
Game Developers
CONFERENCE

Antoine Cohade
Sr. Dev. Rel. Engineer
@acohade1

Michael Apodaca
Principal Engineer, 3D SW architect
@gatorfax

Special thanks to contributors & reviewers: A. Lake, S. Junkins, S. McCalla, T. Schluessler

@IntelSoftware @IntelGraphics

Legal Notices and Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as
well as any warranty arising from course of performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel
a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are
available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more complete information visit www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your
system hardware, software or configuration may affect your actual performance.

Intel, Core and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

2

http://www.intel.com/benchmarks
http://www.intel.com/benchmarks

@IntelSoftware @IntelGraphics

Agenda
• Graphics Pipeline Basics

• for_each(hardwareBlock in Gen11 {

describe(hardwareBlock);

give(performanceTip**);

});

• Tiled-Based Rendering

• Coarse Pixel Shading

3

**Most Performance tips also apply to Gen9

@IntelSoftware @IntelGraphics

@IntelSoftware @IntelGraphics 4

Graphics Pipeline 101
3D Pipeline

Compute Pipeline

Command
Streamer

Geometry Raster/ZDraw() Compute

Memory

Pixel
Backend

Dispatch() Command
Streamer

Compute

Memory

@IntelSoftware @IntelGraphics 5

How does that match to Gen?

55

L3/Tile$/URB

Bank

Bank

Bank

Bank

Bank

Bank

Bank

Bank

Slice Common

Pixel Backend / Color$

Rasterizer

Z / Depth$

Unslice

GAGEOM/FF POSH
GTI CS GuC BLIT

Media FF

VD

VD VE

@IntelSoftware @IntelGraphics 6

How does that match to Gen?
Un-Slice (1,2)
1. Global Assets: Command Streamer, Ring

interface, pwr mgmt, Blitter, Thread Dispatch

2. Geometry Fixed Functions: 3D HW pipeline
(geometry)

And also:

Media FF: Low power HW encode, decode,
& video processing

Slice (3,4)
3. Slice-Common/L3: Setup, Rasterizer, Z,

L3 Cache, and Pixel processing

4. Sub-Slices: Array of Execution Units, Inst
Caches (IC$), Texture Samplers w/ Caches,
Load/Store Units

66

L3/Tile$/URB

Bank

Bank

Bank

Bank

Bank

Bank

Bank

Bank

Slice Common

Pixel Backend / Color$

Rasterizer

Z / Depth$

Unslice

GAGEOM/FF POSH
GTI CS GuC BLIT

Media FF

VD

VD VE

Pixel
backend

Raster/Z

2. Geometry 1. Command streamer

Memory

3.

Compute
4.

Compute
4.

@IntelSoftware @IntelGraphics 7

Command Streamer
§ Reads and dispatches command buffer

• 3D commands to Geometry/Fixed Functions

• Compute commands to Thread Dispatcher

§ Builds indirect command buffers if needed

Performance tips:

§ Avoid small empty drawIndirects – use ExecuteIndirect
or MultiDrawIndirect Extensions!

§ Separate and regroup 3D and Compute workloads
together to get the most of the hardware

Unslice

GAGEOM/FF
CS

Geometry/Fixed Functions
§ Vertex fetch/transform/write in order into Memory

§ 1.5x over Gen9 (from 4 to 6 attributes (float4) /clk)

Performance tips:

§ Pack attributes into float4 when possible

§ Hold your Prim. count on a leash

• CPU occlusion and size culling

• Level Of Details (LODs)

• Frustum culling

• Backface culling

Unslice architecture

7

@IntelSoftware @IntelGraphics 8

Slice Common Architecture: Rasterizer
§ Handles Clipping, Viewport Scaling, orientation/thin

triangles culling, and of course rasterization!

§ Hierarchical Rasterization up to 256 pix/clk (16 * 4x4)
• Determines if each 4x4(span) is fully covered,

partially, or void
• If partially, fine grain raster at 4x4 px/clk

Performance tip: Beware of small triangles - use LODs
and impostors:

Slice Common

Rasterizer

88

15 px in 1 clk J 3 px in 3 clk L

@IntelSoftware @IntelGraphics 9

Slice Common Architecture: 2 Z/Depth$ Pipes
Handles Hierarchical-Z …
§ 2 modes: PlaneZ or Min/Max
§ up to 2 x 64 px/clk
§ 2 x 12kB cache

Early-Z test can happen under 1 major condition:

• We don’t need the Pixel Shader to know the final depth

Performance tip: Avoid when possible:

§ Discard in Pixel Shader (PS) -> test can happen before but late-Z write

§ Writing depth manually in the PS -> both test and write happen late

9

Slice Common

Z / Depth$

… and Intermediate-Z (per px)
§ up to 2 x 16 px/clk
§ 2 x 32kB cache

@IntelSoftware @IntelGraphics

Gen Basic Building Block: Execution Unit (EU)

10

Execution Unit (EU)

ALU 0

ALU 1

Branch

grf. …

... ...

... ...

... ...

... ...

… ...

General register file(grf) arf.

Send

Thread Control
Execution Unit (EU)

ALU 0

ALU 1

Branch

GRFGRF

......

......

......

......

......

General Register File (GRF)

Send

Thread Control

@IntelSoftware @IntelGraphics 11

Execution Unit (EU)

ALU 0

ALU 1

Natively 2 x SIMD4
§ Each ALU supports fp. & int math

§ 8 x 32-bit or 16 x 16-bit ops/cycle

§ ALU1 capable of high throughput
transcendental Math

§ Min FPU instruction latency is
2 clocks

§ FPUs are fully pipelined across
threads

§ instructions complete every cycle

Gen Basic Building Block: Execution Unit (EU)

Full rate: MUL, ADD,
MAD, MIN/MAX, CMP

1/4 rate: SQRT/RSQRT,
LOG/EXP, TRIG

1/8 rate: POW, DIV

@IntelSoftware @IntelGraphics 12

Execution Unit (EU)

GRFGRF

......

......

......

......

......

General Register File (GRF)General Register File (GRF)

12

Gen Basic Building Block: Execution Unit (EU)

7 Threads
§ Cover latency for Load, LDS, etc.

§ Each can run a diff. shader

28kB register space
§ 7 x 4 kB

§ 128 registers (grf.)/ thread

§ grf. are 8 x 32-bit (32B)

@IntelSoftware @IntelGraphics 13

Execution Unit (EU)
Thread Control

......

......

......

......

......

13

Gen Basic Building Block: Execution Unit (EU)

Thread Control
§ Thread Arbiter picks

instructions to run from
runnable thread(s)

§ Dispatches instructions to
functional units

§ co-issues up to 4 instructions
per cycle

@IntelSoftware @IntelGraphics

EU SIMD Explained
Physically SIMD4x2 but logically support 1/2/4/8/16
or 32-wide instructions

§ > SIMD8 instructions pair adjacent GRF.

• SIMD16 would pair 2 physical GRF. to a single
logical 64B grf.

§ Compiler makes the decision: for 3D workload using
either 8 or 16-wide

1414

Intel GPA has metrics to help and
we now have a standalone Shader

Compiler !!

Performance tip: Reduce register pressure:

§ High SIMD/reduced spills

§ Better codegen / scheduling

GRF Usage: <64 64-128 >128

Instruction used SIMD16
J

SIMD8
K

SIMD8 with Spills
L

@IntelSoftware @IntelGraphics

How To Reduce Register Pressure

Don’t:
§ Branch on constant buffer conditions

§ Non uniform access to buffer data

§ Excessive variable decl. (esp. arrays)

Do’s:
§ Use Partial precision (min16float)

§ Move common code outside branches

1515

A lot more details in the Gen Graphics performance guide:
https://software.intel.com/en-us/documentation/graphics-api-performance-guide-for-intel-processor-graphics-gen9

GRF Usage: <64 64-128 >128

Instruction used SIMD16
J

SIMD8
K

SIMD8 with Spills
L

https://software.intel.com/en-us/documentation/graphics-api-performance-guide-for-intel-processor-graphics-gen9
https://software.intel.com/en-us/documentation/graphics-api-performance-guide-for-intel-processor-graphics-gen9

@IntelSoftware @IntelGraphics

Sampler

Subslice: An Array Of 8 EUs With a Sampler
Sampler takes request from the EUs, fetches texels from
memory, and returns them to the EUs:

§ Handles Texture Decompression
§ 4tx/clk bilinear and point < 64b and aniso. 2x 32b

• >64 formats and aniso. 4x runs at ½ speed

§ Multiple levels of cache

Sampler performance tips:

§ Increase spatial locality
§ Reduce texture state changes

§ Use simple filtering modes (aniso. 16x is 1/16th bilinear
rate!!)

16

@IntelSoftware @IntelGraphics

Subslice: An Array Of 8 EUs
CS thread groups are guaranteed running on a single subslice:

§ Gen hardware is able to run 56 hardware threads/subslice

§ thread group size == 1024 are an issue

If we run in SIMD16, we’d have 1024/16 = 64 hardware threads,
which is bigger than the 56 available. To compensate, the shader
compiler has to use SIMD32.

§ This causes 2 issues:

• Occupancy is low (32 HW threads/56 available = 57%)

• Potential spill fills, as this doubles the register count required.

Performance tip: 8x8 thread groups is great on all hardware!

17

@IntelSoftware @IntelGraphics

DataPort

SLM

2 Subslices grouped together with…
Shared Local Memory (SLM)
§ 128kB

§ 128B/clk

§ ~1/4 latency vs. Gen9

Performance tips:

§ Using too much SLM can hurt occupancy

§ Regroup memory access to ensure full cache line access (64B)

18

Data Port (LD/ST)
§ Handles communication with L3: 64B/clk

§ UAV read/writes

Performance tip: Only create UAVs when necessary

@IntelSoftware @IntelGraphics

Slice Common Architecture: Pixel Backend
Slice Common

Pixel Backend / Color$

Handles color writes and blending to render target
§ Writes and blend at 16 px/clk

§ Has its own 2 x 32k color cache

2:1 Lossless compression
§ Saves bandwidth when writing RT data

§ Saves bandwidth when display engine reads displayable RT data

§ Saves bandwidth when texture sampler reads intermediate RT data

§ MSAA textures are not compressed

19

@IntelSoftware @IntelGraphics 20

Summary – 8 Subslices = 64 EUs

20

@IntelSoftware @IntelGraphics 21

Tile-Based Deferred Rendering (TBDR)
Problem statement: in many cases, bandwidth becomes the limiting factor for low-thermal
design point (TDP) platforms.
Solution(s):

§ Tile-based rendering is a well-known industry solution for low-power platforms; especially when discarding
intermediate data

§ Significant amount of bandwidth and execution cycles can be saved for discarded triangles; e.g. frustum or backface
culled

§ Enable opportunistically for scenarios the benefit
the most

@IntelSoftware @IntelGraphics

Position-Only Shading
Tiled-Based Rendering
(PTBR)
Position-Only Shading pipeline generates per-tile visibility
stream; using (driver-generated) position-only vertex shader

Render pipeline replays full vertex processing and per-tile
pixel processing only for visible primitives

Object Visibility Recorder (OVR) ensures consistency between
pipelines

Dynamic enabling of PTBR pipeline allows driver to choose
based on optimal conditions; e.g., bandwidth-limited render
passes

22

Vertex
Processing

Clip/Cull

OVR

Primitive
Assembly

Visibility
Buffer(s)
Visibility
Buffer(s)
Visibility
Buffer(s)
Visibility
Buffer(s)
Visibility
Buffer(s)
Visibility
Buffer(s)

Vertex
Processing

Tessellation

Geometry
Processing

Clip/Cull

Raster

Primitive
Assembly

Pixel
Processing

Per Tile

Visibility
Stream
Per-Tile

@IntelSoftware @IntelGraphics

PTBR Performance Guidelines
Use explicit API render passes and discard:

§ VkRenderPass/VkSubpass with
VK_ATTACHMENT_STORE_OP_DONT_CARE

§ (RS5) ID3D12GraphicsCommandList4::EndRenderPass with
D3D12_RENDER_PASS_ENDING_ACCESS_TYPE_DISCARD

During high-bandwidth render passes (e.g., MSAA, blending) avoid:

§ Tessellation, Geometry Shading and/or Stream Output,
and Compute Shading

§ Use per-attribute vertex buffers - position only

GPA: per-Draw performance analysis will disable PTBR

23

@IntelSoftware @IntelGraphics

Coarse Pixel Shading (CPS): Motivation
§ Pixel density increasing

§ Performance not scaling at same density as pixel resolution

§ Need mechanisms to hit high frame rate and not waste pixel throughput

§ Software solutions:

• Dynamic Resolution Rendering

• Checkerboard rendering

• …

§ Can also explore hardware solutions…

Intel has highly optimized
open source implementations
of these available

Topic of these slides

24

@IntelSoftware @IntelGraphics

Coarse Pixel Shading Overview
Set Pixel Shading Rate to be:

§ Floating point value between 1 and 4 in X and Y dimension

§ Rounded to integer value to determine actual shading rate

HW support for 2 modes of operation:

§ Foveated:

• Specify a CPS rate for inner and outer elliptical region

• Specify an inner and outer ellipse, smooth transition between them

§ Draw call:

• Set a state for all future Draw() calls

• Set multiple times per frame

Will be exposed in D3D12 (aka Variable Rate Shading) as well as future
Vulkan extensions.

Per pixel visibility

Shading once per
X * Y pixel group

Inner elliptical region

Outer elliptical regionSmooth transition

25

@IntelSoftware @IntelGraphics 26

Coarse Pixel Shading (CPS)
• Proof of Concept integration into Unreal

Engine SunTemple demo

• CPS rate applied to all geometry when under
motion at 2x2 or 4x4 rates

• Early perf gains between ~20-40%

• Microsoft Variable Rate Shading Talk
happening now !

• Come see the demo at the Intel Booth!

@IntelSoftware @IntelGraphics

Conclusion
§ 64EUs * SIMD4x2 * 2ops/clk = 1024 ops/clk

• Up to 1 Tflops !!

• And you now have the keys to make the most of it

§ New performance features allowing to get even more from the hardware

• CPS

• PTBR

§ Biggest gaming announcement in 2019 – Raising the mainstream gaming bar

§ A lot more details in the Gen11 whitepaper : https://software.intel.com/en-
us/download/graphics-api-architecture-guide-for-intel-processor-graphics-gen11

27

https://software.intel.com/en-us/download/graphics-api-architecture-guide-for-intel-processor-graphics-gen11
https://software.intel.com/en-us/download/graphics-api-architecture-guide-for-intel-processor-graphics-gen11
https://software.intel.com/en-us/download/graphics-api-architecture-guide-for-intel-processor-graphics-gen11

Questions?

28

@IntelSoftware @IntelGraphics

Gen11 Memory Hierarchy

292929

@IntelSoftware @IntelGraphics 30

Backup
Key Peak Metrics Gen9 GT2 Gen11 GT2
Slice Attribute
of Slices 1 1
of Sub-Slices 3 8
of Cores (Eus) 24 (3x8) 64 (8x8)
Single Precision FLOPs per ClkClock (MAD) 384 1024
Half Precision FLOPs per ClkClock (MAD) 768 2048
Int8 IOPs per ClkClock 768 1024
Register File Per Sub-Slice 224KB 224KB
of Samplers 3 8
Point/Bilinear Texels/ClkClock (32bpt) 12 32
Point/Bilinear Texels/ClkClock (64bpt) 12 32
Trilinear Texels/ClkClock (32bpt) 6 16
Shared Local Memory Total 192KB(=3 x 64KB)* 512KB(=8 x 64KB)
Slice-Common Attributes
Pixels/ClkClock (RGBA8) wo. Alpha Blend 8 16
Pixels/ClkClock (RGBA8) w. Alpha Blend 8 16
HiZ Zixels/ClkClock 64 128
L3$ Cache 768 KB 3072 KB
Geometry Attributes
Vertex Attributes Per ClkClock 4 6
Primitive/ClkClock (backface Cull – strips) 1 1
Primitive/ClkClock (backface Cull – lists) 0.67 0.67
Global Attributes
GTI Bandwidth (Bytes/ClkClock) R: 64

W: 32
R: 64
W: 64

LLC Configuration 2-8MB TBD
DRAM Configuration 2x64 LPDDR3/DDR4 4x32 LPDDR4/DDR4
Peak DRAM Data Rate (Mbps) Up to 2Ch 2400 Up to 2Ch 3733
Max Peak DRAM BW (GBps) Up to 38.4 GBps Up to 59.7 GBps
*Note - Gen9 L3$ includes SLM, Data and Fixed Function Data

