intel.

 THEARCHTECTUREF INTEL"
--éf'-’-“"CESSOR--GRAPH-Ics:_,sEm

Antome Cohade

Sr. Dev Hgi Engmeer

@acohade]
el

: Spe::c-'i.al';cﬁénks‘ to contribut

GAMEDRVELOPERS .

CONFERENCE - -

.| Michael Apodaca L
o Prmapal Engine .
g @gatorfax -

Legal Notices and Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as
well as any warranty arising from course of performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel
a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are
available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark;,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more complete information visit www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your
system hardware, software or configuration may affect your actual performance.

Intel, Core and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others

© Intel Corporation.
¥ P,

_.@lnté"oftwa‘ie @l 'tglG'-rap'hiEs .

http://www.intel.com/benchmarks
http://www.intel.com/benchmarks

Agenda

Graphics Pipeline Basics

for each(hardwareBlock in Gen11 {
describe(hardwareBlock);

give(performanceTip**);

};
Tiled-Based Rendering

Coarse Pixel Shading

**Most Performance tips also apply to Gen9

- .‘.A'."' ’-‘\
' Inti’ﬁoftwgfe @Ié(elGraphlcs LA

Graphics Pipeline 101

3D Pipeline |

Command | - | .
Streamer
Memory ~—|

Compute Pipeline

Command
Streamer

Memory < —

How does that match to Gen?

> I o
L
Unslice el
....II .I | s | _I I llll
....II I. — I. I llll
Pixel Backend / Color$

| .I _I | [

Bank Bank

Bank Bank
Bank Bank llll

How does that match to Gen?

Un-Slice (1,2)
2. Geometry . Command streamer Global Assets: Command Streamer, Ring

interface, pwr mgmt, Blitter, Thread Dispatch

Geometry Fixed Functions: 3D HW pipeline
(geometry)

3.
Raster/Z

And also:

Media FF: Low power HW encode, decode,
& video processing

Slice (3,4)
Slice-Common/L3: Setup, Rasterizer, Z,

L3 Cache, and Pixel processin
backend d 8

Sub-Slices: Array of Execution Units, Inst

Caches (IC$), Texture Samplers w/ Caches,
Load/Store Units

; i ~ ;
_@Intéiéoftwa\l'fe @IntelGraphics
-4 a T

Unslice architecture

> -
Unslice

]

Command Streamer Geometry/Fixed Functions

= Reads and dispatches command buffer = Vertex fetch/transform/write in order into Memory
« 3D commands to Geometry/Fixed Functions = 1.5x over Gen9 (from 4 to 6 attributes (float4) /clk)
« Compute commands to Thread Dispatcher Performance tips:

= Builds indirect command buffers if needed " Packattributes into float4 when possible

Performance tips: = Hold your Prim. count on a leash

= Avoid small empty drawlndirects — use Executelndirect * CPU occlusion and size culling
or MultiDrawlIndirect Extensions! « Level Of Details (LODs)

= Separate and regroup 3D and Compute workloads e Frustum culling

together to get the most of the hardware
Backface culling

. {
oftwat o

Slice Common Architecture: Rasterizer

. = Handles Clipping, Viewport Scaling, orientation/thin
Slice Common triangles culling, and of course rasterization!

= Hierarchical Rasterization up to 256 pix/clk (16 * 4x4)

» Determines if each 4x4(span) is fully covered,
partially, or void

» |If partially, fine grain raster at 4x4 px/clk

Performance tip: Beware of small triangles - use LODs
and impostors:

A

15 pxin1clk © 3pxin3clk®

- oftware @Inte

gig;:r;p.hiEs - ‘ intEl) l 8

Slice Common Architecture: 2 Z/Depth$ Pipes

Slice Common Handles Hierarchical-Z ... and Intermediate-Z (per px)
= 2 modes: PlaneZ or Min/Max = upto2x16 px/clk
= upto 2 x 64 px/clk = 2 x 32kB cache

= 2 x 12kB cache

Z / Depth$ Early-Z test can happen under 1 major condition:
 We don't need the Pixel Shader to know the final depth

Performance tip: Avoid when possible:

= Discard in Pixel Shader (PS) -> test can happen before but late-Z write

= Writing depth manually in the PS -> both test and write happen late

-"-..7,..‘ ’d\
' @Intﬁﬁoftwa‘?e @Ié(elGraphlcs »

Gen Basic Building Block: Execution Unit (EU)

E
\E
—

7 Send

Thread Control

Branch

Execution Unit (EU)

3
A

Gen Basic Building Block: Execution Unit (EU)

Natlvely 2 x SIMD4

Each ALU supports fp. & int math
8 x 32-bit or 16 x 16-bit ops/cycle

ALU1 capable of high throughput
| transcendental Math

Min FPU instruction latency is
2 clocks

FPUs are fully pipelined across
threads

instructions complete every cycle

Full rate: MUL, ADD,
MAD, MIN/MAX, CMP

1/4 rate: SQRT/RSQRT,
LOG/EXP, TRIG

Execution Unit (EU)

1/8 rate: POW, DIV

Gen Basic Building Block: Execution Unit (EU)

7 Threads

= Cover latency for Load, LDS, etc.

= Each can run a diff. shader

28kB register space

= 7x4kB
= 128 registers (grf.)/ thread
= grf. are 8 x 32-bit (32B)

——o
———o
———o
——o
———o
o

Execution Unit (EU)

Gen Basic Building Block: Execution Unit (EU)

Thread Control

= Thread Arbiter picks
instructions to run from
runnable thread(s)

= Dispatches instructions to
functional units

= co-issues up to 4 instructions
per cycle

| e e |
I
I
-]
I
-
-

. Thread Control

Execution Unit (EU)

EU SIMD Explained

Physically SIMD4x2 but logically support 1/2/4/8/16 Performance tip: Reduce register pressure:
or 32-wide instructions = High SIMD/reduced spills
= > SIMDS8 instructions pair adjacent GRF. = Better codegen / scheduling
« SIMD16 would pair 2 physical GRF. to a single
logical 64B grf.
= Compiler makes the decision: for 3D workload using
either 8 or 16-wide
GRF Usage: <64 64-128 >128 Intel GPA has metrics to help and
: SIMD8 we now have a standalone Shader
Instruction used ,
S Compiler !

S : » g o " ‘)
' Inti’ﬁoftwgfe @Ié(elGraph|c5'.u ' : \ <.|ntel . 14

N o i
' Inti’ﬁoftwgfe @Ié(elGraphlcs -

How To Reduce Register Pressure

Don’'t: Do’s:
= Branch on constant buffer conditions = Use Partial precision (min16float)
= Non uniform access to buffer data = Move common code outside branches

» Excessive variable decl. (esp. arrays)

GRF Usage: <64 64-128 >128
Instruction used 5||\éD8

A lot more details in the Gen Graphics performance guide:
https://software.intel.com/en-us/documentation/graphics-api-performance-guide-for-intel-processor-graphics-gen9

https://software.intel.com/en-us/documentation/graphics-api-performance-guide-for-intel-processor-graphics-gen9
https://software.intel.com/en-us/documentation/graphics-api-performance-guide-for-intel-processor-graphics-gen9

Subslice: An Array Of 8 EUs With a Sampler

Sampler takes request from the EUs, fetches texels from
memory, and returns them to the EUs:

» Handles Texture Decompression
» 4tx/clk bilinear and point < 64b and aniso. 2x 32b
* >64 formats and aniso. 4x runs at 2z speed

= Multiple levels of cache

Sampler performance tips:

» |ncrease spatial locality

» Reduce texture state changes

= Use simple filtering modes (aniso. 16x is 1/16t bilinear
ratel!l)

Subslice: An Array Of 8 EUs

& €

CS thread groups are guaranteed running on a single subslice:
= Gen hardware is able to run 56 hardware threads/subslice
» thread group size == 1024 are an issue

If we run in SIMD16, we'd have 1024/16 = 64 hardware threads,
which is bigger than the 56 available. To compensate, the shader
compiler has to use SIMD32.

= This causes 2 issues:

* Occupancy is low (32 HW threads/56 available = 57%)

* Potential spill fills, as this doubles the register count required.

Performance tip: 8x8 thread groups is great on all hardware!

.'i@ \ 17

2 Subslices grouped together with...

Shared Local Memory (SLM)
= 128kB

= 128B/clk

= ~1/4 latency vs. Gen9

Performance tips:

= Using too much SLM can hurt occupancy

= Regroup memory access to ensure full cache line access (64B)

Data Port (LD/ST)

= Handles communication with L3: 64B/clk

= UAV read/writes

Performance tip: Only create UAVs when necessary

DataPort

Slice Common Architecture: Pixel Backend

Slice Common Handles color writes and blending to render target

Pixel Backend / Color$.

A

' @Inté‘ﬁoftwa‘?e @Ig:lGraphlcs »

Writes and blend at 16 px/clk

Has its own 2 x 32k color cache

2:1 Lossless compression

Saves bandwidth when writing RT data
Saves bandwidth when display engine reads displayable RT data
Saves bandwidth when texture sampler reads intermediate RT data

MSAA textures are not compressed

Summary - 8 Subslices = 64 EUs

Global Assets
- 1 -
)
=
. I

Unslice

GEOM/FF
Sllce Common

I . —

-

m ————
. - Pixel Backend / Color$

DataPort

DataPort

; L3T/-1.'ile$/URB

Bank Bank

Bank Bank

Bank Bank

ogeleq

Bank Bank

Tile-Based Deferred Rendering (TBDR)

Problem statement: in many cases, bandwidth becomes the limiting factor for low-thermal
design point (TDP) platforms.

Solution(s):

» Tile-based rendering is a well-known industry solution for low-power platforms; especially when discarding
intermediate data

= Significant amount of bandwidth and execution cycles can be saved for discarded triangles; e.g. frustum or backface
culled

= Enable opportunistically for scenarios the benefit
the most

L o T ;
_@lntéiéoftwa‘ie @IntelGraphics -
’ ‘ .- - x-

Position-Only Shading
Tiled-Based Rendering
(PTBR)

Position-Only Shading pipeline generates per-tile visibility
stream; using (driver-generated) position-only vertex shader

Render pipeline replays full vertex processing and per-tile
pixel processing only for visible primitives

Object Visibility Recorder (OVR) ensures consistency between
pipelines

Dynamic enabling of PTBR pipeline allows driver to choose
based on optimal conditions; e.g., bandwidth-limited render

passes

Vertex

Processing

Primitive
Assembly

Clip/Cull

i
R
o
pie

Visibility

Stream
Per-Tile

Tessellation

Geometry
Processing

Primitive

/\ A M N

Clip/Cull

Raster

Pixel

'.in/-teD \ 22

PTBR Performance Guidelines

Use explicit APl render passes and discard:

» VkRenderPass/VkSubpass with
VK_ATTACHMENT _STORE_OP_DONT_CARE

= (RS5) ID3D12GraphicsCommandList4::EndRenderPass with
D3D12 _RENDER_PASS ENDING_ACCESS _TYPE DISCARD

During high-bandwidth render passes (e.g., MSAA, blending) avoid:

» Tessellation, Geometry Shading and/or Stream Output,
and Compute Shading

= Use per-attribute vertex buffers - position only

GPA: per-Draw performance analysis will disable PTBR

W Y - | - - AN Ll?w

: Y i [™ d s e - y
@IntelSoftware: @IntelGraphics ' : _ Y
-« ‘ :- » k- : . h; ! 5

Coarse Pixel Shading (CPS): Motivation

Pixel density increasing
= Performance not scaling at same density as pixel resolution

= Need mechanisms to hit high frame rate and not waste pixel throughput

" Software solutions: Intel has highly optimized
« Dynamic Resolution Rendering open source implementations

« Checkerboard rendering of these available

= Can also explore hardware solutions... Topic of these slides

L o T ;
_@lntéiéoftwa‘ie @IntelGraphics -
’ ‘ .- - x-

Coarse Pixel Shading Overview

Per pixel visibility
Set Pixel Shading Rate to be:
* Floating point value between 1 and 4 in X and Y dimension
= Rounded to integer value to determine actual shading rate

HW support for 2 modes of operation: Shading once per

X*Y pixel group
= Foveated:

« Specify a CPS rate for inner and outer elliptical region
« Specify an inner and outer ellipse, smooth transition between them

= Draw call:
Inner elliptical region

» Set a state for all future Draw() calls

« Set multiple times per frame (O

Will be exposed in D3D12 (aka Variable Rate Shading) as well as future
Vulkan extensions.

Smooth transition Outer elliptical region

L o T ;
_@lntéiéoftwa‘ie @IntelGraphics -
’ ‘ .- - x-

Coarse Pixel Shading (CPS) '

< & S

g V1230 Speedup

L=

CPS Constant 4x4

B

Proof of Concept integration into Unreal
Engine SunTemple demo

CPS rate applied to all geometry when under
motion at 2x2 or 4x4 rates

Early perf gains between ~20-40%

1:32x:Speedup

Microsoft Variable Rate Shading Talk fa CPS Constant 4x4
' / : A
happening now ! , Y n

Come see the demo at the Intel Booth! | ,

3

Conclusion

64EUs * SIMD4x2 * 2ops/clk = 1024 ops/clk
« Upto 1 Tflops !

* And you now have the keys to make the most of it

New performance features allowing to get even more from the hardware
- CPS
« PTBR

Biggest gaming announcement in 2019 — Raising the mainstream gaming bar

A lot more details in the Gen11 whitepaper:

AL, R N D
@‘lnté ‘oftwaie @I 'tglG'raphiEs - ' : .)\ : <|ntel \ 27,
N~ e ‘X 2o N\ = :

https://software.intel.com/en-us/download/graphics-api-architecture-guide-for-intel-processor-graphics-gen11
https://software.intel.com/en-us/download/graphics-api-architecture-guide-for-intel-processor-graphics-gen11
https://software.intel.com/en-us/download/graphics-api-architecture-guide-for-intel-processor-graphics-gen11

its

b

Gen11 Memory Hierarchy

'.’._-.\

telGraphics

e A'@'lhté"oftwa\fe @I

L3

R: 64B/clk
W: 64B /clk

@Ring Clk

4 ch
ge/ck = System

LLC mem clk) Memory

:32B/clk
W: 32B/clk
@Ring Clk

Key Peak Metrics Gen9 GT2 Gen11 GT2
Slice Attribute

of Slices 1 1
of Sub-Slices 3 8
of Cores (Eus) 24 (3x8) 64 (8x8)
Single Precision FLOPs per €kClock (MAD) 384 1024
Half Precision FLOPs per ClkClock (MAD) 768 2048
Int8 I0Ps per €kClock 768 1024
Register File Per Sub-Slice 224KB 224KB
of Samplers 3 8
Point/Bilinear Texels/ClkClock (32bpt) 12 32
Point/Bilinear Texels/€kClock (64bpt) 12 32
Trilinear Texels/€tkClock (32bpt) 6 16
Shared Local Memory Total 192KB(=3 x 64KB)* 512KB(=8 x 64KB)
Pixels/CkClock (RGBAS8) wo. Alpha Blend 8 16
Pixels/€tkClock (RGBAS) w. Alpha Blend 8 16
HiZ Zixels/&kClock 64 128
L3$ Cache 768 KB 3072 KB
Geometry Attributes
Vertex Attributes Per €kClock 4 6
Primitive/ClkClock (backface Cull - strips) 1 1
Primitive/ClkClock (backface Cull - lists) 0.67 0.67
Global Attributes
GTI Bandwidth (Bytes/&HClock) R: 64 R: 64
W: 32 W: 64
LLC Configuration 2-8MB TBD
DRAM Configuration 2x64 LPDDR3/DDR4 4x32 LPDDR4/DDR4
Peak DRAM Data Rate (Mbps) Up to 2Ch 2400 Up to 2Ch 3733
Max Peak DRAM BW (GBps) Up to 38.4 GBps Up to 59.7 GBps

*Note - Gen9 L3$ includes SLM, Data and Fixed Function Data

telGraphics -

@

