
Game Developers
CONFERENCE

21st March 2019

@IntelSoftware @IntelGraphics 2

Introduction

• Leigh Davies Intel
• Leigh.Davies@Intel.com
• Senior Game / Graphics Application Engineer,

UK.

• James Vango-Brown IOI
• jamesv@ioi.dk
• Senior Gameplay / Physics Programmer,

Hitman Series

@IntelSoftware @IntelGraphics

Agenda
● Part 1: Introduction
● Part 2: Creating Realism

● Crowd System
● Rendering
● Audio

● Part 3: Why Destruction?
● Part 4: The Destruction Runtime
● Part 5: The Content Pipeline
● Part 7: Conclusion/Q&A

3

@IntelSoftware @IntelGraphics

Why are we here

4

@IntelSoftware @IntelGraphics

The World of Hitman

5

• Third-person stealth video game

• Unique varied levels, cities to jungles

• Why was HITMAN a good fit for CPU work?

• HITMAN was already well threaded

• Newer processors provided more cores

@IntelSoftware @IntelGraphics

Game design objectives:

● Create larger living levels
○ Picture in Picture

○ More complex environments

○ Larger draw distances

● Make the crowd an integral
part of the experience

● More opportunity to
interact with the world:-

“Make the world your

weapon”

”It’s not an eSport. It’s a sandbox. You’re
supposed to have fun with it.”:

Christian Elverdam

Scale on
CPU

Rendering

AI/
Animation

Physics

6

@IntelSoftware @IntelGraphics

Realism is more than just Pixel Quality

Masahiro Mori

Uncanny Valley

The common unsettling feeling people
experience when androids closely resemble
humans but are not quite convincingly realistic

7

@IntelSoftware @IntelGraphics

Detection based on simple detection of
physical cores

• Base: Default 4 Core System
• Better: Default 6 Core System
• Best: Default 8+ Core System

Realism is more than just Pixel Quality

Audio

Rendering

In gaming the Uncanny Valley includes the whole world:
The better it looks, the more important your interaction with it

8

@IntelSoftware @IntelGraphics

Miami

Default Simulation Settings

9

Best Simulation Settings

@IntelSoftware @IntelGraphics

How individual systems were scaled

10

@IntelSoftware @IntelGraphics

Evolving role of the Crowd in Hitman

Hitman: Absolution
● 1200 Characters per zone:

○ 500 max onscreen

● AI limited to per Zone

HITMAN Season 2
● 1700 (Default) Characters per level:

○ 700 Max onscreen

● Hitman can hide in the crowd

● AI simulation even when off screen

https://www.gdcvault.com/play/1015315/Crowds-in-Hitman 11

@IntelSoftware @IntelGraphics

Crowd is CPU intensive

● Heavily parallelized
● Mix of systems executed in job system;

○ AI Simulation: Done every frame

○ Animation: Asynchronous:

■ Time sliced over multiple frames

4 Core Micro Profiler capture

AI Simulation Animation

12

@IntelSoftware @IntelGraphics

Crowd Scaling

• Characters animating further into the
scene

• Higher quality animations
• Reduction in time slicing

8 Core Micro Profiler capture

13

@IntelSoftware @IntelGraphics

Crowd vs NPC
● Possession system, On-demand
upgrade crowd agent to full NPC AI

NPC Pool Size
Default build Pool Size

Default build 30

6 cores 60

8 cores 90

● Allocates small pool of invisible NPCs
● Supports advanced gameplay mechanics
○ Interaction with Agent 47

○ Allows for scripted crowd acts

■ Talk on phone, smoke, sit on bench

■ Couples holding hands

■ Wave flags

● Spawns randomly near player

● Larger pool == more unique animations

14

@IntelSoftware @IntelGraphics

Base

Default build 6 cores 8 cores

Total amount of Crowd: 1797

Max visible Crowd 700

Level Of Detail 1
Distance: 7.0
Count: 25

Level Of Detail 2 Distance: 15.0
Count: 75

Level Of Detail 3 Distance: 22.0
Count: 300

• Per level crowd limits affect level design in
none game play areas.

Crowds: Improving Realism

15

@IntelSoftware @IntelGraphics

Base

Better/Best

Default build 6 cores 8 cores

Total amount of Crowd: 1797 2923 2923

Max visible Crowd 700 1000 1400

Level Of Detail 1
Distance: 7.0
Count: 25

Distance: 10.0
Count: 50

Distance: 15.0
Count: 100

Level Of Detail 2 Distance: 15.0
Count: 75

Distance: 20.0
Count: 120

Distance: 25.0
Count: 200

Level Of Detail 3 Distance: 22.0
Count: 300

Distance: 25.0
Count: 400

Distance: 30.0
Count: 500

• Per level crowd limits affect level design in
none game play areas.

Crowds: Improving Realism

• Higher limits allow crowd usage in other
none game play areas.

• Crowds still interact with the events

16

@IntelSoftware @IntelGraphics

Rendering Multi-threading
General DX11 Threading
• Scene traversal multi-threaded.
• Software visibility culling runs

across up to 5 threads.
• Highest CPU load on Render

submission thread.

DX12 Improvements
• Commandlist Generation split

across worker threads shown as
“DRAW”

• 30+ “DRAW”’s Per frame,
submission on Render Thread

17

@IntelSoftware @IntelGraphics 18

Software Occlusion

• Used as simplified Depth pre-pass

• 5% of total draw calls in the scene

• 15K out of 3,000K+ vertices

• Based on Intel Software Occlusion
Culling (https://github.com/GameTechDev/OcclusionCulling)

• Optimisations taken from MSOC
https://github.com/GameTechDev/MaskedOcclusionCulling

• Used for Main scene and shadow
cascades.

https://github.com/GameTechDev/MaskedOcclusionCulling
https://github.com/GameTechDev/MaskedOcclusionCulling

@IntelSoftware @IntelGraphics 19

Occlusion Performance
Mumbai

No Depth
Culling

Culling

Occluders 210

Tests 21642

Draws/Instances 5540/12840 4870/8900

Occlusion cost
CPU Time@3Ghz

0ms 0.815ms

VS Invocations 4.54M 3.44M

PS Invocations 20.6M 19.2M

MS/Frame 11.9 10.7

*Core i7-6900X, 32GB Ram, NVIDIA GTX 1080

@IntelSoftware @IntelGraphics

Audio: Simulation Quality
• Wwise multi-core audio enables audio

tasks to execute as part of the job system.
• BASE:

• Reverb is based the listener position.
• Crossfade with reverb from adjoining

room when approaching doors,
windows etc..

• BETTER and BEST
• Each playing audio emitter uses

reverb of the room that it is located in.
• Increase active reverb busses.

• For BEST
• Use higher-quality reverb presets:

20

@IntelSoftware @IntelGraphics

What is it and why do we need it?

21

@IntelSoftware @IntelGraphics

First… A Demo!

22

@IntelSoftware @IntelGraphics

Why destroy things?

23

§ So much fun!

§ Environment interaction improves player
immersion

§ More interesting opportunities for
‘accidents’

§ More iconic destructive moments

@IntelSoftware @IntelGraphics

What we need

24

§ Very specific destruction patterns

§ Animated destructible objects

§ Scalable destruction

§ Support existing assets

@IntelSoftware @IntelGraphics 25

Dynamic

§ Simple cases are scalable (glass etc.)

§ Need lots of tooling for complex cases

§ Harder to scale at runtime

§ Lots of edge cases to deal with when
dynamically slicing assets

Pre-Defined

§ Not quite as realistic

§ Easier to scale at runtime

§ No need to worry about complex edge
cases when slicing assets

§ Content creators have full power over
how objects break

Dynamic vs Pre-Defined

@IntelSoftware @IntelGraphics

The destruction runtime

26

@IntelSoftware @IntelGraphics

Types of destruction

27

§ Gameplay Effecting
– Affects gameplay in a big way

– Usually affects AI

– May need to persist in the world between
saves

§ Cosmetic
– Doesn’t effect gameplay in a big way

– Has no major affect on AI

– Does not usually need to be saved

@IntelSoftware @IntelGraphics

Some Definitions

28

§ Destruction System
– Manages destruction of a single asset

§ Destructible Object
– A simulated physics object owned by a

destruction system

§ Destructible Piece
– A single piece of a destructible object

– Objects can be made of more than one
piece

@IntelSoftware @IntelGraphics

Destruction Phases

29

Fracture Replace
pieces

Detach Detach
pieces

Destroy Remove
pieces

@IntelSoftware @IntelGraphics

Destruction Runtime

30

§ Two classes of system
– Instanced sub systems

– Global systems

§ Runs alongside our physics engine as a
‘plugin’

§ Highly configurable

@IntelSoftware @IntelGraphics 31

Instance Specific Systems

Configuration Layer

Visual

Renderer Animator Effect
Handler

Simulation

Activator Interaction
Handler

Interaction
Processor

Data

Registry Runtime
State

@IntelSoftware @IntelGraphics 32

Global Systems

Insertion
Queue

Reusable
Memory
Buffer

Manager

System
Caretaker

Effects
Manager

Destruction
instances

@IntelSoftware @IntelGraphics

Storing the Data

33

Instance Runtime

@IntelSoftware @IntelGraphics

Storing the Data

34

The Registry

§ Stores references to all active physics
objects for this destruction system

§ Maintains a link between the physics
object and its configuration data

– Piece Connections

– Materials

– Strength

@IntelSoftware @IntelGraphics

Storing the Data

35

The Runtime State

§ Stores all changes to the static
configuration data

§ This includes
– Damage applied to each piece

– Active connections for each piece

§ High level system state change flags
– Has been fractured, detached or destroyed

– Contains anchors etc.

@IntelSoftware @IntelGraphics

Controlling Simulation

36

Instance Runtime

@IntelSoftware @IntelGraphics

The Activator

37

§ Controls when a system should be
marked as ‘active’ or ‘inactive’

§ Causes the animator to run and
synchronise positions

§ Means that interactions will be
processed

§ Allows gameplay systems to hook into
when a destructible system is being
interacted with

§ Provides feedback to the debug systems
for displaying stats

@IntelSoftware @IntelGraphics

The Interaction Handler

38

§ Hooks into external game systems to
listen for destructible events

– Shots

– Explosions

– Collisions

– Out of world

§ Unifies external events into a common
destruction force structure

§ Passes destruction forces to the
interaction processor

@IntelSoftware @IntelGraphics

The Interaction
Processor

39

§ Stores a queue of pending interactions
and processes them each frame

§ Propagates damage through the system
for each interaction using a damage
propagator

§ Applies world state changes based on
the propagation results (fracturing,
detaching and destroying)

§ Passes all system results out for a frame
to the effect processor

@IntelSoftware @IntelGraphics 40

The Damage Propagator

Initial filtering
applied

Immediately
affected pieces

are gathered

Piece specific
filtering applied

Piece state
modified and
result stored

Force reduced
based on piece

material

Connected pieces
iterated

recursively till the
force is reduced

Island detection is
performed

Final results are
returned

@IntelSoftware @IntelGraphics

Island Detection

41

§ When connecting pieces are detached,
other pieces need to fall

§ Island detection is run when a piece or
set of pieces is detached from a system

§ Any ‘islands’ are then detached from the
system

@IntelSoftware @IntelGraphics

Island Detection

42

§ Get island candidates

§ For each island candidate
– Assign a group id to the candidate and

mark as visited

– Assign the same group id to each unvisited
connection and mark as visited

– Do the same for each connection

§ Find all unique group ids and detach
each of the smallest groups

@IntelSoftware @IntelGraphics

Modifying The World

43

Global Systems

@IntelSoftware @IntelGraphics

The Insertion Queue

44

§ Controls asynchronous creation and
insertion of physics objects in to the
scene

§ Allows throttling and discarding of
requests under heavy loads

§ Provides callbacks to the destruction
system instances when their requests
have been dealt with

@IntelSoftware @IntelGraphics

The Effects Manager

45

§ Responds to requests for showing an
effect from a system effect handler

§ Responds to four different events
– Collided

– Fractured

– Detached

– Destroyed

§ Pools effect resource instances to allow
them to be reused

§ Controls the synchronisation of active
effect positions

@IntelSoftware @IntelGraphics

Managing Resources

46

Global Systems

@IntelSoftware @IntelGraphics

The Reusable Memory
Buffer Manager

47

§ Provides thread safe access to reusable
memory buffers

§ Massively reduces the overhead of
runtime memory allocations during
destruction processing

@IntelSoftware @IntelGraphics

The System Caretaker

48

§ Periodically performs the following tasks
– Removes objects from the scene that meet

the required criteria

– Deallocates runtime memory that objects
no longer need

– Reduces particle effect pools based on a
heuristic that estimates current particle
effect requirements in the level

@IntelSoftware @IntelGraphics

How to make something destructible?

49

@IntelSoftware @IntelGraphics

Content Authoring

50

§ Content is created in 3DS Max

§ Voronoi partitions are used to split
assets

§ Physics shapes are automatically
generated from the geometry

§ The object hierarchy is used to define
the fracture levels

@IntelSoftware @IntelGraphics

Destruction materials

51

§ A material controls the response to
destructible forces

§ Response is configured in two parts
– Strength

– How resistant to damage is an object

– Shock absorption
– How much force is absorbed by an object

§ Different pieces can have different
materials

@IntelSoftware @IntelGraphics

Connections

52

§ Connections are used to connect two or
more pieces together

§ Connections are automatically generated
between touching geometry

§ Attributes can be used to disable
connection generation

@IntelSoftware @IntelGraphics

Anchor Pieces

53

§ Pieces connected directly or indirectly
will match the transform of the main
system when it is animated

§ Used to control kinematic objects and
objects with constraints

@IntelSoftware @IntelGraphics

Piece Attributes

54

Attributes that control behaviour

§ Remain : Pieces with this attribute will
not be removed from the world or
destroyed

§ Orphaned : Pieces with this attribute will
never allow connections to be generated
to other pieces

@IntelSoftware @IntelGraphics 55

The Destruction Content Pipeline

Pre-fracturing
and mesh

markup done
in 3D content
authoring tool

An asset is
exported

containing
mesh and bind

pose
information

Destruction
information is
‘packed’ into
an asset by

resource
server

Asset is
dropped into
the world as a
destructible

object

@IntelSoftware @IntelGraphics

● Realism is about more than pixel quality

● Scale simulation quality as CPU power increases

● Consider gameplay implications

● Expand Sandbox without effecting core gameplay mechanics

● Add more diversity to scene through physics and animation LOD’s

● Environment interaction improves player immersion

○ More interesting opportunities for ‘accidents’

○ Consider gameplay implications again J

● Utilize DX12 and advanced culling system to support ever expanding content sets

● Audio adds to immersion, look at multi-threaded solutions

Conclusion

56

@IntelSoftware @IntelGraphics

Legal Notices and Disclaimers
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a
non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are
available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more complete information visit www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your
system hardware, software or configuration may affect your actual performance.

Intel, Core and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

57

http://www.intel.com/benchmarks
http://www.intel.com/benchmarks

Questions?

