
Game Developers
CONFERENCE

Pete Brubaker & Jon Kennedy - 3/21/2019

@IntelSoftware @IntelGraphics

Legal Notices and Disclaimers
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a
non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Intel, Core and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

Game Developers
CONFERENCE

@IntelSoftware @IntelGraphics 4

Pete Brubaker

§ Pete is a veteran game developer with
over ten years of industry experience.
He’s started as a technical artist and went
on to spend the majority of his career as
a graphics and systems engineer. He has
more than ten credited titles working for
companies like LucasArts*, EA* and
Rockstar*. In the last ten years he’s been
working at IHVs developing tools and
technologies to enable game developers
to succeed on mobile and desktop
environments.

Jon Kennedy

§ Jon has spent his career working in
graphics, from VR in the 90’s, to devrel,
drivers and games in the 00’s, to drivers
and devrel again in the 10’s. Most
recently he can be found working on the
ISPC back-end to SPIRV-Cross to help
games developers find extra
performance and run compute shaders
on the CPU.

Who are we?

@IntelSoftware @IntelGraphics 5

Why are we here?

• Exploiting Parallelism is essential for obtaining peak performance on
modern computing hardware

• Task Parallelism : Multithreading, Multi-core

• SIMD Parallelism : SIMD ISA

• There’s no time to create anything if everyone’s learning how to write vector
intrinsics.

• Make it easier to get all the FLOPs without being a ninja programmer

• Answer? ISPC!

@IntelSoftware @IntelGraphics 6

What is ISPC?

• The Intel SPMD Program Compiler

• SPMD == Single Program, Multiple Data programming model

• It’s a compiler and a language for writing vector (SIMD) code.

• Open-source, LLVM-based language and compiler for many SIMD
architectures.

• Generates high performance vector code for many vector ISAs.
• SSE/AVX/AVX2/AVX-512/NEON… (experimental)

• The language looks very much like C

• Simple to use and easy to integrate with existing codebase.

@IntelSoftware @IntelGraphics 7

ISPC Programming Model

ISPC is not an “autovectorizing” compiler!

• It does not generate vector code by analyzing and transforming scalar loops.

• ICC, Clang/LLVM, GCC, MSVC

• ISPC is more of a WYSIWYG vectorizing compiler

• The programmer tells ISPC what’s vector and what’s scalar

• Vector types are explicit, not discovered

@IntelSoftware @IntelGraphics 8

§ It looks very much like C, so it’s easy to
read and understand

§ Code looks sequential, but executes in
parallel

– Easily mixes scalar and vector
computation

§ Explicit vectorization using two new
keywords, uniform and varying

– Again, ISPC is not an auto-vectorizing
compiler.

What does the language look like?

export void rgb2grey(uniform int N,
uniform float R[],
uniform float G[],
uniform float B[],
uniform float grey[])

{
foreach (i=0 ... N)
{

grey[i] = 0.3f*R[i] + 0.59f*G[i] + 0.11f*B[i];
}

}

• It’s basically shader programming for the CPU!

@IntelSoftware @IntelGraphics 9

Uniform

§ Scalar data
– Results in a scalar register (eax, ebx, ecx,

etc…)

– All SIMD lanes share the same value.

Varying

§ Vector data
– Results in a SIMD vector register (XMM,

YMM, ZMM, etc.)

§ Varying is the default

§ Each SIMD lane gets a unique value.

§ Width dependent on target.

The key concept -- uniform vs. varying

0.0

uniform float ZERO = 0; varying float data;

3.2 0.5 0.7 42. 1.3 8.1 2.6 .09

@IntelSoftware @IntelGraphics 10

ISPC Code Emitted ASM

Example ASM Output

…
vbroadcastss .LCPI1_0(%rip), %ymm0
vbroadcastss .LCPI1_1(%rip), %ymm1
vbroadcastss .LCPI1_2(%rip), %ymm2

…
vmovups (%rdi,%rax), %ymm3
vmulps (%rsi,%rax), %ymm1, %ymm4
vfmadd213ps %ymm4, %ymm0, %ymm3
vmovups (%rdx,%rax), %ymm4
vfmadd213ps %ymm3, %ymm2, %ymm4
vmovups %ymm4, (%rcx,%rax)

…

export void rgb2grey(uniform int N,
uniform float R[],
uniform float G[],
uniform float B[],
uniform float grey[])

{
foreach (i=0 ... N)
{

grey[i] = 0.3f*R[i] + 0.59f*G[i] +
0.11f*B[i];

}
}

• 3 loads, 3 multiplies, 2 adds and 1 store
- #awwyeah

@IntelSoftware @IntelGraphics 11

Why is this good?

• Programmers no longer need to know the ISA to write good vector code.

• More accessible to programmers who aren’t familiar with SIMD intrinsics.

• More programmers able to fully utilize the CPU in various areas of game
development.

• It’s easier to read and maintain. It looks like scalar code.

• Supporting a new ISA is as easy as changing a command line option and
recompiling.

• It’s most common to achieve 3x speedup on 4-wide SSE units and 5-6x on
CPUs with 8-wide AVX2 units without the difficulty of writing intrinsics.

@IntelSoftware @IntelGraphics 12

• Compute intensive systems like:
• Physics
• Particle Systems
• Skinning
• Asset pipeline
• Compression/decompression
• Raytracing
• Intersection testing
• Image convolution
• Post processing
• Software Culling

The only limit is your imagination!
Where could we use this?

Crunch Cup by Peter Ang
Rendered with Corona Renderer, using Intel® Embree RT Kernels
Embree uses ISPC!

Game Developers
CONFERENCE

Game Developers
CONFERENCE

@IntelSoftware @IntelGraphics 15

ISPC Language

To quickly recap:

• Effective use of uniform and varying is the Most Important Concept to grok
in ISPC

• Programmers explicitly state what’s vector and what’s scalar

• Two new type modifiers distinguish between scalar (uniform) and vector
(varying) data types

• Vector types have a fixed vector width

• Chosen by programmer at compile time depending on target.
(SSE/AVX2/AVX-512)

• Typically how many 32bit values fit in the target CPU’s SIMD registers

@IntelSoftware @IntelGraphics 16

Uniform

§ Scalar data
– Results in a scalar register (eax, ebx, ecx,

etc…)

– All SIMD lanes share the same value.

Varying

§ Vector data
– Results in a SIMD vector register (XMM,

YMM, ZMM, etc.)

§ Varying is the default

§ Each SIMD lane gets a unique value.

§ Width dependent on target.

The key concept -- uniform vs. varying

0.0

uniform float ZERO = 0; varying float data;

3.2 0.5 0.7 42. 1.3 8.1 2.6 .09

@IntelSoftware @IntelGraphics 17

Uniform & Varying
• Mixing uniform and varying data

usually works fine

• Assigning a varying to a uniform won’t
work

• Uniforms get automatically
promoted to varying

uniform float ua;
varying float vb;
float vc; // varying is default
uniform float ur;

vc = ua * vb; // ok
ur = vc; // ERROR

0.0

uniform float ZERO = 0;
varying float ZEROS = ZERO;

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ?

varying float vdata;
uniform float udata = vdata;

3.0 1.0 4.0 1.0 5.0 9.0 2.0 6.0

// ERROR - Can’t do this!

@IntelSoftware @IntelGraphics 18

ANSI C code for RGB2Grey Equivalent Scalar ISPC code

Uniform Example

void rgb2grey(int N,
float R[],
float G[],
float B[],
float grey[])

{
for (int i=0; i<N; i++) {

grey[i] = 0.3f*R[i]
+ 0.59f*G[i]
+ 0.11f*B[i];

}
}

export void rgb2grey(uniform int N,
uniform float R[],
uniform float G[],
uniform float B[],
uniform float grey[])

{
for (uniform int i=0; i<N; i++) {

grey[i] = 0.3f*R[i]
+ 0.59f*G[i]
+ 0.11f*B[i];

}
}

@IntelSoftware @IntelGraphics 19

• Scalars are nice and all, but where’s
the vector code?

• That’s where varying comes in.

• No varying types means no vector
code

Varying Example

void rgb2greyKernel(uniform float R,
uniform float G,
uniform float B,
uniform float& grey) {

grey = 0.3f*R + 0.59f*G + 0.11f*B;
}

void rgb2greyKernel(varying float R,
varying float G,

varying float B,
varying float& grey) {

grey = 0.3f*R + 0.59f*G + 0.11f*B;
}

@IntelSoftware @IntelGraphics 20

• programCount

• Has type ‘uniform int’

• Returns the vector width used in the
compilation unit

• In this case the number of 32bit
values that are packed into a vector
register

• The width of a varying variable

• programIndex

• Has type ‘varying int’

• Initialized to {0 … programCount-1}

• Useful for indexing into arrays from a
uniform base.

Built in variables

i+0 i+1 i+2 i+3

0 1 2 3

0 1 2 3

+
programIndex

i + programIndex

@IntelSoftware @IntelGraphics 21

Arrays

• Arrays work as expected

• Arrays of uniforms are just
like C/C++ arrays

// array of 100 uniform floats
uniform float stuff[100];

// array of 100 varying floats
// => 100 * programCount, or 400+ total floats
varying float moreStuff[100];

void func1(uniform int input1[]) {
uniform int foo = input1[0];

varying int bar = input1[programIndex];

varying int baz = input1[bar];
}

void func2(uniform int input2[]) {
varying int foo = input2[0];

}

[0]

[0] [1] [2] [3]

[0] [0] [0] [0]

[N] [N] [N] [N]

Scalar load

Vector load

Gather

Broadcast

@IntelSoftware @IntelGraphics

Pointers

22

• Pointers are a bit more complicated
• The variability is specified like ‘const’

in C/C++
• It’s best to specify variability so it’s

correct and clear to the reader
• Variability: 2 parts

• The pointer itself
• Single pointer? Different pointer per

lane?
• Default: varying

• The item pointed-to
• Scalar value? Vector value?
• Default: uniform

// uniform pointer to varying float
varying float * uniform uPtr2v;
// varying pointer to uniform float
uniform float * varying vPtr2u;
// uniform pointer to uniform float
uniform float * uniform uPtr2u;

float

→ → → →

float float

float

→

float

float float float float

→

@IntelSoftware @IntelGraphics 23

Structures

• Technically, ISPC has 3 different types of variability:

• Uniform

• Varying

• Unbound

• Unbound only appears with structs

• Unless explicitly labeled, struct members have unbound variability

• Variability of unbound members determined by instantiations of the struct

• Variability is recursive (structs containing structs)

@IntelSoftware @IntelGraphics 24

Structures

struct Color {
float r, g, b; // unbound

};

uniform Color pixel;
// scalar load
… = pixel.r;

varying Color fancierPixel;
// efficient vector load
… = fancierPixel.r;

pixel

fancierPixel

Memory Representation

@IntelSoftware @IntelGraphics 25

Structures

struct Color {
float r, g, b;

};

uniform Color uPixels[100];
… = uPixels[programIndex].r;

varying Color vPixels[25];
… = vPixels[0].r;

uPixels[programIndex].r

vPixels[0].r

Memory Representation

struct cpp_varying_Color {
float r[VLEN];
float g[VLEN];
float b[VLEN];

};

Vector Load

Gather

@IntelSoftware @IntelGraphics 26

Structures

struct Color {
float r, g, b; // unbound

};

struct ColorAlpha {
Color c;
float a;

};

uniform ColorAlpha upixel;
// scalar loads
… = pixel.a;
… = pixel.c.r;

varying ColorAlpha vpixel;
// efficient vector loads
… = vpixel.a;
… = vpixel.c.r;

vpixel

upixel

Memory Representation

@IntelSoftware @IntelGraphics 27

Control Flow

• ISPC has all the control flow constructs you’d find in C/C++

• Conditionals

• if, else, switch

• Loops

• for, while, do…while

• It also adds several new ones for convenience and performance

• foreach, foreach_active, foreach_tiled, foreach_unique

• cif, cwhile, cdo, cfor

@IntelSoftware @IntelGraphics 28

• Using programIndex and
programCount for parallel iteration

• In a for loop, programIndex and
programCount can be used to iterate
over a dataset in chunks

• Loop counter is incremented by
programCount and data is indexed by
using i+programIndex

• Equivalent to using foreach() with
one caveat.
• N must be a multiple of programCount,

remainder iterations aren’t masked

Control Flow

export void rgb2grey(uniform int N,
uniform float R[],
uniform float G[],
uniform float B[],
uniform float grey[])

{
for (uniform int i=0; i<N; i+=programCount)
{

varying int j = i+programIndex;
grey[j] = 0.3f*R[j] + 0.59f*G[j] + 0.11f*B[j];

}
}

@IntelSoftware @IntelGraphics 29

Control Flow

• Special iteration constructs

• foreach(i = 0 ... N, [j = A … B, k = C ... D])

• Iterate over the range 0 ... N in chunks of programCount elements
• Vars will have type varying int

• Remainder iterations properly masked

• foreach_active(i)
• Serially iterate over the active lanes

• foreach_unique(val in x)
• Serially iterate over unique values in varying value x

@IntelSoftware @IntelGraphics 30

• ISPC provides a rich stdlib of
operations:
• Logical operators
• Bit ops
• Math
• Clamping and Saturated Arithmetic
• Transcendental Operations
• RNG (Not the fastest!)
• Mask/Cross-lane Operations
• Reductions
• And that’s not all!

• ISPC provides multiple
implementations for math:

• Standard

• Fast (faster, less precision)

• SVML (Short Vector Math Library)

• System (high precision, but scalar)

• Selected via CLI switch

• Suggestion is to prefer ‘Fast’ unless
more precision is needed

Standard Library

@IntelSoftware @IntelGraphics 31

Memory & Performance

• ISPC is awesome at generating the code for you but it can’t rearrange your
data and it can’t speed up memory accesses for you

• Data layout is important

• Data needs to be in cache and it needs to be in the right layout

• gather/scatter instructions can be painful

• Prefer SoA, or AoSoA memory layouts, these will generate vector
loads/stores

• Mike Acton, Data Oriented Design and C++

• Check out Mike’s talk from CppCon 2014

@IntelSoftware @IntelGraphics 32

• In order to obtain peak
performance with ISPC and SIMD in
general data may need to be
transposed.

• Often transposing the data costs
much less than the cost of gather
and scatter instructions.

• Prefer Structure of Arrays or the
shown hybrid approach, array of
structures of arrays.

Memory & Performance

Transpose

Array of Structures
(AoS)

Structure of Arrays
(SoA)

Hybrid Array of Structures of Arrays
(AoSoA)

@IntelSoftware @IntelGraphics 33

• The standard library also adds four
helper functions to transform data
from AoS to SoA and back.

• aos_to_soa3 & soa_to_aos3

• aos_to_soa4 & soa_to_aos4
• Loads 3-4x the SIMD width using

vector loads and shuffles data into SoA
layout. Then shuffles data back into
AoS layout and stores data back using
vector stores.

• Requires data be interleaved, no
complex structures

AoS -> SoA Helpers
Vector Load Vector Load Vector Load

Vector Store Vector Store Vector Store

aos_to_soa3()

soa_to_aos3()

@IntelSoftware @IntelGraphics 34

Other Language Features

• ISPC has some other language features that we aren’t covering today, but
here’s a short list

• It supports references very much like C++

• Operator Overloading

• Binary operator overloading for structures (+, -, *, /, <<, >>)

• Multithreading

• It also has a built in task system enabling fork/join multithreading

• Though it’s probably better to use your own task system

Game Developers
CONFERENCE

@IntelSoftware @IntelGraphics 36

Generating ISPC Code

• ISPC Compiler

• Compiler runs on Linux/Mac/Windows

• Generates code that runs on Linux/Mac/Windows/PS4/XBOX One

• Target is specified as CLI option

• Output options:

• ASM (both AT&T & Intel syntax,) Object files (default,) LLVM Bitcode

• Creates a header file of any required definitions (structs, export functions)

• Simply link any resulting object files

@IntelSoftware @IntelGraphics 37

Integration Steps
1) Download ISPC from http://ispc.github.io

2) Unzip and install to your preferred location

3) Create your *.ispc file

4) Compile with “ispc --target=<target> myISPC.ispc”

§ This emits *.obj and *.h files by default.

5) Add the object files to your linker input.

6) Include the *.h in your *.c/*.cpp file.

7) Compile with your C/CPP compiler of choice and win!

@IntelSoftware @IntelGraphics 38

Invoking ISPC functions

• ISPC functions marked “export” are callable from C/C++.

• Parameters must be uniform (for ABI reasons)

• One not well documented exception:
• Uniform pointers to varying data allowed (varying void * uniform ptr;)
• Be certain you’re using the right vector width

• ISPC will generate a header with any required definitions

• ISPC assumes all function parameters that are pointers/arrays do NOT alias.

• It won’t stop you (or warn you!) from doing something incorrect, there’s no
checking or restrict

@IntelSoftware @IntelGraphics 39

• ISPC aggressively inlines

• Expect big code blocks

• To reiterate, expect the output to be
optimized for speed, not code size.

• When examining ASM, one often
sees much more than expected.

• Many reasons why, but speed #1.

• Simply counting instructions not
accurate to estimate performance

• Multiple versions

• Functions
• Masked vs. Unmasked

• Blocks
• Dynamic mask checks

• Mask all on, mixed, or all off

• LLVM opts can generate multiple
versions
• Loop unswitching especially

What actually gets generated?

@IntelSoftware @IntelGraphics 40

• ISPC can generate code for multiple
targets during one compile

• SSE2, SSE4, AVX, AVX2, AVX512, etc.

• Also several double-pumping
targets

• SSE4x2, AVXx2, etc…

• Can reduce overhead and be faster,
BUT…

• Greater register pressure, so it may
not be faster

• Dynamic dispatch code will invoke
the correct version for the CPU.

• Dynamic dispatch is relatively quick
• Overhead is about 17-18 cycles

• Compiler generates multiple versions
of the export functions, one for each
target.

• At runtime determines the right ISA,
sets a global variable

• Subsequent calls do a test of that
global variable and a jump

Multi-target Compilation

@IntelSoftware @IntelGraphics 41

• Adding –g to the command line

• Generates additional debugging
information

• Works with GDB and Visual Studio

• Aggressive inlining and
optimization makes debug info
sometimes confusing/misleading

• With a little practice it’s relatively easy
to debug.

• Make sure to turn optimizations off.

• print statement

• It’s awesome

• Supports varying types

• Dump ASM

• Dump LLVM IR

• Higher-level than ASM

• Can disable certain opts so easy to
identify gather/scatter

Debugging

@IntelSoftware @IntelGraphics 42

Compiler Explorer

• Matt Godbolt was the hero we didn’t know we needed.

• ISPC is on Compiler Explorer

• By far and away the quickest way to play with ISPC.

• Simply copy and paste your kernels in a browser.

• Also supports llvm-mca for static code analysis.

• http://ispc.godbolt.org/

http://ispc.godbolt.org/
http://ispc.godbolt.org/

@IntelSoftware @IntelGraphics 43

@IntelSoftware @IntelGraphics 44

Visual Studio Code Plug-in

• Language server plugin for Visual Studio Code

• What does it do?

• Syntax highlighting

• Auto completion of builtins and standard library functions

• Function parameter help for standard library functions

• Real-time file validation and problem (error/warning) reporting

• Where can you get it?

• Released on the Visual Studio Marketplace today! Search for “ispc”

@IntelSoftware @IntelGraphics 45

Special Thanks

• Matt Pharr

• Without Matt, ISPC wouldn’t exist.

• He’s posted a story of it’s development on his blog at http://pharr.org

• James Brodman & Dmitry Babokin

• Most of this talk is based on previous talks they have given internally at
Intel.

• Without their previous work this talk wouldn’t be possible.

http://pharr.org/
http://pharr.org/

@IntelSoftware @IntelGraphics 46

• http://ispc.github.io
• User guide, performance guide & FAQ

• http://ispc.godbolt.org
• Quickly edit and compile code in a

web browser
• See the assembly, compare versions

of programs, analyze with LLVM-MCA

• Check out ISPC articles on the Intel
Developer Zone!
• https://software.intel.com

• Intel® Vtune® works great with ISPC
& its free! Use it to analyze
performance.

• ispc: A SPMD compiler for high-
performance CPU programming
• Matt Pharr & William R. Mark
• https://pharr.org/matt/papers/ispc_in

par_2012.pdf

• Have questions?
• Join the Google Group!

• ispc-users

• Find us on Twitter!
• Pete: @petebrubaker

• Jon: @jon_c_kennedy

• Dmitry: @DmitryBabokin

Additional Resources

http://ispc.github.io/
http://ispc.godbolt.org/
https://software.intel.com/
https://pharr.org/matt/papers/ispc_inpar_2012.pdf
http://ispc.github.io/
http://ispc.godbolt.org/
https://software.intel.com/
https://pharr.org/matt/papers/ispc_inpar_2012.pdf
https://pharr.org/matt/papers/ispc_inpar_2012.pdf

Questions?

47

