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Figure 1: Voxel-based interactive indirect illumination supporting both dynamic lights and scenes with significantly reduced
and bounded memory consumption.

Abstract
We introduce a novel voxel-based algorithm that interactively simulates both diffuse and glossy single-bounce
indirect illumination. Our algorithm generates high quality images similar to the reference solution while using
only a fraction of the memory of previous methods. The key idea in our work is to decouple occlusion data, stored
in voxels, from lighting and geometric data, encoded in a new per-light data structure called layered reflective
shadow maps (LRSMs). We use voxel cone tracing for visibility determination and integrate outgoing radiance
by performing lookups in a pre-filtered LRSM. Finally we demonstrate that our simple data structures are easy to
implement and can be rebuilt every frame to support both dynamic lights and scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Global illumination (GI) greatly increases visual realism by
simulating light transport between each surface in the scene;
as such, it is a highly desirable effect to enable in real-
time applications. This prospect is particularly challenging
due to the tremendous amount of computations and band-
width required, which is why the use of GI is, to this date,
mostly confined to off-line rendering. Recently, several in-
teractive GI techniques have been developed, thanks to the
ever increasing computational capabilities of modern GPUs,
but with several limitations such as pre-computation require-
ments, poor performance, and image artifacts.

Among several interactive GI techniques, voxel cone trac-
ing (VCT) [CNS∗11] simulates at interactive rates both dif-
fuse and glossy indirect illumination, and it has been eval-

uated for use in game engines [Mit12]. VCT does not ex-
hibit many of the problems of other real-time GI algorithms,
such as bright spots or temporal flickering, and rendering
time is less dependent on scene complexity because cones
interact with a regular and filterable data structure. Despite
these benefits, voxel-based methods can be very memory in-
tensive; each voxel must encode a large number of the at-
tributes necessary to compute indirect lighting, including di-
rectionally dependent terms that require even more memory
when pre-filtered (i.e. mipmapping). Sparse voxel data struc-
tures need to be constructed to reduce memory consumption,
which makes an implementation more complex. Moreover
the voxelization (i.e. the process of converting triangles into
voxels) and lighting data encoding both require expensive
atomic operations to avoid data races.

c© The Eurographics Association 2014.



M. Sugihara, R. Rauwendaal, & M. Salvi / Layered Reflective Shadow Maps for Voxel-based Indirect Illumination

(a) (b)

Figure 2: (a) Traditional voxel cone tracing relies on trac-
ing cones into "fat" voxel volumes with many attributes per
voxel. (b) In contrast, our "slim" voxels encode only binary
visibility information and store the remaining attribute data
in our pre-filtered LRSM data structure.

We present a new method for interactive indirect illumina-
tion using voxel cone tracing with layered reflective shadow
maps (LRSMs). Figure 2 summarizes the difference between
the traditional voxel cone tracing approach and our work.
Our method uses voxels only for visibility determination, re-
quiring to store only one byte per voxel. We also introduce a
new pre-filterable data structure, layered reflective shadow
maps (LRSMs), which supports radiance integration. Our
contributions can be summarized as follows:

• A voxel cone tracing method to interactively simulate
both diffuse and glossy indirect illumination with signifi-
cantly reduced and bounded memory consumption.
• Simple data structures: occlusion voxels and layered re-

flective shadow maps, neither of which require sparse
memory allocations or atomic operations.
• Efficient support for fully dynamic geometry and lighting.

2. Related Work

A great deal of effort has been expended on finding GI
solutions; we restrict our focus to those methods that tar-
get interactive rendering of indirect illumination effects. For
comprehensive surveys of the state of the art in this field
see [RDGK12, DKH∗14], and for non-interactive methods
see [DBB06].

Virtual Point Lights Keller [Kel97] introduced the concept
of virtual point lights (VPLs) to represent the indirect illu-
mination in the scene. This is an effective approach, but can
suffer from bright spots based on its sampling strategy. Re-
flective shadow maps (RSMs) [DS05] consider each pixel
of the shadow map (extended with additional information)
as an indirect light source, but neglect occlusion informa-
tion. Dachsbacher and Stamminger [DS06] later converted
the process of gathering illumination from the RSMs to a
scatter operation with a bounded splatting approach using
the rasterizer. Laine et al. [LSK∗07] proposed an extension

to VPLs that enabled the reuse of VPL shadow maps across
several frames. Ritschel et al. [RGK∗08] introduced imper-
fect shadow maps to rapidly create hundreds of VPL shadow
maps via coarse point-rendering. However, due to holes in
the coarse shadow maps, ISMs are not able to accurately
evaluate near-field illumination. Several approaches cluster
VPLs [DGR∗09, PKD12] to create area light sources, or at-
tempt to improve the VPL distribution [REH∗11], with the
aim of accelerating and improving the indirect illumination
results. Tokuyoshi and Ogaki [TO12] use a real-time bidi-
rectional sampling strategy to avoid VPL artifacts without
resorting to clamping but it supports only rough glossy indi-
rect illumination due to a limited number of samples.

Voxel-based Global Illumination Recently a series of ap-
proaches have relied increasingly on voxels in order to bet-
ter utilize the available graphics hardware and achieve a de-
gree of scene independence when it comes to computing sec-
ondary illumination effects. Kaplanyan et al. [KD10] stored
a discretized distribution of light, initialized from RSMs, us-
ing low order spherical harmonics (SH) and developed an ef-
ficient light diffusion scheme. Thiedemann et al. [THGM11]
used voxels to accelerate ray-intersections and generated
RSMs to compute radiance for real-time near-field indirect
illumination. Crassin et al. [CNS∗11] traced not rays, but
volumetric cones through a hierarchical voxel structure, and
stored an anisotropic radiance function in a sparse voxel oc-
tree (SVO). Mittring [Mit12] demonstrated the feasibility
of such approaches to video games. Rauwendaal [Rau13]
used a similar approach but stored SH coefficients in the
voxels. The benefit of voxel-based approaches is that given
a sufficiently fast voxelization, the computation of indirect
lighting becomes largely independent of scene complexity.
The downside of the voxel-based approach is that as vox-
els become increasingly “fat”, that is, as the number of at-
tributes increases linearly, the volume wastes cubically more
space. Sparse voxel structures such as SVO in Crassin et
al. [CNS∗11], and hardware support for sparse texture re-
sources alleviate this requirement somewhat, but still fail to
put a tight bound on memory requirements.

In contrast, our approach stores only binary “slim” voxel
occlusion data, and performs a lookup into our filtered
(memory bounded) LRSM data structure to recover attribute
information. This approach is similar to [THGM11] but is
adapted to voxel cone tracing which can support a wider
range of diffuse and glossy indirect illumination effects. Bi-
nary voxels are compact enough that they do not necessitate
the construction of sparse data structures, and they can be
built without the use of atomic operations.

3. Overview

Our work is inspired by voxel cone tracing, which we re-
view briefly in Section 3.1, followed by an overview of our
algorithm (Figure 3) in Section 3.2.
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Figure 3: Pipeline. Traditional approaches are used to initialize both G-buffers and RSMs. The RSMs are split into the quarter
resolution layers to avoid pre-filtering depth and normal discontinuities. Finally, a set of cones is traced for each pixel of the
G-buffer into the binary voxels to determine visibility and look up the sample attributes within the pre-filtered LRSM structure
to compute the indirect illumination contribution for the final image.

Figure 4: The diameter of each sample along the cone selects
the quadrilinearly interpolated voxel sample point within the
pre-filtered voxel mipmap levels. The sample size progres-
sively increases as it steps further.

3.1. Voxel Cone Tracing for Indirect Illumination

Voxel cone tracing (VCT) estimates the incoming light in-
tensity I by tracing over pre-filtered voxel-based representa-
tion of the scene. It approximates tracing a bundle of rays
with one cone by exploiting their spatial coherence. A cone
volume is approximated by a sequence of cone elements (we
use sphere samples as shown in Figure 4), over which occlu-
sion and outgoing radiance are integrated. The intensity I is
then accumulated in front-to-back order:

I = α0L0 + ∑
i=1

αiLi

i−1

∏
j=0

(1−α j) (1)

where αi and Li are the integrated occlusion and outgoing ra-
diance for the ith sample. These terms can be instantly com-
puted using the pre-filtered data stored in the voxel mipmaps
chain. The diameter of sphere sample is used to select the
voxel mip level: mipLevel = log2(dsphere) where dsphere is
the sphere diameter in voxel units. The tracing process stops
when a cone is considered fully occluded or when tracing
steps reach a certain threshold. A full description of this
method can be found in [HN12].

Crassin et al. [CNS∗11] utilizes this mechanism to esti-
mate indirect illumination by encoding both geometric and
lighting data in voxels. Final gathering is approximated by
shooting several cones from each image sample visible from
the eye. Wide cones covering the hemisphere are used to
capture the indirect diffuse component, while a single cone
directed along the mirror reflection vector, whose aperture is
controlled by glossiness, samples the indirect specular com-
ponent. These cones can be adjusted according to the mate-
rial BRDF.

3.2. Our Algorithm

Our method operates as shown in Figure 3. We first con-
vert the scene into binary voxels (i.e. empty or full vox-
els) using a GPU based voxelization method [CG12]. This
data is used to determine occlusion. This coarse scene rep-
resentation is pre-filtered by generating mipmaps. Second,
an LRSM is generated for each light by rendering the scene
from the light’s point-of-view into a reflective shadow map
(RSM) [DS05], which is split into several pre-filtered lay-
ers. Splitting the RSM into layers is a key step to avoid
large depth and normal discontinuities, which significantly
increases the quality of our pre-filterable depth and normal
representations.

Our software rendering pipeline utilizes deferred shading
to avoid unnecessary calculations. We first render a G-buffer
from the eye and then compute direct and indirect lighting at
each visible sample. Indirect illumination is estimated with
Equation 1 by performing cone-based final gathering over
voxels and LRSMs. For each cone sample, we first evaluate
occlusion α by sampling the voxelized scene, and then sam-
ple the LRSM to gather the associated outgoing radiance L.
We determine which LRSM region to sample by projecting
the sphere associated with each cone sample onto the LRSM,
as shown in Figure 2b.

We essentially follow the strategy of Section 3.1 except
computing the integrated outgoing radiance L from LRSMs,
which allows us to avoid encoding geometric and lighting
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Figure 5: (a) Radiance integration is performed over the solid
angle Ω from the light source. (b) However, the regions be-
hind an occluding surface y1 (i.e. in shadow) and the back-
face regions y2 are omitted from the integration.

data within the voxels. The entire process (Figure 3) can be
performed every frame, enabling fully dynamic scenes and
lights.

4. Layered Reflective Shadow Maps

In this section, we first describe how to integrate outgoing
radiance using a reflective shadow map (Section 4.1). Sub-
sequently, we show pre-filtering (Section 4.2) and partition-
ing (Section 4.3) strategies to accelerate radiance integra-
tion. Note that we describe how our method works with a
spot light, but we also support directional lights as in [DS05].

4.1. Radiance Integration

The outgoing radiance L associated with a cone sample can
be computed as the integral over a surface S contained inside
the sample volume [BN12,HN12]. This is the local illumina-
tion equation which is a function of incoming radiance and
surface attributes toward the observer (view sample in our
case). We define L as a function of a single light source and
a filter w:

L =

∫
S w′(x) fr(l,v)Ld〈n · l〉V (x, l)dx∫

S w′(x)dx
(2)

w′(x) = w(x)V (x,v)〈n ·v〉

where x is a point on the surface S. fr is the BRDF, Ld is
the incoming radiance directly from the light source with
direction l, n is the surface normal, and v is the direction to
the view sample, all of the terms evaluated at x. V (x, l) and
V (x,v) are binary visibility functions from x to the light and
the view sample, while 〈·〉 represents a dot product clamped
to zero.

Since we compute this equation using an RSM where each
sample corresponds to a differential solid angle dω from a
light source, we need to rewrite Equation 2 as the integral
over the solid angle Ω covering a cone sample from the light

source (Figure 5a). However, the surface not receiving light
cannot be integrated with this change because we miss its in-
formation (Figure 5b). Therefore, we make two assumptions
before defining the integral:

• An RSM can locally cover the entire surface S inside a
cone sample; we ignore the backface-culled surface areas
from a light source.

• If the ray along a differential solid angle from a light
source does not hit the surface S inside a cone sample,
we assume it corresponds to the shadowed surface area
facing to the light direction (i.e. n = l).

These assumptions allow us to rewrite Equation 2 as follows:

L≈
∫

Ω
w′(ω) fr(l,v)Ld〈n · l〉V (x,xc,rc)dω∫

Ω
w′(ω)dω

(3)

where x is the position on the surface hit by a ray from the
light direction l = −ω. We replace V (x, l) with V (x,xc,rc)
which returns 1 if x is inside a cone sample, and 0 otherwise.
xc and rc are the center point and the radius of the cone sam-
ple, and V (x,xc,rc) is defined as H(rc −‖x− xc‖) where
H is the Heaviside step function. This change also yields the
Jacobian dx = (r2/〈n · l〉)dω where r is the distance between
x and the light source, and the weight w′ is rewritten as fol-
lows:

w′(ω) =
w(ω)V (x,v)〈n ·v〉

〈n · l〉 (4)

where r2 yielded from the Jacobian can be considered as
a constant inside a cone sample, and is canceled by mov-
ing it outside the integrals of Equation 3. Note that n = l if
V (x,xc,rc) = 0 from the second assumption.

4.2. Reflective Shadow Map Pre-filtering

Calculating the radiance associated with arbitrarily large re-
gions of an RSM can be computational expensive and does
not guarantee the stable and predictable performance re-
quired by real-time applications. To solve this problem, we
pre-filter the RSM attributes by using the GPU to generate a
mipmap chain. A similar method is adopted by translucent
shadow maps [DS03] where pre-filtered attributes rendered
from light space are stored in a mipmap chain to enable fast
integration of subsurface scattering. Although the filter w is
limited to a box filter, the attributes can be efficiently inte-
grated using the hardware texture samplers.

However, this requires to reformulate Equation 3 so that
it is linear with respect to the RSM attributes. To do so,
we make assumptions similar to the ones often followed by
other pre-filtering methods [BN12]:

• All of the RSM attributes are uncorrelated; the equation
can be decomposed into several simple terms.

• The Jacobian and view-dependent terms are locally con-
stant; they can be moved outside the integrals and can-
celed.
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Figure 6: We use a Gaussian distribution to approximate the
depth distribution of RSM samples. The shaded area repre-
sents the percentage of RSM samples inside the cone sam-
ple.

These assumptions allow us to approximate radiance inte-
gration as follows:

L(xc,rc,vc)≈ RΩVΩ(xc,rc)NΩ(vc) (5)

RΩ =
∫

Ω

ŵ(ω) fr(l,v)Ld〈n · l〉dω (6)

VΩ(xc,rc) =
∫

Ω

ŵ(ω)H(rc−‖x−xc‖)dω (7)

NΩ(vc) = 〈n̄ ·vc〉, n̄ =
∫

Ω

ŵ(ω)ndω (8)

ŵ(ω) =
w(ω)∫

Ω
w(ω)dω

(9)

where xc, rc, and vc are the variables dependent on a cone
sample: center position, radius, and cone direction from xc
to the view sample. We restrict the indirect bounce to diffuse
only, so fr(l,v) is replaced with the diffuse BRDF ρ/π where
ρ is the diffuse albedo at x. Also, since we lose the view de-
pendency due to the second assumption, we introduce an ad-
ditional term NΩ(vc) to approximate backface culling. With
this change, all of the RSM attributes are pre-filterable ex-
cept VΩ(xc,rc) due to non-linearity introduced by the Heav-
iside step function (see Equation 7).

Depth pre-filtering Essentially, the VΩ(xc,rc) term esti-
mates the percentage of the rays from the light, or RSM sam-
ples, hitting the surface inside a cone sample. This is a sim-
ilar problem to shadow map filtering techniques. Variance
shadow maps [DL06] estimate the percentage of light reach-
ing a surface by using a pre-filterable depth representation
based on computing the first two moments of the depth dis-
tribution. Thus, we adopt a similar solution and use the depth
distribution of the RSM samples to estimate Equation 7.

We first render the depth z and the square of the depth z2

into an RSM instead of the position x. The depth mean µ and
variance σ

2 over the solid angle Ω can be then computed as

follows:

µ =
∫

Ω

ŵ(ω)zdω (10)

σ
2 =

∫
Ω

ŵ(ω)z2dω−µ2 (11)

We approximate the depth distribution with the Gaussian
distribution N (µ,σ2) because its integral over the depth
range of a cone sample estimates the percentage of the RSM
samples inside the cone sample (Figure 6), which can be di-
rectly used to approximate Equation 7. By replacing xc with
zc, the depth of the cone sample center from the light, it can
be reformulated as follows:

VΩ(zc,rc)≈
∫ zc+rc

zc−rc

1√
2πσ2

e−
(z−µ)2

2σ2 dz (12)

This formulation allows us to approximate Equation 7 using
the pre-filtered depths and squared depths.

4.3. Reflective Shadow Map Partitioning

If a filtered region contains depth or normal discontinuities,
the radiance approximation (Equation 5) is no more valid
due to violating the assumptions made in Section 4.2. To
avoid pre-filtering such regions, we partition an RSM into
several layers and pre-filter each layer separately. Our strat-
egy is to partition an RSM according to depth and normal
values. However, since a normal is a 3D vector, we instead
use the dot product between the normal and the incoming
light direction, 〈n · l〉, as a partitioning criterion to simplify
the process. It does not isolate normal discontinuities com-
pletely but minimizes the artifacts from normal discontinu-
ities in practice. We place static partitions along depth and
normal. If we define a partitions in depth and b partitions in
normal, the number of layers n is (a+1)(b+1).

When performing radiance integration at a cone sample,
we compute Equation 5 at each layer with a small weight
modification. Since the RSM attributes are scattered over the
layers, we add an opacity term α to the weight ŵ (Equa-
tion 9):

ŵl(ω) =
w(ω)αl∫

Ω
w(ω)αldω

(13)

where αl returns 1 if the RSM attributes at a solid angle ω

are valid in the layer l and 0 otherwise. We then compose all
of the integration results Ll :

L =
n

∑
l=1

AlLl , Al =

∫
Ω

w(ω)αldω∫
Ω

w(ω)dω
(14)

Theoretically, we need to compute Ll at every layer. By fol-
lowing the sampling strategy of layered variance shadow
maps [LM08], however, we instead sample only the selected
layers according to the depth of the cone sample center zc
(i.e. only sampling the layers containing zc in their depth
range). This reduces the amount of layer sampling, mak-
ing it scalable with the number of the depth partitions. This
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Attribute Value Format
Reflected radiance ρLd〈n · l〉/π R16G16B16A16 FLOAT
Normal n R16G16B16A16 FLOAT
Depth and Depth2 z, z2 R16G16B16A16 UNORM

Table 1: LRSM memory layout. We also store the opacity
value α in both the normal and depth textures. This value is
used to cancel empty texel contributions from the mipmaps
during layer sampling.

also reduces the light bleeding exhibited by many shadow
map filtering techniques. To ensure a smooth transition be-
tween layers, we add some overlap between layers during
depth partitioning, and when an overlap region is sampled,
we smoothly decay the sample influence. We define such a
decay function f (zc) in the layer depth range [zMinl ,zMaxl ]
as follows:

f (zc) =


k( zc−zMinl

δ
) zc < zMinl +δ

1 zMinl +δ≤ zc ≤ zMaxl−δ

k( zMaxl−zc
δ

) zMaxl−δ < zc

(15)

where δ is the overlap region and k is a smooth falloff func-
tion clamped between 0 and 1. Unless an overlap region is
sampled, the number of the layers to sample is b+ 1 which
depends only on the number of normal partitions.

The additional memory requirement of having layers is
relatively small. Since the purpose of partitioning is to avoid
pre-filtering depth and normal discontinuities, we need lay-
ers only in mipmap levels, increasing memory usage by only
n/3, where n is number of layers; see Table 2 for examples
of memory consumption in typical configurations.

5. Implementation

We have implemented our algorithm in Direct3D 11.
We generate occlusion voxels using a GPU voxelization
method [CG12] and write the results into a 3D texture via
UAVs. Since occlusion voxels are binary before mipmap-
ping, atomic operations are not required to update the 3D
texture. Because of this, the ideal memory allocation is 1 bit
per voxel in the base voxel level and 1 byte in the mipmap
levels. However, since 3D APIs do not expose 1 bit formats,
we allocate 1 byte per voxel.

The LRSM is constructed in two passes and stored in a 2D
texture array. The LRSM attributes and memory layout are
shown in Table 1. We first render an RSM from the light’s
point-of-view via rasterization and store reflected radiance,
depth, normal, and 〈n · l〉 in 2D textures. These attributes can
be packed in two 16-bit per component textures. In the sec-
ond pass, each RSM texel is evaluated according to depth
and 〈n · l〉 (Section 4.3) and assigned to the appropriate layer
using a Compute Shader (CS). At the same time, we also
warp the depth values between 0 and 1 according to the depth
range of the assigned layer as in [LM08] and compute their

squared depth values. Since the LRSM is a filtered repre-
sentation of the RSM, the layers begin at one quarter the
resolution of the RSM. Therefore, we launch one CS thread
per 2x2 RSM texel region, and texels are merged if they are
assigned to the same layer. Once all of the data structures are
constructed, we generate mipmaps of occlusion voxels and
LRSMs to pre-filter the encoded attributes.

For lighting computation, we perform final gathering by
shooting cones for every G-buffer pixel. Occlusion vox-
els and LRSMs are accessed by cones to fetch pre-filtered
attributes and compute Equation 1. To compute the inte-
grated outgoing radiance at a cone sample by evaluating
an LRSM, we first project the cone sample onto the RSM
space (Figure 2b) to determine the RSM coordinates and
mip level. Similar to voxel mip level selection, the diame-
ter of the projected circle region determines the RSM mip
level: mipLevel = log2(dcircle) where dcircle is the diame-
ter of the projected circle in texel units. We then select the
layers to sample according to the cone sample depth zc as
described in Section 4.3 and fetch the pre-filtered RSM at-
tributes at each selected layer. Once the layers are sampled,
the integrated outgoing radiance can be evaluated by com-
puting Equation 14.

The pseudo code for sampling an LRSM is shown in Al-
gorithm 1. We compute Equation 12 by looking up the stan-
dard normal distribution table. When normal nmip, depth
zmip, and squared depth z2

mip are sampled, they need to be
normalized by the relative opacity value stored in their tex-
tures in order to remove the contribution of empty texels.
However, this is not necessary for reflected radiance rmip, as
unnormalized rmip is equivalent to being weighted by A in
Equation 14.

Algorithm 1 Sample LRSM
L = 0 . outgoing radiance
for all layers do

if zc in depth range of layer l [zMinl ,zMaxl ] then
Sample normal nmip
N = 〈nmip ·vc〉 . Eq. 8
if N > 0 then . backface culling

Sample depth zmip and squared depth z2
mip

Depth mean µ = zmip . Eq. 10
Depth variance σ

2 = z2
mip−µ2 . Eq. 11

Compute V fromN (µ,σ2) . Eq. 12
if V > 0 then

Sample reflected radiance rmip(= AR)
Compute decay function f (zc) . Eq. 15
L+= f (zc)ARV N . Eq. 14

end if
end if

end if
end for
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SIBENIK SPONZA SPONZA DRAGON

Data Structure Resolution Memory Resolution Memory Resolution Memory
Occlusion Voxels 2563 19.2 MB 5123 156.4 MB 5123 156.4 MB
RSM 10242 22.4 MB 10242 22.4 MB 10242 22.4 MB
LRSM 5122 5122 5122

Number of Layers (D × N) 4 layers (2 × 2)
33.6 MB

4 layers (2 × 2)
33.6 MB

6 layers (3 × 2)
50.4 MB

Total Memory 75.2 MB 212.4 MB 229.2 MB
Performance GTX770 Iris Pro GTX770 Iris Pro GTX770 Iris Pro

58.9 ms 258.3 ms 58.5 ms 197.4 ms 63.8 ms 244.2 ms

Table 2: The summary of data structure and performance for each scene. Note that LRSM resolution is always RSM resolution/4,
and that memory consumption is independent of scene complexity. D × N represents depth and normal layer numbers.

VCT LRSM LRSM
GTX770 GTX770 Iris Pro

Voxelization 5.3 ms 29.3 ms
LRSM Construction 3.1 ms 18.1 ms
Shadow Cone 9.8 ms 7.0 ms 35.7 ms
Diffuse Cone (6 cones) 4.5 ms 22.1 ms 68.3 ms
Specular Cone (1 cone) 20.5 ms 16.6 ms 43.2 ms

Table 3: Timings of individual stages to render SPONZA.
Voxelization time includes voxel clear, voxelization, and
voxel mipmap generation. LRSM construction time includes
RSM clear, RSM rendering, LRSM construction, and LRSM
mipmap generation. Note that the performance difference
of shadow cone tracing between VCT and LRSM can be
attributed to different data structures: anisotropic voxels
(VCT) vs. isotropic voxels (LRSM).

6. Results

We tested our algorithm using three scenes: SIBENIK,
SPONZA, and SPONZA DRAGON (Figure 1 and Table 2). A spot
light is placed in SIBENIK, while a directional light is used in
SPONZA and SPONZA DRAGON. SPONZA DRAGON is a dynamic
version of the SPONZA scene containing three textured ani-
mated dragons composed of 74k triangles each. All of the
scenes shown in this paper were rendered at 1280× 720.
We reuse the occlusion voxels to render soft shadows by
tracing shadow cones [Cra11]. For comparison, we also
implemented Crassin et al.’s voxel cone tracing [CNS∗11]
which we denote VCT. To simulate single-bounce indi-
rect illumination, we pre-computed their data structure us-
ing a dense voxel grid: we encoded radiance and occlu-
sion (R16G16B16A16), and normal (R16G16B16A16) in
the base voxels and generated anisotropic mips from them
by storing filtered radiance and occlusion in each direction.

Memory The main contribution of our algorithm is sig-
nificantly reduced and bounded memory consumption. The
memory used in each scene is shown in Table 2. The most
memory intensive scene is SPONZA DRAGON. However, it still
uses only 229.2 MB while it requires 3 GB in VCT without
sparse voxel octree (SVO) construction. An SVO could re-
duce memory consumption but its construction is not a triv-

ial process and its memory usage is not tightly bounded. In
SPONZA and SPONZA DRAGON, memory usage is mostly dom-
inated by the 5123 occlusion voxels. With 2563 occlusion
voxels in SIBENIK, it is down to 75.2 MB.

Performance We have measured our implementation on a
Geforce GTX 770 discrete graphics card (230 W TDP) and
an Intel Iris Pro 5200 integrated GPU (47 W TDP shared
with CPU). We achieved interactive rates on all scenes (Ta-
ble 2) with data structure construction time included. The
cost of individual stages for SPONZA are also shown in Ta-
ble 3. The most time consuming part of our algorithm is
tracing the 6 diffuse cones, but interestingly, tracing 1 spec-
ular cone takes more time in VCT. This is likely because
wider cones are used in diffuse cone tracing and most of
sampling happens in lower level mips, while specular cones
access higher level mips and sometimes even the base vox-
els. In our algorithm, tracing 6 diffuse cones is slower than
specular tracing due to the computational cost of evaluating
Equation 12.

Image Quality We generated reference images using the
Embree path tracer [WWB∗14] for the image comparison
shown in Figure 7. Despite reduced memory consumption
and dynamic data structure construction, our results closely
resemble the VCT and reference results. In SPONZA, our al-
gorithm captures diffuse color bleeding from the curtains,
indirect shadows behind the round curtains, and glossy re-
flections. In SIBENIK, there is light leaking through thin walls
in our algorithm. This does not happen in VCT because
anisotropic mips are used for occlusion integration. How-
ever, they are sometimes over conservative and miss captur-
ing the color bleeding. We have also tested a dynamic scene
in SPONZA DRAGON (Figure 1 and the accompanying video)
thanks to our dynamic data structure construction. All of the
illumination effects are rendered smoothly without any tem-
poral artifacts.

7. Limitations

We have demonstrated that our algorithm can simulate
single-bounce indirect illumination at interactive rates. To
enable multiple bounces, however, we would need to store
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Direct Only VCT LRSM Reference

Direct Only VCT

LRSM Reference

Figure 7: The comparison of VCT, LRSM (our algorithm), and Reference (1024 samples per pixel) in SIBENIK (Top) and SPONZA

(Bottom). VCT and LRSM images were rendered by performing cone-based final gathering from every pixel. 6 diffuse cones
were shot over the hemisphere with 60◦ cone aperture, and 1 specular cone was shot toward the mirror reflection with 10◦ cone
aperture if the pixel contains specular components.

Sharp Features Temporal Coherence

Figure 8: The trade-off between preserving sharp features
and avoiding temporal artifacts. The glossy reflection on the
right image is clamped for temporal coherence. See the ac-
company video for more details of this trade-off.

additional geometry not visible from the light sources.
Our algorithm also shares some limitations with common
shadow map techniques. Our algorithm does not scale well
with the number of light sources as we must evaluate one
LRSM for each light source. Additionally, temporal coher-
ence with a dynamic light is resolution-dependent. Although

our algorithm has few temporal artifacts, it is difficult to
completely remove them. Clamping the mip level for LRSM
sampling to a lower resolution level can minimize the ar-
tifacts with minimal image impact for diffuse indirect illu-
mination because of its low frequency. However, there is a
trade-off between temporal coherence and sharp features in
glossy indirect illumination. This trade-off is shown in Fig-
ure 8 and the accompanying video.

8. Conclusion and Future Work

We have introduced a novel global illumination algorithm
which supports both diffuse and glossy indirect illumina-
tion. Our simple, memory-friendly, data structures enable
fast, temporally coherent results for scenes with fully dy-
namic geometry and lighting.

However, there is still room for further performance opti-
mizations and quality improvements. We use a static parti-
tioning approach to generate layers, although a more adap-
tive and automated partitioning approach would be desir-
able. Our system performs cone-based final gathering for
every pixel. Since diffuse indirect illumination is low fre-
quency, this process can be accelerated using interleaved

c© The Eurographics Association 2014.



M. Sugihara, R. Rauwendaal, & M. Salvi / Layered Reflective Shadow Maps for Voxel-based Indirect Illumination

sampling [SIMP06]. Additionally, the indirect bounce could
be extended to support multiple BRDFs with BRDF filter-
ing methods [BN12]. The memory consumption in our al-
gorithm is dominated by occlusion voxels, so we could fur-
ther reduce memory consumption using a cascaded voxel ap-
proach [KD10]. This could also support large, open scenes.
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