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About the Author 
I have been a software developer for over 9 years. My main area of interest is graphics programming, and most of my 

professional career has been involved in 3D graphics. I have a lot of experience in OpenGL* and shading languages (mainly 

GLSL and Cg), and for about 3 years I also worked with Unity* software. I have also had opportunities to work on some VR 

projects that involved working with head-mounted displays like Oculus Rift* or even CAVE-like systems.  

Recently, with our team here at Intel, I was involved in preparing validation tools for our graphics driver’s support for 

the emerging API called Vulkan. This graphics programming interface and the approach it represents is new to me. The 

idea came to me that while I’m learning about it I can, at the same time, prepare a tutorial for writing applications using 

Vulkan. I can share my thoughts and experiences as someone who knows OpenGL and would like to “migrate” to its 

successor.  

About Vulkan 
Vulkan is seen as an OpenGL’s successor. It is a multiplatform API that allows developers to prepare high-performance 

graphics applications likes games, CAD tools, benchmarks, and so forth. It can be used on different operating systems like 

Windows*, Linux*, or Android*. The Khronos consortium created and maintains Vulkan. Vulkan also shares some other 

similarities with OpenGL, including graphics pipeline stages, GLSL shaders (sort of) or nomenclature. 

But there are many differences that confirm the need for the new API. OpenGL was changing for over 20 years. Many 

things have changed in the computer industry since the early 90s, especially in graphics cards architecture. OpenGL is a 

good library, but not everything can be done by only adding new functionalities that match the abilities of new graphics 

cards. Sometimes a huge redesign has to be made. And that’s why Vulkan was created. 

Vulkan was based on Mantle*—the first in a series of new low-level graphics APIs. Mantle was developed by AMD and 

designed only for the architecture of Radeon cards. And despite it being the first publicly available API, games and 

benchmarks that used Mantle saw some impressive performance gains. Then other low-level APIs started appearing, such 

as Microsoft’s DirectX* 12, Apple’s Metal* and now Vulkan. 

What is the difference between traditional graphics APIs and new low-level APIs? High-level APIs like OpenGL are quite 

easy to use. The developer declares what they want to do and how they want to do it, and the driver handles the rest. The 

driver checks whether the developer uses API calls in the proper way, whether the correct parameters are passed, and 

whether the state is adequately prepared. If problems occur, feedback is provided. For ease of use, many tasks have to be 

done “behind the scenes” by the driver. 

In low-level APIs the developer is the one who must take care of most things. They are required to adhere to strict 

programming and usage rules and also must write much more code. But this approach is reasonable. The developer knows 

what they want to do and what they want to achieve. The driver does not, so with traditional APIs the driver has to make 

additional effort for the program to work properly. With APIs like Vulkan this additional effort can be avoided. That’s why 

DirectX 12, Metal, or Vulkan are called thin-drivers/thin-APIs. Mostly they only communicate user requests to the 

hardware, providing only a thin abstraction layer of the hardware itself. The driver does as little as possible for the sake 

of much higher performance. 



Low-level APIs require additional work on the application side. But this work can’t be avoided. Someone or something 

has to do it. So it is much more reasonable for the developer to do it, as they know how to divide work into separate 

threads, when the image would be a render target (color attachment) or used as a texture/sampler, and so on. The 

developer knows what pipeline state or what vertex attributes changes more often. All that leads to far more effective 

use of the graphics card hardware. And the best part is that it works. An impressive performance boost can be observed. 

But the word “can” is important. It requires additional effort but also a proper approach. There are scenarios in which 

no difference in performance between OpenGL and Vulkan will be observed. If someone doesn’t need multithreading or 

if the application isn’t CPU bound (rendered scenes aren’t too complex), OpenGL is enough and using Vulkan will not give 

any performance boost (but it may lower power consumption, which is important on mobile devices). But if we want to 

squeeze every last bit from our graphics hardware, Vulkan is the way to go. 

Sooner or later all major graphics engines will support some, if not all, of the new low-level APIs. So if we want to use 

Vulkan or other APIs, we won’t have to write everything from scratch. But it is always good to know what is going on 

“under the hood”, and that’s the reason I have prepared this tutorial. 

A Note about the Source Code 
I’m a Windows developer. When given a choice I write applications for Windows. That’s because I don’t have 

experience with other operating systems. But Vulkan is a multiplatform API and I want to show that it can be used on 

different operating systems. That’s why I’ve prepared a sample project that can be compiled and executed both on 

Windows and Linux. 

Source code for this tutorial can be found here: 

https://github.com/GameTechDev/IntroductionToVulkan 

I have tried to write code samples that are as simple as possible and to not clutter the code with unnecessary “#ifdefs”. 

Sometimes this can’t be avoided (like in window creation and management) so I decided to divide the code into small 

parts: 

 Tutorial files are the most important here. They are the ones where all the exciting Vulkan-related code is placed. 

Each lesson is placed in one header/source pair. 

 OperatingSystem header and source files contain OS-dependent parts of code like window creation, message 

processing, and rendering loops. These files contain code for both Linux and Windows, but I tried to unify them 

as much as possible. 

 main.cpp file is a starting point for each lesson. As it uses my custom Window class it doesn’t contain any OS-

specific code. 

 VulkanCommon header/source files contain the base class for all tutorials starting from tutorial 3. This class 

basically replicates tutorials 1 and 2—creation of a Vulkan instance and all other resources necessary for the 

rendered image to appear on the screen. I’ve extracted this preparation code so the code of all the other chapters 

could focus on only the presented topics. 

 Tools contain some additional utility functions and classes like a function that reads the contents of a binary file 

or a wrapper class for automatic object destruction. 

The code for each chapter is placed in a separate folder. Sometimes it may contain an additional Data directory in 

which resources like shaders or textures for a given chapter are placed. This Data folder should be copied to the same 

directory in which executables will be held. By default executables are compiled into a build folder. 

Right. Compilation and build folder. As the sample project should be easily maintained both on Windows and Linux 

I’ve decided to use CMakeLists.txt file and a CMake tool. On Windows there is a build.bat file that creates a Visual Studio* 

solution—Microsoft Visual Studio 2013 is required to compile the code on Windows (by default). On Linux I’ve provided a 

https://github.com/GameTechDev/IntroductionToVulkan


build.sh script that compiles the code using make but CMakeLists.txt can also be easily opened with tools like Qt. CMake 

is of course also required. 

Solution and project files are generated and executables are compiled into the build folder. This folder is also the 

default working directory, so the Data folders should be copied into it for the lessons to work properly. During execution, 

in case of any problems, additional information is “printed” in cmd/terminal. So if there is something wrong, run the lesson 

from the command line/terminal or look into the console/terminal window to see if any messages are displayed. 

I hope these notes will help you understand and follow my Vulkan tutorial. Now let’s focus on learning Vulkan itself! 

 

Notices 

 

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. 

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, 

fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course 

of dealing, or usage in trade. 

This document contains information on products, services and/or processes in development. All information provided 

here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, 

specifications and roadmaps. 

The products and services described may contain defects or errors known as errata which may cause deviations from 

published specifications. Current characterized errata are available on request. 

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-
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