An In-Depth Learning of Matrix Multipliers for Deep Learning Accelerators

Presented by: Jose Yallouz,Intel Corporation

Joint work with: Amit Gradstein, Simon Rubanovich, Zeev Sperber, Adi Yoaz
I have defined a "Matrix" as a rectangular array of terms, out of which different systems of determinants may be engendered as from the womb of a common parent.” Sylvester’s 1851 paper.

Matrix Theory Applications:

- Linear Algebra
- Graph Theory
- Physics
- Electronics

Matrix = womb in Latin
Mother (English)
Mutter (German)
Matrix in Neural Networks

- **Input Layer**

 \[
 \begin{bmatrix}
 \text{bias} & X1 & X2 \\
 1 & 0 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
 \end{bmatrix}_{4 \times 3}
 \]

- **Weights** \(w^T \) (transposed)

 \[
 \begin{bmatrix}
 .5 & .5 & .5 \\
 .5 & .5 & .5 \\
 .5 & .5 & .5 \\
 \end{bmatrix}_{3 \times 3}
 \]

 \[
 \begin{align*}
 &\text{Go to} \\
 &\text{Hidden Nodes}
 \end{align*}
 \]

- **Hidden Layer**

 \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 .5 & .5 & .5 \\
 .5 & .5 & .5 \\
 1 & 1 & 1 \\
 \end{bmatrix}_{4 \times 3}
 \]

- **Sigmoid Function**

 \[
 \frac{1}{1 + e^{-(wx + b)}}
 \]

- **Weights**

 \[
 \begin{bmatrix}
 .3 & .5 \\
 .5 & 1.5 \\
 .5 & 1.5 \\
 \end{bmatrix}_{3 \times 2}
 \]

- **Output Layer**

 \[
 \begin{bmatrix}
 1 & .3 \\
 1 & 1.5 \\
 1 & 3 \\
 \end{bmatrix}_{4 \times 2}
 \]

- **Sigmoid Function**

 \[
 \frac{1}{1 + e^{-(wx + b)}}
 \]

- **Output**

 \[
 \begin{bmatrix}
 1 & 0 \\
 1 & 0 \\
 1 & 0 \\
 \end{bmatrix}
 \]

CACT 2017
From which units Deep Learning accelerators are composed?

In-Datacenter Performance Analysis of a Tensor Processing Unit

Google, Inc., Mountain View, CA USA
jouppi@google.com

ABSTRACT
Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC — called a Tensor Processing Unit (TPU) — deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU’s deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the

KEYWORDS
DNN, MLP, CNN, RNN, LSTM, neural network, deep learning, domain-specific architecture, accelerator, TensorFlow, TPU, GPU

ACM Reference format:
https://doi.org/10.1145/3079856.3080246

1 INTRODUCTION TO NEURAL NETWORKS
The synergy between the large data sets in the cloud and the
Matrix Multiplication

- $\hat{C}_{M \times N} = C_{M \times N} + A_{M \times K} \times B_{K \times N} =$

$$\begin{pmatrix} \hat{c}_{11} & \cdots & \hat{c}_{1N} \\ \vdots & \ddots & \vdots \\ \hat{c}_{M1} & \cdots & \hat{c}_{MN} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1N} \\ \vdots & \ddots & \vdots \\ c_{M1} & \cdots & c_{MN} \end{pmatrix} + \begin{pmatrix} a_{11} & \cdots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{M1} & \cdots & a_{MK} \end{pmatrix} \times \begin{pmatrix} b_{11} & \cdots & b_{1N} \\ \vdots & \ddots & \vdots \\ b_{K1} & \cdots & b_{KN} \end{pmatrix}$$

- $\hat{c}_{ij} = c_{ij} + \sum_{l=0}^{K} a_{ik} \cdot b_{kj}$

- The calculation of each element \hat{c}_{ij} requires K Multiply ACCumulate (MAC) operations. Thus a matrix multiplication requires $M \times K \times N$ MAC operations.

- Matrix Multiplication is a high computing application!
 - For $M = K = N$, $O(N^2)$ memory access results in $O(N^3)$ operations.
Simple Implementation

- $\hat{c}_{ij} = \sum_{l=0}^{K} a_{ik} \cdot b_{kj} = d_1 + d_2 + \ldots + d_t$
- $d_t = a_{i,2t-1} \cdot b_{2t-1,j} + a_{i,2t} \cdot b_{2t,j} \quad \forall 1 \leq t \leq \frac{n}{2}$

- $\frac{n}{2}$ CBs are required for $n \times n$ matrix multiplication

Systolic array

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

Processing Element (PE)
Systolic array

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]
Systolic array

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]
Systolic array

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

\[a_{13} \cdot b_{11}, a_{11} \cdot b_{12}, a_{12} \cdot b_{21}, a_{21} \cdot b_{11}\]

\[b_{13}, b_{22}, b_{31}\]
Systolic array

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

- After 3 cycles C_{11} is ready
Systolic array

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix} \times
\begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

- After 4 cycles C_{12} and C_{21} are ready
Systolic array

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

• After 5 cycles \(C_{13} \), \(C_{22} \) and \(C_{31} \) are ready.
Systolic array

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times
\begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

- After 6 cycles C_{23} and C_{32} are ready.
Systolic array

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix} \times \begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

• After 7 cycles C_{33} is ready
• Computation Completed!
Deep Learning Accelerators Comparison

- Intel Nervana Neural Network Processor (NNP)
- Google Tensor Processing Unit (TPU)
- Nvidia Tesla Volta
- Movidius Myriad
- Mobileye EyeQ
Deep Learning Accelerators Comparison

<table>
<thead>
<tr>
<th></th>
<th>Nervana</th>
<th>TPU (Gen2)</th>
<th>Volta</th>
<th>Myriad X</th>
<th>EyeQ5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACs per unit</td>
<td>55 Tops</td>
<td>45 TFlops</td>
<td>120 TFlops</td>
<td>1Tops</td>
<td>24 Tops</td>
</tr>
<tr>
<td>Data type</td>
<td>flexpoint</td>
<td>FP16</td>
<td>FP16</td>
<td>FP16/ 8 bit fixed point</td>
<td></td>
</tr>
<tr>
<td>Power envelop</td>
<td></td>
<td>200W+</td>
<td>300W</td>
<td></td>
<td>10W</td>
</tr>
<tr>
<td>Technology</td>
<td>28nm</td>
<td></td>
<td>22nm</td>
<td></td>
<td>7nm</td>
</tr>
<tr>
<td>Release Year</td>
<td>2017</td>
<td>2017</td>
<td>2018</td>
<td>2017</td>
<td>2020</td>
</tr>
<tr>
<td>Market</td>
<td>Server</td>
<td>Server</td>
<td>Server</td>
<td>End-user</td>
<td>End-user</td>
</tr>
</tbody>
</table>
The necessity of common benchmarks for Deep Learning (Inference/Training) performance analysis!

We should aim to create a comprehensive set of Deep Learning benchmarks (as SPEC for CPU) for performance analysis.
Conclusions

• My personal passions:
 • Mathematics
 • Computer Science (CS)

• “As 150 years ago the math community adopts the Matrix theory, turning a de facto fundamental instrument in science, we are now adopting this important tool into Computer Science, specifically, into Computer Architecture”

• This adoption has been done through a specific high computing application:
 • Deep Learning

• ”Is there any other killer application utilizing Matrix Multiplication?”

IAAI (Intel Architecture for Artificial Intelligent)