
(unsigned int)a1 +
(unsigned int)b1

... (t >> 1) | (t &
0x01), where t =
(unsigned int)a7 +
(unsigned int)b7

_mm_sad_pu8
__m64 _mm_sad_pu8(__m64 a, __m64 b);
Computes the sum of the absolute differences of the unsigned bytes in a and b, returning the value in the
lower word. The upper three words are cleared.

R0 R1 R2 R3

abs(a0-b0) +... +
abs(a7-b7)

0 0 0

Intrinsics to Read and Write Registers
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics to read from and write to
registers are in the xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_getcsr Return control register STMXCSR

_mm_setcsr Set control register LDMXCSR

_mm_getcsr
unsigned int _mm_getcsr(void);
Returns the contents of the control register.

Compiler Reference

1675

_mm_setcsr
void _mm_setcsr(unsigned int i);
Sets the control register to the value specified by i.

Miscellaneous Intrinsics
The prototypes for Intel® Streaming SIMD Extensions (Intel® SSE) intrinsics for miscellaneous operations are
in the xmmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The results of each intrinsic operation are placed in registers. The information about what is placed in each
register appears in the tables below, in the detailed explanation of each intrinsic. R, R0, R1, R2, and R3
represent the registers in which results are placed.

Intrinsic Name Operation Corresponding
Intel® SSE Instruction

_mm_shuffle_ps Shuffle SHUFPS

_mm_unpackhi_ps Unpack High UNPCKHPS

_mm_unpacklo_ps Unpack Low UNPCKLPS

_mm_move_ss Set low word, pass in three high
values

MOVSS

_mm_movehl_ps Move High to Low MOVHLPS

_mm_movelh_ps Move Low to High MOVLHPS

_mm_movemask_ps Create four-bit mask MOVMSKPS

_mm_undefined_ps Return vector of type __m128
with undefined elements.

This is a utility intrinsic that
returns some arbitrary value.

_mm_shuffle_ps
__m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8);
Selects four specific SP FP values from a and b, based on the mask imm8. The mask must be an immediate.
See Macro Function for Shuffle Using Intel® Streaming SIMD Extensions for a description of the shuffle
semantics.

_mm_unpackhi_ps
__m128 _mm_unpackhi_ps(__m128 a, __m128 b);
Selects and interleaves the upper two SP FP values from a and b.

R0 R1 R2 R3

a2 b2 a3 b3

 Intel® C++ Compiler Classic Developer Guide and Reference

1676

_mm_unpacklo_ps
__m128 _mm_unpacklo_ps(__m128 a, __m128 b);
Selects and interleaves the lower two SP FP values from a and b.

R0 R1 R2 R3

a0 b0 a1 b1

_mm_move_ss
__m128 _mm_move_ss(__m128 a, __m128 b);
Sets the low word to the SP FP value of b. The upper three SP FP values are passed through from a.

R0 R1 R2 R3

b0 a1 a2 a3

_mm_movehl_ps
__m128 _mm_movehl_ps(__m128 a, __m128 b);
Moves the upper two SP FP values of b to the lower two SP FP values of the result. The upper two SP FP
values of a are passed through to the result.

R0 R1 R2 R3

b2 b3 a2 a3

_mm_movelh_ps
__m128 _mm_movelh_ps(__m128 a, __m128 b);
Moves the lower two SP FP values of b to the upper two SP FP values of the result. The lower two SP FP
values of a are passed through to the result.

R0 R1 R2 R3

a0 a1 b0 b1

_mm_movemask_ps
int _mm_movemask_ps(__m128 a);
Creates a 4-bit mask from the most significant bits of the four SP FP values.

R

sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)

_mm_undefined_ps
extern __m128 _mm_undefined_ps(void);

Compiler Reference

1677

Returns a vector of four single precision floating point elements. The content of the vector is not specified.
The result is usually used as an argument to another intrinsic that requires all operands to be initialized, and
when the content of a particular argument does not matter. This intrinsic is declared in the immintrin.h
header file. It typically maps to a read of some XMM register and gets whatever value happens to live in that
register at the time of the read.

For example, you can use such an intrinsic when you need to calculate a sum of packed double-precision
floating-point values located in the xmm register.

See Also
Macro Function for Shuffle Using Intel® Streaming SIMD Extensions
_mm256_undefined_ps() Returns a vector of eight single precision floating point elements. No
corresponding Intel® AVX instruction.

Macro Functions

Macro Function for Shuffle Operations

Intel® Streaming SIMD Extensions (Intel® SSE) provide a macro function to help create constants that
describe shuffle operations. The macro takes four small integers (in the range of 0 to 3) and combines them
into an 8-bit immediate value used by the SHUFPS instruction.

Shuffle Function Macro

You can view the four integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

Macro Functions to Read and Write Control Registers

The following macro functions enable you to read and write bits to and from the control register.

 Intel® C++ Compiler Classic Developer Guide and Reference

1678

Exception State Macros Macro Arguments

_MM_SET_EXCEPTION_STATE(x) _MM_EXCEPT_INVALID

_MM_GET_EXCEPTION_STATE() _MM_EXCEPT_DIV_ZERO

_MM_EXCEPT_DENORM

Macro Definitions

Write to and read from the six least significant
control register bits, respectively.

_MM_EXCEPT_OVERFLOW

_MM_EXCEPT_UNDERFLOW

_MM_EXCEPT_INEXACT

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

Exception Mask Macros Macro Arguments

_MM_SET_EXCEPTION_MASK(x) _MM_MASK_INVALID

_MM_GET_EXCEPTION_MASK () _MM_MASK_DIV_ZERO

_MM_MASK_DENORM

Macro Definitions

Write to and read from bit 7 – 12 control register
bits, respectively.

NOTE
All six exception mask bits are always affected.
Bits not set explicitly are cleared.

_MM_MASK_OVERFLOW

_MM_MASK_UNDERFLOW

_MM_MASK_INEXACT

To mask the overflow and underflow exceptions and unmask all other exceptions, use the macros as follows:

_MM_SET_EXCEPTION_MASK(MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW)

The following table lists the macros to set and get rounding modes, and the macro arguments that can be
passed with the macros.

Compiler Reference

1679

Rounding Mode Macro Arguments

_MM_SET_ROUNDING_MODE(x) _MM_ROUND_NEAREST

_MM_GET_ROUNDING_MODE() _MM_ROUND_DOWN

Macro Definition

Write to and read from bits 13 and 14 of the control
register.

_MM_ROUND_UP

_MM_ROUND_TOWARD_ZERO

To test the rounding mode for round toward zero, use the _MM_ROUND_TOWARD_ZERO macro as follows.

if (_MM_GET_ROUNDING_MODE() == _MM_ROUND_TOWARD_ZERO) {
/* Rounding mode is round toward zero */
}

The following table lists the macros to set and get the flush-to-zero mode and the macro arguments that can
be used.

Flush-to-Zero Mode Macro Arguments

_MM_SET_FLUSH_ZERO_MODE(x) _MM_FLUSH_ZERO_ON

_MM_GET_FLUSH_ZERO_MODE() _MM_FLUSH_ZERO_OFF

Macro Definition

Write to and read from bit 15 of the control register.

To disable the flush-to-zero mode, use the _MM_FLUSH_ZERO_OFF macro.

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF)

See Also
Intrinsics to Read and Write Registers

Macro Function for Matrix Transposition

Intel® Streaming SIMD Extensions (Intel® SSE) provide the following macro function to transpose a 4 by 4
matrix of single precision floating point values.

_MM_TRANSPOSE4_PS(row0, row1, row2, row3)
The arguments row0, row1, row2, and row3 are __m128 values whose elements form the corresponding
rows of a 4 by 4 matrix. The matrix transposition is returned in arguments row0, row1, row2, and row3
where row0 now holds column 0 of the original matrix, row1 now holds column 1 of the original matrix, and
so on.

The transposition function of this macro is illustrated in the figure below.

 Intel® C++ Compiler Classic Developer Guide and Reference

1680

Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

Intrinsics for MMX™ Technology
MMX™ technology is an extension to the Intel® architecture instruction set. The MMX™ instruction set adds 57
opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each of the eight registers can be
directly addressed using the register names MM0 to MM7.

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Details about MMX™ Technology Intrinsics
The MMX™ technology instructions use the following features:

• Registers – Enable packed data of up to 128 bits in length for optimal single-instruction multiple data
(SIMD) processing.

• Data Types – Enable packing of up to 16 elements of data in one register.

Registers
The MMX™ instructions use eight 64-bit registers (mm0 to mm7) which are aliased on the floating-point stack
registers.

Because each of these registers can hold more than one data element, the processor can process more than
one data element simultaneously. This processing capability is also known as single-instruction multiple data
(SIMD) processing.

For each computational and data manipulation instruction in the new extension sets, there is a corresponding
C intrinsic that implements that instruction directly. This frees you from managing registers and assembly
programming. Further, the compiler optimizes the instruction scheduling so that your executable runs faster.

Data Types
Intrinsic functions use four new C data types as operands, representing the new registers that are used as
the operands to these intrinsic functions.

Compiler Reference

1681

__m64 Data Type
The __m64 data type is used to represent the contents of an MMX™ register, which is the register that is used
by the MMX™ technology intrinsics. The __m64 data type can hold eight 8-bit values, four 16-bit values, two
32-bit values, or one 64-bit value.

Data Types Usage Guidelines
These data types are not basic ANSI C data types. You must observe the following usage restrictions:

• Use data types only on either side of an assignment, as a return value, or as a parameter. You cannot use
it with other arithmetic expressions (+, -, etc).

• Use data types as objects in aggregates, such as unions, to access the byte elements and structures.
• Use data types only with the respective intrinsics described in this documentation.

The EMMS Instruction: Why You Need It
Using EMMS is like emptying a container to accommodate new content. The EMMS instruction clears the
MMX™ registers and sets the value of the floating-point tag word to empty.

You should clear the MMX™ registers before issuing a floating-point instruction because floating-point
convention specifies that the floating-point stack be cleared after use. Insert the EMMS instruction at the end
of all MMX™ code segments to avoid a floating-point overflow exception.

Why You Need EMMS to Reset After an MMX™ Instruction

 Intel® C++ Compiler Classic Developer Guide and Reference

1682

Caution
Failure to empty the multimedia state after using an MMX™ technology instruction and before using a
floating-point instruction can result in unexpected execution or poor performance.

EMMS Usage Guidelines
Here are guidelines for when to use the EMMS instruction:

• Use _mm_empty() after an MMX™ instruction if the next instruction is a floating-point (FP) instruction. For
example, you should use the EMMS instruction before performing calculations on float, double or long
double. You must be aware of all situations in which your code generates an MMX™ instruction:

• when using an MMX™ technology intrinsic
• when using Intel® Streaming SIMD Extensions (Intel® SSE) integer intrinsics that use the __m64 data

type
• when referencing an __m64 data type variable
• when using an MMX™ instruction through inline assembly

• Use different functions for operations that use floating point instructions and those that use MMX™
instructions. This action eliminates the need to empty the multimedia state within the body of a critical
loop.

• Use _mm_empty() during runtime initialization of __m64 and FP data types. This ensures resetting the
register between data type transitions.

• Do not use _mm_empty() before an MMX™ instruction, since using _mm_empty() before an MMX™
instruction incurs an operation with no benefit (no-op).

• See the Correct Usage and Incorrect Usage coding examples in the following table.

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z);

float f = init();

__m64 x = _m_paddd(y, z);

float f = (_mm_empty(), init());

General Support Intrinsics (MMX™ technology)
This topic summarizes the MMX™ technology general support intrinsics.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
MMX™ Instruction

_mm_empty Empty MM state EMMS

_mm_cvtsi32_si64 Convert from int MOVD

_mm_cvtsi64_si32 Convert to int MOVD

_mm_cvtsi64_m64 Convert from __int64 MOVQ

_mm_cvtm64_si64 Convert to __int64 MOVQ

_mm_packs_pi16 Pack PACKSSWB

Compiler Reference

1683

Intrinsic Name Operation Corresponding
MMX™ Instruction

_mm_packs_pi32 Pack PACKSSDW

_mm_packs_pu16 Pack PACKUSWB

_mm_unpackhi_pi8 Interleave PUNPCKHBW

_mm_unpackhi_pi16 Interleave PUNPCKHWD

_mm_unpackhi_pi32 Interleave PUNPCKHDQ

_mm_unpacklo_pi8 Interleave PUNPCKLBW

_mm_unpacklo_pi16 Interleave PUNPCKLWD

_mm_unpacklo_pi32 Interleave PUNPCKLDQ

_mm_empty
void _mm_empty(void);
Empties the multimedia state.

_mm_cvtsi32_si64
__m64 _mm_cvtsi32_si64(int i);
Converts the integer object i to a 64-bit __m64 object. The integer value is zero-extended to 64 bits.

_mm_cvtsi64_si32
int _mm_cvtsi64_si32(__m64 m);
Converts the lower 32 bits of the __m64 object m to an integer.

_mm_cvtsi64_m64
__m64 _mm_cvtsi64_m64(__int64 i);
Moves the 64-bit integer object i to a __m64 object

_mm_cvtm64_si64
__m64 _mm_cvtm64_si64(__m64 m);
Moves the __m64 object m to a 64-bit integer

_mm_packs_pi16
__m64 _mm_packs_pi16(__m64 m1, __m64 m2);
Packs the four 16-bit values from m1 into the lower four 8-bit values of the result with signed saturation, and
pack the four 16-bit values from m2 into the upper four 8-bit values of the result with signed saturation.

_mm_packs_pi32
__m64 _mm_packs_pi32(__m64 m1, __m64 m2);

 Intel® C++ Compiler Classic Developer Guide and Reference

1684

Packs the two 32-bit values from m1 into the lower two 16-bit values of the result with signed saturation,
and pack the two 32-bit values from m2 into the upper two 16-bit values of the result with signed saturation.

_mm_packs_pu16
__m64 _mm_packs_pu16(__m64 m1, __m64 m2);
Packs the four 16-bit values from m1 into the lower four 8-bit values of the result with unsigned saturation,
and pack the four 16-bit values from m2 into the upper four 8-bit values of the result with unsigned
saturation.

_mm_unpackhi_pi8
__m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2);
Interleaves the four 8-bit values from the high half of m1 with the four values from the high half of m2. The
interleaving begins with the data from m1.

_mm_unpackhi_pi16
__m64 _mm_unpackhi_pi16(__m64 m1, __m64 m2);
Interleaves the two 16-bit values from the high half of m1 with the two values from the high half of m2. The
interleaving begins with the data from m1.

_mm_unpackhi_pi32
__m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2);
Interleaves the 32-bit value from the high half of m1 with the 32-bit value from the high half of m2. The
interleaving begins with the data from m1.

_mm_unpacklo_pi8
__m64 _mm_unpacklo_pi8(__m64 m1, __m64 m2);
Interleaves the four 8-bit values from the low half of m1 with the four values from the low half of m2. The
interleaving begins with the data from m1.

_mm_unpacklo_pi16
__m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2);
Interleaves the two 16-bit values from the low half of m1 with the two values from the low half of m2. The
interleaving begins with the data from m1.

_mm_unpacklo_pi32
__m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2);
Interleaves the 32-bit value from the low half of m1 with the 32-bit value from the low half of m2. The
interleaving begins with the data from m1.

Packed Arithmetic Intrinsics (MMX™ technology)
This topic summarizes the MMX™ technology packed arithmetic intrinsics.

Compiler Reference

1685

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
MMX™ Instruction

_mm_add_pi8 Addition PADDB

_mm_add_pi16 Addition PADDW

_mm_add_pi32 Addition PADDD

_mm_adds_pi8 Addition PADDSB

_mm_adds_pi16 Addition PADDSW

_mm_adds_pu8 Addition PADDUSB

_mm_adds_pu16 Addition PADDUSW

_mm_sub_pi8 Subtraction PSUBB

_mm_sub_pi16 Subtraction PSUBW

_mm_sub_pi32 Subtraction PSUBD

_mm_subs_pi8 Subtraction PSUBSB

_mm_subs_pi16 Subtraction PSUBSW

_mm_subs_pu8 Subtraction PSUBUSB

_mm_subs_pu16 Subtraction PSUBUSW

_mm_madd_pi16 Multiply and add PMADDWD

_mm_mulhi_pi16 Multiplication PMULHW

_mm_mullo_pi16 Multiplication PMULLW

_mm_add_pi8
__m64 _mm_add_pi8(__m64 m1, __m64 m2);
Add the eight 8-bit values in m1 to the eight 8-bit values in m2.

_mm_add_pi16
__m64 _mm_add_pi16(__m64 m1, __m64 m2);
Add the four 16-bit values in m1 to the four 16-bit values in m2.

_mm_add_pi32
__m64 _mm_add_pi32(__m64 m1, __m64 m2);
Add the two 32-bit values in m1 to the two 32-bit values in m2.

 Intel® C++ Compiler Classic Developer Guide and Reference

1686

_mm_adds_pi8
__m64 _mm_adds_pi8(__m64 m1, __m64 m2);
Add the eight signed 8-bit values in m1 to the eight signed 8-bit values in m2 using saturating arithmetic.

_mm_adds_pi16
__m64 _mm_adds_pi16(__m64 m1, __m64 m2);
Add the four signed 16-bit values in m1 to the four signed 16-bit values in m2 using saturating arithmetic.

_mm_adds_pu8
__m64 _mm_adds_pu8(__m64 m1, __m64 m2);
Add the eight unsigned 8-bit values in m1 to the eight unsigned 8-bit values in m2 and using saturating
arithmetic.

_mm_adds_pu16
__m64 _mm_adds_pu16(__m64 m1, __m64 m2);
Add the four unsigned 16-bit values in m1 to the four unsigned 16-bit values in m2 using saturating
arithmetic.

_mm_sub_pi8
__m64 _mm_sub_pi8(__m64 m1, __m64 m2);
Subtract the eight 8-bit values in m2 from the eight 8-bit values in m1.

_mm_sub_pi16
__m64 _mm_sub_pi16(__m64 m1, __m64 m2);
Subtract the four 16-bit values in m2 from the four 16-bit values in m1.

_mm_sub_pi32
__m64 _mm_sub_pi32(__m64 m1, __m64 m2);
Subtract the two 32-bit values in m2 from the two 32-bit values in m1.

_mm_subs_pi8
__m64 _mm_subs_pi8(__m64 m1, __m64 m2);
Subtract the eight signed 8-bit values in m2 from the eight signed 8-bit values in m1 using saturating
arithmetic.

_mm_subs_pi16
__m64 _mm_subs_pi16(__m64 m1, __m64 m2);
Subtract the four signed 16-bit values in m2 from the four signed 16-bit values in m1 using saturating
arithmetic.

Compiler Reference

1687

_mm_subs_pu8
__m64 _mm_subs_pu8(__m64 m1, __m64 m2);
Subtract the eight unsigned 8-bit values in m2 from the eight unsigned 8-bit values in m1 using saturating
arithmetic.

_mm_subs_pu16
__m64 _mm_subs_pu16(__m64 m1, __m64 m2);
Subtract the four unsigned 16-bit values in m2 from the four unsigned 16-bit values in m1 using saturating
arithmetic.

_mm_madd_pi16
__m64 _mm_madd_pi16(__m64 m1, __m64 m2);
Multiply four 16-bit values in m1 by four 16-bit values in m2 producing four 32-bit intermediate results,
which are then summed by pairs to produce two 32-bit results.

_mm_mulhi_pi16
__m64 _mm_mulhi_pi16(__m64 m1, __m64 m2);
Multiply four signed 16-bit values in m1 by four signed 16-bit values in m2 and produce the high 16 bits of
the four results.

_mm_mullo_pi16
__m64 _mm_mullo_pi16(__m64 m1, __m64 m2);
Multiply four 16-bit values in m1 by four 16-bit values in m2 and produce the low 16 bits of the four results.

Shift Intrinsics (MMX™ technology)
This topic summarizes the MMX™ technology shift intrinsics.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
MMX™ Instruction

_mm_sll_pi16 Logical shift left PSLLW

_mm_slli_pi16 Logical shift left PSLLWI

_mm_sll_pi32 Logical shift left PSLLD

_mm_slli_pi32 Logical shift left PSLLDI

_mm_sll_pi64 Logical shift left PSLLQ

_mm_slli_pi64 Logical shift left PSLLQI

_mm_sra_pi16 Arithmetic shift right PSRAW

_mm_srai_pi16 Arithmetic shift right PSRAWI

 Intel® C++ Compiler Classic Developer Guide and Reference

1688

Intrinsic Name Operation Corresponding
MMX™ Instruction

_mm_sra_pi32 Arithmetic shift right PSRAD

_mm_srai_pi32 Arithmetic shift right PSRADI

_mm_srl_pi16 Logical shift right PSRLW

_mm_srli_pi16 Logical shift right PSRLWI

_mm_srl_pi32 Logical shift right PSRLD

_mm_srli_pi32 Logical shift right PSRLDI

_mm_srl_pi64 Logical shift right PSRLQ

_mm_srli_pi64 Logical shift right PSRLQI

_mm_sll_pi16
__m64 _mm_sll_pi16(__m64 m, __m64 count);
Shifts four 16-bit values in m left the amount specified by count while shifting in zeros.

_mm_slli_pi16
__m64 _mm_slli_pi16(__m64 m, int count);
Shifts four 16-bit values in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

_mm_sll_pi32
__m64 _mm_sll_pi32(__m64 m, __m64 count);
Shifts two 32-bit values in m left the amount specified by count while shifting in zeros.

_mm_slli_pi32
__m64 _mm_slli_pi32(__m64 m, int count);
Shifts two 32-bit values in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

_mm_sll_pi64
__m64 _mm_sll_pi64(__m64 m, __m64 count);
Shifts the 64-bit value in m left the amount specified by count while shifting in zeros.

_mm_slli_pi64
__m64 _mm_slli_pi64(__m64 m, int count);
Shifts the 64-bit value in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

Compiler Reference

1689

_mm_sra_pi16
__m64 _mm_sra_pi16(__m64 m, __m64 count);
Shifts four 16-bit values in m right the amount specified by count while shifting in the sign bit.

_mm_srai_pi16
__m64 _mm_srai_pi16(__m64 m, int count);
Shifts four 16-bit values in m right the amount specified by count while shifting in the sign bit. For the best
performance, count should be a constant.

_mm_sra_pi32
__m64 _mm_sra_pi32(__m64 m, __m64 count);
Shifts two 32-bit values in m right the amount specified by count while shifting in the sign bit.

_mm_srai_pi32
__m64 _mm_srai_pi32(__m64 m, int count);
Shifts two 32-bit values in m right the amount specified by count while shifting in the sign bit. For the best
performance, count should be a constant.

_mm_srl_pi16
__m64 _mm_srl_pi16(__m64 m, __m64 count);
Shifts four 16-bit values in m right the amount specified by count while shifting in zeros.

_mm_srli_pi16
__m64 _mm_srli_pi16(__m64 m, int count);
Shifts four 16-bit values in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

_mm_srl_pi32
__m64 _mm_srl_pi32(__m64 m, __m64 count);
Shifts two 32-bit values in m right the amount specified by count while shifting in zeros.

_mm_srli_pi32
__m64 _mm_srli_pi32(__m64 m, int count);
Shifts two 32-bit values in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

_mm_srl_pi64
__m64 _mm_srl_pi64(__m64 m, __m64 count);
Shifts the 64-bit value in m right the amount specified by count while shifting in zeros.

 Intel® C++ Compiler Classic Developer Guide and Reference

1690

_mm_srli_pi64
__m64 _mm_srli_pi64(__m64 m, int count);
Shifts the 64-bit value in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

Logical Intrinsics (MMX™ technology)
This topic summarizes the MMX™ technology logical intrinsics.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
MMX™ Instruction

_mm_and_si64 Bitwise AND PAND

_mm_andnot_si64 Bitwise ANDNOT PANDN

_mm_or_si64 Bitwise OR POR

_mm_xor_si64 Bitwise Exclusive OR PXOR

_mm_and_si64
__m64 _mm_and_si64(__m64 m1, __m64 m2);
Perform a bitwise AND of the 64-bit value in m1 with the 64-bit value in m2.

_mm_andnot_si64
__m64 _mm_andnot_si64(__m64 m1, __m64 m2);
Perform a bitwise NOT on the 64-bit value in m1 and use the result in a bitwise AND with the 64-bit value in
m2.

_mm_or_si64
__m64 _mm_or_si64(__m64 m1, __m64 m2);
Perform a bitwise OR of the 64-bit value in m1 with the 64-bit value in m2.

_mm_xor_si64
__m64 _mm_xor_si64(__m64 m1, __m64 m2);
Perform a bitwise XOR of the 64-bit value in m1 with the 64-bit value in m2.

Compare Intrinsics (MMX™ technology)
This topic summarizes the MMX™ technology compare intrinsics.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Compiler Reference

1691

Intrinsic
Name

Operation Corresponding
MMX™ Instruction

_mm_cmpeq_pi8 Equal PCMPEQB

_mm_cmpeq_pi16 Equal PCMPEQW

_mm_cmpeq_pi32 Equal PCMPEQD

_mm_cmpgt_pi8 Greater Than PCMPGTB

_mm_cmpgt_pi16 Greater Than PCMPGTW

_mm_cmpgt_pi32 Greater Than PCMPGTD

mm cmpeq_pi8
__m64 _mm_ cmpeq_pi8(__m64 m1, __m64 m2);
Sets the corresponding 8-bit resulting values to all ones if the 8-bit values in m1 are equal to the
corresponding 8-bit values in m2; otherwise sets them to all zeros.

mm cmpeq_pi16
__m64 _mm_ cmpeq_pi16(__m64 m1, __m64 m2);
Sets the corresponding 16-bit resulting values to all ones if the 16-bit values in m1 are equal to the
corresponding 16-bit values in m2; otherwise set them to all zeros.

mm cmpeq_pi32
__m64 _mm_ cmpeq_pi32(__m64 m1, __m64 m2);
Sets the corresponding 32-bit resulting values to all ones if the 32-bit values in m1 are equal to the
corresponding 32-bit values in m2; otherwise set them to all zeros.

mm cmpgt_pi8
__m64 _mm_ cmpgt_pi8(__m64 m1, __m64 m2);
Sets the corresponding 8-bit resulting values to all ones if the 8-bit signed values in m1 are greater than the
corresponding 8-bit signed values in m2; otherwise set them to all zeros.

mm cmpgt_pi16
__m64 _mm_ cmpgt_pi16(__m64 m1, __m64 m2);
Sets the corresponding 16-bit resulting values to all ones if the 16-bit signed values in m1 are greater than
the corresponding 16-bit signed values in m2; otherwise set them to all zeros.

mm cmpgt_pi32
__m64 _mm_ cmpgt_pi32(__m64 m1, __m64 m2);
Sets the corresponding 32-bit resulting values to all ones, if the 32-bit signed values in m1 are greater than
the corresponding 32-bit signed values in m2; otherwise set them all to zeros.

 Intel® C++ Compiler Classic Developer Guide and Reference

1692

Set Intrinsics (MMX™ technology)
This topic summarizes the MMX™ technology intrinsics.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

NOTE
In the descriptions regarding the bits of the MMX™ register, bit 0 is the least significant and bit 63 is the
most significant.

Intrinsic Name Operation Corresponding
MMX™ Instruction

_mm_setzero_si64 set to zero PXOR

_mm_set_pi32 set integer values Composite

_mm_set_pi16 set integer values Composite

_mm_set_pi8 set integer values Composite

_mm_set1_pi32 set integer values Composite

_mm_set1_pi16 set integer values Composite

_mm_set1_pi8 set integer values Composite

_mm_setr_pi32 set integer values Composite

_mm_setr_pi16 set integer values Composite

_mm_setr_pi8 set integer values Composite

_mm_setzero_si64
__m64 _mm_setzero_si64(void);
Sets the 64-bit value to zero.

R

0x0

_mm_set_pi32
__m64 _mm_set_pi32(int i1, int i0);
Sets the two signed 32-bit integer values.

R0 R1

i0 i1

Compiler Reference

1693

_mm_set_pi16
__m64 _mm_set_pi16(short s3, short s2, short s1, short s0);
Sets the four signed 16-bit integer values.

R0 R1 R2 R3

w0 w1 w2 w3

_mm_set_pi8
__m64 _mm_set_pi8(char b7, char b6, char b5, char b4, char b3, char b2, char b1, char
b0);
Sets the eight signed 8-bit integer values.

R0 R1 ... R7

b0 b1 ... b7

_mm_set1_pi32
__m64 _mm_set1_pi32(int i);
Sets the two signed 32-bit integer values to i.

R0 R1

i i

_mm_set1_pi16
__m64 _mm_set1_pi16(short s);
Sets the four signed 16-bit integer values to s.

R0 R1 R2 R3

w w w w

_mm_set1_pi8
__m64 _mm_set1_pi8(char b);
Sets the eight signed 8-bit integer values to b.

R0 R1 ... R7

b b ... b

_mm_setr_pi32
__m64 _mm_setr_pi32(int i1, int i0);
Sets the two signed 32-bit integer values in reverse order.

 Intel® C++ Compiler Classic Developer Guide and Reference

1694

R0 R1

i1 i0

_mm_setr_pi16
__m64 _mm_setr_pi16(short s3, short s2, short s1, short s0);
Sets the four signed 16-bit integer values in reverse order.

R0 R1 R2 R3

w3 w2 w1 w0

_mm_setr_pi8
__m64 _mm_setr_pi8(char b7, char b6, char b5, char b4, char b3, char b2, char b1, char
b0);
Sets the eight signed 8-bit integer values in reverse order.

R0 R1 ... R7

b7 b6 ... b0

Intrinsics for Advanced Encryption Standard
Implementation
The Intel® C++ Compiler Classic provides intrinsics to enable carry-less multiplication and encryption based
on Advanced Encryption Standard (AES) specifications. The carry-less multiplication intrinsic corresponds to a
single new instruction, PCLMULQDQ. The AES extension intrinsics correspond to AES extension intructions.

The AES extension instructions and the PCLMULQDQ instruction follow the same system software
requirements for XMM state support and single-instruction multiple data (SIMD) floating-point exception
support as Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel®
SSE3), Intel Supplemental Streaming SIMD Extensions 3 (SSSE3), and Intel® Streaming SIMD Extensions 4
(Intel® SSE4) extensions.

Intel®64 processors using 32nm processing technology support the AES extension instructions as well as the
PCLMULQDQ instruction.

AES Encryption and Cryptographic Processing
AES encryption involves processing 128-bit input data (plaintext) through a finite number of iterative
operation, referred to as AES round, into a 128-bit encrypted block (ciphertext). Decryption follows the
reverse direction of iterative operation using the equivalent inverse cipher instead of the inverse cipher.

The cryptographic processing at each round involves two input data, one is the state, the other is the round
key. Each round uses a different round key. The round keys are derived from the cipher key using a key
schedule algorithm. The key schedule algorithm is independent of the data processing of encryption/
decryption, and can be carried out independently from the encryption/decryption phase.

The AES standard supports cipher key of sizes 128, 192, and 256 bits. The respective cipher key sizes
corresponds to 10, 12, and 14 rounds of iteration.

Compiler Reference

1695

Carry-less Multiplication Instruction and AES Extension Instructions
A single instruction, PCLMULQDQ, performs carry-less multiplication for two binary numbers that are up to 64-
bit wide.

The AES extensions provide:

• two instructions to accelerate AES rounds on encryption (AESENC and AESENCLAST)
• two instructions for AES rounds on decryption using the equivalent inverse cipher (AESDEC and

AESENCLAST)
• instructions for the generation of key schedules (AESIMC and AESENCLAST)

Detecting Support for Using Instructions
Before any application attempts to use the PCLMULQDQ or the AES extension instructions, it must first detect
if the instructions are supported by the processor.

To detect support for the PCLMULQDQ instruction, your application must check the following:

CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1.
To detect support for the AES extension instructions, your application must check the following:

CPUID.01H:ECX.AES[bit 25] = 1.
Operating systems that support handling of the SSE state also support applications that use AES extension
instruction and the PCLMULQDQ instruction.

Intrinsics for Carry-less Multiplication Instruction and Advanced Encryption Standard
Instructions
The prototypes for the Carry-less multiplication intrinsic and the Advanced Encryption Standard (AES)
intrinsics are defined in the wmmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Carry-less Multiplication Intrinsic
The single general purpose block encryption intrinsic description is provided below.

__m128i _mm_clmulepi64_si128(__m128i v1, __m128i v2, const int imm8);
Performs a carry-less multiplication of one quadword of v1 by one quadword of v2, and returns the result.
The imm8 value is used to determine which quadwords of v1 and v2 should be used.

Corresponding Instruction: PCLMULQDQ

Advanced Encryption Standard Intrinsics
The AES intrinsics are described below.

__m128i _mm_aesdec_si128(__m128i v, __m128i rkey);
Performs one round of an AES decryption flow using the Equivalent Inverse Cipher operating on a 128-bit
data (state) from v with a 128-bit round key from rkey.

Corresponding Instruction: AESDEC

__m128i _mm_aesdeclast_si128(__m128i v, __m128i rkey);

 Intel® C++ Compiler Classic Developer Guide and Reference

1696

Performs the last round of an AES decryption flow using the Equivalent Inverse Cipher operating on a 128-bit
data (state) from v with a 128-bit round key from rkey.

Corresponding Instruction: AESDECLAST

__m128i _mm_aesenc_si128(__m128i v, __m128i rkey);
Performs one round of an AES encryption flow operating on a 128-bit data (state) from v with a 128-bit
round key from rkey.

Corresponding Instruction:AESENC

__m128i _mm_aesenclast_si128(__m128i v, __m128i rkey);
Performs the last round of an AES encryption flow operating on a 128-bit data (state) from v with a 128-bit
round key from rkey.

Corresponding Instruction: AESENCLAST

__m128i _mm_aesimc_si128(__m128i v);
Performs the InvMixColumn transformation on a 128-bit round key fromv and returns the result.

Corresponding Instruction: AESIMC

__m128i _mm_aeskeygenassist_si128(__m128i ckey, const int rcon);
Assists in AES round key generation using an 8-bit Round Constant (RCON) specified in rcon operating on
128 bits of data specified in ckey and returns the result.

Corresponding Instruction: AESKEYGENASSIST

Intrinsics for Converting Half Floats
The half-float or 16-bit float is a popular type in some application domains. The half-float type is regarded as
a storage type because although data is often stored as a half-float, computation is never done on values in
these type. Usually values are converted to regular 32-bit floats before any computation.

Support for half-float type is restricted to just conversions to/from 32-bit floats. The main benefits of using
half float type are:

• reduced storage requirements
• less consumption of memory bandwidth and cache
• accuracy and precision adequate for many applications

Half Float Intrinsics
The half-float intrinsics are provided to convert half-float values to 32-bit floats for computation purposes
and, conversely, 32-bit float values to half-float values for data storage purposes.

The intrinsics are translated into library calls that do the actual conversions.

The half-float intrinsics are available on IA-32 and Intel® 64 architectures running supported operating
systems. The minimum processor requirement is an Intel® Pentium 4 processor and an operating system
supporting Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions.

Role of Immediate Byte in Half Float Intrinsic Operations
For all half-float intrinsics an immediate byte controls rounding mode, flush to zero, and other non-volatile
set values. The format of the imm8 byte is as shown in the diagram below.

The imm8 value is used for special MXCSR overrides.

Compiler Reference

1697

In the diagram,

• MBZ = Most significant Bit is Zero; used for error checking
• MS1 = 1 : use MXCSR RC, else use imm8.RC
• SAE = 1 : all exceptions are suppressed
• MS2 = 1 : use MXCSR FTZ/DAZ control, else use imm8.FTZ/DAZ.

The compiler passes the bits to the library function, with error checking - the most significant bit must be
zero.

Details About Intrinsics for Half Floats
There are four intrinsics for converting half-floats to 32-bit floats and 32-bit floats to half-floats. The
prototypes for these half-float conversion intrinsics are in the emmintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

float _cvtsh_ss(unsigned short x);
This intrinsic takes a half-float value, x, and converts it to a 32-bit float value, which is returned.

unsigned short _cvtss_sh(float x, int imm);
This intrinsic takes a 32-bit float value, x, and converts it to a half-float value, which is returned.

__m128 _mm_cvtph_ps(__m128i x);
This intrinsic takes four packed half-float values and converts them to four 32-bit float values, which are
returned. The upper 64-bits of x are ignored. The lower 64-bits are taken as four 16-bit float values for
conversion.

__m128i _mm_cvtps_ph(_m128 x, int imm);
This intrinsic takes four packed 32-bit float values and converts them to four half-float values, which are
returned. The upper 64-bits in the returned result are all zeros. The lower 64-bits contain the four packed
16-bit float values.

 Intel® C++ Compiler Classic Developer Guide and Reference

1698

Intrinsics for Short Vector Math Library Operations (SVML)
The compiler provides short vector math library (SVML) intrinsics to compute vector math functions. These
intrinsics are available for IA-32 and Intel® 64 architectures running on supported operating systems. The
prototypes for the SVML intrinsics are available in the immintrin.h file.

To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>
The SVML intrinsics do not have any corresponding instructions.

The SVML intrinsics are vector variants of corresponding scalar math operations using __m128, __m128d,
__m256, __m256d, and __m256i data types. They take packed vector arguments, perform the operation on
each element of the packed vector argument, and return a packed vector result.

For example, the argument to the _mm_sin_ps intrinsic is a packed 128-bit vector of four 32-bit precision
floating point numbers. The intrinsic computes the sine of each of these four numbers and returns the four
results in a packed 128-bit vector.

Using SVML intrinsics is faster than repeatedly calling the scalar math functions. However, the intrinsics differ
from the scalar functions in accuracy.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

This section also includes information about 512-bit intrinsics for SVML.

Intrinsics for Division Operations (512-bit)
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_div_pd,
_mm512_mask_div_pd,
_mm512_maskz_div_pd
_mm512_div_round_pd,
_mm512_mask_div_roun
d_pd,
_mm512_maskz_div_rou
nd_pd

Calculates quotient of rounded division
operation of packed float64 elements.

VDIVPD

_mm512_div_ps,
_mm512_mask_div_ps,
_mm512_maskz_div_ps

Calculates quotient of rounded division
operation of packed float32 elements.

VDIVPS

Compiler Reference

1699

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_div_round_ps,
_mm512_mask_div_roun
d_ps,
_mm512_maskz_div_rou
nd_ps

_mm_mask_div_sd,
_mm_maskz_div_sd
_mm_div_round_sd,
_mm_mask_div_round_s
d,
_mm_maskz_div_round_
sd

Calculates quotient of rounded division
operation of scalar float64 elements.

VDIVSD

_mm_mask_div_ss,
_mm_maskz_div_ss
_mm_div_round_ss,
_mm_mask_div_round_s
s,
_mm_maskz_div_round_
ss

Calculates quotient of rounded division
operation of scalar float32 elements.

VDIVSS

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

round Rounding control values; these can be one of the following (along with the sae suppress all
exceptions flag):

• _MM_FROUND_TO_NEAREST_INT - rounds to nearest even
• _MM_FROUND_TO_NEG_INF - rounds to negative infinity
• _MM_FROUND_TO_POS_INF - rounds to positive infinity
• _MM_FROUND_TO_ZERO - rounds to zero
• _MM_FROUND_CUR_DIRECTION - rounds using default from MXCSR register

_mm512_div_pd

extern __m512d __cdecl _mm512_div_pd(__m512d a, __m512d b);
Divides packed float64 elements in a by packed elements in b, and stores the result.

_mm512_mask_div_pd

extern __m512d __cdecl _mm512_mask_div_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1700

Divides packed float64 elements in a by packed elements in b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_div_pd

extern __m512d __cdecl _mm512_maskz_div_pd(__mmask8 k, __m512d a, __m512d b);
Divides packed float64 elements in a by packed elements in b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_div_round_pd

extern __m512d __cdecl _mm512_div_round_pd(__m512d a, __m512d b, int round);
Divides packed float64 elements in a by packed elements in b, and stores the result.

_mm512_mask_div_round_pd

extern __m512d __cdecl _mm512_mask_div_round_pd(__m512d src, __mmask8 k, __m512d a, __m512d b,
int round);

Divides packed float64 elements in a by packed elements in b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_div_round_pd

extern __m512d __cdecl _mm512_maskz_div_round_pd(__mmask8 k, __m512d a, __m512d b, int round);
Divides packed float64 elements in a by packed elements in b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_div_ps

extern __m512 __cdecl _mm512_div_ps(__m512 a, __m512 b);
Divides packed float32 elements in a by packed elements in b, and stores the result.

_mm512_mask_div_ps

extern __m512 __cdecl _mm512_mask_div_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Divides packed float32 elements in a by packed elements in b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_div_ps

extern __m512 __cdecl _mm512_maskz_div__ps(__mmask16 k, __m512 a, __m512 b);
Divides packed float32 elements in a by packed elements in b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm512_div_round_ps

extern __m512 __cdecl _mm512_div_round_ps(__m512 a, __m512 b, int round);
Divides packed float32 elements in a by packed elements in b, and stores the result.

_mm512_mask_div_round_ps

extern __m512 __cdecl _mm512_mask_div_round_ps(__m512 src, __mmask16 k, __m512 a, __m512 b, int
round);

Compiler Reference

1701

Divides packed float32 elements in a by packed elements in b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_maskz_div_round_ps

extern __m512 __cdecl _mm512_maskz_div_round_ps(__mmask16 k, __m512 a, __m512 b, int round);
Divides packed float32 elements in a by packed elements in b, and stores the result using zeromask k
(elements are zeroed out when the corresponding mask bit is not set).

_mm_mask_div_sd

extern __m128d __cdecl _mm_mask_div_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Divides lower float64 element in a by lower float64 element in b, stores the result in lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper
element from a to upper destination element.

_mm_maskz_div_sd

extern __m128d __cdecl _mm_maskz_div_sd(__mmask8 k, __m128d a, __m128d b);
Divides lower float64 element in a by lower float64 element in b, stores the result in lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper element
from a to upper destination element.

_mm_div_round_sd

extern __m128d __cdecl _mm_div_round_sd(__m128d a, __m128d b, int round);
Divides lower float64 element in a by lower float64 element in b, stores the result in lower destination
element, and copies upper element from a to upper destination element.

_mm_mask_div_round_sd

extern __m128d __cdecl _mm_mask_div_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b, int
round);

Divides lower float64 element in a by lower float64 element in b, stores the result in lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper
element from a to upper destination element.

_mm_maskz_div_round_sd

extern __m128d __cdecl _mm_maskz_div_round_sd(__mmask8 k, __m128d a, __m128d b, int round);
Divides lower float64 element in a by lower float64 element in b, stores the result in lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper element
from a to upper destination element.

_mm_div_round_ss

extern __m128 __cdecl _mm_div_round_ss(__m128 a, __m128 b, int round);
Divides lower float32 element in a by lower float32 element in b, stores the result in lower destination
element, and copies upper three packed elements from a to upper destination elements.

_mm_mask_div_round_ss

extern __m128 __cdecl _mm_mask_div_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b, int
round);

 Intel® C++ Compiler Classic Developer Guide and Reference

1702

Divides lower float32 element in a by lower float32 element in b, stores the result in lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper
three packed elements from a to upper destination elements.

_mm_maskz_div_round_ss

extern __m128 __cdecl _mm_maskz_div_round_ss(__mmask8 k, __m128 a, __m128 b, int round);
Divides lower float32 element in a by lower float32 element in b, stores the result in lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper three
packed elements from a to upper destination elements.

_mm_mask_div_ss

extern __m128 __cdecl _mm_mask_div_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Divides lower float32 element in a by lower float32 element in b, stores the result in lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper
three packed elements from a to upper destination elements.

_mm_maskz_div_ss

extern __m128 __cdecl _mm_maskz_div_ss(__mmask8 k, __m128 a, __m128 b);
Divides lower float32 element in a by lower float32 element in b, stores the result in lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper three
packed elements from a to upper destination elements.

Intrinsics for Division Operations

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_div_epi8/ _mm256_div_epi8
Calculates quotient of a division operation. Vector
variant of div() function for signed 8-bit integer
arguments.

Syntax

extern __m128i _mm_div_epi8(__m128i v1, __m128i v2);
extern __m256i _mm256_div_epi8(__m256i v1, __m256i v2);

Parameters

v1 signed integer source vector containing the dividends

v2 signed integer source vector containing the divisors

Description

Calculates the quotient by dividing value of v1 vector elements by corresponding v2 vector elements.

Compiler Reference

1703

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_div_epi16/ _mm256_div_epi16
Calculates quotient of a division operation. Vector
variant of div() function for signed 16-bit integer
arguments.

Syntax

extern __m128i _mm_div_epi16(__m128i v1, __m128i v2);
extern __m256i _mm256_div_epi16(__m256i v1, __m256i v2);

Parameters

v1 signed integer source vector containing the dividends

v2 signed integer source vector containing the divisors

Description

Calculates the quotient by dividing value of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_div_epi32/ _mm256_div_epi32
Calculates quotient of a division operation. Vector
variant of div() function for signed 32-bit integer
arguments.

Syntax

extern __m128i _mm_div_epi32(__m128i v1, __m128i v2);
extern __m256i _mm256_div_epi32(__m256i v1, __m256i v2);

Parameters

v1 signed integer source vector containing the dividends

v2 signed integer source vector containing the divisors

 Intel® C++ Compiler Classic Developer Guide and Reference

1704

Description

Calculates the quotient by dividing value of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_div_epi64/ _mm256_div_epi64
Calculates quotient of a division operation. Vector
variant of div() function for signed 64-bit integer
arguments.

Syntax

extern __m128i _mm_div_epi64(__m128i v1, __m128i v2);
extern __m256i _mm256_div_epi64(__m256i v1, __m256i v2);

Parameters

v1 signed integer source vector containing the dividends

v2 signed integer source vector containing the divisors

Description

Calculates the quotient by dividing value of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_div_epu8/ _mm256_div_epu8
Calculates quotient of a division operation. Vector
variant of div() function for unsigned 8-bit integer
arguments.

Syntax

extern __m128i _mm_div_epu8(__m128i v1, __m128i v2);
extern __m256i _mm256_div_epu8(__m256i v1, __m256i v2);

Compiler Reference

1705

Parameters

v1 unsigned integer source vector containing the
dividends

v2 unsigned integer source vector containing the divisors

Description

Calculates the quotient by dividing value of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_div_epu16/ _mm256_div_epu16
Calculates quotient of a division operation. Vector
variant of div() function for unsigned 16-bit integer
arguments.

Syntax

extern __m128i _mm_div_epu16(__m128i v1, __m128i v2);
extern __m256i _mm256_div_epu16(__m256i v1, __m256i v2);

Parameters

v1 unsigned integer source vector containing the
dividends

v2 unsigned integer source vector containing the divisors

Description

Calculates the quotient by dividing value of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_div_epu32/ _mm256_div_epu32
Calculates quotient of a division operation. Vector
variant of div() function for unsigned 32-bit integer
arguments.

 Intel® C++ Compiler Classic Developer Guide and Reference

1706

Syntax

extern __m128i _mm_div_epu32(__m128i v1, __m128i v2);
extern __m256i _mm256_div_epu32(__m256i v1, __m256i v2);

Parameters

v1 unsigned integer source vector containing the
dividends

v2 unsigned integer source vector containing the divisors

Description

Calculates the quotient by dividing value of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_div_epu64/ _mm256_div_epu64
Calculates quotient of a division operation. Vector
variant of div() function for unsigned 64-bit integer
arguments.

Syntax

extern __m128i _mm_div_epu64(__m128i v1, __m128i v2);
extern __m256i _mm256_div_epu64(__m256i v1, __m256i v2);

Parameters

v1 unsigned integer source vector containing the
dividends

v2 unsigned integer source vector containing the divisors

Description

Calculates the quotient by dividing value of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Compiler Reference

1707

_mm_rem_epi8/ _mm256_rem_epi8
Calculates remainder of a division operation. Vector
variant of rem() function for signed 8-bit integer
arguments.

Syntax

extern __m128i _mm_rem_epi8(__m128i v1, __m128i v2);
extern __m256i _mm256_rem_epi8(__m256i v1, __m256i v2);

Parameters

v1 signed integer source vector containing the dividends

v2 signed integer source vector containing the divisors

Description

Calculates the remainder from division of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_rem_epi16/ _mm256_rem_epi16
Calculates remainder of a division operation. Vector
variant of rem() function for signed 16-bit integer
arguments.

Syntax

extern __m128i _mm_rem_epi16(__m128i v1, __m128i v2);
extern __m256i _mm256_rem_epi16(__m256i v1, __m256i v2);

Parameters

v1 signed integer source vector containing the dividends

v2 signed integer source vector containing the divisors

Description

Calculates the remainder from division of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1708

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_rem_epi32/ _mm256_rem_epi32
Calculates remainder of a division operation. Vector
variant of rem() function for signed 32-bit integer
arguments.

Syntax

extern __m128i _mm_rem_epi32(__m128i v1, __m128i v2);
extern __m256i _mm256_rem_epi32(__m256i v1, __m256i v2);

Parameters

v1 signed integer source vector containing the dividends

v2 signed integer source vector containing the divisors

Description

Calculates the remainder from division of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_rem_epi64/ _mm256_rem_epi64
Calculates remainder of a division operation. Vector
variant of rem() function for signed 64-bit integer
arguments.

Syntax

extern __m128i _mm_rem_epi64(__m128i v1, __m128i v2);
extern __m256i _mm256_rem_epi64(__m256i v1, __m256i v2);

Parameters

v1 signed integer source vector containing the dividends

v2 signed integer source vector containing the divisors

Description

Calculates the remainder from division of v1 vector elements by corresponding v2 vector elements.

Compiler Reference

1709

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_rem_epu8/ _mm256_rem_epu8
Calculates remainder of a division operation. Vector
variant of rem() function for unsigned 8-bit integer
arguments.

Syntax

extern __m128i _mm_rem_epu8(__m128i v1, __m128i v2);
extern __m256i _mm256_rem_epu8(__m256i v1, __m256i v2);

Parameters

v1 unsigned integer source vector containing the
dividends

v2 unsigned integer source vector containing the divisors

Description

Calculates the remainder from division of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_rem_epu16/ _mm256_rem_epu16
Calculates remainder of a division operation. Vector
variant of rem() function for unsigned 16-bit integer
arguments.

Syntax

extern __m128i _mm_rem_epu16(__m128i v1, __m128i v2);
extern __m256i _mm256_rem_epu16(__m256i v1, __m256i v2);

Parameters

v1 unsigned integer source vector containing the
dividends

 Intel® C++ Compiler Classic Developer Guide and Reference

1710

v2 unsigned integer source vector containing the divisors

Description

Calculates the remainder from division of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_rem_epu32/ _mm256_rem_epu32
Calculates remainder of a division operation. Vector
variant of rem() function for unsigned 32-bit integer
arguments.

Syntax

extern __m128i _mm_rem_epu32(__m128i v1, __m128i v2);
extern __m256i _mm256_rem_epu32(__m256i v1, __m256i v2);

Parameters

v1 unsigned integer source vector containing the
dividends

v2 unsigned integer source vector containing the divisors

Description

Calculates the remainder from division of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_rem_epu64/ _mm256_rem_epu64
Calculates remainder of a division operation. Vector
variant of rem() function for unsigned 64-bit integer
arguments.

Syntax

extern __m128i _mm_rem_epu64(__m128i v1, __m128i v2);
extern __m256i _mm256_rem_epu64(__m256i v1, __m256i v2);

Compiler Reference

1711

Parameters

v1 unsigned integer source vector containing the
dividends

v2 unsigned integer source vector containing the divisors

Description

Calculates the remainder from division of v1 vector elements by corresponding v2 vector elements.

Returns

Returns the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Intrinsics for Error Function Operations (512-bit)
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_cdfnorm_pd,
_mm512_mask_cdfnorm_pd

Calculates cumulative
distribution function for float64
vector elements.

None.

_mm512_cdfnorm_ps,
_mm512_mask_cdfnorm_ps

Calculates cumulative
distribution function for float32
vector elements.

None.

_mm512_cdfnorminv_pd,
_mm512_mask_cdfnorminv_pd

Calculates inverse cumulative
distribution function for float64
vector elements.

None.

_mm512_cdfnorminv_ps,
_mm512_mask_cdfnorminv_ps

Calculates inverse cumulative
distribution function for float32
vector elements.

None.

_mm512_erf_pd,
_mm512_mask_erf_pd

Calculates error function for
float64 vector elements.

None.

_mm512_erf_ps,
_mm512_mask_erf_ps

Calculates error function for
float32 vector elements.

None.

_mm512_erfc_pd,
_mm512_mask_erfc_pd

Calculates complementary error
function for float64 vector
elements.

None.

 Intel® C++ Compiler Classic Developer Guide and Reference

1712

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_erfc_ps,
_mm512_mask_erfc_ps

Calculates complementary error
function for float32 vector
elements.

None.

_mm512_erfinv_pd,
_mm512_mask_erfinv_pd

Calculates inverse error function
for float64 vector elements.

None.

_mm512_erfinv_ps,
_mm512_mask_erfinv_ps

Calculates inverse error function
for float32 vector elements.

None.

_mm512_erfcinv_pd,
_mm512_mask_ercfinv_pd

Calculates inverse
complementary error function for
float64 vector elements.

None.

_mm512_erfcinv_ps,
_mm512_mask_ercfinv_ps

Calculates inverse
complementary error function for
float32 vector elements.

None.

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

_mm512_cdfnorm_pd

extern __m512d __cdecl _mm512_cdfnorm_pd(__m512d a);
Computes normalized central distribution function for float64 elements in a, and stores the result.

_mm512_mask_cdfnorm_pd

extern __m512d __cdecl _mm512_mask_cdfnorm_pd(__m512d src, __mmask8 k, __m512d a);
Computes normalized central distribution function for float64 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_cdfnorm_ps

extern __m512 __cdecl _mm512_cdfnorm_ps(__m512 a);
Computes normalized central distribution function for float32 elements in a, and stores the result.

_mm512_mask_cdfnorm_ps

extern __m512 __cdecl _mm512_mask_cdfnorm_ps(__m512 src, __mmask16 k, __m512 a);
Computes normalized central distribution function for float32 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1713

_mm512_cdfnorminv_pd

extern __m512d __cdecl _mm512_cdfnorminv_pd(__m512d a);
Computes inverse normalized central distribution function for float64 elements in a, and stores the result.

_mm512_mask_cdfnorminv_pd

extern __m512d __cdecl _mm512_mask_cdfnorminv_pd(__m512d src, __mmask8 k, __m512d a);
Computes inverse normalized central distribution function for float64 elements in a, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_cdfnorminv_ps

extern __m512 __cdecl _mm512_cdfnorminv_ps(__m512 a);
Computes inverse normalized central distribution function for float32 elements in a, and stores the result.

_mm512_mask_cdfnorminv_ps

extern __m512 __cdecl _mm512_mask_cdfnorminv_ps(__m512 src, __mmask16 k, __m512 a);
Computes inverse normalized central distribution function for float32 elements in a, and stores the result
using writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_erf_pd

extern __m512d __cdecl _mm512_erf_pd(__m512d a);
Computes error function of packed float64 elements in a, and stores the result.

_mm512_mask_erf_pd

extern __m512d __cdecl _mm512_mask_erf_pd(__m512d src, __mmask8 k, __m512d a);
Computes error function of packed float64 elements in a, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm512_erf_ps

extern __m512 __cdecl _mm512_erf_ps(__m512 a);
Computes error function of packed float32 elements in a, and stores the result.

_mm512_mask_erf_ps

extern __m512 __cdecl _mm512_mask_erf_ps(__m512 src, __mmask16 k, __m512 a);
Computes error function of packed float32 elements in a, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm512_mask_erfc_pd

extern __m512d __cdecl _mm512_erfc_pd(__m512d a);
Computes complex error function of packed float64 elements in a, and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1714

_mm512_mask_erfc_pd

extern __m512d __cdecl _mm512_mask_erfc_pd(__m512d src, __mmask8 k, __m512d a);
Computes complex error function of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_erfc_ps

extern __m512 __cdecl _mm512_erfc_ps(__m512 a);
Computes complex error function of packed float32 elements in a, and stores the result.

_mm512_mask_erfc_ps

extern __m512 __cdecl _mm512_mask_erfc_ps(__m512 src, __mmask16 k, __m512 a);
Computes complex error function of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_erfinv_pd

extern __m512d __cdecl _mm512_erfinv_pd(__m512d a);
Calculates the inverse error function of float64 vector a elements.

_mm512_mask_erfinv_pd

extern __m512d __cdecl _mm512_mask_erfinv_pd(__m512d src, __mmask8 k, __m512d a);
Computes inverse error function of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_erfinv_ps

extern __m512 __cdecl _mm512_erfinv_ps(__m512 a);
Computes inverse error function of packed float32 elements in a, and stores the result.

_mm512_mask_erfinv_ps

extern __m512 __cdecl _mm512_mask_erfinv_ps(__m512 src, __mmask16 k, __m512 a);
Computes inverse error function of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_erfcinv_pd

extern __m512d __cdecl _mm512_erfcinv_pd(__m512d a);
Computes inverse complex error function of packed float64 elements in a, and stores the result.

_mm512_mask_erfcinv_pd

extern __m512d __cdecl _mm512_mask_erfcinv_pd(__m512d src, __mmask8 k, __m512d a);
Computes inverse complex error function of packed float64 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1715

_mm512_erfcinv_ps

extern __m512 __cdecl _mm512_erfcinv_ps(__m512 a);
Computes inverse complex error function of packed float32 elements in a, and stores the result.

_mm512_mask_erfcinv_ps

extern __m512 __cdecl _mm512_mask_erfcinv_ps(__m512 src, __mmask16 k, __m512 a);
Computes inverse complex error function of packed float32 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Intrinsics for Error Function Operations

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_cdfnorminv_pd, _mm256_cdfnorminv_pd
Calculates inverse cumulative distribution function for
a 128-bit/256-bit vector argument of float64 values.

Syntax

extern __m128d _mm_cdfnorminv_pd(__m128d v1);
extern __m256d _mm256_cdfnorminv_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Returns the inverse cumulative distribution function of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_cdfnorminv_ps, _mm256_cdfnorminv_ps
Calculates inverse cumulative distribution function for
a 128-bit/256-bit vector argument of float32 values.

Syntax

extern __m128 _mm_cdfnorminv_ps(__m128 v1);
extern __m256 _mm256_cdfnorminv_ps(__m256 v1);

 Intel® C++ Compiler Classic Developer Guide and Reference

1716

Arguments

v1 vector with float32 values

Description

Returns the inverse cumulative distribution function of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_erf_pd, _mm256_erf_pd
Calculates error function. Vector variant of erf(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_erf_pd(__m128d v1);
extern __m256d _mm256_erf_pd(__m256d v1);

Arguments

v1 float64 vector used for the operation

Description

Calculates error function of v1 elements, which is defined as:

erf(x) = 2/sqrt(pi)* integral from 0 to x of exp(-t*t) dt

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_erf_ps, _mm256_erf_ps
Calculates error function. Vector variant of erf(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_erf_ps(__m128 v1);
extern __m256 _mm256_erf_ps(__m256 v1);

Compiler Reference

1717

Arguments

v1 vector with float32 values

Description

Calculates error function of v1 elements, which is defined as:

erf(x) = 2/sqrt(pi)* integral from 0 to x of exp(-t*t) dt

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_erfc_pd, _mm256_erfc_pd
Calculates complementary error function. Vector
variant of erfc(x) function for a 128-bit/256-bit vector
argument of float64 values.

Syntax

extern __m128d _mm_erfc_pd(__m128d v1);
extern __m256d _mm256_erfc_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the complementary error function of vector v1 elements, which is defined as:

1.0 - erf(x)

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_erfc_ps, _mm256_erfc_ps
Calculates complementary error function. Vector
variant of erfc(x) function for a 128-bit/256-bit vector
argument of float32 values.

Syntax

extern __m128 _mm_erfc_ps(__m128 v1);

 Intel® C++ Compiler Classic Developer Guide and Reference

1718

extern __m256 _mm256_erfc_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the complementary error function of vector v1 elements, which is

1.0 - erf(x)

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_erfinv_pd, _mm256_erfinv_pd
Calculates inverse error function. Vector variant of
erfinv(x) function for a 128-bit/256-bit vector
argument of float64 values.

Syntax

extern __m128d _mm_erfinv_pd(__m128d v1);
extern __m256d _mm256_erfinv_pd(__m256d v1);

Arguments

v1 float64 vector used for the operation

Description

Calculates the inverse error function of v1 elements, which is defined as:

1 / erf(x)

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_erfinv_ps, _mm256_erfinv_ps
Calculates inverse error function. Vector variant of
erfinv(x) function for a 128-bit/256-bit vector
argument of float32 values.

Compiler Reference

1719

Syntax

extern __m128 _mm_erfinv_ps(__m128 v1);
extern __m256 _mm256_erfinv_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the inverse error function of v1 elements, which is defined as:

1 / erf(x)

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Intrinsics for Exponential Operations (512-bit)
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_pow_pd,
_mm512_mask_pow_pd

Calculates exponential value of float64 vector
elements raised to the power of other float64
vector elements.

None.

_mm512_pow_ps,
_mm512_mask_mm512_pow_
ps

Calculates exponential value of float32 vector
elements raised to the power of other float32
vector elements.

None.

_mm512_exp10_pd,
_mm512_mask_mm512_exp1
0_pd

Calculates base-10 exponential value of float64
vector elements.

None.

_mm512_exp10_ps,
_mm512_mask_mm512_exp1
0_ps

Calculates base-10 exponential value of float32
vector elements.

None.

_mm512_exp2_pd,
_mm512_mask_mm512_exp2
_pd

Calculates base-2 exponential value of float64
vector elements.

None.

 Intel® C++ Compiler Classic Developer Guide and Reference

1720

Intrinsic Name Operation Corresponding
Intel® AVX-512
Instruction

_mm512_exp2_ps,
_mm512_mask_mm512_exp2
_ps

Calculates base-2 exponential value of float32
vector elements.

None.

_mm512_exp_pd,
_mm512_mask_mm512_exp_
pd

Calculates base-e exponential value of float64
vector elements.

None.

_mm512_exp_ps,
_mm512_mask_mm512_exp_
ps

Calculates base-e exponential value of float32
vector elements.

None.

_mm512_expm1_pd,
_mm512_mask_mm512_expm
1_pd

Calculates base-e exponential value of float64
vector elements minus one.

None.

_mm512_expm1_ps,
_mm512_mask_mm512_expm
1_ps

Calculates base-e exponential value of float32
vector elements minus one.

None.

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_pow_pd

extern __m512d __cdecl _mm512_pow_pd(__m512d a, __m512d b);
Calculates the exponential value of each float64 vector a element raised to the power of the corresponding
vector b element, and stores the result.

_mm512_mask_pow_pd

extern __m512d __cdecl _mm512_mask_pow_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Calculates the exponential value of each float64 vector a element raised to the power of the corresponding
vector b element, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_pow_ps

extern __m512 __cdecl _mm512_pow_ps(__m512 a, __m512 b);
Calculates the exponential value of each float32 vector a element raised to the power of the corresponding
vector b element, and stores the result.

_mm512_mask_pow_ps

extern __m512 __cdecl _mm512_mask_pow_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);

Compiler Reference

1721

Calculates the exponential value of each float32 vector a element raised to the power of the corresponding
vector b element, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_exp10_pd

extern __m512d __cdecl _mm512_exp10_pd(__m512d a);
Computes the base-10 exponent of packed float64 elements in a, and stores the result.

_mm512_mask_exp10_pd

extern __m512d __cdecl _mm512_mask_exp10_pd(__m512d src, __mmask8 k, __m512d a);
Computes the base-10 exponent of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_exp10_ps

extern __m512 __cdecl _mm512_exp10_ps(__m512 a);
Computes the base-10 exponent of packed float32 elements in a, and stores the result.

_mm512_mask_exp10_ps

extern __m512 __cdecl _mm512_mask_exp10_ps(__m512 src, __mmask16 k, __m512 a);
Computes the base-10 exponent of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_exp2_pd

extern __m512d __cdecl _mm512_exp2_pd(__m512d a);
Computes the base-2 exponent of packed float64 elements in a, and stores the result.

_mm512_mask_exp2_pd

extern __m512d __cdecl _mm512_mask_exp2_pd(__m512d src, __mmask8 k, __m512d a);
Computes the base-2 exponent of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_exp2_ps

extern __m512 __cdecl _mm512_exp2_ps(__m512 a);
Computes the base-2 exponent of packed float32 elements in a, and stores the result.

_mm512_mask_exp2_ps

extern __m512 __cdecl _mm512_mask_exp2_ps(__m512 src, __mmask16 k, __m512 a);
Computes the base-2 exponent of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_exp_pd

extern __m512d __cdecl _mm512_exp_pd(__m512d a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1722

Calculates the exponential value of e (base of natural logarithms) raised to the power of float64 vector a
elements.

_mm512_mask_exp_pd

extern __m512d __cdecl _mm512_mask_exp_pd(__m512d src, __mmask8 k, __m512d a);
Calculates the exponential value of e (base of natural logarithms) raised to the power of float64 vector a
elements, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_exp_ps

extern __m512 __cdecl _mm512_exp_ps(__m512 a);
Calculates the exponential value of e (base of natural logarithms) raised to the power of float32 vector a
elements.

_mm512_mask_exp_ps

extern __m512 __cdecl _mm512_mask_exp_ps(__m512 src, __mmask16 k, __m512 a);
Calculates the exponential value of e (base of natural logarithms) raised to the power of float32 vector a
elements, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_expm1_pd

extern __m512d __cdecl _mm512_expm1_pd(__m512d a);
Calculates exponential value of e (base of natural logarithms), raised to the power of float64 vector a
elements minus one.

_mm512_mask_expm1_pd

extern __m512d __cdecl _mm512_mask_expm1_pd(__m512d src, __mmask8 k, __m512d a);
Calculates exponential value of e (base of natural logarithms), raised to the power of float64 vector a
elements minus one, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

_mm512_expm1_ps

extern __m512 __cdecl _mm512_expm1_ps(__m512 a);
Calculates exponential value of e (base of natural logarithms), raised to the power of float32 vector a
elements minus one.

_mm512_mask_expm1_ps

extern __m512 __cdecl _mm512_mask_expm1_ps(__m512 src, __mmask16 k, __m512 a);
Calculates exponential value of e (base of natural logarithms), raised to the power of float32 vector a
elements minus one, and stores the result using writemask k (elements are copied from src when the
corresponding mask bit is not set).

Compiler Reference

1723

Intrinsics for Exponential Operations

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_exp2_pd, _mm256_exp2_pd
Calculates exponential value of 2. Vector variant of
exp2(x) function for a 128-bit/256-bit vector
argument of float64 values.

Syntax

extern __m128d _mm_exp2_pd(__m128d v1);
extern __m256d _mm256_exp2_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the exponential value of 2 raised to the power of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_exp2_ps, _mm256_exp2_ps
Calculates exponential value of 2. Vector variant of
exp2(x) function for a 128-bit/256-bit vector
argument of float32 values.

Syntax

extern __m128 _mm_exp2_ps(__m128 v1);
extern __m256 _mm256_exp2_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the exponential value of 2 raised to the power of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1724

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_exp_pd, _mm256_exp_pd
Calculates exponential value of e (base of natural
logarithms). Vector variant of exp(x) function for a
128-bit/256-bit vector argument of float64 values.

Syntax

extern __m128d _mm_exp_pd(__m128d v1);
extern __m256d _mm256_exp_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the exponential value of e (base of natural logarithms) raised to the power of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_exp_ps, _mm256_exp_ps
Calculates exponential value of e (base of natural
logarithms). Vector variant of exp(x) function for a
128-bit/256-bit vector argument of float32 values.

Syntax

extern __m128 _mm_exp_ps(__m128 v1);
extern __m256 _mm256_exp_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the exponential value of e (base of natural logarithms) raised to the power of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

Compiler Reference

1725

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_exp10_pd, _mm256_exp10_pd
Calculates exponential value of 10. Vector variant of
exp(x) function for a 128-bit/256-bit vector argument
of float64 values.

Syntax

extern __m128d _mm_exp10_pd(__m128d v1);
extern __m256d _mm256_exp10_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates 10 raised to the power of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_exp10_ps, _mm256_exp10_ps
Calculates exponential value of 10. Vector variant of
exp(x) function for a 128-bit/256-bit vector argument
of float32 values.

Syntax

extern __m128 _mm_exp10_ps(__m128 v1);
extern __m256 _mm256_exp10_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates 10 raised to the power of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1726

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_expm1_pd, _mm256_expm1_pd
Calculates exponential value of e (base of natural
logarithms), raised to the power of vector elements
minus 1. Vector variant of expm1(x) function for a
128-bit/256-bit vector argument of float64 values.

Syntax

extern __m128d _mm_expm1_pd(__m128d v1);
extern __m256d _mm256_expm1_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates exponential value of e (base of natural logarithms), raised to the power of vector elements minus
1.

e(x) - 1

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_expm1_ps, _mm256_expm1_ps
Calculates exponential value of e (base of natural
logarithms), raised to the power of vector elements
minus 1. Vector variant of expm1(x) function for a
128-bit/256-bit vector argument of float32 values.

Syntax

extern __m128 _mm_expm1_ps(__m128 v1);
extern __m256 _mm256_expm1_ps(__m256 v1);

Arguments

v1 vector with float32 values

Compiler Reference

1727

Description

Calculates exponential value of e (base of natural logarithms), raised to the power of vector elements minus
1.

e(x) - 1

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_cexp_ps, _mm256_cexp_ps
Calculates complex exponential value of e (base of
natural logarithms). Vector variant of exp(x) function
for a 128-bit/256-bit vector argument of _Complex
float32 values.

Syntax

extern __m128 _mm_cexp_ps(__m128 v1);
extern __m256 _mm256_cexp_ps(__m256 v1);

Arguments

v1 vector with _Complex float32 values

Description

Calculates the complex exponential value of e (base of natural logarithms) raised to the power of vector v1
elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_pow_pd, _mm256_pow_pd
Calculates exponential value of one argument raised
to the other argument. Vector variant of pow(x, y)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_pow_pd(__m128d v1, __m128d v2);
extern __m256d _mm256_pow_pd(__m256d v1, __m256d v2);

 Intel® C++ Compiler Classic Developer Guide and Reference

1728

Arguments

v1 vector with float64 values

v2 vector with float64 values

Description

Calculates the exponential value of each vector v1 element raised to the power of the corresponding vector
v2 element.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_pow_ps, _mm256_pow_ps
Calculates exponential value of one argument raised
to the other argument. Vector variant of pow(x, y)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_pow_ps(__m128 v1, __m128 v2);
extern __m256 _mm256_pow_ps(__m256 v1, __m256 v2);

Arguments

v1 vector with float32 values

v2 vector with float32 values

Description

Calculates the exponential value of each vector v1 element raised to the power of the corresponding vector
v2 element.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_hypot_pd, _mm256_hypot_pd
Computes the length of the hypotenuse of a right
angled triangle. Vector variant of hypot(x) function for
a 128-bit/256-bit vector argument of float64 values.

Compiler Reference

1729

Syntax

extern __m128d _mm_hypot_pd(__m128d v1, __m128d v2);
extern __m256d _mm256_hypot_pd(__m256d v1, __m256d v2);

Arguments

v1 vector with float64 values

v2 vector with float64 values

Description

Computes the length of the hypotenuse of a right angled triangle with sides v1 and v2, defined by:

sqrt (v12 + v22)

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_hypot_ps, _mm256_hypot_ps
Computes the length of the hypotenuse of a right
angled triangle. Vector variant of hypot(x) function for
a 128-bit/256-bit vector argument of float32 values.

Syntax

extern __m128 _mm_hypot_ps(__m128 v1, __m128 v2);
extern __m256 _mm256_hypot_ps(__m256 v1, __m256 v2);

Arguments

v1 vector with float32 values

v2 vector with float32 values

Description

Computes the length of the hypotenuse of a right angled triangle with sides v1 and v2, defined by:

sqrt (v12 + v22)

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

 Intel® C++ Compiler Classic Developer Guide and Reference

1730

Intrinsics for Logarithmic Operations (512-bit)
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_log10_pd,
_mm512_mask_log10_pd

Calculates base-10 logarithm. None.

_mm512_log10_ps,
_mm512_mask_log10_ps

Calculates base-10 logarithm. None.

_mm512_log1p_pd,
_mm512_mask_log1p_pd

Calculates natural logarithm. None.

_mm512_log1p_ps,
_mm512_mask_log1p_ps

Calculates signed exponent. None.

_mm512_log2_pd,
_mm512_mask_log2_pd

Calculates base-2 logarithm. None.

_mm512_log_pd,
_mm512_mask_log_pd

Calculates natural logarithm. None.

_mm512_log_ps,
_mm512_mask_log_ps

Calculates natural logarithm. None.

_mm512_logb_pd,
_mm512_mask_logb_pd

Calculates signed exponent. None.

_mm512_logb_ps,
_mm512_mask_logb_ps

Calculates signed exponent. None.

variable definition
k zeromask used as a selector

k writemask used as a selector

a first source vector element

b second source vector element

c third source vector element

src source element

_mm512_log10_pd

extern __m512d __cdecl _mm512_log10_pd(__m512d a);

Compiler Reference

1731

Calculates the base-10 logarithm of vector a elements.

_mm512_mask_log10_pd

extern __m512d __cdecl _mm512_mask_log10_pd(__m512d src, __mmask8 k, __m512d a);
Calculates the base-10 logarithm of vector a elements.

_mm512_log10_ps

extern __m512 __cdecl _mm512_log10_ps(__m512 a);
Calculates the base-10 logarithm of vector a elements.

_mm512_mask_log10_ps

extern __m512 __cdecl _mm512_mask_log10_ps(__m512 src, __mmask16 k, __m512 a);
Calculates the base-10 logarithm of vector a elements.

_mm512_log1p_pd

extern __m512d __cdecl _mm512_log1p_pd(__m512d a);
Calculates the natural logarithm of vector a elements, defined by: ln (v1 + 1)

_mm512_mask_log1p_pd

extern __m512d __cdecl _mm512_mask_log1p_pd(__m512d src, __mmask8 k, __m512d a);
Calculates the natural logarithm of vector a elements, defined by: ln (v1 + 1)

_mm512_log1p_ps

extern __m512 __cdecl _mm512_log1p_ps(__m512 a);
Calculates the natural logarithm of vector a elements, defined by: ln (v1 + 1)

_mm512_mask_log1p_ps

extern __m512 __cdecl _mm512_mask_log1p_ps(__m512 src, __mmask16 k, __m512 a);
Calculates the natural logarithm of vector a elements, defined by: ln (v1 + 1)

_mm512_log2_pd

extern __m512d __cdecl _mm512_log2_pd(__m512d a);
Calculates the base-2 logarithm of vector a elements.

_mm512_mask_log2_pd

extern __m512d __cdecl _mm512_mask_log2_pd(__m512d src, __mmask8 k, __m512d a);
Calculates the base-2 logarithm of vector a elements.

_mm512_log_pd

extern __m512d __cdecl _mm512_log_pd(__m512d a);
Calculates the natural (base-e) logarithm of vector a elements.

 Intel® C++ Compiler Classic Developer Guide and Reference

1732

_mm512_mask_log_pd

extern __m512d __cdecl _mm512_mask_log_pd(__m512d src, __mmask8 k, __m512d a);
Calculates the natural (base-e) logarithm of vector a elements.

_mm512_log_ps

extern __m512 __cdecl _mm512_log_ps(__m512 a);
Calculates the natural (base-e) logarithm of vector a elements.

_mm512_mask_log_ps

extern __m512 __cdecl _mm512_mask_log_ps(__m512 src, __mmask16 k, __m512 a);
Calculates the natural (base-e) logarithm of vector a elements.

_mm512_logb_pd

extern __m512d __cdecl _mm512_logb_pd(__m512d a);
Calculates the signed exponent of vector a elements.

_mm512_mask_logb_pd

extern __m512d __cdecl _mm512_mask_logb_pd(__m512d src, __mmask8 k, __m512d a);
Calculates the signed exponent of vector a elements.

_mm512_logb_ps

extern __m512 __cdecl _mm512_logb_ps(__m512 a);
Calculates the signed exponent of vector a elements.

_mm512_mask_logb_ps

extern __m512 __cdecl _mm512_mask_logb_ps(__m512 src, __mmask16 k, __m512 a);
Calculates the signed exponent of vector a elements.

Intrinsics for Logarithmic Operations

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_log2_pd, _mm256_log2_pd
Calculates base-2 logarithm. Vector variant of log2(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_log2_pd(__m128d v1);

Compiler Reference

1733

extern __m256d _mm256_log2_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the base-2 logarithm of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_log2_ps, _mm256_log2_ps
Calculates base-2 logarithm. Vector variant of log2(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_log2_ps(__m128 v1);
extern __m256 _mm256_log2_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the base-2 logarithm of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_log10_pd, _mm256_log10_pd
Calculates base-10 logarithm. Vector variant of
log10(x) function for a 128-bit/256-bit vector
argument of float64 values.

Syntax

extern __m128d _mm_log10_pd(__m128d v1);
extern __m256d _mm256_log10_pd(__m256d v1);

 Intel® C++ Compiler Classic Developer Guide and Reference

1734

Arguments

v1 vector with float64 values

Description

Calculates the base-10 logarithm of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_log10_ps, _mm256_log10_ps
Calculates base-10 logarithm. Vector variant of
log10(x) function for a 128-bit/256-bit vector
argument of float32 values.

Syntax

extern __m128 _mm_log10_ps(__m128 v1);
extern __m256 _mm256_log10_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the base-10 logarithm of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_log_pd, _mm256_log_pd
Calculates natural logarithm. Vector variant of log(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_log_pd(__m128d v1);
extern __m256d _mm256_log_pd(__m256d v1);

Compiler Reference

1735

Arguments

v1 vector with float64 values

Description

Calculates the natural logarithm of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_log_ps, _mm256_log_ps
Calculates natural logarithm. Vector variant of log(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_log_ps(__m128 v1);
extern __m256 _mm256_log_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the natural logarithm of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_logb_pd, _mm256_logb_pd
Calculates signed exponent. Vector variant of logb(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_logb_pd(__m128d v1);
extern __m256d _mm256_logb_pd(__m256d v1);

 Intel® C++ Compiler Classic Developer Guide and Reference

1736

Arguments

v1 vector with float64 values

Description

Returns the signed exponent for vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_logb_ps, _mm256_logb_ps
Calculates signed exponent. Vector variant of logb(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_logb_ps(__m128 v1);
extern __m256 _mm256_logb_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Returns the signed exponent for vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_log1p_pd, _mm256_log1p_pd
Calculates natural logarithm. Vector variant of
log1p(x) function for a 128-bit/256-bit vector
arguments with float64 values.

Syntax

extern __m128d _mm_log1p_pd(__m128d v1);
extern __m256d _mm256_log1p_pd(__m256d v1);

Compiler Reference

1737

Arguments

v1 vector with float64 values

Description

Returns the natural logarithm of vector v1 elements, defined by:

ln (v1 + 1)

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_log1p_ps, _mm256_log1p_ps
Calculates natural logarithm. Vector variant of
log1p(x) function for a 128-bit/256-bit vector
arguments with float32 values.

Syntax

extern __m128 _mm_log1p_ps(__m128 v1);
extern __m256 _mm256_log1p_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Returns the natural logarithm of vector v1 elements, defined by:

ln (v1 + 1)

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_clog_ps, _mm256_clog_ps
Calculates complex natural logarithm. Vector variant
of clog(x) function for a 128-bit/256-bit vector
argument of _Complex float32 values.

Syntax

extern __m128 _mm_clog_ps(__m128 v1);

 Intel® C++ Compiler Classic Developer Guide and Reference

1738

extern __m256 _mm256_clog_ps(__m256 v1);

Arguments

v1 vector with _Complex float32 values

Description

Calculates the complex natural logarithm of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Intrinsics for Reciprocal Operations (512-bit)
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_rcp14_pd,
_mm512_mask_rcp14_pd,
_mm512_maskz_rcp14_pd

Computes the approximate
reciprocal of packed float64
elements.

VRCP14PD

_mm512_rcp14_ps,
_mm512_mask_rcp14_ps,
_mm512_maskz_rcp14_ps

Computes the approximate
reciprocal of packed float32
elements.

VRCP14PS

_mm_rcp14_sd,
_mm_mask_rcp14_sd,
_mm_maskz_rcp14_sd

Computes the approximate
reciprocal of scalar float64
elements.

VRCP14SD

_mm_rcp14_ss,
_mm_mask_rcp14_ss,
_mm_maskz_rcp14_ss

Computes the approximate
reciprocal of scalar float32
elements.

VRCP14SS

_mm512_rcp28_pd,
_mm512_mask_rcp28_pd,
_mm512_maskz_rcp28_pd
_mm512_rcp28_round_pd,
_mm512_mask_rcp28_round_pd,
_mm512_maskz_rcp28_round_p
d

Computes the approximate
reciprocal of packed float64
elements with bounded relative
error.

VRCP28PD

Compiler Reference

1739

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm_rcp28_sd,
_mm_mask_rcp28_sd,
_mm_maskz_rcp28_sd
_mm_rcp28_round_sd,
_mm_mask_rcp28_round_sd,
_mm_maskz_rcp28_round_sd

Computes the approximate
reciprocal of scalar float64
elements with bounded relative
error.

VRCP28SD

_mm512_rcp28_ps,
_mm512_mask_rcp28_ps,
_mm512_maskz_rcp28_ps
_mm512_rcp28_round_ps,
_mm512_mask_rcp28_round_ps,
_mm512_maskz_rcp28_round_p
s

Computes the approximate
reciprocal of packed float32
elements with bounded relative
error.

VRCP28PS

_mm_rcp28_ss,
_mm_mask_rcp28_ss,
_mm_maskz_rcp28_ss
_mm_rcp28_round_ss,
_mm_mask_rcp28_round_ss,
_mm_maskz_rcp28_round_ss

Computes the approximate
reciprocal of scalar float32
elements with bounded relative
error.

VRCP28SS

_mm512_recip_pd,
_mm512_mask_recip_pd

Computes the approximate
reciprocal of packed float64
elements.

None.

_mm512_recip_ps,
_mm512_mask_recip_ps

Computes the approximate
reciprocal of packed float32
elements.

None.

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_rcp14_pd

extern __m512d __cdecl _mm512_rcp14_pd(__m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result.

NOTE
The maximum relative error for this approximation is less than 2(-14).

 Intel® C++ Compiler Classic Developer Guide and Reference

1740

_mm512_mask_rcp14_pd

extern __m512d __cdecl _mm512_mask_rcp14_pd(__m512d src, __mmask8 k, __m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm512_maskz_rcp14_pd

extern __m512d __cdecl _mm512_maskz_rcp14_pd(__mmask8 k, __m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm512_rcp14_ps

extern __m512 __cdecl _mm512_rcp14_ps(__m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result.

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm512_mask_rcp14_ps

extern __m512 __cdecl _mm512_mask_rcp14_ps(__m512 src, __mmask16 k, __m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm512_maskz_rcp14_ps

extern __m512 __cdecl _mm512_maskz_rcp14_ps(__mmask16 k, __m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-14).

Compiler Reference

1741

_mm_rcp14_sd

extern __m128d __cdecl _mm_rcp14_sd(__m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element, and copies upper element from a to upper destination element.

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm_mask_rcp14_sd

extern __m128d __cdecl _mm_mask_rcp14_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper
element from a to upper destination element.

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm_maskz_rcp14_sd

extern __m128d __cdecl _mm_maskz_rcp14_sd(__mmask8 k, __m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper element
from a to upper destination element.

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm_rcp14_ss

extern __m128 __cdecl _mm_rcp14_ss(__m128 a, __m128 b);
Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination
element, and copies upper three packed elements from a to upper destination elements.

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm_mask_rcp14_ss

extern __m128 __cdecl _mm_mask_rcp14_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper three
packed elements from a to upper destination elements.

 Intel® C++ Compiler Classic Developer Guide and Reference

1742

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm_maskz_rcp14_ss

extern __m128 __cdecl _mm_maskz_rcp14_ss(__mmask8 k, __m128 a, __m128 b);
Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper three packed
elements from a to upper destination elements.

NOTE
The maximum relative error for this approximation is less than 2(-14).

_mm512_rcp28_round_pd

extern __m512d __cdecl _mm512_rcp28_round_pd(__m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_mask_rcp28_round_pd

extern __m512d __cdecl _mm512_mask_rcp28_round_pd(__m512d src, __mmask8 k, __m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_maskz_rcp28_round_pd

extern __m512d __cdecl _mm512_maskz_rcp28_round_pd(__mmask8 k, __m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_rcp28_pd

extern __m512d __cdecl _mm512_rcp28_pd(__m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result.

Compiler Reference

1743

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_mask_rcp28_pd

extern __m512d __cdecl _mm512_mask_rcp28_pd(__m512d src, __mmask8 k, __m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_maskz_rcp28_pd

extern __m512d __cdecl _mm512_maskz_rcp28_pd(__mmask8 k, __m512d a);
Computes the approximate reciprocal of packed float64 elements in a, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_rcp28_round_ps

extern __m512 __cdecl _mm512_rcp28_round_ps(__m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_mask_rcp28_round_ps

extern __m512 __cdecl _mm512_mask_rcp28_round_ps(__m512 src, __mmask16 k, __m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_maskz_rcp28_round_ps

extern __m512 __cdecl _mm512_maskz_rcp28_round_ps(__mmask16 k, __m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1744

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_rcp28_ps

extern __m512 __cdecl _mm512_rcp28_ps(__m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_mask_rcp28_ps

extern __m512 __cdecl _mm512_mask_rcp28_ps(__m512 src, __mmask16 k, __m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_maskz_rcp28_ps

extern __m512 __cdecl _mm512_maskz_rcp28_ps(__mmask16 k, __m512 a);
Computes the approximate reciprocal of packed float32 elements in a, and stores the result using zeromask
k (elements are zeroed out when the corresponding mask bit is not set).

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_rcp28_round_sd

extern __m128d __cdecl _mm512_rcp28_round_sd(__m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element, and copies upper element from a to upper destination element.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_mask_rcp28_round_sd

extern __m128d __cdecl _mm512_mask_rcp28_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper
element from a to upper destination element.

Compiler Reference

1745

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_maskz_rcp28_round_sd

extern __m128d __cdecl _mm512_maskz_rcp28_round_sd(__mmask8 k, __m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper element
from a to upper destination element.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_rcp28_round_sd

extern __m128d __cdecl _mm512_rcp28_round_sd(__m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element, and copies upper element from a to upper destination element.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_mask_rcp28_round_sd

extern __m128d __cdecl _mm512_mask_rcp28_round_sd(__m128d src, __mmask8 k, __m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper
element from a to upper destination element.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_maskz_rcp28_round_sd

extern __m128d __cdecl _mm512_maskz_rcp28_round_sd(__mmask8 k, __m128d a, __m128d b);
Computes the approximate reciprocal of lower float64 element in b, stores the result in lower destination
element using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper element
from a to upper destination element.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_rcp28_round_ss

extern __m128 __cdecl _mm512_rcp28_round_ss(__m128 a, __m128 b);

 Intel® C++ Compiler Classic Developer Guide and Reference

1746

Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination
element, and copies upper three packed elements from a to upper destination elements.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_mask_rcp28_round_ss

extern __m128 __cdecl _mm512_mask_rcp28_round_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper three
packed elements from a to upper destination elements.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_maskz_rcp28_round_ss

extern __m128 __cdecl _mm512_maskz_rcp28_round_ss(__mmask8 k, __m128 a, __m128 b);
Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper three packed
elements from a to upper destination elements.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_rcp28_ss

extern __m128 __cdecl _mm512_rcp28_ss(__m128 a, __m128 b);
Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination
element, and copies upper three packed elements from a to upper destination elements.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_mask_rcp28_ss

extern __m128 __cdecl _mm512_mask_rcp28_ss(__m128 src, __mmask8 k, __m128 a, __m128 b);
Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination element
using writemask k (the element is copied from src when mask bit 0 is not set), and copies upper three
packed elements from a to upper destination elements.

NOTE
The maximum relative error for this approximation is less than 2(-28).

Compiler Reference

1747

_mm512_maskz_rcp28_ss

extern __m128 __cdecl _mm512_maskz_rcp28_ss(__mmask8 k, __m128 a, __m128 b);
Computes approximate reciprocal of lower float32 element in b, stores the result in lower destination element
using zeromask k (the element is zeroed out when mask bit 0 is not set), and copies upper three packed
elements from a to upper destination elements.

NOTE
The maximum relative error for this approximation is less than 2(-28).

_mm512_recip_pd

extern __m512d __cdecl _mm512_recip_pd(__m512d a);
Computes approximate reciprocal of float64 elements in a, and stores the result.

_mm512_mask_recip_pd

extern __m512d __cdecl _mm512_mask_recip_pd(__m512d src, __mmask8 k, __m512d a);
Computes approximate reciprocal of float64 elements in a, and stores the result using writemask k (the
element is copied from src when mask bit 0 is not set).

_mm512_recip_ps

extern __m512 __cdecl _mm512_recip_ps(__m512 a);
Computes approximate reciprocal of float32 elements in a, and stores the result.

_mm512_mask_recip_ps

extern __m512 __cdecl _mm512_mask_recip_ps(__m512 src, __mmask16 k, __m512 a);
Computes approximate reciprocal of float32 elements in a, and stores the result using writemask k (the
element is copied from src when mask bit 0 is not set).

Intrinsics for Root Function Operations (512-bit)
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_sqrt_pd,
_mm512_mask_sqrt_pd

Calculates square root of float64
vector elements.

None.

_mm512_sqrt_ps,
_mm512_mask_sqrt_ps

Calculates square root of float32
vector elements.

None.

 Intel® C++ Compiler Classic Developer Guide and Reference

1748

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_invsqrt_pd,
_mm512_mask_invsqrt_pd

Calculates inverse square root of
float64 vector elements.

None.

_mm512_invsqrt_ps,
_mm512_mask_invsqrt_ps

Calculates inverse square root of
float32 vector elements.

None.

_mm512_hypot_pd,
_mm512_mask_hypot_pd

Calculates square root of float64
vector elements.

None.

_mm512_hypot_ps,
_mm512_mask_hypot_ps

Calculates square root of float32
vector elements.

None.

_mm512_cbrt_pd,
_mm512_mask_cbrt_pd

Calculates cube root of float64
vector elements.

None.

_mm512_cbrt_ps,
_mm512_mask_cbrt_ps

Calculates cube root of float32
vector elements.

None.

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_sqrt_pd

extern __m512d __cdecl _mm512_sqrt_pd(__m512d a);
Calculates square root value of float64 vector a elements.

_mm512_mask_sqrt_pd

extern __m512d __cdecl _mm512_mask_sqrt_pd(__m512d src, __mmask8 k, __m512d a);
Calculates square root value of float64 vector a elements, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm512_sqrt_ps

extern __m512 __cdecl _mm512_sqrt_ps(__m512 a);
Calculates square root value of float32 vector a elements.

_mm512_mask_sqrt_ps

extern __m512 __cdecl _mm512_mask_sqrt_ps(__m512 src, __mmask16 k, __m512 a);
Calculates square root value of float32 vector a elements, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set).

Compiler Reference

1749

_mm512_invsqrt_pd

extern __m512d __cdecl _mm512_invsqrt_pd(__m512d a);
Calculates inverse square root value of float64 vector a elements.

_mm512_mask_invsqrt_pd

extern __m512d __cdecl _mm512_mask_invsqrt_pd(__m512d src, __mmask8 k, __m512d a);
Calculates inverse square root value of float64 vector a elements, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_invsqrt_ps

extern __m512 __cdecl _mm512_invsqrt_ps(__m512 a);
Calculates inverse square root value of float32 vector a elements.

_mm512_mask_invsqrt_ps

extern __m512 __cdecl _mm512_mask_invsqrt_ps(__m512 src, __mmask16 k, __m512 a);
Calculates inverse square root value of float32 vector a elements, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_hypot_pd

extern __m512d __cdecl _mm512_hypot_pd(__m512d a, __m512d b);
Computes the length of the hypotenuse of a right angled triangle with sides from float64 vector a and b
elements.

_mm512_mask_hypot_pd

extern __m512d __cdecl _mm512_mask_hypot_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Computes the length of the hypotenuse of a right angled triangle with sides from float64 vector a and b
elements, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_hypot_ps

extern __m512 __cdecl _mm512_hypot_ps(__m512 a, __m512 b);
Computes the length of the hypotenuse of a right angled triangle with sides from float32 vector a and b
elements.

_mm512_mask_hypot_ps

extern __m512 __cdecl _mm512_mask_hypot_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Computes the length of the hypotenuse of a right angled triangle with sides from float32 vector a and b
elements, and stores the result using writemask k (elements are copied from src when the corresponding
mask bit is not set).

_mm512_cbrt_pd

extern __m512d __cdecl _mm512_cbrt_pd(__m512d a);
Calculates the cube root of float64 vector a elements.

 Intel® C++ Compiler Classic Developer Guide and Reference

1750

_mm512_mask_cbrt_pd

extern __m512d __cdecl _mm512_mask_cbrt_pd(__m512d src, __mmask8 k, __m512d a);
Calculates the cube root of float64 vector a elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_cbrt_ps

extern __m512 __cdecl _mm512_cbrt_ps(__m512 a);
Calculates the cube root of float32 vector a elements.

_mm512_mask_cbrt_ps

extern __m512 __cdecl _mm512_mask_cbrt_ps(__m512 src, __mmask16 k, __m512 a);
Calculates the cube root of float32 vector a elements, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

Intrinsics for Rounding Operations (512-bit)
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_ceil_pd,
_mm512_mask_ceil_pd

Rounds float64 vector elements to
nearest upper integer.

None.

_mm512_ceil_ps,
_mm512_mask_ceil_ps

Rounds float32 vector elements to
nearest upper integer.

None.

_mm512_floor_pd,
_mm512_mask_floor_pd

Rounds float64 vector elements to
nearest lower integer.

None.

_mm512_floor_ps,
_mm512_mask_floor_ps

Rounds float32 vector elements to
nearest lower integer.

None.

_mm512_nearbyint_pd,
_mm512_mask_nearbyint_
pd

Rounds float64 vector elements to
nearest integer in floating point
format.

None.

_mm512_nearbyint_ps,
_mm512_mask_nearbyint_
ps

Rounds float32 vector elements to
nearest integer in floating point
format.

None.

_mm512_rint_pd,
_mm512_mask_rint_pd

Rounds float64 vector elements to
nearest even integer.

None.

_mm512_rint_ps,
_mm512_mask_rint_ps

Rounds float32 vector elements to
nearest even integer.

None.

Compiler Reference

1751

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_svml_round_pd,
_mm512_mask_svml_round
_pd

Rounds float64 vector elements to
nearest integer.

None.

_mm512_trunc_pd,
_mm512_mask_trunc_pd

Rounds float64 vector elements to
nearest integer not larger in absolute
value.

None.

_mm512_trunc_ps,
_mm512_mask_trunc_ps

Rounds float32 vector elements to
nearest integer not larger in absolute
value.

None.

variable definition
k writemask used as a selector

a first source vector element

src source element to use based on writemask result

_mm512_ceil_pd

extern __m512d __cdecl _mm512_ceil_pd(__m512d a);
Rounds off the elements of float64 vector a to the nearest upper integer value.

_mm512_mask_ceil_pd

extern __m512d __cdecl _mm512_mask_ceil_pd(__m512d src, __mmask8 k, __m512d a);
Rounds off the elements of float64 vector a to the nearest upper integer value, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_ceil_ps

extern __m512 __cdecl _mm512_ceil_ps(__m512 a);
Rounds off the elements of float32 vector a to the nearest upper integer value.

_mm512_mask_ceil_ps

extern __m512 __cdecl _mm512_mask_ceil_ps(__m512 src, __mmask16 k, __m512 a);
Rounds off the elements of float32 vector a to the nearest upper integer value, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_floor_pd

extern __m512d __cdecl _mm512_floor_pd(__m512d a);
Rounds off the elements of float64 vector a to the nearest lower integer value.

_mm512_mask_floor_pd

extern __m512d __cdecl _mm512_mask_floor_pd(__m512d src, __mmask8 k, __m512d a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1752

Rounds off the elements of float64 vector a to the nearest lower integer value, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_floor_ps

extern __m512 __cdecl _mm512_floor_ps(__m512 a);
Rounds off the elements of float32 vector a to the nearest lower integer value.

_mm512_mask_floor_ps

extern __m512 __cdecl _mm512_mask_floor_ps(__m512 src, __mmask16 k, __m512 a);
Rounds off the elements of float32 vector a to the nearest lower integer value, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_nearbyint_pd

extern __m512d __cdecl _mm512_nearbyint_pd(__m512d a);
Rounds off the elements of float64 vector a to the nearest integer value in floating point format without
raising the inexact exception.

_mm512_mask_nearbyint_pd

extern __m512d __cdecl _mm512_mask_nearbyint_pd(__m512d src, __mmask8 k, __m512d a);
Rounds off the elements of float64 vector a to the nearest integer value in floating point format without
raising the inexact exception, and stores the result using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_nearbyint_ps

extern __m512 __cdecl _mm512_nearbyint_ps(__m512 a);
Rounds off the elements of float32 vector a to the nearest integer value in floating point format without
raising the inexact exception.

_mm512_mask_nearbyint_ps

extern __m512 __cdecl _mm512_mask_nearbyint_ps(__m512 src, __mmask16 k, __m512 a);
Rounds off the elements of float32 vector a to the nearest integer value in floating point format without
raising the inexact exception, and stores the result using writemask k (elements are copied from src when
the corresponding mask bit is not set).

_mm512_rint_pd

extern __m512d __cdecl _mm512_rint_pd(__m512d a);
Rounds off the elements of float64 vector a to the nearest even integer value.

_mm512_mask_rint_pd

extern __m512d __cdecl _mm512_mask_rint_pd(__m512d src, __mmask8 k, __m512d a);
Rounds off the elements of float64 vector a to the nearest even integer value, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1753

_mm512_rint_ps

extern __m512 __cdecl _mm512_rint_ps(__m512 a);
Rounds off the elements of float32 vector a to the nearest even integer value.

_mm512_mask_rint_ps

extern __m512 __cdecl _mm512_mask_rint_ps(__m512 src, __mmask16 k, __m512 a);
Rounds off the elements of float32 vector a to the nearest even integer value, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_svml_round_pd

extern __m512d __cdecl _mm512_svml_round_pd(__m512d a);
Rounds off the elements of vector a to the nearest integer value. This intrinsic rounds the halfway cases
away from zero regardless of the current rounding direction, instead of to the nearest even integer like the
_mm512_rint_pd intrinsic.

_mm512_mask_svml_round_pd

extern __m512d __cdecl _mm512_mask_svml_round_pd(__m512d src, __mmask8 k, __m512d a);
Rounds off the elements of vector a to the nearest integer value. This intrinsic rounds the halfway cases
away from zero regardless of the current rounding direction, instead of to the nearest even integer like the
_mm512_rint_pd intrinsic.

The result is stored using writemask k (elements are copied from src when the corresponding mask bit is not
set)

_mm512_trunc_pd

extern __m512d __cdecl _mm512_trunc_pd(__m512d a);
Rounds off the elements of float64 vector a to the nearest integer value which is not larger in absolute value.

_mm512_mask_trunc_pd

extern __m512d __cdecl _mm512_mask_trunc_pd(__m512d src, __mmask8 k, __m512d a);
Rounds off the elements of float64 vector a to the nearest integer value which is not larger in absolute value,
and stores the result using writemask k (elements are copied from src when the corresponding mask bit is
not set).

_mm512_trunc_ps

extern __m512 __cdecl _mm512_trunc_ps(__m512 a);
Rounds off the elements of float32 vector a to the nearest integer value which is not larger in absolute value.

_mm512_mask_trunc_ps

extern __m512 __cdecl _mm512_mask_trunc_ps(__m512 src, __mmask16 k, __m512 a);
Rounds off the elements of float32 vector a to the nearest integer value which is not larger in absolute value,
and stores the result using writemask k (elements are copied from src when the corresponding mask bit is
not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1754

Intrinsics for Square Root and Cube Root Operations

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_sqrt_pd, _mm256_sqrt_pd
Calculates square root value. Vector variant of sqrt(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_sqrt_pd(__m128d v1);
extern __m256d _mm256_sqrt_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the square root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_sqrt_ps, _mm256_sqrt_ps
Calculates square root value. Vector variant of sqrt(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_sqrt_ps(__m128 v1);
extern __m256 _mm256_sqrt_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the square root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

Compiler Reference

1755

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_invsqrt_pd, _mm256_invsqrt_pd
Calculates inverse square root value. Vector variant of
invsqrt(x) function for a 128-bit/256-bit vector
argument of float64 values.

Syntax

extern __m128d _mm_invsqrt_pd(__m128d v1);
extern __m256d _mm256_invsqrt_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the inverse square root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_invsqrt_ps, _mm256_invsqrt_ps
Calculates inverse square root value. Vector variant of
invsqrt(x) function for a 128-bit/256-bit vector
argument of float32 values.

Syntax

extern __m128 _mm_invsqrt_ps(__m128 v1);
extern __m256 _mm256_invsqrt_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the inverse square root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1756

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_cbrt_pd, _mm256_cbrt_pd
Calculates cube root value. Vector variant of cbrt(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_cbrt_pd(__m128d v1);
extern __m256d _mm256_cbrt_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the cube root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_cbrt_ps, _mm256_cbrt_ps
Calculates cube root value. Vector variant of cbrt(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_cbrt_ps(__m128 v1);
extern __m256 _mm256_cbrt_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the cube root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

Compiler Reference

1757

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_invcbrt_pd, _mm256_invcbrt_pd
Calculates inverse cube root value. Vector variant of
invcbrt(x) function for a 128-bit/256-bit vector
argument of float64 values.

Syntax

extern __m128d _mm_invcbrt_pd(__m128d v1);
extern __m256d _mm256_invcbrt_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the inverse cube root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_invcbrt_ps, _mm256_invcbrt_ps
Calculates inverse cube root value. Vector variant of
invcbrt(x) function for a 128-bit/256-bit vector
argument of float32 values.

Syntax

extern __m128 _mm_invcbrt_ps(__m128 v1);
extern __m256 _mm256_invcbrt_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the inverse cube root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1758

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_csqrt_ps, _mm256_csqrt_ps
Calculates complex square root value. Vector variant
of csqrt(x) function for a 128-bit/256-bit vector
argument of _Complex float32 values.

Syntax

extern __m128 _mm_csqrt_ps(__m128 v1);
extern __m256 _mm256_csqrt_ps(__m256 v1);

Arguments

v1 vector with _Complex float32 values

Description

Calculates the complex square root of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Intrinsics for Trigonometric Operations (512-bit)
The prototypes for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) intrinsics are located in the
zmmintrin.h header file.
To use these intrinsics, include the immintrin.h file as follows:

#include <immintrin.h>

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_acos_pd,
_mm512_mask_acos_pd

Calculates inverse cosine value for
float64 vector elements.

None.

_mm512_acos_ps,
_mm512_mask_acos_ps

Calculates inverse cosine value for
float32 vector elements.

None.

_mm512_acosh_pd,
_mm512_mask_acosh_pd

Calculates inverse hyperbolic cosine
value for float64 vector elements.

None.

Compiler Reference

1759

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_acosh_ps,
_mm512_mask_acosh_ps

Calculates inverse hyperbolic cosine
value for float32 vector elements.

None.

_mm512_asin_pd,
_mm512_mask_asin_pd

Calculates inverse sine value for
float64 vector elements.

None.

_mm512_asin_ps,
_mm512_mask_asin_ps

Calculates inverse sine value for
float32 vector elements.

None.

_mm512_asinh_pd,
_mm512_mask_asinh_pd

Calculates inverse hyperbolic sine
value for float64 vector elements.

None.

_mm512_asinh_ps,
_mm512_mask_asinh_ps

Calculates inverse hyperbolic sine
value for float32 vector elements.

None.

_mm512_atan_pd,
_mm512_mask_atan_pd

Calculates inverse tangent value for
float64 vector elements.

None.

_mm512_atan_ps,
_mm512_mask_atan_ps

Calculates inverse tangent value for
float32 vector elements.

None.

_mm512_atan2_pd,
_mm512_mask_atan2_pd

Calculates inverse tangent value for
float64 elements from multiple vectors.

None.

_mm512_atan2_ps,
_mm512_mask_atan2_ps

Calculates inverse tangent value for
float32 elements from multiple vectors.

None.

_mm512_atanh_pd,
_mm512_mask_atanh_pd

Calculates inverse hyperbolic tangent
value for float64 vector elements.

None.

_mm512_atanh_ps,
_mm512_mask_atanh_ps

Calculates inverse hyperbolic tangent
value for float32 vector elements.

None.

_mm512_cos_pd,
_mm512_mask_cos_pd

Calculates cosine value for float64
vector elements.

None.

_mm512_cos_ps,
_mm512_mask_cos_ps

Calculates cosine value for float32
vector elements.

None.

_mm512_cosd_pd,
_mm512_mask_cosd_pd

Calculates cosine value (in degrees) for
float64 vector elements.

None.

_mm512_cosd_ps,
_mm512_mask_cosd_ps

Calculates cosine value (in degrees) for
float32 vector elements.

None.

_mm512_cosh_pd,
_mm512_mask_cosh_pd

Calculates hyperbolic cosine value for
float64 vector elements.

None.

_mm512_cosh_ps,
_mm512_mask_cosh_ps

Calculates hyperbolic cosine value for
float32 vector elements.

None.

_mm512_sin_pd,
_mm512_mask_sin_pd

Calculates sine value for float64 vector
elements.

None.

 Intel® C++ Compiler Classic Developer Guide and Reference

1760

Intrinsic Name Operation Corresponding
Intel® AVX-512 Instruction

_mm512_sin_ps,
_mm512_mask_sin_ps

Calculates sine value for float32 vector
elements.

None.

_mm512_sincos_pd,
_mm512_mask_sincos_pd

Calculates the sine and cosine values
for float64 vector elements.

None.

_mm512_sincos_ps,
_mm512_mask_sincos_ps

Calculates the sine and cosine values
for float32 vector elements.

None.

_mm512_sind_pd,
_mm512_mask_sind_pd

Calculates sine value (in degrees) for
float64 vector elements.

None.

_mm512_sind_ps,
_mm512_mask_sind_ps

Calculates sine value (in degrees) for
float32 vector elements.

None.

_mm512_sinh_pd,
_mm512_mask_sinh_pd

Calculates hyperbolic sine value for
float64 vector elements.

None.

_mm512_sinh_ps,
_mm512_mask_sinh_ps

Calculates hyperbolic sine value for
float32 vector elements.

None.

_mm512_tan_pd,
_mm512_mask_tan_pd

Calculates tangent value for float64
vector elements.

None.

_mm512_tan_ps,
_mm512_mask_tan_ps

Calculates tangent value for float32
vector elements.

None.

_mm512_tand_pd,
_mm512_mask_tand_pd

Calculates tangent (in degrees) value
for float64 vector elements.

None.

_mm512_tand_ps,
_mm512_mask_tand_ps

Calculates tangent (in degrees) value
for float32 vector elements.

None.

_mm512_tanh_pd,
_mm512_mask_tanh_pd

Calculates hyperbolic tangent value for
float64 vector elements.

None.

_mm512_tanh_ps,
_mm512_mask_tanh_ps

Calculates hyperbolic tangent value for
float32 vector elements.

None.

variable definition
k writemask used as a selector

a first source vector element

b second source vector element

src source element to use based on writemask result

_mm512_acos_pd

extern __m512d __cdecl _mm512_acos_pd(__m512d a);

Compiler Reference

1761

Computes the inverse cosine of packed float64 elements in a, and stores the result.

_mm512_mask_acos_pd

extern __m512d __cdecl _mm512_mask_acos_pd(__m512d src, __mmask8 k, __m512d a);
Computes the inverse cosine of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_acos_ps

extern __m512 __cdecl _mm512_acos_ps(__m512 a);
Computes the inverse cosine of packed float32 elements in a, and stores the result.

_mm512_mask_acos_ps

extern __m512 __cdecl _mm512_mask_acos_ps(__m512 src, __mmask16 k, __m512 a);
Computes the inverse cosine of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_acosh_pd

extern __m512d __cdecl _mm512_acosh_pd(__m512d a);
Computes the inverse hyperbolic cosine of packed float64 elements in a, and stores the result.

_mm512_mask_acosh_pd

extern __m512d __cdecl _mm512_mask_acosh_pd(__m512d src, __mmask8 k, __m512d a);
Computes the inverse hyperbolic cosine of packed float64 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_acosh_ps

extern __m512 __cdecl _mm512_acosh_ps(__m512 a);
Computes the inverse hyperbolic cosine of packed float32 elements in a, and stores the result.

_mm512_mask_acosh_ps

extern __m512 __cdecl _mm512_mask_acosh_ps(__m512 src, __mmask16 k, __m512 a);
Computes the inverse hyperbolic cosine of packed float32 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_asin_pd

extern __m512d __cdecl _mm512_asin_pd(__m512d a);
Computes the inverse sine of packed float64 elements in a, and stores the result.

_mm512_mask_asin_pd

extern __m512d __cdecl _mm512_mask_asin_pd(__m512d src, __mmask8 k, __m512d a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1762

Computes the inverse sine of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_asin_ps

extern __m512 __cdecl _mm512_asin_ps(__m512 a);
Computes the inverse sine of packed float32 elements in a, and stores the result.

_mm512_mask_asin_ps

extern __m512 __cdecl _mm512_mask_asin_ps(__m512 src, __mmask16 k, __m512 a);
Computes the inverse sine of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_asinh_pd

extern __m512d __cdecl _mm512_asinh_pd(__m512d a);
Computes the inverse hyperbolic sine of packed float64 elements in a, and stores the result.

_mm512_mask_asinh_pd

extern __m512d __cdecl _mm512_mask_asinh_pd(__m512d src, __mmask8 k, __m512d a);
Computes the inverse hyperbolic sine of packed float64 elements in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_asinh_ps

extern __m512 __cdecl _mm512_asinh_ps(__m512 a);
Computes the inverse hyperbolic sine of packed float32 elements in a, and stores the result.

_mm512_mask_asinh_ps

extern __m512 __cdecl _mm512_mask_asinh_ps(__m512 src, __mmask16 k, __m512 a);
Computes the inverse hyperbolic sine of packed float32 elements in a, and stores the result using writemask
k (elements are copied from src when the corresponding mask bit is not set).

_mm512_atan2_pd

extern __m512d __cdecl _mm512_atan2_pd(__m512d a, __m512d b);
Computes the inverse tangent of packed float64 elements in a and b, and stores the result.

_mm512_mask_atan2_pd

extern __m512d __cdecl _mm512_mask_atan2_pd(__m512d src, __mmask8 k, __m512d a, __m512d b);
Computes the inverse tangent of packed float64 elements in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

Compiler Reference

1763

_mm512_atan2_ps

extern __m512 __cdecl _mm512_atan2_ps(__m512 a, __m512 b);
Computes the inverse tangent of packed float32 elements in a and b, and stores the result.

_mm512_mask_atan2_ps

extern __m512 __cdecl _mm512_mask_atan2_ps(__m512 src, __mmask16 k, __m512 a, __m512 b);
Computes the inverse tangent of packed float32 elements in a and b, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_atan_pd

extern __m512d __cdecl _mm512_atan_pd(__m512d a);
Computes the inverse tangent of packed float64 elements in a, and stores the result.

_mm512_mask_atan_pd

extern __m512d __cdecl _mm512_mask_atan_pd(__m512d src, __mmask8 k, __m512d a);
Computes the inverse tangent of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_atan_ps

extern __m512 __cdecl _mm512_atan_ps(__m512 a);
Computes the inverse tangent of packed float32 elements in a, and stores the result.

_mm512_mask_atan_ps

extern __m512 __cdecl _mm512_mask_atan_ps(__m512 src, __mmask16 k, __m512 a);
Computes the inverse tangent of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_atanh_pd

extern __m512d __cdecl _mm512_atanh_pd(__m512d a);
Computes the inverse hyperbolic tangent of packed float64 elements in a, and stores the result.

_mm512_mask_atanh_pd

extern __m512d __cdecl _mm512_mask_atanh_pd(__m512d src, __mmask8 k, __m512d a);
Computes the inverse hyperbolic tangent of packed float64 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_atanh_ps

extern __m512 __cdecl _mm512_atanh_ps(__m512 a);
Computes the inverse hyperbolic tangent of packed float32 elements in a, and stores the result.

 Intel® C++ Compiler Classic Developer Guide and Reference

1764

_mm512_mask_atanh_ps

extern __m512 __cdecl _mm512_mask_atanh_ps(__m512 src, __mmask16 k, __m512 a);
Computes the inverse hyperbolic tangent of packed float32 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_cos_pd

extern __m512d __cdecl _mm512_cos_pd(__m512d a);
Computes the cosine of packed float64 elements in a, and stores the result.

_mm512_mask_cos_pd

extern __m512d __cdecl _mm512_mask_cos_pd(__m512d src, __mmask8 k, __m512d a);
Computes the cosine of packed float64 elements in a, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_cos_ps

extern __m512 __cdecl _mm512_cos_ps(__m512 a);
Computes the cosine of packed float32 elements in a, and stores the result.

_mm512_mask_cos_ps

extern __m512 __cdecl _mm512_mask_cos_ps(__m512 src, __mmask16 k, __m512 a);
Computes the cosine of packed float32 elements in a, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_cosd_pd

extern __m512d __cdecl _mm512_cosd_pd(__m512d a);

Computes the cosine (in degrees) of packed float64 elements in a, and stores the result.

_mm512_mask_cosd_pd

extern __m512d __cdecl _mm512_mask_cosd_pd(__m512d src, __mmask8 k, __m512d a);
Computes the cosine (in degrees) of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_cosd_ps

extern __m512 __cdecl _mm512_cosd_ps(__m512 a);
Computes the cosine (in degrees) of packed float32 elements in a, and stores the result.

_mm512_mask_cosd_ps

extern __m512 __cdecl _mm512_mask_cosd_ps(__m512 src, __mmask16 k, __m512 a);

Compiler Reference

1765

Computes the cosine (in degrees) of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_cosh_pd

extern __m512d __cdecl _mm512_cosh_pd(__m512d a);
Computes the hyperbolic cosine of packed float64 elements in a, and stores the result.

_mm512_mask_cosh_pd

extern __m512d __cdecl _mm512_mask_cosh_pd(__m512d src, __mmask8 k, __m512d a);
Computes the hyperbolic cosine of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_cosh_ps

extern __m512 __cdecl _mm512_cosh_ps(__m512 a);
Computes the hyperbolic cosine of packed float32 elements in a, and stores the result.

_mm512_mask_cosh_ps

extern __m512 __cdecl _mm512_mask_cosh_ps(__m512 src, __mmask16 k, __m512 a);
Computes the hyperbolic cosine (in degrees) of packed float32 elements in a, and stores the result using
writemask k (elements are copied from src when the corresponding mask bit is not set).

_mm512_sin_pd

extern __m512d __cdecl _mm512_sin_pd(__m512d a);
Computes the sine of packed float64 elements in a, and stores the result.

_mm512_mask_sin_pd

extern __m512d __cdecl _mm512_mask_sin_pd(__m512d src, __mmask8 k, __m512d a);
Computes the sine of packed float64 elements in a, and stores the result using writemask k (elements are
copied from src when the corresponding mask bit is not set).

_mm512_sin_ps

extern __m512 __cdecl _mm512_sin_ps(__m512 a);
Computes the sine of packed float32 elements in a, and stores the result.

_mm512_mask_sin_ps

extern __m512 __cdecl _mm512_mask_sin_ps(__m512 src, __mmask16 k, __m512 a);
Computes the sine (in degrees) of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

 Intel® C++ Compiler Classic Developer Guide and Reference

1766

_mm512_sincos_pd

extern __m512d __cdecl _mm512_sincos_pd(__m512d a);
Computes the sine and cosine of packed float64 elements in a, and stores the result.

_mm512_mask_sincos_pd

extern __m512d __cdecl _mm512_mask_sincos_pd(__m512d src, __mmask8 k, __m512d a);
Computes the sine and cosine of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_sincos_ps

extern __m512 __cdecl _mm512_sincos_ps(__m512 a);
Computes the sine and cosine of packed float32 elements in a, and stores the result.

_mm512_mask_sincos_ps

extern __m512 __cdecl _mm512_mask_sincos_ps(__m512 src, __mmask16 k, __m512 a);
Computes the sineand cosine of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_sind_pd

extern __m512d __cdecl _mm512_sind_pd(__m512d a);
Computes the sine (in degrees) of packed float64 elements in a, and stores the result.

_mm512_mask_sind_pd

extern __m512d __cdecl _mm512_mask_sind_pd(__m512d src, __mmask8 k, __m512d a);
Computes the sine (in degrees) packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_sind_ps

extern __m512 __cdecl _mm512_sind_ps(__m512 a);
Computes the sine (in degrees) of packed float32 elements in a, and stores the result.

_mm512_mask_sind_ps

extern __m512 __cdecl _mm512_mask_sind_ps(__m512 src, __mmask16 k, __m512 a);
Computes the sine (in degrees) of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_sinh_pd

extern __m512d __cdecl _mm512_sinh_pd(__m512d a);
Computes the hyperbolic sine of packed float64 elements in a, and stores the result.

Compiler Reference

1767

_mm512_mask_sinh_pd

extern __m512d __cdecl _mm512_mask_sinh_pd(__m512d src, __mmask8 k, __m512d a);
Computes the hyperbolic sine of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_sinh_ps

extern __m512 __cdecl _mm512_sinh_ps(__m512 a);
Computes the hyperbolic sine of packed float32 elements in a, and stores the result.

_mm512_mask_sinh_ps

extern __m512 __cdecl _mm512_mask_sinh_ps(__m512 src, __mmask16 k, __m512 a);
Computes the hyperbolic cosine of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_tan_pd

extern __m512d __cdecl _mm512_tan_pd(__m512d a);
Computes the tangent of packed float64 elements in a, and stores the result.

_mm512_mask_tan_pd

extern __m512d __cdecl _mm512_mask_tan_pd(__m512d src, __mmask8 k, __m512d a);
Computes the tangent of packed float64 elements in a, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm512_tan_ps

extern __m512 __cdecl _mm512_tan_ps(__m512 a);
Computes the tangent of packed float32 elements in a, and stores the result.

_mm512_mask_tan_ps

extern __m512 __cdecl _mm512_mask_tan_ps(__m512 src, __mmask16 k, __m512 a);
Computes the tangent of packed float32 elements in a, and stores the result using writemask k (elements
are copied from src when the corresponding mask bit is not set).

_mm512_tand_pd

extern __m512d __cdecl _mm512_tand_pd(__m512d a);
Computes the tangent (in degrees) of packed float64 elements in a, and stores the result.

_mm512_mask_tand_pd

extern __m512d __cdecl _mm512_mask_tand_pd(__m512d src, __mmask8 k, __m512d a);

 Intel® C++ Compiler Classic Developer Guide and Reference

1768

Computes tangent (in degrees) of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_tand_ps

extern __m512 __cdecl _mm512_tand_ps(__m512 a);
Computes the tangent (in degrees) of packed float32 elements in a, and stores the result.

_mm512_mask_tand_ps

extern __m512 __cdecl _mm512_mask_tand_ps(__m512 src, __mmask16 k, __m512 a);
Computes the tangent (in degrees) of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_tanh_pd

extern __m512d __cdecl _mm512_tanh_pd(__m512d a);
Computes the hyperbolic tangent of packed float64 elements in a, and stores the result.

_mm512_mask_tanh_pd

extern __m512d __cdecl _mm512_mask_tanh_pd(__m512d src, __mmask8 k, __m512d a);
Computes the hyperbolic tangent of packed float64 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

_mm512_tanh_ps

extern __m512 __cdecl _mm512_tanh_ps(__m512 a);
Computes the hyperbolic tangent of packed float32 elements in a, and stores the result.

_mm512_mask_tanh_ps

extern __m512 __cdecl _mm512_mask_tanh_ps(__m512 src, __mmask16 k, __m512 a);
Computes the hyperbolic tangent of packed float32 elements in a, and stores the result using writemask k
(elements are copied from src when the corresponding mask bit is not set).

Intrinsics for Trigonometric Operations

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

For information about 512-bit trigonometric intrinsics for SVML, see Intrinsics for Trigonometric Operations
(512-bit).

Compiler Reference

1769

_mm_acos_pd, _mm256_acos_pd
Calculates inverse cosine value. Vector variant of
acos(x) function for a 128-bit/256-bit vector argument
of float64 values.

Syntax

extern __m128d _mm_acos_pd(__m128d v1);
extern __m256d _mm256_acos_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the arc cosine of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_acos_ps, _mm256_acos_ps
Calculates inverse cosine value. Vector variant of
acos(x) function for a 128-bit/256-bit vector argument
of float32 values.

Syntax

extern __m128 _mm_acos_ps(__m128 v1);
extern __m256 _mm256_acos_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the arc cosine of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

 Intel® C++ Compiler Classic Developer Guide and Reference

1770

_mm_acosh_pd, _mm256_acosh_pd
Calculates the inverse hyperbolic cosine value. Vector
variant of acosh(x) function for a 128-bit/256-bit
vector argument of float64 values.

Syntax

extern __m128d _mm_acosh_pd(__m128d v1);
extern __m256d _mm256_acosh_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the inverse hyperbolic cosine of vector v1 values.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_acosh_ps, _mm256_acosh_ps
Calculates the inverse hyperbolic cosine value. Vector
variant of acosh(x) function for a 128-bit/256-bit
vector argument of float32 values.

Syntax

extern __m128 _mm_acosh_ps(__m128 v1);
extern __m256 _mm256_acosh_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the inverse hyperbolic cosine of vector v1 values.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Compiler Reference

1771

_mm_asin_pd, _mm256_asin_pd
Calculates inverse sine value. Vector variant of asin(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_asin_pd(__m128d v1);
extern __m256d _mm256_asin_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the arc sine of vector v1 values.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_asin_ps, _mm256_asin_ps
Calculates inverse sine value. Vector variant of asin(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_asin_ps(__m128 v1);
extern __m256 _mm256_asin_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the arc sine of vector v1 values.

Returns

128-bit/256-bit vector with result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

 Intel® C++ Compiler Classic Developer Guide and Reference

1772

_mm_asinh_pd, _mm256_asinh_pd
Calculates the inverse hyperbolic sine value. Vector
variant of asinh(x) function for a 128-bit/256-bit
vector argument of float64 values.

Syntax

extern __m128d _mm_asinh_pd(__m128d v1);
extern __m256d _mm256_asinh_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the inverse hyperbolic sine of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_asinh_ps, _mm256_asinh_ps
Calculates the inverse hyperbolic sine value. Vector
variant of asinh(x) function for a 128-bit/256-bit
vector argument of float32 values.

Syntax

extern __m128 _mm_asinh_ps(__m128 v1);
extern __m256 _mm256_asinh_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the inverse hyperbolic sine of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Compiler Reference

1773

_mm_atan_pd, _mm256_atan_pd
Calculates inverse tangent value. Vector variant of
atan(x) function for a 128-bit/256-bit vector argument
of float64 values.

Syntax

extern __m128d _mm_atan_pd(__m128d v1);
extern __m256d _mm256_atan_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the arc tangent of vector v1 elements. In effect, the tangent of each resulting element value is the
value of the corresponding v1 vector element.

Returns

128-bit/256-bit vector with result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_atan_ps, _mm256_atan_ps
Calculates inverse tangent value. Vector variant of
atan(x) function for a 128-bit/256-bit vector argument
of float32 values.

Syntax

extern __m128 _mm_atan_ps(__m128 v1);
extern __m256 _mm256_atan_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the arc tangent of vector v1 elements. In effect, the tangent of each resulting element value is the
value of the corresponding v1 vector element.

Returns

128-bit/256-bit vector with result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

 Intel® C++ Compiler Classic Developer Guide and Reference

1774

_mm_atan2_pd, _mm256_atan2_pd
Calculates the inverse tangent of float64 variables x
and y. Vector variant of atan2(x, y) function for a
128-bit/256-bit vector argument of float64 values.

Syntax

extern __m128d _mm_atan2_pd(__m128d v1, __m128 v2);
extern __m256d _mm256_atan2_pd(__m256d v1, __m256 v2);

Arguments

v1 vector with float64 values

v2 vector with float64 values

Description

Calculates the arc tangent of corresponding float64 elements of vectors v1 and v2. The following is an
illustration of the atan2 operation:

Res[0] = atan2(v1[0], v2[0])
Res[1] = atan2(v1[1], v2[1])
Res[2] = atan2(v1[2], v2[2])
Res[15] = atan2(v1[15], v2[15])
...

NOTE
This calculation is similar to calculating the arc tangent of y / x, except that the signs of
both arguments are used to determine the quadrant of the result.

Returns

Result of the bitwise operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_atan2_ps, _mm256_atan2_ps
Calculates the inverse tangent of float32 variables x
and y. Vector variant of atan2(x, y) function for a
128-bit/256-bit vector argument of float32 values.

Syntax

extern __m128 _mm_atan2_ps(__m128 v1, __m128 v2);
extern __m256 _mm256_atan2_ps(__m256 v1, __m256 v2);

Arguments

v1 vector with float32 values

Compiler Reference

1775

v2 vector with float32 values

Description

Calculates the arc tangent of corresponding float32 elements of vectors v1 and v2. The following is an
illustration of the atan2 operation:

Res[0] = atan2(v1[0], v2[0])
Res[1] = atan2(v1[1], v2[1])
Res[2] = atan2(v1[2], v2[2])
Res[15] = atan2(v1[15], v2[15])
...

NOTE
This calculation is similar to calculating the arc tangent of y / x, except that the signs of
both arguments are used to determine the quadrant of the result.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_atanh_pd, _mm256_atanh_pd
Calculates inverse hyperbolic tangent value. Vector
variant of atanh(x) function for a 128-bit/256-bit
vector argument of float64 values.

Syntax

extern __m128d _mm_atanh_pd(__m128d v1);
extern __m256d _mm256_atanh_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the inverse hyperbolic tangent of vector v1 elements. In effect, the hyperbolic tangent of each
resulting element value is the value of the corresponding v1 vector element.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

 Intel® C++ Compiler Classic Developer Guide and Reference

1776

_mm_atanh_ps, _mm256_atanh_ps
Calculates inverse hyperbolic tangent value. Vector
variant of atanh(x) function for a 128-bit/256-bit
vector argument of float32 values.

Syntax

extern __m128 _mm_atanh_ps(__m128 v1, __m128 v2);
extern __m256 _mm256_atanh_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the inverse hyperbolic tangent of vector v1 elements. In effect, the hyperbolic tangent of each
resulting element value is the value of the corresponding v1 vector element.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_cos_pd, _mm256_cos_pd
Calculates cosine value. Vector variant of cos(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_cos_pd(__m128d v1);
extern __m256d _mm256_cos_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the cosine of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Compiler Reference

1777

_mm_cos_ps, _mm256_cos_ps
Calculates cosine value. Vector variant of cos(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_cos_ps(__m128 v1);
extern __m256 _mm256_cos_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the cosine of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_cosd_pd, _mm256_cosd_pd
Calculates cosine value. Vector variant of cosd(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_cosd_pd(__m128d v1);
extern __m256d _mm256_cosd_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the cosine of vector v1 elements, measured in degrees.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

 Intel® C++ Compiler Classic Developer Guide and Reference

1778

_mm_cosd_ps, _mm256_cosd_ps
Calculates cosine value. Vector variant of cosd(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_cosd_ps(__m128 v1);
extern __m256 _mm256_cosd_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the cosine of vector v1 elements, measured in degrees.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_cosh_pd, _mm256_cosh_pd
Calculates the hyperbolic cosine value. Vector variant
of cosh(x) function for a 128-bit/256-bit vector
argument of float64 values.

Syntax

extern __m128d _mm_cosh_pd(__m128d v1, __m128d v2);
extern __m256d _mm256_cosh_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the hyperbolic cosine of vector v1 elements, which is defined mathematically as:

(exp(x) + exp(-x)) / 2

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Compiler Reference

1779

_mm_cosh_ps, _mm256_cosh_ps
Calculates the hyperbolic cosine value. Vector variant
of cosh(x) function for a 128-bit/256-bit vector
argument of float32 values.

Syntax

extern __m128 _mm_cosh_ps(__m128 v1);
extern __m256 _mm256_cosh_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the hyperbolic cosine of vector v1 elements, which is defined mathematically as:

(exp(x) + exp(-x)) / 2

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_sin_pd, _mm256_sin_pd
Calculates sine value. Vector variant of sin(x) function
for a 128-bit/256-bit vector argument of float64
values.

Syntax

extern __m128d _mm_sin_pd(__m128d v1);
extern __m256d _mm256_sin_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the sine of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

 Intel® C++ Compiler Classic Developer Guide and Reference

1780

_mm_sin_ps, _mm256_sin_ps
Calculates sine value. Vector variant of sin(x) function
for a 128-bit/256-bit vector argument of float32
values.

Syntax

extern __m128 _mm_sin_ps(__m128 v1);
extern __m256 _mm256_sin_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the sine of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_sind_pd, _mm256_sind_pd
Calculates sine value. Vector variant of sind(x)
function for a 128-bit/256-bit vector argument of
float64 values.

Syntax

extern __m128d _mm_sind_pd(__m128d v1);
extern __m256d _mm256_sind_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the sine of vector v1 elements, measured in degrees.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Compiler Reference

1781

_mm_sind_ps, _mm256_sind_ps
Calculates sine value. Vector variant of sind(x)
function for a 128-bit/256-bit vector argument of
float32 values.

Syntax

extern __m128 _mm_sind_ps(__m128 v1);
extern __m256 _mm256_sind_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the sine of vector v1 elements, measured in degrees.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_sinh_pd, _mm256_sinh_pd
Calculates the hyperbolic sine value. Vector variant of
sinh(x) function for a 128-bit/256-bit vector argument
of float64 values.

Syntax

extern __m128d _mm_sinh_pd(__m128d v1);
extern __m256d _mm256_sinh_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the hyperbolic sine of vector v1 elements, which is defined mathematically as:

(exp(x) - exp(-x)) / 2
.

Returns

128-bit/256-bit vector with the result of the operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1782

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_sinh_ps, _mm256_sinh_ps
Calculates the hyperbolic sine value. Vector variant of
sinh(x) function for a 128-bit/256-bit vector argument
of float32 values.

Syntax

extern __m128 _mm_sinh_ps(__m128 v1);
extern __m256 _mm256_sinh_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the hyperbolic sine of vector v1 elements, which is defined mathematically as:

(exp(x) - exp(-x)) / 2

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_tan_pd, _mm256_tan_pd
Calculates tangent value. Vector variant of tan(x)
function for a 128-bit/256-bit vector arguments with
float64 values.

Syntax

extern __m128d _mm_tan_pd(__m128d v1);
extern __m256d _mm256_tan_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the tangent of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

Compiler Reference

1783

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_tan_ps, _mm256_tan_ps
Calculates tangent value. Vector variant of tan(x)
function for a 128-bit/256-bit vector arguments with
float32 values.

Syntax

extern __m128 _mm_tan_ps(__m128 v1);
extern __m256 _mm256_tan_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the tangent of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_tand_pd, _mm256_tand_pd
Calculates tangent value. Vector variant of tand(x)
function for a 128-bit/256-bit vector arguments with
float64 values.

Syntax

extern __m128d _mm_tand_pd(__m128d v1);
extern __m256d _mm256_tand_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the tangent of vector v1 elements, measured in degrees.

Returns

128-bit/256-bit vector with the result of the operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1784

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_tand_ps, _mm256_tand_ps
Calculates the tangent value. Vector variant of tand(x)
function for a 128-bit/256-bit vector arguments with
float32 values.

Syntax

extern __m128 _mm_tand_ps(__m128 v1);
extern __m256 _mm256_tand_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the tangent of vector v1 elements, measured in degrees.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_tanh_pd, _mm256_tanh_pd
Calculates hyperbolic tangent value. Vector variant of
tanh(x) function for a 128-bit/256-bit vector
arguments with float64 values.

Syntax

extern __m128d _mm_tanh_pd(__m128d v1);
extern __m256d _mm256_tanh_pd(__m256d v1);

Arguments

v1 vector with float64 values

Description

Calculates the hyperbolic tangent of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

Compiler Reference

1785

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_tanh_ps, _mm256_tanh_ps
Calculates hyperbolic tangent value. Vector variant of
tanh(x) function for a 128-bit/256-bit vector
arguments with float32 values.

Syntax

extern __m128 _mm_tanh_ps(__m128 v1);
extern __m256 _mm256_tanh_ps(__m256 v1);

Arguments

v1 vector with float32 values

Description

Calculates the hyperbolic tangent of vector v1 elements.

Returns

128-bit/256-bit vector with the result of the operation.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_sincos_pd, _mm256_sincos_pd
Calculates the sine and cosine values. Vector variant
of sincos(x, &sin_x, &cos_x) function for a 128-bit/
256-bit vector with float64 values.

Syntax

extern __m128d _mm_sincos_pd(__m128d *p_cos, __m128d v1);
extern __m256d _mm256_sincos_pd(__m256d *p_cos, __m256d v1);

Arguments

*p_cos points to vector of cosine results (pointer must be
aligned on 16 bytes, or declared as __m128d*
instead)

v1 vector with float64 values

Description

Calculates sine and cosine values of vector v1 elements.

The cosine and sine values cannot be returned in the result vector. Therefore, the intrinsic stores the cosine
values at a location pointed to byp_cos, and returns only the sine values in the 128-bit result vector.

 Intel® C++ Compiler Classic Developer Guide and Reference

1786

Returns

128-bit/256-bit vector with the sine results.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

_mm_sincos_ps, _mm256_sincos_ps
Calculates the sine and cosine values. Vector variant
of sincos(x, &sin_x, &cos_x) function for a 128-bit/
256-bit vector with float32 values.

Syntax

extern __m128 _mm_sincos_ps(__m128 *p_cos, __m128 v1);
extern __m256 _mm256_sincos_ps(__m256 *p_cos, __m256 v1);

Arguments

*p_cos points to vector of cosine results (pointer must be
aligned on 16 bytes, or declared as __m128* instead)

v2 vector with float32 values

Description

Calculates sine and cosine values of vector v1 elements.

The cosine and sine values cannot be returned in the result vector. Therefore, the intrinsic stores the cosine
values at a location pointed to byp_cos, and returns only the sine values in the 128-bit result vector.

Returns

128-bit/256-bit vector with the sine results.

NOTE
Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

Libraries
The Intel® C++ Compiler lets you use all the standard run-time libraries that are part of Microsoft* Visual C+
+*. The options described in this section can help you determine which libraries your application uses.

To create libraries, use the lib.exe tool or xilib.exe tool.

Libraries

1787

Create Libraries
Libraries are simply an indexed collection of object files that are included as needed in a linked program.
Combining object files into a library makes it easy to distribute your code without disclosing the source. It
also reduces the number of command-line entries needed to compile your project.

Static Libraries
Executables generated using static libraries are no different than executables generated from individual
source or object files. Static libraries are not required at runtime, so you do not need to include them when
you distribute your executable. At compile time, linking to a static library is generally faster than linking to
individual source files.

These steps show how to build a static library on Linux using the icpc driver . See Invoke the Compiler for
information about all available drivers.

1. Use the c option to generate object files from the source files:

icpc -c my_source1.cpp my_source2.cpp my_source3.cpp
2. Use the GNU* tool ar to create the library file from the object files:

ar rc my_lib.a my_source1.o my_source2.o my_source3.o
3. Compile and link your project with your new library:

icpc main.cpp my_lib.a
If your library file and source files are in different directories, use the Ldir option to indicate where your
library is located:

icpc -L/cpp/libs main.cpp my_lib.a
To build a static library on macOS:

1. Use the following command to generate object files and create the library file:

icpc -fpic -o mylib.a -staticlib my_source1.cpp my_source2.cpp my_source3.cpp
2. Compile and link your project with your new library:

icpc main.cpp my_lib.a
If your library file and source files are in different directories, use the Ldirdir option to indicate where your
library is located:

icpc -L/cpp/libs main.cpp my_lib.a
If you are using Interprocedural Optimization, see the topic Create a Library from IPO Objects, which
discusses using xiar.

Shared Libraries
Shared libraries, also referred to as dynamic libraries or Dynamic Shared Objects (DSO), are linked
differently than static libraries. At compile time, the linker insures that all the necessary symbols are either
linked into the executable, or can be linked at runtime from the shared library. Executables compiled from
shared libraries are smaller, but the shared libraries must be included with the executable to function
correctly. When multiple programs use the same shared library, only one copy of the library is required in
memory.

Linux

These steps show how to build a shared library on Linux using the icpc driver . See Invoke the Compiler for
information about all available drivers.

 Intel® C++ Compiler Classic Developer Guide and Reference

1788

1. Use options fPIC and c to generate object files from the source files:

icpc -fPIC -c my_source1.cpp my_source2.cpp my_source3.cpp
2. Use the shared option to create the library file from the object files:

icpc -shared -o my_lib.so my_source1.o my_source2.o my_source3.o
3. Compile and link your project with your new library:

icpc main.cpp my_lib.so
macOS

These steps show how to build a shared library on macOS using the icpc driver

1. Use the following command to generate object files and create the library file:

icpc -fPIC -o my_lib.so -dynamiclib my_source1.cpp my_source2.cpp my_source3.cpp
2. Compile and link your project with your new library:

icpc main.cpp my_lib.dylib
Windows

Use the following options to create libraries on Windows:

Option Description

/LD, /LDd Produces a DLL. d indicates debug version.

/MD, /MDd Compiles and links with the dynamic, multi-thread C run time library. d indicates
debug version.

/MT, /MTd Compiles and links with the static, multi-thread C run time library. d indicates debug
version.

/Zl Disables embedding default libraries in object files.

See Also
Use Intel Shared Libraries

Create a Library from IPO Objects

See Also
/LD compiler option
/MD compiler option
/MT compiler option

Use Intel Shared Libraries
This topic applies to Linux and macOS.

By default, the Intel® C++ Compiler Classic links Intel® C++ libraries dynamically. The GNU/Linux/macOS
system libraries are also linked dynamically.

Compiler Reference

1789

Options for Shared Libraries (Linux)

Option Description

-shared-intel Use the shared-intel option to link Intel®-provided libraries dynamically. This has
the advantage of reducing the size of the application binary, but it also requires the
libraries to be on the application's target system.

-shared The shared option instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable. For more details, refer to the ld man page documentation.

-fpic Use the fpic option when building shared libraries. It is required for the compilation
of each object file included in the shared library.

Options for Shared Libraries (macOS)

Option Description

-dynamiclib Use the dynamiclib option to invoke the libtool command to generate dynamic
libraries.

-fpic Use the fpic option when building shared libraries. It is required for the compilation
of each object file included in the shared library.

Using Shared Libraries on macOS
This topic only applies to macOS.

On macOS, it is possible to store path information in shared libraries to perform library searches. The
compiler installation changes the path to the installation directory, but you will need to modify these paths if
you move the libraries elsewhere. For example, you may want to bundle redistributable Intel® libraries with
your application. This eliminates the dependency on libraries found on DYLD_LIBRARY_PATH.

If your compilations do not use DYLD_LIBRARY_PATH to find libraries, and you distribute executables that
depend on shared libraries, then you will need to modify the Intel shared libraries (../lib/*.dylib) using
the install_name_tool to set the correct path to the shared libraries. This also permits the end-user to
launch the application by double-clicking on the executable. The command below will modify each library
with the correct absolute path information:

for i in *.dylib
do
 echo -change $i `pwd`/$i
 done > changes
for i in *.dylib
do
 install_name_tool `cat changes` $i
done

You can also use the install_name_tool to set @executable_path to change path information for the
libraries bundled in your application by changing the path appropriately.

Be sure to recompile your sources after modifying the libraries.

 Intel® C++ Compiler Classic Developer Guide and Reference

1790

Manage Libraries

Manage Libraries on Linux and macOS
During compilation, the compiler reads the LIBRARY_PATH environment variable for static libraries it needs to
link when building the executable. At runtime, the executable will link against dynamic libraries referenced in
the LD_LIBRARY_PATH environment variable. Add the location of your static libraries to the LIBRARY_PATH
environment variable so that they are available for linking during compilation.

For example, to compile file.cpp and link it with the library lib.a, located in the /libs directory:

1. Add the directory /libs to LIBRARY_PATH from the command line with the export command:

export LIBRARY_PATH=/libs:$LIBRARY_PATH
Alternately, add the directory to LIBRARY_PATH by addiing the export command to your startup file.

2. Compile file.cpp and link it with lib.a:

icc file.cpp lib.a
To link your library during compilation without modifying the LIBRARY_PATH environment variable use the -L
option. For example:

icc file.cpp -L /libs lib.a
During compilation, the compiler passes object files to the linker in the following order:

1. Object files, from files specified on the command line, in the order they are specified (left to right)
2. Objects or libraries specified in default configuration files
3. Default Intel and system libraries

For example, the command

icc lib1.a file.cpp lib2.a
would have the following link order:

1. lib1.a
2. file.o
3. lib2.a
4. Objects or libraries specified in default configuration files
5. Default Inel and system libraries

Manage Libraries on Windows
The LIB environment variable contains a semicolon-separated list of directories in which the Microsoft linker
will search for library (.lib) files. The compiler does not specify library names to the linker but includes
directives in the object file to specify the libraries to be linked with each object.

For more information on adding library names to the response file and the configuration file, see Using
Response Files and Using Configuration Files.

To specify a library name on the command line, you must first add the library's path to the LIB environment
variable. Then you can specify the library name on the command line. For example, to compile file.cpp and
link it with the library mylib.lib enter the command:

icc file.cpp mylib.lib

Compiler Reference

1791

Other Considerations
The Intel Compiler Math Libraries contain performance-optimized implementations for various Intel
platforms. By default, the best implementation for the underlying hardware is selected at runtime. The library
dispatch of multi-threaded code may lead to apparent data races, which may be detected by certain software
analysis tools. However, as long as the threads are running on cores with the same CPUID, these data races
are harmless and are not a cause for concern.

Redistribute Libraries When Deploying Applications
When you deploy your application to systems that do not have a compiler installed, you need to redistribute
certain Intel® libraries where your application is linked. You can do so in one of the following ways:

• Statically link your application.

An application built with statically-linked libraries eliminates the need to distribute runtime libraries with
the application executable. By linking the application to the static libraries, you are not dependent on the
Intel® Fortran or Intel® C/C++ dynamic shared libraries.

• Dynamically link your application.

If you must build your application with dynamically linked (or shared) compiler libraries, you should
address the following concerns:

• You must build your application with shared or dynamic libraries that are redistributable.
• Pay careful attention to the directory where the redistributables are installed and how the OS finds

them.
• You should determine which shared or dynamic libraries your application needs.

The information here is only introductory. The redistributable library installation packages are available at the
following locations:

• Intel® oneAPI versions
• Older Intel® Parallel Studio XE versions

Resolve References to Shared Libraries
If you are relying on shared libraries distributed with
Intel® oneAPI tools, you must make sure that your
users have these shared libraries on their systems.

If you are building an application that will be deployed to your user community and you are relying on shared
libraries (.so shared objects on Linux, .dll dynamic libraries on Windows, and .dylib dynamic libraries on
macOS) distributed with Intel® oneAPI tools, you must make sure that your users have these shared libraries
on their systems. To determine what shared libraries you depend on, use one of the following commands for
each of your programs and components:

Linux

ldconfig
macOS

otool -L
Windows

dumpbin /DEPENDENTS programOrComponentName
Once you have done this, you must choose how your users will receive these libraries.

Shared Library Deployment
Once you have built, run, and debugged your application, you must deploy it to your users. That deployment
includes any shared libraries, including libraries that are components of the Intel® oneAPI toolkits.

 Intel® C++ Compiler Classic Developer Guide and Reference

1792

https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html
https://software.intel.com/content/www/us/en/develop/articles/intel-compilers-redistributable-libraries-by-version.html

Deployment Models
You have two options for deploying the shared libraries from the Intel oneAPI toolkit that your application
depends on:

Private Model Copy the shared libraries from the Intel oneAPI toolkit into your application
environment, and then package and deploy them with your application. Review
the license and third-party files associated with the Intel oneAPI toolkits and/or
components you have installed to determine the files that you can redistribute.

The advantage to this model is that you have control over your library and
version choice, so you only package and deploy the libraries that you have
tested. The disadvantage is that the end users may see multiple libraries
installed on their system, if multiple installed applications all use the private
model. You are also responsible for updating these libraries whenever updates
are required.

Public Model You direct your users to runtime packages provided by Intel. Your users install
these packages on their system when they install your application. The runtime
packages install onto a fixed location, so all applications built with Intel oneAPI
tools can be used.

The advantage is that one copy of each library is shared by all applications, which
results in improved performance. You can rely on updates to the runtime
packages to resolve issues with libraries independently from when you update
your application. The disadvantage is that the footprint of the runtime package is
larger than a package from the private model. Another disadvantage is that your
tested versions of the runtime libraries may not be the same as your end user's
versions.

Select the model that best fits your environment, your needs, and the needs of your users.

NOTE Intel ensures that newer compiler-support libraries work with older versions of generated
compiler objects, but newer versioned objects require newer versioned compiler-support libraries. If
an incompatibility is introduced that causes newer compiler-support libraries not to work with older
compilers, you will have sufficient warning and the library will be versioned so that deployed
applications continue to work.

Additional Steps
Under either model, you must manually configure certain environment variables that are normally handled by
the setvars/vars scripts or module files.

For example, with the Intel® MPI Library, you must set the following environment variables during
installation:

Linux

I_MPI_ROOT=installPath FI_PROVIDER_PATH=installPath/intel64/libfabric:/usr/lib64/libfabric
Windows

I_MPI_ROOT=installPath

Compiler Reference

1793

Compatibility in the Minor Releases of the Intel oneAPI Products
For Intel oneAPI products, each minor version of the product is compatible with the other minor version from
the same release (for example, 2021). When there are breaking changes in API or ABI, the major version is
increased. For example, if you tested your application with an Intel oneAPI product with a 2021.1 version, it
will work with all 2021.x versions. It is not guaranteed that it will work with 2022.x or 19.x versions.

Intel's Memory Allocator Library
Intel's libqkmalloc library for fast memory allocation provides a C-level interface for memory allocation
that is optimized for performance.

You can link the libqkmalloc library as a shared library only on Linux* platforms for Intel® 64 architecture.
This library provides optimized implementation of standard allocation routines malloc, calloc, realloc,
and free, and is C99 standard compliant.

NOTE This library is limited to work only on Intel® processors and will redirect to standard C routines
at runtime if used on non-Intel® processors.

Use Intel's Custom Memory Allocator Library
You can use the libqkmalloc library by linking directly to it or by using the LD_PRELOAD environment variable.

To ensure the application will override the standard library allocation routines with libqkmalloc, set the
environment variable LD_PRELOAD in the command line before the application execution. This environment
variable allows you to set the path of the library that will be loaded before any other library (including the C
runtime library), and the application will use symbols from this specified library instead of the symbols from
the standard library.

Restrictions
This library does not support threaded code such as OpenMP* and is not thread-safe. It should not be used
simultaneously from multiple threads. For the best results this library should be used with large throughput
workloads.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

SIMD Data Layout Templates
SIMD Data Layout Templates (SDLT) is a C++11 template library providing containers that represent arrays
of "Plain Old Data" objects (a struct whose data members do not have any pointers/references and no virtual
functions) using layouts that enable generation of efficient SIMD (single instruction multiple data) vector
code. SDLT uses standard ISO C++11 code. It does not require a special language or compiler to be
functional, but takes advantage of performance features (such as OpenMP* SIMD extensions and pragma
ivdep) that may not be available to all compilers. It is designed to promote scalable SIMD vector
programming. To use the library, specify SIMD loops and data layouts using explicit vector programming
model and SDLT containers, and let the compiler generate efficient SIMD code in an efficient manner.

Many of the library interfaces employ generic programming, in which interfaces are defined by requirements
on types and not specific types. The C++ Standard Template Library (STL) is an example of generic
programming. Generic programming enables SDLT to be flexible yet efficient. The generic interfaces enable
you to customize components to your specific needs.

 Intel® C++ Compiler Classic Developer Guide and Reference

1794

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

The net result is that SDLT enables you to specify a preferred SIMD data layout far more conveniently than
re-structuring your code completely with a new data structure for effective vectorization, and at the same
time can improve performance.

Motivation
C++ programs often represent an algorithm in terms of high level objects. For many algorithms there is a set
of data that the algorithm will need to process. It is common for the data set to be represented as array of
"plain old data" objects. It is also common for developers to represent that array with a container from the C
++ Standard Template Library, like std::vector. For example:

struct Point3s
{
 float x;
 float y;
 float z;
 // helper methods
};

std::vector<Point3s> inputDataSet(count);
std::vector<Point3s> outputDataSet(count);

for(int i=0; i < count; ++i) {
 Point3s inputElement = inputDataSet[i];
 Point3s result = // transformation of inputElement that is independent of other iterations
 // can keep algorithm high level using object helper methods
 outputDataSet[i] = result;
}

When possible a compiler may attempt to vectorize the loop above, however the overhead of loading the
"Array of Structures" data set into vector registers may overcome any performance gain of vectorizing.
Programs exhibiting the scenario above could be good candidates to use a SDLT container with a SIMD-
friendly internal memory layout. SDLT containers provide accessor objects to import and export Primitives
between the underlying memory layout and the objects original representation. For example:

SDLT_PRIMITIVE(Point3s, x, y, z)

sdlt::soa1d_container<Point3s> inputDataSet(count);
sdlt::soa1d_container<Point3s> outputDataSet(count);

auto inputData = inputDataSet.const_access();
auto outputData = outputDataSet.access();

#pragma forceinline recursive
#pragma omp simd
for(int i=0; i < count; ++i) {
 Point3s inputElement = inputData[i];
 Point3s result = // transformation of inputElement that is independent of other iterations
 // can keep algorithm high level using object helper methods
 outputData[i] = result;
}

When a local variable inside the loop is imported from or exported to using that loop's index, the compiler's
vectorizor can now access the underlying SIMD friendly data format and when possible perform unit stride
loads. If the compiler can prove nothing outside the loop can access the loop's local object, then it can
optimize its private representation of the loop object be "Structure of Arrays" (SOA). In our example, the
container's underlying memory layout is also SOA and unit stride loads can be generated. The Container also
allocates aligned memory and its accessor objects provide the compiler with the correct alignment
information for it to optimize code generation accordingly.

Compiler Reference

1795

Version Information
This documentation is for SDLT version 2, which extends version 1 by introducing support for n-dimensional
containers.

Backwards Compatibility

Public interfaces of version 2 are fully backward compatible with interfaces of version 1.

The backwards compatibility includes:

• Existing source code compatibility.

• Any source code using the SDLT v1 public API (non-internal interfaces) can be recompiled against SDLT
v2 headers with no changes.

• Binary compatibility.

• Because SDLT v2 API's exist in a new name space, sdlt::v2, all ABI linkage should not collide with any
existing SDLT v1 ABI's that exist only in sdlt namespace.

• A binary, dynamically-linked library that uses SDLT v1 internally, can be linked into a program using
SDLT v2, and vice versa.

• Passing SDLT containers or accessors as part of a libraries public API (ABI). When SDLT is used as part of
an ABI, that library and the calling code must use the same version of SDLT. They cannot be mixed or
matched.

This compatibility doesn't cover internal implementation. Internal implementation for SDLT v1 was updated
and unified with parts introduced in v2, so for codes dependent on internal interfaces backwards
compatibility is not guaranteed.

Deprecated
The interfaces below are deprecated; use the replacements provided in the table.

Deprecated Interface Deprecated in Version Replaced By

sdlt::fixed_offset<> v2 sdlt::fixed<>

sdlt::aligned_offset<> v2 sdlt::aligned<>

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Usage Guidelines: Function Calls and Containers

Function Calls
Function calls are a commonly used programming construct. Follow these simple guidelines when using SDLT
containers:

• If an SDLT Primitive is passed to a function by value, by pointer, or by reference, be sure to inline them
• Any Non-inlined functions should be SIMD enabled (for example, marke them with #pragma omp declare

simd).

If a loop variable is passed to a non-inlined function, the current C++ Application Binary Interface (ABI)
requires the memory layout match object's original which could cause additional data transformations or
inhibit vectorization. For that reason, the SDLT approach works best when all the methods or functions called
are inlined or use #pragma omp declare simd. Marking a function "inline" explicitly or implicitly is only a
hint. Compilers have several limits and heuristics that could cause a function to not be inlined. To avoid this

 Intel® C++ Compiler Classic Developer Guide and Reference

1796

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

issue, we recommend utilizing the #pragma forceinline recursive which instructs the compiler to ignore
its limits and heuristics: causing all functions in the following code block that could be inlined to actually be
inlined together with any functions called, and functions they call, and so on. Please also note that this can
cause the loop body and/or the function body to become too big to optimize. Under such circumstances,
carefully examine and restructure the function call boundaries and consider applying non-inlined, SIMD-
enabled function calls.

1-Dimensional Containers Overview
What if that std::vector<typename> could store data SIMD-friendly format internally while exposing an
AOS view to the programmer?

The 1-dimensional containers in SDLT aim to achieve that goal. They can abstract the in-memory data layout
of an array of objects to:

1. AOS (Array of Structures)

2. SOA (Structure of Arrays) which is SIMD friendly

Import/Export Only
As the memory layout is abstracted and may not match the original structure’s layout, containers cannot
provide memory references to the underlying data. Only import or export of the object to and from a
particular element in the container. In use, an algorithm might require some minor code changes to follow
import/export paradigm, however algorithm itself should read/flow the same.

The 1D containers in SDLT are dynamically resizable with an interface similar to std::vector<T>. To avoid
accidental misuse of copying containers into C++11 lambda functions we chose to delete the container’s
copy constructor and instead provide explicit “clone” method instead.

Containers provide SDLT concepts of an accessor and const_accessor for use with SIMD loops, interfaces for
std::vector compatibility are intended for ease of integration, not high performance.

Just like std::vector, the containers own the array data and its scope controls the life of that data.

n-Dimensional Containers Overview
Multi-dimensional containers generalize ideas from 1-dimensional containers; they separate multi-
dimensional access semantics from storage logic in an abstract way. A multi-dimensional SDLT container is a
generic container that handles an arbitrary number of dimensions, and at the same time internally represents
data as needed. Unlike 1-dimensional containers, multi-dimensional containers are not resizable and don't
have interfaces like that of std::vector. While 1-dimensional containers are like std::vectors with
decoupled storage, multi-dimensional containers are more akin to arrays (statically sized or variable length).

Below is an example of an n-dimensional container parameterized by three concerns: the data item
(primitive) type, the storage layout in memory, and the observed shape of the container.

n_container<PrimitiveT, LayoutT, ExtentsT>
Template Arguments Description

typename PrimitiveT The type of primitive that will be contained.

typename LayoutT The type of data layout.

typename ExtentsT Specifies the dimensions of the container

Compiler Reference

1797

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Construct an n_container

Description

An N-dimensional (multi-dimensional) container must be constructed before it can be used. The data type to
be contained must first be declared as a SDLT_PRIMITIVE, then a data layout is chosen, and finally the
shape of the container is determined describing the extents of each dimension.

Specify Data Layout

Rather than defining different containers for different data layouts, the data layout to use is specified as a
template parameter to the container.

Available layouts are summarized in table below. Full details can found on the table in the topic n_container.
Layout Description

layout::soa<> Structure of Arrays (SOA). Each data member of the
Primitive will have its own N-dimensional array.

layout::soa_per_row<> Structure of Arrays Per Row. Each data member of the
Primitive will have its own 1-dimensional array per row.
Layout repeats for remaining N-1 dimensions.

layout::aos_by_struct Array of Structures (AOS) Accessed by Struct. Native AOS
layout and data access.

layout::aos_by_stride Array of Structures Accessed by Stride. Native SOA data
access through pointers to the built in types of members
using a stride to account for the size of the Primitive.

Numbers and Constants

In order to define shape, integer values can be provided in three different forms, each successively providing
less information to compiler. It is advised to use as precise specification as possible. The compiler may
optimize better with more information.

Integer Value Specification Description

fixed<int NumberT> Known at compile time.

foo(fixed<1080>(), fixed<1920>());
The suffix _fixed will declare an equivalent literal.
For example, (1080_fixed is equivalent to
fixed<1080>.

foo(1080_fixed, 1920_fixed);)

aligned<int AlignmentT>(number) Programmer guarantees the number is a multiple of the
AlignmentT.

foo(aligned<8>(height),
aligned<128>(width));

“int” Arbitrary integer value.

foo(width, height);

Specify Container Shape

 Intel® C++ Compiler Classic Developer Guide and Reference

1798

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

n_extent_t<…> is a variadic template that accepts any number of arguments defining dimensions. Because
construction using this type may look unclear, a generator object, n_extent , is provided to construct
extents for all dimensions using a familiar array-definition-like syntax. Extent values may be specified using
the most precise representation possible, as described above, to allow the compiler to better prove any
potential data alignments.

n_extent[height][width]; // OK
n_extent[height][aligned<128>(width)]; // Better
n_extent[1080_fixed][1920_fixed]; // Best

Define an n_container

Using a previously declared primitive (same as SDLT v1),

struct RGBAs { float red, green, blue, alpha; };
SDLT_PRIMITIVE(RGBAs, red, green, blue, alpha)

A two-dimensional container of RGBAs with HD image size 1920x0180 can be declared and instantiated as in
the below example.

typedef n_container<RGBAs, layout::soa,
 n_extent_t<fixed<1080>, fixed<1920>>> HdImage;
HdImage image1;

If sizes are not known, a container may be defined with extents unknown to the compiler but known at run-
time when an instance of the container is created.

typedef n_container<RGBAs, layout::soa, n_extent_t<int, int>> Image;
Image image2(n_extent[height][width]);

Additionally, the templated factory function make_n_container<PrimitiveT, LayoutT> may be used to create
containers.

auto image1 = make_n_container<RGBAs,
 layout::soa>(n_extent[1080_fixed][1920_fixed]);
auto image2 = make_n_container<RGBAs,
 layout::soa>(n_extent[height][width]);

Access Cells

Containers own data. To get to the data inside, use an "accessor."

auto ca = image1.const_access();
auto a = image2.access();

Specify the index for each dimension with a series of calls to the array subscript operator [], similar to a
multi-dimensional array in C.

RGBAs pixel = ca[y][x];
float greyscale = (pixel.red + pixel.green + pixel.blue)/3;
a[y][x] = RGBAs(greyscale, greyscale, greyscale);

Discover Extents

Accessors know their extents.

Use template function extent_d<int DimensionT>(object).

for (int y = 0; y < extent_d<0>(ca); ++y)
 for (int x = 0; x < extent_d<1>(ca); ++x) {
 RGBAs pixel = ca[y][x];
 // …
 }

Compiler Reference

1799

For convenience, non-template methods are also provided.

for (int y = 0; y < ca.extent_d0(); ++y)
 for (int x = 0; x < ca.extent_d1(); ++x) {
 RGBAs pixel = ca[y][x];
 // …
 }

Lower Dimensions

The result of not specifying all the dimensions required by an accessor is a new accessor with a lower rank
that can then be accessed.

auto cay = ca[y];
RGBAs pixel = cay[x];

Bounds

Description

bounds_t<LowerT, UpperT> holds the lower and upper bounds of a half-open interval. It is templated to
allow the different integer representations for the lower and upper bounds. The intent is to model a valid
iteration space over a single dimension.

Bounds can be used to iterate over an entire extent or to restrict iteration space within an extent

Creating Bounds

Bounds can be created using full bounds_t type, but this may be tedious.

bounds_t<int, int>(start, finish)
bounds_t<int, aligned<16>>(start, aligned<16>(finish))
bounds_t<fixed<0>, fixed<1920>>()

It is simpler and clearer to use factory function bounds to build a bounds_t<>.

bounds(start,finish);
bounds(start, aligned<16>(finish));
bounds(0_fixed, 1920_fixed)

Discovering Bounds

Accessors know their valid iteraton space. Initial bounds for an accessor are set to set the lower bound to be
fixed<0> and the upper bound set to the value and type of the dimension's extent as specified during
construction of the n_container(fixed<>,aligned<>, or int).

To query bounds for given dimension of the accessor use template function bounds_d<int
DimensionT>(object).

auto b0 = bounds_d<0>(ca);
auto b1 = bounds_d<1>(ca);
for (int y = b0.lower(); y < b0.upper(); ++y)
 for (int x = b1.lower(); x < b1.upper(); ++x) {
 RGBAs pixel = ca[y][x];
 // …
 }

 Intel® C++ Compiler Classic Developer Guide and Reference

1800

bounds_t can participate in C++11 range-based for loops.

for (auto y: bounds_d<0>(ca))
 for (auto x: bounds_d<1>(ca)) {
 RGBAs pixel = ca[y][x];
 // …
 }
for (auto y: ca.bounds_d0())
 for (auto x: ca.bounds_d1()) {
 RGBAs pixel = ca[y][x];
 // …
 }

N-Dimensional Indexes and Bounds

To model index and bounds values over multiple dimensions, respectively the following template classes are
provided: n_index_t<…> and n_bounds_t<…> . These are both variadic templates, accepting any number of
arguments.

n_index is a generator to simplify creating instances of n_index_t.

n_index[540][960]
n_bounds is a generator to simplify creating instances of n_bounds_t.

n_bounds[bounds(540,1080)][bounds(960,1920)]
Alternatively, n_bounds_t can be defined in terms of a n_index_t and n_extent_t.

n_bounds(n_index[540][960], n_extent[540][960]);
Accessing Subsections

From a container's accessors, a new accessor can be created over a subsection defined by a n_bounds_t.

auto ca = c.const_access();
auto subsect = ca.section(n_bounds[bounds(540, 1080)][bounds(960,1920)]);

The effect is to restrict the results of bounds_d<int Dimension> on the subsection accessor.

You can create a new accessor translated to a different index space.

auto offsetnewSpace = ca.translated_to(n_index[1000][2000]);
auto zeroSpace = ca.translated_to_zero();

Accesses will have a translation applied that maps the n_index back to the lower bounds of the accessor
that created it. This allows a smaller container to be reused in a larger index space that is being walked over
by blocks, or to move a subsection index space back to the origin.

User-Level Interface
This section describes the user-level interface for the SIMD Data Layout Templates (SDLT). This API is
defined in sdlt.h and its associated header files.

SDLT Primitives (SDLT_PRIMITIVE)
Primitives represent the data we want to work over in SIMD. They can be more than just data structures. As
a C++ object, it can have its own methods that modify its data.

Rules:

• Must be Plain Old Data (POD)

• Has trivial copy constructor

Compiler Reference

1801

• Has trivial move constructor
• Has trivial destructor
• No virtual functions or virtual bases

• No reference data members
• No unions
• No bit fields
• No bool types

• Comparison semantics not efficient in SIMD
• Use 32-bit integer and compare against known values like 0 or 1 explicitly

• Data members need to be public or declare SDLT_PRIMITIVE_FRIEND in the object's definition

Current limitations:

• No pointer data members
• No C++11 strongly typed enums—use integers instead.
• No array based data members.
• copy constructor and assignment operator (=) defined by individual member assignment—strongly

encouraged to facilitate better code generation

They may seem like large restrictions, but often code can easily be re-factored to meet this requirement. For
example:

class Point3d {
 // methods...
protected:
 double v[3];
};

can be re-factored to have a public data member for each element in the array and update methods to use
the x, y, and z data members rather than the array v.

class Point3d {
public:
 // methods...
 double x;
 double y;
 double z;
};

For better code generation, explicitly define a copy constructor and assignment operator (=) by individual
member assignment.

SDLT_PRIMITIVE Macro
Once an object meets the criteria above, we can consider it a Primitive type in SDLT. In order for Container's
to import and export the Primitive, it has to understand its data layout. Unfortunately C++11 lacks compile
time reflection, so the user must provide SDLT with a description of your structure's data layout. This is
easily done with the SDLT_PRIMITIVE helper macro that accepts a struct type followed by a comma
separated list of its data members.

SDLT_PRIMITIVE(STRUCT_NAME, DATA_MEMBER_1, ...)
Example Usage:

struct UserObject
{
 float x;
 float y;
 double acceleration;
 int behavior;
};

SDLT_PRIMITIVE(UserObject, x, y, acceleration, behavior)

 Intel® C++ Compiler Classic Developer Guide and Reference

1802

An object must be declared as a Primitive before it can be used in a Container. However, built-in types like
float, double, int, etc. do not need to be declared as a Primitive before use with a Container. Built-in's are
automatically considered Primitives by SDLT.

Nested Primitives are supported, but the nested Primitive must be declared before the outer Primitive is.
Example: Axis Aligned Bounding Box made up of two 3d points

struct Point3s
{
 float x;
 float y;
 float z;
};

struct AABB
{
 Point3s topLeft;
 Point3s bottomRight;
};

SDLT_PRIMITIVE(Point3s, x, y, z)
SDLT_PRIMITIVE(AABB, topLeft, bottomRight)

Notice the struct definitions themselves do not derive from SDLT or use any of its nomenclature. This
independence allows classes to be used in code not using SDLT and only code that does use SDLT Containers
needs to see the Primitive declarations.

soa1d_container
Template class for "Structure of Arrays" memory
layout of a one-dimensional container of Primitives.
#include <sdlt/soa1d_container.h>

Syntax

template<typename PrimitiveT,
 int AlignD1OnIndexT = 0,
 class AllocatorT = allocator::default_alloc>
class soa1d_container;

Arguments

typename PrimitiveT The type that each element in the array will store

int AlignD1OnIndexT = 0 [Optional] The index on which the data access will be aligned (useful
for stencils)

class AllocatorT =
allocator::default_alloc

[Optional] Specify type of allocator to be used.
allocator::default_alloc is currently the only allocator
supported.

Description

Dynamically sized container of Primitive elements with memory layout as a Structure of Arrays internally
providing:

• Dynamic resizing with interface similar to std::vector
• Accessor objects suitable for efficient data access inside SIMD loops

Compiler Reference

1803

Member Description

typedef size_t size_type; Type to use when specifying sizes to methods of the
container.

template <typename OffsetT = no_offset>
using accessor;

Template alias to an accessor for this container

template <typename OffsetT = no_offset >
using const_accessor;

Template alias to an const_accessor for this
container

Member Type Description

soa1d_container(
 size_type size_d1 = 0u,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator =
allocator_type());

Constructs an uninitialized container of size_d1
elements, using optionally specified allocator
instance, using optionally specified number of cache
lines to offset the start of the buffer in memory to
allow management of 4k cache aliasing.

soa1d_container(
 size_type size_d1,
 const PrimitiveT &a_value,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator
 = allocator_type());

Constructs a container of size_d1 elements
initializing each with a_value, using optionally
specified allocator instance, using optionally
specified number of cache lines to offset the start of
the buffer in memory to allow management of 4k
cache aliasing.

template<typename StlAllocatorT>
soa1d_container(
 const std::vector<PrimitiveT,
StlAllocatorT> &other,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator
 = allocator_type());

Constructs a container with a copy of each of the
elements in other, in the same order, using
optionally specified allocator instance, using
optionally specified number of cache lines to offset
the start of the buffer in memory to allow
management of 4k cache aliasing.

soa1d_container(
 const PrimitiveT *other_array,
 size_type number_of_elements,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator
 = allocator_type());

Constructs a container with a copy of
number_of_elements elements from the array
other_array, in the same order, using optionally
specified allocator instance, using optionally
specified number of cache lines to offset the start of
the buffer in memory to allow management of 4k
cache aliasing.

template< typename IteratorT >
soa1d_container(
 IteratorT a_begin,
 IteratorT an_end,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator
 = allocator_type());

Constructs a container with as many elements as
the range [a_begin - an_end), each with a copy of
the value from its corresponding element in that
range, in the same order, using optionally specified
allocator instance, using optionally specified
number of cache lines to offset the start of the
buffer in memory to allow management of 4k cache
aliasing.

soa1d_container clone() const; Returns: a new soa1d_container instance with its
own copy of the elements

 Intel® C++ Compiler Classic Developer Guide and Reference

1804

Member Type Description

void resize(size_type new_size_d1); Resize the container so that it contains
new_size_d1 elements. If the new size is greater
than the current container size, the new elements
are unitialized.

accessor<> access(); Returns: accessor with no embedded index offset.

accessor<int> access(int offset); Returns: accessor with an integer based embedded
index offset.

template<int IndexAlignmentT>
accessor<aligned_offset<IndexAlignmentT> >
 access(aligned_offset<IndexAlignmentT>);

Returns: accessor with an
aligned_offset<IndexAlignmentT> based embedded
index offset.

template<int OffsetT>
accessor<fixed_offset<OffsetT> >
 access(fixed_offset<OffsetT>);

Returns: accessor with a fixed_offset<OffsetT>
based embedded index offset.

const_accessor<> const_access() const; Returns: const_accessor with no embedded index
offset.

const_accessor<int>
 const_access(int offset) const;

Returns: const_accessor with an integer based
embedded index offset.

const_accessor<aligned_offset<IndexAlignmentT>
>

const_access(aligned_offset<IndexAlignmentT>
offset) const;

Returns: const_accessor with an
aligned_offset<IndexAlignmentT> based embedded
index offset.

template<int OffsetT>
const_accessor<fixed_offset<OffsetT> >
 const_access(fixed_offset<OffsetT>) const;

Returns: const_accessor with a
fixed_offset<OffsetT> based embedded index
offset.

STL Compatibility

In addition to the performance oriented interface explained in the table above, soa1d_container
implements a subset of the std::vector interface that is intended for ease of integration, not high
performance. Due to the import/export only requirement we can’t return a reference to the object, instead
iterators and operator[] return a Proxy object while other "const' methods return a "value_type const".
Futhermore, iterators do not support the -> operator. Despite that limitation the iterators can be passed to
any STL algorithm. Also for performance reasons, resize does not initialize new elements. The following
std::vector interface methods are implemented:

• size, max_size, capacity, empty, reserve, shrink_to_fit
• assign, push_back, pop_back, clear, insert, emplace, erase
• cbegin, cend, begin, end, begin, end, crbegin, crend, rbegin, rend, rbegin, rend
• operator[], front() const, back() const, at() const
• swap, ==, !=
• swap, soa1d_container(soa1d_container&& donor), soa1d_container & operator=(soa1d_container&&

donor)

Compiler Reference

1805

aos1d_container
Template class for "Array of Structures" memory
layout of a one-dimensional container of Primitives.
#include <sdlt/aos1d_container.h>

Syntax

template<
 typename PrimitiveT,
 AccessBy AccessByT,
 class AllocatorT = allocator::default_alloc
>
class aos1d_container;

Arguments

typename PrimitiveT The type that each element in the array will store

access_by AccessByT Enum to control how the memory layout will be accessed. Recommend
access_by_struct unless you are having issues vectorizing.

See the documentation of access_by for more details

class AllocatorT =
allocator::default_alloc

[Optional] Specify the type of allocator to be used.
allocator::default_alloc is currently the only allocator
supported.

Description

Provide compatible interface with soa1d_container while keeping the memory layout as an Array of
Structures internally. User can easily switch between data layouts by changing the type of container they
use. The rest of the code written against accessors and proxy elements and members can stay the same.

• Dynamic resizing with interface similar to std::vector
• Accessor objects suitable for efficient data access inside SIMD loops

Member Description

typedef size_t size_type; Type to use when specifying sizes to methods of the
container.

template <typename OffsetT = no_offset>
using accessor;

Template alias to an accessor for this container

template <typename OffsetT = no_offset>
using const_accessor;

Template alias to a const_accessor for this
container

Member Type Description

aos1d_container(
 size_type size_d1 = 0u,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator =
allocator_type());

Constructs an uninitialized container of size_d1
elements, using optionally specified allocator
instance, using optionally specified number of cache
lines to offset the start of the buffer in memory to
allow management of 4k cache aliasing.

 Intel® C++ Compiler Classic Developer Guide and Reference

1806

Member Type Description

aos1d_container (
 size_type size_d1,
 const PrimitiveT &a_value,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator
 = allocator_type());

Constructs a container of size_d1 elements
initializing each with a_value, using optionally
specified allocator instance, using optionally
specified number of cache lines to offset the start of
the buffer in memory to allow management of 4k
cache aliasing.

template<typename StlAllocatorT>
aos1d_container(
 const std::vector<PrimitiveT,
StlAllocatorT> &other,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator
 = allocator_type());

Constructs a container with a copy of each of the
elements in other, in the same order, using
optionally specified allocator instance, using
optionally specified number of cache lines to offset
the start of the buffer in memory to allow
management of 4k cache aliasing.

aos1d_container(
 const PrimitiveT *other_array,
 size_type number_of_elements,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator
 = allocator_type());

Constructs a container with a copy of
number_of_elements elements from the array
other_array, in the same order, using optionally
specified allocator instance, using optionally
specified number of cache lines to offset the start of
the buffer in memory to allow management of 4k
cache aliasing.

template< typename IteratorT >
aos1d_container(
 IteratorT a_begin,
 IteratorT an_end,
 buffer_offset_in_cachelines buffer_offset
 = buffer_offset_in_cachelines(0),
 const allocator_type & an_allocator
 = allocator_type());

Constructs a container with as many elements as
the range [a_begin-an_end), each with a copy of
the value from its corresponding element in that
range, in the same order, using optionally specified
allocator instance, using optionally specified
number of cache lines to offset the start of the
buffer in memory to allow management of 4k cache
aliasing.

aos1d_container clone() const; Returns: a new aos1d_container instance with its
own copy of the elements

void resize(size_type new_size_d1); Resize the container so that it contains
new_size_d1 elements. If the new size is greater
than the current container size, the new elements
are unitialized

accessor<> access(); Returns: accessor with no embedded index offset.

accessor<int> access(int offset); Returns:accessor with an integer based embedded
index offset.

template<int IndexAlignmentT>
accessor<aligned_offset<IndexAlignmentT> >
 access(aligned_offset<IndexAlignmentT>);

Returns: accessor with an
aligned_offset<IndexAlignmentT> based embedded
index offset.

template<int OffsetT>
accessor<fixed_offset<OffsetT> >
 access(fixed_offset<OffsetT>);

Returns: accessor with a fixed_offset<OffsetT>
based embedded index offset.

Compiler Reference

1807

Member Type Description

const_accessor<> const_access() const; Returns: const_accessor with no embedded index
offset.

const_accessor<int>
 const_access(int offset) const;

Returns: const_accessor with an integer based
embedded index offset.

const_accessor<aligned_offset<IndexAlignmentT>
>

const_access(aligned_offset<IndexAlignmentT>
offset) const;

Returns:const_accessor with an
aligned_offset<IndexAlignmentT> based embedded
index offset.

template<int OffsetT>
const_accessor<fixed_offset<OffsetT> >
 const_access(fixed_offset<OffsetT>) const;

Returns:const_accessor with a
fixed_offset<OffsetT> based embedded index
offset.

STL Compatibility

In addition to the performance oriented interface explained in the table above, aos1d_container
implements a subset of the std::vector interface that is intended for ease of integration, not high
performance. Due to the import/export only requirement we can’t return a reference to the object, instead
iterators and operator[] return a Proxy object while other "const' methods return a "value_type const".
Furthermore, iterators do not support the -> operator. Despite that limitation the iterators can be passed to
any STL algorithm. Also for performance reasons, resize does not initialize new elements. The following
std::vector interface methods are implemented:

• size, max_size, capacity, empty, reserve, shrink_to_fit
• assign, push_back, pop_back, clear, insert, emplace, erase
• cbegin, cend, begin, end, crbegin, crend, rbegin, rend, rbegin, rend
• operator[], front() const, back() const, at() const
• swap, ==, !=
• swap, aos1d_container(aos1d_container&& donor), aos1d_container & operator=(aos1d_container&&

donor)

access_by
Enum to control how the memory layout will be
accessed. #include <sdlt/access_by.h>

Syntax

enum access_by
{
 access_by_struct,
 access_by_stride
};

Description

The access_by_struct causes data access via structure member access. Nested structures will drill down
through the structure members in a nested manner. For example an Axis Aligned Bounding Box (AABB)
containing two Point3d objects (with x,y,z data members) will logically expand to something like:

AABB local;
local = accessor.mData[i];

 Intel® C++ Compiler Classic Developer Guide and Reference

1808

access_by_stride will cause data access through pointers to built in types with a stride to account for the
size of the primitive. For an Axis Aligned Bounding Box (AABB) containing two Point3d objects (with x,y,z
data members) will logically expand to something like:

AABB local;
local.topLeft.x = *(accessor.mData + offsetof(AABB,topLeft) + offset(Point3d,x) +
(sizeof(AABB)*i));
local.topLeft.y = *(accessor.mData + offsetof(AABB,topLeft) + offset(Point3d,y) +
(sizeof(AABB)*i));
local.topLeft.z = *(accessor.mData + offsetof(AABB,topLeft) + offset(Point3d,z) +
(sizeof(AABB)*i));
local.topRight.x = *(accessor.mData + offsetof(AABB,topRight) + offset(Point3d,x) +
(sizeof(AABB)*i));
local.topRight.y = *(accessor.mData + offsetof(AABB,topRight) + offset(Point3d,y) +
(sizeof(AABB)*i));
local.topRight.z = *(accessor.mData + offsetof(AABB,topRight) + offset(Point3d,z) +
(sizeof(AABB)*i));

When vectorizing, access_by_struct can sometimes generate better code as the compiler could perform
wide loads and use shuffle/insert instructions to move data into SIMD registers. However, depending on the
complexity of the primitive, it can also fail to vectorize, especially when the primitive contains nested
structures.

On the other hand access_by_stride has always vectorized successfully, because the data access is
simplified to an array pointer with a stride. The compiler is able to handle any complexity of primitive,
because it never sees the complexity and instead just sees the simple array pointer with strided access.

access_by_struct is probably the best choice as it offers a chance of better code generation especially
when used outside of a SIMD loop. However if you run into issues when vectorizing, try access_by_stride
to see if that alleviates the problem.

We leave this choice up to the developer and require they explicitly make a choice, so this is not hidden
behavior.

n_container
Template class for N-dimensional container. The
contained primitive type, exact memory layout and
container shape are defined via template arguments.

Syntax

template <typename PrimitiveT,
 typename LayoutT,
 typename ExtentsT,
 typename AllocatorT >
class n_container;

Description

N-dimensional container of PrimitiveT elements with predefined memory layout and shape. Provides accessor
interface suitable for flexible and efficient data access inside SIMD loops

The following table provides information on the template arguments for n_container

Template Argument Description

typename PrimitiveT The type that each cell in the multi-dimensional
container will store.

Requirements: PrimitiveT must be previously
declared with the SDLT_PRIMITIVE macro.

Compiler Reference

1809

Template Argument Description

typename LayoutT The in-memory data layout of cells in the container.

Requirements: LayoutT must be a class from layout
namespace.

typename ExtentsT The shape of the container.

Requirements: ExtentsT must be a concrete type of
n_extent_t variadic template.

class AllocatorT = allocator::default_alloc [Optional] Specify type of allocator to be used.

allocator::default_alloc is currently the only
allocator supported.

The following table provides information on the types defined as members of n_container

Member Type Description

typedef PrimitiveT primitive_type; Type inside each cell of the container.

typedef PrimitiveT allocator_type; Type of allocator used by the container.

typedef implementation-defined accessor Type of an accessor that can write or read cells to
and from this container.

typedef implementation-defined const_accessor; Type of a const_accessor that can read cells from
this container.

The following table provides information on the methods of n_container

Member Description

n_container (
 const ExtentsT &a_extents,
 buffer_offset_in_cachelines
buffer_offset
 =buffer_offset_in_cachelines(0),
 const AllocatorT
&an_allocator=AllocatorT())

Constructs an uninitialized container of the shape
defined as a_extents, using optionally specified
number of cache lines to offset the start of the
buffer in memory to allow management of 4k cache
aliasing, using optionally specified allocator
instance.

n_container (buffer_offset_in_cachelines
buffer_offset =
buffer_offset_in_cachelines(0),
const AllocatorT &an_allocator=AllocatorT())

Constructs an uninitialized container of the shape,
defined via template parameter ExtentsT using
optionally specified number of cache lines to offset
the start of the buffer in memory to allow
management of 4k cache aliasing, using optionally
specified allocator instance.

ExtentsT must be default constructible. Only true
when ExtentsT is made up enitrely of
fixed<NumberT> types.

n_container(n_container&& donor) Transfers ownership of the donor's currently owned
buffers and organization, if any. Any outstanding
accessors on the donor are no longer valid.

 Intel® C++ Compiler Classic Developer Guide and Reference

1810

Member Description

n_container & operator = (n_container&& donor) Frees any existing buffers, then transfers ownership
of the donor's currently owned buffers and
organization, if any. Any outstanding accessors on
the donor are no longer valid.

Returns: Reference to this instance.

const ExtentsT& n_extent () const Provides the shape of the container. Alternatively,
the free template function extent_d<int
DimenstionT>(const n_container &) could be used.

Returns: Constant reference to ExtentsT instance
describing the shape of the container.

const_accessor const_access(); Constructs an const_accessor with knowledge of
the underlying data organization to read cells inside
the container.

Returns:const_accessor for the container

accessor access(); Constructs an accessor with knowledge of the
underlying data organization to write or read cells
inside the container.

Returns:accessor for the container

The following table provides information about the friend functions of n_container.

Friend Function Description

std::ostream&
 operator << (std::ostream&
output_stream, const
 n_container & a_container)

Append string representation of a_container's
extents values to a_output_stream.

Returns: Reference to a_output_stream for
chained calls.

Layouts

sdlt::layout namespace
Rather than having different container types for different data layouts, the library uses the types from the
layout namespace as a template parameter to the n_container.

Available layouts are defined in the namespace layout and summarized in table below.

Layout Description

template <typename AlignOnColumnIndexT=0>
layout::soa

Structure of Arrays: Each data member of the Primitive
will have its own N-dimensional array. The arrays are
placed back-to-back inside a contiguous buffer. Template
parameter AlignOnColumnIndexT identifies which column
of the row dimension should be cache line aligned. The
AlignOnColumnIndexT of each row is cache line aligned.

template <typename AlignOnColumnIndexT>
layout::soa_per_row

Structure of Arrays Per Row: Each data member of
the Primitive will have its own 1-dimensional array
for the row dimension (Soa1d) placed back to back.
The AlignOnColumnIndexT of each row is cache line
aligned. Multiple of these Soa1d's are laid out

Compiler Reference

1811

Layout Description

sequentially to model the remaining dimensions,
effictively becoming an Array of Structures of
Arrays where the SOA where the size of the array is
the row's extent. This can be particularly efficient
when the extent of the row can be
fixed<NumberT>.

Note: If the size of the row isn't known at compile
time, consider adding an additional dimension that
is fixed<Number> and dividing the row up by that
fixed<NumberT>.

layout::aos_by_struct Array of Structures Accessed by Struct: Primitives are laid
out in native format back to back in memory and access
happens via structure or member access. Nested
structures will drill down through the structure members
in a nested manner.

layout::aos_by_stride Array of Structures Accessed by Stride: Primitives are laid
out in native format back to back in memory and accessed
through pointers to built in types with a stride to account
for the size of the Primitive. Can be useful if
aos_by_struct doesn't vectorize.

Description
The classes are empty and only for specialization of containers for denoted layouts.

Shape
Variadic template class n_extent_t describes the
shape of the n_dimensional container. Specifically, the
number of dimensions the size of each.

Syntax

template<typename... TypeListT>
class n_extent_t

Description

n_extent_t represents the shape of a container as a sequence of sizes for each dimension. The size of each
dimension can be represented by different types. This flexibility allows the same interface to be used to
declare n_extents_t whose dimensions are fully known at compile time with fixed<int NumberT>, or to
be only known at runtime with int, or only known at runtime but with a guarantee will be a multiple of an
alignment with aligned<int Alignment>. For details, see the Number representation section.

The following table provides information on the template arguments for n_extent_t.

Template Argument Description

typename... TypeListT Comma separated list of types, where the number
of types provided controls how many dimensions
there are. Each type in the list identifies how the
size of the corresponding dimension is to be
represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array, from leftmost to rightmost.

 Intel® C++ Compiler Classic Developer Guide and Reference

1812

Template Argument Description

Type must be int, fixed<NumberT>, or
aligned<AlignmentT>. for each value describing
corresponding dimensions size (extent) in regular
order of C++ subscripts - from outer to inner.

The following table provides information on the members of n_extent_t

Member Description

static constexpr int rank; Number of dimensions.

static constexpr int row_dimension = rank-1; Index of last dimension, row.

n_extent_t() Requirements: Every type in TypeListT is default
constructible.

Effects: Construct n_extent_t, uses default values
of each type in TypeListT for the dimesnion sizes. In
general, only correctly initialized when every type is
a fixed<NumberT>

n_extent_t(const n_extent_t &a_other) Effects: Construct n_exent_t, copying size of each
dimension from a_other.

explicit n_extent_t(const TypeListT & …
a_values)

Effects: Construct n_exent_t, initializing each
dimension with the corresponding value from the
list of a_values passed as an argument. In use,
a_values is a comma separate list of values whose
length and types are defined by TypeListT.

template<int DimensionT> auto get() const Requirements: DimenstionT >=0 and DimensiontT
< rank.

Effects: Determine the exent of DimensionT.

Returns: In the type declared by the DimensionT
position of 0-based TypeListT, the extent of the
specified DimensionT

template<int DimensionT>
auto rightmost_dimensions() const

Requirements: DimenstionT >=0 and DimensiontT
<= rank.

Effects: Construct a n_extent_t with a lower rank
by copying the righmost DimensionT values from
this instance.

Returns: n_exent[get<rank - DimensionT>()]

[get<rank + 1 - DimensionT>()]

[get<…>()]

[get<row_dimension>()]

template<class... OtherTypeListT>
bool operator == (const
n_extent_t<OtherTypeListT...> a_other) const

Requirements: rank of a_other is the same as this
instance's.

Compiler Reference

1813

Member Description

Effects: Compare size of each dimension for
equality. Only compares numeric values, not the
types of each dimension.

Returns:true if all dimensions are numerically
equal, false otherwise.

template<class... OtherTypeListT>
bool operator != (const
n_extent_t<OtherTypeListT...> a_other) const

Requirements: rank of a_other is the same as this
instance's.

Effects: Compare size of each dimension for
inequality. Only compares numeric values, not the
types of each dimension.

Returns:true if any dimensions are numerically
different, false otherwise.

size_t size() const Returns: Number of elements specified by extent

Effects: Calculates the number of cells represented
by the current extent values of each dimension by
multiplying them all together.

Returns: get<0>()*get<1>()*get<…
>()*get<rank-1>()

The following table provides information on the friend functions of n_extent_t.

Friend function Description

std::ostream& operator << (std::ostream&
output_stream, const n_extent_t & a_extents)

Effects: Append string representation of a_extents'
values to a_output_stream

Returns: Reference to a_output_stream for
chained calls.

n_extent_generator
To facilitate simpler and clearer creation of
n_extent_t objects.

Syntax

template<typename... TypeListT>
class n_extent_generator;

namespace {
 // Instance of generator object
 n_extent_generator<> n_extent;
}

Description

The generator object provides recursively constructing operators [] for fixed<>, aligned<>, and integer
values allowing building of an n_extent_t <…> instance, one dimension at a time. The main purpose is to
allow a usage syntax that is similar to C multi-dimensional array definition:

 Intel® C++ Compiler Classic Developer Guide and Reference

1814

Compare the following examples, instantiating three n_extent_t instances. and using the generator object
to instantiate equivalent instances.

n_extent_t<int, int> ext1(height, width);
n_extent_t<int, aligned<128>> ext2(height, width);
n_extent_t<fixed<1080>, fixed<1920>> ext3(1080_fixed, 1920_fixed);
auto ext1 = n_extent[height][width];
auto ext2 = n_extent[height][aligned<128>(width)];
auto ext3 = n_extent[1080_fixed][1920_fixed];

Class Hierarchy

It is expected that n_extent_generator < … > not be directly used as a data member or parameter,
instead only n_extent_t <...> from which it is derived. The generator object n_extent can be
automatically downcast any place expecting an n_extent_t<…> .

The following table provides the template arguments for n_extent_generator
Template Argument Description

typename... TypeListT Comma separated list of types, where the number of
types provided controls how many dimensions the
generator currently represent. Each type in the list
identifies how the size of the corresponding dimension is
to be represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array – from leftmost to rightmost.

Requirements: Type is int, fixed<NumberT>, or
aligned<AlignmentT>.

The following table provides information on the types defined as members of n_extent_generator in
addition to those inherited from n_extent_t.

Member Type Description

typedef n_extent_t<TypeListT...> value_type Type value that the any chained [] operator calls have
produced.

The following table provides information on the members of n_extent_generator in addition to those
inherited from n_extent_t

Member Description

n_extent_generator () Requirements: TypeListT is empty

Effects: Construct generator with no extents
specified

n_extent_generator (const n_extent_generator
&a_other)

Effects: Construct generator copying any extent
values from a_other

n_extent_generator<TypeListT..., int>
operator [] (int a_size) const

Requirements: a_size >= 0

Returns: n_extent_generator<…> with additional
rightmost integer based extent.

n_extent_generator<TypeListT...,
 fixed<NumberT>> operator []
(fixed<NumberT> a_size) const

Requirements: a_size >= 0

Returns: n_extent_generator<…> with additional
rightmost fixed<NumberT> extent.

Compiler Reference

1815

Member Description

n_extent_generator<TypeListT...,
 aligned<AlignmentT>> operator []
(aligned<AlignmentT> a_size)

Requirements: a_size >= 0

Returns: n_extent_generator<…> with additional
rightmost aligned<AlignmentT> based extent.

value_type value() const Returns: n_extent_t<…> with the correct types
and values of the multi-dimensional extents
aggregated by the generator.

make_ n_container template function
Factory function to construct an instance of a
properly-typed n_container<…> based on n_extent_t
passed to it.

Syntax

template<
 typename PrimitiveT,
 typename LayoutT,
 typename AllocatorT = allocator::default_alloc,
 typename ExtentsT
>
auto make_n_container(const ExtentsT &_extents)
->n_container<PrimitiveT, LayoutT, ExtentsT, AllocatorT>

Description

Use make_n_container to more easily create an n-dimensional container using template argument
deduction, and avoid specifying the type of extents.

An example of the instantiation of a High Definition image object is below.

typedef n_container<RGBAs, layout::soa,
 n_extent_t<int, int>> HdImage;
HdImage image1(n_extent[1080][1920]);

Alternatively, it is possible to use factory function with the C++11 keyword auto, as shown below.

auto image1 = make_n_container<RGBAs,
 layout::soa>(n_extent[1080][1920]);

extent_d template function

Syntax

template<int DimensionT, typename ObjT>
auto extent_d(const ObjT &a_obj)

Description

The template function offers a consistent way to determine the extent of a dimension for a multi-dimensional
object. It can avoid extracting an entire n_extent_t<…> when only the extent of a single dimension is
needed.

Template Argument Description

int DimensionT 0 based index starting at the leftmost dimension
indicating which n-dimensions to query the extent
of.

 Intel® C++ Compiler Classic Developer Guide and Reference

1816

Template Argument Description

Requirements: DimensionT >=0 and DimensionT
< ObjT::rank

typename ObjT The type of n-dimensional object from which to
retrieve the extent.

Requirements: ObtT is one of:

n_container<…>

n_extent_t<…>

n_extent_generator<…>

Returns

The correctly typed extent corresponding to the requested DimensionT of a_obj.

Example

template <typename VolumeT>
void foo(const VolumeT & a_volume)
{
 int extent_z = extent_d<0>(volume);
 int extent_y = extent_d<1>(volume);
 int extent_x = extent_d<2>(volume);
 /…
}

Bounds

bounds_t
Class represents a half-open interval with lower and
upper bounds. #include <sdlt/bounds.h>

Syntax

template<typename LowerT = int, typename UpperT = int>
struct bounds_t

Description

bounds_t holds the lower and upper bounds of a half open interval. It is templated to allow the different
representations for the lower and upper bounds. Supported types include fixed<NumberT>,
aligned<AlignmentT> and integer values. bounds_t models a valid iteration space over a single dimension.

bounds_t can be used to represent an iteration space over the entire extent of a dimension or to restrict
iteration space within the extent. n_bounds_t aggregates a number of bounds_t objects to allow construction
of multi-demensional subsections restricting multiple extents.

The class interface is compatible with C++ range-based loops to simplify iteration.

Template Argument Description

typename LowerT = int Type of lower bound.

Requirements: type is int, or fixed<NumberT>, or
aligned<AlignmentT>

typename UpperT = int Type of upper bound.

Compiler Reference

1817

Template Argument Description

Requirements: type is int, or fixed<NumberT>, or
aligned<AlignmentT>

Member Types Description

typedef LowerT lower_type Type of the lower bound

typedef UpperT upper_type Type of the upper bound

typedef implementation-defined iterator Iterator type for C++ range-based loops support.

Member Description

bounds_t() Effects: Constructs bounds_t with uninitialized
lower and upper bounds.

bounds_t(lower_type l, upper_type u) Requirements: (u >= l)

Effects: Constructs bounds_t representing the half-
open interval [l, u)

bounds_t(const bounds_t & a_other) Effects: Constructs bounds_t with lower and upper
bounds initialized from those of a_other.

template<typename OtherLowerT,
 typename OtherUpperT>
bounds_t(const bounds_t<OtherLowerT,
 OtherUpperT> & a_other)

Requirements: OtherLowerT and OtherUpperT can
legally be converted to lower_type and upper_type.
For example it would be illegal to convert an int to
fixed<8>().

Effects: Constructs bounds_t with lower and upper
bounds initialized from those of a_other.

void set(lower_type l, upper_type u) Effects: Set index of the inclusive lower bound and
the index of the exclusive upper bound.

void set_lower(lower_type a_lower) Effects: Set index of the inclusive lower bound

void set_upper(upper_type a_upper) Effects: Set index of the exclusive upper bound

lower_type lower() const Returns: index of the inclusive lower bound

upper_type upper() const Returns: index of the exclusive upper bound

iterator begin() const Returns: index iterator for the inclusive lower
bound. NOTE: C++11 range-based loops require
begin() & end()

iterator end() const Returns: index iterator for the exclusive upper
bound. NOTE: C++11 range-based loops require
begin() & end()

auto width() const Effects: Determine width of iteration space inside
the half open interval between lower() and upper()
bounds.

Returns: upper() – lower()

 Intel® C++ Compiler Classic Developer Guide and Reference

1818

Member Description

NOTE: the return type depends on resulting type of
a subtraction between the types of upper() and
lower().

template<typename OtherLowerT,
 typename OtherUpperT>
bool contains(const bounds_t<OtherLowerT,
 OtherUpperT> &a_other) const

Effects: Determine if interval of a_other is entirely
contained inside this object’s bounds

Returns: (a_other.lower() >= lower() &&

a_other.upper() <= upper())

template<typename T>
auto operator + (const T &offset) const

Effects: create a new bounds_t instance with offset
added to both lower and upper bounds.

Returns: bounds(lower() + offset, upper()+offset)

NOTE: The lower_type and upper_type of the
returned bound_t maybe different as result of
addition of the offset.

template<typename T>
auto operator - (const T & offset) const

Effects: create a new bounds_t instance with offset
subtracted from both lower and upper bounds.

Returns: bounds(lower() - offset, upper()-offset)

NOTE: The lower_type and upper_type of the
returned object maybe different as result of
subtraction of T.

bool operator == (const bounds_t &a_other)
const

Effects: Equality comparison with same-typed
bounds_t object

Returns: (lower() == a_other.lower() && upper()
== a_other.upper())

template<typename OtherLowerT,
 typename OtherUpperT>
bool operator == (
 const bounds_t<OtherLowerT,
 OtherUpperT> &a_other) const

Effects: Equality comparison with bounds_t object
of different lower_type or upper_type.

Returns: (lower() == a_other.lower() && upper()
== a_other.upper())

bool operator != (const bounds_t &) const Effects: Inequality comparison with same-typed
bounds_t object

Returns: (lower() != a_other.lower() || upper() !=
a_other.upper())

template<typename OtherLowerT,
 typename OtherUpperT>
bool operator != (
 const bounds_t<OtherLowerT,
 OtherUpperT> &a_other) const

Effects: Inequality comparison with with bounds_t
object of different lower_type or upper_type

Returns: (lower() != a_other.lower() || upper() !=
a_other.upper())

Friend Function Description

std::ostream& operator << (std::ostream&
a_output_stream, const bounds_t &a_bounds)

Effects: append string representation of bounds_t
lower and upper values to a_output_stream

Compiler Reference

1819

Friend Function Description

Returns: reference to a_output_stream for chained
calls

Range-based loops support

The bounds_t provides begin() and end() methods returning iterators to enable C++11 range-based loops.
The may save quite some typing and improve code clarity when iterating over bounds of a multidimensional
container.

Compare:

auto ca = image_container.const_access();
auto b0 = bounds_d<0>(ca);
auto b1 = bounds_d<1>(ca);
for (auto y = b0.lower(); y < b0.upper(); ++y)
 for (auto x = b1.lower(); x < b1.upper(); ++x) {
 RGBAs pixel = ca[y][x];
 // …
 }

and

auto ca = image_container.const_access();
for (auto y: bounds_d<0>(ca))
 for (auto x: bounds_d<1>(ca)) {
 RGBAs pixel = ca[y][x];
 // …
 }

Note that iterator only gives an index value within the bounds, not an object value. It is expected to be used
to index into accessors like in example above.
sdlt::bounds Template Function
Factory function provided for creation of bounds_t
objects. #include <sdlt/bounds.h>

Syntax

template<typename LowerT, typename UpperT>
auto bounds(LowerT a_lower, UpperT a_upper)

Description

In order to make creation of objects of bounds_t cleaner the factory function bounds is provided. It basically
enables LowerT and UpperT to be deduced from the arguments passed into it.

Template Argument Description

typename LowerT = int Type of lower bound.

Requirements: type is int, or fixed<NumberT>, or
aligned<AlignmentT>

typename UpperT = int Type of upper bound.

Requirements: type is int, or fixed<NumberT>, or
aligned<AlignmentT>

Returns:

 Intel® C++ Compiler Classic Developer Guide and Reference

1820

The correctly typed bounds_t<LowerT, UpperT> corresponding to types of a_lower and a_upper passed to
the factory function.

Example:

Compare two ways of instantiating a bounds:

bounds_t<fixed<0>, aligned<16>> my_bounds1(0_fixed, aligned<16>(upper))
auto my_bounds2 = bounds_t<fixed<0>, aligned<16>>(0_fixed, aligned<16>(upper))

With the factory function:

auto my_bounds = bounds(0_fixed, aligned<16>(upper))
n_bounds_t
Variadic template class to describe the valid iteration
space over an N-dimensional container. #include
<sdlt/n_bounds.h>

Syntax

template<typename... TypeListT>
class n_bounds_t

Description

n_bound_t represents the valid iteration space over a n_container or its accessor as as a sequence of
bounds_t for each dimension. The bounds_t of each dimension can be represented by different types. This
flexibility allows the same interface to be used to declare n_bounds_t whose dimensions are fully known at
compile time with fixed<int NumberT>, or to be only known at runtime with int, or only known at runtime
but with a guarantee will be a multiple of an alignment with aligned<int Alignment>. For details see the
Number Representation section).

When an n_container is created, its n_bounds_t always start at fixed<0> for the inclusive lower bounds of
each dimension, and exclusive upper bounds match the extent of the dimension. Accessors can be translated
to different index spaces as well as restrict their iteration space to subsections, which will change the
n_bounds_t those accessors provide.

The following table provides information on the template arguments for n_bounds_t.

Template Argument Description

typename... TypeListT Comma separated list of types, where the number
of types provided controls how many dimensions
there are. Each type in the list identifies how the
bounds of the corresponding dimension is to be
represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array – from leftmost to rightmost.

Requirements: types in the list be
bounds_t<LowerT, UpperT>

The following table provides information on the member types of n_bounds_t

Member Types Description

typedef implementation-defined lower_type Type of n_index_t<…> returned by method lower()

typedef implementation-defined upper_type Type of n_index_t<…> returned by method upper()

The following table provides information on the members of n_bounds_t.

Compiler Reference

1821

Member Description

static constexpr int rank; Number of dimensions

static constexpr int row_dimension = rank-1; Index of last dimension considered to be the row

n_bounds_t() Requirements: Every bounds_t in TypeListT is
default constructible.

Effects: Construct n_bounds_t, uses default values
of each bounds_t in TypeListT for the dimesnion
sizes. In general only correctly initialized when
every bounds_t has an LowerT and UpperT that is a
fixed<NumberT>.

n_bounds_t(const n_bounds_t &a_other) Effects: Construct n_bounds_t, copying bounds of
each dimension from a_other.

template<int DimensionT>
auto get() const

Requirements: DimenstionT >=0 and DimensiontT
< rank.

Effects: Determine the bounds of DimensionT.

Returns: In the type declared by the DimensionT
position of 0-based TypeListT, the bounds_t of the
specified DimensionT

lower_type lower() Effects: build n_index<…> representing the
inclusive lower bounds for all dimensions

Returns: n_index[get<0>().lower()]

[get<1>().lower()]

[get<…>().lower()]

[get<row_dimension>().lower()]

upper_type upper() Effects: build n_index<…> representing the
exclusive upper bounds for all dimensions

Returns: n_index[get<0>().upper()]

[get<1>(). upper ()]

[get<…>(). upper ()]

[get<row_dimension>().upper()]

template<typename... OtherTypeListT>
bool contains(n_bounds_t<OtherTypeListT...>
 &a_other)
const

Requirements: rank of a_other is the same as this
instance’s.

Effects: Determine whether each dimension of the
passed n_bounds_t is fully contained within bounds
of each dimenson of this object.

Returns: get<0>().contains(a_other.get<0>()) &&

get<1>().contains(a_other.get<1>()) &&

get<…>().contains(a_other.get<…>()) &&

get<row_dimension>().contains(a_other.get<row_
dimension>())

 Intel® C++ Compiler Classic Developer Guide and Reference

1822

Member Description

template<class... OtherTypeListT>
bool operator == (const
n_bounds_t<OtherTypeListT...> a_other) const

Requirements: rank of a_other is the same as this
instance’s.

Effects: Compare bounds each of dimension for
equality. Only compares numeric values, not the
types of each dimension.

Returns: true if all dimensions are numerically
equal, false otherwise.

template<class... OtherTypeListT>
bool operator != (const
n_bounds_t<OtherTypeListT...> a_other) const

Requirements: rank of a_other is the same as this
instance’s.

Effects: Compare bounds of each dimension for
inequality. Only compares numeric values, not the
types of each dimension.

Returns: true if any dimensions are numerically
different, false otherwise.

template<class ...OtherTypeListT>
auto operator+ (const
n_index_t<OtherTypeListT...> a_offset) const

Requirements: rank of a_other is the same as this
instance’s.

Effects: construct a n_bound_t whose types and
bounds value for each dimension are determined by
taking the bounds for each dimension and adding
the an offset for that dimension from a_offset.

Returns: n_bounds[get<0>() + a_offset.get<0>()]

[get<1>() + a_offset.get<1>()]

[get<…>() + a_offset.get<…>()]

[get<row_dimension>() + a_offset.get<
row_dimension >()]

template<int DimensionT>
auto rightmost_dimensions() const

Requirements: DimenstionT >=0 and DimensiontT
<= rank.

Effects: Construct a n_bounds_t with a lower rank
by copying the righmost DimensionT values from
this instance.

Returns: n_bounds[get<rank – DimensionT>()]

[get<rank + 1 – DimensionT>()]

[get<…>()]

[get<row_dimension>()]

template<class... OtherTypeListT>
auto overlay_rightmost(const
n_bounds_t<OtherTypeListT...> & a_other) const

Requirements: rank of a_other is <= rank

Effects: Construct copy of n_bounds_t where the
rightmost dimensions’ values are copied from
a_other, effectively overlaying a_other ontop of
rightmost dimensions of this instance.

Returns:

n_bounds[get<0>()]

Compiler Reference

1823

Member Description

[get<1 >()]

[get<…>()]

[get<rank-a_other::rank>()]

[a_other.get<0>()]

[a_other.get<…>()]

[a_other.get<a_other::row_dimension>()]

The following table provides information on the friend functions of n_bounds_t.

Friend Function Description

std::ostream& operator << (std::ostream&
output_stream, const n_bounds_t &
a_bounds_list)

Effects: append string representation of
a_bounds_list values to a_output_stream

Returns: reference to a_output_stream for chained
calls.

n_bounds_generator
Facilitates simple creation of n_bounds_t objects.
#include <sdlt/n_bounds.h>

Syntax

template<typename... TypeListT>
class n_bounds_generator;

namespace {
 // Instance of generator object
 n_bounds_generator<> n_bounds;
}

Description

The generator object provides recursively constructing operators [] for bounds_t<LowerT, UpperT> values
allowing building of a n_bounds_t<…> instance one dimension at a time. Its main purpose is to allow a
usage syntax that is similar to C multi-dimensional array definition:

Compare creating two n_bounds_t instances:

n_bounds_t<bounds_t<fixed<540>, fixed<1080>>,
 bounds_t<fixed<960>, fixed<1920>>> bounds1(bounds_t<540_fixed,1080_fixed>(),
 bounds_t<960_fixed, 1920_fixed>));

n_bounds_t<bounds_t<int, int>,
 bounds_t<int, int>> bounds2(bounds_t<int, int>(540,960),
 bounds_t<int, int>(960, 1920));

and the equivalent instances using the generator objects and factory functions

auto bounds1 = n_bounds[bounds(540_fixed, 1080_fixed)]
 [bounds(960_fixed, 1920_fixed)];
auto bounds2 = n_bounds[bounds(540, 1080)]
 [bounds(960, 1920)];

 Intel® C++ Compiler Classic Developer Guide and Reference

1824

or alternatively using the operator() with n_index_t and n_extent_t generator objects

auto bounds1 = n_bounds(n_index[540_fixed][960_fixed],
 n_extent[540_fixed][960_fixed]);

auto bounds2 = n_bounds(n_index[540][960],
 n_extent[540][960]);

Class Hierarchy

It is expected that n_bounds_generator<…> not be directly used as a data member or parameter, instead
only n_bounds_t<...> from which it is derived. The generator object n_bounds can be automatically
downcast any place expecting a n_bounds_t<…>.

The following table provides information on the template arguments for n_bounds_generator

Template Argument Description

typename... TypeListT Comma separated list of types, where the number
of types provided controls how many dimensions
there are. Each type in the list identifies how the
bounds of the corresponding dimension is to be
represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array – from leftmost to rightmost.

Requirements: types in the list be
bounds_t<LowerT, UpperT>

The following table provides information on the types defined as members of n_bounds_generator in addition
to those inherited from n_bounds_t

Member Types Description

typedef n_bounds_t<TypeListT...> value_type Type value that the any chained [] operator calls
have produced.

The following table provides information on the members of n_bounds_generator in addition to those
inherited from n_bounds_t

Member Description

n_bounds_generator() Requirements: TypeListT is empty

Effects: Construct generator with no bounds
specified

n_bounds_generator(const n_bounds_generator
&a_other)

Effects: Construct generator copying any bounds
values from a_other

template<typename LowerT, typename UpperT>
auto
operator [] (const bounds_t<LowerT, UpperT> &
a_bounds) const

Effects: build a n_bounds_generator<…> with
additional rightmost bounds_t<LowerT, UpperT>
based dimension.

Returns: n_bounds_generator<TypeListT...,
bounds_t< LowerT, UpperT >>

template<class... IndexTypeListT, class...
ExtentTypeListT>
auto operator () (
 const n_index_t<IndexTypeListT...> &

Requirements: rank of a_indices is same as rank of
a_extents and TypeListT be empty

Compiler Reference

1825

Member Description

a_indices,
 const n_extent_t<ExtentTypeListT...> &
a_extents) const

Effects: build a n_bounds_generator<…> where n-
lower bounds are specified by a_indices, and n-
upper bounds are calculated by adding a_extents to
a_indices

Returns: n_bounds[bounds(a_indices.get<0>(),

a_indices.get<0>() + a_extents.get<0>())]

[bounds(a_indices.get<1>(),

a_indices.get<1>() + a_extents.get<1>())]

[bounds(a_indices.get<…>(),

a_indices.get<…>() + a_extents.get<…>())]

[bounds(a_indices.get<row_dimension>(),

a_indices.get< row_dimension >() +
a_extents.get< row_dimension >())]

value_type value() const Returns: n_bounds_t<…> with the correct types
and values of the multi-dimensional bounds
aggregated by the generator.

bounds_d Template Function
Provides a consistent way to determine the bounds of
a dimension for a multi-dimensional object. #include
<sdlt/n_extent.h>

Syntax

template<int DimensionT, typename ObjT>
auto bounds_d(const ObjT &a_obj)

Description

Consistent way to determine the bounds of a dimension for a multi-dimensional object. Can avoid extracting
an entire n_bounds_t<…> when only the extent of a single dimension is needed.

Template Argument Description

int DimensionT 0 based index starting at the leftmost dimension
indicating which n-dimensions to query the bounds
of.

Requirements: DimensionT >=0 and DimensionT <
ObjT::rank

typename ObjT The type of n-dimensional object from which to
retrieve the extent.

Requirements: ObtT is one of:

n_container<…>

n_bounds_t<…>

n_bounds_generator<…>

n_container<…>::accessor

 Intel® C++ Compiler Classic Developer Guide and Reference

1826

Template Argument Description

n_container<…>::const_accessor

or any sectioned or translated accessor.

Returns:

The correctly typed bounds_t<LowerT, UpperT> corresponding to the requested DimensionT of a_obj.

Example:

template <typename VolumeT>
void foo(const VolumeT & a_volume)
{
 auto bounds_z = bounds_d<0>(volume);
 auto bounds_y = bounds_d<1>(volume);
 auto bounds_x = bounds_d<2>(volume);
 for(auto z : bounds_z)
 for(auto y : bounds_y)
 for(auto x : bounds_x) {
 // …
 }
}

Accessors

soa1d_container::accessor and aos1d_container::accessor
Lightweight object provides efficient array subscript []
access to the read or write elements from inside a
soa1d_container or aos1d_container. #include
<sdlt/soa1d_container.h> and #include <sdlt/
aos1d_container.h>

Syntax

template <typename OffsetT> soa1d_container::accessor;
template <typename OffsetT> aos1d_container::accessor;

Arguments

typename OffsetT The type offset that will be applied to each operator[] call determined
by the type of offset passed into
soa1d_container::access(offset)/
aos1d_container::access(offset) which constructs an accessor.

Description

accessor provides [] operator that returns a proxy object representing an Element inside the Container that
can export or import the Primitive's data. Can re-access with an offset to create a new accessor that when
accessed at [0] will really be accessing at index corresponding to the embedded offset. Lightweight and
meant to be passed by value into functions or lambda closures. Use accessors in place of pointers to access
the logical array data.

Member Description

accessor(); Default Constructible

Compiler Reference

1827

Member Description

accessor(const accessor &); Copy Constructible

accessor & operator = (const accessor &); Copy Assignable

const int & get_size_d1() const; Returns: Number of elements in the container.

auto operator [] (int index_d1) const Returns: proxy Element representing element at
index_d1 in the container..

template<typename IndexT_D1>
auto
operator [] (const IndexT_D1 index_d1);

When: IndexT_D1 is one of the SDLT defined or
generated Index types,

Returns: proxy Element representing element at
index_d1 in the container.

auto
reaccess(const int offset) const;

Returns: accessor with an integer-based embedded
index offset.

template<int IndexAlignmentT>
auto
reaccess(aligned_offset<IndexAlignmentT>
offset) const;

Returns: accessor with an
aligned_offset<IndexAlignmentT> based
embedded index offset.

template<int fixed_offsetT>
auto
reaccess(fixed_offset<fixed_offsetT>) const;

Returns: accessor with a fixed_offset<OffsetT>
based embedded index offset.

soa1d_container::const_accessor and aos1d_container::const_accessor
Lightweight object provides efficient array subscript []
access to the read elements from inside a
soa1d_container or aos1d_container. #include
<sdlt/soa1d_container.h> and #include <sdlt/
aos1d_container.h>

Syntax

template <typename OffsetT> soa1d_container::const_accessor;
template <typename OffsetT> aos1d_container::const_accessor;

Arguments

typename OffsetT The type offset that embedded offset that will be applied to each
operator[] call

Description

const_accessor provides [] operator that returns a proxy object representing a const Element inside the
Container that can export the Primitive's data. Can re-access with an offset to create a new const_accessor
that when accessed at [0] will really be accessing at index corresponding to the embedded offset.
Lightweight and meant to be passed by value into functions or lambda closures. Use const_accessors in place
of const pointers to access the logical array data.

Member Description

const_accessor(); Default Constructible

 Intel® C++ Compiler Classic Developer Guide and Reference

1828

Member Description

const_accessor(const const_accessor &); Copy Constructible

const_accessor & operator = (const
const_accessor &);

Copy Assignable

const int & get_size_d1() const; Returns: Number of elements in the container.

auto operator [] (int index_d1) const Returns: proxy ConstElement representing element
atindex_d1 in the container..

template<typename IndexT_D1>
auto
operator [] (const IndexT_D1 index_d1);

When: IndexT_D1 is one of the SDLT defined or
generated Index types.

Returns: proxy ConstElement representing element
at index_d1 in the container.

auto
reaccess(const int offset) const;

Returns: const_accessor with an integer-based
embedded index offset.

template<int IndexAlignmentT>
auto
reaccess(aligned_offset<IndexAlignmentT>
offset) const;

Returns: const_accessor with an
aligned_offset<IndexAlignmentT> based
embedded index offset.

template<int fixed_offsetT>
auto
reaccess(fixed_offset<fixed_offsetT>) const;

Returns: const_accessor with a
fixed_offset<OffsetT> based embedded index
offset.

Accessor Concept
Accessor and const_accessor objects obtained via
n_container::access() and
n_container::const_access() provide access to
read from or write to cells inside an n_container.

Syntax

The following methods return objects meeting the requirements of the accessor concept.

auto n_container::access();
auto n_container::const_access();
auto accessor_concept::section(n_bounds_t<…>);
auto accessor_concept::translated_to(n_index_t<…>);
auto accessor_concept::translated_to_zero();

Description

Accessor objects provide read/write access to individual cells of an n-dimensional container. Index values
passed to a sequence of array subscript operator calls will produce a proxy concept that can import to or
export the primitive data the corresponding cell inside the container.

auto image = make_n_container<MyStruct, layout::soa>(n_extent[128][256]);
auto acc = image.access();
MyStruct in_value(100.0f, 200.0f, 300.0f);

acc[64][128] = in_value;

Compiler Reference

1829

MyStruct out_value = acc[64][128];

assert(out_value == in_value);
Accessors also know their valid iteration space, which can queried using the template function bound_d<int
DimensionT>(accessor).

assert(bounds_d<0>(acc) == bounds(0_fixed,128));
assert(bounds_d<1>(acc) == bounds(0_fixed,256));

An accessor may have a non-zero index space if it has a translation embedded into it, bounds_d will reflect
any such translation.

auto shifted_acc = acc.translated_to(n_index[1000][2000]);
assert(bounds_d<0>(shifted_acc) == bounds(1000,1128));
assert(bounds_d<1>(shifted_acc) == bounds(2000,2256));

This is useful to have a smaller sized container participate in a calculation over a portion of a larger index
space, simplifying programming as the same index variable can be used, and the accessor takes care of
applying the necessary translation. An accessor may represent a subsection over the original extents,
bounds_d will identify the valid iteration space for that accessor.

auto subsection_acc = a.section(n_bounds[bounds(64,96)][bounds(128,160)]);
assert(bounds_d<0>(subsection_acc) == bounds(64, 96));
assert(bounds_d<1>(subsection_acc) == bounds(128, 160);

It can also be useful to have subsections be translated back to start their iteration space at 0. For efficiency,
the translated_to_zero() method is provided to create an accessor shifted back to zero.

auto zb_sub_acc = a.section(n_bounds[bounds(64, 96)][bounds(128, 160)]).translated_to_zero();
assert(bounds_d<0>(zb_sub_acc) == bounds(0, 32));
assert(bounds_d<1>(zb_sub_acc) == bounds(0, 32));

If fewer array subscript calls applied to an accessor than its rank, the result is another accessor of a lower
rank. This can be useful to obtain accessors suitable to pass to code expecting lower rank accessors. Such as
a obtaining a 3d accessor from a 4d container by specifying only a single index via array subscript. This has
the effect of embedding the index value of the dimension inside accessor. When the final dimension is sliced,
the result is a proxy object to the cell inside the container corresponding to the embedded index values
inside the sliced accessors

auto image4d = make_n_container<MyStruct, layout::soa>(n_extent[10][20][128][256]);

MyStruct in_value(100.0f, 200.0f, 300.0f);
auto acc4d = image4d.access();
auto acc3d = acc4d[5];
auto acc2d = acc3d[10];
auto acc1d = acc2d[64];
acc1d[128] = in_value;
MyStruct out_value = acc4d[5][10][64][128];
assert(out_value == in_value);

The following table provides information on the requirements of the accessor concept.

Pseudo-Signature Description

typedef PrimitiveT primitive_type; Data type inside the cells of the container.

static constexpr int rank; Number of free dimensions of accessor

 Intel® C++ Compiler Classic Developer Guide and Reference

1830

Pseudo-Signature Description

accessor_concept(const accessor_concept
&a_other)

Effects: constructs a copy of another accessor of
the exact same type

template<typename IndexT>
element_concept operator[] (const IndexT
a_index) const

Requirements: rank == 1 and IndexT is one of:
int, aligned<AlignmentT>, fixed<NumberT>,
linear_index, or simd_index<LaneCountT>

Effects: When only 1 free dimension is left, the
operator[] will construct an element_concept which
is the proxy to the cell inside the container. If this
accessor was obtained with const_access(), then
the proxy will provide read only interface to the
cell’s data.

Returns: The proxy object to cell inside the
container corresponding to the position identified by
the a_index along with any embedded index values
for other dimensions

template<typename IndexT>
accessor_concept operator[] (const IndexT
a_index) const

Requirements: rank > 1 and IndexT is one of: int,
aligned<AlignmentT>, fixed<NumberT>,
linear_index, or simd_index<LaneCountT>

Effects: When 2 or more free dimensions are left,
the operator[] will construct another
accessor_concept of lower rank embeding a_index
inside of it, effectively fixing that dimension’s index
value for any accesses made through the returned
accessor_concept.

Returns: The accessor_concept of lower rank (one
less free dimension).

template<int DimensionT>
auto bounds_d() const

Requirements: DimensionT >=0 and DimensionT
< rank

Effects: Determine the bounds of a free dimension
using DimensionT as a 0 based index starting at the
leftmost dimension.

Returns: bounds_t of the DimensionT

auto bounds_dXX() const
where XX is 0-19

Requirements: XX >=0 and XX < rank and XX <
20

Effects: Non templated methods to determine the
bounds of a free dimension using XX as a 0 based
index starting at the leftmost dimension.

Returns: bounds_t of the XX dimension

template<int DimensionT>
auto extent_d() const

Requirements: DimensionT >=0 and DimensionT
< rank

Effects: Determine the extent of a free dimension
using DimensionT as a 0 based index starting at the
leftmost dimension.

Returns: extent of the DimensionT

Compiler Reference

1831

Pseudo-Signature Description

auto extent_dXX() const
where XX is 0-19

Requirements: XX >=0 and XX < rank and XX <
20

Effects: Non templated methods to determine the
extent of a free dimension using XX as a 0 based
index starting at the leftmost dimension.

Returns: extent of the XX dimension

template<typename ...IndexListT>
accessor_concept translated_to(
 n_index_t<IndexListT...> a_n_index) const

Requirements: a_n_index has same rank as the
accessor

Effects: construct an accessor_concept with an
embedded translation such that accessing
a_n_index will corresponds back to the current
lower bounds. Easy way to think of it is that current
iteration space is translated to a_n_index space.

Returns: accessor_concept whose bounds have the
same extents, but whose lower bounds start at the
supplied a_n_index

template<typename ...IndexListT>
accessor_concept translated_to_zero() const

Effects: construct an accessor_concept with an
embedded translation such that accessing [0] index
for all dimensions will corresponds back to the
current lower bounds. Easy way to think of it is that
current iteration space is translated to [0] for all
free dimensions.

Returns: accessor_concept whose bounds have the
same extents, but whose lower bounds start [0]…
[0]

template<typename ...BoundsTypeListT>
 auto
 section(const
n_bounds_t<BoundsTypeListT...> &a_n_bounds)
const

Requirements: a_n_bounds has same rank as the
accessor and a_n_bounds is contained by the
accessors current bounds.

Effects: construct an accessor_concept with using
the supplied a_n_bounds to represent its valid
iteration space. Because a_n_bounds must be
contained within the existing bounds, we are
effictively creating an accessor over a section of the
container. Easy way to think of it is that current
bounds are being restricted to a_n_bounds. Note:
can be useful to chain a call
translated_to_zero() on to the return value.

Returns:accessor_concept whose bounds are set
to the supplied a_n_bounds

Proxy Objects
accessors can't return a reference to the Primitive because its memory layout is abstracted. Instead a Proxy
object is returned. That Proxy supports importing or exporting data to and from the Container. The actual
type of Proxy objects is an implementation detail, but they all support the same public interface which we will
document.

Each accessor [index] operator returns a Proxy object.

 Intel® C++ Compiler Classic Developer Guide and Reference

1832

Each const_accessor [index] operator returns a ConstProxy object.

The Proxy objects provide a Data Member Interface where for each data member of value_type they are
representing, a member access method is defined which returns a new Proxy or ConstProxy representing just
that data member. Users can drill down through a complex data structure to get a Proxy representing the
exact data member they need versus importing and exporting the entire Primitive value.

Proxy objects also overload the following operators if the underlying value_type supports the operator:

==, !=, <, >, <=, >=, +, -, *, /, %, &&, ||, &, |, ^, ~, *, +, -, !, +=, -=, *=, /=, %=, >>=, <<=, &=, |=,
^=, ++, --

Proxy
Proxy object provides access to a specific Primitive,
Primitive data member, or nested data member within
a Primitive for an element in a container.

Description

accessor [index] or a Proxy object’s Data Member Interfaces return Proxy objects. That Proxy object
represents the Primitive, Primitive data member, or nested data member within a Primitive for an element in
a container. The Proxy object has the following features:

• A value_type can be exported or imported from the Proxy.

• Conversion operator is used to export the value_type
• Alternatively the Proxy can be passed to the function unproxy to export a value_type
• Assignment operator = is used to import value_type into the Proxy

• Overloads the following operators if the underlying value_type supports the operator

• ==, !=, <, >, <=, >=, +, -, *, /, %, &&, ||, &, |, ^, ~, *, +, -, !, +=, -=, *=, /=, %=, >>=, <<=,
&=, |=, ^=, ++, --

• When an operator is called the following occurs:

• value_type is exported
• The operator applied to the exported value
• If the operator was an assignment, the result is imported back into the Member and returns the

proxy
• Otherwise a result is returned.

• Data Member Interface.

• For each data member of value_type

• A member access method is defined which returns a Member proxy representing just that member.

Member Type Description

typedef implementation-defined value_type The type of the data the Proxy is representing

Member Description

operator value_type const () const; Returns: exports a copy of the Proxy’s value.

NOTE: constant return value prevents rvalue
assignment for structs offering some protection
against code that expected a modifiable reference.

const value_type &
operator = (const value_type &a_value);

Imports a_value into container at the position the
Proxy is representing.

Returns: the same constant value_type it was
passed.

Compiler Reference

1833

Member Description

NOTE: This behavior is different from traditional
assignment operators that return *this. Choice was
to enable efficient chaining of assignment operators
versus returning a Proxy which would have to
export the value it had just imported.

Proxy & operator = (const Proxy &other); Exports value from the other Proxy and imports it.

Returns: A reference to this Proxy obect.

auto name_of_values_data_member_1()const; Returns: Proxy instance representing the 1st data
member of the value_type

NOTE: actual method name is the name of the
value_type’s 1st data member

auto name_of_values_data_member_2()const; Returns: Proxy instance representing the 2nd data
member of the value_type.

NOTE: actual method name is the name of the
value_type’s 2nd data member.

auto name_of_values_data_member_...()const; Returns: Proxy instance representing the ...th data
member of the value_type.

NOTE: actual method name is the name of the
value_type’s …th data member.

auto name_of_values_data_member_N()const; Returns: Proxy instance representing the Nth data
member of the value_type.

NOTE: actual method name is the name of the
value_type’s Nth data member

ConstProxy
ConstProxy object provides access to a specific
constant primitive, primitive data member, or nested
data member within a primitive for an element in a
container.

Description

const_accessor [index] or a ConstProxy object’s Data Member Interfaces return ConstProxy objects. That
ConstProxy object represents the constant primitive, primitive data member, or nested data member within a
primitive for an element in a container. The ConstProxy object has the following features:

• A value_type can be exported or imported from the ConstProxy.

• Conversion operator is used to export the value_type
• Alternatively the ConstProxy can be passed to the function unproxy to export a value_type

• Overloads the following operators if the underlying value_type supports the operator

• ==, !=, <, >, <=, >=, +, -, *, /, %, &&, ||, &, |, ^, ~, *, +, -, !
• When an operator is called the following occurs:

• value_type is exported
• The operator applied to the exported value
• returns the result.

• Data Member Interface.

• For each data member of value_type

 Intel® C++ Compiler Classic Developer Guide and Reference

1834

• A member access method is defined which returns a Member ConstProxy representing just that
member.

Member Type Description

typedef implementation-defined value_type The type of the data the ConstProxy is representing

Member Description

operator value_type const () const; Returns: exports a copy of the ConstProxy’s value.

NOTE: constant return value prevents rvalue
assignment for structs offering some protection
against code that expected a modifiable reference.

auto name_of_values_data_member_1()const; Returns: ConstProxy instance representing the 1st
data member of the value_type

NOTE: actual method name is the name of the
value_type’s 1st data member

auto name_of_values_data_member_2()const; Returns: ConstProxy instance representing the 2nd
data member of the value_type.

NOTE: actual method name is the name of the
value_type’s 2nd data member.

auto name_of_values_data_member_...()const; Returns: ConstProxy instance representing the ...th
data member of the value_type.

NOTE: actual method name is the name of the
value_type’s ...th data member.

auto name_of_values_data_member_N()const; Returns: ConstProxy instance representing the Nth
data member of the value_type.

NOTE: actual method name is the name of the
value_type’s Nth data member

Number Representation
When specifying extents, positions inside of, or bounds of a container, numeric values can be represented
three different ways: fixed, aligned, and int. Fixed is most precise and int is least precise. It is advised
to use as precise specification as possible. The compiler may optimize better with more information.

Fixed
Represent a numerical constant whose value specified at compile time.

template <int NumberT> class fixed;
If offsets applied to index values inside a SIMD loop are known at compile time, then the compiler can use
that information. For example, to maintain aligned access, if boundary is fixed and known to be aligned when
accessing underlying data layout. When multiple accesses are happening near each other, the compiler will
have the opportunity to detect which accesses occur in the same cache lines and potentially avoid
prefetching the same cache line repeatedly. Additionally, if the start of an iteration space is known at compile
time, if it's a multiple of the SIMD lane count, the compiler could skip generating a peel loop. Whenever
possible, fixed values should be used over aligned or arbitrary integer values.

Compiler Reference

1835

Although std::integral_constant<int> provides the same functionality, the library defines own type to
provide overloaded operators and avoid collisions with any other code's interactions with
std::integral_constant<int>.

The following table provides information about the template arguments for fixed.
Template Argument Description

int Number T The numerical value the fixed will represent.

The following table provides information about the members of fixed.
Member Description

static constexpr int value = NumberT The numerical value known at compile-time.

constexpr operator value_type() const Returns: The numerical value

constexpr value_type operator()() const; Returns: The numerical value

Constant expression arithmetic operators +,- (both unary and binary), * and / are defined for type
sdlt::fixed<> and will be evaluated at compile-time.

The suffix _fixed is a C++11 user-defined equivalent literal. For example, 1080_fixed is equivalent to
fixed<1080>. Consider the readability of the two samples below.

foo3d(fixed<1080>(), fixed<1920>());
versus

foo3d(1080_fixed, 1920_fixed);

NOTE The sdlt::fixed<NumberT> type supersedes the deprecated
sdlt::fixed_offset<OffsetT> type found in SDLT v1. It is strongly advised to use
sdlt::fixed<NumberT>. However, in this release, a template alias is provided mapping
sdlt::fixed_offset<OffsetT> onto sdlt::fixed<NumberT>.

Aligned
Represent integer value known at compile time to be a multiple of an IndexAlignment.

template <int IndexAlignmentT> class aligned;
If you can tell the compiler that you know that an integer will be a multiple of known value, then, when
combined with a loop index inside a SIMD loop, the compiler can use that information to maintain aligned
access when accessing underlying data layout.

Internally, the integer value is converted to a block count, where:

block_count = value/IndexAlignmentT;
Overloaded math operations can then use that aligned block count as needed. The value() is represented by
AlignmentT*block_count allowing the compiler to prove that the value() is a multiple of AlignmentT,
which can utilize alignment optimizations.

The following table provides information about the template arguments for aligned.
Template Argument Description

int IndexAlignmentT The alignment the user is stating that the number is a
multiple of. IndexAlignmentT must be a power of two.

 Intel® C++ Compiler Classic Developer Guide and Reference

1836

The following table provides information about the types defined as members of aligned.
Member Type Description

typedef int value_type The type of the numerical value.

typedef int block_type The type of the block_count.

The following table provides information about the members of aligned.
Member Description

static const int index_alignment The IndexAlignmentT value.

aligned() Constructs empty (uninitialized) object

explicit aligned(value_type) Constructs computing block_count=a_value/
IndexAlignmentT.

aligned(const aligned& a_other) Constructs copying block_count from a_other.
a_other must have same IndexAlignmentT.

template<int OtherAlignment>
explicit aligned(const aligned& other)

Constructs computing block_count optimized by
avoiding computing other.value(). Must have
IndexAlignmentT of a_other < IndexAlignmentT
and other.value() be multiple of IndexAlignmentT.

template<int OtherAlignment>
aligned(const aligned& other)

Constructs computing block_count with a multiply
instead of divide. Must have IndexAlignmentT of
a_other > IndexAlignmentT

static aligned from_block_count(block_type
block_count)

Creates an instance of aligned avoiding any math
by directly using supplied block_count

value_type value() const Computes the value represented by the aligned.

Returns:
aligned_block_count()*IndexAlignmentT

operator value_type() Conversion to int.

Returns: value()

block_type aligned_block_count() const Conversion to int.

Returns: The block count

The following operations are supported for the aligned type.

Operation Description

operator *(int), commutative Scale value.

Returns: aligned<IndexAlignmentT >

operator *(fixed<V>), commutative Scales IndexAlignment by 2^M and value by K.
Must have V=2^M*K (V is a multiple of a power of
2).

Returns: aligned<IndexAlignmentT*(2^M)>

Compiler Reference

1837

Operation Description

operator *(aligned<OtherAl>) Scales IndexAlignment by OtherAl and
block_count by argument.

Returns: aligned<IndexAlignmentT*OtherAl>

int operator/(fixed<IndexAlignmentT>) Returns: aligned_block_count()

int operator/(fixed<-IndexAlignmentT>) Returns: -aligned_block_count();

int operator/(fixed<V>) Must have abs(V)>IndexAlignmentT &&
IndexAlignmentT%V==0.

Returns: aligned_block_count()/(V/
IndexAlignmentT)

int operator/(fixed<V>) Must have abs(V) < IndexAlignmentT && V
%IndexAlignmentT==0
Returns:
aligned_block_count()*(IndexAlignmentT/V)

aligned operator -() Returns: Same type aligned for negated value.

aligned operator -(const aligned &)
 const

Returns: Same type aligned for value of difference.

template<int OtherAl>
aligned<?> operator -(const
aligned<OtherAl>&) const

Difference with other alignment. Behavior and
returned alignment type depend on relation
between alignments of operands.

Returns: Value for difference as lower of incoming
alignments

template<int V>
aligned<?> operator -(const fixed<V> &) const

Difference with fixed value. Behavior and returned
alignment type depend on relation between
alignments of aligned<> operand and the value of
V.

Returns: Adjusted aligned value of a difference

aligned operator +(const aligned &)const Returns: Same type aligned for value of sum

template<int OtherAl>
aligned<?> operator +(const
aligned<OtherAl>&) const

Sum with other alignment. Behavior and returned
alignment type depend on relation between
alignments of operands.

Returns: Value for sum as lower of incoming
alignments

template<int V>
aligned<?> operator +(const fixed<V> &) const

Sum with fixed value. Behavior and returned
alignment type depend on relation between
alignments of aligned<> operand and the value of
V.

Returns: Adjusted aligned value of a sum.

 Intel® C++ Compiler Classic Developer Guide and Reference

1838

Operation Description

template<int OtherAl>
aligned operator +=(const aligned<OtherAl> &)
const

Increments value for the aligned object if
IndexAlignmentT is compatible with OtherAl
Returns: Aligned with incremented value.

template<int OtherAl>
aligned operator -=(const aligned<OtherAl> &)
const

Decrements value for the aligned object if
IndexAlignmentT is compatible with OtherAl
Returns: Same type aligned with decremented
value.

template<int OtherAl>
aligned operator *=(const aligned<OtherAl> &)
const

Multiplies value for the aligned object if
IndexAlignmentT is compatible with OtherAl.

Returns: Same type aligned with multiplied value.

template<int OtherAl>
aligned operator /=(const aligned<OtherAl> &)
const

Divides value for the aligned object if
IndexAlignmentT is compatible with OtherAl
Returns: Same type aligned with divided value.

NOTE The sdlt::aligned<> type supersedes the deprecated sdlt::aligned_offset<> type found
in SDLT v1. It is strongly advised to use sdlt::aligned<>, however in this release a template alias is
provided mapping sdlt::aligned_offset<> onto sdlt::aligned<>.

int
Represents an arbitrary integer value. In interfaces where fixed<> and aligned<> values supported you may
also use plain old integer value. It provides least information among these three and so least facilitates
compiler optimizations.
aligned_offset
Represent an integer based offset whose value is a
multiple of an IndexAlignment specified at compile
time. #include <sdlt/aligned_offset.h>

Syntax

template<int IndexAlignmentT>
class aligned_offset;

Arguments

int IndexAlignmentT The index alignment the user is stating that the offset have.

Description

aligned_offset is a deprecated feature.

If we can tell the compiler that we know an offset will be a multiple of known value, then when combined
with a loop index inside a SIMD loop, the compiler can use that information to maintain aligned access when
accessing underlying data layout.

Internally, the offset value is converted to a block count.

Block Count = offsetValue/IndexAlignmentT;
Indices can then use that aligned block count as needed.

Compiler Reference

1839

Member Description

static const int IndexAlignment =
IndexAlignmentT;

The alignment the offset is a multiple of

explicit aligned_offset(const int offset) Construct instance based on offset

static aligned_offset from_block_count(int
aligned_block_count);

Returns: Instance based on aligned_block_count,
where the offset value =
IndexAlignment*aligned_block_count

int aligned_block_count() const; Returns: number of blocks of IndexAlignment it
takes to represent the offset value.

int value() const; Returns: offset value

fixed_offset
Represent an integer based offset whose value
specified at compile time. #include <sdlt/
fixed_offset.h>

Syntax

template <int OffsetT> fixed_offset;

Arguments

int OffsetT The value the fixed_offset will represent

Description

fixed_offset is a deprecated feature.

If we can tell the compiler that we know an offset at compile time, then when combined with a loop index
inside a SIMD loop, the compiler can use that information to maintain aligned access (should the offset be
aligned) when accessing underlying data layout. When multiple accesses are happening near each other, the
compiler will have the opportunity to detect which accesses occur in the same cache lines and potentially
avoid prefetching the same cache line repeatedly. Whenever possible, a fixed_offset should be used over an
aligned_offset or integer based offset.

Member Description

static constexpr int value = OffsetT The offset value known at compile

Indexes
soa1d_container's and aos1d_container's accessors [] operator can accept an integer based loop index.
However if any modifications were applied to that loop index, the fact that it's a loop index may be lost by
the compiler as it is handled before being passed to the [] operator.

To avoid this situation, SDLT provides classes to wrap loop indexes that capture multiple additions or
subtractions of offsets (see the Offsets section). The resulting index can be passed to [] and preserve the
original loop index and track any arithmetic with Offsets to be applied to underlying data layout.

It is common for stencil based algorithms to need to apply offsets during data access.

For a regular linear loop, use linear_index to wrap your loop index.

 Intel® C++ Compiler Classic Developer Guide and Reference

1840

linear_index
Wraps an integer-based loop index that is iterating
linearly through an iteration space. #include <sdlt/
linear_index.h>

Syntax

class linear_index;

Description

Inside of a linear loop, wrap the loop index with a linear_index to allow addition or subtraction of offsets.

Member Description

explicit linear_index(int an_index); Construct instance from a loop index

int value() const; Returns the original loop index

n_index_t
Variadic template class n_index_t describes a position
inside of the N-dimensional container. Specifically, the
number of dimensions and the of index value of each.

Syntax

template<typename... TypeListT>
class n_index_t

Description

n_index_t represents a position inside an n-dimensional space as a sequence of index value for each
dimension. The index of each dimension can be represented by different types. This flexibility allows the
same interface to be used to declare n_index_t with indices that are fully known at compile time with
fixed<int NumberT>, or to be only known at runtime with int, or only known at runtime but with a
guarantee will be a multiple of an alignment with aligned<int Alignment>. For more details, see the
Number representation section.

Objects of this class may be used to identify a cell in a container, describe the inclusive lower bounds for
n_bounds(), n-dimensional position for accessor's translated_to().

The following table provides information about the template arguments for n_index_t.

Template Argument Description

typename... TypeListT Comma separated list of types, where the number
of types provided controls how many dimensions
there are. Each type in the list identifies how the
index of the corresponding dimension is to be
represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array, from leftmost to rightmost.

Requirements: Type must be int, or
fixed<NumberT>, or aligned<AlignmentT>.

The following table provides information about the members of n_index_t

Compiler Reference

1841

Member Description

static constexpr int rank; Number of dimensions.

static constexpr int row_dimension = rank-1; Index of last dimension, row.

n_index_t() Default constructor. Uses default values for extent
types.

Requirements: Every type in TypeListT is default
constructible.

Effects: Construct n_index_t, uses default values
of each type in TypeListT for the dimesnion sizes. In
general only correctly initialized when every type is
a fixed<NumberT>.

n_index_t(const n_extent_t &a_other) Copy constructor.

Effects: Construct n_index_t, copying index value
of each dimension from a_other.

explicit n_index_t(const TypeListT & …
a_values)

Returns: The last extent in its native type

Effects: Construct n_index_t, initializing each
dimension with the corresponding value from the
list of a_values passed as an argument. In use,
a_values is a comma separate list of values whose
length and types are defined by TypeListT.

template<int DimensionT>
auto get() const

Requirements: DimenstionT >=0 and DimensiontT
< rank.

Effects: Determine the index value of DimensionT.

Returns: In the type declared by the DimensionT
position of 0-based TypeListT, the index value of the
specified DimensionT

n_index_t operator +() const Effects: Determine the positive unary value of each
dimension's index, effectively no operation is
performed

Returns: Copy of the current instance.

auto operator -() const Effects: Determine the negative unary value of
each dimension's index

Returns: n_index[-get<0>()]

[-get<1>()]

[-get<…>()]

[-get<row_dimension>()]

template<class... OtherTypeListT>
auto operator +(
 const n_index_t<OtherTypeListT...> &
a_other) const

Requirements: Rank of a_other is the same as
this instance's.

Effects: Build n_index_t whose values are the
result of adding the index value for each dimension
with those of a_other

 Intel® C++ Compiler Classic Developer Guide and Reference

1842

Member Description

Returns: n_index[get<0>() + a_other.get<0>()]

[get<1>() + a_other.get<1>()]

[get<…>() + a_other.get<…>()]

[get<row_dimension>() +

a_other.get<row_dimension>()]

template<class... OtherTypeListT>
auto operator -(
 const n_index_t<OtherTypeListT...> &
a_other) const

Requirements: Rank of a_other is the same as
this instance's.

Effects: Build n_index_t whose values are the
result of subtracting the index value for each
dimension of a_other with this instance's.

Returns: n_index[get<0>() - a_other.get<0>()]

[get<1>() - a_other.get<1>()]

[get<…>() - a_other.get<…>()]

[get<row_dimension>() -

a_other.get<row_dimension>()]

template<class... OtherTypeListT>
bool operator == (const
n_index_t<OtherTypeListT...> a_other) const

Requirements: Rank of a_other is the same as
this instance's.

Effects: Compare index of each dimension for
equality. Only compares numeric values, not the
types of each dimension.

Returns:true if all dimensions are numerically
equal, false otherwise.

template<class... OtherTypeListT>
bool operator != (const
n_index_t<OtherTypeListT...> a_other) const

Requirements: Rank of a_other is the same as
this instance's.

Effects: Compare index of each dimension for
inequality. Only compares numeric values, not the
types of each dimension.

Returns: true if any dimensions are numerically
different, false otherwise.

template<int DimensionT>
auto rightmost_dimensions() const

Requirements: DimenstionT >=0 and DimensiontT
<= rank.

Effects: Construct a n_index_t with a lower rank
by copying the righmost DimensionT values from
this instance.

Returns: n_index[get<rank - DimensionT>()]

[get<rank + 1 - DimensionT>()]

[get<…>()]

[get<row_dimension>()]

Compiler Reference

1843

Member Description

template<class... OtherTypeListT>
auto overlay_rightmost(const
n_index_t<OtherTypeListT...> & a_other) const

Requirements: rank of a_other is <= rank

Effects: Construct copy of n_index_t where the
rightmost dimensions' values are copied from
a_other, effectively overlaying a_other ontop of
rightmost dimensions of this instance.

Returns: n_index[get<0>()]

[get<1 >()]

[get<…>()]

[get<rank-a_other::rank>()]

[a_other.get<0>()]

[a_other.get<…>()]

[a_other.get<a_other::row_dimension>()]

The following table provides information about the friend functions of n_index_t
Friend Function Description

std::ostream& operator << (std::ostream&
output_stream, const n_index_t & a_indices)

Effects: Append string representation of a_indices'
values to a_output_stream.

Returns: Reference to a_output_stream for
chained calls.

n_index_generator
To facilitate simpler creation of n_index_t objects,
the generator object n_index is provided.

Syntax

template<typename... TypeListT>
class n_index_generator;

namespace {
 // Instance of generator object
 n_index_generator<> n_index;
}

Description

The generator object provides recursively constructing operators [] for fixed<>, aligned<>, and integer
values allowing building of a n_index_t<…> instance one dimension at a time. Its main purpose is to allow a
usage syntax that is similar to C multi-dimensional array definition.

Compare the following examples, instantiating three n_index_t instances, and using the generator object to
instantiate equivalent instances.

n_index_t<int, int> idx1(row, col);
n_index_t<int, aligned<16>> idx2(row, aligned<16>(col));
n_index_t<fixed<540>, fixed<960>> idx3(540_fixed, 960_fixed);
auto idx1 = n_index[row][col];
auto idx2 = n_index[row][aligned<16>(col)];
auto idx3 = n_index[540_fixed][960_fixed];

 Intel® C++ Compiler Classic Developer Guide and Reference

1844

Class Hierarchy

It is expected that n_index_generator < … > not be directly used as a data member or parameter, instead
only n_index_t <...> from which it is derived. The generator object n_index can be automatically
downcast any place expecting an n_index_t<…> .

The following table provides the template arguments for n_index_generator
Template Argument Description

typename... TypeListT Comma separated list of types, where the number of
types provided controls how many dimensions the
generator currently represents. Each type in the list
identifies how the size of the corresponding dimension is
to be represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array – from leftmost to rightmost.

Requirements: Type is int, fixed<NumberT>, or
aligned<AlignmentT>.

The following table provides information on the types defined as members of n_index_generator in
addition to those inherited from n_index_t.

Member Type Description

typedef n_index_t<TypeListT...> value_type Type value that the any chained [] operator calls have
produced.

The following table provides information on the members of n_index_generator in addition to those
inherited from n_index_t

Member Description

n_index_generator () Requirements: TypeListT is empty.

Effects: Construct generator with no indices
specified.

n_index_generator (const n_index_generator
&a_other)

Effects: Construct generator copying any index
values from a_other

n_index_generator<TypeListT..., int> operator
[] (int a_index) const

Requirements: a_size >= 0.

Returns: n_index_generator<…> with additional
rightmost integer based index.

n_index_generator<TypeListT...,
 fixed<NumberT>> operator []
(fixed<NumberT> a_index) const

Requirements: a_size >= 0.

Returns: n_index_generator<…> with additional
rightmost fixed<NumberT> index.

n_index_generator<TypeListT...,
 aligned<AlignmentT>> operator []
(aligned<AlignmentT> a_index)

Requirements: a_size >= 0

Returns: n_index_generator<…> with additional
rightmost aligned<AlignmentT> based index.

value_type value() const Returns: n_extent_t<…> with the correct types
and values of the multi-dimensional extents
aggregated by the generator.

Compiler Reference

1845

index_d template function

Syntax

template<int DimensionT, typename ObjT>
auto index_d(const ObjT &a_obj)

Description

The template function offers a consistent way to determine the index of a dimension for a multi-dimensional
object. It can avoid extracting an entire n_index_t<…> when only the extent of a single dimension is
needed.

Template Argument Description

int DimensionT 0 based index starting at the leftmost dimension
indicating which n-dimensions to query the index
of.

Requirements: DimensionT >=0 and DimensionT
< ObjT::rank

typename ObjT The type of n-dimensional object from which to
retrieve the extent.

Requirements: ObtT is one of:

n_index_t<…>

n_index_generator<…>

Returns

The correctly typed index corresponding to the requested DimensionT of a_obj.

Example

template <typename IndicesT>
void foo(const IndicesT & a_pos)
{
 int z = index_d<0>(a_pos);
 int y = index_d<1>(a_pos);
 int x = index_d<2>(a_pos);
 /…
}

Convenience and Correctness
Users can include a single header file sdlt.h that includes all the supported public features, or users can
include the individual headers of features they will be using (which might build faster). In other words,

#include <sdlt/sdlt.h>
instead of

#include <sdlt/primitive.h>
#include <sdlt/soa1d_container.h>

For convenience, SDLT provides a macro to encapsulate #pragma forceinline recursive.

SDLT_INLINE_BLOCK

 Intel® C++ Compiler Classic Developer Guide and Reference

1846

SDLT reduces overhead by trusting the programmer to pass it valid values for template and function
parameters. Adding conditional checks inside of a SIMD loop can cause unnecessary code generation and
inhibit vectorization by creating multiple exit points in a loop. To assist in verifying that a program is indeed
passing valid values to SDLT, the programmer can add a compilation flag to their build to define
SDLT_DEBUG=1.

-DSDLT_DEBUG=1
If _DEBUG is defined and SDLT_DEBUG has not been defined to 0 or 1, then SDLT_DEBUG is automatically set
to 1. When set to 1, every operator[] is bounds checked and all addresses are validated for correct
alignment. It is very useful for tracking down any usage bugs.

The macro __SDLT_VERSION is predefined to be 2001. Programs could use it for conditional compilation if
incompatibilities arise in future updates.

C++ implementations of std::min and std::max sometimes have a negative impact on performance. SDLT
defines min_val and max_val that help avoid such performance penalties.

max_val
Return the right value if the right value is greater than
left, otherwise returns the left value. #include
<sdlt/min_max_val.h>

Syntax

template<typename T>
T max_val(const T left, const T right);

Arguments

typename T The type of the left and right values

Description

C++ implementations of std::min and std::max create a conditional control flow that returns references to
its parameters, which may cause inefficient vector code generation. max_val is a really simple template that
returns by value instead of reference, allowing more efficient vector code to be generated. For most cases
the algorithm didn't need a reference to the inputs and a copy by value should suffice. It should inline,
adding no overhead. Inside of SIMD loops, we suggest using sdlt::max_val in place of std::max.

Requires < operator be defined for the type T.
min_val
Return the left value if the right value is greater than
left, otherwise returns the right value. #include
<sdlt/min_max_val.h>

Syntax

template<typename T>
T min_val(const T left, const T right);

Arguments

typename T The type of the left and right values

Compiler Reference

1847

Description

C++ implementations of std::min and std::max create a conditional control flow that returns references to
its parameters, which may cause inefficient vector code generation. min_val is a really simple template that
returns by value instead of reference, allowing more efficient vector code to be generated. For most cases
the algorithm didn’t need a reference to the inputs and a copy by value should suffice. It should inline,
adding no overhead. Inside of SIMD loops, we suggest using sdlt::min_val in place of std::min.

Requires < operator be defined for the type T.

Examples
The example programs in this section demonstrate

• the efficiency of using SDLT and its Structure of Arrays approach rather than a typical Array of Structures
• construction of more complex SDLT primitives,
• performance improvement in case of a forward-dependency
• use of offsets and calling methods on the SDLT primitive, and
• RGB to YUV conversion.

Efficiency with Structure of Arrays Example
This example demonstrates the efficiency of using a Structure of Arrays (SoA) approach by comparing the
assembly generated from a simple SIMD loop using an Array of Structures (AoS) approach with the assembly
generated using the SoA approach of SDLT.

Array of Structures: Non-unit stride access version
Source:

#include <stdio.h>

#define N 1024

typedef struct RGBs {
 float r;
 float g;
 float b;
} RGBTy;

void main()
{
 RGBTy a[N];
 #pragma omp simd
 for (int k = 0; k<N; ++k) {
 a[k].r = k*1.5; // non-unit stride access
 a[k].g = k*2.5; // non-unit stride access
 a[k].b = k*3.5; // non-unit stride access
 }
 std::cout << "k =" << 10 <<
 ", a[k].r =" << a[10].r <<
 ", a[k].g =" << a[10].g <<
 ", a[k].b =" << a[10].b << std::endl;
}

AVX2 assembly generated (69 instructions):

..TOP_OF_LOOP:
 vcvtdq2ps %ymm7, %ymm1
 lea (%rax), %rcx

 Intel® C++ Compiler Classic Developer Guide and Reference

1848

 vcvtdq2ps %ymm5, %ymm2
 vpaddd %ymm3, %ymm7, %ymm7
 vpaddd %ymm3, %ymm5, %ymm5
 vmulps %ymm1, %ymm4, %ymm8
 vmulps %ymm1, %ymm6, %ymm12
 vmulps %ymm2, %ymm6, %ymm14
 vmulps %ymm1, %ymm0, %ymm1
 vmulps %ymm2, %ymm4, %ymm10
 addl $16, %edx
 vextractf128 $1, %ymm8, %xmm9
 vmovss %xmm8, (%rsp,%rcx)
 vmovss %xmm9, 48(%rsp,%rcx)
 vextractps $1, %xmm8, 12(%rsp,%rcx)
 vextractps $2, %xmm8, 24(%rsp,%rcx)
 vextractps $3, %xmm8, 36(%rsp,%rcx)
 vmulps %ymm2, %ymm0, %ymm8
 vextractps $1, %xmm9, 60(%rsp,%rcx)
 vextractps $2, %xmm9, 72(%rsp,%rcx)
 vextractps $3, %xmm9, 84(%rsp,%rcx)
 vextractf128 $1, %ymm12, %xmm13
 vextractf128 $1, %ymm14, %xmm15
 vextractf128 $1, %ymm1, %xmm2
 vextractf128 $1, %ymm8, %xmm9
 vmovss %xmm12, 4(%rsp,%rax)
 vmovss %xmm13, 52(%rsp,%rax)
 vextractps $1, %xmm12, 16(%rsp,%rax)
 vextractps $2, %xmm12, 28(%rsp,%rax)
 vextractps $3, %xmm12, 40(%rsp,%rax)
 vextractps $1, %xmm13, 64(%rsp,%rax)
 vextractps $2, %xmm13, 76(%rsp,%rax)
 vextractps $3, %xmm13, 88(%rsp,%rax)
 vmovss %xmm14, 100(%rsp,%rax)
 vextractps $1, %xmm14, 112(%rsp,%rax)
 vextractps $2, %xmm14, 124(%rsp,%rax)
 vextractps $3, %xmm14, 136(%rsp,%rax)
 vmovss %xmm15, 148(%rsp,%rax)
 vextractps $1, %xmm15, 160(%rsp,%rax)
 vextractps $2, %xmm15, 172(%rsp,%rax)
 vextractps $3, %xmm15, 184(%rsp,%rax)
 vmovss %xmm1, 8(%rsp,%rax)
 vextractps $1, %xmm1, 20(%rsp,%rax)
 vextractps $2, %xmm1, 32(%rsp,%rax)
 vextractps $3, %xmm1, 44(%rsp,%rax)
 vmovss %xmm2, 56(%rsp,%rax)
 vextractps $1, %xmm2, 68(%rsp,%rax)
 vextractps $2, %xmm2, 80(%rsp,%rax)
 vextractps $3, %xmm2, 92(%rsp,%rax)
 vmovss %xmm8, 104(%rsp,%rax)
 vextractps $1, %xmm8, 116(%rsp,%rax)
 vextractps $2, %xmm8, 128(%rsp,%rax)
 vextractps $3, %xmm8, 140(%rsp,%rax)
 vmovss %xmm9, 152(%rsp,%rax)
 vextractps $1, %xmm9, 164(%rsp,%rax)
 vextractps $2, %xmm9, 176(%rsp,%rax)
 vextractps $3, %xmm9, 188(%rsp,%rax)
 addq $192, %rax
 vextractf128 $1, %ymm10, %xmm11
 vmovss %xmm10, 96(%rsp,%rcx)

Compiler Reference

1849

 vmovss %xmm11, 144(%rsp,%rcx)
 vextractps $1, %xmm10, 108(%rsp,%rcx)
 vextractps $2, %xmm10, 120(%rsp,%rcx)
 vextractps $3, %xmm10, 132(%rsp,%rcx)
 vextractps $1, %xmm11, 156(%rsp,%rcx)
 vextractps $2, %xmm11, 168(%rsp,%rcx)
 vextractps $3, %xmm11, 180(%rsp,%rcx)
 cmpl $1024, %edx
 jb ..TOP_OF_LOOP

Structure of Arrays: Using SDLT for unit stride access
To introduce the use of SDLT, the code below will:

• declare a primitive,
• use an soa1d_container instead of an array
• use an accessor inside a SIMD loop to generate efficient code
• use a proxy object’s data member interface to access individual data members of an element inside the

container

Source:

#include <stdio.h>
#include <sdlt/sdlt.h>

#define N 1024

typedef struct RGBs {
 float r;
 float g;
 float b;
} RGBTy;

SDLT_PRIMITIVE(RGBTy, r, g, b)

void main()
{
 // Use SDLT to get SOA data layout
 sdlt::soa1d_container<RGBTy> aContainer(N);
 auto a = aContainer.access();

 // use SDLT Data Member Interface to access struct members r, g, and b.
 // achieve unit-stride access after vectorization
 #pragma omp simd
 for (int k = 0; k<N; k++) {
 a[k].r() = k*1.5;
 a[k].g() = k*2.5;
 a[k].b() = k*3.5;
 }
 std::cout << "k =" << 10 <<
 ", a[k].r =" << a[10].r() <<
 ", a[k].g =" << a[10].g() <<
 ", a[k].b =" << a[10].b() << std::endl;
}

AVX2 assemply generated (19 instructions):

..TOP_OF_LOOP:
 vpaddd %ymm4, %ymm3, %ymm12
 vcvtdq2ps %ymm3, %ymm7

 Intel® C++ Compiler Classic Developer Guide and Reference

1850

 vcvtdq2ps %ymm12, %ymm10
 vmulps %ymm7, %ymm2, %ymm5
 vmulps %ymm7, %ymm1, %ymm6
 vmulps %ymm7, %ymm0, %ymm8
 vmulps %ymm10, %ymm2, %ymm3
 vmulps %ymm10, %ymm1, %ymm9
 vmulps %ymm10, %ymm0, %ymm11
 vmovups %ymm5, (%r13,%rax,4)
 vmovups %ymm6, (%r15,%rax,4)
 vmovups %ymm8, (%rbx,%rax,4)
 vmovups %ymm3, 32(%r13,%rax,4)
 vmovups %ymm9, 32(%r15,%rax,4)
 vmovups %ymm11, 32(%rbx,%rax,4)
 vpaddd %ymm4, %ymm12, %ymm3
 addq $16, %rax
 cmpq $1024, %rax
 jb ..TOP_OF_LOOP

Both versions appear to have unrolled the loop twice. When examining the assembly generated for AVX2
instruction set, we can see a measurable reduction in the number of instructions (19 vs. 69) when we are
able to perform unit stride access using SDLT. Also, at runtime, the soa1d_container aligned its data
allocation and will gain any of the architectural advantages that come with using aligned instead of unaligned
SIMD stores.

Complex SDLT Primitive Construction Example
This example demonstrates use of nested primitives and the use of an accessor inside a SIMD loop to
generate efficient code.

#include <stdio.h>
#include <sdlt/sdlt.h>

#define N 1024

typedef struct XYZs {
 float x;
 float y;
 float z;
} XYZTy;

SDLT_PRIMITIVE(XYZTy, x, y, z)

typedef struct RGBs {
 float r;
 float g;
 float b;
 XYZTy w;
} RGBTy;

SDLT_PRIMITIVE(RGBs, r, g, b, w)

void main()
{
 sdlt::soa1d_container<RGBTy> aContainer(N);
 auto a = aContainer.access();

 #pragma omp simd
 for (int k = 0; k<N; k++) {
 RGBTy c;

Compiler Reference

1851

 c.r = k*1.5f;
 c.g = k*2.5f;
 c.b = k*3.5f;
 c.w.x = k*4.5f;
 c.w.y = k*5.5f;
 c.w.z = k*6.5f;
 a[k] = c;
 }
 const RGBTy c = a[10];
 printf("k = %d, a[k].r = %f, a[k].g = %f, a[k].b = %f \n",
 10, c.r, c.g, c.b);

 printf("k = %d, a[k].w.x = %f, a[k].w.y = %f, a[k].w.z = %f \n",
 10, c.w.x, c.w.y, c.w.z);

Forward Dependency Example
This example demonstrates the declaration of a Structure of Arrays (SoA) interacting with a forward
dependency.

#include <stdio.h>
#include <sdlt/primitive.h>
#include <sdlt/soa1d_container.h>

#define N 1024

typedef struct RGBs {
 float r;
 float g;
 float b;
} RGBTy;

SDLT_PRIMITIVE(RGBTy, r, g, b)

void main()
{
 // RGBTy a[N]; // AOS data layout

 sdlt::soa1d_container<RGBTy> aContainer(N);
 auto a = aContainer.access(); // SOA data layout

 // use SDLT access method to access struct members r, g, and b.
 // with unit-stride access after vectorization
 #pragma omp simd
 for (int k = 0; k<N; k++) {
 a[k].r() = k*1.5;
 a[k].g() = k*2.5;
 a[k].b() = k*3.5;
 }

 // Test forward-dependency on SOA memory access
 #pragma omp simd
 for (int i = 0; i<N - 1; i++) {
 sdlt::linear_index k(i);
 a[k].r() = a[k + 1].r() + k*1.5;
 a[k].g() = a[k + 1].g() + k*2.5;
 a[k].b() = a[k + 1].b() + k*3.5;
 }
 std::cout << "k =" << 10 <<

 Intel® C++ Compiler Classic Developer Guide and Reference

1852

 ", a[k].r =" << a[10].r() <<
 ", a[k].g =" << a[10].g() <<
 ", a[k].b =" << a[10].b() << std::endl;
}

Use of Offsets and Methods on a SDLT Primitive Example
This example demonstrates a linearized 2d stencil using embedded offsets and calling methods on the
primitive.

#include <sdlt/sdlt.h>

// Typical C++ object to represent a pixel in an image
struct RGBs
{
 float red;
 float green;
 float blue;

 RGBs() {}
 RGBs(const RGBs &iOther)
 : red(iOther.red)
 , green(iOther.green)
 , blue(iOther.blue)
 {
 }

 RGBs & operator =(const RGBs &iOther)
 {
 red = iOther.red;
 green = iOther.green;
 blue = iOther.blue;
 return *this;
 }

 RGBs operator + (const RGBs &iOther) const
 {
 RGBs sum;
 sum.red = red + iOther.red;
 sum.green = green + iOther.green;
 sum.blue = blue + iOther.blue;
 return sum;
 }

 RGBs operator * (float iScalar) const
 {
 RGBs scaledColor;
 scaledColor.red = red * iScalar;
 scaledColor.green = green * iScalar;
 scaledColor.blue = blue * iScalar;
 return scaledColor;
 }
};

SDLT_PRIMITIVE(RGBs, red, green, blue)

const int StencilHaloSize = 1;
const int width = 1920;
const int height = 1080;

Compiler Reference

1853

template<typename AccessorT> void loadImageStub(AccessorT) {}
template<typename AccessorT> void saveImageStub(AccessorT) {}

// performs average color filtering with neighbors left,right,above,below
void main(void)
{
 // We are padding +-1 so we can avoid boundary conditions
 const int paddedWidth = width + 2 * StencilHaloSize;
 const int paddedHeight = height + 2 * StencilHaloSize;
 int elementCount = paddedWidth*paddedHeight;
 sdlt::soa1d_container<RGBs> inputImage(elementCount);
 sdlt::soa1d_container<RGBs> outputImage(elementCount);

 loadImageStub(inputImage.access());

 SDLT_INLINE_BLOCK
 {
 const int endOfY = StencilHaloSize + height;
 const int endOfX = StencilHaloSize + width;
 for (int y = StencilHaloSize; y < endOfY; ++y)
 {
 // Embed offsets into Accessors to get the to correct row
 auto prevRow = inputImage.const_access((y - 1)*paddedWidth);
 auto curRow = inputImage.const_access(y*paddedWidth);
 auto nextRow = inputImage.const_access((y + 1)*paddedWidth);

 auto outputRow = outputImage.access(y*paddedWidth);

 #pragma omp simd
 for (int ix = StencilHaloSize; ix < endOfX; ++ix)
 {
 sdlt::linear_index x(ix);

 const RGBs color1 = curRow[x - 1];
 const RGBs color2 = curRow[x];
 const RGBs color3 = curRow[x + 1];
 const RGBs color4 = prevRow[x];
 const RGBs color5 = nextRow[x];
 // Despite looking like AOS code, compiler is able to create
 // privatized instances and call inlinable methods on the objects
 // keeping the algorithm at very high level
 const RGBs sumOfColors = color1 + color2 + color3 + color4 + color5;
 const RGBs averageColor = sumOfColors*(1.0f / 5.0f);
 outputRow[x] = averageColor;
 }
 }
 }
 saveImageStub(outputImage.access());
}

 Intel® C++ Compiler Classic Developer Guide and Reference

1854

RGB to YUV Conversion Example
This example converts a 2D image from the RGB format to the YUV format. It demonstrates how storing both
images in 2D SoA n_containers can improve performance.

#include <iostream>
#include <sdlt/sdlt.h>
using namespace sdlt;
#define WIDTH 1024
#define HEIGHT 1024

struct RGBs {
 float r;
 float g;
 float b;
};

struct YUVs {
 float y;
 float u;
 float v;

 YUVs(){ };

 YUVs& operator=(const RGBs &tmp){
 y = 0.229f * tmp.r + 0.587f * tmp.g + 0.114f * tmp.b;
 u = -0.147f * tmp.r - 0.289f * tmp.g + 0.436f * tmp.b;
 v = 0.615 * tmp.r - 0.515f * tmp.g - 0.100 * tmp.b;
 return *this;
 }
 YUVs(const RGBs &tmp){
 y = 0.229f * tmp.r + 0.587f * tmp.g + 0.114f * tmp.b;
 u = -0.147f * tmp.r - 0.289f * tmp.g + 0.436f * tmp.b;
 v = 0.615 * tmp.r - 0.515f * tmp.g - 0.100 * tmp.b;
 }
};

SDLT_PRIMITIVE(RGBs, r, g, b)
SDLT_PRIMITIVE(YUVs, y, u, v)

int main(){
 typedef layout::soa<> LayoutT;
 n_extent_t<int, int> extents(HEIGHT, WIDTH);

 /* Creating a typedef for SoA N-dimensional container.
 RGBTy and YUVTy are user defined structures whose collection needs to be stored in SoA
format in memory.
 Layout in memory specified as layout::soa.
 In the below case N-dimensional SoA container is used in 2-D context
 */
 typedef sdlt::n_container< RGBs, LayoutT, decltype(extents) > ContainerRGB;
 typedef sdlt::n_container< YUVs, LayoutT, decltype(extents) > ContainerYUV;

 //Instantiate Input and Output Containers
 ContainerRGB inputRGB(extents);
 ContainerYUV outputYUV(extents);

 auto input = inputRGB.const_access(); //Get Constant Accessor object for inputRGB

Compiler Reference

1855

 auto output = outputYUV.access(); //Get Accessor object for outputYUV

 //Select the iteration range in each dimension
 const auto iRGB1 = bounds_d<1>(input); //bound_d<1>(input);
 const auto iRGB0 = bounds_d<0>(input); //bound_d<0>(input);

 for(int y = iRGB0.lower(); y < iRGB0.upper(); y++)
 {
 #pragma simd
 for (int x = iRGB1.lower(); x < iRGB1.upper(); x++){
 const RGBs temp1 = input[y][x];
 YUVs temp2 = temp1;
 output[y][x] = temp2;
 }
 }
 return 0;
}

Intel® C++ Class Libraries
The Intel® C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The principle of
SIMD operations is to exploit microprocessor architecture through parallel processing. The effect of parallel
processing is increased data throughput using fewer clock cycles. The objective is to improve application
performance of complex and computation-intensive audio, video, and graphical data bit streams.

Hardware and Software Requirements
The Intel® C++ Class Libraries are functions abstracted from the instruction extensions available on Intel®
processors.

Refer to http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-
options-for-sse-generation-and-processor-specific-optimizations/ for information on which Intel® processors
use each instruction set.

Details About the Libraries
The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the underlying
instructions for processors as specified above. These processor-instruction extensions enable parallel
processing using the single instruction-multiple data (SIMD) technique as illustrated in the following figure.

SIMD Data Flow

Performing four operations with a single instruction improves efficiency by a factor of four for that particular
instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the C++ SIMD
classes. Compare the coding required to add four 32-bit floating-point values, using each of the available
interfaces:

 Intel® C++ Compiler Classic Developer Guide and Reference

1856

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class Libraries

... __m128 a,b,c;
__asm{ movaps xmm0,b
movaps xmm1,c addps
xmm0,xmm1 movaps a,
xmm0 } ...

#include <xmmintrin.h> ...
__m128 a,b,c; a =
_mm_add_ps(b,c); ...

#include <fvec.h> ...
F32vec4 a,b,c; a = b
+c; ...

This table shows an addition of four single-precision floating-point values using assembly inlining, intrinsics,
and the libraries. You can see how much easier it is to code with the Intel C++ SIMD Class Libraries. Besides
using fewer keystrokes and fewer lines of code, the notation is like the standard notation in C++, making it
much easier to implement over other methods.

C++ Classes and SIMD Operations
Use of C++ classes for SIMD operations allows for operating on arrays or vectors of data in a single
operation. Consider the addition of two vectors, A and B, where each vector contains four elements. Using an
integer vector class, the elements A[i] and B[i] from each array are summed as shown in the following
example.

Typical Method of Adding Elements Using a Loop

int a[4], b[4], c[4];
for (i=0; i<4; i++) /* needs four iterations */
c[i] = a[i] + b[i]; /* computes c[0], c[1], c[2], c[3] */

The following example shows the same results using one operation with an integer class.

SIMD Method of Adding Elements Using Ivec Classes

Is16vec4 ivecA, ivecB, ivec C; /*needs one iteration*/
ivecC = ivecA + ivecB; /*computes ivecC0, ivecC1, ivecC2, ivecC3 */

Available Classes
The Intel® C++ SIMD classes provide parallelism, which is not easily implemented using typical mechanisms
of C++. The following table shows how the Intel® C++ classes use the SIMD classes and libraries.

SIMD Vector Classes

Instruction
Set

Class Signedness Data Type Size Elements Header File

MMX™
technology

I64vec1 unspecified __m64 64 1 ivec.h

 I32vec2 unspecified int 32 2 ivec.h

 Is32vec2 signed int 32 2 ivec.h

 Iu32vec2 unsigned int 32 2 ivec.h

 I16vec4 unspecified short 16 4 ivec.h

 Is16vec4 signed short 16 4 ivec.h

 Iu16vec4 unsigned short 16 4 ivec.h

Compiler Reference

1857

Instruction
Set

Class Signedness Data Type Size Elements Header File

 I8vec8 unspecified char 8 8 ivec.h

 Is8vec8 signed char 8 8 ivec.h

 Iu8vec8 unsigned char 8 8 ivec.h

Intel® SSE F32vec4 unspecified float 32 4 fvec.h

 F32vec1 unspecified float 32 1 fvec.h

Intel® SSE2 F64vec2 unspecified double 64 2 dvec.h

 I128vec1 unspecified __m128i 128 1 dvec.h

 I64vec2 unspecified long int 64 2 dvec.h

 I32vec4 unspecified int 32 4 dvec.h

 Is32vec4 signed int 32 4 dvec.h

 Iu32vec4 unsigned int 32 4 dvec.h

 I16vec8 unspecified int 16 8 dvec.h

 Is16vec8 signed int 16 8 dvec.h

 Iu16vec8 unsigned int 16 8 dvec.h

 I8vec16 unspecified char 8 16 dvec.h

 Is8vec16 signed char 8 16 dvec.h

 Iu8vec16 unsigned char 8 16 dvec.h

Intel® AVX F32vec8 unspecified float 32 8 dvec.h

F64vec4 unspecified double 64 4 dvec.h
Intel®

AVX-512
Foundation

F32vec16 unspecified float 32 16 dvec.h

F64vec8 unspecified double 64 8 dvec.h

M512vec unspecified __m512i 512 1 dvec.h

I32vec16 unspecified int 32 16 dvec.h

Is32vec16 signed int 32 16 dvec.h

Iu32vec16 unsigned int 32 16 dvec.h

I64vec8 unspecified long int 64 8 dvec.h

Is64vec8 signed long int 64 8 dvec.h

Iu64vec8 unsigned long int 64 8 dvec.h

 Intel® C++ Compiler Classic Developer Guide and Reference

1858

Instruction
Set

Class Signedness Data Type Size Elements Header File

Intel®

AVX-512 Byte
and Word

I16vec32 unspecified int 16 32 dvec.h

Is16vec32 signed int 16 32 dvec.h

Iu16vec32 unsigned int 16 32 dvec.h

I8vec64 unspecified int 8 64 dvec.h

Is8vec64 signed int 8 64 dvec.h

Iu8vec64 unsigned int 8 64 dvec.h

Most classes contain similar functionality for all data types and are represented by all available intrinsics.
However, some capabilities do not translate from one data type to another without suffering from poor
performance, and are therefore excluded from individual classes.

NOTE
Intrinsics that take immediate values and cannot be expressed easily in classes are not implemented.
For example:

• _mm_shuffle_ps
• _mm_shuffle_pi16
• _mm_shuffle_ps
• _mm_extract_pi16
• _mm_insert_pi16

Access to Classes Using Header Files
The required class header files are installed in the include directory with the Intel® C++ Compiler. To enable
the classes, use the #include directive in your program file as shown in the table that follows.

Include Directives for Enabling Classes

Instruction Set Extension Include Directive

MMX™ Technology #include <ivec.h>

Intel® SSE #include <fvec.h>

Intel® SSE 2 #include <dvec.h>

Intel® SSE 3 #include <dvec.h>

Intel® SSE 4 #include <dvec.h>

Intel® AVX #include <dvec.h>

Each succeeding file from the top down includes the preceding class. You only need to include fvec.h if you
want to use both the Ivec and Fvec classes. Similarly, to use all the classes including those for Intel®
Streaming SIMD Extensions 2, you only need to include the dvec.h file.

Compiler Reference

1859

Usage Precautions
When using the C++ classes, you should follow some general guidelines. More detailed usage rules for each
class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the Ivec and Fvec classes at the same time, your program could mix Intel® MMX™
instructions, called by Ivec classes, with Intel® architecture floating-point instructions, called by Fvec
classes. x87 floating-point instructions exist in the following Fvec functions:

• fvec constructors
• debug functions (cout and element access)
• rsqrt_nr

NOTE
Intel® MMX™ technology registers are aliased on the floating-point registers, so you should clear the
MMX state with the EMMS instruction intrinsic before issuing an x87 floating-point instruction, as in the
following example.

ivecA = ivecA & ivecB; Ivec logical operation that uses MMX instructions

empty (); clear state

cout << f32vec4a; F32vec4 operation that uses x87 floating-point
instructions

Caution
Failure to clear the Intel® MMX™ technology registers can result in incorrect execution or poor
performance due to an incorrect register state.

Capabilities of C++ SIMD Classes
The fundamental capabilities of each C++ SIMD class include:

• Computation
• Horizontal data support
• Branch compression/elimination
• Caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired results.

Computation
The SIMD C++ classes contain vertical operator support for most arithmetic operations, including shifting
and saturation.

Computation operations include: +, -, *, /, reciprocal (rcp and rcp_nr), square root (sqrt), and reciprocal
square root (rsqrt and rsqrt_nr).

Operations rcp and rsqrt are approximating instructions with very short latencies that produce results with
at least 12 bits of accuracy. You may get a different answer if used on non-Intel processors. Operations
rcp_nr and rsqrt_nr use software refining techniques to enhance the accuracy of the approximations, with
a minimal impact on performance. (The nr stands for Newton-Raphson, a mathematical technique for
improving performance using an approximate result.)

 Intel® C++ Compiler Classic Developer Guide and Reference

1860

Horizontal Data Support
The C++ SIMD classes provide horizontal support for some arithmetic operations. The term horizontal
indicates computation across the elements of one vector, as opposed to the vertical, element-by-element
operations on two different vectors.

The add_horizontal, unpack_low and pack_sat functions are examples of horizontal data support. This
support enables certain algorithms that cannot exploit the full potential of SIMD instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed in the C++
classes due to their immediate arguments. However, the C++ class implementation enables you to mix
shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd;
fveca += fvecb;
fvecd = _mm_shuffle_ps(fveca,fvecb,0);

Branch Compression/Elimination
Branching in SIMD architectures can be complicated and expensive. The SIMD C++ classes provide functions
to eliminate branches, using logical operations, max and min functions, conditional selects, and compares.
Consider the following example:

short a[4], b[4], c[4];
for (i=0; i<4; i++)
c[i] = a[i] > b[i] ? a[i] : b[i];

This operation is independent of the value of i. For each i, the result could be either A or B depending on the
actual values. A simple way of removing the branch altogether is to use the select_gt function, as follows:

Is16vec4 a, b, c
c = select_gt(a, b, a, b)

Caching Hints
Intel® Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can minimize
the effects of memory latency. Streaming hints allow you to indicate that certain data should not be cached.

Integer Vector Classes
The Ivec classes provide an interface to single instruction, multiple data (SIMD) processing using integer
vectors of various sizes. The class hierarchy is represented in the following figure.

Ivec Class Hierarchy

Compiler Reference

1861

The M64 and M128 classes define the __m64 and __m128i data types from which the rest of the Ivec classes
are derived. The first generation of child classes (the intermediate classes) are derived on element sizes of
128, 64, 32, 16, and 8 bits:

I128vec1, I64vec1, I64vec2, I32vec2, I32vec4, I16vec4, I16vec8, I8vec8, I8vec16

The second generation specify the signedness:

Is64vec2, Iu64vec2, Is32vec2, Iu32vec2, Is32vec4, Iu32vec4, Is16vec4, Iu16vec4,
Is16vec8, Iu16vec8, Is8vec8, Iu8vec8, Is8vec16, Iu8vec16

Caution
Intermixing the M64 and M128 data types will result in unexpected behavior.

Terms and Syntax
The following are special terms and syntax used in this chapter to describe functionality of the classes with
respect to their associated operations.

Ivec Class Syntax Conventions
The name of each class denotes the data type, signedness, bit size, and number of elements using the
following generic format:

<type><signedness><bits>vec<elements>
{ F | I } { s | u } { 128 | 64 | 32 | 16 | 8 } vec { 16 | 8 | 4 | 2 | 1 }
where

type Indicates floating point (F) or integer (I).

signedness Indicates signed (s) or unsigned (u). For the Ivec class, leaving this field blank
indicates an intermediate class. For the Fvec classes, this field is blank because
there are no unsigned Fvec classes.

bits Specifies the number of bits per element.

elements Specifies the number of elements.

Special Terms and Conventions
The following terms are used to define the functionality and characteristics of the classes and operations
defined in this manual.

• Nearest Common Ancestor: This is the intermediate or parent class of two classes of the same size. For
example, the nearest common ancestor of Iu8vec8 and Is8vec8 is I8vec8, and the nearest common
ancestor between Iu8vec8 and I16vec4 is M64.

• Casting: Changes the data type from one class to another. When an operation uses different data types
as operands, the return value of the operation must be assigned to a single data type, and one or more of
the data types must be converted to a required data type. This conversion is known as a typecast. While
typecasting is occasionally automatic, in cases where it is not automatic you must use special syntax to
explicitly typecast it yourself.

• Operator Overloading: This is the ability to use various operators on the user-defined data type of a
given class. In the case of the Ivec and Fvec classes, once you declare a variable, you can add, subtract,
multiply, and perform a range of operations. Each family of classes accepts a specified range of operators,
and must comply by rules and restrictions regarding typecasting and operator overloading as defined in
the header files.

 Intel® C++ Compiler Classic Developer Guide and Reference

1862

Rules for Operators
To use operators with the Ivec classes you must use one of the following three syntax conventions:

[Ivec_Class] R = [Ivec_Class] A [operator][Ivec_Class] B
Example 1:I64vec1 R = I64vec1 A & I64vec1 B;
[Ivec_Class] R =[operator] ([Ivec_Class] A,[Ivec_Class] B)
Example 2:I64vec1 R = andnot(I64vec1 A, I64vec1 B);
[Ivec_Class] R [operator]= [Ivec_Class] A
Example 3:I64vec1 R &= I64vec1 A;
[operator] represents an operator (for example, &, |, or ^)

[Ivec_Class] represents an Ivec class

R, A, B variables are declared using the pertinent Ivec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means that it is
illegal to mix different types without an explicit typecasting. "Automatic" means that you can mix types freely
and the compiler will do the typecasting for you.

Summary of Rules Major Operators

Operators Sign Typecasting Size Typecasting Other Typecasting
Requirements

Assignment N/A N/A N/A

Logical Automatic Automatic
(to left)

Explicit typecasting is
required for different
types used in non-
logical expressions on
the right side of the
assignment.

Addition and Subtraction Automatic Explicit N/A

Multiplication Automatic Explicit N/A

Shift Automatic Explicit Casting Required to
ensure arithmetic shift.

Compare Automatic Explicit Explicit casting is
required for signed
classes for the less-than
or greater-than
operations.

Conditional Select Automatic Explicit Explicit casting is
required for signed
classes for less-than or
greater-than operations.

Data Declaration and Initialization
The following table shows literal examples of constructor declarations and data type initialization for all class
sizes. All values are initialized with the most significant element on the left and the least significant to the
right.

Declaration and Initialization Data Types for Ivec Classes

Compiler Reference

1863

Operation Class Syntax

Declaration M128 I128vec1 A; Iu8vec16 A;

Declaration M64 I64vec1 A; Iu8vec8 A;

__m128 Initialization M128 I128vec1 A(__m128 m);
Iu16vec8(__m128 m);

__m64 Initialization M64 I64vec1 A(__m64 m);Iu8vec8
A(__m64 m);

__int64 Initialization M64 I64vec1 A = __int64 m;
Iu8vec8 A =__int64 m;

int i Initialization M64 I64vec1 A = int i; Iu8vec8
A = int i;

int Initialization I32vec2 I32vec2 A(int A1, int A0);
Is32vec2 A(signed int A1,
signed int A0);
Iu32vec2 A(unsigned int A1,
unsigned int A0);

int Initialization I32vec4 I32vec4 A(int A3, int A2,
int A1, int A0);
Is32vec4 A(signed int
A3, ..., signed int A0);
Iu32vec4 A(unsigned int
A3, ..., unsigned int A0);

short int Initialization I16vec4 I16vec4 A(short A3, short
A2, short A1, short A0);
Is16vec4 A(signed short
A3, ..., signed short A0);
Iu16vec4 A(unsigned short
A3, ..., unsigned short
A0);

short int Initialization I16vec8 I16vec8 A(short A7, short
A6, ..., short A1, short
A0);
Is16vec8 A(signed A7, ...,
signed short A0);
Iu16vec8 A(unsigned short
A7, ..., unsigned short
A0);

char Initialization I8vec8 I8vec8 A(char A7, char
A6, ..., char A1, char A0);
Is8vec8 A(signed char
A7, ..., signed char A0);
Iu8vec8 A(unsigned char
A7, ..., unsigned char A0);

 Intel® C++ Compiler Classic Developer Guide and Reference

1864

Operation Class Syntax

char Initialization I8vec16 I8vec16 A(char A15, ...,
char A0);
Is8vec16 A(signed char
A15, ..., signed char A0);
Iu8vec16 A(unsigned char
A15, ..., unsigned char
A0);

Assignment Operator
Any Ivec object can be assigned to any other Ivec object; conversion on assignment from one Ivec object
to another is automatic.

Assignment Operator Examples
Is16vec4 A;
Is8vec8 B;
I64vec1 C;
A = B; /* assign Is8vec8 to Is16vec4 */
B = C; /* assign I64vec1 to Is8vec8 */
B = A & C; /* assign M64 result of '&' to Is8vec8 */

Logical Operators
The logical operators use the symbols and intrinsics listed in the following table.

Bitwise
Operation

Operator Symbols Syntax Usage Corresponding
IntrinsicStandard w/assign Standard w/assign

AND & &= R = A & B R &= A _mm_and_si64
_mm_and_si128

OR | |= R = A | B R |= A _mm_and_si64
_mm_and_si128

XOR ^ ^= R = A^B R ^= A _mm_and_si64
_mm_and_si128

ANDNOT andnot N/A R = A
andnot B

N/A _mm_and_si64
_mm_and_si128

Logical Operators and Miscellaneous Exceptions

A and B converted to M64. Result assigned to Iu8vec8.

I64vec1 A;
Is8vec8 B;
Iu8vec8 C;
C = A & B;
Same size and signedness operators return the nearest common ancestor.

I32vec2 R = Is32vec2 A ^ Iu32vec2 B;

Compiler Reference

1865

A&B returns M64, which is cast to Iu8vec8.

C = Iu8vec8(A&B)+ C;
When A and B are of the same class, they return the same type. When A and B are of different classes, the
return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables, apply when A
and B are of different classes.

Ivec Logical Operator Overloading

Return (R) AND OR XOR NAND A Operand B Operand

I64vec1 R & | ^ andnot I[s|
u]64vec2 A

I[s|
u]64vec2 B

I64vec2 R & | ^ andnot I[s|
u]64vec2 A

I[s|
u]64vec2 B

I32vec2 R & | ^ andnot I[s|
u]32vec2 A

I[s|
u]32vec2 B

I32vec4 R & | ^ andnot I[s|
u]32vec4 A

I[s|
u]32vec4 B

I16vec4 R & | ^ andnot I[s|
u]16vec4 A

I[s|
u]16vec4 B

I16vec8 R & | ^ andnot I[s|
u]16vec8 A

I[s|
u]16vec8 B

I8vec8 R & | ^ andnot I[s|u]8vec8
A

I[s|
u]8vec8 B

I8vec16 R & | ^ andnot I[s|
u]8vec16 A

I[s|
u]8vec16 B

For logical operators with assignment, the return value of R is always the same data type as the pre-declared
value of R as listed in the table that follows.

Ivec Logical Operator Overloading with Assignment

Return Type Left Side
(R)

AND OR XOR Right Side (Any Ivec
Type)

I128vec1 I128vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec1 I64vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec2 I64vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec4 I[x]32vec4
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]32vec2 I[x]32vec2
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]16vec8 I[x]16vec8
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]16vec4 I[x]16vec4
R

&= |= ^= I[s|u][N]vec[N] A;

 Intel® C++ Compiler Classic Developer Guide and Reference

1866

Return Type Left Side
(R)

AND OR XOR Right Side (Any Ivec
Type)

I[x]8vec16 I[x]8vec16
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]8vec8 I[x]8vec8 R &= |= ^= I[s|u][N]vec[N] A;

Addition and Subtraction Operators
The addition and subtraction operators return the class of the nearest common ancestor when the right-side
operands are of different signs. The following code provides examples of usage and miscellaneous
exceptions.

Syntax Usage for Addition and Subtraction Operators

Return nearest common ancestor type, I16vec4.

Is16vec4 A;
Iu16vec4 B;
I16vec4 C;
C = A + B;
Returns type left-hand operand type.

Is16vec4 A;
Iu16vec4 B;
A += B;
B -= A;
Explicitly convert B to Is16vec4.

Is16vec4 A,C;
Iu32vec24 B;
C = A + C;
C = A + (Is16vec4)B;
Addition and Subtraction Operators with Corresponding Intrinsics

Operation Symbols Syntax Corresponding
Intrinsics

Addition +
+=

R = A + B
R += A

_mm_add_epi64
_mm_add_epi32
_mm_add_epi16
_mm_add_epi8
_mm_add_pi32
_mm_add_pi16
_mm_add_pi8

Subtraction -
-=

R = A - B
R -= A

_mm_sub_epi64
_mm_sub_epi32
_mm_sub_epi16
_mm_sub_epi8
_mm_sub_pi32
_mm_sub_pi16
_mm_sub_pi8

Compiler Reference

1867

The following table lists addition and subtraction return values for combinations of classes when the right
side operands are of different signedness. The two operands must be the same size, otherwise you must
explicitly indicate the typecasting.

Addition and Subtraction Operator Overloading

Return Value Available Operators Right Side Operands

R Add Sub A B

I64vec2 R + - I[s|u]64vec2 A I[s|u]64vec2 B

I32vec4 R + - I[s|u]32vec4 A I[s|u]32vec4 B

I32vec2 R + - I[s|u]32vec2 A I[s|u]32vec2 B

I16vec8 R + - I[s|u]16vec8 A I[s|u]16vec8 B

I16vec4 R + - I[s|u]16vec4 A I[s|u]16vec4 B

I8vec8 R + - I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R + - I[s|u]8vec2 A I[s|u]8vec16 B

The following table shows the return data type values for operands of the addition and subtraction operators
with assignment. The left side operand determines the size and signedness of the return value. The right side
operand must be the same size as the left operand; otherwise, you must use an explicit typecast.

Addition and Subtraction with Assignment

Return Value (R) Left Side (R) Add Sub Right Side (A)

I[x]32vec4 I[x]32vec2 R += -= I[s|u]32vec4 A;

I[x]32vec2 R I[x]32vec2 R += -= I[s|u]32vec2 A;

I[x]16vec8 I[x]16vec8 += -= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 += -= I[s|u]16vec4 A;

I[x]8vec16 I[x]8vec16 += -= I[s|u]8vec16 A;

I[x]8vec8 I[x]8vec8 += -= I[s|u]8vec8 A;

Multiplication Operators
The multiplication operators can only accept and return data types from the I[s|u]16vec4 or I[s|
u]16vec8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators

Explicitly convert B to Is16vec4.

Is16vec4 A,C;
Iu32vec2 B;
C = A * C;
C = A * (Is16vec4)B;
Return nearest common ancestor type, I16vec4
Is16vec4 A;
Iu16vec4 B;
I16vec4 C;

 Intel® C++ Compiler Classic Developer Guide and Reference

1868

C = A + B;
The mul_high and mul_add functions take Is16vec4 data only.

Is16vec4 A,B,C,D;
C = mul_high(A,B);
D = mul_add(A,B);
Multiplication Operators with Corresponding Intrinsics

Symbols Syntax Usage Intrinsic

* *= R = A * B
R *= A

_mm_mullo_pi16
_mm_mullo_epi16

mul_high N/A R = mul_high(A, B) _mm_mulhi_pi16
_mm_mulhi_epi16

mul_add N/A R = mul_high(A, B) _mm_madd_pi16
_mm_madd_epi16

The multiplication return operators always return the nearest common ancestor as listed in the table that
follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate typecasting.

Multiplication Operator Overloading

R Mul A B

I16vec4 R * I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R * I[s|u]16vec8 A I[s|u]16vec8 B

Is16vec4 R mul_add Is16vec4 A Is16vec4 B

Is16vec8 mul_add Is16vec8 A Is16vec8 B

Is32vec2 R mul_high Is16vec4 A Is16vec4 B

Is32vec4 R mul_high s16vec8 A Is16vec8 B

The following table shows the return values and data type assignments for operands of the multiplication
operators with assignment. All operands must be 16 bytes in size. If the operands are not the right size, you
must use an explicit typecast.

Multiplication with Assignment

Return Value (R) Left Side (R) Mul Right Side (A)

I[x]16vec8 I[x]16vec8 *= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 *= I[s|u]16vec4 A;

Shift Operators
The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64 data type. The
first or left operand of a << can be of any type except I[s|u]8vec[8|16].

Example Syntax Usage for Shift Operators

Automatic size and sign conversion.

Is16vec4 A,C;
Iu32vec2 B;

Compiler Reference

1869

C = A;
A&B returns I16vec4, which must be cast to Iu16vec4 to ensure logical shift, not arithmetic shift.

Is16vec4 A, C;
Iu16vec4 B, R;
R = (Iu16vec4)(A & B) C;
A&B returns I16vec4, which must be cast to Is16vec4 to ensure arithmetic shift, not logical shift.

R = (Is16vec4)(A & B) C;
Shift Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic

Shift Left <<
&=

R = A << B
R &= A

_mm_sll_si64
_mm_slli_si64
_mm_sll_pi32
_mm_slli_pi32
_mm_sll_pi16
_mm_slli_pi16

Shift Right >> R = A >> B
R >>= A

_mm_srl_si64
_mm_srli_si64
_mm_srl_pi32
_mm_srli_pi32
_mm_srl_pi16
_mm_srli_pi16
_mm_sra_pi32
_mm_srai_pi32
_mm_sra_pi16
_mm_srai_pi16

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate classes
correspond to logical shifts. The following table shows how the return type is determined by the first
argument type.

Shift Operator Overloading

Option R Right Shift Left Shift A B

Logical I64vec1 >> >>= << <<= I64vec1
A;

I64vec1
B;

Logical I32vec2 >> >>= << <<= I32vec2
A

I32vec2
B;

Arithmetic Is32vec2 >> >>= << <<= Is32vec2
A

I[s|u]
[N]vec[N
] B;

Logical Iu32vec2 >> >>= << <<= Iu32vec2
A

I[s|u]
[N]vec[N
] B;

Logical I16vec4 >> >>= << <<= I16vec4
A

I16vec4
B

 Intel® C++ Compiler Classic Developer Guide and Reference

1870

Option R Right Shift Left Shift A B

Arithmetic Is16vec4 >> >>= << <<= Is16vec4
A

I[s|u]
[N]vec[N
] B;

Logical Iu16vec4 >> >>= << <<= Iu16vec4
A

I[s|u]
[N]vec[N
] B;

Comparison Operators
The equality and inequality comparison operands can have mixed signedness, but they must be of the same
size. The comparison operators for less-than and greater-than must be of the same sign and size.

Example of Syntax Usage for Comparison Operator

The nearest common ancestor is returned for compare for equal/not-equal operations.

Iu8vec8 A;
Is8vec8 B;
I8vec8 C;
C = cmpneq(A,B);
Type cast needed for different-sized elements for equal/not-equal comparisons.

Iu8vec8 A, C;
Is16vec4 B;
C = cmpeq(A,(Iu8vec8)B);
Type cast needed for sign or size differences for less-than and greater-than comparisons.

Iu16vec4 A;
Is16vec4 B, C;
C = cmpge((Is16vec4)A,B);
C = cmpgt(B,C);
Inequality Comparison Symbols and Corresponding Intrinsics

Compare For: Operators Syntax Intrinsic

Equality cmpeq R = cmpeq(A, B) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Inequality cmpneq R = cmpneq(A, B) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8
_mm_andnot_si64

Greater Than cmpgt R = cmpgt(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
or Equal To

cmpge R = cmpge(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8
_mm_andnot_si64

Compiler Reference

1871

Compare For: Operators Syntax Intrinsic

Less Than cmplt R = cmplt(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Less Than
or Equal To

cmple R = cmple(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8
_mm_andnot_si64

Comparison operators have the restriction that the operands must be the size and sign as listed in the
Compare Operator Overloading table.

Compare Operator Overloading

R Comparison A B

I32vec2 R cmpeq
cmpne

I[s|u]32vec2 B I[s|u]32vec2 B

I16vec4 R I[s|u]16vec4 B I[s|u]16vec4 B

I8vec8 R I[s|u]8vec8 B I[s|u]8vec8 B

I32vec2 R cmpgt
cmpge
cmplt
cmple

Is32vec2 B Is32vec2 B

I16vec4 R Is16vec4 B Is16vec4 B

I8vec8 R Is8vec8 B Is8vec8 B

Conditional Select Operators
For conditional select operands, the third and fourth operands determine the type returned. Third and fourth
operands with same size, but different signedness, return the nearest common ancestor data type.

Conditional Select Syntax Usage

Return the nearest common ancestor data type if third and fourth operands are of the same size, but
different signs.

I16vec4 R = select_neq(Is16vec4, Is16vec4, Is16vec4, Iu16vec4);
Conditional Select for Equality

R0 := (A0 == B0) ? C0 : D0;
R1 := (A1 == B1) ? C1 : D1;
R2 := (A2 == B2) ? C2 : D2;
R3 := (A3 == B3) ? C3 : D3;
Conditional Select for Inequality

R0 := (A0 != B0) ? C0 : D0;
R1 := (A1 != B1) ? C1 : D1;
R2 := (A2 != B2) ? C2 : D2;
R3 := (A3 != B3) ? C3 : D3;
Conditional Select Symbols and Corresponding Intrinsics

 Intel® C++ Compiler Classic Developer Guide and Reference

1872

Conditional
Select For:

Operators Syntax Corresponding
Intrinsic

Additional
Intrinsic (Applies
to All)

Equality select_eq R =
select_eq(A, B,
C, D)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

_mm_and_si64
_mm_or_si64
_mm_andnot_si64

Inequality select_neq R =
select_neq(A,
B, C, D)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Greater Than select_gt R =
select_gt(A, B,
C, D)

_mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
or Equal To

select_ge R =
select_gt(A, B,
C, D)

_mm_cmpge_pi32
_mm_cmpge_pi16
_mm_cmpge_pi8

Less Than select_lt R =
select_lt(A, B,
C, D)

_mm_cmplt_pi32
_mm_cmplt_pi16
_mm_cmplt_pi8

Less Than
or Equal To

select_le R =
select_le(A, B,
C, D)

_mm_cmple_pi32
_mm_cmple_pi16
_mm_cmple_pi8

All conditional select operands must be of the same size. The return data type is the nearest common
ancestor of operands C and D. For conditional select operations using greater-than or less-than operations,
the first and second operands must be signed as listed in the table that follows.

Conditional Select Operator Overloading

R Comparison A and B C D

I32vec2 R select_eq
select_ne

I[s|u]32vec2 I[s|u]32vec2 I[s|u]32vec2

I16vec4 R I[s|u]16vec4 I[s|u]16vec4

I8vec8 R I[s|u]8vec8 I[s|u]8vec8

I32vec2 R select_gt
select_ge
select_lt
select_le

Is32vec2 Is32vec2 Is32vec2

I16vec4 R Is16vec4 Is16vec4

I8vec8 R Is8vec8 Is8vec8

The following table shows the mapping of return values from R0 to R7 for any number of elements. The same
return value mappings also apply when there are fewer than four return values.

Conditional Select Operator Return Value Mapping

Return
Value

A
Operan
ds

Available Operators B
Operan
ds

C and
D
Operan
ds

R0:= A0 == != > >= < <= B0 C0 :
D0;

Compiler Reference

1873

Return
Value

A
Operan
ds

Available Operators B
Operan
ds

C and
D
Operan
ds

R1:= A0 == != > >= < <= B0 C1 :
D1;

R2:= A0 == != > >= < <= B0 C2 :
D2;

R3:= A0 == != > >= < <= B0 C3 :
D3;

R4:= A0 == != > >= < <= B0 C4 :
D4;

R5:= A0 == != > >= < <= B0 C5 :
D5;

R6:= A0 == != > >= < <= B0 C6 :
D6;

R7:= A0 == != > >= < <= B0 C7 :
D7;

Debug Operations
The debug operations do not map to any compiler intrinsics for MMX™ instructions. They are provided for
debugging programs only. Use of these operations may result in loss of performance, so you should not use
them outside of debugging.

Output
The four 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << Is32vec4 A;
cout << Iu32vec4 A;
cout << hex << Iu32vec4 A; /* print in hex format */
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"
Corresponding Intrinsics: none

The two 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << Is32vec2 A;
cout << Iu32vec2 A;
cout << hex << Iu32vec2 A; /* print in hex format */
"[1]:A1 [0]:A0"
Corresponding Intrinsics: none

The eight 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << Is16vec8 A;
cout << Iu16vec8 A;

 Intel® C++ Compiler Classic Developer Guide and Reference

1874

cout << hex << Iu16vec8 A; /* print in hex format */
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"
Corresponding Intrinsics: none

The four 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << Is16vec4 A;
cout << Iu16vec4 A;
cout << hex << Iu16vec4 A; /* print in hex format */
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"
Corresponding Intrinsics: none

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

cout << Is8vec16 A; cout << Iu8vec16 A; cout << hex << Iu8vec8 A;
/* print in hex format instead of decimal*/
"[15]:A15 [14]:A14 [13]:A13 [12]:A12 [11]:A11 [10]:A10 [9]:A9 [8]:A8 [7]:A7 [6]:A6
[5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"
Corresponding Intrinsics: none

The eight 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

cout << Is8vec8 A; cout << Iu8vec8 A;cout << hex << Iu8vec8 A;
/* print in hex format instead of decimal*/
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"
Corresponding Intrinsics: none

Element Access Operators
int R = Is64vec2 A[i];
unsigned int R = Iu64vec2 A[i];
int R = Is32vec4 A[i];
unsigned int R = Iu32vec4 A[i];
int R = Is32vec2 A[i];
unsigned int R = Iu32vec2 A[i];
short R = Is16vec8 A[i];
unsigned short R = Iu16vec8 A[i];
short R = Is16vec4 A[i];
unsigned short R = Iu16vec4 A[i];
signed char R = Is8vec16 A[i];
unsigned char R = Iu8vec16 A[i];
signed char R = Is8vec8 A[i];

Compiler Reference

1875

unsigned char R = Iu8vec8 A[i];
Access and read element i of A. If DEBUG is enabled and the user tries to access an element outside of A, a
diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Element Assignment Operators
Is64vec2 A[i] = int R;
Is32vec4 A[i] = int R;
Iu32vec4 A[i] = unsigned int R;
Is32vec2 A[i] = int R;
Iu32vec2 A[i] = unsigned int R;
Is16vec8 A[i] = short R;
Iu16vec8 A[i] = unsigned short R;
Is16vec4 A[i] = short R;
Iu16vec4 A[i] = unsigned short R;
Is8vec16 A[i] = signed char R;
Iu8vec16 A[i] = unsigned char R;
Is8vec8 A[i] = signed char R;
Iu8vec8 A[i] = unsigned char R;
Assign R to element i of A. If DEBUG is enabled and the user tries to assign a value to an element outside of
A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Unpack Operators
Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.

I64vec2 unpack_high(I64vec2 A, I64vec2 B);
Is64vec2 unpack_high(Is64vec2 A, Is64vec2 B);
Iu64vec2 unpack_high(Iu64vec2 A, Iu64vec2 B);
R0 = A1;
R1 = B1;
Corresponding intrinsic: _mm_unpackhi_epi64
Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high half of B.

I32vec4 unpack_high(I32vec4 A, I32vec4 B);
Is32vec4 unpack_high(Is32vec4 A, Is32vec4 B);
Iu32vec4 unpack_high(Iu32vec4 A, Iu32vec4 B);
R0 = A1;
R1 = B1;
R2 = A2;
R3 = B2;
Corresponding intrinsic: _mm_unpackhi_epi32

 Intel® C++ Compiler Classic Developer Guide and Reference

1876

Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.

I32vec2 unpack_high(I32vec2 A, I32vec2 B);
Is32vec2 unpack_high(Is32vec2 A, Is32vec2 B);
Iu32vec2 unpack_high(Iu32vec2 A, Iu32vec2 B);
R0 = A1;
R1 = B1;
Corresponding intrinsic: _mm_unpackhi_pi32
Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high half of B.

I16vec8 unpack_high(I16vec8 A, I16vec8 B);
Is16vec8 unpack_high(Is16vec8 A, Is16vec8 B);
Iu16vec8 unpack_high(Iu16vec8 A, Iu16vec8 B);
R0 = A2;
R1 = B2;
R2 = A3;
R3 = B3;
Corresponding intrinsic: _mm_unpackhi_epi16
Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high half of B.

I16vec4 unpack_high(I16vec4 A, I16vec4 B);
Is16vec4 unpack_high(Is16vec4 A, Is16vec4 B);
Iu16vec4 unpack_high(Iu16vec4 A, Iu16vec4 B);
R0 = A2;R1 = B2;
R2 = A3;R3 = B3;
Corresponding intrinsic: _mm_unpackhi_pi16
Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high half of B.

I8vec8 unpack_high(I8vec8 A, I8vec8 B);
Is8vec8 unpack_high(Is8vec8 A, I8vec8 B);
Iu8vec8 unpack_high(Iu8vec8 A, I8vec8 B);
R0 = A4;
R1 = B4;
R2 = A5;
R3 = B5;
R4 = A6;
R5 = B6;
R6 = A7;
R7 = B7;
Corresponding intrinsic: _mm_unpackhi_pi8
Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high half of B.

I8vec16 unpack_high(I8vec16 A, I8vec16 B);
Is8vec16 unpack_high(Is8vec16 A, I8vec16 B);
Iu8vec16 unpack_high(Iu8vec16 A, I8vec16 B);
R0 = A8;
R1 = B8;
R2 = A9;

Compiler Reference

1877

R3 = B9;
R4 = A10;
R5 = B10;
R6 = A11;
R7 = B11;
R8 = A12;
R8 = B12;
R2 = A13;
R3 = B13;
R4 = A14;
R5 = B14;
R6 = A15;
R7 = B15;
Corresponding intrinsic: _mm_unpackhi_epi16
Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B
R0 = A0;
R1 = B0;
Corresponding intrinsic: _mm_unpacklo_epi32
Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B
I64vec2 unpack_low(I64vec2 A, I64vec2 B);
Is64vec2 unpack_low(Is64vec2 A, Is64vec2 B);
Iu64vec2 unpack_low(Iu64vec2 A, Iu64vec2 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
Corresponding intrinsic: _mm_unpacklo_epi32
Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low half of B
I32vec4 unpack_low(I32vec4 A, I32vec4 B);
Is32vec4 unpack_low(Is32vec4 A, Is32vec4 B);
Iu32vec4 unpack_low(Iu32vec4 A, Iu32vec4 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
Corresponding intrinsic: _mm_unpacklo_epi32
Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.

I32vec2 unpack_low(I32vec2 A, I32vec2 B);
Is32vec2 unpack_low(Is32vec2 A, Is32vec2 B);
Iu32vec2 unpack_low(Iu32vec2 A, Iu32vec2 B);
R0 = A0;
R1 = B0;
Corresponding intrinsic: _mm_unpacklo_pi32
Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

I16vec8 unpack_low(I16vec8 A, I16vec8 B);

 Intel® C++ Compiler Classic Developer Guide and Reference

1878

Is16vec8 unpack_low(Is16vec8 A, Is16vec8 B);
Iu16vec8 unpack_low(Iu16vec8 A, Iu16vec8 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;
Corresponding intrinsic: _mm_unpacklo_epi16
Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

I16vec4 unpack_low(I16vec4 A, I16vec4 B);
Is16vec4 unpack_low(Is16vec4 A, Is16vec4 B);
Iu16vec4 unpack_low(Iu16vec4 A, Iu16vec4 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
Corresponding intrinsic: _mm_unpacklo_pi16
Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

I8vec16 unpack_low(I8vec16 A, I8vec16 B);
Is8vec16 unpack_low(Is8vec16 A, Is8vec16 B);
Iu8vec16 unpack_low(Iu8vec16 A, Iu8vec16 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;
R8 = A4;
R9 = B4;
R10 = A5;
R11 = B5;
R12 = A6;
R13 = B6;
R14 = A7;
R15 = B7;
Corresponding intrinsic: _mm_unpacklo_epi8
Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

I8vec8 unpack_low(I8vec8 A, I8vec8 B);
Is8vec8 unpack_low(Is8vec8 A, Is8vec8 B);
Iu8vec8 unpack_low(Iu8vec8 A, Iu8vec8 B);
R0 = A0;
R1 = B0;

Compiler Reference

1879

R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;
Corresponding intrinsic: _mm_unpacklo_pi8

Pack Operators
Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

Is16vec8 pack_sat(Is32vec2 A,Is32vec2 B);
Corresponding intrinsic: _mm_packs_epi32
Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

Is16vec4 pack_sat(Is32vec2 A,Is32vec2 B);
Corresponding intrinsic: _mm_packs_pi32
Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

Is8vec16 pack_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_epi16
Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation.

Is8vec8 pack_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_pi16
Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation.

Iu8vec16 packu_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packus_epi16
Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation.

Iu8vec8 packu_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_pu16

Clear MMX™ State Operator
Empty the MMX™ registers and clear the MMX state. Read the guidelines for using the EMMS instruction
intrinsic.

void empty(void);
Corresponding intrinsic: _mm_empty

Integer Functions for Streaming SIMD Extensions

NOTE
You must include fvec.h header file for the following functionality.

Compute the element-wise maximum of the respective signed integer words in A and B.

Is16vec4 simd_max(Is16vec4 A, Is16vec4 B);
Corresponding intrinsic: _mm_max_pi16
Compute the element-wise minimum of the respective signed integer words in A and B.

Is16vec4 simd_min(Is16vec4 A, Is16vec4 B);
Corresponding intrinsic: _mm_min_pi16

 Intel® C++ Compiler Classic Developer Guide and Reference

1880

Compute the element-wise maximum of the respective unsigned bytes in A and B.

Iu8vec8 simd_max(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_max_pu8
Compute the element-wise minimum of the respective unsigned bytes in A and B.

Iu8vec8 simd_min(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_min_pu8
Create an 8-bit mask from the most significant bits of the bytes in A.

int move_mask(I8vec8 A);
Corresponding intrinsic: _mm_movemask_pi8
Conditionally store byte elements of A to address p. The high bit of each byte in the selector B determines
whether the corresponding byte in A will be stored.

void mask_move(I8vec8 A, I8vec8 B, signed char *p);
Corresponding intrinsic: _mm_maskmove_si64
Store the data in A to the address p without polluting the caches. A can be any Ivec type.

void store_nta(__m64 *p, M64 A);
Corresponding intrinsic: _mm_stream_pi
Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

Iu8vec8 simd_avg(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_avg_pu8
Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

Iu16vec4 simd_avg(Iu16vec4 A, Iu16vec4 B);
Corresponding intrinsic: _mm_avg_pu16

Conversions between Fvec and Ivec
Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.

int F64vec2ToInt(F64vec42 A);
r := (int)A0;
Convert the four floating-point values of A to two the two least significant double-precision floating-point
values.

F64vec2 F32vec4ToF64vec2(F32vec4 A);
r0 := (double)A0;
r1 := (double)A1;
Convert the two double-precision floating-point values of A to two single-precision floating-point values.

F32vec4 F64vec2ToF32vec4(F64vec2 A);
r0 := (float)A0;
r1 := (float)A1;
Convert the signed int in B to a double-precision floating-point value and pass the upper double-precision
value from A through to the result.

F64vec2 InttoF64vec2(F64vec2 A, int B);
r0 := (double)B;
r1 := A1;
Convert the lower floating-point value of A to a 32-bit integer with truncation.

int F32vec4ToInt(F32vec4 A);
r := (int)A0;

Compiler Reference

1881

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning the integers
in packed form.

Is32vec2 F32vec4ToIs32vec2 (F32vec4 A);
r0 := (int)A0;
r1 := (int)A1;
Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values are passed
through from A.

F32vec4 IntToF32vec4(F32vec4 A, int B);
r0 := (float)B;
r1 := A1;
r2 := A2;
r3 := A3;
Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper two
floating-point values are passed through from A.

F32vec4 Is32vec2ToF32vec4(F32vec4 A, Is32vec2 B);
r0 := (float)B0;
r1 := (float)B1;
r2 := A2;
r3 := A3;

Floating-point Vector Classes
The floating-point vector classes, F64vec2, F32vec4, and F32vec1, provide an interface to SIMD operations.
The class specifications are as follows:

F64vec2 A(double x, double y);
F32vec4 A(float z, float y, float x, float w);
F32vec1 B(float w);
The packed floating-point input values are represented with the right-most value lowest as shown in the
following table.

Single-Precision Floating-point Elements

 Intel® C++ Compiler Classic Developer Guide and Reference

1882

Fvec Syntax and Notation
This reference uses the following conventions for syntax and return values.

Fvec Classes Syntax Notation
Fvec classes use the syntax conventions shown the following examples:

[Fvec_Class] R = [Fvec_Class] A [operator][Ivec_Class] B;
Example 1:F64vec2 R = F64vec2 A & F64vec2 B;
[Fvec_Class] R = [operator]([Fvec_Class] A,[Fvec_Class] B);
Example 2:F64vec2 R = andnot(F64vec2 A, F64vec2 B);
[Fvec_Class] R [operator]= [Fvec_Class] A;
Example 3:F64vec2 R &= F64vec2 A;
where

[operator] is an operator (for example, &, |, or ^)

[Fvec_Class] is any Fvec class (F64vec2, F32vec4, or F32vec1)

R, A, B are declared Fvec variables of the type indicated.

Return Value Notation
Because the Fvec classes have packed elements, the return values typically follow the conventions presented
in the Return Value Convention Notation Mappings table. F32vec4 returns four single-precision, floating-point
values (R0, R1, R2, and R3); F64vec2 returns two double-precision, floating-point values, and F32vec1
returns the lowest single-precision floating-point value (R0).

Return Value Convention Notation Mappings

Example 1: Example 2: Example 3: F32vec
4

F64vec
2

F32vec
1

R0 := A0 & B0; R0 := A0 andnot B0; R0 &= A0; x x x

R1 := A1 & B1; R1 := A1 andnot B1; R1 &= A1; x x N/A

R2 := A2 & B2; R2 := A2 andnot B2; R2 &= A2; x N/A N/A

R3 := A3 & B3 R3 := A3 andhot B3; R3 &= A3; x N/A N/A

Data Alignment
Memory operations using the Intel® Streaming SIMD Extensions should be performed on 16-byte-aligned
data whenever possible. Memory operations using the Intel® Advanced Vector Extensions should be
performed on 32-byte-aligned data whenever possible.

F32vec4 and F64vec2 object variables are properly aligned by default. Note that floating point arrays are
not automatically aligned. To get 16-byte alignment, you can use the alignment __declspec:

__declspec(align(16)) float A[4];

Conversions
All Fvec object variables can be implicitly converted to __m128 data types. For example, the results of
computations performed on F32vec4 or F32vec1 object variables can be assigned to __m128 data types.

Compiler Reference

1883

__m128d mm = A & B; /* where A,B are F64vec2 object variables */
__m128 mm = A & B; /* where A,B are F32vec4 object variables */
__m128 mm = A & B; /* where A,B are F32vec1 object variables */

Constructors and Initialization
The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor Declaration

F64vec2 A;
F32vec4 B;
F32vec1 C;

N/A N/A

__m128 Object Initialization

F64vec2 A(__m128d mm);
F32vec4 B(__m128 mm);
F32vec1 C(__m128 mm);

N/A N/A

Double Initialization

/* Initializes two
doubles. */
F64vec2 A(double d0,
double d1);
F64vec2 A = F64vec2(double
d0, double d1);

_mm_set_pd A0 := d0;
A1 := d1;

F64vec2 A(double d0);
/* Initializes both return
values
with the same double
precision value */.

_mm_set1_pd A0 := d0;
A1 := d0;

Float Initialization

F32vec4 A(float f3, float
f2,
float f1, float f0);
F32vec4 A = F32vec4(float
f3, float f2,
float f1, float f0);

_mm_set_ps A0 := f0;
A1 := f1;
A2 := f2;
A3 := f3;

F32vec4 A(float f0);
/* Initializes all return
values
with the same floating
point value. */

_mm_set1_ps A0 := f0;
A1 := f0;
A2 := f0;
A3 := f0;

 Intel® C++ Compiler Classic Developer Guide and Reference

1884

Float Initialization

F32vec4 A(double d0);
/* Initialize all return
values with
the same double-precision
value. */

_mm_set1_ps(d) A0 := d0;
A1 := d0;
A2 := d0;
A3 := d0;

F32vec1 A(double d0);
/* Initializes the lowest
value of A
with d0 and the other
values with 0.*/

_mm_set_ss(d) A0 := d0;
A1 := 0;
A2 := 0;
A3 := 0;

F32vec1 B(float f0);
/* Initializes the lowest
value of B
with f0 and the other
values with 0.*/

_mm_set_ss B0 := f0;
B1 := 0;
B2 := 0;
B3 := 0;

F32vec1 B(int I);
/* Initializes the lowest
value of B
with f0, other values are
undefined.*/

_mm_cvtsi32_ss B0 := f0;
B1 := {}
B2 := {}
B3 := {}

Arithmetic Operators
The following table lists the arithmetic operators of the Fvec classes and generic syntax. The operators have
been divided into standard and advanced operations, which are described in more detail later in this section.

Fvec Arithmetic Operators

Category Operation Operators Generic Syntax

Standard Addition +
+=

R = A + B;
R += A;

 Subtraction -
-=

R = A - B;
R -= A;

 Multiplication *
*=

R = A * B;
R *= A;

 Division /
/=

R = A / B;
R /= A;

Advanced Square Root sqrt R = sqrt(A);

 Reciprocal
(Newton-Raphson)

rcp
rcp_nr

R = rcp(A);
R = rcp_nr(A);

 Reciprocal Square Root
(Newton-Raphson)

rsqrt
rsqrt_nr

R = rsqrt(A);
R = rsqrt_nr(A);

Compiler Reference

1885

Standard Arithmetic Operator Usage
The following two tables show the return values for each class of the standard arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A Operators B F32vec
4

F64vec
2

F32vec
1

R0:= A0 + - * / B0 X X X

R1:= A1 + - * / B1 X X N/A

R2:= A2 + - * / B2 X

N/A N/A

R3:= A3 + - * / B3 X N/A N/A

Arithmetic with Assignment Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= += -= *= /= A0 X X X

R1:= += -= *= /= A1 X X N/A

R2:= += -= *= /= A2 X N/A N/A

R3:= += -= *= /= A3 X N/A N/A

This table lists standard arithmetic operator syntax and intrinsics.

Standard Arithmetic Operations for Fvec Classes

Operation Returns Example Syntax
Usage

Intrinsic

Addition 4 floats F32vec4 R = F32vec4
A + F32vec4 B;
F32vec4 R +=
F32vec4 A;

_mm_add_ps

 2 doubles F64vec2 R = F64vec2
A + F32vec2 B;
F64vec2 R +=
F64vec2 A;

_mm_add_pd

 1 float F32vec1 R = F32vec1
A + F32vec1 B;
F32vec1 R +=
F32vec1 A;

_mm_add_ss

Subtraction 4 floats F32vec4 R = F32vec4
A - F32vec4 B;
F32vec4 R -=
F32vec4 A;

_mm_sub_ps

 Intel® C++ Compiler Classic Developer Guide and Reference

1886

Operation Returns Example Syntax
Usage

Intrinsic

 2 doubles F64vec2 R - F64vec2
A + F32vec2 B;
F64vec2 R -=
F64vec2 A;

_mm_sub_pd

 1 float F32vec1 R = F32vec1
A - F32vec1 B;
F32vec1 R -=
F32vec1 A;

_mm_sub_ss

Multiplication 4 floats F32vec4 R = F32vec4
A * F32vec4 B;
F32vec4 R *=
F32vec4 A;

_mm_mul_ps

 2 doubles F64vec2 R = F64vec2
A * F364vec2 B;
F64vec2 R *=
F64vec2 A;

_mm_mul_pd

 1 float F32vec1 R = F32vec1
A * F32vec1 B;
F32vec1 R *=
F32vec1 A;

_mm_mul_ss

Division 4 floats F32vec4 R = F32vec4
A / F32vec4 B;
F32vec4 R /=
F32vec4 A;

_mm_div_ps

 2 doubles F64vec2 R = F64vec2
A / F64vec2 B;
F64vec2 R /=
F64vec2 A;

_mm_div_pd

 1 float F32vec1 R = F32vec1
A / F32vec1 B;
F32vec1 R /=
F32vec1 A;

_mm_div_ss

Advanced Arithmetic Operator Usage
The following table shows the return values classes of the advanced arithmetic operators, which use the
syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

R Operators A F32vec
4

F64vec
2

F32vec
1

R0:= sqrt rcp rsqrt rcp_nr rsqrt_
nr

A0 X X X

Compiler Reference

1887

R Operators A F32vec
4

F64vec
2

F32vec
1

R1:= sqrt rcp rsqrt rcp_nr rsqrt_
nr

A1 X X N/A

R2:= sqrt rcp rsqrt rcp_nr rsqrt_
nr

A2 X N/A N/A

R3:= sqrt rcp rsqrt rcp_nr rsqrt_
nr

A3 X N/A N/A

f := add_horizo
ntal

 (A0 +
A1 +
A2 +
A3)

 X N/A N/A

d := add_horizo
ntal

 (A0 +
A1)

 N/A X N/A

This table shows examples for advanced arithmetic operators.

Advanced Arithmetic Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vec4
A);

_mm_sqrt_ps

2 doubles F64vec2 R = sqrt(F64vec2
A);

_mm_sqrt_pd

1 float F32vec1 R = sqrt(F32vec1
A);

_mm_sqrt_ss

Reciprocal

4 floats F32vec4 R = rcp(F32vec4
A);

_mm_rcp_ps

2 doubles F64vec2 R = rcp(F64vec2
A);

_mm_rcp_pd

1 float F32vec1 R = rcp(F32vec1
A);

_mm_rcp_ss

Reciprocal Square Root

4 floats F32vec4 R = rsqrt(F32vec4
A);

_mm_rsqrt_ps

2 doubles F64vec2 R = rsqrt(F64vec2
A);

_mm_rsqrt_pd

1 float F32vec1 R = rsqrt(F32vec1
A);

_mm_rsqrt_ss

 Intel® C++ Compiler Classic Developer Guide and Reference

1888

Reciprocal Newton Raphson

4 floats F32vec4 R = rcp_nr(F32vec4
A);

_mm_sub_ps
_mm_add_ps
_mm_mul_ps
_mm_rcp_ps

2 doubles F64vec2 R = rcp_nr(F64vec2
A);

_mm_sub_pd
_mm_add_pd
_mm_mul_pd
_mm_rcp_pd

1 float F32vec1 R = rcp_nr(F32vec1
A);

_mm_sub_ss
_mm_add_ss
_mm_mul_ss
_mm_rcp_ss

Reciprocal Square Root Newton Raphson

4 float F32vec4 R =
rsqrt_nr(F32vec4 A);

_mm_sub_pd
_mm_mul_pd
_mm_rsqrt_ps

2 doubles F64vec2 R =
rsqrt_nr(F64vec2 A);

_mm_sub_pd
_mm_mul_pd
_mm_rsqrt_pd

1 float F32vec1 R =
rsqrt_nr(F32vec1 A);

_mm_sub_ss
_mm_mul_ss
_mm_rsqrt_ss

Horizontal Add

1 float float f =
add_horizontal(F32vec4 A);

_mm_add_ss
_mm_shuffle_ss

1 double double d =
add_horizontal(F64vec2 A);

_mm_add_sd
_mm_shuffle_sd

Minimum and Maximum Operators
Compute the minimums of the two double precision floating-point values of A and B.

F64vec2 R = simd_min(F64vec2 A, F64vec2 B)
R0 := min(A0,B0);
R1 := min(A1,B1);
Corresponding intrinsic: _mm_min_pd
Compute the minimums of the four single precision floating-point values of A and B.

F32vec4 R = simd_min(F32vec4 A, F32vec4 B)
R0 := min(A0,B0);
R1 := min(A1,B1);
R2 := min(A2,B2);
R3 := min(A3,B3);
Corresponding intrinsic: _mm_min_ps
Compute the minimum of the lowest single precision floating-point values of A and B.

Compiler Reference

1889

F32vec1 R = simd_min(F32vec1 A, F32vec1 B)
R0 := min(A0,B0);
Corresponding intrinsic: _mm_min_ss
Compute the maximums of the two double precision floating-point values of A and B.

F64vec2 simd_max(F64vec2 A, F64vec2 B)
R0 := max(A0,B0);
R1 := max(A1,B1);
Corresponding intrinsic: _mm_max_pd
Compute the maximums of the four single precision floating-point values of A and B.

F32vec4 R = simd_man(F32vec4 A, F32vec4 B)
R0 := max(A0,B0);
R1 := max(A1,B1);
R2 := max(A2,B2);
R3 := max(A3,B3);
Corresponding intrinsic: _mm_max_ps
Compute the maximum of the lowest single precision floating-point values of A and B.

F32vec1 simd_max(F32vec1 A, F32vec1 B)
R0 := max(A0,B0);
Corresponding intrinsic: _mm_max_ss

Logical Operators
The following table lists the logical operators of the Fvec classes and generic syntax. The logical operators for
F32vec1 classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation Operators Generic Syntax

AND &
&=

R = A & B;
R &= A;

OR |
|=

R = A | B;
R |= A;

XOR ^
^=

R = A ^ B;
R ^= A;

andnot andnot R = andnot(A);

The following table lists standard logical operators syntax and corresponding intrinsics. Note that there is no
corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32 bits of the packed vector
intrinsics.

Logical Operations for Fvec Classes

Operation Returns Example Syntax
Usage

Intrinsic

AND 4 floats F32vec4 & = F32vec4
A & F32vec4 B;
F32vec4 & &=
F32vec4 A;

_mm_and_ps

 2 doubles F64vec2 R = F64vec2
A & F64vec2 B;

_mm_and_pd

 Intel® C++ Compiler Classic Developer Guide and Reference

1890

Operation Returns Example Syntax
Usage

Intrinsic

F64vec2 R &=
F64vec2 A;

 1 float F32vec1 R = F32vec1
A & F32vec1 B;
F32vec1 R &=
F32vec1 A;

_mm_and_ps

OR 4 floats F32vec4 R = F32vec4
A | F32vec4 B;
F32vec4 R |=
F32vec4 A;

_mm_or_ps

 2 doubles F64vec2 R = F64vec2
A | F64vec2 B;
F64vec2 R |=
F64vec2 A;

_mm_or_pd

 1 float F32vec1 R = F32vec1
A | F32vec1 B;
F32vec1 R |=
F32vec1 A;

_mm_or_ps

XOR 4 floats F32vec4 R = F32vec4
A ^ F32vec4 B;
F32vec4 R ^=
F32vec4 A;

_mm_xor_ps

 2 doubles F64vec2 R = F64vec2
A ^ F64vec2 B;
F64vec2 R ^=
F64vec2 A;

_mm_xor_pd

 1 float F32vec1 R = F32vec1
A ^ F32vec1 B;
F32vec1 R ^=
F32vec1 A;

_mm_xor_ps

ANDNOT 2 doubles F64vec2 R =
andnot(F64vec2 A,
F64vec2 B);

_mm_andnot_pd

Compare Operators
The operators described in this section compare the single precision floating-point values of A and B.
Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

Compare Operators and Corresponding Intrinsics

Compare For: Operators Syntax

Equality cmpeq R = cmpeq(A, B)

Inequality cmpneq R = cmpneq(A, B)

Compiler Reference

1891

Compare For: Operators Syntax

Greater Than cmpgt R = cmpgt(A, B)

Greater Than or Equal To cmpge R = cmpge(A, B)

Not Greater Than cmpngt R = cmpngt(A, B)

Not Greater Than or Equal To cmpnge R = cmpnge(A, B)

Less Than cmplt R = cmplt(A, B)

Less Than or Equal To cmple R = cmple(A, B)

Not Less Than cmpnlt R = cmpnlt(A, B)

Not Less Than or Equal To cmpnle R = cmpnle(A, B)

Compare Operators
The mask is set to 0xffffffff for each floating-point value where the comparison is true and 0x00000000
where the comparison is false. The following table shows the return values for each class of the compare
operators, which use the syntax described earlier in the Return Value Notation section.

Compare Operator Return Value Mapping

R A0 For Any Operators B If True If False F32vec
4

F64vec
2

F32vec
1

R0
:=

(A
1
!
(A
1

cmp[eq | lt | le | gt | ge]
cmp[ne | nlt | nle | ngt | nge]

B1
)
B1
)

0xffffffff 0x0000
000

X X X

R1
:=

(A
1
!
(A
1

cmp[eq | lt | le | gt | ge]
cmp[ne | nlt | nle | ngt | nge]

B2
)
B2
)

0xffffffff 0x0000
000

X X N/A

R2
:=

(A
1
!
(A
1

cmp[eq | lt | le | gt | ge]
cmp[ne | nlt | nle | ngt | nge]

B3
)
B3
)

0xffffffff 0x0000
000

X N/A N/A

R3
:=

A3 cmp[eq | lt | le | gt | ge]
cmp[ne | nlt | nle | ngt | nge]

B3
)
B3
)

0xffffffff 0x0000
000

X N/A N/A

The following table shows examples for arithmetic operators and intrinsics.

 Intel® C++ Compiler Classic Developer Guide and Reference

1892

Compare Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R = cmpeq(F32vec4
A);

_mm_cmpeq_ps

2 doubles F64vec2 R = cmpeq(F64vec2
A);

_mm_cmpeq_pd

1 float F32vec1 R = cmpeq(F32vec1
A);

_mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R = cmpneq(F32vec4
A);

_mm_cmpneq_ps

2 doubles F64vec2 R = cmpneq(F64vec2
A);

_mm_cmpneq_pd

1 float F32vec1 R = cmpneq(F32vec1
A);

_mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R = cmplt(F32vec4
A);

_mm_cmplt_ps

2 doubles F64vec2 R = cmplt(F64vec2
A);

_mm_cmplt_pd

1 float F32vec1 R = cmplt(F32vec1
A);

_mm_cmplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R = cmple(F32vec4
A);

_mm_cmple_ps

2 doubles F64vec2 R = cmple(F64vec2
A);

_mm_cmple_pd

1 float F32vec1 R = cmple(F32vec1
A);

_mm_cmple_pd

Compare for Greater Than

4 floats F32vec4 R = cmpgt(F32vec4
A);

_mm_cmpgt_ps

2 doubles F64vec2 R = cmpgt(F32vec42
A);

_mm_cmpgt_pd

1 float F32vec1 R = cmpgt(F32vec1
A);

_mm_cmpgt_ss

Compiler Reference

1893

Compare for Greater Than or Equal To

4 floats F32vec4 R = cmpge(F32vec4
A);

_mm_cmpge_ps

2 doubles F64vec2 R = cmpge(F64vec2
A);

_mm_cmpge_pd

1 float F32vec1 R = cmpge(F32vec1
A);

_mm_cmpge_ss

Compare for Not Less Than

4 floats F32vec4 R = cmpnlt(F32vec4
A);

_mm_cmpnlt_ps

2 doubles F64vec2 R = cmpnlt(F64vec2
A);

_mm_cmpnlt_pd

1 float F32vec1 R = cmpnlt(F32vec1
A);

_mm_cmpnlt_ss

Compare for Not Less Than or Equal

4 floats F32vec4 R = cmpnle(F32vec4
A);

_mm_cmpnle_ps

2 doubles F64vec2 R = cmpnle(F64vec2
A);

_mm_cmpnle_pd

1 float F32vec1 R = cmpnle(F32vec1
A);

_mm_cmpnle_ss

Compare for Not Greater Than

4 floats F32vec4 R = cmpngt(F32vec4
A);

_mm_cmpngt_ps

2 doubles F64vec2 R = cmpngt(F64vec2
A);

_mm_cmpngt_pd

1 float F32vec1 R = cmpngt(F32vec1
A);

_mm_cmpngt_ss

Compare for Not Greater Than or Equal

4 floats F32vec4 R = cmpnge(F32vec4
A);

_mm_cmpnge_ps

2 doubles F64vec2 R = cmpnge(F64vec2
A);

_mm_cmpnge_pd

1 float F32vec1 R = cmpnge(F32vec1
A);

_mm_cmpnge_ss

 Intel® C++ Compiler Classic Developer Guide and Reference

1894

Conditional Select Operators for Fvec Classes
Each conditional function compares single-precision floating-point values of A and B. The C and D parameters
are used for return value. Comparison between objects of any Fvec class returns the same class.

Conditional Select Operators for Fvec Classes

Conditional Select for: Operators Syntax

Equality select_eq R = select_eq(A, B)

Inequality select_neq R = select_neq(A, B)

Greater Than select_gt R = select_gt(A, B)

Greater Than or Equal To select_ge R = select_ge(A, B)

Not Greater Than select_gt R = select_gt(A, B)

Not Greater Than or Equal To select_ge R = select_ge(A, B)

Less Than select_lt R = select_lt(A, B)

Less Than or Equal To select_le R = select_le(A, B)

Not Less Than select_nlt R = select_nlt(A, B)

Not Less Than or Equal To select_nle R = select_nle(A, B)

Conditional Select Operator Usage
For conditional select operators, the return value is stored in C if the comparison is true or in D if false. The
following table shows the return values for each class of the conditional select operators, using the Return
Value Notation described earlier.

Compare Operator Return Value Mapping

R A0 Operators B C D F32v
ec4

F64v
ec2

F32v
ec1

R0:= (A1
!(A1

select_[eq | lt | le | gt |
ge]
select_[ne | nlt | nle | ngt
| nge]

B0)
B0)

C0
C0

D0
D0

X X X

R1:= (A2
!(A2

select_[eq | lt | le | gt |
ge]
select_[ne | nlt | nle | ngt
| nge]

B1)
B1)

C1
C1

D1
D1

X X N/A

R2:= (A2
!(A2

select_[eq | lt | le | gt |
ge]
select_[ne | nlt | nle | ngt
| nge]

B2)
B2)

C2
C2

D2
D2

X N/A N/A

R3:= (A3
!(A3

select_[eq | lt | le | gt |
ge]

B3)
B3)

C3
C3

D3
D3

X N/A N/A

Compiler Reference

1895

R A0 Operators B C D F32v
ec4

F64v
ec2

F32v
ec1

select_[ne | nlt | nle | ngt
| nge]

The following table shows examples for conditional select operations and corresponding intrinsics.

Conditional Select Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R =
select_eq(F32vec4 A);

_mm_cmpeq_ps

2 doubles F64vec2 R =
select_eq(F64vec2 A);

_mm_cmpeq_pd

1 float F32vec1 R =
select_eq(F32vec1 A);

_mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R =
select_neq(F32vec4 A);

_mm_cmpneq_ps

2 doubles F64vec2 R =
select_neq(F64vec2 A);

_mm_cmpneq_pd

1 float F32vec1 R =
select_neq(F32vec1 A);

_mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R =
select_lt(F32vec4 A);

_mm_cmplt_ps

2 doubles F64vec2 R =
select_lt(F64vec2 A);

_mm_cmplt_pd

1 float F32vec1 R =
select_lt(F32vec1 A);

_mm_cmplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R =
select_le(F32vec4 A);

_mm_cmple_ps

2 doubles F64vec2 R =
select_le(F64vec2 A);

_mm_cmple_pd

1 float F32vec1 R =
select_le(F32vec1 A);

_mm_cmple_ps

 Intel® C++ Compiler Classic Developer Guide and Reference

1896

Compare for Greater Than

4 floats F32vec4 R =
select_gt(F32vec4 A);

_mm_cmpgt_ps

2 doubles F64vec2 R =
select_gt(F64vec2 A);

_mm_cmpgt_pd

1 float F32vec1 R =
select_gt(F32vec1 A);

_mm_cmpgt_ss

Compare for Greater Than or Equal To

4 floats F32vec1 R =
select_ge(F32vec4 A);

_mm_cmpge_ps

2 doubles F64vec2 R =
select_ge(F64vec2 A);

_mm_cmpge_pd

1 float F32vec1 R =
select_ge(F32vec1 A);

_mm_cmpge_ss

Compare for Not Less Than

4 floats F32vec1 R =
select_nlt(F32vec4 A);

_mm_cmpnlt_ps

2 doubles F64vec2 R =
select_nlt(F64vec2 A);

_mm_cmpnlt_pd

1 float F32vec1 R =
select_nlt(F32vec1 A);

_mm_cmpnlt_ss

Compare for Not Less Than or Equal

4 floats F32vec1 R =
select_nle(F32vec4 A);

_mm_cmpnle_ps

2 doubles F64vec2 R =
select_nle(F64vec2 A);

_mm_cmpnle_pd

1 float F32vec1 R =
select_nle(F32vec1 A);

_mm_cmpnle_ss

Compare for Not Greater Than

4 floats F32vec1 R =
select_ngt(F32vec4 A);

_mm_cmpngt_ps

2 doubles F64vec2 R =
select_ngt(F64vec2 A);

_mm_cmpngt_pd

1 float F32vec1 R =
select_ngt(F32vec1 A);

_mm_cmpngt_ss

Compiler Reference

1897

Compare for Not Greater Than or Equal

4 floats F32vec1 R =
select_nge(F32vec4 A);

_mm_cmpnge_ps

2 doubles F64vec2 R =
select_nge(F64vec2 A);

_mm_cmpnge_pd

1 float F32vec1 R =
select_nge(F32vec1 A);

_mm_cmpnge_ss

Cacheability Support Operators
Stores (non-temporal) the two double-precision, floating-point values of A. Requires a 16-byte aligned
address.

void store_nta(double *p, F64vec2 A);
Corresponding intrinsic: _mm_stream_pd
Stores (non-temporal) the four single-precision, floating-point values of A. Requires a 16-byte aligned
address.

void store_nta(float *p, F32vec4 A);
Corresponding intrinsic: _mm_stream_ps

Debug Operations
The debug operations do not map to any compiler intrinsics for MMX™ technology or Intel® Streaming SIMD
Extensions . They are provided for debugging programs only. Use of these operations may result in loss of
performance, so you should not use them outside of debugging.

Output Operations
The two single, double-precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

cout << F64vec2 A;
"[1]:A1 [0]:A0"
Corresponding intrinsics: none

The four, single-precision floating-point values of A are placed in the output buffer and printed in decimal
format as follows:

cout << F32vec4 A;
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"
Corresponding intrinsics: none

The lowest, single-precision floating-point value of A is placed in the output buffer and printed.

cout << F32vec1 A;
Corresponding intrinsics: none

Element Access Operations
double d = F64vec2 A[int i]
Read one of the two, double-precision floating-point values of A without modifying the corresponding
floating-point value. Permitted values of i are 0 and 1. For example:

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is printed and
the program aborts.

 Intel® C++ Compiler Classic Developer Guide and Reference

1898

double d = F64vec2 A[1];
Corresponding intrinsics: none

Read one of the four, single-precision floating-point values of A without modifying the corresponding floating
point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vec4 A[int i]
If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is printed and the
program aborts.

float f = F32vec4 A[2];
Corresponding intrinsics: none

Element Assignment Operations
F64vec4 A[int i] = double d;
Modify one of the two, double-precision floating-point values of A. Permitted values of int i are 0 and 1. For
example:

F32vec4 A[1] = double d;
F32vec4 A[int i] = float f;
Modify one of the four, single-precision floating-point values of A. Permitted values of int i are 0, 1, 2, and
3. For example:

If DEBUG is enabled and int i is not one of the permitted values (0-3), a diagnostic message is printed and
the program aborts.

F32vec4 A[3] = float f;
Corresponding intrinsics: none.

Load and Store Operators
Loads two, double-precision floating-point values, copying them into the two, floating-point values of A. No
assumption is made for alignment.

void loadu(F64vec2 A, double *p)
Corresponding intrinsic: _mm_loadu_pd
Stores the two, double-precision floating-point values of A. No assumption is made for alignment.

void storeu(float *p, F64vec2 A);
Corresponding intrinsic: _mm_storeu_pd
Loads four, single-precision floating-point values, copying them into the four floating-point values of A. No
assumption is made for alignment.

void loadu(F32vec4 A, double *p)
Corresponding intrinsic: _mm_loadu_ps
Stores the four, single-precision floating-point values of A. No assumption is made for alignment.

void storeu(float *p, F32vec4 A);
Corresponding intrinsic: _mm_storeu_ps

Unpack Operators
Selects and interleaves the lower, double-precision floating-point values from A and B.

F64vec2 R = unpack_low(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm_unpacklo_pd(a, b)
Selects and interleaves the higher, double-precision floating-point values from A and B.

Compiler Reference

1899

F64vec2 R = unpack_high(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm_unpackhi_pd(a, b)
Selects and interleaves the lower two, single-precision floating-point values from A and B.

F32vec4 R = unpack_low(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _mm_unpacklo_ps(a, b)
Selects and interleaves the higher two, single-precision floating-point values from A and B.

F32vec4 R = unpack_high(F32vec4 A F32vec4 B);
Corresponding intrinsic: _mm_unpackhi_ps(a, b)

Move Mask Operators
Creates a 2-bit mask from the most significant bits of the two, double-precision floating-point values of A, as
follows:

int i = move_mask(F64vec2 A)
i := sign(a1)<<1 | sign(a0)<<0
Corresponding intrinsic: _mm_movemask_pd
Creates a 4-bit mask from the most significant bits of the four, single-precision floating-point values of A, as
follows:

int i = move_mask(F32vec4 A)
i := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)<<0
Corresponding intrinsic: _mm_movemask_ps

Classes Quick Reference
This appendix contains tables listing operators to perform various SIMD operations, corresponding intrinsics
to perform those operations, and the classes that implement those operations. The classes listed here belong
to the Intel® C++ Class Libraries for SIMD Operations.

In the following tables,

• N/A indicates that the operator is not implemented in that particular class. For example, in the Logical
Operations table, the Andnot operator is not implemented in the F32vec4 and F32vec1 classes.

• All other entries under Classes indicate that those operators are implemented in those particular classes,
and the entries under the Classes columns provide the suffix for the corresponding intrinsic. For example,
consider the Arithmetic Operations: Part1 table, where the corresponding intrinsic is _mm_add_[x] and
the entry epi16 is under the I16vec8 column. It means that the I16vec8 class implements the addition
operators and the corresponding intrinsic is _mm_add_epi16.

Logical Operations:

Operators Corresponding
Intrinsic

Classes

I128vec1,
I64vec2,
I32vec4,
I16vec8,
I8vec16

I64vec1,
I32vec2,
I16vec4,
I8vec8

F64vec
2

F32vec
4

F32vec
1

&, &= _mm_and_[x] si128 si64 pd ps ps

|, |= _mm_or_[x] si128 si64 pd ps ps

^, ^= _mm_xor_[x] si128 si64 pd ps ps

Andnot _mm_andnot_[x] si128 si64 pd N/A N/A

Arithmetic Operations: Part 1

 Intel® C++ Compiler Classic Developer Guide and Reference

1900

Operators Corresponding
Intrinsic

Classes

I64vec
2

I32vec
4

I16vec
8

I8vec1
6

+, += _mm_add_[x] epi64 epi32 epi16 epi8

-, -= _mm_sub_[x] epi64 epi32 epi16 epi8

*, *= _mm_mullo_[x] N/A N/A epi16 N/A

/, /= _mm_div_[x] N/A N/A N/A N/A

mul_high _mm_mulhi_[x] N/A N/A epi16 N/A

mul_add _mm_madd_[x] N/A N/A epi16 N/A

sqrt _mm_sqrt_[x] N/A N/A N/A N/A

rcp _mm_rcp_[x] N/A N/A N/A N/A

rcp_nr _mm_rcp_[x]
_mm_add_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A N/A

rsqrt _mm_rsqrt_[x] N/A N/A N/A N/A

rsqrt_nr _mm_rsqrt_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A N/A

Arithmetic Operations: Part 2

Operators Corresponding
Intrinsic

Classes

I32vec
2

I16vec
4

I8vec8 F64vec
2

F32vec
4

F32vec
1

+, += _mm_add_[x] pi32 pi16 pi8 pd ps ss

-, -= _mm_sub_[x] pi32 pi16 pi8 pd ps ss

*, *= _mm_mullo_[x] N/A pi16 N/A pd ps ss

/, /= _mm_div_[x] N/A N/A N/A pd ps ss

mul_high _mm_mulhi_[x] N/A pi16 N/A N/A N/A N/A

mul_add _mm_madd_[x] N/A pi16 N/A N/A N/A N/A

sqrt _mm_sqrt_[x] N/A N/A N/A pd ps ss

rcp _mm_rcp_[x] N/A N/A N/A pd ps ss

rcp_nr _mm_rcp_[x]
_mm_add_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A pd ps ss

rsqrt _mm_rsqrt_[x] N/A N/A N/A pd ps ss

Compiler Reference

1901

Operators Corresponding
Intrinsic

Classes

I32vec
2

I16vec
4

I8vec8 F64vec
2

F32vec
4

F32vec
1

rsqrt_nr _mm_rsqrt_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A pd ps ss

Shift Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I128ve
c1

I64vec
2

I32vec
4

I16vec
8

I8vec1
6

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]
_mm_srai_[x]

N/A
N/A
N/A
N/A

epi64
epi64
N/A
N/A

epi32
epi32
epi32
epi32

epi16
epi16
epi16
epi16

N/A
N/A
N/A
N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

N/A
N/A

epi64
epi64

epi32
epi32

epi16
epi16

N/A
N/A

Shift Operations: Part 2

Operators Corresponding
Intrinsic

Classes

I64vec
1

I32vec
2

I16vec
4

I8vec8

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]
_mm_srai_[x]

si64
si64
N/A
N/A

pi32
pi32
pi32
pi32

pi16
pi16
pi16
pi16

N/A
N/A
N/A
N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

si64
si64

pi32
pi32

pi16
pi16

N/A
N/A

Comparison Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

I16vec
4

I8vec8

cmpeq _mm_cmpeq_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmpgt _mm_cmpgt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmplt _mm_cmplt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmple _mm_cmple_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

 Intel® C++ Compiler Classic Developer Guide and Reference

1902

Operators Corresponding
Intrinsic

Classes

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

I16vec
4

I8vec8

cmpngt _mm_cmpngt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpnge _mm_cmpnge_[x] N/A N/A N/A N/A N/A N/A

cmpnlt _mm_cmpnlt_[x] N/A N/A N/A N/A N/A N/A

cmpnle _mm_cmpnle_[x] N/A N/A N/A N/A N/A N/A

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Comparison Operations: Part 2

Operators Corresponding
Intrinsic

Classes

F64vec2 F32vec4 F32vec1

cmpeq _mm_cmpeq_[x] pd ps ss

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

pd ps ss

cmpgt _mm_cmpgt_[x] pd ps ss

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

pd ps ss

cmplt _mm_cmplt_[x] pd ps ss

cmple _mm_cmple_[x]
_mm_andnot_[y]*

pd ps ss

cmpngt _mm_cmpngt_[x] pd ps ss

cmpnge _mm_cmpnge_[x] pd ps ss

cmpnlt _mm_cmpnlt_[x] pd ps ss

cmpnle _mm_cmpnle_[x] pd ps ss

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Conditional Select Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

I16vec
4

I8vec8

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

Compiler Reference

1903

Operators Corresponding
Intrinsic

Classes

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

I16vec
4

I8vec8

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_ngt _mm_cmpgt_[x] N/A N/A N/A N/A N/A N/A

select_nge _mm_cmpge_[x] N/A N/A N/A N/A N/A N/A

select_nlt _mm_cmplt_[x] N/A N/A N/A N/A N/A N/A

select_nle _mm_cmple_[x] N/A N/A N/A N/A N/A N/A

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Conditional Select Operations: Part 2

Operators Corresponding
Intrinsic

Classes

F64vec2 F32vec4 F32vec1

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

 Intel® C++ Compiler Classic Developer Guide and Reference

1904

Operators Corresponding
Intrinsic

Classes

F64vec2 F32vec4 F32vec1

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_ngt _mm_cmpgt_[x] pd ps ss

select_nge _mm_cmpge_[x] pd ps ss

select_nlt _mm_cmplt_[x] pd ps ss

select_nle _mm_cmple_[x] pd ps ss

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Packing and Unpacking Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I64vec
2

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

unpack_high _mm_unpackhi_[x] epi64 epi32 epi16 epi8 pi32

unpack_low _mm_unpacklo_[x] epi64 epi32 epi16 epi8 pi32

pack_sat _mm_packs_[x] N/A epi32 epi16 N/A pi32

packu_sat _mm_packus_[x] N/A N/A epi16 N/A N/A

sat_add _mm_adds_[x] N/A N/A epi16 epi8 N/A

sat_sub _mm_subs_[x] N/A N/A epi16 epi8 N/A

Packing and Unpacking Operations: Part 2

Operators Corresponding
Intrinsic

Classes

I16vec
4

I8vec8 F64vec
2

F32vec
4

F32vec
1

unpack_high _mm_unpackhi_[x] pi16 pi8 pd ps N/A

unpack_low _mm_unpacklo_[x] pi16 pi8 pd ps N/A

pack_sat _mm_packs_[x] pi16 N/A N/A N/A N/A

packu_sat _mm_packus_[x] pu16 N/A N/A N/A N/A

sat_add _mm_adds_[x] pi16 pi8 pd ps ss

sat_sub _mm_subs_[x] pi16 pi8 pi16 pi8 pd

Conversions Operations:

Compiler Reference

1905

Conversion operations can be performed using intrinsics only. There are no classes implemented to
correspond to these intrinsics.

Operators Corresponding
Intrinsic

F64vec2ToInt _mm_cvttsd_si32

F32vec4ToF64vec2 _mm_cvtps_pd

F64vec2ToF32vec4 _mm_cvtpd_ps

IntToF64vec2 _mm_cvtsi32_sd

F32vec4ToInt _mm_cvtt_ss2si

F32vec4ToIs32vec2 _mm_cvttps_pi32

IntToF32vec4 _mm_cvtsi32_ss

Is32vec2ToF32vec4 _mm_cvtpi32_ps

Programming Example
This sample program uses the F32vec4 class to average the elements of a twenty element floating point
array.

//Include Intel® Streaming SIMD Extension (Intel® SSE) Class Definitions
 #include <fvec.h>

//Shuffle any two single precision floating point from a
//into low two SP FP and shuffle any two SP FP from b
//into high two SP FP of destination

#define SHUFFLE(a,b,i) (F32vec4)_mm_shuffle_ps(a,b,i)
#include <stdio.h>
#define SIZE 20

//Global variables
 float result;
_MM_ALIGN16 float array[SIZE];

//***
// Function: Add20ArrayElements
// Add all the elements of a twenty element array
//***
void Add20ArrayElements (F32vec4 *array, float *result) {
 F32vec4 vec0, vec1;
 vec0 = _mm_load_ps ((float *) array); // Load array's first four floats

 //***
 // Add all elements of the array, four elements at a time
 //**
 vec0 += array[1]; // Add elements 5-8
 vec0 += array[2]; // Add elements 9-12
 vec0 += array[3]; // Add elements 13-16
 vec0 += array[4]; // Add elements 17-20

 //***
 // There are now four partial sums.

 Intel® C++ Compiler Classic Developer Guide and Reference

1906

 // Add the two lowers to the two raises,
 // then add those two results together
 //***
 vec1 = SHUFFLE(vec1, vec0, 0x40);
 vec0 += vec1;
 vec1 = SHUFFLE(vec1, vec0, 0x30);
 vec0 += vec1;
 vec0 = SHUFFLE(vec0, vec0, 2);
 _mm_store_ss (result, vec0); // Store the final sum
}

void main(int argc, char *argv[]) {
 int i;

//Initialize the array
 for (i=0; i < SIZE; i++) { array[i] = (float) i; }

//Call function to add all array elements
 Add20ArrayElements (array, &result);

//Print average array element value
 printf ("Average of all array values = %f\n", result/20.);
 printf ("The correct answer is %f\n\n\n", 9.5);
}

Intel's valarray Implementation
The Intel® C++ Compiler Classic provides a high performance implementation of specialized one-dimensional
valarray operations for the C++ standard STL valarray container.

The standard C++ valarray template consists of array/vector operations for high performance computing.
These operations are designed to exploit high performance hardware features such as parallelism and
achieve performance benefits.

Intel's valarray implementation uses the Intel® Integrated Performance Primitives (Intel® IPP), which is part
of the product. Select IPP when you install the product.

The valarray implementation consists of a replacement header, <valarray>, that provides a specialized,
high-performance implementation for the following operators and types:

Operator Type

abs, acos, acosh, asin, asinh, atan, atan2,
atanh, cbrt, cdfnorm, ceil, cos, cosh, erf,
erfc, erfinv, exp, expm1, floor, hypot, inv,
invcbrt, invsqrt, ln, log, log10, log1p,
nearbyint, pow, pow2o3, pow3o2, powx,
rint, round, sin, sinh, sqrt, tan, tanh, trunk

float, double

add, conj, div, mul, mulbyconj, mul, sub Ipp32fc, Ipp64fc

addition, subtraction, division, multiplication float, double

bitwise or, and, xor (all unsigned) char, short, int

min, max, sum signed or short/signed int, float, double

Compiler Reference

1907

Use valarray in Source Code
Intel's valarray implementation allows you to declare huge arrays for parallel processing. Improved
implementation of valarray is tied up with calling the IPP libraries that are part of Intel® Integrated
Performance Primitives (Intel® IPP).

To use valarrays in your source code, include the valarray header file, <valarray>. The <valarray> header
file is located in the path <installdir>/perf_header.

The following example shows a valarray addition operation (+) specialized through use of Intel's
implementation of valarray:

#include <valarray>
void test()
{
 std::valarray<float> vi(N), va(N);
 …
 vi = vi + va; //array addition
 …
}

NOTE
To use the static merged library containing all CPU-specific optimized versions of the library code, you
need to call the ippStaticInit function first, before any IPP calls. This ensures automatic dispatch to
the appropriate version of the library code for Intel® processor and the generic version of the library
code for non-Intel processors at runtime. If you do not call ippStaticInit first, the merged library
will use the generic instance of the code. If you are using the dynamic version of the libraries, you do
not need to call ippStaticInit.

Compiling valarray Source Code
To compile your valarray source code, the compiler option, /Quse-intel-optimized-headers (for
Windows*) or -use-intel-optimized-headers (for Linux* and macOS), is used to include the required
valarray header file and all the necessary IPP library files.

The following examples illustrate how to compile and link a program to include the Intel valarray replacement
header file and link with the Intel® IPP libraries. Refer to the Intel® IPP documentation for details.

In the following examples, "merged" libraries refers to using a static library that contains all the CPU-specific
variants of the library code.

Linux* OS Examples
The following command line performs a one-step compilation for a system based on Intel® 64 architecture,
running Linux OS:

icpc -use-intel-optimized-headers source.cpp
The following command lines perform separate compile and link steps for a system based on Intel® 64
architecture, running Linux OS:

so (dynamic):

icpc -use-intel-optimized-headers -c source.cpp
icpc source.o -use-intel-optimized-headers -shared-intel

 Intel® C++ Compiler Classic Developer Guide and Reference

1908

Merged (static):

icpc -use-intel-optimized-headers -c source.cpp
icpc source.o -use-intel-optimized-headers

Windows* OS Examples
The following command line performs a one-step compilation for a system based on IA-32 architecture,
running Windows OS:

icc /Quse-intel-optimized-headers source.cpp
The following command lines perform separate compile and link steps for a system based on IA-32
architecture, running Windows OS:

DLL (dynamic):

icc /Quse-intel-optimized-headers /c source.cpp
icc source.obj /Quse-intel-optimized-headers

Merged (static):

icc /Quse-intel-optimized-headers /Qipp-link:static /c source.cpp
icx source.obj /Quse-intel-optimized-headers /Qipp-link:static

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Intel's C++ Asynchronous I/O Extensions for Windows
Intel's C/C++ asynchronous input/output (Intel's C/C++ AIO) extensions, like library functions or classes,
can be used to improve the performance of C/C++ applications by executing I/O operations in asynchronous
mode. The extensions initiate I/O operation and immediately resume normal tasks while the I/O operations
are executed in parallel.

Intel's C/C++ asynchronous I/O extensions are supported on IA-32 architecture-based and Intel® 64
architecture-based Windows platforms.

Intel's C/C++ AIO library functions and template class are implemented in the libicaio.lib library. This
library is supplied as part of the Intel® C++ Compiler Classic package and is installed into the common
directory: <install-dir>/lib.

Types of Intel's C/C++ Asynchronous I/O Extensions
Intel's C/C++ asynchronous I/O extensions comprise the following:

• Asynchronous I/O Library: A set of POSIX-based asynchronous I/O library functions, supported on
Windows operating systems, for applications written in C/C++ language. The interface file is aio.h.

• Asynchronous I/O Template Class: An asych_class template class, supported on Windows operating
systems, for applications written in C++ language. This template class can be used to introduce
asynchronous execution of I/O operations with the Standard Template Library's (STL's) streams classes.
The interface file is aiostream.h.

See Also
Intel's C++ Asynchronous I/O Library for Windows
Intel's C++ Asynchronous I/O Class for Windows

Compiler Reference

1909

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Intel's C++ Asynchronous I/O Library for Windows
Intel's C/C++ asynchronous I/O (AIO) library implementation for the Windows operating system (on IA-32
and Intel® 64 platforms) is similar to the POSIX AIO library implementation for the Linux operating system.

The differences between Intel's C/C++ AIO Windows OS implementation and the standard POSIX AIO
implementation are listed below:

• In struct aiocb,
• The Windows OS compatible type HANDLE replaces the POSIX AIO type unsigned int for the file

descriptor aio_fildes.
• The type intptr_t replaces the POSIX AIO types ssize_t and __off_t.

• The structure specifying the signal event descriptor, struct sigevent is similar to the Linux operating
system implementation of the POSIX AIO library. It differs from the Linux implementation in the following
ways:

• Signal notification and non-notification for thread call-back is supported
• Signal notification on completion of the AIO operation is not supported

This is true for programs that were already written for Linux/Unix and ported to Windows OS that wish
to setup an AIO completion handler without the name of the handler set in the aiocb struct.
Because of the way that signals are supported in Windows, this is impossible to implement. For new
applications, or to port existing applications, the programmer should set the name of the handler
before calling the aio_read or aio_write routines. For example:

static void aio_CompletionRoutine(sigval_t sigval)
{
 // … code …
}

… code …

my_aio.aio_sigevent.sigev_notify = SIGEV_THREAD;
my_aio.aio_sigevent.sigev_notify_function = aio_CompletionRoutine;

NOTE
The POSIX AIO library and the Microsoft SDK provide similar AIO functions. The main difference
between the POSIX AIO functions and the Windows operating system-based AIO functions is that while
POSIX allows you to execute AIO operations with any file, the Windows operating system executes AIO
operations only with files flagged with FILE_FLAG_OVERLAPPED.

Intel's asynchronous I/O library functions listed below are all based on POSIX AIO functions. They are
defined in the aio.h file.

• aio_read()
• aio_write()
• aio_suspend()
• aio_error()
• aio_return()
• aio_fsync()
• aio_cancel()
• lio_listio()

aio_read
Performs an asynchronous read operation.

 Intel® C++ Compiler Classic Developer Guide and Reference

1910

Syntax

int aio_read(struct aiocb *aiocbp);

Description

The aio_read() function requests an asynchronous read operation, calling the function,

"ReadFile(hFile, lpBuffer, nNumberOfBytesToRead, lpNumberOfBytesRead, NULL);"
where,

• hFile is given by aiocbp->aio_fildes
• lpBuffer is given by aiocbp->aio_buf
• nNumberOfBytesToRead is given by aiocbp->aio_nbytes

Use the function aio_return() to retrieve the actual bytes read in lpNumberOfBytesRead.

Use the extension aiocb->aio_offset == (intptr_t)-1 to start the read operation after the last read record.
This extension avoids extra file positioning and enhances performance.

Returns

0: On success

-1: On error

To get the correct error code, use errno. To get the error that occurred during asynchronous read operation,
use aio_error() function.

See Also
Example Code for aio_read()

aio_write
Performs an asynchronous write operation.

Syntax

int aio_write(struct aiocb *aiocbp);

Description

The aio_write() function requests an asynchronous write operation, calling the function,

"WriteFile(hFile, lpBuffer, nNumberOfBytesToWrite, lpNumberOfBytesWritten, NULL);
where,

• hFile is given by aiocbp->aio_fildes
• lpBuffer is given by aiocbp->aio_buf
• nNumberOfBytesToWrite is given by aiocbp->aio_nbytes

Use the function aio_return() to retrieve the actual bytes written in lpNumberOfBytesWritten.

Use the extension aiocb->aio_offset == (intptr_t)-1 to start the write operation after the last written record.
This extension avoids extra file positioning and enhances performance.

Returns

0: On success

-1: On error

To get the correct error code, use errno. To get the error that occurred during asynchronous write operation,
use aio_error() function.

Compiler Reference

1911

See Also
Example Code for aio_write()

Example for aio_read and aio_write Functions
The example illustrates the performance gain of the asynchronous I/O usage in comparison with synchronous
I/O usage. In the example, 5.6 MB of data is asynchronously written with the main program computation,
which is the scalar multiplication of two vectors with some normalization.

С-source file executing a scalar multiplication:

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double do_compute(double A, double B, int arr_len)
{
 int i;
 double res = 0;
 double *xA = malloc(arr_len * sizeof(double));
 double *xB = malloc(arr_len * sizeof(double));
 if (!xA || !xB)
 abort();
 for (i = 0; i < arr_len; i++) {
 xA[i] = sin(A);
 xB[i] = cos(B);
 res = res + xA[i]*xA[i];
 }
 free(xA);
 free(xB);
 return res;
}

C-main-source file using asynchronous I/O implementation:

#define DIM_X 123/*123*/
#define DIM_Y 70000
double aio_dat[DIM_Y /*12MB*/] = {0};
double aio_dat_tmp[DIM_Y /*12MB*/];

#include <stdio.h>
#include <aio.h>

typedef struct aiocb aiocb_t;
 aiocb_t my_aio;
 aiocb_t *my_aio_list[1] = {&my_aio};

int main()
{
 double do_compute(double A, double B, int arr_len);
 int i, j;
 HANDLE fd = CreateFile("aio.dat",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
/* Do some complex computation */
for (i = 0; i < DIM_X; i++) {

 Intel® C++ Compiler Classic Developer Guide and Reference

1912

 for (j = 0; j < DIM_Y; j++)
 aio_dat[j] = do_compute(i, j, DIM_X);

 if (i) aio_suspend(my_aio_list, 1, 0);
 my_aio.aio_fildes = fd;
 my_aio.aio_buf = memcpy(aio_dat_tmp, aio_dat, sizeof(aio_dat_tmp));
 my_aio.aio_nbytes = sizeof(aio_dat_tmp);
 my_aio.aio_offset = (intptr_t)-1;
 my_aio.aio_sigevent.sigev_notify = SIGEV_NONE;

 if (aio_write((void*)&my_aio) == -1) {
 printf("ERROR!!! %s\n", "aio_write()==-1");
 abort();}
 }
 aio_suspend(my_aio_list, 1, 0);
 return 0;
}

C-main-source file example 2 using asynchronous I/O implementation:

// icx (for C++) dpcpp (for DPC++) -c do_compute.c
// icx (for C++) dpcpp (for DPC++) aio_sample2.c do_compute.obj
// aio_sample2.exe

#define DIM_X 123
#define DIM_Y 70
double aio_dat[DIM_Y] = {0};
double aio_dat_tmp[DIM_Y];
static volatile int aio_flg = 1;

#include <aio.h>
typedef struct aiocb aiocb_t;
aiocb_t my_aio;
#define WAIT { while (!aio_flg); aio_flg = 0; }
#define aio_OPEN(_fname)\
CreateFile(_fname, \
 GENERIC_READ | GENERIC_WRITE, \
 FILE_SHARE_READ, \
 NULL, \
 OPEN_ALWAYS, \
 FILE_ATTRIBUTE_NORMAL, \
 NULL)

static void aio_CompletionRoutine(sigval_t sigval)
{
 aio_flg = 1;
}

int main()
{
 double do_compute(double A, double B, int arr_len);
 int i, j, res;
 char *fname = "aio_sample2.dat";
 HANDLE aio_fildes = aio_OPEN(fname);

 my_aio.aio_fildes = aio_fildes;
 my_aio.aio_nbytes = sizeof(aio_dat_tmp);
 my_aio.aio_sigevent.sigev_notify = SIGEV_THREAD;
 my_aio.aio_sigevent.sigev_notify_function = aio_CompletionRoutine;

Compiler Reference

1913

 /*
 ** writing
 */
 my_aio.aio_offset = -1;
 printf("Writing\n");
 for (i = 0; i < DIM_X; i++) {
 for (j = 0; j < DIM_Y; j++)
 aio_dat[j] = do_compute(i, j, DIM_X);
 WAIT;
 my_aio.aio_buf = memcpy(aio_dat_tmp, aio_dat, sizeof(aio_dat_tmp));
 res = aio_write(&my_aio);
 if (res) {printf("res!=0\n");abort();}
 }

 //
 // flushing
 //
 printf("Flushing\n");
 WAIT;
 res = aio_fsync(O_SYNC, &my_aio);
 if (res) {printf("res!=0\n");abort();}
 WAIT;

 //
 // reading
 //
 printf("Reading\n");
 my_aio.aio_offset = 0;
 my_aio.aio_buf = (volatile char*)aio_dat_tmp;
 for (i = 0; i < DIM_X; i++) {
 aio_read(&my_aio);
 for (j = 0; j < DIM_Y; j++)
 aio_dat[j] = do_compute(i, j, DIM_X);
 WAIT;
 res = aio_return(&my_aio);
 if (res != sizeof(aio_dat)) {
 printf("aio_read() did read %d bytes, expecting %d bytes\n", res, sizeof(aio_dat));
 }

 for (j = 0; j < DIM_Y; j++)
 if (aio_dat[j] != aio_dat_tmp[j])
 {printf("ERROR: aio_dat[j] != aio_dat_tmp[j]\n I=%d J=%d\n", i, j); abort();}
 my_aio.aio_offset += my_aio.aio_nbytes;
 }

 CloseHandle(aio_fildes);

 printf("\nDone\n");

return 0;
}

See Also
aio_read()

aio_write()

 Intel® C++ Compiler Classic Developer Guide and Reference

1914

aio_suspend
Suspends the calling process until one of the
asynchronous I/O operations completes.

Syntax

int aio_suspend(const struct aiocb * const cblist[], int n, const struct timespec
*timeout);

Arguments

cblist[] Pointer to a control block on which I/O is initiated

n Length of cblist list

*timeout Time interval to suspend the calling process

Description

The aio_suspend() function is like a wait operation. It suspends the calling process until,

• At least one of the asynchronous I/O requests in the list cblist of length n has completed
• A signal is delivered
• The time interval indicated in timeout is not NULL and has passed.

Each item in the cblist list must either be NULL (when it is ignored), or a pointer to a control block on which
I/O was initiated using aio_read(), aio_write(), or lio_listio() functions.

Returns

0: On success

-1: On error

To get the correct error code, use errno.

See Also
Example Code for aio_suspend()

Example for aio_suspend Function
The following example illustrates a wait operation execution using the aio_suspend() function.

int aio_ex_2(HANDLE fd)
{
 static struct aiocb aio[2];
 static struct aiocb *aio_list[2] = {&aio[0], &aio[1]};
 int i, ret;

/* Data initialization */
IC_AIO_DATA_INIT(aio[0], fd, "rec#1\n", strlen("rec#1\n"), 0)
IC_AIO_DATA_INIT(aio[1], fd, "rec#2\n", strlen("rec#2\n"), aio[0].aio_nbytes)

/* Asynch-write */
if (aio_write(&aio[0]) == -1) return errno;
if (aio_write(&aio[1]) == -1) return errno;

/* Do some complex computation */
printf("do_compute(1000, 1.123)=%f", do_compute(1000, 1.123));

/* do the wait operation using sleep() */

Compiler Reference

1915

ret = aio_suspend(aio_list, 2, 0);
if (ret == -1) return errno;

return 0;
}/* aio_ex_2 */

Result upon execution:

-bash-3.00$./a.out
-bash-3.00$ cat dat
rec#1
rec#2

Remarks:

1. In the example, the IC_AIO_DATA_INIT is defined as follows:

#define IC_AIO_DATA_INIT(_aio, _fd, _dat, _len, _off)\
 {memset(&_aio, 0, sizeof(_aio)); \
 _aio.aio_fildes = _fd; \
 _aio.aio_buf = _dat; \
 _aio.aio_nbytes = _len; \
 _aio.aio_offset = _off;}

2. The file descriptor fd is obtained as:

HANDLE fd = CreateFile("dat",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL/*|FILE_FLAG_OVERLAPPED*/,
 NULL);

See Also
aio_suspend()

aio_error
Returns error status for asynchronous I/O requests.

Syntax

int aio_error(const struct aiocb *aiocbp);

Arguments

*aiocbp Pointer to control block from where asynchronous I/O
request is generated

Description

The aio_error() function returns the error status for the asynchronous I/O request in the control block,
which is pointed to by aiocbp.

Returns

EINPROGRESS: When asynchronous I/O request is not completed

ECANCELED: When asynchronous I/O request is cancelled

0: On success

Error value: On error

 Intel® C++ Compiler Classic Developer Guide and Reference

1916

To get the correct error value/code, use errno. This is the same error value returned when an error occurs
during a ReadFile(), WriteFile(), or a FlushFileBuffers() operation.

See Also
Example Code for aio_error()

aio_return
Returns the final return status for the asynchronous
I/O request.

Syntax

ssize_t aio_return(struct aiocb *aiocbp);

Arguments

*aiocbp Pointer to control block from where asynchronous I/O
request is generated

Description

The aio_return function returns the final return status for the asynchronous I/O request with control block
pointed to by aiocbp.

Call this function only once for any given request, after aio_error() returns a value other than
EINPROGRESS.

Returns

Return value for synchronous ReadFile()/WriteFile()/FlushFileBuffer() requests: When
asynchronous I/O operation is completed

Undefined return value: When asynchronous I/O operation is not completed

Error value: When an error occurs

To get the correct error code/value, use errno.

See Also
Example Code for aio_return()

Example for aio_error and aio_return Functions
The following example illustrates how the aio_error() and aio_return() functions can be used.

int aio_ex_3(HANDLE fd)
{
 static struct aiocb aio;
 static struct aiocb *aio_list[] = {&aio};
 int ret;
 char *dat = "Hello from Ex-3\n";

/* Data initialization and asynchronously writing */

 IC_AIO_DATA_INIT(aio, fd, dat, strlen(dat), 0);
 if (aio_write(& aio) == -1) return errno;

 ret = aio_error(&aio);
 if (ret == EINPROGRESS) {
 fprintf(stderr, "ERRNO=%d STR=%s\n", ret, strerror(ret));

Compiler Reference

1917

 ret = aio_suspend(aio_list, 1, NULL);
 if (ret == -1) return errno;}
 else if (ret)
 return ret;

 ret = aio_error(&aio);
 if (ret) return ret;

 ret = aio_return(&aio);
 printf("ret=%d\n", ret);

 return 0;
}/* aio_ex_3 */

Result upon execution:

-bash-3.00$./a.out
ERRNO=115 STR=Operation now in progress
ret=16
-bash-3.00$ cat dat
Hello from Ex-3

Remarks:

1. In the example, the IC_AIO_DATA_INIT is defined as follows:

#define IC_AIO_DATA_INIT(_aio, _fd, _dat, _len, _off)\
 {memset(&_aio, 0, sizeof(_aio)); \
 _aio.aio_fildes = _fd; \
 _aio.aio_buf = _dat; \
 _aio.aio_nbytes = _len; \
 _aio.aio_offset = _off;}

2. The file descriptor fd is obtained as:

HANDLE fd = CreateFile("dat",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL/*|FILE_FLAG_OVERLAPPED*/,
 NULL);

See Also
aio_error()

aio_return()

aio_fsync
Synchronizes all outstanding asynchronous I/O
operations.

Syntax

int aio_fsync(int op, struct aiocb *aiocbp);

Arguments

op Type of synchronization request operation

 Intel® C++ Compiler Classic Developer Guide and Reference

1918

*aiocbp Pointer to control block from where asynchronous I/O
request is generated

Description

The aio_fsync() function performs a synchronization request operation on all outstanding asynchronous
I/O operations associated with aiocbp->aio_fildes.

Returns

0: On successfully performing a synchronization request.

-1: On error; to get the correct error code, use errno.

aio_cancel
Cancels outstanding asynchronous I/O requests for
the file descriptor fd.

Syntax

int aio_cancel(HANDLE fd, struct aiocb *aiocbp);

Arguments

fd File descriptor

*aiocbp Pointer to control block from where asynchronous I/O
request is generated

Description

The aio_cancel() function cancels outstanding asynchronous I/O requests for the file descriptor fd. If
aiocbp is NULL, all outstanding asynchronous I/O requests are cancelled. If aiocbp is not NULL, only the
requests described by the control block pointed to by aiocbp are cancelled.

Normal asynchronous notification occurs for cancelled requests. The request return status is set to -1, and
the request error status is set to ECANCELED. The control block of requests that cannot be cancelled is not
changed.

Unspecified results occur if aiocbp is not NULL and the fd differs from the file descriptor with which the
asynchronous operation was initiated.

Returns

AIO_CANCELLED: When all specified requests are cancellled successfully.

AIO_NOTCANCELLED: When at least one of the specified requests is still in process of being cancelled;
check the status of request using aio_error.

AIO_ALLDONE: When all specified requests were completed before cancel call was placed.

-1: When some error occurs. To get the correct error code, use errno.

See Also
Example Code for aio_cancel()

Example for aio_cancel Function
The following example illustrates how aio_cancel() function can be used.

int aio_ex_4(HANDLE fd)
{
 static struct aiocb aio;

Compiler Reference

1919

 static struct aiocb *aio_list[] = {&aio};
 int ret;
 char *dat = "Hello from Ex-4\n";

 printf("AIO_CANCELED=%d AIO_NOTCANCELED=%d\n",
 AIO_CANCELED, AIO_NOTCANCELED);

/* Data initialization and asynchronously writing */

 IC_AIO_DATA_INIT(aio, fd, dat, strlen(dat), 0);
 if (aio_write(&aio) == -1) return errno;

 ret = aio_cancel(fd, &aio);
 if (ret == AIO_NOTCANCELED) {
 fprintf(stderr, "ERRNO=%d STR=%s\n", ret, strerror(ret));
 ret = aio_suspend(aio_list, 1, NULL);
 if (ret == -1) return errno;}

 ret = aio_cancel(fd, &aio);
 if (ret == AIO_CANCELED)
 fprintf(stderr, "ERRNO=%d STR=%s\n", ret, strerror(ret));
 else if (ret) return ret;

 return 0;
}/* aio_ex_4 */

Result upon execution:

-bash-3.00$./a.out
AIO_CANCELED=0 AIO_NOTCANCELED=1
ERRNO=1 STR=Operation not permitted
-bash-3.00$ cat dat
Hello from Ex-4
-bash-3.00$

Remarks:

1. In the example, the IC_AIO_DATA_INIT is defined as follows:

#define IC_AIO_DATA_INIT(_aio, _fd, _dat, _len, _off)\
 {memset(&_aio, 0, sizeof(_aio)); \
 _aio.aio_fildes = _fd; \
 _aio.aio_buf = _dat; \
 _aio.aio_nbytes = _len; \
 _aio.aio_offset = _off;}

2. The file descriptor fd is obtained as:

HANDLE fd = CreateFile("dat",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL/*|FILE_FLAG_OVERLAPPED*/,
 NULL);

See Also
aio_cancel()

 Intel® C++ Compiler Classic Developer Guide and Reference

1920

lio_listio
Performs an asynchronous read operation.

Syntax

int lio_listio(int mode, struct aiocb *list[], int nent, struct sigevent *sig);

Arguments

mode Takes following values declared in <aio.h> file:

• LIO_WAIT: Use when you want the function to
return only after completing I/O operations
(synchronous I/O operations)

• LIO_NOWAIT: Use when you want the function to
return as soon as I/O operations are queued
(asynchronous I/O requests)

*list[] Array of the aiocb pointers specifying the submitted
I/O requests; NULL elements in the array are ignored

nent Number of elements in the array

*sig Determines if asynchronous notification is sent after
all I/O operations completes; takes following values:

• 0: Asynchronous notification occurs; a queued
signal, with an application-defined value, is
generated when an asynchronous I/O request
occurs

• 1: Asynchronous notification does not occur even
when asynchronous I/O requests are processed

• 2: Asynchronous notification occurs; a notification
function is called to perform notification

Description

The lio_listio() function initiates a list of I/O requests with a single function call.

The mode argument determines whether the function returns when all the I/O operations are completed, or
as soon as the operations are queued.

If the mode argument is LIO_WAIT, the function waits until all I/O operations are complete. The sig
argument is ignored in this case.

If the mode argument is LIO_NOWAIT, the function returns immediately. Asynchronous notification occurs
according to the sig argument after all the I/O operations complete.

Returns

When mode=LIO_NOWAIT the lio_listio() function returns:

• 0: I/O operations are successfully queued
• -1: Error; I/O operations not queued; to get the proper error code, use errno.

When mode=LIO_WAIT the lio_listio() function returns:

• 0: I/O operations specified completed successfully
• -1: Error; I/O operations not completed; to get the proper error code, use errno.

Compiler Reference

1921

See Also
Example Code for lio_listio()

Example for lio_listio Function
The following example illustrates how the lio_listio() function can be used.

int aio_ex_5(HANDLE fd)
{
 static struct aiocb aio[2];
 static struct aiocb *aio_list[2] = {&aio[0], &aio[1]};
 int i, ret;

/*
 ** Data initialization and Synchronously writing
*/
 IC_AIO_DATA_INIT(aio[0], fd, "rec#1\n", strlen("rec#1\n"), 0)
 IC_AIO_DATA_INIT(aio[1], fd, "rec#2\n", strlen("rec#2\n"),
 aio[0].aio_nbytes)
 aio[0].aio_lio_opcode = aio[1].aio_lio_opcode = LIO_WRITE;
 ret = lio_listio(LIO_WAIT, aio_list, 2, 0);
 if (ret) return ret;

 return 0;
}/* aio_ex_5 */

Result upon execution:

-bash-3.00$./a.out
-bash-3.00$ cat dat
rec#1
rec#2
-bash-3.00$

Remarks:

1. In the example, the IC_AIO_DATA_INIT is defined as follows:

#define IC_AIO_DATA_INIT(_aio, _fd, _dat, _len, _off)\
 {memset(&_aio, 0, sizeof(_aio)); \
 _aio.aio_fildes = _fd; \
 _aio.aio_buf = _dat; \
 _aio.aio_nbytes = _len; \
 _aio.aio_offset = _off;}

2. The file descriptor fd is obtained as:

HANDLE fd = CreateFile("dat",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL/*|FILE_FLAG_OVERLAPPED*/,
 NULL);

3. The aio_lio_opcode refers to the field of each aiocb structure that specifies the operation to be
performed. The supported operations are LIO_READ (do a 'read' operation), LIO_WRITE (do a 'write'
operation), and LIO_NOP (do no operation); these symbols are defined in <aio.h>.

See Also
lio_listio()

 Intel® C++ Compiler Classic Developer Guide and Reference

1922

Asynchronous I/O Function Errors
This topic only applies to Windows* OS.

The errno macro is used to obtain the errors that occur during asynchronous request functions such as
aio_read(), aio_write(), aio_fsync(), and lio_listio() or asynchronous control functions, such as
aio_cancel(), aio_error(), aio_return(), and aio_suspend().

The following example illustrates how errno can be used.

#include <stdio.h>
#include <stdlib.h>
#include <aio.h>

struct aiocb my_aio;
struct aiocb *my_aio_list[1] = {&my_aio};

int main()
{
 int res;
 double arr[123456];
 timespec_t my_t = {1, 0};

/* Data initialization */
 my_aio.aio_fildes = CreateFile("dat",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
 my_aio.aio_buf = (volatile char *)arr;
 my_aio.aio_nbytes = sizeof(arr);

/* Do asynchronous writing with computation overlapping */
 aio_write(&my_aio);
 do_compute(arr, 123456);

/* Suspend the asynchronous writing for 1 sec */
 res = aio_suspend(my_aio_list, 1, &my_t);
 if (res) {

/* The call was ended by timeout, before the indicated operations had completed. */
 if (errno == EAGAIN) {
 res = aio_suspend(my_aio_list, 1, 0);
 if (res) {
 printf("aio_suspend returned non-0\n"); return errno;}
 }
 else
 if (res) {
 printf("aio_suspend returned neither 0 nor EAGAIN\n");
 return errno;
 }
 }

 CloseHandle(my_aio.aio_fildes);
 printf("\nPass\n");

Compiler Reference

1923

 return 0;
}

In the example, the program executes an asynchronous write operation, using aio_write(), overlapping
with some computation, the do_compute() function execution. The pending write operation is suspended for
one second using aio_suspend().

On successful execution of the asynchronous write operation, zero is returned. EAGAIN or any other error
value is returned when the call is ended by timeout before the indicated operation has completed.

You can check EAGAIN using the errno macro.

Intel's C++ Asynchronous I/O Class for Windows* Operating Systems
This topic only applies to Windows* OS.

Intel's C++ asynchronous I/O template class, async_class, is an implementation for the Windows*
operating system on IA-32 and Intel® 64 architectures.

The async_class template class allows users to perform I/O operations asynchronously to the main
program thread. In particular, the async_class template class can be used to introduce asynchronous
execution of I/O operations with the STL streams classes. Users can quickly switch any of the I/O operations
of the STL streams to asynchronous mode with minimal changes to the application code.

The template class async_class is defined in the aiostream.h file.

See Also
Details of template class async_class

Template Class async_class
This topic only applies to Windows* OS.

Intel's C++ asynchronous I/O class implementation contains two main classes within the async namespace:
the async_class template class and the thread_control base class.

The header/typedef definitions are as follows:

namespace async {

template<class A>
class async_class:
public thread_control, public A
}

The template class async_class inherits support for asynchronous execution of I/O operations that are
integrated within the base thread_control class.

All functionality to control asynchronous execution of a queue of STL stream operations is encapsulated in
the base class thread_control and is inherited by template class async_class.

In most cases it is enough to add the header file aiostream.h to the source file and declare the file object
as an instance of the new template class async:async_class. The initial stream class must be the
parameter for the template class. Consequently, the defined output operator << and input operator >> are
executed asynchronously.

NOTE
The header file aiostream.h includes all necessary declarations for the STL stream I/O operations to
add asynchronous functionality of the thread_control class. It also contains the necessary
declarations of extensions for the standard C++ STL streams I/O operations: output operator >> and
input operator <<.

 Intel® C++ Compiler Classic Developer Guide and Reference

1924

You can call synchronization method wait() to wait for completion of any I/O operations with the file object.
If the wait() method is not called explicitly, it is called implicitly in the object destructor.

Public Interface of Template Class async_class
The following methods define the public interface of the template class async_class:

• get_last_operation_id()
• wait()
• get_status()
• get_last_error()
• get_error_operation_id()
• stop_queue()
• resume_queue()
• clear_queue()

Library Restrictions
Intel's C++ asynchronous I/O template class does not control the integrity or validity of the objects during
asynchronous operation. Such control should be done by the user.

For application stability in the Visual Studio 2003 environment, link the C++ part of libacaio.lib library
with multi-threaded msvcrt run-time library. Use /MT or /MTd compiler option.

See Also
Example of Using async_class Template Class

get_last_operation_id
Returns ID of the last added operation.

Syntax

void get_last_operation_id(void)

Description

This method returns the ID of the last added operation. Use this ID to get the status of operation or to wait
for the operation to complete.

Return Values

Nothing

wait
Stops execution of current thread.

Syntax

int wait(void)
int wait(unsigned int operation_id)

Description

Method wait(void) stops execution of the current thread until all the asynchronous operations are
completed.

Method wait(operation_id) stops execution of the current thread until the operation identified by
operation_id is completed.

Compiler Reference

1925

Return Values

-1 : On error during queue execution

Call the get_last_error() method to check the error code.

get_status
Returns status of specified operation.

Syntax

void get_status(unsigned int operation_id)

Description

This method returns the status of an operation, specified by operation_id, without stopping current thread
execution.

Return Values

STATUS_WAIT: Operation is waiting for execution.

STATUS_COMPLETED: Operation finished execution.

STATUS_ERROR: An error occurred during operation execution.

STATUS_EXECUTE: Operation is executing.

STATUS_BLOCKED: Execution of the queue was blocked after some earlier errors.

get_last_error
Returns the error code of the last failed operation.

Syntax

unsigned int get_last_error()

Description

This method returns the error code of the last failed operation. If the error occurs during the execution of an
asynchronous operation, the asynchronous thread stops executing the queue of asynchronous operations and
waits for new user requests.

To obtain the error status, use the wait() and get_status() methods.

Return Values

Error code of last failed operation.

This error code is equal to the value returned by GetLastError() function on the Windows* platform. If the
error occurs during the execution of an asynchronous operation, the asynchronous thread stops executing
the queue of asynchronous operations and waits for new user requests.

get_error_operation_id
Returns the ID of the last failed operation.

Syntax

unsigned int get_error_operation_id()

 Intel® C++ Compiler Classic Developer Guide and Reference

1926

Description

This method returns the ID of the last failed operation. If the error occurs during the execution of an
asynchronous operation, the asynchronous thread stops executing the queue of the asynchronous operations
and waits for new user requests.

To obtain the error status of the failed operation, use the wait() and get_status() methods.

Return Values

ID of last failed operation.

stop_queue
Stops queue execution.

Syntax

int stop_queue()

Description

This method allows you to control the asynchronous operations queue by stopping queue execution.

Return Values

0: On success

-1: On error

resume_queue
Resumes queue execution.

Syntax

int resume_queue()

Description

This method allows you to control the asynchronous operations queue by resuming queue execution.

Return Values

0: On success

-1: On error

clear_queue
Clears stopped or error-interrupted queues.

Syntax

void push_back_operation(class base_operation*)

Description

This method clears the content of stopped queues or queues interrupted by errors.

Return Values

0: On success

-1: On error

Compiler Reference

1927

Example for Using async_class Template Class
The following example illustrates how Intel's C++ asynchronous I/O template class can be used. Consider
the following code that writes arrays of floats to an external file.

// Data is array of floats
std::vector<float> v(10000);

// User defines new operator << for std::vector<float> type
std::ofstream& operator << (std::ofstream & str, std::vector<float> & vec)
{
// User’s output actions
...
 }
...
// Output file declaration – object of standard ofstream STL class
std::ofstream external_file(“output.txt”);
...
// Output operations
external_file << v;

The following code illustrates the changes to be made to the above code to execute the output operation
asynchronously.

// Add new header to support STL asynchronous IO operations

#include <aiostream.h>
...

std::vector<float> v(10000);

std::ofstream& operator << (std::ofstream & str, std::vector<float> & vec)
{... }
...
// Declare output file as the instance of new async::async_class template
// class.
// New inherited from STL ofstream type is declared
async::async_class<std::ofstream> external_file(“output.txt”);
...
external_file << v;
...
// Add stop operation, to wait the completion of all asynchronous IO //operations
external_file.wait();
…

Performance Recommendations

It is recommended not to use asynchronous mode for small objects. For example, do not use asynchronous
mode when the output standard type value in a loop where execution of other loop operations takes less time
than output of the same value to the STL stream.

However, if you can find the balance between output of small data and its previous calculation inside the
loop, you still have some stable performance improvement.

For example, in the following code, the program reads two matrices from external files, calculates the
elements of a third matrix, and prints out the elements inside the loop.

#define ARR_LEN 900
{
 std::ifstream fA("A.txt");
 fA >> A;
 std::ifstream fB("B.txt");

 Intel® C++ Compiler Classic Developer Guide and Reference

1928

 fB >> B;
 std::ofstream fC(f);

 for(int i=0; i< ARR_LEN; i++)
 {
 for(int j=0; j< ARR_LEN; j++)
 {
 C[i][j] = 0;
 for(int k=0; k < ARR_LEN; k++)
 C[i][j]+ = A[i][k]*B[k][j]*sin((float)(k))*cos((float)(-k))*sin((float)(k+1)
)*cos((float)(-k-1));
 fC << C[i][j] << std::endl;
 }
 }
}

By increasing matrix size, you can also achieve performance improvement during parallel data reading from
two files.

IEEE 754-2008 Binary Floating-Point Conformance Library
The Intel® IEEE 754-2008 Binary Floating-Point Conformance Library provides all operations mandated by the
IEEE 754-2008 standard for binary32 and binary64 binary floating-point interchange formats.

Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Intel® IEEE 754-2008 Binary Floating-Point Conformance Library and Usage
The Intel® IEEE 754-2008 Binary Floating-Point Conformance Library provides all operations mandated by the
IEEE 754-2008 standard for binary32 and binary64 binary floating-point interchange formats. The minimum
requirements for correct operation of the library are an Intel® Pentium® 4 processor and an operating system
supporting Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions.

The library supports all four rounding-direction attributes mandated by the IEEE 754-2008 standard for
binary floating-point arithmetic: roundTiesToEven, roundTowardPositive, roundTowardNegative,
roundTowardZero. The additional rounding-direction attribute, roundTiesToAway, is not required by the
standard, hence, not fully supported in this library. The default rounding-direction attribute is set as
roundTiesToEven.

The library also supports all mandated exceptions (invalid operation, division by zero, overflow, underflow,
and inexact) and sets flags accordingly under default exception handling. Alternate exception handling, which
is optional in the standard, is not supported.

The bfp754.h header file includes prototypes for the library functions. For a complete list of the functions
available, refer to the Function List. The user also needs to specify linker option -lbfp754 and floating-point
semantics control option -fp-model strict in order to use the library.

Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Compiler Reference

1929

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Operations
The IEEE standard 754-2008 defines four types of operations.

1. General-computational operations that produce correctly rounded floating-point or integer results.
These operations might signal the floating-point exceptions.

2. Quiet-computational operations that produce floating-point results. These operations do not signal any
floating-point exceptions.

3. Signaling-computational operations that produce no floating-point results. These operations might
signal floating-point exceptions.

4. Non-computational operations that produce no floating-point results. These operations do not signal
floating-point exceptions.

Produce result Produce no result

Might signal FP exception General-computational Signaling-computational

Do not signal FP exception Quiet-computational Non-computational

The standard also distinguishes among operations by their floating-point operand formats and result format
for general-computational operations:

1. Homogenous general-computational operations whose floating-point operands and floating-point result
are in the same format.

2. formatOf general-computational operations whose floating-point operands and floating-point result have
different formats.

NOTE
The IEEE 754-2008 standard requires that all formatOf general-computational operations be computed
without any loss of precision before converting to the destination format. This may differ from how
these operations are implemented on most hardware and software.

For example, when all operands are in binary64 format and the destination format is binary32, most
hardware and software implementations would first compute an intermediate result rounded in
binary64 and then convert the intermediate result to binary32. This double rounding procedure may
produce a result different from what is defined in the standard under certain rounding mode. For
example: x = 0x3ff0000010000000 = 1.000000000000000000000001_2, y =
0x3ca0000000000000 = 1.0_2*2^(-53) x+y =
1.00000000000000000000000100000000000000000000000000001_2
When the rounding-direction attribute is set to roundTiesToEven, using double rounding procedure,
the addition result rounds to 1.000000000000000000000001_2 (0x3ff0000010000000) in
binary64, which would then round to 1 (0x3f800000) in binary32. On the other hand, according to
the standard, the addition result should round to 1.00000000000000000000001_2 (0x3f800001) in
binary32.

Data Types
The following table correlates the names of the formats used in defining operations in the standard with their
C99 types used in this library.

Format Name Definition C99 Type

binary32 IEEE 754-2008 binary32
interchange format

float

 Intel® C++ Compiler Classic Developer Guide and Reference

1930

Format Name Definition C99 Type

binary64 IEEE 754-2008 binary64
interchange format

double

int Integer operand formats int, unsigned int, long
long int, unsigned long
long int

int32 Signed 32-bit integer int

uint32 Unsigned 32-bit integer unsigned int

int64 Signed 64-bit integer long long int

uint64 Unsigned 64-bit integer unsigned long long int

boolean Boolean value represented by
generic integer type

int

enum Enumerated values of floating-
point class

int

Enumerated values of floating-
point radix

int

logBFormat Type for the destination of the
logB operation and the scale
exponent operand of the scaleB
operation

int

decimalCharacterSequence Decimal character sequence char*

hexCharacterSequence Hexadecimal-significand
character sequence

exceptionGroup Set of exceptions as a set of
booleans

int

flags Set of status flags int

binaryRoundingDirection Rounding direction for binary int

modeGroup Dynamically-specifiable modes int

void No explicit operand or result void

Use the Intel® IEEE 754-2008 Binary Floating-Point Conformance Library
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

To use the library, include the header file, bfp754.h, in your program.

Here is an example program illustrating the use of the library on Linux* OS.

//binary.c
#include <stdio.h>
#include <bfp754.h>

Compiler Reference

1931

int main(){
 double a64, b64;
 float c32;
 a64 = 1.000000059604644775390625;
 b64 = 1.1102230246251565404236316680908203125e-16;
 c32 = __binary32_add_binary64_binary64(a64, b64);
 printf("The addition result using the libary: %8.8f\n", c32);
 c32 = a64 + b64;
 printf("The addition result without the libary: %8.8f\n", c32);
 return 0;
}

To compile binary.c, use the command:

icc -fp-model source -fp-model except binary.c –lbfp754
The output of a.out will look similar to the following:

The addition result using the libary: 1.00000012
The addition result without the libary: 1.00000000

See Also
Function List

Function List
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for homogeneous
general-computational operations:

Function Group Function IEEE standard equivalent
Homogeneous General-
Computational Operations Functions ilogb logB

maxnum maxNum
maxnum_mag maxNumMag
minnum minNum
minnum_mag minNumMag
next_down nextDown
next_up nextUp

rem remainder

round_integral_exact roundToIntegralExact
round_integral_nearest_away roundToIntegralTiesToAway
round_integral_nearest_even roundToIntegralTiesToEven
round_integral_negative roundToIntegralTowardNegat

ive
round_integral_positive roundToIntegralTowardPosit

ive
round_integral_zero roundToIntegralTowardZero
scalbn scaleB

General-Computational Operations
Functions add addition

 Intel® C++ Compiler Classic Developer Guide and Reference

1932

Function Group Function IEEE standard equivalent
binary32_to_binary64
binary64_to_binary32

convertFormat

div division

fma fusedMultiplyAdd

from_int32
from_uint32
from_int64
from_uint64

convert

from_hexstring convertFromHexCharacter
from_string convertFromDecimalCharacte

r
mul multiplication

sqrt squareRoot

sub subtraction

to_hexstring convertToHexCharacter

to_int32_ceil
to_uint32_ceil
to_int64_ceil
to_uint64_ceil

convertToIntegerTowardPosi
tive

to_int32_floor
to_uint32_floor
to_int64_floor
to_uint64_floor

convertToIntegerTowardNega
tive

to_int32_int
to_uint32_int
to_int64_int
to_uint64_int

convertToIntegerTowardZero

to_int32_rnint
to_uint32_rnint
to_int64_rnint
to_uint64_rnint

convertToIntegerTiesToEven

to_int32_xrnint
to_uint32_xrnint
to_int64_xrnint
to_uint64_xrnint

convertToIntegerExactTiesT
oEven

to_int32_rninta convertToIntegerTiesToAway

Compiler Reference

1933

Function Group Function IEEE standard equivalent

to_uint32_rninta
to_int64_rninta
to_uint64_rninta

to_int32_xceil
to_uint32_xceil
to_int64_xceil
to_uint64_xceil

convertToIntegerExactTowar
dPositive

to_int32_xfloor
to_uint32_xfloor
to_int64_xfloor
to_uint64_xfloor

convertToIntegerExactTowar
dNegative

to_int32_xint
to_uint32_xint
to_int64_xint
to_uint64_xint

convertToIntegerExactTowar
dZero

to_int32_xrninta
to_uint32_xrninta
to_int64_xrninta
to_uint64_xrninta

convertToIntegerExactTiesT
oAway

to_string convertToDecimalCharacter
Quiet-Computational Operations
Functions

abs abs
copy copy

copysign copySign
negate negate

Signaling-Computational Operations
Functions

quiet_equal compareQuietEqual
quiet_greater compareQuietGreater
quiet_greater_equal compareQuietGreaterEqual
quiet_greater_unordered compareQuietGreaterUnorder

ed
quiet_less compareQuietLess
quiet_less_equal compareQuietLessEqual
quiet_less_unordered compareQuietLessUnordered
quiet_not_equal compareQuietNotEqual
quiet_not_greater compareQuietNotGreater
quiet_not_less compareQuietNotLess
quiet_ordered compareQuietOrdered
quiet_unordered compareQuietUnordered
signaling_equal compareSignalingEqual
signaling_greater compareSignalingGreater
signaling_greater_equal compareSignalingGreaterEqu

al

 Intel® C++ Compiler Classic Developer Guide and Reference

1934

Function Group Function IEEE standard equivalent
signaling_greater_unordered compareSignalingGreaterUno

rdered
signaling_less compareSignalingLess
signaling_less_equal compareSignalingLessEqual
signaling_less_unordered compareSignalingLessUnorde

red
signaling_not_equal compareSignalingNotEqual
signaling_not_greater compareSignalingNotGreater
signaling_not_less compareSignalingNotLess

Non-Computational Operations
Functions class class

defaultMode defaultModes
getBinaryRoundingDirection getBinaryRoundingDirection
is754version1985 is754version1985
is754version2008 is754version2008
isCanonical isCanonical
isFinite isFinite
isInfinite isInfinite
isNaN isNaN
isNormal isNormal
isSignaling isSignaling
isSignMinus isSignMinus
isSubnormal isSubnormal
isZero isZero
lowerFlags lowerFlags
radix radix
raiseFlags raiseFlags
restoreFlags restoreFlags
restoreModes restoreModes
saveFlags saveAllFlags
saveModes saveModes

setBinaryRoundingDirection setBinaryRoundingDirection
testFlags testFlags
testSavedFlags testSavedFlags
totalOrder totalOrder
totalOrderMag totalOrderMag

Homogeneous General-Computational Operations Functions

Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for homogeneous
general-computational operations:

Compiler Reference

1935

round_integral_nearest_even
Description: The function rounds floating-point number x to its nearest integral value, with the halfway
(tied) case rounding to even.

Calling interface:
float __binary32_round_integral_nearest_even(float x);
double __binary64_round_integral_nearest_even(double x);

round_integral_nearest_away
Description: The function rounds floating-point number x to its nearest integral value, with the halfway
(tied) case rounding away from zero.

Calling interface:
float __binary32_round_integral_nearest_away(float x);
double __binary64_round_integral_nearest_away(double x);

round_integral_zero
Description: The function rounds floating-point number x to the closest integral value toward zero.

Calling interface:
float __binary32_round_integral_zero(float x);
double __binary64_round_integral_zero(double x);

round_integral_positive
Description: The function rounds floating-point number x to the closest integral value toward positive
infinity.

Calling interface:
float __binary32_round_integral_positive(float x);
double __binary64_round_integral_positive(double x);

round_integral_negative
Description: The function rounds floating-point number x to the closest integral value toward negative
infinity.

Calling interface:
float __binary32_round_integral_negative(float x);
double __binary64_round_integral_negative(double x);

round_integral_exact
Description: The function rounds floating-point number x to the closest integral value according to the
rounding-direction applicable.

Calling interface:
float __binary32_round_integral_exact(float x);
double __binary64_round_integral_exact(double x);

next_up
Description:The function returns the least floating-point number in the same format as x that is greater
than x.

Calling interface:
float __binary32_next_up(float x);

 Intel® C++ Compiler Classic Developer Guide and Reference

1936

double __binary64_next_up(double x);

next_down
Description: The function returns the largest floating-point number in the same format as x that is less than
x.

Calling interface:
float __binary32_next_down(float x);
double __binary64_next_down(double x);

rem
Description: The function returns the remainder of x and y.

Calling interface:
float __binary32_rem(float x, float y);
double __binary64_rem(double x, double y);

minnum
Description: The function returns the minimal value of x and y.

Calling interface:
float __binary32_minnum(float x, float y);
double __binary64_minnum(double x, double y);

maxnum
Description: The function returns the maximal value of x and y.

Calling interface:
float __binary32_maxnum(float x, float y);
double __binary64_maxnum(double x, double y);

minnum_mag
Description: The function returns the minimal absolute value of x and y.

Calling interface:
float __binary32_minnum_mag(float x, float y);
double __binary64_minnum_mag(double x, double y);

maxnum_mag
Description: The function returns the maximal absolute value of x and y.

Calling interface:
float __binary32_maxnum_mag(float x, float y);
double __binary64_maxnum_mag(double x, double y);

scalbn
Description: The function computes x X 2n for integer value n.

Calling interface:
float __binary32_scalbn(float x, int n);
double __binary64_scalbn(double x, int n);

Compiler Reference

1937

ilogb
Description: The function returns the exponent part of x as integer.

Calling interface:
int __binary32_ilogb(float x);
int __binary64_ilogb(double x);

formatOf General-Computational Operations Functions
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for formatOf general-
computational operations:

add
Description: The function computes the addition of two floating-point numbers; the result is then converted
to the destination format.

Calling interface:
float __binary32_add_binary32_binary32(float x, float y);
float __binary32_add_binary32_binary64(float x, double y);
float __binary32_add_binary64_binary32(double x, float y);
float __binary32_add_binary64_binary64(double x, double y);
double __binary64_add_binary32_binary32(float x, float y);
double __binary64_add_binary32_binary64(float x, double y);
double __binary64_add_binary64_binary32(double x, float y);
double __binary64_add_binary64_binary64(double x, double y);

sub
Description: The function computes the subtraction of two floating-point numbers; the result is then
converted to the destination format.

Calling interface:
float __binary32_sub_binary32_binary32(float x, float y);
float __binary32_sub_binary32_binary64(float x, double y);
float __binary32_sub_binary64_binary32(double x, float y);
float __binary32_sub_binary64_binary64(double x, double y);
double __binary64_sub_binary32_binary32(float x, float y);
double __binary64_sub_binary32_binary64(float x, double y);
double __binary64_sub_binary64_binary32(double x, float y);
double __binary64_sub_binary64_binary64(double x, double y);

mul
Description: The function computes the multiplication of two floating-point numbers; the result is then
converted to the destination format.

Calling interface:
float __binary32_mul_binary32_binary32(float x, float y);
float __binary32_mul_binary32_binary64(float x, double y);
float __binary32_mul_binary64_binary32(double x, float y);
float __binary32_mul_binary64_binary64(double x, double y);
double __binary64_mul_binary32_binary32(float x, float y);

 Intel® C++ Compiler Classic Developer Guide and Reference

1938

double __binary64_mul_binary32_binary64(float x, double y);
double __binary64_mul_binary64_binary32(double x, float y);
double __binary64_mul_binary64_binary64(double x, double y);

div
Description: The function computes the division of two floating-point numbers; the result is then converted
to the destination format.

Calling interface:
float __binary32_div_binary32_binary32(float x, float y);
float __binary32_div_binary32_binary64(float x, double y);
float __binary32_div_binary64_binary32(double x, float y);
float __binary32_div_binary64_binary64(double x, double y);
double __binary64_div_binary32_binary32(float x, float y);
double __binary64_div_binary32_binary64(float x, double y);
double __binary64_div_binary64_binary32(double x, float y);
double __binary64_div_binary64_binary64(double x, double y);

sqrt
Description: The function computes the square root of floating-point number; the result is then converted
to the destination format.

Calling interface:
float __binary32_sqrt_binary32(float x);
float __binary32_sqrt_binary64(double x);
double __binary32_sqrt_binary32(float x);
double __binary32_sqrt_binary64(double x);

fma
Description: The function computes the fused multiply and add of three floating-point numbers x, y, and z
as (x×y) +z; the result is then converted to the destination format.

Calling interface:
float __binary32_fma_binary32_binary32_binary32(float x, float y, float z);
float __binary32_fma_binary32_binary32_binary64(float x, float y, double z);
float __binary32_fma_binary32_binary64_binary32(float x, double y, float z);
float __binary32_fma_binary32_binary64_binary64(float x, double y, double z);
float __binary32_fma_binary64_binary32_binary32(double x, float y, float z);
float __binary32_fma_binary64_binary32_binary64(double x, float y, double z);
float __binary32_fma_binary64_binary64_binary32(double x, double y, float z);
float __binary32_fma_binary64_binary64_binary64(double x, double y, double z);
double __binary64_fma_binary32_binary32_binary32(float x, float y, float z);
double __binary64_fma_binary32_binary32_binary64(float x, float y, double z);
double __binary64_fma_binary32_binary64_binary32(float x, double y, float z);
double __binary64_fma_binary32_binary64_binary64(float x, double y, double z);
double __binary64_fma_binary64_binary32_binary32(double x, float y, float z);
double __binary64_fma_binary64_binary32_binary64(double x, float y, double z);
double __binary64_fma_binary64_binary64_binary32(double x, double y, float z);
double __binary64_fma_binary64_binary64_binary64(double x, double y, double z);

Compiler Reference

1939

from_int32 / from_uint32 / from_int64 / from_uint64
Description: This function converts integral values in the specified integer format to floating-point number.

Calling interface:
float __binary32_from_int32(int n);
double __binary64_from_int32(int n);
float __binary32_from_uint32(unsigned int n);
double __binary64_from_uint32(unsigned int n);
float __binary32_from_int64(long long int n);
double __binary64_from_int64(long long int n);
float __binary32_from_uint64(unsigned long long int n);
double __binary64_from_uint64(unsigned long long int n);

to_int32_rnint / to_uint32_rnint / to_int64_rnint / to_uint64_rnint
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format, with halfway cases rounded to even, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_rnint(float x);
int __binary64_to_int32_rnint(double x);
unsigned int __binary32_to_uint32_rnint(float x);
unsigned int __binary64_to_uint32_rnint(double x);
long long int __binary32_to_int64_rnint(float x);
long long int __binary64_to_int64_rnint(double x);
unsigned long long int __binary32_to_uint64_rnint(float x);
unsigned long long int __binary64_to_uint64_rnint(double x);

to_int32_int / to_uint32_int / to_int64_int / to_uint64_int
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward zero, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_int(float x);
int __binary64_to_int32_int(double x);
unsigned int __binary32_to_uint32_int(float x);
unsigned int __binary64_to_uint32_int(double x);
long long int __binary32_to_int64_int(float x);
long long int __binary64_to_int64_int(double x);
unsigned long long int __binary32_to_uint64_int(float x);
unsigned long long int __binary64_to_uint64_int(double x);

to_int32_ceil/ to_uint32_ceil / to_int64_ceil / to_uint64_ceil
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward positive infinity, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_ceil(float x);
int __binary64_to_int32_ceil(double x);
unsigned int __binary32_to_uint32_ceil(float x);
unsigned int __binary64_to_uint32_ceil(double x);
long long int __binary32_to_int64_ceil(float x);
long long int __binary64_to_int64_ceil(double x);

 Intel® C++ Compiler Classic Developer Guide and Reference

1940

unsigned long long int __binary32_to_uint64_ceil(float x);
unsigned long long int __binary64_to_uint64_ceil(double x);

to_int32_floor/ to_uint32_floor / to_int64_floor / to_uint64_floor
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward negative infinity, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_floor(float x);
int __binary64_to_int32_floor(double x);
unsigned int __binary32_to_uint32_floor(float x);
unsigned int __binary64_to_uint32_floor(double x);
long long int __binary32_to_int64_floor(float x);
long long int __binary64_to_int64_floor(double x);
unsigned long long int __binary32_to_uint64_floor(float x);
unsigned long long int __binary64_to_uint64_floor(double x);

to_int32_rninta / to_uint32_rninta / to_int64_rninta / to_uint64_rninta
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format, with halfway cases rounded away from zero, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_rninta(float x);
int __binary64_to_int32_rninta(double x);
unsigned int __binary32_to_uint32_rninta(float x);
unsigned int __binary64_to_uint32_rninta(double x);
long long int __binary32_to_int64_rninta(float x);
long long int __binary64_to_int64_rninta(double x);
unsigned long long int __binary32_to_uint64_rninta(float x);
unsigned long long int __binary64_to_uint64_rninta(double x);

to_int32_xrnint / to_uint32_xrnint / to_int64_xrnint / to_uint64_xrnint
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format, with halfway cases rounded to even, signaling if inexact.

Calling interface:
int __binary32_to_int32_xrnint(float x);
int __binary64_to_int32_xrnint(double x);
unsigned int __binary32_to_uint32_xrnint(float x);
unsigned int __binary64_to_uint32_xrnint(double x);
long long int __binary32_to_int64_xrnint(float x);
long long int __binary64_to_int64_xrnint(double x);
unsigned long long int __binary32_to_uint64_xrnint(float x);
unsigned long long int __binary64_to_uint64_xrnint(double x);

to_int32_xint / to_uint32_xint / to_int64_xint / to_uint64_xint
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward zero, signaling if inexact.

Calling interface:
int __binary32_to_int32_xint(float x);

Compiler Reference

1941

int __binary64_to_int32_xint(double x);
unsigned int __binary32_to_uint32_xint(float x);
unsigned int __binary64_to_uint32_xint(double x);
long long int __binary32_to_int64_xint(float x);
long long int __binary64_to_int64_xint(double x);
unsigned long long int __binary32_to_uint64_xint(float x);
unsigned long long int __binary64_to_uint64_xint(double x);

to_int32_xceil / to_uint32_xceil / to_int64_xceil / to_uint64_xceil
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward positive infinity, signaling if inexact.

Calling interface:
int __binary32_to_int32_xceil(float x);
int __binary64_to_int32_xceil(double x);
unsigned int __binary32_to_uint32_xceil(float x);
unsigned int __binary64_to_uint32_xceil(double x);
long long int __binary32_to_int64_xceil(float x);
long long int __binary64_to_int64_xceil(double x);
unsigned long long int __binary32_to_uint64_xceil(float x);
unsigned long long int __binary64_to_uint64_xceil(double x);

to_int32_xfloor / to_uint32_xfloor / to_int64_xfloor / to_uint64_xfloor
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward negative infinity, signaling if inexact.

Calling interface:
int __binary32_to_int32_xfloor(float x);
int __binary64_to_int32_xfloor(double x);
unsigned int __binary32_to_uint32_xfloor(float x);
unsigned int __binary64_to_uint32_xfloor(double x);
long long int __binary32_to_int64_xfloor(float x);
long long int __binary64_to_int64_xfloor(double x);
unsigned long long int __binary32_to_uint64_xfloor(float x);
unsigned long long int __binary64_to_uint64_xfloor(double x);

to_int32_xrninta / to_uint32_xrninta / to_int64_xrninta / to_uint64_xrninta
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format, with halfway cases rounded away from zero, signaling if inexact.

Calling interface:
int __binary32_to_int32_xrninta(float x);
int __binary64_to_int32_xrninta(double x);
unsigned int __binary32_to_uint32_xrninta(float x);
unsigned int __binary64_to_uint32_xrninta(double x);
long long int __binary32_to_int64_xrninta(float x);
long long int __binary64_to_int64_xrninta(double x);
unsigned long long int __binary32_to_uint64_xrninta(float x);
unsigned long long int __binary64_to_uint64_xrninta(double x);

 Intel® C++ Compiler Classic Developer Guide and Reference

1942

binary32_to_binary64
Description: This function converts floating-point number in binary32 format to binary64 format.

Calling interface:
double __binary32_to_binary64(float x);

binary64_to_binary32
Description: This function rounds floating-point number in binary64 format to binary32 format.

Calling interface:
float __binary64_to_binary32(double x);

from_string
Description: This function converts decimal character sequence to floating-point number.

Calling interface:
float __binary32_from_string(char * s);
double __binary64_from_string(char * s);

to_string
Description: This function converts floating-point number to decimal character sequence.

Calling interface:
char *__binary32_to_string(float x);
char *__binary64_to_string(double x);

from_hexstring
Description: This function converts hexadecimal character sequence to floating-point number.

Calling interface:
float __binary32_from_hexstring(char * s);
double __binary64_from_hexstring(char * s);

to_hexstring
Description: This function converts floating-point number to hexadecimal character sequence.

Calling interface:
char *__binary32_to_hexstring(float x);
char *__binary64_to_hexstring(double x);

Quiet-Computational Operations Functions
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for quiet-
computational operations:

copy
Description: The function copies input floating-point number x to output in the same floating-point format,
without any change to the sign.

Calling interface:

Compiler Reference

1943

float __binary32_copy(float x);
double __binary64_copy(double x);

NOTE
When the input is a signaling NaN, two different outcomes are allowed by the standard. The operation
could either signal invalid exception with quieted signaling NaN as output, or deliver signaling NaN as
output without signaling any exception.

negate
Description: The function copies input floating-point number x to output in the same floating-point format,
reversing the sign.

Calling interface:
float __binary32_negate(float x);
double __binary64_negate(double x);

NOTE
When the input is a signaling NaN, two different outcomes are allowed by the standard. The operation
could either signal invalid exception with quieted signaling NaN as output, or deliver signaling NaN as
output without signaling any exception.

abs
Description: The function copies input floating-point number x to output in the same floating-point format,
setting the sign to positive.

Calling interface:
float __binary32_abs(float x);
double __binary64_abs(double x);

NOTE
When the input is a signaling NaN, two different outcomes are allowed by the standard. The operation
could either signal invalid exception with quieted signaling NaN as output, or deliver signaling NaN as
output without signaling any exception.

copysign
Description: The function copies input floating-point number x to output in the same floating-point format,
with the same sign as y.

Calling interface:
float __binary32_copysign(float x, float y);
double __binary64_copysign(double x, double y);

NOTE
When the first input is a signaling NaN, two different outcomes are allowed by the standard. The
operation could either signal invalid exception with quieted signaling NaN as output, or deliver
signaling NaN as output without signaling any exception.

 Intel® C++ Compiler Classic Developer Guide and Reference

1944

Signaling-Computational Operations Functions
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for signaling-
computational operations:

quiet_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is equal, returns 0
(false) otherwise. The function signals invalid operation exception when signaling NaN is in the inputs.

Calling interface:
int __binary32_quiet_equal_binary32 (float x, float y);
int __binary32_quiet_equal_binary64(float x, double y);
int __binary64_quiet_equal_binary32(double x, float y);
int __binary64_quiet_equal_ binary64(double x, double y);

quiet_not_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is not equal,
returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the
inputs.

Calling interface:
int __binary32_quiet_not_equal_binary32(float x, float y);
int __binary32_quiet_not_equal_binary64(float x, double y);
int __binary64_quiet_not_equal_binary32(double x, float y);
int __binary64_quiet_not_equal_binary64(double x, double y);

signaling_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is equal, returns 0
(false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_equal_binary32(float x, float y);
int __binary32_signaling_equal_binary64(float x, double y);
int __binary64_signaling_equal_binary32(double x, float y);
int __binary64_signaling_equal_binary64(double x, double y);

signaling_greater
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater, returns
0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_greater_binary32(float x, float y);
int __binary32_signaling_greater_binary64(float x, double y);
int __binary64_signaling_greater_binary32(double x, float y);
int __binary64_signaling_greater_binary64(double x, double y);

signaling_greater_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater or equal,
returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Compiler Reference

1945

Calling interface:
int __binary32_signaling_greater_equal_binary32(float x, float y);
int __binary32_signaling_greater_equal_binary64(float x, double y);
int __binary64_signaling_greater_equal_binary32(double x, float y);
int __binary64_signaling_greater_equal_binary64(double x, double y);

signaling_less
Description: The function returns 1 (true) if the relation between the two inputs x and y is less, returns 0
(false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_less_binary32(float x, float y);
int __binary32_signaling_less_binary64(float x, double y);
int __binary64_signaling_less_binary32(double x, float y);
int __binary64_signaling_less_binary64(double x, double y);

signaling_less_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is less or equal,
returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_less_equal_binary32(float x, float y);
int __binary32_signaling_less_equal_binary64(float x, double y);
int __binary64_signaling_less_equal_binary32(double x, float y);
int __binary64_signaling_less_equal_binary64(double x, double y);

signaling_not_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is not equal,
returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_not_equal_binary32(float x, float y);
int __binary32_signaling_not_equal_binary64(float x, double y);
int __binary64_signaling_not_equal_binary32(double x, float y);
int __binary64_signaling_not_equal_binary64(double x, double y);

signaling_not_greater
Description: The function returns 1 (true) if the relation between the two inputs x and y is not greater,
returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_not_greater_binary32(float x, float y);
int __binary32_signaling_not_greater_binary64(float x, double y);
int __binary64_signaling_not_greater_binary32(double x, float y);
int __binary64_signaling_not_greater_binary64(double x, double y);

signaling_less_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is less or
unordered, returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the
inputs.

Calling interface:

 Intel® C++ Compiler Classic Developer Guide and Reference

1946

int __binary32_signaling_less_unordered_binary32(float x, float y);
int __binary32_signaling_less_unordered_binary64(float x, double y);
int __binary64_signaling_less_unordered_binary32(double x, float y);
int __binary64_signaling_less_unordered_binary64(double x, double y);

signaling_not_less
Description: The function returns 1 (true) if the relation between the two inputs x and y is not less, returns
0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_not_less_ binary32(float x, float y);
int __binary32_signaling_not_less_binary64(float x, double y);
int __binary64_signaling_not_less_binary32(double x, float y);
int __binary64_signaling_not_less_binary64 (double x, double y);

signaling_greater_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater or
unordered, returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the
inputs.

Calling interface:
int __binary32_signaling_greater_unordered_binary32(float x, float y);
int __binary32_signaling_greater_unordered_binary64(float x, double y);
int __binary64_ signaling_greater_unordered_binary32(double x, float y);
int __binary64_signaling_greater_unordered_binary64(double x, double y);

quiet_greater
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater, returns
0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the inputs.

Calling interface:
int __binary32_quiet_greater_binary32(float x, float y);
int __binary32_quiet_greater_binary64(float x, double y);
int __binary64_quiet_greater_binary32(double x, float y);
int __binary64_quiet_greater_binary64(double x, double y);

quiet_greater_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater or equal,
returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the
inputs.

Calling interface:
int __binary32_quiet_greater_equal_binary32(float x, float y);
int __binary32_quiet_greater_equal_binary64(float x, double y);
int __binary64_quiet_greater_equal_binary32(double x, float y);
int __binary64_quiet_greater_equal_binary64(double x, double y);

quiet_less
Description: The function returns 1 (true) if the relation between the two inputs x and y is less, returns 0
(false) otherwise. The function signals invalid operation exception when signaling NaN is one of the inputs.

Calling interface:

Compiler Reference

1947

int __binary32_quiet_less_binary32(float x, float y);
int __binary32_quiet_less_binary64(float x, double y);
int __binary64_quiet_less_binary32(double x, float y);
int __binary64_quiet_less_binary64(double x, double y);

quiet_less_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is less or equal,
returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the
inputs.

Calling interface:
int __binary32_quiet_less_equal_binary32(float x, float y);
int __binary32_quiet_less_equal_binary64(float x, double y)
int __binary64_quiet_less_equal_binary32(double x, float y);
int __binary64_quiet_less_equal_binary64(double x, double y);

quiet_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is unordered,
returns zero (false) otherwise. The function signals invalid operation exception when signaling NaN is one of
the inputs

Calling interface:
int __binary32_quiet_unordered_binary32(float x, float y);
int __binary32_quiet_unordered_binary64(float x, double y);
int __binary64_quiet_unordered_binary32(double x, float y);
int __binary64_quiet_unordered_binary64(double x, double y);

quiet_not_greater
Description: The function returns 1 (true) if the relation between the two inputs x and y is not greater,
returns zero (false) otherwise. The function signals invalid operation exception when signaling NaN is one of
the inputs.

Calling interface:
int __binary32_quiet_not_greater_binary32(float x, float y);
int __binary32_quiet_not_greater_binary64(float x, double y);
int __binary64_quiet_not_greater_binary32(double x, float y);
int __binary64_quiet_not_greater_binary64(double x, double y);

quiet_less_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is less or
unordered, returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is
one of the inputs.

Calling interface:
int __binary32_quiet_less_unordered_binary32(float x, float y);
int __binary32_quiet_less_unordered_binary64(float x, double y);
int __binary64_quiet_less_unordered_binary32(double x, float y);
int __binary64_quiet_less_unordered_binary64(double x, double y);

 Intel® C++ Compiler Classic Developer Guide and Reference

1948

quiet_not_less
Description: The function returns 1 (true) if the relation between the two inputs x and y is not less, returns
zero (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the
inputs.

Calling interface:
int __binary32_quiet_not_less_binary32(float x, float y);
int __binary32_quiet_not_less_binary64(float x, double y);
int __binary64_quiet_not_less_binary32(double x, float y);
int __binary64_quiet_not_less_binary64(double x, double y);

quiet_greater_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater or
unordered, returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is
one of the inputs.

Calling interface:
int __binary32_quiet_greater_unordered_binary32(float x, float y);
int __binary32_quiet_greater_unordered_binary64(float x, double y);
int __binary64_quiet_greater_unordered_binary32(double x, float y);
int __binary64_quiet_greater_unordered_binary64(double x, double y);

quiet_ordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is ordered, returns
0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the inputs.

Calling interface:
int __binary32_quiet_ordered_binary32(float x, float y);
int __binary32_quiet_ordered_binary64(float x, double y);
int __binary64_quiet_ordered_binary32(double x, float y);
int __binary64_quiet_ordered_binary64(double x, double y);

Non-Computational Operations Functions
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for non-computational
operations:

is754version1985
Description: The function returns 1, if and only if this programming environment conforms to IEEE Std.
754-1985, otherwise returns 0.

Calling interface:
int __binary_is754version1985(void);

NOTE
This function in this library always returns 0.

Compiler Reference

1949

is754version2008
Description: The function returns 1, if and only if this programming environment conforms to IEEE Std.
754-2008, otherwise returns 0.

Calling interface:
int __binary_is754version2008(void);

NOTE
This function in this library always returns 1.

class
Description: The function returns which class of the ten classes (signalingNaN, quietNaN,
negativeInfinity, negativeNormal, negativeSubnormal, negativeZero, positiveZero,
positiveSubnormal, positiveNormal, positiveInfinity) the input floating-point number x belongs.

Return value Class

0 signalingNaN

1 quietNaN

2 negativeInfinity

3 negativeNormal

4 negativeSubnormal

5 negativeZero

6 positiveZero

7 positiveSubnormal

8 positiveNormal

9 positiveInfinity

Calling interface:
int __binary32_class(float x);
int __binary64_class(double x);

isSignMinus
Description: The function returns 1, if and only if its argument has negative sign.

Calling interface:
int __binary32_isSignMinus(float x);
int __binary64_isSignMinus(double x);

isNormal
Description: The function returns 1, if and only if its argument is normal (not zero, subnormal, infinite,
or NaN).

Calling interface:
int __binary32_isNormal(float x);

 Intel® C++ Compiler Classic Developer Guide and Reference

1950

int __binary64_isNormal(double x);

isFinite
Description: The function returns 1, if and only if its argument is finite (not infinite or NaN).

Calling interface:

isZero
Description: The function returns 1, if and only if its argument is ±0.

Calling interface:
int __binary32_isZero(float x);
int __binary64_isZero(double x);

isSubnormal
Description: The function returns 1, if and only if its argument is subnormal.
Calling interface:
int __binary32_isSubnormal(float x);
int __binary64_isSubnormal(double x);

isInfinite
Description: The function returns 1, if and only if its argument is infinite
Calling interface:
int __binary32_isInfinite(float x);
int __binary64_isInfinite(double x);

isNaN
Description:The function returns 1, if and only if its argument is a NaN.
Calling interface:
int __binary32_isNaN(float x);
int __binary64_isNaN(double x);

isSignaling
Description: The function returns 1, if and only if its argument is a signaling NaN.

Calling interface:
int __binary32_isSignaling(float x);
int __binary64_isSignaling(double x);

isCanonical
Description: The function returns 1, if and only if its argument is a finite number, infinity, or NaN that is
canonical.

Calling interface:
int __binary32_isCanonical(float x);
int __binary64_isCanonical(double x);

Compiler Reference

1951

NOTE
This function in this library always returns 1, as only canonical floating-point numbers are expected.

radix
Description:The function returns the radix of the format of the input floating-point number.

Calling interface:
int __binary32_radix(float x);
int __binary64_radix(double x);

NOTE
This function in this library always returns 2, as the library is intended for binary floating-point
numbers.

totalOrder
Description: The function returns 1 if and only if two floating-point inputs x and y is total ordered and 0
otherwise.

Calling interface:
int _binary32_totalOrder(float x, float y);
int _binary64_totalOrder(double x, double y);

totalOrderMag
Description:totalOrderMag(x, y) is the same as totalOrder(abs(x), abs(y)).

Calling interface:
int _binary32_totalOrderMag(float x, float y);
int _binary64_totalOrderMag(double x, double y);

lowerFlags
Description: The function lowers the flags of the exception group specified by the input.

Value Exception name

1 __BFP754_INVALID

2 __BFP754_DIVBYZERO

4 __BFP754_OVERFLOW

8 __BFP754_UNDERFLOW

16 __BFP754_INEXACT

Calling interface:
void __binary_lowerFlags(int x);

raiseFlags
Description: The function raises the flags of the exception group specified by the input.

Calling interface:
void __binary_raiseFlags(int x);

 Intel® C++ Compiler Classic Developer Guide and Reference

1952

testFlags
Description: The function returns 1, if and only if any flag of the exception group specified by the input is
raised, and 0 otherwise.

Calling interface:
int __binary_testFlags(int x);

testSavedFlags
Description: The function returns 1, if and only if any flag of the exception group specified by the input y is
raised in x, and 0 otherwise.

Calling interface:
int __binary_testSavedFlags(int x, int y);

restoreFlags
Description: The function restores the flags to their states represented in x.

Calling interface:
void __binary_restoreFlags(int x);

saveFlags
Description: The function returns a representation of the state of all status flags.

Calling interface:
int __binary_saveFlags(void);

getBinaryRoundingDirection
Description: The function returns an integer representing the rounding direction in use.

Value Exception name

0 __BFP754_ROUND_TO_NEAREST_EVEN

1 __BFP754_ROUND_TOWARD_POSITIVE

2 __BFP754_ROUND_TOWARD_NEGATIVE

3 __BFP754_ROUND_TOWARD_ZERO

Calling interface:
int __binary_getBinaryRoundingDirection(void);

setBinaryRoundingDirection
Description: The function sets the rounding direction based on input integer.

Calling interface:
void __binary_setBinaryRoundingDirection(int x);

saveModes
Description: The function saves the values of all dynamic-specifiable modes.

Calling interface:
int __binary_saveModes(void);

Compiler Reference

1953

NOTE
saveModes behaves in the same way as getBinaryRoundingDirection does, as the rounding mode
is the only dynamic-specifiable mode supported.

restoreModes
Description:The function restores the values of all dynamic-specifiable modes to the input.

Calling interface:
int __binary_restoreModes(void);

NOTE
restoreModes behaves in the same way as setBinaryRoundingDirection does, as the rounding
mode is the only dynamic-specifiable mode supported.

defaultMode
Description: The function sets the values of all dynamic-specifiable modes to default.

Calling interface:
void __binary_defaultMode(void);

NOTE
defaultMode sets the rounding-direction attribute to roundTiesToEven, as the rounding mode is the
only dynamic-specifiable mode supported.

Intel's Numeric String Conversion Library
Intel's Numeric String Conversion Library, libistrconv, provides a collection of routines for converting
between ASCII strings and C data types, which are optimized for performance.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Use Intel's Numeric String Conversion Library
Intel's Numeric String Conversion Library, libistrconv, provides a collection of routines for converting
between ASCII strings and C data types, which are optimized for performance. The istrconv.h header file
declares prototypes for the library functions.

You can link the libistrconv library as a static or shared library on Linux* and macOS platforms.On
Windows* platforms, you must link libistrconv as a static library only.

Using Intel's Numeric String Conversion Library
To use the libistrconv library, include the header file, istrconv.h, in your program.

 Intel® C++ Compiler Classic Developer Guide and Reference

1954

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Consider the following example conv.c file that illustrates how to use the library to convert between string
and floating-point data type.

// conv.c
#include <stdio.h>
#include <istrconv.h>
#define LENGTH 20

int main() {
 const char pi[] = "3.14159265358979323";
 char s[LENGTH];
 int prec;
 float fx;
 double dx;
 printf("PI: %s\n", pi);
 printf("single-precision\n");
 fx = __IML_string_to_float(pi, NULL);
 prec = 6;
 __IML_float_to_string(s, LENGTH, prec, fx);
 printf("prec: %2d, val: %s\n", prec, s);
 printf("double-precision\n");
 dx = __IML_string_to_double(pi, NULL);
 prec = 15;
 __IML_double_to_string(s, LENGTH, prec, dx);
 printf("prec: %2d, val: %s\n", prec, s);
 return 0;
}

To compile the conv.c file with Intel's Numeric String Conversion Library (libistrconv) use one of the
following commands. See Invoke the Compiler for information about all available drivers.

Linux and macOS

icpc conv.c –libistrconv
Windows

icl conv.c libistrconv.lib

After you compile this example and run the program, you should get the following results:

PI: 3.14159265358979323

single-precision
prec: 6, val: 3.14159

double-precision
prec: 15, val: 3.14159265358979

Integer Conversion Functions Optimized with SSE4.2 Instructions
The following integer conversion functions are optimized for better performance with SSE4.2 string
processing instructions:

• __IML_int_to_string
• __IML_uint_to_string
• __IML_int64_to_string
• __IML_uint64_to_string
• __IML_i_to_str
• __IML_u_to_str
• __IML_ll_to_str

Compiler Reference

1955

• __IML_ull_to_str
• __IML_string_to_int
• __IML_string_to_uint
• __IML_string_to_int64
• __IML_string_to_uint64
• __IML_str_to_i
• __IML_str_to_u
• __IML_str_to_ll
• __IML_str_to_ull
The SSE4.2 optimized versions of these functions can be deployed in the following situations:

• Used automatically on post-SSE4.2 processors through Intel run-time processor dispatching
• Called directly by defining the "__SSE4_2__" macro to the C preprocessor where <istrconv.h> is included.

The generic versions of these functions can be deployed in the following situations:

• Used automatically on pre-SSE4.2 processors through Intel run-time processor dispatching
• Called directly by adding _generic suffix to the function names

The SSE4.2 optimized versions of these functions moves strings from memory to XMM registers and vice
versa directly to maximize performance. The functions would not overwrite the memory beyond the
boundary; however, this may introduce memory access violation when the memory location immediately
trailing the strings is not allocated or accessible. Users with concerns about potential memory access
violation should use the generic versions instead.

Function List
Intel's Numeric String Conversion library (libistrconv) functions are listed in this topic.

Routines to convert floating-point numbers to ASCII strings
Intel's Numeric String Conversion Library supports the following functions to convert floating-point number x
to string s in various formats, where l represents the length of the formatted string allowing for full
conversion (not including the null terminator).

__IML_float_to_string, __IML_double_to_string
Description: These functions are similar to snprintf(s, n, "%.*g", p, x) in stdio.h, where p
specifies the maximum number of significant digits in either fixed-point or exponential notation format. If n is
zero, nothing is written and s may be a null pointer. Output characters beyond the (n-1)th character are
discarded and a null character is appended at the end. l is returned on success; otherwise the result is
undefined.

Calling interface:

int __IML_float_to_string(char * s, size_t n, int p, float x);
int __IML_double_to_string(char * s, size_t n, int p, double x);

__IML_float_to_string_f, __IML_double_to_string_f
Description: These functions are similar to snprintf(s, n, "%.*f", p, x) in stdio.h, where p
specifies the number of digits after the decimal point in the fixed-point notation format. If n is zero, nothing
is written and s may be a null pointer. Output characters beyond the (n-1)th character are discarded and a
null character is appended at the end. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_float_to_string_f(char * s, size_t n, int p, float x);
int __IML_double_to_string_f(char * s, size_t n, int p, double x);

 Intel® C++ Compiler Classic Developer Guide and Reference

1956

__IML_float_to_string_e, __IML_double_to_string_e
Description: These functions are similar to snprintf(s, n, "%.*e", p, x) in stdio.h, where p
specifies the number of digits after the decimal point in the exponential notation format. If n is zero, nothing
is written and s may be a null pointer. Output characters beyond the (n-1)th character are discarded and a
null character is appended at the end. l is returned on success; otherwise, the result is undefined.

Calling interface:

int __IML_float_to_string_e(char * s, size_t n, int p, float x);
int __IML_double_to_string_e(char * s, size_t n, int p, double x);

__IML_f_to_str, __IML_d_to_str
Description: These functions are similar to snprintf(s, n, “%.*g”, p, x) in stdio.h, where p
specifies the maximum number of significant digits in either fixed-point or exponential notation format. If l <
n, all output characters are stored in s with a null terminator at the end. Otherwise, output characters
beyond the nth character are discarded and no null character is appended at the end. If n is zero, nothing is
written and s may be a null pointer. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_f_to_str(char * s, size_t n, int p, float x);
int __IML_d_to_str(char * s, size_t n, int p, double x);

__IML_f_to_str_f, __IML_d_to_str_f
Description: These functions are similar to snprintf(s, n, “%.*f”, p, x) in stdio.h, where p
specifies the number of digits after the decimal point in the fixed-point notation format. If l < n, all output
characters are stored in s with a null terminator at the end. Otherwise, output characters beyond the nth

character are discarded and no null character is appended at the end. If n is zero, nothing is written and s
may be a null pointer. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_f_to_str_f(char * s, size_t n, int p, float x);
int __IML_d_to_str_f(char * s, size_t n, int p, double x);

__IML_f_to_str_e, __IML_d_to_str_e
Description: These functions are similar to snprintf(s, n, “%.*e”, p, x) in stdio.h, where pspecifies
the number of digits after the decimal point in the exponential notation format. If l < n, all output characters
are stored in s with a null terminator at the end. Otherwise, output characters beyond the nth character are
discarded and no null character is appended at the end. If n is zero, nothing is written and s may be a null
pointer. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_f_to_str_e(char * s, size_t n, int p, float x);
int __IML_d_to_str_e(char * s, size_t n, int p, double x);

Routines to convert integers to ASCII strings
Intel's Numeric String Conversion Library supports the following functions to convert integer x to string s,
where l represents the length of the formatted string allowing for full conversion (not including the null
terminator).

__IML_int_to_string, __IML_uint_to_string, __IML_int64_to_string, __IML_uint64_to_string

Compiler Reference

1957

Description: These functions are similar to snprintf(s, n, "%[d|u|lld|llu]", x) in stdio.h. If n is
zero, nothing is written and s may be a null pointer. Output characters beyond the (n-1)th character are
discarded and a null character is appended at the end. l is returned on success; otherwise the result is
undefined.

Calling interface:

int __IML_int_to_string(char * s, size_t n, int x);
int __IML_uint_to_string(char * s, size_t n, unsigned int x);
int __IML_int64_to_string(char * s, size_t n, long long x);
int __IML_uint64_to_string(char * s, size_t n, unsigned long long x);

__IML_int_to_oct_string, __IML_uint_to_oct_string, __IML_int64_to_oct_string,
__IML_uint64_to_oct_string
Description: These functions are similar to snprintf(s, n, "%[o|llo]", x) in stdio.h. If n is zero,
nothing is written and s may be a null pointer. Output characters beyond the (n-1)th character are discarded
and a null character is appended at the end. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_int_to_oct_string(char * s, size_t n, int x);
int __IML_uint_to_oct_string(char * s, size_t n, unsigned int x);
int __IML_int64_to_oct_string(char * s, size_t n, long long x);
int __IML_uint64_to_oct_string(char * s, size_t n, unsigned long long x);

__IML_int_to_hex_string, __IML_uint_to_hex_string, __IML_int64_to_hex_string,
__IML_uint64_to_hex_string
Description: These functions are similar to snprintf(s, n, "%[x|llx]", x) in stdio.h. If n is zero,
nothing is written and s may be a null pointer. Output characters beyond the (n-1)th character are discarded
and a null character is appended at the end. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_int_to_hex_string(char * s, size_t n, int x);
int __IML_uint_to_hex_string(char * s, size_t n, unsigned int x);
int __IML_int64_to_hex_string(char * s, size_t n, long long x);
int __IML_uint64_to_hex_string(char * s, size_t n, unsigned long long x);

__IML_i_to_str, __IML_u_to_str, __IML_ll_to_str, __IML_ull_to_str
Description: These functions are similar to snprintf(s, n, "%[d|u|lld|llu]", x) in stdio.h. If l < n,
all output characters are stored in s with a null terminator at the end. Otherwise, output characters beyond
the nth character are discarded and no null character is appended at the end. If n is zero, nothing is written,
and s may be a null pointer. l is returned on success, otherwise the result is undefined.

Calling interface:

int __IML_i_to_str(char * s, size_t n, int x);
int __IML_u_to_str(char * s, size_t n, unsigned int x);
int __IML_ll_to_str(char * s, size_t n, long long x);
int __IML_ull_to_str(char * s, size_t n, unsigned long long x);

 Intel® C++ Compiler Classic Developer Guide and Reference

1958

__IML_i_to_oct_str, __IML_u_to_oct_str, __IML_ll_to_oct_str, __IML_ull_to_oct_str
Description: These functions are similar to snprintf(s, n, "%[o|llo]", x) in stdio.h. If l < n, all
output characters are stored in s with a null terminator at the end. Otherwise, output characters beyond the
nth character are discarded and no null character is appended at the end. If n is zero, nothing is written, and
s may be a null pointer. l is returned on success, otherwise the result is undefined.

Calling interface:

int __IML_i_to_oct_str(char * s, size_t n, int x);
int __IML_u_to_oct_str(char * s, size_t n, unsigned int x);
int __IML_ll_to_oct_str(char * s, size_t n, long long x);
int __IML_ull_to_oct_str(char * s, size_t n, unsigned long long x);

__IML_i_to_hex_str, __IML_u_to_hex_str, __IML_ll_to_hex_str, __IML_ull_to_hex_str
Description: These functions are similar to snprintf(s, n, "%[x|llx]", x) in stdio.h. If l < n, all
output characters are stored in s with a null terminator at the end. Otherwise, output characters beyond the
nth character are discarded and no null character is appended at the end. If n is zero, nothing is written, and
s may be a null pointer. l is returned on success, otherwise the result is undefined.

Calling interface:

int __IML_i_to_hex_str(char * s, size_t n, int x);
int __IML_u_to_hex_str(char * s, size_t n, unsigned int x);
int __IML_ll_to_hex_str(char * s, size_t n, long long x);
int __IML_ull_to_hex_str(char * s, size_t n, unsigned long long x);

Routines to convert ASCII strings to floating-point numbers
Intel's Numeric String Conversion Library supports the following functions to convert the initial portion of
decimal string s to floating-point number x. If no conversion could be performed, zero is returned. If the
correct value is outside the range of the return type, plus (+) or minus (-) HUGE_VALF, HUGE_VAL, or
HUGE_VALL is returned, and the value of macro ERANGE is stored in errno.

__IML_string_to_float, __IML_string_to_double, __IML_string_to_long_double
Description: These functions are similar to strtof(nptr, endptr), strtod(nptr, endptr), and
strtold(nptr, endptr) in stdlib.h, where endptr points to the object that stores the final part of nptr
when endptr is not a null pointer.

Calling interface:

float __IML_string_to_float(const char * nptr, char ** endptr);
double __IML_string_to_double(const char * nptr, char ** endptr);
long double __IML_string_to_long_double(const char * nptr, char ** endptr);

__IML_str_to_f, __IML_str_to_d, __IML_str_to_ld
Description: These functions convert the initial n decimal digits of the significand string multiplied by 10
raised to power of exponent to floating-point number as return. endptr points to the object that stores the
final part of significand, provided that endptr is not a null pointer.

Calling interface:

float __IML_str_to_f(const char * significand, size_t n, int exponent, char ** endptr);

Compiler Reference

1959

double __IML_str_to_d(const char * significand, size_t n, int exponent, char **
endptr);
long double __IML_str_to_ld(const char * significand, size_t n, int exponent, char **
endptr);

Routines to convert ASCII strings to integers
Intel's Numeric String Conversion Library supports the following functions to convert the initial portion of
string s to integer x. If no conversion could be performed, zero is returned. If the correct value is outside the
range of the return type, INT_MIN, INT_MAX, UINT_MAX, LLONG_MIN, LLONG_MAX, ULLONG_MAX is returned,
and the value of macro ERANGE is stored in errno.

__IML_string_to_int, __IML_string_to_uint, __IML_string_to_int64, __IML_string_to_uint64
Description: These functions are similar to ([unsigned] int)strto[u]l(nptr, endptr, 10) and
strto[u]ll(nptr, endptr, 10) functions in stdlib.h, where endptr points to the object that stores the
final part of nptr when endptr is not a null pointer.

Calling interface:

int __IML_string_to_int(const char * nptr, char ** endptr);
unsigned int __IML_string_to_uint(const char * nptr, char ** endptr);
long long __IML_string_to_int64(const char * nptr, char ** endptr);
unsigned long long __IML_string_to_uint64(const char * nptr, char ** endptr);

__IML_oct_string_to_int, __IML_oct_string_to_uint, __IML_oct_string_to_int64,
__IML_oct_string_to_uint64
Description: These functions are similar to ([unsigned] int)strto[u]l(nptr, endptr, 8) and
strto[u]ll(nptr, endptr, 8) functions in stdlib.h, where endptr points to the object that stores the
final part of nptr when endptr is not a null pointer.

Calling interface:

int __IML_oct_string_to_int(const char * nptr,char ** endptr);
unsigned int __IML_oct_string_to_uint(const char * nptr,char ** endptr);
long long __IML_oct_string_to_int64(const char * nptr,char ** endptr);
unsigned long long __IML_oct_string_to_uint64(const char * nptr,char ** endptr);

__IML_hex_string_to_int, __IML_hex_string_to_uint, __IML_hex_string_to_int64,
__IML_hex_string_to_uint64
Description: These functions are similar to ([unsigned] int)strto[u]l(nptr, endptr, 16) and
strto[u]ll(nptr, endptr, 16) functions in stdlib.h, where endptr points to the object that stores the
final part of nptr when endptr is not a null pointer.

Calling interface:

int __IML_hex_string_to_int(const char * nptr,char ** endptr);
unsigned int __IML_hex_string_to_uint(const char * nptr,char ** endptr);
long long __IML_hex_string_to_int64(const char * nptr,char ** endptr);
unsigned long long __IML_hex_string_to_uint64(const char * nptr,char ** endptr);

__IML_str_to_i, __IML_str_to_u, __IML_str_to_ll, __IML_str_to_ull

 Intel® C++ Compiler Classic Developer Guide and Reference

1960

Description: These functions convert the initial n decimal digits (including an optional + or - sign) pointed to
by nptr to integral values. When endptr is not a null pointer it points to the object that stores the final part of
nptr. These functions treat any leading whitespace as invalid.

Calling interface:

int __IML_str_to_i(const char * nptr, size_t n, char ** endptr);
unsigned int __IML_str_to_u(const char * nptr, size_t n, char ** endptr);
long long __IML_str_to_ll(const char * nptr, size_t n, char ** endptr);
unsigned long long __IML_str_to_ull(const char * nptr, size_t n, char ** endptr);

__IML_oct_str_to_i, __IML_oct_str_to_u, __IML_oct_str_to_ll, __IML_oct_str_to_ull
Description: These functions convert the initial n octal digits (including an optional + or - sign) pointed to
by nptr to integral values. When endptr is not a null pointer it points to the object that stores the final part of
nptr. These functions treat any leading whitespace as invalid.

Calling interface:

int __IML_oct_str_to_i(const char * nptr,size_t n,char ** endptr);
unsigned int __IML_oct_str_to_u(const char * nptr,size_t n,char ** endptr);
long long __IML_oct_str_to_ll(const char * nptr,size_t n,char ** endptr);
unsigned long long __IML_oct_str_to_ull(const char * nptr,size_t n,char ** endptr);

__IML_hex_str_to_i, __IML_hex_str_to_u, __IML_hex_str_to_ll, __IML_hex_str_to_ull
Description: These functions convert the initial n hexadecimal digits (including an optional + or - sign)
pointed to by nptr to integral values. When endptr is not a null pointer it points to the object that stores the
final part of nptr. These functions treat any leading whitespace as invalid.

Calling interface:

int __IML_hex_str_to_i(const char * nptr,size_t n,char ** endptr);
unsigned int __IML_hex_str_to_u(const char * nptr,size_t n,char ** endptr);
long long __IML_hex_str_to_ll(const char * nptr,size_t n,char ** endptr);
unsigned long long __IML_hex_str_to_ull(const char * nptr,size_t n,char ** endptr);

Macros
The Intel® C++ Compiler Classic supports the ISO Standard predefined macros and additional predefined
macros.

ISO Standard Predefined Macros
The ISO/ANSI standard for the C language requires that certain predefined macros be supplied with
conforming compilers.

The compiler includes predefined macros in addition to those required by the standard. The default
predefined macros differ among Windows*, Linux*, and macOS operating systems due to the default /Za
compiler option on Windows*. Differences also exist on Linux* and macOS as a result of the -std compiler
option.

The following table lists the macros that the Intel® C++ Compiler supplies in accordance with this standard:

Macros

1961

Macro Value

__DATE__ The date of compilation as an 11-character string literal in the form mm dd yyyy. If
the day is less than 10 characters, a space is added before the day value.

__FILE__ A string literal representing the name of the file being compiled.

__LINE__ The current line number as a decimal constant.

__STDC__ Defined when compiling a C translation unit with the Za compiler option.
(Windows*)

__STDC_HOSTED__ Defined and value is 1 only when compiling a C translation unit with /Qstd=c99.

__STDC_VERSION_
_

Defined and value is 199901L only when compiling a C translation unit
with /Qstd=c99.

__STDC_WANT_DEC
_FP__

Defined when compiling with option D. (Windows*, Linux*)

Define this macro and include the respective header files to get the functions,
macros, and types that comprise support for decimal floating-point functionality.

__TIME__ The time of compilation as a string literal in the form hh:mm:ss.

See Also
Additional Predefined Macros

Additional Predefined Macros
The compiler supports the predefined macros listed in the table below. The compiler also includes predefined
macros specified by the ISO/ANSI standard.

Unless otherwise stated, the macros are supported on systems based on IA-32 and Intel® 64 architectures.
IA-32 is not available on macOS*.

 Intel® C++ Compiler Classic Developer Guide and Reference

1962

NOTE
The Intel® C++ Compiler defines the same target-architecture macros that GCC does. For -
m feature, GCC defines __FEATURE__.

You can target specific processor architectures by using the -x, -m, and -march compiler options. Each
of these options enables feature-specific macros in the compiler. These macros are used to guard a
section of application code that uses target-specific feature. The following command emits the list of
predefined macros enabled by targeting a specific processor architecture:

icpc -dM -E helloworld.cc -xarch
For example, you could do the following to determine which feature macros would help identify
whether this is ICELAKE-SERVER:

icpc -dM -E helloworld.cc -xSKYLAKE-AVX512 > avx512.txt 2>&1
icpc -dM -E helloworld.cc -xICELAKE-SERVER > icelake.txt 2>&1
diff avx512.txt icelake.txt
 317a318
 > #define AVX512IFMA 1
 320a322,329
 > #define AVX512VBMI 1
 > #define AVX512VPOPCNTDQ 1
 > #define AVX512BITALG 1
 > #define AVX512VBMI2 1
 > #define GFNI 1
 > #define VAES 1
 > #define VPCLMUL 1
 > #define AVX512VNNI 1
 321a331,334
 > #define RDPID 1
 > #define SGX 1
 > #define WBNOINVD 1
 > #define PCONFIG 1

The result of the diff command is the list of feature macros that can be used to differentiate
icelake-server from skylake-avx512.

Macro Description

__APPLE__
(macOS)

Defined as '1'.

__APPLE_CC__
(macOS)

The gcc* build number

__ARRAY_OPERATORS
(Linux*)

Defined as '1'.

__AVX__
(Windows*, Linux, macOS)

On Windows*, defined as '1' when
option /arch:AVX, /QxAVX, or higher processor
targeting options are specified.

On Linux*, defined as '1' when option
-march=corei7-avx, -mavx, -xAVX, or higher
processor targeting options are specified.

Compiler Reference

1963

Macro Description

NOTE
Available only for compilations targeting Intel® 64
architecture.

__AVX2__
(Windows, Linux, macOS)

On Windows, defined as '1' when
option /arch:CORE-AVX2, /QxCORE-AVX2, or
higher processor targeting options are specified.

On Linux, defined as '1' when option
-march=core-avx2, -xCORE-AVX2, or higher
processor targeting options are specified.

NOTE
Available only for compilations targeting Intel® 64
architecture.

__AVX512BW__
(Windows*, Linux, macOS)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Byte and Word instructions.

It is also defined as '1' when option
[Q]xCORE-AVX512 or higher processor-targeting
options are specified.

__AVX512CD__
(Windows*, Linux, macOS)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Conflict Detection instructions.

It is also defined as '1' when option
[Q]xCORE-AVX512, [Q]xCOMMON-AVX512, or higher
processor-targeting options are specified.

__AVX512DQ__
(Windows*, Linux, macOS)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Doubleword and Quadword instructions.

It is also defined as '1' when option
[Q]xCORE-AVX512 or higher processor-targeting
options are specified.

__AVX512ER__
(Windows*, Linux, macOS)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Exponential and Reciprocal instructions.

__AVX512F__
(Windows*, Linux, macOS)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Foundation instructions.

It is also defined as '1' when option
[Q]xCORE-AVX512, [Q]xCOMMON-AVX512, or higher
processor-targeting options are specified.

__AVX512PF__
(Windows*, Linux, macOS)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Prefetch instructions.

__AVX512VL__
(Windows*, Linux, macOS)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Vector Length extensions.

 Intel® C++ Compiler Classic Developer Guide and Reference

1964

Macro Description

It is also defined as '1' when option
[Q]xCORE-AVX512 or higher processor-targeting
options are specified.

__BASE_FILE__
(Linux)

Name of source file

_BOOL
(Linux)

Defined as '1'.

__COUNTER__
(Windows)

Defined as '0'.

__cplusplus
(Linux)

Defined as '1' (for the Intel® C++ Compiler).

__DEPRECATED
(Linux)

Defined as '1'.

__DYNAMIC__
(macOS)

Defined as '1'.

__EDG__
(Windows, Linux, macOS)

Defined as '1'.

__EDG_VERSION__
(Windows, Linux, macOS)

EDG version

__ELF__
(Linux)

Defined as '1' at the start of compilation.

__EXCEPTIONS
(Linux)

Defined as '1' when option fno-exceptions is not
used.

__gnu_linux__
(Linux)

Defined as '1' at the start of compilation.

__GNUC__
(Linux)

The major version number of gcc* installed on the
system or explicitly specified via
–gcc-name/ –gxx-name.

__GNUC_MINOR__
(Linux)

The minor version number of gcc* or g++*
installed on the system or explicitly specified via
–gcc-name/ –gxx-name.

__GNUC_PATCHLEVEL__
(Linux)

The patch level version number of gcc* or g++*
installed on the system or explicitly specified via
–gcc-name/ –gxx-name.

__GNUG__
(Linux)

The major version number of g++* installed on the
system or explicitly specified via
–gcc-name/ –gxx-name.

__GXX_ABI_VERSION
(Linux)

The value of this is dependent on the -fabi-version
option in effect.

Compiler Reference

1965

Macro Description

102: -fabi-version=1 || gcc version < 3.4

1008: gcc version >= 5.0

999999: -fabi-version=0

100? Where ? matches the -fabi-version passed: -
fabi-version=2,3,4,5,6,7,8,9

1002: Gcc version > 3.5 and < 5.0

__HONOR_STD
(Linux, macOS)

Defined as '1'.

__i386__
__i386
i386
(Linux, macOS)

Defined as '1' for compilations targeting IA-32
architecture. IA-32 is not available on macOS*.

__ICC
(Linux, macOS)

The version of the compiler.

NOTE This macro may be affected by compiler
options, such as -no-icc.

__ICL
(Windows)

The version of the compiler.

NOTE This macro may be affected by compiler
options, such as /Qicl-.

_INC_STDIO
(Windows)

Defined, no value.

_INTEGRAL_MAX_BITS
(Windows)

64

__INTEL_COMPILER
(Windows*, Linux, macOS)

The version of the compiler.

NOTE This macro may be affected by compiler
options, such as -no-icc.

__INTEL_COMPILER_BUILD_DATE
(Windows*, Linux, macOS)

The compiler build date. It takes the form
YYYYMMDD, where YYYY is the year, MM is the
month, and DD is the day.

__INTEL_COMPILER_UPDATE
(Windows, Linux, macOS)

Returns the current minor update number of the
compiler, starting at 0.

You can use this macro to differentiate between
compiler updates when you have multiple updates
of the Intel® C++ Compiler installed concurrently.

Example: For Intel® C++ Compiler version XX.0.2,
the macro would preprocess to "2".

 Intel® C++ Compiler Classic Developer Guide and Reference

1966

Macro Description

__INTEL_CXX11_MODE__
(Windows, Linux)

Enables C++11 experimental support for C++
programs.

Defined as '1' when option [Q]std=c++11 is
specified.

__INTEL_MS_COMPAT_LEVEL
(Windows)

Defined as '1'.

Equal to the same value n as specified by option
[Q]msn.

__INTEL_RTTI__
(Linux, macOS)

Defined as '1' when option -fno-rtti is not
specified.

__INTEL_STRICT_ANSI__
(Linux, macOS)

Defined as '1' when option -strict-ansi is
specified.

__linux__
__linux
linux
(Linux)

Defined as '1' at the start of compilation.

__LITTLE_ENDIAN__
(macOS)

Defined as '1'.

__LONG_DOUBLE_SIZE__
(Windows*, Linux, macOS)

On Linux and macOS, defined as 80.

On Windows, defined as 64; defined as 80 when
option /Qlong-double is specified.

__LONG_DOUBLE_64__
(Linux)

When this macro is defined, the long double type is
64-bits.

It is defined when you specify option
-mlong-double-64.

__LONG_MAX__
(Linux)

9223372036854775807L

NOTE
Available only for compilations targeting Intel® 64
architecture.

__LP64__ (Linux)

__LP64 (Linux)

Defined as '1'.

NOTE
Available only for compilations targeting Intel® 64
architecture.

_M_AMD64
(Windows)

Defined as '1' while building code targeting Intel®
64 architecture.

_M_IX86
(Windows)

700

Compiler Reference

1967

Macro Description

_M_X64
(Windows)

Defined as '1' while building code targeting Intel®
64 architecture.

__MACH__
(macOS)

Defined as '1'.

__MMX__
(Linux, macOS)

Defined as '1'.

On Linux, it is available only on systems based on
Intel® 64 architecture.

_MSC_EXTENSIONS
(Windows)

Defined as '1'.

This macro is defined when Microsoft extensions
are enabled.

_MSC_FULL_VER
(Windows)

The Visual C++* version being used.

190022609 for Visual C++* 2015

1800210051 for Visual C++* 2013

_MSC_VER
(Windows)

The Visual C++* version being used.

1900 for Visual C++* 2015

1800 for Visual C++* 2013

_MT
(Windows)

On Windows, defined as '1' when a multithreaded
DLL or library is used (when option /MD[d]
or /MT[d] is specified).

__NO_INLINE__
__NO_MATH_INLINES
__NO_STRING_INLINES
(Linux, macOS)

Defined as '1'.

_OPENMP
(Windows, Linux, macOS)

201611 when you specify option [Q]openmp.

__OPTIMIZE__
(Linux, macOS)

Defined as '1'.

__pentium4
__pentium4__
(Linux, macOS)

Defined as '1'.

_PGO_INSTRUMENT
(Windows, Linux)

Defined as '1' when option [Q]cov-gen or
[Q]prof-gen is specified.

__PIC__
__pic__
(Linux, macOS)

On Linux, defined as '1' when option fPIC is
specified.

On macOS, defined as '1'. Only __PIC__ is allowed
on macOS.

_PLACEMENT_DELETE
(Linux)

Defined as '1'.

 Intel® C++ Compiler Classic Developer Guide and Reference

1968

Macro Description

__PTRDIFF_TYPE__
(Linux, macOS)

On Linux, defined as int on IA-32 architecture;
defined as long on Intel® 64 architecture.

On macOS, defined as int/long.

__QMSPP_
(Windows, macOS)

Defined as '1'.

__REGISTER_PREFIX__
(Linux, macOS)

__SIGNED_CHARS__
(Windows, Linux, macOS)

Defined as '1'.

_SIZE_T_DEFINED
(Windows)

Defined, no value.

__SIZE_TYPE__
(Linux, macOS)

On Linux, defined as unsigned on IA-32
architecture; defined as unsigned long on Intel® 64
architecture.

On macOS, defined as unsigned long.

__SSE__
(Windows, Linux, macOS)

On Linux and macOS, defined as '1' for processors
that support SSE instructions.

On Windows, defined as '1'. It is undefined when
option /arch:IA32 is specified.

__SSE2__
(Windows, Linux, macOS)

On Linux and macOS, defined as '1' for processors
that support Intel® SSE2 instructions.

On Windows, defined as '1' by default or when
option /arch:SSE2, /QxSSE2, /QaxSSE2, or higher
processor targeting options are specified.

__SSE3__
(Windows, Linux, macOS)

On Linux and macOS, defined as '1' for processors
that support Intel® SSE3 instructions.

On Windows, defined as '1' when
option /arch:SSE3, /QxSSE3, or higher processor
targeting options are specified.

__SSE4_1__
(Windows, Linux)

On Linux, defined as '1' for processors that support
Intel® SSE4 instructions.

On Windows, defined as '1' when
option /arch:SSE4.1, /QxSSE4.1, or higher
processor targeting options are specified.

__SSE4_2__
(Windows, Linux)

On Linux, defined as '1' for processors that support
SSSE4 instructions.

On Windows, defined as '1' when
option /arch:SSE4.2, /QxSSE4.2, or higher
processor targeting options are specified.

__SSSE3__
(Windows, Linux, macOS)

On Linux and macOS, defined as '1' for processors
that support SSSE3 instructions.

Compiler Reference

1969

Macro Description

On Windows, defined as '1' when option
arch:SSSE3, QxSSSE3, or higher processor
targeting options are specified.

__STDC__
(macOS)

Defined as '1'.

__STDC_HOSTED__
(macOS)

Defined as '1'.

unix
__unix
__unix__
(Linux)

Defined as '1'.

__USER_LABEL_PREFIX__
(Linux, macOS)

_VA_LIST_DEFINED
(Windows)

Defined, no value.

__VERSION__
(Linux, macOS)

The compiler version string

__w64
(Windows)

Defined, no value.

__WCHAR_MAX__
(macOS)

2147483647

__WCHAR_T
(Linux)

Defined as '1'.

_WCHAR_T_DEFINED
(Windows)

Defined when option /Zc:wchar_t is specified or
"wctype_t" is defined in the header file.

__WCHAR_TYPE__
(Linux, macOS)

On Linux, defined as long int on IA-32 architecture;
defined as int on Intel® 64 architecture.

On macOS, defined as long int.

_WCTYPE_T_DEFINED
(Windows)

Defined when "wctype_t" is defined in the header
file.

_WIN32
(Windows)

Defined as '1' while building code targeting IA-32 or
Intel® 64 architecture.

IA-32 is not available on macOS*.

_WIN64
(Windows)

Defined as '1' while building code targeting Intel®
64 architecture.

__WINT_TYPE__
(Linux, macOS)

Defined as unsigned int.

 Intel® C++ Compiler Classic Developer Guide and Reference

1970

Macro Description

__x86_64
__x86_64__
(Linux, macOS)

Defined as '1' while building code targeting Intel®
64 architecture.

See Also
arch compiler option
march compiler option
m compiler option
intel-extensions, Qintel-extensions compiler option
D compiler option
U compiler option
qopenmp, Qopenmp compiler option
x, Qx compiler option
ISO Standard Predefined Macros

Use Predefined Macros to Specify Intel® Compilers
This topic shows how to use predefined macros to specify an Intel® compiler or version of an Intel compiler.

Predefined Macros to Specify Compiler and Version
When you install both the Intel® oneAPI Base Toolkit (Base Kit) and the Intel® oneAPI HPC Toolkit (HPC Kit),
you will notice that there are three compilers installed:

• Intel® DPC++ Compiler
• Intel® C++ Compiler
• Intel® C++ Compiler Classic

NOTE This topic contains documentation for the Intel® C++ Compiler Classic. For information on
predefined macros for the Intel® C++ Compiler and Intel® DPC++ Compiler, visit Predefined Macros for
Intel® Compilers.

You can use the following predefined macros to invoke a specific compiler or version of a compiler:

Compiler Predefined Macros to
Differentiate from Other
Compiler

Notes

Intel® C++ Compiler Classic • __INTEL_COMPILER
• __INTEL_COMPILER_BUI

LD_DATE

__INTEL_COMPILER is used to select the
compiler.

__INTEL_COMPILER_BUILD_DATE is used to
select the compiler build.

Predefined Macros for Intel® C++ Compiler Classic
The following example uses #if defined(__INTEL_COMPILER) to define a code block specific to the Intel®
C++ Compiler Classic:

// icc/icpc classic only
#if defined(__INTEL_COMPILER)
 // code specific for Intel C++ Compiler Classic below

Compiler Reference

1971

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-reference/macros/use-predefined-macros-for-intel-compilers.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-reference/macros/use-predefined-macros-for-intel-compilers.html

 //

 // example only
 std::cout << "__INTEL_COMPILER_BUILD_DATE: " << __INTEL_COMPILER_BUILD_DATE << std::endl;
 std::cout << "__INTEL_COMPILER: " << __INTEL_COMPILER << std::endl;
 std::cout << "__VERSION__: " << __VERSION__ << std::endl;
#endif

Example output using the Intel® oneAPI Toolkit Gold release with an Intel C++ Compiler Classic patch release
of 2021.1.2:

Linux

__INTEL_COMPILER_BUILD_DATE: 20201208

__INTEL_COMPILER: 2021

__VERSION__: Intel(R) C++ g++ 7.5 mode
Windows

__INTEL_COMPILER_BUILD_DATE: 20201208

__INTEL_COMPILER: 202110

Pragmas
Pragmas are directives that provide instructions to the compiler for use in specific cases. For example, you
can use the novector pragma to specify that a loop should never be vectorized. The keyword #pragma is
standard in the C++ language, but individual pragmas are machine-specific or operating system-specific, and
vary by compiler.

Some pragmas provide the same functionality as compiler options. Pragmas override behavior specified by
compiler options.

Some pragmas are available for both Intel® and non-Intel microprocessors but they may perform additional
optimizations for Intel® microprocessors than they perform for non-Intel microprocessors. Refer to the
individual pragma name for detailed description.

The Intel® C++ Compiler pragmas are categorized as follows:

• Intel-specific Pragmas - pragmas developed or modified by Intel to work specifically with the Intel® C++
Compiler

• Intel Supported Pragmas - pragmas developed by external sources that are supported by the Intel® C++
Compiler for compatibility reasons

Using Pragmas
You enter pragmas into your C++ source code using the following syntax:

#pragma <pragma name>

Individual Pragma Descriptions
Each pragma description has the following details:

Section Description

Short Description Contains a brief description of what the pragma does.

 Intel® C++ Compiler Classic Developer Guide and Reference

1972

Section Description

Syntax Contains the pragma syntax.

Arguments Contains a list of the arguments (parameters).

Description Contains a detailed description of what the pragma does.

Example Contains typical usage example/s.

See Also Contains links or paths to other pragmas or related topics.

Intel-Specific Pragma Reference
Pragmas specific to the Intel® C++ Compiler Classic are listed in the following table.

Some pragmas are available for both Intel® microprocessors and non-Intel microprocessors, but may perform
additional optimizations for Intel® microprocessors than for non-Intel microprocessors.

Pragma Description

alloc_section Allocates one or more variables in the specified section. Controls section
attribute specification for variables.

block_loop/
noblock_loop

Enables or disables loop blocking for the immediately following nested loops.
block_loop enables loop blocking for the nested loops. noblock_loop disables
loop blocking for the nested loops.

code_align Specifies the byte alignment for a loop

distribute_point Instructs the compiler to prefer loop distribution at the location indicated.

inline/noinline/
forceinline

Specifies inlining of all calls in a statement. This also describes pragmas
forceinline and noinline.

intel omp task For Intel legacy tasking, specifies a unit of work, potentially executed by a
different thread.

intel omp taskq For Intel legacy tasking, specifies an environment for the while loop in which to
queue the units of work specified by the enclosed task pragma.

ivdep Instructs the compiler to ignore assumed vector dependencies.

loop_count Specifies the iterations for a for loop.

nofusion Prevents a loop from fusing with adjacent loops.

novector Specifies that a particular loop should never be vectorized.

omp simd early_exit Extends #pragma omp simd, allowing vectorization of multiple exit loops.

optimization_level Controls optimization for one function or all functions after its first occurrence.

optimization_paramete
r

Passes certain information about a function to the optimizer.

optimize Enables or disables optimizations for code after this pragma until another
optimize pragma or end of the translation unit.

parallel/noparallel Resolves dependencies to facilitate auto-parallelization of the immediately
following loop (parallel) or prevents auto-parallelization of the immediately
following loop (noparallel).

Compiler Reference

1973

Pragma Description

prefetch/noprefetch Invites the compiler to issue or disable requests to prefetch data from memory.
This pragma applies only to Intel® Advanced Vector Extensions 512 (Intel®
AVX-512).

simd Enforces vectorization of loops.

simdoff Specifies a block of code in the SIMD loop or SIMD-enabled function that should
be executed serially, in a logical order of SIMD lanes.

unroll/nounroll Tells the compiler to unroll or not to unroll a counted loop.

unroll_and_jam/
nounroll_and_jam

Enables or disables loop unrolling and jamming. These pragmas can only be
applied to iterative for loops.

unused Describes variables that are unused (warnings not generated).

vector Tells the compiler that the loop should be vectorized according to the argument
keywords.

alloc_section
Allocates one or more variables in the specified
section. Controls section attribute specification for
variables.

Syntax

#pragma alloc_section(var1,var2,..., "r;attribute-list")

Arguments

var A variable that can be used to define a symbol in the
section.

"r;attribute-list" A comma-separated list of attributes; defined values
are: 'short' and 'long'.

Description

The alloc_section pragma places the listed variables, var1, var2, etc., in the specified section. This
pragma controls section attribute specification for variables. The compiler decides whether the variable, as
defined by var1, var2, etc., should go to a "data", "bss", or "rdata" section.

The section name must be enclosed in double quotation marks. It should be previously introduced into the
program using #pragma section. The list of comma-separated variable names follows the section name
after a separating comma.

All listed variables must be defined before this pragma, in the same translation unit and in the same scope.
The variables have static storage; their linkage does not matter in C modules, but in C++ modules they are
defined with the extern "C" linkage specification.

Examples
This example shows how to use #pragma alloc_section:

#pragma alloc_section(var1, "r;short")
 int var1 = 20;
#pragma alloc_section(var2, "r;short")
 extern int var2;

 Intel® C++ Compiler Classic Developer Guide and Reference

1974

block_loop/noblock_loop
Enables or disables loop blocking for the immediately
following nested loops. block_loop enables loop
blocking for the nested loops. noblock_loop disables
loop blocking for the nested loops.

Syntax

#pragma block_loop [clause[,clause]...]
#pragma noblock_loop

Arguments

clause Can be any of the following:

factor (expr) expr is a positive scalar constant integer
expression representing the blocking factor
for the specified loops. This clause is
optional. If the factor clause is not present,
the blocking factor will be determined based
on processor type and memory access
patterns and will be applied to the specified
levels in the nested loop following the
pragma.

At most only one factor clause can appear in
a block_loop pragma.

level (level_expr[,
level_expr]...)

level_expr is specified in the form const1 or
const1:const2 where const1 is a positive
integer constant m<= 8 representing the
loop at level m, where the immediate
following loop is level 1. The const2 is a
positive integer constant n<= 8 representing
the loop at level n, where n > m.
const1:const2 represents the nested loops
from level const1 through const2.

The clauses can be specified in any order. If you do not specify any
clause, the compiler chooses the best blocking factor to apply to all
levels of the immediately following nested loop.

Description

The block_loop pragma lets you exert greater control over optimizations on a specific loop inside a nested
loop.

Using a technique called loop blocking, the block_loop pragma separates large iteration counted loops into
smaller iteration groups. Execution of these smaller groups can increase the efficiency of cache space use
and augment performance.

If there is no level and factor clause, the blocking factor will be determined based on the processor's type
and memory access patterns and it will apply to all the levels in the nested loops following this pragma.

You can use the noblock_loop pragma to tune the performance by disabling loop blocking for nested loops.

Compiler Reference

1975

The loop-carried dependence is ignored during the processing of block_loop pragmas.

#pragma block_loop factor(256) level(1) /* applies blocking factor 256 to */
#pragma block_loop factor(512) level(2) /* the top level loop in the following
 nested loop and blocking factor 512 to
 the 2nd level (1st nested) loop */

#pragma block_loop factor(256) level(2)
#pragma block_loop factor(512) level(1) /* levels can be specified in any order */

#pragma block_loop factor(256) level(1:2) /* adjacent loops can be specified as a range */

#pragma block_loop factor(256) /* the blocking factor applies to all levels
 of loop nest */

#pragma block_loop /* the blocking factor will be determined based on
 processor type and memory access patterns and will
 be applied to all the levels in the nested loop
 following the directive */

#pragma noblock_loop /* None of the levels in the nested loop following this
 directive will have a blocking factor applied */

Consider the following:

#pragma block_loop factor(256) level(1:2)
for (j = 1 ; j<n ; j++){
 f = 0 ;
 for (i =1 ;i<n i++){
 f = f + a[i] * b [i] ;
 }
 c [j] = c[j] + f ;
}

The above code produces the following result after loop blocking:

for (jj=1 ; jj<n/256+1 ; jj+){
 for (ii = 1 ; ii<n/256+1 ;ii++){
 for (j = (jj-1)*256+1 ; min(jj*256, n) ;j++){
 f = 0 ;
 for (i = (ii-1)*256+1 ;i<min(ii*256,n) ;i++){
 f = f + a[i] * b [i];
 }
 c[j] = c[j] + f ;
 }
 }
}

code_align
Specifies the byte alignment for a loop

Syntax

#pragma code_align(n)

 Intel® C++ Compiler Classic Developer Guide and Reference

1976

Arguments

n Optional. A positive integer initialization expression indicating the
number of bytes for the minimum alignment boundary. Its value must
be a power of 2, between 1 and 4096, such as 1, 2, 4, 8, and so on.

If you specify 1 for n, no alignment is performed. If you do not specify
n, the default alignment is 16 bytes.

Description

This pragma must precede the loop to be aligned.

If the code is compiled with the Qalign-loops:m option, and a code_align(n) pragma precedes a loop,
the loop is aligned on a max (m, n) byte boundary. If a procedure has the code_align(k) attribute and a
code_align(n) pragma precedes a loop, then both the procedure and the loop are aligned on a max (k, n)
byte boundary.

distribute_point
Instructs the compiler to prefer loop distribution at the
location indicated.

Syntax

#pragma distribute_point

Arguments

None

Description

The distribute_point pragma is used to suggest to the compiler to split large loops into smaller ones; this
is particularly useful in cases where optimizations like vectorization cannot take place due to excessive
register usage.

The following rules apply to this pragma:

• When the pragma is placed inside a loop, the compiler distributes the loop at that point. All loop-carried
dependencies are ignored.

• When inside the loop, pragmas cannot be placed within an if statement.
• When the pragma is placed outside the loop, the compiler distributes the loop based on an internal

heuristic. The compiler determines where to distribute the loops and observes data dependency. If the
pragmas are placed inside the loop, the compiler supports multiple instances of the pragma.

Examples
Use the distribute_point pragma outside the loop:

#define NUM 1024
void loop_distribution_pragma1(
 double a[NUM], double b[NUM], double c[NUM],
 double x[NUM], double y[NUM], double z[NUM]) {
 int i;

 // Before distribution or splitting the loop
 #pragma distribute_point
 for (i=0; i< NUM; i++) {
 a[i] = a[i] + i;
 b[i] = b[i] + i;

Compiler Reference

1977

 c[i] = c[i] + i;
 x[i] = x[i] + i;
 y[i] = y[i] + i;
 z[i] = z[i] + i;
 }
}

Use the distribute_point pragma inside the loop:

#define NUM 1024
void loop_distribution_pragma2(
 double a[NUM], double b[NUM], double c[NUM],
 double x[NUM], double y[NUM], double z[NUM]) {
 int i;

 // After distribution or splitting the loop.
 for (i=0; i< NUM; i++) {
 a[i] = a[i] +i;
 b[i] = b[i] +i;
 c[i] = c[i] +i;
 #pragma distribute_point
 x[i] = x[i] +i;
 y[i] = y[i] +i;
 z[i] = z[i] +i;
 }
}

Use the distribute_point pragma inside and outside the loop:

void dist1(int a[], int b[], int c[], int d[]) {
 #pragma distribute_point
 // Compiler will automatically decide where to
 // distribute. Data dependency is observed.
 for (int i=1; i<1000; i++) {
 b[i] = a[i] + 1;
 c[i] = a[i] + b[i];
 d[i] = c[i] + 1;
 }
}

void dist2(int a[], int b[], int c[], int d[]) {
 for (int i=1; i<1000; i++) {
 b[i] = a[i] + 1;

 #pragma distribute_point
 // Distribution will start here,
 // ignoring all loop-carried dependency.
 c[i] = a[i] + b[i];
 d[i] = c[i] + 1;
 }
}

inline, noinline, forceinline
Specifies inlining of all calls in a statement. This also
describes pragmas forceinline and noinline.

Syntax

#pragma inline [recursive]

 Intel® C++ Compiler Classic Developer Guide and Reference

1978

#pragma forceinline [recursive]
#pragma noinline

Arguments

recursive Indicates that the pragma applies to all of the calls
that are called by these calls, recursively, down the
call chain.

Description

inline, forceinline, and noinline are statement-specific inlining pragmas. Each can be placed before a
C/C++ statement, and it will then apply to all of the calls within a statement and all calls within statements
nested within that statement.

The forceinline pragma indicates that the calls in question should be inlined whenever the compiler is
capable of doing so.

The inline pragma is a hint to the compiler that the user prefers that the calls in question be inlined, but
expects the compiler not to inline them if its heuristics determine that the inlining would be overly aggressive
and might slow down the compilation of the source code excessively, create too large of an executable, or
degrade performance.

The noinline pragma indicates that the calls in question should not be inlined.

These statement-specific pragmas take precedence over the corresponding function-specific pragmas.

Examples
Use the forceinline recursive pragma:

#include <stdio.h>

static void fun(float a[100][100], float b[100][100]) {
 inti , j;
 for (i = 0; i < 100; i++) {
 for (j = 0; j < 100; j++) {
 a[i][j] = 2 * i;
 b[i][j] = 4 * j;
 }
 }
}

static void sun(float a[100][100], float b[100][100]) {
 int i, j;

 for (i = 0; i < 100; i++) {
 for (j = 0; j < 100; j++) {
 a[i][j] = 2 * i;
 b[i][j] = 4 * j;
 }
 fun(a, b);
 }
}
static float a[100][100];
static float b[100][100];

extern int main() {
 int i, j;

Compiler Reference

1979

 for (i = 0; i < 100; i++) {
 for (j = 0; j < 100; j++) {
 a[i][j] = i + j;
 b[i][j] = i - j;
 }
 }
 for (i = 0; i < 99; i++) {
 fun(a, b);
#pragma forceinline recursive
 for (j = 0; j < 99; j++) {
 sun(a, b);
 }
 }
 fprintf(stderr, "%d %d\n", a[99][9], b[99][99]);
}

The forceinline recursive pragma applies to the call 'sun(a,b)' as well as the call 'fun(a,b)' called inside
'sun(a,b)'.

intel omp task
For Intel legacy tasking, specifies a unit of work,
potentially executed by a different thread.

Syntax

#pragma intel omp task [clause[[,]clause]...]
structured-block

Arguments

clause Can be any of the following:

private (variable-list) Creates a private, default-constructed
version for each object in variable-list for the
task. The original object referenced by the
variable has an indeterminate value upon
entry to the construct, must not be modified
within the dynamic extent of the construct,
and has an indeterminate value upon exit
from the construct.

captureprivate
(variable-list)

Creates a private, copy-constructed version
for each object in variable-list for the task
at the time the task is queued. The original
object referenced by each variable retains its
value but must not be modified within the
dynamic extent of the task construct.

Description

The intel omp task pragma specifies a unit of work, potentially executed by a different thread.

 Intel® C++ Compiler Classic Developer Guide and Reference

1980

NOTE
This pragma affects parallelization done using the -qopenmp option. Options that use
OpenMP are available for both Intel® and non-Intel microprocessors, but these options may
perform additional optimizations on Intel® microprocessors than they perform on non-Intel
microprocessors. The list of major, user-visible OpenMP constructs and features that may
perform differently on Intel® vs. non-Intel microprocessors includes: locks (internal and user
visible), the SINGLE construct, barriers (explicit and implicit), parallel loop scheduling,
reductions, memory allocation, and thread affinity and binding.

intel omp taskq
For Intel legacy tasking, specifies an environment for
the while loop in which to queue the units of work
specified by the enclosed task pragma.

Syntax

#pragma intel omp taskq[clause[[,]clause]...]
structured-block

Arguments

clause Can be any of the following:

private (variable-list) Creates a private, default-constructed
version for each object in variable-list for the
taskq. It also implies captureprivate on
each enclosed task. The original object
referenced by each variable has an
indeterminate value upon entry to the
construct, must not be modified within the
dynamic extent of the construct, and has an
indeterminate value upon exit from the
construct.

firstprivate
(variable-list)

Creates a private, copy-constructed version
for each object in variable-list for the taskq.
It also implies captureprivate on each
enclosed task. The original object referenced
by each variable must not be modified within
the dynamic extent of the construct and has
an indeterminate value upon exit from the
construct.

lastprivate
(variable-list)

Creates a private, default-constructed
version for each object in variable-list for the
taskq. It also implies captureprivate on
each enclosed task. The original object
referenced by each variable has an
indeterminate value upon entry to the
construct, must not be modified within the
dynamic extent of the construct, and is copy-

Compiler Reference

1981

assigned the value of the object from the
last enclosed task after that task completes
execution.

reduction (operator :
variable-list)

Performs a reduction operation with the
given operator in enclosed task constructs
for each object in variable-list. operator and
variable-list are defined the same as in the
OpenMP* Specifications.

ordered Organizes ordered constructs in enclosed
task constructs in original sequential
execution order. The taskq pragma, to which
the ordered is bound, must have an
ordered clause present.

nowait Removes the implied barrier at the end of
the taskq. Threads may exit the taskq
construct before completing all the task
constructs queued within it.

Description

The intel omp taskq pragma specifies the environment within which the enclosed units of work (tasks) are
to be executed. From among all the threads that encounter a intel omp taskq pragma, one is chosen to
execute it initially.

Conceptually, the intel omp taskq pragma causes an empty queue to be created by the chosen thread,
and then the code inside the taskq block is executed as single-threaded. All the other threads wait for work
to be queued on the conceptual queue.

The intel omp taskq pragma specifies a unit of work, potentially executed by a different thread. When a
task pragma is encountered lexically within a taskq block, the code inside the task block is conceptually
queued on the queue associated with the taskq. The conceptual queue is disbanded when all work queued
on it finishes, and when the end of the taskq block is reached.

NOTE
This pragma affects parallelization done using the Qopenmp (Windows*) or qopenmp (Linux*
or macOS) option. Options that use OpenMP* are available for both Intel® and non-Intel
microprocessors, but these options may perform additional optimizations on Intel®
microprocessors than they perform on non-Intel microprocessors. The list of major, user-
visible OpenMP* constructs and features that may perform differently on Intel® vs. non-Intel
microprocessors includes: locks (internal and user visible), the SINGLE construct, barriers
(explicit and implicit), parallel loop scheduling, reductions, memory allocation, and thread
affinity and binding.

ivdep
Instructs the compiler to ignore assumed vector
dependencies.

Syntax

#pragma ivdep

 Intel® C++ Compiler Classic Developer Guide and Reference

1982

Arguments

None

Description

The ivdep pragma instructs the compiler to ignore assumed vector dependencies. To ensure correct code,
the compiler treats an assumed dependence as a proven dependence, which prevents vectorization. This
pragma overrides that decision. Use this pragma only when you know that the assumed loop dependencies
are safe to ignore.

In addition to the ivdep pragma, the vector pragma can be used to override the efficiency heuristics of the
vectorizer.

NOTE
The proven dependencies that prevent vectorization are not ignored, only assumed dependencies are
ignored.

Examples
The loop in this example will not vectorize without the ivdep pragma, since the value of k is not known;
vectorization would be illegal if k < 0:

void ignore_vec_dep(int *a, int k, int c, int m) {
 #pragma ivdep
 for (int i = 0; i < m; i++)
 a[i] = a[i + k] * c;
}

The pragma binds only the for loop contained in current function. This includes a for loop contained in a
sub-function called by the current function:

#pragma ivdep
 for (i=1; i<n; i++) {
 e[ix[2][i]] = e[ix[2][i]]+1.0;
 e[ix[3][i]] = e[ix[3][i]]+2.0;
}

This loop requires the parallel option in addition to the ivdep pragma to indicate there is no loop-carried
dependencies:

#pragma ivdep
 for (j=0; j<n; j++) { a[b[j]] = a[b[j]] + 1; }

This loop requires the parallel option in addition to the ivdep pragma to ensure there is no loop-carried
dependency for the store into a().

See Also
Function Annotations and the SIMD Directive for Vectorization
novector pragma
vector pragma

loop_count
Specifies the iterations for a for loop.

Syntax

#pragma loop_count(n)

Compiler Reference

1983

#pragma loop_count=n
or

#pragma loop_count(n1[, n2]...)
#pragma loop_count=n1[, n2]...
or

#pragma loop_count min(n),max(n),avg(n)
#pragma loop_count min=n, max=n, avg=n

Arguments

(n) or =n A non-negative integer value. The compiler will
attempt to iterate the next loop the number of times
specified in n; however, the number of iterations is
not guaranteed.

(n1[,n2]...) or = n1[,n2]... Non-negative integer values. The compiler will
attempt to iterate the next loop the number of time
specified by n1 or n2, or some other unspecified
number of times. This behavior allows the compiler
some flexibility in attempting to unroll the loop. The
number of iterations is not guaranteed.

min(n), max(n), avg(n) or min=n, max=n, avg=n Non-negative integer values. Specify one or more in
any order without duplication. The compiler insures
the next loop iterates for the specified maximum,
minimum, or average number (n1) of times. The
specified number of iterations is guaranteed for min
and max.

Description

The loop_count pragma specifies the minimum, maximum, or average number of iterations for a for loop.
In addition, a list of commonly occurring values can be specified to help the compiler generate multiple
versions and perform complete unrolling.

You can specify more than one pragma for a single loop; however, do not duplicate the pragma.

Examples
Use the loop_count pragma to iterate through the loop a minimum of three, a maximum of ten, and
average of five times:

#include <stdio.h>
int i;
int mysum(int start, int end, int a) {
 int iret=0;
 #pragma loop_count min(3), max(10), avg(5)
 for (i=start;i<=end;i++)
 iret += a;
 return iret;
}

int main() {
 int t;
 t = mysum(1, 10, 3);
 printf("t1=%d\r\n",t);

 Intel® C++ Compiler Classic Developer Guide and Reference

1984

 t = mysum(2, 6, 2);
 printf("t2=%d\r\n",t);
 t = mysum(5, 12, 1);
 printf("t3=%d\r\n",t);
}

nofusion
Prevents a loop from fusing with adjacent loops.

Syntax

#pragma nofusion

Arguments

None

Description

The nofusion pragma lets you fine tune your program on a loop-by-loop basis. This pragma should be
placed immediately before the loop that should not be fused.

Examples
#define SIZE 1024

int sub () {
int B[SIZE], A[SIZE];
 int i, j, k=0;
 for(j=0; j<SIZE; j++)
 A[j] = A[j] + B[j];

#pragma nofusion
 for (i=0; i<SIZE; i++)
 k += A[i] + 1;
 return k;
}

novector
Specifies that a particular loop should never be
vectorized.

Syntax

#pragma novector

Arguments

None

Description

The novector pragma specifies that a particular loop should never be vectorized, even if it is legal to do so.
When avoiding vectorization of a loop is desirable (when vectorization results in a performance regression
rather than improvement), the novector pragma can be used in the source text to disable vectorization of a
loop. This behavior is in contrast to the vector always pragma.

Compiler Reference

1985

Examples
Use the novector pragma:

void foo(int lb, int ub) {
 #pragma novector
 for(j=lb; j<ub; j++) { a[j]=a[j]+b[j]; }
}

When the trip count (ub - lb) is too low to make vectorization worthwhile, you can use the novector
pragma to tell the compiler not to vectorize, even if the loop is considered vectorizable.

See Also
Function Annotations and the SIMD Directive for Vectorization
vector pragma

omp simd early_exit
Extends #pragma omp simd, allowing vectorization of
multiple exit loops.

Syntax

#pragma omp simd early_exit

Description

Extends #pragma omp simd allowing vectorization of multiple exit loops. When this clause is specified:

• Each operation before last lexical early exit of the loop may be executed as if early exit were not triggered
within the SIMD chunk.

• After the last lexical early exit of the loop, all operations are executed as if the last iteration of the loop
was found.

• Each list item specified in the linear clause is computed based on the last iteration number upon exiting
the loop.

• The last value for linear clauses and conditional lastprivates clauses are preserved with respect to scalar
execution.

• The last value for reductions clauses are computed as if the last iteration in the last SIMD chunk was
executed up on exiting the loop.

• The shared memory state may not be preserved with regard to scalar execution.
• Exceptions are not allowed.

Examples
The following example demonstrates how to use this pragma.

In the following example, the pragma specifies that the vector execution of the for loop is safe even though
the loop may exit before the loop upper bound condition j < ub becomes false. Suppose j1 is the smallest
j, between lb and ub, such that j satisfies b[j] <= 0 . If j1 and j1+1, j1+2, … are within the same (last)
SIMD chunk, read of b[j1], b[j1+1], b[j1+2], … and the subsequent evaluation of <= 0 will happen
unconditionally, unlike the scalar execution of the same loop. Safety of such vector evaluation is
programmer's responsibility. If necessary, simdlen() clause can be used to control the SIMD chunk size.

void foo(int lb, int ub) {
 float a = 0;
 #pragma omp simd early_exit reduction(+:a)
 for(j=lb; j<ub; j++) {
 if (b[j] <= 0)
 break;

 Intel® C++ Compiler Classic Developer Guide and Reference

1986

 a += b[j];
 }
}

optimize
Enables or disables optimizations for code after this
pragma until another optimize pragma or end of the
translation unit.

Syntax

#pragma optimize("", on|off)

Arguments

The compiler ignores first argument values. Valid second arguments for optimize are:

off Disables optimization

on Enables optimization

Description

The optimize pragma is used to enable or disable optimizations.

Specifying #pragma optimize("", off) disables optimization until either the compiler finds a matching
#pragma optimize("", on) statement or until the compiler reaches the end of the translation unit.

Examples
In this example, optimizations are disabled for the alpha() function but not for the omega() function:

#pragma optimize("", off)
 alpha() { ... }

#pragma optimize("", on)
 omega() { ... }

In this example, optimizations are disabled for both the alpha() and omega() functions:

#pragma optimize("", off)
 alpha() { ... }
 omega() { ... }

optimization_level
Controls optimization for one function or all functions
after its first occurrence.

Syntax

#pragma [intel|GCC] optimization_level n

Arguments

intel|GCC Indicates the interpretation to use

n An integer value specifying an optimization level;
valid values are:

Compiler Reference

1987

• 0: same optimizations as option -O0 (Linux* and
macOS) or /Od (Windows*)

• 1: same optimizations as option O1
• 2: same optimizations as option O2
• 3: same optimizations as option O3

Description

The optimization_level pragma is used to restrict optimization for a specific function while optimizing the
remaining application using a different, higher optimization level. For example, if you specify option level O3
for the application and specify #pragma optimization_level 1, the marked function will be optimized at
option level O1, while the remaining application will be optimized at the higher level.

In general, this pragma optimizes the function at the level specified as n; however, certain compiler
optimizations, like Inter-procedural Optimization (IPO), are not enabled or disabled during translation unit
compilation. For example, if you enable IPO and a specific optimization level, IPO is enabled even for the
function targeted by this pragma; however, IPO might not be fully implemented regardless of the
optimization level specified at the command line. The reverse is also true.

Scope of optimization restriction

On Linux* and macOS systems, the scope of the optimization restriction can be affected by arguments
passed to the -pragma-optimization-level compiler option as explained in the following table.

Syntax Behavior

#pragma intel
optimization_level n

Applies the pragma only to the next function, using the specified
optimization level, regardless of the argument passed to the
-pragma-optimization-level option.

#pragma GCC
optimization_level n or
#pragma GCC
optimization_level reset

Applies the pragma to all subsequent functions, using the specified
optimization level, regardless of the argument passed to the
-pragma-optimization-level option.

Specifying reset reverses the effect of the most recent #pragma GCC
optimization_level statement, by returning to the optimization level
previously specified.

#pragma
optimization_level n

Applies either the Intel® C++ Compiler Classic implementation or the
GCC* interpretation. Interpretation depends on the argument passed to
the -pragma-optimization-level option.

NOTE
On Windows* systems, the pragma always uses the intel interpretation; the pragma is applied only
to the next function.

Examples
Place the pragma immediately before the function being affected.

This example shows the intel interpretation of the optimization_level pragma:

#pragma intel optimization_level 1
 gamma() { ... }

 Intel® C++ Compiler Classic Developer Guide and Reference

1988

This example shows GCC* interpretation of the optimization_level pragma:

#pragma GCC optimization_level 1
 gamma() { ... }

optimization_parameter
Passes certain information about a function to the
optimizer.

Syntax

Linux and macOS:

#pragma intel optimization_parameter target_arch=<CPU>
#pragma intel optimization_parameter inline-max-total-size=n
#pragma intel optimization_parameter inline-max-per-routine=n
Windows:

#pragma [intel] optimization_parameter target_arch=<CPU>
#pragma [intel] optimization_parameter inline-max-total-size=n
#pragma [intel] optimization_parameter inline-max-per-routine=n

Arguments

target_arch=<CPU> For the list of CPUs, see compiler options -m (or /arch) and [Q]x.

inline-max-per-routine=n Specifies the maximum number of times the inliner may inline into the
routine. n is one of the following:

• A non-negative integer constant that specifies the maximum
number of times the inliner may inline into the function. If you
specify zero, no inlining is done into the function.

• The keyword unlimited, which means that there is no limit to the
number of times the inliner may inline into the function.

For more information, see option [Q]inline-max-per-routine.

inline-max-total-size=n Specifies how much larger a function can normally grow when inline
expansion is performed. n is one of the following:

• A non-negative integer constant that specifies the permitted
increase in the function's size when inline expansion is performed.
If you specify zero, no inlining is done into the function.

• The keyword unlimited, which means that there is no limit to the
size a function may grow when inline expansion is performed.

For more information, see option [Q]inline-max-total-size.

Description

The intel optimization_parameter target_arch pragma controls the -m (or /arch) option settings at
the function level, overriding the option values specified at the command-line.

Place #pragma intel optimization_parameter target_arch=<CPU> at the head of a function to get
the compiler to target that function for a specified instruction set. The pragma works like the -m (or /arch)
and [Q]x options, but applies only to the function before which it is placed.

Compiler Reference

1989

The pragmas intel optimization_parameter inline-max-total-size=n and intel
optimization_parameter inline-max-per-routine=n specify information used during inlining into a
function.

Examples
This example shows targeting code for Intel® Advanced Vector Extensions (Intel® AVX) processors:

For C++:
icc -mAVX foo.c // on Linux andmacOS
 -mAVX foo.c // on Linux and macOS

This example code targets just the function bar for Intel® AVX processors, regardless of the command line
options used:

#pragma intel optimization_parameter target_arch=AVX
void bar() { ... }

See Also
arch compiler option
m compiler option
Processor Targeting
ax, Qax
 compiler option

inline-max-per-routine, Qinline-max-per-routine
 compiler option

inline-max-total-size, Qinline-max-total-size
 compiler option

parallel/noparallel
Resolves dependencies to facilitate auto-parallelization
of the immediately following loop (parallel) or
prevents auto-parallelization of the immediately
following loop (noparallel).

Syntax

#pragma parallel [clause[[,]clause]...]
#pragma noparallel

Arguments

clause Can be any of the following:

always
[assert]

Overrides compiler heuristics that
estimate whether parallelizing a
loop would increase performance.
Using this clause on a loop that
the compiler finds to be
parallelizable tells the compiler to
parallelize the loop even if doing
so might not improve
performance.

 Intel® C++ Compiler Classic Developer Guide and Reference

1990

If assert is added, the compiler
will generate an error-level
assertion test to display a
message saying that the compiler
efficiency heuristics indicate that
the loop cannot be vectorized.

firstprivate
(var
[:expr] ...)text

Provides a superset of the
functionality provided by the
private clause. Variables that
appear in a firstprivate list are
subject to private clause
semantics. In addition, its initial
value is broadcast to all private
instances upon entering the
parallel loop.

lastprivate
(var [:expr] ...)

Provides a superset of the
functionality provided by the
private clause. Variables that
appear in a lastprivate list are
subject to private clause
semantics. In addition, when the
parallel region is exited, each
variable has the value that results
from the sequentially last iteration
of the loop up exiting the parallel
loop.

num_threads (n) Parallelizes the loop across n
threads, where n is an integer.

private (var
[:expr] ...)

Specifies a list of scalar and array
variables (var) to privatize. An
array or pointer variable can take
an optional argument (expr)
which is an int32 or int64
expression denoting the number
of array elements to privatize.

Like the private clause, both the firstprivate,
and the lastprivate clauses specify a list of scalar
and array variables (var) to privatize. An array or
pointer variable can take an optional argument (expr)
which is an int32 or int64 expression denoting the
number of array elements to privatize.

The same var is not allowed to appear in both the
private and the lastprivate clauses for the same
loop.

The same var is not allowed to appear in both the
private and the firstprivate clauses for the same
loop.

Compiler Reference

1991

When expr is absent, the rules on var are the same as
with OpenMP. The rules to be observed are as follows:

• var must not be part of another variable (as an
array or structure element)

• var must not have a const-qualified type unless it
is of class type with a mutable member

• var must not have an incomplete type or a
reference type

• if var is of class type (or array thereof), then it
requires an accessible, unambiguous default
constructor for the class type. Furthermore, if this
var is in a lastprivate clause, then it also
requires an accessible, unambiguous copy
assignment operator for the class type.

When expr is present, the same rules apply, but var
must be an array or a pointer variable.

• If var is an array, then only its first expr elements
are privatized. Without expr, the entire array is
privatized.

• If var is a pointer, then the first expr elements are
privatized (element size given by the pointer’s
target type). Without expr, only the pointer
variable itself is privatized.

• Program behavior is undefined if expr evaluates to
a non-positive value, or if it exceeds the array size.

Description

The parallel pragma instructs the compiler to ignore potential dependencies that it assumes could exist
and which would prevent correct parallelization in the immediately following loop. However, if dependencies
are proven, they are not ignored.

The noparallel pragma prevents autoparallelization of the immediately following loop.

These pragmas take effect only if autoparallelization is enabled by the [Q]parallel compiler option. Using
this option enables parallelization for both Intel® microprocessors and non-Intel microprocessors. The
resulting executable may get additional performance gain on Intel® microprocessors than on non-Intel
microprocessors. The parallelization can also be affected by certain options, such as the arch, m, or [Q]x
compiler options.

Caution
Use this pragma with care. If a loop has cross-iteration dependencies, annotating it with this pragma
can lead to incorrect program behavior.

Only use the parallel pragma if it is known that parallelizing the annotated loop will improve its
performance.

Examples
This example shows how to use the parallel pragma:

void example(double *A, double *B, double *C, double *D) {
 int i;
 #pragma parallel

 Intel® C++ Compiler Classic Developer Guide and Reference

1992

 for (i=0; i<10000; i++) {
 A[i] += B[i] + C[i];
 C[i] += A[i] + D[i];
 }
}

See Also
arch
m
parallel, Qparallel
x, Qx

prefetch/noprefetch
Invites the compiler to issue or disable requests to
prefetch data from memory. This pragma applies only
to Intel® Advanced Vector Extensions 512 (Intel®
AVX-512).

Syntax

#pragma prefetch
#pragma prefetch *:hint[:distance]
#pragma prefetch [var1 [: hint1 [: distance1]] [, var2 [: hint2 [: distance2]]]...]
#pragma noprefetch [var1 [, var2]...]

Arguments

var An optional memory reference (data to be prefetched)

hint An optional hint to the compiler to specify the type of
prefetch. Possible values:

• 1: For integer data that will be reused
• 2: For integer and floating point data that will be

reused from L2 cache
• 3: For data that will be reused from L3 cache
• 4: For data that will not be reused

To use this argument, you must also specify var.

distance An optional integer argument with a value greater
than 0. It indicates the number of loop iterations
ahead of which a prefetch is issued, before the
corresponding load or store instruction. To use this
argument, you must also specify var and hint.

Description

The prefetch pragma hints to the compiler to generate data prefetches for some memory references. These
hints affect the heuristics used in the compiler. Prefetching data can minimize the effects of memory latency.

If you specify the prefetch pragma with no arguments, all arrays accessed in the immediately following loop
are prefetched.

Compiler Reference

1993

If the loop includes the expression A(j), placing #pragma prefetch A in front of the loop instructs the
compiler to insert prefetches for A(j + d) within the loop. Here, d is the number of iterations ahead of
which to prefetch the data, and is determined by the compiler.

If you specify #pragma prefetch *, then hint and distance prefetches all array accesses in the loop.

To use these pragmas, compiler option [Q]opt-prefetch must be set (it is turned on by default if the
compiler general optimization level is set at option O2 or higher).

The noprefetch pragma hints to the compiler not to generate data prefetches for some memory references.
This affects the heuristics used in the compiler.

Examples
Use the prefetch pragma:

#pragma prefetch htab_p:1:30
#pragma prefetch htab_p:0:6

// Issue vprefetch1 for htab_p with a distance of 30 vectorized iterations ahead
// Issue vprefetch0 for htab_p with a distance of 6 vectorized iterations ahead
// If pragmas are not present, compiler chooses both distance values

for (j=0; j<2*N; j++) { htab_p[i*m1 + j] = -1; }
Use noprefetch and prefetch pragmas together:

#pragma noprefetch b
#pragma prefetch a
for(i=0; i<m; i++) { a[i]=b[i]+1; }

Use noprefetch and prefetch pragmas together:

for (i=i0; i!=i1; i+=is) {

float sum = b[i];
int ip = srow[i];
int c = col[ip];

#pragma noprefetch col
#pragma prefetch value:1:80
#pragma prefetch x:1:40

for(; ip<srow[i+1]; c=col[++ip])
 sum -= value[ip] * x[c];
 y[i] = sum;
}

simd
Enforces vectorization of loops.

Syntax

#pragma simd [clause[[,] clause]...]

Arguments

clause Can be any of the following:

 Intel® C++ Compiler Classic Developer Guide and Reference

1994

vectorlength (n1[,
n2]...)

Where n is a vector length (VL). It must be
an integer that is a power of 2; the value
must be 2, 4, 8, or 16. If you specify more
than one n, the vectorizor will choose the VL
from the values specified.

Causes each iteration in the vector loop to
execute the computation equivalent to n
iterations of scalar loop execution. Multiple
vectorlength clauses are merged as a
union.

vectorlengthfor
(data type)

Where data type must be one of built-in
integer types (8-, 16-, 32-, or 64-bit),
pointer types (treated as pointer-sized
integer), floating point types (32- or 64-bit),
or complex types (64- or 128-bit).
Otherwise, behavior is undefined.

Causes each iteration in the vector loop to
execute the computation equivalent to n
iterations of scalar loop execution where n is
computed from
size_of_vector_register/sizeof(data
type).

For example, vectorlengthfor(float)
results in n=4 for Intel® Streaming SIMD
Extensions (Intel® SSE2) to Intel SSE4.2
targets (packed float operations available on
128bit XMM registers) and n=8 for an Intel®
Advanced Vector Extensions (Intel® AVX)
target (packed float operations available on
256bit YMM registers).
vectorlengthfor(int) results in n=4 for
Intel SSE2 to Intel AVX targets.

vectorlength() and vectorlengthfor()
clauses are mutually exclusive. In other
words, the vectorlengthfor() clause may
not be used with the vectorlength()
clause, and vice versa.

Behavior for multiple vectorlengthfor
clauses is undefined.

private (var1[,
var2]...)

Where var is a scalar variable.

Causes each variable to be private to each
iteration of a loop. Unless the variable
appears in firstprivate clause, the initial
value of the variable for the particular
iteration is undefined. Unless the variable
appears in lastprivate clause, the value of
the variable upon exit of the loop is
undefined. Multiple private clauses are
merged as a union.

Compiler Reference

1995

NOTE
Execution of the SIMD loop with
firtsprivate/lastprivate clauses
may be different from serial execution of
the same code even if the loop fails to
vectorize.

A variable in a private clause cannot
appear in a linear, reduction,
firstprivate, or lastprivate clause.

firstprivate (var1[,
var2]...)

Provides a superset of the functionality
provided by the private clause. Variables
that appear in a firstprivate list are
subject to private clause semantics. In
addition, its initial value is broadcast to all
private instances for each iteration upon
entering the SIMD loop.

A variable in a firstprivate clause can
appear in a lastprivate clause.

A variable in a firstprivate clause cannot
appear in a linear, reduction, or private
clause.

lastprivate (var1[,
var2]...)

Provides a superset of the functionality
provided by the private clause. Variables
that appear in a lastprivate list are
subject to private clause semantics. In
addition, when the SIMD loop is exited, each
variable has the value that resulted from the
sequentially last iteration of the SIMD loop
(which may be undefined if the last iteration
does not assign to the variable).

A variable in a lastprivate clause can
appear in a firstprivate clause.

A variable in a lastprivate clause cannot
appear in a linear, reduction, or private
clause.

linear (var1:step1
[,var2:step2]...)

Where var is a scalar variable and step is a
compile-time positive, integer constant
expression.

For each iteration of a scalar loop, var1 is
incremented by step1, var2 is incremented
by step2, and so on. Therefore, every
iteration of the vector loop increments the
variables by VL*step1, VL*step2, …, to
VL*stepN, respectively. If more than one

 Intel® C++ Compiler Classic Developer Guide and Reference

1996

step is specified for a var, a compile-time
error occurs. Multiple linear clauses are
merged as a union.

A variable in a linear clause cannot appear
in a reduction, private, firstprivate,
or lastprivate clause.

reduction (oper:var1
[,var2]…)

Where oper is a reduction operator and var
is a scalar variable.

Applies the vector reduction indicated by
oper to var1, var2, …, varN. The simd
pragma may have multiple reduction clauses
with the same or different operators. If more
than one reduction operator is associated
with a var, a compile-time error occurs.

A variable in a reduction clause cannot
appear in a linear, private,
firstprivate, or lastprivate clause.

[no]assert Directs the compiler to assert or not to
assert when the vectorization fails. The
default is noassert. If this clause is
specified more than once, a compile-time
error occurs.

[no]vecremainder Instructs the compiler to vectorize or not to
vectorize the remainder loop when the
original loop is vectorized. See the
description of the vector pragma for more
information.

Description

The simd pragma is used to guide the compiler to vectorize more loops. Vectorization using the simd pragma
complements (but does not replace) the fully automatic approach.

Without explicit vectorlength() and vectorlengthfor() clauses, the compiler will choose a
vectorlength using its own cost model. Misclassification of variables into private, firstprivate,
lastprivate, linear, and reduction, or lack of appropriate classification of variables may cause
unintended consequences such as runtime failures and/or incorrect result.

You can only specify a particular variable in at most one instance of a private, linear, or reduction
clause.

If the compiler is unable to vectorize a loop, a warning will be emitted (use the assert clause to make it an
error).

If the vectorizer has to stop vectorizing a loop for some reason, the fast floating-point model is used for the
SIMD loop.

The vectorization performed on this loop by the simd pragma overrides any setting you may specify for
options -fp-model (Linux* and macOS) and /fp (Windows*) for this loop.

Note that the simd pragma may not affect all auto-vectorizable loops. Some of these loops do not have a
way to describe the SIMD vector semantics.

The following restrictions apply to the simd pragma:

Compiler Reference

1997

• The countable loop for the simd pragma has to conform to the for-loop style of an OpenMP worksharing
loop construct. Additionally, the loop control variable must be a signed integer type.

• The vector values must be signed 8-, 16-, 32-, or 64-bit integers, single or double-precision floating point
numbers, or single or double-precision complex numbers.

• A SIMD loop may contain another loop (for, while, do-while) in it. Goto out of such inner loops are not
supported. Break and continue are supported.

NOTE Inlining can create such an inner loop, which may not be obvious at the source level.

• A SIMD loop performs memory references unconditionally. Therefore, all address computations must
result in valid memory addresses, even though such locations may not be accessed if the loop is executed
sequentially.

To disable transformations that enables more vectorization, specify the -vec -no-simd (Linux* and macOS)
or /Qvec /Qno-simd (Windows*) options.

User-mandated vectorization, also called SIMD vectorization can assert or not assert an error if a #pragma
simd annotated loop fails to vectorize. By default, the simd pragma is set to noassert, and the compiler will
issue a warning if the loop fails to vectorize. To direct the compiler to assert an error when the #pragma
simd annotated loop fails to vectorize, add the assert clause to the simd pragma. If a simd pragma
annotated loop is not vectorized by the compiler, the loop holds its serial semantics.

Examples
This example shows how to use the simd pragma:

 void add_floats(float *a, float *b, float *c, float *d, float *e, int n){
 int i;
#pragma simd
 for (i=0; i<n; i++){
 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];
 }
}

In the example, the function add_floats() uses too many unknown pointers for the compiler's automatic
runtime independence check optimization to kick-in. The programmer can enforce the vectorization of this
loop by using the simd pragma to avoid the overhead of runtime check.

See Also
Function Annotations and the SIMD Directive for Vectorization
fp-model, fp compiler option
qsimd-honor-fp-model, Qsimd-honor-fp-model compiler option
qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction compiler option
vec, Qvec compiler option
vector pragma

simdoff
Specifies a block of code in the SIMD loop or SIMD-
enabled function that should be executed serially, in a
logical order of SIMD lanes.

Syntax

#pragma simdoff
structured-block

 Intel® C++ Compiler Classic Developer Guide and Reference

1998

Arguments

None.

Description

The simdoff block will use a single SIMD lane to execute operations in the order of the loop iterations, or
logical lanes of a SIMD-enabled function. This preserves ordering of operations in the block with respect to
each other, and correlates with iteration space of the enclosing SIMD construct. The ordered simd block is
executed in order, with respect to each SIMD lane or each loop iteration. The operations within the ordered
simd or simdoff block can be re-ordered by optimizations, as long as the original execution semantics are
preserved.

simdoff blocks allow the isolation and resolution of situations prohibited from SIMD execution. This includes
cross-iteration data dependencies, function calls with side effects, such as OpenMP, oneTBB and native thread
synchronization primitives.

Examples
simdoff sections are useful for resolving cross-iteration data dependencies in otherwise data-parallel
computations. For example, the section may handle histogram updates as shown in this example code:

#pragma simd
for (int i = 0; i < N; i++)
{
 float amount = compute_amount(i);
 int cluster = compute_cluster(i);
#pragma simdoff
 {
 totals[cluster] += amount; // Requires ordering to process multiple updates for the same
cluster
 }
}

unroll/nounroll
Tells the compiler to unroll or not to unroll a counted
loop.

Syntax

#pragma unroll
#pragma unroll(n)
#pragma nounroll

Arguments

n The unrolling factor representing the number of times
to unroll a loop; it must be an integer constant from 0
through 255.

Description

The unroll[n] pragma tells the compiler how many times to unroll a counted loop.

The unroll pragma must precede the for statement for each for loop it affects. If n is specified, the
optimizer unrolls the loop n times. If n is omitted or if it is outside the allowed range, the optimizer assigns
the number of times to unroll the loop.

Compiler Reference

1999

This pragma is supported only when option O3 is set. The unroll pragma overrides any setting of loop
unrolling from the command line.

The pragma can be applied for the innermost loop nest as well as for the outer loop nest. If applied to outer
loop nests, the current implementation supports complete outer loop unrolling. The loops inside the loop nest
are either not unrolled at all or completely unrolled. The compiler generates correct code by comparing n and
the loop count.

When unrolling a loop increases register pressure and code size it may be necessary to prevent unrolling of a
loop. In such cases, use the nounroll pragma. The nounroll pragma instructs the compiler not to unroll a
specified loop.

Examples
Use the unroll pragma for innermost loop unrolling:

void unroll(int a[], int b[], int c[], int d[]) {
 #pragma unroll(4)
 for (int i = 1; i < 100; i++) {
 b[i] = a[i] + 1;
 d[i] = c[i] + 1;
 }
}

Use the unroll pragma for outer loop unrolling:

int m = 0;
int dir[4]= {1,2,3,4};
int data[10];
#pragma unroll (4) // outer loop unrolling
 for (int i = 0; i < 4; i++) {
 for (int j = dir[i]; data[j]==N ; j+=dir[i])
 m++;
 }

When you place the unroll pragma before the first for loop, it causes the compiler to unroll the outer loop
completely. If an unroll pragma is placed before the inner for loop as well as before the outer for loop,
the compiler ignores the inner for loop unroll pragma. If the unroll pragma is placed only for the
innermost loop, the compiler unrolls the innermost loop according to some factor.

unroll_and_jam/nounroll_and_jam
Enables or disables loop unrolling and jamming. These
pragmas can only be applied to iterative for loops.

Syntax

#pragma unroll_and_jam
#pragma unroll_and_jam (n)
#pragma nounroll_and_jam

Arguments

n The unrolling factor representing the number of times
to unroll a loop; it must be an integer constant from 0
through 255

 Intel® C++ Compiler Classic Developer Guide and Reference

2000

Description

The unroll_and_jam pragma partially unrolls one or more loops higher in the nest than the innermost loop
and fuses/jams the resulting loops back together. This transformation allows more reuses in the loop.

This pragma is not effective on innermost loops. Ensure that the immediately following loop is not the
innermost loop after compiler-initiated interchanges are completed.

Specifying this pragma is a hint to the compiler that the unroll and jam sequence is legal and profitable. The
compiler enables this transformation whenever possible.

The unroll_and_jam pragma must precede the for statement for each for loop it affects. If n is specified,
the optimizer unrolls the loop n times. If n is omitted or if it is outside the allowed range, the optimizer
assigns the number of times to unroll the loop. The compiler generates correct code by comparing n and the
loop count.

This pragma is supported only when compiler option O3 is set. The unroll_and_jam pragma overrides any
setting of loop unrolling from the command line.

When unrolling a loop increases register pressure and code size it may be necessary to prevent unrolling of a
nested loop or an imperfect nested loop. In such cases, use the nounroll_and_jam pragma. The
nounroll_and_jam pragma hints to the compiler not to unroll a specified loop.

Examples
Use the unroll_and_jam pragma:

int a[10][10];
int b[10][10];
int c[10][10];
int d[10][10];
void unroll(int n) {
 int i,j,k;
 #pragma unroll_and_jam (6)
 for (i = 1; i < n; i++) {
 #pragma unroll_and_jam (6)
 for (j = 1; j < n; j++) {
 for (k = 1; k < n; k++){
 a[i][j] += b[i][k]*c[k][j];
 }
 }
 }
}

unused
Describes variables that are unused (warnings not
generated).

Syntax

#pragma unused

Arguments

None

Description

The unused pragma is implemented for compatibility with Apple* implementation of GCC.

Compiler Reference

2001

vector
Tells the compiler that the loop should be vectorized
according to the argument keywords.

Syntax

#pragma vector {always[assert]|aligned|unaligned|dynamic_align|nodynamic_align|[no]
multiple_gather_scatter_by_shuffles|temporal|nontemporal|[no]vecremainder|
[no]mask_readwrite|vectorlength(n1[, n2]...)}
#pragma vector nontemporal[(var1[, var2, ...])]

Arguments

always Instructs the compiler to override any efficiency
heuristic during the decision to vectorize or not, and
vectorize non-unit strides or very unaligned memory
accesses; controls the vectorization of the subsequent
loop in the program; optionally takes the keyword
assert.

aligned Instructs the compiler to use aligned data movement
instructions for all array references when vectorizing.

unaligned Instructs the compiler to use unaligned data
movement instructions for all array references when
vectorizing.

dynamic_align[(var)] Instructs the compiler to perform dynamic alignment
optimization for the loop with an optionally specified
variable to perform alignment on.

nodynamic_align Disables dynamic alignment optimization for the loop.

multiple_gather_scatter_by_shuffles Instructs the optimizer to disable the generation of
gather/scatter and to transform gather/scatter into
unit-strided loads/stores plus a set of shuffles
wherever possible.

nomultiple_gather_scatter_by_shuffles Instructs the optimizer to enable the generation of
gather/scatter instructions and not to transform
gather/scatter into unit-strided loads/stores.

nontemporal Instructs the compiler to use non-temporal (that is,
streaming) stores on systems based on all supported
architectures, unless otherwise specified; optionally
takes a comma-separated list of variables.

When this pragma is specified, it is your responsibility
to also insert any fences as required to ensure correct
memory ordering within a thread or across threads.
One typical way to do this is to insert a _mm_sfence
intrinsic call just after the loops (such as the
initialization loop) where the compiler may insert
streaming store instructions.

 Intel® C++ Compiler Classic Developer Guide and Reference

2002

temporal Instructs the compiler to use temporal (that is, non-
streaming) stores on systems based on all supported
architectures, unless otherwise specified.

vecremainder Instructs the compiler to vectorize the remainder loop
when the original loop is vectorized.

novecremainder Instructs the compiler not to vectorize the remainder
loop when the original loop is vectorized.

mask_readwrite Disables memory speculation, causing the generation
of masked load and store operations within
conditions.

nomask_readwrite Enables memory speculation, causing the generation
of non-masked loads and stores within conditions.

vectorlength (n1[, n2]...) Instructs the vectorizer which vector length/factor to
use when generating the main vector loop.

Description

The vector pragma indicates that the loop should be vectorized, if it is legal to do so, ignoring normal
heuristic decisions about profitability. The vector pragma takes several argument keywords to specify the
kind of loop vectorization required. The compiler does not apply the vector pragma to nested loops, each
nested loop needs a preceding pragma statement. Place the pragma before the loop control statement.

Using the aligned/unaligned keywords

When the aligned/unaligned argument keyword is used with this pragma, it indicates that the loop should
be vectorized using aligned/unaligned data movement instructions for all array references. Specify only one
argument keyword: aligned or unaligned.

Caution
If you specify aligned as an argument, you must be sure that the loop is vectorizable using this
pragma. Otherwise, the compiler generates incorrect code.

Using the always keyword

When the always argument keyword is used, the pragma will ignore compiler efficiency heuristics for the
subsequent loop. When assert is added, the compiler will generate a diagnostic message if the loop cannot
be vectorized for any reason.

Using the dynamic_align and nodynamic_align keywords

Dynamic alignment is an optimization the compiler attempts to perform by default. It involves peeling
iterations from the vector loop into a scalar loop before the vector loop so that the vector loop aligns with a
particular memory reference. The dynamic_align (var) form of the directive allows the user to provide a
scalar or array variable name to align on. Specifying nodynamic_align with or without var does not
guarantee the optimization is performed; the compiler still uses heuristics to determine feasibility of the
operation.

Using the multiple_gather_scatter_by_shuffles and nomultiple_gather_scatter_by_shuffles
keywords

These clauses do not affect loops nested in the specified loop.

Using the nontemporal and temporal keywords

Compiler Reference

2003

The nontemporal and temporal argument keywords are used to control how the "stores" of register
contents to storage are performed (streaming versus non-streaming) on systems based on IA-32 and Intel®
64 architectures.

By default, the compiler automatically determines whether a streaming store should be used for each
variable.

Streaming stores may cause significant performance improvements over non-streaming stores for large
numbers on certain processors. However, the misuse of streaming stores can significantly degrade
performance.

Using the [no]vecremainder keyword

If the vector always pragma and keyword are specified, the following occurs:

• If the vecremainder clause is specified, the compiler vectorizes both the main and remainder loops.
• If the novecremainder clause is specified, the compiler vectorizes the main loop, but it does not

vectorize the remainder loop.

Using the [no]mask_readwrite keyword

If the vector pragma and mask_readwrite or nomask_readwrite keyword are specified, the following
occurs:

• If the mask_readwrite clause is specified, the compiler generates masked loads and stores within all
conditions in the loop.

• If the nomask_readwrite clause is specified, the compiler generates unmasked loads and stores for
increased performance.

Using the vectorlength keyword

n is an integer power of 2; the value must be 2, 4, 6, 8, 16, 32, or 64. If more than one value is specified,
the vectorizer will choose one of the specified vector lengths based on a cost model decision.

NOTE
The pragma vector should be used with care.

Overriding the efficiency heuristics of the compiler should only be done if the programmer is absolutely
sure that vectorization will improve performance. Furthermore, instructing the compiler to implement
all array references with aligned data movement instructions will cause a run-time exception in case
some of the access patterns are actually unaligned.

Examples
Use the vector aligned pragma

In the following example, the aligned argument keyword is used to request that the loop be vectorized with
aligned instructions.

Note that the arrays are declared in such a way that the compiler could not normally prove this would be safe
to vectorize.

void vec_aligned(float *a, int m, int c) {
 int i;
 // Instruct compiler to ignore assumed vector dependencies.
 #pragma vector aligned
 for (i = 0; i < m; i++)
 a[i] = a[i] * c;
 // Alignment unknown but compiler can still align.

 Intel® C++ Compiler Classic Developer Guide and Reference

2004

 for (i = 0; i < 100; i++)
 a[i] = a[i] + 1.0f;
}

Use the vector always pragma

void vec_always(int *a, int *b, int m) {
 #pragma vector always
 for(int i = 0; i <= m; i++)
 a[32*i] = b[99*i];
}

Use the vector multiple gather type pragma

float sum=0.0f;
#pragma omp simd reduction(+:sum)
for (i=0; i<N; i++){
 sum += A[3*i+0] + A[3*i+1] + A[3*i+2];
}

Use the vector nontemporal pragma

float a[1000];
void foo(int N){
 int i;
 #pragma vector nontemporal
 for (i = 0; i < N; i++) {
 a[i] = 1;
 }
}

Use ASM code for the loop body

A float-type loop together with the generated assembly is shown in the following example. For large N,
significant performance improvements result on systems with Intel® Pentium® 4 processors over non-
streaming implementations.

 .B1.2:
movntps XMMWORD PTR _a[eax], xmm0
movntps XMMWORD PTR _a[eax+16], xmm0
add eax, 32
cmp eax, 4096
jl .B1.2

Use pragma vector nontemporal with variables for implementing streaming stores

double A[1000];
double B[1000];
void foo(int n){
 int i;
#pragma vector nontemporal (A, B)
 for (i=0; i<n; i++){
 A[i] = 0;
 B[i] = i;
 }
}

See Also
Function Annotations and the SIMD Directive for Vectorization

Compiler Reference

2005

Intel-supported Pragma Reference
The Intel® C++ Compiler Classic supports the following pragmas to ensure compatibility with other compilers.

Pragmas Compatible with the Microsoft* Compiler
The following pragmas are compatible with the Microsoft Compiler. For more information about these
pragmas, go to the Microsoft Developer Network (http://msdn.microsoft.com).

Pragma Description

alloc_text Names the code section where the specified function definitions are to
reside.

auto_inline Excludes any function defined within the range where off is specified
from being considered as candidates for automatic inline expansion.

bss_seg Indicates to the compiler the segment where uninitialized variables are
stored in the .obj file.

check_stack The on argument indicates that stack checking should be enabled for
functions that follow and the off argument indicates that stack checking
should be disabled for functions that follow.

code_seg Specifies a code section where functions are to be allocated.

comment Places a comment record into an object file or executable file.

component Controls collecting of browse information or dependency information from
within source files.

conform Specifies the run-time behavior of the /Zc:forScope compiler option.

const_seg Specifies the segment where functions are stored in the .obj file.

data_seg Specifies the default section for initialized data.

deprecated Indicates that a function, type, or any other identifier may not be
supported in a future release or indicates that a function, type, or any
other identifier should not be used any more.

fenv_access Informs an implementation that a program may test status flags or run
under a non-default control mode.

float_control Specifies floating-point behavior for a function.

fp_contract Allows or disallows the implementation to contract expressions.

loop Controls how the loop code will be considered or excluded from
consideration by the auto-vectorizer.

init_seg Specifies the section to contain C++ initialization code for the translation
unit.

message Displays the specified string literal to the standard output device
(stdout).

 Intel® C++ Compiler Classic Developer Guide and Reference

2006

Pragma Description

optimize Specifies optimizations to be performed on functions below the pragma or
until the next optimize pragma; implemented to partly support the
Microsoft implementation of same pragma; for the Intel® C++ Compiler
Classic implementation, see the optimize reference page.

pointers_to_members Specifies whether a pointer to a class member can be declared before its
associated class definition and is used to control the pointer size and the
code required to interpret the pointer.

pop_macro Sets the value of the specified macro to the value on the top of the stack.

push_macro Saves the value of the specified macro on the top of the stack.

region/endregion Specifies a code segment in the Microsoft Visual Studio* Code Editor that
expands and contracts by using the outlining feature.

section Creates a section in an .obj file. Once a section is defined, it remains
valid for the remainder of the compilation.

vtordisp The on argument enables the generation of hidden vtordisp members
and the off disables them.

push argument pushes the current vtordisp setting to the internal
compiler stack. pop argument removes the top record from the compiler
stack and restores the removed value of vtordisp.

warning Allows selective modification of the behavior of compiler warning
messages.

weak Declares symbol you enter to be weak.

OpenMP* Standard Pragmas
The Intel® C++ Compiler Classic currently supports OpenMP* 5.0 Version TR4, and some OpenMP Version 5.1
pragmas. Supported pragmas are isted below. For more information about these pragmas, reference the
OpenMP* Version 5.1 specification.

Intel-specific clauses are noted in the affected pragma description.

Pragma Description

omp atomic Specifies a computation that must be executed atomically.

omp barrier Specifies a point in the code where each thread must wait until all threads in the
team arrive.

omp cancel Requests cancellation of the innermost enclosing region of the type specified,
and causes the encountering task to proceed to the end of the cancelled
construct.

omp cancellation point Defines a point at which implicit or explicit tasks check to see if cancellation has
been requested for the innermost enclosing region of the type specified. This
construct does not implement a synchronization between threads or tasks.

omp critical Specifies a code block that is restricted to access by only one thread at a time.

Compiler Reference

2007

Pragma Description

omp declare reduction Declares User-Defined Reduction (UDR) functions (reduction identifiers) that can
be used as reduction operators in a reduction clause.

omp declare simd Creates a version of a function that can process multiple arguments using Single
Instruction Multiple Data (SIMD) instructions from a single invocation from a
SIMD loop.

omp distribute Specifies that the iterations of one or more loops should be distributed among
the initial threads of all thread teams in a league.

omp distribute parallel for Specifies a loop that can be executed in parallel by multiple threads that are
members of multiple teams.

omp distribute parallel for
simd

Specifies a loop that will be executed in parallel by multiple threads that are
members of multiple teams. It will be executed concurrently using SIMD
instructions.

omp distribute simd Specifies a loop that will be distributed across the primary threads of the teams
region. It will be executed concurrently using SIMD instructions.

omp flush Identifies a point at which a thread's temporary view of memory becomes
consistent with the memory.

omp for Specifies a work-sharing loop. Iterations of the loop are executed in parallel by
the threads in the team.

omp for simd Specifies that the iterations of the loop will be distributed across threads in the
team. Iterations executed by each thread can also be executed concurrently
using SIMD instructions.

omp master Specifies a code block that must be executed only once by the primary thread of
the team.

omp ordered Specifies a block of code that the threads in a team must execute in the natural
order of the loop iterations, or as a stand-alone directive, specifies cross-
iteration dependences in a doacross loop-nest.

omp parallel Specifies that a structured block should be run in parallel by a team of threads.

omp parallel for Provides an abbreviated way to specify a parallel region containing only a FOR
construct.

omp parallel for simd Specifies a parallel construct that contains one for simd construct and no other
statement.

omp parallel sections Specifies a parallel construct that contains only a sections construct.

omp scan Specifies a scan computation that updates each list item in each iteration of the
loop.

omp sections Defines a set of structured blocks that will be distributed among the threads in
the team.

omp simd Transforms the loop into a loop that will be executed concurrently using SIMD
instructions.

omp single Specifies that a block of code is to be executed by only one thread in the team.

 Intel® C++ Compiler Classic Developer Guide and Reference

2008

Pragma Description

omp target Creates a device data environment and executes the construct on that device.

omp target data Specifies that variables are mapped to a device data environment for the extent
of the region.

omp target enter data Specifies that variables are mapped to a device data environment.

omp target exit data Specifies that variables are unmapped from a device data environment.

omp target teams Creates a device data environment and executes the construct on the same
device. It also creates a league of thread teams with the primary thread in each
team executing the structured block.

omp target teams
distribute

Creates a device data environment and then executes the construct on that
device. It also specifies that loop iterations will be distributed among the
primary threads of all thread teams in a league created by a teams construct.

omp target teams
distribute parallel for

Creates a device data environment and then executes the construct on that
device. It also specifies a loop that can be executed in parallel by multiple
threads that are members of multiple teams created by a teams construct.

omp target teams
distribute parallel for
simd

Creates a device data environment and then executes the construct on that
device. It also specifies a loop that can be executed in parallel by multiple
threads that are members of multiple teams created by a teams construct. The
loop will be distributed across the teams, which will be executed concurrently
using SIMD instructions.

omp target teams
distribute simd

Creates a device data environment and then executes the construct on that
device. It also specifies that loop iterations will be distributed among the
primary threads of all thread teams in a league created by a teams construct. It
will be executed concurrently using SIMD instructions.

omp target update Makes the items listed in the device data environment consistent between the
device and host, in accordance with the motion clauses on the pragma.

omp task Specifies a code block whose execution may be deferred.

omp taskgroup Causes the program to wait until the completion of all enclosed and descendant
tasks.

omp taskwait Specifies a wait on the completion of child tasks generated since the beginning
of the current task.

omp taskyield Specifies that the current task can be suspended at this point in favor of
execution of a different task.

omp teams Creates a league of thread teams inside a target region to execute a structured
block in the initial thread of each team.

omp teams distribute Creates a league of thread teams and specifies that loop iterations will be
distributed among the primary threads of all thread teams in the league.

omp teams distribute
parallel for

Creates a league of thread teams and specifies that the associated loop can be
executed in parallel by multiple threads that are members of multiple teams.

Compiler Reference

2009

Pragma Description

omp teams distribute
parallel for simd

Creates a league of thread teams and specifies that the associated loop can be
executed concurrently using SIMD instructions in parallel by multiple threads
that are members of multiple teams.

omp teams distribute
simd

Creates a league of thread teams and specifies that the associated loop will be
distributed across the primary threads of the teams and executed concurrently
using SIMD instructions.

omp threadprivate Specifies a list of globally-visible variables that will be allocated private to each
thread.

Pragmas Compatible with Other Compilers
The following pragmas are compatible with other compilers. For more information about these pragmas, see
the documentation for the specified compiler.

Pragma Description

include_directory HP-compatible pragma. It appends the string argument to the list of
places to search for #include files.

poison GCC-compatible pragma. It labels the identifiers you want removed from
your program; an error results when compiling a "poisoned"
identifier; #pragma POISON is also supported.

options GCC-compatible pragma; It sets the alignment of fields in structures.

weak GCC-compatible pragma, it declares the symbol you enter to be weak.

See Also
Intel-specific Pragmas
optimize compiler option
Zc compiler option

Error Handling
This topic describes compiler remarks, warnings, and errors. The compiler sends these messages, along with
the erroneous source line, to stderr.

Warnings
Warning messages report legal but questionable use of C or C++. The compiler displays warnings by default.
You can suppress warning messages by specifying an appropriate compiler option. Warnings do not stop
translation or linking. Warnings do not interfere with any output files.

The following are some representative warning messages:

declaration does not declare anything
pointless comparison of unsigned integer with zero
possible use of = where == was intended

 Intel® C++ Compiler Classic Developer Guide and Reference

2010

Some warnings that start with -W can be disabled using the negative form of the option -Wno-. For example,
option -Wno-unknown-pragmas disables option -Wunknown-pragmas.

Linux and macOS

Additional Warnings

The following Linux* and macOS options produce additional warnings:

Option Result

-W[no-]missing-prototypes Warn for missing prototypes.

-W[no-]missing-declarationsWarn for missing declarations.

-W[no-]unused-variable Warn for unused variable.

-W[no-]pointer-arith Warn for questionable pointer arithmetic.

-W[no-]uninitialized Warn if a variable is used before being initialized.

-W[no-]deprecated Display warnings related to deprecated features.

-W[no-]abi Warn if generated code is not C++ ABI compliant.

-W[no-]unused-function Warn if declared function is not used.

-W[no-]unknown-pragmas Warn if an unknown #pragma directive is used.

-W[no-]main Warn if return type of main is not expected.

-W[no-]comment[s] Warn when /* appears in the middle of a /* */ comment.

-W[no-]return-type Warn when a function uses the default int return type
Warn when a return statement is used in a void function.

Errors
These messages report syntactic or semantic misuse of C or C++. The compiler always displays error
messages. Errors suppress object code for the module containing the error and prevent linking, but they
allow parsing to continue to detect other possible errors.

The following are some representative error messages:

missing closing quote
expression must have arithmetic type
expected a ";"

Remarks
Remark messages report common but sometimes unconventional use of C or C++. Remarks do not stop
translation or linking. Remarks do not interfere with any output files.

The following are some representative remark messages:

function declared implicitly
type qualifiers are meaningless in this declaration
controlling expression is constant

Compiler Reference

2011

Some remarks, warnings, and errors are numbered and can be disabled using option -diag-disable=list
or /Qdiag-disable:list.

Example

Linux and macOS

-diag-disable=117,230,450
Windows

/Qdiag-disable:117,230,450

Option Summary
You can use the following compiler options to control remarks, warnings, and errors.

Linux and macOS

Option Result

-w Enables diagnostics for errors; disables diagnostics for warnings.

-w1 Enables diagnostics for warnings and errors.

-w2 Enables diagnostics for verbose warnings, warnings, and errors.

-w3 Enables diagnostics for remarks, warnings, and errors. Additional
warnings are also enabled above level 2 warnings.

-Wremarks Display remarks and comments.

-Wbrief Display brief one-line diagnostics.

-Wcheck Enable more strict diagnostics.

-Werror-all Change all warnings and remarks to errors.

-Werror Change all warnings to errors.

Windows

Option Result

/W0 Enables diagnostics for errors; disables diagnostics for warnings.

/W1, /W2 Enables diagnostics for warnings and errors.

/W3 Enables diagnostics for remarks, warnings, and errors. Additional
warnings are also enabled above level 2 warnings.

/W4, /Wall Enables diagnostics for all level 3 warnings, plus informational warnings
and remarks, which, in most cases, can be safely ignored.

/W5 Enables diagnostics for all remarks, warnings, and errors. This option
produces the most diagnostic messages.

/WL Display brief one-line diagnostics.

/WX Change all warnings to errors.

/Wp64 Display diagnostics for 64-bit porting.

 Intel® C++ Compiler Classic Developer Guide and Reference

2012

You can also control the display of diagnostic information with variations of the [Q]diag compiler option.
This compiler option accepts numerous arguments and values, allowing you wide control over displayed
diagnostic messages and reports.

Some of the most common variations include the following:

Option Result

[Q]diag-enable<:|=>list Enables a diagnostic message or a group of messages.

[Q]diag-disable<:|=>list Disables a diagnostic message or a group of messages.

[Q]diag-warning<:|=>list Tells the compiler to change diagnostics to warnings.

[Q]diag-error<:|=>list Tells the compiler to change diagnostics to errors.

[Q]diag-remark<:|=>list Tells the compiler to change diagnostics to remarks (comments).

The list items can be specific diagnostic IDs, one of the keywords warn, remark, or error, or a keyword
specifying a certain group (par, vec, driver, thread, port-linux (available on Windows* systems),
port-win (available on Linux* and macOS systems), or openmp). For more information, see [Q]diag.

Other diagnostic-related options include the following:

Option Result

[Q]diag-dump Tells the compiler to print all enabled diagnostic messages and stop
compilation.

[Q]diag-file[<:|=>file] Causes the results of diagnostic analysis to be output to a file.

[Q]diag-file-append[<:|
=>file]

Causes the results of diagnostic analysis to be appended to a file.

[Q]diag-error-limit<:|
=>n

Specifies the maximum number of errors allowed before compilation
stops.

Compiler Reference

2013

Compilation

Part

I
V

This section contains information about features that can affect compilation, such as environment variables,
and using configuration files.

Compilation Overview
Compilation Environment
You can customize the environment used during compilation using a combination of

• Configuration Files
• Environment variables
• Response Files

You can also modify the compilation by adding additional include directories for the compiler to search during
compilation. See Specify Compiler Files for more information.

Default Compiler Behavior
The Intel® C++ Compiler Classic processes C/C++ language source files. Compilation can be divided into
these major phases: :

• Preprocessing
• Semantic parsing
• Optimization
• Code generation
• Linking

By default, the compiler performs the first four phases of compilation and then invokes the linker to perform
the linking phase. The default linkers are ld for Linux and link for Windows.

Default settings for the compiler include:

• Optimization level O2 (-O2)
• Floating point model = fast (-fp-model=fast)
• icpc C++ language standard: Gnu C++14 (-std=gnu++14)
• C++ runtime:

• Linux: libstdc++, using headers and libraries installed on the system
• Windows: Microsoft Visual C++ (MSVC) provided headers and libraries

• SVML and specific interfaces enabled to call into the Intel libirc library

 Intel® C++ Compiler Classic Developer Guide and Reference

2014

Customize the Compilation Process
The Intel® C++ Compiler Classic provides multiple options to customize compilation.

Preprocessing

Several options are available to customize preprocessing. For example, you can:

• Specify the location of system and user header files
• Specify macros
• Stop the compilation process after preprocessing
• Send preprocessed output to stdout

You can optionally use your own preprocessor to generate a preprocessed file which can then be passed to
the compiler.

For a detailed list of preprocessing options, see Preprocessor Options.

Compiling

Compiler options are not required to compile your program, but can be used to control different aspects of
your application, such as:

• Code generation
• Optimization
• Output file (type, name, location)
• Linking properties
• Size of the executable
• Speed of the executable

For a detailed list of all compiler options, see Compiler Options.

Linking

You can perform the linking phase using the Intel compiler to invoke the linker (default) or by calling the
linker directly.

NOTE On Linux, calling the linker directly requires explicit understanding of which specific system and
Intel libraries need to be linked in, as they will need to be passed directly to the linker.

To prevent default linking at compilation time, use the -c option. You must then explicitly pass along the
generated object on the compilation command line and the compiler will create the final binary.

You can pass options to the linker for additional control of the linking phase. See Pass Options to the Linker
for additional information.

See Also
Compiler Options
Specify Compiler Files
Preprocessor Options
Pass Options to the Linker

Supported Environment Variables
You can customize your system environment by specifying paths where the compiler searches for certain files
such as libraries, include files, configuration files, and certain settings.

Supported Environment Variables

2015

Compiler Compile-Time Environment Variables
The following table shows the compile-time environment variables that affect the compiler:

Compile-Time
Environment
Variable

Description

CL (Windows)

CL (Windows)

Define the files and options you use most often with the CL variable. Note: You
cannot set the CL environment variable to a string that contains an equal sign. You
can use the pound sign instead. In the following example, the pound sign (#) is
used as a substitute for an equal sign in the assigned string: SET CL=/Dtest#100

COV_DIR
(Windows)

Same as PROF_DIR.

COV_DPI
(Windows)

Same as PROF_DPI.

IA32ROOT (IA-32
architecture and
Intel® 64
architecture)

Points to the directories containing the include and library files for a non-standard
installation structure.

NOTE IA-32 architecture is no longer supported on macOS*.

ICCCFG Specifies the configuration file for customizing compilations when invoking the
compiler using icc. Used instead of the default configuration file.

ICPCCFG Specifies the configuration file for customizing compilations when invoking the
compiler using icpc. Used instead of the default configuration file.

ICLCFG (Windows) Specifies a configuration file, which the compiler should use instead of the default
configuration file.

INTEL_LICENSE_F
ILE

Specifies the location for the Intel license file.

NOTE On Windows, this environment variable cannot be set from Visual Studio.

__INTEL_PRE_CFL
AGS
__INTEL_POST_CF
LAGS

Specifies a set of compiler options to add to the compile line.

This is an extension to the facility already provided in the compiler configuration file
icl.cfg.

NOTE By default, a configuration file named icl.cfg (Windows), icc.cfg (Linux,
macOS), or icpc.cfg (Linux, macOS) is used. This file is in the same directory as the
compiler executable. To use another configuration file in another location, you can use
the ICLCFG (Windows), ICCCFG (Linux, macOS), or ICPCCFG (Linux, macOS)
environment variable to assign the directory and file name for the configuration file.

You can insert command line options in the prefix position using
__INTEL_PRE_CFLAGS or in the suffix position using __INTEL_POST_CFLAGS. The
command line is built as follows:

 Intel® C++ Compiler Classic Developer Guide and Reference

2016

Compile-Time
Environment
Variable

Description

Syntax: (On Windows, use icl. On Linux or macOS, use icc) icl/icc <PRE
flags> <flags from configuration file> <flags from the compiler
invocation> <POST flags>

NOTE The driver issues a warning that the compiler is overriding an option because of an
environment variable, but only when you include the option /W5 (Windows) or -w3
(Linux and macOS).

INTEL_TARGET_AR
CH_IA32 (Linux
and Windows)

Set this environment variable to target 32-bit compilations for all associated tools
(this includes the compiler and Intel-specific linker tools). Without this environment
variable, you will be required to use the explicit command line options, /Qm32 on
Windows and -m32 on Linux, for each compiler invocation.

NOTE IA-32 architecture is no longer supported on macOS. IA-32 is deprecated for other
operating systems and will be removed in a future release.

PATH Specifies the directories the system searches for binary executable files.

NOTE On Windows, this also affects the search for Dynamic Link Libraries
(DLLs).

TMP
TMPDIR
TEMP

Specifies the location for temporary files. If none of these are specified, or writeable,
or found, the compiler stores temporary files in /tmp (Linux, macOS) or the current
directory (Windows).

The compiler searches for these variables in the following order: TMP, TMPDIR, and
TEMP.

NOTE
On Windows, these environment variables cannot be set from Visual Studio.

LD_LIBRARY_PATH
(Linux)

Specifies the location for shared objects (.so files).

DYLD_LIBRARY_PA
TH (macOS)

Specifies the path for dynamic libraries.

INCLUDE
(Windows)

Specifies the directories for the source header files (include files).

LIB (Windows) Specifies the directories for all libraries used by the compiler and linker.

GNU Environment Variables and Extensions

CPATH (Linux and
macOS)

Specifies the path to include directory for C/C++ compilations.

Compilation

2017

Compile-Time
Environment
Variable

Description

C_INCLUDE_PATH
(Linux and
macOS)

Specifies path to include directory for C compilations.

CPLUS_INCLUDE_P
ATH (Linux and
macOS)

Specifies path to include directory for C++ compilations.

DEPENDENCIES_OU
TPUT (Linux and
macOS)

Specifies how to output dependencies for make based on the non-system header
files processed by the compiler. System header files are ignored in the dependency
output.

GCC_EXEC_PREFIX
(Linux)

Specifies alternative names for the linker (ld) and assembler (as).

GCCROOT (Linux) Specifies the location of the GCC* binaries. Set this variable only when the compiler
cannot locate the GCC binaries when using the -gcc-name option.

GXX_INCLUDE
(Linux)

Specifies the location of the GCC headers. Set this variable to specify the locations
of the GCC installed files when the compiler does not find the needed values as
specified by the use of -gcc-name=directory-name/gcc or -gxx-
name=directory-name/g++.

GXX_ROOT (Linux) Specifies the location of the GCC binaries. Set this variable to specify the locations of
the GCC installed files when the compiler does not find the needed values as
specified by the use of -gcc-name=directory-name/gcc or -gxx-
name=directory-name/g++.

LIBRARY_PATH
(Linux and
macOS)

Specifies the path for libraries to be used during the link phase.

SUNPRO_DEPENDEN
CIES (Linux)

This variable is the same as DEPENDENCIES_OUTPUT, except that system header files
are not ignored.

NOTE INTEL_ROOT is an environment variable that is reserved for the Intel® Compiler. Its use is not
supported.

Compiler Run-Time Environment Variables
The following table summarizes compiler environment variables that are recognized at run time.

Run-Time Environment Variable Description

INTEL_CHKP_REPORT_MODE (Linux) Changes the pointer checker reporting mode at run
time.

See Finding and Reporting Out-of-Bounds Errors.

 Intel® C++ Compiler Classic Developer Guide and Reference

2018

Run-Time Environment Variable Description

INTEL_ISA_DISABLE Causes named features (in a comma-separated list)
not to be visible on the host even if the CPUID
reports that it has them onboard.

See CPU Feature Targeting.

GNU extensions (recognized by the Intel OpenMP* compatibility library)

GOMP_CPU_AFFINITY (Linux) GNU extension recognized by the Intel OpenMP
compatibility library. Specifies a list of OS processor
IDs.

You must set this environment variable before the
first parallel region or before certain API calls
including omp_get_max_threads(),
omp_get_num_procs() and any affinity API calls.
For detailed information on this environment
variable, see Thread Affinity Interface.

Default: Affinity is disabled

GOMP_STACKSIZE (Linux) GNU extension recognized by the Intel OpenMP
compatibility library. Same as
OMP_STACKSIZE.KMP_STACKSIZE overrides
GOMP_STACKSIZE, which overrides
OMP_STACKSIZE.
Default: See the description for OMP_STACKSIZE.

OpenMP Environment Variables (OMP_) and Extensions (KMP_)

OMP_CANCELLATION Activates cancellation of the innermost enclosing
region of the type specified. If set to TRUE, the
effects of the cancel construct and of cancellation
points are enabled and cancellation is activated. If
set to FALSE, cancellation is disabled and the
cancel construct and cancellation points are
effectively ignored.

NOTE
Internal barrier code will work differently depending
on whether the cancellation is enabled. Barrier code
should repeatedly check the global flag to figure out if
the cancellation had been triggered. If a thread
observes the cancellation it should leave the barrier
prematurely with the return value 1 (may wake up
other threads). Otherwise, it should leave the barrier
with the return value 0.

Enables (TRUE) or disables (FALSE) cancellation of
the innermost enclosing region of the type
specified.

Default: FALSE

Example: OMP_CANCELLATION=TRUE

Compilation

2019

Run-Time Environment Variable Description

OMP_DISPLAY_ENV Enables (TRUE) or disables (FALSE) the printing to
stderr of the OpenMP version number and the
values associated with the OpenMP environment
variable.

Possible values are: TRUE, FALSE, or VERBOSE.

Default: FALSE

Example: OMP_DISPLAY_ENV=TRUE

OMP_DEFAULT_DEVICE Sets the device that will be used in a target region.
The OpenMP routine omp_set_default_device or
a device clause in a target pragma can override
this variable.

If no device with the specified device number
exists, the code is executed on the host. If this
environment variable is not set, device number 0 is
used.

OMP_DYNAMIC Enables (TRUE) or disables (FALSE) the dynamic
adjustment of the number of threads.

Default: FALSE

Example: OMP_DYNAMIC=TRUE

OMP_MAX_ACTIVE_LEVELS The maximum number of levels of parallel nesting
for the program.

Possible values: Non-negative integer.

Default: 1

OMP_NESTED Deprecated; use OMP_MAX_ACTIVE_LEVELS instead.

OMP_NUM_THREADS Sets the maximum number of threads to use for
OpenMP parallel regions if no other value is
specified in the application.

The value can be a single integer, in which case it
specifies the number of threads for all parallel
regions. The value can also be a comma-separated
list of integers, in which case each integer specifies
the number of threads for a parallel region at a
nesting level.

The first position in the list represents the outer-
most parallel nesting level, the second position
represents the next-inner parallel nesting level, and
so on. At any level, the integer can be left out of
the list. If the first integer in a list is left out, it
implies the normal default value for threads is used
at the outer-most level. If the integer is left out of
any other level, the number of threads for that level
is inherited from the previous level.

 Intel® C++ Compiler Classic Developer Guide and Reference

2020

Run-Time Environment Variable Description

This environment variable applies to the options
Qopenmp (Windows) or qopenmp (Linux and
macOS), and Qparallel (Windows) or parallel
(Linux and macOS.

Default: The number of processors visible to the
operating system on which the program is
executed.

Syntax: OMP_NUM_THREADS=value[,value]*

OMP_PLACES Specifies an explicit ordered list of places, either as
an abstract name describing a set of places or as
an explicit list of places described by nonnegative
numbers. An exclusion operator “!” can also be
used to exclude the number or place immediately
following the operator.

For explicit lists, the meaning of the numbers and
how the numbering is done for a list of nonnegative
numbers are implementation defined. Generally,
the numbers represent the smallest unit of
execution exposed by the execution environment,
typically a hardware thread.

Intervals can be specified using the <lower-
bound> : <length> : <stride> notation to
represent the following list of numbers:

"<lower-bound>, <lower-bound> +
<stride>, ...,
<lower-bound> +(<length>-1)*<stride>."
When <stride> is omitted, a unit stride is
assumed. Intervals can specify numbers within a
place as well as sequences of places.

EXPLICIT LIST EXAMPLE
setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},
{8,9,10,11},{12,13,14,15}"
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"
setenv OMP_PLACES "{0:4}:4:4"
The abstract names listed below should be
understood by the execution and run-time
environment:

• threads: Each place corresponds to a single
hardware thread on the target machine.

• cores: Each place corresponds to a single core
(having one or more hardware threads) on the
target machine.

• ll_caches: Each place corresponds to a set of
cores that share the last level cache on the
device.

Compilation

2021

Run-Time Environment Variable Description

• numa_domains: Each place corresponds to a set
of cores for which their closest memory on the
device is 1) the same memory and 2) at a
similar distance from the cores.

• sockets: Each place corresponds to a single
socket (consisting of one or more cores) on the
target machine.

When requesting fewer places or more resources
than available on the system, the determination of
which resources of type abstract_name are to be
included in the place list is implementation-defined.
The precise definitions of the abstract names are
implementation defined. An implementation may
also add abstract names as appropriate for the
target platform. The abstract name may be
appended by a positive number in parentheses to
denote the length of the place list to be created,
that is abstract_name(num-places).

ABSTRACT NAMES EXAMPLE
 setenv OMP_PLACES threads
 setenv OMP_PLACES threads(4)

NOTE
If any numerical values cannot be mapped to a
processor on the target platform the behavior is
implementation-defined. The behavior is also
implementation-defined when the OMP_PLACES
environment variable is defined using an abstract
name.

OMP_PROC_BIND (Windows, Linux) Sets the thread affinity policy to be used for parallel
regions at the corresponding nested level. Enables
(TRUE) or disables (FALSE) the binding of threads
to processor contexts. If enabled, this is the same
as specifying KMP_AFFINITY=scatter. If disabled,
this is the same as specifying KMP_AFFINITY=none.

Acceptable values: TRUE, FALSE, or a comma
separated list, each element of which is one of the
following values: PRIMARY, MASTER (deprecated),
CLOSE, SPREAD.

Default: FALSE
If set to FALSE, the execution environment may
move OpenMP threads between OpenMP places,
thread affinity is disabled, and proc_bind clauses on
parallel constructs are ignored. Otherwise, the
execution environment should not move OpenMP

 Intel® C++ Compiler Classic Developer Guide and Reference

2022

Run-Time Environment Variable Description

threads between OpenMP places, thread affinity is
enabled, and the initial thread is bound to the first
place in the OpenMP place list.

If set to PRIMARY, all threads are bound to the
same place as the primary thread. If set to CLOSE,
threads are bound to successive places, close to
where the primary thread is bound. If set to
SPREAD, the primary thread's partition is subdivided
and threads are bound to single place successive
sub-partitions.

NOTE
KMP_AFFINITY takes precedence over
GOMP_CPU_AFFINITY and OMP_PROC_BIND.
GOMP_CPU_AFFINITY takes precedence over
OMP_PROC_BIND.

OMP_SCHEDULE Sets the run-time schedule type and an optional
chunk size.

Default: static, no chunk size specified

Example syntax:
OMP_SCHEDULE="[modifier:]kind[,chunk_size
]" where

• modifier is one of monotonic or
nonmonotonic

• kind is one of static, dynamic, guided, or
auto

• chunk_size is a positive integer

NOTE
Some environment variables are available for
both Intel® microprocessors and non-Intel
microprocessors, but may perform additional
optimizations for Intel® microprocessors than for
non-Intel microprocessors.

OMP_STACKSIZE Sets the number of bytes to allocate for each
OpenMP thread to use as the private stack for the
thread. Recommended size is 16M.

Use the optional suffixes to specify byte units: B
(bytes), K (Kilobytes), M (Megabytes), G
(Gigabytes), or T (Terabytes) to specify the units. If
you specify a value without a suffix, the byte unit is
assumed to be K (Kilobytes).

Compilation

2023

Run-Time Environment Variable Description

This variable does not affect the native operating
system threads created by the user program, or the
thread executing the sequential part of an OpenMP
program or parallel programs created using the
option Qparallel (Windows) or parallel (Linux
and macOS) .

The kmp_{set,get}_stacksize_s() routines set/
retrieve the value. The kmp_set_stacksize_s()
routine must be called from sequential part, before
first parallel region is created. Otherwise, calling
kmp_set_stacksize_s() has no effect. Default
(IA-32 architecture): 2M

Default (Intel® 64 architecture): 4M

NOTE IA-32 architecture is no longer supported on
macOS. IA-32 is deprecated for other operating
systems and will be removed in a future release.

Related environment variables:
KMP_STACKSIZE (overrides OMP_STACKSIZE).

Syntax: OMP_STACKSIZE=value

OMP_THREAD_LIMIT Limits the number of simultaneously-executing
threads in an OpenMP program.

If this limit is reached and another native operating
system thread encounters OpenMP API calls or
constructs, the program can abort with an error
message. If this limit is reached when an OpenMP
parallel region begins, a one-time warning message
might be generated indicating that the number of
threads in the team was reduced, but the program
will continue.

This environment variable is only used for programs
compiled with the following options: Qopenmp
(Windows) or qopenmp (Linux and macOS), or
Qparallel (Windows) or parallel (Linux and
macOS) .

The omp_get_thread_limit() routine returns the
value of the limit.

Default: No enforced limit

Related environment variable:
KMP_ALL_THREADS (overrides OMP_THREAD_LIMIT).

Example syntax: OMP_THREAD_LIMIT=value

OMP_WAIT_POLICY Decides whether threads spin (active) or yield
(passive) while they are waiting.

 Intel® C++ Compiler Classic Developer Guide and Reference

2024

Run-Time Environment Variable Description

OMP_WAIT_POLICY=ACTIVE is an alias for
KMP_LIBRARY=turnaround, and
OMP_WAIT_POLICY=PASSIVE is an alias for
KMP_LIBRARY=throughput.

Default: Passive

Syntax: OMP_WAIT_POLICY=value

OMP_DISPLAY_AFFINITY Instructs the runtime to display formatted affinity
information for all OpenMP threads in the parallel
region upon entering the first parallel region and
when any change occurs in the information
accessible by the format specifiers listed in the
OMP_AFFINITY_FORMAT entry.

Possible values: TRUE or FALSE
Default: FALSE

OMP_AFFINITY_FORMAT Defines the format when displaying OpenMP thread
affinity information. Possible values are any string
with the following format field available:

• %t or %{team_num}: Value returned by
omp_get_team_num()

• %T or %{num_teams}: Value returned by
omp_get_num_teams()

• %L or %{nesting_level}: Value returned by
omp_get_level()

• %n or %{thread_num}: Value returned by
omp_get_thread_num()

• %a or %{ancestor_tnum}: Value returned by
omp_get_ancestor_thread_num(omp_get_lev
el() – 1)

• %H or %{host}: Name of host device
• %P or %{process_id}: Process ID
• %i or %{native_thread_id}: Native thread ID

on the platform
• %A or %{thread_affinity}: List of processor

ID on which a thread may execute

Default: 'OMP: pid %P tid %i thread %n
bound to OS proc set {%A}'

OMP_MAX_TASK_PRIORITY Controls the use of task priorities by setting the
initial value.

Possible values: Non-negative integer.

Default: 0

OMP_TOOL Controls whether the OpenMP runtime will try to
register a first party tool that uses OMPT interface.

Possible values: ENABLED or DISABLED.

Compilation

2025

Run-Time Environment Variable Description

Default: ENABLED

NOTE Only the host OpenMP runtime is supported.

OMP_TOOL_LIBRARIES Sets a list of first-party tool locations that use the
OMPT interface. The list enumerates names of
dynamically-loadable libraries with OS-specific path
separator.

Default: Empty

NOTE Only the host OpenMP runtime is supported.

OMP_TOOL_VERBOSE_INIT Controls whether the OpenMP runtime will
verbosely log the registration of a tool that uses the
OMPT interface.

Possible values:

• DISABLED: Do not log the registration.
• STDOUT: Log the registration to stdout.
• STDERR: Log the registration to stderr.
• File_Name: Log the registration to the location

specified by File_Name.

Default:DISABLED

NOTE Only the host OpenMP runtime is supported.

OMP_DEBUG Controls whether the OpenMP runtime collects
information that an OMPD library may need to
support a tool.

Possible values: ENABLED or DISABLED.

Default: DISABLED

NOTE Only the host OpenMP runtime is supported.

OMP_ALLOCATOR Specifies the default allocator for allocation calls,
directives, and clauses that do not specify an
allocator.

Default: omp_default_mem_alloc
Syntax: <PredefinedMemAllocator> |
<PredefinedMemSpace> |
<PredefinedMemSpace>:<Traits>

 Intel® C++ Compiler Classic Developer Guide and Reference

2026

Run-Time Environment Variable Description

Currently supported values for
<PredefinedMemAllocator> and
<PredefinedMemSpace> :

• omp_default_mem_alloc and
omp_default_mem_space

Additional values are supported if libmemkind is
available and there is system support for it:

• omp_high_bw_mem_alloc and
omp_high_bw_mem_space

• omp_large_cap_mem_alloc and
omp_large_cap_mem_space

Refer to the OpenMP specification for more
information.

OMP_NUM_TEAMS Sets the maximum number of teams created by a
teams construct by setting nteams-var ICV.

Possible values: Positive integer.

Default: 1

OMP_TEAMS_THREAD_LIMIT Sets the maximum number of OpenMP threads to
use in each team created by a teams construct.

Possible values: Positive integer.

Default: <NumberOfProcessors> / <nteams-var
ICV>

KMP_AFFINITY (Linux, Windows) Enables run-time library to bind threads to physical
processing units.

You must set this environment variable before the
first parallel region, or certain API calls including
omp_get_max_threads(), omp_get_num_procs()
and any affinity API calls. For detailed information
on this environment variable, see Thread Affinity
Interface.

Default:
noverbose,warnings,noreset,respect,granularity=co
re,none

Default (Windows with multiple processor groups):
noverbose,warnings,noreset,norespect,granularity=
group,compact,0,0

NOTE On Windows with multiple processor groups,
the norespect affinity modifier is assumed when the
process affinity mask equals a single processor group
(which is default on Windows). Otherwise, the respect
affinity modifier is used.

Compilation

2027

https://www.openmp.org/spec-html/5.1/openmp.html

Run-Time Environment Variable Description

KMP_ALL_THREADS Limits the number of simultaneously-executing
threads in an OpenMP program. If this limit is
reached and another native operating system
thread encounters OpenMP API calls or constructs,
then the program may abort with an error
message. If this limit is reached at the time an
OpenMP parallel region begins, a one-time warning
message may be generated indicating that the
number of threads in the team was reduced, but
the program will continue execution.

This environment variable is only used for programs
compiled with the Qopenmp(Windows) or qopenmp
(Linux and macOS) option.

Default: No enforced limit.

KMP_BLOCKTIME Sets the time, in milliseconds, that a thread should
wait, after completing the execution of a parallel
region, before sleeping.

Use the optional character suffixes: s (seconds), m
(minutes), h (hours), or d (days) to specify the
units.

Specify infinite for an unlimited wait time.

Default: 200 milliseconds

Related Environment Variable: KMP_LIBRARY
environment variable.

KMP_CPUINFO_FILE Specifies an alternate file name for a file containing
the machine topology description. The file must be
in the same format as /proc/cpuinfo.

Default: None

KMP_DETERMINISTIC_REDUCTION Enables (TRUE) or disables (FALSE) the use of a
specific ordering of the reduction operations for
implementing the reduction clause for an OpenMP
parallel region. This has the effect that, for a given
number of threads, in a given parallel region, for a
given data set and reduction operation, a floating
point reduction done for an OpenMP reduction
clause has a consistent floating point result from
run to run, since round-off errors are identical.

NOTE When compiling, you must set the following flag
to ensure correct behavior:

• -fp-model precise (Linux)
• -fp:precise (Windows)

Default: FALSE

 Intel® C++ Compiler Classic Developer Guide and Reference

2028

Run-Time Environment Variable Description

KMP_DYNAMIC_MODE Selects the method used to determine the number
of threads to use for a parallel region when
OMP_DYNAMIC=TRUE. Possible values: (asat |
load_balance | thread_limit), where,

• asat: estimates number of threads based on
parallel start time;

NOTE
Support for asat (automatic self-allocating
threads) is now deprecated and will be removed
in a future release.

• load_balance: tries to avoid using more
threads than available execution units on the
machine;

• thread_limit: tries to avoid using more
threads than total execution units on the
machine.

Default (IA-32 architecture): load_balance
(on all supported OSes)

Default (Intel® 64 architecture):
load_balance (on all supported OSes)

NOTE IA-32 architecture is no longer supported on
macOS. IA-32 is deprecated for other operating
systems and will be removed in a future release.

KMP_HOT_TEAMS_MAX_LEVEL Sets the maximum nested level to which teams of
threads will be hot.

NOTE
A hot team is a team of threads optimized for faster
reuse by subsequent parallel regions. In a hot team,
threads are kept ready for execution of the next
parallel region, in contrast to the cold team, which is
freed after each parallel region, with its threads going
into a common pool of threads.

For values of 2 and above, nested parallelism
should be enabled.

Default: 1

KMP_HOT_TEAMS_MODE Specifies the run-time behavior when the number
of threads in a hot team is reduced.

Possible values:

Compilation

2029

Run-Time Environment Variable Description

• 0: Extra threads are freed and put into a
common pool of threads.

• 1: Extra threads are kept in the team in reserve,
for faster reuse in subsequent parallel regions.

Default: 0

KMP_HW_SUBSET Specifies the subset of available hardware
resources for the hardware topology hierarchy. The
subset is specified in terms of number of units per
upper layer unit starting from top layer downwards.
For example, it can specify the number of sockets
(top layer units), cores per socket, and the threads
per core, to use with an OpenMP application. It is a
convenient alternative to writing complicated
explicit affinity settings or a limiting process affinity
mask. You can also specify an offset value to set
which resources to use. When available, you can
specify attributes to select different subsets of
resources.

An extended syntax is available when
KMP_TOPOLOGY_METHOD=hwloc. Depending on what
resources are detected, you may be able to specify
additional resources, such as NUMA nodes and
groups of hardware resources that share certain
cache levels.

Basic syntax:

[num_units]ID[@offset][:attribute] [,
[num_units]ID[@offset][:attribute]...]
where

• num_units is either a positive integer, which
requests an exact number of resources, or an
asterisk (*), which means using all available
resources at that layer (for example, using all
cores per socket). If num_units is not specified,
the asterisk (*) semantics are assumed.

• ID is a supported ID:

S - socket num_units specifies the
requested number of sockets.

D - die num_units specifies the
requested number of dies per
socket.

C - core num_units specifies the
requested number of cores per
die - if any - otherwise, per
socket.

T - thread num_units specifies the
requested number of HW
threads per core.

 Intel® C++ Compiler Classic Developer Guide and Reference

2030

Run-Time Environment Variable Description

Supported unit IDs are not case-sensitive.
• offset is the number of units to skip (optional).
• attribute is an attribute differentiating

resources at a particular layer (optional).

This is only available for the core layer on
machines with Intel® Hybrid Technology. The
attributes available to users are:

• Core type: Either intel_atom or intel_core
• Core efficiency: Specified as effnum where

num is a number from 0 to the number of
core efficiencies detected in the machine
topology minus one. For example: eff0. The
greater the efficiency number, the more
performant the core. There may be more
core efficiencies than core types, which can
be viewed by setting
KMP_AFFINITY=verbose.

NOTE The hardware cache can be specified as a unit,
for example L2 for L2 cache, or LL for last level cache.

Extended syntax when
KMP_TOPOLOGY_METHOD=hwloc:

Additional IDs can be specified if detected. For
example:

N - numa num_units specifies the requested
number of NUMA nodes per upper
layer unit, e.g. per socket.

TI - tile num_units specifies the requested
number of tiles to use per upper layer
unit, e.g. per NUMA node.

When any numa or tile units are specified in
KMP_HW_SUBSET, the KMP_TOPOLOGY_METHOD will
be automatically set to hwloc,so there is no need
to set it explicitly.

If you don't specify one or more types of resource,
such as socket or thread, all available resources of
that type are used.

The run-time library prints a warning, and the
setting of KMP_HW_SUBSET is ignored if:

• a resource is specified, but detection of that
resource is not supported by the chosen
topology detection method and/or

• a resource is specified twice. An exception to
this condition is if attributes differentiate the
resource.

Compilation

2031

Run-Time Environment Variable Description

• attributes are used when unavailable, not
detected in the machine topology, or conflict
with each other.

This variable does not work if the OpenMP affinity is
set to disabled.

Default: If omitted, the default value is to use all
the available hardware resources.

Examples:

• 2s,4c,2t: Use the first 2 sockets (s0 and s1),
the first 4 cores on each socket (c0 - c3), and 2
threads per core.

• 2s@2,4c@8,2t: Skip the first 2 sockets (s0 and
s1) and use 2 sockets (s2-s3), skip the first 8
cores (c0-c7) and use 4 cores on each socket
(c8-c11), and use 2 threads per core.

• 5C@1,3T: Use all available sockets, skip the first
core and use 5 cores, and use 3 threads per
core.

• 1T: Use all cores on all sockets, 1 thread per
core.

• 1s, 1d, 1n, 1c, 1t: Use 1 socket, 1 die, 1
NUMA node, 1 core, 1 thread - use HW thread
as a result.

• 4c:intel_atom,5c:intel_core: Use all
available sockets and use 4 Intel Atom®
processor cores and 5 Intel® Core™ processor
cores per socket.

• 2c:eff0,3c:eff1: Use all available sockets and
use 2 cores with efficiency 0 and 3 cores with
efficiency 1 per socket.

• 1s, 1c, 1t: Use 1 socket, 1 core, 1 thread.
This may result in using single thread on a 3-
layer topology architecture, or multiple threads
on 4-layer or 5-layer architecture. Result may
even be different on the same architecture,
depending on KMP_TOPOLOGY_METHOD specified,
as hwloc can often detect more topology layers
than default method used by the OpenMP run-
time library.

To see the result of the setting, you can specify the
verbose modifier in for the KMP_AFFINITY
environment variable. The OpenMP run-time library
will output to stderr stream the information about
discovered HW topology before and after the
KMP_HW_SUBSET setting was applied. For example,
on Intel® Xeon Phi™ 7210 CPU in SNC-4 Clustering
Mode, the setting KMP_AFFINITY=verbose
KMP_HW_SUBSET=1N,1L2,1L1,1T outputs various

 Intel® C++ Compiler Classic Developer Guide and Reference

2032

Run-Time Environment Variable Description

verbose information to stderr, including the
following lines about discovered HW topology
before and after KMP_HW_SUBSET was applied:

• Info #191: KMP_AFFINITY: 1 socket x 4 NUMA
domains/socket x 8 tiles/NUMA domain x 2
cores/tile x 4 threads/core. (64 total cores)

• Info #191: KMP_HW_SUBSET 1 socket x 1 NUMA
domain/socket x 1 tile/NUMA domain x 1 core/
tile x 1 thread/core (1 total cores)

KMP_INHERIT_FP_CONTROL Enables (TRUE) or disables (FALSE) the copying of
the floating-point control settings of the primary
thread to the floating-point control settings of the
OpenMP worker threads at the start of each parallel
region.

Default: TRUE

KMP_LIBRARY Selects the OpenMP run-time library execution
mode. The values for this variable are serial,
turnaround, or throughput.

Default: throughput

KMP_PLACE_THREADS Deprecated; use KMP_HW_SUBSET instead.

KMP_SETTINGS Enables (TRUE) or disables (FALSE) the printing of
OpenMP run-time library environment variables
during program execution. Two lists of variables are
printed: user-defined environment variables
settings and effective values of variables used by
OpenMP run-time library.

Default: FALSE

KMP_STACKSIZE Sets the number of bytes to allocate for each
OpenMP thread to use as its private stack.

Recommended size is 16m.

Use the optional suffixes to specify byte units: B
(bytes), K (Kilobytes), M (Megabytes), G
(Gigabytes), or T (Terabytes) to specify the units. If
you specify a value without a suffix, the byte unit is
assumed to be K (Kilobytes).

This variable does not affect the native operating
system threads created by the user program nor
the thread executing the sequential part of an
OpenMP program or parallel programs created
using the option Qparallel (Windows) or
parallel (Linux and macOS) .

KMP_STACKSIZE overrides GOMP_STACKSIZE,
which overrides OMP_STACKSIZE.Default (IA-32
architecture): 2m

Compilation

2033

Run-Time Environment Variable Description

Default (Intel® 64 architecture): 4m

NOTE IA-32 architecture is no longer supported on
macOS. IA-32 is deprecated for other operating
systems and will be removed in a future release.

KMP_TOPOLOGY_METHOD Forces OpenMP to use a particular machine
topology modeling method.

Possible values are:

• all: Lets OpenMP choose which topology
method is most appropriate based on the
platform and possibly other environment
variable settings.

• cpuid_leaf11: Decodes the APIC identifiers as
specified by leaf 11 of the cpuid instruction.

• cpuid_leaf4: Decodes the APIC identifiers as
specified in leaf 4 of the cpuid instruction.

• cpuinfo: If KMP_CPUINFO_FILE is not specified,
forces OpenMP to parse /proc/cpuinfo to
determine the topology (Linux only). If
KMP_CPUINFO_FILE is specified as described
above, uses it (Windows or Linux).

• group: Models the machine as a 2-level map,
with level 0 specifying the different processors in
a group, and level 1 specifying the different
groups (Windows 64-bit only) .

NOTE
Support for group is now deprecated and will be
removed in a future release. Use all instead.

• flat: Models the machine as a flat (linear) list
of processors.

• hwloc: Models the machine as the Portable
Hardware Locality* (hwloc) library does. This
model is the most detailed and includes, but is
not limited to: numa nodes, packages, cores,
hardware threads, caches, and Windows
processor groups.

Default: all

KMP_USER_LEVEL_MWAIT Enables (TRUE) or disables (FALSE) the use of user-
level mwait as alternative to putting waiting threads
to sleep, if available, either from ring3 or WAITPKG.

Default: FALSE

 Intel® C++ Compiler Classic Developer Guide and Reference

2034

Run-Time Environment Variable Description

KMP_VERSION Enables (TRUE) or disables (FALSE) the printing of
OpenMP run-time library version information during
program execution.

Default: FALSE

KMP_WARNINGS Enables (TRUE) or disables (FALSE) displaying
warnings from the OpenMP run-time library during
program execution.

Default: TRUE

Profile Guided Optimization (PGO_) Environment Variables

INTEL_PROF_DUMP_CUMULATIVE When using interval profile dumping (initiated by
INTEL_PROF_DUMP_INTERVAL or the function
_PGOPTI_Set_Interval_Prof_Dump) during the
execution of an instrumented user application,
allows creation of a single .dyn file to contain
profiling information instead of multiple .dyn files.
If not set, executing an instrumented user
application creates a new .dyn file for each
interval.

Setting this environment variable is useful for
applications that do not terminate or those that
terminate abnormally (bypass the normal exit
code).

INTEL_PROF_DUMP_INTERVAL Initiates interval profile dumping in an
instrumented user application. This environment
variable may be used to initiate Interval Profile
Dumping in an instrumented application.

See Interval Profile Dumping for more information

INTEL_PROF_DYN_PREFIX Specifies the prefix to be used for the .dyn
filename to distinguish it from the other .dyn files
dumped by other PGO runs. Executing the
instrumented application generates a .dyn filename
as follows: <prefix>_<timestamp>_<pid>.dyn,
where <prefix> is the identifier that you have
specified.

NOTE
The value specified in this environment variable must
not contain < > : " / \ | ? * characters. The default
naming scheme is used if an invalid prefix is specified.

PROF_DIR Specifies the directory where profiling files (files
with extensions .dyn, .dpi, .spi and so on) are
stored. The default is to store the .dyn files in the

Compilation

2035

Run-Time Environment Variable Description

source directory of the file containing the first
executed instrumented routine in the binary
compiled with [Q]prof-gen option.

This variable applies to all three phases of the
profiling process:

• Instrumentation compilation and linking
• Instrumented execution
• Feedback compilation

PROF_DPI Name for the .dpi file.

Default: pgopti.dpi

PROF_DUMP_INTERVAL Deprecated; use INTEL_PROF_DUMP_INTERVAL
instead.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By
default, during the feedback compilation phase, the
compiler merges data from all dynamic information
files and creates a new pgopti.dpi file if the .dyn
files are newer than an existing pgopti.dpi file.

When this variable is set, the compiler does not
overwrite the existing pgopti.dpi file. Instead,
the compiler issues a warning. You must remove
the pgopti.dpi file if you want to use additional
dynamic information files.

The following table summarizes CPU environment variables that are recognized at run time.

Runtime configuration Default value Description

CL_CONFIG_CPU_FORCE_PRIVAT
E_MEM_SIZE

32KB Forces
CL_DEVICE_PRIVATE_MEM_SIZE
for the CPU device to be the
given value. The value must
include the unit; for example:
8MB, 8192KB, 8388608B.

NOTE You must compile your host
application with sufficient stack
size.

CL_CONFIG_CPU_FORCE_LOCAL_
MEM_SIZE

32KB Forces
CL_DEVICE_LOCAL_MEM_SIZE
for CPU device to be the given
value. The value needs to be set
with size including units,
examples: 8MB, 8192KB,
8388608B.

 Intel® C++ Compiler Classic Developer Guide and Reference

2036

Runtime configuration Default value Description

NOTE You must compile your host
application with sufficient stack
size. Our recommendation is to set
the stack size equal to twice the
local memory size to cover possible
application and OpenCL Runtime
overheads.

CL_CONFIG_CPU_EXPENSIVE_ME
M_OPT

0 A bitmap indicating enabled
expensive memory optimizations.
These optimizations may lead to
more JIT compilation time, but
give some performance benefit.

NOTE Currently, only the least
significant bit is available.

Available bits:

• 0: OpenCL address space alias
analysis

CL_CONFIG_CPU_STREAMING_AL
WAYS

False Controls whether non-temporal
instructions are used.

See Also
Qopenmp compiler option
parallel, Qparallel compiler option
prof-gen, Qprof-gen compiler option
Thread Affinity Interface

Pass Options to the Linker
Specify Linker Options
This topic describes the options that let you control and customize linking with tools and libraries and define
the output of the linker.

Linux and macOS
This section describes options specified at compile-time that take effect at link-time to define the output of
the ld linker. See the ld man page for more information on the linker.

Option Description

-Ldirectory Instruct the linker to search directory for libraries.

Pass Options to the Linker

2037

Option Description

-Qoption,tool,list Passes an argument list to another program in the compilation sequence,
such as the assembler or linker.

-shared Instructs the compiler to build a Dynamic Shared Object (DSO) instead of
an executable.

-shared-libgcc -shared-libgcc has the opposite effect of -static-libgcc . When it
is used, the GNU standard libraries are linked in dynamically, allowing the
user to override the static linking behavior when the -static option is
used.

NOTE
Note: By default, all C++ standard and support libraries are linked
dynamically.

-shared-intel Specifies that all Intel-provided libraries should be linked dynamically.

-static Causes the executable to link all libraries statically, as opposed to
dynamically.

When -static is not used:

• /lib/ld-linux.so.2 is linked in
• all other libs are linked dynamically

When -static is used:

• /lib/ld-linux.so.2 is not linked in
• all other libs are linked statically

-static-libgcc This option causes the GNU standard libraries to be linked in statically.

-Bstatic
-Bdynamic

Either option is placed in the linker command line corresponding to its
location on the user command line to control the linking behavior of any
library being passed in via the command line.

-static-intel This option causes Intel-provided libraries to be linked in statically. It is
the opposite of -shared-intel.

-Wl,optlist This option passes a comma-separated list (optlist) of options to the
linker.

-Xlinker val This option passes a value (val), such as a linker option, an object, or a
library, directly to the linker.

Windows
This section describes options specified at compile-time that take effect at link-time.

You can use the link option to pass options specifically to the linker at compile time. For example:

icl a.cpp libfoo.lib /link -delayload:comct132.dll

 Intel® C++ Compiler Classic Developer Guide and Reference

2038

In this example, the compiler recognizes that libfoo.lib is a library that should be linked with a.cpp, so it
does not need to follow the link option on the command line. The compiler does not recognize -
delayload:comct132.dll, so the link option is used to direct the option to the linking phase. On C++,
you can use the Qoption option to pass options to various tools, including the linker. You can also use
#pragma comment on C++ to pass options to the linker. For example:

#pragma comment(linker, "/defaultlib:mylib.lib")
OR

#pragma comment(lib, "mylib.lib")
Both examples instruct the compiler to link mylib.lib at link time.

Linking Tools and Options
This topic describes how to use the Intel® linking tools, xild (Linux* and macOS) and xilink (Windows*).

The Intel® linking tools behave differently on different platforms. The following sections summarize the
primary differences between linking behavior.

Linux* and macOS Linking Behavior Summary

The linking tool invokes the Intel® C++ Compiler to perform IPO if objects containing IR (intermediate
representation) are found. These are mock objects. The tool invokes GNU ld to link the application.

The command-line syntax for xild is the same as that of the GNU linker:

xild [<options>] <normal command-line>
where:

• [<options>]: One or more options supported only by xild (optional).
• <normal command-line>: Linker command line containing a set of valid arguments for ld.

To create the file app using IPO, use the option o[filename] as shown in the following example:

xild -qipo-fas-oapp a.o b.o c.o
The linking tool calls the compiler to perform IPO for objects containing IR and creates a new list of
object(s) to be linked. The linker then calls ld to link the object files that are specified in the new list and
produce the application with the name specified by the o option. The linker supports the ipo[n] option
and ipo-separate option.

To display a list of the supported link options from xild, use the following command:

$ xild -qhelp

Windows* Linking Behavior Summary

The linking tool invokes the Intel® C++ Compiler to perform multi-file IPO if objects containing IR
(intermediate representation) is found. These are mock objects. It invokes the Microsoft linker link.exe
to link the application.

The command-line syntax for the Intel® linker is the same as that of the Microsoft linker:

xilink [<options>] <normal command-line>
where:

Linking Tools and Options

2039

Windows* Linking Behavior Summary

• [<options>]: One or more options supported only by xilink (optional).
• <normal command-line>: Linker command line containing a set of valid arguments for the Microsoft

linker.

To place the multifile IPO executable in ipo_file.exe, use the linker option out:[filename] , for
example:

xilink -qipo-fas/out:ipo_file.exe a.obj b.obj c.obj
The linker calls the compiler to perform IPO for objects containing IR and creates a new list of object(s)
to be linked. The linker calls Microsoft link.exe to link the object files that are specified in the new list
and produce the application with the name specified by the out:[filename] linker option.

To display a list of support link options from xilink , use the following command:

>> xilink /qhelp
xilink.exe accepts all the options of link.exe and will pass them on to link.exe at the final linking
stage.

Using the Linking Tools
You must use the Intel® linking tools to link your application if the following conditions apply:

• Your source files were compiled with multi-file IPO enabled. Multi-file IPO is enabled by specifying
compiler option [Q]ipo.

• You would normally invoke the GNU linker (ld) to link your application.
• You would normally invoke the Microsoft linker (link.exe) to link your application.

Linker Options
The following table provides information on linking options.

Linking Tools
Option

Description

qdiag-
[type]=[diag-list]

Controls the display of diagnostic information.

The type is an action to perform on diagnostics. Possible values are:

• Enable: Enables a diagnostic message or a group of messages.
• Disable: Disables a diagnostic message or a group of messages.

The diag-list is a diagnostic group or ID value. Possible values are:

• thread: Specifies diagnostic messages that help in thread-enabling a program.
• vec: Specifies diagnostic messages issued by the vectorizer.
• par: Specifies diagnostic messages issued by the auto-parallelizer (parallel

optimizer).
• openmp: Specifies diagnostic messages issued by the OpenMP* parallelizer.
• warn: Specifies diagnostic messages that have a "warning" severity level.
• error: Specifies diagnostic messages that have an "error" severity level.
• remark: Specifies diagnostic messages that are remarks or comments.
• cpu-dispatch: Specifies the CPU dispatch remarks for diagnostic messages.

These remarks are enabled by default.
• id[,id,...]: Specifies the ID number of one or more messages. If you specify

more than one message number, they must be separated by commas. There can
be no intervening white space between each "id".

 Intel® C++ Compiler Classic Developer Guide and Reference

2040

Linking Tools
Option

Description

• tag[,tag,...]: Specifies the mnemonic name of one or more messages. If you
specify more than one mnemonic name, they must be separated by commas.
There can be no intervening white space between each "tag".

NOTE
Diagnostic messages generated by this option can be affected by other options,
such as /arch (Windows), -m (Linux and macOS), or [Q]x.

m32 (Linux* only),
m64 (Linux* and
macOS)

Qm32, Qm64
(Windows*)

[Q]m32 generates code for IA-32 architecture. Option -m32 is only available on
Linux* systems.

[Q]m64 generates code for Intel® 64 architecture.

For example, when your compilation environment is configured for Intel® 64
architecture, and you use [Q]m32 with the compiler, you also need to use qm32 on
the linker command line to make sure the proper compilation target is set up for any
IPO compilations or the final link.

See Also
Using IPO from the command line

Specify Alternate Tools and Paths
Use the Qlocation option to specify an alternate path for a tool. This option accepts two arguments using
the following syntax:

Linux and macOS

-Qlocation,tool,path
Windows

/Qlocation,tool,path
where tool designates which compilation tool is associated with the alternate path.

tool Description

cpp Specifies the preprocessor for the compiler.

c Specifies the Intel® C++ Compiler Classic .

asm Specifies the assembler.

link Specifies the linker.

Use the Qoption option to pass an option specified by optlist to a tool, where optlist is a comma-separated
list of options. The syntax for this command is:

Linux and macOS

-Qoption,tool,optlist

Specify Alternate Tools and Paths

2041

Windows

/Qoption,tool,optlist
where

• tool designates which compilation tool receives the optlist
• optlist indicates one or more valid argument strings for the designated program. If the argument is a

command-line option, you must include the hyphen. If the argument contains a space or tab character,
the entire argument must be enclosed in quotation characters (""). Separate multiple arguments with
commas.

Use Configuration Files
You can decrease the time you spend entering command-line options by using the configuration file to
automate command-line entries. Configuration files are automatically processed every time you run the
Intel® C++ Compiler Classic. You can insert any valid command-line options into the configuration file. The
compiler processes options in the configuration file in the order in which they appear, followed by the
specified command-line options when the compiler is invoked.

NOTE
Options in the configuration file are executed every time you run the compiler. If you have varying
option requirements for different projects, use Using Response Files .

Sample Configuration Files
The default configuration files icc.cfg and icpc.cfg (Linux* and macOS) or or icl.cfg (Windows*), are
located in the same directory as the compiler executable file. If you want to use a different configuration file
than the default, you can use the ICCCFG/ICPCCFG (for Linux* and macOS) or ICLCFG (for Windows)
environment variables to specify the location of another configuration file.

NOTE
Anytime you instruct the compiler to use a different configuration file, the default configuration file(s)
are ignored.

The following examples illustrate basic configuration files.

Linux

Sample icpc.cfg file
 -I/my_headers

Windows

Sample icl.cfg file
 /Ic:\my_headers

In the Windows examples, the compiler reads the configuration file and invokes the I option every time you
run the compiler, along with any options specified on the command line.

See Also
Supported Environment Variables
Using Response Files

 Intel® C++ Compiler Classic Developer Guide and Reference

2042

Use Response Files
You can use response files to:

• Specify options used during particular compilations or projects.
• Save this information in individual files.

Response files are invoked as options on the command line. Options in response files are inserted in the
command line at the point where the response file is invoked. Unlike configuration files, which are
automatically processed every time you run the compiler, response files must be invoked as an option on the
command line. If you create a response file without specifying it on the command line, it will not be invoked.

Sample Response Files
Linux and macOS

response file: response1.txt
compile with these options
 -w0
end of response1 file

response file: response2.txt
compile with these options
 -O0
end of response2 file

Windows

response file: response1.txt
compile with these options
 /W0
end of response1 file

response file: response2.txt
compile with these options
 /Od
end of response2 file

Use response files to decrease the time spent entering command-line options and to ensure consistency by
automating command-line entries. Use individual response files to maintain options for specific projects.

Any number of options or file names can be placed on a line in a response file. Several response files can be
referenced in the same command line. The following example shows how to specify a response file on the
command line:

macOS

 icpx @response1.txt prog1.cpp @response2.txt prog2.cpp

NOTE
An "at" sign (@) must precede the name of the response file on the command line.

Use Response Files

2043

See Also
Using Configuration Files

Global Symbols and Visibility
Attributes for Linux* and macOS
This topic applies to C/C++ applications for Linux* and macOS only.

A global symbol is one that is visible outside the compilation unit (single source file and its include files) in
which it is declared. In C/C++, this means anything declared at file level without the static keyword. For
example:

int x = 5; // global data definition
extern int y; // global data reference
int five() // global function definition
 { return 5; }
extern int four(); // global function reference

A complete program consists of a main program file and possibly one or more shareable object (.so) files
that contain the definitions for data or functions referenced by the main program. Similarly, shareable objects
might reference data or functions defined in other shareable objects. Shareable objects are so called because
if more than one simultaneously executing process has the shareable object mapped into its virtual memory,
there is only one copy of the read-only portion of the object resident in physical memory. The main program
file and any shareable objects that it references are collectively called the components of the program.

Each global symbol definition or reference in a compilation unit has a visibility attribute that controls how (or
if) it may be referenced from outside the component in which it is defined. There are five possible values for
visibility:

• EXTERNAL – The compiler must treat the symbol as though it is defined in another component. For a
definition, this means that the compiler must assume that the symbol will be overridden (preempted) by a
definition of the same name in another component. See Symbol Preemption. If a function symbol has
external visibility, the compiler knows that it must be called indirectly and can inline the indirect call stub.

• DEFAULT – Other components can reference the symbol. Furthermore, the symbol definition may be
overridden (preempted) by a definition of the same name in another component.

• PROTECTED – Other components can reference the symbol, but it cannot be preempted by a definition of
the same name in another component.

• HIDDEN – Other components cannot directly reference the symbol. However, its address might be passed
to other components indirectly (for example, as an argument to a call to a function in another component,
or by having its address stored in a data item reference by a function in another component).

• INTERNAL – The symbol cannot be referenced outside its defining component, either directly or indirectly.

Static local symbols (in C/C++, declared at file scope or elsewhere with the keyword static) usually have
HIDDEN visibility— they cannot be referenced directly by other components (or, for that matter, other
compilation units within the same component), but they might be referenced indirectly.

NOTE
Visibility applies to references as well as definitions. A symbol reference's visibility attribute is an
assertion that the corresponding definition will have that visibility.

 Intel® C++ Compiler Classic Developer Guide and Reference

2044

Specify Symbol Visibility Explicitly
You can explicitly set the visibility of an individual symbol using the visibility attribute on a data or
function declaration. For example:

int i __attribute__ ((visibility("default")));
void __attribute__ ((visibility("hidden"))) x () {...}
extern void y() __attribute__ ((visibility("protected")));

The visibility declaration attribute accepts one of the five keywords:

• external
• default
• protected
• hidden
• internal
The value of the visibility declaration attribute overrides the default set by the options -fpic,
-fvisibility, or -fno-common .

If you have a number of symbols for which you wish to specify the same visibility attribute, you can set
the visibility using one of the five command line options:

• -fvisibility-external=file
• -fvisibility-default=file
• -fvisibility-protected=file
• -fvisibility-hidden=file
• -fvisibility-internal=file

where file is the pathname of a file containing a list of the symbol names whose visibility you wish to set.

The symbol names in the file are separated by white space (blanks, TAB characters, or newlines). For
example, the command line option: -fvisibility-protected=prot.txt, where file prot.txt contains:

a
 bcd
 e

This sets protected visibility for symbols a, b, c, d, and e.

This has the same effect as __attribute__ ((visibility=("protected"))) on the declaration for each
of the symbols.

NOTE
These two ways to explicitly set visibility are mutually exclusive– you may use
__attribute((visibility())) on the declaration or specify the symbol name in a file, but not
both.

You can set the default visibility for symbols using one of the command line options:

• -fvisibility=external
• -fvisibility=default
• -fvisibility=protected
• -fvisibility=hidden
• -fvisibility=internal

Compilation

2045

This option sets the visibility for symbols not specified in a visibility list file and that do not have
__attribute__ ((visibility=())) in their declaration. For example, the command line options:
-fvisibility=protected -fvisibility-default=prot.txt, where file prot.txt is as previously
described, will cause all global symbols except a, b, c, d, and e to have protected visibility. Those five
symbols, however, will have default visibility, and thus will be preemptable.

Save Compiler Information in Your
Executable
If you want to save information about the compiler in your executable, use the [Q]sox option to save:

• Compiler version number and options used to produce the executable.
• Profile data and inlining information (if optional arguments were specified).

Linux
To view the information stored in the object file, use the objdump command. For example:

objdump -sj comment a.out
strings -a a.out | grep comment:

Windows
To view the linker directives stored in string format in the object file, use the link command. For example:

link /dump /directives filename.obj
In the output, the ?-comment linker directive displays the compiler version information. To search your
executable for compiler information, use the findstr command. For example, to search for any strings that
contain the substring "Compiler":

findstr "Compiler" filename.exe

Link Debug Information
Linux*
Use option g at compile time to tell the compiler to generate symbolic debugging information in the object
file.

Use option gsplit-dwarf to create a separate object file containing DWARF debug information. Because the
DWARF object file is not used by the linker, this reduces the amount of debug information the linker must
process and it results in a smaller executable file. See gsplit-dwarf for detailed information.

macOS
You can link the DWARF debug information from the object files for an executable using dsymutil, a utility
included with Xcode*. By linking the debug information in an executable, you eliminate the need to retain
object files specifically for debugging purposes.

The utility runs automatically in the following cases:

• When you use the Intel® C++ Compiler to compile directly from source to executable using the command
line with option g. For example:

 Intel® C++ Compiler Classic Developer Guide and Reference

2046

Example

icc -g myprogram.c
• When you compile using Xcode*.

In other cases, you must explicitly run dsymutil, such as when you compile using a make file that
builds .o files and subsequently links the program.

Windows*
Use option Z7 at compile time or option debug at link time to tell the compiler to generate symbolic
debugging information in the object file. Alternately, use option Zi at link time to generate executables with
debug information in the .pdb file.

Compilation

2047

Optimization and Programming

Part

V
This section contains information about features related to code optimization and program performance
improvement.

OpenMP* Support
The Intel® C++ Compiler Classic supports most of the OpenMP* Application Programming Interface versions
5.0 and 5.1. For the complete OpenMP specification, read the specifications available from the OpenMP web
site (http://www.openmp.org; see OpenMP Specifications on that site). The descriptions of OpenMP language
characteristics in this documentation often use terms defined in that specification.

The OpenMP API provides symmetric multiprocessing (SMP) with the following major features:

• Relieves you from implementing the low-level details of iteration space partitioning, data sharing, thread
creation, scheduling, or synchronization.

• Provides the benefit of performance available from shared memory multiprocessor and multi-core
processor systems on all supported Intel architectures, including those processors with Intel® Hyper-
Threading Technology (Intel® HT Technology).

The compiler performs transformations to generate multithreaded code based on your placement of OpenMP
pragmas in the source program, making it simple to add threading to existing software. The compiler
compiles parallel programs and supports the industry-standard OpenMP pragmas.

The compiler provides Intel®-specific extensions to the OpenMP specification including run-time library
routines and environment variables. A summary of the compiler options appear in the OpenMP Options Quick
Reference.

Parallel Processing with OpenMP
To compile with the OpenMP API, add the pragmas to your code. The compiler processes the code and
internally produces a multithreaded version which is then compiled into an executable with the parallelism
implemented by threads that execute parallel regions or constructs.

Using Other Compilers
The OpenMP specification does not define interoperability of multiple implementations, so the OpenMP
implementation supported by other compilers and OpenMP support in the Intel® C++ Compiler Classic might
not be interoperable. Even if you compile and build the entire application with one compiler, be aware that
different compilers might not provide OpenMP source compatibility that enable you to compile and link the
same set of application sources with a different compiler and get the expected parallel execution results.

Add OpenMP* Support
To add OpenMP* support to your application, do the following:

1. Add the appropriate OpenMP pragmas to your source code.
2. Compile the application with the /Qopenmp (Windows*) or -qopenmp (Linux* and macOS) option.
3. For applications with large local or temporary arrays, you may need to increase the stack space

available at runtime. In addition, you may need to increase the stack allocated to individual threads by
using the OMP_STACKSIZE environment variable or by setting the corresponding library routines.

 Intel® C++ Compiler Classic Developer Guide and Reference

2048

You can set other environment variables to control multi-threaded code execution.

OpenMP Pragma Syntax
To add OpenMP support to your application, first declare the OpenMP header and then add appropriate
OpenMP pragmas to your source code.

To declare the OpenMP header, add the following in your code:

#include <omp.h>
OpenMP pragmas use a specific format and syntax. Intel Extension Routines to OpenMP describes the
OpenMP extensions to the specification that have been added to the Intel® C++ Compiler Classic.

To use pragmas in your source, use this syntax:

<prefix> <pragma> [<clause>, ...] <newline>
where:

• <prefix> - Required for all OpenMP pragmas. The prefix must be #pragma omp.
• <pragma> - A valid OpenMP pragma. Must immediately follow the prefix.
• [<clause>] - Optional. Clauses can be in any order and repeated as necessary, unless otherwise

restricted.
• <newline> - A required component of pragma syntax. It precedes the structured block that is enclosed by

this pragma.

The pragmas are interpreted as comments if you omit the /Qopenmp (Windows) or -qopenmp (Linux and
macOS) option.

The following example demonstrates one way of using an OpenMP pragma to parallelize a loop:

#include <omp.h>
void simple_omp(int *a){
 int i;
 #pragma omp parallel for
 for (i=0; i<1024; i++)
 a[i] = i*2;
}

Compile the Application
The /Qopenmp (Windows) or -qopenmp (Linux and macOS) option enables the parallelizer to generate multi-
threaded code based on the OpenMP pragmas in the source. The code can be executed in parallel on single
processor, multi-processor, or multi-core processor systems.

The /Qopenmp (Windows) or -qopenmp (Linux and macOS) option works with both -O0 (Linux and macOS)
and /Od (Windows*) and with any optimization level of O1, O2 and O3.

Specifying -O0 (Linux and macOS) or /Od (Windows) with the /Qopenmp (Windows) or -qopenmp (Linux and
macOS) option helps to debug OpenMP applications.

Compile your application using a command similar to one of the following:

Linux

icpc -qopenmp source_file
macOS

icpc -qopenmp source_file
Windows

icl /Qopenmp source_file

Optimization and Programming

2049

For example, to compile the previous code example without generating an executable, use the c option:

Linux

icpc -qopenmp -c parallel.cpp
macOS

icpc -qopenmp -c parallel.cpp
Windows

icl /Qopenmp /c parallel.cpp
Configure the OpenMP Environment

Before you run the multi-threaded code, you can set the number of desired threads using the OpenMP
environment variable, OMP_NUM_THREADS.

See Also
c compiler option
O compiler option
OpenMP* Examples
qopenmp, Qopenmp compiler option
Supported Environment Variables

Parallel Processing Model
A program containing OpenMP* pragmas begins execution as a single thread, called the initial thread of
execution. The initial thread executes sequentially until the first parallel construct is encountered.

The omp parallel pragma defines the extent of the parallel construct. When the initial thread encounters a
parallel construct, it creates a team of threads, with the initial thread becoming the primary thread of the
team. All program statements enclosed by the parallel construct are executed in parallel by each thread in
the team, including all routines called from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the construct. The dynamic
extent includes all statements encountered during the execution of a construct by a thread, including all
called routines.

When a thread encounters the end of a structured block enclosed by a parallel construct, the thread waits
until all threads in the team have arrived. When that happens the team is dissolved, and only the primary
thread continues execution of the code following the parallel construct. The other threads in the team enter a
wait state until they are needed to form another team. You can specify any number of parallel constructs in a
single program. As a result, thread teams can be created and dissolved many times during program
execution.

The following example illustrates, from a high level, the execution model for the OpenMP constructs. The
comments in the code explain the structure of each construct or section.

main() { // Begin serial execution.
 ... // Only the initial thread executes
 #pragma omp parallel // Begin a parallel construct and form a team.
 {
 #pragma omp sections // Begin a worksharing construct.
 {
 #pragma omp section // One unit of work.
 {...}
 #pragma omp section // Another unit of work.
 {...}
 } // Wait until both units of work complete.
 ... // This code is executed by each team member.

 Intel® C++ Compiler Classic Developer Guide and Reference

2050

 #pragma omp for nowait // Begin a worksharing Construct
 for(...) { // Each iteration chunk is unit of work.
 ... // Work is distributed among the team members.
 } // End of worksharing construct.
 // nowait was specified so threads proceed.
 #pragma omp critical // Begin a critical section.
 {...} // Only one thread executes at a time.
 ... // This code is executed by each team member.
 #pragma omp barrier // Wait for all team members to arrive.
 ... // This code is executed by each team member.
 } // End of Parallel Construct
 // Disband team and continue serial execution.
 ... // Possibly more parallel constructs.
} // End serial execution.

Use Orphaned Pragmas
In routines called from within parallel constructs, you can also use pragmas. Pragmas that are not in the
static extent of the parallel construct, but are in the dynamic extent, are called orphaned pragmas. Orphaned
pragmas allow you to execute portions of your program in parallel with only minimal changes to the
sequential version of the program. Using this functionality, you can code parallel constructs at the top levels
of your program call tree and use directives to control execution in any of the called routines. For example:

int main(void) {
 #pragma omp parallel {
 phase1();
 }
}

void phase1(void) {
 #pragma omp for // This is an orphaned pragma.
 for(i=0; i < n; i++) { some_work(i); }
}

This is an orphaned omp for loop pragma since the parallel region is not lexically present in routine phase1.

Data Environment
You can control the data environment of OpenMP constructs by using data environment clauses supported by
the construct. You can also privatize named global-lifetime objects by using the threadprivate pragma.

Refer to the OpenMP specification for the full list of data environment clauses. Some commonly used ones
include:

• default
• shared
• private
• firstprivate
• lastprivate
• reduction
• linear
• map
You can use several pragma clauses to control the data scope attributes of variables for the duration of the
construct in which you specify them; however, if you do not specify a data scope attribute clause on a
pragma, the behavior for the variable is determined by the default scoping rules, which are described in the
OpenMP specification, for the variables affected by the directive.

Optimization and Programming

2051

Determine How Many Threads to Use
For applications where the workload depends on application input that can vary widely, delay the decision
about the number of threads to employ until runtime when the input sizes can be examined. Examples of
workload input parameters that affect the thread count include things like matrix size, database size, image/
video size and resolution, depth/breadth/bushiness of tree-based structures, and size of list-based
structures. Similarly, for applications designed to run on systems where the processor count can vary widely,
defer choosing the number of threads to employ until application runtime when the machine size can be
examined.

For applications where the amount of work is unpredictable from the input data, consider using a calibration
step to understand the workload and system characteristics to aid in choosing an appropriate number of
threads. If the calibration step is expensive, the calibration results can be made persistent by storing the
results in a permanent place like the file system.

Avoid simultaneously using more threads than the number of processing units on the system. This situation
causes the operating system to multiplex threads on the processors and typically yields sub-optimal
performance.

When developing a library as opposed to an entire application, provide a mechanism whereby the user of the
library can conveniently select the number of threads used by the library, because it is possible that the user
has outer-level parallelism that renders the parallelism in the library unnecessary or even disruptive.

Use the num_threads clause on parallel regions to control the number of threads employed and use the if
clause on parallel regions to decide whether to employ multiple threads at all. The omp_set_num_threads()
routine can also be used, but it also affects parallel regions created by the calling thread. The num_threads
clause is local in its effect, so it does not impact other parallel regions. The disadvantages of explicitly setting
the number of threads are:

1. In a system with a large number of processors, your application will use some but not all of the
processors.

2. In a system with a small number of processors, your application may force over subscription that
results in poor performance.

The Intel OpenMP runtime will create the same number of threads as the available number of logical
processors unless you use the omp_set_num_threads() routine. To determine the actual limits, use
omp_get_thread_limit() and omp_get_max_active_levels(). Developers should carefully consider their thread
usage and nesting of parallelism to avoid overloading the system. The OMP_THREAD_LIMIT environment
variable limits the number of OpenMP threads to use for the whole OpenMP program. The
OMP_MAX_ACTIVE_LEVELS environment variable limits the number of active nested parallel regions.

Binding Sets and Binding Regions
The binding task set for an OpenMP construct is the set of tasks that are affected by, or provide the context
for, the execution of its region. It can be all tasks, the current team tasks, all tasks of the current team that
are generated in the region, the binding implicit task, or the generating task.

The binding thread set for an OpenMP construct is the set of threads that are affected by, or provide the
context for, the execution of its region. It can be all threads on a device, all threads in a contention group, all
primary threads executing an enclosing teams region, the current team, or the encountering thread.

The binding region for an OpenMP construct is the enclosing region that determines the execution context
and the scope of the effects of the directive:

• The binding region for an omp ordered construct is the innermost enclosing omp for loop region.
• The binding region for a omp taskwait construct is the innermost enclosing omp task region.
• For all other constructs for which the binding thread set is the current team or the binding task set is the

current team tasks, the binding region is the innermost enclosing region.
• For constructs for which the binding task set is the generating task, the binding region is the region of the

generating task.

 Intel® C++ Compiler Classic Developer Guide and Reference

2052

• A omp parallel construct need not be active to be a binding region.
• A construct need not be explicit to be a binding region.
• A region never binds to any region outside of the innermost enclosing parallel region.

Worksharing Using OpenMP*
To get the maximum performance benefit from a processor with multi-core and Intel® Hyper-Threading
Technology (Intel® HT Technology), an application needs to be executed in parallel. Parallel execution
requires threads, and threading an application is not a simple thing to do; using OpenMP* can make the
process a lot easier. Using the OpenMP pragmas, most loops with no loop-carried dependencies can be
threaded with one simple statement. This topic explains how to start using OpenMP to parallelize loops,
which is also called worksharing.

Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these options may
perform additional optimizations on Intel® microprocessors than they perform on non-Intel microprocessors.
The list of major, user-visible OpenMP constructs and features that may perform differently on Intel®
microprocessors than on non-Intel microprocessors includes: locks (internal and user visible), the SINGLE
construct, barriers (explicit and implicit), parallel loop scheduling, reductions, memory allocation, and thread
affinity and binding.

Most loops can be threaded by inserting one pragma immediately prior to the loop. Further, by leaving the
details to the Intel® C++ Compiler Classic and OpenMP, you can spend more time determining which loops
should be threaded and how to best restructure the algorithms for maximum performance. The maximum
performance of OpenMP is realized when it is used to thread hotspots, the most time-consuming loops in
your application.

The power and simplicity of OpenMP is demonstrated by looking at an example. The following loop converts a
32-bit RGB (red, green, blue) pixel to an 8-bit gray-scale pixel. One pragma, which has been inserted
immediately before the loop, is all that is needed for parallel execution.

#pragma omp parallel for
for (i=0; i < numPixels; i++) {
 pGrayScaleBitmap[i] = (unsigned BYTE)
 (pRGBBitmap[i].red * 0.299 +
 pRGBBitmap[i].green * 0.587 +
 pRGBBitmap[i].blue * 0.114);
}

First, the example uses worksharing, which is the general term used in OpenMP to describe distribution of
work across threads. When worksharing is used with the for construct, as shown in the example, the
iterations of the loop are distributed among multiple threads so that each loop iteration is executed exactly
once with different iterations executing if there is more than one available threads. The for construct on its
own only distributes the loop iterations among existing threads. The example uses a parallel for
construct, which combines parallel and for constructs to first create a team of threads and then distribute
the loop iterations among the threads. Since there is no explicit num_threads clause, OpenMP determines
the number of threads to create and how to best create, synchronize, and destroy them. OpenMP places the
following five restrictions on which loops can be threaded:

• The loop variable must be of type signed or unsigned integer, random access iterator, or pointer.
• The comparison operation must be in the form loop_variable <, <=, >, >=, or !=

loop_invariant_expression of a compatible type.
• The third expression or increment portion of the for loop must be either addition or subtraction by a loop

invariant value.
• If the comparison operation is < or <=, the loop variable must increment on every iteration; conversely, if

the comparison operation is > or >=, the loop variable must decrement on every iteration.
• The loop body must be single-entry-single-exit, meaning no jumps are permitted from inside to outside

the loop, with the exception of the exit statement that terminates the whole application. If the
statements goto or break are used, the statements must jump within the loop, not outside it. Similarly,
for exception handling, exceptions must be caught within the loop.

Although these restrictions might sound somewhat limiting, non-conforming loops can frequently be
rewritten to follow these restrictions.

Optimization and Programming

2053

Basics of Compilation
Using the OpenMP pragmas requires an OpenMP-compatible compiler and thread-safe libraries. Adding
the /Qopenmp (Windows*) or -qopenmp (Linux* and macOS) option to the compiler instructs the compiler to
pay attention to the OpenMP pragmas and to generate multi-threaded code. If you omit the /Qopenmp
(Windows) or -qopenmp (Linux and macOS) option, the compiler will ignore OpenMP pragmas, which
provides a very simple way to generate a single-threaded version without changing any source code. To
compile programs containing target and related constructs for offloading to a GPU, the -fopenmp-
targets=spir64 and /Qopenmp-targets:spir64 flags are needed on Linux and Windows respectively.

For conditional compilation, the compiler defines the _OPENMP macro. If needed, the macro can be tested as
shown in the following example.

#ifdef _OPENMP
 fn();
#endif

A Few Simple Examples
The following examples illustrate how simple OpenMP is to use. In common practice, additional issues need
to be addressed, but these examples illustrate a good starting point.

In the first example, the loop clips an array to the range from 0 to 255.

// clip an array to 0 <= x <= 255
for (i=0; i < numElements; i++) {
 if (array[i] < 0)
 array[i] = 0;
 else if (array[i] > 255)
 array[i] = 255;
}

You can thread it using a single OpenMP pragma; insert the pragma immediately prior to the loop:

#pragma omp parallel for
for (i=0; i < numElements; i++) {
 if (array[i] < 0)
 array[i] = 0;
 else if (array[i] > 255)
 array[i] = 255;
}

In the second example, the loop generates a table of square roots for the numbers from 0 to 100.

double value;
double roots[100];
for (value = 0.0; value < 100.0; value ++) { roots[(int)value] = sqrt(value); }

Thread the loop by changing the loop variable to a signed integer or unsigned integer and inserting a
#pragma omp parallel for pragma.

int value;
double roots[100];
#pragma omp parallel for
for (value = 0; value < 100; value ++) { roots[value] = sqrt((double)value); }

Avoid Data Dependencies and Race Conditions
When a loop meets all five loop restrictions (listed above) and the compiler threads the loop, the loop still
might not work correctly due to the existence of data dependencies.

 Intel® C++ Compiler Classic Developer Guide and Reference

2054

Data dependencies exist when different iterations of a loop (more specifically a loop iteration that is executed
on a different thread) read or write the same location in shared memory. Consider the following example that
calculates factorials.

// Each loop iteration writes a value that a different iteration reads.
#pragma omp parallel for
for (i=2; i < 10; i++) { factorial[i] = i * factorial[i-1]; }

The compiler will thread this loop, but the threading will fail because at least one of the loop iterations is
data-dependent upon a different iteration. This situation is referred to as a race condition. Race conditions
can only occur when using shared resources (like memory) and parallel execution. To address this problem
either rewrite the loop or pick a different algorithm, one that does not contain the race condition.

Race conditions are difficult to detect because, for a given case or system, the threads might win the race in
the order that happens to make the program function correctly. Because a program works once does not
mean that the program will work under all conditions. Testing your program on various machines, some with
Intel® Hyper-Threading Technology and some with multiple physical processors, is a good starting point to
help identify race conditions.

Traditional debuggers are useless for detecting race conditions because they cause one thread to stop the
race while the other threads continue to significantly change the runtime behavior; however, thread checking
tools can help.

Manage Shared and Private Data
Nearly every loop (in real applications) reads from or writes to memory; it's your responsibility, as the
developer, to instruct the compiler what memory should be shared among the threads and what memory
should be kept private. When memory is identified as shared, all threads access the same memory location.
When memory is identified as private, however, a separate copy of the variable is made for each thread to
access in private. When the loop ends, the private copies are destroyed. By default, all variables are shared
except for the loop variable, which is private.

Memory can be declared as private in two ways:

• Declare the variable inside the loop-really inside the parallel OpenMP pragma-without the static keyword.
• Specify the private clause on an OpenMP pragma.

The following loop fails to function correctly because the variable temp is shared. It should be private.

// Variable temp is shared among all threads, so while one thread
// is reading variable temp another thread might be writing to it
#pragma omp parallel for
for (i=0; i < 100; i++) {
 temp = array[i];
 array[i] = do_something(temp);
}

The following two examples both declare the variable temp as private memory, which solves the problem.

#pragma omp parallel for
for (i=0; i < 100; i++) {
 int temp; // variables declared within a parallel construct
 // are, by definition, private
 temp = array[i];
 array[i] = do_something(temp);
}

Optimization and Programming

2055

The temp variable can also be made private in the following way:

#pragma omp parallel for private(temp)
for (i=0; i < 100; i++) {
 temp = array[i];
 array[i] = do_something(temp);
}

Every time you use OpenMP to parallelize a loop, you should carefully examine all memory references,
including the references made by called functions. Variables declared within a parallel construct are defined
as private except when they are declared with the static declarator, because static variables are not
allocated on the stack.

Reductions
Loops that accumulate a value are fairly common, and OpenMP has a specific clause to accommodate them.
Consider the following loop that calculates the sum of an array of integers.

sum = 0;
for (i=0; i < 100; i++) {
 sum += array[i]; // this variable needs to be shared to generate
 // the correct results, but private to avoid
 // race conditions from parallel execution
}

The variable sum in the previous loop must be shared to generate the correct result, but it also must be
private to permit access by multiple threads. OpenMP provides the reduction clause that is used to
efficiently combine the mathematical reduction of one or more variables in a loop. The following example
demonstrates how the loop can use the reduction clause to generate the correct results.

sum = 0;
#pragma omp parallel for reduction(+:sum)
for (i=0; i < 100; i++) { sum += array[i]; }

In the case of the example listed above, the reduction provides private copies of the variable sum for each
thread, and when the threads exit, it adds the values together and places the result in the one global copy of
the variable.

The following table lists the possible reduction operations, along with their initial values (mathematical
identity values).

Operation private Variable Initialization Value

+ (addition) 0

- (subtraction) 0

* (multiplication) 1

& (bitwise and) ~0

| (bitwise or) 0

^ (bitwise exclusive
or)

0

&& (conditional and) 1

|| (conditional or) 0

Multiple reductions in a loop are possible by specifying comma-separated variables and operations on a given
parallel construct. Reduction variables must meet the following requirements:

 Intel® C++ Compiler Classic Developer Guide and Reference

2056

• can be listed in just one reduction.
• cannot be declared constant.
• cannot be declared private in the parallel construct.

Load Balancing and Loop Scheduling
Load balancing, the equal division of work among threads, is among the most important attributes for
parallel application performance. Load balancing is extremely important, because it ensures that the
processors are busy most, if not all, of the time. Without a balanced load, some threads may finish
significantly before others, leaving processor resources idle and wasting performance opportunities.

Within loop constructs, poor load balancing is often caused by variations in compute time among loop
iterations. It is usually easy to determine the variability of loop iteration compute time by examining the
source code. In most cases, you will see that loop iterations consume a uniform amount of time. When that
is not true, it may be possible to find a set of iterations that consume similar amounts of time. For example,
sometimes the set of all even iterations consumes about as much time as the set of all odd iterations.
Similarly, it might be the case that the set of the first half of the loop consumes about as much time as the
second half. In contrast, it might be impossible to find sets of loop iterations that have a uniform execution
time. Regardless of the case, you should provide this extra loop scheduling information to OpenMP so it can
better distribute the iterations of the loop across the threads (and therefore processors) for optimum load
balancing.

If you know that all loop iterations consume roughly the same amount of time, the OpenMP schedule clause
should be used to distribute the iterations of the loop among the threads in roughly equal amounts via the
scheduling policy. In addition, you need to minimize the chances of memory conflicts that may arise because
of false sharing due to using large chunks. This behavior is possible because loops generally touch memory
sequentially, so splitting up the loop in large chunks— like the first half and second half when using two
threads— will result in the least chance for overlapping memory. While this may be the best choice for
memory issues, it may be bad for load balancing. Unfortunately, the reverse is also true; what might be best
for load balancing may be bad for memory performance. You must strike a balance between optimal memory
usage and optimal load balancing by measuring the performance to see what method produces the best
results.

Use the following general form on the parallel construct to schedule an OpenMP loop:

#pragma omp parallel for schedule(kind [, chunk size])
Four different loop scheduling types (kinds) can be provided to OpenMP, as shown in the following table. The
optional parameter (chunk), when specified, must be a positive integer.

Kind Description

static Divide the loop into equal-sized chunks or as equal as possible in the case where the
number of loop iterations is not evenly divisible by the number of threads multiplied
by the chunk size. By default, chunk size is loop_count/number_of_threads.

Set chunk to 1 to interleave the iterations.

dynamic Use the internal work queue to give a chunk-sized block of loop iterations to each
thread. When a thread is finished, it retrieves the next block of loop iterations from
the top of the work queue.

By default, the chunk size is 1. Be careful when using this scheduling type because
of the extra overhead involved.

guided Similar to dynamic scheduling, but the chunk size starts off large and decreases to
better handle load imbalance between iterations. The optional chunk parameter
specifies them minimum size chunk to use.

By default the chunk size is approximately loop_count/number_of_threads.

Optimization and Programming

2057

Kind Description

auto When schedule (auto) is specified, the decision regarding scheduling is delegated to
the compiler. The programmer gives the compiler the freedom to choose any
possible mapping of iterations to threads in the team.

runtime Uses the OMP_SCHEDULE environment variable to specify which one of the three
loop-scheduling types should be used.

OMP_SCHEDULE is a string formatted exactly the same as would appear on the
parallel construct.

Assume that you want to parallelize the following loop.

for (i=0; i < NumElements; i++) {
 array[i] = StartVal;
 StartVal++;
}

As written, the loop contains a data dependency, making it impossible to parallelize without a change. The
new loop, shown below, fills the array in the same manner, but without data dependencies. The new loop
benefits from using the SIMD instructions generated by the compiler.

#pragma omp parallel for
for (i=0; i < NumElements; i++)
{
 array[i] = StartVal + i;
}

Observe that the code is not 100% identical because the value of variable StartVal is not incremented. As a
result, when the parallel loop is finished, the variable will have a value different from the one produced by
the serial version. If the value of StartVal is needed after the loop, the additional statement, shown below,
is needed.

// This works and is identical to the serial version.
#pragma omp parallel for
for (i=0; i < NumElements; i++)
{
 array[i] = StartVal + i;
}
StartVal += NumElements;

OpenMP Tasking Model
The OpenMP tasking model enables parallelization of a large range of applications. A task is an instance of
executable code and its data environment that can be scheduled for execution by threads.

The task Construct

The task construct defines an explicit task region as shown in the following example:

void test1(LIST *head) {
 #pragma omp parallel shared(head)
 {
 #pragma omp single
 {
 LIST *p = head;
 while (p != NULL) {
 #pragma omp task firstprivate(p)
 {
 do_work1(p);

 Intel® C++ Compiler Classic Developer Guide and Reference

2058

 }
 p = p->next;
 }
 }
 }

The binding thread set of the task region is the current parallel team. A task region binds to the innermost
enclosing parallel region. When a thread encounters a task construct, a task is generated from the
structured block enclosed in the construct. The encountering thread may immediately execute the task, or
defer its execution. A task construct may be nested inside an outer task, but the task region of the inner
task is not a part of the task region of the outer task.

Use Clauses with the task Construct

The task construct can take optional clauses. The data environment of the task is created according to the
data-sharing attribute clauses on the task construct and any defaults that apply. The example below shows
a way to generate N tasks with one thread and execute the generated tasks with the threads in the parallel
team:

double data[N];
int i;
#pragma omp parallel shared(data)
{
 #pragma omp single private(i)
 {
 for (i=0, i<N; i++)
 {
 #pragma omp task firstprivate(i) shared(data))
 {
 do_work(data, i);
 }
 }
 }
}

Task Scheduling

When a thread reaches a task scheduling point, it may perform a task switch, suspending the current task
and beginning or resuming execution of a different task bound to the current team. Refer to the OpenMP 5.1
specifications for the full list of task scheduling point locations. Some examples include:

• the point where a task is explicitly generated.
• the point immediately following the generation of an explicit task.
• after the last instruction of a task region.
• in a taskwait region.
• in a taskyield region.
• in implicit and explicit barrier regions.

NOTE
Task scheduling points dynamically divide task regions into parts. Each part is executed from start to
finish without interruption. Different parts of the same task region are executed in the order in which
they are encountered. In the absence of task synchronization constructs, the order in which a thread
executes parts of different schedulable tasks is unspecified. A correct program must behave correctly
and consistently with all conceivable scheduling sequences.

The taskwait Construct

Optimization and Programming

2059

The taskwait construct specifies a wait on the completion of child tasks generated since the beginning of
the current task. A taskwait region binds to the current task region. The binding thread set of the
taskwait region is the current team.

The taskwait region includes an implicit task scheduling point in the current task region. The current task
region is suspended at the task scheduling point until execution of all its child tasks generated before the
taskwait region is completed.

#pragma omp task // TASK1
{
 ...
 #pragma omp task // TASK 2 (child of TASK1)
 {
 do_work1();
 }
 #pragma omp task // TASK3 (child of TASK 1)
 {
 ...
 #pragma omp task // TASK4 (child of TASK3, not TASK1)
 {
 do_work2();
 }
 ...
 }
 #pragma omp taskwait // suspend TASK1; wait for TASK2 and TASK3 to complete
 ...
}

The taskyield Construct

The taskyield construct specifies that the current task can be suspended at that point and the thread may
switch to the execution of a different task. You can use this construct to provide an explicit task scheduling
point at a particular point in the task.

See Also
OMP_SCHEDULE
qopenmp, Qopenmp
Supported Environment Variables

Control Thread Allocation
The KMP_HW_SUBSET and KMP_AFFINITY environment variables allow you to control how the OpenMP*
runtime uses the hardware threads on the processors. These environment variables allow you to try different
thread distributions on the cores of the processors and determine how these threads are bound to the cores.
You can use the environment variables to work out what is optimal for your application.

The KMP_HW_SUBSET variable controls the allocation of hardware resources and the KMP_AFFINITY variable
controls how the OpenMP threads are bound to those resources.

Control Thread Distribution
The KMP_HW_SUBSET variable controls the hardware resources that will be used by the program. This variable
often specifies three layers of machine topology: the number of sockets to use, how many cores to use per
socket, and how many threads to use per core. For example, KMP_HW_SUBSET=2s,12c,2t means to use two
sockets, 12 cores per socket, and two threads per core, giving a total of 48 available hardware threads.

 Intel® C++ Compiler Classic Developer Guide and Reference

2060

When more layers exist (NUMA domain, tile, etc.) in the machine topology, you can specify those layers as
well. For example, KMP_HW_SUBSET=2s,2n,8c,2t means to use two sockets, two NUMA domains per socket,
eight cores per NUMA domain, and two threads per core, giving a total of 64 available hardware threads. For
historical reasons, when a layer is not explicitly specified in KMP_HW_SUBSET, it is assumed you want all the
resources in that unspecified layer. You can use KMP_AFFINITY=verbose to see all the different detected
layers in the machine. For example, KMP_HW_SUBSET=2s,2t is interpreted to mean use two sockets, all cores
per socket (and possibly all resources of other detected layers as well), and two threads per layer.

When available, you can specify core attributes to choose different sets of cores. The core attributes are
appended to the regular core layer specification with a colon (:) and attribute. There are two attributes to
help filter types of cores:

1. Core type, specified as intel_core, or intel_atom.
2. Core efficiency, specified as effnum where num is a non-negative integer from zero to the number of

core efficiencies detected minus one. The larger the efficiency the more performant the core. For
example, KMP_HW_SUBSET=4c:eff0,5c:eff1 will select all sockets, four cores of efficiency 0, five
cores of efficiency 1, and all threads per those cores.

There is also a special syntax to explicitly request all resources at a specific layer. Instead of specifying a
positive integer, you can use an optional asterisk (*). For example, KMP_HW_SUBSET=’*c:eff0’ or
KMP_HW_SUBSET=c:eff0 will request all the cores of efficiency 0.

Consider a system with 24 cores and four hardware threads per core. While specifying two threads per core
often yields better performance than one thread per core, specifying three or four threads per core may or
may not improve the performance. This variable enables you to conveniently measure the performance of up
to four threads per core.

For example, you can determine the effects of assigning 24, 48, 72, or the maximum 96 OpenMP threads in
a system with 24 cores by specifying the following variable settings:

To Assign This Number of
Threads ...

... Use This Setting

24 KMP_HW_SUBSET=24c,1t

48 KMP_HW_SUBSET=24c,2t

72 KMP_HW_SUBSET=24c,3t

96 KMP_HW_SUBSET=24c,4t

Caution
Take care when using the OMP_NUM_THREADS variable along with this variable. Using the
OMP_NUM_THREADS variable can result in over or under subscription.

NOTE
If you use KMP_HW_SUBSET to specify more resources than the system has, the runtime will issue a
warning and ignore the setting. For example, setting KMP_HW_SUBSET=24c,5t will be ignored on a
system where each core has four hardware threads.

Optimization and Programming

2061

Control Thread Bindings
The KMP_AFFINITY variable controls how the OpenMP threads are bound to the hardware resources allocated
by the KMP_HW_SUBSET variable. While this variable can be set to several binding or affinity types, the
following are the recommended affinity types to use to run your OpenMP threads on the processor:

• compact: Distribute the threads sequentially among the cores.
• scatter: Distribute the threads among the cores in a round robin manner. Distribution is one thread per

core initially, followed by repeat distribution among the cores.

The following table shows how the threads are bound to the cores when you want to use three threads per
core on two cores by specifying KMP_HW_SUBSET=2c,3t:

Affinity OpenMP Threads on Core
0

OpenMP Threads on Core 1

KMP_AFFINITY=compact 0, 1, 2 3, 4, 5

KMP_AFFINITY=scatter 0, 2, 4 1, 3, 5

Determine the Best Setting
To determine the best thread distribution and bindings using these variables, use the following:

1. Ensure that your OpenMP code is working properly before using these environment variables.
2. Establish a baseline with your current OpenMP code to compare to the performance when you allocate

the threads to a processor.
3. Measure the performance of distributing one, two, three, or four threads per core by use the

KMP_HW_SUBSET variable.
4. Measure the performance of binding the threads to the cores by using the KMP_AFFINITY variable.

See Also
Thread Affinity Interface
Supported Environment Variables

OpenMP* Pragmas
This is a summary of the OpenMP* pragmas supported in the Intel® C++ Compiler Classic. For detailed
information about the OpenMP API, see the OpenMP Application Program Interface Version 5.1 specification,
which is available from the OpenMP web site.

PARALLEL Pragma
Use this pragma to form a team of threads and execute those threads in parallel.

Pragma Description

omp parallel Specifies that a structured block should be run in parallel by a team of
threads.

TASKING Pragma
Use these pragmas for deferring execution.

Pragma Description

omp task Specifies a code block whose execution may be deferred.

 Intel® C++ Compiler Classic Developer Guide and Reference

2062

Pragma Description

omp taskloop Specifies that the iterations of one or more associated for loops
should be executed using OpenMP tasks. The iterations are distributed
across tasks that are created by the construct and scheduled to be
executed in parallel by the current team.

WORKSHARING Pragmas
Use these pragmas to share work among a team of threads.

Pragma Description

omp for Specifies a work-sharing loop. Iterations of the loop are executed in
parallel by the threads in the team.

omp sections Defines a set of structured blocks that will be distributed among the
threads in the team.

omp single Specifies that a block of code is to be executed by only one thread in
the team.

SYNCHRONIZATION Pragmas
Use these pragmas to synchronize between threads.

Pragma Description

omp atomic Specifies a computation that must be executed atomically.

omp barrier Specifies a point in the code where each thread must wait until all
threads in the team arrive.

omp critical Specifies a code block that is restricted to access by only one thread
at a time.

omp flush Identifies a point at which a thread's temporary view of memory
becomes consistent with the memory.

omp master Specifies a code block that must be executed only once by the
primary thread of the team.

omp ordered Specifies a block of code that the threads in a team must execute in
the natural order of the loop iterations, or as a stand-alone directive,
specifies cross-iteration dependences in a doacross loop-nest.

The following clauses are available as Intel-specific extensions of the
OpenMP* specification:

monotonic
Specifies a block of code in which the value of the new list item on
each iteration of the associated SIMD loop(s) corresponds to the
value of the original list item before entering the associated loop, plus
the number of the iterations for which the conditional update happens
prior to the current iteration, times linear-step. The value
corresponding to the sequentially last iteration of the associated
loop(s) is assigned to the original list item. Use with the simd clause.

Optimization and Programming

2063

Pragma Description

overlap
Specifies a block of code that has to be executed scalar for
overlapping inx values and parallel for different inx values within
SIMD loop. Use with the simd clause.

omp taskgroup Causes the program to wait until the completion of all enclosed and
descendant tasks.

omp taskwait Specifies a wait on the completion of child tasks generated since the
beginning of the current task.

omp taskyield Specifies that the current task can be suspended at this point in favor
of execution of a different task.

Data Environment Pragmas
Use these pragmas to affect the data environment.

Pragma Description

omp scan Specifies a scan computation that updates each list item in each
iteration of the loop.

omp threadprivate Specifies a list of globally-visible variables that will be allocated
private to each thread.

Offload Target Control Pragmas
Use these pragmas to control execution on one or more offload targets.

Pragma Description

omp distribute Specifies that the iterations of one or more loops should be
distributed among the initial threads of all thread teams in a league.

omp target enter data

omp target exit data

omp teams Creates a league of thread teams inside a target region to execute a
structured block in the initial thread of each team.

Vectorization Pragmas
Use these pragmas to control execution on vector hardware.

Pragma Description

omp simd Transforms the loop into a loop that will be executed concurrently
using SIMD instructions.

The early_exit clause is an Intel-specific extension of the OpenMP*
specification.

early_exit

 Intel® C++ Compiler Classic Developer Guide and Reference

2064

Pragma Description

Allows vectorization of multiple exit loops. When this clause is
specified:

• Each operation before last lexical early exit of the loop may be
executed as if early exit were not triggered within the SIMD chunk.

• After the last lexical early exit of the loop, all operations are
executed as if the last iteration of the loop was found.

• Each list item specified in the linear clause is computed based on
the last iteration number upon exiting the loop.

• The last value for linear clauses and conditional lastprivates
clauses are preserved with respect to scalar execution.

• The last value for reductions clauses are computed as if the last
iteration in the last SIMD chunk was executed up on exiting the
loop.

• The shared memory state may not be preserved with regard to
scalar execution.

• Exceptions are not allowed.

omp declare simd Creates a version of a function that can process multiple arguments
using Single Instruction Multiple Data (SIMD) instructions from a
single invocation from a SIMD loop.

Cancellation Constructs

Pragma Description

omp cancel Requests cancellation of the innermost enclosing region of the type
specified, and causes the encountering task to proceed to the end of
the cancelled construct.

omp cancellation point Defines a point at which implicit or explicit tasks check to see if
cancellation has been requested for the innermost enclosing region of
the type specified. This construct does not implement a
synchronization between threads or tasks.

User-Defined Reduction Pragma
Use this pragma to define reduction identifiers that can be used as reduction operators in a reduction clause.

Pragma Description

omp declare reduction Declares User-Defined Reduction (UDR) functions (reduction
identifiers) that can be used as reduction operators in a reduction
clause.

Combined and Composite Pragmas
Use these pragmas as shortcuts for multiple pragmas in sequence. A combined construct is a shortcut for
specifying one construct immediately nested inside another construct. A combined construct is semantically
identical to that of explicitly specifying the first construct containing one instance of the second construct and
no other statements.

Optimization and Programming

2065

A composite construct is composed of two constructs but does not have identical semantics to specifying one
of the constructs immediately nested inside the other. A composite construct either adds semantics not
included in the constructs from which it is composed or the nesting of the one construct inside the other is
not conforming.

Pragma Description

omp distribute parallel for 1 Specifies a loop that can be executed in parallel by multiple threads
that are members of multiple teams.

omp distribute parallel for simd1 Specifies a loop that will be executed in parallel by multiple threads
that are members of multiple teams. It will be executed concurrently
using SIMD instructions.

omp distribute simd 1 Specifies a loop that will be distributed across the primary threads of
the teams region. It will be executed concurrently using SIMD
instructions.

omp for simd1 Specifies that the iterations of the loop will be distributed across
threads in the team. Iterations executed by each thread can also be
executed concurrently using SIMD instructions.

omp parallel for Provides an abbreviated way to specify a parallel region containing
only a FOR construct.

omp parallel for simd Specifies a parallel construct that contains one for simd construct and
no other statement.

omp parallel sections Specifies a parallel construct that contains only a sections construct.

Creates a device data environment and executes the parallel region
on that device.

Provides an abbreviated way to specify a target construct that
contains an omp target parallel for construct and no other statement
between them.

Specifies a target construct that contains an omp target parallel for
simd construct and no other statement between them.

Specifies a target construct that contains an omp simd construct and
no other statement between them.

omp target teams Creates a device data environment and executes the construct on the
same device. It also creates a league of thread teams with the
primary thread in each team executing the structured block.

omp target teams distribute Creates a device data environment and then executes the construct
on that device. It also specifies that loop iterations will be distributed
among the primary threads of all thread teams in a league created by
a teams construct.

omp target teams distribute
parallel for

Creates a device data environment and then executes the construct
on that device. It also specifies a loop that can be executed in parallel
by multiple threads that are members of multiple teams created by a
teams construct.

 Intel® C++ Compiler Classic Developer Guide and Reference

2066

Pragma Description

omp target teams distribute
parallel for simd

Creates a device data environment and then executes the construct
on that device. It also specifies a loop that can be executed in parallel
by multiple threads that are members of multiple teams created by a
teams construct. The loop will be distributed across the teams, which
will be executed concurrently using SIMD instructions.

omp target teams distribute simd Creates a device data environment and then executes the construct
on that device. It also specifies that loop iterations will be distributed
among the primary threads of all thread teams in a league created by
a teams construct. It will be executed concurrently using SIMD
instructions.

omp taskloop simd 1 Specifies a loop that can be executed concurrently using SIMD
instructions and that those iterations will also be executed in parallel
using OpenMP* tasks.

omp teams distribute Creates a league of thread teams and specifies that loop iterations
will be distributed among the primary threads of all thread teams in
the league.

omp teams distribute parallel for Creates a league of thread teams and specifies that the associated
loop can be executed in parallel by multiple threads that are members
of multiple teams.

omp teams distribute parallel for
simd

Creates a league of thread teams and specifies that the associated
loop can be executed concurrently using SIMD instructions in parallel
by multiple threads that are members of multiple teams.

omp teams distribute simd Creates a league of thread teams and specifies that the associated
loop will be distributed across the primary threads of the teams and
executed concurrently using SIMD instructions.

Footnotes:
1 This directive specifies a composite construct.

OpenMP* Library Support
This section provides information about OpenMP* run-time library routines, Intel® compiler extension
routines to OpenMP, OpenMP support libraries and how to use them, and the thread affinity interface.

OpenMP* Run-time Library Routines
OpenMP* provides run-time library routines to help you manage your program in parallel mode. Many of
these run-time library routines have corresponding environment variables that can be set as defaults. The
run-time library routines let you dynamically change these factors to assist in controlling your program. In all
cases, a call to a run-time library routine overrides any corresponding environment variable.

Caution
Running OpenMP runtime library routines may initialize the OpenMP runtime environment, which might
cause a situation where subsequent programmatic setting of OpenMP environment variables has no
effect. To avoid this situation, you can use the Intel extension routine kmp_set_defaults() to set
OpenMP environment variables.

Optimization and Programming

2067

The compiler supports all the OpenMP run-time library routines. Refer to the OpenMP API specification for
detailed information about using these routines.

Include the appropriate declarations of the routines in your source code by adding a statement similar to the
following:

#include <omp.h>
The header files are provided in the ../include (Linux* and macOS) or ..\include (Windows*) directory
of your compiler installation.

Thread Team Routines
Routines that affect and monitor thread teams in the current contention group.

Routine Description

void omp_set_num_threads(int nthreads) Sets the number of threads to use for
subsequent parallel regions created by
the calling thread.

int omp_get_num_threads(void) Returns the number of threads that are
being used in the current parallel region.

This function does not necessarily return
the value inherited by the calling thread
from the omp_set_num_threads()
function.

int omp_get_max_threads(void) Returns the number of threads available
to subsequent parallel regions created
by the calling thread.

int omp_get_thread_num(void) Returns the thread number of the calling
thread, within the context of the current
parallel region.

int omp_in_parallel(void) Returns TRUE if called within the
dynamic extent of a parallel region
executing in parallel; otherwise returns
FALSE.

void omp_set_dynamic(int dynamic_threads) Enables or disables dynamic adjustment
of the number of threads used to
execute a parallel region. If
dynamic_threads is TRUE, dynamic
threads are enabled. If
dynamic_threads is FALSE, dynamic
threads are disabled. Dynamic threads
are disabled by default.

int omp_get_dynamic(void) Returns TRUE if dynamic thread
adjustment is enabled, otherwise returns
FALSE.

int omp_get_cancellation(void) Returns TRUE if cancellation is enabled,
otherwise returns FALSE.

This routine can be affected by the setting for
environment variable OMP_CANCELLATION.

 Intel® C++ Compiler Classic Developer Guide and Reference

2068

Routine Description

void omp_set_nested(int nested)

NOTE This has been deprecated.

Enables or disables nested parallelism. If
nested is TRUE, nested parallelism is
enabled. If nested is FALSE, nested
parallelism is disabled. Nested
parallelism is disabled by default.

int omp_get_nested(void)

NOTE This has been deprecated.

Returns TRUE if nested parallelism is enabled,
otherwise returns FALSE.

void omp_set_schedule(omp_sched_t kind,int
chunk_size)

Determines the schedule of a
worksharing loop that is applied when
'runtime' is used as the schedule kind.

void omp_get_schedule(omp_sched_kind *kind,int
*chunk_size)

Returns the schedule of a worksharing
loop that is applied when the 'runtime'
schedule is used.

int omp_get_thread_limit(void) Returns the maximum number of
simultaneously executing threads in an
OpenMP program.

int omp_get_supported_active_levels(void) Returns the number of active levels of
parallelism supported by the
implementation.

void omp_set_max_active_levels(int
max_active_levels)

Limits the number of nested active
parallel regions. The value of
max_active_levels must evaluate to a
non-negative integer.

int omp_get_max_active_levels(void) Returns the maximum number of nested
active parallel regions.

int omp_get_level(void) Returns the number of nested parallel
regions (whether active or inactive)
enclosing the task that contains the call,
not including the implicit parallel region.

int omp_get_ancestor_thread_num(int level) Returns the thread number of the
ancestor at a given nest level of the
current thread.

int omp_get_team_size(int level) Returns the size of the thread team to
which the ancestor or the current thread
belongs for a given nested level.

int omp_get_active_level(void) Returns the number of nested, active
parallel regions enclosing the task that
contains the call.

Thread Affinity Routines
Routines that affect and access thread affinity policies that are in effect.

Optimization and Programming

2069

Function Description

omp_proc_bind_t omp_get_proc_bind(void) Returns the currently active thread affinity policy,
which can be initialized by the environment variable
OMP_PROC_BIND.

This policy is used for subsequent nested parallel
regions.

int omp_get_num_places(void) Returns the number of places available to the
execution environment in the place list of the initial
task, usually threads, cores, or sockets.

int omp_get_place_num_procs(int
place_num)

Returns the number of processors associated with
the place numbered place_num. The routine
returns zero when place_num is negative or is
greater than or equal to omp_get_num_places().

void omp_get_place_proc_ids(int
place_num, int *ids)

Returns the numerical identifiers of each processor
associated with the place numbered place_num.
The numerical identifiers are non-negative and their
meaning is implementation defined. The numerical
identifiers are returned in the array ids and their
order in the array is implementation defined.The
array ids must be sufficiently large to contain
omp_get_place_num_procs(place_num)
elements. The routine has no effect when
place_num is negative or greater than or equal to
omp_get_num_places().

int omp_get_place_num(void) Returns the place number of the place to which the
encountering thread is bound. The returned value is
between 0 and omp_get_num_places() - 1,
inclusive. When the encountering thread is not
bound to a place, the routine returns -1.

int omp_get_partition_num_places(void) Returns the number of places in the place partition
of the innermost implicit task.

void omp_get_partition_place_nums(int
*place_nums)

Returns the list of place numbers corresponding to
the places in the place-partition-var ICV of the
innermost implicit task. The array place_nums
must be sufficiently large to contain
omp_get_partition_num_places() elements.

void omp_set_affinity_format(const char
*format)

Sets the affinity format to be used on the device by
setting the value of the affinity-format-var ICV.

size_t omp_get_affinity_format(char
*buffer, size_t size)

Returns the value of the affinity-format-var ICV on
the device.

void omp_display_affinity(const char
*format)

Prints the OpenMP thread affinity information using
the format specification provided.

size_t omp_capture_affinity(char *buffer,
size_t size, const char *format)

Prints the OpenMP thread affinity information into a
buffer using the format specification provided.

 Intel® C++ Compiler Classic Developer Guide and Reference

2070

Teams Region Routines
Routines that affect and monitor the league of teams that may execute a teams region.

Function Description

int omp_get_num_teams(void) Returns the number of initial teams in the current
teams region.

int omp_get_team_num(void) Returns the initial team number of the calling
thread.

void omp_set_num_teams(int num_teams) Affects the number of threads to be used for
subsequent teams regions that do not specify a
num_teams clause.

int omp_get_max_teams(void) Returns an upper bound on the number of teams
that could be created by a teams construct without
a num_teams clause that is encountered after
execution returns from this routine.

void omp_set_teams_thread_limit(int
thread_limit)

Defines the maximum number of OpenMP threads
that can participate in each contention group
created by a teams construct.

int omp_get_teams_thread_limit(void) Returns the maximum number of OpenMP threads
available to participate in each contention group
created by a teams construct.

Tasking Routines
Routines that pertain to OpenMP explicit tasks.

Function Description

int omp_get_max_task_priority(void) Returns the maximum value that can be specified in
the priority clause.

int omp_in_explicit_task(void) Returns TRUE if called within an explicit task region;
otherwise returns FALSE.

int omp_in_final(void) Returns TRUE if called within a final task region;
otherwise returns FALSE.

Resource Relinquishing Routines
Routines that relinquish resources used by the OpenMP runtime. These routines are only effective on the host
device.

Function Description

int
omp_pause_resource(omp_pause_resource_t
kind, int device_num)

Allows the runtime to relinquish resources used by
OpenMP on the specified device. The routine
returns zero in case of success, and non-zero
otherwise.

int
omp_pause_resource_all(omp_pause_resource
_t kind)

Allows the runtime to relinquish resources used by
OpenMP on all devices. The routine returns zero in
case of success, and non-zero otherwise.

Optimization and Programming

2071

Device Information Routines
Routines that pertain to the set of devices that are accessible to an OpenMP program.

Function Description

int omp_get_num_procs(void) Returns the number of processors available to the
program.

void omp_set_default_device(int
device_number)

Sets the default device number.

int omp_get_default_device(void) Returns the default device number.

int omp_get_num_devices(void) Returns the number of target devices.

int omp_get_device_num(void) Returns the device number of the device on which
the calling thread is executing.

int omp_is_initial_device(void) Returns TRUE if the current task is running on the
host device; otherwise, FALSE.

int omp_get_initial_device(void) Returns the device number of the host device. The
value of the device number is implementation
defined. If it is between 0 and
omp_get_num_devices()-1, then it is valid in all
device constructs and routines; if it is outside that
range, then it is only valid in the device memory
routines and not in the device clause.

Lock Routines
Use these routines to affect OpenMP locks.

Function Description

void omp_init_lock(omp_lock_t *lock) Initializes the lock to the unlocked state.

void omp_init_nest_lock(omp_nest_lock_t
*lock)

Initializes the nested lock to the unlocked state.
The nesting count for the nested lock is set to zero.

void omp_init_lock_with_hint(omp_lock_t
*lock, omp_sync_hint_t hint)

Initializes the lock to the unlocked state, optionally
choosing a specific lock implementation based on
hint. See the OpenMP specification for the
available hints.

void
omp_init_nest_lock_with_hint(omp_nest_loc
k_t *lock, omp_sync_hint_t hint)

Initializes the nested lock to the unlocked state,
optionally choosing a specific lock implementation
based on hint. The nesting count for the nested
lock is set to zero. See the OpenMP specification for
the available hints.

void omp_destroy_lock(omp_lock_t *lock) Changes the state of the lock to uninitialized.

void
omp_destroy_nest_lock(omp_nest_lock_t
*lock)

Changes the state of the nested lock to
uninitialized.

 Intel® C++ Compiler Classic Developer Guide and Reference

2072

Function Description

void omp_set_lock(omp_lock_t *lock) Forces the executing thread to wait until the lock is
available. The thread is granted ownership of the
lock when it becomes available.

void omp_set_nest_lock(omp_nest_lock_t
*lock)

Forces the executing thread to wait until the nested
lock is available. If the thread already owns the
lock, then the lock nesting count is incremented.

void omp_unset_lock(omp_lock_t *lock) Releases the executing thread from ownership of
the lock. The behavior is undefined if the executing
thread does not own the lock.

void omp_unset_nest_lock(omp_nest_lock_t
*lock)

Decrements the nesting count for the nested lock
and releases the executing thread from ownership
of the nested lock if the resulting nesting count is
zero. Behavior is undefined if the executing thread
does not own the nested lock.

int omp_test_lock(omp_lock_t *lock) Attempts to set the lock. If successful, returns
TRUE, otherwise returns FALSE.

int omp_test_nest_lock(omp_nest_lock_t
*lock)

Attempts to set the nested lock. If successful,
returns the nesting count, otherwise returns zero.

Timing Routines

Function Description

double omp_get_wtime(void) Returns a double precision value equal to the
elapsed wall clock time (in seconds) relative to an
arbitrary reference time. The reference time does
not change during program execution.

double omp_get_wtick(void) Returns a double precision value equal to the
number of seconds between successive clock ticks.

Event Routines

Function Description

void omp_fulfill_event(omp_event_handle_t
event)

Fulfills the event associated with the event handle
event and destroys the event.

Memory Management Routines

Function Description

omp_allocator_handle_t
omp_init_allocator(omp_memspace_handle_t
memspace, int ntraits, const
omp_alloctrait_t traits[])

Creates a new allocator that is associated with the
memspace memory space and returns a handle to
it.

Optimization and Programming

2073

Function Description

void
omp_destroy_allocator(omp_allocator_handl
e_t allocator)

Releases all resources used to implement the
allocator handle.

void
omp_set_default_allocator(omp_allocator_h
andle_t allocator)

Sets the default memory allocator to be used by
allocation calls, allocate directives and allocate
clauses that do not specify an allocator.

omp_allocator_handle_t
omp_get_default_allocator(void)

Returns a handle to the memory allocator to be
used by allocation calls, allocate directives and
allocate clauses that do not specify an allocator.

void *omp_alloc(size_t size,
omp_allocator_handle_t allocator)

Requests a memory allocation of size bytes from
the specified memory allocator.

void *omp_aligned_alloc(size_t alignment,
size_t size, omp_allocator_handle_t
allocator)

Requests a memory allocation of size bytes from
the specified memory allocator. Memory allocated
by omp_aligned_alloc will be byte-aligned to at
least the maximum of the alignment required by
malloc, the alignment trait of the allocator and the
alignment argument value.

void omp_free(void *ptr,
omp_allocator_handle_t allocator)

Deallocates the memory to which ptr points. The
ptr argument must have been returned by an
OpenMP allocation routine.

void *omp_calloc(size_t nmemb, size_t
size, omp_allocator_handle_t allocator)

Requests a memory allocation from the specified
memory allocator for an array of nmemb elements
each of which has a size of size bytes.

void *omp_aligned_calloc(size_t
alignment, size_t nmemb, size_t size,
omp_allocator_handle_t allocator)

Requests a memory allocation from the specified
memory allocator for an array of nmemb elements
each of which has a size of size bytes. Memory
allocated by omp_aligned_calloc will be byte-
aligned to at least the maximum of the alignment
required by malloc, the alignment trait of the
allocator and the alignment argument value.

void *omp_realloc(void *ptr, size_t size,
omp_allocator_handle_t allocator,
omp_allocator_handle_t free_allocator)

Deallocates the memory to which ptr points and
requests a new memory allocation of size bytes
from the specified memory allocator. Upon success
it returns a pointer to the allocated memory and
the contents of the new object shall be the same as
that of the old object prior to deallocation up to the
minimum size of old allocated size and size
argument.

Tool Control Routines

Function Description

int omp_control_tool(int command, int
modifier, void *arg)

Enables a program to pass commands to an active
tool.

 Intel® C++ Compiler Classic Developer Guide and Reference

2074

Environment Display Routines

Function Description

void omp_display_env(int verbose) Displays the OpenMP version number and the initial
values of ICVs associated with the environment
variables.

See Also
Intel Extension Routines to OpenMP*

Intel® Compiler Extension Routines to OpenMP*
The Intel® compiler implements the following group of routines as extensions to the OpenMP* run-time
library:

• Get and set the execution environment
• Get and set the stack size for parallel threads
• Memory allocation
• Get and set the thread sleep time for the throughput execution mode
• Target memory allocation

The Intel® extension routines described in this section can be used for low-level tuning to verify that the
library code and application are functioning as intended. These routines are generally not recognized by other
OpenMP-compliant compilers, which may cause the link stage to fail in the other compiler. To execute these
OpenMP routines, use the /Qopenmp-stubs (Windows*) or -qopenmp-stubs (Linux* and macOS) option.

In most cases, environment variables can be used in place of the extension library routines. For example, the
stack size of the parallel threads may be set using the OMP_STACKSIZE environment variable rather than the
kmp_set_stacksize_s() library routine.

NOTE
A run-time call to an Intel extension routine takes precedence over the corresponding environment
variable setting.

Execution Environment

Function Description

void kmp_set_defaults(char const *) Sets OpenMP environment variables defined as a
list of variables separated by "|" in the argument.

void kmp_set_library_throughput(void) Sets execution mode to throughput, which is the
default. Allows the application to determine the
runtime environment. Use in multi-user
environments.

void kmp_set_library_turnaround(void) Sets execution mode to turnaround. Use in
dedicated parallel (single user) environments.

void kmp_set_library_serial(void) Sets execution mode to serial.

void kmp_set_library(int) Sets execution mode indicated by the value passed
to the function. Valid values are:

• 1 - serial mode
• 2 - turnaround mode

Optimization and Programming

2075

Function Description

• 3 - throughput mode

Call this routine before the first parallel region is
executed.

int kmp_get_library(void) Returns a value corresponding to the current
execution mode:

• 1 - serial
• 2 - turnaround
• 3 - throughput

Stack Size

Function Description

size_t kmp_get_stacksize_s(void) Returns the number of bytes that will be allocated
for each parallel thread to use as its private stack.
This value can be changed with
kmp_set_stacksize_s() routine, prior to the first
parallel region or via the KMP_STACKSIZE
environment variable.

int kmp_get_stacksize(void) Provided for backwards compatibility only. Use
kmp_get_stacksize_s() routine for compatibility
across different families of Intel processors.

void kmp_set_stacksize_s(size_tsize) Sets to size the number of bytes that will be
allocated for each parallel thread to use as its
private stack. This value can also be set via the
KMP_STACKSIZE environment variable. In order for
kmp_set_stacksize_s() to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the
program.

void kmp_set_stacksize(int size) Provided for backward compatibility only. Use
kmp_set_stacksize_s() for compatibility across
different families of Intel® processors.

Memory Allocation
The Intel® compiler implements a group of memory allocation routines as an extension to the OpenMP run-
time library to enable threads to allocate memory from a heap local to each thread. These routines are:
kmp_malloc(), kmp_calloc(), and kmp_realloc().

The memory allocated by these routines must also be freed by the kmp_free() routine. While you can
allocate memory in one thread and then free that memory in a different thread, this mode of operation incurs
a slight performance penalty.

Function Description

void* kmp_malloc(size_t size) Allocate memory block of size bytes from thread-
local heap.

 Intel® C++ Compiler Classic Developer Guide and Reference

2076

Function Description

void* kmp_calloc(size_t nelem, size_t
elsize)

Allocate array of nelem elements of size elsize from
thread-local heap.

void* kmp_realloc(void* ptr, size_t size) Reallocate memory block at address ptr and size
bytes from thread-local heap.

void* kmp_free(void* ptr) Free memory block at address ptr from thread-local
heap.

Memory must have been previously allocated with
kmp_malloc(), kmp_calloc(), or
kmp_realloc().

Thread Sleep Time
In the throughput OpenMP* Support Libraries, threads wait for new parallel work at the ends of parallel
regions, and then sleep, after a specified period of time. This time interval can be set by the KMP_BLOCKTIME
environment variable or by the kmp_set_blocktime() function.

Function Description

int kmp_get_blocktime(void) Returns the number of milliseconds that a thread
should wait, after completing the execution of a
parallel region, before sleeping, as set either by the
KMP_BLOCKTIME environment variable or by
kmp_set_blocktime().

void kmp_set_blocktime(int msec) Sets the number of milliseconds that a thread
should wait, after completing the execution of a
parallel region, before sleeping. This routine affects
the block time setting for the calling thread and any
OpenMP team threads formed by the calling thread.
The routine does not affect the block time for any
other threads.

See Also
openmp-stubs, Qopenmp-stubs compiler option
OpenMP* Run-time Library Routines
OpenMP* Support Libraries

OpenMP* Support Libraries
The Intel® C++ Compiler Classic provides support libraries for OpenMP*. There are several kinds of libraries:

• Performance: supports parallel OpenMP execution.
• Stubs: supports serial execution of OpenMP applications.

Each kind of library is available for both dynamic and static linking on Linux* and macOS operating systems.
Only dynamic linking is supported on Windows* operating systems.

Performance Libraries
To use these libraries, specify the /Qopenmp (Windows*) or -qopenmp (Linux* and macOS) option.

Optimization and Programming

2077

Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these options may
perform additional optimizations on Intel® microprocessors than they perform on non-Intel microprocessors.
The list of major, user-visible OpenMP constructs and features that may perform differently on Intel®
microprocessors than on non-Intel microprocessors includes: locks (internal and user visible), the SINGLE
construct, barriers (explicit and implicit), parallel loop scheduling, reductions, memory allocation, and thread
affinity and binding.

Operating System Dynamic Link Static Link

Linux libiomp5.so libiomp5.a

macOS libiomp5.dylib libiomp5.a

Windows
libiomp5md.lib
libiomp5md.dll None

Many routines in the OpenMP support libraries are more optimized for Intel® microprocessors than for non-
Intel microprocessors.

Stubs Libraries
To use these libraries, specify /Qopenmp-stubs (Windows*) or -qopenmp-stubs (Linux* and macOS)
option. These allow you to compile OpenMP applications in serial mode and provide stubs for OpenMP
routines and extended Intel-specific routines.

Operating System Dynamic Link Static Link

Linux libiompstubs5.so libiompstubs5.a

macOS libiompstubs5.dylib libiompstubs5.a

Windows
libiompstubs5md.lib
libiompstubs5md.dll None

Execution Modes
The compiler enables you to run an application under different execution modes specified at run time; the
libraries support the turnaround, throughput, and serial modes. Use the KMP_LIBRARY environment variable
to select the modes at run time.

Mode Description

throughput (default)

The throughput mode allows the program to yield to other running programs
and adjust resource usage to produce efficient execution in a dynamic
environment.

In a multi-user environment where the load on the parallel machine is not
constant or where the job stream is not predictable, it may be better to design
and tune for throughput. This minimizes the total time to run multiple jobs
simultaneously. In this mode, the worker threads yield to other threads while
waiting for more parallel work.

After completing the execution of a parallel region, threads wait for new
parallel work to become available. After a certain period of time has elapsed,
they stop waiting and sleep. Until more parallel work becomes available,
sleeping allows processor and resources to be used for other work by non-
OpenMP threaded code that may execute between parallel regions, or by other
applications.

 Intel® C++ Compiler Classic Developer Guide and Reference

2078

Mode Description

The amount of time to wait before sleeping is set either by the
KMP_BLOCKTIME environment variable or by the kmp_set_blocktime()
function. A small blocktime value may offer better overall performance if your
application contains non-OpenMP threaded code that executes between parallel
regions. A larger blocktime value may be more appropriate if threads are to be
reserved solely for use for OpenMP execution, but may penalize other
concurrently-running OpenMP or threaded applications.

turnaround

The turnaround mode is designed to keep active all processors involved in the
parallel computation, which minimizes execution time of a single job. In this
mode, the worker threads actively wait for more parallel work, without yielding
to other threads (although they are still subject to KMP_BLOCKTIME control). In
a dedicated (batch or single user) parallel environment where all processors
are exclusively allocated to the program for its entire run, it is most important
to effectively use all processors all of the time.

NOTE
Avoid over-allocating system resources. The condition can occur if either too many
threads have been specified, or if too few processors are available at run time. If
system resources are over-allocated, this mode will cause poor performance. The
throughput mode should be used instead if this occurs.

serial The serial mode forces parallel applications to run as a single thread.

See Also
openmp, Qopenmp compiler option
openmp-stubs, Qopenmp-stubs compiler option

Use the OpenMP Libraries
This section describes the steps needed to set up and use the OpenMP Libraries from the command line. On
Windows systems, you can also build applications compiled with the OpenMP libraries in the Microsoft Visual
Studio development environment.

For a list of the options and libraries used by the OpenMP libraries, see OpenMP Support Libraries.

Set Up Environment
Set up your environment for access to the compiler to ensure that the appropriate OpenMP library is
available during linking.

Linux and macOS

On Linux and macOS systems you can source the appropriate script file (compilervars file).

Windows

On Windows systems you can either execute the appropriate batch (.bat) file or use the command-line
window supplied in the compiler program folder that already has the environment set up.

During compilation, ensure that the version of omp.h used when compiling is the version provided by that
compiler. For example, use the omp.h provided with GCC when you compile with GCC.

Optimization and Programming

2079

Caution
Be aware that when using the GCC or Microsoft Compiler, you may inadvertently use inappropriate
header or module files. To avoid this, copy the header or module file(s) to a separate directory and put
it in the appropriate include path using the -I option.

If a program uses data structures or classes that contain members with data types defined in the omp.h file,
then source files that use those data structures should all be compiled with the same omp.h file.

Linux Examples
This section shows several examples of using OpenMP with the Intel C++ Compiler Classic from the
command line on Linux.

Compile and Link OpenMP Libraries

You can compile an application and link the Intel OpenMP libraries with a single command using the
-qopenmp option. For example:

icpc -qopenmp hello.cpp
By default, the Intel C++ Compiler Classic performs a dynamic link of the OpenMP libraries. To perform a
static link (not recommended), add the option -qopenmp-link=static. The option -qopenmp-link controls
whether the linker uses static or dynamic OpenMP libraries on Linux and macOS systems (default is
-qopenmp-link=dynamic). See OpenMP Support Libraries for more information about dynamic and static
OpenMP libraries.

Link OpenMP Object Files Compiled with GCC or Intel C++ Compiler Classic

You can use the icc/icpc compilers with the gcc/g++ compilers to compile parts of an application and
create object files that can then be linked (object-level interoperability).

When using gcc or the g++ compiler to link the application with the Intel C++ Compiler Classic OpenMP
compatibility library, you need to specify the following:

• The Intel OpenMP library name using the -l option
• The Linux pthread library using the -l option
• The path to the Intel libraries where the Intel C++ Compiler Classic is installed using the -L option

For example:

1. Compile foo.c and bar.c with gcc, using the -fopenmp option to enable OpenMP support:

gcc -fopenmp -c foo.c bar.c
The -c prevents linking at this step.

2. Use the gcc compiler to link the application object code with the Intel OpenMP library:

gcc foo.o bar.o -liomp5 -lpthread -L<install_dir>/lib
where <install_dir> is the location of the installed Intel OpenMP library.

Alternately, you can use the Intel C++ Compiler Classic to link the application so that you don't need to
specify the gcc-l option, -L option, and the -lpthread options.

For example:

1. Compile foo.c with gcc, using the gcc -fopenmp option to enable OpenMP:

gcc -fopenmp -c foo.c
2. Compile bar.c with icc, using the -qopenmp option to enable OpenMP:

icc -qopenmp -c bar.c

 Intel® C++ Compiler Classic Developer Guide and Reference

2080

3. Use the icc compiler to link the resulting application object code with the Intel OpenMP library:

icc -qopenmp foo.o bar.o
Link Mixed C/C++ and Fortran Object Files

You can mix C/C++ and Fortran object files and link the Intel OpenMP libraries using GNU, GCC, or Intel C++
Compiler Classic compilers.

This example shows mixed C and Fortran sources, linked using the Intel C++ Compiler Classic. Consider the
mixed source files ibar.c, gbar.c, and foo.f, where the main program is contained in ibar.c:

1. Compile ibar.c using the icc compiler:

icc -qopenmp -c ibar.c
2. Compile gbar.c using the gcc compiler:

gcc -fopenmp -c gbar.c
3. Compile foo.f using the ifort compiler:

ifort -qopenmp -c foo.f
4. Use the icc compiler to link the resulting object files:

icc -qopenmp foo.o ibar.o gbar.o
If the main program were contained in the Fortran file foo.f, the linking step must be performed by the ifort
compiler.

NOTE
Do not mix objects created by the Intel Fortran Compiler Classic and Intel Fortran Compiler with the
GNU Fortran Compiler (gfortran); instead, recompile all Fortran sources with either ifort or ifx, or
recompile all Fortran sources with the GNU Fortran Compiler . The GNU Fortran Compiler is only
available on Linux operating systems.

When using the GNU gfortran Compiler to link the application with the Intel C++ Compiler Classic OpenMP
compatibility library, you need to specify the following:

• The Intel® OpenMP compatibility library name and the Intel®irc libraries using the -l option
• The Linux pthread library using the -l option
• The path to the Intel® libraries where the Intel C++ Compiler Classic Classic is installed using the -L

option

You do not need to specify the -fopenmp option on the link line.

For example, consider the mixed source files ibar.c, gbar.c, and foo.f:

1. Compile ibar.c using the icc compiler:

icc -qopenmp -c ibar.c
2. Compile gbar.c using the GCC compiler:

gcc -fopenmp -c gbar.c
3. Compile foo.f using the gfortran compiler:

gfortran -fopenmp -c foo.f
4. Use the gfortran compiler to link the application object code with the Intel OpenMP library. You do not

need to specify the -fopenmp option in the link command:

gfortran foo.o ibar.o gbar.o -lirc -liomp5 -lpthread -lc -L<install_dir>/lib
where <install_dir> is the location of the installed Intel OpenMP library.

Optimization and Programming

2081

Alternately, you can use the Intel C++ Compiler Classic . to link the application object code but need to pass
multiple gfortran libraries using the -l options at the link step.

This example shows mixed C and GNU Fortran sources linked using the icc compiler. Consider the mixed
source files ibar.c and foo.f:

1. Compile the C source with the icc compiler:

icc -qopenmp -c ibar.c
2. Compile the GNU Fortran source with gfortran:

gfortran -fopenmp -c foo.f
3. Use icc to link the resulting object files with the -l option to pass the needed gfortran libraries:

icc -qopenmp foo.o ibar.o -lgfortran

macOS Examples
This section shows several examples of using OpenMP with the Intel C++ Compiler Classic from the
command line on macOS.

Compile and Link OpenMP Libraries

You can compile an application and link the Intel OpenMP libraries with a single command using the
-qopenmp option. For example:

icpc -qopenmp hello.cpp
By default, the the Intel C++ Compiler Classic performs a dynamic link of the OpenMP libraries. To perform a
static link (not recommended), add the option -qopenmp-link=static. The option -qopenmp-link controls
whether the linker uses static or dynamic OpenMP libraries on Linux and macOS systems (default is
-qopenmp-link=dynamic).

Link Mixed OpenMP Object Files

You can mix OpenMP object files compiled by the Intel C++ Compiler Classic and Intel Fortran Compiler
Classic.

This example shows mixed C and Fortran sources, compiled by the icc and ifort drivers, linked using the
the Intel C++ Compiler Classic . Consider the mixed source files ibar.c and foo.f90:

1. Compile ibar.c using icc:

icc -qopenmp -c ibar.c
The -c prevents linking at this step.

2. Compile foo.f90 using ifort:

ifort -qopenmp -c foo.f90
3. Use icc to link the resulting object files:

icc -qopenmp foo.o ibar.o

Windows Examples
This section shows several examples of using OpenMP with the Intel C++ Compiler Classic from the
command line on Windows.

Compile and Link OpenMP Libraries

You can compile an application and link the Compatibility libraries with a single command using
the /Qopenmp option. By default, the Intel C++ Compiler Classic performs a dynamic link of the OpenMP
libraries.

 Intel® C++ Compiler Classic Developer Guide and Reference

2082

For example, to compile source file hello.cpp and link Compatibility libraries using the Intel C++ Compiler
Classic:

icl /MD /Qopenmp hello.cpp
When using the Microsoft Visual C++ Compiler, you should link with the Intel® OpenMP compatibility library.
You need to avoid linking the Microsoft OpenMP runtime library (vcomp) and explicitly pass the name of the
Intel® OpenMP compatibility library as linker options using the /link option. For example:

cl /MD /openmp hello.cpp /link /nodefaultlib:vcomp libiomp5md.lib
Mix OpenMP Object Files Compiled with Visual C++ Compiler or Intel C++ Compiler Classic

You can use the Intel C++ Compiler Classic with the Visual C++ Compiler to compile parts of an application
and create object files that can then be linked (object-level interoperability).

For example:

1. Compile f1.c and f2.c with the Visual C++ Compiler, using the /openmp option to enable OpenMP
support:

cl /MD /openmp /c f1.c f2.c
The /c prevents linking at this step.

2. Compile f3.c and f4.c with the icl compiler, using the /Qopenmp option to enable OpenMP support:

icl /MD /Qopenmp /c f3.c f4.c
3. Use the icl compiler to link the resulting application object code with the Intel C++ Compiler OpenMP

library:

icl /MD /Qopenmp f1.obj f2.obj f3.obj f4.obj /Feapp /link /nodefaultlib:vcomp
The /Fe specifies the generated executable file name.

Alternatively, use the Visual C++ linker to link the application object code with the Compatibility library
libiomp5md.lib:

link f1.obj f2.obj f3.obj f4.obj /out:app.exe /nodefaultlib:vcomp libiomp5md.lib

Use Intel OpenMP Libraries from Visual Studio
When running Windows, you can make certain changes in the Visual C++ Visual Studio development
environment to use the Intel C++ Compiler Classic and Visual C++ to create applications that use the Intel
OpenMP libraries.

Set the project Property Pages to indicate the Intel OpenMP runtime library location:

1. Open the project's property pages in from the main menu: Project > Properties (or right-click the
Project name and select Properties) .

2. Select Configuration Properties > Linker > General > Additional Library Directories.
3. Enter the path to the Intel®-provided compiler libraries. For example, for an IA-32 architecture system

(C/C++ only), enter:

<Intel_compiler_installation_path>\windows\compiler\lib\ia32 win
Make the Intel OpenMP dynamic runtime library accessible at runtime; you must specify the corresponding
path:

1. Open the project's property pages in from the main menu: Project > Properties (or right-click the
Project name and select Properties).

2. Select Configuration Properties > Debugging > Environment.

Optimization and Programming

2083

3. Enter the path to the Intel®-provided compiler libraries. For example, for an IA-32 architecture system
(C/C++ only), enter:

PATH=%PATH%;<Intel_compiler_installation_path>\windows\redist\ia32 win\compiler
Add the Intel OpenMP runtime library name to the linker options and exclude the default Microsoft OpenMP
runtime library:

1. Open the project's property pages in from the main menu: Project > Properties (or right-click the
Project name and select Properties).

2. Select Configuration Properties > Linker > Command Line > Additional Options.
3. Enter the OpenMP library name and the Visual C++ linker

option, /nodefaultlib:vcomp libiomp5md.lib.

See Also
qopenmp, Qopenmp compiler option
Using IPO
OpenMP Support Libraries
qopenmp-link, Qopenmp-link compiler option

Thread Affinity Interface
The Intel® runtime library has the ability to bind OpenMP* threads to physical processing units. The interface
is controlled using the KMP_AFFINITY environment variable. Depending on the system (machine) topology,
application, and operating system, thread affinity can have a dramatic effect on the application speed.

Thread affinity restricts execution of certain threads (virtual execution units) to a subset of the physical
processing units in a multiprocessor computer. Depending upon the topology of the machine, thread affinity
can have a dramatic effect on the execution speed of a program.

Thread affinity is supported on Windows* systems and versions of Linux* systems that have kernel support
for thread affinity, but is not supported by macOS.

The Intel OpenMP runtime library has the ability to bind OpenMP threads to physical processing units. There
are three types of interfaces you can use to specify this binding, which are collectively referred to as the Intel
OpenMP Thread Affinity Interface:

• The high-level affinity interface uses an environment variable to determine the machine topology and
assigns OpenMP threads to the processors based upon their physical location in the machine. This
interface is controlled entirely by the KMP_AFFINITY environment variable.

• The mid-level affinity interface uses an environment variable to explicitly specifies which processors
(labeled with integer IDs) are bound to OpenMP threads. This interface provides compatibility with the
GCC* GOMP_AFFINITY environment variable, but you can also invoke it by using the KMP_AFFINITY
environment variable. The GOMP_AFFINITY environment variable is supported on Linux systems only, but
users on Windows or Linux systems can use the similar functionality provided by the KMP_AFFINITY
environment variable.

• The low-level affinity interface uses APIs to enable OpenMP threads to make calls into the OpenMP
runtime library to explicitly specify the set of processors on which they are to be run. This interface is
similar in nature to sched_setaffinity and related functions on Linux systems or to
SetThreadAffinityMask and related functions on Windows systems. In addition, you can specify certain
options of the KMP_AFFINITY environment variable to affect the behavior of the low-level API interface.
For example, you can set the affinity type KMP_AFFINITY to disabled, which disables the low-level affinity
interface, or you could use the KMP_AFFINITY or GOMP_AFFINITY environment variables to set the initial
affinity mask, and then retrieve the mask with the low-level API interface.

The following terms are used in this section:

• The total number of processing elements on the machine is referred to as the number of OS thread
contexts.

• Each processing element is referred to as an Operating System processor, or OS proc.
• Each OS processor has a unique integer identifier associated with it, called an OS proc ID.

 Intel® C++ Compiler Classic Developer Guide and Reference

2084

• The term package refers to a single or multi-core processor chip.
• The term OpenMP Global Thread ID (GTID) refers to an integer which uniquely identifies all threads

known to the Intel OpenMP runtime library. The thread that first initializes the library is given GTID 0. In
the normal case where all other threads are created by the library and when there is no nested
parallelism, then n-threads-var - 1 new threads are created with GTIDs ranging from 1 to ntheads-var - 1,
and each thread's GTID is equal to the OpenMP thread number returned by function
omp_get_thread_num(). The high-level and mid-level interfaces rely heavily on this concept. Hence, their
usefulness is limited in programs containing nested parallelism. The low-level interface does not make use
of the concept of a GTID and can be used by programs containing arbitrarily many levels of parallelism.

Some environment variables are available for both Intel® microprocessors and non-Intel microprocessors, but
may perform additional optimizations for Intel® microprocessors than for non-Intel microprocessors.

The KMP_AFFINITY Environment Variable

NOTE
You must set the KMP_AFFINITY environment variable before the first parallel region, or certain API
calls including omp_get_max_threads(), omp_get_num_procs() and any affinity API calls, as
described in Low Level Affinity API, below.

The KMP_AFFINITY environment variable uses the following general syntax:

Syntax

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

For example, to list a machine topology map, specify KMP_AFFINITY=verbose,none to use a modifier of
verbose and a type of none.

The following table describes the supported specific arguments.

Argument Default Description

modifier noverbose
respect
granularity=core

Optional. String consisting of
keyword and specifier.

• granularity=<specifier>
takes the following specifiers:
fine, thread, core, tile, die,
node, group, and socket

• norespect
• noverbose
• nowarnings
• noreset
• proclist={<proc-list>}
• respect
• verbose
• warnings
• reset
The syntax for <proc-list> is
explained in mid-level affinity
interface.

Optimization and Programming

2085

Argument Default Description

NOTE On Windows with
multiple processor groups, the
norespect affinity modifier is
assumed when the process
affinity mask equals a single
processor group (which is
default on Windows).
Otherwise, the respect affinity
modifier is used.

type none Required string. Indicates the
thread affinity to use.

• balanced
• compact
• disabled
• explicit
• none
• scatter
• logical (deprecated; instead

use compact, but omit any
permute value)

• physical (deprecated;
instead use scatter,
possibly with an offset
value)

The logical and physical
types are deprecated but
supported for backward
compatibility.

permute 0 Optional. Positive integer value.
Not valid with type values of
explicit, none, or disabled.

offset 0 Optional. Positive integer value.
Not valid with type values of
explicit, none, or disabled.

Affinity Types
Type is the only required argument.

type = none (default)

Does not bind OpenMP threads to particular thread contexts; however, if the operating system supports
affinity, the compiler still uses the OpenMP thread affinity interface to determine machine topology. Specify
KMP_AFFINITY=verbose,none to list a machine topology map.

type = balanced

 Intel® C++ Compiler Classic Developer Guide and Reference

2086

Places threads on separate cores until all cores have at least one thread, similar to the scatter type.
However, when the runtime must use multiple hardware thread contexts on the same core, the balanced
type ensures that the OpenMP thread numbers are close to each other, which scatter does not do. This
affinity type is supported on the CPU only for single socket systems.

NOTE
The OpenMP* environment variable OMP_PROC_BIND=spread is similar to KMP_AFFINITY=balanced
and is available on all platforms, including multi-socket CPU systems.

type = compact

Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as possible to the
thread context where the <n> OpenMP thread was placed. For example, in a topology map, the nearer a
node is to the root, the more significance the node has when sorting the threads.

type = disabled

Specifying disabled completely disables the thread affinity interfaces. This forces the OpenMP run-time
library to behave as if the affinity interface was not supported by the operating system. This includes the
low-level API interfaces such as kmp_set_affinity and kmp_get_affinity, which have no effect and will
return a nonzero error code.

type = explicit

Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been explicitly specified by
using the proclist= modifier, which is required for this affinity type. See Explicitly Specifying OS Proc IDs
(GOMP_CPU_AFFINITY).

type = scatter

Specifying scatter distributes the threads as evenly as possible across the entire system. scatter is the
opposite of compact; so the leaves of the node are most significant when sorting through the machine
topology map.

Deprecated Types: logical and physical

Types logical and physical are deprecated and may become unsupported in a future release. Both are
supported for backward compatibility.

For logical and physical affinity types, a single trailing integer is interpreted as an offset specifier
instead of a permute specifier. In contrast, with compact and scatter types, a single trailing integer is
interpreted as a permute specifier.

• Specifying logical assigns OpenMP threads to consecutive logical processors, which are also called
hardware thread contexts. The type is equivalent to compact, except that the permute specifier is not
allowed. Thus, KMP_AFFINITY=logical,n is equivalent to KMP_AFFINITY=compact,0,n (this
equivalence is true regardless of the whether or not a granularity=fine modifier is present).

• Specifying physical assigns threads to consecutive physical processors (cores). For systems where there
is only a single thread context per core, the type is equivalent to logical. For systems where multiple
thread contexts exist per core, physical is equivalent to compact with a permute specifier of 1; that is,
KMP_AFFINITY=physical,n is equivalent to KMP_AFFINITY=compact,1,n (regardless of the whether or
not a granularity=fine modifier is present). This equivalence means that when the compiler sorts the
map it should permute the innermost level of the machine topology map to the outermost, presumably
the thread context level. This type does not support the permute specifier.

Examples of Types compact and scatter
The following figure illustrates the topology for a machine with two processors, and each processor has two
cores; further, each core has Intel® Hyper-Threading Technology (Intel® HT Technology) enabled.

Optimization and Programming

2087

The following figure also illustrates the binding of OpenMP thread to hardware thread contexts when
specifying KMP_AFFINITY=granularity=fine,compact.

Specifying scatter on the same system as shown in the figure above, the OpenMP threads would be
assigned the thread contexts as shown in the following figure, which shows the result of specifying
KMP_AFFINITY=granularity=fine,scatter.

permute and offset combinations
For both compact and scatter, permute and offset are allowed; however, if you specify only one integer,
the compiler interprets the value as a permute specifier. Both permute and offset default to 0.

The permute specifier controls which levels are most significant when sorting the machine topology map. A
value for permute forces the mappings to make the specified number of most significant levels of the sort the
least significant, and it inverts the order of significance. The root node of the tree is not considered a
separate level for the sort operations.

 Intel® C++ Compiler Classic Developer Guide and Reference

2088

The offset specifier indicates the starting position for thread assignment.

The following figure illustrates the result of specifying KMP_AFFINITY=granularity=fine,compact,0,5.

Consider the hardware configuration from the previous example, running an OpenMP application which
exhibits data sharing between consecutive iterations of loops. We would therefore like consecutive threads to
be bound close together, as is done with KMP_AFFINITY=compact, so that communication overhead, cache
line invalidation overhead, and page thrashing are minimized. Now, suppose the application also had a
number of parallel regions which did not utilize all of the available OpenMP threads. It is desirable to avoid
binding multiple threads to the same core and leaving other cores not utilized, since a thread normally
executes faster on a core where it is not competing for resources with another active thread on the same
core. Since a thread normally executes faster on a core where it is not competing for resources with another
active thread on the same core, you might want to avoid binding multiple threads to the same core while
leaving other cores unused. The following figure illustrates this strategy of using
KMP_AFFINITY=granularity=fine,compact,1,0 as a setting.

Optimization and Programming

2089

The OpenMP thread n+1 is bound to a thread context as close as possible to OpenMP thread n, but on a
different core. Once each core has been assigned one OpenMP thread, the subsequent OpenMP threads are
assigned to the available cores in the same order, but they are assigned on different thread contexts.

Modifier Values for Affinity Types
Modifiers are optional arguments that precede type. If you do not specify a modifier, the noverbose,
respect, and granularity=core modifiers are used automatically.

Modifiers are interpreted in order from left to right, and they may conflict. Following conflicting modifier is
ignored. For example, specifying KMP_AFFINITY=verbose,noverbose,scatter is therefore equivalent to
setting KMP_AFFINITY=verbose,scatter.

modifier = noverbose (default)

Does not print verbose messages.

modifier = verbose

Prints messages concerning the supported affinity. The messages include information about the number of
packages, number of cores in each package, number of thread contexts for each core, and OpenMP thread
bindings to physical thread contexts.

Information about binding OpenMP threads to physical thread contexts is indirectly shown in the form of the
mappings between hardware thread contexts and the operating system (OS) processor (proc) IDs. The
affinity mask for each OpenMP thread is printed as a set of OS processor IDs.

For example, specifying KMP_AFFINITY=verbose,scatter on a dual core system with two processors, with
Intel® Hyper-Threading Technology (Intel® HT Technology) disabled, results in a message listing similar to the
following when then program is executed:

Verbose, scatter message

...
KMP_AFFINITY: Initial OS proc set respected: 0,1,2,3
KMP_AFFINITY: affinity capable, using hwloc.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0
KMP_AFFINITY: pid 79739 tid 79739 thread 0 bound to OS proc set 0
KMP_AFFINITY: pid 79739 tid 79740 thread 2 bound to OS proc set 2
KMP_AFFINITY: pid 79739 tid 79741 thread 3 bound to OS proc set 3
KMP_AFFINITY: pid 79739 tid 79742 thread 1 bound to OS proc set 1

The verbose modifier generates several standard, general messages. The following table summarizes how to
read the messages.

Message String Description

"affinity capable" Indicates that all components (compiler, operating system, and hardware)
support affinity, so thread binding is possible.

"decoding x2APIC ids" Indicates that the machine topology was discovered by binding a thread to
each operating system processor and decoding the output of the cpuid
instruction.

 Intel® C++ Compiler Classic Developer Guide and Reference

2090

Message String Description

"using hwloc" Indicates that the Portable Hardware Locality* (hwloc) library used to
determine machine topology.

"using /proc/cpuinfo" Linux only. Indicates that cpuinfo is being used to determine machine
topology.

"using flat" Operating system processor ID is assumed to be equivalent to physical
package ID. This method of determining machine topology is used if none of
the other methods will work, but may not accurately detect the actual
machine topology.

"uniform topology" The machine topology map is a full tree with no missing leaves at any level.

The mapping from the operating system processors to thread context ID is printed next. The binding of
OpenMP thread context ID is printed next unless the affinity type is none. For more information, see
Determining Machine Topology.

modifier = granularity

Binding OpenMP threads to particular packages and cores will often result in a performance gain on systems
with Intel processors with Intel® Hyper-Threading Technology (Intel® HT Technology) enabled; however, it is
usually not beneficial to bind each OpenMP thread to a particular thread context on a specific core.
Granularity describes the lowest levels that OpenMP threads are allowed to float within a topology map.

This modifier supports the following additional specifiers.

Specifier Description

core Default. Allows all the OpenMP threads bound to a core to float
between the different thread contexts.

fine or thread The finest granularity level. Causes each OpenMP thread to be bound
to a single thread context. The two specifiers are functionally
equivalent.

tile, or die, or node, or group,
or socket

Allows all the OpenMP threads bound to a tile, or die, or NUMA node,
or group, or socket to float between the different thread contexts of
cores the tile, or die, or NUMA node, or group, or socket consists of.

Specifying KMP_AFFINITY=verbose,granularity=core,compact on the same dual core system with two
processors as in the previous section, but with Intel® Hyper-Threading Technology (Intel® HT Technology)
enabled, results in a message listing similar to the following when the program is executed:

Verbose, granularity=core,compact message

KMP_AFFINITY: Initial OS proc set respected: 0-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 8 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockects x 2 cores/socket x 2 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0
KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1

Optimization and Programming

2091

Verbose, granularity=core,compact message

KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1
KMP_AFFINITY: pid 40880 tid 40880 thread 0 bound to OS proc set 0,4
KMP_AFFINITY: pid 40880 tid 40881 thread 1 bound to OS proc set 0,4
KMP_AFFINITY: pid 40880 tid 40882 thread 2 bound to OS proc set 2,6
KMP_AFFINITY: pid 40880 tid 40883 thread 3 bound to OS proc set 2,6
KMP_AFFINITY: pid 40880 tid 40884 thread 4 bound to OS proc set 1,5
KMP_AFFINITY: pid 40880 tid 40885 thread 5 bound to OS proc set 1,5
KMP_AFFINITY: pid 40880 tid 40886 thread 6 bound to OS proc set 3,7
KMP_AFFINITY: pid 40880 tid 40887 thread 7 bound to OS proc set 3,7

The affinity mask for each OpenMP thread is shown in the listing (above) as the set of operating system
processor to which the OpenMP thread is bound.

The following figure illustrates the machine topology map, for the above listing, with OpenMP thread
bindings.

In contrast, specifying KMP_AFFINITY=verbose,granularity=fine,compact or
KMP_AFFINITY=verbose,granularity=thread,compact binds each OpenMP thread to a single hardware
thread context when the program is executed:

Verbose, granularity=fine,compact message

KMP_AFFINITY: Initial OS proc set respected: 0-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 8 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 2 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0

 Intel® C++ Compiler Classic Developer Guide and Reference

2092

Verbose, granularity=fine,compact message

KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1
KMP_AFFINITY: pid 40895 tid 40895 thread 0 bound to OS proc set 0
KMP_AFFINITY: pid 40895 tid 40896 thread 1 bound to OS proc set 4
KMP_AFFINITY: pid 40895 tid 40897 thread 2 bound to OS proc set 2
KMP_AFFINITY: pid 40895 tid 40898 thread 3 bound to OS proc set 6
KMP_AFFINITY: pid 40895 tid 40899 thread 4 bound to OS proc set 1
KMP_AFFINITY: pid 40895 tid 40900 thread 5 bound to OS proc set 5
KMP_AFFINITY: pid 40895 tid 40901 thread 6 bound to OS proc set 3
KMP_AFFINITY: pid 40895 tid 40902 thread 7 bound to OS proc set 7

The OpenMP to hardware context binding for this example was illustrated in the first example.

Specifying granularity=fine will always cause each OpenMP thread to be bound to a single OS processor.
This is equivalent to granularity=thread, currently the finest granularity level.

modifier = respect (default)

Respect the process' original affinity mask, or more specifically, the affinity mask in place for the thread that
initializes the OpenMP run-time library. The behavior differs between Linux and Windows:

• On Windows: Respect original affinity mask for the process.
• On Linux: Respect the affinity mask for the thread that initializes the OpenMP run-time library.

NOTE On Windows with multiple processor groups, the norespect affinity modifier is the default
when the process affinity mask equals a single processor group (which is default on Windows).
Otherwise, the respect affinity modifier is the default.

Specifying KMP_AFFINITY=verbose,compact for the same system used in the previous example, with Intel®
Hyper-Threading Technology (Intel® HT Technology) enabled, and invoking the library with an initial affinity
mask of {4,5,6,7} (thread context 1 on every core) causes the compiler to model the machine as a dual
core, two-processor system with Intel® HT Technology disabled.

Verbose,compact message

KMP_AFFINITY: Initial OS proc set respected: 4-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1
KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1
KMP_AFFINITY: pid 41032 tid 41032 thread 0 bound to OS proc set 4
KMP_AFFINITY: pid 41032 tid 41033 thread 1 bound to OS proc set 6
KMP_AFFINITY: pid 41032 tid 41034 thread 2 bound to OS proc set 5
KMP_AFFINITY: pid 41032 tid 41035 thread 3 bound to OS proc set 7

Because there are four thread contexts accessible on the machine, by default the compiler created four
threads for an OpenMP parallel construct.

Optimization and Programming

2093

The following figure illustrates the corresponding machine topology map and threads placement in case eight
OpenMP threads requested via OMP_NUM_THREADS=8

When using the local cpuid information to determine the machine topology, it is not always possible to
distinguish between a machine that does not support Intel® Hyper-Threading Technology (Intel® HT
Technology) and a machine that supports it, but has it disabled. Therefore, the compiler does not include a
level in the map if the elements (nodes) at that level had no siblings, with the exception that the package
level is always modeled. As mentioned earlier, the package level will always appear in the topology map,
even if there only a single package in the machine.

modifier = norespect

Do not respect original affinity mask for the process. Binds OpenMP threads to all operating system
processors.

In early versions of the OpenMP run-time library that supported only the physical and logical affinity
types, norespect was the default and was not recognized as a modifier.

The default was changed to respect when types compact and scatter were added; therefore, thread
bindings may have changed with the newer compilers in situations where the application specified a partial
initial thread affinity mask.

modifier = nowarnings

Do not print warning messages from the affinity interface.

modifier = warnings (default)

Print warning messages from the affinity interface (default).

modifier = noreset (default)

Do not reset the primary thread's affinity after each outermost parallel region is complete. This setting
preserves the primary thread's OpenMP affinity setting between parallel regions. For example, if
KMP_AFFINITY=compact,granularity=core, then the primary thread's affinity is set to the first core for
the first parallel region and kept that way for the thread's lifetime, even during serial regions.

modifier = reset

Reset the primary thread's affinity after each outermost parallel region is complete. This setting will reset the
primary thread's affinity back to the initial affinity before OpenMP was initialized after each outermost parallel
region is complete.

 Intel® C++ Compiler Classic Developer Guide and Reference

2094

Determining Machine Topology
On IA-32 and Intel® 64 architecture systems, if the package has an APIC (Advanced Programmable Interrupt
Controller), the compiler will use the cpuid instruction to obtain the package id, core id, and thread
context id. Under normal conditions, each thread context on the system is assigned a unique APIC ID at
boot time. The compiler obtains other pieces of information obtained by using the cpuid instruction, which
together with the number of OS thread contexts (total number of processing elements on the machine),
determine how to break the APIC ID down into the package ID, core ID, and thread context ID.

There are several ways to specify the APIC ID in the cpuid instruction - the legacy method in leaf 4, and the
more modern method in leaf 11 and leaf 31. Only 256 unique APIC IDs are available in leaf 4. Leaf 11 and
leaf 31 have no such limitation.

Normally, all core ids on a package and all thread context ids on a core are contiguous; however,
numbering assignment gaps are common for package ids, as shown in the figure above.

If the compiler cannot determine the machine topology using any other method, but the operating system
supports affinity, a warning message is printed, and the topology is assumed to be flat. For example, a flat
topology assumes the operating system process N maps to package N, and there exists only one thread
context per core and only one core for each package.

If the machine topology cannot be accurately determined as described above, the user can manually copy /
proc/cpuinfo to a temporary file, correct any errors, and specify the machine topology to the OpenMP
runtime library via the environment variable KMP_CPUINFO_FILE=<temp_filename>, as described in the
section KMP_CPUINFO_FILE and /proc/cpuinfo.

Regardless of the method used in determining the machine topology, if there is only one thread context per
core for every core on the machine, the thread context level will not appear in the topology map. If there is
only one core per package for every package in the machine, the core level will not appear in the machine
topology map. The topology map need not be a full tree, because different packages may contain a different
number of cores, and different cores may support a different number of thread contexts.

The package level will always appear in the topology map, even if there only a single package in the
machine.

KMP_CPUINFO_FILE and /proc/cpuinfo
One of the methods the Intel® C++ Compiler Classic OpenMP runtime library can use to detect the machine
topology on Linux systems is to parse the contents of /proc/cpuinfo. If the contents of this file (or a device
mapped into the Linux file system) are insufficient or erroneous, you can consider copying its contents to a
writable temporary file <temp_file>, correct it or extend it with the necessary information, and set
KMP_CPUINFO_FILE=<temp_file>.

If you do this, the OpenMP runtime library will read the <temp_file> location pointed to by
KMP_CPUINFO_FILE instead of the information contained in /proc/cpuinfo or attempting to detect the
machine topology by decoding the APIC IDs. That is, the information contained in the <temp_file> overrides
these other methods. You can use the KMP_CPUINFO_FILE interface on Windows systems, where /proc/
cpuinfo does not exist.

The content of /proc/cpuinfo or <temp_file> should contain a list of entries for each processing element
on the machine. Each processor element contains a list of entries (descriptive name and value on each line).
A blank line separates the entries for each processor element. Only the following fields are used to determine
the machine topology from each entry, either in <temp_file> or /proc/cpuinfo:

Optimization and Programming

2095

Field Description

processor : Specifies the OS ID for the processing element. The
OS ID must be unique. The processor and
physical id fields are the only ones that are
required to use the interface.

physical id : Specifies the package ID, which is a physical chip
ID. Each package may contain multiple cores. The
package level always exists in the compiler's
OpenMP run-time library model of the machine
topology.

core id : Specifies the core ID. If it does not exist, it defaults
to 0. If every package on the machine contains only
a single core, the core level will not exist in the
machine topology map (even if some of the core ID
fields are non-zero).

apicid : Specifies the thread ID. If it does not exist, it
defaults to 0. If every core on the machine contains
only a single thread, the thread level will not exist
in the machine topology map (even if some thread
ID fields are non-zero).

node_n id : This is a extension to the normal contents of /
proc/cpuinfo that can be used to specify the
nodes at different levels of the memory
interconnect on Non-Uniform Memory Access
(NUMA) systems. Arbitrarily many levels n are
supported. The node_0 level is closest to the
package level; multiple packages comprise a node
at level 0. Multiple nodes at level 0 comprise a node
at level 1, and so on.

Each entry must be spelled exactly as shown, in lowercase, followed by optional whitespace, a colon (:),
more optional whitespace, then the integer ID. Fields other than those listed are simply ignored.

NOTE
It is common for the thread id field to be missing from /proc/cpuinfo on many Linux variants, and
for a field labeled siblings to specify the number of threads per node or number of nodes per
package. However, the Intel OpenMP runtime library ignores fields labeled siblings so it can
distinguish between the thread id and siblings fields. When this situation arises, the warning
message Physical node/pkg/core/thread ids not unique appears (unless the type
specified is nowarnings).

Windows Processor Groups
On a 64-bit Windows operating system, it is possible for multiple processor groups to accommodate more
than 64 processors. Each group is limited in size, up to a maximum value of sixty-four (64) processors.

 Intel® C++ Compiler Classic Developer Guide and Reference

2096

If multiple processor groups are detected, the default is to model the machine as a 2-level tree, where level
0 are for the processors in a group, and level 1 are for the different groups. Threads are assigned to a group
until there are as many OpenMP threads bound to the groups as there are processors in the group.
Subsequent threads are assigned to the next group, and so on.

By default, threads are allowed to float among all processors in a group, that is to say, granularity equals the
group [granularity=group]. You can override this binding and explicitly use another affinity type like compact,
scatter, and so on. If you do so, the granularity must be sufficiently fine to prevent a thread from being
bound to multiple processors in different groups.

Using a Specific Machine Topology Modeling Method (KMP_TOPOLOGY_METHOD)
You can set the KMP_TOPOLOGY_METHOD environment variable to force OpenMP to use a particular machine
topology modeling method.

Value Description

cpuid_leaf11 Decodes the APIC identifiers as specified by leaf 11
of the cpuid instruction.

cpuid_leaf4 Decodes the APIC identifiers as specified in leaf 4 of
the cpuid instruction.

cpuinfo If KMP_CPUINFO_FILE is not specified, forces
OpenMP to parse /proc/cpuinfo to determine the
topology (Linux only).

If KMP_CPUINFO_FILE is specified as described
above, uses it (Windows or Linux).

group Models the machine as a 2-level map, with level 0
specifying the different processors in a group, and
level 1 specifying the different groups (Windows
64-bit only) .

flat Models the machine as a flat (linear) list of
processors.

hwloc Models the machine as the Portable Hardware
Locality* (hwloc) library does. This model is the
most detailed and includes, but is not limited to:
numa nodes, packages, cores, hardware threads,
caches, and Windows processor groups.

Explicitly Specifying OS Processor IDs (GOMP_CPU_AFFINITY)

NOTE
You must set the GOMP_CPU_AFFINITY environment variable before the first parallel region, or certain
API calls including omp_get_max_threads(), omp_get_num_procs() and any affinity API calls, as
described in Low Level Affinity API, below.

Instead of allowing the library to detect the hardware topology and automatically assign OpenMP threads to
processing elements, the user may explicitly specify the assignment by using a list of operating system (OS)
processor (proc) IDs. However, this requires knowledge of which processing elements the OS proc IDs
represent.

Optimization and Programming

2097

On Linux systems, when using the Intel OpenMP compatibility libraries enabled by the compiler option
-qopenmp-lib compat, you can use the GOMP_AFFINITY environment variable to specify a list of OS
processor IDs. Its syntax is identical to that accepted by libgomp (assume that <proc_list> produces the
entire GOMP_AFFINITY environment string):

Value Description

<proc_list> := <entry> | <elem> , <list> | <elem>
<whitespace> <list>

<elem> := <proc_spec> | <range>

<proc_spec> := <proc_id>

<range> := <proc_id> - <proc_id> | <proc_id> - <proc_id> :
<int>

<proc_id> := <positive_int>

OS processors specified in this list are then assigned to OpenMP threads, in order of OpenMP Global Thread
IDs. If more OpenMP threads are created than there are elements in the list, then the assignment occurs
modulo the size of the list. That is, OpenMP Global Thread ID n is bound to list element n mod <list_size>.

Consider the machine previously mentioned: a dual core, dual-package machine without Intel® Hyper-
Threading Technology (Intel® HT Technology) enabled, where the OS proc IDs are assigned in the same
manner as the example in a previous figure. Suppose that the application creates six OpenMP threads
instead of 4 (the default), oversubscribing the machine. If GOMP_AFFINITY=3,0-2, then OpenMP threads
are bound as shown in the figure below, just as should happen when compiling with gcc and linking with
libgomp:

The same syntax can be used to specify the OS proc ID list in the proclist=[<proc_list>] modifier in the
KMP_AFFINITY environment variable string. There is a slight difference: in order to have strictly the same
semantics as in the gcc OpenMP runtime library libgomp: the GOMP_AFFINITY environment variable implies
granularity=fine. If you specify the OS proc list in the KMP_AFFINITY environment variable without a

 Intel® C++ Compiler Classic Developer Guide and Reference

2098

granularity= specifier, then the default granularity is not changed. That is, OpenMP threads are allowed
to float between the different thread contexts on a single core. Thus GOMP_AFFINITY=<proc_list> is an
alias for KMP_AFFINITY="granularity=fine,proclist=[<proc_list>],explicit".

In the KMP_AFFINITY environment variable string, the syntax is extended to handle operating system
processor ID sets. The user may specify a set of operating system processor IDs among which an OpenMP
thread may execute ("float") enclosed in brackets:

Value Description

<proc_list> := <proc_id> | { <float_list> }

<float_list> := <proc_id> | <proc_id> , <float_list>

This allows functionality similarity to the granularity= specifier, but it is more flexible. The OS
processors on which an OpenMP thread executes may exclude other OS processors nearby in the machine
topology, but include other distant OS processors. Building upon the previous example, we may allow
OpenMP threads 2 and 3 to "float" between OS processor 1 and OS processor 2 by using
KMP_AFFINITY="granularity=verbose,fine,proclist=[3,0,{1,2},{1,2}],explicit", as shown in
the figure below:

If verbose were also specified, the output when the application is executed would include:

KMP_AFFINITY="granularity=verbose,fine,proclist=[3,0,{1,2},{1,2}],explicit"

KMP_AFFINITY: Initial OS proc set respected: 0,1,2,3
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores)
KMP_AFFINITY: OS proc to physical thread map:
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0

Optimization and Programming

2099

KMP_AFFINITY="granularity=verbose,fine,proclist=[3,0,{1,2},{1,2}],explicit"

KMP_AFFINITY: pid 41464 tid 41464 thread 0 bound to OS proc set 3
KMP_AFFINITY: pid 41464 tid 41465 thread 1 bound to OS proc set 0
KMP_AFFINITY: pid 41464 tid 41466 thread 2 bound to OS proc set 1,2
KMP_AFFINITY: pid 41464 tid 41467 thread 3 bound to OS proc set 1,2
KMP_AFFINITY: pid 41464 tid 41468 thread 4 bound to OS proc set 3
KMP_AFFINITY: pid 41464 tid 41469 thread 5 bound to OS proc set 0

Low Level Affinity API
Instead of relying on the user to specify the OpenMP thread to OS proc binding by setting an environment
variable before program execution starts (or by using the kmp_settings interface before the first parallel
region is reached), each OpenMP thread can determine the desired set of OS procs on which it is to execute
and bind to them with the kmp_set_affinity API call.

Caution
When you use this affinity interface you take complete control of the hardware resources on which
your threads run. To do that sensibly you need to understand in detail how the logical CPUs, the
enumeration of hardware threads controlled by the OS, map to the physical hardware of the specific
machine on which you are running. That mapping can be, and likely is, different on different machines,
so you risk binding machine-specific information into your code, which can result in explicitly forcing
bad affinities when your code runs on a different machine. And if you are concerned with optimization
at this level of detail, your code is probably valuable, and therefore will probably move to another
machine.

This interface may also allow you to ignore the resource limitations that were set by the program
startup mechanism, such as Message Passing Interface (MPI), specifically to prevent multiple OpenMP
processes on the same node from using the same hardware threads. Again, this can result in explicitly
forcing affinities that cause bad performance, and the OpenMP runtime will neither prevent this from
happening, nor warn you when it does. These are expert interfaces and you must use them with
caution.

It is recommended, therefore, to use the higher level affinity settings if you possibly can, because they
are more portable and do not require this low level knowledge.

The C/C++ API interfaces follow, where the type name kmp_affinity_mask_t is defined in omp.h:

Syntax Description

int kmp_set_affinity (kmp_affinity_mask_t
*mask)

Sets the affinity mask for the current OpenMP
thread to *mask, where *mask is a set of OS proc
IDs that has been created using the API calls listed
below, and the thread will only execute on OS procs
in the set. Returns either a zero (0) upon success
or a nonzero error code.

int kmp_get_affinity (kmp_affinity_mask_t
*mask)

Retrieves the affinity mask for the current OpenMP
thread, and stores it in *mask, which must have
previously been initialized with a call to
kmp_create_affinity_mask(). Returns either a
zero (0) upon success or a nonzero error code.

 Intel® C++ Compiler Classic Developer Guide and Reference

2100

Syntax Description

int kmp_get_affinity_max_proc (void) Returns the maximum OS proc ID that is on the
machine, plus 1. All OS proc IDs are guaranteed to
be between 0 (inclusive) and
kmp_get_affinity_max_proc() (exclusive).

void kmp_create_affinity_mask
(kmp_affinity_mask_t *mask)

Allocates a new OpenMP thread affinity mask, and
initializes *mask to the empty set of OS procs. The
implementation is free to use an object of
kmp_affinity_mask_t either as the set itself, a
pointer to the actual set, or an index into a table
describing the set. Do not make any assumption as
to what the actual representation is.

void kmp_destroy_affinity_mask
(kmp_affinity_mask_t *mask)

Deallocates the OpenMP thread affinity mask. For
each call to kmp_create_affinity_mask(), there
should be a corresponding call to
kmp_destroy_affinity_mask().

int kmp_set_affinity_mask_proc (int proc,
kmp_affinity_mask_t *mask)

Adds the OS proc ID proc to the set *mask, if it is
not already. Returns either a zero (0) upon success
or a nonzero error code.

int kmp_unset_affinity_mask_proc (int
proc, kmp_affinity_mask_t *mask)

If the OS proc ID proc is in the set *mask, it
removes it. Returns either a zero (0) upon success
or a nonzero error code.

int kmp_get_affinity_mask_proc (int proc,
kmp_affinity_mask_t *mask)

Returns 1 if the OS proc ID proc is in the set
*mask; if not, it returns 0.

Once an OpenMP thread has set its own affinity mask via a successful call to kmp_set_affinity(), then
that thread remains bound to the corresponding OS proc set until at least the end of the parallel region,
unless reset via a subsequent call to kmp_set_affinity().

Between parallel regions, the affinity mask (and the corresponding OpenMP thread to OS proc bindings) can
be considered thread private data objects, and have the same persistence as described in the OpenMP
Application Program Interface. For more information, see the OpenMP API specification (http://
www.openmp.org), some relevant parts of which are provided below:

In order for the affinity mask and thread binding to persist between two consecutive active parallel regions,
all three of the following conditions must hold:

• Neither parallel region is nested inside another explicit parallel region.
• The number of threads used to execute both parallel regions is the same.
• The value of the dyn-var internal control variable in the enclosing task region is false at entry to both

parallel regions."

Therefore, by creating a parallel region at the start of the program whose sole purpose is to set the affinity
mask for each thread, you can mimic the behavior of the KMP_AFFINITY environment variable with low-level
affinity API calls, if program execution obeys the three aforementioned rules from the OpenMP specification.

The following example shows how these low-level interfaces can be used. This code binds the executing
thread to the specified logical CPU:

Optimization and Programming

2101

Example

// Force the executing thread to execute on logical CPU i
// Returns 1 on success, 0 on failure.
int forceAffinity(int i)
{
kmp_affinity_mask_t mask;

kmp_create_affinity_mask(&mask);
kmp_set_affinity_mask_proc(i, &mask);

return (kmp_set_affinity(&mask) == 0);
}

This program fragment was written with knowledge about the mapping of the OS proc IDs to the physical
processing elements of the target machine. On another machine, or on the same machine with a different OS
installed, the program would still run, but the OpenMP thread to physical processing element bindings could
differ and you might be explicitly force a bad distribution.

OpenMP* Memory Spaces and Allocators
For storage and retrieval variables, OpenMP* provides memory known as memory spaces. Different memory
spaces have different traits. Depending on how a variable is to be used and accessed determines which
memory space is appropriate for allocation of the variable.

Each memory space has a unique allocator that is used to allocate and deallocate memory in that space. The
allocators allocate variables in contiguous space that does not overlap any other allocation in the memory
space. Multiple memory spaces with different traits may map to a single memory resource.

The behavior of the allocator is affected by the allocator traits that you specify. The allocator traits, their
possible values, and their default values are shown in the following table:

Allocator Trait Values That Can Be
Specified

Default Value

access • all
• cgroup
• pteam
• thread

All

alignment A positive integer value that
is a power of 2 specifying
number of bytes

1 byte

fallback • abort_fb
• allocator_fb
• default_mem_fb
• null_fb

default_mem_fb

fb_data An allocator handle None

partition • blocked
• environment
• interleaved
• nearest

environment

pinned • true
• false

false

 Intel® C++ Compiler Classic Developer Guide and Reference

2102

Allocator Trait Values That Can Be
Specified

Default Value

pool_size a positive integer value Implementation defined

sync_hint • contended
• uncontended
• private
• serialized

contended

The access trait specifies the accessibility of the allocated memory. The following are values you can specify
for access:

• all
This value indicates that the allocated memory must be accessible by all threads in the device where the
memory allocation occurs.

This is the default setting.
• cgroup

This value indicates that the allocated memory must be accessible by all threads of the same contention
group as the thread that requested the allocation. Accessing the allocated memory thread that is not part
of the same contention group results in undefined behavior.

• pteam
This value indicates that the allocated memory is accessible by all threads that bind to the same parallel
region as the thread that requests the allocations. Access to the memory by a thread that does not bind
to the same parallel region as the thread that allocated the memory results in undefined behavior.

• thread
This value indicates that the memory allocated is accessible only by the thread that allocated it. Attempts
to allocate the memory by another thread result in undefined behavior.

The alignment trait specifies how allocated variables will be aligned. Variables will be byte-aligned to at
least the value specified for this trait. The default setting is 1 byte. Alignment can also be affected by
directives and OpenMP runtime allocator routines that specify alignment requirements.

The fallback trait indicates how an allocator behaves if it is unable to satisfy an allocation request. The
following are values you can specify for fallback:

• abort_fb
This value indicates that the program terminates if the allocation request fails.

• allocator_fb
If this value is specified and the allocation request fails, the allocation will be tried by the allocator
specified by the fb_data trait.

• default_mem_fb
This value indicates that a failed allocation request will be retried in the omp_default_mem_space
memory space. All traits for the omp_default_mem_space allocator should be set to the default trait
values, except the fallback trait should be set to null_fb. This is the default setting.

• null_fb
This value indicates the allocator returns a zero value when an allocation request fails.

The fb_data trait lets you specify a fall back allocator to be used if the requested allocator fails to satisfy the
allocation request. The fallback trait of the failing allocator must be set to allocator_fb in order for the
allocator specified by the fb_data trait to be used.

The partition trait describes the partitioning of allocated memory over the storage resources represented
by the memory space of the allocator. The following are values you can specify for partition:

• blocked

Optimization and Programming

2103

This value indicates the allocated memory is partitioned into blocks of memory of approximately equal
size with one block per storage resource.

• environment
This value indicates the allocated memory placement is determined by the runtime execution
environment. This is the default setting.

• interleaved
This value indicates the allocated memory is distributed in a round-robin fashion across the storage
resources.

• nearest
This value indicates that the allocated memory will be placed in the storage resource nearest to the thread
that requested the allocation.

If the pinned trait has the value true, the allocator ensures each allocation made by the allocator will
remain in the storage resource at the same location where it was allocated until it is deallocated. The default
setting is false.

The value of pool_size is the total number of bytes of storage available to an allocator when there have
been no allocations. The following affect pool_size:

• If the access trait has the value all, the value of pool_size is the limit for all allocations for all threads
having access to the allocator.

• If the access trait of the allocator has the value cgroup, the value of pool_size is the limit for
allocations made from the threads within the same contention group.

• For allocators with the access access trait value of pteam, the value of pool_size is the limit for
allocations made within the same parallel team.

• If the access trait has the value thread, the value of pool_size is the limit for allocations made from
each thread using the allocator.

• An allocation request for more space than the value of pool_size results in the allocator not fulfilling the
allocation request.

The sync_hint trait describes the way that multiple threads can access an allocator. The following are values
you can specify for sync_hint:

• contended or uncontended
Value contended indicates that many threads are anticipated to make simultaneous allocation requests
while the value uncontended indicates that few threads are anticipated to make simultaneous allocation.
The default setting is contended.

• private
This value indicates that all allocation requests will come from the same thread. Specifying private when
this is not the case and two or more threads make allocation requests by the same allocator results in
undefined behavior.

• serialized
This value indicates that only one thread will request an allocation at a given time. The behavior is
undefined if two threads request an allocation simultaneously by an allocator whose sync_hint value is
serialized.

There are five predefined memory spaces in OpenMP:

• The system default memory is referred to as omp_default_mem_space.
• Large capacity memory is referred to as omp_large_cap_mem_space.
• High bandwidth memory is referred to as omp_high_bw_mem_space.
• Low latency memory is referred to as omp_low_lat_mem_space.
• Memory designed for optimal storage of constant values is referred to as omp_const_mem_space.

It can be initialized with compile-time constant expressions or by using a firstprivate clause.

Writing to variables in omp_const_mem_space results in undefined behavior.

The following table shows the predefined memory allocators, the memory space they are associated with,
and the non-default memory trait values they possess.

 Intel® C++ Compiler Classic Developer Guide and Reference

2104

Allocator Name Associated Memory Space Non-Default Trait Values

omp_default_mem_alloc omp_default_mem_space fallback=null_fb

omp_large_cap_mem_alloc omp_large_cap_mem_spac
e

none

omp_low_lat_mem_alloc omp_low_lat_mem_space none

omp_high_bw_mem_alloc omp_high_bw_mem_space none

omp_const_mem_alloc omp_const_mem_space none

omp_cgroup_mem_alloc implementation/system
defined

access=cgroup

omp_pteam_mem_alloc implementation/system
defined

access=pteam

omp_thread_mem_alloc implementation/system
defined

access=thread

See Also
OpenMP* Run-time Library Routines

OpenMP* Advanced Issues
This topic discusses how to use the OpenMP* library functions and environment variables and discusses some
guidelines for enhancing performance with OpenMP.

OpenMP provides specific function calls, and environment variables. See the following topics to refresh your
memory about the primary functions and environment variable used in this topic:

• OpenMP Run-time Library Routines
• OpenMP Environment Variables

To use the function calls, include the omp.h header file. This file is installed in the INCLUDE directory during
the compiler installation and compile the application using the /Qopenmp (Windows*) or -qopenmp (Linux*
and macOS) option.

The following example demonstrates how to use the OpenMP functions to print the alphabet and illustrates
several important concepts:

1. When using functions instead of pragmas, your code must be rewritten; rewrites can mean extra
debugging, testing, and maintenance efforts.

2. It becomes difficult to compile without OpenMP support.
3. It is very easy to introduce simple bugs, as in the loop (shown in example) that fails to print all the

letters of the alphabet when the number of threads is not a multiple of 26.
4. You lose the ability to adjust loop scheduling without creating your own work-queue algorithm, which is

a lot of extra effort. You are limited by your own scheduling, which is mostly likely static scheduling as
shown in the example.

#include <stdio.h>
#include <omp.h>

int main(void) {
 int i;
 omp_set_num_threads(4);

 #pragma omp parallel private(i)
 {
 // OMP_NUM_THREADS is not a multiple of 26,

Optimization and Programming

2105

 // which can be considered a bug in this code.
 int LettersPerThread = 26 / omp_get_num_threads();
 int ThisThreadNum = omp_get_thread_num();
 int StartLetter = 'a'+ThisThreadNum*LettersPerThread;
 int EndLetter = 'a'+ThisThreadNum*LettersPerThread+LettersPerThread;

 for (i=StartLetter; i<EndLetter; i++) { printf("%c", i); }
 }
 printf("\n");
 return 0;
}

Debugging threaded applications is a complex process because debuggers change the run-time performance,
which can mask race conditions. Even print statements can mask issues, because they use synchronization
and operating system functions. OpenMP itself also adds some complications, because it introduces additional
structure by distinguishing private variables and shared variables and inserts additional code. A debugger
that supports OpenMP can help you to examine variables and step through threaded code. You can use Intel®
Inspector to detect many hard-to-find threading errors analytically. Sometimes, a process of elimination can
help identify problems without resorting to sophisticated debugging tools.

Remember that most mistakes are race conditions. Most race conditions are caused by shared variables that
really should have been declared private. Start by looking at the variables inside the parallel regions and
make sure that the variables are declared private when necessary. Next, check functions called within parallel
constructs. By default, variables declared on the stack are private, but the C/C++ keyword static changes
the variable to be placed on the global heap and therefore shared for OpenMP loops.

The default(none) clause can be used to help find those hard-to-spot variables. If you specify
default(none), then every variable must be declared with a data-sharing attribute clause. For example:

#pragma omp parallel for default(none) private(x,y) shared(a,b)
Another common mistake is using uninitialized variables. Remember that private variables do not have initial
values upon entering a parallel construct. Use the firstprivate and lastprivate clauses to initialize them
only when necessary, because doing so adds extra overhead.

If you still can't find the bug, then consider the possibility of reducing the scope. Try a binary-hunt. Force
parallel sections to be serial again with if(0) on the parallel construct or commenting out the pragma
altogether. Another method is to force large chunks of a parallel region to be critical sections. Pick a region of
the code that you think contains the bug and place it within a critical section. Try to find the section of code
that suddenly works when it is within a critical section and fails when it is not. Now look at the variables, and
see if the bug is apparent. If that still doesn't work, try setting the entire program to run in serial by setting
the compiler-specific environment variable KMP_LIBRARY=serial.

If the code is still not working, and you are not using any OpenMP API function calls, compile it without
the /Qopenmp (Windows) or -qopenmp (Linux and macOS) option to make sure the serial version works. If
you are using OpenMP API function calls, use the /Qopenmp-stubs (Windows) or -qopenmp-stubs (Linux
and macOS) option.

Performance
OpenMP threaded application performance is largely dependent upon the following things:

• The underlying performance of the single-threaded code.
• CPU utilization, idle threads, and load balancing.
• The percentage of the application that is executed in parallel by multiple threads.
• The amount of synchronization and communication among the threads.
• The overhead needed to create, manage, destroy, and synchronize the threads, made worse by the

number of single-to-parallel or parallel-to-single transitions called fork-join transitions.
• Performance limitations of shared resources such as memory, bus bandwidth, and CPU execution units.
• Memory conflicts caused by shared memory or falsely shared memory.

 Intel® C++ Compiler Classic Developer Guide and Reference

2106

Performance always begins with a properly constructed parallel algorithm or application. For example,
parallelizing a bubble-sort, even one written in hand-optimized assembly language, is not a good place to
start. Keep scalability in mind; creating a program that runs well on two CPUs is not as efficient as creating
one that runs well on n CPUs. With OpenMP, the number of threads is chosen by the compiler, so programs
that work well regardless of the number of threads are highly desirable. Producer/consumer architectures are
rarely efficient, because they are made specifically for two threads.

Once the algorithm is in place, make sure that the code runs efficiently on the targeted Intel® architecture; a
single-threaded version can be a big help. Turn off the /Qopenmp (Windows) or -qopenmp (Linux and
macOS) option to generate a single-threaded version, or build with the /Qopenmp-stubs (Windows) or
-qopenmp-stubs (Linux and macOS) option, and run the single-threaded version through the usual set of
optimizations.

Once you have gotten the single-threaded performance, it is time to generate the multi-threaded version and
start doing some analysis.

Optimizations are really a combination of patience, experimentation, and practice. Make little test programs
that mimic the way your application uses the computer resources to get a feel for what things are faster than
others. Be sure to try the different scheduling clauses for the parallel sections of code. If the overhead of a
parallel region is large compared to the compute time, you may want to use an if clause to execute the
section serially.

See Also
OpenMP* Run-time Library Routines
Worksharing Using OpenMP*
qopenmp, Qopenmp
qopenmp-stubs, Qopenmp-stubs

OpenMP* Implementation-Defined Behaviors
This topic summarizes the behaviors that are described as implementation defined in the OpenMP* API
specification.

NOTE
Internal Control Variables (ICVs) mentioned below are discussed in the OpenMP API specification.

Name Description

single construct The first thread that encounters the single
construct executes the structured block.

teams construct The number of teams that are created is equal to 1
if you don't specify the num_teams clause.

dist_schedule clause, distribute construct If you don't specify the dist_schedule clause,
then the schedule for the distribute construct is
static.

omp_set_num_threads routine If the argument is not a positive integer, then
Intel's OpenMP implementation sets the value of
the first element of the nthreads-var ICV of the
current task to 1.

omp_set_max_active_levels routine If the argument is a negative integer this call is
ignored and the last valid setting is used.

Optimization and Programming

2107

Name Description

omp_get_max_active_levels routine When called from within any explicit parallel region
the binding thread set, and binding region, if
required, for the omp_get_max_active_levels
region is the current task region.

OMP_SCHEDULE environment variable If the value of the variable does not conform to the
specified format then the value of the run-sched-
var ICV is set to static.

OMP_NUM_THREADS environment variable If any value of the list specified in the environment
variable is negative then the whole list is ignored. If
any value of the list is zero then this value is set to
1.

OMP_PROC_BIND environment variable If the value is not true, false, or a comma
separated list of master (deprecated), primary,
close, or spread, then Intel's OpenMP
implementation sets the value of bind-var ICV to
false.

OMP_DYNAMIC environment variable If the value is neither true nor false, then the
implementation sets the value of dyn-var ICV to
false.

OMP_NESTED environment variable If the value is neither true nor false, then the
implementation sets the value of nest-var ICV to
false.

OMP_STACKSIZE environment variable If the value does not conform to the specified
format or the implementation cannot provide a
stack of the specified size, then Intel's OpenMP
implementation sets the value of stacksize-var
ICV to the default size, which is specified as being
from 1MB to 4MB depending on the architecture.
On Linux* or macOS*, the implementation can set
the value of stacksize-var ICV up to 256MB,
respecting the operating system's stack size limit.

OMP_MAX_ACTIVE_LEVELS environment variable If the value is a negative integer or is greater than
the number of parallel levels an implementation can
support, then Intel's OpenMP implementation sets
the value of the max-active-levels-var ICV to
1.

OMP_THREAD_LIMIT environment variable If the requested value is greater than the number
of threads an implementation can support, or if the
value is a negative integer, then Intel's OpenMP
implementation sets the value of the thread-
limit-var ICV to the maximum number of threads
supported on a particular platform. If the requested
value is zero then the implementation sets the
value of the thread-limit-var ICV to 1.

Runtime library definitions Intel's OpenMP implementation provides both the
include file omp.h and omp-tools.h .

 Intel® C++ Compiler Classic Developer Guide and Reference

2108

OpenMP* Examples
The following examples show how to use several OpenMP* features.

A Simple Difference Operator
This example shows a simple parallel loop where the amount of work in each iteration is different. Dynamic
scheduling is used to improve load balancing.

The for pragma has a nowait clause because there is an implicit barrier at the end of the parallel region.
Therefore it is not necessary to also have a barrier at the end of the for region.

void for1(float a[], float b[], int n) {
 int i, j;
 #pragma omp parallel shared(a,b,n) {
 #pragma omp for schedule(dynamic,1) private (i,j) nowait
 for (i = 1; i < n; i++)
 for (j = 0; j < i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)]) / 2.0;
 }
}

Two Difference Operators: for Loop Version
This example uses two parallel loops fused to reduce fork/join overhead. The first for pragma has a nowait
clause because all the data used in the second loop is different than all the data used in the first loop.

void for2(float a[], float b[], float c[], float d[], int n, int m) {
 int i, j;
 #pragma omp parallel shared(a,b,c,d,n,m) private(i,j) {
 #pragma omp for schedule(dynamic,1) nowait
 for (i = 1; i < n; i++)
 for (j = 0; j < i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
 #pragma omp for schedule(dynamic,1) nowait
 for (i = 1; i < m; i++)
 for (j = 0; j < i; j++)
 d[j + m*i] = (c[j + m*i] + c[j + m*(i-1)])/2.0;
 }
}

Two Difference Operators: sections Version
This example demonstrates the use of the sections pragma . The logic is identical to the preceding for
pragma example, but uses a sections pragma instead of a for pragma . Here the speedup is limited to two
because there are only two units of work whereas in the example above there are (n-1) + (m-1) units of
work.

void sections1(float a[], float b[], float c[], float d[], int n, int m) {
 int i, j;
 #pragma omp parallel shared(a,b,c,d,n,m) private(i,j) {
 #pragma omp sections nowait {
 #pragma omp section
 for (i = 1; i < n; i++)
 for (j = 0; j < i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
 #pragma omp section
 for (i = 1; i < m; i++)

Optimization and Programming

2109

 for (j = 0; j < i; j++)
 d[j + m*i] = (c[j + m*i] + c[j + m*(i-1)])/2.0;
 }
 }
}

Update a Shared Scalar
This example demonstrates how to use a single construct to update an element of the shared array a. The
optional nowait clause after the first loop is omitted because it is necessary to wait at the end of the loop
before proceeding into the single construct to avoid a race condition.

void sp_1a(float a[], float b[], int n) {
 int i;
 #pragma omp parallel shared(a,b,n) private(i) {
 #pragma omp for
 for (i = 0; i < n; i++)
 a[i] = 1.0 / a[i];
 #pragma omp single
 a[0] = MIN(a[0], 1.0);
 #pragma omp for nowait
 for (i = 0; i < n; i++)
 b[i] = b[i] / a[i];
 }
}

Automatic Parallelization
The auto-parallelization feature of the Intel®C++ Compiler automatically translates serial portions of the
input program into equivalent multithreaded code. Automatic parallelization determines the loops that are
good worksharing candidates, performs the dataflow analysis to verify correct parallel execution, and
partitions the data for threaded code generation as needed in programming with OpenMP* directives. The
OpenMP* and auto-parallelization functionality provides the performance gains from shared memory on
multiprocessor and dual core systems.

The auto-parallelizer analyzes the dataflow of the loops in the application source code and generates
multithreaded code for those loops which can safely and efficiently be executed in parallel.

This behavior enables the potential exploitation of the parallel architecture found in symmetric multiprocessor
(SMP) systems.

The guided auto-parallelization feature of the Intel®C++ Compiler helps you locate portions in your serial
code that can be parallelized further. You can invoke guidance for parallelization, vectorization, or data
transformation using specified compiler options of the [Q]guide series.

Automatic parallelization frees developers from having to:

• Find loops that are good worksharing candidates.
• Perform the dataflow analysis to verify correct parallel execution.
• Partition the data for threaded code generation as is needed in programming with OpenMP* directives.

Although OpenMP* directives enable serial applications to transform into parallel applications quickly, you
must explicitly identify specific portions of your application code that contain parallelism and add the
appropriate compiler directives. Auto-parallelization, which is triggered by the [Q]parallel option,
automatically identifies those loop structures that contain parallelism. During compilation, the compiler
automatically attempts to deconstruct the code sequences into separate threads for parallel processing. No
other effort is needed.

 Intel® C++ Compiler Classic Developer Guide and Reference

2110

NOTE In order to execute a program that uses auto-parallelization on Linux* or macOS systems, you
must include the -parallel compiler option when you compile and link your program.

NOTE
Using this option enables parallelization for both Intel® microprocessors and non-Intel microprocessors.
The resulting executable may get additional performance gain on Intel® microprocessors than on non-
Intel microprocessors. The parallelization can also be affected by certain options, such as /arch
(Windows), -m (Linux and macOS), or [Q]x.

Serial code can be divided so that the code can execute concurrently on multiple threads. For example,
consider the following serial code example.

Example 1: Original Serial Code

void ser(int *a, int *b, int *c) {
 for (int i=0; i<100; i++)
 a[i] = a[i] + b[i] * c[i];
}

The following example illustrates one method showing how the loop iteration space, shown in the previous
example, might be divided to execute on two threads.

Example 2: Transformed Parallel Code

void par(int *a, int *b, int *c) {
 int i;
 // Thread 1
 for (i=0; i<50; i++)
 a[i] = a[i] + b[i] * c[i];
 // Thread 2
 for (i=50; i<100; i++)
 a[i] = a[i] + b[i] * c[i];
}

Auto-Vectorization and Parallelization
Auto-vectorization detects low-level operations in the program that can be done in parallel, and then converts
the sequential program to process 2, 4, 8, or (up to) 16 elements in one operation, depending on the data
type. In some cases, auto-parallelization and vectorization can be combined for better performance results.

The following example demonstrates how code can be designed to explicitly benefit from parallelization and
vectorization. Assuming you compile the code shown below using the [Q]parallel option, the compiler will
parallelize the outer loop and vectorize the innermost loop.

Example

#include <stdio.h>
#define ARR_SIZE 500 //Define array
int main() {
 int matrix[ARR_SIZE][ARR_SIZE];
 int arrA[ARR_SIZE]={10};
 int arrB[ARR_SIZE]={30};
 int i, j;
 for(i=0;i<ARR_SIZE;i++) {

Optimization and Programming

2111

Example

 for(j=0;j<ARR_SIZE;j++) { matrix[i][j] = arrB[i]*(arrA[i]%2+10); }
 } printf("%d\n",matrix[0][0]);
}

Compiling the example code with the correct options, the compiler should report results similar to the
following:

vectorization.c(18) : (col. 6) remark: LOOP WAS VECTORIZED.
 vectorization.c(16) : (col. 3) remark: LOOP WAS AUTO-PARALLELIZED.

With the relatively small effort of adding OpenMP* directives to existing code you can transform a sequential
program into a parallel program. The [Q]openmp option must be specifed to enable the OpenMP directives.

The following example demonstrates one method of using the OpenMP* pragmas within code.

Example

#include <stdio.h>
#define ARR_SIZE 100 //Define array
void foo(int ma[][ARR_SIZE], int mb[][ARR_SIZE], int *a, int *b, int *c);
int main() {
 int arr_a[ARR_SIZE];
 int arr_b[ARR_SIZE];
 int arr_c[ARR_SIZE];
 int i,j;
 int matrix_a[ARR_SIZE][ARR_SIZE];
 int matrix_b[ARR_SIZE][ARR_SIZE];
 #pragma omp parallel for
// Initialize the arrays and matrices.
 for(i=0;i<ARR_SIZE; i++) {
 arr_a[i]= i;
 arr_b[i]= i;
 arr_c[i]= ARR_SIZE-i;
 for(j=0; j<ARR_SIZE;j++) {
 matrix_a[i][j]= j;
 matrix_b[i][j]= i;
 }
 }
 foo(matrix_a, matrix_b, arr_a, arr_b, arr_c);
}
void foo(int ma[][ARR_SIZE], int mb[][ARR_SIZE], int *a, int *b, int *c)
{
 int i, num, arr_x[ARR_SIZE];
 #pragma omp parallel for private(num)
// Expresses the parallelism using the OpenMP pragma: parallel for.
// The pragma guides the compiler generating multithreaded code.
// Array arr_X, mb, b, and c are shared among threads based on OpenMP
// data sharing rules. Scalar num si specifed as private
// for each thread.
 for(i=0;i<ARR_SIZE;i++) {
 num = ma[b[i]][c[i]];
 arr_x[i]= mb[a[i]][num];
 printf("Values: %d\n", arr_x[i]); //prints values 0-ARR_SIZE-1
 }
}

 Intel® C++ Compiler Classic Developer Guide and Reference

2112

NOTE
Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these
options may perform additional optimizations on Intel® microprocessors than they perform on non-
Intel microprocessors. The list of major, user-visible OpenMP constructs and features that may perform
differently on Intel® microprocessors than on non-Intel microprocessors includes: locks (internal and
user visible), the SINGLE construct, barriers (explicit and implicit), parallel loop scheduling, reductions,
memory allocation, and thread affinity and binding.

Using Parallelism Reports
To generate a parallelism report, use the -opt-report-phase=par (Linux* and macOS) or
the /Qopt-report-phase:par option along with the -opt-report=n or /Qopt-report:n option. By default
the auto-parallelism report generates a medium level of detail, where n=2. You can use [Q]opt-report
option along with the [Q]opt-report-phase option if you want a greater or lesser level of detail. Specifying
a value of '5' generates the maximum diagnostic details.

Run the report by entering commands similar to the following:
Operating System Command

Linux* icpc -c -parallel -opt-report-phase=par -opt-report:5 sample.cpp

macOS icl++ -c -parallel -opt-report-phase=par -opt-report:5 sample.cpp

Windows* icl /c /Qparallel /Qopt-report-phase:par /Qopt-report:5 sample.cpp

NOTE The -c (Linux* and macOS) or /c (Windows*) prevents linking and instructs the compiler to
stop compilation after the object file is generated. The example is compiled without generating an
executable.

The output, by default, produces a file with the same name as the object file, with .optrpt extension, and is
written into the same directory as the object file. Using the above command-line entries, you will obtain an
output file called sample.optrpt. Use the [Q]opt-report-file option to specify any other name for the
output file that captures the report results. Use the arguments stdout or stderr to send the optimization
report to stdout or stderr.

For example, assume you want a full diagnostic report on the following example code:
Example

void no_par(void) {
 int i;
 int a[1000];
 for (i=1; i<1000; i++) {
 a[i] = (i * 2) % i * 1 + sqrt(i);
 a[i] = a[i-1] + i;
 }
}

The following example output illustrates the diagnostic report generated by the compiler for the example
code shown above. In most cases, the comment listed next to the line is self-explanatory.

Optimization and Programming

2113

Example Parallelism Report

procedure: no_par
sample.c(13):(3) remark #15048: DISTRIBUTED LOOP WAS AUTO-PARALLELIZED
sample.c(13):(3) remark #15050: loop was not parallelized: existence of parallel dependence
sample.c(19):(5) remark #15051: parallel dependence: proven FLOW dependence between a line 19,
and a line 19

For more information on options to generate reports see the Optimization Report Options topic.

See Also
Guided Auto-Parallelization
parallel, Qparallel
 compiler option
par-runtime-control, Qpar-runtime-control
 compiler option
par-threshold, Qpar-threshold
 compiler option
guide, Qguide
 compiler option
qopt-report-phase, Qopt-report-phase
 compiler option
qopt-report, Qopt-report
 compiler option

Enabling Auto-parallelization
To enable the auto-parallelizer, use the [Q]parallel option. This option detects parallel loops capable of
being executed safely in parallel, and automatically generates multi-threaded code for these loops.

NOTE You may need to set the KMP_STACKSIZE environment variable to an appropriately large size to
enable parallelization with this option.

NOTE
Using this option enables parallelization for both Intel® microprocessors and non-Intel microprocessors.
The resulting executable may get additional performance gain on Intel® microprocessors than on non-
Intel microprocessors. The parallelization can also be affected by certain options, such as /arch
(Windows), -m (Linux and macOS), or [Q]x.

An example of the command using auto-parallelization is as follows:

Commanding auto-parallelization in Linux*

icc -c -parallel prog.cpp

Commanding auto-parallelization in Windows*

icl /c /Qparallel prog.cpp

 Intel® C++ Compiler Classic Developer Guide and Reference

2114

Commanding auto-parallelization in macOS

icc -c -parallel prog.cpp

Auto-parallelization uses two specific pragmas: #pragma parallel and #pragma noparallel.

The format of an auto-parallelization compiler pragma is below:

Syntax

<prefix> <pragma>

where <prefix> indicates #pragma, the <prefix> is followed by the pragma name, as in:

Syntax

#pragma parallel

The #pragma parallel pragma instructs the compiler to ignore dependencies that it assumes may exist
and that would prevent correct parallelization in the immediately following loop. However, if dependencies are
proven, they are not ignored. In addition, parallel [always] overrides the compiler heuristics that
estimate the likelihood that parallelization of a loop increases performance. It allows a loop to be parallelized
even if the compiler thinks parallelization may not improve performance. If the ASSERT keyword is added, as
in #pragma parallel [always [assert]], the compiler generates an error-level assertion message
saying that the compiler analysis and cost model indicate that the loop cannot be parallelized.

The #pragma noparallel pragma disables auto-parallelization.

See Also
parallel, Qparallel
 compiler option

Programming with Auto-parallelization
The auto-parallelization feature implements some concepts of OpenMP*, such as the worksharing construct
(with the PARALLEL for directive). This section provides details on auto-parallelization.

Guidelines for Effective Auto-parallelization Usage
A loop can be parallelized if it meets the following criteria:

• The loop is countable at compile time: This means that an expression representing how many times the
loop will execute (loop trip count) can be generated just before entering the loop.

• There are no FLOW (READ after WRITE), OUTPUT (WRITE after WRITE) or ANTI (WRITE after READ)
loop-carried data dependencies. A loop-carried data dependency occurs when the same memory location
is referenced in different iterations of the loop. At the compiler's discretion, a loop may be parallelized if
any assumed inhibiting loop-carried dependencies can be resolved by run-time dependency testing.

The compiler may generate a run-time test for the profitability of executing in parallel for loop, with loop
parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

• Expose the trip count of loops whenever possible; use constants where the trip count is known and save
loop parameters in local variables.

• Avoid placing structures inside loop bodies that the compiler may assume to carry dependent data, for
example, procedure calls, ambiguous indirect references or global references.

Optimization and Programming

2115

Auto-parallelization Data Flow
For auto-parallelization processing, the compiler performs the following steps:

1. Data flow analysis: Computing the flow of data through the program.
2. Loop classification: Determining loop candidates for parallelization based on correctness and

efficiency, as shown by Enabling Auto-parallelization.
3. Dependency analysis: Computing the dependency analysis for references in each loop nest.
4. High-level parallelization: Analyzing the dependency graph to determine loops that can execute in

parallel, and computing run-time dependency.
5. Data partitioning: Examining data reference and partition based on the following types of access:

SHARED, PRIVATE, and FIRSTPRIVATE.
6. Multithreaded code generation: Modifying loop parameters, generating entry/exit per threaded task,

and generating calls to parallel run-time routines for thread creation and synchronization.

NOTE
Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these
options may perform additional optimizations on Intel® microprocessors than they perform on non-
Intel microprocessors. The list of major, user-visible OpenMP constructs and features that may perform
differently on Intel® microprocessors than on non-Intel microprocessors includes: locks (internal and
user visible), the SINGLE construct, barriers (explicit and implicit), parallel loop scheduling, reductions,
memory allocation, and thread affinity and binding.

See Also
Enabling Auto-parallelization

Enabling Further Loop Parallelization for Multicore
Platforms
Parallelizing loops for multicore platforms is subject to certain conditions. Three requirements must be met
for the compiler to parallelize a loop:

• The number of iterations must be known before entry into a loop to insure that the work can be divided in
advance. A do while loop, for example, usually cannot be made parallel.

• There can be no jumps into or out of the loop.
• The loop iterations must be independent (no cross-iteration dependencies).

Correct results must not logically depend on the order in which the iterations are executed. There may be
slight variations in the accumulated rounding error, for example, when the same quantities are added in a
different order. In some cases, such as summing an array or other uses of temporary scalars, the compiler
may be able to remove an apparent dependency by a simple transformation.

Potential aliasing of pointers or array references is another common impediment to safe parallelization. Two
pointers are aliased if both point to the same memory location. The compiler may not be able to determine
whether two pointers or array references point to the same memory location, for example, if they depend on
function arguments, run-time data, or the results of complex calculations.

If the compiler cannot prove that pointers or array references are safe, it will not parallelize the loop, except
in limited cases when it is deemed worthwhile to generate alternative code paths to test explicitly for aliasing
at run-time.

An alternative way in C to assert that a pointer is not aliased is to use the restrict keyword in the pointer
declaration, along with the [Q]restrict command-line option. The compiler will never parallelize a loop
that it can prove to be unsafe.

If you know parallelizing a particular loop is safe and that potential aliases can be ignored, you can instruct
the compiler to parallelize the loop using the #pragma parallel pragma.

 Intel® C++ Compiler Classic Developer Guide and Reference

2116

Parallelizing Loops with Cross-iteration Dependencies
Before the compiler can auto-parallelize a loop, it must prove that the loop does not have potential cross-
iteration dependencies that prevent parallelization. A cross-iteration dependency exists if a memory location
is written to in an iteration of a loop and accessed (read from or written to) in another iteration of the loop.
Cross-iteration dependencies often occur in loops that access overlapping array ranges, such as a loop that
reads from a(1:100) and writes to a(0:99).

Sometimes, even though a loop does not have cross-iteration dependencies, the compiler does not have
enough information to prove it and does not parallelize the loop. In such cases, you can assist the compiler
by providing additional information about the loop using the #pragma parallel pragma. Adding the
#pragma parallel pragma before a for loop informs the compiler that the loop does not have cross-
iteration dependencies. Auto-parallelization analysis ignores potential dependencies that it assumes could
exist; however, the compiler still may not parallelize the loop if heuristics estimate parallelization is unlikely
to increase performance of the loop.

The #pragma parallel always pragma has the same effect to ignore potential dependencies as the
#pragma parallel pragma, but it also overrides the compiler heuristics that estimate the likelihood that
parallelization of a loop would increase performance. It allows a loop to be parallelized even when the
compiler estimates that parallelization might not improve performance.

The #pragma noparallel pragma prevents auto-parallelization of the immediately following for loop.
Unlike #pragma parallel , which is a hint, the noparallel pragma is guaranteed to prevent
parallelization of the following loop.

These pragmas take effect only if auto-parallelization is enabled by the option [Q]parallel.

Parallelizing Loops with Private Clauses
When you use the Guided Auto Parallelism feature, the compiler’s auto-parallelizer gives you advice on where
to alter your program to enhance parallelization. For instance, you may get advice to check if a condition
(that the compiler could not prove) is true, and if true, to insert #pragma parallel in your source code so
that the associated loop is parallelized when you recompile.

To specify that it is legal for each thread to create a new, private copy (not visible by other threads) of a
variable, and replace the original variable in the loop with the new private variable, use the #pragma
parallel pragma with the private clause. The private clause allows you to list scalar and array type
variables and specify the number of array elements to privatize.

Use the firstprivate clause to specify private variables that need to be initialized with the original value before
entering the parallel loop.

Use the lastprivate clause to specify those variables with a value you want to reuse after it exits a
parallelized loop. When you use the lastprivate clause to handle a particular privatized variable, the value is
copied to the original variable when it exits from the parallelized loop.

NOTE
Do not use the same variable in both private and lastprivate clauses for the same loop. You will get an
error message.

Parallelizing Loops with External Function Calls
The compiler can only effectively analyze loops with a relatively simple structure. For example, the compiler
cannot determine the thread safety of a loop containing external function calls because it does not know
whether the function call might have side effects that introduce dependencies. You can invoke interprocedural
optimization with the [Q]ipo option. Using this option gives the compiler the opportunity to analyze the
called function for side effects.

Optimization and Programming

2117

Parallelizing Loops with OpenMP*
When the compiler is unable to automatically parallelize loops you know to be parallel, use OpenMP*.
OpenMP* is the preferred solution because you understand the code better than the compiler and can
express parallelism at a coarser granularity. Alternatively, automatic parallelization can be effective for
nested loops, such as those in a matrix multiply. Moderately coarse-grained parallelism results from
threading of the outer loop, allowing the inner loops to be optimized for fine-grained parallelism using
vectorization or software pipelining.

Threshold Parameter to Parallelize Loops
If a loop can be parallelized, it does not necessarily mean that it should be parallelized. The compiler uses a
threshold parameter to decide whether to parallelize a loop. The [Q]par-threshold compiler option adjusts
this behavior. The threshold ranges from 0 to 100 , where 0 instructs the compiler to always parallelize a safe
loop and 100 instructs the compiler to only parallelize those loops for which a performance gain is highly
probable. Use the [Q]par-report option to determine which loops were parallelized. The compiler will also
report which loops could not be parallelized and indicate probable reason(s) why. See OpenMP* and Parallel
Processing Options for more information on the using these compiler options.

The following example illustrates using the options in combination.

Example code

void add (int k, float *a, float *b) {
 for (int i = 1; i < 10000; i++) {
 a[i] = a[i+k] + b[i];
 }
}

Entering a command-line compiler command similar to the following will result in the compiler issuing
parallelization messages:

//Linux* and macOS
icpc -c -parallel -opt-report-phase=par -opt-report=3 add.cpp

The compiler might report results similar to those listed below:

Sample results

add.cpp
procedure:
add serial loop: line 2
anti data dependence assumed from line 2 to line 2, due to "a"
flow data dependence assumed from line 2 to line 2, due to "a"
flow data dependence assumed from line 2 to line 2, due to "a"

Because the compiler does not know the value of k, the compiler assumes the iterations depend on each
other, for example if k equals -1, even if the actual case is otherwise. You can override the compiler by
inserting the #pragma parallel pragma.

Example

void add(int k, float *a, float *b) {
 #pragma parallel
 for (int i = 0; i < 10000; i++) {
 a[i] = a[i+k] + b[i];
 } }

 Intel® C++ Compiler Classic Developer Guide and Reference

2118

Caution
Do not call this function with a value of k that is less than 10000; passing a value less than 10000
could lead to incorrect results.

See Also
parallel
 pragma

OpenMP* and Parallel Processing Options
qopt-report-phase, Qopt-report-phase compiler option
opt-report, Qopt-report
 compiler option
par-threshold, Qpar-threshold
 compiler option
restrict, Qrestrict
 compiler option
ipo, Qipo
 compiler option

Language Support for Auto-parallelization
This topic addresses specific C++ language features that better help to parallelize code.

Annotating Functions with Declarations
Annotating functions with the declaration:

// (Windows* OS)
__declspec(concurrency_safe(cost(cycles) | profitable)) -OR-// (Linux* OS)
__attribute__(concurrency_safe(cost(cycles) | profitable))

guides the compiler to parallelize more loops and straight-line code.

Using the concurrency_safe attribute indicates to the compiler that there are no unaffected side-effects
and no illegal (or improperly synchronized) memory access interfences among multiple invocations of the
annotated function or between an invocation of this annotated function and other statements in the program,
if they are executed concurrently.

NOTE
For every function that is annotated with the concurrency_safe attribute, it is your responsibility to
ensure that its side effects (if any) are acceptable (or expected), and the memory access interferences
are properly synchronized.

The cost clause specifies the execution cycles of the annotated function for the compiler to perform
parallelization profitability analysis while compiling its enclosing loops or blocks. The profitable clause
indicates that the loops or blocks that contain calls to the annotated function are profitable to parallelize.

NOTE
The value of cycles is a 2-byte unsigned integer (unsigned short), its maximal value is 2^16-1. If the
cycle count is greater than 2^16-1, the user should use profitable clause.

The following example illustrates the use of this declaration.

Optimization and Programming

2119

Example using __declspec(concurrency_safe(cost(cycles) | profitable))

#define N 10
#define M 40
#define NValue N

#if defined(COSTLOW)

// The function cost is ~5 cycles, the loop calling "foo" will not be parallellized
__declspec(concurrency_safe(cost(5)))
#elif defined(COSTHIGH)

// The function cost is ~100 cycles, so the loop calling "foo" will be paralleized
__declspec(concurrency_safe(cost(200)))
#elif defined(PROFITABLE)

// The function is profitable to be executed in parallel, so the loop calling "foo"
// should be paralleized.
__declspec(concurrency_safe(profitable))
#endif

__declspec(noinline)
int foo(float A[], float B[]) {
 for (int i = 0; i < N; i++) {
 B[i] = A[i];
 }
 return N;
}

int testp(float A[], float B[], float* In[], float* Out[]) {
 int i, j;
 for (i = 0; i < M; i++) {
 foo (A, B);
 for (j = 0; j < N; j++) {
 Out[i][j] = In[i][j] + (NValue*j);
 }
 }
 return N;
}

[C:/temp] icl -c -DCOSTLOW -Qparallel -Qpar-report2 -Qansi-alias v.cpp
C:\temp\v.cpp(28): (col. 3) remark: loop was not parallelized: insufficient computational work.

[C:/temp] icl -c -DCOSTHIGH -Qparallel -Qpar-report -Qansi-alias v.cpp
C:\temp\v.cpp(28): (col. 3) remark: LOOP WAS AUTO-PARALLELIZED.

[C:/temp] icl -c -DPROFITABLE -Qparallel -Qpar-report -Qansi-alias v.cpp
C:\temp\v.cpp(28): (col. 3) remark: LOOP WAS AUTO-PARALLELIZED.

See Also
__declspec(concurrency_safe) declaration

 Intel® C++ Compiler Classic Developer Guide and Reference

2120

Vectorization
Vectorization is the process of converting an algorithm from a scalar implementation, which does an
operation one pair of operands at a time, to a vector process where a single instruction can refer to a vector
(a series of adjacent values).

Automatic Vectorization
The automatic vectorizer (also called the auto-vectorizer) is a component of the compiler that automatically
uses SIMD instructions in the Intel® Streaming SIMD Extensions (Intel® SSE, Intel® SSE2, Intel® SSE3 and
Intel® SSE4), Supplemental Streaming SIMD Extensions (SSSE3) instruction sets, Intel® Advanced Vector
Extensions (Intel® AVX, Intel® AVX2) instruction sets, and Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) instruction set. The vectorizer detects operations in the program that can be done in parallel and
converts the sequential operations to parallel; for example, the vectorizer converts the sequential SIMD
instruction that processes up to 16 elements into a parallel operation, depending on the data type.

Automatic vectorization occurs when the compiler generates packed SIMD instructions to unroll a loop.
Because the packed instructions operate on more than one data element at a time, the loop executes more
efficiently. This process is referred to as auto-vectorization only to emphasize that the compiler identifies and
optimizes suitable loops on its own, without external input. However, it is useful to note that in some cases,
certain keywords or directives may be applied in the code for auto-vectorization to occur.

The compiler supports a variety of auto-vectorizing hints that can help the compiler to generate effective
vector instructions. Automatic vectorization is supported on IA-32 (for C++ only) and Intel® 64 architectures.
Intel® Advisor, a separate tool included in the Intel® oneAPI Base Toolkit, provides a Vectorization Advisor
feature that can analyze the compiler's optimization reports and make recommendations for enhancing
vectorization.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors. The vectorization can
also be affected by certain options, such as /arch (Windows), -m (Linux and macOS), or [Q]x.

Vectorization Programming Guidelines
The goal of including the vectorizer component in the Intel® C++ Compiler Classic is to exploit single-
instruction multiple data (SIMD) processing automatically. Users can help by supplying the compiler with
additional information; for example, by using auto-vectorizer hints or pragmas.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors. The vectorization can
also be affected by certain options, such as /arch (Windows), -m (Linux and macOS), or [Q]x.

Guidelines to Vectorize Innermost Loops
Follow these guidelines to vectorize innermost loop bodies.

Use:

• Straight-line code (a single basic block).

Vectorization

2121

• Vector data only (arrays and invariant expressions on the right hand side of assignments). Array
references can appear on the left hand side of assignments.

• Only assignment statements.

Avoid:

• Function calls (other than math library calls).
• Non-vectorizable operations (either because the loop cannot be vectorized, or because an operation is

emulated through a number of instructions).
• Mixing vectorizable types in the same loop (leads to lower resource utilization).
• Data-dependent loop exit conditions (leads to loss of vectorization).

To make your code vectorizable, you need to edit your loops. You should only make changes that enable
vectorization, and avoid these common changes:

• Loop unrolling, which the compiler performs automatically.
• Decomposing one loop with several statements in the body into several single-statement loops.

Restrictions
There are a number of restrictions that you should consider. Vectorization depends on two major factors:
hardware and style of source code.

Factor Description

Hardware The compiler is limited by restrictions imposed by the underlying hardware. Intel®
Streaming SIMD Extensions (Intel® SSE) has vector memory operations that are
limited to stride-1 accesses with a preference to 16-byte-aligned memory
references. This means that if the compiler abstractly recognizes a loop as
vectorizable, it still might not vectorize it for a distinct target architecture.

Style of source
code

The style in which you write source code can inhibit vectorization. For example, a
common problem with global pointers is that they often prevent the compiler from
being able to prove that two memory references refer to distinct locations.
Consequently, this prevents certain reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop structures. The
ambiguity arises from the complexity of the keywords, operators, data references, pointer arithmetic, and
memory operations within the loop bodies.

By understanding these limitations and by knowing how to interpret diagnostic messages, you can modify
your program to overcome the known limitations and enable effective vectorization.

Guidelines for Writing Vectorizable Code
Follow these guidelines to write vectorizable code:

• Use simple for loops. Avoid complex loop termination conditions – the upper iteration limit must be
invariant within the loop. For the innermost loop in a nest of loops, you could set the upper limit iteration
to be a function of the outer loop indices.

• Write straight-line code. Avoid branches such as switch, goto, or return statements; most function
calls; or if constructs that cannot be treated as masked assignments.

• Avoid dependencies between loop iterations or at the least, avoid read-after-write dependencies.
• Try to use array notations instead of the use of pointers. C programs in particular impose very few

restrictions on the use of pointers; aliased pointers may lead to unexpected dependencies. Without help,
the compiler often cannot tell whether it is safe to vectorize code containing pointers.

• Wherever possible, use the loop index directly in array subscripts instead of incrementing a separate
counter for use as an array address.

• Access memory efficiently:

 Intel® C++ Compiler Classic Developer Guide and Reference

2122

• Favor inner loops with unit stride.
• Minimize indirect addressing.
• Align your data to 16-byte boundaries (for Intel® SSE instructions).

• Choose a suitable data layout with care. Most multimedia extension instruction sets are rather sensitive to
alignment. The data movement instructions of Intel® SSE, for example, operate much more efficiently on
data that is aligned at a 16-byte boundary in memory. Therefore, the success of a vectorizing compiler
also depends on its ability to select an appropriate data layout which, in combination with code
restructuring (like loop peeling), results in aligned memory accesses throughout the program.

• Use aligned data structures: Data structure alignment is the adjustment of any data object in relation with
other objects.

You can use the declaration __declspec(align).

Caution Use this hint with care. Incorrect usage of aligned data movements result in an exception
when using Intel® SSE.

• Use structure of arrays (SoA) instead of array of structures (AoS): An array is the most common type of
data structure that contains a contiguous collection of data items that can be accessed by an ordinal
index. You can organize this data as an array of structures (AoS) or as a structure of arrays (SoA). While
AoS organization is excellent for encapsulation, it can be a hindrance for use of vector processing. To
make vectorization of the resulting code more effective, you can also select appropriate data structures.

Dynamic Alignment Optimizations
Dynamic alignment optimizations can improve the performance of vectorized code, especially for long trip
count loops. Disabling such optimizations can decrease performance, but it may improve bitwise
reproducibility of results, factoring out data location from possible sources of discrepancy.

To enable or disable dynamic data alignment optimizations, specify the option Qopt-dynamic-align[-]
(Windows) or [no-]qopt-dynamic-align[-] (Linux).

Use Aligned Data Structures
Data structure alignment is the adjustment of any data object with relation to other objects. The Intel® C++
Compiler Classic may align individual variables to start at certain addresses to speed up memory access.
Misaligned memory accesses can incur large performance losses on certain target processors that do not
support them in hardware.

Alignment is a property of a memory address, expressed as the numeric address modulo of powers of two. In
addition to its address, a single datum also has a size. A datum is called 'naturally aligned' if its address is
aligned to its size, otherwise it is called 'misaligned'. For example, an 8-byte floating-point datum is naturally
aligned if the address used to identify it is aligned to eight (8).

A data structure is a way of storing data in a computer so that it can be used efficiently. Often, a carefully
chosen data structure allows a more efficient algorithm to be used. A well-designed data structure allows a
variety of critical operations to be performed, using as little resources (execution time and memory space) as
possible.

struct MyData{
 short Data1;
 short Data2;
 short Data3;
};

In the example data structure above, if the type short is stored in two bytes of memory then each member
of the data structure is aligned to a boundary of two bytes. Data1 would be at offset 0, Data2 at offset 2 and
Data3 at offset 4. The size of this structure is six bytes. The type of each member of the structure usually

Optimization and Programming

2123

has a required alignment, meaning that it is aligned on a pre-determined boundary, unless you request
otherwise. In cases where the compiler has taken sub-optimal alignment decisions, you can use the
declaration declspec(align(base,offset)), where 0 <= offset < base and base is a power of two, to
allocate a data structure at offset from a certain base.

Consider as an example, that most of the execution time of an application is spent in a loop of the following
form:

double a[N], b[N];
 ...
for (i = 0; i < N; i++){ a[i+1] = b[i] * 3; }

If the first element of both arrays is aligned at a 16-byte boundary, then either an unaligned load of elements
from b or an unaligned store of elements into a must be used after vectorization.

In this instance, peeling off an iteration does not help but you can enforce the alignment shown below. This
alignment results in two aligned access patterns after vectorization (assuming an 8-byte size for doubles):

__declspec(align(16, 8)) double a[N];
__declspec(align(16, 0)) double b[N];
/* or simply "align(16)" */

If pointer variables are used, the compiler is usually not able to determine the alignment of access patterns
at compile time. Consider the following simple fill() function:

void fill(char *x) {
 int i;
 for (i = 0; i < 1024; i++){ x[i] = 1; }
}

Without more information, the compiler cannot make any assumption on the alignment of the memory region
accessed by the above loop. At this point, the compiler may decide to vectorize this loop using unaligned
data movement instructions or, generate the runtime alignment optimization shown here:

peel = x & 0x0f;
if (peel != 0) {
 peel = 16 - peel;
 /* runtime peeling loop */
 for (i = 0; i < peel; i++) { x[i] = 1; }
}

/* aligned access */
for (i = peel; i < 1024; i++) { x[i] = 1; }

Runtime optimization provides a generally effective way to obtain aligned access patterns at the expense of a
slight increase in code size and testing. If incoming access patterns are aligned at a 16-byte boundary, you
can avoid this overhead with the hint __assume_aligned(x, 16); in the function to convey this
information to the compiler.

For example, suppose you can introduce an optimization in the case where a block of memory with address
n2 is aligned on a 16-byte boundary. You could use _assume(n2%16==0).

Caution Incorrect use of aligned data movements result in an exception for Intel® SSE.

 Intel® C++ Compiler Classic Developer Guide and Reference

2124

Use Structure of Arrays Versus Array of Structures
The most common and well-known data structure is the array that contains a contiguous collection of data
items, which can be accessed by an ordinal index. This data can be organized as an array of structures (AoS)
or as a structure of arrays (SoA). While AoS organization works excellently for encapsulation, for vector
processing it works poorly.

You can select appropriate data structures to make vectorization of the resulting code more effective. To
illustrate this point, compare the traditional array of structures (AoS) arrangement for storing the r, g, b
components of a set of three-dimensional points with the alternative structure of arrays (SoA) arrangement
for storing this set.

For example, a point structure with data in an AoS arrangement:

struct Point{
 float r;
 float g;
 float b;
}

For example, a points structure with data in a SoA arrangement:

struct Points{
 float* x;
 float* y;
 float* z;
}

With the AoS arrangement, a loop that visits all components of an RGB point before moving to the next point
exhibits a good locality of reference. This is because all elements in the fetched cache lines are used. The
disadvantage of the AoS arrangement is that each individual memory reference in such a loop exhibits a non-
unit stride, which, in general, adversely affects vector performance. Furthermore, a loop that visits only one
component of all points exhibits less satisfactory locality of reference because many of the elements in the
fetched cache lines remain unused.

With the SoA arrangement, the unit-stride memory references are more amenable to effective vectorization
and still exhibit good locality of reference within each of the three data streams. Consequently, an application
that uses the SoA arrangement may outperform an application based on the AoS arrangement when
compiled with a vectorizing compiler. This performance difference may not be obviously apparent during the
early implementation phase.

Before you start vectorization, try out some simple rules:

• Make your data structures vector-friendly.
• Make sure that inner loop indices correspond to the outermost (last) array index in your data (row-major

order).
• Use structure of arrays over array of structures.

For instance when dealing with three-dimensional coordinates, use three separate arrays for each component
(SoA), instead of using one array of three-component structures (AoS). To avoid dependencies between loops
that will eventually prevent vectorization, use three separate arrays for each component (SoA), instead of

Optimization and Programming

2125

one array of three-component structures (AoS). When you use the AoS arrangement, each iteration produces
one result by computing XYZ, but it can at best use only 75% of the SSE unit because the fourth component
is not used. Sometimes, the compiler may use only one component (25%). When you use the SoA
arrangement, each iteration produces four results by computing XXXX, YYYY and ZZZZ, using 100% of the
SSE unit. A drawback for the SoA arrangement is that your code will likely be three times as long.

If your original data layout is in AoS format, you may want to consider a conversion to SoA before the critical
loop:

• Use the smallest data types that give the needed precision to maximize potential SIMD width. (If only 16-
bits are needed, using a short rather than an int can make the difference between 8-way or four-way
SIMD parallelism.)

• Avoid mixing data types to minimize type conversions.
• Avoid operations not supported in SIMD hardware.
• Use all the instruction sets available for your processor. Use the appropriate command line option for your

processor type, or select the appropriate IDE option (Windows only):

• Project > Properties > C/C++ > Code Generation > Intel Processor-Specific Optimization, if
your application runs only on Intel® processors.

• Project > Properties > C/C++ > Code Generation > Enable Enhanced Instruction Set, if your
application runs on compatible, non-Intel processors.

• Vectorizing compilers usually have some built-in efficiency heuristics to decide whether vectorization is
likely to improve performance. The Intel® C++ Compiler Classic disables vectorization of loops with many
unaligned or non-unit stride data access patterns. If experimentation reveals that vectorization improves
performance, you can override this behavior using the #pragma vector always hint before the loop.
The compiler vectorizes any loop regardless of the outcome of the efficiency analysis (provided that
vectorization is safe).

See Also
__declspec(align)

Vectorization and Loops

Loop Constructs

qopt-dynamic-align, Qopt-dynamic-align
 compiler option

Use Automatic Vectorization
Automatic vectorization is supported on IA-32and Intel® 64 architectures. The information below will guide
you in setting up the auto-vectorizer.

Vectorization Speedup
Where does the vectorization speedup come from? Consider the following sample code, where a, b, and c are
integer arrays:

for (i=0;i<=MAX;i++)
 c[i]=a[i]+b[i];

If vectorization is not enabled, and you compile using the O1, -no-vec- (Linux), or /Qvec- (Windows)
option, the compiler processes the code with unused space in the SIMD registers, even though each register
can hold three additional integers. If vectorization is enabled (compiled using O2 or higher options), the
compiler may use the additional registers to perform four additions in a single instruction. The compiler looks
for vectorization opportunities whenever you compile at default optimization (O2) or higher.

 Intel® C++ Compiler Classic Developer Guide and Reference

2126

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors. The vectorization can
also be affected by certain options, such as /arch (Windows), -m (Linux and macOS), or [Q]x.

Tip
This tip is only for the Intel®C++ (icc) Classic Compiler. To allow comparisons between vectorized and
non-vectorized code, disable vectorization using the -no-vec (Linux or macOS) or /Qvec- (Windows)
option; enable vectorization using the O2 option.

To learn if a loop was vectorized or not, enable generation of the optimization report using the options
qopt-report=1 qopt-report-phase=vec (Linux and macOS) or Qopt-report:1
Qopt-report-phase:vec (Windows) options. These options generate a separate report in an *.optrpt file
that includes optimization messages. In Microsoft Visual Studio, the program source is annotated with the
report's messages, or you can read the resulting .optrpt file using a text editor. A message appears for
every loop that is vectorized, for example:

icl /Qopt-report:1 /Qopt-report-phase:vec Multiply.c
Multiply.c(92): (col. 5) remark: LOOP WAS VECTORIZED.

The source line number (92 in the above example) refers to either the beginning or the end of the loop.

To get details about the type of loop transformations and optimizations that took place, use the
[Q]opt-report-phase option by itself or along with the [Q]opt-report option.

To get information on if the loop was vectorized using the Microsoft Visual Studio IDE, select Project >
Properties > C/C++ > Diagnostics > Optimization Diagnostic Level as Level 1 (/Qopt-report:1)
and Optimization Diagnostic Phase as Loop Nest Optimization (/Qopt-report-phase:loop). To get a
diagnostic message for every loop that was not vectorized, with a brief explanation of why the loop was not
vectorized, select /Qopt-report-phase:vec.

Linux

To evaluate performance enhancement, run vec_samples:

1. Source an environment script such as compilervars.sh or the compilervars.csh in the
<installdir>/bin directory and use the attribute appropriate for the architecture.

2. Navigate to the <install-dir>\Samples\<locale>\C++\ directory. This application multiplies a
vector by a matrix using the following loop:

for (j = 0;j < size2; j++) { b[i] += a[i][j] * x[j]; }
3. Build and run the application, first without enabling auto-vectorization. The default O2 optimization

enables vectorization, so you need to disable it with a separate option.

icc -O2 -no-vec Multiply.c -o NoVectMult
./NoVectMult

4. Build and run the application, this time with auto-vectorization.

icx -O2 -qopt-report=3 -vec Multiply.c -o VectMult
./VectMult

Windows

To evaluate performance enhancement, run vec_samples:

1. Under the Start menu item for your product, select an icon under Compiler and Performance
Libraries > Command Prompt with Intel Compiler for Classic Compilers or

Optimization and Programming

2127

2. Navigate to the <install-dir>\Samples\<locale>\C++\directory. On Windows, unzip the sample
project vec_samples.zip to a writable directory. This small application multiplies a vector by a matrix
using the following loop:

for (j = 0;j < size2; j++) { b[i] += a[i][j] * x[j]; }
3. Build and run the application, first without enabling auto-vectorization. The default O2 optimization

enables vectorization, so you need to disable it with a separate option.

icl /O2 /Qvec- Multiply.c /FeNoVectMult
NoVectMult

4. Build and run the application, this time with auto-vectorization.

icl /O2 /Qopt-report:3 /Qvec Multiply.c /FeVectMult
VectMult

When you compare the timing of the two runs, you may see that the vectorized version runs faster. The time
for the non-vectorized version is only slightly faster than would be obtained by compiling with the O1 option.

Obstacles to Vectorization
The following issues do not always prevent vectorization, but frequently cause the compiler to decide that
vectorization would not be worthwhile.

• Non-contiguous memory access: Four consecutive integers or floating-point values, or two consecutive
doubles, may be loaded directly from memory in a single SSE instruction. But if the four integers are not
adjacent, they must be loaded separately using multiple instructions, which is considerably less efficient.
The most common examples of non-contiguous memory access are loops with non-unit stride or with
indirect addressing, shown in the examples below. The compiler rarely vectorizes these loops, unless the
amount of computational work is larger compared to the overhead from non-contiguous memory access.

// arrays accessed with stride 2
for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

// inner loop accesses a with stride SIZE
for (int j=0; j<SIZE; j++) {
 for (int i=0; i<SIZE; I++) b[i] += a[i][j] * x[j];
}

// indirect addressing of x using index array
 for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[index[i]];

The typical message from the vectorization report is: vectorization possible but seems
inefficient, although indirect addressing may also result in the following report: existence of
vector dependence.

• Data dependencies: Vectorization entails changes in the order of operations within a loop, since each
SIMD instruction operates on several data elements at once. Vectorization is only possible if this change of
order does not change the results of the calculation.

• The simplest case is when data elements that are written (stored to) do not appear in any other
iteration of the individual loop. In this case, all the iterations of the original loop are independent of
each other, and can be executed in any order, without changing the result. The loop may be safely
executed using any parallel method, including vectorization.

• When a variable is written in one iteration and read in a subsequent iteration, there is a read-after-
write dependency, also known as a flow dependency, for example:

A[0]=0;
for (j=1; j<MAX; j++) A[j]=A[j-1]+1;
 // this is equivalent to:
 A[1]=A[0]+1;

 Intel® C++ Compiler Classic Developer Guide and Reference

2128

 A[2]=A[1]+1;
 A[3]=A[2]+1;
 A[4]=A[3]+1;

The value of j is propagated to all A[j]. This cannot safely be vectorized: if the first two iterations are
executed simultaneously by a SIMD instruction, the value of A[1] is used by the second iteration
before it has been calculated by the first iteration.

• When a variable is read in one iteration and written in a subsequent iteration, this is a write-after-read
dependency, also known as an anti-dependency, for example:

for (j=1; j<MAX; j++) A[j-1]=A[j]+1;
 // this is equivalent to:
 A[0]=A[1]+1;
 A[1]=A[2]+1;
 A[2]=A[3]+1;
 A[3]=A[4]+1;

This write-after-read dependency is not safe for general parallel execution, since the iteration with the
write may execute before the iteration with the read. No iteration with a higher value of j can
complete before an iteration with a lower value of j, and so vectorization is safe (it gives the same
result as non-vectorized code).

The following example may not be safe, since vectorization might cause some elements of A to be
overwritten by the first SIMD instruction before being used for the second SIMD instruction.

for (j=1; j<MAX; j++) {
 A[j-1]=A[j]+1;
}

 // this is equivalent to:
 A[0]=A[1]+1;
 A[1]=A[2]+1;
 A[2]=A[3]+1;
 A[3]=A[4]+1;

• Read-after-read situations are not really dependencies, and do not prevent vectorization or parallel
execution. If a variable is unwritten, it does not matter how often it is read.

• Write-after-write, or output dependencies, where the same variable is written to in more than one
iteration, are generally unsafe for parallel execution, including vectorization.

• One important exception that contains all of the above types of dependency is:

sum=0;
for (j=1; j<MAX; j++) sum = sum + A[j]*B[j]

Although sum is both read and written in every iteration, the compiler recognizes such reduction
idioms, and is able to vectorize them safely. The loop in the first example was another example of a
reduction, with a loop-invariant array element in place of a scalar.

These types of dependencies between loop iterations are sometimes known as loop-carried
dependencies.

The above examples are of proven dependencies. The compiler cannot safely vectorize a loop if there is
even a potential dependency. For example:

for (i = 0; i < size; i++) { c[i] = a[i] * b[i]; }
In the above example, the compiler needs to determine whether, for some iteration i, c[i] might
refer to the same memory location as a[i] or b[i] for a different iteration. Such memory locations
are sometimes said to be aliased. For example, if a[i] pointed to the same memory location as
c[i-1], there would be a read-after-write dependency. If the compiler cannot exclude this possibility,
it will not vectorize the loop unless you provide the compiler with hints.

Optimization and Programming

2129

Help the Compiler Vectorize
Sometimes the compiler has insufficient information to decide to vectorize a loop. There are several ways to
provide additional information to the compiler:

• Pragmas:

• #pragma ivdep: may be used to tell the compiler that it may safely ignore any potential data
dependencies. (The compiler will not ignore proven dependencies). Use of this pragma when there are
dependencies may lead to incorrect results.

There are cases where the compiler cannot tell by a static dependency analysis that it is safe to
vectorize. Consider the following loop:

void copy(char *cp_a, char *cp_b, int n) {
 for (int i = 0; i < n; i++) { cp_a[i] = cp_b[i]; }
}

Without more information, a vectorizing compiler must conservatively assume that the memory
regions accessed by the pointer variables cp_a and cp_b may (partially) overlap, which can cause
potential data dependencies that prohibit straightforward conversion of this loop into SIMD
instructions. At this point, the compiler may decide to keep the loop serial or generate a runtime test
for overlap, where the loop in the true-branch can be converted into SIMD instructions:

if (cp_a + n < cp_b || cp_b + n < cp_a)
 /* vector loop */
 for (int i = 0; i < n; i++) cp_a[i] = cp_b [I];
 else
 /* serial loop */
 for (int i = 0; i < n; i++) cp_a[i] = cp_b[i];

Runtime data-dependency testing provides a way to exploit implicit parallelism in C or C++ code at the
expense of a slight increase in code size and testing overhead. If the function copy is only used in
specific ways, you can help the compiler:

• If the function is mainly used for small values of n or for overlapping memory regions, you can
prevent vectorization and the corresponding runtime overhead by inserting a #pragma novector
hint before the loop.

• Conversely, if the loop is guaranteed to operate on non-overlapping memory regions, you can
provide this information to the compiler by means of a #pragma ivdep hint before the loop. This
tells the compiler that conservatively assumed data dependencies that prevent vectorization can be
ignored and results in vectorization of the loop without runtime data-dependency testing.

#pragma ivdep
void copy(char *cp_a, char *cp_b, int n) {
 for (int i = 0; i < n; i++) { cp_a[i] = cp_b[i]; }
}

NOTE You can also use the restrict keyword.

• #pragma loop count (n): gives the typical trip count of the loop. This helps the compiler decide if
vectorization is worthwhile, or if it should generate alternative code paths for the loop.

• #pragma vector always: asks the compiler to vectorize the loop.
• #pragma vector align: asserts that data within the following loop is aligned (to a 16-byte

boundary, for Intel® SSE instruction sets).
• #pragma novector: asks the compiler not to vectorize a particular loop.
• #pragma vector nontemporal: gives a hint to the compiler that data will not be reused, and to use

streaming stores that bypass cache.

 Intel® C++ Compiler Classic Developer Guide and Reference

2130

• Keywords: The restrict keyword is used to assert that the memory referenced by a pointer is not
aliased. The keyword requires the use of the [Q]restrict or [Q]std=c99 compiler option. The example
under #pragma ivdep above can also be handled using the restrict keyword.

You may use the restrict keyword in the declarations of cp_a and cp_b, as shown below, to inform the
compiler that each pointer variable provides exclusive access to a certain memory region. The restrict
qualifier in the argument list lets the compiler know that there are no other aliases to the memory where
the pointers point. The pointer where it is used provides the only means of accessing the memory in the
scope where the pointers live. Even if the code gets vectorized without the restrict keyword, the
compiler checks for aliasing at runtime, if the restrict keyword was used. You may have to use an extra
compiler option, such as [Q]restrict option for the Intel® C++ Classic Compiler.

void copy(char * __restrict cp_a, char * __restrict cp_b, int n) {
 for (int i = 0; i < n; i++) cp_a[i] = cp_b[i];
}

This method is best used when the exclusive access property holds for the pointer variables in your code
with many loops, because it avoids annotating each of the vectorizable loops individually. Both the loop-
specific #pragma ivdep hint, and the pointer variable-specific restrict hint must be used with care
because incorrect usage may change the semantics intended in the original program.

Another example is the following loop that may also not get vectorized because of a potential aliasing
problem between pointers a, b, and c:

void add(float *a, float *b, float *c) {
 for (int i=0; i<SIZE; i++) { c[i] += a[i] + b[i]; }
}

If the restrict keyword is added to the parameters, the compiler assumes that you will not access the
memory in question with any other pointer and vectorize the code properly:

// let the compiler know, the pointers are safe with restrict
void add(float * __restrict a, float * __restrict b, float * __restrict c) {
 for (int i=0; i<SIZE; i++) { c[i] += a[i] + b[i]; }
}

The down-side of using restrict is that not all compilers support this keyword, so your source code may
lose portability. If you care about source code portability you may want to consider using the
[Q]ansi-alias compiler option instead. Compiler options work globally, so you must make sure they do
not cause harm to other code fragments.

• Options/switches: You can use options to enable different levels of optimizations to achieve automatic
vectorization:

• Interprocedural optimization (IPO): Enable IPO using the [Q]ip option within a single source file,
or using [Q]ipo option across source files. You provide the compiler with additional information (trip
counts, alignment, or data dependencies) about a loop. Enabling IPO may also allow inlining of function
calls.

• Disambiguation of pointers and arrays: Use the options –fno-alias (Linux or macOS) or /Oa
(Windows) to assert there is no aliasing of memory references, that is, the same memory location is
not accessed via different arrays or pointers. Other options make more limited assertions, for example,
-fargument-noalias (Linux or macOS) or /Qalias-args- (Windows) asserts that function
arguments cannot alias each other (they cannot overlap).

The /Qansi-alias (-fargument-alias) options allow the compiler to assume strict adherence to the
aliasing rules in the ISO C standard. Use these options responsibly; if you use these options when
memory is aliased it may lead to incorrect results.

Optimization and Programming

2131

NOTE When you specify the [Q]ansi-alias option, the ansi-alias checker is enabled by default. To
disable the ansi-alias checker, you must specify -no-ansi-alias-check (Linux and macOS)
or /Qansi-alias-check (Windows).

Use the [Q]ansi-alias-check option to enable the ansi-alias checker. The ansi-alias checker checks
the source code for potential violations of ANSI aliasing rules and disables unsafe optimizations related
to the code for those statements that are identified as potential violations.

• High-level optimizations (HLO): Enable HLO with option O3. This enables additional loop
optimizations that make it easier for the compiler to vectorize the transformed loops. The HLO report,
obtained using the [Q]opt-report-phase[:]loop option or the corresponding IDE selection, tells
you if some of these additional transformations occurred.

See Also
ansi-alias, Qansi-alias compiler option
ansi-alias-check, Qansi-alias-check compiler option
qopt-report, Qopt-report compiler option
qopt-report-phase, Qopt-report-phase compiler option

Vectorization and Loops
This topic provides more information on the interaction between the auto-vectorizer and loops.

Interactions with Loop Parallelization
Combine the [Q]parallel and [Q]x options to instruct the Intel® C++ Compiler to attempt both Automatic
Parallelization and automatic loop vectorization in the same compilation.

NOTE
Using this option enables parallelization for both Intel® microprocessors and non-Intel microprocessors.
The resulting executable may get additional performance gain on Intel® microprocessors than on non-
Intel microprocessors. The parallelization can also be affected by certain options, such as /arch
(Windows), -m (Linux and macOS), or [Q]x.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors. The vectorization can
also be affected by certain options, such as /arch (Windows), -m (Linux and macOS), or [Q]x.

In most cases, the compiler will consider outermost loops for parallelization and innermost loops for
vectorization. If deemed profitable, however, the compiler may even apply loop parallelization and
vectorization to the same loop.

See Programming with Auto-parallelization and Programming Guidelines for Vectorization.

In some rare cases, a successful loop parallelization (either automatically or by means of OpenMP directives)
may affect the messages reported by the compiler for a non-vectorizable loop in a non-intuitive way; for
example, in the cases where the /Qopt-report:2 /Qopt-report-phase:vec (Windows) or
-qopt-report=2 -qopt-report-phase=vec (Linux and macOS) options indicate that loops were not
successfully vectorized.

 Intel® C++ Compiler Classic Developer Guide and Reference

2132

Types of Vectorized Loops
For integer loops, the 128-bit Intel® Streaming SIMD Extensions (Intel® SSE) and the Intel® Advanced Vector
Extensions (Intel® AVX) provide SIMD instructions for most arithmetic and logical operators on 32-bit, 16-bit,
and 8-bit integer data types, with limited support for the 64-bit integer data type.

Vectorization may proceed if the final precision of integer wrap-around arithmetic is preserved. A 32-bit shift-
right operator, for instance, is not vectorized in 16-bit mode if the final stored value is a 16-bit integer. Also,
note that because the Intel® SSE and the Intel® AVX instruction sets are not fully orthogonal (shifts on byte
operands, for instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers, Intel®
SSE provides SIMD instructions for the following arithmetic operators:

• Addition (+)
• Subtraction (-)
• Multiplication (*)
• Division (/)

Additionally, Intel® SSE provide SIMD instructions for the binary MIN and MAX and unary SQRT operators.
SIMD versions of several other mathematical operators (like the trigonometric functions SIN, COS, and TAN)
are supported in software in a vector mathematical run-time library that is provided with the compiler.

To be vectorizable, loops must be:

• Countable: The loop trip count must be known at entry to the loop at runtime, though it need not be
known at compile time (that is, the trip count can be a variable but the variable must remain constant for
the duration of the loop). This implies that exit from the loop must not be data-dependent.

• Single entry and single exit: as is implied by stating that the loop must be countable. Consider the
following example of a loop that is not vectorizable, due to a second, data-dependent exit:

void no_vec(float a[], float b[], float c[]){
 int i = 0.;
 while (i < 100) {
 a[i] = b[i] * c[i];
 // this is a data-dependent exit condition:
 if (a[i] < 0.0)
 break;
 ++i;
 }
}

Which results in the following message when the code is compiled:

> icc -c -O2 -qopt-report=2 -qopt-report-phase=vec two_exits.cpp
two_exits.cpp(4) (col. 9): remark: loop was not vectorized: nonstandard loop is not a
vectorization candidate.

• Contain straight-line code: SIMD instruction perform the same operation on data elements from
multiple iterations of the original loop, therefore, it is not possible for different iterations to have different
control flow; that is, they must not branch. It follows that switch statements are not allowed. However,
if statements are allowed if they can be implemented as masked assignments, which is usually the case.
The calculation is performed for all data elements but the result is stored only for those elements for
which the mask evaluates to true. Consider the following example that may be vectorized:

#include <math.h>
void quad(int length, float *a, float *b, float *c, float *restrict x1, float *restrict x2) {
 for (int i=0; i<length; i++) {
 float s = b[i]*b[i] - 4*a[i]*c[i];
 if (s >= 0) {
 s = sqrt(s) ;
 x2[i] = (-b[i]+s)/(2.*a[i]);

Optimization and Programming

2133

 x1[i] = (-b[i]-s)/(2.*a[i]);
 } else {
 x2[i] = 0.;
 x1[i] = 0.;
 }
 }
}

Which results in the following message when the code is compiled:

> icc -c -restrict -qopt-report=2 -qopt-report-phase=vec quad.cpp
quad5.cpp(5) (col. 3): remark: LOOP WAS VECTORIZED.

• Innermost loop of a nest: The only exception is if an original outer loop is transformed into an inner
loop as a result of some other prior optimization phase, such as unrolling, loop collapsing or interchange,
or an original outermost loop is transformed to an innermost loop due to loop materialization.

• Without function calls: Even a print statement is sufficient to prevent a loop from getting vectorized.
The vectorization report message is typically: non-standard loop is not a vectorization candidate. The two
major exceptions are for intrinsic math functions and for functions that may be inlined.

Intrinsic math functions are allowed, because the compiler runtime library contains vectorized versions of
these functions. See below for a list of these functions; most exist in both float and double versions:

• acos
• acosh
• asin
• asinh
• atan
• atan2
• atanh
• cbrt
• ceil
• cos
• cosh
• erf
• erfc
• erfinv
• exp
• exp2
• fabs
• floor
• fmax
• fmin
• log
• log2
• log10
• pow
• round
• sin
• sinh
• sqrt
• tan
• tanh
• trunc

 Intel® C++ Compiler Classic Developer Guide and Reference

2134

The loop in the following example may be vectorized because sqrt() is vectorizable and func() gets
inlined. Inlining is enabled at default optimization for functions in the same source file. An inlining report may
be obtained by setting the options /Qopt-report:2 /Qopt-report-phase:ipo (Windows) or
-qopt-report=2 -qopt-report-phase=ipo (Linux).

float func(float x, float y, float xp, float yp) {
 float denom;
 denom = (x-xp)*(x-xp) + (y-yp)*(y-yp);
 denom = 1./sqrtf(denom);
 return denom;
}

float trap_int(float y, float x0, float xn, int nx, float xp, float yp) {
 float x, h, sumx;
 int i;
 h = (xn-x0) / nx;
 sumx = 0.5*(func(x0,y,xp,yp) + func(xn,y,xp,yp));
 for (i=1;i<nx;i++) {
 x = x0 + i*h;
 sumx = sumx + func(x,y,xp,yp);
 }
 sumx = sumx * h;
 return sumx;
}

Which results in the following message when the code is compiled:

> icc -c -qopt-report=2 -qopt-report-phase=vec trap_integ.c
trap_int.c(16) (col. 3): remark: LOOP WAS VECTORIZED.

Statements in the Loop Body
The vectorizable operations are different for floating-point and integer data.

Integer Array Operations

The statements within the loop body may contain char, unsigned char, short, unsigned short, int, and
unsigned int. Calls to functions such as sqrt and fabs are also supported. Arithmetic operations are limited
to addition, subtraction, bitwise AND, OR, and XOR operators, division (via run-time library call),
multiplication, min, and max. You can mix data types but this may potentially cost you in terms of lowering
efficiency. Some example operators where you can mix data types are multiplication, shift, or unary
operators.

Other Operations
No statements other than the preceding floating-point and integer operations are allowed. In particular, note
that the special __m64__m128, and __m256 data types are not vectorizable. The loop body cannot contain
any function calls. Use of Intel® SSE intrinsics (for example, _mm_add_ps) or Intel® AVX intrinsics (for
example, _mm256_add_ps) are not allowed.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Automatic Parallelization
Programming with Auto-parallelization

Optimization and Programming

2135

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Programming Guidelines for Vectorization
qopt-report-phase, Qopt-report-phase
 compiler option

x, Qx compiler option
parallel, Qparallel compiler option

Loop Constructs
Loops can be formed with the usual for and while constructs. Loops must have a single entry and a single
exit to be vectorized. The following examples illustrate loop constructs that can and cannot be vectorized.
The non-vectorizable structure example shows a loop that cannot be vectorized because of the inherent
potential for an early exit from the loop.

Vectorizable structure:

void vec(float a[], float b[], float c[]) {
 int i = 0;
 while (i < 100) {
// The if branch is inside body of loop.
 a[i] = b[i] * c[i];
 if (a[i] < 0.0)
 a[i] = 0.0;
 i++;
 }
}

Non-vectorizable structure:

void no_vec(float a[], float b[], float c[]) {
 int i = 0;
 while (i < 100) {
 if (a[i] < 50)
// The next statement is a second exit
// that allows an early exit from the loop.
 break;
 ++i;
 }
}

Loop Exit Conditions
Loop exit conditions determine the number of iterations a loop executes. For example, fixed indexes for loops
determine the iterations. The loop iterations must be countable and the number of iterations must be
expressed as one of the following:

• A constant.
• A loop invariant term.
• A linear function of outermost loop indices.

In the case where a loops exit depends on computation, the loops are not countable. The examples below
show loop constructs that are countable and non-countable. The non-countable loop example demonstrates a
loop construct that is non-countable due to dependency loop variant count value.

Countable loop, example one:

void cnt1(float a[], float b[], float c[],
 int n, int lb) {
// Exit condition specified by "N-1b+1"
 int cnt=n, i=0;
 while (cnt >= lb) {

 Intel® C++ Compiler Classic Developer Guide and Reference

2136

// lb is not affected within loop.
 a[i] = b[i] * c[i];
 cnt--;
 i++;
 }
}

Countable loop, example two:

void vec(float a[], float b[], float c[]) {
 int i = 0;
 while (i < 100) {
// The if branch is inside body of loop.
 a[i] = b[i] * c[i];
 if (a[i] < 0.0)
 a[i] = 0.0;
 i++;
 }
}

Non-countable loop:

void no_cnt(float a[], float b[], float c[]) {
 int i=0;
// Iterations dependent on a[i].
 while (a[i]>0.0) {
 a[i] = b[i] * c[i];
 i++;
 }
}

Strip-mining and Cleanup
Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-encoding
of loops, as well as a means of improving memory performance. By fragmenting a large loop into smaller
segments or strips, this technique transforms the loop structure in two ways:

• By increasing the temporal and spatial locality in the data cache if the data is reusable in different passes
of an algorithm.

• By reducing the number of iterations of the loop by a factor of the length of each vector, or number of
operations being performed per SIMD operation. With the Intel® Streaming SIMD Extensions (Intel® SSE),
the vector or strip-length is reduced by four times: four floating-point data items per single Intel® SSE
single-precision floating-point SIMD operation are processed.

First introduced for vectorizers, this technique consists of the generation of code when each vector operation
is done for a size less than or equal to the maximum vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop. For example, assume the
compiler attempts to strip-mine the loop before vectorization. After vectorization, the compiler might handle
the strip mining and loop cleaning by restructuring the loop.

Before vectorization:

i=0;
while(i<n) {
 // Original loop code
 a[i]=b[i]+c[i];
 ++i;
}

Optimization and Programming

2137

After vectorization:

// The vectorizer generates the following two loops
i=0;
while(i<(n-n%4)) {
 // Vector strip-mined loop
 // Subscript [i:i+3] denotes SIMD execution
 a[i:i+3]=b[i:i+3]+c[i:i+3];
 i=i+4;
}
while(i<n) {
 // Scalar clean-up loop
 a[i]=b[i]+c[i];
 ++i;
}

Loop Blocking

It is possible to treat loop blocking as strip-mining in two or more dimensions. Loop blocking is a useful
technique for memory performance optimization. The main purpose of loop blocking is to eliminate as many
cache misses as possible. This technique transforms the memory domain into smaller chunks rather than
sequentially traversing through the entire memory domain. Each chunk should be small enough to fit all the
data for a given computation into the cache, maximizing data reuse.

Consider the following example, loop blocking allows arrays A and B to be blocked into smaller rectangular
chunks so that the total combined size of two blocked (A and B) chunks is smaller than cache size, which can
improve data reuse.

The transformed loop after blocking example illustrates loop blocking the add function (from the original loop
example). In order to benefit from this optimization, you might have to increase the cache size.

Original loop:

#include <time.h>
#include <stdio.h>
#define MAX 7000

void add(int a[][MAX], int b[][MAX]);
int main() {
int i, j;
int A[MAX][MAX];
int B[MAX][MAX];
time_t start, elaspe;
int sec;

//Initialize array
for(i=0;i<MAX;i++) {
 for(j=0;j<MAX; j++) {
 A[i][j]=j;
 B[i][j]=j;
 }
}

 start= time(NULL);
 add(A, B);
 elaspe=time(NULL);
 sec = elaspe - start;
 printf("Time %d",sec); //List time taken to complete add function
}

 Intel® C++ Compiler Classic Developer Guide and Reference

2138

void add(int a[][MAX], int b[][MAX]) {
 int i, j;
 for(i=0;i<MAX;i++) {
 for(j=0; j<MAX;j++ {
 a[i][j] = a[i][j] + b[j][i]; //Adds two matrices
 }
 }
}

Transformed loop after blocking:

#include <stdio.h>
#include <time.h>
#define MAX 7000
void add(int a[][MAX], int b[][MAX]);

int main() {
 #define BS 8 //Block size is selected as the loop-blocking factor.
 int i, j;
 int A[MAX][MAX];
 int B[MAX][MAX];
 time_t start, elaspe;
 int sec;

//initialize array
for(i=0;i<MAX;i++) {
 for(j=0;j<MAX;j++) {
 A[i][j]=j;
 B[i][j]=j;
 }
}
start= time(NULL);

add(A, B);
elapse=time(NULL);
sec = elapse - start;
printf("Time %d",sec); //Display time taken to complete loopBlocking function
}

void add(int a[][MAX], int b[][MAX]) {
 int i, j, ii, jj;
 for(i=0;i<MAX;i+=BS) {
 for(j=0; j<MAX;j+=BS) {
 for(ii=i; ii<i+BS; ii++) { //outer loop
 for(jj=j;jj<j+BS; jj++) { //Array B experiences one cache miss
 //for every iteration of outer loop
 a[ii][jj] = a[ii][jj] + b[jj][ii]; //Add the two arrays
 }
 }
 }
 }
}

Loop Interchange and Subscripts with Matrix Multiply
Loop interchange is often used for improving memory access patterns. Matrix multiplication is commonly
written as shown in the typical matrix multiplication example.

Optimization and Programming

2139

The use of B(K,J) is not a stride-1 reference and therefore will not be vectorized efficiently.

If the loops are interchanged, all the references become stride-1 as shown in the matrix multiplication with
stride-1 example.

Typical matrix multiplication:

void matmul_slow(float *a[], float *b[], float *c[]) {
 int N = 100;
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
}

Matrix multiplication with stride-1:

void matmul_fast(float *a[], float *b[], float *c[]) {
 int N = 100;
 for (int i = 0; i < N; i++)
 for (int k = 0; k < N; k++)
 for (int j = 0; j < N; j++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
}

Interchanging is not always possible because of dependencies, which can lead to different results.

Explicit Vector Programming
This section contains information about explicit vector programming.

User-mandated or SIMD Vectorization
User-mandated or SIMD vectorization supplements automatic vectorization just like OpenMP parallelization
supplements automatic parallelization. The following figure illustrates this relationship. User-mandated
vectorization is implemented as a single-instruction-multiple-data (SIMD) feature and is referred to as SIMD
vectorization.

NOTE
The SIMD vectorization feature is available for both Intel® microprocessors and non-Intel
microprocessors. Vectorization may call library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors. The vectorization can also be affected by
certain options, such as /arch (Windows), -m (Linux and macOS), or [Q]x.

 Intel® C++ Compiler Classic Developer Guide and Reference

2140

The following figure illustrates how SIMD vectorization is positioned among various approaches that you can
take to generate vector code that exploits vector hardware capabilities. The programs written with SIMD
vectorization are very similar to those written using auto-vectorization hints. You can use SIMD vectorization
to minimize the number of code changes that you may have to go through in order to obtain vectorized code.

SIMD vectorization uses the #pragma omp simd pragma to effect loop vectorization. You must add this
pragma to a loop and recompile to vectorize the loop using the option -qopenmp-simd (Linux and macOS) or
Qopenmp-simd (Windows).

Consider an example in C++ where the function add_floats() uses too many unknown pointers for the
compiler’s automatic runtime independence check optimization to kick in. You can give a data dependence
assertion using the auto-vectorization hint via #pragma ivdep and let the compiler decide whether the auto-
vectorization optimization should be applied to the loop. Or you can now enforce vectorization of this loop by
using #pragma omp simd .

Vectorization without #pragma omp simd:

[D:/simd] cat example1.c
void add_floats(float *a, float *b, float *c, float *d, float *e, int n) {
 int i;
 for (i=0; i<n; i++){
 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];
 }
}
[D:/simd] icl -nologo -c -Qopt-report2 -Qopt-report-file=stderr -Qopt-report-phase=vec -Qopenmp-
simd example1.c
example1.c

Begin optimization report for: add_floats(float *, float *, float *, float *, float *, int)

 Report from: Vector optimizations [vec]

LOOP BEGIN at C:\Users\test\run\example1.c(3,2)

Optimization and Programming

2141

 remark #15344: loop was not vectorized: vector dependence prevents vectorization. First
dependence is shown below. Use level 5 report for details
 remark #15346: vector dependence: assumed FLOW dependence between a[i] (4:3) and b[i] (4:3)
LOOP END

LOOP BEGIN at C:\Users\test\run\example1.c(3,2)
<Remainder>
LOOP END
===

Vectorization with #pragma omp simd:

[D:/simd] cat example1.c
void add_floats(float *a, float *b, float *c, float *d, float *e, int n) {
 int i;
 #pragma omp simd
 for (i=0; i<n; i++){
 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];
 }
}
[D:/simd] icl -nologo -c -Qopt-report2 -Qopt-report-file=stderr -Qopt-report-phase=vec -Qopenmp-
simd example1.c
example1.c

Begin optimization report for: add_floats(float *, float *, float *, float *, float *, int)

 Report from: Vector optimizations [vec]

LOOP BEGIN at C:\iUsers\test\run\example1.c(4,2)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at C:\iUsers\test\run\example1.c(4,2)
 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at C:\iUsers\test\run\example1.c(4,2)
<Alternate Alignment Vectorized Loop>
LOOP END

LOOP BEGIN at C:\iUsers\test\run\example1.c(4,2)
<Remainder loop for vectorization>
 remark #15301: REMAINDER LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at C:\iUsers\test\run\example1.c(4,2)
<Remainder loop for vectorization>
LOOP END
===

The difference between using #pragma omp simd and auto-vectorization hints is that with
#pragma omp simd, the compiler generates a warning when it is unable to vectorize the loop. With auto-
vectorization hints, actual vectorization is still under the discretion of the compiler, even when you use the
#pragma vector always hint.

#pragma omp simd has optional clauses to guide the compiler on how vectorization must proceed. Use these
clauses appropriately so that the compiler obtains enough information to generate correct vector code. For
more information on the clauses, see the #pragma omp simd description.

 Intel® C++ Compiler Classic Developer Guide and Reference

2142

Additional Semantics
Note the following points when using the omp simd pragma.

• A variable may belong to zero or one of the following: private, linear, or reduction.
• Within the vector loop, an expression is evaluated as a vector value if it is private, linear, reduction, or it

has a sub-expression that is evaluated to a vector value. Otherwise, it is evaluated as a scalar value (that
is, broadcast the same value to all iterations). Scalar value does not necessarily mean loop invariant,
although that is the most frequently seen usage pattern of scalar value.

• A vector value may not be assigned to a scalar L-value. It is an error.
• A scalar L-value may not be assigned under a vector condition. It is an error.
• The switch statement is not supported.

NOTE
You may find it difficult to describe vector semantics using the SIMD pragma for some auto-
vectorizable loops. One example is MIN/MAX reduction in C since the language does not have MIN/MAX
operators.

Using vector Declaration
Consider the following C++ example code with a loop containing the math function, sinf().

NOTE All code examples in this section are applicable for C/C++ on Windows only.

Loop Where the Math Function Is Auto-vectorized

[D:/simd] cat example2.c
void vsin(float *restrict a, float *restrict b, int n) {
int i;
for (i=0; i<n; i++) {
 a[i] = sinf(b[i]);
 }
}
[D:/simd] icl -nologo -c -Qrestrict -Qopt-report2 -Qopt-report-file=stderr -Qopt-report-
phase=vec example2.c
example2.c

Begin optimization report for: vsin(float *restrict, float *restrict, int)

 Report from: Vector optimizations [vec]

LOOP BEGIN at C:\Users\test\run\example2.c(3,1)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at C:\Users\test\run\example2.c(3,1)
 remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at C:\Users\test\run\example2.c(3,1)
<Alternate Alignment Vectorized Loop>
LOOP END

LOOP BEGIN at C:\Users\test\run\example2.c(3,1)

Optimization and Programming

2143

<Remainder loop for vectorization>
LOOP END
===

When you compile the above code, the loop with sinf() function is auto-vectorized using the appropriate
Short Vector Math Library (SVML) library function provided by the Intel® C++ Compiler. The auto-vectorizer
identifies the entry points, matches up the scalar math library function to the SVML function, and invokes it.

However, within this loop if you have a call to your function, foo(), that has the same prototype as sinf(),
the auto-vectorizer fails to vectorize the loop because it does not know what foo() does unless it is inlined
to this call site.

Loop With User-Defined Function Is Not Auto-vectorized

[D:/simd] cat example2.c
float foo(float);
void vfoo(float *restrict a, float *restrict b, int n){
 int i;
 for (i=0; i<n; i++){
 a[i] = foo(b[i]);
 }
}
[D:/simd] icl -nologo -c -Qrestrict -Qopt-report2 -Qopt-report-file=stderr -Qopt-report-
phase=vec example2.c
example2.c

Begin optimization report for: vsin(float *restrict, float *restrict, int)

 Report from: Vector optimizations [vec]

Non-optimizable loops:

LOOP BEGIN at C:\Users\test\run\example2.c(3,1)
 remark #15543: loop was not vectorized: loop with function call not considered an
optimization candidate.
LOOP END

In such cases, you can use the __declspec(vector) (Windows) or __attribute__((vector)) (Linux)
declaration to vectorize the loop. All you need to do is add the vector declaration to the function declaration,
and recompile both the caller and callee code, and the loop and function are vectorized.

Loop with User-Defined Function with SIMD Declaration Is Vectorized

[D:/simd] cat example3.c
// foo() and vfoo() do not have to be in the same compilation unit as long
// as both see the same "#pragma omp declare simd" lines.
#pragma omp declare simd
float foo(float);
void vfoo(float *restrict a, float *restrict b, int n){
 int i;
 for (i=0; i<n; i++) { a[i] = foo(b[i]); }
}

float foo(float x) { ... }
[D:/simd] bash-3.2$ icl -nologo -c -Qopenmp-simd -Qrestrict -Qopt-report1 -Qopt-report-
file=stderr -Qopt-report-phase=vec example3.c
example3.c

 Intel® C++ Compiler Classic Developer Guide and Reference

2144

Begin optimization report for: vfoo(float *restrict, float *restrict, int)

 Report from: Vector optimizations [vec]

LOOP BEGIN at C:\Users\test\run\example3.c(7,5)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at C:\Users\test\run\example3.c(7,5)
 remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at C:\Users\test\run\example3.c(7,5)
<Alternate Alignment Vectorized Loop>
LOOP END

LOOP BEGIN at C:\Users\test\run\example3.c(7,5)
<Remainder loop for vectorization>
LOOP END
===

Begin optimization report for: foo.._simdsimd3__xmm4nv(float)

 Report from: Vector optimizations [vec]

remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4, unmasked, formal parameter types:
(vector)
===

Begin optimization report for: foo.._simdsimd3__xmm4mv(float)

 Report from: Vector optimizations [vec]

remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4, masked, formal parameter types:
(vector)
===

Restrictions on Using a #pragma omp declare simd Declaration
Vectorization depends on two major factors: hardware and the style of source code. When using the vector
declaration, the following features are not allowed:

• Thread creation and joining through , OpenMP parallel/for/sections/task/target/teams, and
explicit threading API calls.

• Locks, barriers, atomic construct, critical sections (These are allowed inside #pragma omp ordered simd
blocks).

• Inline ASM code, VM, and Vector Intrinsics (for example, SVML intrinsics).
• Using setjmp, longjmp, SHE and computed GOTO.
• EH is not allowed and all vector functions are considered noexcept.
• The switch statement (in some cases this may be supported and converted to if statements, but this is

not reliable).
• The exit()/abort() calls.

Optimization and Programming

2145

Non-vector function calls are generally allowed within vector functions but calls to such functions are
serialized lane-by-lane and so might perform poorly. Also for SIMD-enabled functions it is not allowed to have
side effects except writes by their arguments. This rule can be violated by non-vector function calls, so be
careful executing such calls in SIMD-enabled functions.

Formal parameters must be of the following data types:

• (un)signed 8, 16, 32, or 64-bit integer
• 32- or 64-bit floating point
• 64- or 128-bit complex
• A pointer (C++ reference is considered a pointer data type)

See Also
__declspec(vector) declaration

Function Annotations and the SIMD Directive for Vectorization

SIMD-enabled Functions
SIMD-enabled functions (formerly called elemental functions) are a general language construct to express a
data parallel algorithm. A SIMD-enabled function is written as a regular C/C++ function, and the algorithm
describes the operation on one element, using scalar syntax. The function can then be called as a regular C/C
++ function to operate on a single element or it can be called in a data parallel context to operate on many
elements.

If you are using SIMD-enabled functions and need to link a compiler object file with an object file from a
previous version of the compiler (for example, 13.1), you need to use the [Q]vecabi compiler option,
specifying the legacy keyword.

How SIMD-enabled Functions Work
When you write a SIMD-enabled function, the compiler generates short vector variants of the function that
you requested, which can perform your function's operation on multiple arguments in a single invocation. The
short vector variant may be able to perform multiple operations as fast as the regular implementation
performs a single one by using the vector instruction set architecture (ISA) in the CPU. When a call to a
SIMD-enabled function occurs in a SIMD loop or another SIMD-enabled function, the compiler replaces the
scalar call with the best fit from the available short-vector variants of the function.

In addition, when invoked from a pragma omp construct, the compiler may assign different copies of the
SIMD-enabled functions to different threads (or workers), executing them concurrently. The result is that
your data parallel operation executes on the CPU using both the parallelism available in the multiple cores
and the parallelism available in the vector ISA. In other words, if the short vector function is called inside a
parallel loop, (a vectorized auto-parallelized loop) you can achieve both vector-level and thread-level
parallelism.

Declare a SIMD-enabled Function
You need to use the appropriate syntax from below in your code for the compiler to generate the short vector
function:

Linux and macOS

Use the __attribute__((vector (clauses))) declaration:

__attribute__((vector (clauses))) return_typesimd_enabled_function_name(parameters)
Alternately, you can use the following OpenMP pragma, which requires the [q or Q]openmp or
[q or Q]openmp-simd compiler option:

#pragma omp declare simd clauses

 Intel® C++ Compiler Classic Developer Guide and Reference

2146

Windows

Use the __declspec(vector (clauses)) declaration:

__declspec(vector (clauses)) return_type simd_enabled_function_name(parameters)
The clauses in the vector declaration may be used for achieving better performance by overriding defaults.
These clauses at SIMD-enabled function definition declare one or several short vector variants for a SIMD-
enabled function. Multiple vector declarations with different set of clauses may be attached to one function in
order to declare multiple different short vector variants available for a SIMD-enabled function.

The clauses are defined as follows:

Clause Definition

processor(cpuid) Tells the compiler to generate a vector variant using
the instructions, the caller/callee interface, and the
default vector length selection scheme suitable to
the specified processor. Use of this clause is highly
recommended, especially for processors with wider
vector register support (example:
core_2nd_gen_avx and newer).

cpuid takes one of the following values:

• core_4th_gen_avx_tsx
• core_4th_gen_avx
• core_3rd_gen_avx
• core_2nd_gen_avx
• core_aes_pclmulqdq
• core_i7_sse4_2
• atom
• core_2_duo_sse4_1
• core_2_duo_ssse3
• pentium_4_sse3
• pentium_m
• pentium_4
• haswell
• broadwell
• skylake
• skylake_avx512
• knl
• knm

vectorlength(n) / simdlen(n) (for omp declare
simd)

Where n is a vector length that is a power of 2, no
greater than 32.

The simdlen clause tells the compiler that each
routine invocation at the call site should execute
the computation equivalent to n times the scalar
function execution. When omitted the compiler
selects the vector length automatically depending
on the routine return value, parameters, and/or the
processor clause. When multiple vector variants are
called from one vectorization context (for example,

Optimization and Programming

2147

Clause Definition

two different functions called from the same vector
loop), explicit use of identical simdlen values are
advised to achieve good performance.

linear(list_item[, list_item...]), where
list_item is one of:

• param[:step]
• val(param[:step])
• ref(param[:step])
• uval(param[:step])

The linear clause tells the compiler that for each
consecutive invocation of the routine in a serial
execution, the value of param is incremented by
step, where param is a formal parameter of the
specified function or the C++ keyword this. The
linear clause can be used on parameters that are
either scalar (non-arrays and of non-structured
types), pointers, or C++ references. step is a
compile-time integer constant expression, which
defaults to 1 if omitted.

If more than one step is specified for a particular
parameter, a compile-time error occurs.

Multiple linear clauses will be merged as a union.

The meaning of each variant of the clause is as
follows:

• linear(param[:step]): For parameters that
are not C++ references: the clause tells the
compiler that on each iteration of the loop from
which the routine is called the value of the
parameter will be incremented by step. The
clause can also be used for C++ references for
backward compatibility, but it is not
recommended.

• linear(val(param[:step])): For parameters
that are C++ references: the clause tells the
compiler that on each iteration of the loop from
which the routine is called the referenced value
of the parameter will be incremented by step.

• linear(uval(param[:step])): For C++
references: means the same as linear(val()). It
differs from linear(val()) so if linear(val()) a
vector of references is passed to vector variant
of the routine but in case of linear(uval()) only
one reference is passed (and thus linear(uval())
is better to use in terms of performance).

• linear(ref(param[:step])) :For C++
references: means that the reference itself is
linear, i.e. the referenced values (that form a
vector for calculations) are located sequentially,
like in array with the distance between elements
equal to step.

uniform(param [, param,]…) Where param is a formal parameter of the specified
function or the C++ keyword this.

 Intel® C++ Compiler Classic Developer Guide and Reference

2148

Clause Definition

The uniform clause tells the compiler that the
values of the specified arguments can be broadcast
to all iterations as a performance optimization. It is
often useful in generating more favorable vector
memory references. An acknowledgment of a
uniform clause may allow broadcast operations to
be hoisted out of the caller loop. Evaluate carefully
the performance implications. Multiple uniform
clauses are merged as a union.

mask / nomask The mask and nomask clauses tell the compiler to
generate only masked or unmasked (respectively)
vector variants of the routine. When omitted, both
masked and unmasked variants are generated. The
masked variant is used when the routine is called
conditionally.

inbranch / notinbranch The inbranch and notinbranch clauses are used
with #pragma omp declare simd. The inbranch
clause works the same as the mask clause above
and the notinbranch clause works the same as
the nomask clause above.

Write the code inside your function using existing C/C++ syntax and relevant built-in functions (see the
section on __intel_simd_lane() below).

Usage of Vector Function Specifications
You may define several vector variants for one routine with each variant reflecting a possible usage of the
routine. Encountering a call, the compiler matches vector variants with actual parameter kinds and chooses
the best match. Matching is done by priorities. In other words, if an actual parameter is the loop invariant
and the uniform clause was specified for the corresponding formal parameter, then the variant with the
uniform clause has a higher priority. Linear specifications have the following order, from high priority to low:
linear(uval()), linear(), linear(val()), linear(ref()). Consider the following example loops with
the calls to the same routine.

// routine prototype
#pragma omp declare simd // universal but slowest definition matches
the use in all three loops
#pragma omp declare simd linear(in1) linear(ref(in2)) uniform(mul) // matches the use in the
first loop
#pragma omp declare simd linear(ref(in2)) // matches the use in the
second and the third loops
#pragma omp declare simd linear(ref(in2)) linear(mul) // matches the use in the
second loop
#pragma omp declare simd linear(val(in2:2)) // matches the use in the
third loop
extern int func(int* in1, int& in2, int mul);

int *a, *b, mul, *c;
int *ndx, nn;
...
// loop examples
 for (int i = 0; i < nn; i++) {
 c[i] = func(a + i, *(b + i), mul); // in the loop, the first parameter is changed

Optimization and Programming

2149

linearly,
 // the second reference is changed linearly too
 // the third parameter is not changed
 }

 for (int i = 0; i < nn; i++) {
 c[i] = func(&a[ndx[i]], b[i], i + 1); // the value of the first parameter is
unpredictable,
 // the second reference is changed linearly
 // the third parameter is changed linearly
 }

 #pragma omp simd
 for (int i = 0; i < nn; i++) {
 int k = i * 2; // during vectorization, private variables are transformed into arrays: k-
>k_vec[vector_length]
 c[i] = func(&a[ndx[i]], k, b[i]); // the value of the first parameter is unpredictable,
 // the second reference and value can be considered
linear
 // the third parameter has unpredictable value
 // (the #pragma simd linear(val(in2:2))) will be chosen
from the two matching variants)
 }

SIMD-enabled Functions and C++
You should use SIMD-enabled functions in modern C++ with caution: C++ imposes strict requirements on
compilation and execution environments that may not compose well with semantically-rich language
extensions such as SIMD-enabled functions. There are three key aspects of C++ that interrelate with SIMD-
enabled functions concept: exception handling, dynamic polymorphism, and the C++ type system.

SIMD-enabled Functions and Exception Handling
Exceptions are currently not supported in SIMD contexts: exceptions cannot be thrown and/or caught in
SIMD loops and SIMD-enabled functions. Therefore, all SIMD-enabled functions are considered noexcept in
C++11 terms. This affects not only short vector variants of a function, but its original scalar routine as well.
This is enforced when the function is compiled: it is checked against throw construct and against function
calls throwing exceptions. It is also enforced when the SIMD-enabled function call is compiled.

SIMD-enabled Functions and Dynamic Polymorphism
Vector attributes can be applied to virtual functions of classes with some limitations during polymorphic
virtual function calls. The syntax of vector declarations is the same as for regular SIMD-enabled class
methods: attach vector declarations as described above to the method declarations inside the class
declaration.

Vector function attributes for virtual methods are inherited. If a vector attribute is specified for an overriding
virtual function, it must match that of the overridden function. Even if the virtual method implementation is
overridden in a derived class the vector declarations are inherited and applied. A set of vector variants is
produced for the override according to vector variants set on parent. This rule also applies when the parent
does not have any vector variants. If a virtual method is introduced as non-SIMD-enabled (no vector
declarations supplied), it cannot become SIMD-enabled in the derived class even if the derived class contains
its own implementation of the virtual method.

Matching vector variants for a virtual method is done by the declared (static) type of an object for which the
method is called. The actual (dynamic) type of an object may either coincide with the static type or be
inherited from it.

 Intel® C++ Compiler Classic Developer Guide and Reference

2150

Unlike regular function calls which transfer control to one target function, the call target of a virtual function
depends on the dynamic type of the object for which the method is called and accomplished indirectly via the
virtual function table of a class. In a single SIMD chunk, the virtual method may be invoked for objects of
multiple classes, for example, elements of a polymorphic collection. This requires multiple calls to different
targets within a single SIMD chunk. This works as follows:

1. If a SIMD-enabled virtual function call is matched to a variant with a uniform this parameter, multiple
calls are not needed. The compiler makes an indirect call to the matched vector variant of a virtual
method of the object's dynamic class.

2. If a SIMD-enabled virtual function call is matched to a variant with a non-uniform this parameter, all
objects in a SIMD chunk may still share virtual method implementation. This is checked and a single,
indirect call to the matched vector variant of the target virtual method implementation is invoked.

3. Otherwise, lanes sharing virtual call targets are masked-in and a masked vector variant corresponding
to the match is invoked in a loop for each unique virtual call target. If a masked variant is not provided
for matching a vector variant and a this parameter is not declared uniform, the match will be rejected.

The following example illustrates SIMD-enabled virtual functions:

struct Base {
#pragma omp declare simd
#pragma omp declare simd uniform(this)
 virtual int process(int);
};

struct Child1 : Base {
 // int process(int); is inherited
};

struct Child11 : Child1 {
 int process(int); // Overrides implementation, inherits vector declarations
};

struct Child2 : Base {
 int process(int); // Overrides implementation, inherits vector declarations
};

int main() {
 int arr[100];
 Base* c2 = new Child2();
 Base* objs[100];
 int res = 0;

// SIMD-enabled virtual function call for uniform object
#pragma omp simd reduction(+:res)
 for (int i = 0; i < 100; i++) {
 res += c2->process(arr[i]); // Variant with uniform this is matched
 // call to vector variant of
 // Child2::process() is invoked
 }

// Initialize polymorphic array of objects
 for (int i = 0; i < 100; i++) {
 if (i % 16 < 4) objs[i] = new Base();
 else if (i % 16 < 8) objs[i] = new Child1();
 else if (i % 12 < 12) objs[i] = new Child11();
 else objs[i] = new Child2();
 }

// SIMD-enabled virtual function call for non-uniform objects

Optimization and Programming

2151

#pragma omp simd reduction(+:res) simdlen(8)
 for (int i = 0; i < 100; i++) {
 res += objs[i]->process(arr[i]); // Variant with non-uniform this is
 // matched
 // Base and Child1 share the same 'process' implementation, so call
 // targets for each even chunk [i*16:i*16+7] are the same even though
 // this pointers are different for all elements of objs[] array.

 // Odd chunks [i*16+8:i*16+15] consist of objects of classes Child11
 // and Child2 and so require calls to their respective implementations
 // of process() virtual functions. Masked vector variant for
 // Child11::process() is called with mask 0b00001111 (lower lanes of a
 // chunk) and masked vector variant for Child2::process() is called
 // with mask 0b11110000 (upper lanes of a chunk).
 }

 return res;
}

The following are limitations to SIMD-enabled virtual function support:

• Multiple inheritance, including virtual inheritance, is not supported for classes having SIMD-enabled virtual
methods. This is because calls to virtual functions in multiple inheritance cases may be done through
special functions called thunks, which adjust the 'this' pointer and/or virtual function table pointer. The
current implementation doesn't support thunks for SIMD-enabled virtual calls because in this case thunks
should themselves become SIMD-enabled functions that are not implemented.

• It is not possible to get the address of a SIMD-enabled virtual method. Support of SIMD-enabled virtual
functions would require additional information, so their binary representation is different. Such cases will
not be handled properly by code expecting a regular pointer to the virtual member.

SIMD-enabled Functions and the C++ Type System
Vector attributes are attributes in the C++11 sense and so are not part of a functional type of SIMD-enabled
functions. Vector attributes are bound to the function itself, an instance of a functional type. This has the
following implications:

• Template instantiations having SIMD-enabled functions as template parameters won't catch vector
attributes, so it is impossible to preserve vector attributes in function wrapper templates like std::bind
which add indirection. This indirection may sometimes be optimized away by compiler and the resulting
direct call will have all vector attributes associated.

• There is no way to overload or specialize templates by vector attributes.
• There is no way to write functional traits to capture vector attributes for the sake of template

metaprogramming.

The example below depicts various situations where this situation may be observed:

template <int f(int)> // Function value template – captures exact function
 // not a function type
int caller1(int x[100]) {
 int res = 0;
#pragma omp simd reduction(+:res)
 for (int i = 0; i < 100; i++) {
 res += f(x[i]); // Exact function put here upon instantiation
 }
 return res;
}

template <typename F> // Generic functional type template – captures
 // object type for functors or entire functional type

 Intel® C++ Compiler Classic Developer Guide and Reference

2152

 // for functions. If vector attributes were part of
 // a functional type they might be captured and applied
 // but currently they are not.
int caller2(F f, int x[100]) {
 int res = 0;
#pragma omp simd reduction(+:res)
 for (int i = 0; i < 100; i++) {
 res += f(x[i]); // Will call matching function 'f' indirectly
 // Will call matching f.operator() directly
 }
 return res;
}

template <typename RET, typename ARG> // Type-decomposing template
 // captures argument and return types.
 // Vector attributes would be lost
 // even if they were part of a
 // functional type.
int caller3(RET (*f)(ARG), int x[100]) {
 int res = 0;
#pragma omp simd reduction(+:res)
 for (int i = 0; i < 100; i++) {
 res += f(x[i]); // Will call matching function 'f' indirectly
 }
 return res;
}

#pragma omp declare simd
int function(int x); // SIMD-enabled function
int nv_function(int x); // Regular scalar function

struct functor { // Functor class with
#pragma omp declare simd // SIMD-enabled operator()
 int operator()(int x);
};

int arr[100];

int main() {
 int res;
#pragma noinline
 res = caller1<function>(arr); // This will be instantiated for
 // function() and call short vector variant
#pragma noinline
 res += caller1<nv_function>(arr); // This will be separately instantiated
 // for nv_function()
#pragma noinline
 res += caller2(function, arr); // This will be instantiated for
 // int(*)(int) type and will call scalar
 // function() indirectly
#pragma noinline
 res += caller2(nv_function, arr); // This will call the same
 // instantiation as above on nv_function

#pragma noinline
 res += caller2(functor(), arr); // This will be instantiated for
 // functor type and will call short vector

Optimization and Programming

2153

 // variant of functor::operator()
#pragma noinline
 res += caller3(function, arr); // This will be instantiated for
 // <int, int> types and will call scalar
 // function() indirectly
#pragma noinline
 res += caller3(nv_function, arr); // This will call the same
 // instantiation as above on nv_function
 return res;
}

NOTE If calls to caller1, caller2 and caller3 are inlined, the compiler is able to replace indirect
calls by direct calls in all cases. In this case caller2(function, arr) and caller3(function,
arr) both call short vector variants of a function as result of the usual replacement of direct calls to
function() by matching short vector variants in the SIMD loop.

Invoke a SIMD-enabled Function with Parallel Context
Typically, the invocation of a SIMD-enabled function provides arrays wherever scalar arguments are specified
as formal parameters.

The following two invocations will give instruction-level parallelism by having the compiler issue special
vector instructions.

a[:] = ef_add(b[:],c[:]); //operates on the whole extent of the arrays a, b, c
a[0:n:s] = ef_add(b[0:n:s],c[0:n:s]); //use the full array notation construct to also specify n
as an extend and s as a stride

NOTE The array notation syntax, as well as calling the SIMD-enabled function from the regular for
loop, results in invoking the short vector function in each iteration and using the vector parallelism but
the invocation is done in a serial loop, without using multiple cores.
Use of array notation syntax and SIMD-enabled functions in a regular for loop results in invoking the
short vector function in each iteration and using the vector parallelism, but the invocation is done in a
serial loop without using multiple cores.

Use the __intel_simd_lane() Built-in Function
When called from within a vectorized loop, the __intel_simd_lane() built-in function will return a number
between 0 and vectorlength - 1 that reflects the current "lane id" within the SIMD vector.
__intel_simd_lane() will return zero if the loop is not vectorized. Calling __intel_simd_lane() outside
of an explicit vector programming construct is discouraged. It may prevent auto-vectorization and such a call
often results in the function returning zero instead of a value between 0 and vectorlength-1.

To see how __intel_simd_lane() can be used, consider the following example:

void accumulate(float *a, float *b, float *c, d){
 *a+=sin(d);
 *b+=cos(d);
 *c+=log(d);
}

 Intel® C++ Compiler Classic Developer Guide and Reference

2154

for (i=low; i<high; i++){
 accumulate(&suma, &sumb, &sumc, d[i]);
}

The gather-scatter type memory addressing caused by the references to arrays A, B, and C in the SIMD-
enabled function accumulate() will significantly hurt performance making the whole conversion useless. To
avoid this penalty, you may use the __intel_simd_lane() built-in function as follows:

#pragma omp declare simd uniform(a,b,c) aligned(a,b,c)
void accumulate(float *a, float *b, float *c, float d){
// No need to take “loop index”. No need to know VL.
 a[__intel_simd_lane()]+=sin(d);
 b[__intel_simd_lane()]+=cos(d);
 c[__intel_simd_lane()]+=log(d);
}

#define VL 16 // actual SIMD code may use vectorlength of 4 but it's okay.
float a[VL] = {0.0f};
float b[VL] = {0.0f};
float c[VL] = {0.0f};
#pragma omp simd for simdlen(VL)
for (i=low; i<high; i++){
 // If low is known to be zero at compile time, “i & (VL-1)”
 // would accomplish what __intel_simd_lane() is intended for,
 // but only on the caller side.
 accumulate(a, b, c, d[i]);
}
for(i=0;i<VL;i++){
 suma += a[i];
 sumb += b[i];
 sumc += c[i];
}

With the use of __intel_simd_lane(), the references to the arrays in accumulate() will have unit-stride.

Limitations

The following language constructs are not allowed within SIMD-enabled functions:

• The GOTO statement.
• The switch statement with 16 or more case statements.
• Operations on classes and structs (other than member selection).
• Any OpenMP construct.

See Also
vector attribute
User-Mandated or SIMD Vectorization
Function Annotations and the SIMD Directive for Vectorization
SIMD-Enabled Function Pointers

SIMD-enabled Function Pointers
SIMD-enabled functions (formerly called elemental functions) are a general language construct to express a
data parallel algorithm. A SIMD-enabled function is written as a regular C/C++ function, and the algorithm
within describes the operation on one element, using scalar syntax. The function can then be called as a
regular C/C++ function to operate on a single element or it can be called in a data parallel context to operate
on many elements.

Optimization and Programming

2155

In some cases it is desirable to have a pointer for SIMD-enabled functions, but without special effort, the
vector nature of a function will be lost: function pointers will point to the scalar function and there will be no
way to call the short vector variants existing for this scalar function.

In order to support indirect calls to vector variants of SIMD-enabled functions, SIMD-enabled function
pointers were introduced. A SIMD-enabled function pointer is a special kind of pointer incompatible with a
regular function pointer. They refer to an entire set of short vector variants as well as the scalar function.
This incompatibility incurs the risk of inappropriate misuse, especially in C++ code. Therefore vector function
pointer support is disabled by default.

To enable support of SIMD-enabled function pointers use the following compiler switches:
Qsimd-function-pointers on Windows or simd-function-pointers on Linux/macOS.

Such pointers may hold the address of a SIMD-enabled function in a way that enables indirect calls to the
appropriate vector variants of the function from a SIMD loop or another SIMD-enabled function.

When disabled with Qsimd-function-pointers- on Windows or no-simd-function-pointers on Linux/
macOS vector attributes (__declspec(vector) or __attribute__((vector)) or #pragma omp declare
simd) can only be placed on function declarations and definitions. Other placements will result in a warning
message and then be ignored.

How SIMD-enabled Function Pointers Work
When you write a SIMD-enabled function, the compiler generates short vector variants of the function that
you requested, which can perform your function's operation on multiple arguments in a single invocation. The
short vector variants may be able to perform multiple operations as fast as the regular implementation
performs just one such operation by utilizing the vector instruction set architecture (ISA) in the CPU. When a
call to SIMD-enabled function occurs in a SIMD loop or another SIMD-enabled function, the compiler replaces
the scalar call with the best fit short vector variant of the function among those available.

Indirect SIMD-enabled function calls are handled similarly, but the set of available variants should be
associated with the function pointer variable, not the target function, because actual call targets are
unknown at the indirect call. That means all SIMD-enabled functions to be referenced by a SIMD-enabled
function pointer should have a set of variants that match the set of variants declared for the pointer.

Declare a SIMD-enabled Function Pointer Variable
In order for the compiler to generate a pointer to a SIMD-enabled function, you need to provide an indication
in your code.

Linux and macOS

Use the __attribute__((vector (clauses))) attribute, as follows:

__attribute__((vector (clauses))) return_type (*function_pointer_name) (parameters)
Alternately, you can use OpenMP #pragma omp declare simd, which requires the [q or Q]openmp or
[q or Q]openmp-simd compiler option.

Windows

Use the __declspec(vector (clauses)) attribute, as follows:

__declspec(vector (clauses)) return_type (*function_pointer_name) (parameters)
The clauses are described in the previous topic on SIMD-enabled functions.

Usage of Vector Function Attributes on Pointers
You may associate several vector attributes with one SIMD-enabled function pointer which reflects all the
variants available for the target functions to be called through the pointer. The attributes usually reflect a
possible use of the function pointer in the loops. Encountering an indirect call, the compiler matches the
vector variants declared on the function pointer with the actual parameter kinds and chooses the best match.

 Intel® C++ Compiler Classic Developer Guide and Reference

2156

Matching is done exactly the same way as with direct calls (see the previous topic on SIMD-enabled
functions). Consider the following example of the declaration of vector function pointers and loops with
indirect calls.

// pointer declaration
#pragma omp declare simd // universal but slowest definition matches
the use in all three loops
#pragma omp declare simd linear(in1) linear(ref(in2)) uniform(mul) // matches the use in the
first loop
#pragma omp declare simd linear(ref(in2)) // matches the use in the
second and the third loops
#pragma omp declare simd linear(ref(in2)) linear(mul) // matches the use in the
second loop
#pragma omp declare simd linear(val(in2:2)) // matches the use in the
third loop
int (*func)(int* in1, int& in2, int mul);

int *a, *b, mul, *c;
int *ndx, nn;
...
// loop examples
 for (int i = 0; i < nn; i++) {
 c[i] = func(a + i, *(b + i), mul); // in the loop, the first parameter is changed
linearly,
 // the second reference is changed linearly too
 // the third parameter is not changed
 }

 for (int i = 0; i < nn; i++) {
 c[i] = func(&a[ndx[i]], b[i], i + 1); // the value of the first parameter is
unpredictable,
 // the second reference is changed linearly
 // the third parameter is changed linearly
 }

 #pragma omp simd
 for (int i = 0; i < nn; i++) {
 int k = i * 2; // during vectorization, private variables are transformed into arrays: k-
>k_vec[vector_length]
 c[i] = func(&a[ndx[i]], k, b[i]); // the value of the first parameter is unpredictable,
 // the second reference and value can be considered
linear
 // the third parameter has unpredictable value
 // (the __declspec(vector(linear(val(in2:2)))) will be
chosen from the two matching variants)
 }

Before any use in a call, the function pointer should be assigned either the address of a function or another
function pointer. Just as with function pointers, vector function pointers should be compatible at assignment
and initialization. The compatibility rules are described below.

Vector Function Pointer Compatibility
Pointer assignment compatibility is defined as following:

1. If a SIMD-enabled function pointer is assigned the address of a function, the function should be
compatible with the pointer in the usual C/C++ sense, it should be SIMD-enabled, and the set of vector
variants declared for the function should be a superset of those declared for the pointer. This includes
initializations and passing addresses of SIMD-enabled functions as parameters.

Optimization and Programming

2157

2. If a SIMD-enabled function pointer is assigned another function pointer, the source pointer should be
compatible with the destination function pointer in the general C/C++ sense, it should be SIMD-
enabled, and the set of vector variants declared for the source pointer should be exactly the same as
those declared for destination pointer. This includes initializations and passing SIMD-enabled function
pointers as parameters.

3. If a regular (non-SIMD-enabled) function pointer is assigned the address of a SIMD-enabled function,
the address of a scalar function is assigned. Vector variants cannot be called through the pointer and it
cannot be reinterpreted as or converted into a SIMD-enabled function pointer as discussed in rule 2.

4. If a regular (non-SIMD-enabled) function pointer is assigned a SIMD-enabled function pointer matching
in the C/C++ sense, the implicit dynamic casting of the right-hand side of the assignment (RHS) is
performed by extracting the address of a scalar function and this address is assigned. Vector variants
cannot be called through these pointers and it cannot be reinterpreted as or converted into a SIMD-
enabled function pointer as discussed in rule 2.

NOTE
SIMD-enabled function pointers and regular function pointers are binary-incompatible and handled
differently. Mixing them may lead to severe unpredictable results. The compiler does its best to check
compatibility where it is allowed by C/C++ language standards, but in certain cases it cannot check,
such as passing function pointers to undeclared functions or as variable arguments. It is best to refrain
from using SIMD-enabled function pointers in these contexts. Additional complexities with respect to
the C++ type system are described in the SIMD-enabled Function Pointers and the C++ Type System
section below.

A SIMD-enabled function pointer may be assigned to a scalar function pointer with a cast as described
in rule 4 above, but a SIMD-enabled function pointer cannot refer to a scalar function pointer.

// pointer declarations
#pragma omp declare simd
int (*ptr1)(int*, int);
#pragma omp declare simd
int (*ptr1a)(int*, int);

#pragma omp declare simd
#pragma omp declare simd linear(a)
typedef int (*fptr_t2)(int* a, int b);

typedef int (*fptr_t3)(int*, int);

fptr_t2 ptr2, ptr2a;
fptr_t3 ptr3;

// function declarations
#pragma omp declare simd
int func1(int* x, int b);

#pragma omp declare simd
#pragma omp declare simd linear(x)
int func2(int* x, int b);

#pragma omp declare simd
#pragma omp declare simd linear(x)
int func3(float* x, int b);

//--------------------------------------
 // allowed assignments
 ptr1 = func1; // same prototype and vector spec

 Intel® C++ Compiler Classic Developer Guide and Reference

2158

 ptr2 = func2; // same prototype and vector spec
 ptr1a = ptr1; // same prototype and vector spec
 ptr1a = func2; // same prototype vector spec on function includes all vector spec on pointer

 ptr3 = func1; // scalar pointer with same prototype - use scalar func1
 ptr3 = func2; // scalar pointer with same prototype - use scalar func2
 ptr3 = ptr1; // scalar pointer with same prototype - implicit conversion from vector to
scalar pointer
 ptr3 = ptr2; // scalar pointer with same prototype - implicit conversion from vector to
scalar pointer

 // disallowed assignments
 ptr2 = func1; // vector spec on function does not have all specs on pointer
 ptr2 = func3; // prototype mismatch although vector spec matched
 ptr1 = func3; // prototype mismatch although vector spec matched
 ptr3 = func3; // prototype mismatch
 ptr1 = ptr2; // pointers should have the same vector spec
 ptr2 = ptr3; // pointers should have the same vector spec

Call Sequence
Unlike regular function calls, which transfer control to a target function, the call target of an indirect call
depends on the dynamic content of the function pointer. In a loop, call targets may be different on different
iterations of a vectorized loop or on different lanes of a SIMD-enabled function executing the call. When
vectorized, such an indirect call may involve multiple calls to different targets within a single SIMD chunk.
This works as follows:

1. If the vector function pointer is uniform (refer to the OpenMP specification) or if it can be determined to
be uniform by the compiler, then multiple calls are not needed. The compiler makes a single indirect call
to a matched vector variant accessible by the pointer.

2. If the vector function pointer is not known to be uniform at compile time, all values of the pointer in a
SIMD chunk may still be the same. This is checked at run time and a single indirect call to a matched
vector variant is invoked.

3. Otherwise, lanes sharing the same function pointer value (call target) are masked-in and a masked
vector variant corresponding to the matched one is invoked in the loop for each unique call target. If
the masked variant is not provided for the matching vector variant and the function pointer is not
proven to be uniform by compiler the match will be rejected and the compiler may serialize the call, or
in other words, generate several scalar calls.

// pointer typedefs
#pragma omp declare simd
typedef int (*fptr_t1)(int*, int);

// function declarations
#pragma omp declare simd
int func1(int* x, int b);

// uses of vector function pointers
fptr_t1 *fptr_array; // array of vector function pointers
void foo(int N, int *x, int y){
 fptr_t1 ptr1 = func1;
#pragma omp simd
 for (int i = 0; i < N; i++) {
 ptr1(x+i, y); // ptr1 is uniform by OpenMP rule.
 fptr_t1 ptr1a = ptr1;
 ptr1a(x+i, y); // compiler can prove ptr1a is uniform.
 fptr_t1 ptr1b = fptr_array[i];

Optimization and Programming

2159

 ptr1b(x+i,y); // ptr1b may or may not be uniform.
 }
}

SIMD-enabled Function Pointers and the C++ Type System
Use caution when using SIMD-enabled function pointers in modern C++: C++ imposes strict requirements
on compilation and execution environments which may not compose well with semantically-rich language
extensions such as SIMD-enabled function pointers. Vector specifications on SIMD-enabled function pointers
are attributes in C++11 sense and so are not part of a pointer type even though they make that pointer
binary incompatible with another pointer of the same type but without the attribute. Vector specifications are
not bound to a pointer type, but instead are bound to the variable or function argument (which is an instance
of a pointer type) itself. For a given function pointer, the type of the pointer is the same with or without
SIMD-enabled function pointer decoration. This has the following important implications:

• Vector attributes put on a function argument are not reflected in C++ name mangling, so the functions
differ only in the vector attributes of a functional pointer argument (or lack thereof) will have the same
name and will be treated the same by the C++ linker. This may result in a parameter of incorrect
vectorness (having the vector attribute or not) being passed into the function. In some cases there is no
way for the compiler to detect this situation, so you're strongly encouraged to distinctly name functions
having SIMD-enabled function pointers as parameters.

• The incorrect interpretation of function pointers is extremely dangerous because it may lead to the
execution of unwanted code or non-code. To identify these situations the compiler issues the following
warning if a vector function pointer is used as a C++ function parameter: Warning #3757: this use of a
vector function type is not fully supported. If you are sure that no ambiguity is possible—for example, the
function accepting the vector function pointer has a distinct name and is fully declared before all uses—
you may ignore this warning. Otherwise, ensure that no ambiguity is possible. To prevent such situations
the warning can be converted to an error using the command line switch -diag-error=3757.

• Template instantiations having SIMD-enabled pointer types as template parameters won't catch vector
attributes. The template will be instantiated a parameter matching the non-SIMD-enabled pointer type. All
variables, class members, and function arguments bound to the template argument type will be regular
function pointers. The use of such templates with a SIMD-enabled function pointer as a template function
parameter, template class method parameter, or RHS of template class member assignment will lead to a
dynamic cast to the non-SIMD-enabled function pointer and loss of vectorness.

• There is no way to overload or achieve template specialization by the vector attributes of a functional
pointer

• There is no way to write functional traits to capture vector attributes for the sake of template
metaprogramming.

// pointer typedefs and pointer declarations
typedef int
(*fptr_t)(int*, int);

#pragma omp declare simd
typedef int (*fptr_t1)(int*, int);

#pragma omp declare simd
#pragma omp declare simd linear(x)
typedef int (*fptr_t2)(int* a, int b);

fptr_t ptr
fptr_t1 ptr1
fptr_t2 ptr2

// function prototype that only differs in SIMD-enabled function decoration
// All these will have identical mangled names.
void foo(fptr_t);

 Intel® C++ Compiler Classic Developer Guide and Reference

2160

void foo(fptr_t1);
void foo(fptr_t2);

// template instantiation
template <typename T>
void bar(T);
…
 bar(fptr); // bar<fptr_t>
 bar(fptr1); // bar<fptr_t>
 bar(fptr2); // bar<fptr_t>

Indirect Invocation of a SIMD-enabled Function with Parallel Context
Typically, the invocation of a SIMD-enabled function directly or indirectly provides arrays wherever scalar
arguments are specified as formal parameters.

The following invocations will give instruction-level parallelism by having the compiler issue special vector
instructions.

#pragma omp declare simd
float (**vf_ptr)(float, float);

//operates on the whole extent of the arrays a, b, c
a[:] = vf_ptr[:] (b[:],c[:]);

// use the full array notation construct to also specify n
// as an extend and s as a stride
a[0:n:s] = vf_ptr[0:n:s] (b[0:n:s],c[0:n:s]);

NOTE The array notation syntax, as well as calling the SIMD-enabled function from the regular for
loop, results in invoking the short vector variant in each iteration and utilizing the vector parallelism
but the invocation is done in a serial loop, without utilizing multiple cores.

See Also
vector attribute
User-mandated or SIMD Vectorization
Function Annotations and the SIMD Directive for Vectorization
SIMD-enabled functions

Vectorize a Loop Using the _Simd Keyword
In this section we introduce the _Simd keyword, which provides an alternative to the simd pragma. Just like
the simd pragma, the _Simd keyword modifies a serial for loop for vectorization. The syntax is as follows:

_Simd [_Safelen(constant-expression)][_Reduction (reduction-identifier : list)]
The _Simd keyword and any clauses should come after the for keyword as in this example:

for _Simd (int i=0; i<10; i++){
 // loop body
}

Differences between the simd pragma and _Simd keyword:

• Omission of the private and lastprivate clauses of the simd pragma construct because C and C++
already have variable-scoping rules that allow a programmer to cleanly declare a private variable within
the scope of a loop iteration

Optimization and Programming

2161

• The linear clause is omitted because the ability to increment multiple variables makes it unnecessary.
See the following example:

float add_floats(float *a, float *b, int n){
 int i=0;
 int j=0;
 float sum=0;

 for _Simd _Reduction(+:sum) (i=0; i<n; i++, j+=2){
 a[i] = a[i] + b[j];
 sum += a[i];
 }
 return sum;
}

To ensure that your loop is vectorized keep the following in mind:

• The countable loop for the _Simd keyword has to conform to the for-loop style of an OpenMP* canonical
loop form except that multiple variables may be incremented in the incr-expr (See the OpenMP*
specification at www.openmp.org).

• The loop control variable must be a signed integer type.
• The vector values should be signed 8-, 16-, 32-, or 64-bit integers, single or double-precision floating

point numbers, or single or double-precision complex numbers.
• You cannot use any control constructs to jump into or out of a SIMD loop. That includes the break,

return, goto, and throw constructs.
• A SIMD loop may contain another loop (for, while, do-while) in it, but goto out of such inner loops is

not supported. You may use break and continue with the inner loop.
• A SIMD loop performs memory references unconditionally. Therefore, all address computations must

result in valid memory addresses, even though such locations may not be accessed if the loop is executed
sequentially

See Also
User-mandated or SIMD Vectorization
simd Enforces vectorization of loops.

Function Annotations and the SIMD Directive for Vectorization
This topic presents specific C++ language features that better help to vectorize code.

NOTE
The SIMD vectorization feature is available for both Intel® microprocessors and non-Intel
microprocessors. Vectorization may call library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors. The vectorization can also be affected by
certain options, such as /arch (Windows), -m (Linux and macOS), or [Q]x.

The __declspec(align(n)) declaration enables you to overcome hardware alignment constraints. The
auto-vectorization hints address the stylistic issues due to lexical scope, data dependency, and ambiguity
resolution. The SIMD feature's pragma allows you to enforce vectorization of loops.

You can use the __declspec(vector)__attribute__(vector) and the
__declspec(vector[clauses])__attribute__(vector(clauses))declarations to vectorize user-defined
functions and loops. For SIMD usage, the vector function is called from a loop that is being vectorized.

The C/C++ extensions for Array Notations map operations can be defined to provide general data parallel
semantics, where you do not express the implementation strategy. You can write the same operation
regardless of the size of the problem. The implementation uses the construct by combining SIMD, loops and
tasking to implement the operation. With these semantics, you can choose more elaborate programming and
express a single dimensional operation at two levels. You can use both task constructs and array operations
to force a preferred parallel and vector execution.

 Intel® C++ Compiler Classic Developer Guide and Reference

2162

The usage model of the vector declaration takes a small section of code generated for the function
(vectorlength) of the array and exploits SIMD parallelism. The implementation of task parallelism is
done at the call site.

The following table summarizes the language features that help vectorize code.

Language Feature Description

__declspec(align(n)) Directs the compiler to align the variable to an
n-byte boundary. Address of the variable is
address mod n=0.

__declspec(align(n,off)) Directs the compiler to align the variable to an
n-byte boundary with offset off within each n-
byte boundary. Address of the variable is
address mod n=off.

__declspec(vector) (Windows*)

__attribute__(vector) (Linux* and macOS)

Combines with the map operation at the call site
to provide the data parallel semantics. When
multiple instances of the vector declaration are
invoked in a parallel context, the execution
order among them is not sequenced.

__declspec(vector[clauses]) (Windows*)

__attribute__(vector(clauses)) (Linux* and
macOS)

Combines with the map operation at the call site
to provide the data parallel semantics with the
following values for clauses:

• processor clause: processor(cpuid)
• vector length clause: vectorlength(n)
• linear clause: linear(param1:step1 [,

param2:step2]…)
• uniform clause: uniform(param [,

param,]…)
• mask clause: [no]mask

When multiple instances of the vector
declaration are invoked in a parallel context,
the execution order among them is not
sequenced.

restrict Permits the disambiguator flexibility in alias
assumptions, which enables more vectorization.

__declspec(vector_variant(clauses))
(Windows*)

__attribute__(vector_variant(clauses)) (Linux*
and macOS)

Provides the ability to vectorize user-defined
functions and loops. The clauses are as
follows:
• implements clause (required): implements

(function declarator) [, simd-
clauses])

•

simd-clauses (optional): one or more of the
clauses allowed for the vector attribute

__assume_aligned(a,n) Instructs the compiler to assume that array a is
aligned on an n-byte boundary; used in cases
where the compiler has failed to obtain
alignment information.

__assume(cond) Instructs the compiler to assume that the
represented condition is true where the
keyword appears. Typically used for conveying

Optimization and Programming

2163

Language Feature Description

properties that the compiler can take
advantage of for generating more efficient
code, such as alignment information.

Auto-vectorization Hints

#pragma ivdep Instructs the compiler to ignore assumed vector dependencies.

#pragma vector
{aligned|unaligned|always|
temporal|nontemporal}

Specifies how to vectorize the loop and indicates that
efficiency heuristics should be ignored. Using the assert
keyword with the vector {always} pragma generates an
error-level assertion message if the compiler efficiency
heuristics indicate that the loop cannot be vectorized. Use
#pragma ivdep! to ignore the assumed dependencies.

#pragma novector Specifies that the loop should never be vectorized.

NOTE
Some pragmas are available for both Intel® microprocessors and non-Intel microprocessors, but may
perform additional optimizations for Intel® microprocessors than for non-Intel microprocessors.

User-Mandated Pragma

#pragma simd Enforces vectorization of loops.

omp simd Transforms the loop into a loop that will be executed
concurrently using SIMD instructions.

See Also
__declspec(align) declaration

__declspec(vector) declaration

__declspec(vector_variant) declaration

ivdep pragma
simd pragma
vector pragma
SIMD-enabled functions
User-mandated or SIMD Vectorization

Guided Auto Parallelism
NOTE This feature has been deprecated.

The Guided Auto Parallelism (GAP) feature of the Intel®C++ Compiler is a tool that offers selective advice to
improve the performance of serially-coded applications by suggesting changes that take advantage of the
compiler’s ability to automatically vectorize and parallelize code and improve the efficiency of data

 Intel® C++ Compiler Classic Developer Guide and Reference

2164

operations. Despite having the words “auto parallelism” in the name, this tool does not require a threaded
code implementation to improve the execution performance of the code, or require that the code is already
threaded or parallel.

Advanced optimization techniques, such as inter-procedural analysis or profile-guided feedback, are not
needed to use this feature. Using the [Q]guide set of options in addition to the compiler options normally
used is sufficient to enable the GAP feature, with the requirement that you must compile with O2 or higher
optimization levels. The compiler does not generate any object files or executables during the GAP run.

In debug mode (/Zi on Windows*, -g on Linux*), the compiler's optimization level defaults to /Od (on
Windows*) or -O0 (on Linux* and macOS); thus O2 (or a higher level optimization) must be specified
explicitly on the command-line.

NOTE Use the [Q]diag-disable option along with the [Q]guide option to direct the compiler to
suppress specific diagnostic messages.
For example, the options: // (Windows*)/Qguide, /Qdiag-disable:30534 and // (Linux* and
macOS) -guide, -diag-disable:30534 tell the compiler not to emit the 30534 diagnostic. The
[Q]diag-disable mechanism works the same way as it does for compiler-warnings.

If you decide to follow the advice offered by the GAP tool by making the suggested code changes and/or
using the suggested compiler options, you must then recompile the program without the [Q]guide option.

Any advice generated by the compiler when using the GAP tool is optional; it can be implemented or
rejected. The advice typically falls under three broad categories:

• Advice for source modifications: The compiler advises you to make source changes that are localized
to a loop-nest or a routine. For example, the tool may recommend that you use a local-variable for the
upper-bound of a loop, (instead of a class member) or that you should initialize a local variable
unconditionally at the top of the loop-body, or you may be told to add the restrict keyword to pointer-
arguments of a function definition (if appropriate).

• Advice to apply pragmas: The compiler advises you to apply a new pragma on a certain loop-level if the
pragma semantics can be satisfied (you must verify this). In many cases, you may be able to apply the
pragma (thus implicitly asserting new program/loop properties) that the compiler can take advantage of
to perform enhanced optimizations.

• Advice to add compiler options: The compiler advises you to add command-line options that assert
new properties; for example, you may be asked to use the [Q]ansi-alias option or /Qalias-args
(Windows*) or -fargument-alias (on Linux*) compiler options.

NOTE These suggested compiler options apply to the entire file. It is your responsibility to check that
the properties asserted by these options are valid for the entire file, and not just the loop in question.

If you use GAP options along with option [Q]parallel, the compiler may suggest options to further
parallelize your application. The compiler may also offer advice on enabling other optimizations of your
application, including vectorization.

If you use the GAP options without enabling auto parallelism (without using the [Q]parallel option), the
compiler may only suggest enabling optimizations such as vectorization for your application. This approach is
recommended when you wish to improve the performance of a single-threaded code without the use of
parallelization or when you want to improve the performance of threaded applications that do not rely on the
compiler for auto parallelism.

See Also
Using Guided Auto Parallelism
diag
 compiler option
ansi-alias, Qansi-alias
 compiler option
fargument-alias, Qalias-args

Optimization and Programming

2165

 compiler option
Zi
 compiler option
g
 compiler option

Using Guided Auto Parallelism
The Guided Auto Parallelism feature of the Intel® C++ Compiler is a tool offering selective advice to improve
the performance of serially-coded applications. The tool suggests changes that take advantage of the
compiler's ability to automatically vectorize and parallelize code as well as improve the efficiency of data
operations. The tool does not require that you implement threaded code to improve the execution
performance of your code, nor does it require that your code is already threaded or parallel code.

To invoke this tool, use the compiler option [Q]guide[=n]. Using this option causes the compiler to generate
messages suggesting ways to optimize the performance of your application. You can also use more specific
compiler options such as [Q]guide-vec, [Q]guide-par, and [Q]guide-data-trans , to perform
individual guided optimizations for vectorizing, parallelizing, and data transformation of your application.

When any guided auto parallelism option is used, the compiler provides only diagnostic advice. Object files or
executables are not created in this mode. See the table below for descriptions of the options.

Syntax Description

[Q]guide
Allows you to set a level of guidance for auto-vectorization and data
transformation analysis.

To obtain guidance for auto parallelism, you must use the
[Q]parallel option along with the [Q]guide option.

[Q]guide-par

Allows you to set a level of guidance only for auto parallelism analysis.

NOTE
You must use the [Q]parallel option along with the
[Q]guide-par option to get this advice.

[Q]guide-vec Allows you to set a level of guidance for auto-vectorization analysis
only.

[Q]guide-data-trans Allows you to set a level of guidance for data transformation analysis
only.

For all of the above options, the optional argument n specifies the level of guidance. The argument n takes
the values 1-4. When n is not specified, the default is 4. If you specify n=1 or 2, a standard level of guidance
is provided.

When you use n=3 or n=4, you may get advanced messages. For example, you may get messages about
how to optimize a particular loop-nest or get a message on how exception-handling inside a loop-nest affects
optimizations for that loop-nest. Or you may get a message on how to provide extra information to the
compiler on cost-modeling (expected values of trip-counts, and so on).

If you simultaneously specify a level of guidance for the general [Q]guide option and also for one or more
of the other specific guide options, the level of guidance (n) for the specific guide option overrides the
general [Q]guide option setting.

If you do not specify a level of guidance for the general [Q]guide option, but do set a level of guidance for
one or more of the specific guide options, the [Q]guide option is set equal to the greatest value passed to
the specific guide options.

 Intel® C++ Compiler Classic Developer Guide and Reference

2166

Capturing Guidance Messages
The guided auto parallelism tool analyzes all of your serial code or individual parts of your code and
generates advisory messages. By default, messages that are generated by the guided auto parallelism tool
are output to stderr.

To capture messages in a file, use the options listed in the following table.

NOTE
The options listed in the following table must be used with the [Q]guide, [Q]guide-par,
[Q]guide-vec, or [Q]guide-data-trans options. If not, they are ignored.

Syntax Description

[Q]guide-file Gathers all messages generated during a guided auto-parallelization
run into the specified file.

[Q]guide-file-append Allows you to specify the file into which all messages generated during
a guided auto parallelism run should be appended.

For the above options, the file_name argument can also include a path. If a path is not specified, the file is
created in the current working directory. If there is already a file named file_name, it is overwritten when
you use the [Q]guide-file option. If you do not include an extension as part of the file_name, the
extension .guide is appended.

Configuring Code Regions for GAP Messages
To limit guided auto parallelism analysis to specific regions (hotspots) in your application, use the option
mentioned in the table below.

Syntax Description

[Q]guide-opts Allows you to analyze specified code elements, identified by string.

You must use the [Q]guide-opts option along with one of the guided auto parallelism options, such as
[Q]guide, [Q]guide-vec, [Q]guide-par, and [Q]guide-data-trans . Use the string parameter to
provide information about known areas of interest (hotspots). The string parameter takes one or more of the
following variables: filename, routine, range. The compiler parses the string parameter and generates syntax
errors if there are any.
Windows* Syntax

/Qguide-opts:string
Linux* and macOS Syntax

-guide-opts=string
Follow these guidelines when using the string parameter:

• Use only valid file names, routine names, and line numbers. The guided auto parallelism tool ignores
invalid values and issues a diagnostic message stating what was ignored.

• Enclose routine names within single quotation marks. Specify original source names (demangled names)
as routine names. A routine name alone may not always be sufficient to uniquely identify a routine. You
may need to specify additional parameter information to uniquely identify the routine. For example:

Optimization and Programming

2167

Linux* and macOS:

-guide-
opts="foo.cpp,'CLHEP::StaticRandomSta::restore(std::basic_istream<char,std::char_traits<char>>&)'
"
-guide-opts="bar.f90,'module_1::routine_name`"
-guide-opts="baz.c,'c_routine_name'"

Windows*:

/Qguide-
opts:"foo.cpp,'CLHEP::StaticRandomSta::restore(std::basic_istream<char,std::char_traits<char>>&)'
"
/Qguide-opts:"bar.f90,'module_1::routine_name`"
/Qguide-opts:"baz.c,'c_routine_name'"

For any specified routine name, the GAP tool first tries to uniquely identify the routine using specified
routine information. If that is not possible, then it selects all routines with the specified routine name. The
GAP tool uses the parameter information, if specified, to narrow the selection.

• When inlining is involved, use the callee line numbers. The generated messages also use the callee line
numbers.

See Also
guide, Qguide compiler option
guide-par, Qguide-par compiler option
guide-vec, Qguide-vec compiler option
guide-data-trans, Qguide-data-trans compiler option
guide-file, Qguide-file compiler option
guide-file-append, Qguide-file-append compiler option
guide-opts, Qguide-opts compiler option

See Also
Using Guided Auto Parallelism in the Microsoft Visual Studio* IDE

Guided Auto Parallelism Messages
The Guided Auto Parallelism (GAP) messages provide advice that should improve optimizations.

The messages provide suggestions for:

• Automatic parallelization of loop nests
• Automatic vectorization of inner loops
• Data transformation

You must decide whether to follow a particular suggestion. For example, if the advice is to apply a particular
pragma, you must understand the semantics of the pragma and carefully consider whether it can be safely
applied to the loop (or loop nest) in question.

If you apply the pragma improperly, the compiler may generate incorrect code, causing the application to
execute incorrectly.

If you do not fully understand the suggested advice, please refer to the relevant topics in the compiler
documentation before applying that advice.

Once you apply the suggested advice, the compiler assumes that it is correct and it does not perform any
checks or issue any warnings.

In general, messages that relate to loops tend to target vectorization and/or parallelization of loops. If you
are not familiar with loop optimizations, please refer to the compiler documentation on this kind of
optimization.

 Intel® C++ Compiler Classic Developer Guide and Reference

2168

See Also
Using Guided Auto Parallelism

Guided Auto Parallelism
Enabling Auto-parallelization
Enabling Further Loop Parallelization for Multicore Platforms
Loop Constructs

GAP Message (Diagnostic ID 30506)

Message
If the following operations(s) can be safely performed unconditionally, the loop at line %d will be vectorized
by adding a "%s ivdep" statement right before the loop: %s.

Advice
Add "#pragma ivdep" before the specified loop.

This pragma enables the vectorization of the loop at the specified line. Insure that any conditional divide,
sqrt, and inverse sqrt operations will not alter the exception semantics expected by the program when they
are performed unconditionally.

Example
Consider the following:

void foo(float *a, int n) {
 int i;
 for (i=0; i<n; i++) {
 if (a[i] > 0) {
 a[i] = 1 / a[i];
 }
 }
 return;
}

In this case, the compiler is unable to vectorize the loop if compiled with floating-point exception semantics
(such as /fp:except option) because the condition "a[i] > 0" may be guarding floating-point exceptions
for the divide.

If you determine it is safe to do so, you can add the pragma as follows:

void foo(float *a, int n) {
 int i;
#pragma ivdep
 for (i=0; i<n; i++) {
 if (a[i] > 0) {
 a[i] = 1 / a[i];
 }
 }
 return;
}

Verify
Confirm that the program operands have safe values for all iterations.

Optimization and Programming

2169

GAP Message (Diagnostic ID 30513)

Message
Insert a "%s ivdep" statement right before the loop at line %d to vectorize the loop.

Advice
Add "#pragma ivdep" before the specified loop. This pragma enables the vectorization of the loop at the
specified line by ignoring some of the assumed cross-iteration data dependencies.

Example
Consider the following:

void foo(float *a, int x, int n) {
 int i;
 for (i=0; i<n; i++) {
 a[i] = a[i+x]+1;
 }
 return;
}

In this case, the compiler is unable to vectorize the loop because x could be -1, where each iteration is
dependent on the previous iteration. If x is known to be positive, you can vectorize this loop.

If you determine it is safe to do so, you can add the pragma as follows:

void foo(float *a, int x, int n) {
 int i;
#pragma ivdep
 for (i=0; i<n; i++) {
 a[i] = a[i+x]+1;
 }
 return;
}

Verify
Confirm that any arrays in the loop do not have unsafe cross-iteration dependencies. A cross-iteration
dependency exists if a memory location is modified in an iteration of the loop and accessed by a read or a
write statement in another iteration of the loop. Make sure that there are no such dependencies, or that any
cross-iteration dependencies can be safely ignored.

GAP Message (Diagnostic ID 30515)

Message
Assign a value to the variable(s) "%s" at the beginning of the body of the loop in line %d. This will allow the
loop to be vectorized.

Advice
You should unconditionally initialize the scalar variables at the beginning of the specified loop. This allows the
vectorizer to privatize those variables for each iteration and vectorize the loop. You must ensure that all the
uses of those variables see the same values before and after the source code change.

 Intel® C++ Compiler Classic Developer Guide and Reference

2170

Example
Consider the following:

void foo(float *a, int n) {
 int i;
 float b;
 for (i=0; i<n; i++) {
 if (a[i] > 0) {
 b = a[i];
 a[i] = 1 / a[i];
 }
 if (a[i] > 1) {
 a[i] += b;
 }
 }
 return;
}

In this case, the compiler is unable to vectorize the loop because it failed to privatize the variable b.
Vectorization is assisted when assignment to b occurs in each iteration where the value of b is used. One of
the ways to do this is to assign the value in every iteration.

If you determine it is safe to do so, you can modify the program code as follows:

void foo(float *a, int n) {
 int i;
 float b;
 for (i=0; i<n; i++) {
 b = a[i];
 if (a[i] > 0) {
 a[i] = 1 / a[i];
 }
 if (a[i] > 1) {
 a[i] += b;
 }
 }
 return;
}

Verify
Confirm that in the original program, any variables read in any iteration of the loop have been defined earlier
in the same iteration.

GAP Message (Diagnostic ID 30519)

Message
Insert a "%s parallel" statement right before the loop at line %d to parallelize the loop.

Advice
Add "#pragma parallel" before the specified loop. This pragma enables the parallelization of the loop at the
specified line by ignoring assumed cross-iteration data dependencies.

Optimization and Programming

2171

Example
Consider the following:

void foo(float *a, int m, int n) {
 int i;
 for (i=0; i<n; i++) {
 a[i] = a[i+m]+1;
 }
 return;
}

In this case, the compiler is unable to parallelize the loop without further information about m. For example,
if m is negative, then each iteration will be dependent on the previous iteration. However, if m is known to be
greater than n, you can parallelize the loop.

If you determine it is safe to do so, you can add the pragma as follows:

void foo(float *a, int m, int n) {
 int i;
#pragma parallel
 for (i=0; i<n; i++) {
 a[i] = a[i+m]+1;
 }
 return;
}

Verify
Confirm that any arrays in the loop do not have cross-iteration dependencies. A cross-iteration dependency
exists if a memory location is modified in an iteration of the loop and accessed by a read or a write statement
in another iteration of the loop.

GAP Message (Diagnostic ID 30521)

Message
Assign a value to the variable(s) "%s" at the beginning of the body of the loop in line %d. This will allow the
loop to be parallelized.

Advice
Check to see if you can unconditionally initialize the scalar variables at the beginning of the specified loop. If
so, do the code change for such initialization (standard), or list the variables in the private clause of a parallel
pragma (advanced). This allows the parallelizer to privatize those variables for each iteration and to
parallelize the loop.

Example
Consider the following:

#define N 100000
double A[N], B[N];

void foo(int cond1, int cond2){
 int i, t=7;
 for (i=0; i<N; i++){
 if (cond1) {
 t = i+1;
 }

 Intel® C++ Compiler Classic Developer Guide and Reference

2172

 if (cond2) {
 t = i-1;
 }
 A[i] = t;
 }
}

In this case, the compiler does not parallelize the loop because it cannot privatize the variable t without
further information. If you know that cond1 or cond2 is true, or both cond1 and cond2 are true, then you can
assist the parallelizer by ensuring that any iteration that uses t also writes to t before its use in the same
iteration. One of the ways to do this is to assign a value to t at the top of each iteration.

If you determine it is safe to do so, you can modify the program code as follows:

#define N 100000
double A[N], B[N];

void foo(int cond1, int cond2){
 int i, t=7;
 for (i=0; i<N; i++){
 t=0;
 if (cond1) {
 t = i+1;
 }
 if (cond2) {
 t = i-1;
 }
 A[i] = t;
 }
}

Verify
Confirm that in the original program, any variables read in any iteration of the loop have been defined earlier
in the same iteration.

See Also
GAP Message (Diagnostic ID 30523)

GAP Message (Diagnostic ID 30522)

Message
Insert a "%s parallel private(%s)" statement right before the loop at line %d to parallelize the loop.

Advice
Add "#pragma parallel private" before the specified loop. This pragma enables the parallelization of the loop
at the specified line.

Example
Consider the following:

float A[10][10000];
float B[10][10000];
float C[10][10000];
void foo(
 int n,
 int m1,

Optimization and Programming

2173

 int m2
)
{
 int i,j;
 float W[10000];
 for (i =0; i < n; i++) {
 for (j =0; j < m1; j++)
 W[j] = A[i][j] * B[i][j];
 for (j =0; j < m2; j++)
 C[i][j] += W[j] + 1.0;
 }
}

In this case, the compiler does not parallelize the loop since it cannot determine whether m1 >= m2.

If you know that this property is true, and that no element of W is fetched before it is written to after the
loop, then you can use the recommended pragma.

If you determine it is safe to do so, you can add the pragma as follows:

float A[10][10000];
float B[10][10000];
float C[10][10000];
void foo(
 int n,
 int m1,
 int m2
)
{
 int i,j;
 float W[10000];
#pragma parallel private (W)
 for (i =0; i < n; i++) {
 for (j =0; j < m1; j++)
 W[j] = A[i][j] * B[i][j];
 for (j =0; j < m2; j++)
 C[i][j] += W[j] + 1.0;
 }
}

Verify
Before an element of an array can be read in the loop, there must have been a previous write to it during the
same loop iteration. In addition, if an element is read after the loop, there must have been a previous write
to it before the read after the loop.

GAP Message (Diagnostic ID 30523)

Message
Assign a value to the variable(s) "%s" at the beginning of the body of the loop in line %d. This will allow the
loop to be parallelized.

Advice
Check to see if you can unconditionally initialize the scalar variables at the beginning of the specified loop. If
so, do the code change for such initialization (standard), or list the variables in the private clause of a parallel
pragma (advanced). This allows the parallelizer to privatize those variables for each iteration and to
parallelize the loop.

 Intel® C++ Compiler Classic Developer Guide and Reference

2174

Example
Consider the following:

#define N 100000
double A[N], B[N];

void foo(int cond1, int cond2){
 int i, t=7;
 for (i=0; i<N; i++){
 if (cond1) {
 t = i;
 }
 if (cond2) {
 A[i] = t;
 }
 }
}

In this case, the compiler does not parallelize the loop because it cannot privatize the variable t without
further information. If you know that cond2 always implies cond1, then you can assist the parallelizer by
ensuring that any iteration that uses t, also writes to t before it is used in the same iteration. One of the
ways to do this is to assign a value to t at the top of every iteration. Another way is to list the variables to be
privatized in the private clause of a parallel pragma.

If you determine it is safe to do so, you can add the pragma as follows:

#define N 100000
double A[N], B[N];

void foo(int cond1, int cond2){
 int i, t=7;
#pragma private (t)
 for (i=0; i<N; i++){
 if (cond1) {
 t = i;
 }
 if (cond2) {
 A[i] = t;
 }
 }
}

Verify
Confirm that in the original program, any variables read in any iteration of the loop have been defined earlier
in the same iteration or have been privatized by means of the private clause of a parallel pragma.

See Also
GAP Message (Diagnostic ID 30521)

GAP Message (Diagnostic ID 30525)

Message
Insert a "%s loop count min(%d)" statement right before the loop at line %d to parallelize the loop.

Optimization and Programming

2175

Advice
Add "#pragma loop count" before the specified loop. This pragma indicates the minimum trip count (number
of iterations) of the loop that enables the parallelization of the loop.

The minimum trip count required to parallelize the loop may differ depending on the target architecture, and
this will be reflected in the message generated.

Example
Consider the following:

#define N 10000
float A[N], B[N];

void foo(int n) {
 int i;
 for (i =0; i < n; i++) {
 A[i] = A[i] + B[i] * B[i] + 1.5;
 }
}

In this case, the compiler may not parallelize the loop because it is not sure that n is large enough for the
parallelization to be beneficial.

If you determine it is safe to do so, you can add the pragma as follows:

#define N 10000
float A[N], B[N];

void foo(int n) {
 int i;
#pragma loop count min(128)
 for (i =0; i < n; i++) {
 A[i] = A[i] + B[i] * B[i] + 1.5;
 }
}

Verify
Confirm that the loop has the minimum number of iterations, as specified in the diagnostic message.

See Also
Guided Auto Parallelism Messages provides advice for improving optimizations

GAP Message (Diagnostic ID 30526)

Message
To parallelize the loop at line %d, annotate the routine %s with %s.

Advice
If the loop contains a call to a function, the compiler cannot parallelize the loop without more information
about the function being called.

However, if the function being called in the loop is a const function or a concurrency-safe function, then the
call does not inhibit parallelization of the loop.

 Intel® C++ Compiler Classic Developer Guide and Reference

2176

Example
Consider the following:

#define N 10000
double A[N], B[N];
int bar(int);
void foo(){
 int i;
 for (i=0;i<N;i++){
 A[i] = B[i] * bar(i);
 }
}

In this case, the compiler does not parallelize the loop because it is not safe to do so without further
information about routine bar, which is being called.

If you determine it is safe to do so, you can modify the program code as follows:

#define N 10000
double A[N], B[N];
__declspec(const) int bar(int);
void foo(){
 int i;
 for (i=0;i<N;i++){
 A[i] = B[i] * bar(i);
 }
}

If you determine it is safe to do so, an alternative way you can modify the program code is as follows:

#define N 10000
double A[N], B[N];
__declspec(concurrency_safe(profitable)) int bar(int);
void foo(){
 int i;
 for (i=0;i<N;i++){
 A[i] = B[i] * bar(i);
 }
}

Verify
Confirm the routine satisfies the semantics of this annotation. A weaker annotation able to achieve a similar
effect is __declspec(concurrency_safe(profitable).

See Also
GAP Message (Diagnostic ID 30528)
__declspec(concurrency_safe) declaration

__declspec(const) declaration

GAP Message (Diagnostic ID 30528)

Message
Add "%s" to the declaration of routine "%s" in order to parallelize the loop at line %d. Adding "%s" achieves
a similar effect.

Optimization and Programming

2177

Advice
Confirm that the routine specified is indeed a const function or a concurrency-safe function before following
the advice to add the annotation.

If the routine is not one of these kinds of functions, try to inline it with #pragma forceinline recursive. This
action may or may not be beneficial.

Example
Consider the following:

#define N 10000
double A[N], B[N];
int bar(int);
void foo(){
 int i;
 for (i=0;i<N;i++){
 A[i] = B[i] * bar(i);
 }
}

In this case, the compiler does not parallelize the loop because it is not safe to do so without further
information about routine bar, which is being called.

If you determine it is safe to do so, you can add the pragma as follows:

#define N 10000
double A[N], B[N];
void foo(){
 int i;
#pragma forceinline recursive
 for (i=0;i<N;i++){
 A[i] = B[i] * bar(i);
 }
}

Verify
Confirm that the routine satisfies the semantics of this declaration. Another way to help the loop being
parallelized is to inline the routine with the forceinline recursive pragma, but this method does not guarantee
parallelization.

See Also
GAP Message (Diagnostic ID 30526)

GAP Message (Diagnostic ID 30531)

Message
Store the value of the upper-bound expression of the loop at line %d into a temporary local variable, and use
this variable as the new upper-bound expression of the loop. To do this, insert a statement of the form "temp
= upper-bound of loop" right before the loop, where "temp" is the newly created local variable. Choose a
variable name that is unique, then replace the loop's original upper-bound expression with "temp".

Advice
Use a local-variable for the loop upper-bound if the upper-bound does not change during the execution of the
loop. This enables the compiler to recognize the loop as a proper counted do loop, which enables various loop
optimizations including vectorization and parallelization.

 Intel® C++ Compiler Classic Developer Guide and Reference

2178

This message appears when the compiler cannot output the exact upper-bound variable to be replaced.

Example
Consider the following:

class FooClass {
public:
 const int getValue() { return m_numTimeSteps;}
 void Foo2(double* vec);
private:
 int m_numTimeSteps;
};
void FooClass::Foo2(double* vec)
{
 // this will not vectorize
 for (int k=0; k < m_numTimeSteps; k++)
 vec[k] = 0.0;

 // this will not vectorize
 for (int k=0; k < getValue(); k++)
 vec[k] = 0.0;

 // this will vectorize
 int ub1 = m_numTimeSteps;
 for (int k=0; k < ub1; k++)
 vec[k] = 0.0;

 // this will vectorize
 int ub2 = getValue();
 for (int k=0; k < ub2; k++)
 vec[k] = 0.0;
}

Verify
Confirm that the value of the upper-bound expression does not change throughout the entire execution of
the loop.

See Also
GAP Message (Diagnostic ID 30532)

GAP Message (Diagnostic ID 30532)

Message
Store the value of the upper-bound expression (%s) of the loop at line %d into a temporary local variable,
and use this variable as the new upper-bound expression of the loop. To do this, insert a statement of the
form "temp = %s" right before the loop, where "temp" is the newly created local variable. Choose a variable
name that is unique, then replace the loop's original upper-bound expression with "temp".

Advice
Use a local-variable for the loop upper-bound if the upper-bound does not change during the execution of the
loop. This enables the compiler to recognize the loop as a proper counted do loop, which in turn enables
various loop optimizations including vectorization and parallelization.

This message appears when the compiler can output the exact upper-bound variable to be replaced.

Optimization and Programming

2179

Example
Consider the following:

typedef struct {
 float* data;
} Vector;

typedef struct {
 int len;
} NetEnv;

// This one does not vectorize
void
mul(
 NetEnv* ne,
 Vector* rslt,
 Vector* den,
 Vector* num)
{
 float* r;
 float* d;
 float* n;
 int i;

 r = rslt->data;
 d = den->data;
 n = num->data;

 for (i = 0; i < ne->len; ++i) {
 r[i] = n[i] * d[i];
 }
 return;
}

In this case, the compiler is unable to vectorize the loop at setting O2, the default.

If you determine it is safe to do so, you can modify the program code as follows:

typedef struct {
 float* data;
} Vector;

typedef struct {
 int len;
} NetEnv;

// This one vectorizes
void
mul(
 NetEnv* ne,
 Vector* rslt,
 Vector* den,
 Vector* num)
{
 float* r;
 float* d;
 float* n;
 int i, local_len;

 Intel® C++ Compiler Classic Developer Guide and Reference

2180

 r = rslt->data;
 d = den->data;
 n = num->data;

 local_len = ne->len;
 for (i = 0; i < local_len; ++i) {
 r[i] = n[i] * d[i];
 }
 return;
}

Verify
Confirm that the value of the upper-bound expression does not change throughout the entire execution of
the loop.

See Also
GAP Message (Diagnostic ID 30531)

GAP Message (Diagnostic ID 30533)

Message
Compile with the %s option to vectorize and/or parallelize the loop at line %d.

Advice
Use the [q or Q]opt-subscript-in-range option for the specified file during compilation.

This option helps the compiler vectorize and parallelize the loop at the specified line. You must verify that the
loops in the file do not contain very large integers and are not likely to generate very large integers in
intermediate computations. A very large integer is loosely defined as follows: On an n-bit machine, a very
large integer is typically >= 2n-2. For example, on a 32-bit machine, a very large integer would be >= 230.

Example
Consider the following:

int f(int* A, int upper1, int upper2){
 long extra = 100.0;
 int return_val = 0;
 int val;
 for(int j=0; j < upper1; j++){
 for(int i = 0; i < upper2; i++){
 val = A[i*extra];
 return_val += val;
 }
 }
 return return_val;
}

If you determine it is safe to do so, compiling this example with the [q or Q]opt-subscript-in-range
option results in vectorization of the innermost loop.

Verify
Confirm that no loop in the program contains or generates very large integers (typically very large integers
are >= 230).

Optimization and Programming

2181

GAP Message (Diagnostic ID 30534)

Message
Add %s option for better type-based disambiguation analysis by the compiler if appropriate (the option will
apply for the entire compilation). This will improve optimizations for the loop at line %d.

Advice
Use option [Q]ansi-alias for the specified file. This option will help the compiler to optimize the loop at the
specified line. You must verify that the ANSI rules are followed for the entire file. gcc assumes this property
by default in default setting O2; the Intel compiler does not. This option is particularly useful for C++
programs since it enables type-based disambiguation between pointers and other elemental datatypes (that
in turn enables optimizations such as vectorization and parallelization).

Option [Q]ansi-alias enables or disables use of ANSI aliasing rules optimizations, and assert that the
program adheres to these rules.

ANSI-aliasing rules are described in the Standards documentation:

• C: ISO/IEC 9899, chapter 6.5 paragraph 7
• C++: ISO/IEC 14882, chapter 3.10, paragraph 15

Example
Consider the following:

#include <stddef.h>

template<typename T>
class blocked_range {
 T my_begin;
 T my_end;
public:
 blocked_range();
 T begin() const {return my_begin;}
 T end() const {return my_end;}
};

class ApplyMatAdd {
 double *const A, *const B, *const C;
 const size_t size;
public:
 ApplyMatAdd(double *A_, double *B_, double *C_, size_t size_) : A(A_), B(B_), C(C_),
size(size_) {}
 void operator()(const blocked_range<size_t>& range) const;
};

void ApplyMatAdd::operator()(const blocked_range<size_t>& range) const {
 for (size_t i=range.begin(); i<range.end(); ++i) {
 for (size_t j=0; j<size; ++j) {
 C[i*size + j] = A[i*size + j] + B[i*size + j];
 }
 }
}

In this case, the compiler is unable to vectorize the innermost loop at setting O2, the default.

 Intel® C++ Compiler Classic Developer Guide and Reference

2182

If you determine it is safe to do so, you can compile the above example with the [Q]ansi-alias option,
which enables vectorization of the innermost loop.

Verify
Make sure that the semantics of this option are obeyed for the entire compilation.

GAP Message (Diagnostic ID 30535)

Message
Removing Exception-Handling code associated with the loop-body may enable more optimizations for the
loop at line %d.

Advice
Loop optimizations could not be performed because of exception-handling code inside the loop body. You can
remove the exception-handling code or use different libraries, etc.

Example
Consider the following:

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/io.hpp>

namespace ublas = boost::numeric::ublas;

int main () {
 unsigned size = 1000;
 ublas::vector<double> dest(size), src(size), arg(src);

 for (int i = 0; i < size; ++ i) {
 src(i) = i * 1.2;
 arg(i) = i * 2.3;
 }

 // Loop to be vectorized
 dest = src + 1.5 * arg;

 return 0;
};

In this case, the compiler is unable to vectorize the loop at setting O2, the default. Remove the exception-
handling code or recode using different libraries.

Verify
Make sure that the restructured code without exception-handling code inside the loop-body follows original
program semantics.

GAP Message (Diagnostic ID 30536)

Message
Add %s option for better type-based disambiguation analysis by the compiler, if appropriate (the option will
apply for the entire compilation). This will improve optimizations such as vectorization for the loop at line
%d.

Optimization and Programming

2183

Advice
Use option -fnoargument-alias (Linux* OS and macOS) or /Qno-alias-args (Windows* OS) for the
specified file. This option will help the compiler to optimize the loop at the specified line. The user has to
verify that there is no argument-aliasing for routines in this file before applying this option for the current
file. This option is particularly useful for C++ programs since it enables type-based disambiguation between
pointers that are passed in as arguments, which in turn enables optimizations such as vectorization and
parallelization.

Option -fargument-alias (Linux* OS and macOS) and /Qalias-args (Windows* OS) enable or disable
the C/C++ rule that function arguments may be aliased. When disabling the rule, you assert that this is safe.

Example
Consider the following example that demonstrates a violation of -fnoargument-alias
or /Qno-alias-args:

void f(double *p, double *q, double *r) {
 int i;
 for (i = 0; i < n; i++)
 p[i] = q[i] + r[i];
}

int n, m;
double A[100], B[100];
...
f(&A[n], &A[m], &B[0]);

Since both pointers p and q will be pointing to the same array A, there may be overlap depending on the
values of n and m.

Also, you cannot use the restrict keyword for parameters p and q in the function f for this test case.

You must analyze all the callers of function f in the current file and make sure that such overlap does not
exist before applying -fnoargument-alias or /Qno-alias-args or the restrict qualifier. Note that such call
sites may occur in other files as well.

Verify
Make sure that the semantics of this option is obeyed for the entire compilation.

Another way to get the same effect is to add the "restrict" keyword to each pointer-typed formal parameter
of the routine "%s". This allows optimizations such as vectorization to be applied to the loop at line %d.
Make sure that semantics of the "restrict" pointer qualifier is satisfied; in the routine, all data accessed
through the pointer must not be accessed through any other pointer.

See Also
GAP Message (Diagnostic ID 30537)

GAP Message (Diagnostic ID 30537)

Message
Add the "restrict" keyword to each pointer-typed formal parameter of the routine "%s". This allows
optimizations such as parallelization and vectorization to be applied to the loop at line %d.

Advice
Rather than using option -fnoargument-alias (Linux* OS and macOS) or /Qno-alias-args (Windows* OS),
which affects the entire file, you can add the restrict qualifier to the pointer arguments to this routine. This
change is more localized since it affects only the routines where the keyword is applied.

 Intel® C++ Compiler Classic Developer Guide and Reference

2184

The restrict qualifier is part of C standard C99. This qualifier can be applied to a data pointer to indicate that
during the scope of that pointer declaration, all data accessed through it will be accessed only through that
pointer but not through any other pointer. So, the restrict keyword enables the compiler to perform certain
optimizations based on the premise that a given object cannot be changed through another pointer. You must
ensure that restrict-qualified pointers are used as they are intended to be used. Otherwise, undefined
behavior may result.

The Intel® Compiler requires that you also specify option [Q]restrict when compiling non-C99 programs.

Example
Consider the following:

void matrix_mul_matrix(int N, float * C, float *A, float *B) {
 int i,j,k;

 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 C[i*N+j]=0;
 for(k=0;k<N;k++) {
 C[i*N+j]+=A[i*N+k] * B[k*N+j];
 }
 }
 }
}

In this case, the compiler is unable to apply loop optimizations such as loop-interchange and vectorization at
default setting O2.

If you determine it is safe to do so, you can modify the program code as follows:

void matrix_mul_matrix(int N, float * restrict C, float * restrict A, float
 * restrict B) {
 int i,j,k;

 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 C[i*N+j]=0;
 for(k=0;k<N;k++) {
 C[i*N+j]+=A[i*N+k] * B[k*N+j];
 }
 }
 }
}

Note that instead of using the restrict qualifier, you could have specified -fnoargument-alias
or /Qno-alias-args before compiling the code.

Verify
Make sure that semantics of the "restrict" pointer qualifier is satisfied: in the routine, all data accessed
through the pointer must not be accessed through any other pointer.

See Also
GAP Message (Diagnostic ID 30536)

Optimization and Programming

2185

GAP Message (Diagnostic ID 30538)

Message
Moving the block of code that consists of a function-call (line %d), if-condition (line %d), and an early return
(line %d) to outside the loop may enable parallelization of the loop at line %d.

Advice
Move the function call and an associated return from inside the loop (perhaps by inserting them before the
loop) to help parallelize the loop.

This kind of function-leading-to-return inside a loop usually handles some error-condition inside the loop. If
this error check can be done before starting the execution of the loop without changing the program
semantics, the compiler may be able to parallelize the loop thus improving performance.

Example
Consider the following:

extern int num_nodes;
typedef struct TEST_STRUCT {
 // Coordinates of city1
 float latitude1;
 float longitude1;

 // Coordinates of city2
 float latitude2;
 float longitude2;
} test_struct;

extern int *mark_larger;
extern float *distances, **matrix;
extern test_struct** nodes;
extern test_struct ***files;
extern void init_node(test_struct *node, int i);
extern void process_nodes(void);
float compute_max_distance(void);

extern int check_error_condition(int width);

#include <math.h>
#include <stdio.h>

void process_nodes(int width)
{
 float const R = 3964.0;
 float temp, lat1, lat2, long1, long2, result, pat2;
 int m, j, temp1 = num_nodes;

 nodes = files[0];
 m = 1;

#pragma loop count min(4)
#pragma parallel
 for (int k=0; k < temp1; k++) {

 if (check_error_condition(width)) {

 Intel® C++ Compiler Classic Developer Guide and Reference

2186

 return;
 }

 lat1 = nodes[k]->latitude1;
 lat2 = nodes[k]->latitude2;

 long1 = nodes[k]->longitude1;
 long2 = nodes[k]->longitude2;

 // Compute the distance between the two cities
 temp = sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) *
 cos(long1-long2);
 result = 2.0 * R * atan(sqrt((1.0-temp)/(1.0+temp)));

 pat2 = 0;
 for(j=0; j<width; j++) {
 pat2 += distances[j];
 matrix[k][j] = distances[k]+j;
 }
 // Store the distance computed in the distances array
 if (result > distances[k]) {
 distances[k] = result + pat2;
 }
 }
}

In this case, the compiler is unable to parallelize the loop at line 38.

If you determine it is safe to do so, you can modify the above code as follows:

extern int num_nodes;
typedef struct TEST_STRUCT {
 // Coordinates of city1
 float latitude1;
 float longitude1;

 // Coordinates of city2
 float latitude2;
 float longitude2;
} test_struct;

extern int *mark_larger;
extern float *distances, **matrix;
extern test_struct** nodes;
extern test_struct ***files;
extern void init_node(test_struct *node, int i);
extern void process_nodes(void);
float compute_max_distance(void);

extern int check_error_condition(int width);

#include <math.h>
#include <stdio.h>

void process_nodes(int width) {
 float const R = 3964.0;
 float temp, lat1, lat2, long1, long2, result, pat2;
 int m, j, temp1 = num_nodes;

Optimization and Programming

2187

 nodes = files[0];
 m = 1;

 if (check_error_condition(width)) {
 return;
 }

#pragma loop count min(4)
#pragma parallel
 for (int k=0; k < temp1; k++) {

 lat1 = nodes[k]->latitude1;
 lat2 = nodes[k]->latitude2;

 long1 = nodes[k]->longitude1;
 long2 = nodes[k]->longitude2;

 // Compute the distance between the two cities
 temp = sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) *
 cos(long1-long2);
 result = 2.0 * R * atan(sqrt((1.0-temp)/(1.0+temp)));

 pat2 = 0;
 for(j=0; j<width; j++) {
 pat2 += distances[j];
 matrix[k][j] = distances[k]+j;
 }
 // Store the distance computed in the distances array
 if (result > distances[k]) {
 distances[k] = result + pat2;
 }
 }
}

Verify
Confirm that the function call does not rely on any computation inside the loop and that restructuring the
code as suggested above, retains the original program semantics.

GAP Message (Diagnostic ID 30753)

Message
Convert array of struct "%s" into a new struct whose fields are arrays of the corresponding fields in the
original struct. This improves performance due to better data locality.

Advice
You should apply full peeling to a class or structure. This is done by splitting a class or structure into separate
fields. This should improve performance by better utilizing the processor cache. This message is generated
only when the entire application is built with Interprocedural Optimization (IPO). This transformation requires
that you change all access to any peeled structure and its fields in the entire application. In some cases, it
may not be easy to change source code to apply full peeling.

 Intel® C++ Compiler Classic Developer Guide and Reference

2188

Example
Consider the following:

// peel.c
#include <stdio.h>
#include <stdlib.h>

#define N 100000
int a[N];
double b[N];
struct S3 {
 int *pi;
 double d;
 int j;
};

struct S3 *sp;

void init_hot_s3_i() {

 int ii = 0;

 for (ii = 0; ii < N; ii++) {
 sp[ii].pi = &a[ii];
 }
}
void init_hot_s3_d() {
 int ii = 0;

 for (ii = 0; ii < N; ii++) {
 sp[ii].d = b[ii];
 }
}
void init_hot_s3_j() {
 int ii = 0;

 for (ii = 0; ii < N; ii++) {
 sp[ii].j = 0;
 }
}
void dump_s3() {
 int ii;

 for (ii = 0; ii < N; ii++) {
 printf("i= %d ", *(sp[ii].pi));
 printf("d= %g \n", sp[ii].d);
 printf("j= %g \n", sp[ii].j);
 }
}

main() {

 sp = (struct S3 *)calloc(N, sizeof(struct S3));
 init_hot_s3_i();
 init_hot_s3_d();
 init_hot_s3_j();
 dump_s3();
}

Optimization and Programming

2189

In this case, the compiler tells you to convert struct "S3".

If you determine it is safe to do so, you can modify the program code as follows:

#include <stdio.h>
#include <stdlib.h>

#define N 100000
int a[N];
double b[N];
struct S3 {
 int *pi;
};
struct new_d {
 double d;
};
struct new_j {
 int j;
};

struct S3 *sp;
struct new_d *sp_d;
struct new_j *sp_j;

void init_hot_s3_i() {

 int ii = 0;

 for (ii = 0; ii < N; ii++) {
 sp[ii].pi = &a[ii];
 }
}
void init_hot_s3_d() {
 int ii = 0;

 for (ii = 0; ii < N; ii++) {
 sp[ii].d = b[ii];
 }
}
void init_hot_s3_j() {
 int ii = 0;

 for (ii = 0; ii < N; ii++) {
 sp[ii].j = 0;
 }
}
void dump_s3() {
 int ii;

 for (ii = 0; ii < N; ii++) {
 printf("i= %d ", *(sp[ii].pi));
 printf("d= %g \n", sp[ii].d);
 printf("j= %g \n", sp[ii].j);
 }
}

main() {

 sp = (struct S3 *)calloc(N, sizeof(struct S3));

 Intel® C++ Compiler Classic Developer Guide and Reference

2190

 init_hot_s3_i();
 init_hot_s3_d();
 init_hot_s3_j();
 dump_s3();
}

Verify
Make sure that the restructured code satisfies the original program semantics.

GAP Message (Diagnostic ID 30754)

Message
Aligning the fields '%s' in the structure '%s' on an 8-byte boundary may improve performance. Default
alignment of double precision floating point data is 4-byte on the Linux IA32 platform. [ALTERNATIVE]
Reordering fields of the structure may help to align double precision floating point data on an 8-byte
boundary. [ALTERNATIVE] Another way is to use __attribute__((aligned(8))) for the fields '%s' in the
structure '%s' to allocate the fields on an 8-byte boundary.

This messsage is only available on Linux* systems.

Advice
You must reorder the fields of a class or structure type to make "double" fields 8-byte aligned. On Linux*
systems on IA-32 architecture, "double" fields are not required to be 8-byte aligned. This should enable
optimizations like vectorization to generate better code. You must verify that the application code does not
rely on the structure fields to be laid out in a specific order.

Example
Consider the following:

//alignment.c
#include <stdlib.h>
#include <stdio.h>

#define N 1000

struct S {
 int i;
 double d1;
 double d2;
 double d3;
};

struct S *sp;

static struct S*
alloc_s(int num) {
 struct S * temp;

 temp = calloc(num, sizeof(struct S));
 return temp;
}

struct S temp;

Optimization and Programming

2191

static void
swap_s(int i, int j) {
 memcpy(&temp, sp + i, sizeof(struct S));
 memcpy(sp + i, sp + j, sizeof(struct S));
 memcpy(sp+ j, &temp, sizeof(struct S));
}

static void
init_s(int num) {
 int ii;

 for (ii = 0; ii < num; ii++) {
 sp[ii].i = ii;
 sp[ii].d1 = (double) ii + 1;
 sp[ii].d2 = (double) ii + 2;
 sp[ii].d3 = (double) ii + 3;
 }
}

main() {
 int ii;
 double d = 0.0;

 sp = alloc_s(N);

 for(ii = 0; ii < N -1; ii += 2) {
 swap_s(ii, ii+1);
 }

 for (ii = 0; ii < N ; ii++) {
 sp[ii].d1 = sp[ii].d1 * sp[ii].d2 * sp[ii].d3;
 d += sp[ii].d1;
 }

 for (ii = 0; ii < N ; ii++) {
 printf(" %d: %g %g %g \n", sp[ii].i, sp[ii].d1, sp[ii].d2, sp[ii].d3);
 }
}

In this case, when the program is compiled, the compiler generates a message saying that aligning the fields
'd1, d2, d3' in the structure 'S' on an 8-byte boundary may improve performance.

Alternatively, '__attribute__((aligned(8)))' can be used to align 'd1, d2, d3' on an 8-byte boundary. One
possible way to do this is shown below:

struct S {
 int i;
 __attribute__((aligned(8))) double d1;
 double d2;
 double d3;
};

Verify
Make sure that the restructured code satisfies the original program semantics. Note that size of the structure
may change due to the alignment changes. Make sure that the change in the structure layout satisfies the
original program semantics.

 Intel® C++ Compiler Classic Developer Guide and Reference

2192

GAP Message (Diagnostic ID 30755)

Message
Reordering the fields of the structure '%s' will improve data locality. Suggested field order: '%s'.

Advice
You should reorder the fields of the class or structure type in the specified order. This should improve
performance by better utilizing the processor cache.

You must verify that the application code does not rely on the structure fields to be laid out in a specific
order. For example, if the application code uses the address of a field to access other fields, it may stop
working once the field reordering is applied. Note also that such code is not considered valid.

Example
Consider the following:

//field_reord.c
struct str {
 int a1, b1, carr[100], c1, d1, e1;
};

extern struct str sp[];

int hot_func1() {
 int i, ret = 0;

 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret += sp[i].c1;
 }
 return ret;
}

int hot_func2() {
 int ret = 0, i;
 for (i = 0; i < 100000; i++) {
 ret += sp[i].a1;
 ret -= sp[i].e1;
 }
 return ret;
}

int hot_func3() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].carr[10];
 }
 return ret + sp[0].b1 + sp[0].d1;
}

In this case, when the program is compiled, the compiler generates a message saying that reordering the
fields of the structure 'str' will improve data locality and that the suggested field order is 'a1, c1, e1, carr, b1,
d1'.

Optimization and Programming

2193

For the above example, the only changes in field_reord.c to reorder fields of the structure 'str' as advised
are the following:

//field_reord.c
struct str {
 int a1, c1, e1, carr[100], b1, d1;
};
...

Verify
The suggestion is based on the field references in the current compilation. Please make sure that the
restructured code satisfies the original program semantics.

GAP Message (Diagnostic ID 30756)

Message
Split the structure '%s' into two parts to improve data locality. Frequently accessed fields are '%s';
performance may improve by putting these fields into one structure and the remaining fields into another
structure. Alternatively, performance may also improve by reordering the fields of the structure. Suggested
field order: '%s'.

Advice
This message is issued when both structure splitting and field reordering transformations are applicable.
Structure splitting transformation is expected to lead to higher performance gains if the transformation can
be successfully applied. However, field reordering transformation is usually simple enough to apply, but the
downside is that the performance gain seen may be lower.

You must verify that the structure meets the requirements for applying the splitting or reordering
transformation. Some of these requirements are described in the description of these individual
transformations.

Example
Consider the following:

//str_split_reord.c
struct str {
 int a1, b1, carr[100], c1, e1;
};

#define N 1000000

struct str *sp;

void allocate_str_mem() {
 sp = malloc(N * sizeof(struct str));
}

int hot_func1() {
 int i, ret = 0;

 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret += sp[i].c1;
 }
 sp->carr[0] = ret;

 Intel® C++ Compiler Classic Developer Guide and Reference

2194

 return ret;
}

int hot_func2() {
 int ret = 0, i;
 for (i = 0; i < 100000; i++) {
 ret += sp[i].a1;
 ret -= sp[i].e1;
 }
 return ret;
}

int hot_func3() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].b1;
 }
 return ret;
}

In this case, a message is displayed that is similar to the following:

drive: program-name: remark #30756: (DTRANS) Split the structure 'str' into two parts to improve data
locality. Frequently accessed fields are 'a1, b1, c1'; performance may improve by putting these fields into one
structure and the remaining fields into another structure. Alternatively, performance may also improve by
reordering the fields of the structure. Suggested field order: 'a1, c1, e1, b1, carr'. ...(etc.)

If you determine it is safe to do so, you can modify the program code as shown below to split the structure
'str'. Other references to structure 'str' that are not in the current module should also be similarly modified.

struct str_cold {
 int carr[100], e1;
};

struct str {
 int a1, b1, c1; struct str_cold *cold_ptr;
};

#define N 1000000

struct str *sp;

void allocate_str_mem()
{
 struct str *temp;
 struct str_cold *cold_begin;
 int index;

 temp = malloc(N * sizeof(struct str) + N * sizeof(struct str_cold));
 sp = temp;
 cold_begin = (struct str_cold *) (temp + N);
 for(index = 0; index < N; index++) {
 temp[index].cold_ptr = cold_begin + index;
 }
}

int hot_func1() {
 int i, ret = 0;

 for (i = 0; i < 1000000; i++) {

Optimization and Programming

2195

 ret += sp[i].a1;
 ret += sp[i].c1;
 }
 sp->cold_ptr->carr[0] = ret;
 return ret;
}

int hot_func2() {
 int ret = 0, i;
 for (i = 0; i < 100000; i++) {
 ret += sp[i].a1
 ret -= sp[i].cold_ptr->e1;
 }
 return ret;
}

int hot_func3() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].b1;
 }
 return ret;
}

For the above example, the only source change required to reorder fields in structure 'str' as alternatively
suggested are the following:

//str_split_reord.c
struct str {
 int a1, c1, e1, b1, carr[100];
};
...

Verify
The suggestion is based on the field references in the current compilation. Please make sure that the
restructuring is applied to field references in all source files of the application, and that the restructured code
satisfies the original program semantics.

GAP Message (Diagnostic ID 30757)

Message
Remove unused field(s) '%s' from the struct '%s'.

This message is emitted only with whole-program recognition.

Advice
Some unused fields were seen in a class or structure type. If the unused fields can be removed from the
structure definition, it will lead to reduced memory usage and better cache utilization since the cache will no
longer be filled with unused data.

The advice is based on the analysis of the source code that is seen. You must verify that the fields that are
reported as unused are not accessed elsewhere in the application. You also need to be careful when
removing unused fields if the code relies on the structure fields to be laid out in a specific order. As an
example, if the application code uses the address of a field to access other fields, it may stop working once
unused fields are removed. Note that such code is not considered valid in the first place.

 Intel® C++ Compiler Classic Developer Guide and Reference

2196

Example
Consider the following:

//unused_field_1.c
struct str {
 int a1, b1, c1, d1, e1;
};

struct str sp[1000000];
 int hot_func1() {
 int i, ret = 0;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret += sp[i].b1;
 }
 return ret;
}

int hot_func2() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret -= sp[i].c1;
 }
 return ret;
}

int hot_func3() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].d1;
 }
 return ret;
}

main() {
 hot_func1();
 hot_func2();
 hot_func3();
}

In this case, if the unused fields can be removed, the only source change needed would be the following:

//unused_field_1.c
struct str {
 int a1, b1, c1, d1;
};
...

Verify
Make sure that the restructured code satisfies the original program semantics.

See Also
GAP Message (Diagnostic ID 30758)

Optimization and Programming

2197

GAP Message (Diagnostic ID 30758)

Message
Remove unused field(s) "%s" from the struct "%s".

This message is emitted even without whole-program recognition in advanced mode.

Advice
Some unused fields were seen in a class or structure type. If the unused fields can be removed from the
structure definition, it will lead to reduced memory usage and better cache utilization since the cache will no
longer be filled with unused data.

The advice is based on the analysis of the source code that is seen. You must verify that the fields that are
reported as unused are not accessed elsewhere in the application. You also need to be careful when
removing unused fields if the code relies on the structure fields to be laid out in a specific order. As an
example, if the application code uses the address of a field to access other fields, it may stop working once
unused fields are removed. Note that such code is not considered valid in the first place.

Example
Consider the following:

//unused_field_2.c
struct str {
 int a1, b1, c1, d1, e1;
};

extern struct str sp[];

int hot_func1() {
 int i, ret = 0;

 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret += sp[i].b1;
 }
 return ret;
}

int hot_func2() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret -= sp[i].c1;
 }
 return ret;
}

int hot_func3() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].d1;
 }
 return ret;
}

 Intel® C++ Compiler Classic Developer Guide and Reference

2198

In this case, if the unused fields can be removed, the only source change needed would be the following:

//unused_field_2.c
struct str {
 int a1, b1, c1, d1;
};
...

Verify
The suggestion is based on the field references in the current compilation. Please make sure that there are
no references to these fields across the entire application.

See Also
GAP Message (Diagnostic ID 30757)

GAP Message (Diagnostic ID 30759)

Message
Remove unused field(s) '%s' from the struct '%s'. The fields: '%s' were conservatively assumed by the
compiler as referenced since their address is taken.

This message is emitted only with whole-program recognition.

Advice
Some unused fields were seen in a class or structure type. If the unused fields can be removed from the
structure definition, it will lead to reduced memory usage and better cache utilization since the cache will no
longer be filled with unused data.

You must verify that the fields that are reported as unused are not accessed elsewhere in the application. You
also need to be careful when removing unused fields if the code relies on the structure fields to be laid out in
a specific order. For example, if the application code uses the address of a field to access other fields, it may
stop working once unused fields are removed. Note that such code is not considered valid in the first place.

The unused field analysis considers address taken fields as used. It will report address taken fields also when
reporting any unused fields.

Example
Consider the following:

//unused_field_3.c
struct str {
 int a1, b1, c1, d1, e1, f1;
};

struct str sp[1000000];

int hot_func1() {
 int i, ret = 0;

 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret += sp[i].b1;
 }
 return ret;
}

Optimization and Programming

2199

int hot_func2() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret -= sp[i].c1;
 }
 return ret;
}

int *gip;

int hot_func3() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].d1;
 }
 gip = &(sp->f1);
 return ret;
}

int main() {
 hot_func1();
 hot_func2();
 hot_func3();
}

The above code will cause a message to be displayed that is similar to the following:

program-name: remark #30759: (DTRANS) Remove unused field(s) 'e1' from the struct 'str'. The fields: 'f1'
were conservatively assumed by the compiler as referenced since their address is taken... (etc.)

In this case, if the unused fields can be removed, the only source change needed would be the following:

//unused_field_3.c
struct str {
 int a1, b1, c1, d1, f1;
};
...

Verify
Make sure that the restructured code satisfies the original program semantics.

See Also
GAP Message (Diagnostic ID 30760)

GAP Message (Diagnostic ID 30760)

Message
Remove unused field(s) '%s' from the struct '%s'. The fields: '%s' were conservatively assumed by the
compiler as referenced since their address is taken.

This message is emitted even without whole-program recognition in advanced mode.

Advice
Some unused fields were seen in a class or structure type. If the unused fields can be removed from the
structure definition, it will lead to reduced memory usage and better cache utilization since the cache will no
longer be filled with unused data.

 Intel® C++ Compiler Classic Developer Guide and Reference

2200

You must verify that the fields that are reported as unused are not accessed elsewhere in the application. You
also need to be careful when removing unused fields if the code relies on the structure fields to be laid out in
a specific order.

For example, if the application code uses the address of a field to access other fields, it may stop working
once unused fields are removed. Note that such code is not considered valid in the first place.

The unused field analysis considers address taken fields as used. It will report address taken fields also when
reporting any unused fields.

Example
Consider the following:

//unused_field_4.c
struct str {
 int a1, b1, c1, d1, e1, f1;
};

extern struct str sp[];

int hot_func1() {
 int i, ret = 0;

 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret += sp[i].b1;
 }
 return ret;
}

int hot_func2() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].a1;
 ret -= sp[i].c1;
 }
 return ret;
}

int *gip;

int hot_func3() {
 int ret = 0, i;
 for (i = 0; i < 1000000; i++) {
 ret += sp[i].d1;
 }

 gip = &(sp->f1);
 return ret;
}

The above code will cause a message to be displayed that is similar to the following:

drive: program-name: remark #30760: (DTRANS) Remove unused field(s) 'e1' from the struct 'str'. The
fields: 'f1' were conservatively assumed by the compiler as referenced since their address is taken. ...(etc.)

Optimization and Programming

2201

In this case, the if the unused fields can be removed, the only source change needed would be the following:

//unused_field_4.c
struct str {
 int a1, b1, c1, d1, f1;
};
...

Verify
The suggestion is based on the field references in the current compilation. Please make sure that there are
no references to these fields across the entire application.

See Also
GAP Message (Diagnostic ID 30759)

Profile-Guided Optimization (PGO)
Profile-guided Optimization (PGO) improves application performance by shrinking code size, reducing branch
mispredictions, and reorganizing code layout to reduce instruction-cache problems. PGO provides information
to the compiler about areas of an application that are most frequently executed. By knowing these areas, the
compiler is able to be more selective and specific in optimizing the application.

PGO consists of three phases or steps.

1. Instrument the program. The compiler creates and links an instrumented program from your source
code and special code from the compiler.

2. Run the instrumented executable. Each time you execute the instrumented code, the instrumented
program generates a dynamic information file, which is used in the final compilation.

3. Final compilation. When you compile a second time, the dynamic information files are merged into a
summary file. Using the summary of the profile information in this file, the compiler attempts to
optimize the execution of the most heavily traveled paths in the program.

 Intel® C++ Compiler Classic Developer Guide and Reference

2202

See Profile-guided Optimization Options for information about the supported options and Profile an
Application for specific details about using PGO from the command line.

PGO provides the following benefits:

• Use profile information for register allocation to optimize the location of spill code.
• Improve branch prediction for indirect function calls by identifying the most likely targets. Some

processors have longer pipelines, which improves branch prediction and translates into high performance
gains.

• Detect and do not vectorize loops that execute only a small number of iterations, reducing the run time
overhead that vectorization might otherwise add.

Interprocedural optimization (IPO) and PGO can affect each other; using PGO can often enable the compiler
to make better decisions about inline function expansion, which increases the effectiveness of interprocedural
optimizations. Unlike other optimizations, such as those strictly for size or speed, the results of IPO and PGO
vary. This variability is due to the unique characteristics of each program, which often include different
profiles and different opportunities for optimizations.

Performance Improvements with PGO
PGO works best for code with many frequently executed branches that are difficult to predict at compile time.
An example is the code with intensive error-checking in which the error conditions are false most of the time.
The infrequently executed (cold) error-handling code can be relocated so the branch is rarely predicted
incorrectly. Minimizing cold code interleaved into the frequently executed (hot) code improves instruction
cache behavior.

When you use PGO, consider the following guidelines:

• Minimize changes to your program after you execute the instrumented code and before feedback
compilation. During feedback compilation, the compiler ignores dynamic information for functions
modified after that information was generated. If you modify your program, the compiler can issue a
warning that the dynamic information does not correspond to a modified function when PGO remarks are
enabled or found in the optimization report.

Optimization and Programming

2203

• Repeat the instrumentation compilation if you make many changes to your source files after execution
and before feedback compilation.

• Know the sections of your code that are the most heavily used. If the data set provided to your program
is very consistent and displays similar behavior on every execution, then PGO can probably help optimize
your program execution.

• Different data sets can result in different algorithms being called. The difference can cause the behavior of
your program to vary for each execution. In cases where your code behavior differs greatly between
executions, PGO may not provide noticeable benefits. If it takes multiple data sets to accurately
characterize application performance, execute the application with all data sets then merge the dynamic
profiles; this technique should result in an optimized application.

You must insure that the benefit of the profiled information is worth the effort required to maintain up-to-
date profiles.

Profile-Guided Optimization via Hardware Counters
A lightweight profiling mechanism can be used to achieve many of the benefits of instrumentation-based
profiling, but without the overhead of inserting instrumentation into the application binary. This mode of
operation can be beneficial in cases where increased code/data size or changes in runtime due to
instrumentation may make regular Performance-Guided Optimization (PGO) infeasible. This approach
requires the use of Intel® VTune™ Profiler to collect information from the hardware counters. The information
is collected with minimal overhead, and combined with debug information produced by the compiler to
identify the primary code path for optimizations.

Follow these steps to use this method:

1. Compile the application with the option prof-gen-sampling.

This option instructs the compiler to generate additional debug information for the application, which is
used to map the information collected by the hardware counters to a specific source code. Using this
option does not affect the generated instruction sequence in the way that instrumented PGO does.
Optimizations may be enabled during this build, but it is recommended that you disable function
inlining.

2. Run the generated executable on one or more representative workloads with the Intel VTune Profiler
tool:

<installation-root>/bin64/amplxe-pgo-report.sh <your application and command line>
Additional information regarding options for data collection can be found in the Intel VTune Profiler
documentation. This step generates files in the form: rNNNpgo_icc.pgo (where NNN is a three digit
number). These files are used as input in the next steps.

3. Merge the report files produced during step 2.

The tool profmergesampling can be used to produce an indexed file of results that speeds up
processing data during the next step.

profmergesampling -file <input-file[:input_file]*> -out <output_name>
4. Compile the application with the option prof-use-sampling:input-file[:input_file]*

In this step, one or more result files produced during step 2 (or an indexed file from step 3) can be fed
into the compiler to direct the optimizations.

See Also
prof-gen-sampling
 compiler option

prof-use-sampling
 compiler option

Profile an Application with Instrumentation
Profiling an application includes the following three phases:

 Intel® C++ Compiler Classic Developer Guide and Reference

2204

• Instrumentation compilation and linking
• Instrumented execution
• Feedback compilation

This topic provides detailed information on how to profile an application by providing sample commands for
each of the three phases (or steps).

1. Instrumentation compilation and linking

Use [Q]prof-gen to produce an executable with instrumented information included. Use /Qcov-gen
(Windows) option to obtain minimum instrumentation only for code coverage.

Operating System Commands

Linux and macOS icpc -prof-gen -prof-dir/usr/profiled
a1.cpp a2.cpp a3.cpp
icpc a1.o a2.o a3.o

Windows icl /Qprof-gen /Qprof-dirc:\profiled
a1.cpp a2.cpp a3.cpp
icl a1.obj a2.obj a3.obj

Windows icl /Qcov-gen /Qcov-dirc:/cov_data a1.cpp
a2.cpp a3.cpp
icl a1.obj a2.obj a3.obj

Use the [Q]prof-dir or /Qcov-dir (Windows) option if the application includes the source files
located in multiple directories; using the option insures the profile information is generated in one
consistent place. The example commands demonstrate how to combine these options on multiple
sources.

The compiler gathers extra information when you use the -prof-gen=srcpos (Linux and macOS)
or /Qprof-gen:srcpos (Windows) option; however, the extra information is collected to provide
support for specific Intel tools, including the code coverage Tool. If you do not expect to use such tools,
do not specify -prof-gen=srcpos (Linux and macOS) or /Qprof-gen:srcpos (Windows); the
extended option does not provide better optimization and could slow parallel compile times. If you are
interested in using the instrumentation only for code coverage, use the /Qcov-gen (Windows) option,
instead of the /Qprof-gen:srcpos (Windows) option, to minimize instrumentation overhead.

PGO data collection is optimized for collecting data on serial applications at the expense of some loss of
precision on areas of high parallelism. However, you can specify the threadsafe keyword with the
-prof-gen (Linux* and macOS) or the /Qprof-gen (Windows) compiler option for files or applications
that contain parallel constructs using OpenMP* features, for example. Using the threadsafe keyword
produces instrumented object files that support the collection of PGO data on applications that use a
high level of parallelism but may increase the overhead for data collection.

NOTE
Unlike serial programs, parallel programs using OpenMP* may involve dynamic scheduling of code
paths, and counts collected may not be perfectly reproducible for the same training data set.

2. Instrumented execution

Run your instrumented program with a representative set of data to create one or more dynamic
information files.

Operating System Command

Linux and macOS ./a1.out

Windows a1.exe

Optimization and Programming

2205

Executing the instrumented applications generates a dynamic information file that has a unique name
and .dyn suffix. A new dynamic information file is created every time you execute the instrumented
program.

You can run the program more than once with different input data.

By default, the .dyn filename follows this naming convention: <timestamp>_<pid>.dyn. The .dyn file
is either placed into a directory specified by an environment variable, a compile-time specified directory,
or the current directory.

To make it easy to distinguish files from different runs, you can specify a prefix for the .dyn filename in
the environment variable, INTEL_PROF_DYN_PREFIX. In such a case, executing the instrumented
application generates a .dyn filename as follows: <prefix>_<timestamp>_<pid>.dyn, where
<prefix> is the identifier that you have specified. Be sure to set the INTEL_PROF_DYN_PREFIX
environment variable prior to starting your instrumented application.

NOTE
The value specified in INTEL_PROF_DYN_PREFIX environment variable must not contain < > : " / \
| ? * characters. The default naming scheme will be used if an invalid prefix is specified.

3. Feedback compilation

Before this step, copy all .dyn and .dpi files into the same directory. Compile and link the source files
with [Q]prof-use; the option instructs the compiler to use the generated dynamic information to
guide the optimization:

Operating System Examples

Linux and macOS icpc -prof-use -ipo -prof-dir/usr/
profiled a1.cpp a2.cpp a3.cpp

Windows icl /Qprof-use /Qipo /Qprof-
dir:c:\profiled a1.cpp a2.cpp a3.cpp

This final phase compiles and links the sources files using the data from the dynamic information files
generated during instrumented execution (phase 2).

In addition to the optimized executable, the compiler produces a pgopti.dpi file.

Most of the time, you should specify the default optimizations,O2, for phase 1, and specify more
advanced optimizations, [Q]ipo, during the phase 3 (final) compilation. The example shown above
usedO2 in step 1 and[Q]ipo in step 3.

NOTE
The compiler ignores the [Q]ipo or [Q]ip option during phase 1 with [Q]prof-gen.

Profile-Guided Optimization Report
The PGO report can help identify where and how the compiler used profile information to optimize the source
code. The PGO report can also identify where profile information was discarded due to source code changes
made between the time of instrumentation and feedback steps. The PGO report is most useful when
combined with the PGO compilation steps outlined in the topic, Profile an Application with Instrumentation.
Without the profiling data generated during the application profiling process the report will generally not
provide useful information.

Combine the final PGO step with the reporting options by including -prof-use (Linux* and macOS)
or /Qprof-use (Windows*). The following syntax examples demonstrate how to run the report using the
combined options.

 Intel® C++ Compiler Classic Developer Guide and Reference

2206

Operating System Syntax Examples

Linux* icpc -prof-use -qopt-report-phase=pgo
pgotools_sample.c

macOS icpc -prof-use -qopt-report-phase=pgo
pgotools_sample.c

Windows* icl /Qprof-use /Qopt-report-phase:pgo
pgotools_sample.c

By default the PGO report generates a medium level of detail (where the [q or Q]opt-report argument
n=2). You can use the -qopt-report=n (Linux and macOS) or /Qopt-report:n option along with the
[q or Q]opt-report-phase option if you want a greater or lesser level of diagnostic detail.

The output, by default, comes out to a file with the same name as the object file but with an .optrpt
extension and is written into the same directory as the object file. Using the entries in the example above,
the output file will be pgotools_sample.optrpt. Use the -qopt-report-file (Linux and macOS) or
the /Qopt-report-file (Windows) option to specify any other name for the output file that captures the
report results, or to specify that the output should go to stdout or stderr.

See Also
qopt-report-phase, Qopt-report-phase
 compiler option
qopt-report, Qopt-report
 compiler option
qopt-report-file, Qopt-report-file
 compiler option
prof-use, Qprof-use
 compiler option

Profile an Application

PGO API Support
The Profile-Guided Optimizations (PGO) API lets you control the generation of profile information during the
instrumented execution phase of profile-guided optimizations.

A set of functions and an environment variable comprise the PGO API. The remaining topics in this section
describe the associated functions and environment variables.

The compiler sets a define for the _PGO_INSTRUMENT pre-processor macro when you compile with
[Q]prof-gen options, to instrument your code. Without instrumentation, the PGO API functions cannot
provide PGO API support.

Normally, profile information is generated by an instrumented application when it terminates by calling the
standard exit() function.

To ensure that profile information is generated, the functions described in this section may be necessary or
useful in the following situations:

• The instrumented application exits using a non-standard exit routine.
• The instrumented application is a non-terminating application: exit() is never called.
• The application requires control of when the profile information is generated.

You can use the PGO API functions in your application by including the pgouser.h header file at the top of
any source file where the functions may be used.

Example

#include <pgouser.h>

Optimization and Programming

2207

NOTE
You do not need to remove the PGO API functions from your code when you have completed the
instrumentation step. Changes to the source code at this stage could inhibit obtaining profile data
feedback on the routines that were modified. For the instrumentation step (using -[Q]prof-gen or
-[Q]prof-gen:<aug> option, where <aug> can be srcpos, globdata, or default), the definition for the
_PGO_INSTRUMENT macro is automatically set, allowing instrumentation library routines to be used.
For the production step (using -[Q]prof-use option), the definition for the _PGO_INSTRUMENT macro
is removed, allowing profile data to be fed back.

The Profile IGS Environment Variables
The environment variable for PGO API is INTEL_PROF_DUMP_INTERVAL. This environment variable may be
used to initiate Interval Profile Dumping in an instrumented user application.

The environment variable INTEL_PROF_DUMP_CUMULATIVE can be used to provide additional control over the
internal profiling dumping behavior.

The environment variable, INTEL_PROF_DYN_PREFIX, allows specifying a prefix string that is used for
naming the .dyn files. If this variable is defined then the .dyn files will be named as
<prefix>_<timestamp>_<pid>.dyn, instead of the default naming convention of
<timestamp>_<pid>.dyn. This can be useful for identifying .dyn files produced by specific training sets.

See Also
Supported Environment Variables
Interval Profile Dumping
[Q]prof-gen

Resetting Profile Information
The _PGOPTI_Prof_Reset_All() function clears the profile information collected by the instrumented
application. The prototype of the function call is listed below.

During a run of an instrumented executable, a segment is maintained for each routine executed during that
run, storing the following information:

• Number of times each basic block in the routine is executed
• Specific values observed at each data point undergoing value-profiling
• Number of times each of these values are observed

When the _PGOPTI_Prof_Reset() function is called, the basic block execution count for each basic block is set
to 0, and the value-profiling information is reset to indicate that no values were observed at any data point.

Syntax

void _PGOPTI_Prof_Reset_All(void);

The older version of this function, _PGOPTI_Prof_Reset(), is deprecated.

When _PGOPTI_Prof_Reset_All() function is called, it insures that all the counters within the main
application and all the instrumented shared libraries are cleared. All the counters for block execution counts
and value profiling information is reset to 0.

NOTE
For routines that were in progress when the reset call was made, the counts for portions of the routine
that executed following the call to the reset function may have higher counts than portions of the
routine that executed prior to the reset call.

 Intel® C++ Compiler Classic Developer Guide and Reference

2208

Dumping Profile Information
The _PGOPTI_Prof_Dump_All() function dumps the profile information collected by the instrumented
application. The prototype of the function call is listed below.

Syntax

void _PGOPTI_Prof_Dump_All(void);

An older version of this function, _PGOPTI_Prof_Dump(), is deprecated and no longer used.

The new function, _PGOPTI_Prof_Dump_All(), operates much like the deprecated function, except on
Linux* operating systems, when it is used in connection with shared libraries (.so). When
_PGOPTI_Prof_Dump_All() is called, it insures that a .dyn file is created for all shared libraries needing to
create a .dyn file. Use _PGOPTI_Prof_Dump_All() on Linux OS to insure portability and correct
functionality.

The profile information is generated in a .dyn file (generated in phase 2 of PGO).

The environment variables that affect the _PGOPTI_Prof_Dump_All() function are PROF_DIR, COV_DIR,
PROF_DPI, and COV_DPI. Set the PROF_DIR or COV_DIR environment variable to specify the directory to
which the .dyn file must be stored. Alternately, you can use the –[Q]prof_dir compiler option, when
building with -[Q]prof-gen, to specify this directory without setting the PROF_DIR or COV_DIR variable.
Set the PROF_DPI or COV_DPI environment variables to specify an alternative .dpi filename. The default
filename is pgopti.dpi. You can also use the –prof_dpi profmerge tool option, when merging the .dyn
files, to specify the filename for the summary .dpi file.

Recommended Usage
If your application does not use a standard exit() call, insert a single call to this function in the body of the
function that terminates the user application. Normally, _PGOPTI_Prof_Dump_All() should be called just
once. It is also possible to use this function in conjunction with _PGOPTI_Prof_Reset_All() function to
generate multiple .dyn files (presumably from multiple sets of input data).

NOTE
If the data is not reset between the dumps with a call to the _PGOPTI_Prof_Reset_All() function, the
counters will continue accumulating data, resulting in the subsequent .dyn file containing data that
was previously dumped.

Example

#include <pgouser.h>
void process_data(int foo) {}
int get_input_data() { return 1; }
int main(void)
{
// Selectively collect profile information for the portion
// of the application involved in processing input data.
 int input_data = get_input_data();
 while (input_data) {
 _PGOPTI_Prof_Reset All();
 process_data(input_data);
 _PGOPTI_Prof_Dump_All();
 input_data = get_input_data();

Optimization and Programming

2209

Example

 }
 return 0;
}

Interval Profile Dumping
The _PGOPTI_Set_Interval_Prof_Dump() function activates Interval Profile Dumping and sets the
approximate frequency at which dumps occur. This function is used in non-terminating applications.

The prototype of the function call is listed below.

Syntax

void _PGOPTI_Set_Interval_Prof_Dump(int interval);

This function is used in non-terminating applications.

The interval parameter specifies the time interval at which profile dumping occurs and is measured in
milliseconds. For example, if interval is set to 5000, then a profile dump and reset will occur approximately
every 5 seconds. The interval is approximate because the time-check controlling the dump and reset is only
performed upon entry to any instrumented function in your application.

Setting the interval to zero or a negative number will disable interval profile dumping, and setting a very
small value for the interval may cause the instrumented application to spend nearly all of its time dumping
profile information. Be sure to set interval to a large enough value so that the application can perform actual
work and substantial profile information is collected.

The following example demonstrates one way of using interval profile dumping in non-terminating code.

Example

#include <stdio.h>
// The next include is to access
// _PGOPTI_Set_Interval_Prof_Dump_All
#include <pgouser.h>
int returnValue() { return 100; }
int main() {
 int ans;
 printf("CTRL-C to quit.\n");
 _PGOPTI_Set_Interval_Prof_Dump(5000);
 while (1)
 ans = returnValue();
}

You can compile the code shown above by entering commands similar to the following:

Operating System Example

Linux* icc -prof-gen -o intrumented_number number.c

macOS icc -prof-gen -o intrumented_number number.c

Windows* icl /Qprof-gen /Feinstrumented_number number.c

When compiled, the code shown above will dump profile information a .dyn file about every five seconds
until the program is ended.

You can use the profmerge and proforder Tools tool to merge the .dyn files.

 Intel® C++ Compiler Classic Developer Guide and Reference

2210

Recommended usage
Call this function at the start of a non-terminating user application to initiate interval profile dumping. Note
that an alternative method of initiating interval profile dumping is by setting the environment variable
INTEL_PROF_DUMP_INTERVAL to the desired interval value prior to starting the application.

Using interval profile dumping, you should be able to profile a non-terminating application with minimal
changes to the application source code.

To control the behavior during dumping, you may use the environment variable
INTEL_PROF_DUMP_CUMULATIVE. When INTEL_PROF_DUMP_INTERVAL or the API routine
_PGOPTI_SET_INTERVAL_PROF_DUMP are used without INTEL_PROF_DUMP_CUMULATIVE, the counters are
reset after each dump, and a new .dyn file will be created containing the data collected during each interval.
This may result in a potentially large number of .dyn files that need to be stored and merged together by
profmerge.

When INTEL_PROF_DUMP_CUMULATIVE is set (to any value), the .dyn file dump will be created at a specified
interval as before, but the data will not be reset following the dump, and only the most recent .dyn file will
be kept on the file system. This allows for the ability to create a .dyn file for a non-terminating application
that contains all the accumulated counts to that point, but without the need for storage and merging of a
large set of .dyn files.

Resetting the Dynamic Profile Counters
The _PGOPTI_Prof_Reset() function resets the dynamic profile counters. The prototype of the function call
is listed below.

Syntax

void _PGOPTI_Prof_Reset(void);

This function is now deprecated. See _PGOPTI_Prof_Reset_All() function, which can be used instead.

One of the activities performed under profile-guided optimization is value-profiling. With value-profiling, the
compiler inserts instrumentation to obtain a sample of the variable values in the program. Based upon this
sampling, the compiler optimizes the user's code using frequently observed values.

In effect, during a run of an instrumented executable, the segment maintained for each routine executed
during that run stores the following information:

• Number of times each basic block in the routine is executed
• Specific values observed at each data point undergoing value-profiling
• Number of times each of these values are observed

When the _PGOPTI_Prof_Reset() function is called, the basic block execution count for each basic block is
set to 0, and the value-profiling information is reset to indicate that no values were observed at any data
point.

Recommended Usage
Use this function to clear the profile counters prior to collecting profile information on a section of the
instrumented application. See the example under Dumping Profile Information.

Dumping and Resetting Profile Information
The _PGOPTI_Prof_Dump_And_Reset() function dumps the profile information to a new .dyn file and then
resets the dynamic profile counters. Then the execution of the instrumented application continues.

The prototype of the function call is listed below.

Optimization and Programming

2211

Syntax

void _PGOPTI_Prof_Dump_And_Reset(void);

This function is used in non-terminating applications and may be called more than once. Each call will dump
the profile information to a new .dyn file.

Recommended Usage
Periodic calls to this function enables a non-terminating application to generate one or more profile
information files (.dyn files). These files are merged during the feedback phase of profile-guided
optimizations. The direct use of this function enables your application to control precisely when the profile
information is generated.

Getting Coverage Summary Information on Demand
This API is supported only on Linux* OS for C/C++ applications.

The _PGOPTI_Get_Coverage_Info() function gets the basic-block and line coverage percentage for each
instrumented file while the application is running.

The prototype of the function call is given below.

Syntax

int _PGOPTI_Get_Coverage_Info(PGOPTI_COVERAGE_SUMMARY *coverage_array);

This API provides on-demand coverage information for all the files that get profiled. The coverage
information is stored in a dynamically allocated array of structures, a pointer to which is returned in the
argument coverage_array. The return value of the call is the number of elements in this array.

You can use the coverage information as needed but you are responsible for freeing up the dynamically
allocated coverage array.

You can also choose to print the on-demand coverage information onto the terminal screen as shown in the
example below.

#include <pgouser.h>
void Coverage_Summary(void)
{
 int index, num_files;
 PGOPTI_COVERAGE_SUMMARY coverage_array, curp;
 // Get coverage summary information and print it out
 num_files = _PGOPTI_Get_Coverage_Info(&coverage_array);
 for (index = 0; index < num_files; index++) {
 curp = &coverage_array[index];
 printf("%s ", curp->file_name);
 printf("Block coverage percent: %u, ", curp->coverage_percent);
 printf("Line coverage percent: %u\n", curp->line_coverage_percent);
 free(curp->file_name);
 }
 if (num_files > 0) {
 free(coverage_array);
 }}

 Intel® C++ Compiler Classic Developer Guide and Reference

2212

High-Level Optimization (HLO)
High-level Optimizations (HLO) exploit the properties of source code constructs (for example, loops and
arrays) in applications developed in high-level programming languages. While the default optimization level,
option O2 , performs some high-level optimizations, specifying the O3 option provides the best chance for
performing loop transformations to optimize memory accesses.

NOTE
Loop optimizations may result in calls to library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors. The optimizations performed can also be
affected by certain options, such as /arch (Windows), -m (Linux and macOS), or [Q]x options.
Additional HLO transformations may be performed for Intel® microprocessors than for non-Intel
microprocessors.

Within HLO, loop transformation techniques include:

• Loop Permutation or Interchange
• Loop Distribution
• Loop Fusion
• Loop Unrolling
• Data Prefetching
• Scalar Replacement
• Unroll and Jam
• Loop Blocking or Tiling
• Partial-Sum Optimization
• Predicate Optimization
• Loop Reversal
• Profile-Guided Loop Unrolling
• Loop Peeling
• Data Transformation: Malloc Combining and Memset Combining, Memory Layout Change
• Loop Rerolling
• Memset and Memcpy Recognition
• Statement Sinking for Creating Perfect Loopnests
• Multiversioning: Checks include Dependency of Memory References, and Trip Counts
• Loop Collapsing

Interprocedural Optimization
Interprocedural Optimization (IPO) is an automatic, multi-step process that allows the compiler to analyze
your code to determine where you can benefit from specific optimizations.

The compiler may apply the following optimizations:

• Address-taken analysis
• Array dimension padding
• Alias analysis
• Automatic array transposition
• Automatic memory pool formation
• C++ class hierarchy analysis
• Common block variable coalescing
• Common block splitting

High-Level Optimization (HLO)

2213

• Constant propagation
• Dead call deletion
• Dead formal argument elimination
• Dead function elimination
• Formal parameter alignment analysis
• Forward substitution
• Indirect call conversion
• Inlining
• Mod/ref analysis
• Partial dead call elimination
• Passing arguments in registers to optimize calls and register usage
• Points-to analysis
• Routine key-attribute propagation
• Specialization
• Stack frame alignment
• Structure splitting and field reordering
• Symbol table data promotion
• Un-referenced variable removal
• Whole program analysis

IPO Compilation Models
IPO supports two compilation models - single-file compilation and multi-file compilation.

Single-file compilation uses the [Q]ip compiler option, and results in one, real object file for each source file
being compiled. During single-file compilation the compiler performs inline function expansion for calls to
procedures defined within the current source file.

The compiler performs some single-file interprocedural optimization at the O2 default optimization level;
additionally the compiler may perform some inlining for the O1 optimization level, such as inlining functions
marked with inlining pragmas or attributes (GNU C and C++) and C++ class member functions with bodies
included in the class declaration.

Multi-file compilation uses the [Q]ipo option, and results in one or more mock object files rather than
normal object files. (See the Compilation section below for information about mock object files.) Additionally,
the compiler collects information from the individual source files that make up the program. Using this
information, the compiler performs optimizations across functions and procedures in different source files.

NOTE
Inlining and other optimizations are improved by profile information. For a description of how to use
IPO with profile information for further optimization, see Profile an Application.

Compiling with IPO
As each source file is compiled with IPO, the compiler stores an intermediate representation (IR) of the
source code in a mock object file. The mock object files contain the IR instead of the normal object code.
Mock object files can be ten times or more larger than the size of normal object files.

During the IPO compilation phase only the mock object files are visible.

Linking with IPO
When you link with the [Q]ipo compiler option the compiler is invoked a final time. The compiler performs
IPO across all mock object files. The mock objects must be linked with the compiler or by using the Intel®
linking tools. While linking with IPO, the compiler and other linking tools compile mock object files as well as
invoke the real/true object files linkers provided on the user's platform.

 Intel® C++ Compiler Classic Developer Guide and Reference

2214

Link-time optimization using the -ffat-lto-objects compiler option is provided for GCC compatibility.
During IPO compilation, you can specify -ffat-lto-objects option, for the compiler to generate a fat link-
time optimization (LTO) object that has both a real/true object and a discardable intermediate language
section. This enables both link-time optimization (LTO) linking and normal linking.

You can specify the -fno-fat-lto-objects option for the compiler to generate a link-time optimization
(LTO) object that only has a discardable intermediate language section; no real/true object is generated.
These files are inserted into archives in the form in which they were created. Using this option may improve
compilation time and save space for objects.

If you use ld rather than xild to link objects or ar instead of xiar to create an archive, the real/true
object, generated during fat link-time optimization guarantees that there will be no impediment to linking/
building the archive. However, cross-file optimizations are lost in this case. The extra true object also takes
additional space and takes compile time to generate it, so using -fno-fat-lto-objects compiler option is
an advantage provided that you link the IPO mock object files with xild and archive them with xiar.

Whole Program Analysis
The compiler supports a large number of IPO optimizations that can be applied or have its effectiveness
greatly increased when the whole program condition is satisfied.

During the analysis process, the compiler reads all Intermediate Representation (IR) in the mock file, object
files, and library files to determine if all references are resolved and whether or not a given symbol is defined
in a mock object file. Symbols that are included in the IR in a mock object file for both data and functions are
candidates for manipulation based on the results of whole program analysis.

There are two types of whole program analysis - object reader method and table method. Most optimizations
can be applied if either type of whole program analysis determines that the whole program conditions exists;
however, some optimizations require the results of the object reader method, and some optimizations require
the results of table method.

Object reader method

In the object reader method, the object reader emulates the behavior of the native linker and attempts to
resolve the symbols in the application. If all symbols are resolved, the whole program condition is satisfied.
This type of whole program analysis is more likely to detect the whole program condition.

Table method

In the table method the compiler analyzes the mock object files and generates a call-graph.

The compiler contains detailed tables about all of the functions for all important language-specific libraries,
like libc. In this second method, the compiler constructs a call-graph for the application. The compiler then
compares the function table and application call-graph. For each unresolved function in the call-graph, the
compiler attempts to resolve the calls by finding an entry for each unresolved function in the compiler tables.
If the compiler can resolve the functions call, the whole program condition exists.

See Also
ax, Qax

Inline Expansion of Functions

Interprocedural Optimization Options

ip, Qip

ipo, Qipo

ipo-c, Qipo-c

Optimization and Programming

2215

Linking Tools and Options

O

x, Qx

Use Interprocedural Optimization

Use Interprocedural Optimization
This topic discusses how to use IPO from the command line.

Compiling and Linking Using IPO
To enable IPO, you first compile each source file, then link the resulting source files.

Linux and macOS

1. Compile your source files with the ipo compiler option:

icpc -ipo -c a.cpp b.cpp c.cpp
The command produces a.o, b.o, and c.o object files.

Use the c compiler option to stop compilation after generating .o object files. The output files contain
compiler intermediate representation (IR) corresponding to the compiled source files.

2. Link the resulting files. The following example command will produce an executable named app:

icpc -ipo -o app a.o b.o c.o
The command invokes the compiler on the objects containing IR and creates a new list of objects to be
linked. Alternately, you can use the xild tool, with the appropriate linking options.

The separate compile and link commands from the previous steps can be combined into a single command,
for example:

icpc -ipo -o app a.cpp b.cpp c.cpp
The icpc command, shown in the examples, calls GCC ld to link the specified object files and produce the
executable application, which is specified by the -o option.

Windows

1. Compile your source files with the /Qipo compiler option:

icl /Qipo /c a.cpp b.cpp c.cpp
The command produces a.obj, b.obj, and c.obj object files.

Use the c compiler option to stop compilation after generating .obj files. The output files contain
compiler intermediate representation (IR) corresponding to the compiled source files.

2. Link the resulting files. The following example command will produce an executable named app:

icl /Qipo /Feapp a.obj b.obj c.obj
The command invokes the compiler on the objects containing IR and creates a new list of objects to be
linked. Alternately, you can use the xilink tool, with the appropriate linking options.

The separate compile and link commands from the previous steps can be combined into a single command,
for example:

icl /Qipo /Feapp a.cpp b.cpp c.cpp

 Intel® C++ Compiler Classic Developer Guide and Reference

2216

The icl command, shown in the examples, calls link.exe to link the specified object files and produce the
executable application, which is specified by the /Fe option.

NOTE
Linux: Using icpc allows the compiler to use standard C++ libraries automatically; icc will not use the
standard C++ libraries automatically.

macOS: Using icc/icpc commands allows the compiler to use libc++ libraries, by default. You can
switch to using the GNU implementation of the standard C++ library using the -stdlib=libstdc++
compiler option.

The Intel linking tools emulate the behavior of compiling at -O0 (Linux and macOS) and /Od
(Windows) option.

If multiple file IPO is applied to a series of object files, no one which are mock object files, no multi-file
IPO is performed. The object files are simply linked with the linker.

Capturing Intermediate IPO Output
The [Q]ipo-c and [Q]ipo-S compiler options are useful for analyzing the effects of multi-file IPO, or when
experimenting with multi-file IPO between modules that do not make up a complete program.

• Use the [Q]ipo-c compiler option to optimize across files and produce an object file. The option performs
optimizations as described for the [Q]ipo option but stops prior to the final link stage, leaving an
optimized object file. The default name for this file is ipo_out.o (Linux and macOS) or ipo_out.obj
(Windows).

• Use the [Q]ipo-S compiler option to optimize across files and produce an assembly file. The option
performs optimizations as described for [Q]ipo, but stops prior to the final link stage, leaving an
optimized assembly file. The default name for this file is ipo_out.s (Linux) or ipo_out.asm (Windows).

For both options, you can use the -o (Linux and macOS) or /Fe (Windows) option to specify a different
name.

These options generate multiple outputs if multi-object IPO is being used. The name of the first file is taken
from the value of the -o (Linux and macOS) or /Fe (Windows) option.

The names of subsequent files are derived from the first file with an appended numeric value to the file
name. For example, if the first object file is named foo.o (Linux and macOS) or foo.obj (Windows), the
second object file will be named foo1.o or foo1.obj.

You can use the object file generated with the [Q]ipo-c option, but you will not get the full benefit of whole
program optimizations if you use this option.

The object file created using the [Q]ipo-c option is a real object file, in contrast to the mock file normally
generated using IPO; however, the generated object file is significantly different than the mock object file.
Whole program optimizations, which require a knowledge of how the real object file will be linked in with
other files to produce and object, are not applied.

The compiler generates a message indicating the name of each object or assembly file it generates. These
files can be added to the real link step to build the final application.

Using -auto-ilp32 (Linux OS) or /Qauto-ilp32 (Windows OS) Option
On Linux systems based on Intel® 64 architecture, the auto-ilp32 option has no effect unless you specify
SSE3 or a higher suffix for the x option.

See Also
auto-ilp32, Qauto-ilp32

Optimization and Programming

2217

 compiler option
c compiler option
o compiler option
Fe compiler option
ipo, Qipo compiler option
ipo-c, Qipo-c compiler option
ipo-S, Qipo-S compiler option
O compiler option

Performance and Large Program Considerations

IPO-related Performance Issues
There are some general optimization guidelines for using IPO that you should keep in mind:

• Using IPO on very large programs might trigger internal limits of other compiler optimization phases.
• Combining IPO and PGO can be a key technique for optimizing C++ applications. The following compiler

options may result in performance gains: O3, [Q]ipo, and [Q]prof-use
• Applications where the compiler does not have sufficient intermediate representation (IR) coverage to do

whole program analysis might not perform as well as those where IR information is complete.

In addition to these general guidelines, there are some practices to avoid while using IPO. The following list
summarizes the activities to avoid:

• Do not use the link phase of an IPO compilation using mock object files produced for your application by a
different compiler. Intel® compilers cannot inspect mock object files generated by other compilers for
optimization opportunities.

• Do not link mock files with the [Q]prof-use compiler option unless the mock files were also compiled
with the [Q]prof-use compiler option.

• Update make files to call the appropriate Intel linkers when using IPO from scripts. For Linux and macOS,
replace all instances of ld with xild; for Windows, replace all instances of link with xilink.

IPO for Large Programs
In most cases, IPO generates a single true object file for the link-time compilation. This behavior is not
optimal for very large programs, perhaps even making it impossible to use [Q]ipo compiler option on the
application.

The compiler provides two methods to avoid this problem. The first method is an automatic size-based
heuristic, which causes the compiler to generate multiple true object files for large link-time compilations.
The second method is to manually instruct the compiler to perform multi-object IPO.

• Use the [Q]ipoN compiler option and pass an integer value in the place of N.
• Use the [Q]ipo-separate compiler option.

The number of true object files generated by the link-time compilation is invisible to you unless the
[Q]ipo-c or [Q]ipo-S compiler option is used.

Regardless of the method used, it is best to use the compiler defaults first and examine the results. If the
defaults do not provide the desired results then experiment with generating a different number of object
files.

You can use the [Q]ipo-jobs compiler option to control the number of processes, or jobs, executed during
parallel IPO builds.

 Intel® C++ Compiler Classic Developer Guide and Reference

2218

Using [Q]ipoN to Create Multiple Object Files
If you specify [Q]ipo0, which is the same as not specifying a value, the compiler uses heuristics to
determine whether to create one or more object files based on the expected size of the application. The
compiler generates one object file for small applications, and two or more object files for large applications. If
you specify any value greater than 0, the compiler generates that number of object files, unless the value
you pass a value that exceeds the number of source files. In that case, the compiler creates one object file
for each source file then stops generating object files. The generated object files follow OS-specific naming
conventions.

The following example commands demonstrate how to use [Q]ipo2 option to compile large programs.

Linux and macOS

icpc -ipo2 -c a.cpp b.cpp
The resulting object files are ipo_out.o, ipo_out1.o, and ipo_out2.o.

Windows

icl /Qipo2 /c a.cpp b.cpp
The resulting object files are ipo_out.obj, ipo_out1.obj, and ipo_out2.obj.

Link the resulting object files as shown in Use Interprocedural Optimization or Linking Tools and Options..

Creating the Maximum Number of Object Files
Using [Q]ipo-separate allows you to force the compiler to generate the maximum number of true object
files that the compiler will support during multiple object compilation. The maximum number of true object
files is the equal to the number of mock object files passed on the link line.

For example, you can pass example commands similar to the following:

Linux and macOS

icpc -ipo-separate -ipo-c a.o b.o c.o
Windows

icl /Qipo-separate /Qipo-c a.obj b.obj c.obj
The compiler generates multiple object files that use the same naming convention discussed above.

Link the resulting object files as shown in Using IPO or Linking Tools and Options.

Understanding Code Layout and Multi-Object IPO
One of the optimizations performed during an IPO compilation is code layout. The analysis performed by the
compiler during multi-file IPO determines a layout order for all of the routines for which it has intermediate
representation (IR) information. For a multi-object IPO compilation, the compiler must tell the linker about
the desired order.

The compiler first puts each routine in a named text section that varies depending on the operating system:

Linux

The first routine is placed in .text00001, the second is placed in .text00002, and so on.

Windows

The first routine is placed in .text$00001, the second is placed in .text$00002, and so on.

See Also
O compiler option
prof-use, Qprof-use compiler option

Optimization and Programming

2219

ipo, Qipo compiler option
ipo-c, Qipo-c
 compiler option

ipo-jobs, Qipo-jobs
 compiler option

ipo-S, Qipo-S
 compiler option

ipo-separate,Qipo-separate
 compiler option

Create a Library from IPO Objects
Libraries are often created using a library manager such as xiar for Linux/macOS or xilib for Windows.
Given a list of objects, the library manager will insert the objects into a named library to be used in
subsequent link steps.

Linux and macOS
Use xiar to create a library from a list of objects. For example the following command creates a library
named user.a containing the a.o and b.o objects:

xiar cru user.a a.o b.o
If the objects have been created using [Q]ipo -c then the archive will not only contain a valid object, but
the archive will also contain intermediate representation (IR) for that object file. For example, the following
example will produce a.o and b.o that may be archived to produce a library containing both object code and
IR for each source file. For example:

icc -ipo -c a.cpp b.cpp
The commands generate mock object files, which when placed in archive will also be accompanied by a true
object file.

Using xiar is the same as specifying xild -lib.

macOS
When using xilibtool, specify -static to generate static libraries, or specify dynamic to create dynamic
libraries. For example, the following command will create a static library named mylib.a that includes the
a.o, b.o, and c.o objects:

xilibtool -static -o mylib.a a.o b.o c.o
Alternately, the following example command will create a dynamic library named mylib.dylib that includes
the a.o, b.o, and c.o objects.

xilibtool -dynamic -o mylib.dylib a.o b.o c.o
Specifying xilibtool is the same as specifying xild -libtool.

Windows
Use xilib or xilink -lib to create libraries of IPO mock object files and link them on the command line.

For example:

1. Assume that you create three mock object files using a command similar to:

icl /c /Qipo a.cpp b.cpp c.cpp

 Intel® C++ Compiler Classic Developer Guide and Reference

2220

2. Further assume a.obj contains the main subprogram. Create a library with a command similar to:

xilib -out:main.lib b.obj c.obj
or

xilink -lib -out:main.lib b.obj c.obj
3. Link the library and the main program object file with a command similar to:

xilink -out:result.exe a.obj main.lib

See Also
dynamiclib
 compiler option

ipo-c, Qipo-c ,
 compiler option

static compiler option

Request Compiler Reports with the xi* Tools
The compiler options qopt-report (Linux* and macOS) and [Q]opt-report (Windows*) generate
optimization reports with different levels of detail. Related compiler options, listed under Optimization Report
Options, allow you to specify the phase, direct output to a file (instead of stderr), and request reports from
all routines with names containing a specific string as part of their name.

The xi* tools are used with inter-procedural optimization (IPO) during the final stage of IPO compilation. You
can request compiler reports to be generated during the final IPO compilation by using certain options. The
supported xi* tools are:

• Linker tools: xilink (Windows*) and xild (Linux* and macOS)
• Library tools: xilib (Windows*), xiar (Linux* and macOS), xilibtool (macOS)

The following tables lists the compiler report options that can be used with the xi* tools during the final IPO
compilation.

Optimization Report Option Description

-qopt-report[=n] (Linux* and
macOS)

/Qopt-report[:n] (Windows*)

Enables optimization report generation with different levels of detail.
Valid values for n are 0 through 5. By default, when you specify this
option without passing a value the compiler will generate a report
with a medium level of detail. Higher numbers give greater levels of
detail.

-qopt-report-file=filename
(Linux* and macOS)

/Qopt-report-file:filename
(Windows*)

Generates an optimization report and directs the report output to the
specified file name. If you omit the path, the file is created in the
current directory. To create the file in a different directory, specify the
full path to the output file and its file name.

-qopt-report-phase[=list]
(Linux* and macOS)

/Qopt-report-phase[:list]
(Windows*)

Specifies a comma separated list of optimization phases to use when
generating reports. If you do not specify a phase the compiler
defaults to all. You can request a list of all available phases by using
the [Q]opt-report-help option.

To generate a report for the IPO phase, use the
-qopt-report-phase=ipo (Linux* and macOS)
or /Qopt-report-phase:ipo (Windows) option.

Optimization and Programming

2221

Optimization Report Option Description

-qopt-report-routine=substri
ng (Linux* and macOS)

/Qopt-report-routine:substri
ng (Windows*)

Generates reports for all routines with names containing substring as
part of their name. You can also specify a sequence of substrings
separated by commas. If you do this, the compiler generates an
optimization report for each of the routines whose name contains one
or more of these substrings.

If substring is not specified, the compiler generates reports on all
routines.

-qopt-report-filter=string
(Linux* and macOS)

/Qopt-report-filter:string
(Windows*)

Tells the compiler to find the indicated parts of your application
specified by string, and generate optimization reports for them.

If both -qopt-report-routines=string1 and
qopt-report-filter=string2 are specified, it is treated as
-qopt-report-filter=string1;string2.

-qopt-report-help (Linux*
and macOS)

/Qopt-report-help
(Windows*)

Displays the optimization phases available to use when using the
-qopt-report-phase (Linux* and macOS) or
[q or Q]opt-report-phase (Windows*) or option.

-qopt-report-names (Linux*
and macOS)

/Qopt-report-names
(Windows*)

Specifies whether mangled or unmangled names appear in the
optimization report. If this option is not specified, unmangled names
are used by default.

If you specify mangled, encoding (also known as decoration) is added
to names in the optimization report. This is appropriate when you
want to match annotations with the assembly listing. If you specify
unmangled, no encoding (or decoration) is added to names in the
optimization report. This is appropriate when you want to match
annotations with the source listing. If you use this option, you do not
have to specify option -qopt-report (Linux* OS and macOS)
or /Qopt-report (Windows* OS).

See Also
qopt-report, Qopt-report
 compiler option

qopt-report-file, Qopt-report-file
 compiler option

qopt-report-help,Qopt-report-help
 compiler option

qopt-report-phase, Qopt-report-phase
 compiler option

qopt-report-routine, Qopt-report-routine
 compiler option

qopt-report-filter, Qopt-report-filter
 compiler option

Inline Expansion of Functions
Inline function expansion does not require that the applications meet the criteria for whole program analysis
normally required by IPO; so this optimization is one of the most important optimizations done in
Interprocedural Optimization (IPO). For function calls that the compiler believes are frequently executed, the
compiler often decides to replace the instructions of the call with code for the function itself.

 Intel® C++ Compiler Classic Developer Guide and Reference

2222

In the compiler, inline function expansion is performed on relatively small user functions more often than on
functions that are relatively large. This optimization improves application performance by performing the
following:

• Removing the need to set up parameters for a function call
• Eliminating the function call branch
• Propagating constants

Function inlining can improve execution time by removing the runtime overhead of function calls; however,
function inlining can increase code size, code complexity, and compile times. In general, when you instruct
the compiler to perform function inlining, the compiler can examine the source code in a much larger
context, and the compiler can find more opportunities to apply optimizations.

Specifying the [Q]ip compiler option, single-file IPO, causes the compiler to perform inline function
expansion for calls to procedures defined within the current source file; in contrast, specifying the [Q]ipo
compiler option, multi-file IPO, causes the compiler to perform inline function expansion for calls to
procedures defined in other files.

Caution
Using the [Q]ip and[Q]ipo (Windows*) options can, in some cases, significantly increase compile
time and code size.

The compiler does a certain amount of inlining at the default level. Although such inlining is similar to what is
done when you use the [Q]ip option, the amount of inlining done is generally less than when you use the
option.

Selecting Routines for Inlining
The compiler attempts to select the routines whose inline expansions provide the greatest benefit to program
performance. The selection is done using default heuristics. The inlining heuristics used by the compiler differ
based on whether or not you use options for Profile-Guided Optimizations (PGO): [Q]prof-use compiler
option.

When you use PGO with [Q]ip or[Q]ipo, the compiler uses the following guidelines for applying heuristics:

• The default heuristic focuses on the most frequently executed call sites, based on the profile information
gathered for the program.

• The default heuristic always inlines very small functions that meet the minimum inline criteria.

Using IPO with PGO

Combining IPO and PGO typically produces better results than using IPO alone. PGO produces dynamic
profiling information that can usually provide better optimization opportunities than the static profiling
information used in IPO.

The compiler uses characteristics of the source code to estimate which function calls are executed most
frequently. It applies these estimates to the PGO-based guidelines described above. The estimation of
frequency, based on static characteristics of the source, is not always accurate.

Inline Expansion of Library Functions
By default, the compiler automatically inlines (expands) a number of standard and math library functions at
the point of the call to that function, which usually results in faster computation.

Many routines in the libirc, libm, or the svml library are more highly optimized for Intel microprocessors
than for non-Intel microprocessors.

The -fno-builtin (Linux* and macOS) or the /Qno-builtin-<name> and /Oi- (Windows*) options
disable inlining for intrinsic functions and disable the by-name recognition support of intrinsic functions and
the resulting optimizations. The /Qno-builtin-<name> option provides the ability to disable inlining for

Optimization and Programming

2223

intrinsic functions, fine-tuning the functionality of the /Oi- option, which disables almost all intrinsic
functions when used. Use these options if you redefine standard library routines with your own version and
your version of the routine has the same name as the standard library routine.

Inlining and Function Preemption (Linux)
You must specify fpic to use function preemption. By default the compiler does not generate the position-
independent code needed for preemption.

Compiler Directed Inline Expansion of Functions
Without directions from the user, the compiler attempts to estimate what functions should be inlined to
optimize application performance.

The following options are useful in situations where an application can benefit from user function inlining but
does not need specific direction about inlining limits.

Option Effect

inline-level(Linux* and macOS) or Ob
(Windows*)

Specifies the level of inline function expansion.

Note that the option /Ob2 on Windows* is
equivalent to -inline-level=2 on Linux* and macOS.
Allowed values are 0, 1, and 2.

[Q]ip-no-inlining Disables only inlining enabled by the [Q]ip,
[Q]ipo, or Ob2 options.

[Q]ip-no-pinlining Disables partial inlining enabled by the [Q]ip or
[Q]ipo options.

No other IPO optimizations are disabled.

fno-builtin (Linux* and macOS) or Oi-
(Windows)

Disables inlining for intrinsic functions. Disables the
by-name recognition support of intrinsic functions
and the resulting optimizations. Use this option if
you redefine standard library routines with your
own version and your version of the routine has the
same name as the standard library routine.

By default, the compiler automatically inlines
(expands) a number of standard and math library
functions at the point of the call to that function,
which usually results in faster computation.

Many routines in the libirc, libm, or svml library
are more highly optimized for Intel microprocessors
than for non-Intel microprocessors.

setting inline-debug-info for the debug option Indicates that the source position information for an
inlined function should be retained, rather than replaced,
by that of the call which is being inlined.

Developer Directed Inline Expansion of User Functions
In addition to the options that support compiler directed inline expansion of user functions, the compiler also
provides compiler options and pragmas that allow you to more precisely direct when and if inline function
expansion should occur.

 Intel® C++ Compiler Classic Developer Guide and Reference

2224

The compiler measures the relative size of a routine in an abstract value of intermediate language units,
which is approximately equivalent to the number of instructions that will be generated. The compiler uses the
intermediate language unit estimates to classify routines and functions as relatively small, medium, or large
functions. The compiler then uses the estimates to determine when to inline a function; if the minimum
criteria for inlining is met and all other things are equal, the compiler has an affinity for inlining relatively
small functions and not inlining relative large functions.

Typically, the compiler targets functions that have been marked for inlining based on the following:

• Inlining keywords: Tells the compiler to inline the specified function. For example, __inline,
__forceinline.

• Procedure-specific inlining pragmas: Tells the compiler to inline calls within the targeted procedure if
it is legal to do so. For example,#pragma inline or #pragma forceinline .

• GCC function attributes for inlining: Tells the compiler to inline the function even when no
optimization level is specified. For example, __attribute__((always_inline)).

The following developer directed inlining options and pragmas provide the ability to change the boundaries
used by the inliner to distinguish between small and large functions.

In general, you should use the [Q]inline-factor option before using the individual inlining options listed
below; this single option effectively controls several other upper-limit options.

If your code hits an inlining limit, the compiler issues a warning at the highest warning level. The warning
specifies which of the inlining limits have been hit, and the compiler option and/or pragmas needed to get a
full report. For example, you could get a message as follows:

Inlining inhibited by limit max-total-size. Use -qopt-report -qopt-report-phase=ipo for full
report.

Messages in the report refer directly to the command line options or pragmas that can be used to overcome
the limits.

The following table lists the options you can use to fine-tune inline expansion of functions. The pragmas
associated with the options are documented in the Effect column.

Option Effect

[Q]inline-factor Controls the multiplier applied to all inlining options
that define upper limits: inline-max-size, inline-
max-total-size, inline-max-per-routine, and
inline-max-per-compile. While you can specify an
individual increase in any of the upper-limit options,
this single option provides an efficient means of
controlling all of the upper-limit options with a single
command.

By default, this option uses a multiplier of 100, which
corresponds to a factor of 1. Specifying 200 implies a
factor of 2, and so on. Experiment with the multiplier
carefully. You could increase the upper limits to allow
too much inlining, which might result in your system
running out of memory.

[Q]inline-force-inline Instructs the compiler to force inlining of functions
suggested for inlining whenever the compiler is
capable doing so.

Optimization and Programming

2225

Option Effect

Without this option, the compiler treats functions
declared with the __inline keyword as merely being
recommended for inlining. When this option is used, it
is as if they were declared with the __forceinline
keyword.

[Q]inline-min-size Redefines the maximum size of small routines;
routines that are equal to or smaller than the value
specified are more likely to be inlined.

[Q]inline-max-size Redefines the minimum size of large routines;
routines that are equal to or larger than the value
specified are less likely to be inlined.

[Q]inline-max-total-size Limits the expanded size of inlined functions.

You can also use #pragma optimization_parameter
inline-max-total-size=N to control the size an
individual routine can grow through inlining.

[Q]inline-max-per-routine Limits the number of times inlining can be applied
within a routine.

You can also use #pragma optimization_parameter
inline-max-per-routine to control the number of times
inlining may be applied to a routine.

[Q]inline-max-per-compile Limits the number of times inlining can be applied
within a compilation unit.

The compilation unit limit depends on the whether or
not you specify the [Q]ipo compiler option. If you
enable IPO, all source files that are part of the
compilation are considered one compilation unit. For
compilations not involving IPO each source file is
considered an individual compilation unit.

See Also
fbuiltin, Oi compiler option
fpic compiler option
ip, Qip compiler option
ipo, Qipo compiler option
prof-use, Qprof-use compiler option
debug (Linux* OS) compiler option
debug (Windows* OS) compiler option
Zi, Z7, Zl compiler option
inline-level, Ob compiler option
ip-no-pinlining, Qip-no-pinlining compiler option
inline-factor, Qinline-factor compiler option
inline-forceinline, Qinline-forceinline compiler option
inline-max-per-compile, Qinline-max-per-compile compiler option
inline-max-per-routine, Qinline-max-per-routine compiler option
inline-max-total-size, Qinline-max-total-size compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

2226

inline-max-size, Qinline-max-size compiler option
inline-min-size, Qinline-min-size compiler option

Inlining Report
Function inlining can improve execution time by removing the runtime overhead of function calls; however,
function inlining can increase code size, code complexity, and compile times. In general, when you instruct
the compiler to perform function inlining, the compiler examines the source code in a much larger context,
and the compiler can find more opportunities to apply optimizations.

The Inlining Report is part of the Opt Report. The compiler options -qopt-report (Linux* and macOS) and /
Qopt-report (Windows*) generate optimization reports with different levels of detail. Related compiler
options, listed under Optimization Report Options, allow you to specify the phase, direct output to a specific
file, stdout or stderr, and request reports from all routines with names containing a specific string as part
of their name.

The inlining report is a description of the inlining choices that were made for each routine that is compiled in
the program. It is produced as part of the opt report. To restrict the opt report to contain ONLY the inlining
report, use the option -qopt-report-phase=ipo (Linux* and macOS) or /Qopt-report-phase:ipo
(Windows*).

The user can control the amount of information by specifying a level for the inlining report. The level is
shown by a number from 1 to 5. Level 1 contains the smallest amount of information, and each level adds
information to the report. Level 2 is the default report.

Level Summary

Level 1 Shows each call that was inlined
Level 2 (default report) Shows the values of the key inlining options
Level 3 Shows the calls to routines with external linkage
Level 4 Shows:

• Whole program information
• Size (sz) of the each routine inlined and the

increase in application size (isz) due to each
instance of inlining

• Routine percentages
• Calls that are not inlined

Level 5 Shows inlining footnotes, which contain advice on how to
change the inlining to potentially improve application
performance

The inlining report gives you an in-depth overview of the compiler's inlining decisions, which occur within five
levels of granularity. You can specify levels with -qopt-report=1, -qopt-report=2, etc., (Linux* and
macOS) or /Qopt-report=1, /Qopt-report=2, etc. (Windows*). See below for specific level details.

Level 1
The Inlining Report is activated when you run the Optimization Report, using [q or Q]qopt-report.

For each routine you compile, you get one report with the title INLINE REPORT that shows the calls inlined
into that routine.

Example: Inlining Report Level 1 - Typical Routine

INLINE REPORT: (APPLU)
 -> INLINE: (295,12) SETBV
 -> INLINE: (398,18) EXACT
 -> INLINE: (399,18) EXACT
 -> INLINE: (409,18) EXACT
 -> INLINE: (410,18) EXACT

Optimization and Programming

2227

Example: Inlining Report Level 1 - Typical Routine

 -> INLINE: (420,18) EXACT
 -> INLINE: (421,18) EXACT
 -> INLINE: (299,12) SETIV
 -> (303,12) ERHS
 -> (307,12) SSOR
 -> INLINE: (311,12) ERROR
 -> INLINE: (1518,24) EXACT
 -> INLINE: (1552,24) EXACT
 -> INLINE: (315,12) PINTGR
 -> (319,12) VERIFY

The report gives the name of the compiled routine (APPLU), and contains one line for each call that the
compiler decided to inline or not inline. In the above report, the compiler made 15 inlining decisions for calls
in the routine APPLU. It decided to inline 12 of the calls. These decisions are indicated by the lines which
start with -> INLINE. It decided not to inline three of the calls. These decisions are indicated by the lines
without the word INLINE.

On each line, the position of the call in the source code is given in parentheses, followed by the name of the
routine being called. For example:

-> INLINE: (398,18) EXACT
This refers to a call at line 398 column 18 to a routine called EXACT.

Level 2
Level 2 includes the values of important compiler options related to inlining. Unless the user specifies one of
these values by using the option on the command line, the default value of the option in shown. You can read
more about the meaning of the individual inlining options in the Inlining Options section.

Example: Inlining Report Level 2 - Values of Inlining Options

INLINING OPTION VALUES:
 -inline-factor: 100
 -inline-min-size: 30
 -inline-max-size: 230
 -inline-max-total-size: 2000
 -inline-max-per-routine: 10000
 -inline-max-per-compile: 500000

Level 3
Level 3 contains one additional line for each call to an external routine made in the application. Such calls are
not candidates for inlining, because the code for these routines is not present in the file or files being
compiled.

Example: Inlining Report Level 3 - External Linkage

Begin optimization report for: APPLU
 Report from: Interprocedural optimizations [ipo]
INLINE REPORT: (APPLU) [1] applu.f (1,16)
 -> EXTERN: (1,16) for_set_reentrancy
 -> EXTERN: (80,7) for_read_seq_lis

 Intel® C++ Compiler Classic Developer Guide and Reference

2228

Level 4
Level 4 adds four additional pieces of information. The specifics are shown below:

• Whole Program values:

Example: Whole Program

WHOLE PROGRAM [SAFE] [EITHER METHOD]: false
WHOLE PROGRAM [SEEN] [TABLE METHOD]: true
WHOLE PROGRAM [READ] [OBJECT READER METHOD]: false

An application for which whole program is determined is subject to a higher degree of optimization than
one which is not. The Intel compiler uses two methods of determining whole program, a TABLE METHOD
and an OBJECT READER METHOD.

• The size of the routine [sz] and the inlined size of the routine [isz]. Usually isz is less than sz:

Example: Size of the Routine (sz) vs. Inlined Size of the Routine (isz)

 -> INLINE: (295,12) SETBV (isz = 752) (sz = 755)
 -> INLINE: (398,18) EXACT (isz = 98) (sz = 109)

In the above example, the routine SETBV was inlined into the routine that called it. The size of SETBV,
before inlining, was 755 units. After inlining, the calling routine was increased by 752 units. The increase
in the size of the calling routine is slightly less than the size of SETBV, because some of the overhead of
calling SETBV was removed when SETBV was inlined.

• The percentage of time that has passed in the process of compiling the file:

Example: Percentage of Time Passed During Compilation

INLINE REPORT: (APPLU) [1/16=6.2%] applu.f (1,16)

For example, on the line above, [1/16 = 6.2%] indicates that APPLU is the first routine out of 16 to be
compiled, and when this routine is done being compiled, 6.2% of the compilation is finished. You can use
these numbers to estimate how long the compilation is going to take.

• The calls that did not get inlined and the reason why they did not get inlined. The reason is shown in
double brackets [[]].

Example: Calls That Are Not Inlined

-> (303,12) ERHS (isz = 2125) (sz = 2128)
 [[Inlining would exceed –inline-max-size value (2128>253)]]

In the above example, the routine ERHS is not inlined, because the size of the routine (2128 units) is
larger than the allowable size (253 units). If you wish to inline routines that are this large, you can use
the option -inline-max-size=2128 (or larger).

Level 5
Level 5 adds the inlining footnotes.

Example: Use of Footnote

-> (303,12) ERHS (isz = 2058) (sz = 2061)
 [[Inlining would exceed –inline-max-size-value (2061>230) <1>]]

The inlining footnotes explain the text found in the double brackets [[]]. They include a description for why
an inlining call did not happen, and what you can do to make the inlining of this call happen.

Optimization and Programming

2229

The footnote annotation <1> refers to the first footnote in the INLINING FOOTNOTES section at the bottom
of the inlining report, which is produced when the user selects Level 5. For example, the footnote produced
for annotation <1> above is:

Example: Footnote Text

<1> The subprogram is larger than the inliner would normally inline. Use the
option –inline-max-size to increase the size of any subprogram that would
normally be inlined, add “!DIR$ATTRIBUTES FORCELINE” to the
declaration of the called function, or add “!DIR$ FORCELINE” before
the call site.

Processor Targeting
The manual processor dispatch feature allows you to target processors manually. You can control processor
dispatching in a number of ways, including:

• Use the cpu_specific and cpu_dispatch keywords (attributes in Linux* or __declspecs in Windows*)
to write one or more versions of a function that executes only on specified types of Intel® processors. You
can also write a generic version that executes on other Intel or non-Intel processors. The Intel processor
type is detected at runtime, and the corresponding function version is executed. This feature is available
only for Intel processors based on IA-32 or Intel® 64 architecture. The feature not available for non-Intel
processors. Applications built using the manual processor dispatch feature may be more highly optimized
for Intel processors than for non-Intel processors.

For more information, see below.
• Use the optimization_parameter pragma.

For more information, see below.
• On Linux, in addition to the Intel-defined attributes cpu_specific and cpu_dispatch, C++ compilations

with GNU Compiler Collection (GCC*) compatibility 4.8 or higher support creation of multiple function
versions using the target attribute.

For more information, see the GCC documentation on Function Multiversioning.

Using cpu_dispatch for Manual Processor Dispatch Programming
Use the __declspec(cpu_dispatch(cpuid, cpuid,...)) syntax in your code to provide a list of targeted
processors along with an empty function body/function stub. Use the __declspec(cpu_specific(cpuid))
in your code to declare each function version targeted at particular type[s] of processors.

For a list of the values for cpuid, see the list on cpu_dispatch, cpu_specific.

NOTE
If no other matching Intel processor type is detected, the generic version of the function is executed.
If you want the program to execute on non-Intel processors, a generic function version must be
provided. You can control the degree of optimization of the generic function version and the processor
features that it assumes.

The cpuid attributes are not case sensitive. The body of a function declared with
__declspec(cpu_dispatch) must be empty, and is referred to as a stub (an empty-bodied function).

The following example illustrates how the cpu_dispatch and cpu_specific keywords can be used to create
function versions for the 2nd generation Intel® Core™ processor family with support of Intel® Advanced Vector
Extensions (Intel® AVX), for the Intel® Core™ processor family, for the Intel® Core™2 Duo processor family, and

 Intel® C++ Compiler Classic Developer Guide and Reference

2230

for other Intel and compatible, non-Intel processors. Each processor-specific function body might contain
processor-specific intrinsic functions, or it might be placed in a separate source file and compiled with a
processor-specific compiler option.

Example

#include <stdio.h>
// need to create specific function versions for the following processors:
__declspec(cpu_dispatch(core_2nd_gen_avx, core_i7_sse4_2, core_2_duo_ssse3, generic))
void dispatch_func() {}; // stub that will call the appropriate specific function
version

__declspec(cpu_specific(core_2nd_gen_avx))
void dispatch_func() {
 printf("\nCode for 2nd generation Intel Core processors with support for Intel AVX goes here
\n");
}

__declspec(cpu_specific(core_i7_sse4_2))
void dispatch_func() {
 printf("\nCode for Intel Core processors with support for SSE4.2 goes here\n");
}

__declspec(cpu_specific(core_2_duo_ssse3))
void dispatch_func() {
 printf("\nCode for Intel Core 2 Duo processors with support for SSSE3 goes here\n");
}

__declspec(cpu_specific(generic))
void dispatch_func() {
 printf("\nCode for non-Intel processors and generic Intel processors goes here\n");
}

int main() {
 dispatch_func();
 printf("Return from dispatch_func\n");
 return 0;
}

Considerations
Before using manual dispatch, consider whether the benefits outweigh the additional effort and possible
performance issues. You may encounter any one or all of the following issues when using manual processor
dispatch in your code:

• code and executable sizes increase considerably
• additional performance overhead may be introduced because of additional function calls

Test your application on all targeted platforms before release.

Using Pragmas to Target Processors Manually
You can use #pragma intel optimization_parameter target_arch to flag those routines in your code
that you want to execute on specified types of processors. This pragma controls the -mor /arch option at a
routine level, overriding the option values specified at the command-line, using the same values as the -m
or /arch option to target processors. The following example illustrates how to use the pragma to target a
routine bar() to execute only on Intel® AVX supported processors regardless of what the command-line has
specified.

Optimization and Programming

2231

Example

include <immintrin.h>
#define N 1024

double x[N], y[N], z[N];

#pragma
intel optimization_parameter target_arch=AVX

void bar()
{
 int i;
 if (allow_avx) {
 _allow_cpu_features(_FEATURE_AVX);
 for (i = 0; i < N; i++) {
 z[i] = x[i] * y[i];
 }
 }
 else {
 for (i = 0; i < N; i++) {
 z[i] = x[i] * y[i];
 }
 }
}

You can also use the _allow_cpu_features intrinsic to tell the compiler that the code region may be
targeted for processors with specified features, and the _may_i_use_cpu_feature to query the processor
dynamically at the source level to determine if processor-specific features are available.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
_allow_cpu_features

_may_i_use_cpu_feature

arch

m

CPU Feature Targeting
The compiler provides a CPU-dispatching feature that enables users to provide different implementations of
their functionality. The CPU-dispatching mechanism checks the target architecture and then selects the best
implementation at runtime. However, the mechanism has two related potential limitations:

• Users cannot control the selected code path when they have a particular reason to do so; this can be
decided only by the CPU-dispatching mechanism at runtime according to the target platform.

• Users cannot test their different implementations on the same machine.

 Intel® C++ Compiler Classic Developer Guide and Reference

2232

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

CPU feature targeting addresses these limitations.

Usage
CPU feature targeting does not add any command-line options. Instead, the user must set a new
environment variable, INTEL_ISA_DISABLE, before running their application.

The user can set the environment variable as follows (Linux example):

export INTEL_ISA_DISABLE=features
where features is a comma-separated list of features such as sse2,avx.

NOTE The feature names are those used with the -m option.

Setting the environment variable causes the named features not to be visible on the host even if the CPUID
reports that it has them onboard. This has the following implications:

• If the user disables a CPU feature (for example, _FEATURE_SSE2) using export
INTEL_ISA_DISABLE=sse2, then _may_i_use_cpu_feature(_FEATURE_SSE2) will return false;
however, there will be no impact on other features for _may_i_use_cpu_feature.

• The CPU-dispatching mechanism will be affected; that is, dispatching will not take paths that require
features disabled via INTEL_ISA_DISABLE.

• Libraries that use libirc for their CPU dispatching (such as mkl and libimf/libsvml) will be affected
by INTEL_ISA_DISABLE in the same way.

Additional Information
• CPU feature targeting has no architecture restrictions. Users can set the environment variable effectively

on all our current architectures.
• CPU feature targeting has no default setting (such as OFF or ON). The feature is triggered by the

INTEL_ISA_DISABLE environment variable, so if users do not set that variable before running their
application, everything works normally (with no CPU feature targeting). Also, if users specify invalid
feature names within the environment variable's value, those names will be ignored.

• There is no IDE equivalent for the CPU feature targeting feature.

Important points to remember

• The value of environment variable INTEL_ISA_DISABLE is a feature list string comprising feature
names separated by commas. The feature names are those used with the -m option.

• Users must set INTEL_ISA_DISABLE before running their application.
• Users must not disable any feature that is requested by the -x target option. For example, if you

compile with -xcore-avx2 and then disable fma (which is required by avx2) via the
INTEL_ISA_DISABLE environment variable, a runtime error will occur indicating that the CPU is not
supported.

Example
hide_avx.c:

#include "immintrin.h"
#define CHECK(feature) \
printf("%3s: %s\n", _may_i_use_cpu_feature(feature) ? "yes" : "no", #feature);

int main() {

Optimization and Programming

2233

 CHECK(_FEATURE_GENERIC_IA32);
 CHECK(_FEATURE_SSE4_2);
 CHECK(_FEATURE_AVX);
 CHECK(_FEATURE_AVX2);
 return 0;
}

Build hide_avx.c using icc:

icc hide_avx.c –o hide_avx.exe
Run hide_avx.exe on a machine with avx2, producing the following output:

yes: _FEATURE_GENERIC_IA32
yes: _FEATURE_SSE4_2
yes: _FEATURE_AVX
yes: _FEATURE_AVX2

Then set the environment variable on the command line:

export INTEL_ISA_DISABLE=avx2,avx
And then run hide_avx.exe again, producing the following output:

yes: _FEATURE_GENERIC_IA32
yes: _FEATURE_SSE4_2
no: _FEATURE_AVX
no: _FEATURE_AVX2

See Also
cpu_dispatch, cpu_specific

Methods to Optimize Code Size
This section provides some guidance on how to achieve smaller object and smaller executable size when
using the optimizing features of Intel compilers.

There are two compiler options that are designed to prioritize code size over performance:
Option Result Notes

Os Favors size over speed This option enables optimizations
that do not increase code size; it
produces smaller code size than
option O2.

Option Os disables some
optimizations that may increase
code size for a small speed
benefit.

O1 Minimizes code size Compared to option Os, option
O1 disables even more
optimizations that are generally
known to increase code size.
Specifying option O1 implies
option Os.

 Intel® C++ Compiler Classic Developer Guide and Reference

2234

Option Result Notes

As an intermediate step in
reducing code size, you can
replace option O3 with option O2
before specifying option O1.

Option O1 may improve
performance for applications with
very large code size, many
branches, and execution time not
dominated by code within loops.

For more information about compiler options mentioned in this topic, see their full descriptions in the
Compiler Reference.

The rest of this topic briefly discusses other methods that may help you further improve code size even when
compared to the default behaviors of options Os and O1.

Things to remember:

• Some of these methods may already be applied by default when options Os and O1 are specified. All the
methods mentioned in this topic can be applied at higher optimization levels.

• Some of the options referred to in this topic will not necessarily cause code size reduction, and they may
provide varying results (good, bad, or neutral) based on the characteristics of the target code. Still, these
are the recommended things to try to see if they cause your binaries to become smaller while maintaining
acceptable performance.

Disable or Decrease the Amount of Inlining
Inlining replaces a call to a function with the body of the function. This lets the compiler optimize the code
for the inlined function in the context of its caller, usually yielding more specialized and better performing
code. This also removes the overhead of calling the function at runtime.

However, replacing a call to a function by the code for that function usually increases code size. The code size
increase can be substantial. To eliminate this code size increase, at the cost of the potential performance
improvement, inlining can be disabled.

As an alternative to completely disabling inlining, the default amount of inlining can be decreased by using an
inline factor less than the default value of 100. It corresponds to scaling the default values of the main
inlining parameters by n%.

• Advantage: Disabling or reducing this optimization can reduce code size.
• Disadvantage: Performance is likely to be sacrificed by disabling or reducing inlining especially for

applications with many small functions.

Use options to disable inlining:

Linux and macOS

fno-inline
Windows

Ob0
Use options to reduce inlining and factor the main inlining parameters:

Linux and macOS

inline-factor=n

Windows

Qinline-factor:n

Use options to fine tune the main inlining parameters:

Optimization and Programming

2235

Linux and macOS

• inline-factor
• inline-max-per-compile
• inline-max-per-routine
• inline-max-size
• inline-max-total-size
• inline-min-size
Windows

• Qinline-factor
• Qinline-max-per-compile
• Qinline-max-per-routine
• Qinline-max-size
• Qinline-max-total-size
• Qinline-min-size

Strip Symbols from Your Binaries
You can specify a compiler option to omit debugging and symbol information from the executable without
sacrificing its operability.

• Advantage: This method noticeably reduces the size of the binary.
• Disadvantage: It may be very difficult to debug a stripped application.

Use options:

Linux

Wl, --strip-all
Windows

None

Dynamically Link Intel-provided Libraries
By default, some of the Intel support and performance libraries are linked statically into an executable. As a
result, the library codes are linked into every executable being built. This means that codes are duplicated.

It may be more profitable to link them dynamically.

• Advantage: Performance of the resulting executable is normally not significantly affected. Library codes
that are otherwise linked in statically into every executable will not contribute to the code size of each
executable with this option. These codes will be shared between all executables using them, and they will
be available independent of those executables.

• Disadvantage: The libraries on which the resulting executable depends must be re-distributed with the
executable for it to work properly. When libraries are linked statically, only library content that is actually
used is linked into the executable. Dynamic libraries contain all the library content. Therefore, it may not
be beneficial to use this option if you only need to build and/or distribute a single executable. The
executable itself may be much smaller when linked dynamically, compared to a statically linked
executable. However, the total size of the executable plus shared libraries or DLLs may be much larger
than the size of the statically linked executable.

Use Options:

Linux and macOS

shared-intel
Windows

 Intel® C++ Compiler Classic Developer Guide and Reference

2236

MD

NOTE Option MD affects all libraries, not only the Intel-provided ones.

Exclude Unused Code and Data from the Executable
Programs often contain dead code or data that is not used during their execution. Even if no expensive
whole-program inter-procedural analysis is made at compile time to identify dead code, there are compiler
options you can specify to eliminate unused functions and data at link time.

This method is often referred to as function-level or data-level linking.

• Advantage: Only the code that is referenced remains in an executable. Dead functions and data are
stripped from the executable. For the options passed to the linker, they also enable the linker to reorder
the sections for other possible optimization.

• Disadvantage: The object codes may become slightly larger because each function or datum is put into a
separate section. The overhead is eliminated at the linking stage. This method requires linker support to
strip unused sections and may increase linking time.

Use Options:

Linux and macOS

-fdata-sections -ffunction-sections -Wl,--gc-sections
Windows

/Gw /Gy /link /OPT:REF

NOTE Option MD affects all libraries, not only the Intel-provided ones.

These options (from the use options example above) are passed to the linker:

Linux and macOS

Wl, --gc-sections
Windows

link /OPT:REF

Disable Recognition and Expansion of Intrinsic Functions
When recognized, intrinsic functions can get expanded inline or their faster implementation in a library may
be assumed and linked in. By default, Inline expansion of intrinsic functions is enabled.

In some cases, disabling this behavior may noticeably improve the size of the produced object or binary.

• Advantage: Both the size of the object files and the size of library codes brought into an executable can
be reduced.

• Disadvantage: This method can prevent various performance optimizations from happening. Slower
standard library implementation will be used. The size of the final executable can be increased in cases
when code pulled in statically from a library for an otherwise inlined intrinsic is large.

Use Options:

Linux and macOS

fno-builtin
Windows

Optimization and Programming

2237

Oi-
Additional information:

• This option is already the default if you specify option O1.
• For C++, you can specify Linux option nolib-inline to disable inline expansion of standard library or

intrinsic functions.
• Depending on code characteristics, this option can sometimes increase binary size.

Optimize Exception Handling Data
If a program requires support for exception handling, the compiler creates a special section containing
DWARF directives that are used by the Linux and macOSruntime to unwind and catch an exception.

This information is found in the .eh_frame section and may be shrunk using the compiler options listed
below.

• Advantage:

These options may shrink the size of the object or binary file by up to 15%, though the amount of the
reduction depends on the target platform. These options control whether unwind information is precise at
an instruction boundary or at a call boundary. For example, option fno-asynchronous-unwind-tables
can be used for programs that may only throw or catch exceptions.

• Disadvantage: Both options may change the program's behavior. Do not use option fno-exceptions for
programs that require standard C++ handling for objects of classes with destructors. Do not use option
fno-asynchronous-unwind-tables for functions compiled with option -fexceptions or option
traceback that contain calls to other functions that might throw exceptions or for C++ functions that
declare objects with destructors.

Use Options:

Linux and macOS

fno-exceptions or fno-asynchronous-unwind-tables
Windows

None

Read the compiler option descriptions, which explain what the defaults and behavior are for each target
platform.

Disable Passing Arguments in Registers Instead of on the Stack
You can specify an option that causes the compiler to pass arguments in registers rather than on the stack.
This can yield faster code.

However, doing this may require the compiler to create an additional entry point for any function that can be
called outside the code being compiled.

In many cases, this will lead to an increase in code size. To prevent this increase in code size, you can
disable this optimization.

• Advantage: Disabling this optimization can reduce code size.
• Disadvantage: The amount of code size saved may be small when compared to the corresponding

performance loss of disabling the optimization.

Use Options:

Linux and macOS

qopt-args-in-regs=none
Windows

 Intel® C++ Compiler Classic Developer Guide and Reference

2238

Qopt-args-in-regs:none
Additional information:

• Specify none for option [q or Q]opt-args-in-regs. The default behavior for the option is that
parameters are passed in registers when they are passed to routines whose definition is seen in the same
compilation unit.

• Depending on code characteristics, this option can sometimes increase binary size.

Disable Loop Unrolling
Unrolling a loop increases the size of the loop proportionally to the unroll factor.

Disabling (or limiting) this optimization may help reduce code size at the expense of performance.

• Advantage: Code size is reduced.
• Disadvantage: Performance of otherwise unrolled loops may noticeably degrade because this limits other

possible loop optimizations.

Use Options:

Linux and macOS

unroll=0
Windows

Qunroll:0
Additional information:

This option is already the default if you specify option Os or option O1.

Disable Automatic Vectorization
The compiler finds possibilities to use SIMD (Intel® Streaming SIMD Extensions (Intel® SSE)/Intel® Advanced
Vector Extensions (Intel® AVX)) instructions to improve performance of applications. This optimization is
called automatic vectorization.

In most cases, this optimization involves transformation of loops and increases code size, in some cases
significantly.

Disabling this optimization may help reduce code size at the expense of performance.

• Advantage: Compile-time is also improved significantly.
• Disadvantage: Performance of otherwise vectorized loops may suffer significantly. If you care about the

performance of your application, you should use this option selectively to suppress vectorization on
everything except performance-critical parts.

Use Options:

Linux and macOS

no-vec
Windows

Qvec-
Additional information:

Depending on code characteristics, this option can sometimes increase binary size.

Avoid References to Compiler-specific Libraries
While compiler-specific libraries are intended to improve the performance of your application, they increase
the size of your binaries.

Optimization and Programming

2239

Certain compiler options may improve the code size.

• Advantage: The compiler will not assume the presence of compiler-specific libraries. It will generate only
calls that appear in the source code.

• Disadvantage: This method may sacrifice performance if the library codes were in hotspots. Also, because
we cannot assume any libraries, some compiler optimizations will be suppressed.

Use Options:

Linux and macOS

ffreestanding
Windows

Qfreestanding-
Additional information:

• This option implies option fno-builtin. You can override that default by explicitly specifying option
fbuiltin.

• Depending on code characteristics, this option can sometimes increase binary size.

Avoid Unnecessary 16-Byte Alignment
This topic only applies to Linux systems on IA-32 architecture.

This method should only be used in certain situations that are well understood. It can potentially cause
correctness issues when linking with other objects or libraries that aren't built with this option.

The 32-bit Linux ABI states that stacks need only maintain 4-byte alignment. However, for performance
reasons in modern architectures, GCC and ICC maintain an alignment of 16-bytes on the stack. Maintaining
16-byte alignment may require additional instructions to adjust the stack on function entries where no stack
adjustment would otherwise be needed. This can impact code size, especially in code that consists of many
small routines.

You can specify a compiler option that will revert ICC back to maintaining 4-byte alignment, which can
eliminate the need for extra stack adjust instructions in some cases.

Use this option only if one of the following is true:

• Your code does not call any other object or library that can be built without this option and, therefore,
may rely on the stack being aligned to 16-bytes when called.

• Your code is targeted for architectures that do not have or support SSE instructions; therefore, it would
never need 16-byte alignment for correctness reasons.

• Advantage: Code size can be smaller because you do not need extra instructions to maintain 16-byte
alignment when not needed. This method can improve performance in some cases because of this
reduction of instructions.

• Disadvantage: This method can cause incompatibility when linked with other objects or libraries that rely
on the stack being 16-byte aligned across the calls.

Use Options:

Linux

falign-stack=assume-4-byte
macOS

None

Windows

None

Additional information:

 Intel® C++ Compiler Classic Developer Guide and Reference

2240

Depending on code characteristics, this option can sometimes increase binary size.

Use Interprocedural Optimization
Using interprocedural optimization (IPO) may reduce code size. It enables dead code elimination and
suppresses generation of code for functions that are always inlined or proven that they are never to be called
during execution.

• Advantage: Depending on the code characteristics, this optimization can reduce executable size and
improve performance.

• Disadvantage: Binary size can increase depending on code/application..

Use Options:

Linux and macOS

ipo
Windows

Qipo

NOTE This method is not recommended if you plan to ship object files as part of a final product.

Intel® C++ Compiler Classic Math
Library
The Intel® C++ Compiler Classic includes a mathematical software library containing highly optimized and
very accurate mathematical functions. These functions are commonly used in scientific or graphic
applications, as well as other programs that rely heavily on floating-point computations. To include support
for C99 _Complex data types, use the [Q]std=c99 compiler option.

Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

NOTE
Intel's math.h header file is compatible with the GCC Math Library libm, but it does not cause the
GCC Math Library to be linked. The source can be built with gcc, icc, or icl. The header file for the
math library, mathimf.h, contains additional functions that are found only in the math library. The
source can only be built using the compiler and libraries.

The long double functions, such as expl or logl, in the math library are ABI incompatible with the
Microsoft libraries. The Intel compiler and libraries support the 80-bit long double data type (see the
description of the Qlong-double option). For maximum compatibility, use math.h or mathimf.h header
files along with the math library.

Compiler Math Libraries for Linux and macOS
The math library linked to an application depends on the compilation or linkage options specified.

Library Description

libimf.a Default static math library.

Intel® C++ Compiler Classic Math Library

2241

Library Description

libimf.so Default shared math library.

NOTE The math libraries contain performance-optimized implementations for various Intel platforms.
By default, the best implementation for the underlying hardware is selected at runtime. The library
dispatch of multi-threaded code may lead to apparent data races, which may be detected by certain
software analysis tools. However, as long as the threads are running on cores with the same CPUID,
these data races are harmless and not a cause for concern.

Compiler Math Libraries for Windows
The math library linked to an application depends on the compilation or linkage options specified.

Library Option Description

libm.lib Default static math library.

libmmt.lib /MT Multi-threaded static math library.

libmmd.lib /MD Dynamically linked math library.

libmmdd.lib /MDd Dynamically linked debug math library.

libmmds.lib Static version compiled with /MD option.

oneAPI and OpenCL™ Considerations
Currently, oneAPI uses the OpenCL Specification to determine the ULP accuracy for OpenCL mathematical
functions. Details about their precision and accuracy, including tables for single and double precision
functions, are available from the Khronos OpenCL Specification's section, Relative Error as ULPs.

Mathematical functions have different accuracy levels on different devices. The OpenCL specification sets a
limit on the maximum ULP error (where applicable), but individual devices may provide a more accurate
implementation. If the OpenCL implementation is optimized for CPU usage, using the same code may not
work on a GPU device.

See Also
Math Function List
Qlong-double compiler option
MD compiler option
MT compiler option
std, Qstd compiler option

Use the Intel® C++ Compiler Classic Math Library
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

To use the Intel® C++ Compiler Classic math library, include the header file, mathimf.h, in your program. If
the compiler is used for linking, then the math library is used by default.

 Intel® C++ Compiler Classic Developer Guide and Reference

2242

https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_C.html#relative-error-as-ulps

Use Real Functions
The following examples demonstrate how to use the math library with the compiler. After you compile this
example and run the program, the program will display the sine value of x.

Linux and macOS

// real_math.c
#include <stdio.h>
#include <mathimf.h>

int main() {
 float fp32bits;
 double fp64bits;
 long double fp80bits;
 long double pi_by_four = 3.141592653589793238/4.0;

// pi/4 radians is about 45 degrees
 fp32bits = (float) pi_by_four; // float approximation to pi/4
 fp64bits = (double) pi_by_four; // double approximation to pi/4
 fp80bits = pi_by_four; // long double (extended) approximation to pi/4

// The sin(pi/4) is known to be 1/sqrt(2) or approximately .7071067
 printf("When x = %8.8f, sinf(x) = %8.8f \n", fp32bits, sinf(fp32bits));
 printf("When x = %16.16f, sin(x) = %16.16f \n", fp64bits, sin(fp64bits));
 printf("When x = %20.20Lf, sinl(x) = %20.20Lf \n", fp80bits, sinl(fp80bits));

 return 0;
}

Use the following command to compile the example code on Linux platforms:

icc real_math.c
Windows

// real_math.c
#include <stdio.h>
#include <mathimf.h>

int main() {
 float fp32bits;
 double fp64bits;

// /Qlong-double compiler option required because, without it,
// long double types are mapped to doubles.
 long double fp80bits;
 long double pi_by_four = 3.141592653589793238/4.0;

// pi/4 radians is about 45 degrees
 fp32bits = (float) pi_by_four;

// float approximation to pi/4
 fp64bits = (double) pi_by_four;

// double approximation to pi/4
 fp80bits = pi_by_four;

// long double (extended) approximation to pi/4
// The sin(pi/4) is known to be 1/sqrt(2) or approximately .7071067
 printf("When x = %8.8f, sinf(x) = %8.8f \n",

Optimization and Programming

2243

 fp32bits, sinf(fp32bits));

 printf("When x = %16.16f, sin(x) = %16.16f \n",
 fp64bits, sin(fp64bits));

 printf("When x = %20.20f, sinl(x) = %20.20f \n",
 (double) fp80bits, (double) sinl(fp80bits));

// printf() does not support the printing of long doubles
// on Microsoft Windows, so fp80bits is cast to double in this example.
 return 0;
}

Since the real_math.c program includes the long double data type, use the /Qlong-double and /Qpc80
compiler options in the command line:

Use the following command to compile the example code on Windows platforms:

icl /Qlong-double /Qpc80 real_math.c

Use Complex Functions
After you compile this example and run the program, you should get the following results:

When z = 1.0000000 + 0.7853982 i, cexpf(z) = 1.9221154 + 1.9221156 i
When z = 1.000000000000 + 0.785398163397 i, cexp(z) = 1.922115514080 + 1.922115514080 i
Linux, macOS, and Windows

// complex_math.c
#include <stdio.h>
#include <complex.h>

int main() {
 float _Complex c32in,c32out;
 double _Complex c64in,c64out;
 double pi_by_four= 3.141592653589793238/4.0;
 c64in = 1.0 + I pi_by_four;

// Create the double precision complex number 1 + (pi/4) i
// where I is the imaginary unit.
 c32in = (float _Complex) c64in;

// Create the float complex value from the double complex value.
 c64out = cexp(c64in);
 c32out = cexpf(c32in);

// Call the complex exponential,
// cexp(z) = cexp(x+iy) = e^ (x + i y) = e^x (cos(y) + i sin(y))
 printf("When z = %7.7f + %7.7f i, cexpf(z) = %7.7f + %7.7f i \n"
 ,crealf(c32in),cimagf(c32in),crealf(c32out),cimagf(c32out));
 printf("When z = %12.12f + %12.12f i, cexp(z) = %12.12f + %12.12f i \n"
 ,creal(c64in),cimag(c64in),creal(c64out),cimagf(c64out));

 return 0;
}

Since this example program includes the _Complex data type, be sure to include the [Q]std=c99 compiler
option in the command line. For example:

 Intel® C++ Compiler Classic Developer Guide and Reference

2244

Linux or macOS

icc -std=c99 complex_math.c
Windows

icl Qstd=c99 complex_math.c

NOTE_Complex data types are supported in C but not in C++ programs.

Exception Conditions
If you call a math function using argument(s) that may produce undefined results, an error number is
assigned to the system variable errno. Math function errors are usually domain errors or range errors.

Domain errors result from arguments that are outside the domain of the function. For example, acos is
defined only for arguments between -1 and +1 inclusive. Attempting to evaluate acos(-2) or acos(3)
results in a domain error, where the return value is QNaN.

Range errors occur when a mathematically valid argument results in a function value that exceeds the
range of representable values for the floating-point data type. Attempting to evaluate exp(1000) results in a
range error, where the return value is INF.

When domain or range error occurs, the following values are assigned to errno:

• domain error (EDOM): errno = 33
• range error (ERANGE): errno = 34
The following example shows how to read the errno value for an EDOM and ERANGE error.

// errno.c
#include <errno.h>
#include <mathimf.h>
#include <stdio.h>

int main(void) {
 double neg_one=-1.0;
 double zero=0.0;

// The natural log of a negative number is considered a domain error - EDOM
 printf("log(%e) = %e and errno(EDOM) = %d \n",neg_one,log(neg_one),errno);

// The natural log of zero is considered a range error - ERANGE
 printf("log(%e) = %e and errno(ERANGE) = %d \n",zero,log(zero),errno);
}

The output of errno.c will look like this:

log(-1.000000e+00) = nan and errno(EDOM) = 33
log(0.000000e+00) = -inf and errno(ERANGE) = 34
For the math functions in this section, a corresponding value for errno is listed when applicable.

Other Considerations

Some math functions are inlined automatically by the compiler. The functions actually inlined may vary and
may depend on any vectorization or processor-specific compilation options used. You can disable automatic
inline expansion of all functions by compiling your program with the -fno-builtin option (Linux and
macOS) or the /Oi- option (Windows).

Optimization and Programming

2245

It is strongly recommended to use the default rounding mode (round-to-nearest-even) when calling math
library transcendental functions and compiling with default optimization or higher. Faster implementations—
in terms of latency and/or throughput— of these functions are validated under the default round-to-nearest-
even mode. Using other rounding modes may make results generated by these faster implementations less
accurate, or set unexpected floating-point status flags. This behavior may be avoided by using the
-no-fast-transcendentals option (Linux and macOS) or /Qfast-transcendentals- option (Windows),
which disables calls to the faster implementations of math functions, or by using the -fp-model strict
option (Linux and macOS) or /fp: strict option (Windows). This option warns the compiler not to assume
default settings for the floating-point environment.

NOTE 64-bit decimal transcendental functions rely on binary double extended precision arithmetic.
To obtain accurate results, user applications that call 64-bit decimal transcendentals should ensure
that the x87 unit is operating in 80-bit precision (64-bit binary significands). In an environment where
the default x87 precision is not 80 bits, such as Windows, it can be set to 80 bits by compiling the
application source files with the /Qpc80 option.

A change of the default precision control or rounding mode may affect the results returned by some of the
mathematical functions.

The following are important compiler options when using certain data types in IA-32 and Intel® 64
architectures running Windows operating systems:

• /Qlong-double: Use this option when compiling programs that require support for the long double
data type (80-bit floating-point). Without this option, compilation will be successful, but long double
data types will be mapped to double data types.

• /Qstd=c99: Use this option when compiling programs that require support for _Complex data types.

See Also
fbuiltin, Oi compiler option
Overview: Tuning Performance
pc, Qpc compiler option
Qlong-double compiler option
std, Qstd compiler option

Math Function List
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math functions are listed here by function type.

Function Type Name

Trigonometric Functions acos

acosd

acospi

asin

asind

asinpi

 Intel® C++ Compiler Classic Developer Guide and Reference

2246

Function Type Name

atan

atan2

atan2pi

atand

atan2d

atand2

atanpi

cos

cosd

cospi

cot

cotd

sin

sincos

sincosd

sind

sinpi

tan

tand

tanpi

Hyperbolic Functions acosh

asinh

atanh

cosh

sinh

sinhcosh

tanh

Exponential Functions cbrt

exp

exp10

exp2

Optimization and Programming

2247

Function Type Name

expm1

frexp

hypot

invsqrt

ilogb

ldexp

log

log10

log1p

log2

logb

pow

pow2o3

pow3o2

powr

scalb

scalbln

scalbn

sqrt

Special Functions annuity

cdfnorm

cdfnorminv

compound

erf

erfcx

erfc

erfcinv

erfinv

gamma

gamma_r

j0

 Intel® C++ Compiler Classic Developer Guide and Reference

2248

Function Type Name

j1

jn

lgamma

lgamma_r

tgamma

y0

y1

yn

Nearest Integer Functions ceil

floor

llrint

llround

lrint

lround

modf

nearbyint

rint

round

trunc

Remainder Functions fmod

remainder

remquo

Miscellaneous Functions copysign

fabs

fdim

finite

fma

fmax

fmin

fpclassify

isfinite

Optimization and Programming

2249

Function Type Name

isgreater

isgreaterequal

isinf

isless

islessequal

islessgreater

isnan

isnormal

isunordered

maxmag

minmag

nan

nextafter

nexttoward

signbit

significand

Complex Functions cabs

cacos

cacosh

carg

casin

casinh

catan

catanh

ccos

cexp

cexp2

cimag

cis

clog

clog10

 Intel® C++ Compiler Classic Developer Guide and Reference

2250

Function Type Name

conj

ccosh

cpow

cproj

creal

csin

csinh

csqrt

ctan

ctanh

Trigonometric Functions
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math library supports the following trigonometric functions:

acos
Description: The acos function returns the principal value of the inverse cosine of x in the range [0, pi]
radians for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acos(double x);
long double acosl(long double x);
float acosf(float x);

acosd
Description: The acosd function returns the principal value of the inverse cosine of x in the range [0,180]
degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acosd(double x);
long double acosdl(long double x);
float acosdf(float x);

acospi
Description: The acospi function returns the principal value of the inverse cosine of x, divided by pi, in the
range [0,1] for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Optimization and Programming

2251

Calling interface:
double acospi(double x);
float acospif(float x);

asin
Description: The asin function returns the principal value of the inverse sine of x in the range [-pi/2,
+pi/2] radians for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double asin(double x);
long double asinl(long double x);
float asinf(float x);

asind
Description: The asind function returns the principal value of the inverse sine of x in the range [-90,90]
degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double asind(double x);
long double asindl(long double x);
float asindf(float x);

asinpi
Description: The asinpi function returns the principal value of the inverse sine of x, divided by pi, in the
range [-1/2,1/2] degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1 divided by pi

Calling interface:
double asinpi(double x);
float asinpif(float x);

atan
Description: The atan function returns the principal value of the inverse tangent of x in the range [-pi/2,
+pi/2] radians.

Calling interface:
double atan(double x);
long double atanl(long double x);
float atanf(float x);

atan2
Description: The atan2 function returns the principal value of the inverse tangent of y/x in the range [-pi,
+pi] radians.

errno: EDOM, for x = 0 and y = 0

Calling interface:
double atan2(double y, double x);
long double atan2l(long double y, long double x);
float atan2f(float y, float x);

 Intel® C++ Compiler Classic Developer Guide and Reference

2252

atan2pi
Description: The atan2pi function returns the principal value of the inverse tangent of y/x, divided by pi,
in the range [-1, +1].

errno: EDOM, for x = 0 and y = 0

Calling interface:
double atan2pi(double y, double x);
float atan2pif(float y, float x);

atand
Description: The atand function returns the principal value of the inverse tangent of x in the range [-90,90]
degrees.

Calling interface:
double atand(double x);
long double atandl(long double x);
float atandf(float x);

atan2d
Description: The atan2d function returns the principal value of the inverse tangent of y/x in the range
[-180, +180] degrees.

errno: EDOM, for x = 0 and y = 0.

Calling interface:
double atan2d(double x, double y);
long double atan2dl(long double x, long double y);
float atan2df(float x, float y);

atand2
Description: The atand2 function returns the principal value of the inverse tangent of y/x in the range
[-180, +180] degrees.

errno: EDOM, for x = 0 and y = 0.

Calling interface:
double atand2(double x, double y);
long double atand2l(long double x, long double y);
float atand2f(float x, float y);

atanpi
Description: The atanpi function returns the principal value of the inverse tangent of x, divided by pi, in
the range [-1/2, +1/2].

Calling interface:
double atanpi(double x);
float atanpif(float x);

cos
Description: The cos function returns the cosine of x measured in radians.

Calling interface:
double cos(double x);
long double cosl(long double x);

Optimization and Programming

2253

float cosf(float x);

cosd
Description: The cosd function returns the cosine of x measured in degrees.

Calling interface:
double cosd(double x);
long double cosdl(long double x);
float cosdf(float x);

cospi
Description: The cospi function returns the cosine of x multiplied by pi, cos(x*pi).

Calling interface:
double cospi(double x);
float cospif(float x);

cot
Description: The cot function returns the cotangent of x measured in radians.

errno: ERANGE, for overflow conditions at x = 0.

Calling interface:
double cot(double x);
long double cotl(long double x);
float cotf(float x);

cotd
Description: The cotd function returns the cotangent of x measured in degrees.

errno: ERANGE, for overflow conditions at x = 0.

Calling interface:
double cotd(double x);
long double cotdl(long double x);
float cotdf(float x);

sin
Description: The sin function returns the sine of x measured in radians.

Calling interface:
double sin(double x);
long double sinl(long double x);
float sinf(float x);

sincos
Description: The sincos function returns both the sine and cosine of x measured in radians.

Calling interface:
void sincos(double x, double *sinval, double *cosval);
void sincosl(long double x, long double *sinval, long double *cosval);
void sincosf(float x, float *sinval, float *cosval);

 Intel® C++ Compiler Classic Developer Guide and Reference

2254

sincosd
Description: The sincosd function returns both the sine and cosine of x measured in degrees.

Calling interface:
void sincosd(double x, double *sinval, double *cosval);
void sincosdl(long double x, long double *sinval, long double *cosval);
void sincosdf(float x, float *sinval, float *cosval);

sind
Description: The sind function computes the sine of x measured in degrees.

Calling interface:
double sind(double x);
long double sindl(long double x);
float sindf(float x);

sinpi
Description: The sinpi function returns the sine of x multiplied by pi, sin(x*pi).

Calling interface:
double sinpi(double x);
float sinpif(float x);

tan
Description: The tan function returns the tangent of x measured in radians.

Calling interface:
double tan(double x);
long double tanl(long double x);
float tanf(float x);

tand
Description: The tand function returns the tangent of x measured in degrees.

errno: ERANGE, for overflow conditions

Calling interface:
double tand(double x);
long double tandl(long double x);
float tandf(float x);

tanpi
Description: The tanpi function returns the tangent of x multiplied by pi, tan(x*pi).

Calling interface:
double tanpi(double x);
float tanpif(float x);

Hyperbolic Functions
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

Optimization and Programming

2255

The math library supports the following hyperbolic functions:

acosh
Description: The acosh function returns the inverse hyperbolic cosine of x.

errno: EDOM, for x < 1

Calling interface:
double acosh(double x);
long double acoshl(long double x);
float acoshf(float x);

asinh
Description: The asinh function returns the inverse hyperbolic sine of x.

Calling interface:
double asinh(double x);
long double asinhl(long double x);
float asinhf(float x);

atanh
Description: The atanh function returns the inverse hyperbolic tangent of x.

errno:

EDOM, for |x| > 1

ERANGE, for x = 1

Calling interface:
double atanh(double x);
long double atanhl(long double x);
float atanhf(float x);

cosh
Description: The cosh function returns the hyperbolic cosine of x, (ex + e-x)/2.

errno: ERANGE, for overflow conditions

Calling interface:
double cosh(double x);
long double coshl(long double x);
float coshf(float x);

sinh
Description: The sinh function returns the hyperbolic sine of x, (ex - e-x)/2.

errno: ERANGE, for overflow conditions

Calling interface:
double sinh(double x);
long double sinhl(long double x);
float sinhf(float x);

sinhcosh
Description: The sinhcosh function returns both the hyperbolic sine and hyperbolic cosine of x.

 Intel® C++ Compiler Classic Developer Guide and Reference

2256

errno: ERANGE, for overflow conditions

Calling interface:
void sinhcosh(double x, double *sinval, double *cosval);
void sinhcoshl(long double x, long double *sinval, long double *cosval);
void sinhcoshf(float x, float *sinval, float *cosval);

tanh
Description: The tanh function returns the hyperbolic tangent of x, (ex - e-x) / (ex + e-x).

Calling interface:
double tanh(double x);
long double tanhl(long double x);
float tanhf(float x);

Exponential Functions
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math library supports the following exponential functions:

cbrt
Description: The cbrt function returns the cube root of x.

Calling interface:
double cbrt(double x);
long double cbrtl(long double x);
float cbrtf(float x);

exp
Description: The exp function returns e raised to the x power, ex.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp(double x);
long double expl(long double x);
float expf(float x);

exp10
Description: The exp10 function returns 10 raised to the x power, 10x.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp10(double x);
long double exp10l(long double x);
float exp10f(float x);

exp2
Description: The exp2 function returns 2 raised to the x power, 2x.

errno: ERANGE, for underflow and overflow conditions

Optimization and Programming

2257

Calling interface:
double exp2(double x);
long double exp2l(long double x);
float exp2f(float x);

expm1
Description: The expm1 function returns e raised to the x power, minus 1, ex -1.

errno: ERANGE, for overflow conditions

Calling interface:
double expm1(double x);
long double expm1l(long double x);
float expm1f(float x);

frexp
Description: The frexp function converts a floating-point number x into signed normalized fraction in [1/2,
1) multiplied by an integral power of two. The signed normalized fraction is returned, and the integer
exponent stored at location exp.

Calling interface:
double frexp(double x, int *exp);
long double frexpl(long double x, int *exp);
float frexpf(float x, int *exp);

hypot
Description: The hypot function returns the square root of (x2 + y2).

errno: ERANGE, for overflow conditions

Calling interface:
double hypot(double x, double y);
long double hypotl(long double x, long double y);
float hypotf(float x, float y);

ilogb
Description: The ilogb function returns the exponent of x base two as a signed int value.

errno: ERANGE, for x = 0

Calling interface:
int ilogb(double x);
int ilogbl(long double x);
int ilogbf(float x);

invsqrt
Description: The invsqrt function returns the inverse square root.

Calling interface:
double invsqrt(double x);
long double invsqrtl(long double x);
float invsqrtf(float x);

 Intel® C++ Compiler Classic Developer Guide and Reference

2258

ldexp
Description: The ldexp function returns x*2exp, where exp is an integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double ldexp(double x, int exp);
long double ldexpl(long double x, int exp);
float ldexpf(float x, int exp);

log
Description: The log function returns the natural log of x, ln(x).

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log(double x);
long double logl(long double x);
float logf(float x);

log10
Description: The log10 function returns the base-10 log of x, log10(x).

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log10(double x);
long double log10l(long double x);
float log10f(float x);

log1p
Description: The log1p function returns the natural log of (x+1), ln(x + 1).

errno: EDOM, for x < -1
errno: ERANGE, for x = -1

Calling interface:
double log1p(double x);
long double log1pl(long double x);
float log1pf(float x);

log2
Description: The log2 function returns the base-2 log of x, log2(x).

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log2(double x);
long double log2l(long double x);
float log2f(float x);

Optimization and Programming

2259

logb
Description: The logb function returns the signed exponent of x.

errno: EDOM, for x = 0

Calling interface:
double logb(double x);
long double logbl(long double x);
float logbf(float x);

pow
Description: The pow function returns x raised to the power of y, xy.
errno: EDOM, for x = 0 and y < 0
errno: EDOM, for x < 0 and y is a non-integer
errno: ERANGE, for overflow and underflow conditions

Calling interface:
double pow(double x, double y);
long double powl(double x, double y);
float powf(float x, float y);

pow2o3
Description: The pow2o3 function returns the cube root of x squared, cbrt(x2).

Calling interface:
double pow2o3(double x);
float pow2o3f(float x);

pow3o2
Description: The pow3o2 function returns the square root of the cube of x, sqrt(x3).

errno: EDOM, for x < 0
errno: ERANGE, for overflow and underflow conditions

Calling interface:
double pow3o2(double x);
float pow3o2f(float x);

powr
Description: The powr function returns x raised to the power of y, xy, where x ≥ 0.

errno: EDOM, for x < 0
errno: ERANGE, for overflow and underflow conditions

Calling interface:
double powr(double x, double y);
float powrf(float x, float y);

scalb
Description: The scalb function returns x*2y, where y is a floating-point value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalb(double x, double y);

 Intel® C++ Compiler Classic Developer Guide and Reference

2260

long double scalbl(long double x, long double y);
float scalbf(float x, float y);

scalbn
Description: The scalbn function returns x*2n, where n is an integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalbn(double x, int n);
long double scalbnl (long double x, int n);
float scalbnf(float x, int n);

scalbln
Description: The scalbln function returns x*2n, where n is a long integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalbln(double x, long int n);
long double scalblnl (long double x, long int n);
float scalblnf(float x, long int n);

sqrt
Description: The sqrt function returns the correctly rounded square root.

errno: EDOM, for x < 0

Calling interface:
double sqrt(double x);
long double sqrtl(long double x);
float sqrtf(float x);

Special Functions
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math library supports the following special functions:

annuity
Description: The annuity function computes the present value factor for an annuity, (1 - (1+x)(-y)) /
x, where x is a rate and y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double annuity(double x, double y);
long double annuityl(long double x, long double y);
float annuityf(float x, float y);

cdfnorm
Description: The cdfnorm function returns the cumulative normal distribution function value.

Optimization and Programming

2261

Calling interface:
double cdfnorm(double x);
float cdfnormf(float x);

cdfnorminv
Description: The cdfnorminv function returns the inverse cumulative normal distribution function value.

errno:
EDOM, for finite or infinite (x > 1) || (x < 0)
ERANGE, for x = 0 or x = 1
Calling interface:
double cdfnorminv(double x);
float cdfnorminvf (float x);

compound
Description: The compound function computes the compound interest factor, (1+x)y, where x is a rate and
y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double compound(double x, double y);
long double compoundl(long double x, long double y);
float compoundf(float x, float y);

erf
Description: The erf function returns the error function value.

Calling interface:
double erf(double x);
long double erfl(long double x);
float erff(float x);

erfc
Description: The erfc function returns the complementary error function value.

errno: ERANGE, for underflow conditions

Calling interface:
double erfc(double x);
long double erfcl(long double x);
float erfcf(float x);

erfcx
Description: The erfcx function returns the scaled complementary error function value.

errno: ERANGE, for overflow conditions

Calling interface:
double erfcx(double x);
float erfcxf(float x);

 Intel® C++ Compiler Classic Developer Guide and Reference

2262

erfcinv
Description: The erfcinv function returns the value of the inverse complementary error function of x.

errno: EDOM, for finite or infinite (x > 2) || (x < 0)

Calling interface:
double erfcinv(double x);
float erfcinvf(float x);

erfinv
Description: The erfinv function returns the value of the inverse error function of x.

errno: EDOM, for finite or infinite |x| > 1

Calling interface:
double erfinv(double x);
long double erfinvl(long double x);
float erfinvf(float x);

gamma
Description: The gamma function returns the value of the logarithm of the absolute value of gamma.

errno: ERANGE, for overflow conditions when x is a negative integer.

Calling interface:
double gamma(double x);
long double gammal(long double x);
float gammaf(float x);

gamma_r
Description: The gamma_r function returns the value of the logarithm of the absolute value of gamma. The
sign of the gamma function is returned in the integer signgam.

Calling interface:
double gamma_r(double x, int *signgam);
long double gammal_r(long double x, int *signgam);
float gammaf_r(float x, int *signgam);

j0
Description: Computes the Bessel function (of the first kind) of x with order 0.

Calling interface:
double j0(double x);
long double j0l(long double x);
float j0f(float x);

j1
Description: Computes the Bessel function (of the first kind) of x with order 1.

Calling interface:
double j1(double x);
long double j1l(long double x);
float j1f(float x);

Optimization and Programming

2263

jn
Description: Computes the Bessel function (of the first kind) of x with order n.

Calling interface:
double jn(int n, double x);
long double jnl(int n, long double x);
float jnf(int n, float x);

lgamma
Description: The lgamma function returns the value of the logarithm of the absolute value of gamma.

errno: ERANGE, for overflow conditions, x=0 or negative integers.

Calling interface:
double lgamma(double x);
long double lgammal(long double x);
float lgammaf(float x);

lgamma_r
Description: The lgamma_r function returns the value of the logarithm of the absolute value of gamma. The
sign of the gamma function is returned in the integer signgam.

errno: ERANGE, for overflow conditions, x=0 or negative integers.

Calling interface:
double lgamma_r(double x, int *signgam);
long double lgammal_r(long double x, int *signgam);
float lgammaf_r(float x, int *signgam);

tgamma
Description: The tgamma function computes the gamma function of x.

errno:

EDOM, for x=0 or negative integers.

ERANGE, for overflow conditions.

Calling interface:
double tgamma(double x);
long double tgammal(long double x);
float tgammaf(float x);

y0
Description: Computes the Bessel function (of the second kind) of x with order 0.

errno: EDOM, for x <= 0

Calling interface:
double y0(double x);
long double y0l(long double x);
float y0f(float x);

y1
Description: Computes the Bessel function (of the second kind) of x with order 1.

 Intel® C++ Compiler Classic Developer Guide and Reference

2264

errno: EDOM, for x <= 0

Calling interface:
double y1(double x);
long double y1l(long double x);
float y1f(float x);

yn
Description: Computes the Bessel function (of the second kind) of x with order n.

errno: EDOM, for x <= 0

Calling interface:
double yn(int n, double x);
long double ynl(int n, long double x);
float ynf(int n, float x);

Nearest Integer Functions
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math library supports the following nearest integer functions:

ceil
Description: The ceil function returns the smallest integral value not less than x as a floating-point
number.

Calling interface:
double ceil(double x);
long double ceill(long double x);
float ceilf(float x);

floor
Description: The floor function returns the largest integral value not greater than x as a floating-point
value.

Calling interface:
double floor(double x);
long double floorl(long double x);
float floorf(float x);

llrint
Description: The llrint function returns the rounded integer value (according to the current rounding
direction) as a long long int.

errno: ERANGE, for values too large

Calling interface:
long long int llrint(double x);
long long int llrintl(long double x);
long long int llrintf(float x);

Optimization and Programming

2265

llround
Description: The llround function returns the rounded integer value as a long long int.

errno: ERANGE, for values too large

Calling interface:
long long int llround(double x);
long long int llroundl(long double x);
long long int llroundf(float x);

lrint
Description: The lrint function returns the rounded integer value (according to the current rounding
direction) as a long int.

errno: ERANGE, for values too large

Calling interface:
long int lrint(double x);
long int lrintl(long double x);
long int lrintf(float x);

lround
Description: The lround function returns the rounded integer value as a long int. Halfway cases are
rounded away from zero.

errno: ERANGE, for values too large

Calling interface:
long int lround(double x);
long int lroundl(long double x);
long int lroundf(float x);

modf
Description: The modf function returns the value of the signed fractional part of x and stores the integral
part at *iptr as a floating-point number.

Calling interface:
double modf(double x, double *iptr);
long double modfl(long double x, long double *iptr);
float modff(float x, float *iptr);

nearbyint
Description: The nearbyint function returns the rounded integral value as a floating-point number, using
the current rounding direction.

Calling interface:
double nearbyint(double x);
long double nearbyintl(long double x);
float nearbyintf(float x);

rint
Description: The rint function returns the rounded integral value as a floating-point number, using the
current rounding direction.

Calling interface:

 Intel® C++ Compiler Classic Developer Guide and Reference

2266

double rint(double x);
long double rintl(long double x);
float rintf(float x);

round
Description: The round function returns the nearest integral value as a floating-point number. Halfway
cases are rounded away from zero.

Calling interface:
double round(double x);
long double roundl(long double x);
float roundf(float x);

trunc
Description: The trunc function returns the truncated integral value as a floating-point number.

Calling interface:
double trunc(double x);
long double truncl(long double x);
float truncf(float x);

Remainder Functions
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math library supports the following remainder functions:

fmod
Description: The fmod function returns the value x-n*y for integer n such that if y is nonzero, the result
has the same sign as x and magnitude less than the magnitude of y.

errno: EDOM, for y = 0

Calling interface:
double fmod(double x, double y);
long double fmodl(long double x, long double y);
float fmodf(float x, float y);

remainder
Description: The remainder function returns the value of x REM y as required by the IEEE standard.

errno: EDOM, for y = 0

Calling interface:
double remainder(double x, double y);
long double remainderl(long double x, long double y);
float remainderf(float x, float y);

remquo
Description: The remquo function returns the value of x REM y. In the object pointed to by quo the
function stores a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2n of the
integral quotient of x/y. N is an implementation-defined integer. For all systems, N is equal to 31.

Optimization and Programming

2267

errno: EDOM, for y = 0

Calling interface:
double remquo(double x, double y, int *quo);
long double remquol(long double x, long double y, int *quo);
float remquof(float x, float y, int *quo);

Miscellaneous Functions
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math library supports the following miscellaneous functions:

copysign
Description: The copysign function returns the value with the magnitude of x and the sign of y.

Calling interface:
double copysign(double x, double y);
long double copysignl(long double x, long double y);
float copysignf(float x, float y);

fabs
Description: The fabs function returns the absolute value of x.

Calling interface:
double fabs(double x);
long double fabsl(long double x);
float fabsf(float x);

fdim
Description: The fdim function returns the positive difference value, x-y (for x > y) or +0 (for x <= to
y).

errno: ERANGE, for overflow conditions

Calling interface:
double fdim(double x, double y);
long double fdiml(long double x, long double y);
float fdimf(float x, float y);

finite
Description: The finite function returns 1 if x is not a NaN or +/- infinity. Otherwise 0 is returned.

Calling interface:
int finite(double x);
int finitel(long double x);
int finitef(float x);

fma
Description: The fma functions return (x*y)+z.

Calling interface:

 Intel® C++ Compiler Classic Developer Guide and Reference

2268

double fma(double x, double y, double z);
long double fmal(long double x, long double y, long double z);
float fmaf(float x, float y, float z);

fmax
Description: The fmax function returns the maximum numeric value of its arguments.

Calling interface:
double fmax(double x, double y);
long double fmaxl(long double x, long double y);
float fmaxf(float x, float y);

fmin
Description: The fmin function returns the minimum numeric value of its arguments.

Calling interface:
double fmin(double x, double y);
long double fminl(long double x, long double y);
float fminf(float x, float y);

fpclassify
Description: The fpclassify function returns the value of the number classification macro appropriate to
the value of its argument.

Return Value

0 (NaN)

1 (Infinity)

2 (Zero)

3 (Subnormal)

4 (Finite)

Calling interface:
int fpclassify(double x);
int fpclassifyl(long double x);
int fpclassifyf(float x);

isfinite
Description: The isfinite function returns 1 if x is not a NaN or +/- infinity. Otherwise 0 is returned.

Calling interface:
int isfinite(double x);
int isfinitel(long double x);
int isfinitef(float x);

isgreater
Description: The isgreater function returns 1 if x is greater than y. This function does not raise the invalid
floating-point exception.

Calling interface:

Optimization and Programming

2269

int isgreater(double x, double y);
int isgreaterl(long double x, long double y);
int isgreaterf(float x, float y);

isgreaterequal
Description: The isgreaterequal function returns 1 if x is greater than or equal to y. This function does
not raise the invalid floating-point exception.

Calling interface:
int isgreaterequal(double x, double y);
int isgreaterequall(long double x, long double y);
int isgreaterequalf(float x, float y);

isinf
Description: The isinf function returns a non-zero value if and only if its argument has an infinite value.

Calling interface:
int isinf(double x);
int isinfl(long double x);
int isinff(float x);

isless
Description: The isless function returns 1 if x is less than y. This function does not raise the invalid
floating-point exception.

Calling interface:
int isless(double x, double y);
int islessl(long double x, long double y);
int islessf(float x, float y);

islessequal
Description: The islessequal function returns 1 if x is less than or equal to y. This function does not raise
the invalid floating-point exception.

Calling interface:
int islessequal(double x, double y);
int islessequall(long double x, long double y);
int islessequalf(float x, float y);

islessgreater
Description: The islessgreater function returns 1 if x is less than or greater than y. This function does
not raise the invalid floating-point exception.

Calling interface:
int islessgreater(double x, double y);
int islessgreaterl(long double x, long double y);
int islessgreaterf(float x, float y);

isnan
Description: The isnan function returns a non-zero value, if and only if x has a NaN value.

Calling interface:

 Intel® C++ Compiler Classic Developer Guide and Reference

2270

int isnan(double x);
int isnanl(long double x);
int isnanf(float x);

isnormal
Description: The isnormal function returns a non-zero value, if and only if x is normal.

Calling interface:
int isnormal(double x);
int isnormall(long double x);
int isnormalf(float x);

isunordered
Description: The isunordered function returns 1 if either x or y is a NaN. This function does not raise the
invalid floating-point exception.

Calling interface:
int isunordered(double x, double y);
int isunorderedl(long double x, long double y);
int isunorderedf(float x, float y);

maxmag
Description: The maxmag function returns the value of larger magnitude from among its two arguments, x
and y. If |x| > |y| it returns x; if |y| > |x| it returns y; otherwise it behaves like fmax(x,y).

Calling interface:
double maxmag(double x, double y);
float maxmagf(float x, float y);

minmag
Description: The minmag function returns the value of smaller magnitude from among its two arguments, x
and y. If |x| < |y| it returns x; if |y| < |x| it returns y; otherwise it behaves like fmin(x,y).

Calling interface:
double minmag(double x, double y);
float minmagf(float x, float y);

nan
Description: The nan function returns a quiet NaN, with content indicated through tagp.

Calling interface:
double nan(const char *tagp);
long double nanl(const char *tagp);
float nanf(const char *tagp);

nextafter
Description: The nextafter function returns the next representable value in the specified format after x in
the direction of y.

errno: ERANGE, for overflow and underflow conditions

Calling interface:
double nextafter(double x, double y);

Optimization and Programming

2271

long double nextafterl(long double x, long double y);
float nextafterf(float x, float y);

nexttoward
Description: The nexttoward function returns the next representable value in the specified format after x
in the direction of y. If x equals y, then the function returns y converted to the type of the function. Use the
Qlong-double option (for C++ only) on Windows* operating systems for accurate results.

errno: ERANGE, for overflow and underflow conditions

Calling interface:
double nexttoward(double x, long double y);
long double nexttowardl(long double x, long double y);
float nexttowardf(float x, long double y);

signbit
Description: The signbit function returns a non-zero value, if and only if the sign of x is negative.

Calling interface:
int signbit(double x);
int signbitl(long double x);
int signbitf(float x);

significand
Description: The significand function returns the significand of x in the interval [1,2). For x equal to
zero, NaN, or +/- infinity, the original x is returned.

Calling interface:
double significand(double x);
long double significandl(long double x);
float significandf(float x);

Complex Functions
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math library supports the following complex functions:

cabs
Description: The cabs function returns the complex absolute value of z.

Calling interface:
double cabs(double _Complex z);
long double cabsl(long double _Complex z);
float cabsf(float _Complex z);

cacos
Description: The cacos function returns the complex inverse cosine of z.

Calling interface:
double _Complex cacos(double _Complex z);

 Intel® C++ Compiler Classic Developer Guide and Reference

2272

long double _Complex cacosl(long double _Complex z);
float _Complex cacosf(float _Complex z);

cacosh
Description: The cacosh function returns the complex inverse hyperbolic cosine of z.

Calling interface:
double _Complex cacosh(double _Complex z);
long double _Complex cacoshl(long double _Complex z);
float _Complex cacoshf(float _Complex z);

carg
Description: The carg function returns the value of the argument in the interval [-pi, +pi].

Calling interface:
double carg(double _Complex z);
long double cargl(long double _Complex z);
float cargf(float _Complex z);

casin
Description: The casin function returns the complex inverse sine of z.

Calling interface:
double _Complex casin(double _Complex z);
long double _Complex casinl(long double _Complex z);
float _Complex casinf(float _Complex z);

casinh
Description: The casinh function returns the complex inverse hyperbolic sine of z.

Calling interface:
double _Complex casinh(double _Complex z);
long double _Complex casinhl(long double _Complex z);
float _Complex casinhf(float _Complex z);

catan
Description: The catan function returns the complex inverse tangent of z.

Calling interface:
double _Complex catan(double _Complex z);
long double _Complex catanl(long double _Complex z);
float _Complex catanf(float _Complex z);

catanh
Description: The catanh function returns the complex inverse hyperbolic tangent of z.

Calling interface:
double _Complex catanh(double _Complex z);
long double _Complex catanhl(long double _Complex z);
float _Complex catanhf(float _Complex z);

Optimization and Programming

2273

ccos
Description: The ccos function returns the complex cosine of z.

Calling interface:
double _Complex ccos(double _Complex z);
long double _Complex ccosl(long double _Complex z);
float _Complex ccosf(float _Complex z);

ccosh
Description: The ccosh function returns the complex hyperbolic cosine of z.

Calling interface:
double _Complex ccosh(double _Complex z);
long double _Complex ccoshl(long double _Complex z);
float _Complex ccoshf(float _Complex z);

cexp
Description: The cexp function returns ez (e raised to the power z).

Calling interface:
double _Complex cexp(double _Complex z);
long double _Complex cexpl(long double _Complex z);
float _Complex cexpf(float _Complex z);

cexp2
Description: The cexp function returns 2z (2 raised to the power z).

Calling interface:
double _Complex cexp2(double _Complex z);
long double _Complex cexp2l(long double _Complex z);
float _Complex cexp2f(float _Complex z);

cexp10
Description: The cexp10 function returns 10z (10 raised to the power z).

Calling interface:
double _Complex cexp10(double _Complex z);
long double _Complex cexp10l(long double _Complex z);
float _Complex cexp10f(float _Complex z);

cimag
Description: The cimag function returns the imaginary part value of z.

Calling interface:
double cimag(double _Complex z);
long double cimagl(long double _Complex z);
float cimagf(float _Complex z);

cis
Description: The cis function returns the cosine and sine (as a complex value) of z measured in radians.

Calling interface:
double _Complex cis(double x);

 Intel® C++ Compiler Classic Developer Guide and Reference

2274

long double _Complex cisl(long double z);
float _Complex cisf(float z);

cisd
Description: The cisd function returns the cosine and sine (as a complex value) of z measured in degrees.

Calling interface:
double _Complex cisd(double x);
long double _Complex cisdl(long double z);
float _Complex cisdf(float z);

clog
Description: The clog function returns the complex natural logarithm of z.

Calling interface:
double _Complex clog(double _Complex z);
long double _Complex clogl(long double _Complex z);
float _Complex clogf(float _Complex z);

clog2
Description: The clog2 function returns the complex logarithm base 2 of z.

Calling interface:
double _Complex clog2(double _Complex z);
long double _Complex clog2l(long double _Complex z);
float _Complex clog2f(float _Complex z);

clog10
Description: The clog10 function returns the complex logarithm base 10 of z.

Calling interface:
double _Complex clog10(double _Complex z);
long double _Complex clog10l(long double _Complex z);
float _Complex clog10f(float _Complex z);

conj
Description: The conj function returns the complex conjugate of z by reversing the sign of its imaginary
part.

Calling interface:
double _Complex conj(double _Complex z);
long double _Complex conjl(long double _Complex z);
float _Complex conjf(float _Complex z);

cpow
Description: The cpow function returns the complex power function, xy.
Calling interface:
double _Complex cpow(double _Complex x, double _Complex y);
long double _Complex cpowl(long double _Complex x, long double _Complex y);
float _Complex cpowf(float _Complex x, float _Complex y);

Optimization and Programming

2275

cproj
Description: The cproj function returns a projection of z onto the Riemann sphere.

Calling interface:
double _Complex cproj(double _Complex z);
long double _Complex cprojl(long double _Complex z);
float _Complex cprojf(float _Complex z);

creal
Description: The creal function returns the real part of z.

Calling interface:
double creal(double _Complex z);
long double creall(long double _Complex z);
float crealf(float _Complex z);

csin
Description: The csin function returns the complex sine of z.

Calling interface:
double _Complex csin(double _Complex z);
long double _Complex csinl(long double _Complex z);
float _Complex csinf(float _Complex z);

csinh
Description: The csinh function returns the complex hyperbolic sine of z.

Calling interface:
double _Complex csinh(double _Complex z);
long double _Complex csinhl(long double _Complex z);
float _Complex csinhf(float _Complex z);

csqrt
Description: The csqrt function returns the complex square root of z.

Calling interface:
double _Complex csqrt(double _Complex z);
long double _Complex csqrtl(long double _Complex z);
float _Complex csqrtf(float _Complex z);

ctan
Description: The ctan function returns the complex tangent of z.

Calling interface:
double _Complex ctan(double _Complex z);
long double _Complex ctanl(long double _Complex z);
float _Complex ctanf(float _Complex z);

ctanh
Description: The ctanh function returns the complex hyperbolic tangent of z.

Calling interface:
double _Complex ctanh(double _Complex z);

 Intel® C++ Compiler Classic Developer Guide and Reference

2276

long double _Complex ctanhl(long double _Complex z);
float _Complex ctanhf(float _Complex z);

C99 Macros
Many routines in the Intel® C++ Compiler Classic Math Library are more optimized for Intel® microprocessors
than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® C++ Compiler Classic Math Library functions.

The math library and mathimf.h header file support the following C99 macros:

int fpclassify(x);
int isfinite(x);
int isgreater(x, y);
int isgreaterequal(x, y);
int isinf(x);
int isless(x, y);
int islessequal(x, y);
int islessgreater(x, y);
int isnan(x);
int isnormal(x);
int isunordered(x, y);
int signbit(x);

See Also
Miscellaneous Functions

Automatically-Aligned Dynamic
Allocation

Automatically-Aligned Dynamic Allocation

Background
It is possible to tell the compiler that a data structure has a greater alignment requirement than its individual
elements require. For example:

C++ standard syntax

class alignas(64) X {
 double elem[8];
};

GNU-compatible syntax

class __attribute__((aligned(64))) X {
 double elem[8];
};

Microsoft-compatible syntax

class __declspec(align(64)) X {
 double elem[8];
};

Automatically-Aligned Dynamic Allocation

2277

This is especially important for a structure that will be used with SIMD instructions, which typically require
greater alignment than the individual data elements. The compiler will ensure that variables declared with
such a type, either statically or on the stack, will be allocated with the appropriate alignment.

However, if an object of such a type is allocated dynamically, with a new-expression, the compiler was not
previously able to do anything to ensure the appropriate alignment. That is because the C++ language
requires that only very specific allocation methods be used, over which the programmer can take control if
necessary, and none of those allocation methods are able to support specific alignment. They all assume that
some alignment value is enough for everything, and guarantee that (and nothing more).

In the past, to ensure a greater alignment for a given type, a programmer had to take control of its
allocation. One way to do that is by always allocating the memory separately with the appropriate alignment,
and using a non-allocating placement new-expression. For example:

Incorrect alignment

new X
Correct alignment

new (_mm_malloc(sizeof(X), alignof(X))) X
However, this method is verbose, tedious, and error-prone.

Another way is to write class-specific allocation and deallocation functions—operator new and operator
delete. For example:

class alignas(64) X {
 double elem[8];

public:
 void *operator new(size_t size){
 return _mm_malloc(size, alignof(X));
 }

 void operator delete(void *p){
 return _mm_free(p);
 }
};

This method is easier, because the changes are centralized in the class, instead of being distributed over the
uses of the class. But to get it right in general is still fairly involved, because it requires defining several more
functions, in case arrays of the class are dynamically allocated or nothrow allocation is used.

Automatically-Aligned Dynamic Allocation
In this release of the compiler, all that is necessary in order to get correct dynamic allocation for aligned data
is to include a new header:

#include <aligned_new>
After this header is included, a new-expression for any aligned type will automatically allocate memory with
the alignment of that type.

On Windows*, it is possible to direct the compiler to include a file at the beginning of the primary source file,
without modifying the source, using the /FI command-line option.

Implementation Details
This section explains the language rules for the new feature. If a program needs to take control of dynamic
allocation and deallocation of aligned data for some reason other than alignment, this section explains how it
can be done.

 Intel® C++ Compiler Classic Developer Guide and Reference

2278

Header <aligned_new> defines several new alignment-aware allocation and deallocation functions, each of
which takes an alignment argument:

void *operator new (size_t, align_val_t);
void *operator new (size_t, align_val_t, nothrow_t const &);
void operator delete (void *, align_val_t);
void operator delete (void *, align_val_t, nothrow_t const &);
void *operator new[] (size_t, align_val_t);
void *operator new[] (size_t, align_val_t, nothrow_t const &);
void operator delete[](void *, align_val_t);
void operator delete[](void *, align_val_t, nothrow_t const &);

The type align_val_t is declared internally by the compiler as if by a declaration like this:

namespace std {
 enum class align_val_t: size_t;
};

In other words, std::align_val_t is a scoped enumeration type, which can not be implicitly converted to
an integer type, but has the same range and representation as std::size_t.

When the compiler processes a new-expression for a type whose alignment is greater than (2 *
sizeof(void *)), it builds an argument list according to the normal C++ rules, but with an additional
alignment argument of type align_val_t following the size argument (followed by the placement
arguments from the new-expression, if any). It then uses overload resolution to try to find an alignment-
aware operator new or operator new[] function that can be called with those arguments. If no
alignment-aware function is found, the alignment argument is removed from the argument list, and overload
resolution is attempted again. An error is reported if this second attempt fails.

Class-specific Allocation and Deallocation Functions
If a program already provides class-specific allocation and deallocation functions for an aligned class,
including <aligned_new> will not change the behavior, because class-specific functions take precedence over
global functions, and <aligned_new> defines only global functions.

Unless class-specific allocation and deallocation functions are written for a base class of a class hierarchy
containing classes with different alignments, it is probably not necessary to write alignment-aware allocation
and deallocation functions that take an alignment argument; the appropriate alignment can instead be built
into the class-specific allocation and deallocation functions.

Replacing Global Allocation and Deallocation Functions

NOTE If a program defines its own global allocation and deallocation functions, replacing the ones
from the standard library, and uses a non-placement new-expression to allocate aligned data, and
<aligned_new> is included before the point of such a new-expression, the behavior of the program
will change. The allocation will no longer use the program's replacement allocation functions, but
instead Intel's provided alignment-aware allocation functions. In a program that replaces the
global allocation and deallocation functions, care must be used to decide whether to include
<aligned_new>.

If a program wants to replace the global allocation and deallocation functions, and also wants to take
advantage of the compiler's ability to provide an alignment argument to such functions, <aligned_new>
should not be included, because it provides inline definitions of the alignment-aware functions, which will
conflict with or take precedence over the program's definitions. Instead, <aligned_new> should be used as a
guide to write program-specific declarations and definitions of the alignment-aware functions that need to be
replaced.

Optimization and Programming

2279

Pointer Checker

Pointer Checker Overview
The pointer checker is not supported on macOS systems.

This feature requires installation of another product. For more information, see Feature Requirements.

The pointer checker is a debugging feature that helps you find buffer overruns in applications. The feature
performs bounds checking for memory accesses through pointers and identifies any out-of-bounds access in
pointer-checker enabled code. The pointer checker can also detect dangling pointers, that is, pointers that
point to memory that has been freed. When this detection is enabled, using a dangling pointer in an indirect
access will also cause an out-of-bounds error.

The C and C++ languages define semantics for memory access for pointers. However, many applications still
make out-of-bounds memory accesses and these accesses can go undetected, risking data corruption and
increasing vulnerability to malicious attacks. The pointer checker provides full checking of all memory
accesses through pointers and catches out-of-bounds memory accesses before memory corruption occurs.
When you compile your code with the pointer checker enabled, it identifies and reports out-of-bounds
memory accesses.

The pointer checker is designed for use during application testing and debugging. Because it adds overhead
in terms of the size and execution time of a program, you will want to deploy programs with the pointer
checker disabled.

Your application can contain both pointer checker enabled code as well as code that is not enabled. The
pointer checker allows this co-existence because it does not change the data structure layout of functions
during its checking.

See Also
Pointer Checker Feature Summary
Feature Requirements

Pointer Checker Feature Summary
The pointer checker is not supported on macOS systems.

The pointer checker provides a number of related elements, summarized in the following table.

Element Description

Compiler Options:

[Q]check-pointers Enables the pointer checker and adds the associated libraries.
This compiler option enables checking of all indirect accesses
through pointers and accesses to arrays.

The possible option keywords are [none | write | rw], where:

• none: Disables the pointer checker (default).
• write: Checks bounds for only writes through pointers.
• rw: Checks bounds for reads and writes through pointers.

If the compiler determines that an access is safe during
optimization, then the compiler removes the pointer checking
code.

See Checking Bounds.

[Q]check-pointers-dangling Enables checking for dangling pointer references.

 Intel® C++ Compiler Classic Developer Guide and Reference

2280

Element Description

The possible option keywords are [none | heap | stack | all],
where:

• none: Disables checking for dangling pointer references
(default).

• heap: Checks for dangling pointer references on the heap.
• stack: Checks for dangling pointer references on the stack.
• all: Checks for dangling pointer references on both the heap

and the stack.

NOTE
To use this option, you must also use the [Q]check-pointers
compiler option.

This option cannot be used with [Q]check-pointers-mpx.

See Checking for Dangling Pointers.

[Q]check-pointers-undimensioned Enables the checking of bounds for arrays without dimensions.

NOTE
To use this option, you must also use the [Q]check-pointers
compiler option.

See Checking Arrays.

[Q]check-pointers-narrowing Determines whether the compiler enables or disables the
narrowing of pointers to structure fields. Narrowing restricts a
field pointer so that it can only legally point to that field.

Enables or disables the compiler narrowing of pointers to
structure fields.

The default is enabled for narrowing pointer references. Disabling
this feature can improve Pointer Checker compatibility with non-
ANSI compliant code. To disable the narrowing of pointers to
structure fields, specify the negative form of the option.

NOTE
To use this option, you must also use the [Q]check-pointers
compiler option.

check-pointers-mpx, Qcheck-pointers-mpxDetermines whether the compiler checks bounds for memory
access through pointers on processors supporting Intel® Memory
Protection Extensions (Intel® MPX). It enables checking of all
indirect accesses through pointers, and all array accesses.

Specifies what type of bounds checking occurs. The possible
option keywords are [none | write | rw], where:

• none: Disables the pointer checker (default).
• write: Checks bounds for only writes through pointers.
• rw: Checks bounds for reads and writes through pointers.

The compiler may optimize these checks away when it can
determine that an access is safe.

Optimization and Programming

2281

Element Description

This option cannot be used with
[Q]check-pointers-dangling.

If you specify option [Q]check-pointers along with option
[Q]check-pointers-mpx, [Q]check-pointers-mpx takes
precedence.

On supported Windows* target platforms, MPX instructions can
also be accessed using MPX intrinsic functions and the
__declspec(mpx) feature. For more details, please see the Intel
Memory Protection Extensions Enabling Guide (https://
software.intel.com/sites/default/files/managed/9d/f6/
Intel_MPX_EnablingGuide.pdf).

Intrinsics:
void * __chkp_lower_bound(void
**) Returns the lower bound associated with the pointer.

See Writing a Wrapper.
void * __chkp_upper_bound(void
**) Returns the upper bound associated with the pointer.

See Writing a Wrapper.
void * __chkp_kill_bounds(void
*p) Removes the bounds information to allow the pointer specified in

the argument to access all memory. Use this function for a
pointer from a non-enabled module that will be used in an
enabled module where you cannot determine the bounds of the
pointer.

The function ensures that the pointer created from a non-enabled
module does not inherit the bounds from another pointer that
was in the same memory address.

The return value is a pointer without bounds information.

See Working with Enabled and Non-Enabled Modules.

void * __chkp_make_bounds(void
*p, size_t size)

Creates new bounds information within the allocated memory
address for the pointer in the argument, replacing any previously
associated bounds information. The new bounds are:

p = __chkp_make_bounds(q, size)
 // lower_bound(p) = (char *)q
 // upper_bound(p) = lower_bound(p) + size
See Checking Custom Memory Allocators.

Reporting Function:
void
__chkp_report_control(__chkp_r
eport_option_t option,
__chkp_callback_t callback)

Determines how errors are reported.

See Finding and Reporting Out-of-Bounds Errors.

Enumeration:

__chkp_report_option_t Controls how out-of-bounds error are reported. This enumeration
is declared in the header file chkp.h.

See Finding and Reporting Out-of-Bounds Errors.
Environment Variable:

INTEL_CHKP_REPORT_MODE Changes the pointer checker reporting mode at runtime.

See Finding and Reporting Out-of-Bounds Errors.
Header file:

 Intel® C++ Compiler Classic Developer Guide and Reference

2282

Element Description

chkp.h Defines intrinsic and reporting functions. The header file is
located in the <install-dir>\include directory.

See Also
check-pointers, Qcheck-pointers
check-pointers-dangling, Qcheck-pointers-dangling
check-pointers-undimensioned, Qcheck-pointers-undimensioned
check-pointers-narrowing, Qcheck-pointers-narrowing
check-pointers-mpx, Qcheck-pointers-mpx
__declspec(mpx)
Finding and Reporting Out-of-Bounds Errors
Working with Enabled and Non-Enabled Modules
Checking Custom Memory Allocators
Writing a Wrapper
Checking Arrays
Checking for Dangling Pointers
Checking Bounds

Using the Pointer Checker

Checking Bounds
The pointer checker is not supported on macOS systems.

The pointer checker checks indirect accesses through pointers for accesses that are out of bounds.

Checking Bounds on Read/Write Operations
To check the bounds of pointers, compile your module with [Q]check-pointers compiler option, specifying
the rw argument.

You can also check bounds by specifying the write argument. This also checks the bounds of pointers, but
only for pointer write operations.

Consider the case where you create an array with ten elements using the malloc() function and then you
write a character to each array element:

Example: Writing to Each Array Element

char *buf = malloc(10);
for (int i=0; i<=10; i++) { buf[i] = ‘A’ + i; }

The array has ten elements, but the loop iterates eleven times. On the eleventh iteration, the function writes
a character to the eleventh element of the array, which is outside of the allocated memory. Regardless of
whether you specify bounds checking for read and write operations or only write operations, the pointer
checker will report an out-of-bounds error. Even in the case of a statically allocated buffer, the pointer
checker will still report an error. Consider this case:

Example: Out-of-bounds Error with a Statically Allocated Buffer

fprintf(stderr, "buf[%d]=%d\n",i,buf[i]);

Optimization and Programming

2283

Here, the reference to buf[i] is a read (or load) operation. Therefore, an out-of-bounds error will not be
reported if you specified pointer checking only for write operations.

Pointer Arithmetic and Pointer Checking
Pointer arithmetic does not affect the pointer checker. A pointer can go out of range as long as the pointer
does not make an indirect reference to an out of range address.

In the case where you create an array with 100 elements, the following applies:

Example: Pointer Arithmetic with Pointer Checking

char *p = malloc(100);
 p += 200; // pointer is out of range, but no error
 p[-101] = 0; // access is still in range, it is the original p[99]
 p[0] = 0; // out-of-bounds error occurs here, because it is original p[200]

See Also
check-pointers, Qcheck-pointers compiler option

Checking for Dangling Pointers
The pointer checker is not supported on macOS systems.

When dangling pointer checking or heap is enabled, the compiler uses a wrapper for the C runtime function
free() and the C++ delete operator. These wrappers find all pointers that point to the block being freed,
and change their bounds so that any access through the pointer will cause a bound violation. The bounds of
these dangling pointers are actually set to:

• lower_bound(p) = 2;
• upper_bound(p) = 0;
If your program gets a bound violation with these bounds, it is the result of a reference through a dangling
pointer.

When dangling pointer checking is enabled for stack, the compiler finds all pointers that point to the locals of
the function and changes their bounds in the same way as heap pointers above, just before the function
exits.

If you have a custom memory allocator, you can enable it to do dangling pointer checking. The free()
function of your custom memory allocator should call this function in the pointer checker runtime code:

void __chkp_invalidate_dangling(void *ptr, size_t size);
This function is declared in the chkp.h file. You must include that header file to use this function because it
uses a custom call interface.

Example

#include <chkp.h>
 void my_free(void *ptr) {
 size_t size = my_get_size(ptr);
 // do the free
 __chkp_invalidate_dangling(ptr, size);
 }

You can also enabled dangling pointer checking in any function you use to override the C++ delete
operator.

See Also
check-pointers-dangling, Qcheck-pointers-dangling compiler option

 Intel® C++ Compiler Classic Developer Guide and Reference

2284

Checking Arrays
The pointer checker is not supported on macOS systems.

The C and C++ language allows you to define arrays in another module with the extern keyword. These
arrays can be defined without specifying the dimensions.

Example: Creating an Undimensioned Array

extern char an_undimensioned_array [];

The compiler allows more than one definition for externally defined arrays. During link time, the compiler
uses the array definition with the largest bounds.

To check these arrays, the compiler defines a global symbol that marks the end of the array. However,
checking undimensioned arrays can lead to a multiple defined linker error. To fix this linker error, do one of
the following:

• Use only one array definition.
• Use the negative form of the [Q]check-pointers-undimensioned compiler option to disable checking

arrays without bounds.

NOTE
This compiler option suppresses checking in the module that declares an array without bounds. The
pointer checker will still check the arrays in modules that actually define the arrays with bounds.

See Also
check-pointers-undimensioned, Qcheck-pointers-undimensioned compiler option

Working with Enabled and Non-Enabled Modules
The pointer checker is not supported on macOS systems.

An enabled module is a module compiled with the pointer checker option enabled, while a non-enabled
module is a module compiled with this compiler option disabled.

If you write a pointer to memory or return a pointer from a non-enabled module, the pointer may get
incorrect bounds information. If you use this pointer with the incorrect bounds information in an enabled
module, the pointer checker will report an incorrect out-of-bounds error because the bounds do not
correspond to the pointer.

To minimize this issue, the pointer checker stores a copy of the pointer along with the bounds information.
When the pointer is loaded into memory, the value of the pointer is compared with the value of the pointer
copy. If these two values match, the bounds information is assumed to be correct and is then used. However,
if the two values do not match, the bounds are set to allow access to any memory.

The pointer checker can still report an out-of-bounds error if a pointer from a non-enabled module matches
the pointer copy stored with the bounds information.

For example, consider the case where you create the following pointer by using a run-time library function
from a non-enabled module:

Example: Pointer Created with RTL Function

p = my_realloc(p, old_size + 100);

If the memory allocator can simply extend the memory allocated to p, and then returns the same pointer, an
enabled module could use this pointer with the old bounds information. The pointer checker then reports an
out-of-bounds error because this feature does not know about the extension created by the realloc()
function.

Optimization and Programming

2285

To prevent incorrect out-of-bounds errors when you have both enabled and non-enabled modules, do one of
the following:

• Remove the bounds information from the pointer by using the __chkp_kill_bounds() intrinsic function
• Set the correct bounds information by using the __chkp_make_bounds() intrinsic function in an enabled

module.

Removing the Bounds Information
When you remove the bounds information, you disable pointer checking on this pointer. You can remove the
bounds information by using the __chkp_kill_bounds() intrinsic function.

Example: Removing Bounds Information with __chkp_kill_bounds()

void * unknown_pointer_returning_function() {
 ...
 // Use the intrinsic function in the return pointer
 return __chkp_kill_bounds(the_ptr);
}

Setting the correct bounds information
You can use the __chkp_make_bounds() intrinsic function to set the correct bounds information for a
pointer.

For example, you use the Windows* HeapAlloc() function to create a pointer. Since this operating system
function is from a non-enabled module, the pointer from this function will not have the correct bounds
information.

To get a pointer with the correct bounds information, use the __chkp_make_bounds() intrinsic function in
the return value:

Example: Obtaining a Pointer with __chkp_make_bounds()

void * myalloc(size_t size){ return __chkp_make_bounds(HeapAlloc(MyHeap, flags, size), size); }

Storing Bounds Information
The pointer checker is not supported on macOS systems.

The pointer checker stores bounds information in a bounds table located in a memory address that is not
adjacent to the memory address of the pointer. The pointer checker calculates this address by using the
address of the pointer.

Because the bounds information is being stored in a separate memory address, use of the pointer checker in
this module does not affect the data structure layouts and stack frames. You can check the bounds of
pointers in enabled modules. Non-enabled modules will still work properly although this feature will not check
the pointers in these modules.

When a pointer is loaded in a register, the compiler also loads the bounds from the bounds table. When a
pointer is stored from a register, the compiler stores the bounds information in the bounds table.

Passing and Returning Bounds
The pointer checker is not supported on macOS systems.

When you pass a pointer to a function, the pointer checker also passes the bounds information associated
with the pointer. The feature uses the following methods to pass and return arguments:

 Intel® C++ Compiler Classic Developer Guide and Reference

2286

• If you pass a pointer on the stack, the pointer is in a memory location, so the pointer checker stores the
bounds information when you compile your enabled module. The bounds information is stored in the
bounds table entry associated with the address of the pointer.

• If you pass a pointer on a register, the compiler uses a location in thread local storage to pass the bounds.
There is one such location associated with each register in which a pointer can be passed. This same
location is used to return the bounds when a pointer is returned by a function.

Checking Run-Time Library Functions
The pointer checker is not supported on macOS systems.

The pointer checker provides checking on C run-time library functions that manipulate memory through
pointers. It uses a library of functions that either replace the run-time library function, or wrap them with the
appropriate pointer checking mechanisms.

For functions that allocate memory, such as the malloc() function or various C++ new functions, the
wrapper function create bounds information for the pointers returned by the memory allocator.

For functions that copy memory, such as the memcpy() function, the memory address may contain the
pointers along with their associated bounds information. The wrapper functions check for out-of-bounds
accesses and ensure that any bounds associated with the copied memory are also copied.

The point checker C run-time function wrappers are located in the libchkpwrap library. To determine which
C run-time routines are wrapped, you can examine the entry points in the library. For example, the following
will yield a list of entry points:

Example

// Linux*
 % nm libchkpwrap.a | egrep 'T __chkp_'

// Windows* (x86)
 dumpbin /symbols libchkpwrap.lib | egrep 'SECT.*External.*
 [_]*__chkp_'

The returned list will include entry points that signify wrappers. For example, __chkp_strcpy is the wrapper
for strcpy.

Writing a Wrapper
The pointer checker is not supported on macOS systems.

You can write your own wrappers for run-time library functions. Typically, you would use one or more of the
pointer checker intrinsics.

Example: Allocation Wrapping with __chkp_make_bounds

extern void *wrap_malloc(size_t bytes) {
 void* ppp;
 ppp = malloc(bytes);
 if (ppp) { ppp = (void*)__chkp_make_bounds(ppp, bytes);
 } else { ppp = (void*)0;}
 return ppp;
}

The next example shows a wrapper that checks the validity of the pointer passed by performing writes to the
first and last addresses that the C run-time routine will write. This will cause out of bounds events if
necessary, while still allowing optimized handling of the C run-time library call.

Optimization and Programming

2287

Example: Checking without using Pointer Checker Intrinsics

extern void *wrap_memset(void *dst, int c, size_t size) {
 if (size > 0) {
 *(char *)dst = c; // write to first address
 ((char)dst+size-1) = c; // write to last address
 (void)memset(dst, c, size);
 }
 return dst;
}

Alternatively, you can perform the checking directly by comparing to the bounds associated with the pointer.
In this case, you must first make sure that the bounds are meaningful. You can use the
__chkp_upper_bound and __chkp_lower_bound intrinsics for this purpose.

Example: Upper and Lower Bound Intrinsics

extern void *wrap_memset(void *dst, int c, size_t size) {
 if (size > 0) {
 char *ub = __chkp_upper_bound(&dst);
 if ((intptr_t)ub != (intptr_t)-1) {
 char *lb = __chkp_lower_bound(&dst);
 char *max = (char*)dst+size-1;
 if (dst < lb)
 (char)dst = c; // cause bounds violation
 if (max > ub)
 (char)max = c; // cause bounds violation
 }
 (void)memset(dst, c, size);
 }
 return dst;
}

Checking Custom Memory Allocators
The pointer checker is not supported on macOS systems.

Many C and C++ applications use standard memory allocation functions to allocate large chunks of memory
and then define their own custom memory allocation functions to allocate these large chunks of memory into
smaller chunks. If you use the pointer checker on a module that contains custom memory allocation
functions, every memory allocation from these custom functions will have the bounds information from the
large chunk of memory.

To create the correct bounds information for a pointers in a custom memory allocator function, use the
__chkp_make_bounds() intrinsic function.

For example, consider the case where you create a custom memory allocator function that returns a pointer.
To add the exact bounds information to the return pointer, use the __chkp_make_bounds() intrinsic function
in the return value:

Adding exact bounds information to a return pointer

void *myalloc(size_t size) {
 // Code to do allocate the large chunk of memory into small chunks.
 // Add bounds information to the pointer
 return __chkp_make_bounds(p, size);
}

 Intel® C++ Compiler Classic Developer Guide and Reference

2288

NOTE
If you override the new operator in C++, you can use the same technique to give bounds information
to the return pointer.

Checking Multi-Threaded Code

The pointer checker is not supported on macOS systems.

A common assumption is that reading or writing a pointer is an atomic operation that cannot be interrupted
by starting another thread. This is not the case with using the pointer checker to check pointers in multi-
threaded modules.

When you read or write a pointer from memory, the bounds information associated with the pointer must
also be read or written. Reading and writing bounds information takes multiple instructions. While a thread is
in the process of writing a pointer and its bounds, it could be swapped out for another thread. If that thread
then writes to the same pointer, you can end up with a pointer and bounds information that are not
synchronized—the pointer is from one thread and the bounds information is from another thread.

To synchronize the pointer and bounds information in multi-threaded code, use a locking mechanism, such as
a mutex or critical section when reading or writing a pointer in memory locations shared by more than one
thread. Typically, accesses to shared memory are already protected this way.

If your application relies on a pointer read or a pointer write that is atomic and performs reads or writes to
shared pointers without such locking, you can get extraneous bounds violations unless you protect these
accesses.

How the Compiler Defines Bounds Information for Pointers

The pointer checker is not supported on macOS systems.

The following defines how the compiler determines the bound information for pointers.

NOTE
In each section, lower_bound(p) refers to the lower bound associated with p and upper_bound(p)
refers to the upper bound associated with p.

Pointers created by the alloca() function

p = alloca(size);
 // lower_bound (p) is (char *)p
 // upper_bound (p) is lower_bound(p) + size - 1

Pointers created by the calloc() function

p = calloc(num, size);
 // lower_bound(p) is (char *)p
 // upper_bound(p) is lower_bound(p) + size * num - 1

Optimization and Programming

2289

Pointers created by the malloc() function

p = malloc(size);
 // lower_bound(p) is (char *)p
 // upper_bound(p) is lower_bound(p) + size - 1

Pointers created by casting

p = (T *)q;
 // lower_bound(p) is lower_bound(q)
 // upper_bound(p) is upper_bound(q)

Casting a pointer does not affect the bounds of a pointer. If you cast a pointer to a new type that is larger
than the bounds associated with the original pointer, you will get an out-of-bounds error when you try to
access any member or element outside the original bounds. If you cast a pointer to a smaller type than the
original pointer, you can still access the original data.

Pointers created for a variable length array in a structure

typedef struct {
 int num;
 int a[];
} T;

q = malloc(sizeof(T) + sizeof(int) * num);
p = &q->a;
 // lower_bound(p) is (char *)&q->a
 // upper_bound(p) is upper_bound(q)

When you define an array as the last member of a structure, the upper bound is not narrowed and is allowed
to access all of the array elements allocated by the malloc() function.

Pointers defined by the address (&) operator

p = &v;
 // lower_bound(p) is (char *)&v
 // upper_bound(p) is (char *)&v + sizeof(v) - 1

p = &v.m;
 // lower_bound(p) is (char *)&v + offsetof(typeof(v), m)
 // upper_bound(p) is lower_bound(p) + sizeof(v.m) – 1

p = &q->m;
 // lower_bound(p) is (char *)q + offsetof(typeof(*q), m)
 // upper_bound(p) is lower_bound(p) + sizeof(q->m) – 1

NOTE
The bounds information is narrowed to the size of the member when you point to a member of a
structure, union, or class.

 Intel® C++ Compiler Classic Developer Guide and Reference

2290

Pointers defined by the new operator

p = new T;
 // lower_bound(p) is (char *)p
 // upper_bound(p) is lower_bound(p) + sizeof(T) - 1

Pointers defined by the addresses in an array

T a[X][Y];

p = a;
p = &a[x];
p = &a[x][y];
 // lower_bound(p) is (char *)a
 // upper_bound(p) is lower_bound(p) + sizeof(a) - 1

When you take the address of an element of an array or the address of a single row of a multi-dimensioned
array, the bounds are not narrowed to the size of the element. You can increment or decrement the pointer
throughout the array.

Incrementing and Decrementing Pointers

p = &a[x][y].m;
 // lower_bound(p) is (char *)&a[n][m] + offsetof(T, m)
 // upper_bound(p) is lower_bound(p) + sizeof(T.m) – 1

When you take the address of a member of an element, the bounds are narrowed to the size of the member.

Pointers defined by pointer copies

p = q;
p = q + expr;
p = q – expr;
 // lower_bound(p) is lower_bound(q)
 // upper_bound(p) is upper_bound(q)

The bounds are copied from q. Offsetting the pointer on the right does not affect the bounds.

Pointers defined by incrementing or decrementing a pointer

p++;
p--;
++p;
--p;
p += expr;
p -= expr;

The bounds do not change when you increment or decrement a pointer.

Finding and Reporting Out-of-Bounds Errors
The pointer checker is not supported on macOS systems.

Optimization and Programming

2291

The pointer checker includes the __chkp_report_control() library function and the
__chkp_report_option_t enumeration to allow you to control how errors are reported. The function and
enumeration are declared in the header file chkp.h.

The report control enumeration has one of the following values:
Enum Value Action

__CHKP_REPORT_NONE Do nothing.

__CHKP_REPORT_BPT Execute a breakpoint interrupt. If you specify this value, the pointer checker
will issue a breakpoint for any out-of-bounds error that it finds. If you are
using a debugger, the breakpoint will trap into the debugger so that you can
determine where the error occurred. You can then use the features of the
debugger to determine the cause of the error.

__CHKP_REPORT_LOG Log the error and continue; the compiler will report each out-of-bounds
pointer it finds.

__CHKP_REPORT_TERM Log the error and exit the program; the compiler will only report the first
bounds violation and then terminate.

__CHKP_REPORT_CALLBACK Call a user defined function; the compiler will invoke a user-defined function
to deal with a bounds error.

__CHKP_REPORT_TRACEBAC
K _BPT

Print a traceback including source file and line number for the instruction
where the out-of-bounds error occurred, then execute a breakpoint
interrupt.

NOTE
Specify the traceback compiler option to obtain better traceback information,
including routine names.

__CHKP_REPORT_TRACE_LO
G

Log the error and continue; the log will include traceback information for
each out-of-bounds error. This is the default reporting mode.

NOTE
Specify the traceback compiler option to obtain better traceback information,
including routine names.

__CHKP_REPORT_TRACE_TE
RM

Log the error and terminate; the log will include traceback information for
each out-of-bounds error. Only the first bounds error will be reported.

NOTE
Specify the traceback compiler option to obtain better traceback information,
including routine names.

__CHKP_REPORT_TRACE_CA
LLBACK

Log the error and call a user-defined routine; the log will include traceback
information for each out-of-bounds error.

NOTE
Specify the traceback compiler option to obtain better traceback information,
including routine names.

__CHKP_REPORT_OOB_STAT
S

Emit statistics for the bounds violation; Currently, this is a count of the out-
of-bounds errors.

 Intel® C++ Compiler Classic Developer Guide and Reference

2292

Enum Value Action

__CHKP_REPORT_USE_ENV_
VAR

Use the environment variable INTEL_CHKP_REPORT_MODE to specify the
reporting mode. If the environment variable is not set, the default reporting
mode is used.

Changing the Reporting Mode

To change the reporting mode from the default __CHKP_REPORT_TRACE_LOG:

1. Include chkp.h in your program source.
2. Add a call to the report control routine __chkp_report_control() (before any pointer references are

made), specifying one of the enum values.

For example, to report all bounds errors, specify the following:

__chkp_report_control(__CHKP_REPORT_LOG, 0);
In the above, the first parameter to the routine is the enum value and the second parameter is 0, except in
the case of the __CHKP_REPORT_CALLBACK enum value, which requires the name of a user-defined callback
routine as the second parameter.

You can also change the reporting mode using the environment variable INTEL_CHKP_REPORT_MODE. This
allows you to change the reporting mode without recompiling your code. To use the environment variable, do
the following:

1. Add an include of chkp.h in your program source.
2. Add a call to the report control routine __chkp_report_control() (before any pointer references are

made), specifying __CHKP_REPORT_USE_ENV_VAR.
3. Set the INTEL_CHKP_REPORT_MODE environment variable to the desired report mode. For example:

export INTEL_CHKP_REPORT_MODE=__CHKP_REPORT_OOB_STATS

NOTE
The INTEL_CHKP_REPORT_MODE environment variable is valid only if a call to
__chkp_report_control has been made with the report mode set to
__CHKP_REPORT_USE_ENV_VAR. Otherwise, it is ignored.

If you specify the report mode to be __CHKP_REPORT_USE_ENV_VAR and the
INTEL_CHKP_REPORT_MODE environment variable is not set, the default report mode
(__CHKP_REPORT_TRACE_LOG) is used.

See Also
/Zi compiler option
traceback, notraceback compiler option

Tools

PGO Tools

PGO Tools Overview
This section describes the tools that take advantage of or support the Profile-guided Optimizations (PGO)
available in the compiler.

Tools

2293

• Code coverage Tool
• Test prioritization Tool
• Profmerge and proforder Tools

Code Coverage Tool
The code coverage tool provides software developers with a view of how much application code is exercised
when a specific workload is applied to the application. To determine which code is used, the code coverage
tool uses Profile-guided Optimization (PGO) options and optimizations. The major features of the code
coverage tool are listed below:

• Visually presenting code coverage information for an application with a customizable code coverage
coloring scheme

• Displaying dynamic execution counts of each basic block of the application
• Providing differential coverage, or comparison, profile data for two runs of an application

The information about using the code coverage tool is separated into the following sections:

• Code coverage tool Requirements
• Visually Presenting Code Coverage for an Application
• Excluding Code from Coverage Analysis
• Exporting Coverage Data

The tool analyzes static profile information generated by the compiler, as well as dynamic profile information
generated by running an instrumented form of the application binaries on the workload. The tool can
generate an HTML-formatted report and export data in both text-, and XML-formatted files. The reports can
be further customized to show color-coded, annotated, source-code listings that distinguish between used
and unused code.

The code coverage tool is available on all supported Intel architectures on Linux*, Windows*, and macOS
operating systems.

You can use the tool in a number of ways to improve development efficiency, reduce defects, and increase
application performance:

• During the project testing phase, the tool can measure the overall quality of testing by showing how much
code is actually tested.

• When applied to the profile of a performance workload, the code coverage tool can reveal how well the
workload exercises the critical code in an application. High coverage of performance-critical modules is
essential to taking full advantage of the Profile-Guided Optimizations that Intel Compilers offer.

• The tool provides an option useful for both coverage and performance tuning, enabling developers to
display the dynamic execution count for each basic block of the application.

• The code coverage tool can compare the profile of two different application runs. This feature can help
locate portions of the code in an application that are unrevealed during testing but are exercised when the
application is used outside the test space, for example, when used by a customer.

Code Coverage Tool Requirements
To run the code coverage tool on an application, you must have following items:

• The application sources.
• The .spi file generated by the Intel® compiler when compiling the application for the instrumented binaries

using the -prof-gen=srcpos (Linux and macOS) or /Qprof-gen:srcpos (Windows) option.

NOTE
Use the –[Q]prof-gen:srcpos option if you intend to use the collected data for code coverage and
profile feedback. If you are only interested in using the instrumentation for code coverage, use
the /Qcov-gen option. Using the /Qcov-gen option saves time and improves performance. This
option can be used only on Windows platform for all architectures.

 Intel® C++ Compiler Classic Developer Guide and Reference

2294

• A pgopti.dpi file that contains the results of merging the dynamic profile information (.dyn) files, which
is most easily generated by the profmerge tool. This file is also generated implicitly by the Intel®
compilers when compiling an application with [Q]prof-use options with available .dyn and .dpi files.

Using the Tool

The tool uses the following syntax:

Tool Syntax

codecov [-codecov_option]

where -codecov_option is one or more optional parameters specifying the tool option passed to the tool.
The available tool options are listed in the code coverage tools Options section. If you do not use any
additional tool options, the tool will provide the top-level code coverage for the entire application.

In general, you must perform the following steps to use the code coverage tool:

1. Compile the application using -prof-gen=srcpos (Linux and macOS) or /Qprof-gen:srcpos
(Windows), and/or /Qcov-gen (Windows) option.

This step generates an instrumented executable and a corresponding static profile information
(pgopti.spi) file when the [Q]prof-gen=srcpos option is used. When the /Qcov-gen option is used,
minimum instrumentation only for code coverage and generation of .spi file is enabled.

NOTE
You can specify both the /Qprof-gen=srcpos and /Qcov-gen options on the command line. The
higher level of instrumentation needed for profile feedback is enabled along with the profile option for
generating the .spi file, regardless of the order the options are specified on the command line.

2. Run the instrumented application.

This step creates the dynamic profile information (.dyn) file. Each time you run the instrumented
application, the compiler generates a unique .dyn file either in the current directory or the directory
specified in by the -prof-dir (Linux or macOS) or /Qprof-dir (Windows) option, or PROF_DIR
environment variable. On Windows, you can use the /Qcov-dir or COV_DIR environment variable. These
have the same meaning as /Qprof-dir and PROF_DIR.

3. Use the profmerge tool to merge all the .dyn files into one .dpi (pgopti.dpi) file.

This step consolidates results from all runs and represents the total profile information for the
application, generates an optimized binary, and creates the dpi file needed by the code coverage tool.

You can use the profmerge tool to merge the .dyn files into a .dpi file without recompiling the
application. The profmerge tool can also merge multiple .dpi files into one .dpi file using the profmerge
-a option. Select an alternate name for the output .dpi file using the profmerge -prof_dpi option.

Caution
The profmerge tool merges all .dyn files that exist in the given directory. Confirm that unrelated .dyn
files, which may remain from unrelated runs, are not present. Otherwise, the profile information will
be skewed with invalid profile data, which can result in misleading coverage information and adverse
performance of the optimized code.

4. Run the code coverage tool. The valid syntax and tool options are shown below.

This step creates a report or exported data as specified. If no other options are specified, the code
coverage tool creates a single HTML file (CODE_COVERAGE.HTML) and a sub-directory (CodeCoverage)
in the current directory. Open the file in a web browser to view the reports.

Optimization and Programming

2295

NOTE
Windows* only: Unlike the compiler options, which are preceded by forward slash ("/"), the tool
options are preceded by a hyphen ("-").

The code coverage tool allows you to name the project and specify paths to specific, necessary files. The
following example demonstrates how to name a project and specify .dpi and .spi files to use:

Example: specify .dpi and .spi files

codecov -prj myProject -spi pgopti.spi -dpi pgopti.dpi

The tool can add a contact name and generate an email link for that contact at the bottom of each HTML
page. This provides a way to send an electronic message to the named contact. The following example
demonstrates how to add specify a contact and the email links:

Example: add contact information

codecov -prj myProject -mname JoeSmith -maddr js@company.com

This following example demonstrates how to use the tool to specify the project name, specify the dynamic
profile information file, and specify the output format and file name.

Example: export data to text

codecov -prj test1 -dpi test1.dpi -txtbcvrg test1_bcvrg.txt

Code Coverage Tool Options

Option Default Description

-bcolorcolor #FFFF99 Specifies the HTML color name for code in the uncovered
blocks.

-beginblkdsblstring Specifies the comment that marks the beginning of the code
fragment to be ignored by the coverage tool.

-blockcounts When used with -txtlcov, reports individual bloc counts for
lines that involved multiple blocks.

-ccolorcolor #FFFFFF Specifies the HTML color name or code of the covered code.

-compfile Specifies the file name that contains the list of files being (or
not) displayed.

-counts Generates dynamic execution counts.

-demang Demangles both function names and their arguments.

-dpifile pgopti.dpi Specifies the file name of the dynamic profile information file
(.dpi).

-endblkdsblstring Specifies the comment that marks the end of the code
fragment to be ignored by the coverage tool.

-fcolorcolor #FFCCCC Specifies the HTML color name for code of the uncovered
functions.

-help, -h Prints tool option descriptions.

 Intel® C++ Compiler Classic Developer Guide and Reference

2296

Option Default Description

-icolorcolor #FFFFFF Specifies the HTML color name or code of the information
lines, such as basic-block markers and dynamic counts.

-include-nonexec Block details will also be listed for functions that did not
execute, when used with -xmlbcvrg[full] or
-txtbcvrg[full] options.

-maddrstring Nobody Sets the email address of the web-page owner

-mnamestring Nobody Sets the name of the web-page owner.

-nopartial Treats partially covered code as fully covered code.

-nopmeter Turns off the progress meter. The meter is enabled by default.

-nounwind Ignores compiler-generated unwind handlers for exception
handling cleanup when computing and displaying basic block
coverage.

-onelinedsblstring Specifies the comment that marks individual lines of code or
the whole functions to be ignored by the coverage tool.

-pcolorcolor #FAFAD2 Specifies the HTML color name or code of the partially covered
code.

-prjstring Sets the project name.

-ref Finds the differential coverage with respect to ref_dpi_file.

-showdirnames Displays the full path name for source files in the HTML report,
instead of just the base filename.

-spifile pgopti.spi Specifies the file name of the static profile information file
(.spi).

-srcrootdir Specifies a different top level project directory than was used
during compiler instrumentation run to use for relative paths
to source files in place of absolute paths.

Optimization and Programming

2297

Option Default Description

NOTE
In order for the substitution to take place, the sources need to be
compiled with one of the following options:
[Q]prof-src-root, [Q]prof-src-root-cwd. This option
specifies the base directory that is to be treated as the project
root directory.

An example of use is:

C:> ifort -Qprof-gen:srcpos -Qprof-src-root
c:\workspaces\orig_project_dir test1.f90 test2.f90
C:> test1.exe
C:> profmerge
C:> cd \workspaces\
C:> mv orig_project_dir new_project_dir
C:> cd new_project_dir\src
C:> codecov -srcroot C:\workspaces\new_project_dir

Now, "C:\workspaces\new_project_dir" will be substituted
for "c:\workspaces\orig_project_dir" when looking for the
source files.

For use of [Q]prof-src-root, [Q]prof-src-root-cwd
options, refer to prof-src-root/Qprof-src-root, prof-src-
root-cwd/Qprof-src-root-cwd

-txtbcvrgfile Export block-coverage for covered functions as text format.
The file parameter must be in the form of a valid file name.

-txtbcvrgfullfile Export block-coverage for entire application in text and HTML
formats. The file parameter must be in the form of a valid file
name.

-txtdcgfile Generates the dynamic call-graph information in text format.
The file parameter must be in the form of a valid file name.

-txtfcvrgfile Export function coverage for covered function in text format.
The file parameter must by in the form of a valid file name.

-txtlcovfile Generates line coverage in text format output files, instead of
block coverage in HTML output files.

-ucolorcolor #FFFFFF Specifies the HTML color name or code of the unknown code.

-xcolorcolor #90EE90 Specifies the HTML color of the code ignored.

-xmlbcvrgfile Export the block-coverage for the covered function in XML
format. The file parameter must by in the form of a valid file
name.

-xmlbcvrgfullfile Export function coverage for entire application in XML format
in addition to HTML output. The file parameter must be in the
form of a valid file name.

 Intel® C++ Compiler Classic Developer Guide and Reference

2298

Option Default Description

-xmlfcvrgfile Export function coverage for covered function in XML format.
The file parameter must be in the form of a valid file name.

Visually Presenting Code Coverage for an Application
Based on the profile information collected from running the instrumented binaries when testing an
application, the Intel® compiler will create HTML-formatted reports using the code coverage tool. These
reports indicate portions of the source code that were or were not exercised by the tests. When applied to
the profile of the performance workloads, the code coverage information shows how well the training
workload covers the application's critical code. High coverage of performance-critical modules is essential to
taking full advantage of the profile-guided optimizations.

The code coverage tool can create two levels of coverage:

• Top level (for a group of selected modules)
• Individual module source views

Top-Level Coverage

The top-level coverage reports the overall code coverage of the modules that were selected. The following
options are provided:

• Select the modules of interest.
• For the selected modules, the tool generates a list with their coverage information. The information

includes the total number of functions and blocks in a module and the portions that were covered.
• By clicking on the title of columns in the reported tables, the lists may be sorted in ascending or

descending order based on:

• Basic-block coverage
• Function coverage
• Function name

By default, the code coverage tool generates a single HTML file (CODE_COVERAGE.HTML) and a subdirectory
(CodeCoverage) in the current directory. The HTML file defines a frameset to display all of the other
generated reports. Open the HTML file in a web-browser. The tool places all other generated report files in a
CodeCoverage subdirectory.

If you choose to generate the html-formatted version of the report, you can view coverage source of that
particular module directly from a browser. The following figure shows the top-level coverage report.

Optimization and Programming

2299

The coverage tool creates a frame set that allows quick browsing through the code to identify uncovered
code. The top frame displays the list of uncovered functions while the bottom frame displays the list of
covered functions. For uncovered functions, the total number of basic blocks of each function is also
displayed. For covered functions, both the total number of blocks and the number of covered blocks as well
as their ratio (that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the corresponding function were covered.
The block coverage rate of that function is thus 66.67%. These lists can be sorted based on the coverage
rate, number of blocks, or function names. Function names are linked to the position in source view where
the function body starts. With one click you can see the least-covered function in the list, and with another
click you can see the body of the function. You can scroll down in the source view and browse through the
function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered functions as well as the list
of covered functions. The lists are reported in two distinct frames that provide easy navigation of the source
code. The lists can be sorted based on:

• Number of blocks within uncovered functions
• Block coverage in the case of covered functions
• Function names

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage categories: covered code, uncovered
basic blocks, uncovered functions, partially covered code, and unknown code. The default colors that the tool
uses for presenting the coverage information are shown in the tables that follows:

Category Default Description

Covered code #FFFFFF Indicates code was exercised by the tests. You can override
the default color with the -ccolor tool option.

 Intel® C++ Compiler Classic Developer Guide and Reference

2300

Category Default Description

Uncovered basic block #FFFF99 Indicates the basic blocks that were not exercised by any of
the tests. However, these blocks were within functions that
were executed during the tests. You can override the default
color with the -bcolor tool option.

Uncovered function #FFCCCC Indicates functions that were never called during the tests.
You can override the default color with the -fcolor tool
option.

Partially covered code #FAFAD2 Indicates that more than one basic block was generated for
the code at this position. Some of the blocks were covered and
some were not. You can override the default color with the
-pcolor tool option.

Ignored code #90EE90 Indicates code that was specifically marked to be ignored. You
can override this default color using the -xcolor tool option.

Information lines #FFFFFF Indicates basic-block markers and dynamic counts. You can
override the default color with the -icolor tool option.

Unknown #FFFFFF Indicates that no code was generated for this source line. Most
probably, the source at this position is a comment, a header-
file inclusion, or a variable declaration. You can override the
default color with the -ucolor tool option.

The default colors can be customized to be any valid HTML color name or hexadecimal value using the
options mentioned for each coverage category in the table above.

For code coverage colored presentation, the coverage tool uses the following heuristic: source characters are
scanned until reaching a position in the source that is indicated by the profile information as the beginning of
a basic block. If the profile information for that basic block indicates that a coverage category changes, then
the tool changes the color corresponding to the coverage condition of that portion of the code, and the
coverage tool inserts the appropriate color change in the HTML-formatted report files.

NOTE
You need to interpret the colors in the context of the code. For example, comment lines that follow a
basic block that was never executed would be colored in the same color as the uncovered blocks.
Another example is the closing brackets in C/C++ applications.

Dynamic Counters

The coverage tool can be configured to generate the information about the dynamic execution counts. This
ability can display the dynamic execution count of each basic block of the application and is useful for both
coverage and performance tuning.

The custom configuration requires using the -counts option. The counts information is displayed under the
code after a "^" sign precisely under the source position where the corresponding basic block begins.

If more than one basic block is generated for the code at a source position (for example, for macros), then
the total number of such blocks and the number of the blocks that were executed are also displayed in front
of the execution count. For example, line 11 in the code is an if statement:

Optimization and Programming

2301

Example

11 if ((N == 1).OR. (N == 0))
 ^ 10 (1/2)
12 printf("%d\n", N)
 ^

The coverage lines under code lines 11 and 12 contain the following information:

• The IF statement in line 11 was executed 10 times.
• Two basic blocks were generated for the IF statement in line 11.
• Only one of the two blocks was executed, resulting in the partial coverage color.
• Only seven out of the ten times variable n had a value of 0 or 1.

In certain situations, it may be desirable to consider all the blocks generated for a single source position as
one entity. In such cases, it is necessary to assume that all blocks generated for one source position are
covered when at least one of the blocks is covered. This assumption can be configured with the -nopartial
option. When this option is specified, decision coverage is disabled, and the related statistics are adjusted
accordingly. The code lines 11 and 12 indicate that the print statement in line 12 was covered. However,
only one of the conditions in line 11 was ever true. With the -nopartial option, the tool treats the partially
covered code (like the code on line 11) as covered.

Differential Coverage

Using the code coverage tool, you can compare the profiles from two runs of an application: a reference run,
and a new run identifying the code that is covered by the new run but not covered by the reference run. Use
this feature to find the portion of the applications code that is not covered by the applications tests but is
executed when the application is run by a customer. It can also be used to find the incremental coverage
impact of newly added tests to an applications test space.

Generating Reference Data

Create the dynamic profile information for the reference data, which can be used in differential coverage
reporting later, by using the -ref option. The following command demonstrate a typical command for
generating the reference data:

Example: generating reference data

codecov -prj Project_Name -dpi customer.dpi -ref appTests.dpi

The coverage statistics of a differential-coverage run shows the percentage of the code exercised on a new
run but missed in the reference run. In such cases, the tool shows only the modules that included the code
that was not covered. Keep this in mind when viewing the coloring scheme in the source views.

The code with the same coverage property (covered or not covered) on both runs is considered covered
code. Otherwise, if the new run indicates that the code was executed, while in the reference run the code
was not executed, then the code is treated as uncovered. Alternately, if the code is covered in the reference
run but not covered in the new run, the differential-coverage source view shows the code as covered.

Running Differential Coverage

To run the code coverage tool for differential coverage, you must have the application sources, the .spi file,
and the .dpi file, as described in the code coverage tool Requirements section (above).

Once the required files are available, enter a command similar to the following begin the process of
differential coverage analysis:

Example

codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi

 Intel® C++ Compiler Classic Developer Guide and Reference

2302

Specify the .dpi and .spi files using the -spi and -dpi options.

Excluding Code from Coverage Analysis
The code coverage tool allows you to exclude portions of your code from coverage analysis. This ability can
be useful during development; for example, certain portions of code might include functions used for
debugging only. The test case should not include tests for functionality that will be unavailable in the final
application.

Another example of code that can be excluded is code that might be designed to deal with internal errors
unlikely to occur in the application. In such cases, lack of a test case is preferred. You may want to ignore
infeasible (dead) code in the coverage analysis. The code coverage tool provides several options for marking
portions of the code infeasible and ignoring the code at the file level, function level, line level, and arbitrary
code boundaries indicated by user-specific comments. The following sections explain how to exclude code at
different levels.

Including and Excluding Coverage at the File Level

The code coverage tool provides the ability to selectively include or exclude files for analysis. Create a
component file and add the appropriate string values that indicate the file and directory name for code you
want included or excluded. Pass the file name as a parameter of the -comp option. The following example
shows the general command:

Example: specifying a component file

codecov -comp file

where file is the name of a text file containing strings that act as file/directory name masks for including and
excluding file-level analysis. For example, assume the following:

• You want to include all files with the string "source" in the file name or directory name.
• You create a component text file named myComp.txt with the selective inclusion string "source".

Once you have a component file, enter a command similar to the following:

Example

codecov -comp myComp.txt

In this example, filenames with string "source" (like source1.c and source2.c) and all files within directories
where the directory name contains the string "source" (like source/file1.c and source2\file2.c) are included
in the analysis.

To exclude files or directories, add the tilde (~) prefix to the string. You can specify inclusion and exclusion in
the same component file. For example, assume you want to analyze all individual files or files in a directory
where the file/directory name includes the string "source", and you want to exclude all individual files and
files in directories where the file/directory name includes the string "skip". You add content similar to the
following to the component file (myComp.txt) and pass it to the -comp option:

Example: inclusion and exclusion strings in the myComp.txt file

source
~skip

Entering the codecov -comp myComp.txt command with both instructions in the component file,
myComp.txt, instructs the tool to:

• Include files with filename containing "source" (like source1.c and source2.c)
• Include all files in directories with the directory name containing "source" (like source/file1.c and

source2\file2.c)

Optimization and Programming

2303

• Exclude all files with filename containing "skip" (like skipthis1.c and skipthis2.c)
• Exclude all files in directories with the directory name containing "skip" (like skipthese1\debug1.c and

skipthese2\debug2.c)

Excluding Coverage at the Line and Function Level

You can mark individual lines for exclusion my passing string values to the -onelinedsbl option. For
example, assume that you have some code similar to the following:

Sample code

printf ("internal error 123 - please report!\n"); // NO_COVER
printf ("internal error 456 - please report!\n"); /* INF IA-32 architecture */

If you wanted to exclude all functions marked with the comments NO_COVER or INF IA-32 architecture, you
would enter a command similar to the following.

Example

codecov -onelinedsbl NO_COVER -onelinedsbl "INF IA-32 architecture"

You can specify multiple exclusion strings simultaneously, and you can specify any string values for the
markers; however, you must remember the following guidelines when using this option:

• Inline comments must occur at the end of the statement.
• The string must be a part of an inline comment.

An entire function can be excluded from coverage analysis using the same methods. For example, the
following function will be ignored from the coverage analysis when you issue example command shown
above.

Sample code

void dumpInfo (int n)
{ // NO_COVER
...
}

Additionally, you can use the code coverage tool to color the infeasible code with any valid HTML color code
by combining the -onelinedsbl and -xcolor options. The following example commands demonstrate the
combination:

Example: combining tool options

codecov -onelinedsbl INF -xcolor lightgreen
codecov -onelinedsbl INF -xcolor #CCFFCC

Excluding Code by Defining Arbitrary Boundaries

The code coverage tool provides the ability to arbitrarily exclude code from coverage analysis. This feature is
most useful where the excluded code either occur inside of a function or spans several functions.

Use the -beginblkdsbl and -endblkdsbl options to mark the beginning and end (respectively) of any
arbitrarily defined boundary to exclude code from analysis. Remember the following guidelines when using
these options:

• Inline comments must occur at the end of the statement.
• The string must be a part of an inline comment.

For example assume that you have the following code:

 Intel® C++ Compiler Classic Developer Guide and Reference

2304

Sample code

void div (int m, int n) {
if (n == 0)
/* BEGIN_INF */
{ printf (internal error 314 please report\n);
recover (); }
/* END_INF */
else { ... }
}
...
// BINF
Void recover () { ... }
// EINF

The following example commands demonstrate how to use the -beginblkdsbl option to mark the beginning
and the -endblkdsbl option to mark the end of code to exclude from the sample shown above.

Example: arbitrary code marker commands

codecov -xcolor #ccFFCC -beginblkdsbl BINF -endblkdsbl EINF
codecov -xcolor #ccFFCC -beginblkdsbl "BEGIN_INF" -endblkdsbl "END_INF"

Notice that you can combine these options in combination with the -xcolor option.

Exporting Coverage Data
The code coverage tool provides specific options to extract coverage data from the dynamic profile
information (.dpi files) that result from running instrumented application binaries under various workloads.
The tool can export the coverage data in various formats for post-processing and direct loading into
databases: the default HTML, text, and XML. You can choose to export data at the function and basic block
levels.

There are two basic methods for exporting the data: quick export and combined export. Each method has
associated options supported by the tool

• Quick export: The first method is to export the data coverage to text- or XML-formatted files without
generating the default HTML report. The application sources need not be present for this method. The
code coverage tool creates reports and provides statistics only about the portions of the application
executed. The resulting analysis and reporting occurs quickly, which makes it practical to apply the
coverage tool to the dynamic profile information (the .dpi file) for every test case in a given test space
instead of applying the tool to the profile of individual test suites or the merge of all test suites. The
-xmlfcvrg, -txtfcvrg, -xmlbcvrg and -txtbcvrg options support the first method.

• Combined export: The second method is to generate the default HTML and simultaneously export the
data to text- and XML-formatted files. This process is slower than first method since the application
sources are parsed and reports generated. The -xmlbcvrgfull and -txtbcvrgfull options support the
second method.

These export methods provide the means to quickly extend the code coverage reporting capabilities by
supplying consistently formatted output from the code coverage tool. You can extend these by creating
additional reporting tools on top of these report files.

Quick Export

The profile of covered functions of an application can be exported quickly using the -xmlfcvrg, -txtfcvrg,
-xmlbcvrg, and -txtbcvrg options. When using any of these options, specify the output file that will
contain the coverage report. For example, enter a command similar to the following to generate a report of
covered functions in XML formatted output:

Optimization and Programming

2305

Example: quick export of function data

codecov -prj test1 -dpi test1.dpi -xmlfcvrg test1_fcvrg.xml

The resulting report will show how many times each function was executed and the total number of blocks of
each function, together with the number of covered blocks and the block coverage of each function. The
following example shows some of the content of a typical XML report.

XML-formatted report example

<PROJECT name = "test1">
 <MODULE name = "D:\SAMPLE.C">
 <FUNCTION name="f0" freq="2">
 <BLOCKS total="6" covered="5" coverage="83.33%"></BLOCKS>
 </FUNCTION>
 ...
 </MODULE>
 <MODULE name = "D:\SAMPLE2.C">
 ...
 </MODULE>
</PROJECT>

In the above example, we note that function f0, which is defined in file sample.c, has been executed twice. It
has a total number of six basic blocks, five of which are executed, resulting in an 83.33% basic block
coverage.

You can also export the data in text format using the -txtfcvrg option. The generated text report, using
this option, for the above example would be similar to the following example:

Text-formatted report example

Covered Functions in File: "D:\SAMPLE.C"
"f0" 2 6 5 83.33
"f1" 1 6 4 66.67
"f2" 1 6 3 50.00
...

In the text formatted version of the report, the each line of the report should be read in the following
manner:

Column 1 Column 2 Column 3 Column 4 Column 5

Function
name

Execution
frequency

Line number
of the start of
the function
definition

Column
number of
the start of
the function
definition

Percentage of basic-block coverage of
the function

Additionally, the tool supports exporting the block level coverage data using the -xmlbcvrg option. For
example, enter a command similar to the following to generate a report of covered blocks in XML formatted
output:

Example: quick export of block data to XML

codecov -prj test1 -dpi test1.dpi -xmlbcvrg test1_bcvrg.xml

The example command shown above would generate XML-formatted results similar to the following:

 Intel® C++ Compiler Classic Developer Guide and Reference

2306

XML-formatted report example

<PROJECT name = "test1">
 <MODULE name = "D:\SAMPLE.cpp">
 <FUNCTION name="f0" freq="2">
 ...
 <BLOCK line="11" col="2">
 <INSTANCE id="1" freq="1"> </INSTANCE>
 </BLOCK>
 <BLOCK line="12" col="3">
 <INSTANCE id="1" freq="2"> </INSTANCE>
 <INSTANCE id="2" freq="1"> </INSTANCE>
 </BLOCK>

In the sample report, notice that one basic block is generated for the code in function f0 at the line 11,
column 2 of the file sample.cpp. This particular block has been executed only once. Also notice that there are
two basic blocks generated for the code that starts at line 12, column 3 of file. One of these blocks, which
has id = 1, has been executed two times, while the other block has been executed only once. A similar report
in text format can be generated through the -txtbcvrg option.

Combined Exports

The code coverage tool has also the capability of exporting coverage data in the default HTML format while
simultaneously generating the text- and XML-formatted reports.

Use the -xmlbcvrgfull and -txtbcvrgfull options to generate reports in all supported formats in a single
run. These options export the basic-block level coverage data while simultaneously generating the HTML
reports. These options generate more complete reports since they include analysis on functions that were not
executed at all. However, exporting the coverage data using these options requires access to application
source files and take much longer to run.

Dynamic Call Graphs

Using the -txtdcg option the tool can provide detailed information about the dynamic call graphs in an
application. Specify an output file for the dynamic call-graph report. The resulting call graph report contains
information about the percentage of static and dynamic calls (direct, indirect, and virtual) at the application,
module, and function levels.

Test Prioritization Tool
The test prioritization tool, also known as the tselect tool, enables the profile-guided optimizations on all
supported Intel® architectures, on Linux*, Windows*, and macOS operating systems, to select and prioritize
tests for an application based on prior execution profiles.

The tool offers a potential of significant time saving in testing and developing large-scale applications where
testing is the major bottleneck.

Development often requires changing applications modules. As applications change, developers can have a
difficult time retaining the quality of their functional and performance tests so they are current and on-
target. The test prioritization tool lets software developers select and prioritize application tests as application
profiles change.

The information about the tool is separated into the following sections:

• Features and benefits
• Requirements and syntax
• Usage model
• Tool options
• Running the tool

Optimization and Programming

2307

Features and Benefits
The test prioritization tool provides an effective testing hierarchy based on the code coverage for an
application. The following list summarizes the advantages of using the tool:

• Minimizing the number of tests that are required to achieve a given overall coverage for any subset of the
application. The tool defines the smallest subset of the application tests that achieve exactly the same
code coverage as the entire set of tests.

• Reducing the turn-around time of testing. Instead of spending a long time on finding a possibly large
number of failures, the tool enables the users to quickly find a small number of tests that expose the
defects associated with the regressions caused by a change set.

• Selecting and prioritizing the tests to achieve certain level of code coverage in a minimal time based on
the data of the tests' execution time.

See Understanding Profile-guided Optimization and Profile an Application topics for general information on
creating the files needed to run this tool.

Test Prioritization Tool Requirements
The test prioritization tool needs the following items to work:

• The .spi file generated by Intel® compilers when compiling the application for the instrumented binaries
with the -prof-gen=srcpos (Linux* and macOS) or /Qprof-gen:srcpos (Windows*) option.

• The .dpi files generated by the profmerge tool as a result of merging the dynamic profile information .dyn
files of each of the application tests. Run the profmerge tool on all .dyn files that are generated for each
individual test and name the resulting .dpi in a fashion that uniquely identifies the test.

• User-generated file containing the list of tests to be prioritized. For successful instrumented code run, you
should:

• Name each test .dpi file so the file names uniquely identify each test.
• Create a .dpi list file, which is a text file that contains the names of all .dpi test files.

Each line of the .dpi list file should include one, and only one .dpi file name. The name can optionally be
followed by the duration of the execution time for a corresponding test in the dd:hh:mm:ss format.

For example: Test1.dpi 00:00:60:35 states that Test1 lasted 0 days, 0 hours, 60 minutes and 35
seconds.

The execution time is optional. However, if it is not provided, then the tool will not prioritize the test for
minimizing execution time. It will prioritize to minimize the number of tests only.

Caution
The profmerge tool merges all .dyn files that exist in the given directory. Make sure unrelated .dyn
files, which may remain from unrelated runs, are not present. Otherwise, the profile information will
be skewed with invalid profile data, which can result in misleading coverage information and adverse
performance of the optimized code. The tool uses the following general syntax:

Tool Syntax

tselect -dpi_listfile

-dpi_list is a required tool option that sets the path to the list file containing the list of the all .dpi files. All
other tool commands are optional.

NOTE
Windows* only: Unlike the compiler options, which are preceded by forward slash ("/"), the tool
options are preceded by a hyphen ("-").

 Intel® C++ Compiler Classic Developer Guide and Reference

2308

Usage Model
The following figure illustrates a typical test prioritization tool usage model.

Test Prioritization Tool Options
The tool uses the options that are listed in the following table:

Option Description

-help Prints tool option descriptions.

-dpi_listfile Required. Specifies the name of the file that
contains the names of the dynamic profile
information (.dpi) files. Each line of the file must
contain only one .dpi file name, which can be
followed by its execution time (optional). The name
must uniquely identify the test.

-spifile Specifies the file name of the static profile
information file (.SPI). Default is pgopti.spi

-ofile Specifies the file name of the output report file.

Optimization and Programming

2309

Option Description

-compfile Specifies the file name that contains the list of files
of interest.

-cutoffvalue Instructs the tool to terminate when the cumulative
block coverage reaches a preset percentage, as
specified by value, of pre-computed total
coverage. value must be greater than 0.0 (for
example, 99.00) but not greater than 100. value
can be set to 100.

-nototal Instructs the tool to ignore the pre-compute total
coverage process.

-mintime Instructs the tool to minimize testing execution
time. The execution time of each test must be
provided on the same line of dpi_list file, after
the test name in dd:hh:mm:ss format.

-srcbasedirdir Specifies a different top-level project directory than
was used during compiler instrumentation run with
the prof-src-root compiler option to support
relative paths to source files in place of absolute
paths.

-verbose Instructs the tool to generate more logging
information about program progress.

Running the Tool
The following steps demonstrate one simple example for running the tool on IA-32 architectures.

1. Specify the directory by entering a command similar to the following:

Example

set PROF_DIR=c:\myApp\prof-dir
2. Compile the program and generate instrumented binary by issuing commands similar to the following:

Operating System Command

Linux and macOS icpc -prof-gen=srcpos myApp.cpp

Windows icl /Qprof-gen:srcpos myApp.cpp

The commands shown above compile the program and generate instrumented binary myApp, as well as
the corresponding static profile information pgopti.spi.

3. Confirm that unrelated .dyn files are not present by issuing a command similar to the following:

Example

rm prof-dir *.dyn
4. Run the instrumented files by issuing a command similar to the following:

 Intel® C++ Compiler Classic Developer Guide and Reference

2310

Example

myApp < data1

The command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension .dyn in the directory specified by the -prof-dir step above.

5. Merge all .dyn file into a single file by issuing a command similar to the following:

Example

profmerge -prof_dpi Test1.dpi

The profmerge tool merges all the .dyn files into one file (Test1.dpi) that represents the total profile
information of the application on Test1.

6. Confirm again there are no unrelated .dyn files present a second time by issuing a command similar to
the following:

Example

rm prof-dir *.dyn
7. Run the instrumented application, and generate one or more new dynamic profile information files that

have an extension .dyn in the directory specified in the prof-dir step above by issuing a command
similar to the following:

Example

myApp < data2
8. Merge all .dyn files into a single file by issuing a command similar to the following:

Example

profmerge -prof_dpi Test2.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test2.dpi) that represents the
total profile information of the application on Test2.

9. Confirm that there are no unrelated .dyn files present for the final time by issuing a command similar to
the following:

Example

rm prof-dir *.dyn
10. Run the instrumented application and generate one or more new dynamic profile information files that

have an extension .dyn in the directory specified by -prof-dir by issuing a command similar to the
following:

Example

myApp < data3
11. Merge all .dyn file into a single file, by issuing a command similar to the following:

Example

profmerge -prof_dpi Test3.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test3.dpi) that represents the
total profile information of the application on Test3.

Optimization and Programming

2311

12. Create a file named tests_list with three lines. The first line contains Test1.dpi, the second line
contains Test2.dpi, and the third line contains Test3.dpi.

Tool Usage Examples

When these items are available, the test prioritization tool may be launched from the command line in the
prof-dir directory as described in the following examples.

Example 1: Minimizing the Number of Tests
The following example describes how minimize the number of test runs.

Example Syntax

tselect -dpi_list tests_list -spi pgopti.spi

where the -spi option specifies the path to the .spi file.

The following sample output shows typical results.

Sample Output

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00
 num %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options
 --- -------- -------- -------- -------------------
 1 87.50 45.65 37.50 Test3.dpi
 2 100.50 52.17 50.00 Test2.dpi

In this example, the results provide the following information:

• By running all three tests, you achieve 52.17% block coverage and 50.00% function coverage.
• Test3 alonecovers 45.65% of the basic blocks of the application, which is 87.50% of the total block

coverage that can be achieved from all three tests.
• By adding Test2, you achieve a cumulative block coverage of 52.17% or 100% of the total block coverage

of Test1, Test2, and Test3.
• Elimination of Test1 has no negative impact on the total block coverage.

Example 2: Minimizing Execution Time
Assume you have the following execution time of each test in the tests_list file:

Sample Output

Test1.dpi 00:00:60:35
Test2.dpi 00:00:10:15
Test3.dpi 00:00:30:45

The following command minimizes the execution time by passing the -mintime option:

Sample Syntax

tselect -dpi_list tests_list -spi pgopti.spi -mintime

 Intel® C++ Compiler Classic Developer Guide and Reference

2312

The following sample output shows possible results:

Sample Output

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00
Total execution time = 1:41:35
 num elaspedTime %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options
 --- ----------- -------- -------- -------- -------------------
 1 10:15 75.00 39.13 25.00 Test2.dpi
 2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that running all tests sequentially would require one hour, 45 minutes, and
35 seconds, while the selected tests would achieve the same total block coverage in only 41 minutes.

The order of tests when based on minimizing time (first Test2, then Test3) may be different than when
prioritization is done based on minimizing the number of tests. See Example 1 shown above: first Test3, then
Test2. In Example 2, Test2 is the test that gives the highest coverage per execution time, so Test2 is picked
as the first test to run.

Using Other Options
The -cutoff enables the tool to exit when it reaches a given level of basic block coverage. The following
example demonstrates how to use the option:

Example

tselect -dpi_list tests_list -spi pgopti.spi -cutoff 85.00

If the tool is run with the cutoff value of 85.00, as in the above example, only Test3 will be selected, as it
achieves 45.65% block coverage, which corresponds to 87.50% of the total block coverage that is reached
from all three tests.

The tool does an initial merging of all the profile information to figure out the total coverage that is obtained
by running all the tests. The -cutoff enables you to skip this step. In such a case, only the absolute
coverage information will be reported, as the overall coverage remains unknown.

Profmerge and Proforder Tools

Profmerge Tool
Use the profmerge tool to merge dynamic profile information (.dyn) files and any specified summary files
(.dpi). The compiler executes profmerge automatically during the feedback compilation phase when you
specify the [Q]prof-use option.

The command-line usage for profmerge is as follows:

Syntax

profmerge [-prof_dir dir_name]

The tool merges all .dyn files in the current directory, or the directory specified by -prof_dir, and produces
a summary file: pgopti.dpi.

Optimization and Programming

2313

NOTE
The spelling of tools options may differ slightly from compiler options. Tools options use an underscore
(for example -prof_dir) instead of the hyphen used by compiler options (for example [Q]prof-dir) to
join words. Also, on Windows* systems, the tool options are preceded by a hyphen ("-") unlike
Windows* compiler options, which are preceded by a forward slash ("/").

You can use profmerge tool to merge .dyn files into a .dpi file without recompiling the application. You can
run the instrumented executable file on multiple systems to generate .dyn files, and optionally use
profmerge with the -prof_dpi option to name each summary .dpi file created from the multiple .dyn files.

Because the profmerge tool merges all the .dyn files that exist in the given directory, confirm that
unrelated .dyn files are not present; otherwise, profile information will be based on invalid profile data,
which can negatively impact the performance of optimized code.

Profmerge Options

The profmerge tool supports the following options:

Tool Option Description

-dump Displays profile information.

-help Lists supported options.

-nologo Disables version information. This option is
supported on Windows* only.

-exclude_filesfiles Excludes functions from the profile if the function
comes from one of the listed files. The list items
must be separated by a comma (","); you can use a
period (".") as a wild card character in function
names.

-exclude_funcsfunctions Excludes functions from the profile. The list items
must be separated by a comma (","); you can use a
period (".") as a wild card character in function
names.

-prof_dirdir Specifies the directory from which to read .dyn
and .dpi files, and write the .dpi file.
Alternatively, you can set the environment
variablePROF_DIR.

-prof_dpifile Specifies the name of the .dpi file being
generated.

-prof_filefile Merges information from file matching:
dpi_file_and_dyn_tag.

-src_olddir-src_newdir Changes the directory path stored within the .dpi
file.

-no_src_dir Uses only the file name and not the directory name
when reading dyn/dpi records. If you specify
-no_src_dir, the directory name of the source file

 Intel® C++ Compiler Classic Developer Guide and Reference

2314

Tool Option Description

will be ignored when deciding which profile data
records correspond to a specific application routine,
and the -src-root option is ignored.

-src-rootdir Specifies a directory path prefix for the root
directory where the user's application files are
stored. This option is ignored if you specify
-no_src_dir.

-afile1.dpi...fileN.dpi Specifies and merges available .dpi files.

-verbose Instructs the tool to display full information during
merge.

-weighted Instructs the tool to apply an equal weighting
(regardless of execution times) to the .dyn file
values to normalize the data counts. This keyword
is useful when the execution runs have different
time durations and you want them to be treated
equally.

-gen_weight_spec file Instructs the tool to generate a text file containing
a list of the .dyn and .dpi file that were merged
with default weight=1/run_count.

The text file is created in the directory specified by
the prof_dir option.

-weight_spec weight_spec.txt Instructs the profmerge tool to generate and use
the text file, weight_spec.txt, listing
individual .dyn/.dpi files or directory names along
with weight values for them.

When the -weight_spec option is used:

• A new .dpi file is always created
• Only files called out by the specification file are

merged
• .dyn timestamps are ignored and merge always

takes place

The prof_dir option controls where the input/
output weight_spec.txt is located, and the
destination of the .dpi file.

The -weight_spec option overrides:

• Any values of -a option
• Any computation from using -weighted option

Weighting the Runs

Using the -weight_spec option results in a new .dpi file. Only the files listed in the text file are merged. No
files in the current directory are used unless they are included in the text file.

Relocating source files using profmerge

Optimization and Programming

2315

The Intel® C++ Compiler uses the full path to the source file for each routine to look up the profile summary
information associated with that routine. By default, this prevents you from:

• Using the profile summary file (.dpi) if you move your application sources.
• Sharing the profile summary file with another user who is building identical application sources that are

located in a different directory.

You can disable the use of directory names when reading .dyn/.dpi file records by specifying the
profmerge option -no_scr_dir. This profmerge option is the same as the compiler option
-no-prof-src-dir (Linux* and macOS) and /Qprof-src-dir- (Windows*).

To enable the movement of application sources, as well as the sharing of profile summary files, you can use
the profmerge option -src-root to specify a directory path prefix for the root directory where the
application files are stored. Alternatively, you can specify the option pair -src_old-src_new to modify the
data in an existing summary dpi file. For example:

Example: relocation command syntax

profmerge -prof_dir <dir1> -src_old <dir2> -src_new <dir3>

where <dir1> is the full path to dynamic information file (.dpi), <dir2> is the old full path to source files, and
<dir3> is the new full path to source files. The example command (above) reads the pgopti.dpi file, in the
location specified in <dir1>. For each function represented in the pgopti.dpi file, whose source path begins
with the <dir2> prefix, profmerge replaces that prefix with <dir3>. The pgopti.dpi file is updated with the
new source path information.

You can run profmerge more than once on a given pgopti.dpi file. For example, you may need to do this if
the source files are located in multiple directories:

Operating System Command Examples

Linux* and macOS profmerge -prof_dir -src_old /src/prog_1 -src_new /src/prog_2
profmerge -prof_dir -src_old /proj_1 -src_new /proj_2

Windows* profmerge -src_old "c:/program files" -src_new "e:/program files"
profmerge -src_old c:/proj/application -src_new d:/app

In the values specified for -src_old and -src_new, uppercase and lowercase characters are treated as
identical in Windows. Likewise, forward slash (/) and backward slash (\) characters are treated as identical.

NOTE
Because the source relocation feature of profmerge modifies the pgopti.dpi file, consider making a
backup copy of the file before performing the source relocation.

Proforder Tool
The proforder tool is used as part of the feedback compilation phase, to improve program performance. Use
proforder to generate a function order list for use with the /ORDER linker option in Windows. The tool uses
the following syntax:

Syntax

proforder [-prof_dir dir] [-o file]

where dir is the directory containing the profile files (.dpi and .spi), and file is the optional name of the
function order list file. The default name is proford.txt .

 Intel® C++ Compiler Classic Developer Guide and Reference

2316

NOTE
The spelling of tools options may differ slightly from compiler options. Tools options use an underscore
(for example -prof_dir) instead of the hyphen used by compiler options (for example [Q]prof-dir)
to join words. Also, on Windows* systems, the tool options are preceded by a hyphen ("-") unlike
Windows* compiler options, which are preceded by a forward slash ("/").

Proforder Options

The proforder tool supports the following options:

Tool Option Default Description

-help Lists supported options.

-nologo Disables version information. This option is
supported on Windows* only.

-omit_static Instructs the tool to omit static functions
from function ordering.

-prof_dirdir Specifies the directory where the .spi
and .dpi file reside.

-prof_dpifile Specifies the name of the .dpi file.

-prof_filestring Selects the .dpi and .spi files that
include the substring value in the file name
matching the values passed as string.

-prof_spifile Specifies the name of the .spi file.

-ofile proford.txt Specifies an alternate name for the output
file.

See Also
Supported Environment Variables

Using Function Order Lists, Function Grouping, Function Ordering, and Data Ordering
Optimizations
Instead of doing a full multi-file interprocedural build of your application by using the compiler option
[Q]ipo, you can obtain some of the benefits by having the compiler and linker work together to make global
decisions about where to place the functions and data in your application. These optimizations are not
supported on macOS systems.

The following table lists each optimization, the type of functions or global data it applies to, and the operating
systems and architectures that it is supported on.

Optimization Type of Function or Data Supported OS and
Architectures

Function Order Lists: Specifies
the order in which the linker
should link the non-static
routines (functions) of your
program. This optimization can
improve application performance

externfunctions procedures and
library functions only (not static
functions).

Windows: all Intel architectures

Linux: not supported

Optimization and Programming

2317

Optimization Type of Function or Data Supported OS and
Architectures

by improving code locality and
reduce paging. Also see
Comparison of Function Order
Lists and IPO Code Layout.

Function Grouping: Specifies
that the linker should place the
extern and static routines
(functions) of your program into
hot or cold program sections.
This optimization can improve
application performance by
improving code locality and
reduce paging.

NOTE This option will cause
functions to be placed into the
linker sections named
".text.hot" and ".text.unlikely."
If you are using a custom
linker script, you will need to
specify memory placement for
these sections.

externfunctions and static
functions only (not library
functions).

Linux: IA-32 and Intel 64
architectures

Windows: not supported

Function Ordering: Enables
ordering of static and extern
routines using profile
information. Specifies the order
in which the linker should link the
routines (functions) of your
program. This optimization can
improve application performance
by improving code locality and
reduce paging.

externfunctions and static
functions only (not library
functions)

Linux and Windows: all Intel
architectures

Data Ordering: Enables
ordering of static global data
items based on profiling
information. Specifies the order
in which the linker should link
global data of your program. This
optimization can improve
application performance by
improving the locality of static
global data, reduce paging of
large data sets, and improve data
cache use.

Static global data only Linux and Windows: all Intel
architectures

You can only use one of the function-related ordering optimizations listed above on each application.
However, you can use the Data Ordering optimization with any one of the function-related ordering
optimizations listed above, such as Data Ordering with Function Ordering, or Data Ordering with Function
Grouping. In this case, specify the prof-gen option keyword globdata (needed for Data Ordering) instead
of srcpos (needed for function-related ordering).

 Intel® C++ Compiler Classic Developer Guide and Reference

2318

The following sections show the commands needed to implement each of these optimizations: function order
list, function grouping, function ordering, and data ordering. For all of these optimizations, omit the [Q]ipo
or equivalent compiler option.

Generating a Function Order List (Windows)
This section provides an example of the process for generating a function order list. Assume you have a C++
program that consists of the following files: file1.cpp and file2.cpp. Additionally, assume you have
created a directory for the profile data files called c:\profdata. You would enter commands similar to the
following to generate and use a function order list for your Windows application.

1. Compile your program using the /Qprof-gen:srcpos option. Use the /Qprof-dir option to specify
the directory location of the profile files. This step creates an instrumented executable.

Example commands

icl /Femyprog /Qprof-gen=srcpos /Qprof-dir c:\profdata file1.cpp file2.cpp
2. Run the instrumented program with one or more sets of input data. Change your directory to the

directory where the executables are located. The program produces a .dyn file each time it is executed.

Example commands

myprog.exe
3. Before this step, copy all .dyn and .dpi files into the same directory. Merge the data from one or more

runs of the instrumented program by using the profmerge tool to produce the pgopti.dpi file. Use
the /prof_dir option to specify the directory location of the .dyn files.

Example commands

profmerge /prof_dir c:\profdata
4. Generate the function order list using the proforder tool. By default, the function order list is produced

in the file proford.txt.

Example commands

proforder /prof_dir c:\profdata /o myprog.txt
5. Compile the application with the generated profile feedback by specifying the ORDER option to the linker.

Use the /Qprof-dir option to specify the directory location of the profile files.

Example commands

icl /Femyprog /Qprof-use /Qprof-dir c:\profdata file1.cpp file2.cpp /link -
ORDER:@myprog.txt

Using Function Grouping (Linux)
This section provides a general example of the process for using the function grouping optimization. Assume
you have a C++ program that consists of the following files: file1.cpp and file2.cpp. Additionally,
assume you have created a directory for the profile data files called profdata. You would enter commands
similar to the following to use a function grouping for your Linux application.

1. Compile your program using the -prof-gen option. Use the -prof-dir option to specify the directory
location of the profile files. This step creates an instrumented executable.

Optimization and Programming

2319

Example commands

icc -o myprog -prof-gen -prof-dir ./profdata file1.cpp file2.cpp
2. Run the instrumented program with one or more sets of input data. Change your directory to the

directory where the executables are located. The program produces a .dyn file each time it is executed.

Example commands

./myprog
3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from one or

more runs of the instrumented program by using the profmerge tools to produce the pgopti.dpi file.
4. Compile the application with the generated profile feedback by specifying the -prof-func-group

option to request the function grouping as well as the -prof-use option to request feedback
compilation. Again, use the -prof-dir option to specify the location of the profile files.

Example commands

icl /Femyprog file1.cpp file2.cpp -prof-func-group -prof-use -prof-dir ./profdata

NOTE On Linux, the –prof-func-group option is on by default when –prof-use is selected.

Finer grain control over the number of functions placed into the hot region can be controlled with the
-prof-hotness-threshold compiler option, see the command line reference for more details.

Using Function Ordering
This section provides an example of the process for using the function ordering optimization. Assume you
have a C++ program that consists of the following files: file1.cpp and file2.cpp, and that you have
created a directory for the profile data files called c:\profdata (on Windows) or ./profdata (on Linux).
You would enter commands similar to the following to generate and use function ordering for your
application.

1. Compile your program using the -prof-gen=srcpos (Linux) or /Qprof-gen:srcpos (Windows)
option. Use the [Q]prof-dir option to specify the directory location of the profile files. This step
creates an instrumented executable.

Operating System Example commands

Linux icc -o myprog -prof-gen=srcpos -prof-
dir ./profdata file1.cpp file2.cpp

Windows icl /Femyprog /Qprof-gen:srcpos /Qprof-
dir c:\profdata file1.cpp file2.cpp

2. Run the instrumented program with one or more sets of input data. Change your directory to the
directory where the executables are located. The program produces a .dyn file each time it is executed.

Operating System Example commands

Linux ./myprog

Windows myprog.exe

 Intel® C++ Compiler Classic Developer Guide and Reference

2320

3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from one or
more runs of the instrumented program by using the profmerge tools to produce the pgopti.dpi file.

4. Compile the application with the generated profile feedback by specifying the [Q]prof-func-order
option to request the function ordering, as well as the [Q]prof-use option to request feedback
compilation. Again, use the [Q]prof-dir option to specify the location of the profile files.

Operating System Example commands

Linux icpc -o myprog -prof-dir ./profdata
file1.cpp file2.cpp
-prof-func-order-prof-use

Windows icl /Femyprog /Qprof-dir c:\profdata
file1.cpp
file2.cpp /Qprof-func-order /Qprof-use

Using Data Ordering
This section provides an example of the process for using the data order optimization. Assume you have a C
++ program that consists of the following files: file1.cpp and file2.cpp, and that you have created a
directory for the profile data files called c:\profdata (on Windows) or ./profdata (on Linux). You would
enter commands similar to the following to use data ordering for your application.

1. Compile your program using the -prof-gen=globdata (Linux) or /Qprof-gen:globdata (Windows)
option. Use the -prof-dir (Linux) or /Qprof-dir (Windows) option to specify the directory location of
the profile files. This step creates an instrumented executable.

Operating System Example commands

Linux icc -o myprog -prof-gen=globdata -prof-
dir ./profdata file1.cpp file2.cpp

Windows icl /Femyprog /Qprof-gen=globdata /Qprof-
dir c:\profdata file1.cpp file2.cpp

2. Run the instrumented program with one or more sets of input data. If you specified a location other
than the current directory, change your directory to the directory where the executables are located.
The program produces a .dyn file each time it is executed.

Operating System Example commands

Linux ./myprog

Windows myprog.exe
3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from one or

more runs of the instrumented program by using the profmerge tools to produce the pgopti.dpi file.
4. Compile the application with the generated profile feedback by specifying the [Q]prof-data-order

option to request the data ordering as well as the [Q]prof-use option to request feedback compilation.
Again, use the [Q]prof-dir option to specify the location of the profile files.

Operating System Example commands

Linux icpc -o myprog -prof-dir ./profdata
file1.cpp file2.cpp
-prof-data-order-prof-use

Optimization and Programming

2321

Operating System Example commands

Windows icl /Femyprog /Qprof-dir c:\profdata
file1.cpp
file2.cpp /Qprof-data-order/Qprof-use

Comparison of Function Order Lists and IPO Code Layout

The Intel® compiler provides two methods of optimizing the layout of functions in the executable:

• Using a function order list
• Using the /Qipo (Windows) compiler option

Each method has advantages. A function order list, created with proforder, lets you optimize the layout of
non-static functions (external and library functions whose names are exposed to the linker).

The linker cannot directly affect the layout order for static functions because the names of these functions
are not available in the object files.

The compiler cannot affect the layout order for functions it does not compile, such as library functions. The
function layout optimization is performed automatically when IPO is active.

Alternately, using the /Qipo (Windows) option allows you to optimize the layout of all static or extern
functions compiled with the Intel® C++ Compiler. The compiler cannot affect the layout order for functions it
does not compile, such as library functions. The function layout optimization is performed automatically when
IPO is active.

Function Order List Effects

Function Type IPO Code Layout Function Ordering with
proforder

Static X No effect

Extern X X

Library No effect X

Function Order List Usage Guidelines (Windows*)

Use the following guidelines to create a function order list:

• The order list only affects the order of non-static functions.
• You must compile with /Gy to enable function-level linking. (This option is active if you specify either

option /O1 or /O2.)

Compiler Option Mapping Tool
The Intel compiler's Option Mapping Tool provides an easy method to derive equivalent options between
Windows* and Linux*. If you are a Windows-based application developer who is developing an application for
Linux, you may want to know, for example, the Linux equivalent for the /Oy- option. Likewise, the Option
Mapping Tool provides Windows equivalents for Intel compiler options supported on Linux.

NOTE
The Option Mapping Tool is not supported on macOS.

Using the Compiler Option Mapping Tool
You can start the Option Mapping Tool from the command line by:

 Intel® C++ Compiler Classic Developer Guide and Reference

2322

• invoking the compiler and using the [Q]map-opts option
• executing the tool directly

NOTE
Compiler options are mapped to their equivalent on the architecture you are using.

Calling the Option Mapping Tool with the Compiler

If you use the compiler to execute the Option Mapping Tool, the following syntax applies:

<compiler command> <map-opts option> <compiler option(s)>
Example: Finding the Linux equivalent for /Oy-
icl /Qmap-opts /Oy-
Intel(R) Compiler option mapping tool
mapping Windows options to Linux for C++
'-Qmap-opts' Windows option maps to
 --> '-map-opts' option on Linux
 --> '-map_opts' option on Linux
'-Oy-' Windows option maps to
 --> '-fomit-frame-pointer-' option on Linux
 --> '-fno-omit-frame-pointer' option on Linux
 --> '-fp' option on Linux

Example: Finding the Windows equivalent for -fp
icpc -map-opts -fp
Intel(R) Compiler option mapping tool
mapping Linux options to Windows for C++
'-map-opts' Linux option maps to
 --> '-Qmap-opts' option on Windows
 --> '-Qmap_opts' option on Windows
'-fp' Linux option maps to
 --> '-Oy-' option on Windows

Output from the Option Mapping Tool also includes:

• option mapping information (not shown here) for options included in the compiler configuration file
• alternate forms of the option that are supported but may not be documented

When you call the Option Mapping Tool with the compiler, your source file is not compiled.

Calling the Option Mapping Tool Directly

Use the following syntax to execute the Option Mapping Tool directly from a command line environment
where the full path to the map_opts executable is known (compiler bin directory):

map_opts [-nologo] -t<target OS> -l<language> -opts <compiler option(s)>
where values for:

• <target OS> = {l|linux|w|windows}
• <language> = {f|fortran|c}
Example: Finding the Linux equivalent for /Oy-
map_opts -tl -lc -opts /Oy-
Intel(R) Compiler option mapping tool
mapping Windows options to Linux for C++
'-Oy-' Windows option maps to

Optimization and Programming

2323

 --> '-fomit-frame-pointer-' option on Linux
 --> '-fno-omit-frame-pointer' option on Linux
 --> '-fp' option on Linux

Example: Finding the Windows equivalent for -fp
map_opts -tw -lc -opts -fp
Intel(R) Compiler option mapping tool
mapping Linux options to Windows for C++
'-fp' Linux option maps to
 --> '-Oy-' option on Windows

 Intel® C++ Compiler Classic Developer Guide and Reference

2324

Compatibility and Portability

Part

V
I

This section contains information about conformance to language standards, language compatibility, and
portability.

Conformance to the C/C++
Standards
The Intel® C++ Compiler conforms to the following ANSI/ISO standards:

• C++ ISO/IEC 14882:1998
• C ISO/IEC 9899:1990

provides conformance to the ANSI/ISO standard for C language compilation (ISO/IEC 9899:1990). This
standard requires that conforming C compilers accept minimum translation limits. This compiler exceeds all
of the ANSI/ISO requirements for minimum translation limits.

C++ Support
The Intel® C++ Compiler supports many features in C++11. For a list of support features, see C++ Features
Supported by Intel® C++ compiler at https://software.intel.com/content/www/us/en/develop/articles/c0x-
features-supported-by-intel-c-compiler.html.

Template Instatiation

The Intel® C++ Compiler supports extern template, which lets you specify that a template in a specific
translation unit will not be instantiated because it will be instantiated in a different translation unit or
different library. The compiler now includes additional support for:

• inline template – instantiates the compiler support data for the class (example: vtable) for a class
without instantiating its members.

• static template – instantiates the static data members of the template, but not the virtual tables or
member functions.

You can now use the following options to gain more control over the point of template instantiation:

Option Description

-fno-implicit-templatesNever emit code for non-inline templates which are instantiated implicitly (i.e. by
use). only emit code for explicit instantiations.

-fno-implicit-inline-templatesDo not emit code for implicit instantiations of inline templates either. The default is
to handle inlines differently so that compilations, with and without optimization, will
need the same set of explicit instantiations.

Compatibility and Portability

2325

C99 Support
The following C99 features are supported in this version of the Intel® C++ Compiler:

• restricted pointers (restrict keyword).
• variable-length Arrays
• flexible array members
• complex number support (_Complex keyword)
• hexadecimal floating-point constants
• compound literals
• designated initializers
• mixed declarations and code
• macros with a variable number of arguments
• inline functions (inline keyword)
• boolean type (_Bool keyword)

These long double (128-bit representations) feature is not supported:

See Also
-fno-implicit-templates compiler option
-fno-implicit-inline-templates compiler option

GCC Compatibility and
Interoperability
GCC Compatibility
The Intel® C++ Compiler Classic is compatible with most versions of the GNU Compiler Collection (GCC). The
release notes contains a list of compatible versions.

C language object files created with the compiler are binary compatible with the GCC and C/C++ language
library. You can use the Intel® C++ Compiler Classic or the GCC compiler to pass object files to the linker.To
pass IPO mock object files or libraries of IPO mock object files produced by theIntel® C++ Compiler Classic to
the linker, use the linking tools provided with the compiler. Specifically:

Use icc, icpc, xild, and xiar.

NOTE When using an Intel software development product that includes a compiler with a Clang front-
end, you can also use icl.

Link-time optimization using the -ffat-lto-objects compiler option is provided for GCC compatibility. This
implies that ld and ar can be used to link and archive object files, but by doing so you will lose cross-file
optimizations. You can use the -fno-fat-lto-objects compiler option when linking using IPO mock object
files, provided that you link the IPO mock object files with xild and archive them with xiar.

The Intel® C++ Compiler Classic supports many of the language extensions provided by the GNU compilers.

Statement expressions are supported, except that the following are prohibited inside them:

• Dynamically-initialized local static variables
• Local non-POD class definitions
• Try/catch
• Variable length arrays

 Intel® C++ Compiler Classic Developer Guide and Reference

2326

Branching out of a statement expression and statement expressions in constructor initializers are not
allowed. Variable-length arrays are no longer allowed in statement expressions.

The Intel® C++ Compiler Classic supports GCC-style inline ASM if the assembler code uses AT&T* System
V/386 syntax.

GCC Interoperability
C++ compilers are interoperable if they can link object files and libraries generated by one compiler with
object files and libraries generated by the second compiler, and the resulting executable runs successfully.
The Intel® C++ Compiler Classic is highly compatible with the GNU compilers.

The Intel® C++ Compiler Classic and GCC support the following predefined macros:

• __GNUC__
• __GNUG__
• __GNUC_MINOR__
• __GNUC_PATCHLEVEL__

Caution Not defining these macros results in different paths through system header files. These
alternate paths may be poorly tested or otherwise incompatible.

How the Compiler Uses GCC
The Intel® C++ Compiler Classic uses the GNU tools on the system, such as the GNU header files, including
stdio.h, and the GNU linker and libraries. So the compiler has to be compatible with the version of GCC or
G++* you have on your system. For example, if you have GCC version 4.6 on your system, icc behaves like
GCC 4.6, with the compatible features and behaviors.

By default, the compiler determines which version of GCC or G++ you have installed from the PATH
environment variable.

If you want use a version of GCC or G++ other than the default version on your system, you need to use the
--gcc-toolchain compiler option to specify the location of the base toolchain. For example:

• You want to build something that cannot be compiled by the default version of the system compiler, so
you need to use a legacy version for compatibility, such as if you want to use third party libraries that are
not compatible with the default version of the system compiler.

• You want to use a later version of GCC or G++ than the default system compiler.

The Intel® C++ Compiler Classic driver uses the default version of GCC/G++, or the version you specify, to
extract the location of the headers and libraries.

Compatibility with Open Source Tools
The Intel® C++ Compiler Classic includes improved support for the following open source tools:

• GNU Libtool: A script that allows package developers to provide generic shared library support.
• Valgrind: A flexible system for debugging and profiling executables running on x86 processors.
• GNU Automake: A tool for automatically generating Makefile.ins from files called Makefile.am.

See Also
ffat-lto-objects

Compatibility and Portability

2327

Microsoft Compatibility
The Intel® C++ Compiler Classic is fully source- and binary-compatible (native code only) with Microsoft
Visual C++ (MSVC). You can debug binaries built with the Intel® C++ Compiler Classic from within the
Microsoft Visual Studio environment.

The compiler supports security checks with the /GS option. You can control this option in the Microsoft Visual
Studio IDE by using C/C++ > Code Generation > Buffer Security Check.

The compiler also includes support for safe exception handling features with the /Qsafeseh option for 32-bit
binaries. This option is on by default. You can control this option in the Microsoft Visual Studio IDE by using
C/C++ > Command Line > Additional options.

Important
The compiler is a hosted compiler, not a standalone compiler. The compiler requires that standard
development tools for the host system (linker, librarian, and so forth), and standard libraries and
headers, are installed and available in your Path, Library Path, and Include environment variables. The
host compiler provides access to I/O facilities through, for example, <stdio.h> and the C runtime
library, as well as providing the implementation for the C++ standard template (for example,
<vector>). When you build your application with the compiler, the stdio.h file is found in the host
compiler's library. Likewise when you link your application, the link step uses the host OS linker to bind
the application, and the host C runtime library provides the implementation for the runtime support
routines.

On Windows, the standard compiler is Microsoft Visual C++. On Linux, the standard compiler is GCC.
The standard compiler must be installed and available in your environment before you run the
compiler.

Microsoft Visual Studio Integration
The compiler is compatible with Microsoft Visual Studio 2017, 2019, and 2022 projects.

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

Unsupported Features
Unsupported project types:

• .NET-based CLR C++ project types are not supported by the Intel® C++ Compiler Classic. The specific
project types will vary depending on your version of Visual Studio, for example:

• CLR Class Library
• CLR Console App
• CLR Empty Project

Unsupported major features:

• COM Attributes
• C++ Accelerated Massive Parallelism (C++ AMP)
• Managed extensions for C++ (new pragmas, keywords, and command-line options)
• Event handling (new keywords)
• Select keywords:

• __abstract

 Intel® C++ Compiler Classic Developer Guide and Reference

2328

• __box
• __delegate
• __gc
• __identifier
• __nogc
• __pin
• __property
• __sealed
• __try_cast
• __w64

Unsupported preprocessor features:

• #import directive changes for attributed code
• #using directive
• managed, unmanaged pragmas
• _MANAGED macro
• runtime_checks pragma

Mixing Managed and Unmanaged Code
If you use the managed extensions to the C++ language in Microsoft Visual Studio .NET, you can use the
compiler for your non-managed code for better application performance. Make sure managed keywords do
not appear in your non-managed code.

For information on how to mix managed and unmanaged code, refer to the article, An Overview of Managed/
Unmanaged Code Interoperability, on the Microsoft Web site.

Precompiled Header Support
There are some differences in how precompiled header (PCH) files are supported between the Intel® C++
Compiler Classic and the Microsoft Visual C++ Compiler:

• The PCH information generated by the Intel® C++ Compiler Classic is not compatible with the PCH
information generated by the Microsoft Visual Studio Compiler.

• The Intel® C++ Compiler Classic does not support PCH generation and use in the same translation unit.
• The Intel® C++ Compiler does not generate PCH information beyond a point where a declaration is seen in

the primary translation unit. When the /Yu option is specified, the Microsoft Visual C++ compiler ignores
all text, including declarations preceding the #include statement of the specified file.

• The Microsoft Visual C++ Compiler will not emit an error if a function or variable definition occurs in a PCH
file, which is included in two different source files and is not referenced. The Intel® C++ Compiler will
always give a multiple definition link error under these circumstances.

Compilation and Execution Differences
While the Intel® C++ Compiler Classic is compatible with the Microsoft Visual C++ Compiler, some
differences can prevent successful compilation. There can also be some incompatible generated-code
behavior of some source files with the Intel® C++ Compiler Classic. In most cases, a modification of the user
source file enables successful compilation with both the Intel® C++ Compiler Classic and the Microsoft Visual
C++ Compiler. The differences between the compilers are:

• Evaluation of Left Shift Operations

The Intel® C++ Compiler differs from the Microsoft Visual C++ Compiler in the evaluation of left shift
operations where the right operand, or shift count, is equal to or greater than the size of the left operand
expressed in bits. The ANSI C standard states that the behavior of such left-shift operations is undefined,

Compatibility and Portability

2329

https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/ms973872(v=msdn.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/ms973872(v=msdn.10)?redirectedfrom=MSDN

meaning a program should not expect a certain behavior from these operations. This difference is only
evident when both operands of the shift operation are constants. The following example illustrates this
difference between the Intel® C++ Compiler and the Microsoft Visual C++ Compiler:

int x;
int y = 1; //set y=1
void func() {
 x = 1 << 32;
 // Intel C++ Compiler generates code to set x=1
 // Visual C++ Compiler generates code to set x=0

 y = y << 32;
 // Intel C++ Compiler generates code to set y=1
 // Visual C++ Compiler generates code to set y=1
}

• Inline Assembly Target Labels (IA-32 Architecture Only)

For compilations targeted for IA-32 architecture, inline assembly target labels of goto statements are
case sensitive. The Microsoft Visual C++ compiler treats these labels in a case insensitive manner. For
example, the Intel® C++ Compiler Classic issues an error when compiling the following code:

int func(int x) {
 goto LAB2;
 // error: label "LAB2" was referenced but not defined
 __asm lab2: mov x, 1
 return x;
}

However, the Microsoft Visual C++ Compiler accepts the preceding code. As a work-around for the Intel®
C++ Compiler Classic, when a goto statement refers to a label defined in inline assembly, you must
match the label reference with the label definition in both name and case.

• Inlining Functions Marked for dllimport

The Intel® C++ Compiler Classic will attempt to inline any functions that are marked dllimport but
Microsoft will not. Therefore, any calls or variables used inside a dllimport routine need to be available at
link time or the result will be an unresolved symbol.

The following example contains two files: header.h and bug.cpp.

header.h:

#ifndef _HEADER_H
#define _HEADER_H
namespace Foo_NS {

 class Foo2 {
 public:
 Foo2(){};
 ~Foo2();
 static int test(int m_i);
 };
}
#endif

bug.cpp:

#include “header.h”
struct Foo2 {
 static void test();
};

 Intel® C++ Compiler Classic Developer Guide and Reference

2330

struct __declspec(dllimport) Foo
{
 void getI() { Foo2::test(); };
};

struct C {
 virtual void test();
};

void C::test() { Foo p; p->getI(); }

int main() {
 return 0;
}

Declaration in Scope of Function Defined in a Namespace
In accordance with the C++ language specification, if a function declaration is encountered within a function
definition, the function referenced is taken to be another member of the namespace of the containing
function. This is regardless of whether the containing function definition is lexically within a namespace
definition. The Microsoft Visual C++ compiler takes the referenced function to be a global function (not in
any namespace).

Functions declared in global or namespace scopes are interpreted the same way by both the Intel® C++
Compiler and the Microsoft Visual C++ compiler.

Enum Bit-Field Signedness
The Intel® C++ Compiler Classic and Microsoft Visual C++ differ in how they attribute signedness to bit fields
declared with an enum type. Microsoft Visual C++ always considers enum bit fields to be signed, even if not
all values of the enum type can be represented by the bit field.

The Intel® C++ Compiler Classic considers an enum bit field to be unsigned, unless the enum type has at least
one enum constant with a negative value. In any case, the Intel® C++ Compiler Classic produces a warning if
the bit field is declared with too few bits to represent all the values of the enum type.

See Also
/GS compiler option
/Qsafeseh

Port from Microsoft Visual C++* to
the Intel® C++ Compiler Classic
This section describes a basic approach to porting applications from Microsoft Visual C++* for Windows* to
the Intel® C++ Compiler Classic for Windows.

If you build your applications from the Windows command line, you can port applications from Microsoft
Visual C++ to the Intel® C++ Compiler Classic by modifying your makefile to invoke the Intel® C++ Compiler
Classic instead of Microsoft Visual C++.

The Intel® C++ Compiler Classic integration with Microsoft Visual Studio provides a conversion path to the
Intel® C++ Compiler Classic that allows you to build your Visual C++ projects with the Intel® C++ Compiler
Classic. This version of the Intel® C++ Compiler Classic supports:

• Microsoft Visual Studio 2022

Port from Microsoft Visual C++* to the Intel® C++ Compiler Classic

2331

• Microsoft Visual Studio 2019
• Microsoft Visual Studio 2017

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

See the appropriate section in this documentation for details on using the Intel® C++ Compiler Classic with
Microsoft Visual Studio.

The Intel® C++ Compiler Classic also supports many of the same compiler options, macros, and environment
variables you already use in your Microsoft work.

One challenge in porting applications from one compiler to another is making sure there is support for the
compiler options you use to build your application. The Compiler Options reference lists compiler options that
are supported by both the Intel® C++ Compiler Classic and Microsoft C++.

See Also
Other Considerations
Modify Your Makefile

Modify Your makefile
If you use makefiles to build your Microsoft* application, you need to change the value for the compiler
variable to use the Intel® C++ Compiler Classic. You may also want to review the options specified by
CPPFLAGS. For example, a sample Microsoft makefile:

name of the program
 PROGRAM = area.exe

names of source files
 CPPSOURCES = area_main.cpp area_functions.cpp

names of object files
 CPPOBJECTS = area_main.obj area_functions.obj

Microsoft(R) compiler options
 CPPFLAGS = /RTC1 /EHsc

Use Microsoft C++(R)
 CPP = cl

link objects
 $(PROGRAM): $(CPPOBJECTS)
 link.exe /out:$@ $(CPPOBJECTS)

build objects
 area_main.obj: area_main.cpp area_headers.h
 area_functions.obj: area_functions.cpp area_headers.h

clean
 clean: del $(CPPOBJECTS) $(PROGRAM)

 Intel® C++ Compiler Classic Developer Guide and Reference

2332

Modified makefile for the Intel® C++ Compiler Classic
Before you can run nmake with the Intel® C++ Compiler Classic, you need to set the proper environment. In
this example, only the name of the compiler changed to use icc:

name of the program
 PROGRAM = area.exe

names of source files
 CPPSOURCES = area_main.cpp area_functions.cpp

names of object files
 CPPOBJECTS = area_main.obj area_functions.obj

Intel(R) C/C++ Compiler options
 CPPFLAGS = /RTC1 /EHsc

Use the Intel C/C++ Compiler
 CPP = icc

link objects
 $(PROGRAM): $(CPPOBJECTS)
 link.exe /out:$@ $(CPPOBJECTS)

build objects
 area_main.obj: area_main.cpp area_headers.h
 area_functions.obj: area_functions.cpp area_headers.h

clean
 clean: del $(CPPOBJECTS) $(PROGRAM)

With the modified makefile, the output of nmake is similar to the following:

Microsoft (R) Program Maintenance Utility Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

 icl /RTC1 /EHsc /c area_main.cpp area_functions.cpp

Intel(R) Compiler for applications running on IA-32 or IA-64
Copyright (C) 1985-2006 Intel Corporation. All rights reserved.

area_main.cpp
area_functions.cpp
 link.exe /out:area.exe area_main.obj area_functions.obj

Microsoft (R) Incremental Linker Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Use IPO in makefiles
By default, IPO generates dummy object files containing interprocedural information used by the compiler. To
link or create static libraries with these object files requires specific Intel-provided tools. To use them in your
makefile, replace references to link with xilink and references to lib with xilib. For example:

 # name of the program
 PROGRAM = area.exe

names of source files
 CPPSOURCES = area_main.cpp area_functions.cpp

Compatibility and Portability

2333

names of object files
 CPPOBJECTS = area_main.obj area_functions.obj

Intel C/C++ Compiler options
 CPPFLAGS = /RTC1 /EHsc /Qipo

Use the Intel C/C++ Compiler
 CPP = icc

link objects
 $(PROGRAM): $(CPPOBJECTS)
 xilink.exe /out:$@ $(CPPOBJECTS)

build objects
 area_main.obj: area_main.cpp area_headers.h
 area_functions.obj: area_functions.cpp area_headers.h

clean
 clean: del $(CPPOBJECTS) $(PROGRAM)

Other Considerations
There are some notable differences between the Intel® C++ Compiler Classic and the Microsoft* Compiler.
Consider the following as you begin compiling your code with the Intel® C++ Compiler Classic.

Set the Environment
The compiler installation provides a batch file, setvars.bat, that sets the proper environment for the Intel®
C++ Compiler Classic. For information on running setvars.bat, see Specifying the Location of Compiler
Components.

Use Optimization
The Intel® C++ Compiler Classic is an optimizing compiler that begins with the assumption that you want
improved performance from your application when it is executed on Intel® architecture. Consequently, certain
optimizations, such as option O2, are part of the default invocation of the compiler. By default, Microsoft
turns off optimization, which is the equivalent of compiling with options Od or O0. Other forms of the O[n]
option compare as follows:

Option Intel® C++ Compiler Classic Microsoft Compiler

/Od Turns off all optimization. Same as O0. Default. Turns off all
optimization.

/O1 Decreases code size with some increase in speed. Optimizes code for minimum
size.

/O2 Default. Favors speed optimization with some increase in code
size. Intrinsics, loop unrolling, and inlining are performed.

Optimizes code for maximum
speed.

/O3 Enables -O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations.

Not supported.

 Intel® C++ Compiler Classic Developer Guide and Reference

2334

Target Specific Intel® Processors
While many of the same options that target specific processors are supported with both compilers, the Intel®
C++ Compiler includes options that utilize processor-specific instructions to target the latest Intel®
architecture processors. Consider using the Intel® C++ Compiler [Q]x , /arch , or [Q]ax options for
applications that run on IA-32 architecture or Intel® 64 architecture. Refer to the descriptions of these
compiler options for more specific information.

Modify Your Configuration
The Intel® C++ Compiler Classic lets you maintain configuration and response files that are part of
compilation. Options stored in the configuration file apply to every compilation, while options stored in
response files apply only where they are added on the command line. If you have several options in your
makefile that apply to every build, you may find it easier to move these options to the configuration file
(..\bin\icc.cfg).

In a multi-user, networked environment, options listed in the icc.cfg file are generally intended for
everyone who uses the compiler. If you need a separate configuration, you can use the ICCCFG environment
variable to specify the name and location of your own .cfg file, such as \my_code\my_config.cfg.
Anytime you instruct the compiler to use a different configuration file, the icc.cfg system configuration file
is ignored.

Use the Intel Libraries
The Intel® C++ Compiler Classic supplies additional libraries that contain optimized implementations of many
commonly used functions. Some of these functions are implemented using CPU dispatch. This means that
different code may be executed when run on different processors.

Supplied libraries include the Intel® C++ Compiler Classic (libm), the Short Vector Math Library (svml_disp),
libirc, as well as others. These libraries are linked in by default when the compiler sees that references to
them have been generated. Some library functions, such as sin or memset, may not require a call to the
library, since the compiler may inline the code for the function.

Intel® C++ Compiler Classic Math Library (libm)

With the Intel® C++ Compiler Classic, the math library, libm, is linked by default when calling math functions
that require the library. Some functions, such as sin, may not require a call to the library, since the compiler
already knows how to compute the sin function. The math library also includes some functions not found in
the standard math library.

NOTE
You cannot make calls to the math library with the Microsoft Compiler.

Many routines in the libimf library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Short Vector Math Library (svml_disp)

When vectorization is in progress, the compiler may translate some calls to the libm math library functions
into calls to svml_disp functions. These functions implement the same basic operations as the math library,
but operate on short vectors of operands. This results in greater efficiency. In some cases, the svml_disp
functions are slightly less precise than the equivalent libm functions.

Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors than
for non-Intel microprocessors.

libirc

Compatibility and Portability

2335

libirc contains optimized implementations of some commonly used string and memory functions. For
example, it contains functions that are optimized versions of memcpy and memset. The compiler will
automatically generate calls to these functions when it sees calls to memcpy and memset. The compiler may
also transform loops that are equivalent to memcpy or memset into calls to these functions.

Many routines in the libirc library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
O compiler option
Using Configuration Files
Using Response Files
Specifying the Location of Compiler Components

Port from GCC* to the Intel® C++
Compiler Classic
This section describes a basic approach to porting applications from the (GNU Compiler Collection*) GCC C/C
++ compilers to the Intel® C++ Compiler Classic. These compilers correspond to each other as follows:

Language Intel® Compiler GCC Compiler

C icc gcc

C++ icpc g++

NOTE Unless otherwise indicated, the term "gcc" refers to both GCC and G++* compilers from the
GCC.

Advantages to Using the Intel® C++ Compiler Classic
In many cases, porting applications from gcc to the Intel® C++ Compiler Classic can be as easy as modifying
your makefile to invoke the Intel® C++ Compiler Classic (icc) instead of gcc. Using the Intel® C++ Compiler
Classic typically improves the performance of your application, especially for those that run on Intel
processors. In many cases, your application's performance may also show improvement when running on
non-Intel processors. When you compile your application with the Intel® C++ Compiler Classic, you have
access to:

• Compiler options that optimize your code for the latest Intel® architecture processors.
• Advanced profiling tools (PGO) similar to the GNU profiler gprof.
• High-level optimizations (HLO).
• Interprocedural optimization (IPO).
• Intel intrinsic functions that the compiler uses to inline instructions, including various versions of Intel®

Streaming SIMD Extensions and Intel® Advanced Vector Extensions.

 Intel® C++ Compiler Classic Developer Guide and Reference

2336

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

• Highly-optimized Intel® C++ Compiler Classic Math Library for improved accuracy.

Because the Intel® C++ Compiler Classic is compatible and interoperable with gcc, porting your gcc
application to the Intel® C++ Compiler Classic includes the benefits of binary compatibility. As a result, you
should not have to re-build libraries from your gcc applications. The Intel® C++ Compiler Classic also
supports many of the same compiler options, macros, and environment variables you already use in your gcc
work.

Equivalent Macros
The Intel® C++ Compiler Classic is compatible with the predefined GNU* macros.

See http://gcc.gnu.org for a list of compatible predefined macros.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Modify Your makefile
Supported Environment Variables
Additional Predefined Macros

Modify Your makefile
If you use makefiles to build your GCC* application, you need to change the value for the GCC compiler
variable to use the Intel® C++ Compiler Classic. You may also want to review the options specified by
CFLAGS. For example, a sample GCC makefile:

Use gcc compiler
 CC = gcc

Compile-time flags
 CFLAGS = -O2 -std=c99
all: area_app

area_app: area_main.o area_functions.o
 $(CC) area_main.o area_functions.o -o area

area_main.o: area_main.c
 $(CC) -c $(CFLAGS) area_main.c

area_functions.o: area_functions.c
 $(CC) -c -fno-asm $(CFLAGS) area_functions.c

clean: rm -rf *o area

Modified makefile for the Intel® C++ Compiler Classic
In this example, the name of the compiler is changed to use icc

Use Intel C/C++ Compiler
 CC = icc

Compile-time flags

Compatibility and Portability

2337

http://gcc.gnu.org
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

 CFLAGS = -std=c99
all: area_app

area_app: area_main.o area_functions.o
 $(CC) area_main.o area_functions.o -o area

area_main.o: area_main.c
 $(CC) -c $(CFLAGS) area_main.c

area_functions.o: area_functions.c
 $(CC) -c -fno-asm $(CFLAGS) area_functions.c

clean: rm -rf *o area
If your GCC code includes features that are not supported with the Intel® C++ Compiler Classic (compiler
options, language extensions, macros, pragmas, and so on), you can compile those sources separately with
GCC if necessary.

In the above makefile, area_functions.c is an example of a source file that includes features unique to
GCC. Because the Intel® C++ Compiler Classic uses the O2 option by default and GCC uses option O0 as the
default, we instruct GCC to compile at option O2. We also include the -fno-asm switch from the original
makefile because this switch is not supported with the Intel® C++ Compiler Classic. The following sample
makefile is modified for using the Intel® C++ Compiler Classic and GCC together:

Use Intel C/C++ Compiler
 CC = icc
Use gcc for files that cannot be compiled by icc
 GCC = gcc
Compile-time flags
 CFLAGS = -std=c99
all: area_app

area_app: area_main.o area_functions.o
 $(CC) area_main.o area_functions.o -o area

area_main.o: area_main.c
 $(CC) -c $(CFLAGS) area_main.c

area_functions.o: area_functions.c
 $(GCC) -c -O2 -fno-asm $(CFLAGS) area_functions.c

clean: rm -rf *o area
Output of make using a modified makefile:

icc -c -std=c99 area_main.c
gcc -c -O2 -fno-asm -std=c99 area_functions.c
icc area_main.o area_functions.o -o area

Use IPO in Makefiles

By default, IPO generates "dummy" object files containing Interprocedural information used by the compiler.
To link or create static libraries with these object files requires special Intel-provided tools. To use them in
your makefile, simply replace references to "ld" with "xild" and references to "ar" with "xiar", or use icc to
link as shown in the example:

Use Intel C/C++ Compiler
 CC = icc
Compile-time flags
 CFLAGS = -std=c99 -ipo

 Intel® C++ Compiler Classic Developer Guide and Reference

2338

all: area_app

area_app: area_main.o area_functions.o
 $(CC) area_main.o area_functions.o -o area

area_main.o: area_main.c
 $(CC) -c $(CFLAGS) area_main.c

area_functions.o: area_functions.c
 $(CC) -c $(CFLAGS) area_functions.c

clean: rm -rf *o area

Other Considerations
There are some notable differences between the Intel® C++ Compiler Classic and GCC*. Consider the
following as you begin compiling your source code with the Intel® C++ Compiler Classic.

Set the Environment
The Intel® C++ Compiler Classic relies on environment variables for the location of compiler binaries,
libraries, man pages, and license files. In some cases these are different from the environment variables that
GCC uses. Another difference is that these variables are not set by default after installing the Intel® C++
Compiler Classic. The following environment variables need to be set prior to running the Intel® C++
Compiler Classic:

• PATH: Add the location of the compiler binaries to PATH.
• LD_LIBRARY_PATH: Sets the location where the generated executable picks up the runtime libraries (*.so

files).
• MANPATH – add the location of the compiler man pages (icc or icpc) to MANPATH.
• INTEL_LICENSE_FILE – sets the location of the Intel® C++ Compiler license file.

To set these environment variables, run the compilervars.sh script.

NOTE
Setting these environment variables with compilervars.sh does not impose a conflict with GCC. You
should be able to use both compilers in the same shell.

Use Optimization
The Intel® C++ Compiler Classic is an optimizing compiler that begins with the assumption that you want
improved performance from your application when it is executed on Intel® architecture. Consequently, certain
optimizations, such as option O2, are part of the default invocation of the Intel® C++ Compiler Classic.
Optimization is turned off in GCC by default, the equivalent of compiling with option O0. Other forms of the
O<n> option compare as follows:

Option Intel® C++ Compiler Classic GCC

-O0 Turns off optimization. Default. Turns off optimization.

-O1 Decreases code size with some increase in
speed.

Decreases code size with some increase in
speed.

Compatibility and Portability

2339

Option Intel® C++ Compiler Classic GCC

-O2 Default. Favors speed optimization with
some increase in code size. Same as
option O. Intrinsics, loop unrolling, and
inlining are performed.

Optimizes for speed as long as there is not
an increase in code size. Loop unrolling
and function inlining, for example, are not
performed.

-O3 Enables option O2 optimizations plus more
aggressive optimizations, such as
prefetching, scalar replacement, and loop
and memory access transformations.

Optimizes for speed while generating
larger code size. Includes option O2
optimizations plus loop unrolling and
inlining. Similar to option O2 -ip on the
Intel® C++ Compiler.

Target Intel® Processors
While many of the same options that target specific processors are supported with both compilers, Intel
includes options that utilize processor-specific instruction scheduling to target the latest Intel® processors. If
you compile your GCC application with the march or mtune option, consider using the Intel® C++ Compiler
options x or ax options for applications that run on IA-32 architecture or Intel® 64 architecture.

Modify Your Configuration
The Intel® C++ Compiler Classic lets you maintain configuration and response files that are part of
compilation. Options stored in the configuration file apply to every compilation, while options stored in
response files apply only where they are added on the command line. If you have several options in your
makefile that apply to every build, you may find it easier to move these options to the configuration file
(icc.cfg or icpc.cfg).

In a multi-user, networked environment, options listed in the icc.cfg or icpc.cfg files are generally
intended for everyone who uses the compiler. If you need a separate configuration, you can use the ICCCFG
or ICPCCFGenvironment variable to specify the name and location of your own .cfg file, such as /my_code/
my_config.cfg. Anytime you instruct the compiler to use a different configuration file, the system
configuration files (icc.cfg or icpc.cfg) are ignored.

Use the Intel Libraries
The Intel® C++ Compiler Classic supplies additional libraries that contain optimized implementations of many
commonly used functions. Some of these functions are implemented using CPU dispatch. This means that
different code may be executed when run on different processors.

Supplied libraries include the Intel® C++ Compiler Classic Math Library (libimf), the Short Vector Math Library
(libsvml), libirc, as well as others. These libraries are linked in by default. Some library functions, such as
sin or memset, may not require a call to the library, since the compiler may inline the code for the function.

NOTE The Intel Compiler Math Libraries contain performance-optimized implementations for various
Intel platforms. By default, the best implementation for the underlying hardware is selected at
runtime. The library dispatch of multi-threaded code may lead to apparent data races, which may be
detected by certain software analysis tools. However, as long as the threads are running on cores with
the same CPUID, these data races are harmless and are not a cause for concern.

Intel® C++ Compiler Classic Math Library (libimf)

With the Intel® Compiler, the math library, libimf, is linked by default. Some functions, such as sin, may not
require a call to the library, since the compiler already knows how to compute the sin function. The math
library also includes some functions not found in the standard math library.

 Intel® C++ Compiler Classic Developer Guide and Reference

2340

NOTE
You cannot make calls to the math library with GCC.

Many routines in the libimf library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Short Vector Math Library (libsvml)

When vectorization is being done, the compiler may translate some calls to the libimf math library functions
into calls to libsvml functions. These functions implement the same basic operations as the math library, but
operate on short vectors of operands. This results in greater efficiency. In some cases, the libsvml functions
are slightly less precise than the equivalent libimf functions.

Many routines in the libimf library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

libirc

libirc contains optimized implementations of some commonly used string and memory functions. For
example, it contains functions that are optimized versions of memcpy and memset. The compiler will
automatically generate calls to these functions when it sees calls to memcpy and memset. The compiler may
also transform loops that are equivalent to memcpy or memset into calls to these functions.

Many routines in the libirc library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
ax, Qax
Invoke the Compiler

march
mtune
-O compiler option
Using Configuration Files
Using Response Files
x, Qx

Compatibility and Portability

2341

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Index
__assume_aligned 2162
__declspec

align 640
align_value 641
avoid_false_share 641
code_align 642
concurrency_safe 643
const 643
cpu_dispatch 644
cpu_specific 644
mpx 646
target 646
vector 647
vector_variant 648

__regcall 80
_allow_cpu_features 664
_InterlockedCompareExchange_HLEAcquire 1491
_InterlockedCompareExchange_HLERelease 1492
_InterlockedCompareExchange64_HLEAcquire 1491
_InterlockedCompareExchange64_HLERelease 1492
_InterlockedCompareExchangePointer_HLEAcquire 1491
_InterlockedCompareExchangePointer_HLERelease 1492
_InterlockedExchangeAdd_HLEAcquire 1491
_InterlockedExchangeAdd_HLERelease 1492
_InterlockedExchangeAdd64_HLEAcquire 1491
_InterlockedExchangeAdd64_HLERelease 1492
_may_i_use_cpu_feature 662
_mm_div_epi16 1704
_mm_div_epi32 1704
_mm_div_epi64 1705
_mm_div_epi8/ 1703
_mm_div_epu16 1706
_mm_div_epu32 1706
_mm_div_epu64 1707
_mm_div_epu8 1705
_mm_rem_epi16 1708
_mm_rem_epi32 1709
_mm_rem_epi64 1709
_mm_rem_epi8 1708
_mm_rem_epu16 1710
_mm_rem_epu32 1711
_mm_rem_epu64 1711
_mm_rem_epu8 1710
_mm256_div_epi16 1704
_mm256_div_epi32 1704
_mm256_div_epi64 1705
_mm256_div_epi8 1703
_mm256_div_epu16 1706
_mm256_div_epu32 1706
_mm256_div_epu64 1707
_mm256_div_epu8 1705
_mm256_rem_epi16 1708
_mm256_rem_epi32 1709
_mm256_rem_epi64 1709
_mm256_rem_epi8 1708
_mm256_rem_epu16 1710
_mm256_rem_epu32 1711
_mm256_rem_epu64 1711
_mm256_rem_epu8 1710
_PGOPTI_Prof_Reset_All 2208

_rdseed16_step 1401
_rdseed32_step 1401
_rdseed64_step 1401
_Simd keyword 2161
_Store_HLERelease 1493
_Store64_HLERelease 1493
_StorePointer_HLERelease 1493
_xabort 1489
_xbegin 1488
_xend 1489
_xtest 1487
--sysroot compiler option (Linux* only) 603
--version compiler option 606
-A compiler option 392
-alias-const compiler option 177
-align compiler option 456
-ansi compiler option 425
-ansi-alias compiler option 178
-ansi-alias-check compiler option 179
-auto-ilp32 compiler option 457
-auto-p32 compiler option 458
-ax compiler option 124
-B compiler option 393
-Bdynamic compiler option (Linux* only) 556
-Bstatic compiler option (Linux* only) 557
-Bsymbolic compiler option (Linux* only) 558
-Bsymbolic-functions compiler option (Linux* only) 559
-c compiler option 347, 1788
-C compiler option 394
-check compiler option 426
-check-pointers compiler option 459
-check-pointers-dangling compiler option 460
-check-pointers-mpx compiler option 461
-check-pointers-narrowing compiler option 463
-check-pointers-undimensioned compiler option 464
-clang-name compiler option 543
-clangxx-name compiler option 544
-complex-limited-range compiler option 180
-cxxlib compiler option (Linux* only) 559
-cxxlib-nostd compiler option (Linux* only) 559
-D compiler option 395
-daal compiler option 196
-dD compiler option 396
-debug compiler option 348
-device-math-lib compiler option 273
-diag compiler option 497
-diag-disable compiler option 497
-diag-disable=all compiler option 497
-diag-dump compiler option 500
-diag-enable compiler option 497
-diag-enable=all compiler option 497
-diag-enable=power compiler option 501
-diag-error compiler option 497
-diag-error-limit compiler option 502
-diag-file compiler option 503
-diag-file-append compiler option 504
-diag-id-numbers compiler option 505
-diag-once compiler option 506
-diag-remark compiler option 497
-diag-warning compiler option 497
-dM compiler option 396

Intel® C++ Compiler Classic Developer Guide and Reference

2342

-dN compiler option 397
-dryrun compiler option 588
-dumpmachine compiler option 589
-dumpversion compiler option 590
-dynamic-linker compiler option (Linux* only) 561
-dynamiclib compiler option (macOS* only) 561
-E compiler option 398
-early-template-check compiler option 428
-EP compiler option 399
-F compiler option (macOS) 563
-Fa compiler option 352
-fabi-version compiler option 545
-falias compiler option 107
-falign-functions compiler option 465
-falign-loops compiler option 466
-falign-stack compiler option (Linux* only) 467
-fargument-alias compiler option 181
-fargument-noalias-global compiler option 182
-fasm-blocks compiler option 354
-fast compiler option 108
-fast-transcendentals compiler option 294
-fasynchronous-unwind-tables compiler option 129
-fblocks compiler option (macOS*) 428
-fbuiltin compiler option 109
-fcf-protection compiler option 130
-fcode-asm compiler option 356
-fcommon compiler option 468
-fdata-sections compiler option 131
-fdefer-pop compiler option 110
-feliminate-unused-debug-types compiler option 359
-femit-class-debug-always compiler option (Linux*
only) 360
-fexceptions compiler option 131
-fextend-arguments compiler option 469
-ffat-lto-objects compiler option (Linux* only) 169
-ffnalias compiler option 111
-ffreestanding compiler option 183
-ffriend-injection compiler option 429
-ffunction-sections compiler option 132
-fgnu89-inline compiler option 333
-fimf-absolute-error compiler option 296
-fimf-accuracy-bits compiler option 297
-fimf-arch-consistency compiler option 299
-fimf-domain-exclusion compiler option 301
-fimf-force-dynamic-target compiler option 304
-fimf-max-error compiler option 306
-fimf-precision compiler option 307
-fimf-use-svml compiler option 310
-finline compiler option 333
-finline-functions compiler options 334
-finline-limit compiler option 335
-finstrument-functions compiler option 234
-fjump-tables compiler option 184
-fkeep-static-consts compiler option 469
-fma compiler option 312
-fmath-errno compiler option 470
-fmerge-constants compiler option (Linux* only) 361
-fmerge-debug-strings compiler option (Linux* only) 361
-fminshared compiler option 471
-fmpc-privatize compiler option (Linux* only) 274
-fms-dialect compiler option (Linux* only) 546
-fmudflap compiler option (Linux* only) 472
-fno-asynchronous-unwind-tables compiler option 129
-fno-gnu-keywords compiler option 430
-fno-implicit-inline-templates compiler option 430
-fno-implicit-templates compiler option 431
-fno-operator-names compiler option 432
-fno-rtti compiler option 432

-fnon-call-exceptions compiler option 506
-fnon-lvalue-assign compiler option 433
-fnsplit compiler option (Linux* only) 235
-fomit-frame-pointer compiler option 133
-fopenmp compiler option 286
-fopenmp-device-lib compiler option 274
-foptimize-sibling-calls compiler option 112
-fp compiler option 133
-fp-model compiler option

how to use 629
-fp-model consistent compiler option 313
-fp-port compiler option 317
-fp-speculation compiler option 319
-fp-stack-check compiler option 320
-fp-trap compiler option 320
-fp-trap-all compiler option 322
-fpack-struct compiler option 473
-fpascal-strings compiler option 473
-fpermissive compiler option 434
-fpic compiler option 474, 1788
-fpie compiler option (Linux* only) 475
-fprotect-parens compiler option 113
-freg-struct-return compiler option 476
-fshort-enums compiler option 434
-fsource-asm compiler option 365
-fstack-protector compiler option 477
-fstack-protector-all compiler option 477
-fstack-protector-strong compiler option 477
-fstack-security-check compiler option 478
-fstrict-aliasing compiler option 178
-fsyntax-only compiler option 435
-ftemplate-depth compiler option 436
-ftls-model compiler option 185
-ftrapuv compiler option 365
-ftz compiler option 324, 634
-funroll-all-loops compiler option 186
-funroll-loops compiler option 226
-funsigned-bitfields compiler option 436
-funsigned-char compiler option 437
-fuse-ld compiler option 565
-fvar-tracking compiler option 348
-fvar-tracking-assignments compiler option 348
-fverbose-asm compiler option 367
-fvisibility compiler option 479
-fvisibility-inlines-hidden compiler option 481
-fzero-initialized-in-bss compiler option 481
-g compiler option 367
-g0 compiler option 367
-g1 compiler option 367
-g2 compiler option 367
-g3 compiler option 367
-gcc compiler option 400
-gcc-include-dir compiler option (Linux only) 401
-gcc-name compiler option (Linux* only) 548
-gcc-sys compiler option 400
-gdwarf-2 compiler option 369
-gdwarf-3 compiler option 369
-gdwarf-4 compiler option 369
-global-hoist compiler option 590
-gnu-prefix compiler option (Linux* only) 549
-grecord-gcc-switches compiler option (Linux* only) 371
-gsplit-dwarf compiler option (Linux* only) 371
-guide compiler option 186
-guide-data-trans compiler option 188
-guide-file compiler option 189
-guide-file-append compiler option 190
-guide-opts compiler option 192
-guide-par compiler option 194

Index

2343

-guide-vec compiler option 195
-gxx-name compiler option (Linux* only) 551
-H compiler option 402
-help compiler option 591
-help-pragma compiler option 439
-hotpatch compiler option 140
-I compiler option 403
-I- compiler option 403
-icc compiler option 404
-idirafter compiler option 405
-imacros compiler option 406
-inline-calloc compiler option 336
-inline-factor compiler option 337
-inline-forceinline compiler option 338
-inline-level compiler option 339
-inline-max-per-compile compiler option 340
-inline-max-per-routine compiler option 341
-inline-max-size compiler option 342
-inline-max-total-size compiler option 343
-inline-min-caller-growth compiler option 344
-inline-min-size compiler option 345
-intel-extensions compiler option 440
-intel-freestanding compiler option 593
-intel-freestanding-target-os compiler option 594
-ip compiler option 170
-ip-no-inlining compiler option 171
-ip-no-pinlining compiler option 172
-ipo compiler option 173, 2216
-ipo-c compiler option 174
-ipo-jobs compiler option 175
-ipo-S compiler option 176
-ipo-separate compiler option 176
-ipp compiler option 198
-ipp-link compiler option 195
-iprefix compiler option 406
-iquote compiler option 407
-isystem compiler option 408
-iwithprefix compiler option 408
-iwithprefixbefore compiler option 409
-Kc++ compiler option 410
-l compiler option 565
-L compiler option 566
-m compiler option 141
-M compiler option 410
-m32 compiler option (Linux* only) 143
-m64 compiler option 143
-m80387 compiler option 144
-malign-double compiler option 487
-malign-mac68k compiler option (macOS*) 487
-malign-natural compiler option (macOS*) 488
-malign-power compiler option (macOS*) 489
-map-opts compiler option 372
-march compiler option 144
-masm compiler option (Linux* only) 147
-mauto-arch compiler option 148
-mbranches-within-32B-boundaries compiler option 148
-mcmodel compiler option (Linux* only) 489
-mconditional-branch compiler option 149
-mcpu compiler option 157
-MD compiler option 411
-mdynamic-no-pic compiler option (macOS*) 491
-MF compiler option 412
-MG compiler option 412
-minstruction compiler option 151
-mkl compiler option 199
-mlong-double compiler option (Linux* only) 491
-MM compiler option 413
-MMD compiler option 414

-momit-leaf-frame-pointer 152
-MP compiler option 414
-mp1 compiler option 326
-MQ compiler option 415
-mregparm compiler option (Linux* only) 153
-mregparm-version compiler option (Linux* only) 154
-mstringop-inline-threshold compiler option 155
-mstringop-strategy compiler option 156
-MT compiler option 416
-mtune compiler option 157
-multibyte-chars compiler option 596
-multiple-processes compiler option 596
-no-bss-init compiler option 493
-no-intel-lib compiler option 571
-no-libgcc compiler option 570
-nodefaultlibs compiler option 571
-nolib-inline compiler option 114
-nostartfiles compiler option 572
-nostdinc++ compiler option 416
-nostdlib compiler option 573
-o compiler option 373
-O compiler option 115
-Ofast compiler option 118
-Os compiler option 119
-p compiler option 237
-P compiler option 417
-par-affinity compiler option 275
-par-loops compiler option 277
-par-num-threads compiler option 277
-par-runtime-control compiler option 278
-par-schedule compiler option 279
-par-threshold compiler option 282
-parallel compiler option 283
-parallel-source-info compiler option 285
-pc compiler option 327
-pch compiler option 374
-pch-create compiler option 375
-pch-dir compiler option 376
-pch-use compiler option 377
-pie compiler option 574
-pragma-optimization-level compiler option 418
-prec-div compiler option 328
-prec-sqrt compiler option 329
-print-multi-lib compiler option 379
-print-sysroot compiler option (Linux* only) 598
-prof-data-order compiler options 238
-prof-dir compiler option 239
-prof-file compiler option 240
-prof-func-groups compiler option (Linux* only) 241
-prof-func-order compiler options 242
-prof-gen compiler option 243, 2204
-prof-gen-sampling compiler option (Linux* only) 245
-prof-gen:srcpos compiler option

code coverage tool 2294
test priorization tool 2307

-prof-hotness-threshold compiler option 245
-prof-src-dir compiler option 246
-prof-src-root compiler option 248
-prof-src-root-cwd compiler option 249
-prof-use compiler option

code coverage tool 2294
profmerge utility 2313

-prof-use-sampling compiler option (Linux* only) 252
-prof-value-profiling compiler option 252
-pthread compiler option 574
-qcf-protection compiler option 130
-qdaal compiler option 196
-qdiag-disable linking option 2039

Intel® C++ Compiler Classic Developer Guide and Reference

2344

-qdiag-enable linking option 2039
-qhelp linking option 2039
-Qinstall compiler option 422
-qipp compiler option 198
-Qlocation compiler option 423
-qmkl compiler option 199
-qopenmp compiler option

using in apps 2048
-qopenmp-lib compiler option 287
-qopenmp-link compiler option 289
-qopenmp-simd compiler option 290
-qopenmp-stubs compiler option 291
-qopenmp-threadprivate compiler option 292
-qopt-args-in-regs compiler option 201
-qopt-assume-safe-padding compiler option 202
-qopt-block-factor compiler option 203
-qopt-calloc compiler option (Linux only) 204
-qopt-class-analysis compiler option 205
-qopt-dynamic-align compiler option 205
-qopt-jump-tables compiler option 206
-qopt-malloc-options compiler option 207
-qopt-matmul compiler option 208
-qopt-mem-layout-trans compiler option 210
-qopt-multi-version-aggressive compiler option 211
-qopt-multiple-gather-scatter-by-shuffles compiler
option 212
-qopt-prefetch compiler option 213
-qopt-prefetch-distance compiler option 214
-qopt-prefetch-issue-excl-hint compiler option 215
-qopt-ra-region-strategy compiler option 216
-qopt-report compiler option (icc) 256
-qopt-report-annotate compiler option 258
-qopt-report-annotate-position compiler option 259
-qopt-report-embed compiler option 260
-qopt-report-file compiler option 261
-qopt-report-filter compiler option 262
-qopt-report-format compiler option 264
-qopt-report-help compiler option 265
-qopt-report-names compiler option 266
-qopt-report-per-object compiler option 267
-qopt-report-phase compiler option 268
-qopt-report-routine compiler option 272
-qopt-streaming-stores compiler option 217
-qopt-subscript-in-range compiler option 219
-qopt-zmm-usage compiler option 219
-Qoption compiler option 424
-qoverride-limits compiler option 221
-qp compiler option 237
-qsimd-honor-fp-model compiler option 330
-qsimd-serialize-fp-reduction compiler option 331
-qtbb compiler option 222
-rcd compiler option 332
-regcall compiler option 162
-restrict compiler option 442
-S compiler option 382
-save-temps compiler option 599
-scalar-rep compiler option 223
-shared compiler option 1788, 1789
-shared compiler option (Linux* only) 575
-shared-intel compiler option 576, 1789
-shared-libgcc compiler option (Linux* only) 577
-simd compiler option 224
-simd-function-pointers compiler option 225
-sox compiler option (Linux* only) 601
-static compiler option (Linux* only) 578
-static-intel compiler option 579
-static-libgcc compiler option (Linux* only) 580
-static-libstdc++ compiler option (Linux* only) 580

-staticlib compiler option (macOS*) 581
-std compiler option 443
-stdlib compiler option (macOS*) 555
-strict-ansi compiler option 445
-T compiler option (Linux* only) 582
-tbb compiler option 222
-traceback compiler option 507
-u compiler option 583
-U compiler option 419
-undef compiler option 420
-unroll compiler option 226
-unroll-aggressive compiler option 227
-use-asm compiler option 383
-use-intel-optimized-headers compiler option 228
-use-msasm compiler option 384
-v compiler option 583
-V compiler option 606
-vec compiler option 229
-vec-guard-write compiler option 230
-vec-threshold compiler option 230
-vecabi compiler option 232
-w compiler option 509
-Wa compiler option 584
-Wabi compiler option 511
-Wall compiler option 511
-watch compiler option 607
-Wbrief compiler option 512
-Wcheck compiler option 513
-Wcheck-unicode-security compiler option 514
-Wcomment compiler option 515
-Wcontext-limit compiler option 515
-wd compiler option 516
-Wdeprecated compiler option 517
-we compiler option 517
-Weffc++ compiler option 518
-Werror compiler option 519
-Werror-all compiler option 520
-Wextra-tokens compiler option 521
-Wformat compiler option 522
-Wformat-security compiler option 522
-Wic-pointer compiler option 523
-Winline compiler option 524
-Wl compiler option 585
-Wmain compiler option 525
-Wmissing-declarations compiler option 526
-Wmissing-prototypes compiler option 527
-wn compiler option 527
-Wnon-virtual-dtor compiler option 528
-wo compiler option 529
-Wp compiler option 585
-Wp64 compiler option 530
-Wpch-messages compiler option 530
-Wpointer-arith compiler option 531
-wr compiler option 532
-Wremarks compiler option 533
-Wreorder compiler option 534
-Wreturn-type compiler option 534
-Wshadow compiler option 535
-Wsign-compare compiler option 536
-Wstrict-aliasing compiler option 537
-Wstrict-prototypes compiler option 538
-Wtrigraphs compiler option 538
-Wuninitialized compiler option 539
-Wunknown-pragmas compiler option 540
-Wunused-function compiler option 540
-Wunused-variable compiler option 541
-ww compiler option 542
-Wwrite-strings compiler option 543

Index

2345

-x (type) compiler option 449
-x compiler option 162
-X compiler option 421
-xHost compiler option 166
-Xlinker compiler option 586
-Zp compiler option 454
.dpi file 2294, 2307, 2313
.dyn file 2294, 2307, 2313
.dyn files 2204
.spi file 2294, 2307
/arch compiler option 122
/bigobj compiler option 588
/c compiler option 347
/C compiler option 394
/check compiler option 426
/D compiler option 395
/debug compiler option 351
/device-math-lib compiler option 273
/E compiler option 398
/EH compiler option 127
/EP compiler option 399
/F compiler option 562
/Fa compiler option 352
/FA compiler option 353
/fast compiler option 108
/FC compiler option 355
/Fd compiler option 356
/FD compiler option 357
/Fe compiler option 358
/FI compiler option 400
/fixed compiler option 563
/Fm compiler option 564
/Fo compiler option 362
/fp compiler option

how to use 629
/Fp compiler option 363
/fp:consistent compiler option 313
/Fr compiler option 364
/FR compiler option 364
/GA compiler option 482
/Gd compiler option 135
/Ge compiler option 325
/GF compiler option 114
/Gh compiler option 236
/GH compiler option 237
/Gm compiler option 370
/Gr compiler option 135
/GR compiler option 136
/Gs compiler option 483
/GS compiler option 484
/GT compiler option 485
/guard compiler option 137
/guard:cf compiler option 137
/Gv compiler option 138
/Gw compiler option 131
/GX compiler option 127
/Gy compiler option 132
/Gz compiler option 139
/GZ compiler option 438
/H compiler option 439
/help compiler option 591
/homeparams compiler option 486
/hotpatch compiler option 140
/I compiler option 403
/I- compiler option 403
/J compiler option 441
/LD compiler option 567, 1788
/link compiler option 567

/MD compiler option 568, 1788
/MP compiler option 596
/MP-force compiler option 595
/MT compiler option 569, 1788
/noBool compiler option 493
/nologo compiler option 598
/O compiler option 115
/Oa compiler option 107
/Ob compiler option 339
/Od compiler option 118
/Oi compiler option 109
/openmp compiler option 286
/Os compiler option 119
/Ot compiler option 120
/Ow compiler option 111
/Ox compiler option 121
/Oy compiler option 133
/P compiler option 417
/pdbfile compiler option 378
/QA compiler option 392
/Qalias-args 181
/Qalias-const compiler option 177
/Qalign-loops compiler option 466
/Qansi-alias compiler option 178
/Qansi-alias-check compiler option 179
/Qauto-arch compiler option 148
/Qauto-ilp32 compiler option 457
/Qax compiler option 124
/Qbranches-within-32B-boundaries compiler option 148
/Qcf-protection compiler option 130
/Qcheck-pointers compiler option 459
/Qcheck-pointers-dangling compiler option 460
/Qcheck-pointers-mpx compiler option 461
/Qcheck-pointers-narrowing compiler option 463
/Qcheck-pointers-undimensioned compiler option 464
/Qcomplex-limited-range compiler option 180
/Qconditional-branch compiler option 149
/Qcontext-limit compiler option 515
/Qcov-dir compiler option 254
/Qcov-file compiler option 254
/Qcov-gen compiler option

code coverage tool 2294
/Qcxx-features compiler option 159
/Qdaal compiler option 196
/QdD compiler option 396
/Qdiag compiler option 497
/Qdiag-disable compiler option 497
/Qdiag-disable:all compiler option 497
/Qdiag-dump compiler option 500
/Qdiag-enable compiler option 497
/Qdiag-enable:all compiler option 497
/Qdiag-enable:power compiler option 501
/Qdiag-error compiler option 497
/Qdiag-error-limit compiler option 502
/Qdiag-file compiler option 503
/Qdiag-file-append compiler option 504
/Qdiag-id-numbers compiler option 505
/Qdiag-once compiler option 506
/Qdiag-remark compiler option 497
/Qdiag-warning compiler option 497
/QdM compiler option 396
/QdN compiler option 397
/Qeffc++ compiler option 518
/Qeliminate-unused-debug-types compiler option 359
/Qextend-arguments compiler option 469
/Qfast-transcendentals compiler option 294
/Qfma compiler option 312
/Qfnalign compiler option 465

Intel® C++ Compiler Classic Developer Guide and Reference

2346

/Qfnsplit compiler option 235
/Qfp-port compiler option 317
/Qfp-speculation compiler option 319
/Qfp-stack-check compiler option 320
/Qfp-trap compiler option 320
/Qfp-trap-all compiler option 322
/Qfreestanding compiler option 183
/Qftz compiler option 324, 634
/Qgcc-dialect compiler option 552
/Qglobal-hoist compiler option 590
/Qguide compiler option 186
/Qguide-data-trans compiler option 188
/Qguide-file compiler option 189
/Qguide-file-append compiler option 190
/Qguide-opts compiler option 192
/Qguide-par compiler option 194
/Qguide-vec compiler option 195
/QH compiler option 402
/Qicl compiler option 404
/Qimf-absolute-error compiler option 296
/Qimf-accuracy-bits compiler option 297
/Qimf-arch-consistency compiler option 299
/Qimf-domain-exclusion compiler option 301
/Qimf-force-dynamic-target compiler option 304
/Qimf-max-error compiler option 306
/Qimf-precision compiler option 307
/Qimf-use-svml compiler option 310
/Qinline-calloc compiler option 336
/Qinline-dllimport compiler option 346
/Qinline-factor compiler option 337
/Qinline-forceinline compiler option 338
/Qinline-max-per-compile compiler option 340
/Qinline-max-per-routine compiler option 341
/Qinline-max-size compiler option 342
/Qinline-max-total-size compiler option 343
/Qinline-min-caller-growth compiler option 344
/Qinline-min-size compiler option 345
/Qinstruction compiler option 151
/Qinstrument-functions compiler option 234
/Qintel-extensions compiler option 440
/Qip compiler option 170
/Qip-no-inlining compiler option 171
/Qip-no-pinlining compiler option 172
/Qipo compiler option 173, 2216
/Qipo-c compiler option 174
/Qipo-jobs compiler option 175
/Qipo-S compiler option 176
/Qipo-separate compiler option 176
/Qipp compiler option 198
/Qipp-link compiler option 195
/Qkeep-static-consts compiler option 469
/Qlocation compiler option 423
/Qlong-double compiler option 494
/QM compiler option 410
/Qm32 compiler option 143
/Qm64 compiler option 143
/Qmap-opts compiler option 372
/QMD compiler option 411
/QMF compiler option 412
/QMG compiler option 412
/Qmkl compiler option 199
/QMM compiler option 413
/QMMD compiler option 414
/Qms compiler option 553
/QMT compiler option 416
/Qmultibyte-chars compiler option 596
/Qno-builtin-name compiler option 109
/Qno-intel-lib compiler option 571

/Qnobss-init compiler option 493
/Qopenmp compiler option

using in apps 2048
/Qopenmp-lib compiler option 287
/Qopenmp-simd compiler option 290
/Qopenmp-stubs compiler option 291
/Qopenmp-threadprivate compiler option 292
/Qopt-args-in-regs compiler option 201
/Qopt-assume-safe-padding compiler option 202
/Qopt-block-factor compiler option 203
/Qopt-class-analysis compiler option 205
/Qopt-dynamic-align compiler option 205
/Qopt-jump-tables compiler option 206
/Qopt-matmul compiler option 208
/Qopt-mem-layout-trans compiler option 210
/Qopt-multi-version-aggressive compiler option 211
/Qopt-multiple-gather-scatter-by-shuffles compiler
option 212
/Qopt-prefetch compiler option 213
/Qopt-prefetch-distance compiler option 214
/Qopt-prefetch-issue-excl-hint compiler option 215
/Qopt-ra-region-strategy compiler option 216
/Qopt-report compiler option (icc) 256
/Qopt-report-annotate compiler option 258
/Qopt-report-annotate-position compiler option 259
/Qopt-report-embed compiler option 260
/Qopt-report-file compiler option 261
/Qopt-report-filter compiler option 262
/Qopt-report-format compiler option 264
/Qopt-report-help compiler option 265
/Qopt-report-names compiler option 266
/Qopt-report-per-object compiler option 267
/Qopt-report-phase compiler option 268
/Qopt-report-routine compiler option 272
/Qopt-streaming-stores compiler option 217
/Qopt-subscript-in-range compiler option 219
/Qopt-zmm-usage compiler option 219
/Qoption compiler option 424
/Qoverride-limits compiler option 221
/Qpar-adjust-stack compiler option 293
/Qpar-affinity compiler option 275
/Qpar-loops compiler option 277
/Qpar-num-threads compiler option 277
/Qpar-runtime-control compiler option 278
/Qpar-schedule compiler option 279
/Qpar-threshold compiler option 282
/Qparallel compiler option 283
/Qparallel-source-info compiler option 285
/Qpatchable-addresses compiler option 160
/Qpc compiler option 327
/Qpchi compiler option 380
/Qprec compiler option 326
/Qprec-div compiler option 328
/Qprec-sqrt compiler option 329
/Qprof-data-order compiler option 238
/Qprof-dir compiler option 239
/Qprof-file compiler option 240
/Qprof-func-order compiler option 242
/Qprof-gen compiler option 243, 2204
/Qprof-gen:srcpos compiler option

code coverage tool 2294
test priorization tool 2307

/Qprof-hotness-threshold compiler option 245
/Qprof-src-dir compiler option 246
/Qprof-src-root compiler option 248
/Qprof-src-root-cwd compiler option 249
/Qprof-use compiler option

code coverage tool 2294

Index

2347

/Qprof-use compiler option (continued)
profmerge utility 2313

/Qprof-value-profiling compiler option 252
/Qprotect-parens compiler option 113
/Qrcd compiler option 332
/Qregcall compiler option 162
/Qrestrict compiler option 442
/Qsafeseh compiler option 161
/Qsave-temps compiler option 599
/Qscalar-rep compiler option 223
/Qsfalign compiler option 496
/Qsimd compiler option 224
/Qsimd-function-pointers compiler option 225
/Qsimd-honor-fp-model compiler option 330
/Qsimd-serialize-fp-reduction compiler option 331
/Qstd compiler option 443
/Qstringop-inline-threshold compiler option 155
/Qstringop-strategy compiler option 156
/Qtbb compiler option 222
/Qtemplate-depth compiler option 436
/Qtrapuv compiler option 365
/Qunroll compiler option 226
/Qunroll-aggressive compiler option 227
/Quse-asm compiler option 383
/Quse-intel-optimized-headers compiler option 228
/Quse-msasm-symbols compiler option 380
/QV compiler option 606
/Qvc compiler option 554
/Qvec compiler option 229
/Qvec-guard-write compiler option 230
/Qvec-threshold compiler option 230
/Qvecabi compiler option 232
/Qvla compiler option 223
/Qwd compiler option 516
/Qwe compiler option 517
/Qwn compiler option 527
/Qwo compiler option 529
/Qwr compiler option 532
/Qww compiler option 542
/Qx compiler option 162
/QxHost compiler option 166
/Qzero-initialized-in-bss compiler option 481
/RTC compiler option 381
/S compiler option 382
/showIncludes compiler option 600
/Tc compiler option 603
/TC compiler option 604
/Tp compiler option 605
/TP compiler option 410
/traceback compiler option 507
/tune compiler option 157
/u compiler option 419
/U compiler option 419
/V compiler option 384
/vd compiler option 446
/vmb compiler option 447
/vmg compiler option 447
/vmm compiler option 448
/vms compiler option 449
/vmv compiler option 556
/w compiler option 509
/W compiler option 509
/Wall compiler option 511
/watch compiler option 607
/Wcheck compiler option 513
/Wcheck-unicode-security compiler option 514
/Werror-all compiler option 520
/WL compiler option 525

/Wp64 compiler option 530
/Wpch-messages compiler option 530
/Wport compiler option 532
/WX compiler option 519
/X compiler option 421
/Y- compiler option 385
/Yc compiler option 386
/Yd compiler option 387
/Yu compiler option 388
/Z7 compiler option 389
/Za compiler option 450
/Zc compiler option 451
/Ze compiler option 453
/Zg compiler option 453
/Zi compiler option 389
/ZI compiler option 389
/Zl compiler option 587, 1788
/Zo compiler option 391
/Zp compiler option 454
/Zs compiler option 455

3rd Generation Intel® Core™ Processor Instruction
Extensions 1398
4th Generation Intel® Core™ Processor Instruction
Extensions 1398
64-bit executable

building 76

A
absolute error

option defining for math library function results 296
access_by 1808
adding files 57
adding the compiler

in Eclipse* 51
advanced PGO options 2204
Advanced Vector Extensions

arithmetic operations 1498
bitwise logical operations 1506
blend and conditional merge operations 1510
compare operations 1512
conversion operations 1514
load operations 1520
minimum and maximum operations 1519
miscellaneous operations 1531
overview 1494, 1495
packed test operations 1544
permute operations 1550
shuffle operations 1554
store operations 1520
unpack and interleave operations 1555
vector generation operations 1562
vector typecasting operations 1557

Advanced Vector Extensions 2
arithmetic operations 1407
arithmetic shift operations 1418
bit manipulation operations 1467
bitwise logical operations 1421
blend operations 1420
broadcast operations 1423
compare operations 1426
fused multiply-add (FMA) operations 1430
GATHER operations 1442
insert and extract operations 1463
load and store operations 1465

Intel® C++ Compiler Classic Developer Guide and Reference

2348

Advanced Vector Extensions 2 (continued)
logical shift operations 1457
miscellaneous operations 1466
pack and unpack operations 1472
packed move operations 1474
permute operations 1476
shuffle operations 1480

aliasing
option specifying assumption in functions 111
option specifying assumption in programs 107

align
attribute 640

align_value
attribute 641

aligned
attribute 640

aligned_new 2277
aligned_offset 1839
alloc_section 1974
ALLOCATABLE

basic block 2294
code coverage 2294
data flow 2115
visual presentation 2294

alternate compiler options 617
alternate tools and locations 2041
amplxe-pgo-report 2204
AMX-BF16 intrinsic 703
AMX-INT8 intrinsics 704
AMX-TILE intrinsics 708
annotated source listing

option enabling 258
option specifying position of messages 259

ANSI/ISO standard 2325
aos1d_container 1798, 1800, 1806, 1809, 1812, 1814,
1816, 1841, 1844, 1846, 1847
aos1d_container::accessor 1817, 1820, 1821, 1824, 1826,
1827, 1829
aos1d_container::const_accessor 1828
application tests 2307
applications

deploying 1792
option specifying code optimization for 115

ar tool 1788
assembler

option passing options to 584
option producing objects through 383

assembler output file
option specifying a dialect for 147

assembly files
naming 49

assembly listing file
option specifying generation of 352

Asynchronous I/O async_class methods
clear_queue() 1927
get_error_operation_id() 1926
get_last_error() 1926
get_last_operation_id() 1925
get_status() 1926
resume_queue() 1927
stop_queue() 1927
wait() 1925

Asynchronous I/O Extensions
introduction 1909
library 1910
template class 1924

Asynchronous I/O library functions
aio_cancel() 1919

aio_read() (continued)
aio_error() 1916
aio_fsync() 1918
aio_read() 1910
aio_return() 1917
aio_suspend() 1915
aio_write() 1911
errno macro 1923
Error Handling 1923

examples
aio_cancel() 1919
aio_error() 1917

aio_read()
aio_write() 1912

aio_return 1917
aio_suspend() 1915
aio_write() 1912
lio_listio() 1922

lio_listio() 1921
Asynchronous I/O template class

async_class 1924
thread_control 1924

attribute
align 640
align_value 641
aligned 640
avoid_false_share 641
code_align 642
concurrency_safe 643
const 643
cpu_dispatch 644
cpu_specific 644
mpx 646
target 646
vector 647
vector_variant 648

auto parallelism
option setting guidance for 194

auto-parallelism
option setting guidance for 186

auto-parallelization
enabling 2114
environment variables 2114
guidelines 2115
overview 2110
programming with 2115

Auto-parallelization
language support 2119

auto-parallelizer
option enabling generation of multithreaded code 283
option setting threshold for loops 282

auto-vectorization
option setting guidance for 186, 195

auto-vectorization hints 2162
auto-vectorization of innermost loops 635
auto-vectorizer

AVX 2121
SSE 2121
SSE2 2121
SSE3 2121
SSSE3 2121
using 2126

automatically-aligned dynamic allocation 2277
avoid

inefficient data types 635
mixed arithmetic expressions 635

avoid_false_share
attribute 641

Index

2349

AVX
arithmetic operations 1498
bitwise logical operations 1506
blend and conditional merge operations 1510
compare operations 1512
conversion operations 1514
load operations 1520
minimum and maximum operations 1519
miscellaneous operations 1531
overview 1494, 1495
packed test operations 1544
permute operations 1550
shuffle operations 1554
store operations 1520
unpack and interleave operations 1555
vector generation operations 1562
vector typecasting operations 1557

AVX2
arithmetic operations 1407
arithmetic shift operations 1418
bit manipulation operations 1467
bitwise logical operations 1421
blend operations 1420
broadcast operations 1423
compare operations 1426
fused multiply-add (FMA) operations 1430
GATHER operations 1442
insert and extract operations 1463
load and store operations 1465
logical shift operations 1457
miscellaneous operations 1466
pack and unpack operations 1472
packed move operations 1474
permute operations 1476
shuffle operations 1480

B
base platform toolset 59
bit fields and signs 2328
block_loop 1975
building targets

for macOS* 76

C
C++0x

option enabling support of 443
C++11

option enabling support of 443
c99

option enabling support of 443
calling conventions 80
capturing IPO output 2216
changing number of threads

summary table of 2062
checking

floating-point stacks 635
stacks 635

Checking floating-point stack state 635
Clang compiler

option specifying name of 543
Clang++ compiler

option specifying the name of 544
Class Libraries

C++ classes and SIMD operations 1857
capabilities of C++ SIMD classes 1860

debug operators (continued)
conventions 1862

floating-point vector classes
arithmetic operators 1885
cacheability support operators 1898
compare operators 1891
conditional select operators 1895
constructors and initialization 1884
conversions 1883
data alignment 1883
debug operators 1898
load operators 1899
logical operators 1890
minimum and maximum operators 1889
move mask operators 1900
notation conventions 1883
overview 1882
store operators 1899
unpack operators 1899
integer vector classes

addition operators
subtraction operators 1867

assignment operator 1865
clear MMX(TM) state operators 1880
comparison operators 1871
conditional select operators 1872
conversions between fvec and ivec 1881

debug operators
element access operator 1874
element assignment operators 1874

functions for SSE 1880
ivec classes 1861
logical operators 1865
multiplication operators 1868
pack operators 1880
rules for operators 1863
shift operators 1869
unpack operators 1876

Quick reference 1900
syntax 1862
terms 1862

Classes
programming example 1906

code
methods to optimize size of 2234
mixing managed and unmanaged 2328
option generating feature-specific 124, 141
option generating feature-specific for Windows*
OS 122
option generating for specified CPU 144
option generating specialized 166
option generating specialized and optimized 162

Code Coverage
in Microsoft Visual Studio* 63

Code Coverage dialog box 73
code coverage tool

color scheme 2294
dynamic counters in 2294
exporting data 2294
pgopti.dpi file 2294
pgopti.spi file 2294
syntax of 2294

code layout 2218
code size

methods to optimize 2234
option affecting inlining 2234
option disabling expansion of certain functions 2234
option disabling expansion of functions 2234

Intel® C++ Compiler Classic Developer Guide and Reference

2350

code size (continued)
option disabling loop unrolling 2234
option dynamically linking libraries 2234
option excluding data 2234
option for certain exception handling 2234
option passing arguments in registers 2234
option stripping symbols 2234
option to avoid 16-byte alignment (Linux only) 2234
option to avoid library references 2234
using IPO 2234

code_align
attribute 642

codecov tool
option producing an instrumented file for 255
option specifying a directory for profiling output for 254
option specifying a file name for summary files for 254

comdat sections
option placing data items into separate 131
option placing functions into separate 132

command line 44
command-line window

setting up 44
compatibility

with Microsoft Visual Studio 2328
compilation phases 2014
compilation units

option to prevent linking as shareable object 471
compiler

compilation phases 2014
overview 36

compiler command-line options
option recording 371

compiler differences
between Intel® C++ and Microsoft Visual C++ 2328

compiler directives
for vectorization 2121, 2140

compiler information
saving in your executable 2046

compiler installation
option specifying root directory for 422

compiler operation
input files 44
invoking from the command line 42

compiler option mapping tool 2322
compiler options

alphabetical list of 84
alternate 617
command-line syntax 46
deprecated and removed 608
for optimization 2334, 2339
for portability 618
for visibility 2044
gcc-compatible warning 618
general rules for 105
how to display informational lists 617
linker-related 2037
option categories 46
option mapping to equivalents 372
option saving in executable or object file 601
overview of descriptions of 106
using 46

compiler reports
requesting with xi* tools 2221

compiler selection
in Visual Studio* 59

compiler setup
compilers

using multiple versions 52

compilervars environment script 42
compilervars.bat 2334
compiling

compiling considerations 2334
gcc* code with Intel® C++ Compiler 2339

compiling considerations 2334
compiling large programs 2218
compiling with IPO 2216
complex operations

option enabling algebraic expansion of 180
concurrency_safe

attribute 643
conditional check

option performing in a vectorized loop 230
conditional parallel region execution

inline expansion 2222
configuration files 2042
console

option displaying information to 607
const

attribute 643
control-flow enforcement technology protection

option enabling 130
conventions

in the documentation 37
converting to Intel® C++ Compiler project system 2328
coprocessorThread allocation on processor 2060
correct usage of countable loop 2136
COS

correct usage of 2136
counters for dynamic profile 2208, 2211
CPU

option generating code for specified 144
CPU dispatch 2230
cpu feature targeting 2232
CPU time

DPI lists 2307
for inline function expansion 2222

cpu_dispatch
attribute 644

cpu_specific
attribute 644

cpuid 2230
create libraries using IPO 2220
creating

projects 57

D
data alignment optimizations

option disabling dynamic 205
data format

partitioning 2115
prefetching 2213
type 2121, 2140

data ordering optimization 2317
data transformation

option setting guidance for 186, 188
data types

efficiency 635
dataflow analysis 2110
DAZ flag 634
debug information

in program database file 356
option generating full 389
option generating in DWARF 2 format 369
option generating in DWARF 3 format 369
option generating in DWARF 4 format 369

Index

2351

debug information (continued)
option generating levels of 367

debugging
option affecting information generated 348, 351
option specifying settings to enhance 348, 351

denormal exceptions 635
denormal numbers 633
denormal results

option flushing to zero 324
denormalized numbers (IEEE)

NaN values 638
denormals 633
deploying applications 1792
deprecated compiler options 608
diagnostic messages

option affecting which are issued 497
option controlling auto-parallelizer 497
option controlling display of 497
option controlling OpenMP 497
option controlling vectorizer 497
option enabling or disabling 497
option issuing only once 506
option sending to file 503

dialog boxes
Code Coverage 73
Code Coverage Settings 74
Configure Analysis 70
Intel® Performance Libraries 67
Options: Code Coverage 73
Options: Compilers 67
Options: Converter) 68
Options: Intel® Performance Libraries 67
Options: Profile Guided Optimization 70
PGO dialog box 71
Profile Guided Optimization dialog box 71
Use Intel C++ 67

difference operators 2109
differential coverage 2294
directory

option adding to start of include path 408
option specifying for executables 393
option specifying for includes and libraries 393

disabling
inlining 2222

distribute_point 1977
distributing applications 1792
dllimport functions

option controlling inlining of 346
DO constructs 2136
documentation

conventions for 37
driver tool commands

option specifying to show and execute 583
option specifying to show but not execute 588

dsymutil 2046
dual core thread affinity 2084
dumping profile information 2209, 2210
DWARF debug information

option creating object file containing 371
DYLD_LIBRARY_PATH 1790
dyn files 2204, 2209, 2211
dynamic information

dumping profile information 2209
files 2204
resetting profile counters 2208, 2211
threads 2067, 2102

dynamic libraries
option invoking tool to generate 561

dynamic linker
option specifying an alternate 561

dynamic shared object
option producing a 575

dynamic-link libraries (DLLs)
option searching for unresolved references in 568

dynamic-linking of libraries
option enabling 556

E
ebp register

option determining use in optimizations 133
Eclipse*

cheat sheets 52
global symbols 2044

integration
adding the compiler 51
cheat sheets 52
global symbols 2044
multi-version compiler support 52
visibility declaration attribute 2044

integration overview 51
projects
multi-version compiler support 52

using Intel® Performance Libraries 56
Eclipse* integration 51
efficiency 635
efficient

inlining 2222, 2227
efficient data types 635
EMMS Instruction

about 1682
using 1683

endian data
and OpenMP* extension routines 2075
auto-parallelization 2114
dumping profile information 2209
for auto-parallelization 2114
loop constructs 2136
PROF_DUMP_INTERVAL 2210
routines overriding 2067, 2102
using OpenMP* 2109
using profile-guided optimization 2204

enhanced debugging information
option generating 391

Enter index keyword 681, 683, 687–697, 699–701, 1971
enums 2328
environment variables

LD_LIBRARY_PATH 1791
Linux* 2015
macOS* 2015
run-time 2015, 2232
setting 44
setting with setvars file 40
Windows* 2015

examples
aio_cancel() 1919
aio_error() 1917
aio_return() 1917
aio_suspend() 1915
lio_listio() 1922

exception handling
option generating table of 131

exceptions
option allowing trapping instructions to throw 506

exclude code
code coverage tool 2294

Intel® C++ Compiler Classic Developer Guide and Reference

2352

execution environment routines 2067, 2102
execution flow 2115
execution mode 2075
explicit vector programming

array notations 2140
elemental functions 2140
smid 2140

extended control registers
managing 672
reading 673
writing 673

extended processor states
managing 672

F
feature requirements 34
feature-specific code

option generating 124
option generating and optimizing 162

fixed_offset 1840
float-to-integer conversion

option enabling fast 332
float64 vector intrinsics

Intel® Streaming SIMD Extensions 3 1583, 1585, 1587
floating-point array operation 635
Floating-point array: Handling 635
floating-point calculations

option controlling semantics of 313
option enabling consistent results 313

Floating-point environment
-fp-model compiler option 633
/fp compiler option 633
pragma fenv_access 633

floating-point exceptions
denormal exceptions 635

Floating-point numbers
formats for 638
special values 638

floating-point operations
option controlling semantics of 313
option rounding results of 317

Floating-point Operations
programming tradeoffs 626

Floating-point Optimizations
-fp-model compiler option 628
/fp compiler option 628

floating-point precision
option controlling for significand 327
option improving for divides 328
option improving for square root 329
option improving general 326

floating-point stack
option checking 320

Floating-point stack 638
floating-point stacks

checking 635
FMA instructions

option enabling 312
forceinline 1978
format function security problems

option issuing warning for 522
FP comparison operations

_mm512[_mask]_cmp_round_pd_mask 1245
_mm[_mask]_cmp_sd_mask 1245
_mm_comi_round_sd 1245
_mm_comi_round_ss 1245

frame pointer

frame pointer (continued)
option affecting leaf functions 152

FTZ flag 634
Function annotations

__declspec(align) 2162
__declspec(vector) 2162

function entry and exit points
option determining instrumentation of 234

function expansion 2222
function grouping

option enabling or disabling 241
function grouping optimization 2317
function multiversioning 2230
function order list 2322
function order lists 2317
function ordering optimization 2317
function pointers

SIMD-enabled 2155
function preemption 2222
function profiling

option compiling and linking for 237
function splitting

option enabling or disabling 235
functions

global 2328
option aligning on byte boundary 465
scope of 2328

fused multiply-add instructions
option enabling 312

G
g++ compiler

option specifying name of 551
g++* language extensions 2326
gather and scatter type vector memory references

option enabling optimization for 212
gcc C++ run-time libraries

include file path 405
option adding a directory to second 405
option removing standard directories from 421
option specifying to link to 559

gcc compiler
option specifying name of 548

gcc-compatible warning options 618
gcc* compatibility 2326
gcc* considerations 2339
gcc* interoperability 2326
gcc* language extensions 2326
general compiler directives

for auto-parallelization 2115
for inlining functions 2222
for profile-guided optimization 2202
for vectorization 2121
profiling information 2207

global function symbols
option binding references to shared library
definitions 559

global symbols
option binding references to shared library
definitions 558

GNU C++ compatibility 2326
gnu utilities

option letting you add a prefix to names of 549
guided auto parallelism

messages overview 2168
options 2166
overview 2164

Index

2353

guided auto parallelism (continued)
using 2166

Guided Auto Parallelism 62
guided auto-parallelism

option appending output to a file 190
option sending output to file 189

guided auto-parallelism messages
diagnostic id 30506 2169
diagnostic id 30513 2170
diagnostic id 30515 2170
diagnostic id 30519 2171
diagnostic id 30521 2172
diagnostic id 30522 2173
diagnostic id 30523 2174
diagnostic id 30525 2175
diagnostic id 30526 2176
diagnostic id 30528 2177
diagnostic id 30531 2178
diagnostic id 30532 2179
diagnostic id 30533 2181
diagnostic id 30534 2182
diagnostic id 30535 2183
diagnostic id 30536 2183
diagnostic id 30537 2184
diagnostic id 30538 2186
diagnostic id 30753 2188
diagnostic id 30754 (Linux* only) 2191
diagnostic id 30755 2193
diagnostic id 30756 2194
diagnostic id 30757 2196
diagnostic id 30758 2198
diagnostic id 30759 2199
diagnostic id 30760 2200

H
half-float conversion 1697
hardware lock elision 1482, 1490
help

using in Microsoft Visual Studio* 35
high performance programming

applications for 2213
high-level optimizer 2213
HLO 2213
hot patching

option preparing a routine for 140
hotness threshold

option setting 245

I
IA-32 architecture based applications

HLO 2213
ICV 2107
IEEE

Floating-point values 638
IEEE Standard for Floating-point Arithmetic, IEEE
754-2008 638
include files 49
inline 1978
inline function expansion

option specifying level of 339
inlining

compiler directed 2222
developer directed 2222
option disabling full and partial 171
option disabling partial 172

inlining (continued)
option forcing 338
option specifying lower limit for large routines 342
option specifying maximum size of function for 335
option specifying maximum times for a routine 341
option specifying maximum times for compilation
unit 340
option specifying total size routine can grow 343
option specifying upper limit for small routine 345
preemption 2222

inlining options
option specifying percentage multiplier for 337

inlining report 2227
input files 44
instrumentation

compilation 2204
execution 2204
feedback compilation 2204
program 2202

instrumented binaries
.spi file 2294

instrumented binaries application
.spi file 2307

integer comparison operations 1255
integer vector intrinsics

Intel® Streaming SIMD Extensions 3 1583, 1585, 1587
integrating Intel® C++ with Microsoft Visual Studio 2328
intel omp task 1980
intel omp taskq 1981
Intel-provided libraries

option linking dynamically 576
option linking statically 579

Intel's C++ asynchronous I/O template class
Usage Example 1928

Intel's Memory Allocator Library 1794
Intel's Numeric String Conversion Library

libistrconv 1954, 1956
Intel(R) 64 architecture based applications

HLO 2213
Intel(R) IPP libraries

option letting you choose the library to link to 195
option letting you link to 198

Intel(R) libraries
option disabling linking to 571

Intel(R) linking tools 2213
Intel(R) MKL

option letting you link to libraries 199
Intel(R) TBB libraries

option letting you link to 222
Intel® AVX Intrinsic

_mm256_stream_si256 (VMOVNTDQ) 1529
Intel® AVX-512

comparison operations 1255
reduction operations 1374

Intel® C++
command-line environment 44

Intel® C++ Class Libraries
overview 1856

Intel® C++ Compiler command prompt window 44
Intel® C++ Compiler extension routines 2075
Intel® extension environment variables 2015, 2232
Intel® Hyper-Threading Technology

parallel loops 2116
thread pools 2116

Intel® IEEE 754-2008 Binary Floating-Point Conformance
Library
formatOf general-computational operations
add 1938

Intel® C++ Compiler Classic Developer Guide and Reference

2354

signaling-computational operations (continued)
formatOf general-computational operations (continued)
binary32_to_binary64 1938
binary64_to_binary32 1938
div 1938
fma 1938
from_hexstring 1938
from_int32 1938
from_int64 1938
from_string 1938
from_uint32 1938
from_uint64 1938
mul 1938
sqrt 1938
sub 1938
to_hexstring 1938
to_int32_ceil 1938
to_int32_floor 1938
to_int32_int 1938
to_int32_rnint 1938
to_int32_rninta 1938
to_int32_xceil 1938
to_int32_xfloor 1938
to_int32_xint 1938
to_int32_xrnint 1938
to_int32_xrninta 1938
to_int64_ceil 1938
to_int64_floor 1938
to_int64_int 1938
to_int64_rnint 1938
to_int64_rninta 1938
to_int64_xceil 1938
to_int64_xfloor 1938
to_int64_xint 1938
to_int64_xrnint 1938
to_int64_xrninta 1938
to_string 1938
to_uint32_ceil 1938
to_uint32_floor 1938
to_uint32_int 1938
to_uint32_rnint 1938
to_uint32_rninta 1938
to_uint32_xceil 1938
to_uint32_xfloor 1938
to_uint32_xint 1938
to_uint32_xrnint 1938
to_uint32_xrninta 1938
to_uint64_ceil 1938
to_uint64_floor 1938
to_uint64_int 1938
to_uint64_rnint 1938
to_uint64_rninta 1938
to_uint64_xceil 1938
to_uint64_xfloor 1938
to_uint64_xint 1938
to_uint64_xrnint 1938
to_uint64_xrninta 1938
homogeneous general-computational operations
ilogb 1935
maxnum 1935
maxnum_mag 1935
minnum 1935
minnum_mag 1935
next_down 1935
next_up 1935
rem 1935
round_integral_exact 1935
round_integral_nearest_away 1935

signaling-computational operations (continued)
homogeneous general-computational operations (continued)
round_integral_nearest_even 1935
round_integral_negative 1935
round_integral_positive 1935
round_integral_zero 1935
scalbn 1935
non-computational operations
class 1949
defaultMode 1949
getBinaryRoundingDirection 1949
is754version1985 1949
is754version2008 1949
isCanonical 1949
isFinite 1949
isInfinite 1949
isNaN 1949
isNormal 1949
isSignaling 1949
isSignMinus 1949
isSubnormal 1949
isZero 1949
lowerFlags 1949
radix 1949
raiseFlags 1949
restoreFlags 1949
restoreModes 1949
saveFlags 1949
setBinaryRoundingDirectionsaveModes 1949
testFlags 1949
testSavedFlags 1949
totalOrder 1949
totalOrderMag 1949

nonhomogeneous general-computational
operations 1932

quiet-computational operations
copy 1943
copysign 1943
negate 1943
signaling-computational operations
quiet_equal 1945
quiet_greater 1945
quiet_greater_equal 1945
quiet_greater_unordered 1945
quiet_less 1945
quiet_less_equal 1945
quiet_less_unordered 1945
quiet_not_equal 1945
quiet_not_greater 1945
quiet_not_less 1945
quiet_ordered 1945
quiet_unordered 1945
signaling_equal 1945
signaling_greater 1945
signaling_greater_equal 1945
signaling_greater_unordered 1945
signaling_less 1945
signaling_less_ unordered 1945
signaling_less_equal 1945
signaling_not_equal 1945
signaling_not_greater 1945
signaling_not_less 1945

using the library 1929
Intel® Integrated Performance Primitives 60
Intel® Math Kernel Library 60
Intel® Math Library

C99 macros
fpclassify 2277

Index

2355

C99 macros (continued)
C99 macros (continued)
isfinite 2277
isgreater 2277
isgreaterequal 2277
isinf 2277
isless 2277
islessequal 2277
islessgreater 2277
isnan 2277
isnormal 2277
isunordered 2277
signbit 2277

Intel® Performance Libraries
Intel® Integrated Performance Primitives (Intel® IPP) 60
Intel® Math Kernel Library (Intel® MKL) 60
Intel® Threading Building Blocks (Intel® TBB) 60

Intel® SSE4 intrinsics
application targeted accelerator intrinsics 1566
intrinsics 1568

Intel® Streaming SIMD Extensions
cacheability support operations 1671
compare operations 1652
conversion operations 1661
data types 1645
integer operations 1672
load operations 1666
logical operations 1651

macro functions
matrix transposition 1680
shuffle function 1678

miscellaneous operations 1676
overview 1645
programming with Intel® SSE intrinsics 1647
registers 1645
set operations 1667
store operations 1669

Intel® Streaming SIMD Extensions (Intel® SSE) 2121
Intel® Streaming SIMD Extensions 2

cacheability support intrinsics 1635
casting support intrinsics 1642
FP arithmetic intrinsics 1588
FP compare intrinsics 1592
FP conversion intrinsics 1601
FP load intrinsics 1604
FP logical intrinsics 1591
FP set intrinsics 1606
FP store intrinsics 1608
integer arithmetic intrinsics 1610
integer compare intrinsics 1623
integer conversion intrinsics 1625
integer load intrinsics 1628
integer logical intrinsics 1617
integer move intrinsics 1627
integer set intrinsics 1629
integer shift intrinsics 1619
integer store intrinsics 1633
macro functions 1587
miscellaneous intrinsics 1637
overview 1586
pause intrinsic 1643
shuffle macro 1644

Intel® Streaming SIMD Extensions 3
macro functions 1587
overview 1583

Intel® Streaming SIMD Extensions 4
application targeted accelerator intrinsics 1566
cacheability support intrinsic 1574

Intel® Streaming SIMD Extensions 4 (continued)
floating-point rounding intrinsics 1570
FP dot product intrinsics 1568
packed blending intrinsics 1567
packed compare for equal intrinsic 1574
packed compare intrinsics 1563
packed DWORD to unsigned WORD intrinsic 1573
packed format conversion intrinsics 1568
packed integer min/max intrinsics 1569
register insertion/extraction intrinsics 1571
test intrinsics 1571, 1572

Intel® Streaming SIMD Extensions4
overview 1563

Intel® Threading Building Blocks 60
intermediate files

option saving during compilation 599
intermediate representation (IR) 2213, 2216
internal compiler limits

option overriding certain 221
interoperability

with g++* 2326
with gcc* 2326

interprocedural optimizations
capturing intermediate output 2216
code layout 2218
compilation 2213
compiling 2216
considerations 2218
creating libraries 2220
initiating 2210
issues 2218
large programs 2218
linking 2213, 2216
option enabling additional 170
option enabling between files 173
option enabling for single file compilation 334
overview 2213
performance 2218
using 2216
whole program analysis 2213
xiar 2220
xild 2220
xilibtool 2220

intrinsics
3rd Generation Intel® Core™ Processor Instruction

Extensions
_rdrand16_step() 1401
_rdrand32_step() 1401
_rdrand64_step() 1401

base registers
_readfsbase_u32() 1404
_readfsbase_u64() 1404
_readgsbase_u32() 1405
_readgsbase_u64() 1405
_writefsbase_u32() 1405
_writefsbase_u64() 1405
_writegsbase_u32() 1405
_writegsbase_u64() 1405
half-float

conversion
_mm_cvtph_ps() 1398, 1399
_mm_cvtps_ph() 1400
_mm_cvtps_ph()) 1398
_mm256_cvtph_ps() 1398, 1399
_mm256_cvtps_ph() 1398, 1400

overview 1398
random number generation (RDRAND) 1400

Intel® C++ Compiler Classic Developer Guide and Reference

2356

trigonometric functions (continued)
4th Generation Intel® Core™ Processor Instruction

Extensions
_addcarry_u32() 1402
_addcarry_u64() 1402
_addcarryx_u32() 1403
_addcarryx_u64() 1403
_subborrow_u32() 1404
_subborrow_u64() 1404
Multi-Precision Arithmetic 1402
overview 1398
random number generation (RDSEED) 1400

about 650
Advanced Encryption Standard (AES)

Implementation
_mm_aesdec_si128 1696
_mm_aesdeclast_si128 1696
_mm_aesenc_si128 1696
_mm_aesenclast_si128 1696
_mm_aesimc_si128 1696
_mm_aeskeygenassist_si128 1696
overview 1695
All Intel Architectures
string and block copy operations 658
All Intel® Architectures
floating point operations 656
integer arithmetic operations 655

miscellaneous operations
_BitScanForward 659
_BitScanReverse 659
_bittest 659
_bittestandreset 659
_bittestandset 659
-bittestandcomplement 659

overview 655
carry-less multiplication instruction
_mm_clmulepi64_si128 1696

data alignment 667
data types 650

extended processor states
restoring 674
saving 674
for managing extended processor states and

registers
_fxrstor() 677
_fxrstor64() 677
_fxsave() 676
_fxsave64() 677
_xgetbv() 673
_xrstor() 679
_xrstor64() 680
_xrstors() 679
_xrstors64() 680
_xsave() 678
_xsave64() 678
_xsavec() 678
_xsavec64() 678
_xsaveopt() 679
_xsaveopt64() 679
_xsaves() 678
_xsaves64() 678
_xsetbv() 674
restoring extended processor states 674
saving extended processor states 674
half-float conversion
_cvtsh_ss 1698
_cvtss_sh 1698
_mm_cvtph_ps 1698

trigonometric functions (continued)
half-float conversion (continued)
_mm_cvtps_ph 1698
overview 1697

inline assembly 667, 668
Intel® Advanced Vector Extensions 2 (Intel®

AVX2)
overview 1406
Intel® AVX

arithmetic intrinsics
_mm256_addsub_pd (VADDSUBPD) 1499
_mm256_addsub_ps (VADDSUBPS) 1500
_mm256_div_pd (VDIVPD) 1503
_mm256_div_ps (VDIVPS) 1504
_mm256_dp_ps (VDPPS) 1504
_mm256_hadd_pd (VHADDPD) 1500
_mm256_hadd_ps 1500
_mm256_hsub_pd (VHSUBPD) 1502
_mm256_hsub_ps (VHSUBPS) 1502
_mm256_mul_pd (VMULPD) 1503
_mm256_mul_ps (VMULPS) 1503
_mm256_rcp_pd (VRCPPS) 1506
_mm256_rsqrt_ps (VRSQRTPS) 1506
_mm256_sqrt_pd (VSQRTPD) 1505
_mm256_sqrt_ps (VSQRTPS) 1505
arithmetic operations
_mm256_add_pd (VADDPD) 1498
_mm256_add_ps (VADDPS) 1499
_mm256_sub_pd (VSUBPD) 1501
_mm256_sub_ps (VSUBPS) 1501

bitwise logical operations 1506
bitwise operations
__mm256_and_pd (VANDPD) 1506
_mm256_and_ps (VANDPS) 1507
_mm256_andnot_pd (VANDNPD) 1507
_mm256_andnot_ps (VANDNPS) 1508
_mm256_or_pd (VORPD) 1508
_mm256_or_ps (VORPS) 1508
_mm256_xor_pd (VXORPD) 1509
_mm256_xor_ps (VXORPS) 1509
blend and conditional merge operations
_mm256_blend_pd (VBLENDPD) 1510
_mm256_blend_ps (VBLENDPS) 1510
_mm256_blendv_pd (VBLENDVPD) 1511
_mm256_blendv_ps (VBLENDVPS) 1511
compare operations
_m256_cmp_pd (VCMPPD) 1512
_mm_cmp_pd (VCMPPD) 1512
_mm_cmp_ps (VCMPPS) 1513
_mm_cmp_sd (VCMPSD) 1513
_mm_cmp_ss (VCMPSS) 1514
_mm256_cmp_ps (VCMPPS) 1513
conversion operations
_mm256_cvtepi32_pd (VCVTDQ2PD) 1515
_mm256_cvtepi32_ps (VCVTDQ2PS) 1515
_mm256_cvtpd_epi32 (VCVTPD2DQ) 1515
_mm256_cvtpd_ps (VCVTPD2PS) 1516
_mm256_cvtps_epi32 (VCVTPS2DQ) 1516
_mm256_cvtps_pd (VCVTPS2PD) 1516
_mm256_cvtsd_f64 (vmovsd) 1518
_mm256_cvtss_f32 (vmovss) 1518
_mm256_cvttpd_epi32 (VCVTTPD2DQ) 1517
_mm256_cvttps_epi32 (VCVTTPS2DQ) 1517,
1518
load operations
_mm_broadcast_ss (VBROADCASTSS) 1522
_mm_maskload_pd (VMASKMOVPD) 1525
_mm_maskload_ps (VMASKMOVPS) 1525

Index

2357

trigonometric functions (continued)
vector typecasting operations (continued)

load operations (continued)
_mm_maskstore_pd (VMASKMOVPD) 1530
_mm_maskstore_ps (VMASKMOVPS) 1530
_mm256_add_ps (VMASKMOVPS) 1525
_mm256_broadcast_pd
(VBROADCASTF128) 1520
_mm256_broadcast_ps
(VBROADCASTF128) 1521
_mm256_broadcast_sd
(VBROADCASTSD) 1521
_mm256_broadcast_ss
(VBROADCASTSS) 1522
_mm256_load_pd (VMOVAPD) 1522
_mm256_load_ps (VMOVAPS) 1523
_mm256_load_si256 (VMOVDQA) 1523
_mm256_loadu_pd (VMOVUPD) 1523
_mm256_loadu_ps (VMOVUPS) 1524
_mm256_loadu_si256 (VMOVDQU) 1524
_mm256_maskload_pd (VMASKMOVPD) 1525
_mm256_maskstore_pd (VMASKMOVPD) 1530
_mm256_maskstore_ps (VMASKMOVPS) 1530
_mm256_store_pd (VMOVAPD) 1526
_mm256_store_ps (VMOVAPS) 1526
_mm256_store_si256 (VMOVDQA) 1527
_mm256_storeu_pd (VMOVUPD) 1527
_mm256_storeu_ps (VMOVUPS) 1527
_mm256_storeu_si256 (VMOVDQU) 1528
_mm256_stream_pd (VMOVNTPD) 1528
_mm256_stream_ps (VMOVNTPS) 1529

minimum and maximum operations 1519
miscellaneous operations
_mm256_extractf128_pd
(VEXTRACTF128) 1531
_mm256_extractf128_ps
(VEXTRACTF128) 1532
_mm256_extractf128_si256
(VEXTRACTF128) 1532
_mm256_insertf128_pd (VINSERTF128) 1532
_mm256_insertf128_ps (VINSERTF128) 1533
_mm256_insertf128_si256
(VINSERTF128) 1533
_mm256_lddqu_si256 (VLDDQU) 1534
_mm256_movedup_pd (VMOVDDUP) 1534
_mm256_movehdup_ps (VMOVSHDUP) 1535
_mm256_moveldup_ps (VMOVSLDUP) 1535
_mm256_movemask_pd (VMOVMSKPD) 1535
_mm256_movemask_ps (VMOVMSKPS) 1536
_mm256_round_pd (VROUNDPD) 1536
_mm256_round_ps (VROUNDPS) 1537
_mm256_set_epi16 1539
_mm256_set_epi32 1539
_mm256_set_epi64x 1539
_mm256_set_epi8 1539
_mm256_set_pd 1538
_mm256_set_ps 1538
_mm256_set1_epi16 1541
_mm256_set1_epi32 1541
_mm256_set1_epi64x 1541
_mm256_set1_epi8 1541
_mm256_set1_pd 1541
_mm256_set1_ps 1541
_mm256_setr_epi16 1540
_mm256_setr_epi32 1540
_mm256_setr_epi64x 1540
_mm256_setr_epi8 1540
_mm256_setr_pd 1539

trigonometric functions (continued)
vector typecasting operations (continued)

miscellaneous operations (continued)
_mm256_setr_ps 1540
_mm256_setzero_pd 1542
_mm256_setzero_ps 1542
_mm256_setzero_si256 1543
_mm256_zeroall (VZEROALL) 1543
_mm256_zeroupper (VZEROUPPER) 1543
operations returning vectors of undefined

values
_mm256_undefined_pd() 1562
_mm256_undefined_ps() 1562
_mm256_undefined_si128 1563
operations to determine maximum value
_mm256_max_pd (VMAXPD) 1519
_mm256_max_ps (VMAXPS) 1519
operations to determine minimum value
_mm256_min_pd (VMINPD) 1520
_mm256_min_ps (VMINPS) 1520

overview 1494, 1495
packed test operations
_mm_testc_pd (VTESTPD) 1547
_mm_testc_ps (VTESTPS) 1547
_mm_testnzc_pd (VTESTPD) 1548
_mm_testnzc_ps (VTESTPS) 1549
_mm_testz_pd (VTESTPD) 1545
_mm_testz_ps (VTESTPS) 1546
_mm256_testc_pd (VTESTPD) 1547
_mm256_testc_ps (VTESTPS) 1547
_mm256_testc_si256 (VPTEST) 1544
_mm256_testnzc_pd (VTESTPD) 1548
_mm256_testnzc_ps (VTESTPS) 1549
_mm256_testnzc_si256 (VPTEST) 1545
_mm256_testz_pd (VTESTPD) 1545
_mm256_testz_ps (VTESTPS) 1546
_mm256_testz_si256 (VPTEST) 1544
permute operations
_mm_permute_pd (VPERMILPD) 1550
_mm_permute_ps (VPERMILPS) 1551
_mm_permutevar_pd (VPERMILPD) 1551
_mm_permutevar_ps (VPERMILPS) 1552
_mm256_permute_pd (VPERMILPD) 1550
_mm256_permute_ps (VPERMILPS) 1551
_mm256_permute2f128_pd
(VPERM2F128) 1552
_mm256_permute2f128_ps
(VPERM2F128) 1553
_mm256_permute2f128_si256
(VPERM2F128) 1553
_mm256_permutevar_pd (VPERMILPD) 1551
_mm256_permutevar_ps (VPERMILPS) 1552
shuffle operations
_mm256_shuffle_pd (VSHUFPD) 1554
_mm256_shuffle_ps (VSHUFPS) 1554
unpack and interleave operations
_mm256_unpackhi_pd (VUNPCKHPD) 1555
_mm256_unpackhi_ps (VUNPCKHPS) 1555
_mm256_unpacklo_pd (VUNPCKLPD) 1556
_mm256_unpacklo_ps (VUNPCKLPS) 1556

vector generation operations 1562
vector typecasting operations
_mm256_castpd_ps 1557
_mm256_castpd_si256 1558
_mm256_castpd128_pd256 1559
_mm256_castpd256_pd128 1560
_mm256_castps_pd 1557
_mm256_castps_si256 1558

Intel® C++ Compiler Classic Developer Guide and Reference

2358

trigonometric functions (continued)
vector typecasting operations (continued)

vector typecasting operations (continued)
_mm256_castps128_ps256 1560
_mm256_castps256_ps128 1561
_mm256_castsi128_si256 1561
_mm256_castsi256_pd 1558
_mm256_castsi256_ps 1559
_mm256_castsi256_si128 1561

Intel® AVX2
arithmetic operations
_mm256_abs_epi16 (VPABSW) 1407
_mm256_abs_epi32 (VPABSD) 1407
_mm256_abs_epi8 (VPABSB) 1407
_mm256_add_epi16 (VPADDW) 1407
_mm256_add_epi32 (VPADDD) 1407
_mm256_add_epi64 (VPADDQ) 1407
_mm256_add_epi8 (VPADDB) 1407
_mm256_adds_epi16 (VPADDSW) 1408
_mm256_adds_epi8 (VPADDSB) 1408
_mm256_adds_epu16 (VPADDUSW) 1408
_mm256_adds_epu8 (VPADDUSB) 1408
_mm256_avg_epu16 (VPAVGW) 1410
_mm256_avg_epu8 (VPAVGB) 1410
_mm256_hadd_epi16 (VPHADDW) 1411
_mm256_hadd_epi32 (VPHADDD) 1411
_mm256_hadds_epi16 (VPHADDSW) 1411
_mm256_hsub_epi16 (VPHSUBW) 1412
_mm256_hsub_epi32 (VPHSUBD) 1412
_mm256_hsubs_epi16 (VPHSUBSW) 1412
_mm256_madd_epi16 (VPMADDW) 1413
_mm256_maddubs_epi16
(VPMADDUBSW) 1413
_mm256_mpsadbw_epu8 (VMPSADBW) 1417
_mm256_mul_epi32 (VPMULDQ) 1414
_mm256_mul_epu32 (VPMULUDQ) 1414
_mm256_mulhi_epi16 (VPMULHW) 1415
_mm256_mulhi_epu16 (VPMULHUW) 1415
_mm256_mulhrs_epi16 (VPMULHRSW) 1416
_mm256_mullo_epi16 (VPMULLW) 1415
_mm256_mullo_epi32 (VPMULLD) 1415
_mm256_sad_epu8 (VPSADBW) 1418
_mm256_sign_epi16 (VPSIGNW) 1416
_mm256_sign_epi32 (VPSIGND) 1416
_mm256_sign_epi8 (VPSIGNB) 1416
_mm256_sub_epi16 (VPSUBW) 1409
_mm256_sub_epi32 (VPSUBD) 1409
_mm256_sub_epi64 (VPSUBQ) 1409
_mm256_sub_epi8 (VPSUBB) 1409
_mm256_subs_epi16 (VPSUBSW) 1409
_mm256_subs_epi8 (VPSUBSB) 1409
_mm256_subs_epu16 (VPSUBUSW) 1410
_mm256_subs_epu8 (VPSUBUSB) 1410
arithmetic shift operations
_mm_srav_epi32 (VPSRAVD) 1420
_mm256_sra_epi16 (VPSRAW) 1418
_mm256_sra_epi32 (VPSRAD) 1418
_mm256_srai_epi16 (VPSRAW) 1419
_mm256_srai_epi32 (VPSRAD) 1419
_mm256_srav_epi32 (VPSRAVD) 1419
bit manipulation operations
_bextr_u32 (BEXTR) 1467
_bextr_u64 (BEXTR) 1467
_blsi_u32 (BLSI) 1468
_blsi_u64 (BLSI) 1468
_blsmsk_u32 (BLSMSK) 1468
_blsmsk_u64 (BLSMSK) 1468
_blsr_u64 (BLSR) 1469

trigonometric functions (continued)
shuffle operations (continued)

bit manipulation operations (continued)
_bslr_u32 (BLSR) 1469
_lzcnt_u32 (LZCNT) 1469, 1471
_lzcnt_u64 (LZCNT) 1469, 1471
_pdep_u32 (PDEP) 1470
_pdep_u64 (PDEP) 1470
_pext_u32 (PEXT) 1470
_pext_u64 (PEXT) 1470
_tzcnt_u32 (TZCNT) 1471
_tzcnt_u64 (TZCNT) 1471
bitwise logical operations
_mm256_and_si256 (VPAND) 1421
_mm256_andnot_si256 (VPANDN) 1422
_mm256_or_si256 (VPOR) 1422
_mm256_xor_si256 (VPXOR) 1423
blend operations
_mm_blend_epi32 1420
_mm256_blend_epi16 (VPBLENDW) 1420
_mm256_blend_epi32 (VPBLENDD) 1420
_mm256_blend_epi32 (VPBLENDVB) 1421
broadcast operations
_mm_broadcastb_epi8
(VPBROADCASTB) 1424
_mm_broadcastd_epi32
(VPBROADCASTD) 1425
_mm_broadcastq_epi64
(VPBROADCASTQ) 1426
_mm_broadcastsd_pd
(VBROADCASTSD) 1424
_mm_broadcastss_ps (VBROADCASTSS) 1423
_mm_broadcastw_epi16
(VPBROADCASTW) 1425
_mm256_broadcastb_epi8
(VPBROADCASTB) 1424
_mm256_broadcastd_epi32
(VPBROADCASTD) 1425
_mm256_broadcastq_epi64
(VPBROADCASTQ) 1426
_mm256_broadcastsd_pd
(VBROADCASTSD) 1424
_mm256_broadcastsi128_si256
(VBROADCASTI128) 1426
_mm256_broadcastsi128_si256
(VPERM2I128) 1426
_mm256_broadcastss_ps
(VBROADCASTSS) 1423
_mm256_broadcastw_epi16
(VPBROADCASTW) 1425
compare operations
_mm256_cmpeq_epi16 (VPCMPEQW) 1426
_mm256_cmpeq_epi32 (VPCMPEQD) 1426
_mm256_cmpeq_epi64 (VPCMPEQQ) 1426
_mm256_cmpeq_epi8 (VPCMPEQB) 1426
_mm256_cmpgt_epi16 (VPCMPGTW) 1427
_mm256_cmpgt_epi32 (VPCMPGTD) 1427
_mm256_cmpgt_epi64 (VPCMPGTQ) 1427
_mm256_cmpgt_epi8 (VPCMPGTB) 1427
_mm256_max_epi16 (VPMAXSW) 1428
_mm256_max_epi32 (VPMAXSD) 1428
_mm256_max_epi8 (VPMAXSB) 1428
_mm256_max_epu16 (VPMAXUW) 1428
_mm256_max_epu32 (VPMAXUD) 1428
_mm256_max_epu8 (VPMAXUB) 1428
_mm256_min_epi16 (VPMINSW) 1429
_mm256_min_epi32 (VPMINSD) 1429
_mm256_min_epi8 (VPMINSB) 1429

Index

2359

trigonometric functions (continued)
shuffle operations (continued)

compare operations (continued)
_mm256_min_epu16 (VPMINUW) 1429
_mm256_min_epu32 (VPMINUD) 1429
_mm256_min_epu8 (VPMINUB) 1429
fused multiply-add (FMA) operations
_mm_fmadd_pd (VFMADD###) 1430
_mm_fmadd_ps (VFMADD###) 1430
_mm_fmadd_sd (VFMADD###) 1431
_mm_fmadd_ss (VFMADD###) 1432
_mm_fmaddsub_pd (VFMADDSUB###) 1432
_mm_fmaddsub_ps (VFMADDSUB###) 1433
_mm_fmsub_pd (VFMSUB###) 1434
_mm_fmsub_ps (VFMSUB###) 1434
_mm_fmsub_sd (VFMSUB###) 1435
_mm_fmsub_ss (VFMSUB###) 1435
_mm_fmsubadd_pd (VFMSUBADD###) 1436
_mm_fmsubadd_ps (VFMSUBADD###) 1437
_mm_fnmadd_pd (VFNMADD###) 1437
_mm_fnmadd_ps (VFNMADD###) 1438
_mm_fnmadd_sd (VFNMADD###) 1439
_mm_fnmadd_ss (VFNMADD###) 1439
_mm_fnmsub_pd (VFNMSUB###) 1440
_mm_fnmsub_ps (VFNMSUB###) 1441
_mm_fnmsub_sd (VFNMSUB###) 1441
_mm_fnmsub_ss (VFNMSUB###) 1442
_mm256_fmadd_pd (VFMADD###) 1430
_mm256_fmadd_ps (VFMADD###) 1430
_mm256_fmadd_sd (VFMADD###) 1431
_mm256_fmadd_ss (VFMADD###) 1432
_mm256_fmaddsub_pd
(VFMADDSUB###) 1432
_mm256_fmaddsub_ps
(VFMADDSUB###) 1433
_mm256_fmsub_pd (VFMSUB###) 1434
_mm256_fmsub_ps (VFMSUB###) 1434
_mm256_fmsub_sd (VFMSUB###) 1435
_mm256_fmsub_ss (VFMSUB###) 1435
_mm256_fmsubadd_pd
(VFMSUBADD###) 1436
_mm256_fmsubadd_ps
(VFMSUBADD###) 1437
_mm256_fnmadd_pd (VFNMADD###) 1437
_mm256_fnmadd_ps (VFNMADD###) 1438
_mm256_fnmadd_sd (VFNMADD###) 1439
_mm256_fnmadd_ss (VFNMADD###) 1439
_mm256_fnmsub_pd (VFNMSUB###) 1440
_mm256_fnmsub_ps (VFNMSUB###) 1441
_mm256_fnmsub_sd (VFNMSUB###) 1441
_mm256_fnmsub_ss (VFNMSUB###) 1442
GATHER operations
_mm_i32gather_epi32 (VPGATHERDD) 1451
_mm_i32gather_epi64 (VPGATHERDQ) 1453
_mm_i32gather_pd (VGATHERDPD) 1444
_mm_i64gather_epi32 (VPGATHERQD) 1455
_mm_i64gather_epi64 (VPGATHERQQ) 1457
_mm_i64gather_pd (VGATHERQPD) 1445
_mm_i64gather_ps (VGATHERQPS) 1449
_mm_mask_i32gather_epi32
(VPGATHERDD) 1450
_mm_mask_i32gather_epi64
(VPGATHERDQ) 1452
_mm_mask_i32gather_ps
(VGATHERDPS) 1446, 1447
_mm_mask_i64gather_epi32
(VPGATHERQD) 1454

trigonometric functions (continued)
shuffle operations (continued)

GATHER operations (continued)
_mm_mask_i64gather_epi64
(VPGATHERQQ) 1456
_mm_mask_i64gather_pd
(VGATHERQPD) 1444
_mm_mask_i64gather_ps
(VGATHERQPS) 1448
_mm256_i32gather_epi32
(VPGATHERDD) 1451
_mm256_i32gather_epi64
(VPGATHERDQ) 1453
_mm256_i64gather_epi32
(VPGATHERQD) 1455
_mm256_i64gather_epi64
(VPGATHERQQ) 1457
_mm256_i64gather_pd (VGATHERQPD) 1445
_mm256_i64gather_ps (VGATHERQPS) 1449
_mm256_mask_i32gather_epi32
(VPGATHERDD) 1450
_mm256_mask_i32gather_epi64
(VPGATHERDQ) 1452
_mm256_mask_i32gather_pd
(VGATHERDPD) 1443, 1444
_mm256_mask_i32gather_ps
(VGATHERDPS) 1446, 1447
_mm256_mask_i64gather_epi32
(VPGATHERQD) 1454
_mm256_mask_i64gather_epi64
(VPGATHERQQ) 1456
_mm256_mask_i64gather_pd
(VGATHERQPD) 1444
_mm256_mask_i64gather_ps
(VGATHERQPS) 1448
insert and extract operations
_mm256_extractepi16 1464
_mm256_extractepi32 1464
_mm256_extractepi64 1464
_mm256_extractepi8 1464
_mm256_extracti128_si256
(VEXTRACTI128) 1463
_mm256_insertepi16 1464
_mm256_insertepi32 1464
_mm256_insertepi64 1464
_mm256_insertepi8 1464
_mm256_inserti128_si256
(VINSERTI128) 1463

load and store operations 1465
logical shift operations
_mm_sllv_epi16 (VPSLLVD) 1459
_mm_sllv_epi32 (VPSLLVQ) 1459
_mm_srlv_epi16 (VPSRLVD) 1462
_mm_srlv_epi32 (VPSRLVQ) 1462
_mm256_sll_epi16 (VPSLLW) 1457
_mm256_sll_epi32 (VPSLLD) 1457
_mm256_sll_epi64 (VPSLLQ) 1457
_mm256_slli_epi16 (VPSLLW) 1458
_mm256_slli_epi32 (VPSLLD) 1458
_mm256_slli_epi64 (VPSLLQ) 1458
_mm256_slli_si256 (VPSLLDQ) 1460
_mm256_sllv_epi32 (VPSLLVD) 1459
_mm256_sllv_epi64 (VPSLLVQ) 1459
_mm256_srl_epi16 (VPSRLW) 1461
_mm256_srl_epi32 (VPSRLD) 1461
_mm256_srl_epi64 (VPSRLQ) 1461
_mm256_srli_epi16 (VPSRLW) 1461
_mm256_srli_epi32 (VPSRLD) 1461

Intel® C++ Compiler Classic Developer Guide and Reference

2360

trigonometric functions (continued)
shuffle operations (continued)

logical shift operations (continued)
_mm256_srli_epi64 (VPSRLQ) 1461
_mm256_srli_si256 (VPSRLDQ) 1460
_mm256_srlv_epi32 (VPSRLVD) 1462
_mm256_srlv_epi64 (VPSRLVQ) 1462
masked load and store operations
_mm256_maskload_epi32
(VPMASKMOVD) 1465
_mm256_maskload_epi64
(VPMASKMOVQ) 1465
_mm256_maskstore_epi32
(VPMASKMOVD) 1465
_mm256_maskstore_epi64
(VPMASKMOVQ) 1465
miscellaneous operations
_mm256_alignr_epi8 (VPALIGNRB) 1466
_mm256_movemask_epi8
(VPMOVMSKB) 1467
_mm256_stream_load_si256
(VMOVNTDQA) 1467
pack and unpack operations
_mm256_packs_epi16 (VPACKSSWB) 1472
_mm256_packs_epi32 (VPACKSSDW) 1472
_mm256_packus_epi16 (VPACKUSWB) 1472
_mm256_packus_epi32 (VPACKUSDW) 1472
_mm256_unpackhi_epi16
(VPUNPCKHWD) 1473
_mm256_unpackhi_epi32
(VPUNPCKHDQ) 1473
_mm256_unpackhi_epi64
(VPUNPCKHQDQ) 1473
_mm256_unpackhi_epi8
(VPUNPCKHBW) 1473
_mm256_unpacklo_epi16
(VPUNPCKLWD) 1473
_mm256_unpacklo_epi32
(VPUNPCKLDQ) 1473
_mm256_unpacklo_epi64
(VPUNPCKLQDQ) 1473
_mm256_unpacklo_epi8 (VPUNPCKLBW) 1473
packed move operations
_mm256_cvtepi16_epi32
(VPMOVSXWD) 1474
_mm256_cvtepi16_epi64
(VPMOVSXWQ) 1474
_mm256_cvtepi32_epi64 (VPMOVSXDQ) 1475
_mm256_cvtepi8_epi16 (VPMOVSXBW) 1474
_mm256_cvtepi8_epi32 (VPMOVSXBD) 1474
_mm256_cvtepi8_epi64 (VPMOVSXBQ) 1474
_mm256_cvtepu16_epi32
(VPMOVZXWD) 1476
_mm256_cvtepu16_epi64
(VPMOVZXWQ) 1476
_mm256_cvtepu32_epi64
(VPMOVZXDQ) 1476
_mm256_cvtepu8_epi16 (VPMOVZXBW) 1475
_mm256_cvtepu8_epi32 (VPMOVZXBD) 1475
_mm256_cvtepu8_epi64 (VPMOVZXBQ) 1475
permute operations
_mm256_permute4x64_epi64 (VPERMQ) 1478
_mm256_permute4x64_pd (VPERMPD) 1478
_mm256_permutevar8x32_epi32
(VPERM2I128) 1479
_mm256_permutevar8x32_epi32
(VPERMD) 1476

trigonometric functions (continued)
shuffle operations (continued)

permute operations (continued)
_mm256_permutevar8x32_epi32
(VPERMPS) 1477
shuffle operations
_mm256_shuffle_epi32 (VPSHUFD) 1481
_mm256_shuffle_epi8 1481
_mm256_shuffle_epi8 (VPSHUFB) 1480
_mm256_sufflehi_epi16 (VPSHUFHW) 1481
_mm256_sufflelo_epi16 (VPSHUFLW) 1482

Transactional Synchronization Extensions 1482
Intel® SSE

arithmetic operations
add_ps 1647
add_ss 1647
div_ps 1647
div_ss 1647
max_ps 1647
max_ss 1647
min_ps 1647
min_ss 1647
mul_ps 1647
mul_ss 1647
rcp_ps 1647
rcp_ss 1647
rsqrt_ps 1647
rsqrt_ss 1647
sqrt_ps 1647
sqrt_ss 1647
sub_ps 1647
sub_ss 1647
cacheability support operations
prefetch 1671
sfence 1671
stream_pi 1671
stream_ps 1671
compare operations
cmpeq_ps 1652
cmpeq_ss 1652
cmpge_ps 1652
cmpge_ss 1652
cmpgt_ps 1652
cmpgt_ss 1652
cmple_ps 1652
cmple_ss 1652
cmplt_ps 1652
cmplt_ss 1652
cmpneq_ps 1652
cmpneq_ss 1652
cmpnge_ps 1652
cmpnge_ss 1652
cmpngt_ps 1652
cmpngt_ss 1652
cmpnle_ps 1652
cmpnle_ss 1652
cmpnlt_ps 1652
cmpnlt_ss 1652
cmpord_ps 1652
cmpord_ss 1652
cmpunord_ps 1652
cmpunord_ss 1652
comieq_ss 1652
comige_ss 1652
comigt_ss 1652
comile_ss 1652
comilt_ss 1652
comineq_ss 1652

Index

2361

trigonometric functions (continued)
store operations (continued)

compare operations (continued)
ucomieq_ss 1652
ucomige_ss 1652
ucomigt_ss 1652
ucomile_ss 1652
ucomilt_ss 1652
ucomineq_ss 1652
conversion operations
cvtpi16_ps 1661
cvtpi32_ps 1661
cvtpi32x2_ps 1661
cvtpi8_ps 1661
cvtps_pi16 1661
cvtps_pi32 1661
cvtps_pi8 1661
cvtpu16_ps 1661
cvtpu8_ps 1661
cvtsi32_ss 1661
cvtsi64_ss 1661
cvtss_f32 1661
cvtss_si32 1661
cvtss_si64 1661
cvttps_pi32 1661
cvttss_si32 1661
cvttss_si64 1661

data types 1645
integer operations
avg_pu16 1672
avg_pu8 1672
extract_pi16 1672
insert_pi16 1672
maskmove_si641 1672
max_pi16 1672
max_pu8 1672
min_pi16 1672
min_pu8 1672
movemask_pi8 1672
mulhi_pu16 1672
sad_pu8 1672
shuffle_pi16 1672
load operations
load_ps 1666
load_ps1 1666
load_ss 1666
loadh_pi 1666
loadl_pi 1666
loadr_ps(1666
loadu_ps 1666
logical operations
and_ps 1651
andnot_ps 1651
or_ps 1651
xor_ps 1651
macros
matrix transposition 1680
read control register 1678
shuffle function 1678
write control register 1678
miscellaneous operations
_mm_undefined_ps() 1676
move_ss 1676
movehl_ps 1676
movelh_ps 1676
movemask_ps 1676
shuffle_ps 1676
unpackhi_ps 1676

trigonometric functions (continued)
store operations (continued)

miscellaneous operations (continued)
unpacklo_ps 1676

overview 1645
programming with Intel® SSE intrinsics 1647

read/write register intrinsics
getcsr 1675
setcsr 1675

registers 1645
set operations
set_ps 1667
set_ps1 1667
set_ss 1667
setr_ps 1667
setzero_ps 1667
store operations
store_ps 1669
store_ps1 1669
store_ss 1669
storeh_pi 1669
storel_pi 1669
storer_ps 1669
storeu_ps 1669

Intel® SSE2
cacheability support operations
clflush 1635
clflushopt 1635
lfence 1635
mfence 1635
stream_pd 1635
stream_si128 1635
stream_si32 1635
casting support
_mm_castpd_ps 1642
_mm_castpd_si128 1642
_mm_castps_pd 1642
_mm_castps_si128 1642
_mm_castsi128_pd 1642
_mm_castsi128_ps 1642
FP arithmetic operations
add_pd 1588
add_sd 1588
div_pd 1588
div_sd 1588
max_pd 1588
max_sd 1588
min_pd 1588
min_sd 1588
mul_pd 1588
mul_sd 1588
sqrt_pd 1588
sqrt_sd 1588
sub_pd 1588
sub_sd 1588
FP compare operations
cmpeq_pd 1592
cmpeq_sd 1592
cmpge_pd 1592
cmpge_sd 1592
cmpgt_pd 1592
cmpgt_sd 1592
cmple_pd 1592
cmple_sd 1592
cmplt_pd 1592
cmplt_sd 1592
cmpneq_pd 1592
cmpneq_sd 1592

Intel® C++ Compiler Classic Developer Guide and Reference

2362

trigonometric functions (continued)
miscellaneous operations (continued)

FP compare operations (continued)
cmpnge_pd 1592
cmpnge_sd 1592
cmpngt_pd 1592
cmpngt_sd 1592
cmpnle_pd 1592
cmpnle_sd 1592
cmpnlt_pd 1592
cmpnlt_sd 1592
cmpord_pd 1592
cmpord_sd 1592
cmpunord_pd 1592
cmpunord_sd 1592
comieq_sd 1592
comige_sd 1592
comigt_sd 1592
comile_sd 1592
comilt_sd 1592
comineq_sd 1592
ucomieq_sd 1592
ucomige_sd 1592
ucomigt_sd 1592
ucomile_sd 1592
ucomilt_sd 1592
ucomineq_sd 1592
FP conversion operations
cvtepi32_pd 1601
cvtpd_epi32 1601
cvtpd_pi32 1601
cvtpd_ps 1601
cvtpi32_pd 1601
cvtps_pd 1601
cvtsd_f64 1601
cvtsd_si32 1601
cvtsd_ss 1601
cvtsi32_sd 1601
cvtss_sd 1601
cvttpd_epi32 1601
cvttpd_pi32 1601
cvttsd_si32 1601
FP load operations
load_pd 1604
load_sd 1604
load1_pd 1604
loadh_pd 1604
loadl_pd 1604
loadr_pd 1604
loadu_pd 1604
FP logical operations
and_pd 1591
andnot_pd 1591
or_pd 1591
xor_pd 1591
FP set operations
move_sd 1606
set_pd 1606
set_sd 1606
set1_pd 1606
setr_pd 1606
setzero_pd 1606
FP store operations
store_pd 1608
store_sd 1608
store1_pd 1608
storeh_pd 1608
storel_pd 1608

trigonometric functions (continued)
miscellaneous operations (continued)

FP store operations (continued)
storer_pd 1608
storeu_pd 1608
integer arithmetic operations
add_epi16 1610
add_epi32 1610
add_epi64 1610
add_epi8 1610
add_si64 1610
adds_epi16 1610
adds_epi8 1610
adds_epu16 1610
adds_epu8 1610
avg_epu16 1610
avg_epu8 1610
madd_epi16 1610
max_epi16 1610
max_epu8 1610
min_epi16 1610
min_epu8 1610
mul_epu32 1610
mul_su32 1610
mulhi_epi16 1610
mulhi_epu16 1610
mullo_epi16 1610
sad_epu8 1610
sub_epi16 1610
sub_epi32 1610
sub_epi64 1610
sub_epi8 1610
sub_si64 1610
subs_epi16 1610
subs_epi8 1610
subs_epu16 1610
subs_epu8 1610
integer compare operations
cmpeq_epi16 1623
cmpeq_epi32 1623
cmpeq_epi8 1623
cmpgt_epi16 1623
cmpgt_epi32 1623
cmpgt_epi8 1623
cmplt_epi16 1623
cmplt_epi32 1623
cmplt_epi8 1623
integer conversion operations
cvtepi32_ps 1625
cvtps_epi32 1625
cvtsd_si64 1625
cvtsi64_sd 1625
cvttps_epi32 1625
cvttsd_si64 1625
integer load operations
load_si128 1628
loadl_epi64 1628
loadu_si128 1628
integer logical operations
and_si128 1617
andnot_si128 1617
or_si128 1617
xor_si128 1617
integer move operations
cvtsi128_si32 1627
cvtsi128_si64 1627
cvtsi32_si128 1627
cvtsi64_si128 1627

Index

2363

trigonometric functions (continued)
miscellaneous operations (continued)

integer set operations
set_epi16 1629
set_epi32 1629
set_epi64 1629
set_epi8 1629
set1_epi16 1629
set1_epi32 1629
set1_epi64 1629
set1_epi8 1629
setr_epi16 1629
setr_epi32 1629
setr_epi64 1629
setr_epi8 1629
setzero_si128 1629
integer shift operations
sll_epi16 1619
sll_epi32 1619
sll_epi64 1619
slli_epi16 1619
slli_epi32 1619
slli_epi64 1619
slli_si128 1619
sra_epi16 1619
sra_epi32 1619
srai_epi16 1619
srai_epi32 1619
srl_epi16 1619
srl_epi32 1619
srl_epi64 1619
srli_epi16 1619
srli_epi32 1619
srli_epi64 1619
srli_si128 1619
integer store operations
maskmoveu_si128 1633
store_si128 1633
storel_epi64 1633
storeu_si128 1633
intrinsics returning vectors of

undefined values
_mm_undefined_pd() 1644
_mm_undefined_si128() 1644

macro functions 1587
miscellaneous operations
extract_epi16 1637
insert_epi16 1637
move_epi64 1637
movemask_epi8 1637
movemask_pd 1637
movepi64_pi64 1637
movpi64_pi64 1637
packs_epi16 1637
packs_epi32 1637
packus_epi16 1637
shuffle_epi32 1637
shuffle_pd 1637
shufflehi_epi16 1637
shufflelo_epi16 1637
unpackhi_epi16 1637
unpackhi_epi32 1637
unpackhi_epi64 1637
unpackhi_epi8 1637
unpackhi_pd 1637
unpacklo_epi16 1637
unpacklo_epi32 1637
unpacklo_epi64 1637

trigonometric functions (continued)
miscellaneous operations (continued)

miscellaneous operations (continued)
unpacklo_epi8 1637
unpacklo_pd 1637

overview 1586
pause intrinsic 1643
shuffle macro 1644
Intel® SSE3

float32 vector intrinsics
addsub_ps 1583
hadd_ps 1583
hsub_ps 1583
movehdup_ps 1583
moveldup_ps 1583
float64 vector intrinsics
addsub_pd 1585
hadd_pd 1585
hsub_pd 1585
loaddup_pd 1585
movedup_pd 1585
integer vector intrinsic
lddqu_si128 1583

macro functions 1587
miscellaneous intrinsics 1586
overview 1583
Intel® SSE4

application targeted accelerator intrinsics
_mm_crc32_u16 1566
_mm_crc32_u32 1566
_mm_crc32_u64 1566
_mm_crc32_u8 1566
_mm_popcnt_u32 1566
_mm_popcnt_u64 1566
cacheability support intrinsic
_mm_stream_load_si128 1574
MOVNTDQA 1574
DWORD multiply operations
_m128i _mm_mul_epi32 1571
_m128i _mm_mullo_epi32 1571
floating-point rounding operations
_mm_ceil_pd 1570
_mm_ceil_ps 1570
_mm_ceil_sd 1570
_mm_ceil_ss 1570
_mm_floor_pd 1570
_mm_floor_ps 1570
_mm_floor_sd 1570
_mm_floor_ss 1570
_mm_round_pd 1570
_mm_round_ps 1570
_mm_round_sd 1570
_mm_round_ss 1570
FP dot product operations
_mm_dp_pd 1568
_mm_dp_ps 1568

overview 1563
packed blending operations
_mm_blend_epi16 1567
_mm_blend_pd 1567
_mm_blend_ps 1567
_mm_blendv_epi8 1567
_mm_blendv_pd 1567
_mm_blendv_ps 1567
packed compare for equal intrinsic
_mm_cmpeq_epi64 1574
PCMPEQQ 1574
packed compare operations

Intel® C++ Compiler Classic Developer Guide and Reference

2364

trigonometric functions (continued)
test operations (continued)

packed compare operations (continued)
_cmpestra 1563
_cmpestrc 1563
_cmpestri 1563
_cmpestrm 1563
_cmpestro 1563
_cmpestrs 1563
_cmpestrz 1563
_cmpistra 1563
_cmpistrc 1563
_cmpistri 1563
_cmpistrm 1563
_cmpistro 1563
_cmpistrs 1563
_cmpistrz 1563
PCMPESTRA 1563
PCMPESTRC 1563
PCMPESTRI 1563
PCMPESTRM 1563
PCMPESTRO 1563
PCMPESTRS 1563
PCMPESTRZ 1563
PCMPISTRA 1563
PCMPISTRC 1563
PCMPISTRI 1563
PCMPISTRM 1563
PCMPISTRO 1563
PCMPISTRS 1563
PCMPISTRZ 1563
packed DWORD to unsigned WORD intrinsic
_mm_packus_epi32 1573
PACKUSDW 1573
packed format conversion operations
_mm_cvtepi16_epi32 1568
_mm_cvtepi16_epi64 1568
_mm_cvtepi32_epi64 1568
_mm_cvtepi8_epi16 1568
_mm_cvtepi8_epi32 1568
_mm_cvtepi8_epi64 1568
_mm_cvtepu16_epi32 1568
_mm_cvtepu16_epi64 1568
_mm_cvtepu32_epi64 1568
_mm_cvtepu8_epi16 1568
_mm_cvtepu8_epi32 1568
_mm_cvtepu8_epi64 1568
PMOVSXBD 1568
PMOVSXBQ 1568
PMOVSXBW 1568
PMOVSXDQ 1568
PMOVSXWD 1568
PMOVSXWQ 1568
PMOVZXBD 1568
PMOVZXBQ 1568
PMOVZXBW 1568
PMOVZXDQ 1568
PMOVZXWD 1568
PMOVZXWQ 1568
packed integer min/max intrinsics
_mm_max_epi16 1569
_mm_max_epi32 1569
_mm_max_epi8 1569
_mm_max_epu32 1569
_mm_min_epi16 1569
_mm_min_epi32 1569
_mm_min_epi8 1569
_mm_min_epu32 1569

trigonometric functions (continued)
test operations (continued)

packed integer min/max intrinsics (continued)
PMAXSB 1569
PMAXSD 1569
PMAXUD 1569
PMAXUW 1569
PMINSB 1569
PMINSD 1569
PMINUW 1569
register insertion/extraction operations
_mm_extract_epi16 1571
_mm_extract_epi32 1571
_mm_extract_epi64 1571
_mm_extract_epi8 1571
_mm_extract_ps 1571
_mm_insert_epi32 1571
_mm_insert_epi64 1571
_mm_insert_epi8 1571
_mm_insert_ps 1571
EXTRACTPS 1571
INSERTPS 1571
PEXTRB 1571
PEXTRD 1571
PEXTRQ 1571
PEXTRW 1571
PINSRB 1571
PINSRD 1571
PINSRQ 1571
test operations
_mm_testc_si128 1572
_mm_testnzc_si128 1572
_mm_testz_si128 1572

Intel® Streaming SIMD Extensions
arithmetic operations 1647
register intrinsics 1675
Intel® Streaming SIMD Extensions 3
float32 vector intrinsics 1583
miscellaneous intrinsics 1586

Later Generation Intel® Core™ Processor Instruction
Extensions 1398
memory allocation 667, 668

MMX(TM) Technology
data types 1681
registers 1681
MMX™ Technology

compare operations
cmpeq_pi16 1691
cmpeq_pi32 1691
cmpeq_pi8 1691
cmpgt_pi16 1691
cmpgt_pi32 1691
cmpgt_pi8 1691
EMMS instruction
about 1682
using 1683
general support operations
cvtm64_si64 1683
cvtsi32_si64 1683
cvtsi64_m64 1683
cvtsi64_si32 1683
empty 1683
packs_pi16 1683
packs_pi32 1683
packs_pu16 1683
unpackhi_pi16 1683
unpackhi_pi32 1683
unpackhi_pi8 1683

Index

2365

trigonometric functions (continued)
shift operations (continued)

general support operations (continued)
unpacklo_pi16 1683
unpacklo_pi32 1683
unpacklo_pi8 1683
logical operations
and_si64 1691
andnot_si64 1691
or_si64 1691
xor_si64 1691

overview 1681
packed arithmetic operations
add_pi16 1685
add_pi32 1685
add_pi8 1685
adds_pi16 1685
adds_pi8 1685
adds_pu16 1685
adds_pu8 1685
madd_pi16 1685
mulhi_pi16 1685
mullo_pi16 1685
sub_pi16 1685
sub_pi32 1685
sub_pi8 1685
subs_pi16 1685
subs_pi8 1685
subs_pu16 1685
subs_pu8 1685
set operations
set_pi16 1693
set_pi32 1693
set_pi8 1693
set1_pi16 1693
set1_pi32 1693
set1_pi8 1693
setr_pi16 1693
setr_pi32 1693
setr_pi8 1693
setzero_si64 1693
shift operations
sll_pi16 1688
sll_pi32 1688
slli_pi16 1688
slli_pi32 1688
slli_pi64 1688
sra_pi16 1688
sra_pi32 1688
srai_pi16 1688
srai_pi32 1688
srl_pi16 1688
srl_pi32 1688
srl_pi64 1688
srli_pi16 1688
srli_pi32 1688
srli_pi64 1688

naming and syntax 654
references 655
registers 650

SSSE3
absolute value operations
_mm_abs_epi16 1578
_mm_abs_epi32 1578
_mm_abs_epi8 1578
_mm_abs_pi16 1578
_mm_abs_pi32 1578
_mm_abs_pi8 1578

trigonometric functions (continued)
multiplication operations (continued)

addition operations
_mm_hadd_epi16 1574
_mm_hadd_epi32 1574
_mm_hadd_pi16 1574
_mm_hadd_pi32 1574
_mm_hadds_epi16 1574
_mm_hadds_pi16 1574
concatenate operations
_mm_alignr_epi8 1580
_mm_alignr_pi8 1580
multiplication operations
_mm_maddubs_epi16 1577
_mm_maddubs_pi16 1577
_mm_mulhrs_epi16 1577
_mm_mulhrs_pi16 1577

negation operations 1580
overview 1574
shuffle operations 1579
subtraction operations 1576
SVML

complex functions
_mm_cexp_ps, _mm256_cexp_ps 1728
_mm_clog_ps, _mm256_clog_ps 1738
_mm_csqrt_ps, _mm256_csqrt_ps 1759
error functions
_mm_cdfnorminv_pd,
_mm256_cdfnorminv_pd 1716
_mm_cdfnorminv_ps,
_mm256_cdfnorminv_ps 1716
_mm_erf_pd, _mm256_erf_pd 1717
_mm_erf_ps, _mm256_erf_ps 1717
_mm_erfc_pd, _mm256_erfc_pd 1718
_mm_erfc_ps, _mm256_erfc_ps 1718
_mm_erfinv_pd, _mm256_erfinv_pd 1719
_mm_erfinv_ps, _mm256_erfinv_ps 1719
exponential functions
_mm_exp_pd, _mm256_exp_pd 1725
_mm_exp_ps, _mm256_exp_ps 1725
_mm_exp10_pd, _mm256_exp10_pd 1726
_mm_exp10_ps, _mm256_exp10_ps 1726
_mm_exp2_pd, _mm256_exp2_pd 1724
_mm_exp2_ps, _mm256_exp2_ps 1724
_mm_expm1_pd, _mm256_expm1_pd 1727
_mm_expm1_ps, _mm256_expm1_ps 1727
_mm_hypot_pd, _mm256_hypot_pd 1729
_mm_hypot_ps, _mm256_hypot_ps 1730
_mm_pow_pd, _mm256_pow_pd 1728
_mm_pow_ps, _mm256_pow_ps 1729
logarithmic functions
_mm_log_pd, _mm256_log_pd 1735
_mm_log_ps, _mm256_log_ps 1736
_mm_log10_pd, _mm256_log10_pd 1734
_mm_log10_ps, _mm256_log10_ps 1735
_mm_log1p_pd, _mm256_log1p_pd 1737
_mm_log1p_ps, _mm256_log1p_ps 1738
_mm_log2_pd, _mm256_log2_pd 1733
_mm_log2_ps, _mm256_log2_ps 1734
_mm_logb_pd, _mm256_logb_pd 1736
_mm_logb_ps, _mm256_logb_ps 1737

overview 1699
square and cube root functions
_mm_cbrt_pd, _mm256_cbrt_pd 1757
_mm_cbrt_ps, _mm256_cbrt_ps 1757
_mm_invcbrt_pd, _mm256_invcbrt_pd 1758
_mm_invcbrt_ps, _mm256_invcbrt_ps 1758
_mm_invsqrt_pd, _mm256_invsqrt_pd 1756

Intel® C++ Compiler Classic Developer Guide and Reference

2366

trigonometric functions (continued)
trigonometric functions (continued)

square and cube root functions (continued)
_mm_invsqrt_ps, _mm256_invsqrt_ps 1756
_mm_sinh_pd, _mm256_sinh_pd 1755
_mm_sqrt_ps, _mm256_sqrt_ps 1755
trigonometric functions
_mm_acos_pd, _mm256_acos_pd 1770
_mm_acos_ps, _mm256_acos_ps 1770
_mm_acosh_pd, _mm256_acosh_pd 1771
_mm_acosh_ps, _mm256_acosh_ps 1771
_mm_asin_pd, _mm256_asin_pd 1772
_mm_asin_ps, _mm256_asin_ps 1772
_mm_asinh_pd, _mm256_asinh_pd 1773
_mm_asinh_ps, _mm256_asinh_ps 1773
_mm_atan_pd, _mm256_atan_pd 1774
_mm_atan_ps, _mm256_atan_ps 1774
_mm_atan2_pd, _mm256_atan2_pd 1775
_mm_atan2_ps, _mm256_atan2_ps 1775
_mm_atanh_pd, _mm256_atanh_pd 1776
_mm_atanh_ps, _mm256_atanh_ps 1777
_mm_cos_pd, _mm256_cos_pd 1777
_mm_cos_ps, _mm256_cos_ps 1778
_mm_cosd_pd, _mm256_cosd_pd 1778
_mm_cosd_ps, _mm256_cosd_ps 1779
_mm_cosh_pd, _mm256_cosh_pd 1779
_mm_cosh_ps, _mm256_cosh_ps 1780
_mm_sin_pd, _mm256_sin_pd 1780
_mm_sin_ps, _mm256_sin_ps 1781
_mm_sincos_pd, _mm256_sincos_pd 1786
_mm_sincos_ps, _mm256_sincos_ps 1787
_mm_sind_pd, _mm256_sind_pd 1781
_mm_sind_ps, _mm256_sind_ps 1782
_mm_sinh_pd, _mm256_sinh_pd 1782
_mm_sinh_ps, _mm256_sinh_ps 1783
_mm_tan_pd, _mm256_tan_pd 1783
_mm_tan_ps, _mm256_tan_ps 1784
_mm_tand_pd, _mm256_tand_pd 1784
_mm_tand_ps, _mm256_tand_ps 1785
_mm_tanh_pd, _mm256_tanh_pd 1785
_mm_tanh_ps, _mm256_tanh_ps 1786

Intrinsics for Intel® Advanced Vector Extensions 512
(Intel® AVX-512)

4FMAPS Instructions 720
4VNNIW Instructions 718

absolute value operations
_mm512[_mask[z]]_abs_epi32 1211

architectural enhancements 1150
arithmetic operations

FP addition operations
_mm512[_mask[z]]_add_round_pd 1153
_mm[_mask[z]]_add_round_sd 1153
_mm512_mask[z]_add_pd 1153
_mm_mask[z]_add_sd 1153
FP multiplicationoperations
_mm_mask_mul_round_sd 1196
_mm_mask_mul_round_ss 1196
_mm_maskz_mul_round_sd 1196
_mm_maskz_mul_round_ss 1196
_mm_mul_round_sd 1196
_mm_mul_round_ss 1196
_mm512_maskz_mul_round_pd 1196
_mm512_maskz_mul_round_ps 1196
FP subtraction operations
_mm512[_mask[z]]_sub_pd 1202
_mm_mask[z]_sub_sd 1202
integer addition
_mm512[_mask[z]]_add_epi32 1157

vector mask operations (continued)
integer subtraction operations (continued)

integer multiplication operations
_mm512[_mask[z]]_mul_epi32 1200
integer subtraction operations
_mm512[_mask[z]]_sub_round_epi64 1206

BF16 Instructions 713
bit manipulation operations
_mm512_lzcnt_epi32 1221
_mm512_lzcnt_epi64 1221
_mm512_mask_lzcnt_epi32 1221
_mm512_mask_lzcnt_epi64 1221
_mm512_maskz_lzcnt_epi32 1221
_mm512_maskz_lzcnt_epi64 1221
bit rotation operations
_mm512[_mask[z]]_rol_epi32 1228
bitwise logical operations
_mm512[_mask[z]]_and_epi32 1224
blend operations
_mm512_mask_blend_epi32 1220
_mm512_mask_blend_epi64 1220
_mm512_mask_blend_pd 1220
_mm512_mask_blend_ps 1220
conflict detection operations
_mm512[_mask[z]]_conflict_epi64 1389

data types 1150
extract operations
_mm512[_mask[z]]_extractf32x4_ps 1325, 1333
FP broadcast operations
_mm512[_mask[z]]_broadcastsd_pd 1241
FP conversion operations
_mm512[_mask[z]]_cvt_roundps_pd 1267
_mm_cvt_roundsd_i32 1267
_mm_cvt_roundsd_i64 1267
_mm_cvt_roundsd_u32 1267
_mm_cvt_roundsd_u64 1267
_mm_cvt_roundss_i32 1267
_mm_cvt_roundss_i64 1267
_mm_cvt_roundss_u32 1267
_mm_cvt_roundss_u64 1267
_mm_cvtt_roundsd_i32 1267
_mm_cvtt_roundsd_i64 1267
_mm_cvtt_roundsd_u32 1267
_mm_cvtt_roundsd_u64 1267
_mm_cvtt_roundss_i32 1267
_mm_cvtt_roundss_i64 1267
_mm_cvtt_roundss_u32 1267
_mm_cvtt_roundss_u64 1267
FP division operations
_mm512[_mask[z]]_div_round_pd 1208
_mm[_mask[z]]_div_round_sd 1208
FP expand and load operations
_mm512[_mask[z]]_expand_pd 1311
_mm512_mask[z]_expandloadu_pd 1311
FP Fused Multiply-Add (FMA) operations
_mm512[_mask[3][z]]_fmadd_pd 1171
_mm512_mask[3][z]_fmadd_sd 1171

FP gather and scatter operations 1315
FP Loads and store operations 1335

FP move operations
_mm512_mask_mov_pd 1354
_mm512_mask_mov_ps 1354
_mm512_mask_move_sd 1354
_mm512_mask_move_ss 1354
_mm512_mask_movedup_pd 1354
_mm512_mask_movehdup_ps 1354
_mm512_mask_moveldup_ps 1354
_mm512_maskz_mov_pd 1354

Index

2367

vector mask operations (continued)
FP move operations (continued)
_mm512_maskz_mov_ps 1354
_mm512_maskz_move_sd 1354
_mm512_maskz_move_ss 1354
_mm512_maskz_movedup_pd 1354
_mm512_maskz_movehdup_ps 1354
_mm512_maskz_moveldup_ps 1354
_mm512_movedup_pd 1354
_mm512_movehdup_ps 1354
_mm512_moveldup_ps 1354
FP permute operations
_mm512[_mask[2][z]]_permutex2var_ps 1362
FP reduction operations
_mm512[_mask]_reduce_add_pd 1371
FP shuffle operations
_mm512[_mask[z]]_shuffle_f32x4 1386
FP unpack operations
_mm512_mask_unpackhi_pd 1358
_mm512_mask_unpackhi_ps 1358
_mm512_mask_unpacklo_pd 1358
_mm512_mask_unpacklo_ps 1358
_mm512_maskz_unpackhi_pd 1358
_mm512_maskz_unpackhi_ps 1358
_mm512_maskz_unpacklo_pd 1358
_mm512_maskz_unpacklo_ps 1358
_mm512_unpackhi_pd 1358
_mm512_unpackhi_ps 1358
_mm512_unpacklo_pd 1358
_mm512_unpacklo_ps 1358
insert operations
_mm512[_mask[z]]_insertf32x4 1325, 1333
_mm_extract_ps 1325
_mm_insert_ps 1325
_mm256_insertf128_pd 1325
_mm256_insertf128_ps 1325
_mm256_insertf128_si256 1325, 1333
integer bit shift operations
_mm512[_mask[z]]_sll_epi32 1232
integer broadcast operations
_mm512[_mask[z]]_broadcast_i32x4 1243
_mm512_broadcastmb_epi64 1243
_mm512_broadcastmw_epi32 1243

integer compression operations 1264
integer conversion operations
_mm512[_mask[z]]_cvtepi8_epi32 1284
_mm_cvt_roundi32_ss 1284
_mm_cvt_roundi64_sd 1284
_mm_cvt_roundi64_ss 1284
_mm_cvt_roundu32_ss 1284
_mm_cvt_roundu64_sd 1284
_mm_cvt_roundu64_ss 1284
_mm_cvtu32_sd 1284
_mm512_cvtsi512_si32 1284
integer expand and load operations
_mm512_mask[z]_expandloadu_epi32 1313

integer gather and scatter operations 1322
integer move operations
_mm512_mask[z]_mov_epi32 1357
integer permute operations
_mm512[_mask[2][z]]_permutex2var_epi32 1367
integer reduction operations
_mm512[_mask]_reduce_add_epi64 1374
integer shuffle operations
_mm512[_mask[z]]_shuffle_epi32 1388

load and store operations 1340
mathematics operations 1207

minimum and maximum FP operations

vector mask operations (continued)
minimum and maximum FP operations (continued)
_mm512[_mask[z]]_max_round_pd 1158
_mm[_mask[z]]_max_round_sd 1158
minimum and maximum integer operations
_mm512[_mask[z]]_max_epi32 1167

miscellaneous FP operations 1344
miscellaneous integer operations
_mm512[_mask[z]]_alignr_epi32 1353

overview 1150
registers 1150

scale operations
_mm512_mask_scalef_round_pd 1213
_mm512_mask_scalef_round_ps 1213
_mm512_mask_scalef_round_sd 1213
_mm512_mask_scalef_round_ss 1213
_mm512_maskz_scalef_round_pd 1213
_mm512_maskz_scalef_round_ps 1213
_mm512_maskz_scalef_round_sd 1213
_mm512_maskz_scalef_round_ss 1213
_mm512_scalef_round_pd 1213
_mm512_scalef_round_ps 1213
_mm512_scalef_round_sd 1213
_mm512_scalef_round_ss 1213
set operations
_mm512_undefined 1379
_mm512_undefined_epi32 1379
_mm512_undefined_pd 1379
_mm512_undefined_ps 1379
SVML

division operations
_mm512[_mask[z]]_div_round_pd 1699
_mm[_mask[z]]_div_round_sd 1699

error function operations 1712
logarithmic operations
_mm512[_mask]_log10_pd 1731
root operations
_mm512[_mask]_sqrt_pd 1748
rounding operations
_mm512[_mask]__pd 1751
trigonometric operations
_mm512[_mask]_acos_pd 1759

SVML operations
exponential operations
_mm512[_mask[z]]_exp2a23_pd 1720

reciprocal operations 1739
test operations
_mm512_mask_test_epi64_mask 1389
_mm512_mask_testn_epi32_mask 1389
_mm512_mask_testn_epi64_mask 1389
_mm512_test_epi64_mask 1389
_mm512_testn_epi32_mask 1389
_mm512_testn_epi64_mask 1389
typecast operations
_mm512_castpd_ps 1392
_mm512_castpd_si512 1392
_mm512_castpd128_pd512 1392
_mm512_castpd256_pd512 1392
_mm512_castpd512_pd128 1392
_mm512_castpd512_pd256 1392
_mm512_castpd512_ps128 1392
_mm512_castps_pd 1392
_mm512_castps_si512 1392
_mm512_castps128_ps512 1392
_mm512_castps256_ps512 1392
_mm512_castps512_ps128 1392
_mm512_castps512_ps256 1392
_mm512_castsi128_si512 1392

Intel® C++ Compiler Classic Developer Guide and Reference

2368

vector mask operations (continued)
typecast operations (continued)
_mm512_castsi256_si512 1392
_mm512_castsi512_pd 1392
_mm512_castsi512_ps 1392
_mm512_castsi512_si128 1392
_mm512_castsi512_si256 1392
unpack operations
mm512[mask[z]_]unpackhi_epi32 1360
vector mask operations
_mm512_kand 1396
_mm512_kandn 1396
_mm512_kmov 1396
_mm512_knot 1396
_mm512_kor 1396
_mm512_kortestc 1396
_mm512_kortestz 1396
_mm512_kunpackb 1396
_mm512_kxnor 1396
_mm512_kxor 1396

VPOPCNTDQ Instructions 724
Intrinsics for Intel® Advanced Vector Extensions 512

(Intel® AVX-512) BW, DQ, and VL instructions
bit manipulation operations 809
comparison operations 813
conversion operations 874
load operations 954
logical operations 969
miscellaneous operations 988
Move operations 1092
set operations 1099
shift operations 1103
store operations 1137

invoking Intel® C++ Compiler 42
IPO

option specifying jobs during the link phase of 175
IR 2216
ivdep 1982
IVDEP

effect when tuning applications 2213

J
jump tables

option enabling generation of 206

K
KMP_AFFINITY

modifier 2084
offset 2084
permute 2084
type 2084

KMP_LIBRARY 2077
KMP_TOPOLOGY_METHOD 2084
KMP_TOPOLOGY_METHOD environment variable 2084

L
language extensions

g++* 2326
gcc* 2326

LD_LIBRARY_PATH 1791
LIB environment variable 1791
libgcc library

option linking dynamically 577

libgcc library (continued)
option linking statically 580

libistrconv Library
Intel's Numeric String Conversion functions 1956
Numeric String Conversion 1954
Numeric String Conversion Functions 1954

libm 2334
libqkmalloc Library 1794
libraries

-c compiler option 1788
-fPIC compiler option 1788
-shared compiler option 1788
creating 1788
creating your own 1788
LD_LIBRARY_PATH 1791
managing 1791
OpenMP* run-time routines 2067, 2075, 2102
option enabling dynamic linking of 556
option enabling static linking of 557
option letting you link to Intel(R) DAAL 196
option preventing linking with shared 578
option preventing use of standard 571
option printing location of system 379
redistributing 1792
shared 1788, 1789
specifying 1791
static 1788

library
option searching in specified directory for 566
option to search for 565

Library extensions
valarray implementation 1907

library functions
Intel extension 2075
OpenMP* run-time routines 2067, 2102

library math functions
option testing errno after calls to 470

libstdc++ library
option linking statically 580

linear_index 1841
linker

option passing linker option to 586
option passing options to 567

linker options
specifying 2037

linking
option preventing use of startup files and libraries
when 573
option preventing use of startup files when 572
option suppressing 347

linking debug information 2046
linking options 2039
linking tools

xild 2213, 2218, 2220
xilibtool 2220
xilink 2213, 2218

linking tools IR 2213
linking with IPO 2216
Linux compiler options

c 49
I 49
o 49
S 49
X 49

Linux* compiler options
Qlocation 2041
Qoption 2041

lock routines 2067, 2102

Index

2369

long double data type
option overriding default configuration of 491

loop alignment
option enabling 466

loop blocking factor
option specifying 203

loop unrolling
using the HLO optimizer 2213

loop_count 1983
loops

constructs 2136
dependencies 2115
distribution 2213
interchange 2213
option performing run-time checks for 278
option specifying blocking factor for 203
option specifying maximum times to unroll 226
option using aggressive unrolling for 227
parallelization 2115, 2132
transformations 2213
vectorization 2132, 2161

M
macOS* compiler options

Qlocation 2041
Qoption 2041

macro names
option associating with an optional value 395

macros 1961, 1962, 2326, 2336
main cover 32
main thread

option adjusting the stack size for 293
maintainability

allocation 2075
makefiles

modifying 2332, 2337
makefiles, using 45
managed and unmanaged code 2328
manual processor dispatch 2230
Math library

Complex Functions
cabs library function 2272
cacos library function 2272
cacosh library function 2272
carg library function 2272
casin library function 2272
casinh library function 2272
catan library function 2272
catanh library function 2272
ccos library function 2272
ccosh library function 2272
cexp library function 2272
cexp10 library function 2272
cimag library function 2272
cis library function 2272
clog library function 2272
clog2 library function 2272
conj library function 2272
cpow library function 2272
cproj library function 2272
creal library function 2272
csin library function 2272
csinh library function 2272
csqrt library function 2272
ctan library function 2272
ctanh library function 2272
Exponential Functions

Trigonometric Functions (continued)
Exponential Functions (continued)
cbrt library function 2257
exp library function 2257
exp10 library function 2257
exp2 library function 2257
expm1 library function 2257
frexp library function 2257
hypot library function 2257
ilogb library function 2257
ldexp library function 2257
log library function 2257
log10 library function 2257
log1p library function 2257
log2 library function 2257
logb library function 2257
pow library function 2257
scalb library function 2257
scalbn library function 2257
sqrt library function 2257
Hyperbolic Functions
acosh library function 2255
asinh library function 2255
atanh library function 2255
cosh library function 2255
sinh library function 2255
sinhcosh library function 2255
tanh library function 2255
Miscellaneous Functions
copysign library function 2268
fabs library function 2268
fdim library function 2268
finite library function 2268
fma library function 2268
fmax library function 2268
fmin library function 2268
Miscellaneous Functions 2268
nextafter library function 2268
Nearest Integer Functions
ceil library function 2265
floor library function 2265
llrint library function 2265
llround library function 2265
lrint library function 2265
lround library function 2265
modf library function 2265
nearbyint library function 2265
rint library function 2265
round library function 2265
trunc library function 2265
Remainder Functions
fmod library function 2267
remainder library function 2267
remquo library function 2267
Special Functions
annuity library function 2261
compound library function 2261
erf library function 2261
erfc library function 2261
gamma library function 2261
gamma_r library function 2261
j0 library function 2261
j1 library function 2261
jn library function 2261
lgamma library function 2261
lgamma_r library function 2261
tgamma library function 2261
y0 library function 2261

Intel® C++ Compiler Classic Developer Guide and Reference

2370

Trigonometric Functions (continued)
Special Functions (continued)
y1 library function 2261
yn library function 2261
Trigonometric Functions
acos library function 2251
acosd library function 2251
asin library function 2251
asind library function 2251
atan library function 2251
atan2 library function 2251
atand library function 2251
atand2 library function 2251
cos library function 2251
cosd library function 2251
cot library function 2251
cotd library function 2251
sin library function 2251
sincos library function 2251
sincosd library function 2251
sind library function 2251
tan library function 2251
tand library function 2251

Math Library
code examples 2242
using 2242

math library functions
option indicating domain for input arguments 301
option producing consistent results 299
option specifying a level of accuracy for 307

matmul library call
option replacing matrix multiplication loop nests
with 208

matrix multiplication loop nests
option identifying and replacing 208

memory layout transformations
option controlling level of 210

memory loads
option enabling optimizations to move 590

memory model
option specifying large 489
option specifying small or medium 489
option to use specific 489

Message Fabric Interface (MPI) support 61
Microsoft Visual Studio

compatibility 2328
integration 2328

Microsoft Visual Studio*
enabling optimization reports 64
getting started with 58
Guided Auto Parallelism 62
Intel® Performance Libraries 60
optimization reports, enabling 64
property pages 60
using code coverage 63
using Profile Guided Optimization 63

Microsoft* Visual C++
option specifying compatibility with 554

Microsoft* Visual Studio
option specifying compatibility with 554

min_val 1847
mixing vectorizable types in a loop 2121
mock object files 2216
MOVBE instructions

option generating 151
MPI support 61
mpx

attribute 646

multiple processes
option creating 596

multithreaded programs 2110
multithreading 2077, 2115
MXCSR register 634

N
new implementation of parallel loops

option enabling 277
noblock_loop 1975
nofusion 1985
noinline 1978
noparallel 1990
noprefetch 1993
normalized Floating-point number 638
Not-a-Number (NaN) 638
nounroll 1999
nounroll_and_jam 2000
novector 1985

O
object file

option generating one per source file 176
option increasing number of sections in 588

object files
specifying 49

omp simd early exit 1986
omp simdoff 1998
OMP_STACKSIZE environment variable 2048
Open Source tools 2326
OpenMP

support overview 2048
OpenMP Libraries

using 2079
openmp_version 2067, 2102
OpenMP*

advanced issues 2105
C/C++ interoperability 2105
combined construct 2062
compatibility libraries 2077
composite construct 2062
debugging 2105
environment variables 2084
examples of 2109
extensions for Intel® Compiler 2075
Fortran and C/C++ interoperability 2105
header files 2105
Intel® Xeon Phi™ coprocessor support 2060
KMP_AFFINITY 2084
legacy libraries 2077
library file names 2077
load balancing 2053
omp.h 2105
parallel processing thread model 2050
performance 2105
run-time library routines 2067, 2102
SIMD-enabled functions 2146
support libraries 2077
using 2048

OpenMP* API
option enabling 286
option enabling programs in sequential mode 291
option specifying threadprivate 292

OpenMP* clauses summary 2062
OpenMP* header files 2067, 2102

Index

2371

OpenMP* pragmas
syntax 2048
using 2048

OpenMP* run-time library
option controlling which is linked to 289
option specifying 287

OpenMP*, loop constructs
numbers 2067, 2102

opt report
inlining report 2227

optimization
option enabling prefetch insertion 213
option generating single assembly file from multiple
files 176
option generating single object file from multiple
files 174
option specifying code 115

optimization report
enabling in Visual Studio* 64, 68
option displaying phases for 265
option generating 256
option generating for routine names with specified
substring 272
option generating from subset 262
option generating in separate file per object 267
option including loop annotations 260
option specifying level of detail for 256
option specifying mangled or unmangled names 266
option specifying name for 261
option specifying phase to use for 268
option specifying the format for 264
option specifying what to check for 268

optimization_level 1987
optimization_parameter 1989
optimizations

high-level language 2213
option disabling all 118
option enabling all speed 120
option enabling many speed 119
option generating recommendations to improve 192
overview of 2202
profile-guided 2202

optimize 1987
option mapping tool 2322
Options: Optimization Reports dialog box 68
Options: Profile Guided Optimization dialog box 70
output files

option specifying name for 373
overflow

call to a runtime library routine 2067, 2102
overview

P
padding

option specifying assumptions for dynamically allocated
memory 202
option specifying assumptions for variables 202

parallel 1990
parallel pragma

lastprivate clause 2116
private clause 2116

parallel processing
thread model 2050

parallel region
option specifying number of threads to use in 277

parallel regions 2062
parallelism 60, 2067, 2102, 2110, 2164

parallelization 2110, 2115, 2164, 2166
parentheses in expressions

option determining interpretation of 113
performance 635
performance issues with IPO 2218
PGO

dialog box 71
in Microsoft Visual Studio* 63
using 63

PGO API
_PGOPTI_Prof_Dump_All 2209
_PGOPTI_Prof_Dump_And_Reset 2211
_PGOPTI_Prof_Reset 2211
_PGOPTI_Prof_Reset_ALL 2208
_PGOPTI_Set_Interval_Prof_Dump 2210
:Getting coverage summary on demand 2212
enable 2207

PGO dialog box 71
PGO reports 2206
PGO tools

code coverage tool 2294
profmerge 2313
proforder 2313
test prioritization tool 2307

pgopti.spi file 2307
pgouser.h header file 2207
platform toolset 59
pointer aliasing

option using aggressive multi-versioning check for 211
pointer checker

checking arrays 2285
checking bounds 2283
checking custom memory allocator 2288
checking for dangling pointers 2284
checking multi-threaded code 2289
checking run-time library functions 2287
feature summary 2280
finding and reporting errors 2291
how bounds are defined 2289
overview 2280
passing and returning bounds 2286
storing bounds information 2286
working with enabled and non-enabled modules 2285
wrappers 2287
wrapping run-time library functions 2287

porting applications
from gcc* to the Intel® C++ Compiler 2336
from the Microsoft* C++ Compiler 2331
to the Intel® C++ Compiler 2331

position-independent code
option generating 474, 475

position-independent external references
option generating code with 491

power consumption
option enabling diagnostics for 501

pragma alloc_section
var 1974

pragma block_loop
factor 1975
level 1975

pragma code_align 1976
pragma distribute_point 1977
pragma forceinline

recursive 1978
pragma inline

recursive 1978
pragma intel omp task 1980
pragma intel omp taskq 1981

Intel® C++ Compiler Classic Developer Guide and Reference

2372

pragma ivdep 1982
pragma loop_count

avg 1983
max 1983
min 1983
n 1983

pragma noblock_loop 1975
pragma nofusion 1985
pragma noinline 1978
pragma noparallel 1990
pragma noprefetch

var 1993
pragma nounroll 1999
pragma nounroll_and_jam 2000
pragma novector 1985
pragma omp simdoff 1998
pragma optimization_level

GCC 1987
intel 1987
n 1987

pragma optimization_parameter
target_arch 1989

pragma optimize
off 1987
on 1987

pragma parallel
always 1990
firstprivate 1990
lastprivate 1990
num_threads 1990
private 1990

pragma prefetch
distance 1993
hint 1993
var 1993

pragma simd
assert 1994
firstprivate 1994
lastprivate 1994
linear 1994
noassert 1994
novecremainder 1994
private 1994
reduction 1994
vecremainder 1994
vectorlength 1994
vectorlengthfor 1994

pragma unroll 1999
pragma unroll_and_jam 2000
pragma unused 2001
pragma vector 2002
pragmas

option displaying 439
Pragmas

gcc* compatible 2006
HP* compatible 2006
Intel-supported 2006
Microsoft* compatible 2006
overview 1972

Pragmas: Intel-specific 1973
precompiled header files 2328
predefined macros 1961, 1962, 2326
preempting functions 2222
prefetch 1993
prefetch distance

option specifying for prefetches inside loops 214
prefetch insertion

option enabling 213

prefetchW instruction
option supporting 215

prioritizing application tests 2307
privatization of static data for the MPC unified parallel

runtime
option enabling 274

processor
option optimizing for specific 157

processor features
option telling which to target 162

prof-gen-sampling compiler option 2204
prof-use-sampling compiler option 2204
profile data records

option affecting search for 246
option letting you use relative paths when searching
for 248, 249

Profile Guided Optimization
dialog box 71
in Microsoft Visual Studio* 63
using 63

Profile Guided Optimization dialog box 71
profile information

.dyn 2313

.dyn file 2209, 2211, 2313
profile information arrays

.dyn file 2294
profile-guided optimization

API support 2207
data ordering optimization 2317
dumping profile information 2211
example of 2204
function grouping optimization 2317
function order lists optimization 2317
function ordering optimization 2317
interval profile dumping 2210
overview 2202
phases 2204
reports 2206
resetting dynamic profile counters 2208, 2211
resetting profile information 2211
support 2207
usage model 2202

profile-optimized code
dumping 2209, 2210
generating information 2207
resetting dynamic counters for 2208, 2211

profiling
option enabling use of information from 250
option instrumenting a program for 243
option specifying directory for output files 239
option specifying name for summary 240

profiling an application
.dyn 2204

profiling feedback compilation
source 2204

profiling information
option enabling function ordering 242
option using to order static data items 238

profmerge 2313
profmerge tool

.dpi file 2294, 2307

.dyn file 2307
program loops

parallel processing model 2050
programs

option maximizing speed in 108
option specifying aliasing should be assumed in 107

projects

Index

2373

projects (continued)
adding files 57
creating 57
in Microsoft Visual Studio 57

property pages in Microsoft Visual Studio* 60
Proxy 1833, 1834

R
redistributable package 1792
redistributing libraries 1792
references to global function symbols

option binding to shared library definitions 559
references to global symbols

option binding to shared library definitions 558
register allocator

option selecting method for partitioning 216
regparm parameter passing convention

option specifying ABI for 154
relative error

option defining for math library function results 297
option defining maximum for math library function
results 306

remarks
option changing to errors 520

removed compiler options 608
report generation

dynamic profile counters 2208, 2211
Intel® Compiler extensions 2075
OpenMP* run-time routines 2067, 2102
profile information 2211
timing 2067, 2102
using xi* tools 2221

response files 2043
restricted transactional memory 1482, 1486
routine entry

option specifying the stack alignment to use on 467
routines

option passing parameters in registers 201
RTM

function prototypes 1493
macro definitions 1493

run-time environment variables 2015, 2232
run-time performance

improving 635
runtime dispatch

option using in calls to math functions 304

S
scalar replacement

option enabling during loop transformation 223
option using aggressive multi-versioning check for 211

SDLT
accessors 1817, 1827
example programs 1848, 1855
indexes 1840
number representation 1835
proxy objects 1832
SDLT_DEBUG 1846
SDLT_INLINE 1846

SDLT Layouts
sdlt layout namespace 1811

setting compiler options 77
setvars.bat 40
setvars.csh 40
setvars.sh 40

shared libraries 1788, 1790
shared object

option producing a dynamic 575
shared scalars 2109
short vector math library

option specifying for math library functions 310
Short Vector Math Library (SVML) Intrinsics

overview 1699
Short Vector Random Number Generator Library 680
signed infinity 638
signed zero 638
simd

vectorization
function annotations 1994

simd pragmas
option disabling compiler interpretation of 224

SIMD-enabled functions
pointers to 2155

SMP systems 2110
soa1d_container 1803
soa1d_container::accessor 1817, 1820, 1821, 1824, 1826,
1827, 1829
soa1d_container::const_accessor 1828
specifying file names

for assembly files 49
for object files 49

stack
option specifying reserve amount 562

stack alignment
option specifying for functions 496

stack checking routine
option controlling threshold for call of 483

stack variables
option initializing to NaN 365

standard directories
option removing from include search path 421

standards conformance 2325
static libraries

option invoking tool to generate 581
streaming stores

option generating for optimization 217
subnormal numbers 633
subroutines in the OpenMP* run-time library

for OpenMP* 2077
parallel run-time 2110

Supplemental Streaming SIMD Extensions 3
absolute value intrinsics 1578
addition intrinsics 1574
concatenate intrinsics 1580
multiplication intrinsics 1577

negation intrinsics
_mm_sign_epi16 1580
_mm_sign_epi32 1580
_mm_sign_epi8 1580
_mm_sign_pi16 1580
_mm_sign_pi32 1580
_mm_sign_pi8 1580

overview 1574
shuffle intrinsics
_mm_shuffle_epi8 1579
_mm_shuffle_pi8 1579
subtraction intrinsics
_mm_hsub_epi16 1576
_mm_hsub_epi32 1576
_mm_hsub_pi16 1576
_mm_hsub_pi32 1576
_mm_hsubs_epi16 1576
_mm_hsubs_pi16 1576

Intel® C++ Compiler Classic Developer Guide and Reference

2374

supported tools 2326
SVML 1699
symbol names

option using dollar sign when producing 380
symbol visibility

option specifying 479
synchronization

parallel processing model for 2050
thread sleep time 2075

sysroot target directory
option returning 598

T
target

attribute 646
targeting processors manually

cpu_dispatch 2230
target (GCC attribute) 2230

test prioritization tool
examples 2307
options 2307
requirements 2307

thread affinity
option specifying 275

thread pooling 2116
threads 60
threshold control for auto-parallelization

OpenMP* routines for 2067, 2102
reordering 2121

to Microsoft Visual Studio projects 57
tool options

code coverage tool 2294
profmerge 2313
proforder 2313
test prioritization 2307

tools
option passing options to 424
option specifying directory for supporting 423

topology maps 2084
traceback information

option providing 507
transcendental functions

option replacing calls to 294
tselect tool

option producing an instrumented file for 255
option specifying a directory for profiling output for 254
option specifying a file name for summary files for 254

U
universal binaries 76
unroll

n 1999
unroll_and_jam

n 2000
unused 2001
unwind information

option determining where precision occurs 129
use PGO 63
user functions

auto-parallelization 2110
dynamic libraries 2067, 2102
OpenMP* 2109
profile-guided optimization 2204

using 2042, 2043
using Intel® Performance Libraries

using Intel® Performance Libraries (continued)
in Eclipse* 56

Using OpenMP* 2048
using property pages in Microsoft Visual Studio* 60
utilities

profmerge 2313
proforder 2313

V
valarray implementation

compiling code 1907
using in code 1907

value-profiling 2208, 2211
variable length arrays

option enabling 223
variables

option placing explicitly zero-initialized in DATA
section 481, 493
option placing uninitialized in DATA section 493
option saving always 469

vector
attribute 647
pragma 2002

vector copy
non-vectorizable copy 2121
programming guidelines 2121

vector function application binary interface
option specifying compatibility for 232

vector pragma 2002
vector_variant

attribute 648
vectorization

compiler options 2126
compiler pragmas 2126
keywords 2126
obstacles 2126
option disabling 229
option setting threshold for loops 230
speed-up 2126
what is 2126

Vectorization
auto-parallelization
reordering threshold control 2121

general compiler directives 2121
Intel® Streaming SIMD Extensions 2121
language support 2162
loop unrolling 2121
pragma 2162
pragma simd 1994
SIMD 2140
user-mandated 2140

vector copy
non-vectorizable copy 2121
programming guidelines 2121

vectorizing
loops 2136, 2202

version
option saving in executable or object file 601

Visual Studio*
compiler selection 59
converting projects 50

dialog boxes
Code Coverage dialog box 73
Code Coverage Settings 74
Compilers 67
Converter 68
GAP 69

Index

2375

dialog boxes (continued)
dialog boxes (continued)
Intel® Performance Libraries 67
Options: Code Coverage 73
Options: Guided Auto Parallelism 69
Use Intel C++ 67

enabling optimization reports 68
MPI support 61
optimization reports, enabling 68
Options: Optimization Reports dialog box 68

W
warnings

gcc-compatible 618
option changing to errors 519, 520

whole program analysis 2213
Windows compiler options

Fa 49
Fo 49
I 49
X 49

Windows* compiler options
Qlocation 2041
Qoption 2041

worker thread 2077
worksharing 2062, 2110

X
Xcode*

building the target 76
creating a project
in Xcode* 75
projects
creating 75
running the executable 77
selecting Intel's Clang-based C++ Compiler 75
selecting the Intel® C++ Compiler 75
setting compiler options 77
using dynamic libraries 77

xiar 2218, 2220
xild 2213, 2218, 2220
xilib 2220
xilibtool 2220
xilink 2213, 2218, 2220

Z
zmm registers usage

option defining a level of 219

Intel® C++ Compiler Classic Developer Guide and Reference

2376

	Intel® C++ Compiler Classic Developer Guide and Reference
	Notices and Disclaimers
	Contents
	Introducing the Intel® C++ Compiler Classic
	Feature Requirements
	Get Help and Support
	Related Information
	Notational Conventions

	Compiler Setup
	Use the Command Line
	Specify the Location of Compiler Components
	Invoke the Compiler
	Use the Command Line on Windows
	File Extensions
	Use Makefiles for Compilation
	Use Compiler Options
	Specify Compiler Files
	Convert Projects to Use a Selected Compiler

	Use Eclipse*
	Add the Compiler to Eclipse*
	Multi-Version Compiler Support
	Use Cheat Sheets
	Create a Simple Eclipse Project
	Makefiles
	Use Intel Libraries with Eclipse*

	Using Microsoft Visual Studio*
	Create a New Project
	Use the Intel® C++ Compiler Classic
	Select the Compiler Version
	Specify a Base Platform Toolset
	Use Property Pages
	Use Intel® Libraries with Microsoft Visual Studio*
	Include MPI Support
	Use Guided Auto Parallelism in Microsoft Visual Studio*
	Use Code Coverage in Microsoft Visual Studio*
	Use Profile Guided Optimization in Microsoft Visual Studio*
	Optimization Reports
	Dialog Box Help
	Options: Compilers dialog box
	Use Intel® C++ Compiler Classic dialog box
	Options: Intel Libraries for oneAPI dialog box
	Options: Converter dialog box
	Options: Optimization Reports dialog box
	Options: Guided Auto Parallelism dialog box
	Configure Analysis dialog box
	Options: Profile Guided Optimization (PGO) dialog box
	Profile Guided Optimization dialog box
	Options: Code Coverage dialog box
	Code Coverage dialog box
	Code Coverage Settings dialog box

	Using Xcode* (macOS)
	Create an Xcode* Project
	Select the Intel® Compiler
	Build the Target
	Set Compiler Options
	Run the Executable
	Use Intel Libraries with Xcode*

	Compiler Reference
	C/C++ Calling Conventions
	Compiler Options
	Alphabetical Option List
	General Rules for Compiler Options
	What Appears in the Compiler Option Descriptions
	Optimization Options
	falias, Oa
	fast
	fbuiltin, Oi
	fdefer-pop
	ffnalias, Ow
	foptimize-sibling-calls
	fprotect-parens, Qprotect-parens
	GF
	nolib-inline
	O
	Od
	Ofast
	Os
	Ot
	Ox

	Code Generation Options
	arch
	ax, Qax
	EH
	fasynchronous-unwind-tables
	fcf-protection, Qcf-protection
	fdata-sections, Gw
	fexceptions
	ffunction-sections, Gy
	fomit-frame-pointer, Oy
	Gd
	Gr
	GR
	guard
	Gv
	Gz
	hotpatch
	m
	m32, m64, Q32, Q64
	m80387
	march
	masm
	mauto-arch, Qauto-arch
	mbranches-within-32B-boundaries, Qbranches-within-32B-boundaries
	mconditional-branch, Qconditional-branch
	minstruction, Qinstruction
	momit-leaf-frame-pointer
	mregparm
	mregparm-version
	mstringop-inline-threshold, Qstringop-inline-threshold
	mstringop-strategy, Qstringop-strategy
	mtune, tune
	Qcxx-features
	Qpatchable-addresses
	Qsafeseh
	regcall, Qregcall
	x, Qx
	xHost, QxHost

	Interprocedural Optimization Options
	ffat-lto-objects
	ip, Qip
	ip-no-inlining, Qip-no-inlining
	ip-no-pinlining, Qip-no-pinlining
	ipo, Qipo
	ipo-c, Qipo-c
	ipo-jobs, Qipo-jobs
	ipo-S, Qipo-S
	ipo-separate, Qipo-separate

	Advanced Optimization Options
	alias-const, Qalias-const
	ansi-alias, Qansi-alias
	ansi-alias-check, Qansi-alias-check
	complex-limited-range, Qcomplex-limited-range
	fargument-alias, Qalias-args
	fargument-noalias-global
	ffreestanding, Qfreestanding
	fjump-tables
	ftls-model
	funroll-all-loops
	guide, Qguide
	guide-data-trans, Qguide-data-trans
	guide-file, Qguide-file
	guide-file-append, Qguide-file-append
	guide-opts, Qguide-opts
	guide-par, Qguide-par
	guide-vec, Qguide-vec
	ipp-link, Qipp-link
	qdaal, Qdaal
	qipp, Qipp
	qmkl, Qmkl
	qopt-args-in-regs, Qopt-args-in-regs
	qopt-assume-safe-padding, Qopt-assume-safe-padding
	qopt-block-factor, Qopt-block-factor
	qopt-calloc, Qopt-calloc
	qopt-class-analysis, Qopt-class-analysis
	qopt-dynamic-align, Qopt-dynamic-align
	qopt-jump-tables, Qopt-jump-tables
	qopt-malloc-options
	qopt-matmul, Qopt-matmul
	qopt-mem-layout-trans, Qopt-mem-layout-trans
	qopt-multi-version-aggressive, Qopt-multi-version-aggressive
	qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-scatter-by-shuffles
	qopt-prefetch, Qopt-prefetch
	qopt-prefetch-distance, Qopt-prefetch-distance
	qopt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint
	qopt-ra-region-strategy, Qopt-ra-region-strategy
	qopt-streaming-stores, Qopt-streaming-stores
	qopt-subscript-in-range, Qopt-subscript-in-range
	qopt-zmm-usage, Qopt-zmm-usage
	qoverride-limits, Qoverride-limits
	qtbb, Qtbb
	Qvla
	scalar-rep, Qscalar-rep
	simd, Qsimd
	simd-function-pointers, Qsimd-function-pointers
	unroll, Qunroll
	unroll-aggressive, Qunroll-aggressive
	use-intel-optimized-headers, Quse-intel-optimized-headers
	vec, Qvec
	vec-guard-write, Qvec-guard-write
	vec-threshold, Qvec-threshold
	vecabi, Qvecabi

	Profile Guided Optimization Options
	finstrument-functions, Qinstrument-functions
	fnsplit, Qfnsplit
	Gh
	GH
	p
	prof-data-order, Qprof-data-order
	prof-dir, Qprof-dir
	prof-file, Qprof-file
	prof-func-groups
	prof-func-order, Qprof-func-order
	prof-gen, Qprof-gen
	prof-gen-sampling
	prof-hotness-threshold, Qprof-hotness-threshold
	prof-src-dir, Qprof-src-dir
	prof-src-root, Qprof-src-root
	prof-src-root-cwd, Qprof-src-root-cwd
	prof-use, Qprof-use
	prof-use-sampling
	prof-value-profiling, Qprof-value-profiling
	Qcov-dir
	Qcov-file
	Qcov-gen

	Optimization Report Options
	qopt-report, Qopt-report
	qopt-report-annotate, Qopt-report-annotate
	qopt-report-annotate-position, Qopt-report-annotate-position
	qopt-report-embed, Qopt-report-embed
	qopt-report-file, Qopt-report-file
	qopt-report-filter, Qopt-report-filter
	qopt-report-format, Qopt-report-format
	qopt-report-help, Qopt-report-help
	qopt-report-names, Qopt-report-names
	qopt-report-per-object, Qopt-report-per-object
	qopt-report-phase, Qopt-report-phase
	qopt-report-routine, Qopt-report-routine

	OpenMP* Options and Parallel Processing Options
	device-math-lib
	fmpc-privatize
	fopenmp-device-lib
	par-affinity, Qpar-affinity
	par-loops, Qpar-loops
	par-num-threads, Qpar-num-threads
	par-runtime-control, Qpar-runtime-control
	par-schedule, Qpar-schedule
	par-threshold, Qpar-threshold
	parallel, Qparallel
	parallel-source-info, Qparallel-source-info
	qopenmp, Qopenmp
	qopenmp-lib, Qopenmp-lib
	qopenmp-link, Qopenmp-link
	qopenmp-simd, Qopenmp-simd
	qopenmp-stubs, Qopenmp-stubs
	qopenmp-threadprivate, Qopenmp-threadprivate
	Qpar-adjust-stack

	Floating-Point Options
	fast-transcendentals, Qfast-transcendentals
	fimf-absolute-error, Qimf-absolute-error
	fimf-accuracy-bits, Qimf-accuracy-bits
	fimf-arch-consistency, Qimf-arch-consistency
	fimf-domain-exclusion, Qimf-domain-exclusion
	fimf-force-dynamic-target, Qimf-force-dynamic-target
	fimf-max-error, Qimf-max-error
	fimf-precision, Qimf-precision
	fimf-use-svml, Qimf-use-svml
	fma, Qfma
	fp-model, fp
	fp-port, Qfp-port
	fp-speculation, Qfp-speculation
	fp-stack-check, Qfp-stack-check
	fp-trap, Qfp-trap
	fp-trap-all, Qfp-trap-all
	ftz, Qftz
	Ge
	mp1, Qprec
	pc, Qpc
	prec-div, Qprec-div
	prec-sqrt, Qprec-sqrt
	qsimd-honor-fp-model, Qsimd-honor-fp-model
	qsimd-serialize-fp-reduction, Qsimd-serialize-fp-reduction
	rcd, Qrcd

	Inlining Options
	fgnu89-inline
	finline
	finline-functions
	finline-limit
	inline-calloc, Qinline-calloc
	inline-factor, Qinline-factor
	inline-forceinline, Qinline-forceinline
	inline-level, Ob
	inline-max-per-compile, Qinline-max-per-compile
	inline-max-per-routine, Qinline-max-per-routine
	inline-max-size, Qinline-max-size
	inline-max-total-size, Qinline-max-total-size
	inline-min-caller-growth, Qinline-min-caller-growth
	inline-min-size, Qinline-min-size
	Qinline-dllimport

	Output, Debug, and Precompiled Header Options
	c
	debug (Linux* and macOS*)
	debug (Windows*)
	Fa
	FA
	fasm-blocks
	FC
	fcode-asm
	Fd
	FD
	Fe
	feliminate-unused-debug-types, Qeliminate-unused-debug-types
	femit-class-debug-always
	fmerge-constants
	fmerge-debug-strings
	Fo
	Fp
	FR
	fsource-asm
	ftrapuv, Qtrapuv
	fverbose-asm
	g
	gdwarf
	Gm
	grecord-gcc-switches
	gsplit-dwarf
	map-opts, Qmap-opts
	o
	pch
	pch-create
	pch-dir
	pch-use
	pdbfile
	print-multi-lib
	Qpchi
	Quse-msasm-symbols
	RTC
	S
	use-asm, Quse-asm
	use-msasm
	V
	Y-
	Yc
	Yd
	Yu
	Zi, Z7, ZI
	Zo

	Preprocessor Options
	A, QA
	B
	C
	D
	dD, QdD
	dM, QdM
	dN, QdN
	E
	EP
	FI
	gcc, gcc-sys
	gcc-include-dir
	H, QH
	I
	I-
	icc, Qicl
	idirafter
	imacros
	iprefix
	iquote
	isystem
	iwithprefix
	iwithprefixbefore
	Kc++, TP
	M, QM
	MD, QMD
	MF, QMF
	MG, QMG
	MM, QMM
	MMD, QMMD
	MP (Linux* OS)
	MQ
	MT, QMT
	nostdinc++
	P
	pragma-optimization-level
	u (Windows*)
	U
	undef
	X

	Component Control Options
	Qinstall
	Qlocation
	Qoption

	Language Options
	ansi
	check
	early-template-check
	fblocks
	ffriend-injection
	fno-gnu-keywords
	fno-implicit-inline-templates
	fno-implicit-templates
	fno-operator-names
	fno-rtti
	fnon-lvalue-assign
	fpermissive
	fshort-enums
	fsyntax-only
	ftemplate-depth, Qtemplate-depth
	funsigned-bitfields
	funsigned-char
	GZ
	H (Windows* OS)
	help-pragma, Qhelp-pragma
	intel-extensions, Qintel-extensions
	J
	restrict, Qrestrict
	std, Qstd
	strict-ansi
	vd
	vmb
	vmg
	vmm
	vms
	x (type option)
	Za
	Zc
	Ze
	Zg
	Zp
	Zs

	Data Options
	align
	auto-ilp32, Qauto-ilp32
	auto-p32
	check-pointers, Qcheck-pointers
	check-pointers-dangling, Qcheck-pointers-dangling
	check-pointers-mpx, Qcheck-pointers-mpx
	check-pointers-narrowing, Qcheck-pointers-narrowing
	check-pointers-undimensioned, Qcheck-pointers-undimensioned
	falign-functions, Qfnalign
	falign-loops, Qalign-loops
	falign-stack
	fcommon
	fextend-arguments, Qextend-arguments
	fkeep-static-consts, Qkeep-static-consts
	fmath-errno
	fminshared
	fmudflap
	fpack-struct
	fpascal-strings
	fpic
	fpie
	freg-struct-return
	fstack-protector
	fstack-security-check
	fvisibility
	fvisibity-inlines-hidden
	fzero-initialized-in-bss, Qzero-initialized-in-bss
	GA
	Gs
	GS
	GT
	homeparams
	malign-double
	malign-mac68k
	malign-natural
	malign-power
	mcmodel
	mdynamic-no-pic
	mlong-double
	no-bss-init, Qnobss-init
	noBool
	Qlong-double
	Qsfalign

	Compiler Diagnostic Options
	diag, Qdiag
	diag-dump, Qdiag-dump
	diag-enable=power, Qdiag-enable:power
	diag-error-limit, Qdiag-error-limit
	diag-file, Qdiag-file
	diag-file-append, Qdiag-file-append
	diag-id-numbers, Qdiag-id-numbers
	diag-once, Qdiag-once
	fnon-call-exceptions
	traceback
	w
	w0...w5, W0...W5
	Wabi
	Wall
	Wbrief
	Wcheck
	Wcheck-unicode-security
	Wcomment
	Wcontext-limit, Qcontext-limit
	wd, Qwd
	Wdeprecated
	we, Qwe
	Weffc++, Qeffc++
	Werror, WX
	Werror-all
	Wextra-tokens
	Wformat
	Wformat-security
	Wic-pointer
	Winline
	WL
	Wmain
	Wmissing-declarations
	Wmissing-prototypes
	wn, Qwn
	Wnon-virtual-dtor
	wo, Qwo
	Wp64
	Wpch-messages
	Wpointer-arith
	Wport
	wr, Qwr
	Wremarks
	Wreorder
	Wreturn-type
	Wshadow
	Wsign-compare
	Wstrict-aliasing
	Wstrict-prototypes
	Wtrigraphs
	Wuninitialized
	Wunknown-pragmas
	Wunused-function
	Wunused-variable
	ww, Qww
	Wwrite-strings

	Compatibility Options
	clang-name
	clangxx-name
	fabi-version
	fms-dialect
	gcc-name
	gnu-prefix
	gxx-name
	Qgcc-dialect
	Qms
	Qvc
	stdlib
	vmv

	Linking or Linker Options
	Bdynamic
	Bstatic
	Bsymbolic
	Bsymbolic-functions
	cxxlib
	dynamic-linker
	dynamiclib
	F (Windows*)
	F (macOS*)
	fixed
	Fm
	fuse-ld
	l
	L
	LD
	link
	MD
	MT
	no-libgcc
	nodefaultlibs
	no-intel-lib
	nostartfiles
	nostdlib
	pie
	pthread
	shared
	shared-intel
	shared-libgcc
	static
	static-intel
	static-libgcc
	static-libstdc++
	staticlib
	T
	u (Linux* OS)
	v
	Wa
	Wl
	Wp
	Xlinker
	Zl

	Miscellaneous Options
	bigobj
	dryrun
	dumpmachine
	dumpversion
	global-hoist, Qglobal-hoist
	help
	intel-freestanding
	intel-freestanding-target-os
	MP-force
	multibyte-chars, Qmultibyte-chars
	multiple-processes, MP
	nologo
	print-sysroot
	save-temps, Qsave-temps
	showIncludes
	sox
	sysroot
	Tc
	TC
	Tp
	V, QV
	version
	watch

	Deprecated and Removed Compiler Options
	Display Option Information
	Alternate Compiler Options
	Portability and GCC*-Compatible Warning Options

	Floating-Point Operations
	Programming Tradeoffs in Floating-point Applications
	Floating-point Optimizations
	Use the -fp-model, /fp Option
	Denormal Numbers
	Floating-Point Environment
	Set the FTZ and DAZ Flags
	Checking the Floating-point Stack State
	Tuning Performance
	IEEE Floating-point Operations

	Attributes
	align
	align_value
	avoid_false_share
	code_align
	concurrency_safe
	const
	cpu_dispatch, cpu_specific
	mpx
	target
	vector
	vector_variant

	Intrinsics
	Details about Intrinsics
	Naming and Usage Syntax
	References
	Intrinsics for All Intel® Architectures
	Integer Arithmetic Intrinsics
	Floating-point Intrinsics
	String and Block Copy Intrinsics
	Miscellaneous Intrinsics
	_may_i_use_cpu_feature
	_allow_cpu_features

	Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Alignment Support
	Allocating and Freeing Aligned Memory Blocks
	Inline Assembly

	Intrinsics for Managing Extended Processor States and Registers
	Intrinsics for Reading and Writing the Content of Extended Control Registers
	_xgetbv()
	_xsetbv()

	Intrinsics for Saving and Restoring the Extended Processor States
	_fxsave()
	_fxsave64()
	_fxrstor()
	_fxrstor64()
	_xsave()/_xsavec()/_xsaves()
	_xsave64()/ _xsavec64()/ _xsaves64()
	_xsaveopt()
	_xsaveopt64()
	_xrstor()/xrstors()
	_xrstor64()/xrstors64()

	Intrinsics for the Short Vector Random Number Generator Library
	Data Types and Calling Conventions
	Usage Model
	Engine Initialization and Finalization
	svrng_new_rand0_engine/svrng_new_rand0_ex
	svrng_new_rand_engine/svrng_new_rand_ex
	svrng_new_mcg31m1_engine/svrng_new_mcg31m1_ex
	svrng_new_mcg59_engine/svrng_new_mcg59_ex
	svrng_new_mt19937_engine/svrng_new_mt19937_ex
	svrng_delete_engine

	Distribution Initialization and Finalization
	svrng_new_uniform_distribution_[int|float|double]/svrng_update_uniform_distribution_[int|float|double]
	svrng_new_normal_distribution_[float|double]/svrng_update_normal_distribution_[float|double]
	svrng_delete_distribution

	Random Values Generation
	svrng_generate[1|2|4|8|16|32]_[uint|ulong]
	svrng_generate[1|2|4|8|16|32]_[int|float|double]

	Service Routines
	Parallel Computation Support
	svrng_copy_engine
	svrng_skipahead_engine
	svrng_leapfrog_engine

	Error Handling
	svrng_set_status
	svrng_get_status

	Intrinsics for Instruction Set Architecture (ISA) Instructions
	SERIALIZE
	_serialize

	TSXLDTRK
	_xresldtrk
	_xsusldtrk

	Intrinsics for Intel® Advanced Matrix Extensions (Intel(R) AMX) Instructions
	Intrinsic for Intel® Advanced Matrix Extensions AMX-BF16 Instructions
	_tile_dpbf16ps

	Intrinsics for Intel® Advanced Matrix Extensions AMX-INT8 Instructions
	_tile_dpbssd
	_tile_dpbsud
	_tile_dpbusd
	_tile_dpbuud

	Intrinsics for Intel(R) Advanced Matrix Extensions AMX-TILE Instructions
	_tile_loadconfig
	_tile_loadd
	_tile_release
	_tile_storeconfig
	_tile_stored
	_tile_stream_loadd
	_tile_zero

	Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) BF16 Instructions
	Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) 4VNNIW Instructions
	Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) 4FMAPS Instructions
	Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) VPOPCNTDQ Instructions
	Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Additional Instructions
	Intrinsics for Arithmetic Operations
	Intrinsics for Bit Manipulation Operations
	Intrinsics for Comparison Operations
	Intrinsics for Conversion Operations
	Intrinsics for Load Operations
	Intrinsics for Logical Operations
	Intrinsics for Miscellaneous Operations
	Intrinsics for Move Operations
	Intrinsics for Set Operations
	Intrinsics for Shift Operations
	Intrinsics for Store Operations

	Intrinsics for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Instructions
	Intrinsics for Arithmetic Operations
	Intrinsics for Addition Operations
	Intrinsics for FP Addition Operations
	Intrinsics for Integer Addition Operations

	Intrinsics for Determining Minimum and Maximum Values
	Intrinsics for Determining Minimum and Maximum FP Values
	Intrinsics for Determining Minimum and Maximum Integer Values

	Intrinsics for FP Fused Multiply-Add (FMA) Operations
	Intrinsics for Multiplication Operations
	Intrinsics for FP Multiplication Operations
	Intrinsics for Integer Multiplication Operations

	Intrinsics for Subtraction Operations
	Intrinsics for FP Subtraction Operations
	Intrinsics for Integer Subtraction Operations

	Intrinsics for Other Mathematics Operations
	Intrinsics for FP Division Operations
	Intrinsics for Absolute Value Operations
	Intrinsics for Scale Operations

	Intrinsics for Blend Operations
	Intrinsics for Bit Manipulation Operations
	Intrinsics for Integer Bit Manipulation and Conflict Detection Operations
	Intrinsics for Bitwise Logical Operations
	Intrinsics for Integer Bit Rotation Operations
	Intrinsics for Integer Bit Shift Operations

	Intrinsics for Broadcast Operations
	Intrinsics for FP Broadcast Operations
	Intrinsics for Integer Broadcast Operations

	Intrinsics for Comparison Operations
	Intrinsics for FP Comparison Operations
	Intrinsics for Integer Comparison Operations

	Intrinsics for Compression Operations
	Intrinsics for Conversion Operations
	Intrinsics for FP Conversion Operations
	Intrinsics for Integer Conversion Operations

	Intrinsics for Expand and Load Operations
	Intrinsics for FP Expand and Load Operations
	Intrinsics for Integer Expand and Load Operations

	Intrinsics for Gather and Scatter Operations
	Intrinsics for FP Gather and Scatter Operations
	Intrinsics for Integer Gather and Scatter Operations

	Intrinsics for Insert and Extract Operations
	Intrinsics for FP Insert and Extract Operations
	Intrinsics for Integer Insert and Extract Operations

	Intrinsics for Load and Store Operations
	Intrinsics for FP Loads and Store Operations
	Intrinsics for Integer Load and Store Operations

	Intrinsics for Miscellaneous Operations
	Intrinsics for Miscellaneous FP Operations
	Intrinsics for Miscellaneous Integer Operations

	Intrinsics for Move Operations
	Intrinsics for FP Move Operations
	Intrinsics for Integer Move Operations

	Intrinsics for Pack and Unpack Operations
	Intrinsics for FP Pack and Unpack Operations
	Intrinsics for Integer Pack and Unpack Operations

	Intrinsics for Permutation Operations
	Intrinsics for FP Permutation Operations
	Intrinsics for Integer Permutation Operations

	Intrinsics for Reduction Operations
	Intrinsics for FP Reduction Operations
	Intrinsics for Integer Reduction Operations

	Intrinsics for Set Operations
	Intrinsics for Shuffle Operations
	Intrinsics for FP Shuffle Operations
	Intrinsics for Integer Shuffle Operations

	Intrinsics for Test Operations
	Intrinsics for Typecast Operations
	Intrinsics for Vector Mask Operations

	Intrinsics for Later Generation Intel® Core™ Processor Instruction Extensions
	Intrinsics for 3rd Generation Intel® Core™ Processor Instruction Extensions
	Intrinsics for 4th Generation Intel® Core™ Processor Instruction Extensions
	Intrinsics for Converting Half Floats that Map to 3rd Generation Intel® Core™ Processor Instructions
	_mm_cvtph_ps()
	_mm256_cvtph_ps()
	_mm_cvtps_ph()
	_mm256_cvtps_ph()

	Intrinsics that Generate Random Numbers of 16/32/64 Bit Wide Random Integers
	_rdrand16_step(), _rdrand32_step(), _rdrand64_step()
	_rdseed16_step/ _rdseed32_step/ _rdseed64_step

	Intrinsics for Multi-Precision Arithmetic
	_addcarry_u32(), _addcarry_u64()
	_addcarryx_u32(), _addcarryx_u64()
	_subborrow_u32(), _subborrow_u64()

	Intrinsics that Allow Reading from and Writing to the FS Base and GS Base Registers
	_readfsbase_u32(), _readfsbase_u64()
	_readgsbase_u32(), _readgsbase_u64()
	_writefsbase_u32(), _writefsbase_u64()
	_writegsbase_u32(), _writegsbase_u64()

	Intrinsics for Intel® Advanced Vector Extensions 2 (Intel® AVX2)
	Intrinsics for Arithmetic Operations
	_mm256_abs_epi8/16/32
	_mm256_add_epi8/16/32/64
	_mm256_adds_epi8/16
	_mm256_adds_epu8/16
	_mm256_sub_epi8/16/32/64
	_mm256_subs_epi8/16
	_mm256_subs_epu8/16
	_mm256_avg_epu8/16
	_mm256_hadd_epi16/32
	_mm256_hadds_epi16
	_mm256_hsub_epi16/32
	_mm256_hsubs_epi16
	_mm256_madd_epi16
	_mm256_maddubs_epi16
	_mm256_mul_epi32
	_mm256_mul_epu32
	_mm256_mulhi_epi16
	_mm256_mulhi_epu16
	_mm256_mullo_epi16/32
	_mm256_mulhrs_epi16
	_mm256_sign_epi8/16/32
	_mm256_mpsadbw_epu8
	_mm256_sad_epu8

	Intrinsics for Arithmetic Shift Operations
	_mm256_sra_epi16/32
	_mm256_srai_epi16/32
	_mm256_srav_epi32
	_mm_srav_epi32

	Intrinsics for Blend Operations
	_mm_blend_epi32, _mm256_blend_epi16/32
	_mm256_blendv_epi8

	Intrinsics for Bitwise Operations
	_mm256_and_si256
	_mm256_andnot_si256
	_mm256_or_si256
	_mm256_xor_si256

	Intrinsics for Broadcast Operations
	_mm_broadcastss_ps, _mm256_broadcastss_ps
	_mm256_broadcastsd_pd
	_mm_broadcastb_epi8, _mm256_broadcastb_epi8
	_mm_broadcastw_epi16, _mm256_broadcastw_epi16
	_mm_broadcastd_epi32, _mm256_broadcastd_epi32
	_mm_broadcastq_epi64, _mm256_broadcastq_epi64
	_mm256_broadcastsi128_si256

	Intrinsics for Compare Operations
	_mm256_cmpeq_epi8/16/32/64
	_mm256_cmpgt_epi8/16/32/64
	_mm256_max_epi8/16/32
	_mm256_max_epu8/16/32
	_mm256_min_epi8/16/32
	_mm256_min_epu8/16/32

	Intrinsics for Fused Multiply Add Operations
	_mm_fmadd_pd, _mm256_fmadd_pd
	_mm_fmadd_ps, _mm256_fmadd_ps
	_mm_fmadd_sd
	_mm_fmadd_ss
	_mm_fmaddsub_pd, _mm256_fmaddsub_pd
	_mm_fmaddsub_ps, _mm256_fmaddsub_ps
	_mm_fmsub_pd, _mm256_fmsub_pd
	_mm_fmsub_ps, _mm256_fmsub_ps
	_mm_fmsub_sd
	_mm_fmsub_ss
	_mm_fmsubadd_pd, _mm256_fmsubadd_pd
	_mm_fmsubadd_ps, _mm256_fmsubadd_ps
	_mm_fnmadd_pd, _mm256_fnmadd_pd
	_mm_fnmadd_ps, _mm256_fnmadd_ps
	_mm_fnmadd_sd
	_mm_fnmadd_ss
	_mm_fnmsub_pd, _mm256_fnmsub_pd
	_mm_fnmsub_ps, _mm256_fnmsub_ps
	_mm_fnmsub_sd
	_mm_fnmsub_ss

	Intrinsics for GATHER Operations
	_mm_mask_i32gather_pd, _mm256_mask_i32gather_pd
	_mm_i32gather_pd, _mm256_i32gather_pd
	_mm_mask_i64gather_pd, _mm256_mask_i64gather_pd
	_mm_i64gather_pd, _mm256_i64gather_pd
	_mm_mask_i32gather_ps, _mm256_mask_i32gather_ps
	_mm_i32gather_ps, _mm256_i32gather_ps
	_mm_mask_i64gather_ps, _mm256_mask_i64gather_ps
	_mm_i64gather_ps, _mm256_i64gather_ps
	_mm_mask_i32gather_epi32, _mm256_mask_i32gather_epi32
	_mm_i32gather_epi32, _mm256_i32gather_epi32
	_mm_mask_i32gather_epi64,_mm256_mask_i32gather_epi64
	_mm_i32gather_epi64,_mm256_i32gather_epi64
	_mm_mask_i64gather_epi32,_mm256_mask_i64gather_epi32
	_mm_i64gather_epi32,_mm256_i64gather_epi32
	_mm_mask_i64gather_epi64,_mm256_mask_i64gather_epi64
	_mm_i64gather_epi64,_mm256_i64gather_epi64

	Intrinsics for Logical Shift Operations
	_mm256_sll_epi16/32/64
	_mm256_slli_epi16/32/64
	_mm256_sllv_epi32/64
	_mm_sllv_epi32/64
	_mm256_slli_si256
	_mm256_srli_si256
	_mm256_srl_epi16/32/64
	_mm256_srli_epi16/32/64
	_mm256_srlv_epi32/64
	_mm_srlv_epi32/64

	Intrinsics for Insert/Extract Operations
	_mm256_inserti128_si256
	_mm256_extracti128_si256
	_mm256_insert_epi8/16/32/64
	_mm256_extract_epi8/16/32/64

	Intrinsics for Masked Load/Store Operations
	_mm_maskload_epi32/64, _mm256_maskload_epi32/64
	_mm_maskstore_epi32/64, _mm256_maskstore_epi32/64

	Intrinsics for Miscellaneous Operations
	_mm256_alignr_epi8
	_mm256_movemask_epi8
	_mm256_stream_load_si256

	Intrinsics for Operations to Manipulate Integer Data at Bit-Granularity
	_bextr_u32/64
	_blsi_u32/64
	_blsmsk_u32/64
	_blsr_u32/64
	_bzhi_u32/64
	_pext_u32/64
	_pdep_u32/64
	_lzcnt_u32/64
	_tzcnt_u32/64

	Intrinsics for Pack/Unpack Operations
	_mm256_packs_epi16/32
	_mm256_packus_epi16/32
	_mm256_unpackhi_epi8/16/32/64
	_mm256_unpacklo_epi8/16/32/64

	Intrinsics for Packed Move with Extend Operations
	_mm256_cvtepi8_epi16/32/64
	_mm256_cvtepi16_epi32/64
	_mm256_cvtepi32_epi64
	_mm256_cvtepu8_epi16/32/64
	_mm256_cvtepu16_epi32/64
	_mm256_cvtepu32_epi64

	Intrinsics for Permute Operations
	_mm256_permutevar8x32_epi32
	_mm256_permutevar8x32_ps
	_mm256_permute4x64_epi64
	_mm256_permute4x64_pd
	_mm256_permute2x128_si256

	Intrinsics for Shuffle Operations
	_mm256_shuffle_epi8
	_mm256_shuffle_epi32
	_mm256_shufflehi_epi16
	_mm256_shufflelo_epi16

	Intrinsics for Intel® Transactional Synchronization Extensions (Intel® TSX)
	Intel® Transactional Synchronization Extensions (Intel® TSX) Overview
	Intel® Transactional Synchronization Extensions (Intel® TSX) Programming Considerations
	Restricted Transactional Memory Intrinsics
	Restricted Transactional Memory Overview
	_xtest
	_xbegin
	_xend
	_xabort

	Hardware Lock Elision Intrinsics (Windows*)
	Hardware Lock Elision Overview
	HLE Acquire _InterlockedCompareExchange Functions
	HLE Acquire _InterlockedExchangeAdd Functions
	HLE Release _InterlockedCompareExchange Functions
	HLE Release _InterlockedExchangeAdd Functions
	HLE Release _Store Functions

	Function Prototype and Macro Definitions

	Intrinsics for Intel® Advanced Vector Extensions
	Details of Intel® AVX Intrinsics and FMA Intrinsics
	Intrinsics for Arithmetic Operations
	_mm256_add_pd
	_mm256_add_ps
	_mm256_addsub_pd
	_mm256_addsub_ps
	_mm256_hadd_pd
	_mm256_hadd_ps
	_mm256_sub_pd
	_mm256_sub_ps
	_mm256_hsub_pd
	_mm256_hsub_ps
	_mm256_mul_pd
	_mm256_mul_ps
	_mm256_div_pd
	_mm256_div_ps
	_mm256_dp_ps
	_mm256_sqrt_pd
	_mm256_sqrt_ps
	_mm256_rsqrt_ps
	_mm256_rcp_ps

	Intrinsics for Bitwise Operations
	_mm256_and_pd
	_mm256_and_ps
	_mm256_andnot_pd
	_mm256_andnot_ps
	_mm256_or_pd
	_mm256_or_ps
	_mm256_xor_pd
	_mm256_xor_ps

	Intrinsics for Blend and Conditional Merge Operations
	_mm256_blend_pd
	_mm256_blend_ps
	_mm256_blendv_pd
	_mm256_blendv_ps

	Intrinsics for Compare Operations
	_mm_cmp_pd, _mm256_cmp_pd
	_mm_cmp_ps, _mm256_cmp_ps
	_mm_cmp_sd
	_mm_cmp_ss

	Intrinsics for Conversion Operations
	_mm256_cvtepi32_pd
	_mm256_cvtepi32_ps
	_mm256_cvtpd_epi32
	_mm256_cvtps_epi32
	_mm256_cvtpd_ps
	_mm256_cvtps_pd
	_mm256_cvttp_epi32
	_mm256_cvttps_epi32
	_mm256_cvtsi256_si32
	_mm256_cvtsd_f64
	_mm256_cvtss_f32

	Intrinsics to Determine Minimum and Maximum Values
	_mm256_max_pd
	_mm256_max_ps
	_mm256_min_pd
	_mm256_min_ps

	Intrinsics for Load and Store Operations
	_mm256_broadcast_pd
	_mm256_broadcast_ps
	_mm256_broadcast_sd
	_mm256_broadcast_ss, _mm_broadcast_ss
	_mm256_load_pd
	_mm256_load_ps
	_mm256_load_si256
	_mm256_loadu_pd
	_mm256_loadu_ps
	_mm256_loadu_si256
	_mm256_maskload_pd, _mm_maskload_pd
	_mm256_maskload_ps, _mm_maskload_ps
	_mm256_store_pd
	_mm256_store_ps
	_mm256_store_si256
	_mm256_storeu_pd
	_mm256_storeu_ps
	_mm256_storeu_si256
	_mm256_stream_pd
	_mm256_stream_ps
	_mm256_stream_si256
	_mm256_maskstore_pd, _mm_maskstore_pd
	_mm256_maskstore_ps, _mm_maskstore_ps

	Intrinsics for Miscellaneous Operations
	_mm256_extractf128_pd
	_mm256_extractf128_ps
	_mm256_extractf128_si256
	_mm256_insertf128_pd
	_mm256_insertf128_ps
	_mm256_insertf128_si256
	_mm256_lddqu_si256
	_mm256_movedup_pd
	_mm256_movehdup_ps
	_mm256_moveldup_ps
	_mm256_movemask_pd
	_mm256_movemask_ps
	_mm256_round_pd
	_mm256_round_ps
	_mm256_set_pd
	_mm256_set_ps
	_mm256_set_epi8/16/32/64x
	_mm256_setr_pd
	_mm256_setr_ps
	_mm256_setr_epi32
	_mm256_set1_pd
	_mm256_set1_ps
	_mm256_set1_epi32
	_mm256_setzero_pd
	_mm256_setzero_ps
	_mm256_setzero_si256
	_mm256_zeroall
	_mm256_zeroupper

	Intrinsics for Packed Test Operations
	_mm256_testz_si256
	_mm256_testc_si256
	_mm256_testnzc_si256
	_mm256_testz_pd, _mm_testz_pd
	_mm256_testz_ps, _mm_testz_ps
	_mm256_testc_pd, _mm_testc_pd
	_mm256_testc_ps, _mm_testc_ps
	_mm256_testnzc_pd, _mm_testnzc_pd
	_mm256_testnzc_ps, _mm_testnzc_ps

	Intrinsics for Permute Operations
	_mm256_permute_pd, _mm_permute_pd
	_mm256_permute_ps, _mm_permute_ps
	_mm256_permutevar_pd, _mm_permutevar_pd
	_mm_permutevar_ps, _mm256_permutevar_ps
	_mm256_permute2f128_pd
	_mm256_permute2f128_ps
	_mm256_permute2f128_si256

	Intrinsics for Shuffle Operations
	_mm256_shuffle_pd
	_mm256_shuffle_ps

	Intrinsics for Unpack and Interleave Operations
	_mm256_unpackhi_pd
	_mm256_unpackhi_ps
	_mm256_unpacklo_pd
	_mm256_unpacklo_ps

	Support Intrinsics for Vector Typecasting Operations
	_mm256_castpd_ps
	_mm256_castps_pd
	_mm256_castpd_si256
	_mm256_castps_si256
	_mm256_castsi256_pd
	_mm256_castsi256_ps
	_mm256_castpd128_pd256
	_mm256_castpd256_pd128
	_mm256_castps128_ps256
	_mm256_castps256_ps128
	_mm256_castsi128_si256
	_mm256_castsi256_si128

	Intrinsics Generating Vectors of Undefined Values
	_mm256_undefined_ps()
	_mm256_undefined_pd()
	_mm256_undefined_si256

	Intrinsics for Intel® Streaming SIMD Extensions 4 (Intel® SSE4)
	Efficient Accelerated String and Text Processing
	Overview
	Packed Compare Intrinsics
	Application Targeted Accelerators Intrinsics

	Vectorizing Compiler and Media Accelerators
	Overview: Vectorizing Compiler and Media Accelerators
	Packed Blending Intrinsics
	Floating Point Dot Product Intrinsics
	Packed Format Conversion Intrinsics
	Packed Integer Min/Max Intrinsics
	Floating Point Rounding Intrinsics
	DWORD Multiply Intrinsics
	Register Insertion/Extraction Intrinsics
	Test Intrinsics
	Packed DWORD to Unsigned WORD Intrinsic
	Packed Compare for Equal Intrinsic
	Cacheability Support Intrinsic

	Intrinsics for Intel® Supplemental Streaming SIMD Extensions 3 (SSSE3)
	Addition Intrinsics
	Subtraction Intrinsics
	Multiplication Intrinsics
	Absolute Value Intrinsics
	Shuffle Intrinsics
	Concatenate Intrinsics
	Negation Intrinsics

	Intrinsics for Intel® Streaming SIMD Extensions 3 (Intel® SSE3)
	Integer Vector Intrinsic
	Single-precision Floating-point Vector Intrinsics
	Double-precision Floating-point Vector Intrinsics
	Miscellaneous Intrinsics

	Intrinsics for Intel® Streaming SIMD Extensions 2 (Intel® SSE2)
	Macro Functions
	Floating-point Intrinsics
	Arithmetic Intrinsics
	Logical Intrinsics
	Compare Intrinsics
	Conversion Intrinsics
	Load Intrinsics
	Set Intrinsics
	Store Intrinsics

	Integer Intrinsics
	Arithmetic Intrinsics
	Logical Intrinsics
	Shift Intrinsics
	Compare Intrinsics
	Conversion Intrinsics
	Move Intrinsics
	Load Intrinsics
	Set Intrinsics
	Store Intrinsics

	Miscellaneous Functions and Intrinsics
	Cacheability Support Intrinsics
	Miscellaneous Intrinsics
	Casting Support Intrinsics
	Pause Intrinsic
	Macro Function for Shuffle
	Intrinsics Returning Vectors of Undefined Values

	Intrinsics for Intel® Streaming SIMD Extensions (Intel® SSE)
	Details about Intel® Streaming SIMD Extensions Intrinsics
	Writing Programs with Intel® Streaming SIMD Extensions (Intel® SSE) Intrinsics
	Arithmetic Intrinsics
	Logical Intrinsics
	Compare Intrinsics
	Conversion Intrinsics
	Load Intrinsics
	Set Intrinsics
	Store Intrinsics
	Cacheability Support Intrinsics
	Integer Intrinsics
	Intrinsics to Read and Write Registers
	Miscellaneous Intrinsics
	Macro Functions
	Macro Function for Shuffle Operations
	Macro Functions to Read and Write Control Registers
	Macro Function for Matrix Transposition

	Intrinsics for MMX™ Technology
	Details about MMX™ Technology Intrinsics
	The EMMS Instruction: Why You Need It
	EMMS Usage Guidelines
	General Support Intrinsics
	Packed Arithmetic Intrinsics
	Shift Intrinsics
	Logical Intrinsics
	Compare Intrinsics
	Set Intrinsics

	Intrinsics for Advanced Encryption Standard Implementation
	Intrinsics for Carry-less Multiplication Instruction and Advanced Encryption Standard Instructions

	Intrinsics for Converting Half Floats
	Details About Intrinsics for Half Floats

	Intrinsics for Short Vector Math Library Operations (SVML)
	Intrinsics for Division Operations (512-bit)
	Intrinsics for Division Operations
	_mm_div_epi8/ _mm256_div_epi8
	_mm_div_epi16/ _mm256_div_epi16
	_mm_div_epi32/ _mm256_div_epi32
	_mm_div_epi64/ _mm256_div_epi64
	_mm_div_epu8/ _mm256_div_epu8
	_mm_div_epu16/ _mm256_div_epu16
	_mm_div_epu32/ _mm256_div_epu32
	_mm_div_epu64/ _mm256_div_epu64
	_mm_rem_epi8/ _mm256_rem_epi8
	_mm_rem_epi16/ _mm256_rem_epi16
	_mm_rem_epi32/ _mm256_rem_epi32
	_mm_rem_epi64/ _mm256_rem_epi64
	_mm_rem_epu8/ _mm256_rem_epu8
	_mm_rem_epu16/ _mm256_rem_epu16
	_mm_rem_epu32/ _mm256_rem_epu32
	_mm_rem_epu64/ _mm256_rem_epu64

	Intrinsics for Error Function Operations (512-bit)
	Intrinsics for Error Function Operations
	_mm_cdfnorminv_pd, _mm256_cdfnorminv_pd
	_mm_cdfnorminv_ps, _mm256_cdfnorminv_ps
	_mm_erf_pd, _mm256_erf_pd
	_mm_erf_ps, _mm256_erf_ps
	_mm_erfc_pd, _mm256_erfc_pd
	_mm_erfc_ps, _mm256_erfc_ps
	_mm_erfinv_pd, _mm256_erfinv_pd
	_mm_erfinv_ps, _mm256_erfinv_ps

	Intrinsics for Exponential Operations (512-bit)
	Intrinsics for Exponential Operations
	_mm_exp2_pd, _mm256_exp2_pd
	_mm_exp2_ps, _mm256_exp2_ps
	_mm_exp_pd, _mm256_exp_pd
	_mm_exp_ps, _mm256_exp_ps
	_mm_exp10_pd, _mm256_exp10_pd
	_mm_exp10_ps, _mm256_exp10_ps
	_mm_expm1_pd, _mm256_expm1_pd
	_mm_expm1_ps, _mm256_expm1_ps
	_mm_cexp_ps, _mm256_cexp_ps
	_mm_pow_pd, _mm256_pow_pd
	_mm_pow_ps, _mm256_pow_ps
	_mm_hypot_pd, _mm256_hypot_pd
	_mm_hypot_ps, _mm256_hypot_ps

	Intrinsics for Logarithmic Operations (512-bit)
	Intrinsics for Logarithmic Operations
	_mm_log2_pd, _mm256_log2_pd
	_mm_log2_ps, _mm256_log2_ps
	_mm_log10_pd, _mm256_log10_pd
	_mm_log10_ps, _mm256_log10_ps
	_mm_log_pd, _mm256_log_pd
	_mm_log_ps, _mm256_log_ps
	_mm_logb_pd, _mm256_logb_pd
	_mm_logb_ps, _mm256_logb_ps
	_mm_log1p_pd, _mm256_log1p_pd
	_mm_log1p_ps, _mm256_log1p_ps
	_mm_clog_ps, _mm256_clog_ps

	Intrinsics for Reciprocal Operations (512-bit)
	Intrinsics for Root Function Operations (512-bit)
	Intrinsics for Rounding Operations (512-bit)
	Intrinsics for Square Root and Cube Root Operations
	_mm_sqrt_pd, _mm256_sqrt_pd
	_mm_sqrt_ps, _mm256_sqrt_ps
	_mm_invsqrt_pd, _mm256_invsqrt_pd
	_mm_invsqrt_ps, _mm256_invsqrt_ps
	_mm_cbrt_pd, _mm256_cbrt_pd
	_mm_cbrt_ps, _mm256_cbrt_ps
	_mm_invcbrt_pd, _mm256_invcbrt_pd
	_mm_invcbrt_ps, _mm256_invcbrt_ps
	_mm_csqrt_ps, _mm256_csqrt_ps

	Intrinsics for Trigonometric Operations (512-bit)
	Intrinsics for Trigonometric Operations
	_mm_acos_pd, _mm256_acos_pd
	_mm_acos_ps, _mm256_acos_ps
	_mm_acosh_pd, _mm256_acosh_pd
	_mm_acosh_ps, _mm256_acosh_ps
	_mm_asin_pd, _mm256_asin_pd
	_mm_asin_ps, _mm256_asin_ps
	_mm_asinh_pd, _mm256_asinh_pd
	_mm_asinh_ps, _mm256_asinh_ps
	_mm_atan_pd, _mm256_atan_pd
	_mm_atan_ps, _mm256_atan_ps
	_mm_atan2_pd, _mm256_atan2_pd
	_mm_atan2_ps, _mm256_atan2_ps
	_mm_atanh_pd, _mm256_atanh_pd
	_mm_atanh_ps, _mm256_atanh_ps
	_mm_cos_pd, _mm256_cos_pd
	_mm_cos_ps, _mm256_cos_ps
	_mm_cosd_pd, _mm256_cosd_pd
	_mm_cosd_ps, _mm256_cosd_ps
	_mm_cosh_pd, _mm256_cosh_pd
	_mm_cosh_ps, _mm256_cosh_ps
	_mm_sin_pd, _mm256_sin_pd
	_mm_sin_ps, _mm256_sin_ps
	_mm_sind_pd, _mm256_sind_pd
	_mm_sind_ps, _mm256_sind_ps
	_mm_sinh_pd, _mm256_sinh_pd
	_mm_sinh_ps, _mm256_sinh_ps
	_mm_tan_pd, _mm256_tan_pd
	_mm_tan_ps, _mm256_tan_ps
	_mm_tand_pd, _mm256_tand_pd
	_mm_tand_ps, _mm256_tand_ps
	_mm_tanh_pd, _mm256_tanh_pd
	_mm_tanh_ps, _mm256_tanh_ps
	_mm_sincos_pd, _mm256_sincos_pd
	_mm_sincos_ps, _mm256_sincos_ps

	Libraries
	Create Libraries
	Use Intel Shared Libraries
	Using Shared Libraries on macOS
	Manage Libraries
	Redistribute Libraries When Deploying Applications
	Resolve References to Shared Libraries
	Intel's Memory Allocator Library
	SIMD Data Layout Templates
	Usage Guidelines: Function Calls and Containers
	Construct an n_container
	Bounds

	User-Level Interface
	SDLT Primitives (SDLT_PRIMITIVE)
	soa1d_container
	aos1d_container
	access_by

	n_container
	Layouts
	Shape
	n_extent_generator

	make_ n_container template function
	extent_d template function

	Bounds
	bounds_t
	sdlt::bounds Template Function
	n_bounds_t
	n_bounds_generator
	bounds_d Template Function

	Accessors
	soa1d_container::accessor and aos1d_container::accessor
	soa1d_container::const_accessor and aos1d_container::const_accessor
	Accessor Concept

	Proxy Objects
	Proxy
	ConstProxy

	Number Representation
	aligned_offset
	fixed_offset

	Indexes
	linear_index
	n_index_t
	n_index_generator
	index_d template function

	Convenience and Correctness
	max_val
	min_val

	Examples
	Efficiency with Structure of Arrays Example
	Complex SDLT Primitive Construction Example
	Forward Dependency Example
	Use of Offsets and Methods on a SDLT Primitive Example
	RGB to YUV Conversion Example

	Intel® C++ Class Libraries
	C++ Classes and SIMD Operations
	Capabilities of C++ SIMD Classes
	Integer Vector Classes
	Terms and Syntax
	Rules for Operators
	Assignment Operator
	Logical Operators
	Addition and Subtraction Operators
	Multiplication Operators
	Shift Operators
	Comparison Operators
	Conditional Select Operators
	Debug Operations
	Unpack Operators
	Pack Operators
	Clear MMX™ State Operator
	Integer Functions for Streaming SIMD Extensions
	Conversions between Fvec and Ivec

	Floating-point Vector Classes
	Fvec Syntax and Notation
	Data Alignment
	Conversions
	Constructors and Initialization
	Arithmetic Operators
	Minimum and Maximum Operators
	Logical Operators
	Compare Operators
	Conditional Select Operators for Fvec Classes
	Cacheability Support Operators
	Debug Operations
	Load and Store Operators
	Unpack Operators
	Move Mask Operators

	Classes Quick Reference
	Programming Example
	Intel's valarray Implementation

	Intel's C++ Asynchronous I/O Extensions for Windows
	Intel's C++ Asynchronous I/O Library for Windows
	aio_read
	aio_write
	Example for aio_read and aio_write Functions
	aio_suspend
	Example for aio_suspend Function
	aio_error
	aio_return
	Example for aio_error and aio_return Functions
	aio_fsync
	aio_cancel
	Example for aio_cancel Function
	lio_listio
	Example for lio_listio Function
	Asynchronous I/O Function Errors

	Intel's C++ Asynchronous I/O Class for Windows* Operating Systems
	Template Class async_class
	get_last_operation_id
	wait
	get_status
	get_last_error
	get_error_operation_id
	stop_queue
	resume_queue
	clear_queue
	Example for Using async_class Template Class

	IEEE 754-2008 Binary Floating-Point Conformance Library
	Intel® IEEE 754-2008 Binary Floating-Point Conformance Library and Usage
	Function List
	Homogeneous General-Computational Operations Functions
	formatOf General-Computational Operations Functions
	Quiet-Computational Operations Functions
	Signaling-Computational Operations Functions
	Non-Computational Operations Functions

	Intel's Numeric String Conversion Library
	Use Intel's Numeric String Conversion Library
	Function List

	Macros
	ISO Standard Predefined Macros
	Additional Predefined Macros
	Use Predefined Macros to Specify Intel® Compilers

	Pragmas
	Intel-Specific Pragma Reference
	alloc_section
	block_loop/noblock_loop
	code_align
	distribute_point
	inline, noinline, forceinline
	intel omp task
	intel omp taskq
	ivdep
	loop_count
	nofusion
	novector
	omp simd early_exit
	optimize
	optimization_level
	optimization_parameter
	parallel/noparallel
	prefetch/noprefetch
	simd
	simdoff
	unroll/nounroll
	unroll_and_jam/nounroll_and_jam
	unused
	vector

	Intel-supported Pragma Reference

	Error Handling

	Compilation
	Compilation Overview
	Supported Environment Variables
	Pass Options to the Linker
	Linking Tools and Options
	Specify Alternate Tools and Paths
	Use Configuration Files
	Use Response Files
	Global Symbols and Visibility Attributes for Linux* and macOS
	Save Compiler Information in Your Executable
	Link Debug Information

	Optimization and Programming
	OpenMP* Support
	Add OpenMP* Support
	Parallel Processing Model
	Worksharing Using OpenMP*
	Control Thread Allocation
	OpenMP* Pragmas
	OpenMP* Library Support
	OpenMP* Run-time Library Routines
	Intel® Compiler Extension Routines to OpenMP*
	OpenMP* Support Libraries
	Use the OpenMP Libraries
	Thread Affinity Interface
	OpenMP* Memory Spaces and Allocators

	OpenMP* Advanced Issues
	OpenMP* Implementation-Defined Behaviors
	OpenMP* Examples

	Automatic Parallelization
	Enabling Auto-parallelization
	Programming with Auto-parallelization
	Enabling Further Loop Parallelization for Multicore Platforms
	Language Support for Auto-parallelization

	Vectorization
	Automatic Vectorization
	Vectorization Programming Guidelines
	Use Automatic Vectorization
	Vectorization and Loops
	Loop Constructs

	Explicit Vector Programming
	User-mandated or SIMD Vectorization
	SIMD-Enabled Functions
	SIMD-Enabled Function Pointers
	Vectorize a Loop Using the _Simd Keyword
	Function Annotations and the SIMD Directive for Vectorization

	Guided Auto Parallelism
	Using Guided Auto Parallelism
	Guided Auto Parallelism Messages
	GAP Message (Diagnostic ID 30506)
	GAP Message (Diagnostic ID 30513)
	GAP Message (Diagnostic ID 30515)
	GAP Message (Diagnostic ID 30519)
	GAP Message (Diagnostic ID 30521)
	GAP Message (Diagnostic ID 30522)
	GAP Message (Diagnostic ID 30523)
	GAP Message (Diagnostic ID 30525)
	GAP Message (Diagnostic ID 30526)
	GAP Message (Diagnostic ID 30528)
	GAP Message (Diagnostic ID 30531)
	GAP Message (Diagnostic ID 30532)
	GAP Message (Diagnostic ID 30533)
	GAP Message (Diagnostic ID 30534)
	GAP Message (Diagnostic ID 30535)
	GAP Message (Diagnostic ID 30536)
	GAP Message (Diagnostic ID 30537)
	GAP Message (Diagnostic ID 30538)
	GAP Message (Diagnostic ID 30753)
	GAP Message (Diagnostic ID 30754)
	GAP Message (Diagnostic ID 30755)
	GAP Message (Diagnostic ID 30756)
	GAP Message (Diagnostic ID 30757)
	GAP Message (Diagnostic ID 30758)
	GAP Message (Diagnostic ID 30759)
	GAP Message (Diagnostic ID 30760)

	Profile-Guided Optimization (PGO)
	Profile-Guided Optimization via Hardware Counters
	Profile an Application with Instrumentation
	Profile-Guided Optimization Report
	PGO API Support
	Resetting Profile Information
	Dumping Profile Information
	Interval Profile Dumping
	Resetting the Dynamic Profile Counters
	Dumping and Resetting Profile Information
	Getting Coverage Summary Information on Demand

	High-Level Optimization (HLO)
	Interprocedural Optimization
	Use Interprocedural Optimization
	Performance and Large Program Considerations
	Create a Library from IPO Objects
	Request Compiler Reports with the xi* Tools
	Inline Expansion of Functions
	Inlining Report

	Processor Targeting
	CPU Feature Targeting

	Methods to Optimize Code Size
	Intel® C++ Compiler Classic Math Library
	Use the Intel® C++ Compiler Classic Math Library
	Math Function List
	Trigonometric Functions
	Hyperbolic Functions
	Exponential Functions
	Special Functions
	Nearest Integer Functions
	Remainder Functions
	Miscellaneous Functions
	Complex Functions
	C99 Macros

	Automatically-Aligned Dynamic Allocation
	Automatically-Aligned Dynamic Allocation

	Pointer Checker
	Pointer Checker Overview
	Pointer Checker Feature Summary
	Using the Pointer Checker
	Checking Bounds
	Checking for Dangling Pointers
	Checking Arrays
	Working with Enabled and Non-Enabled Modules
	Storing Bounds Information
	Passing and Returning Bounds
	Checking Run-Time Library Functions
	Writing a Wrapper
	Checking Custom Memory Allocators
	Checking Multi-Threaded Code
	How the Compiler Defines Bounds Information for Pointers
	Finding and Reporting Out-of-Bounds Errors

	Tools
	PGO Tools
	PGO Tools Overview
	Code Coverage Tool
	Test Prioritization Tool
	Profmerge and Proforder Tools
	Using Function Order Lists, Function Grouping, Function Ordering, and Data Ordering Optimizations
	Comparison of Function Order Lists and IPO Code Layout

	Compiler Option Mapping Tool

	Compatibility and Portability
	Conformance to the C/C++ Standards
	GCC Compatibility and Interoperability
	Microsoft Compatibility
	Port from Microsoft Visual C++* to the Intel® C++ Compiler Classic
	Modify Your makefile
	Other Considerations

	Port from GCC* to the Intel® C++ Compiler Classic
	Modify Your makefile
	Other Considerations

	Index

