
Build Your Own Traffic Generator – DPDK-
in-a-Box

Table of Contents
Introduction .. 2

About the Author .. 2

The DPDK Traffic Generator .. 2

Block Diagram ... 3

Software .. 3

Hardware .. 3

Note NIC Information .. 4

Install the TRex* Traffic Generator ... 7

Configure the Traffic Generator .. 9

Note Platform lcore Count .. 10

Run the Traffic Generator ... 11

Summary ... 11

Next Steps ... 13

Exercises .. 14

Appendix: Unbinding from DPDK & Binding to Kernel ... 16

Root Cause .. 16

Solution ... 16

References .. 20

Introduction

The purpose of this cookbook is to guide users through the steps required to build a Data Plane
Development Kit (DPDK) based traffic generator.

We built a DPDK-in-a-Box using the MinnowBoard Turbot, which is a low cost, portable platform based

on the Intel® Atom™ processor E3826. For the OS, we installed Ubuntu 16.04 client with DPDK. The

instructions in this document are tested on our DPDK-in-a-Box, as well as on an Intel® Core i7-5960X

Haswell-E desktop. You can use any Intel® Architecture (IA) platform to build your own device.

For the traffic generator, we will use the TRex* realistic traffic generator. The TRex package is self-

contained and can be easily installed.

About the Author

M Jay has worked with the Intel DPDK team since 2009. He joined Intel in 1991 and has worked in
various divisions and roles within Intel as a 64-bit CPU front side bus architect and 64-bit HAL developer
before joining the Intel DPDK team. M Jay holds 21 US patents, both individually and jointly, all issued
while working at Intel. M Jay was awarded the Intel Achievement Award in 2016, Intel's highest honor
based on innovation and results.

Please send your feedback to M Jay Muthurajan.Jayakumar@intel.com

Any Intel® processor-based platform will work—desktop, server, laptop or embedded system.

The DPDK Traffic Generator

http://dpdk.org/
http://dpdk.org/
https://trex-tgn.cisco.com/
mailto:Muthurajan.Jayakumar@intel.com

Block Diagram

 Software

 Ubuntu 16.04 Client OS with DPDK installed

 TRex* realistic traffic generator

Hardware

Our DPDK-in-a-Box uses a MinnowBoard Turbot single board computer:

 Out of the three Ethernet ports, the two at the bottom are for the traffic generator (dual gigabit

Intel® Ethernet Controller I350). Connect a loopback cable between them.

 Connect the third Ethernet port to the Internet (to download the TRex package).

 Connect the keyboard and mouse to the USB ports.

 Connect a display to the HDMI Interface.

To Display

To Internet

Traffic Generator Ports

Intel® Atom™ – Intel® Xeon® processor-

based system Port 0

DPDK

Traffic Generator Port 1

http://wiki.minnowboard.org/MinnowBoard_Wiki_Home

The MinnowBoard Turbot

The MinnowBoard includes a microSD card and an SD adapter.

 Insert the microSD card into the microSD Slot. The SD adapter should be ignored and not used.

 Power on the DPDK-in-a-Box system. Ubuntu will be up and running right away.

Choose the username test and assign the password tester (or use the username and password

specified by the Quick Start Guide that comes with the platform).

 Log on as root by inputting the command, and verify that you are in the /home/test directory with

the following two commands:

sudo su

ls

Note NIC Information
The configuration file for the traffic generator needs the PCI bus-related information and the MAC
address. Note this information first using Linux commands, because once the DPDK or packet generator
is run, these ports are unavailable to Linux.

1. For PCI bus-related NIC information, type the following command:

lspci

You will see the following output. Note down that for port 0 the information is 03:00.0 and for port
1 the information is 03:00.1.

Insert MicroSD

2. Find the MAC address with this command:

ifconfig

You will see the following output. Note down that for port 0 the MAC address is

00:30:18:CB:F2:70 and for port 2 the MAC address is 00:30:18:CB:F2:71.

Note that the first port in the screenshot below, enp2s0, is the port connected to the Internet. No
need to make a note of this.

Item Port 0 Port 1

PCI Bus-related NIC info (from
lspci)

03:00.0 03:00.1

MAC address 00:30:18:CB:F2:70 00:30:18:CB:F2:71

Fill the following table with the information you gathered from your specific platform:

Item Port 0 Port 1

PCI Bus-related NIC info (from
lspci)

MAC address

What if you don’t see both of the ports in response to the ifconfig command?

One possible reason is that you might have run the DPDK based application previously, in which case the
application might have claimed those ports, making them unavailable to the kernel. In that case, refer to
the appendix on how to unbind the ports from DPDK so that the kernel can claim them and you can find
the MAC address with the ifconfig command.

In the following discussion, we will assume that you successfully found the ports and have noted down
the MAC addresses.

Install the TRex* Traffic Generator

Input the following commands:

pwd
mkdir trex
cd trex
wget –no-cache http://trex-tgn.cisco.com/trex/release/latest

You should see that the install is complete, and saved in /home/test/trex/latest:

The next step is to untar the package:

tar –xzvf latest

Below you see that version 2.08 is the latest version at the time of this screen capture:

http://trex-tgn.cisco.com/trex/release/latest

ls –al

You will see the directory with the version installed. In this exercise, the directory is v2.08, as shown
below in response to the ls –al command. Change directory to the version installed on your system;
for example, cd <dir name with version installed>:

cd v2.08

ls –al

You will see the file t-rex-64, which is the traffic generator executable:

Configure the Traffic Generator
The good news is that the TRex package comes with a sample config file cfg/simple_cfg.yaml. Copy that
to /etc/trex_cfg.yaml and edit the file by issuing the following commands, making sure that you’re in
your /home/test/trex/<your version> directory:

pwd
cp cfg/simple_cfg.yaml /etc/trex_cfg.yaml
gedit /etc/trex_cfg.yaml

Edit the file as shown below with the applicable NIC information you gathered in previous steps:

Below is the line-by-line description of the configuration information:

 Port_limit should be 2 (since DPDK-in-a-Box has two ports)

 Version should be 2

 Interfaces should be the PCI bus ports you gathered using lspci. In this exercise they are

[“03:00.0”, “03:00.1”]

 Port_information contains a dest_mac, src_mac pair, which will be in the packet header of

the traffic generated. The first pair is for port0. Since port0 is connected to port1, the first

dest_mac is the MAC address of port 1. The second pair is for port1. Since port1 is connected to

port0, the second dest_mac is the MAC address of port 0.

Please note that when you connect an appliance to which traffic must be injected, the dest_mac
addresses will be that of the appliance.

Note Platform lcore Count
This section is for informational purposes only.

cat /proc/cpuinfo will give you the lcore information as shown in the Exercises section.

Why is this information useful?

The command line below that runs the traffic generator uses the –c option to specify the number of
lcores to be used for the traffic generator. You want to know how many lcores exist in the platform.
Hence, issuing cat /proc/cpuinfo and eyeballing the number of lcores that are available in the
system will be helpful.

Run the Traffic Generator

sudo ./t-rex-64 –f cap2/dns.yaml –c 1 –d 100

What are the parameters –f, -c, and –d?

-f for YAML traffic configuration file

-c for number of cores. Monitor the CPU% of TRex – it should be ~50%. Use cores accordingly

-d for duration of the test (sec). Default: 0

Summary

Below are three output screens: 1) During the traffic run, 2) Linux top command output, and 3) Final
output after the completion of the run.

Screen output showing traffic during run (15 packets so far Tx & Rx)

Output of top –H command during the run

Screen output after completing the run (100 packets Tx & Rx)

Next Steps

Congratulations! With the above hands-on exercise, you have successfully built your own Intel DPDK
based traffic generator.

As a next step, you can connect back-to-back two DPDK-in-a-Box platforms, and use one as a traffic
generator and the other as a DPDK application development and test vehicle.

Please send your feedback to M Jay Muthurajan.Jayakumar@intel.com.

Exercises

1) How would you configure the traffic generator for different packet lengths?

2) To run the traffic generator forever, what should be the value of –d?

3) How would you measure latency (assuming you have more cores)?

4) Reason out the root cause and find the solution by looking up the error, “Note that the uio or
vfio kernel modules to be used should be loaded into the kernel before running the dodk-
devbind.py script” in Chapter 3 of the DPDK.org document Getting Started Guide for Linux.

5) In the following screenshot, determine the hyperthreading state—enabled vs. disabled? (Hint:
this is the Intel Atom processor platform.)

mailto:Muthurajan.Jayakumar@intel.com
http://dpdk.org/doc/guides/linux_gsg/build_dpdk.html

Appendix: Unbinding from DPDK & Binding to Kernel

This section is not needed if ifconfig is able to find the ports you want to use for traffic generation. In
that case, you can skip this section.

What is the reason ifconfig cannot find the two ports? If you are only interested in the solution, skip
this troubleshooting section and go to the Solution section.

Root Cause

ifconfig is not showing the two ports below. Why?

The reason that ifconfig is unable to find the two ports is possibly because the DPDK application was
previously run and was aborted without releasing the ports, or it might be that a DPDK script runs
automatically after boot and claims the ports. Regardless of the reason, the solution below will enable
ifconfig to show both ports.

Solution

1. Run ./setup.sh in the directory /home/test/dpdk/tools

2. Display current Ethernet device settings

3. Unbind the first port from IGB UIO (assuming it is bound to IGB UIO)

4. Bind the port to IGB (the kernel driver)

5. Repeat steps 3-5 to unbind the second port from IGB UIO and bind to IGB.

Select “Display current Ethernet device settings” (option 23 in this case).

Status showing two ports claimed by the DPDK driver.

Unbind the first NIC from DPDK (specifically IGB UIO).

1. Select option 30 and then enter the PCI address of device to unbind:

2. Bind the kernel driver igb to the device:

If the inputs entered are correct, script acknowledges OK.

3. Verify by displaying current Ethernet device settings.

4.

Success!

Above you will see the first port 0000:30:00.0 bound to the kernel.

Now on to the second port 0000:30:00.1

Success!

Below you will see both ports bound back to kernel.

Now that both ports are bound back to kernel, ifconfig will give the needed info for those ports.

References

 MinnowBoard Wiki Home at minnowboard.org – learn more about the MinnowBoard Turbot single

board computer.

 Profiling DPDK Code with Intel® VTune™ Amplifier - Use Intel® VTune™ Amplifier to profile DPDK

micro benchmarks with your application. This comprehensive reference provides guidelines and

instructions.

 Intel® VTune™ and Performance Optimizations - This session recording from the July 11,

2016DPDK/NFV DevLab covers performance optimization best practices, including analysis of NUMA

affinity, microarchitecture optimizations with VTune, and tips to help you identify hotspots in your

own application.

 DPDK Performance Optimization Guidelines White Paper - Learn best-known methods to optimize

your DPDK application's performance. Includes profiling methodology to help identify bottlenecks,

then shows how to optimize BIOS settings, partition NUMA resources, optimize your Linux*

configuration for DPDK, and more.

http://wiki.minnowboard.org/MinnowBoard_Wiki_Home
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwirqbzS9oDRAhUW0WMKHdIaCOMQFggcMAA&url=https%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fprofile-dpdk-code-with-intel-vtune-amplifier
https://software.intel.com/en-us/videos/intel-vtune-and-performance-optimizations
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper

Notices

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative to

obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause

deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be

obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, Intel Atom, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or

other countries.

*Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation

http://www.intel.com/design/literature.htm
http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/

