

Document Number: 348851-001US

Optimizing Software for x86

Hybrid Architecture
White Paper

October 2021

Revision 1.0

2 Document Number: 348851-001US, Revision: 1.0

Notice: This document contains information on products in the design phase of development. The
information here is subject to change without notice. Do not finalize a design with this information.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See backup for configuration details. No product or component can be absolutely secure.

All product plans and roadmaps are subject to change without notice.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

Your costs and results may vary.

Intel technologies may require enabled hardware, software, or service activation.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document. The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course
of performance, course of dealing, or usage in trade.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should
visit the referenced web site and confirm whether referenced data are accurate.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

Document Number: 348851-001US, Revision: 1.0 3

Contents
1 Overview of x86 Hybrid Architecture.. 8

1.1 12th Generation Intel® Core™ Processors Supporting Performance Hybrid

Architecture .. 8

1.2 11th Generation Intel® Core™ Processors Supporting Hybrid Architecture8

2 Hybrid Scheduling .. 10

2.1 Hardware Guided Scheduling .. 10

2.2 Intel® Thread Director .. 10

2.3 Scheduling with Intel® Hyper-Threading Technology Enabled on

Processors Supporting x86 Hybrid Architecture ... 11

2.4 Scheduling with a Multi-E-Core Module ... 11

2.5 Scheduling Background Threads on x86 Hybrid Architecture 11

3 Key Windows Power and Performance Features .. 12

3.1 Thread Scheduling Overview ... 12

3.2 Windows Core Parking Engine Overview ... 12

3.3 Performance State Control Engine .. 13

4 12th Generation Intel® Core™ Processor Windows Scheduling/Parking

Examples ... 14

4.1 Single Thread Scenario .. 14

4.2 Limited Thread Scenario Example 1 ... 14

4.3 Limited Thread Scenario Example 2 ... 15

4.4 Multithread Scenario ... 15

4.5 Background Threads ... 16

4.6 Multimedia Threads ... 16

4.7 Eco QoS Threads .. 17

4.8 Low Utilization Threads .. 17

4.9 Events tracing for windows .. 18

4.9.1 Is Intel® Thread Director enabled on the system? 18

4.9.2 How can I check the QoS of the process/thread? 18

5 11th Generation Intel® Core™ Processor Windows Scheduling/Parking

Examples ... 19

4 Document Number: 348851-001US, Revision: 1.0

6 Software Application: Common Questions and Recommendations for Intel®

Core™ Processors Supporting x86 Hybrid Architecture .. 20

6.1 What are the ISA differences visible to software? .. 20

6.2 Can affinity be used on processors supporting x86 hybrid architecture? 20

6.3 What are Windows power throttling APIs? How can application

developers influence hybrid scheduling? .. 20

6.4 Number of Threads .. 22

6.5 Active Spins .. 22

6.6 Driver developers can contribute towards optimal interrupt steering? 22

6.6.1 Do Not Configure Interrupt Policy .. 22

6.6.2 Architectural Relationship ... 22

7 Hybrid Key PPM Settings and Setting Values .. 23

7.1 Windows Power Management Settings .. 23

7.2 Core Parking Engine Settings .. 23

7.2.1 HeteroPolicy .. 23

7.2.2 Checking Parking State of a Processor .. 25

7.3 Performance State Settings ... 26

7.3.1 PerfEnergyPreference ... 26

7.3.2 PerfEnergyPreference1 ... 26

7.3.3 MinimumPerformance ... 26

7.3.4 MinimumPerformance1 .. 26

7.3.5 MaximumPerformance .. 26

7.3.6 MaximumPerformance1 ... 27

7.4 Windows Performance Power Slider .. 27

7.5 Key Power Profiles ... 28

7.5.1 Default Profile .. 28

7.5.2 Low Latency .. 28

7.5.3 Low Power ... 28

7.5.4 Screen Off ... 28

7.6 QoS, HWP, and Hybrid Scheduling .. 28

7.6.1 Default .. 28

7.6.2 Occluded Window ... 28

Document Number: 348851-001US, Revision: 1.0 5

7.6.3 Background Threads ... 28

7.6.4 Multimedia Threads ... 29

7.6.5 Eco Threads .. 29

6 Document Number: 348851-001US, Revision: 1.0

Revision History

Revision
Number

Description Date

1.0 • Initial release of the document. October 2021

Document Number: 348851-001US, Revision: 1.0 7

INTRODUCTION

This technical document provides information on optimizing software for Intel® Core™ processors that

support hybrid architecture.

The document provides an overview of x86 hybrid architecture, hybrid core usage with Windows, and

provides details on how software applications and drivers can ensure optimal core usage.

Key Windows Processor Power Management Settings (PPM Settings) that can be used on Intel Core

processors that support x86 hybrid architecture to meet system performance vs. power goals are also

described.

8 Document Number: 348851-001US, Revision: 1.0

1 OVERVIEW OF X86 HYBRID ARCHITECTURE

1.1 12TH GENERATION INTEL® CORE™ PROCESSORS SUPPORTING

PERFORMANCE HYBRID ARCHITECTURE
12th Generation Intel Core processors supporting performance hybrid architecture consist of up to

eight Performance cores (P-cores) and eight Efficient cores (E-cores). These processors also include a

3MB Last Level Cache (LLC) per IDI module, where a module is one P-core or four E-cores. It has

symmetrical ISA and comes in variety of configurations.

P-cores provide single or limited thread performance, while E-cores help provide improved scaling and

multithreaded efficiency. P-cores on these processors can also have Intel® Hyper-Threading

Technology enabled. All cores can be active simultaneously when the OS decides to schedule on all

processors.

A key OSV requirement for enabling hybrid is symmetric ISA across different core types in a

performance hybrid architecture. In 12th Generation Intel Core processors supporting performance

hybrid architecture, ISA is converged to a common baseline between the P-Cores and E-Cores.

1.2 11TH GENERATION INTEL® CORE™ PROCESSORS SUPPORTING

HYBRID ARCHITECTURE
11th Generation Intel Core processors supporting hybrid architecture consist of one P-core and a four

E-core cluster connected to CCF with a shared 4MB LLC. The E-core module and P-core are connected

over two IDI channels to CCF and shared 4MB LLC. The LLC is inclusive, and all cores are fully coherent.

The P-core is a single physical core with Intel Hyper-Threading Technology disabled. The OS

enumerates and sees five physical cores. All cores can be active simultaneously when the OS decides

to schedule on all five cores.

A key OSV requirement for enabling hybrid is symmetric ISA across different core types in a hybrid

architecture.

Document Number: 348851-001US, Revision: 1.0 9

The following table provides additional details on the 11th Generation Intel Core processors supporting

hybrid architecture.

 Details

Platform Goals

• New dual screen device category and experiences.
• Mobile form factor and battery life.
• Workloads: light productivity, browsing, media consumption, connectivity,

dual screen.

Hybrid
Configuration & ISA

• Four E-cores + one P-core, 4M LLC, SMT disabled on P-core.
• Converged to unified/common ISA.
• Expose Hybrid ISA (Perfmon, MCA) to debug/performance tuning tools.

Hybrid Scheduling

• Expose all cores (Performance and Efficient) to the OS.
• Concurrent P-core and E-core execution and scheduling.
• Use new Windows Hybrid scheduling to accommodate IA Hybrid (i.e., HW-

guided scheduling).

10 Document Number: 348851-001US, Revision: 1.0

2 HYBRID SCHEDULING

2.1 HARDWARE GUIDED SCHEDULING
With hardware guided scheduling, hardware provides dynamic feedback to the OS (a.k.a. hardware

feedback interface) in the form of:

• Dynamic performance and energy efficiency capabilities of P-cores and E-cores based on

power/thermal limits.

• Idling hints when power and thermal are constrained.

In processors that support hybrid architecture, all cores are exposed to the OS. The OS scheduler is

responsible for determining which software threads should be scheduled on which core type.

Hardware support is enumerated via the CPUID instruction and enabled by the OS via writing to a

configuration MSR.

Related CPUID:

• CPUID[6].EAX[19] – Indicates support for hardware feedback.

• CPUID[6].EDX[7:0] – Bitmap of supported capabilities.

• CPUID[6].EDX[11:8] – Size of HGS table.

• CPUID[6].EDX[31:16] – Index of logical processor’s row in the HGS table.

Configuration MSR:

• IA32_HW_FEEDBACK_CONFIG MSR (17D1H)

— Bit 0 – Enable HGS.

For more detailed information on this technology, refer to the Intel® 64 and IA-32 Architectures

Software Developer Manuals located here: www.intel.com/sdm.

2.2 INTEL® THREAD DIRECTOR
With Intel Thread Director, hardware provides runtime feedback to the OS per thread (i.e., enhanced

hardware feedback) based on various IPC performance characteristics, in the form of:

• Dynamic performance and energy efficiency capabilities of P-cores and E-cores based on

power/thermal limits.

• Idling hints when power and thermal are constrained.

Intel Thread Director is available on Intel Core processors that support the performance hybrid

architecture beginning with the 12th Generation Intel Core processor family, to help the OS choose the

right core for the right thread.

Thread specific hardware support is enumerated via the CPUID instruction and enabled by the OS via

writing to configuration MSRs.

http://www.intel.com/sdm

Document Number: 348851-001US, Revision: 1.0 11

Related CPUID:

• CPUID[6].EAX[23] – Indicates support for Intel Enhanced Hardware Feedback.

• CPUID[6].ECX[11:8] – Number of Intel Thread Director classes.

• CPUID[0x20, ECX=0][EBX[0]] – HRESET instruction support.

Configuration MSRs:

• IA32_HW_FEEDBACK_CONFIG MSR (17D1H)

— Bit 1 – Enable Intel Thread Director multiclass support.

• IA32_HW_FEEDBACK_THREAD_CONFIG MSR (17D4H)

— Bit 1 – Enable Intel Thread Director multiclass support.

For more detailed information on this technology, refer to the Intel® 64 and IA-32 Architectures

Software Developer Manuals located here: www.intel.com/sdm.

2.3 SCHEDULING WITH INTEL® HYPER-THREADING TECHNOLOGY

ENABLED ON PROCESSORS SUPPORTING X86 HYBRID

ARCHITECTURE
E-cores are designed to provide better performance than a logical P-core with both hardware sibling

hyper-thread busy.

2.4 SCHEDULING WITH A MULTI-E-CORE MODULE
E-cores within an idle module help provide better performance than E-cores in a busy module.

2.5 SCHEDULING BACKGROUND THREADS ON X86 HYBRID

ARCHITECTURE
In most scenarios, background threads can leverage scalability and multithread efficiency of E-cores.

http://www.intel.com/sdm

12 Document Number: 348851-001US, Revision: 1.0

3 KEY WINDOWS POWER AND PERFORMANCE

FEATURES

3.1 THREAD SCHEDULING OVERVIEW
Processors that support x86 hybrid architecture are categorized based on their performance and

efficiency capabilities enumerated in the hardware-OS shared memory area. This memory area is set

up and enumerated to the hardware by the OS and is referred to as the hardware feedback memory

table in this document. The memory area is then populated by the hardware and notified to the OS

upon update.

Scheduling on processors that support x86 hybrid architecture is QoS and then priority-driven and is

preemptive in nature. In most scenarios, and within scheduling constraints, the highest QoS, and then

the priority thread gets to run on the most performant core.

Developers can also opt in threads to run on Efficient cores at efficient frequencies to optimize power

and performance. This action is done by using QoS APIs to define the PowerThrottling of the thread.

(See API details in Section 6.4.)

Hard processor affinities can disrupt OS decisions. While the affinity might be used to guide threads

towards performance or efficiency, given performance/efficiency are dynamic capabilities and not

core type based. Therefore hard affinities may not yield desired results. Leveraging PowerThrottling

can help guide work towards the right core for performance/efficiency. If affinity is absolutely needed,

the CPUSets API can be leveraged. (See details in Section 6.3.)

In 12th Generation Intel Core processors supporting performance hybrid architecture, hardware also

provides thread class information to Windows, to help place higher performing threads on a

processor. This hint is used within the same or lower QoS/Priority threads.

See specific scheduling examples in Section 5.

3.2 WINDOWS CORE PARKING ENGINE OVERVIEW
In general, the Windows Core Parking Engine makes global scalability decisions about the workload

and determines the optimum set of compute cores for execution. In processors that support x86

hybrid architecture, it additionally helps by determining the optimum set of P-cores and E-cores.

Performance and efficiency are derived from a hardware feedback memory table. In performant

cores, the most performant cores are unparked first. In efficient cores, the most efficient cores are

unparked first.

Two high level parking configurations exist that can be used on processors supporting x86 hybrid

architecture:

• One, where the parking decisions are based off performance capability alone, i.e., standard

parking or favored core parking configuration.

Document Number: 348851-001US, Revision: 1.0 13

• Second, where the parking decisions are based off efficiency and performance capabilities

both; this is known as hetero parking configuration.

These configurations can be controlled via the HeteroPolicy PPM registry and related parking PPM

threshold tunings.

See specific examples and configurations in Section 5. Additional PPM details are found in Section 7.2.

3.3 PERFORMANCE STATE CONTROL ENGINE
Similar to homogeneous Intel systems, Intel® Speed Shift Technology (i.e., HWP) is leveraged by

Windows to indicate performance constraints on threads that need to run at efficient performance

levels, or tune energy performance preference on different slider positions to meet system wide

performance vs. battery life goals.

Various PPM settings – EnergyPerfPreference, MinimumPerformance, FrequencyCap, MaxPerformance

– are dynamically changed by Windows in different Windows Slider Positions, Profile and to meet QoS

needs of different threads.

See related PPM setting details in Section 7.3.

14 Document Number: 348851-001US, Revision: 1.0

4 12TH GENERATION INTEL® CORE™ PROCESSOR

WINDOWS SCHEDULING/PARKING EXAMPLES

4.1 SINGLE THREAD SCENARIO
The following example shows Windows leveraging an Intel core for single thread performance. This

behavior is dynamically achieved when Logical Processor (LP) 0 has the highest performance

capability.

4.2 LIMITED THREAD SCENARIO EXAMPLE 1
The following example shows an example scheduling behavior in a limited software thread scenario.

This behavior is dynamically achieved by the Windows scheduler/parking engine when P-cores are

more performant than the E-cores. E-cores are more performant than the SMT sibling of a busy core.

When the capabilities dynamically change, Windows automatically accounts for this for optimal

scheduling.

Document Number: 348851-001US, Revision: 1.0 15

4.3 LIMITED THREAD SCENARIO EXAMPLE 2
The following example shows T1 and T2 being placed on P-cores, and T3 on an E-core. In this example,

T3 has performance capability on core less than T1 and T2 respectively.

When the capabilities dynamically change, Windows automatically considers this for optimal

scheduling.

4.4 MULTITHREAD SCENARIO
All cores are used by Windows in multithread scenarios.

In power/thermal constraint scenarios, there may be times when all cores aren’t used for optimal

system performance/efficiency. The behavior is dynamically achieved by hardware providing feedback

to Windows, and Windows automatically acting on that feedback.

16 Document Number: 348851-001US, Revision: 1.0

4.5 BACKGROUND THREADS
The following example shows Windows dynamically placing background threads on Efficient cores. In

this example, an E-core has the highest multithreaded efficiency capability.

This option may not be enabled on some performance-oriented configurations and can be enabled by

the PPM package for OEM specific tuning.

The behavior is enabled by default if the PPM setting is seen on the CurrentScheme:

a. Background->SchedulingPolicy is set to 3 or 4.

b. If Background->SchedulingPolicy is not present, then check whether default-> SchedulingPolicy

is set to 5.

In some scenarios, it may be more optimal to run background activity on P-cores when P-cores are

idle. This is achieved with Windows Core Parking Engine making optimal decision on which P-cores

and E-cores to make available to the scheduler.

4.6 MULTIMEDIA THREADS
Similar to background threads, multimedia threads are also dynamically placed on the Efficient cores.

This option may not be enabled on some configurations and can be enabled by the PPM package for

OEM specific tuning.

The behavior is enabled by default if the below PPM setting is seen on the CurrentScheme.

a. MultiMediaQoS->SchedulingPolicy is set to 3 or 4.

b. If MultiMediaQoS->SchedulingPolicy is not present, then check whether default->

SchedulingPolicy is set to 5.

In some scenarios, it may be more efficient to run background activity on cores when cores aren’t

needed by foreground or higher QoS threads.

Document Number: 348851-001US, Revision: 1.0 17

4.7 ECO QOS THREADS
Similar to background threads, eco threads are also dynamically placed on the Efficient cores.

This option may not be enabled on some configuration and can be enabled by the PPM package for

OEM specific tuning.

The behavior is enabled by default if the PPM setting is as shown here:

a. EcoQoS->SchedulingPolicy is set to 3 or 4.

b. If EcoQoS->SchedulingPolicy is not present, then check whether default-> SchedulingPolicy

is set to 5.

In some scenarios, it may be more efficient to run background activity on cores when the cores aren’t

needed by foreground or higher QoS threads.

4.8 LOW UTILIZATION THREADS
In certain low power envelope configurations, it can be more desirable to run low utilization threads

on E-cores.

The battery slider settings on some 12th Generation Intel Core processors may enable this behavior by

default on Windows. Alternatively, this behavior can be enabled by leveraging the PPM setting –

HeteroParking policy by the OEMs.

Note: It can come with a performance cost to low utilization important/critical threads; consider this

when enabling this Windows Core Parking feature.

18 Document Number: 348851-001US, Revision: 1.0

4.9 EVENTS TRACING FOR WINDOWS

4.9.1 Is Intel® Thread Director enabled on the system?

From event tracing for Windows, one can successfully confirm whether Windows successfully enabled

and is leveraging Intel Thread Director. This is done by checking the “AdvanceHgsEnabled” field under

“microsoft-windows-kernel-processor-power” event in the tracing log.

4.9.2 How can I check the QoS of the process/thread?

From Event tracing for Windows, under CPU Usage -> New Thread BAMQoSLevel, one can identify the

QoS levels of the various process or threads. For more details on Windows QoS, refer to section 7.6.

Document Number: 348851-001US, Revision: 1.0 19

5 11TH GENERATION INTEL® CORE™ PROCESSOR

WINDOWS SCHEDULING/PARKING EXAMPLES

Hardware guided scheduling is used by Windows to achieve various goals:

1. The main goal is higher burst performance for ST-dominant workloads. The OS scheduler identifies

performance demanding threads and schedules them on the P-core when the P-core has higher

performance compared to the E-cores (P-core is not power/thermal constrained).

2. The second goal is to use E-cores for all scenario workloads and background activity where IA

performance doesn’t provide any additional value and energy efficiency/battery life is the main

objective. The expectation is that these workloads execute at an energy efficient frequency where

E-cores are more efficient than the P-core for most workloads.

3. The third goal is to enable energy efficient performance for GFX applications. In these applications,

it’s important to maximize the GFX power budget while providing enough IA performance to feed

the GFX device. In most GFX applications, E-cores provide sufficient IA performance with enhanced

energy efficiency, maximizing the power budget for GFX. These applications need to be scheduled

on E-cores. However, for some GFX workloads it’s better to execute on the P-core, either because

these workloads need higher IA performance, or the E-core needs to execute at frequencies where

P-core is more efficient. Scheduling on a P-core in these cases meets the application performance

demand, while also increasing the power budget for GFX.

The following table provides a snapshot of various scenarios with scheduling expectations.

Scenario Scheduler Behavior

Video Playback App Launch
(profile support)

P-core unparked and always immediately available for important
threads.

Video Playback
(minus App launch)
(semiactive scenario)

P-core always parked. Work scheduled on E-core as utilization <60%
(unparking threshold*). Unimportant threads do not use P-core.

ADK App launch
(profile support)

P-core unparked and always immediately available for important
threads.

CINEBENCH minimized When minimized, CINEBENCH threads run only on an E-core module.

wPrime 1T
(Foreground/HighQoS)

wPrime single thread runs on P-core.

Geekbench MT
(Foreground/HighQoS MT)

MT performance higher than ST due to five core (one P-core + four E-
cores) vs. four core (four E-cores) comparison.

Dual Screen Opportunity to schedule MediumQoS* different from HighQoS*.

Games/Graphics Based on power/thermal, P-core parked based on hardware
feedback.

Screen Off P-core always parked. Only E-core available for scheduling.

20 Document Number: 348851-001US, Revision: 1.0

6 SOFTWARE APPLICATION: COMMON QUESTIONS

AND RECOMMENDATIONS FOR INTEL® CORE™

PROCESSORS SUPPORTING X86 HYBRID

ARCHITECTURE

6.1 WHAT ARE THE ISA DIFFERENCES VISIBLE TO SOFTWARE?
Some ISA differences are visible to software. Examples include:

1. Structural differences (TLB, cache, topology) between P-cores and E-cores.

2. Some aspects of Performance Monitoring, Intel Processor Trace, Last Branch Records, and MCA

ISA.

3. Some model specific MSRs.

The expectation is that these differences are not going to impact software applications.

6.2 CAN AFFINITY BE USED ON PROCESSORS SUPPORTING X86 HYBRID

ARCHITECTURE?
In general, software should avoid setting affinity. Setting processor affinity may result in suboptimal

performance or efficiency on processors that support x86 hybrid architecture. The performance and

efficiency decisions are dynamically taken based on current performance and efficiency capabilities

enumerated by the hardware to Windows, and other factors like QoS, priority, etc.

Affinity may be used in certain scenarios. For example, when reading counters on a specific processor.

Alternately, if affinity must be used, then leverage CPUSets API – SetProcessorDefaultCpuSets,

SetThreadSelectedCpuSets to declare application affinity in a “soft” manner that is compatible with OS

power management.

The same is applicable to interrupts. Drivers should avoid affinitizing interrupts on a specific processor

for optimal steering of interrupts to Performance or Efficient cores by Windows on Intel Core

processors supporting x86 hybrid architecture.

6.3 WHAT ARE WINDOWS POWER THROTTLING APIS? HOW CAN

APPLICATION DEVELOPERS INFLUENCE HYBRID SCHEDULING?
Developers can optimally guide work towards Performance or Efficient cores by using the Windows

API SetProcessInformation, SetThreadInformation.

If these APIs aren’t used with the ProcessPowerThrottling parameter, then Windows’ automatic

mechanism is triggered by default. This may lead to Windows misidentifying threads that can leverage

Efficient cores (e.g., EcoQoS), and threads that can leverage Performance cores (e.g., HighQoS).

Developers can help improve Windows classification by using these APIs, which may help lead to

better efficiency/battery life, reduced fan noise, and better performance of the system.

Document Number: 348851-001US, Revision: 1.0 21

SetProcessInformation function is defined as:

BOOL SetProcessInformation(
 HANDLE hProcess,
 PROCESS_INFORMATION_CLASS ProcessInformationClass,
 LPVOID ProcessInformation,
 DWORD ProcessInformationSize
);

The following example shows how to call SetProcessInformation with ProcessPowerThrottling to

enable throttling policies on the current process.

PROCESS_POWER_THROTTLING_STATE PowerThrottling;
RtlZeroMemory(&PowerThrottling, sizeof(PowerThrottling));
PowerThrottling.Version = PROCESS_POWER_THROTTLING_CURRENT_VERSION;

//
// Turn ExecutionSpeed throttling on. ControlMask selects the mechanism and
// StateMask declares which mechanism should be on or off.
//

PowerThrottling.ControlMask = PROCESS_POWER_THROTTLING_EXECUTION_SPEED;
PowerThrottling.StateMask = PROCESS_POWER_THROTTLING_EXECUTION_SPEED;

SetProcessInformation(GetCurrentProcess(),
 ProcessPowerThrottling,
 &PowerThrottling,
 sizeof(PowerThrottling));

//
// Turn ExecutionSpeed throttling off. ControlMask selects the mechanism and
// StateMask is set to zero as mechanisms should be turned off.
//

PowerThrottling.ControlMask = PROCESS_POWER_THROTTLING_EXECUTION_SPEED;
PowerThrottling.StateMask = 0;

SetProcessInformation(GetCurrentProcess(),
 ProcessPowerThrottling,
 &PowerThrottling,
 sizeof(PowerThrottling));

//
// Let system manage all power throttling. ControlMask is set to 0 as we don’t want
// to control any mechanisms.
//

PowerThrottling.ControlMask = 0;
PowerThrottling.StateMask = 0;

SetProcessInformation(GetCurrentProcess(),
 ProcessPowerThrottling,
 &PowerThrottling,
 sizeof(PowerThrottling));

22 Document Number: 348851-001US, Revision: 1.0

6.4 NUMBER OF THREADS
Thread creation based on processor count may not always be optimal. Some cores may be less

performant than others, or even idled/parked. Multithread scaling in certain scenarios is a potential

issue and is not just hybrid related.

Understanding the trade-off in using different core count may be important to identify ideal thread

count for an application.

6.5 ACTIVE SPINS
Threads that are doing active spin-waits may impact the performance of important or critical threads.

Instead, software can choose to replace spin-waits with lighter weight spins containing UMWAIT,

TPAUSE, or PAUSE.

6.6 DRIVER DEVELOPERS CAN CONTRIBUTE TOWARDS OPTIMAL

INTERRUPT STEERING?

6.6.1 Do Not Configure Interrupt Policy

Drivers should opt into Windows interrupt steering by using IrqPolicyMachineDefault as the interrupt

policy. This will, by default, enable Windows to steer the interrupts to the core generating the

interrupt and works with the core parking engine. By addressing the interrupt on the same core, you

avoid latency to wake up an idle core or latency to move metadata to another core for addressing the

interrupt, essentially helping provide latency/performance benefit. In addition, avoiding interrupts to

the idle core can also have positive battery life impact.

6.6.2 Architectural Relationship

On Windows, software applications can use the user mode API GetLogicalProcessorInformationEx(), or

the Kernel mode API KeQueryLogicalProcessorRelationship() to learn about the processor relationship.

These APIs can be used by drivers for optimal queue allocations if per processor queue is being

allocated by the driver.

Document Number: 348851-001US, Revision: 1.0 23

7 HYBRID KEY PPM SETTINGS AND SETTING VALUES

7.1 WINDOWS POWER MANAGEMENT SETTINGS
Starting with Windows 10 October update’18 (RS5), these settings have an additional enhancement to

leverage hybrid capabilities:

a. Performance state engine settings.

b. Core parking engine settings.

c. Platform specific controls.

7.2 CORE PARKING ENGINE SETTINGS
Core parking engine makes global scalability decisions about the workload and determines the

optimum set of compute cores to execute with. In processors supporting x86 hybrid architecture, it

additionally determines the optimum set of Performance cores vs. Efficient cores.

7.2.1 HeteroPolicy
Common\Power\Policy\Settings\Processor\HeteroPolicy

7.2.1.1 Setting Value: 0 (i.e., Standard Parking or Favored Core

Parking)

In this configuration, the optimum set of compute cores are unparked starting with the most

performant cores first.

Related PPM Settings for deciding optimum number of cores to unparked:

• CPMinCores: Specifies the minimum percentage of logical processors that can be placed in the

unparked state at any given time starting with the most performant cores. Logical processor

refers to all logical processors that are enabled on the system within each NUMA node.

• CPMaxCores: Specifies the maximum percentage of logical processors that can be placed in

the unparked state at any given time starting with the most performant cores. Logical

processor refers to all logical processors that are enabled on the system within each NUMA

node.

• CPIncreaseTime: Specifies the minimum amount of time that must elapse before additional

parked most performant logical processors can be transitioned from the parked state to the

unparked state. The time is specified in units of the number of processor performance time

check intervals.

• CPDecreaseTime: Specifies the minimum amount of time that must elapse before additional

unparked least performant logical processors can be transitioned from the unparked state to

the parked state. The time is specified in units of the number of processor performance time

check intervals.

• CPConcurrency: Specifies the threshold for determining concurrency of the node.

• CPDistribution: Specifies the utilization, in percentage, to use in the concurrency distribution

to select the number of most performant logical processors to distribute utility to. This

24 Document Number: 348851-001US, Revision: 1.0

number may be fewer, but never greater, than the number of logical processors that are

selected to be unparked.

• CPHeadroom: Specifies the value of utilization that would cause the core parking engine to

unpark an additional most performant parked logical processor if the least used processor out

of the unparked set of processors had more utilization. This setting enables increases in

concurrency to be detected.

• CpLatencyHintUnpark: Specifies the minimum number of unparked cores (starting with the

most performant cores) when a system low latency hint is detected.

7.2.1.2 SettingValue: 4 (i.e., Hetero Parking)

In this configuration, based off utilization, a combination of most performant or most efficient cores

are unparked first.

In certain scenarios like low power envelope SKUs or better battery life goals, it can be more efficient

to run low utilization work on cores with higher efficiency capability at efficient frequency. This policy

is used in these scenarios in combination with optimal performance state engine settings.

Related PPM Settings for deciding optimum number of cores to unparked:

• CPMinCores: Specifies the minimum percentage of logical processors that can be placed in

the unparked state at any given time. Logical processor refers to all logical processors that

are enabled on the system within each NUMA node.

• CPMaxCores: Specifies the maximum percentage of logical processors that can be placed

in the unparked state at any given time. Logical processor refers to all logical processors

that are enabled on the system within each NUMA node.

• CPIncreaseTime: Specifies the minimum amount of time that must elapse before

additional parked most efficient logical processors in parked state can be transitioned

from the parked state to the unparked state. The time is specified in units of the number

of processor performance time check intervals.

• CPDecreaseTime: Specifies the minimum amount of time that must elapse before

additional unparked least efficient logical processors can be transitioned from the

unparked state to the parked state. The time is specified in units of the number of

processor performance time check intervals.

• CPConcurrency: Specifies the threshold for determining concurrency of the node.

• CPDistribution: Specifies the utilization, in percentage, to use in the concurrency

distribution to select the number of most performant logical processors to distribute

utility to. This number may be fewer, but never greater, than the number of logical

processors that are selected to be unparked.

• CPHeadroom: Specifies the value of utilization that would cause the core parking engine

to unpark an additional most performant parked logical processor if the least used

processor out of the unparked set of processors had more utilization. This setting enables

increases in concurrency to be detected.

• CpLatencyHintUnpark: Specifies the minimum number of unparked cores (starting with

the most performant cores) when a system low latency hint is detected.

Document Number: 348851-001US, Revision: 1.0 25

• HeteroIncreaseThreshold: Specifies the threshold value to cross above, which is required

to unpark the Nth most performant parked core. Separate values exist for each core

index.

• HeteroDecreaseThreshold: Specifies the threshold value to cross above, which is required

to park the Nth least performant unparked core. Separate values exist for each core index.

• HeteroIncreaseTime: Specifies minimum amount of time that must elapse before

additional parked performant cores (starting from most performant parked processor) are

unparked.

• HeteroDecreaseTime: Specifies minimum amount of time that must elapse before

additional processors (starting from least performant unparked processors) can be

transitioned from the unparked state to parked state.

• HeteroClass1InitialPerf: Specifies the initial performance percentage of the processors

unparked for Performance.

• HeteroClass0FloorPerf: Specifies the floor performance percentage of the efficient

processors when at least one processor is unparked for performance.

7.2.2 Checking Parking State of a Processor

The parking state of a processor can be viewed through various tools.

7.2.2.1 Example Tool #1: Task Manager

26 Document Number: 348851-001US, Revision: 1.0

7.2.2.2 Example Tool #2: Event for Windows tracing through

Windows Performance Analyzer

7.3 PERFORMANCE STATE SETTINGS
On HWP enabled systems, performance state is coordinated via hardware-controlled performance

states (i.e., HWP). Various settings exist that can assist HWP hardware engine to make optimal

performance state decisions.

7.3.1 PerfEnergyPreference

Specifies the value to program in the energy performance preference (EPP) register for E-cores. The

value is specified in terms of percentage and populated by Windows in register on a scale of 0–255.

On HWP Systems, the EPP register is 774H [bits 31:24] for a single logical processor.

7.3.2 PerfEnergyPreference1

Specifies the value to program in the energy performance preference (EPP) register for P-cores. The

value is specified in terms of percentage and populated by Windows in register on a scale of 0–255.

On HWP Systems, the EPP register is 774H [bits 31:24] for a single logical processor.

7.3.3 MinimumPerformance

Specifies the value to program in the minimum performance register for E-cores. The value is specified

in terms of percentage and populated by Windows in register on a scale of 0–255.

On HWP Systems, the EPP register is 774H [bits 7:0] for a single logical processor.

7.3.4 MinimumPerformance1

Specifies the value to program in the minimum performance register for P-cores. The value is specified

in terms of percentage and populated by Windows in register on a scale of 0–255.

On HWP Systems, the EPP register is 774H [bits 7:0] for a single logical processor.

7.3.5 MaximumPerformance

Specifies the value to program in the maximum performance register for E-cores. The value is

specified in terms of percentage and populated by Windows in register on a scale of 0–255.

On HWP Systems, the EPP register is 774H [bits 15:8] for a single logical processor.

Document Number: 348851-001US, Revision: 1.0 27

7.3.6 MaximumPerformance1

Specifies the value to program in the maximum performance register for P-cores. The value is

specified in terms of percentage and populated by Windows in register on a scale of 0–255.

On HWP Systems, the EPP register is 774H [bits 15:8] for a single logical processor.

7.4 WINDOWS PERFORMANCE POWER SLIDER
The Windows performance power slider enables end customers to trade performance of their system

quickly and intelligently for longer battery life. As a customer switches between the four slider modes

to trade performance for battery life (or vice versa), Windows power settings are engaged behind the

scenes.

The different slider positions that are available:

a. Better Battery.

b. Better performance.

c. Best performance.

The following image shows a snapshot of the Windows performance power slider available to the user

to switch between the various slider positions.

The PPM settings underneath various slider positions are changing if:

a. PerfEnergyPreference, is different on each slider position, with higher value on more battery-

oriented slider position.

b. QoS, profile settings are different, with throttling oriented settings (e.g., higher

PerfEnergyPreference) for battery life or power oriented QoS/profiles.

28 Document Number: 348851-001US, Revision: 1.0

7.5 KEY POWER PROFILES
Like the Windows performance power slider, the Windows power settings can be configured

differently for different power profiles. The following sections list the various profiles that Windows

supports and recommended configuration.

7.5.1 Default Profile

The default profile is the configuration set that is active most of the time. These settings are identical

to the settings for the current power scheme.

7.5.2 Low Latency

Low Latency is the profile that is activated during boot and during app launch time.

7.5.3 Low Power

Low Power is the profile that is activated during the buffering phase of media playback scenarios.

7.5.4 Screen Off

Screen Off is a profile used on modern standby systems. This profile is engaged when the system

enters its long-term sleep phase; all system quiescing behavior has completed, no audio is playing, and

no mobile hotspot is engaged. This profile is disengaged when the system awakes from sleep.

7.6 QOS, HWP, AND HYBRID SCHEDULING

7.6.1 Default

The behavior is optimized specifically for default and high QoS (or important threads). And, if no other

QoS is defined, then also influences other QoS threads.

• Example: Default->EnergyPerfPreference can have different values across different slider

positions to help achieve different performance vs. battery life goals.

7.6.2 Occluded Window

The PPM settings allow configuring Occluded Window HWP and scheduling policies to be different

from Default/HighQoS threads.

7.6.3 Background Threads

The behavior is optimized specifically for background threads by default with the following PPM

Setting:

a. Background->EnergyPerfPreference has a different value compared to

Default->EnergyPerPreference.

b. Background->MaximumPerformance has different value compared to

Default->MaximumPerformance.

c. Default->FrequencyCap is set to a nonzero value.

d. Background->SchedulingPolicy has different value compared to Default->SchedulingPolicy.

e. Background->SchedulingPolicy is not present, and Default-> SchedulingPolicy is set to 5.

Document Number: 348851-001US, Revision: 1.0 29

On some configurations (e.g., recommended for best performance slider position), it may be more

optimal to have the background settings the same as default settings to avoid throttling of

background threads. For this behavior, the settings would be populated as:

a. Background->EnergyPerfPreference = default->EnergyPerPreference.

b. Background->MaximumPerformance = default->MaximumPerformance.

c. Default->FrequencyCap is not set.

d. Background->SchedulingPolicy = default->SchedulingPolicy.

e. Default-> SchedulingPolicy is set to 2.

7.6.4 Multimedia Threads

The behavior is optimized specifically for multimedia threads by default with the following PPM

Setting:

a. MMQoS->EnergyPerfPreference has different value compared to

default->EnergyPerPreference.

b. MMQoS->MaximumPerformance has different value compared to

default->MaximumPerformance.

c. MMQoS->SchedulingPolicy has different value compared to default->SchedulingPolicy.

d. MMQoS->SchedulingPolicy is not present, and Default->SchedulingPolicy is set to 5.

Note: Similar to background threads, on some configurations (for example best performance slider

position), it may be more optimal to have multimedia Settings same as default settings to avoid

throttling of multimedia threads. For this behavior, the settings would be populated (under example

best performance slider position) as:

a. Background->EnergyPerfPreference = default->EnergyPerPreference.

b. Background->MaximumPerformance = default->MaximumPerformance.

c. Background->SchedulingPolicy = Default->SchedulingPolicy.

d. Default-> SchedulingPolicy is set to 2.

7.6.5 Eco Threads

Developers can leverage the Windows power throttling API SetProcessInformation,

SetThreadInformation to opt-out of Windows dynamic detection of performance or efficiency goals of

the developer’s application threads or process. The threads marked by developers to run efficiently

are called Eco QoS threads.

From the PPM perspective, the behavior is optimized specifically for EcoQoS threads with these

settings:

a. EcoQoS->EnergyPerfPreference has higher value compared to

default->EnergyPerPreference.

b. EcoQoS->MaximumPerformance has lower value compared to

default->MaximumPerformance.

c. EcoQoS->SchedulingPolicy has different value compared to default->SchedulingPolicy.

d. EcoQoS->SchedulingPolicy is not present, and default->SchedulingPolicy is set to 5.

	INTRODUCTION
	OVERVIEW OF X86 HYBRID ARCHITECTURE
	12TH GENERATION INTEL® CORE™ PROCESSORS SUPPORTING PERFORMANCE HYBRID ARCHITECTURE
	11TH GENERATION INTEL® CORE™ PROCESSORS SUPPORTING HYBRID ARCHITECTURE

	HYBRID SCHEDULING
	HARDWARE GUIDED SCHEDULING
	INTEL® THREAD DIRECTOR
	SCHEDULING WITH INTEL® HYPER-THREADING TECHNOLOGY ENABLED ON PROCESSORS SUPPORTING X86 HYBRID ARCHITECTURE
	SCHEDULING WITH A MULTI-E-CORE MODULE
	SCHEDULING BACKGROUND THREADS ON X86 HYBRID ARCHITECTURE

	KEY WINDOWS POWER AND PERFORMANCE FEATURES
	THREAD SCHEDULING OVERVIEW
	WINDOWS CORE PARKING ENGINE OVERVIEW
	PERFORMANCE STATE CONTROL ENGINE

	12TH GENERATION INTEL® CORE™ PROCESSOR WINDOWS SCHEDULING/PARKING EXAMPLES
	SINGLE THREAD SCENARIO
	LIMITED THREAD SCENARIO EXAMPLE 1
	LIMITED THREAD SCENARIO EXAMPLE 2
	MULTITHREAD SCENARIO
	BACKGROUND THREADS
	MULTIMEDIA THREADS
	ECO QOS THREADS
	LOW UTILIZATION THREADS
	EVENTS TRACING FOR WINDOWS

	11TH GENERATION INTEL® CORE™ PROCESSOR WINDOWS SCHEDULING/PARKING EXAMPLES
	SOFTWARE APPLICATION: COMMON QUESTIONS AND RECOMMENDATIONS FOR INTEL® CORE™ PROCESSORS SUPPORTING X86 HYBRID ARCHITECTURE
	WHAT ARE THE ISA DIFFERENCES VISIBLE TO SOFTWARE?
	CAN AFFINITY BE USED ON PROCESSORS SUPPORTING X86 HYBRID ARCHITECTURE?
	WHAT ARE WINDOWS POWER THROTTLING APIS? HOW CAN APPLICATION DEVELOPERS INFLUENCE HYBRID SCHEDULING?
	NUMBER OF THREADS
	ACTIVE SPINS
	DRIVER DEVELOPERS CAN CONTRIBUTE TOWARDS OPTIMAL INTERRUPT STEERING?

	HYBRID KEY PPM SETTINGS AND SETTING VALUES
	WINDOWS POWER MANAGEMENT SETTINGS
	CORE PARKING ENGINE SETTINGS
	PERFORMANCE STATE SETTINGS
	WINDOWS PERFORMANCE POWER SLIDER
	KEY POWER PROFILES
	QOS, HWP, AND HYBRID SCHEDULING

