GAME DEVELOPERS

CONFERENCE

PLE SIMD USING ISPC, THE

Legal Notices and Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a
non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not

specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Intel, Core and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

v @IntelSoftware @IntelGraphics

intel)

GAME DEVELOPERS

CONFERENCE

Who are we?
Pete Brubaker Jon Kennedy

= Peteis a veteran game developer with = Jon has spent his career working in

over ten years of industry experience.
He's started as a technical artist and went
on to spend the majority of his career as
a graphics and systems engineer. He has
more than ten credited titles working for
companies like LucasArts*, EA* and
Rockstar*. In the last ten years he's been
working at IHVs developing tools and
technologies to enable game developers
to succeed on mobile and desktop
environments.

%W @IntelSoftware @IntelGraphics

graphics, from VR in the 90’s, to devrel,
drivers and games in the 00Q's, to drivers
and devrel again in the 10's. Most
recently he can be found working on the
ISPC back-end to SPIRV-Cross to help
games developers find extra
performance and run compute shaders
on the CPU.

(nted |

Why are we here?

« Exploiting Parallelism is essential for obtaining peak performance on
modern computing hardware

« Task Parallelism : Multithreading, Multi-core

 SIMD Parallelism : SIMD ISA

* There's no time to create anything if everyone’s learning how to write vector
intrinsics.

* Make it easier to get all the FLOPs without being a ninja programmer

 Answer? ISPC!

‘”,:‘ 7 @IntelSoftware @lIntelGraphics

(nted |

What is ISPC?

* TheIntel SPMD Program Compiler
« SPMD == Single Program, Multiple Data programming model
* It's a compiler and a language for writing vector (SIMD) code.

* Open-source, LLVM-based language and compiler for many SIMD
architectures.

* Generates high performance vector code for many vector ISAs.
« SSE/AVX/AVX2/AVX-512/NEON... (experimental)

* The language looks very much like C

* Simple to use and easy to integrate with existing codebase.

/| 7 @IntelSoftware @lIntelGraphics

(nted |

ISPC Programming Model

ISPC is not an “autovectorizing” compiler!

« It does not generate vector code by analyzing and transforming scalar loops.
* ICC, Clang/LLVM, GCC, MSVC

« ISPCis more of a WYSIWYG vectorizing compiler
* The programmer tells ISPC what's vector and what's scalar

« Vector types are explicit, not discovered

‘”,:‘ 7 @IntelSoftware @lIntelGraphics

(nted |

What does the language look like?

" It looks very much like C, so it's easy 10 | export void rgb2grey(uniform int N,

read and understand uniform float R[],

uniform float G[],

= Code looks sequential, but executes in uniform float B[],

parallel { uniform float grey[])

— Easily mixes scalar and vector ‘{cor‘eaCh (i=e ... N)
computation grey[i] = 0.3f*R[i] + 0.59F*G[i] + 0.11F*B[i];

= Explicit vectorization using two new } } 7

keywords, uniform and varying

— Again, ISPC is not an auto-vectorizing
compiler.

W @IntelSoftware @IntelGraphics

(nted | s

The key concept -- uniform vs. varying

Uniform Varying

= Scalar data Vector data

— Results in a scalar register (eax, ebx, ecx, — Results in a SIMD vector register (XMM,
etc...) YMM, ZMM, etc.)
— AUl SIMD lanes share the same value. -

Varying is the default

Each SIMD lane gets a unique value.

Width dependent on target.

uniform float ZERO = 0; J varying float data; J

0.0 3.2 | 6.5 | 0.7 | 42. 1.3 | 8.1 | 2.6 .09

W @IntelSoftware @IntelGraphics

Example ASM Output

ISPC Code Emitted ASM
t void rgb2 if int N, .
export void re g:ﬁ%ﬁ:ﬂ;liqlgsz[] vbroadcastss .LCPI1_O(%rip), %ymmo
uniform float G[], vbroadcastss .LCPI1 1(%rip), %ymml
uniform float B[], vbroadcastss .LCPI1_2(%rip), %ymm2
J
f £1 -
{ uniform float grey[]) vmovups (%rdi,%rax), %ymm3
£ h (i=0 ... N vmulps (%rsi,%rax), %ymml, %ymm4
{oreac (i=e) vfmadd213ps ymm4, %ymmo, J%ymm3
1 A R vmovups (%rdx,%rax), %ymmd
grey[i] g.iffféig]T 0.59f6[1] + vfmadd213ps %ymm3, %ymm2, %ymmé
: g vmovups %ymmé, (%rcx,%rax)

}
! y y
* 3 loads, 3 multiplies, 2 adds and 1 store
- #awwyeah

: telGraphics int—a) \ 10

Why is this good?

Programmers no longer need to know the ISA to write good vector code.

* More accessible to programmers who aren’t familiar with SIMD intrinsics.

* More programmers able to fully utilize the CPU in various areas of game
development.

 |t's easier to read and maintain. It looks like scalar code.

* Supporting a new ISA is as easy as changing a command line option and
recompiling.

* |t's most common to achieve 3x speedup on 4-wide SSE units and 5-6x on
CPUs with 8-wide AVX2 units without the difficulty of writing intrinsics.

‘%f @IntelSoftware @IntelGraphics

Where could we use this?
The only limit is your imagination!

« Compute intensive systems like: | —a '

* Physics

* Particle Systems

« Skinning

* Asset pipeline

 Compression/decompression

* Raytracing

* Intersection testing

* Image convolution

* Post processin
P & Crunch Cup by Peter Ang

» Software Culllng Rendered with Corona Renderer, using Intel® Embree RT Kernels
Embree uses ISPC!

W @IntelSoftware @IntelGraphics

intel.
GAME DEVELOPERS

CONFERENCE

intel.

GAME DEVELOPERS
CONFERENCE

TOSOMEDEPTH

ISPC Language

To quickly recap:

« Effective use of uniform and varying is the Most Important Concept to grok
in ISPC

* Programmers explicitly state what's vector and what's scalar

« Two new type modifiers distinguish between scalar (uniform) and vector
(varying) data types

* Vector types have a fixed vector width

* Chosen by programmer at compile time depending on target.
(SSE/AVX2/AVX-512)

« Typically how many 32bit values fit in the target CPU’s SIMD registers

¥ @IntelSoftware @IntelGraphics ‘intel) ‘ 15

The key concept -- uniform vs. varying

Uniform Varying

= Scalar data Vector data

— Results in a scalar register (eax, ebx, ecx, — Results in a SIMD vector register (XMM,
etc...) YMM, ZMM, etc.)
— AUl SIMD lanes share the same value. -

Varying is the default

Each SIMD lane gets a unique value.

Width dependent on target.

uniform float ZERO = 0; J varying float data; J

0.0 3.2 | 6.5 | 0.7 | 42. 1.3 | 8.1 | 2.6 .09

W @IntelSoftware @IntelGraphics

Uniform & Varying

» Mixing uniform and varying data
usually works fine

* Assigning a varying to a uniform won't
work

* Uniforms get automatically

promoted to varying

uniform float ZERO = 0;
varying float ZEROS = ZERO;

0.0

uniform float ua;
varying float vb;

float vc; // varying is default
uniform float ur;

vC = ua * vb; // ok

ur = vc; // ERROR

y

varying float vdata;

uniform float udata = vdata;

)

3.0

1.0 | 4.0 | 1.0 | 5.0

9.0

2.0

6.0

0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0

// ERROR - Can't do this!

W @IntelSoftware @IntelGraphics

QEE§> \ 17

Uniform Example

ANSI C code for RGB2Grey

Equivalent Scalar ISPC code

void rgb2grey(int N,
float R[],
float G[],
float B[],
float grey[])
{
for (int i=@; i<N; i++) {
grey[i] = 0.3f*R[1i]
+ 0.59f*G[1]
+ 0.11F*B[i];

export void rgb2grey(uniform int N,
uniform float R[],
uniform float G[],
uniform float B[],
uniform float grey[])
{
for (uniform int i=0; i<N; i++) {
grey[i] = 0.3f*R[1i]
+ 0.59f*G[1]
+ 0.11F*B[i];

y

@)\18

Varying Example

Scalar

| ==
\J

nice.and all where’s

epd

e

That's where varying comes in.

No varying types T l ‘ ‘

code

Il

void rgb2greyKernel(uniform float R,
uniform float G,
uniform float B,
uniform float& grey) {
grey = 0.3f*R + 0.59f*G + 0.11f*B;

}

void rgb2greyKernel(varying float R,
varying float G,
varying float B,
varying float& grey) {
grey = 0.3f*R + 0.59f*G + 0.11f*B;

} v

Built in variables

* programCount programIndex
 Has type ‘uniform int’ Has type ‘'varying int’
* Returns the vector width used in the * Initialized to {@ .. programCount-1}

compilation unit

0 1 2 3

* In this case the number of 32bit
values that are packed into a vector
register

* Useful for indexing into arrays from a
uniform base.

@ | 1 | 2 | 3 | programIndex
+ <
i+0 | i+1 | i+2 | i+3 | i + programindex

« The width of a varying variable

' W @IntelSoftware @IntelGraphics intel) \ 20

Arrays

* Arrays work as expected

* Arrays of uniforms are just

like C/C++ arrays

Scalar load

(0] void funcl(uniform int inputl[]) {
uniform int foo = inputl[@];

// array of 100 uniform floats
uniform float stuff[100];

// array of 100 varying floats
// => 100 * programCount, or 400+ total floats
varying float moreStuff[100];

Vector load

[e]

[1]

[2]

[3]

inputl[programIndex];

u varying int bar

inputl[bar];

Gather

[N]

[N]

[N]

[N]

/ varying int baz
}

Broadcast

[e]

[e]

[e]

[e]

void func2(uniform int input2[]) {
Hvarying int foo = input2[@];
}

L @IntelSoftware%ntelGraphics
% - g 5

@)\21

Pointers

» Pointers are a bit more complicated e
uniform float * uniform uPtr2u;

* The variability is specified like ‘const’
in C/C++

* It's best to specify variability so it's
correct and clear to the reader - > -

* Variability: 2 parts /
« The pointer itself \

* Single pointer? Different pointer per float

lane? I “loat
* Default: varying

float | float | float | float

* Theitem pointed-to

TrIoac
e Scalar value? Vector value?
e Default: uniform

W @IntelSoftware @IntelGraphics

Structures

» Technically, ISPC has 3 different types of variability:
* Uniform
* Varying
* Unbound

« Unbound only appears with structs

Unless explicitly labeled, struct members have unbound variability

Variability of unbound members determined by instantiations of the struct

Variability is recursive (structs containing structs)

' W @IntelSoftware @IntelGraphics ‘intgl) \ 23

Structures

Memory Representation
struct Color {
float r, g, b; // unbound

§ E;;;;l L;;;;l
uniform Color pixel;

// scalar load .
.. = pixel.r; pixel

varying Color fancierPixel;
// efficient vector load

.. = fancierPixel.r; ’ I ‘ I | | I

fancierPixel

W @IntelSoftware @IntelGraphics

Structures

struct Color { Memory Representation

float r, g, b;

}; [[[o o v
uniform Color uPixels[100]; Gather
.. = UPixels[programIndex].r; uPixels[programIndex].r

varying Color vPixels[25];

. = vPixels[@].r;
V] S] e
TVectorLoad
struct cpp_varying Color {

float r[VLEN]; vPixels[@].r
float g[VLEN];
float b[VLEN];
};

% W @IntelSoftware @IntelGraphics

Structures

struct Color { Memory Representation
float r, g, b; // unbound

}s
/- I
struct ColorAlpha { u_u M
Color c;
float a;

};

upixel

uniform ColorAlpha upixel;

.. = pixel.a;
.. = pixel.c.r;

varying ColorAlpha vpixel; \\¥ A,//
// efficient vector loads

. = vpixel.a; vpixel
. = vpixel.c.r;

| W @IntelSoftware @IntelGraphics ’inEe—I) \ 26

Control Flow

« ISPC has all the control flow constructs you'd find in C/C++
« Conditionals
e if, else, switch
 Loops
« for, while, do.while
» Italso adds several new ones for convenience and performance
e foreach, foreach active, foreach_tiled, foreach unique

e cif, cwhile, cdo, cfor

| W @IntelSoftware @IntelGraphics ‘intgl) ‘ 27

Control Flow

’ Usmg programlndex and .) export void rgb2grey(uniform int N,

programCount for parallel iteration uniform float R[],

uniform float G[],

* Inaforloop, programIndex and uniform float B[],
programCount can be used to iterate | uniform float grey[])
over a dataset in chunks for (uniform int i=@; i<N; i+=programCount)

{

* Loop counteris incremented by varying int j = i+programIndex;
programCount and data is indexed by gney BRSNS SR I IR R0 G| Bene =TT B L
using i+programIndex } i ’

« Equivalent to using foreach() with
one caveat.

* N must be a multiple of programCount,
remainder iterations aren’t masked

. W @IntelSoftware @IntelGraphics ’intgl) \ 28

Control Flow

« Special iteration constructs

 foreach(i=0..N,[[=A..B,k=C..D])
» Iterate over the range O N in chunks of programCount elements
* Vars will have type varying int

* Remainder iterations properly masked

» foreach_active(i)
« Serially iterate over the active lanes

» foreach_unique(val in x)

« Serially iterate over unique values in varying value x
)
¥ @IntelSoft IntelGraphi intel
! @IntelSoftware ~ @IntelGraphics intel) \ o

Standard Library

* |SPC provides a rich stdlib of * |SPC provides multiple
operations: implementations for math:
* Logical operators « Standard
 Bitops ..
» Fast (faster, less precision)
« Math

« Clamping and Saturated Arithmetic SVML (Short Vector Math Library)

* Transcendental Operations System (high precision, but scalar)
* RNG (Not the fastest!)

* Mask/Cross-lane Operations

e Selected via CLI switch

» Suggestion is to prefer ‘Fast’ unless

* Reductions PR
more precision is needed

e And that's not all!

' W @IntelSoftware @IntelGraphics ‘intgl) \ 30

Memory & Performance

« ISPCis awesome at generating the code for you but it can’t rearrange your
data and it can't speed up memory accesses for you

« Data layout is important
« Data needs to be in cache and it needs to be in the right layout
» gather/scatter instructions can be painful

* Prefer SoA, or AoSoA memory layouts, these will generate vector
loads/stores

* Mike Acton, Data Oriented Design and C++
* Check out Mike's talk from CppCon 2014

' W @IntelSoftware @IntelGraphics ‘intgl) \ 31

Memory & Performance

In order to obtain peak
performance with ISPC and SIMD in - Transpose .
general data may need to be | | |

transposed.
. Structure of Arrays
Often transposing the data costs (SoA)
Array of Structures
much less than the cost of gather (AoS)

and scatter instructions. | | | | | | | ‘

Prefer Structure of Arrays or the

. Hybrid Array of Structures of Arrays
shown hybrid approach, array of (A0SOA)
structures of arrays.

@IntelSoftware ~ @IntelGraphics 'intiekl) ’ 32

AoS -> SoA Helpers

Vector Load Vector Load Vector Load

« The standard library also adds four
helper functions to transform data v
from AoS to SoA and back. s0a3()

":4_

e aos_to soa3 &soa to aos3

* aos_to soad4 & soa_to aos4

* Loads 3-4x the SIMD width using ‘
vector loads and shuffigsglategnta$es ()
layout. Then shuffles dataackinto

AoS layout and stores data back using
vector stores.

* Requires data be interleaved, no

Vector Store Vector Store Vector Store
complex structures

@IntelSoftware ~ @IntelGraphics 'intiexl) ’ 33

Other Language Features

» ISPC has some other language features that we aren’t covering today, but
here’s a short list

* It supports references very much like C++
* Operator Overloading
* Binary operator overloading for structures (+, -, *, /, <<, >>)
* Multithreading
* Italso has a built in task system enabling fork/join multithreading

* Though it's probably better to use your own task system

";_'\ 7 @IntelSoftware @IntelGraphics ‘intgl) \ 34

intel)

GAME DEVELOPERS

CONFERENCE

Generating ISPC Code

ISPC Compiler
* Compiler runs on Linux/Mac/Windows

* Generates code that runs on Linux/Mac/Windows/PS4/XBOX One

Target is specified as CLI option

e Output options:
 ASM (both AT&T & Intel syntax,) Object files (default,) LLVM Bitcode

Creates a header file of any required definitions (structs, export functions)

Simply link any resulting object files

¥ @IntelSoftware @IntelGraphics intel) ‘ 36

Integration Steps

1) Download ISPC from http://ispc.github.io

3
4

)
2) Unzip and install to your preferred location
) Create your *.ispc file

) Compile with “ispc --target=<target> myISPC.ispc”
= This emits *.obj and *.h files by default.
5) Add the object files to your linker input.
6) Include the *.h in your *.c/*.cpp file.

7) Compile with your C/CPP compiler of choice and win!

‘%f @IntelSoftware @IntelGraphics

Invoking ISPC functions

* ISPC functions marked “export” are callable from C/C++.

 Parameters must be uniform (for ABI reasons)

* One not well documented exception:

* Uniform pointers to varying data allowed (varying void * uniform ptr;)
« Be certain you're using the right vector width

* ISPC will generate a header with any required definitions
« ISPC assumes all function parameters that are pointers/arrays do NOT alias.

* It won't stop you (or warn you!) from doing something incorrect, there's no
checking or restrict

";_' 7 @IntelSoftware @lIntelGraphics

@)\38

What actually gets generated?

* ISPC aggressively inlines « Multiple versions

« Expect big code blocks Functions

 To reiterate, expect the output to be * Masked vs. Unmasked

optimized for speed, not code size. « Blocks
 When examining ASM, one often « Dynamic mask checks
sees much more than expected. * Maskall on, mixed, or all off

+ Many reasons why, but speed #1. LLVM opts can generate multiple
versions
« Simply counting instructions not

_ * Loop unswitching especially
accurate to estimate performance

";_' 7 @IntelSoftware @lIntelGraphics

@)\39

Multi-target Compilation

* |ISPC can generate code for multiple < Dynamic dispatch code will invoke
targets during one compile the correct version for the CPU.

« SSE2,SSE4, AVX, AVX2, AVX512, etc.

Dynamic dispatch is relatively quick

» Also several double-pumping ¢ Overhead is about 17-18 cycles

targets * Compiler generates multiple versions
of the export functions, one for each
« SSE4x2, AVXX2, etc... target.

 Canreduce overhead and be faster,

BUT... * At runtime determines the right ISA,

sets a global variable

« Greater register pressure, so it may

* Subsequent calls do a test of that
not be faster

global variable and a jump

L4 ’ @IntelSoftware @IntelGraphics ‘intgl) \ 40

Debugging

* Adding —g to the command line * print statement
* Generates additional debugging * It'sawesome
information

e Supports varying types
* Dump ASM
e Dump LLVM IR

 Works with GDB and Visual Studio

* Aggressive inlining and
optimization makes debug info

sometimes confusing/misleading « Higher-level than ASM
« With a little practice it's relatively easy « Can disable certain opts so easy to
to debug. identify gather/scatter

* Make sure to turn optimizations off.

| W @IntelSoftware @IntelGraphics ‘intgl) ‘ 41

Compiler Explorer

 Matt Godbolt was the hero we didn't know we needed.
« |SPCis on Compiler Explorer

* By far and away the quickest way to play with ISPC.

Simply copy and paste your kernels in a browser.

Also supports llvm-mca for static code analysis.

http://ispc.godbolt.org/

‘”,:‘ 7 @IntelSoftware @IntelGraphics ‘intgl) ‘ 42

http://ispc.godbolt.org/
http://ispc.godbolt.org/

€

COMPILER
EXPLORER

Add...

ispc source #1 X

Av

O 00 N O B W N =

10

12

B Save/load < Add new...~

unmasked export void rgb2grey(uniform int N,
uniform float R[],
uniform float G[],
uniform float B[],
uniform float grey[])

{
foreach (i=6 ... N)
{
grey[i] = ©.3f*R[i] + ©.59f*G[i] + ©.11f*B[1i]
}
¥

@IntelSoftware

@IntelGraphics

ispc

>

hd

Sharev (| Other~ || Policies ¥
ispc 1.9.2 (Editor #1, Compiler #1) ispc X O X
ispc 1.9.2 vy @ --target=awx2 v

Av
011010 AX0: Olib.f,: Mitext B/ O\s+ (Intel [Demanc
E Libraries> 4 Add new..~ %8 Add tool... ¥

51 shll $2, %ried g

52 movslq %riled, %rax - |

53 vmaskmovps (%rsi,%rax), %ymmo, Zym i

54 vmaskmovps (%rdx,%rax), %ymme, Z%ym

55 vbroadcastss .LCPI1_1(%rip), %ymm3 #°

56 vmulps %ymm3, %ymm2, %ymm2

57 vmaskmovps (%rcx,%rax), %ymme, Jym-:~

58 vbroadcastss .LCPI1_@o(%rip), %ymm4 #::

59 vfmadd231ps s%ymm4, Zymml, Z%ymm2 3

60 vbroadcastss .LCPI1_2(%rip), %ymml # .:

61 vfmadd213ps %ymm2, %ymm3, %ymml e

62 vmaskmovps %ymml, Zymm@, (%r8,%rax’

63 .LBB1_6: # %fore

AN vrarannnan -

C' HEOutput (0/6) ispc19.2 § - cached (474028)

Visual Studio Code Plug-in

« Language server plugin for Visual Studio Code

 What does it do?
* Syntax highlighting
* Auto completion of builtins and standard library functions
* Function parameter help for standard library functions

* Real-time file validation and problem (error/warning) reporting

* Where can you get it?

* Released on the Visual Studio Marketplace today! Search for “ispc”

";_' 7 @IntelSoftware @lIntelGraphics

@)\44

Special Thanks

* Matt Pharr
« Without Matt, ISPC wouldn't exist.

* He's posted a story of it's development on his blog at http://pharr.org

« James Brodman & Dmitry Babokin

* Most of this talk is based on previous talks they have given internally at
Intel.

* Without their previous work this talk wouldn't be possible.

";_' 7 @IntelSoftware @lIntelGraphics

@)\45

http://pharr.org/
http://pharr.org/

Additional Resources

» http://ispc.github.io * ispc: ASPMD compiler for high-
« User guide, performance guide & FAQ performance CPU programming
« Matt Pharr & William R. Mark

, _ _ _ « https://pharr.org/matt/papers/ispc_in
* Quickly edit and compile code in a par_2012.pdf

web browser

« http://ispc.godbolt.org

« See the assembly, compare versions * Have questions?
of programs, analyze with LLVM-MCA - Join the Google Group!

 Check out ISPC articles on the Intel « ispc-users
Developer Zone! * Find us on Twitter!
* https://software.intel.com . Pete: @petebrubaker
* Intel® Vtune® works great with ISPC « Jon: @jon_c_kennedy
& its free! Use it to analyze « Dmitry: @DmitryBabokin
performance.

‘5f 7 @IntelSoftware @lIntelGraphics

http://ispc.github.io/
http://ispc.godbolt.org/
https://software.intel.com/
https://pharr.org/matt/papers/ispc_inpar_2012.pdf
http://ispc.github.io/
http://ispc.godbolt.org/
https://software.intel.com/
https://pharr.org/matt/papers/ispc_inpar_2012.pdf
https://pharr.org/matt/papers/ispc_inpar_2012.pdf

v,

