Programming
Guide

Intel® Microarchitecture Codename Nehalem Performance
Monitoring Unit Programming Guide

(Nehalem Core PMU)

Table of Contents

1. About thiS dOCUMENT.....csresssssesssmmsssssssssssssssssss

2. Nehalem-based PMU Architecture.......mmmns:
3. The Nehalem Core PMU....mmmmmsmsssssssssssesssssssesens
3.1. Global Control and Status RegiSTErs ...
3.1.1. 1A32_PERF_CAPABILITIES....oerrenrrsersssenes
3.1.2. 1A32_DEBUGCTL.comrmersmssssssrsssssssssssssssssssssssssssses
3.1.3. 1A32_PERF_GLOBAL_CTRL.coverrerrssersssssene
3.1.4. 1A32_PERF_GLOBAL_STATUS...cmmmrmmrrsersesnn
3.1.5. 1A32_PERF_GLOBAL_OVF_CTRLU overreeresenrssenessnn
3.1.6. 1A32_FIXED_CTR_CTRLU werrrerrerrsserrsnnes

3.2. Programmable Counter Control Registers
3.2.1. PerfEULSElX .crssnessssssssssssssssssssssssssssses

3.3, Counter REGISTErS...mmmmmmmmmsmsssssssssssssssssssssssasess
3.3.1. PERF_FIXED_CTRX and IA32_PMCX Registers

34. Off-core Response Event Programming.....:
3.5, The PEBS FACility .mmmmmssmmssssmsssssssssssssssssssssssssess
351, IA32_PEBS_ENABLEoovevrerrsenssssssssssssssssssssssssssssssss
3.5.2. PEBS Record FOrmat.....mmmmmmmmmmmmmsssmmmn:
3.5.3. Programming the PEBS FaCility.....mmm.

3.6. Counter Prioritization .
3.7. The Load Latency FaCility. .
3.8. The Last Branch Record Facility ...

3.8.1. LBR FIEriNG..mmmmmmmmsssssssssssssssssssssssssssssssenss

3.8.2. Storing Branch Trace Messages in the Branch Trace Store

3.8.3. Storing Branch Trace Messages in the Last Branch Record StacK......mmmme

3.9. The RDPMC INSTrUCTION wuuvvvmmmesssmsssmssssssssssssssssssssssssssssssssens

4. Detecting the Nehalem Processor ...
4.1, CPUID identifiCation...mmmmmmmmmmsssssssssssssssssssssasesss
4.2. Architectural PErfMONmmmmmssssssssssssssssssssssens

4.3, Other ConSiAerationS. s

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

IA32_PERF_CAPABILITIES MSR Definition 13
IA32_DEBUGCTL MSR Definition 15

IA32_PERF_GLOBAL_CTRL MSR Definition 18
IA32_PERF_GLOBAL_STATUS MSR Definition 19

IA32_PERF_GLOBAL_OVF _CTRL MSR Definition
IA32_FIXED_CTR_CTRL MSR Definition 23
PerfEvtSelX MSR Definition 25
PERF_FIXED_CTRX and I1A32_PMCX MSR Definition

OFFCORE_RSP_X MSR Definition 29
IA32_PEBS_ENABLE MSR Definition 33
PEBS Programming Overview 36
IA32_DS_AREA MSR Definition 38
LFSR for Tagging Memory Load Instructions 40
PEBS LD LAT THRESHOLD MSR Definition 42

LBR_SELECT MSR Programming 44

Format of Branch Trace Message in Branch Trace Store
Branch Trace Store Programming Overview 47
MSR_LASTBRANCH_x_FROM_IP MSR Definition
MSR_LASTBRANCH_x_TO_IP MSR Definition 49
MSR_LASTBRANCH_TOS MSR Definition 50

21

27

45

48

List of Tables

TaDIE T: LIST OF TOIMMIS suvuueussssmmmsssess 5
Table 2: Performance Monitoring Architecture COMPariSON ...ssssssssssssmssmssssssssssess 11
Table 3: IA32_PERF_CAPABILITIES Programmingmmmmmssssssssssssssssssssssssssssssess 13
Table 4: IA32_DEBUGCTL ProgramminNg.....ssssssmmmsssssssssnssssssssssssssssssssssssssssssssssssssees 15
Table 5: IA32_PERF_GLOBAL_CTRL Programmingcssssssmmssssssssssmssssssssssseens 18
Table 6: IA32_PERF_GLOBAL_STATUS Programming ... 19
Table 7: I1A32_PERF_GLOBAL_OVF_CTRL Programming ... 21
Table 8: IA32_FIXED_CTR_CTRL Programming....mmsmmssmmmmsssssssssssssssssssassssssssess 23
Table 9: Summary of CTL bit Programming for Fixed COUNErS ... ecvmmmmmmnsssesssees 24
Table 10: PerfEvtSelX Programimingmsmsmsmsmssens 25
Table 11: Offcore Response EVents ENCOAING ...mmmmmmmmmmmmmmmsssssssssssssssssssssssssses 28
Table 12: OFFCORE_RSP_X Event Programming ... 29
Table 13: Offcore Response Programming EXAMPIE.......mmmmmmmmmmmmmmmmmmmmmmmmmmssmmsssssssssssssssssssnns 31
Table 14: 1A32_PEBS_ENABLE Programming ... 33
Table 15: PEBS RECOTd FOTMATuuuuummmmmmmmmmmmmssmssssssssssmsss 34
Table 16: Data Souce Encodings in Load Latency RECOTAS....mmmmmmmmmmmmmmmmmmmmmmmmmmmmssssssssssssnns 41
Table 17: PEBS_LD_LAT_THRESHOLD Programming........smssmmsmsmsmssmsssssssssssssssssssssssssssssssens 42
Table 18: Programming the BTS FACIlItY .. 43
Table 19: LBR_SELECT Programming......ssssmmsssmsmsmsssns 45
Table 20: MSR_LASTBRANCH_X_FROM_IP Programmingssssmsssssssssssssssssssssssssssssnes 48
Table 21: MSR_LASTBRANCH_X_TO_IP Programming ... 49
Table 22: MSR_LASTBRANCH_TOS Programming........ssssssssssmsmsmsmssssssssssssssssssssssssssssssssssssens 50
Table 23: Legal Index (ECX) Values for Executing the RDPMC INStruction ... 51
Table 38: Nehalem CPUID Processor SIGNAtUres ... 52
Table 39: CPUID.A INTOTMATION cuuuuuuuuuummmsmmmmsmmmmssns 53

Table 40: NHM Core PMU ReGISTEN LiST.....mmmmmmmmmmmmmmmmmmmmmmmmmmmmssmssess 57

Preface

This document contains advance information. While every effort has been made to
ensure the accuracy of the information contained herein, some errors may occur.
Please contact thomas.m.johnson@intel.com if you have questions or comments.

This document describes the programming interface to the performance monitoring
hardware on the Nehalem processor core. This document does not exhaustively
describe all of the performance monitoring events which may be counted in the
Nehalem. A detailed description of these events may be released separately.

Terms
Table 1; List of Terms
Term Definition

BTM Branch Trace Message. A message sent on the system bus
which external hardware can capture and thereby develop
a reconstruction of program control flow.

BTS Branch Trace Store. A memory buffer containing a
collection of branch trace messages.

Clear In reference to register programming, this means a bit is
programmed to binary zero (0).

CPL Current Privilege Level. The current privilege level at
which the processor is executing (Ring 0, 1, 2, or 3).

DCU Data cache. The cache closest to the processor core. This
cache provides data to the core with the minimum latency.

EBS Event Based Sampling. A technique in which counters are
pre-loaded with a large negative count, and they are
configured to interrupt the processor on overflow. When
the counter overflows the interrupt service routine
capture profiling data.

GO Globally Observable. The point in time at which data in the
machine is architecturally observable.

GP General Protection (fault).

ISR Interrupt Service Routine.

LBR Last Branch Record. A facility which provides branch trace

information either through special bus cycles on the
system bus, or through records written to a user defined

mailto:thomas.m.johnson@intel.com

memory buffer (the BTS).

LLC Last-level cache. The lowest level of cache, after which
memory requests must be satisfied by system memory.

MLC Mid-level cache. This is the intermediate level cache which
lies between the DCU and LLC.

MSR Model Specific Register. PMU counter and counter control
registers are implemented as MSR registers. They are
accessed via the rdmsr and wrmsr instruction. Certain
counter registers can be accessed via the rdpmc instruction.

NHM Nehalem. Specifically the Nehalem processor core.

PEBS Precise Event Based Sampling. A special counting mode in
which counters can be configured to overflow, interrupt
the processor, and capture machine state at that point.

PerfMon Short for Performance Monitoring

PMI Performance Monitoring Interrupt. This interrupt is
generated when a counter overflows and has been
programmed to generate an interrupt, or when the PEBS
interrupt threshold has been reached.

The interrupt vector for this interrupt is controlled
through the Local Vector Table in the Local APIC.

PMU Performance Monitoring Unit

RFO Read for ownership. When a cache line is written that
misses in the cache, it must first be read into the cache so
that the line exists in cache and can then be modified.

RO A bit is read-only.

Rw A bit is readable and writeable.

Set In reference to register programming, this means a bit is
programmed to binary one (1).

SMM System Management Mode.

SMT Simultaneous Multi-threading.

Supervisor (SUP), or

privilege level O

Supervisor state is the most privileged state of execution.
Typically operating system code executes in privilege level
0.

TBS

Time Based Sampling. A technique in which a time base is
used to determine when to capture profiling data. This

time base can be a timer interrupt or the occurrence of a
certain number of other events, such clock ticks or
instructions retired.

Thread A hardware thread of execution. In other words, Hyper-
Threading Technology.
Uop Micro-operation. Macro instruction are broken down into

uops within the machine, and these uops are executed by
the execution units.

User (USR), or privilege

Intel processors operate in privilege levels zero through

level 1,2, or 3 three, where lower numbered privilege levels operate in a
more privileged state. User (or privilege levels 1, 2, or 3)
refers to less privileged states of execution. User code
typically executes at privilege level 3.

wO A bit is write-only.

WO1 A bit is write-only, and should be written to a ‘1’ (set).

1. About this document

This is a programmer’s reference manual for the Nehalem core performance
monitoring units (PMU). This is targeted for current tool owners requiring
documentation updates for Nehalem based platforms. It is not intended for first time
tool developers or as a user analysis guide. Additional documents will be available at

a later date targeted at providing that information.

2. Nehalem-based PMU Architecture

Intel processor cores for many years included a Performance Monitoring Unit (PMU).
This unit provided the ability to count the occurrence of micro-architectural events
which expose some of the inner workings of the processor core as it executes code.

One usage of this capability is to create a list of events from which certain
performance metrics can be calculated. Software configures the PMU to count
events over an interval of time and report the resulting event counts. Using this
methodology, performance analysts can characterize overall system performance.

The PMU also provides facilities to generate a hardware interrupt through the Local
APIC integrated within the processor core or logical thread. In this case software can
pre-load event counter registers with a “sample after value,” in which case a
hardware interrupt is generated after the occurrence of N number of events. In the
interrupt handler software collects additional architectural state which provides
analysts with information regarding the performance of specific areas of application
code. This methodology is sometimes referred to as profiling the execution of an
application.

Products based on the Nehalem processor core include the capability to collect event
data under both of these scenarios. In addition, these products include various
platform features (uncore) integrated on the same die as the processor core. The
uncore is essentially everything on the processor chip that is not part of the core.
This includes point-to-point interconnect logic, memory controllers, and last-level
caches, among other things. The uncores also provide an additional PMU facility that
has the ability to interrupt the processor core in order that profiling information may
be collected. This document describes the Nehalem processor core PMU.

Platform Name Processor CPU Core | Processor Code | Chipset
Name

Tylersburg-€P 2S | Nehalem-€P 2S | Nehalem | Gainstown Tylersburg

Tylersburg-EP 1S | Nehalem-EP 1S | Nehalem Tylersburg

Boxboro-EX Nehalem-EX Nehalem | Beckton Boxboro

The PMU differences between Nehalem-€P 2S and Nehalem-EP 1S will solely be
reflected in the event list. The programming and architecture list will not differ.
Supplemental documentation will be published for Nehalem-EX. Nehalem-EX uncore
has to significantly different architecture and therefore programming.

Nehalem-EP 2S CPU Summary

Performance/Features: Schedule:

Nehalem-EP 2S

® 4 cores ® D>H 08 Production

® 38M on-chip Shared Cache core B core B core
® Simultaneous Multi- Socket:

Threading capability (SMT)
Intel® QuickPath
Interconnect_up to 6.4 _ Process Technology:
GT/s, each direct. per link #t# ‘ #

Integrated Memory ® 45nm CPU

Controller (DDR3) 3x DDR3 2x Intel

, : channels QuickPath | pjatform Compatibility
New instructions interconnect

® New LGA 1366 Socket

| Memory | | Link

® Tylersburg (TBG)
® [CH9

Nehalem-EP 1S CPU Summary

Performance/Features: Schedule:

Nehalem-EP 1S

® 4 cores ® DH 08 Production

® 8M on-chip Shared Cache

® Simultaneous Multi- Socket:
Threading capability (SMT) | 8M Shared cache |

® New LGA 1366 Socket

Intel® QuickPath Memory Link
Interconnect up to 6.4 Controller Controller
GT/s, each direct. per link

Integrated Memory t’t t t ® 45nm CPU
Controller (DDR3)

1x Intel QuickPath TR
New instructions 3x DDR3 Q Platform Compatibility

ower: 1 Link to IOH

Process Technology:

® Tylersburg (TBG)
130w, 80w, 60W ® ICH9

3. The Nehalem Core PMU

The table below summarizes the differences between the Nehalem core (NHM) PMU
features and that of previous products in the Intel® Core™ and Pentium 4° processor
families. Nehalem adheres to Architectural Performance Monitoring Version 3.

The table includes architectural and non-architectural features. Architectural
features are listed in the top of the table with intercepts highlighted.

Table 2: Performance Monitoring Architecture Comparison

o Yonah Merom Penryn Nehalem
Feature Description P4
(V19 (V2 (V2 (V3
Number of Number of general 18 > > > 4
General Counters | counters per logical CPU.
Examples include
. instructions retired, un-
Number of Fixed halted core clock ticks, 0 0 3 3 3
Counters
un-halted reference
clock ticks, etc.
Number of Used to select events
Selection and and configure the 45 ECS&ERR 18 2 2 2 4
Control Registers | general counters.
Architectural events
Architectural retain a consistent
definition and encoding 0 7 7 7 7
Events
across product
implementations.
Single MSR to globally
Glolézln?(;:;lter enable and disable all No Yes Yes Yes Yes
counters.
Ability to freeze (disable)
Freeze on counters on occurrence
Overflow of overflow interrupt. No No Yes Yes Yes
Interrupt Freeze occurs before
PMI delivery.
Add global enable MSR
VT VMCS to guest and host VMCS. No No No Yes Yes
Add support for
FreezoenCSol\:lnters save/disable/restore on No No No Yes Yes
SMI.
Enable bit for counting Yes Yes
when an event is active
AnyThread across any hardware Thread No No No ~ Thread
thread for fixed and specific independent
general counters. programming programming

PEBS

Precise Event Based
Sampling. Includes
mechanisms to store
branch and machine
state information on
counter overflow.

Limited to
certain
counters.

No

Limited to
certain
counters.

Limited to
certain
counters.

Available on
any counter.

Load Latency

A PEBS record extension
which allows sampling
load instruction latency,
load target address, and
instruction pointer.

No

No

No

No

Yes

Last Branch
Record (LBR)

Circular ring of MSRs
which record branch
target and source

instruction pointers.

8 LIP

4 EIP

4 EIP

4 LUIP

16 EIP

Freeze LBR
Stack on
Overflow
Interrupt

Ability to freeze (disable)
capture of LBR
information on
occurrence of overflow
interrupt.

No

No

Yes

Yes

Yes

SMI Counter

Free running read-only
SMI counters (used like
time stamp counter).

No

No

No

No

Yes

Branch Trace
Store

Branch trace store
feature uses LBR MSRs.

Yes

No

Yes

Yes

Yes

“Denotes the version of Architectural Performance Monitoring supported by this product.

The Nehalem core supports event counting with seven event counters. Three of
these counters are fixed function counters; the events counted by each of these

counters are fixed in hardware. Software can determine whether counting is
enabled during user or supervisor code execution, or both. The four remaining
counters are programmable, and can be configured to count a variety of events.
There are some restrictions on individual counters. Fixed counters are controlled by
bit fields in a global control register. Programmable counters are controlled by a
separate control register, one for each counter.

PMU resources are available and must be programmed for each hardware thread
(logical processor), if threading is enabled. Otherwise they are programmed for each
core. PMU resources available in each thread do not accumulate to the core when
hardware threading is disabled. Thus the PMU programming model remains
consistent in any case. To successfully program all PMU resources, software must
affinitize itself to each processor the operating system exposes. Counter registers
are 48 bits in extent.

Writing a binary one to any reserved bit in any counter or counter control register is
undefined and may cause a general protection fault.

The following sections describe the programming the counter and counter control
registers used to program the NHM PMU.

3.1. Global Control and Status Registers

There are a set of global control and status registers which control the fixed and
programmable counters, and provide status indications of the NHM PMU in general.
The following sections describe these global registers.

3.1.1. IA32_PERF_CAPABILITIES

This register provides availability status information regarding the capabilities
supported by this implementation of the performance monitoring hardware. This is a
read-only register.

Figure 1: IA32_PERF_CAPABILITIES MSR Definition

LBR_FMT
Reserved PEBS_TRAP

PEBS_ARCH_ REGS ‘
[

PEBS_REC_FMT
SMM_FRZ |
- [1

31 23 15 7 0

63 55 47 39 32

Reset Value: 0x00000000.00001cC3

Table 3:1A32_PERF_CAPABILITIES Programming

Bit Bit Access Description
Position

LBR_FMT

5.0

RO

Branch to/from information contains:
00000b: 32-bit offset in current code
segment.

00001b: 64-bit LIP

00010b: 64-bit EIP

PEBS_TRAP

RO

If clear indicates the PEBS assist is trap-like.
The assist occurs at the end-of-macro (EOM)
instruction boundary after machine state is
committed. The PEBS record will reflect the
state of the machine after this instruction
executed.

If set, indicates the PEBS assist is fault-like.
The assist will occur before the current
instruction retires, and the PEBS record will
reflect the pre-retirement state of the
machine.

See section 3.5.2 for more information on
the PEBS record.

PEBS_ARCH_REG

RO

If set, indicates that the PEBS record
contains the architectural registers in
addition to the return instruction pointer and
flags. If clear, only return the instruction
pointer and flags are recorded.

PEBS_REC_FMT

11:8

RO

0000b: Only the return instruction pointer,
flags, and general purpose registers are
recorded in the PEBS record.

0001b: In addition to the information
contained in option O above, the PEBS record
contains the global overflow status and load
latency information.

Other values are reserved.

SMM_FRZ

12

RO

If set, indicates this implementation has the
ability to freeze the PMU on entry to SMM
mode. This means all counters and profiling
hardware will be disabled while in SMM mode.
Upon exit from SMM mode, normal operation
will resume. No freeze capability is
supported otherwise.

3.1.2. IA32_DEBUGCTL

This register controls tracing, single stepping, and last branch record (LBR) collection,
and certain freeze functions related to the PMU. The programming for this register
is summarized in the figure and table below.

Figure 2:1A32_DEBUGCTL MSR Definition

TR
BTS
BTINT
BTS _OFF OS

— - LBR

BTS OFF USR
- = BTF
FRZ LBRS ON PMI
Reserved - - -

FRZ_PERFMON_ON_PMI
UNCORE_PMI_EN

SMM_FRZ ________W

31 23 15 7 0

63 55 47 39 32

Reset Value: 0x00000000.00000000

Table 4: 1A32_DEBUGCTL Programming

Bit Bit Access Description
Position
LBR 0 RW | When set, the processor records a

running trace of the most recent
branches, interrupts, and
exceptions taken by the processor
in the LBR stack. Because last
branch recording and branch trace
messages share common
hardware, this bit should not be
set at the same time as the TR bit.

BTF 1 RW | When set, the processor treats
the TF flag in the EFLAGS register

as a 'single-step on branches’ flag
rather than a ‘single-step on
instructions’ flag. This will cause a
debug exception to be posted
when a taken branch occurs while
TF is set.

TR

RW

When set, branch trace messages
are enabled. Upon detection of a
branch, interrupt, or exception the
processor sends a branch record
to the system bus as a branch
trace message (BTM).

BTS

RW

When set, the flag enables branch
trace store (BTS) facilities to log
BTMs to a memory buffer (the
Branch Trace Store).

BTINT

RW

When set, the BTS facilities
generate an interrupt when the
BTS buffer is full. When clear, the
BTS buffer behaves as a circular
buffer and older records are
overwritten.

BTS_OFF_OS

RW

When set, BTMs will not be
written to the system bus or the
BTS when the CPL is equal to zero.

BTS_OFF_USR

10

Rw

When set, BTMs will not be
written to the system bus or the
BTS when the CPL is not equal to
zero.

FRZ_LBRS_ON_PMI

11

RW

When set, the LBR stack is frozen
on a hardware PMI request.
Software must explicitly re-enable
the LBR capture mechanism.

Note: the freeze is currently
triggered by counter overflow,
and may result in freezing the LBR
stack sooner than expected.

FRZ_PERFMON_ON_PMI

12

RW

When set, a PMI request clears
each of the enable bits in the

IA32_PERF_GLOBAL_CTRL MSR,
disabling all event counting.

Software must explicitly re-enable
the counters by setting the enable
bits in the
IA32_PERF_GLOBAL_CTRL
register before exiting the ISR.

UNCORE_PMI_EN 13 RW | When set, this logical processor is
enabled to receive an uncore
counter overflow interrupt.

SMM_FRZ 14 RW | When set, event counters are

disabled while the processor is in
system management mode.

3.1.3. 1A32_PERF_GLOBAL_CTRL

This register globally controls the fixed and programmable counters. If a control bit
in this register is clear, all other control register programming for the corresponding

counter will be ignored and the counter will not count.

Counters that are disabled by this register cannot count, overflow, or subsequently

generate overflow interrupts. It is possible that a disabled counter may generate a

PEBS assist. This can occur as follows. While the counter is enabled it can overflow
(to zero) and arm the PEBS hardware. The next event (the counter transitions from

zero to one) will cause the PEBS assist to occur. At this point the PEBS assist will
occur even if an intervening write to this register disables the counter.

Note that the state of the IA32_PERF_GLOBAL_CTRL register is preserved across
entry and exit to probe mode (halting with an ITP). Writes to this register during
probe mode will be lost upon exit from probe mode.

Figure 3:1A32_PERF_GLOBAL_CTRL MSR Definition

EN_PCO
Reserved EN_PCl
EN_PC2
EN_PC3

31 23 15 7 0
EN_FCO
EN_FC1

EN_FC2 ‘
63 55 47 39 32

Reset Value: 0x00000000.0000000F

Table 5: 1A32_PERF_GLOBAL_CTRL Programming

Bit Bit Access Description
Position
EN_PCO 0 RW | Enable bit for programmable counter 0. If clear,

disable the counter. If set, enable the counter.

EN_PC1 1 RW | Enable bit for programmable counter 1. If clear,
disable the counter. If set, enable the counter.

EN_PC2 2 RW | Enable bit for programmable counter 2. If clear,
disable the counter. If set, enable the counter.

EN_PC3 3 RW | Enable bit for programmable counter 3. If clear,
disable the counter. If set, enable the counter.

EN_FCO 32 Rw Enable bit for fixed counter O. If clear, disable
the counter. If set, enable the counter.

EN_FC1 33 RW | Enable bit for fixed counter 1. If clear, disable
the counter. If set, enable the counter.

EN_FC2 34 Rw Enable bit for fixed counter 2. If clear, disable
the counter. If set, enable the counter.

Software must read-modify-write or explicitly clear reserved bits.

3.1.4. IA32_PERF_GLOBAL_STATUS

This register indicates the overflow status of each of the fixed and programmable
counters. The upper bits provide additional status information of the PerfMon
facilities. A set bit indicates an overflow has occurred in the corresponding counter.
Overflow status bits in this register are cleared by writing the
IA32_PERF_GLOBAL_OVF_CTRL register.

Status bit indications in this register have no affect on interrupts or pending

interrupts.

Figure 4:1A32_PERF_GLOBAL_STATUS MSR Definition

OVF_PCO
Reserved OVF_PC1
OVF_PC2
OVF_PC3
31 23 15 7 0
OVF_FCO i
CondChg -
OVF_FC1
PEBS_OvE -
- OVF_FC2
UNC_OvE - ——————————1
63 55 47 39 32

Reset Value: 0x00000000.00000000

Table 6: 1A32_PERF_GLOBAL_STATUS Programming

Bit

Bit
Position

Access

Description

OVF_PCO

0

RO

Indicates the overflow status of
programmable counter 0. If this bit is clear no
overflow occurred. If set then overflow
occurred.

OVF_PC1

RO

Indicates the overflow status of
programmable counter 1. If this bit is clear no
overflow occurred. If set then overflow
occurred.

OVF_PC2

RO

Indicates the overflow status of
programmable counter 2. If this bit is clear no
overflow occurred. If set then overflow
occurred.

OVF_PC3

RO

Indicates the overflow status of
programmable counter 3. If this bit is clear no
overflow occurred. If set then overflow
occurred.

OVF_FCO

32

RO

Indicates the overflow status of fixed counter
0. If this bit is clear no overflow occurred. If
set then overflow occurred.

OVF_FCT

33

RO

Indicates the overflow status of fixed counter
1. If this bit is clear no overflow occurred. If
set then overflow occurred.

OVF_FC2

34

RO

Indicates the overflow status of fixed counter
2. If this bit is clear no overflow occurred. If
set then overflow occurred.

UNC_Ovf

61

RO

Indicates a counter in the uncore overflowed.
Software must perform further queries to
determine which specific counter overflowed.

PEBS_Ovf

62

RO

Indicates that the PEBS buffer threshold was
reached and microcode scheduled a
performance interrupt to indicate this
condition.

CondChg

63

RO

Indicates that the state of the PerfMon
hardware has changed. A change in this bit
indicates the hardware has become available
or unavailable. Software can execute CPUID
leaf OxA to confirm the availability of PerfMon
hardware. This is a sticky bit, and must be
explicitly cleared by writing to one the
corresponding bit in the
IA32_PERF_GLOBAL_OVF_CTRL MSR.

Software must read-modify-write or explicitly clear reserved bits.

3.1.5. |1A32_PERF_GLOBAL_OVF_CTRL

The IA32_PERF_GLOBAL_OVF_CTRL provides software the ability to clear status
bits set in the IA32_PERF_GLOBAL_STATUS register, described in the preceding

section. This is a write-only register. To clear overflow or condition change status in
the global status register, software must write the corresponding bits in this register
to binary one.

Figure 5:1A32_PERF_GLOBAL_OVF_CTRL MSR Definition

CLR_OVF_PCO
Reserved CLR OVF_PC1

CLR_OVF_PC2

CLR_OVF_PC3 ‘ ‘

31 23 15 7

0
CLR_OVF_FCO
CLR_OVF_FC1 \

CLR_OVF_FC2 ‘

63 55 47 39 32

CLR_CondChg
CLR_PEBS_Ovf
CLR_UNC_Ovf

Reset Value: 0x00000000.00000000

Table 7: IA32_PERF_GLOBAL_OVF_CTRL Programming

Bit Bit Access Description
Position
CLR_OVF_PCO 0 WO1 | Setting this bit will clear the status bit

in the IA32_PERF_GLOBAL_STATUS
register for programmable counter O.

CLR_OVF_PC1 1 WO1 | Setting this bit will clear the status bit
in the IA32_PERF_GLOBAL_STATUS
register for programmable counter 1.

CLR_OVF_PC2 2 WO1 | Setting this bit will clear the status bit
in the IA32_PERF_GLOBAL_STATUS
register for programmable counter 2.

CLR_OVF_PC3 3 WO1 | Setting this bit will clear the status bit
in the IA32_PERF_GLOBAL_STATUS
register for programmable counter 3.

CLR_OVF_FCO

32

WO1

Setting this bit will clear the status bit
in the IA32_PERF_GLOBAL_STATUS
register for fixed counter O.

CLR_OVF_FC1

33

WO1

Setting this bit will clear the status bit
in the IA32_PERF_GLOBAL_STATUS
register for fixed counter 1.

CLR_OVF_FC2

34

WO1

Setting this bit will clear the status bit
in the IA32_PERF_GLOBAL_STATUS
register for fixed counter 2.

CLR_UNC_Ovf

61

WO1

Setting this bit clears the UNC_Ovf
status bit in the
IA32_PERF_GLOBAL_STATUS register.

CLR_PEBS_Ovf

62

WO1

Setting this bit clears the PEBS_Ovf
status bit in the
IA32_PERF_GLOBAL_STATUS register.

CLR_CondChg

63

WO1

Setting this bit clears the CondChg
status bit in the
IA32_PERF_GLOBAL_STATUS register.

Note: Writing any value other than ‘1’ to these bits will be ignored.

3.1.6. IA32_FIXED_CTR_CTRL

This register control the fixed counters, and determines whether these counters
count in USR or SUP mode, or both, and whether these counters are enabled to

generate performance interrupts.

Figure 6:1A32_FIXED_CTR_CTRL MSR Definition

[J Reserved

CTL_FCO
AnyThr_PCO

INT_FCO

CTL_FC2

AnyThr_ PC2

INT_FC2
M

31

23

=
INT_FC1 ‘

Anythr PCl
CTL_FC1

15

63

55

Reset Value:

47 39 32

0x00000000.00000000

Table 8: 1A32_FIXED_CTR_CTRL Programming

Bit Bit Access Description
Position
CTL_FCO 1:.0 RwW See Table 9.

AnyThr_FCO 2 Rw If clear the counter will count only
events which occur on its own thread. If
set, the counter will count events that
occur on all threads in the core
containing this thread (logical processor).

INT_FCO 3 Rw When set counter O is enabled to
generate overflow interrupts. Interrupts
are disabled if clear.

CTL_FC1 54 Rw See Table 9.

AnyThr_FC1 6 Rw If clear the counter will count only

events which occur on its own thread. If
set, the counter will count events that
occur on all threads in the core
containing this thread (logical processor).

INT_FC1 7 Rw When set counter 1 is enabled to
generate overflow interrupts. Interrupts
are disabled if clear.

CTL_FC2 9.8 RW See Table 9.

AnyThr_FC2 10 Rw If clear the counter will count only
events which occur on its own thread. If
set, the counter will count events that
occur on all threads.

INT_FC2 11 Rw When set counter 2 is enabled to
generate overflow interrupts. Interrupts
are disabled if clear.

Software must read-modify-write or explicitly clear reserved bits.

Table 9: Summary of CTL bit Programming for Fixed Counters

CTL_FCx | Description
Bit Field"

00b Disable the counter.

01b Count events when the logical processor is executing in privilege
level O.

10b Count events when the logical processor is executing in privilege
levels one, two, or three.

11b Count events when the logical processor is executing at any
privilege level.

TCTL_FCO, CTL_FCT, or CTL_FC2.

The all/my thread control bit (TnyThr_FCx) is always readable and writeable, even
when Hyper-Threading Technology is disabled on the NHM processor. If Hyper-
Threading Technology is disabled then setting these bits will have no effect.

3.2. Programmable Counter Control Registers

This section describes the control registers for the four programmable counters.

3.2.1. PerfEvtSelX

The PerfevtSelX registers control the four programmable counters. Using these
control registers, software can select the event to be counted, and the constraints
under which those events are counted. Each counter must be locally enabled by this
register, as well as globally enabled, in order to operate correctly.

The layout of this register is similar to previous Intel Core Architecture
implementations. However, the pin control (PC) bit is now reserved. Also, NHM is
the first Intel Core Architecture processor that implements SMT. NHM implements
an additional event modifier bit, AnyThr, which controls counting events for the

counter’s logical processor only, or for all logical processors in the core which
contains the counter.

Figure 7: PerfEvitSelX MSR Definition

|:| Reserved

USR

EVTSEL
EVTMSK _

=1

31 23 15 7 0
| |
CMASK ‘
INV
EN
AnyThr
INT
63 55 47 39 32
Reset Value: 0x00000000.00000000
Table 10: PerfEvtSelX Programming
Bit Bit Position | Access Description
EVTSEL 7:0 Rw Selects the event logic unit used to detect
micro-architectural conditions.
EVTMSK 15:8 Rw Condition qualifiers for the event selection logic
specified in the EVTSEL field.

USR 16 Rw When set, indicates that the event specified by
bit fields EVTSEL and EVTMSK is counted only
when the logical processor is operating and
privilege level 1, 2, or 3.

0S

17

RW

When set, indicates that the event specified by
bit fields EVTSEL and EVTMSK is counted only
when the logical processor is operating and
privilege level O.

18

RW

When set, causes the counter to increment
when a deasserted to asserted transition
occurs for the conditions that can be expressed
by any of the fields in this register.

INT

20

RW

When set, the logical processor generates an
exception through its local APIC on counter
overflow. Counters only count up, and
interrupts are generated on a transition from
maximum count to zero. There will be some
latency from the time the counter triggers the
interrupt until the interrupt handler is invoked.

AnyThr

21

Rw

When clear, the counter increments only when
event conditions are satisfied in its logical
processor. When Set, the counter increments
when event conditions are satisfied for any
logical processor in the core in which this
counter resides.

EN

22

Rw

When clear, this counter is locally disabled.
When set, this counter is locally enabled.

INV

23

RW

When clear, the CMASK field is interpreted as
greater than or equal to. When set, the CMASK
field is interpreted as less than.

CMASK

31:24

RW

When this field is clear, it has no effect on
counting. When set to a value other than zero,
the logical processor compares this field to the
event counts on each core clock cycle. If INV is
clear and the event counts are greater than or
equal to this field, the counter is incremented
by one. If INV is set and the event counts are
less than this field, the counter is incremented
by one. Otherwise the counter is not
incremented.

Bits [31:29] are reserved to 0. Software must
write these bits to zero.

Software must read-modify-write or explicitly clear reserved bits.

The all/my thread control bit (AnyThr) is always readable and writeable, even when
Hyper-Threading Technology is disabled on the NHM processor. If Hyper-Threading
Technology is disabled then setting this bit will have no effect.

3.3. Counter Registers

This section describes the three fixed and four programmable counter registers.

3.3.1. PERF_FIXED_CTRX and IA32_PMCX Registers

Each counter register is 48-bits long. Counter registers can be cleared, or pre-loaded
with count values as desired. This latter method is often used to set the point at
which the counter will overflow, which is useful in event-based sampling. When
writing the programmable counters using the wrmsr instruction, bits 32 through 47
cannot be written directly. They are sign-extended based on the value written to bit
31 of the counter register. When using the PEBS facility to re-load the
programmable counters the entire 48-bit value is loaded from the DS Buffer
Management area without any sign extension.

Previous implementations of Intel Core Architecture contained counters which were
limited to 40 bits in length. Nehalem implements counters 48 bits in length. Counter
width can be enumerated using the features in the CPUID instruction. See section
4.2 for more information.

Figure 8: PERF_FIXED_CTRX and IA32_PMCX MSR Definition

[} Reserved

31 23 15 7 0

63 55 47 39 32

Reset Value: 0x00000000.00000000

34. Off-core Response Event Programming

NHM provides the ability to program two counters to report off-core response
counts. These counters are programmed to detect the occurrence of off-core data
requests that return with a particular response. To enable these events, software
programs the PerfEvtSelX register as shown in the following table. This capability is
not available in processors previous to NHM.

Table 11: Offcore Response Events Encoding

Event Encoding Event Mask Extra MSR to
PerfEviSelX[7:0] | PerfEvtSelX[15:8] Program
0xB7 0x01 Ox1A6
(OFFCORE_RSP_0)
OxBB 0x01 Ox1A7
(OFFCORE_RSP_T1)

After programming the appropriate event in the PerfevtSelX register, software must
also program the “extra” register as shown in the figure below. To properly program
this extra register, software must set at least one request type and one response
type bit. Otherwise, the event count reported will be zero. It is legal and useful to
set multiple request and response type bits in order to obtain various classes of off-
core response events.

Figure 9: OFFCORE_RSP_X MSR Definition

[DMND DATA RD

DMND RFO

DMND IFETCH

Request WB
Types PF DATA RD
PF RFO

PF

IFETCH

OTHER

31 23 15 7 0

NON_DRAM

LLC MISS LOCAL MEM

LLC MISS REMOTE MEM

Response LLC_MISS_REMOTE_FORWARDED
Types LLC MISS REMOTE SCRUBBED

LLC HIT DIRTY SNP

LLC HIT CLEAN SNP

MIN HIT MINLAT

63 55 47 39 32
|:| Reserved Reset Value: 0x00000000.00000000
Table 12: OFFCORE_RSP_X Event Programming
Bit Bit Access Description
Position
DMND_DATA_RD Counts the number of demand
and DCU prefetch data reads of
full and partial cachelines as well
0 Rw as demand data page table entry
cacheline reads. Does not count
MLC data read prefetches or
instruction fetches.
DMND_RFO Counts the number of demand
1 RW | and DCU prefetch read for

ownership (RFO) requests

generated by a write to data
cacheline. Does not count MLC
RFO prefetches.

DMND_IFETCH

RW

Counts the number of demand
and DCU prefetch instruction
cacheline reads. Does not count
MLC code read prefetches.

WB

RW

Counts the number of writeback
(modified to exclusive)
transactions.

PF_DATA_RD

Rw

Counts the number of data
cacheline reads generated by the
MLC prefetchers.

PF_RFO

RW

Counts the number of read for
ownerships (RFO) requests
generated by the MLC
prefetchers.

PF_IFETCH

Rw

Counts the number of code reads
generated by the MLC
prefetchers.

OTHER

RW

Counts these transactions: read
code cacheline generated by
monitor instruction, LLC
invalidate, I/0, Write data partial
or full cacheline, USWC stores
and non-temporal stores, cache
line flush instruction generated
by a cache line flush, fence, lock,
unlock, or split-lock.

UNCORE_HIT

Rw

LLC Hit: local or remote home
requests that hit last level cache
in the uncore with no coherency
actions required (snooping).

OTHER_CORE_HIT_SNP

RW

LLC Hit: local or remote home
requests that hit the last level
cache and was serviced by
another core with a cross core
snoop where no modified copies
were found. (clean).

OTHER_CORE_HITM

10 RW

LLC Hit: local or remote home
requests that hit the last level
cache and was serviced by
another core with a cross core
snoop where modified copies
were found. (HITM)

REMOTE_CACHE_HITM

11 RW

LLC Miss: local or remote home
requests that missed the last
level cache and was serviced by
forwarded data following a cross
package snoop where a modified
copy was found and coherency
actions were taken. (Not
supported until WSM-TO)

REMOTE_CACHE_FWD

12 Rw

LLC Miss: local homed requests
that missed the last level cache
and was serviced by forwarded
data following a cross package
snoop where no modified copies
found. (Remote home requests
are not counted).

REMOTE_DRAM

13 Rw

LLC Miss: remote home requests
that missed the last level cache
and were serviced by remote
DRAM.

LOCAL_DRAM

14 Rw

LLC Miss: local home requests
that missed the last level cache
and were serviced by local
DRAM.

|0_CSR_MMIO

15 Rw

None: Non-DRAM requests that
are serviced by IOH.

As an example, assume software wishes to count demand data read requests that
are satisfied by the LLC. To accomplish this, software could program the PMU
registers as shown in the table below.

Table 13: Offcore Response Programming Example

Register MSR Programming Comments
Address
PerfEvtSelO 0x186 0x4301B7 | Enable counting of off-core

responses occurring in user and
supervisor code.

OFFCORE_RSP_O | Ox1A6 0x17 Demand data reads satisfied by the
LLC. Data could be owned by this
core, or forwarded as clean or
modified by another core on this
package.

IA32_PMCO 0xC1 -- This counter will accumulate the
event counts.

3.5. The PEBS Facility

This section details the PEBS facility as implemented in the NHM processor. The
PEBS facility allows software to profile workload behavior relative to a limited set of
events. Event counters are preloaded so they will reach an overflow condition after
the occurrence of a predefined number of events. On overflow of a PEBS-enabled
counter, the PEBS facility is armed. At the occurrence of the next precise (PEBS)
event, the processor will take an assist and capture machine state in a predefined
memory buffer.

3.5.1. |1A32_PEBS_ENABLE

Counters can be configured to periodically capture machine state and load latency
information as shown in Table 14. The IA32_PEBS_ENABLED register is used to
enable this facility.

Previous implementations of Intel Core Architecture supported the PEBS facility in
only one counter (counter 0). NHM supports PEBS mode in all four programmable
counters. The ability to capture load latency information is also new to NHM and will
be discussed in a subsequent section.

Figure 10: IA32_PEBS_ENABLE MSR Definition

[J Reserved

PEBS EN CTRO
PEBS EN CTR1
PEBS EN CTR2

PEBS EN CTR3 _W

31 23 15 7 0
LL EN CTRO
LL EN CTR1
LL EN CTR2
LL EN CTR3 :j_]
63 55 47 39 32

Reset Value:

0x00000000.00000000

Table 14: I1A32_PEBS_ENABLE Programming

Bit Bit Position | Access Description
PEBS_EN_CTRO 0 Rw Enable counter O to capture machine
state on overflow.
PEBS_EN_CTR1 1 Rw Enable counter 1 to capture machine
state on overflow.
PEBS_EN_CTRZ 2 Rw Enable counter 2 to capture machine
state on overflow.
PEBS_EN_CTR3 3 Rw Enable counter 3 to capture machine
state on overflow.
LL_EN_CTRO 32 Rw Enable counter O to capture load
latency information.
LL_EN_CTR1 33 Rw Enable counter 1 to capture load
latency information.
LL_EN_CTRZ2 34 Rw Enable counter 2 to capture load

latency information.

LL_EN_CTR3 35 Rw Enable counter 3 to capture load
latency information.

Software must read-modify-write or explicitly clear reserved bits.

3.5.2. PEBS Record Format

When a counter is enabled to capture machine state (PEBS_EN_CTRx = 1), the
processor will write machine state information to a memory buffer specified by
software as detailed below. In this mode, when the counter overflows from
maximum count to zero, the PEBS hardware is armed. Upon occurrence of the next
PEBS event, the PEBS hardware triggers and causes a PEBS record to be written.
The format of the PEBS record is indicated by the bit field
IA32_PERF_CAPABILITIES[11:8].

PEBS assists on NHM are trap-like (see PEBS_TRAP in Table 3). The return
instruction pointer (RIP) reported in the PEBS record will point to the instruction
after (+1) the instruction that causes the PEBS assist. The machine state reported
in the PEBS record is the machine state after the instruction that causes the PEBS
assist is retired. For instance, if the instructions:

mov eax, [eax] ;causes PEBS assist
nop

are executed, the PEBS record will report the address of the nop, and the value of

EAX in the PEBS record will show the value read from memory, not the target
address of the read operation.

The PEBS record format is shown below, and each field in the PEBS record is 64 bits
long. This record format does not change regardless of IA32 or IA32e mode
(compatibility or 64-bit mode). This behavior is different from previous
implementations. Fields that are new to NHM are shaded.

Table 15: PEBS Record Format

Byte Field Byte Field
Offset Offset

0x00 R/EFLAGS 0x58 R9
0x08 R/EIP 0x60 R10
0x10 R/EAX 0x68 R11
0x18 R/EBX 0x70 R12
0x20 R/ECX 0x78 R13
0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS
0x40 R/EBP 0xS8 Data Linear Address
0x48 R/ESP 0xAO0 Data Source Encoding
0x50 R8 OxA8 Latency Value (core cycles)

1. If the processor is operating in IA32 (32-bit) mode, then the 32-bit values of
each register are written. The upper 32 bits in each field is written to zeroes.
Fields for registers that are not defined in IA32 mode are written to zero.

2. InlA32e mode, the full 64 bit value of each register is written.
3. Shaded fields are new to NHM.
4. Fields related to the load latency facility will be discussed in section 3.7.

o [|A32_PERF_GLOBAL_STATUS

The value written to this field is the state of the IA32_PERF_GLOBAL_STATUS
register before the PEBS assist occurred. This value is written so software can
determine which counters overflowed when this PEBS record was written. Note
that this field indicates the overflow status for all counters, regardless of whether
they were programmed for PEBS or not.

o Data Linear Address
o Data Source
e Latency Value
These fields will be described in section 3.7.

Upon writing the PEBS record, microcode clears the overflow status bits in the
IA32_PERF_GLOBAL_STATUS corresponding to those counters that overflowed and
were enabled in the IA32_PEBS_ENABLE register. The status bits of other counters
remain unaffected.

3.5.3. Programming the PEBS Facility

Software programs the PEBS facility by programming PEBS-enabled (precise) events
in the PMU as described in section 3.2.1. Precise events are a subset of the total
events supported by the PMU, and are listed in table 0. The PEBS hardware is
enabled by setting the appropriate bit in the IA32_PEBS_ENABLE register for each
counter programmed with a precise event.

Software must also initialize the DS_BUFFER_MANAGEMENT_AREA data structure in
memory which further describes the PEBS configuration. The PEBS-related fields of

this data structure are shown below. The beginning linear address of this data
structure must be programmed into the IA32_DS_AREA register.

The overall relationship between the IA32_DS_AREA MSR, the
DS_BUFFER_MANAGEMENT_AREA, the PEBS record buffer, and the branch record
buffer is shown below.

Figure 11: PEBS Programming Overview

IA32_DS_AREA MSR

PEBS Buffer:

A 4

DS Buffer

Management Area: PEBS Record 0

A\ 4

BTS -Buffer Base PEBS Record 1

PEBS Record 2

PEBS Buffer Base

PEBS Index

PEBS Record i-

PEBS Abs Max — 1

\ 4

PEBS Int Thresh PEBS Record i

PEBS Counter 0 Reset

PEBS Counter 1 Reset

PEBS Counter 2 Reset

PEBS Counter 3 Reset PEBS Record N-
1

PEBS Record N

New in NHM

N AR R R BRI

\ 4

e PEBS Buffer Base

This field is programmed with the linear address of the first byte of the PEBS buffer
allocated by software. Microcode reads this field to determine the base address of
the PEBS buffer. Software should allocate this memory from the non-paged pool.

o PEBS Index

This field is initially programmed with the same value as the PEBS Buffer Base field,
or the beginning linear address of the PEBS buffer. Microcode reads this field to
determine the location of the next PEBS record to write. After a PEBS record has
been written, microcode updates this field with the address of the next PEBS record

to be written. The figure above illustrates the state of PEBS Index after the first
PEBS record is written.

e PEBS Abs Max

This field represents the absolute maximum length of the PEBS buffer and is
programmed with the linear address of the first byte past the end of the PEBS
buffer. This indicates to microcode where the PEBS buffer ends.

e PEBS Int Thresh

This field represents the interrupt threshold and allows software to receive an
interrupt notification indicating that the PEBS buffer is nearly exhausted. This field
is programmed with the linear address of the first byte of the PEBS record within
the PEBS buffer that represents the threshold record. After writing a PEBS record,
microcode checks the address of the next record to be written with the value of this
field. If they are the same, microcode causes a performance interrupt. This is the
same interrupt that is generated by a counter overflow, as programmed in the
Performance Monitoring Counters vector in the Local Vector Table of the Local APIC.
When this interrupt is generated the IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will
be set.

e PEBS Counter X Reset

This field allows software to set up PEBS counters to repeatedly trigger, generating
multiple PEBS records. In this way, software can profile the execution of test code
as desired. After each PEBS record is written, microcode checks each counter to see
if it overflowed and was enabled for PEBS (the corresponding bit in
IA32_PEBS_ENABLED is set). If these conditions are satisfied, then microcode reads
the reset value for that counter from the DS Buffer Management Area and sets the
counter to that value. For instance, if counter IA32_PMCO caused a PEBS record to
be written, then the value of “PEBS Counter O Reset” would be written to counter
IA32_PMCO. If a counter is not enabled for PEBS, its value will not be modified by
the PEBS assist. Software must specify the entire 48-bit value to be written to the
counter register in this field. Unlike when using the wrmsr instruction, the value
contained in this field is written to the counter register as is, and is not sign
extended from bit 31.

When profiling test code, software typically desires to collect PEBS records or event
data for every N events, where N is chosen to be a value that will provide
statistically significant samples while not generating excessive intrusion. To
accomplish this counters are typically pre-loaded with the value of negative N (-N),
so that the counter will count up and overflow causing an interrupt for every N
events detected.

Note that the PEBS buffer is not treated as a circular buffer. Each time a PEBS
record is written, microcode updates the “PEBS Index” field to the linear address of

the next PEBS record to write. Once this value becomes equal to that contained in
the “PEBS Abs Max" field, microcode will simply stop writing PEBS records. No faults
will be generated. To re-enable the PEBS buffer, software must reset the value of
the “PEBS Index” field back to the base linear address of the PEBS buffer.

If software desires to take an interrupt for each PEBS record that is written, it may
program the “PEBS Int Thresh” field with the linear address of the first byte of the

second PEBS record in the PEBS buffer (PEBS Record 1 in the figure above). In this
case, microcode will determine that the PEBS interrupt threshold was reached each
time a PEBS record is written, and will trigger and PMI.

The definition of the IA32_DS_AREA MSR Definition is shown in the figure below.
This MSR holds the linear address of the first byte of the IA32_DS_AREA memory
buffer. All 64-bits must be programmed.

Figure 12: 1A32_DS_AREA MSR Definition
[J Reserved

31 23 15 7 0

63 55 47 39 32

Reset Value: 0x00000000.00000000

3.6. Counter Prioritization

The interaction between counter overflows, PEBS, and interrupts is rather complex.
This section addresses these complexities. Some background information is in order.
Counter overflow interrupts are triggered by a counter transitioning from maximum
count to zero (assuming PerfEvtSelX.INT is set). This same transition will cause
PEBS hardware to arm, but not trigger. PEBS hardware triggers upon detection of
the first PEBS event after the PEBS hardware has been armed (a O to 1 transition of
the counter). At this point, a PEBS assist will occur, which causes control to
transition to microcode to handle the PEBS assist.

Counters (fixed and general) are prioritized in index order. That is, counter
IA32_PMCO takes precedence over all other counters. Counter IA32_PMC1 takes
precedence over counters IA32_PMC2 and IA32_PMC(3, and so on. This means that
if simultaneous overflows or PEBS assists occur, the appropriate action will be taken
for the highest priority counter. For instance, if IA32_PMC1 and IA32_PMC(C2
simultaneously cause an overflow interrupt and PEBS assist, respectively, then the
overflow interrupt will be serviced first. The PEBS threshold interrupt is triggered
by the PEBS assist, and is by definition prioritized lower than the PEBS assist.
Hardware will not generate separate interrupts for each counter that simultaneously
overflows. General (programmable) counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to
generate a counter overflow interrupt, the PEBS assist is serviced before the
counter overflow interrupt is serviced. If in addition the PEBS interrupt threshold is
met, the threshold interrupt is generated after the PEBS assist completes, followed
by the counter overflow interrupt (two separate interrupts are generated).

Un-core counters may be programmed to interrupt one or more processor cores. It is
possible for interrupt posted from the un-core to occur coincident with core counter
overflow interrupts. Software must check core and un-core status registers to
determine the precise source of counter overflow interrupts.

3.7. The Load Latency Facility

The load latency facility provides software a means to characterize load latency to
different levels of the memory hierarchy. This facility is used in conjunction with the
PEBS facility and is new in NHM processors. The facility measures latency from
micro-operation (uop) dispatch to when data is globally observable (GO).

To use this feature software must assure:

1) A hardware counter is programmed with the MEM_INST_RETIRED event, and
the LATENCY_ABOVE_THRESHOLD event mask must be specified
(PerfEvtSelX[15:0] = 0x100B). The counter will accumulate event counts
for architecturally visible loads which exceed the programmed latency
threshold. Stores are ignored when this event is programmed.

Software must not program the CMASK or INV fields of the PerfEvtSelX
register used for load latency (see Figure 7). Doing so will result in undefined
behavior.

2) The PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired
latency threshold in core clock cycles. Loads with latencies greater than this
value are eligible for counting and latency data reporting. The minimum value
that may be programmed in this register is 3 (the minimum detectable load
latency is 4 core clock cycles).

3) The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the
corresponding counter register (see Figure 10). This means that both the
PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter zero, the
IA32_PEBS_ENABLE register must be programmed with the 64-bit value
0x00000001.00000001.

When this facility is enabled hardware randomly tags load instructions to carry
latency information, which is used to update internal data and source registers.
These internal registers are continuously updated as each tagged load instruction
retires.

When a PEBS assist occurs, the last value written to these internal registers will be
read and subsequently written as part of the PEBS record. The PEBS sample after
value (SAV) operates orthogonally to the instruction tagging mechanism. When
enabled, the instruction tagging mechanism randomly tags memory load instructions
from which to collect latency data. The SAV determines the number of qualified
memory load instructions that will have to retire before a PEBS assist will be
generated. The load latency data written to the PEBS record will be for the last
qualified memory load instruction which retired just before the PEBS assist was
invoked.

The hardware used to tag memory load instructions is shown in the figure below. It
is @ 17-bit, maximal length linear feedback shift register (LFSR) which generates a
pseudo-random stream of 1's and O's. Bits 14 and 17 are tapped to provide a
pseudo-random sequence, and bits 14 through 17 are logically AND'ed together to
generate the select signal.

Figure 13: LFSR for Tagging Memory Load Instructions

.@P

17116 |15 (14 [13 (12 (11|10 | 8 | 8

Select Load

Given this configuration, each PEBS record written will contain load latency
information, as shown in the shaded areas in Table 15.

o Data Linear Address

This is the linear address of the target of the load instruction. This address is non-
canonical address. The lower 48 bits of the address are valid.

e Latency Value
This is the actual latency of the load in core clock cycles.
o Data Source

This value indicates the origin of the data obtained by the load instruction, and takes
on the value of zero to fifteen, inclusive. The encoding for this value is shown in the
table below. In the descriptions local memory refers to memory physically attached
to this package, and remote memory referrers to memory physically attached to
another package. These descriptions also refer to cache line states exclusive (E),
shared (S), modified (M), invalid (I), and forward (F). Details of the MESI protocol are
beyond the scope of this document.

Table 16: Data Souce Encodings in Load Latency Records

Encoding Description

0x0 Unknown LLC cache miss

Minimal latency core cache hit. This request was satisfied by the data

Ox1 cache.

Pending core cache HIT. Outstanding core cache miss to same cache-line

Oxe address was already underway,.

0x3 This data request was satisfied by the MLC.

LLC HIT. Local or Remote home requests that hit last level cache in the

Ox4 uncore with no coherency actions required (snooping).

LLC HIT. Local or Remote home requests that hit the last level cache and
0x5 was serviced by another core with a cross core snoop where no modified
copies found. (clean).

LLC HIT. Local or Remote home requests that hit the last level cache and
0x6 was serviced by another core with a cross core snoop where modified
copies found. (HITM).

Ox7 Reserved.

LLC MISS. Local homed requests that missed the last level cache and was
0x8 serviced by forwarded data following a cross package snoop where no
modified copies found. (Remote home requests are not counted).

LLC MISS. Local or Remote home requests that missed the last level
0x9 cache and was serviced by forwarded data following a cross package
snoop where a modified copy was found and coherency actions taken.

(Not supported until WSM-TO).

LLC MISS. Local home requests that missed the last level cache and was

OxA serviced by local DRAM (go to shared state).
OxB LLC MISS. Remote home requests that missed the last level cache and

was serviced by remote DRAM (go to shared state).
OxC LLC MISS. Local home requests that missed the last level cache and was

serviced by local DRAM (go to exclusive state).
OxD LLC MISS. Remote home requests that missed the last level cache and

was serviced by remote DRAM (go to exclusive state).
OxE Reserved.
OxF The request was to un-cacheable memory.

The figure below shows the programming for the PEBS_LD_LAT_THRESHOLD
register.
Figure 14: PEBS_LD_LAT_THRESHOLD MSR Definition
LD_LAT THRESH
Reserved
31 23 15 7 0
63 55 47 39 32
Reset Value: 0x00000000.00000000
Table 17: PEBS_LD_LAT_THRESHOLD Programming
Bit Bit Access Description
Position

LD_LAT_THRESH | 15:0 Rw The threshold load latency in core clock

cycles. Events with latencies greater than
this value are counted and their latency
information is reported in the PEBS record.

Otherwise, they are ignored. The minimum
value that may be programmed in this field
is 0x3.

3.8. The Last Branch Record Facility

This facility provides a means to capture the branch trace messages (BTM) in either
an on-chip stack or memory buffer. Branch trace messages provide the source and
destination addresses for executed branch instructions. The facility also provides a
means for transmission of BTMs as a special cycle over the system bus, but details
of that capability are beyond the scope of this document. Software directs the
destination of the BTMs by programming certain bits in the IA32_DEBUGCTL MSR,
and by optionally programming certain fields of the DS Buffer Management Area, as
will be shown below.

If IA32_DEBUGCTL.BTS (bit 7) is set, enabling the BTS mechanism, then software
must initialize the BTS fields in the DS Buffer Management Area. It is not possible to
simultaneously store BTMs via the System Bus and to the BTS buffer.

Capturing BTMs in the on-chip LBR stack is enabled by setting IA32_DEBUGCTL.LBR
(bit 0). The on-chip LBR stack was extended on NHM to sixteen pairs of source and
target addresses, as opposed to only four pairs in previous implementations. The
details for programming this facility are summarized below.

Table 18: Programming the BTS Facility

IA32_DEBUGCTL Description

TR | BTS | BTS_O | BTS_ | BTINT
FF_OS | OFF_
USR

0 X X X X Branch trace messages (BTMs) off.
0 X X X BTMs are transmitted via a special bus cycle
on the system bus.
1 1 0 0 0L All branches are recorded in the BTS

(memory buffer).

1 1 1 0 o1 Branches occurring when CPL greater than
zero are recorded in the BTS.

1 1 0 1 01 Branches occurring when CPL is equal to
zero are recorded in the BTS.

1 1 1 1 X BTMs are transmitted via a special bus cycle
on the system bus.

1 1 0 0 12 All branches are recorded in the BTS.

1 1 1 0 12 Branches occurring when CPL greater than
zero are recorded in the BTS.

1 1 0 1 12 Branches occurring when CPL is equal to
zero are recorded in the BTS.

The BTS is treated as a circular buffer.

2Upon reaching the BTS interrupt threshold a Performance Monitoring interrupt will
be generated. If the BTS_Index field in the DS Buffer Management Area is not
reinitialized and the BTS_Abs_Max value is exceeded, the processor will stop writing
BTMs.

3.8.1. LBR Filtering

Nehalem introduces the ability to filter the capture of LBR information based on
various conditions. NHM allows software to allow or disallow capturing LBR data
based on current privilege level, branches taken due to relative or indirect calls and
jumps, and other conditions. When filtering is set, branch trace information is not
captured in the branch trace store memory buffer or last branch record stack.
Programming this filtering capability is detailed in the figure and table below.

Figure 15: LBR_SELECT MSR Programming

CPL_EQ 0
CPL_NEQ 0
Reserved Jee
NEAR REL CALL
NEAR_IND CALL
NEAR RET
NEAR_IND JMP \ ‘

NEAR_REL_JMP

FAR BRANCH

31 23 15 7 0

63 55 47 39 32

Reset Value: 0x00000000.00000000

Table 19: LBR_SELECT Programming

Bit Bit Access Description
Position
CPL_EQ_O 0 Rw When set do not capture branches occurring in ring O.
CPL_NEQ_O 1 Rw When set do not capture branches occurring in CPL

other than ring O.

JCC 2 Rw When set do not capture conditional branches.
NEAR_REL_CALL 3 Rw When set do not capture near relative calls.
NEAR_IND_CALL 4 Rw When set do not capture near indirect calls.

NEAR_RET 5 Rw When set do not capture near returns.
NEAR_IND_JMP 6 Rw When set do not capture near unconditional indirect
jumps.
NEAR_REL_JMP 7 Rw When set do not capture near unconditional relative
branches.
FAR_BRANCH 8 Rw When set do not capture far branches.

3.8.2. Storing Branch Trace Messages in the Branch Trace Store

When the BTS mechanism is enabled BTMs are written to the BTS memory buffer.
The format of BTMs written to the BTS is shown in the figure below.

Figure 16: Format of Branch Trace Message in Branch Trace Store

Last Branch From

Last Branch To

Branch Predicted

Microcode writes the source and destination linear addresses of the branch
instruction for which this record was written. This record format does not change
regardless of IA32 or IA32e mode, but in IA32 mode only the lower 32 bits of the
linear addresses will be meaningful. The Branch Predicted bit indicates if this branch

was predicted or not. If this bit is set, the branch was predicted. Otherwise, the
branch was not predicted (miss-predicted).

Software indicates the location of the BTS buffer by initializing the DS Buffer
Management Area, which is also used in a similar fashion for the PEBS facility.
Software initializes the following fields of the DS Buffer Management area:

e BTS Buffer Base

This is the base linear address of the first byte of the BTS memory buffer.
Microcode reads this field to determine the base address of the BTS buffer.
Software should allocate this memory from the non-paged pool.

e BTS Index

This field is initially programmed with the same value as the BTS Buffer Base field,
or the beginning linear address of the BTS buffer. Microcode reads this field to
determine the location of the next BTM record to write. After a BTM record has
been written, microcode updates this field with the address of the next BTM record
to be written. The figure above illustrates the state of BTS Index after the first BTM
record is written.

e BTS Abs Max

This field represents the absolute maximum length of the BTS buffer and is
programmed with the linear address of the first byte past the end of the BTS buffer.
This indicates to microcode where the BTS buffer ends.

If IA32_DEBUGCTL.BTINT (Bit 8) is clear, then the BTS buffer is treated as a circular
buffer. When the BTS buffer is full, as defined by this field, microcode will wrap to
the beginning of the buffer and overwrite the first record location with the latest
BTM.

If IA32_DEBUGCTL.BTINT is set, then BTMs will not be written beyond this limit, and
data will potentially be lost.

e BTS Int Thresh

If IA32_DEBUGCTL.BTINT is clear, this field is ignored and the BTS is treated as a
circular buffer. No threshold interrupt is generated.

When IA32_DEBUGCTL.BTINT is set, this field is used and represents the interrupt
threshold, allowing software to receive an interrupt notification indicating that the
BTS buffer is nearly exhausted. Software can detect this overflow condition if the
value of the BTS Index field equals or exceeds the value of this field.

This field is programmed with the linear address of the first byte of the BTM record
within the BTS buffer that represents the threshold record. After writing a BTM
record, microcode checks the address of the next record to be written with the
value of this field. If they are the same, microcode causes a performance interrupt.

This is the same interrupt that is generated by a counter overflow, as programmed
in the Performance Monitoring Counters vector in the Local Vector Table of the Local
APIC.

Figure 17: Branch Trace Store Programming Overview

IA32_DS_AREA MSR

BTS Buffer:

A\ 4

DS Buffer BTM Record 0
Management Area:
BTS Buffer Base BTM Record 1
BTS Index

BTM R rd 2
BTS Abs Max ecord

BTS Int Thresh

BTM Record i-1

A 4

BTM Record i

PEBS Counter -2 Reset

PEBS Counter 3 Reset BTM Record N-1

BTM Record N

\ 4

3.8.3. Storing Branch Trace Messages in the Last Branch Record
Stack

By setting the IA32_DEBUGCTL.LBR (Bit O) control bit, software enables storage of
BTMs in the on-chip LBR stack. This stack consists of sixteen pairs of MSRs which
hardware writes as branch instructions are executed. Hardware writes this stack in
a circular fashion, from lowest to highest indexed last-branch registers, and
MSR_LASTBRANCH_TOS register contains an index (0-15) which refers to the most
recent BTM written to the LBR stack. Software reads these MSR pairs to obtain the
source and target addresses of the branch instructions.

The bit field IA32_PERF_CAPABILITIES[5:0] indicates the format of the LBR stack
records. The figures and tables below detail this format as contained by the “from”
and “to” data registers. Details of the top-of-stack MSR are also shown.

Figure 18: MSR_LASTBRANCH_x_FROM_IP MSR Definition

[} Reserved Data[31:0]

31 23 15 7 0
MISPRED
Data[32:47]
SIGN_EXT
[I T 1
63 55 47 39 32

Reset Value: 0x00000000.00000000

Table 20: MSR_LASTBRANCH_x_FROM_IP Programming

Bit Bit Access Description
Position

DATA 47:0 RO The linear address of the branch instruction itself.
This is the “branch from” address.

SIGN_EXT | 62:48 RO | The sign extension of bit 47 of this register.

MISPRED 63 RO | When set, indicates the branch was predicted.
Otherwise, the branch was not predicted (mis-
predicted).

Figure 19: MSR_LASTBRANCH_x_TO_IP MSR Definition

Data[31:0]
Reserved
[
31 23 15 7 0
SIGN_EXT Data[32:47]
[11
63 55 47 39 32

Reset Value: 0x00000000.00000000

Table 21: MSR_LASTBRANCH_x_TO_IP Programming

Bit Bit Access Description
Position
DATA 47:.0 RO | The linear address of the target of the branch
instruction. This is the “branch from" address.
SIGN_EXT | 6348 RO | Sign extension of bit 47 of this register.

Figure 20: MSR_LASTBRANCH_TOS MSR Definition

[J Reserved

TOS

31

15 7 0

63

55

47 39 32

Reset Value: 0x00000000.00000000

Table 22: MSR_LASTBRANCH_TOS Programming

Bit

Bit
Position

Access

Description

TOS

3:0

RO

Contains the index of the register pair that contains the
most recent BTM recorded in the LBR stack. To read the
complete LBR stack, software will start reading BTMs
from this location, to the end of the LBR stack (highest
indexed register pair), then wrap and continue reading
from the lowest indexed register pair to the register pair
indexed by TOS - 1.

3.9.

The RDPMC Instruction

All of the counter and counter control registers in the NHM core are implemented as
model specific registers (MSR). There are two general instructions that allow
software to access these registers: rdmsr (read an MSR) and wrmsr (write an MSR).
The rdmsr instruction can be used to read the counter registers to obtain event
counts as desired. However, due to constraints imposed on this more general
instruction its latency is relatively high. Therefore, software is strongly encouraged
to use the rdpmc instruction when reading counter registers, which improves read
latency by approximately 50%. The rdpmc instruction may be used to read general
and fixed counter registers by preloading the correct index value in the ECX register
and executing the instruction.

Table 23: Legal Index (ECX) Values for Executing the RDPMC Instruction

ECX Value: Reads:

0 IA32_PMCO

1 IA32_PMC1

21 IA32_PMC2

31 IA32_PMC3
0x40000000 PERF_FIXED_CTRO
0x40000001 PERF_FIXED_CTR1
0x40000002 PERF_FIXED_CTRZ
1 New in Nehalem.
Note: Using any values for ECX other than those listed
above will cause a general protection fault when this
instruction is executed.

51

4, Detecting the Nehalem Processor

To properly program the PMU facilities, software must obviously detect the
presence of a Nehalem-based product. The following sections provide the
information necessary for software to properly detect and configure for the
Nehalem core and uncore PMUs.

4.1, CPUID identification

Software may use leaf one of the CPUID instruction (execute the CPUID instruction
with the EAX register set to a value of 0x1, or CPUID.1 for short), and obtain the
family, model, and stepping designations of the product.

While the Nehalem Core PMU architecture is consistent across all Nehalem
implementations, uncore PMU architecture implementations may vary across the
product line. However, the processor signature (family, model, and stepping)
obtained from the CPUID instruction may still be used to uniquely identify the core
and uncore PMU features. These details are summarized in the table below.

Table 24: Nehalem CPUID Processor Signatures

Processor Code Extenlded Extended Type Family Model | Stepping Composite
Name Family Model [13:12] ID [7:4] ID [3:0] Value
[27:20] | [19:16] ' [11:8] ' ' (CPUID.1.€AX)
Nehalem-EP 25 1 4 4 0x1 0x0 0x6 | OxA 0xn 0x000106AN
(Gainstown)
Nehalem-EP 15| = 4 59 0x1 0x0 0x6 | OxA 0Xn 0x000106AN
(Bloomfield)
Nehalem-EX 0x00 0x2 0x0 Ox6 | OxE 0xn 0x000206€n
(Beckton)

Note: This information is subject to change without notice.

4.2.

Architectural PerfMon

Nehalem-based products conform to version 3.0 of the Architectural Core
Performance Monitoring (ACPM) specification. This architecture enables software to

confirm the presence of processor core PMU resources and enumerate their
capabilities. It has no bearing on the uncore PMU resources. For more information
refer to the ACPM specification or the Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 2B (reference the CPUID instruction).

ACPM provides a means by which software can detect the core PMU resources
available on a particular product implementation. By executing leaf “A” of the CPUID
instruction (CPUID.A), software can detect the version of the architectural

52

implementation of the PMU, the number and extent of general and fixed counters,
and the architectural events which are available. After executing CPUID.A the
registers EAX, EBX, and EDX contain the values described in the table below.

Table 25: CPUID.A Information

Register | Bit Field Description Comments
Indicates the version of the Architectural
7.0 Version ID | Core Performance Monitoring specification
that applies to this product.
General Indicates the number of general
15:8 Counters (programmable) counters implemented in
EAX this product.
Counter Indicates the width in bits of each general
23:16 Width counter. For instance, a value of 0x30
indicates a 48-bit counter.
31:24 Vector Indicates the length of the bit vector
' Length contained in the EBX register.
Indicates which architecturally defined
events are supported in this product
implementation. A value of zero in a bit
position indicates that the event
. represented by that bit is supported. The
Variable | - iiotural | following architectural events are defined:
EBX (see'llength Events Bit O -
specified by !t 0 - Core Cy;les '
EAX[31:24]) Vector Bit 1 - Instructions Retired
Bit 2 - Reference Cycles
Bit 3 - Last-level Cache References
Bit 4 - Last-level Cache Misses
Bit 5 - Branch Instructions Retired
Bit 6 - Branch Miss-predicts Retired
Fixed Indicates the number of fixed function
4.0 Counters counters available on this product
EDX implementation.
125 Counter Indicates the width in bits of each fixed
' Width function counter.

53

4.3, Other Considerations

Software must first check the IA32_MISC_ENABLE MSR to verify that performance
monitoring facilities and the PEBS facility are available. If bit 7 of this register is set,
then the performance monitoring features of the processor core are available. If bit
12 of this register is clear, then the PEBS facility is available. Refer to the Intel® 64
and IA-32 Architectures Software Developer’'s Manual Volume 3B for more details.

Software may also query the IA32_PERF_CAPABILITIES register to ascertain
additional details of the PEBS facility. Please refer to section 3.1.1 for more
information.

54

Appendix A:

Precise (PEBS-enabled) Events

Event Name Event Sub-event Name Event
Encoding Mask
LOADS 0x01
MEM_INST_RETIRED 0x0B STORES 0x02
LATENCY_ABOVE_THRESHOLD 0x10
STORE_MISS_IN_LAST_LEVEL_DTL 0x01

MEM_STORE_RETIRED 0x0C B
DROPPED_EVENTS 0x02
LLC_DATA_MISS 0x01
OTHER_CORE_LZ2_HIT 0x02
OTHER_CORE_LZ_HITM 0x04
MEM UNCORE EVENT R REMOTE_CACHE_HIT 0x08
~ ETIRED) X0 REMOTE_CACHE_HITM 0x10
LOCAL_DRAM 0x20
NON_LOCAL_DRAM 0x40
10 0x80
ALL 0x01
INST_RETIRED 0xCO FP 0x02
MMX 0x04
OTHER_ASSISTS O0xC1 PAGE_A/D_ASSISTS 0x01
ALL_EXECUTED 0x01
UOPS_RETIRED OxC2 RETIRE_SLOTS 0x02
MACRO_FUSED 0x04
CONDITIONAL 0x01
BR_INST_RETIRED 0xC4 NEAR_CALL 0x02
ALL_BRANCHES 0x04
BR_MISP_RETIRED 0xC5 CONDITIONAL 0x01

NEAR_CALL 0x02

ALL_BRANCHES 0x04

PACKED_SINGLE 0x01

SCALAR_SINGLE 0x02

SSEX_UOPS_RETIRED 0xC7 PACKED_DOUBLE 0x04
SCALAR_DOUBLE 0x08

VECTOR_INTEGER 0x10

ITLB_MISS_RETIRED 0xC8 ITLB_MISS 0x20
LOAD_HIT_L1 0x01

LOAD_HIT_L2_MLC 0x02

LOAD_HIT_L3_LLC 0x04

LOAD_HIT_OTHER_PM_PKG_LZ2 0x08

MEM_LOAD_RETIRED 0xCB LLC_MISS 0x10
DROPPED_EVENTS 0x20

LOAD_HIT_LFB_I?UT_MISSED_IN_L 0x40

LOAD_MISS_IN_LAST_LEVEL_DTLB | 0x80

BR_CND_MISPREDICTION OxEB BIMODAL 0x10
ALL 0x01

FP_ASSISTS OxF7 OUTPUT 0x02
INPUT 0x04

56

Appendix B: Core PMU MSR List

Table 26: NHM Core PMU Register List

Name MSR
Address
IA32_PMCO 0xC1
IA32_PMC1 0xC2
IA32_PMC2 0xC3
IA32_PMC3 0xC4
PerfEvtSel0 0x186
PerfEvtSell 0x187
PerfEvtSel2 0x188
PerfEvtSel3 0x189
IA32_MISC_ENABLE Ox1A0
OFFCORE_RSP_O Ox1A6
OFFCORE_RSP_T Ox1A7
LBR_SELECT 0x1C8
MSR_LASTBRANCH_TOS 0x1C9
|IA32_DEBUGCTL 0x1D9
PERF_FIXED_CTRO 0x309
PERF_FIXED_CTR1 0x30A
PERF_FIXED_CTRZ 0x30B
IA32_PERF_CAPABILITIES 0x345
IA32_FIXED_CTR_CTRL 0X38D
IA32_PERF_GLOBAL_STATUS 0x38E
IA32_PERF_GLOBAL_CTRL Ox38F
|IA32_PERF_GLOBAL_OVF_CTRL 0x390
IA32_PEBS_ENABLE Ox3F1
PEBS_LD_LAT_THRESHOLD Ox3F6
|IA32_DS_AREA 0x600
MSR_LASTBRANCH_x_FROM_IP (0 £ x £ 15) 0x680-

57

Ox68F

MSR_LASTBRANCH_x_TO_IP (0 £ x £ 15)

0x6C0-
Ox6CF

58

Copyright® 2010 Intel Corporation, all rights reserved

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
“reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Any software source code reprinted in this document is furnished under a software license and may
only be used or copied in accordance with the terms of that license.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/#/en_US 01

This document contains information on products in the design phase of development.

Intel®, Xeon® are trademarks of Intel Corporation in the U.S. and other countries.

59

http://www.intel.com/#/en_US_01

