
Jeff Rous, Senior Developer Relations Engineer, Intel

Rolando Caloca, Rendering Systems Lead, Epic Games

@IntelSoftware @IntelGraphics

Agenda

Rationale (Why are we doing this?)

Understanding the Threading Model of Unreal Engine 4

CPU Optimizations

GPU Optimizations

Wrap up

2

@IntelSoftware @IntelGraphics 3

Why Work Together?

Benefits all games that use the engine

UE4 runs on more hardware

Intel is 81% PC CPU share as of last Steam survey

Optimizations help everyone – high end to phone

Common goals

Scalability means more reach and available market

Leading edge APIs like DX12 are going to power tomorrow’s games

@IntelSoftware @IntelGraphics 4

@IntelSoftware @IntelGraphics 5

UE4’s Threading Model

Game
Thread Frame N

Time

Rendering
Thread

Frame N

Frame N+1

Frame N+1

Physics
Thread
Audio
Thread

Frame N

Frame N Frame N + 1

Frame N + 1

@IntelSoftware @IntelGraphics 6

UE4’s Threading Model: Game -> Rendering Thread

Game
Thread Frame N

Time

Rendering
Thread

Frame N

Frame N+1

Frame N+1

@IntelSoftware @IntelGraphics 7

UE4’s Threading Model: Game -> Rendering Thread

Game
Thread

Time

Rendering
Thread

ENQUEUE_RENDER_COMMAND

@IntelSoftware @IntelGraphics 8

UE4’s Threading Model: Rendering

Rendering
Thread

Time

A Rendering Command

@IntelSoftware @IntelGraphics 9

UE4’s Threading Model: Rendering

Rendering
Thread

Time

A A Rendering Command
D3D11 Command

@IntelSoftware @IntelGraphics 10

UE4’s Threading Model: Rendering

Rendering
Thread

Time

A A B B Rendering Command
D3D11 Command

@IntelSoftware @IntelGraphics 11

UE4’s Threading Model: Rendering

Rendering
Thread

Time

A A B B C C D D Rendering Command
D3D11 Command

@IntelSoftware @IntelGraphics 12

UE4’s Threading Model: RHI Command List

Rendering
Thread

Time

A

A

Rendering Command
D3D11 Command
RHI Command

RHICmdList

Enqueue

@IntelSoftware @IntelGraphics 13

UE4’s Threading Model: RHI Command List

Rendering
Thread

Time

A B

A B

Rendering Command
D3D11 Command
RHI Command

RHICmdList

Enqueue

@IntelSoftware @IntelGraphics 14

UE4’s Threading Model: RHI Command List

Rendering
Thread

Time

A B C D

A B C D

Rendering Command
D3D11 Command
RHI Command

RHICmdList

Enqueue

@IntelSoftware @IntelGraphics 15

UE4’s Threading Model: RHI Command List

Rendering
Thread

Time

A B C D A

Translate

A B C D

Rendering Command
D3D11 Command
RHI Command

RHICmdList

@IntelSoftware @IntelGraphics 16

UE4’s Threading Model: RHI Command List

Rendering
Thread

Time

A B C D A B

Translate

A B C D

Rendering Command
D3D11 Command
RHI Command

RHICmdList

@IntelSoftware @IntelGraphics 17

UE4’s Threading Model: RHI Command List

Rendering
Thread

Time

A B C D A B C D

Translate

A B C D

Rendering Command
D3D11 Command
RHI Command

RHICmdList

@IntelSoftware @IntelGraphics

A B C D

18

UE4’s Threading Model: RHI Thread

Rendering
Thread

Time

RHI Thread

A B C D

A

Translate

Rendering Command
D3D11 Command
RHI Command
D3D11 Command
RHI Command

RHICmdList

@IntelSoftware @IntelGraphics

A B C D

19

UE4’s Threading Model: RHI Thread

Rendering
Thread

Time

RHI Thread

A B C D

A B

Translate

Rendering Command
D3D11 Command
RHI Command
D3D11 Command
RHI Command

RHICmdList

@IntelSoftware @IntelGraphics

A B C D

20

UE4’s Threading Model: RHI Thread

Rendering
Thread

Time

RHI Thread

A B C D

A B C D

Translate

Rendering Command
D3D11 Command
RHI Command
D3D11 Command
RHI Command

RHICmdList

@IntelSoftware @IntelGraphics 21

UE4’s Threading Model: Game -> Rendering -> RHI Thread

Game
Thread Frame N

Time

Rendering
Thread

Frame N

Frame N+1

Frame N+1

RHI
Thread

Frame N Frame N+1

Frame N+2

Frame N+2

Frame N+2

@IntelSoftware @IntelGraphics 22

UE4’s Threading Model: Parallel Frontend

Time

A Rendering Command
D3D11 Command
RHI Command
Parallel Command

Rendering
Thread

Parallel
Thread

Parallel
Thread

A

RHICmdList

@IntelSoftware @IntelGraphics 23

UE4’s Threading Model: Parallel Frontend

Time

A B

C

E

D

Rendering Command
D3D11 Command
RHI Command
Parallel Command

Rendering
Thread

Parallel
Thread

Parallel
Thread

A B

RHICmdList

C D

SubCmdList

E

SubCmdList

@IntelSoftware @IntelGraphics 24

UE4’s Threading Model: Parallel Frontend

Time

A B

C

E

D

Rendering Command
D3D11 Command
RHI Command
Parallel Command

Rendering
Thread

Parallel
Thread

Parallel
Thread

A B C D

RHICmdList

E

C D

SubCmdList

E

SubCmdList

@IntelSoftware @IntelGraphics 25

UE4’s Threading Model: Parallel Frontend

Time

A B F

C

E

D

Rendering Command
D3D11 Command
RHI Command
Parallel Command

Rendering
Thread

Parallel
Thread

Parallel
Thread

A B C D

RHICmdList

E F

@IntelSoftware @IntelGraphics 26

UE4’s Threading Model: Parallel Frontend

Time

A B F

C

E

D

Rendering Command
D3D11 Command
RHI Command
Parallel Command

Rendering
Thread

Parallel
Thread

Parallel
Thread

RHI
Thread A B C D E F

A B C D

RHICmdList

E F

@IntelSoftware @IntelGraphics 27

@IntelSoftware @IntelGraphics 28

DirectX12 Optimizations

Problem: DX11 Render Thread Bottlenecks are
starving the GPU but DX12 path is behind in
performance. New Microsoft features (RTX, VRS)
require DX12.

Driver and Engine investment to improve DX12
performance, from shader compilation to
runtime efficiency.

@IntelSoftware @IntelGraphics

Chaos Physics

29

§ Brand new physics system unveiled at
Epic’s GDC keynote.

§ Worked closely with Epic to optimize low
level solvers, data structures, and thread
parallelism.

§ Key learnings
– C++ is bad at SIMD. Integrated Intel ISPC

for ~3x gains in perf critical areas.

– TSet is bad in high performance situations.
Use TArray, Sort and RemoveSwap rather
than guard dupes with TSet.Contains.

– ParallelFor can be overused! Some
oversubscription is good but don’t go
overboard with 1000s of jobs. Batch!

@IntelSoftware @IntelGraphics 30

Intel SPMD Program Compiler (ISPC) Integration

• Problem: In perf critical code, C++ often doesn’t cut it. Usual solution is
intrinsics. Not anymore!

• Implicit parallelism: SIMD lanes act similar to GPU shader invocations

• Write Once, Compile to many vectorized instruction sets (SSE4, AVX, AVX2)

• Used in Chaos, available in UE4 soon!

• Include ISPC module in your build.cs

• Add ispc files to your project

• Include a generated C++ header

• Unreal build tool handles the rest

@IntelSoftware @IntelGraphics 31

When to use ISPC?

• Good for dense compute-bound workloads. Heavy math like physics
intersection testing, cloth or CPU vertex transformations

• Best with contiguous memory load, manipulate, store ie TArray

• Best when no data dependencies between operations. Especially useful
when combined with ParallelFor and batching

export void rgb2grey(uniform int N, uniform float r[],
uniform float g[], uniform float b[], uniform float grey[])
{

foreach (idx = 0 ... N) {
grey[idx] = 0.3f * r[idx] +
0.59f * g[idx] +
0.11f * b[idx];

}
}

…
vmulps (%rdx,%rax), %ymm1, %ymm3
vfmadd231ps (%rsi,%rax), %ymm0, %ymm3
vfmadd231ps (%rcx,%rax), %ymm2, %ymm3
vmovups %ymm3, (%r8,%rax)
…

@IntelSoftware @IntelGraphics 32

For enhanced realism (level lighting,
bouncing, complex interactions).

§ Legacy physics engine had issue with
locking scene on reads, causing
serialization through a critical section.

§ No exiting support for ticking CPU
particles in parallel.

§ Fixing both gave up to 4x throughput
improvement per frame

§ Patch available for 4.19+

Cascade CPU Particles

Before Optimization

After Optimization

@IntelSoftware @IntelGraphics 33

Intel® VTune™ Amplifier
Intel® Vtune™ Amplifier enables deep
profiling and problem identification.

Hotspots, locks, syncs, multithreading,
even GPU data!

With 4.19, new support for event
based CPU sampling using itt_notify
framework.

Use –VTune on the command line and
stat NamedEvents on the console.

Vtune™ is now free!

@IntelSoftware @IntelGraphics 34

Intel Embree
Embree enables fast light baking for breathtaking visuals.

“Intel Embree is pretty good. 4x faster Lightmass ray tracing which results in
2.4x faster lighting builds” – Daniel Wright, Technical Director, Graphics, Epic
Games

Embree is fully enabled for multicore

Used by default in static light builds

Embree accelerates lighting calculations using the full potential
of multicore CPUs and new ISAs

@IntelSoftware @IntelGraphics 35

ISPC Texture Compression
Unreal Engine 4 now has support in
the public engine release for Intel’s
fast texture compressor

Unreal needs multiple industry
standard formats (BC6H/BC7/ASTC)

44x average speed improvement,
making this the fastest in the industry
on Intel

Epic found SunTemple texture
compression time drop from 68 min
to 35 secs on a Macbook Pro!

@IntelSoftware @IntelGraphics 36

ASTC Quality Comparison

Zoomed in portion of a 2048x2048 normal map

Original: 12 MB ETC1: 2 MB ASTC 6x6: 1.8 MB

@IntelSoftware @IntelGraphics 37

@IntelSoftware @IntelGraphics

Masked Occlusion Culling
CPU-based alternative Hi-Z buffer representation for fast, low-latency occlusion queries.

Intel Castle Sample, Performance Comparison

Draw
All

Frustum
culling only

AVX2
Threaded (10C)

FPS 143 194 650

MS 6.9 5.14 1.53

Drawcalls 20801 6518 1512

• Much less memory to read/write than full res z-buffer.
• Updates use bitmasks – can process many pixels in parallel

(i.e. SSE4.1/AVX2).
• No need for conservative art assets (although faster if so).
• Integrated into UE4 threading systems.
• Compatible with LLVM/Clang for cross platform support.

38

@IntelSoftware @IntelGraphics

MOC Binned rendering
• Transform triangles into screen space.
• Bin by screen-space tiles.
• Use ScissorRect to clip contents.
• 1 active tile per TaskGraph thread.

39

@IntelSoftware @IntelGraphics 40

• In general, more content means longer frames

• If last frame was slow, potentially current one will be too:

• Particles/fog/smoke

• More draw calls

• Higher density objects

• ... etc!

Problem: GPU cost varies over time

@IntelSoftware @IntelGraphics 41

• Available since 4.21!

• Adjusts the primary screen
percentage according to the previous
frames’ GPU workload and/or game
control

Dynamic Resolution

@IntelSoftware @IntelGraphics 42

Dynamic Resolution

@IntelSoftware @IntelGraphics 43

• stat unit to show if it’s enabled

• When on, X% by Y%

• For more info:
https://docs.unrealengine.com/en-
us/Engine/Rendering/DynamicReso
lution

• Or Google “Unreal Engine Dynamic
Resolution” ;)

Dynamic Resolution

@IntelSoftware @IntelGraphics 44

• stat unitgraph

• 1- Timings (filtered or raw)

• 2- Target Frame Time

• 3- Dyn Res Max Screen %

• 4- Dyn Res Screen % curve

• Originally supported only on
consoles...

Dynamic Resolution

@IntelSoftware @IntelGraphics 45

• Intel added driver API support to
Unreal to access low level hardware
counters

• Why isn’t this a solved problem
using API timestamps?

• Timestamp = GPU + CPU time.
Want just GPU time to avoid CPU
bubbles.

• Feature previously only available on
console now on PC

Dynamic Resolution

100% scaling

50% scaling

@IntelSoftware @IntelGraphics 46

Variable Rate Shading
Problem: Spending pixel shading time on far away/motion-blurred objects.

@IntelSoftware @IntelGraphics 47

Variable Rate Shading

@IntelSoftware @IntelGraphics 48

Problem: Anti-Aliasing Performance v. Quality
Tradeoff between extremes: temporal blurring or unreadable text?

Source FXAA 3.11 SMAA CMAA2 CMAA2-ExtraSharp
Sharpness vs anti-aliasing

@IntelSoftware @IntelGraphics 49

Conservative Morphological Anti-Aliasing 2.0

@IntelSoftware @IntelGraphics

Final Thoughts

• We’ve talked about a bunch of things that improve performance and help
developer quality of life both on CPU and GPU

• Go try out the things we’ve worked on!

• Give us feedback on what we can work on next. Tell us about your pain
points.

Talk back to us! Twitter handles @jeff_rous and @rcalocao

50

Questions?

@IntelSoftware @IntelGraphics 52

Questions?

@IntelSoftware @IntelGraphics 53

Unreal Engine 4 Samples and Whitepapers

CPU Particles (software.intel.com/en-us/articles/maximizing-visuals-with-cpu-
particles-in-unreal-engine-4)

UE 4.19 Optimizations (software.intel.com/en-us/articles/intel-software-
engineers-assist-with-unreal-engine-419-optimizations)

Optimization Guide (software.intel.com/en-us/articles/unreal-engine-4-
optimization-tutorial-part-1)

CPU Optimizations for Cloth Simulations (software.intel.com/en-
us/articles/unreal-engine-4-blueprint-cpu-optimizations-for-cloth-simulations)

Setting up Destructive Meshes (software.intel.com/en-us/articles/unreal-
engine-4-setting-up-destructive-meshes)

CPU Scaling Sample (github.com/GameTechDev/RCRaceland)

@IntelSoftware @IntelGraphics

Legal Notices and Disclaimers
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a
non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are
available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more complete information visit www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your
system hardware, software or configuration may affect your actual performance.

Intel, Core and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

http://www.intel.com/benchmarks
http://www.intel.com/benchmarks

