
RTOS Debugger for Linux - Stop Mode

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. !!!!

 RTOS Debugger ... !!!!

 RTOS Debugger for Linux - Stop Mode .. 1

 Debugging Modes for Embedded Linux ... 3

 Run Mode Debugging with TRACE32 as GDB Front-end 3

 Stop Mode Debugging via JTAG 4

 Integrated Run & Stop Mode Debuggings via JTAG 4

 Supported Debugging Modes sorted by Architectures 5

 Overview .. 6

 Configuration ... 7

 Manual Configuration 7

 Automatic Configuration 7

 Quick Configuration Guide 8

 Hooks & Internals in Linux 8

 Features ... 9

 Display of Kernel Resources 9

 Task Related Breakpoints 9

 Task Context Display 10

 MMU Support 11

 Space IDs 11

 MMU Declaration 12

 Scanning System and Processes 13

 Symbol Autoloader 14

 SMP Support 15

 Dynamic Task Performance Measurement 15

 Task Runtime Statistics 16

 Task State Analysis 18

 Function Runtime Statistics 19

 Linux Specific Menu 20

 Basics of HW-based Debugging .. 23

 Debugging Linux Kernel and User Processes ... 23

 Linux Kernel 24

 Downloading the Kernel 24
 RTOS Debugger for Linux - Stop Mode 1

 Debugging the Kernel Startup 25

 Debugging the Kernel 25

 User Processes 26

 Debugging the Process 26

 Debugging into Shared Libraries 28

 Debugging Linux Threads 29

 On Demand Paging 29

 Kernel Modules 36

 Trapping Segmentation Violation 39

 Linux Commands .. 40

 TASK.DTask Display tasks 40

 TASK.PS Display 'ps' output 41

 TASK.MODule Display kernel modules 41

 TASK.FS Display file system internals 42

 TASK.FS.Types Display file system types 42

 TASK.FS.Mount Display mount points 42

 TASK.FS.MountDevs Display mounted devices 42

 TASK.FS.PROC Display /proc file system 42

 TASK.TASKState Mark task state words 43

 TASK.MMU.SCAN Scan process MMU space 43

 TASK.sYmbol Process/Module symbol management 44

 TASK.sYmbol.LOAD Load process symbols & MMU 44

 TASK.sYmbol.DELete Unload process symbols & MMU 45

 TASK.sYmbol.LOADMod Load module symbols & MMU 45

 TASK.sYmbol.DELeteMod Unload module symbols & MMU 46

 TASK.sYmbol.LOADLib Load library symbols 47

 TASK.sYmbol.DELeteLib Unload library symbols 47

 TASK.sYmbol.Option Set symbol management options 48

 TASK.Watch Watch processes 50

 TASK.Watch.View Show watched processes 51

 TASK.Watch.ADD Add process to watch list 53

 TASK.Watch.DELete Remove process from watch list 53

 TASK.Watch.DISable Disable watch system 53

 TASK.Watch.DISableBP Disable process creation breakpoints 54

 TASK.Watch.ENable Enable watch system 54

 TASK.Watch.ENableBP Enable process creation breakpoints 55

 TASK.Watch.Option Set watch system options 55

 TASK.Option Set awareness options 56

 Linux PRACTICE Functions ... 57

 Error Messages ... 59

 Appendix .. 60

 Appendix A: insmod patch for Linux 2.4 60
 RTOS Debugger for Linux - Stop Mode 2

RTOS Debugger for Linux - Stop Mode

Version April, 20 2009

Debugging Modes for Embedded Linux

TRACE32 provides 3 modes for debugging embedded Linux: Run Mode Debugging, Stop Mode Debugging
and Integrated Run & Stop Mode Debugging.

Run Mode Debugging with TRACE32 as GDB Front-end

Pure software debugger, no TRACE32 hardware required.

The TRACE32 software is licensed by a USB dongle.

Requires debug agent running as Linux process on the target. Available solutions:

• Single-process debugging via standard gdbserver as debug agent.

• Multi-process debugging via t32server as debug agent.

The t32server allows to attach a separate gdbserver to several processes thus providing multi-
process debugging. The t32server is provided by LAUTERBACH.

TRACE32 GUI communicates with gdbserver / t32server on target via RS232, ethernet or BLUETOOTH.

The TRACE32 GDB Front-end works in so-called Run Mode Debugging: At a breakpoint only the selected
process is stopped, while the kernel and all other processes continue to run.
 RTOS Debugger for Linux - Stop Mode 3 Debugging Modes for Embedded Linux

Stop Mode Debugging via JTAG

Stop Mode Debugging requires a TRACE32 JTAG debugger hardware.

If debugging is performed via the JTAG interface, TRACE32 works in so-called Stop Mode Debugging. At a
breakpoint the CPU and thus the whole target system is stopped.

The main advantages of Stop Mode Debugging are:

• Since the only requirement for Stop Mode Debugging is a functioning JTAG interface, debugging
can start at the reset vector.

• Since TRACE32 provides both Linux and MMU support, debugging of the kernel and beyond
process boundaries is possible.

Integrated Run & Stop Mode Debuggings via JTAG

Integrated Run & Stop Mode Debugging requires a TRACE32 JTAG debugger hardware.

If debugging is performed via the JTAG interface, TRACE32 can be configured:

• to allow Stop Mode Debugging via JTAG.

• to allow Run Mode Debugging via the t32server running as debug agent on the target.

• to allow, if required, to switch between the two debugging modes.

TRACE32 communicates with the t32server:

• via ethernet for the MIPS and PowerPC architecture.

• via DCC (Debug Communications Channel) for the ARM architecture. Since the ARM-JTAG
interface provides a DCC, Integrated Run & Stop Mode Debugging can function with JTAG as the
only communication interface.
 RTOS Debugger for Linux - Stop Mode 4 Debugging Modes for Embedded Linux

Supported Debugging Modes sorted by Architectures

Architecture GDB Front-end Stop Mode
Debugging

Integrated Run &
Stop Mode
Debugging

ARM Yes, refer to
”TRACE32 GDB
Front-end for ARM”
(monitor_gdb_arm.f
m).

Yes, read this
manual.

Yes, via DCC,
refer to ”RTOS
Debugger for Linux -
Run Mode”
(rtos_linux_run.pdf).

ColdFire — Yes, read this
manual.

—

I386 Yes — —

MIPS Yes, refer to
”TRACE32 GDB
Front-end for MIPS”
(monitor_gdb_mips.f
m).

Yes, read this
manual.

Yes, via ethernet,
refer to ”RTOS
Debugger for Linux -
Run Mode”
(rtos_linux_run.pdf).

PowerPC Yes, refer to
”TRACE32 GDB
Front-end for PPC”
(monitor_gdb_ppc.fm
).

Yes, read this
manual.

YES. via ethernet,
refer to ”RTOS
Debugger for Linux -
Run Mode”
(rtos_linux_run.pdf).

SH4 — Yes, read this
manual.

—

XScale Yes Yes, read this
manual.

—

 RTOS Debugger for Linux - Stop Mode 5 Debugging Modes for Embedded Linux

Overview

The RTOS Debugger for Linux contains special extensions to the TRACE32 Debugger. This chapter
describes the additional features, such as additional commands and statistic evaluations.

Linux uses the terms “Processes” and “Tasks”. If not otherwise specified, the TRACE32 term “Task”
corresponds to Linux tasks, which may be executing processes or POSIX threads.

For general informations about the In-Circuit Debugger refer to the ”ICD Debugger User’s Guide”
(debugger_user.pdf), ”ICE User’s Guide” (ice_user.pdf) or ”ICE User’s Guide” (ice_user.pdf). All general
commands are described in ”IDE Reference Guide” (ide_ref.pdf) and ”General Commands and
Functions”.

Currently Linux is supported for the following versions:

• Linux kernel versions 2.4 and 2.6 on ARM, ColdFire, MIPS, PowerPC, SH4, and XScale

B::TASK.DTask
magic command state uid pid tty flags nice
01072000 swapper running 0. 0. 0 00000100 20.
010FE000 init sleeping 0. 1. 0 00000100 0.
010FC000 keventd sleeping 0. 2. 0 00000040 0.
010F8000 ksoftirqd_CPU0 sleeping 0. 3. 0 00000040 19.
010F6000 kswapd sleeping 0. 4. 0 00000840 0.
010F4000 bdflush sleeping 0. 5. 0 00000040 0.
010F2000 kupdated sleeping 0. 6. 0 00000040 0.
010C6000 sh running 0. 14. S0 00000000 0.
011D2000 hello current 0. 17. S0 00000000 0.

B::TASK.PS pid ppid uid tty flags time nice count stat cmd
pid ppid uid tty flags time nice count state command

0. 0. 0. - 0100 00001A3C 20. -100. running [swapper]
1. 0. 0. - 0100 00000000 0. 9. sleeping init
2. 1. 0. - 0040 00000000 0. 9. sleeping [keventd]
3. 0. 0. - 0040 00000000 19. 1. sleeping [ksoftirqd_CPU0]
4. 0. 0. - 0840 00000000 0. 9. sleeping [kswapd]
5. 0. 0. - 0040 00000000 0. 7. sleeping [bdflush]
6. 0. 0. - 0040 00000000 0. 7. sleeping [kupdated]

14. 1. 0. ttyS0 0000 00000000 0. 4. running /bin/sh
17. 14. 0. ttyS0 0000 00000000 0. 5. running hello
 RTOS Debugger for Linux - Stop Mode 6 Overview

Configuration

The TASK.CONFIG command loads an extension definition file called “linux.t32” (directory “demo/
<processor>/kernel/linux”). It contains all necessary extensions.

Automatic configuration tries to locate the Linux internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the RTOS debugger is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. In this case, use the
manual configuration, which can require some additional arguments.

If you want do use the display functions “On The Fly”, i.e. displaying the OS objects, while the target is
running, you need to have access to memory while running. In case of a ICE or FIRE, you have to map
emulation or shadow memory to the address space of all used system tables. In case of ICD, you have to
enable SYStem.MemAccess or SYStem.CpuAccess (CPU dependent).

Manual Configuration

Manual configuration is not recommended for the Linux RTOS debugger. If, for some reason, you want to
use different symbols than those used by the automatic configuration, call LAUTERBACH for support.

See Hooks & Internals for details.

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the RTOS
debugger. For this purpose it is necessary, that all system internal symbols are loaded and accessible at any
time, the RTOS debugger is used. Each of the task.config arguments can be substituted by '0', which
means, that this argument will be searched and configured automatically. For a full automatic configuration
omit all arguments:

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual
Configuration).

Note that the default Linux kernel configuration does not include any debug information. Please change your
configuration to generate kernel debug information.

See Hooks & Internals for details.

See also the example “demo/<processor>/kernel/linux/linux.cmm”.

Format: TASK.CONFIG linux
 RTOS Debugger for Linux - Stop Mode 7 Configuration

Quick Configuration Guide

To access all features of the RTOS debugger you should follow the following roadmap:

1. Read carefully the demo startup script (demo/<processor>/kernel/linux/linux.cmm).

2. Make a copy of the “linux.cmm” batchfile. Modify the file according to your application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

In case of any problems, please read carefully the previous Configuration chapters.

Hooks & Internals in Linux

No hooks are used in the kernel.

For retrieving the kernel data structures, the RTOS debugger uses the global kernel symbols and structure
definitions. Ensure, that access to those structures is possible, every time when features of the RTOS
debugger are used. This requires, that the whole Linux kernel is compiled with debug symbols switched on,
and that the symbols of the “vmlinux” file are loaded.

If you control the compile stage by hand, just switch on debug symbols by adding the option “-g” to gcc. In
most kernel configuration scripts, you have an option “Kernel Hacking” -> “Compile kernel with debug info”,
that enables debug symbols to the kernel.
 RTOS Debugger for Linux - Stop Mode 8 Configuration

Features

The RTOS debugger for Linux supports the following features.

Display of Kernel Resources

The extension defines new PRACTICE commands to display various kernel resources. Information on the
following Linux components can be displayed:

For a detailed description of each command refer to the chapter “Linux Commands”.

If your hardware allows accessing the memory, while the target is running, these resources can be displayed
“On The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed, if the target application is stopped.

Task Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only, if a specific task hits that breakpoint. This is
especially useful, when debugging code which is shared between several tasks. To set a task related
breakpoint, use the command:

Use a task magic, id or name for <task>.

This task related breakpoint is implemented by a conditional breakpoint inside the debugger. I.e., the target
will always halt at that breakpoint, but the debugger immediately resumes execution, if the current running
task is not equal to the specified task.

Please note, that this feature impacts the real-time behavior of the application.

For a general description of the Break.Set command please see it’s documentation.

- tasks TASK.DTask

- “ps” outputs TASK.PS

- kernel modules TASK.MODule

- file system internals TASK.FS

Format: Break.Set <address>|<range> [</option>] /TASK <task>
 RTOS Debugger for Linux - Stop Mode 9 Features

Task Context Display

You are able to switch the whole viewing context to a currently not executing task. This means, that all
register and stack related information (such as Register, Data.List, Var.Frame etc.) will be shown
according to this task. Be aware, that this is only for displaying information. When continuing debugging the
application (step or go), the debugger will switch back to the current context.

For displaying a specific task context, use the command:

Specify a task magic or a task name (in double quotes) as parameter.
To switch back to the current context, omit all parameters.

For displaying the call stack of a specific task, you can use the following command:

If you’d like to see the application code, where the task was preempted, execute the “Var.Frame /Caller /Task
<task>” window. Double click on the line showing the OS service call.

Format: Register.TASK [<task>]

Format: Var.Frame /Task <task>
 RTOS Debugger for Linux - Stop Mode 10 Features

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU commands refer to this necessity.

Space IDs

Processes of Linux may reside virtually on the same address. To distinguish those addresses, the Debugger
uses an additional space id, that specifies, to which virtual memory space the address refers. The command
SYStem.Option MMUSPACES ON enables the additional space id. For all processes using the kernel
address space and for the kernel itself, the space id is zero. For processes using their own address space,
the space id equals to the process id. Threads of a particular process share the memory space of the
invoking process. Thus, the space id of threads equals to the space id of the parent process.

You may scan the whole system for space ids, using the command MMU.SCANID. Use MMU.ListID to get a
list of all recognized space ids.

The function task.proc.spaceid(“<process>”) returns the space id for a given process. If the space id is
not equal to zero, load the symbols of a process to this space id:

local &spaceid
&spaceid=task.proc.spaceid("myProcess")
Data.LOAD myProcess &spaceid:0 /nocode /noclear
 RTOS Debugger for Linux - Stop Mode 11 Features

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

MMU.FORMAT declares the basic format of the MMU tables:

Use as <format>:

<base address> specifies the base address of the kernel translation table. This address can be found at the
label “swapper_pg_dir”.

<kernel translation> specifies the virtual to physical address translation of the kernel address range. This
spans continuously usually over the complete physical address range. Typically the virtual address range of
the kernel starts at 0xC0000000.

When declaring the MMU layout, you should also create the kernel translation manually with MMU.Create.

The kernel code, which resides in the kernel space, can be accessed by any process, regardless of the
current space id. Use the command MMU.COMMON to define the complete address range, that is
addressed by the kernel, as commonly used area. Please note, that the address range, where kernel
modules are held, must be part of this area.

And don’t forget to switch on the debugger’s MMU translation with MMU.ON.

Example: Having 32MB RAM at physical address 0x20000000, a typical MMU declaration looks like:

Please see also the sample scripts in the demo directory.

Format: MMU. FORMAT <format> <base address> <kernel translation>

LINUX standard format

LINUX26 PowerPC with physical table pointers (some 2.6 variants)

LINUXEXT PowerPC with 64bit table entries

LINUX32 MIPS32

LINUXBIG MIPS32 with 64bit table entries

LINUX64 MIPS64 with 64bit table pointers and entries

MMU.FORMAT LINUX swapper_pg_dir 0xC0000000--0xC1FFFFFF 0x20000000
MMU.Create 0xC0000000--0xC1FFFFFF 0x20000000
MMU.COMMON 0xC0000000--0xFFFFFFFF
MMU.ON
 RTOS Debugger for Linux - Stop Mode 12 Features

Scanning System and Processes

To access the different process spaces correctly, the debugger needs to know the address translation of
every virtual address it uses. You can either scan the MMU tables and place a copy of them into the
debugger’s MMU table, or you can use a table walk, where the debugger walks through the tables each time
it accesses a virtual address.

The command MMU.SCAN only scans the contents of the current processor MMU settings. Use the
command MMU.SCANALL to go through all space ids and scan their MMU settings. Note, that on some
systems, this may take a long time. In this case you may scan single processes.

To scan the address translation of a specific process, use the command MMU.TaskPageTable.SCAN
“<process>”. This command scans the space id of the specified process.

MMU.List shows the debugger’s address translation table for all scanned space ids.

If you set MMU.TableWalk ON, the debugger tries first to lookup the address translation in it’s own table
(MMU.List). If this fails, it walks through the target MMU tables to find the translation for a specific address.
This feature eliminates the need of scanning the MMU each time it changed, but walking through the tables
for each address may result in a very slow reading of the target. The address translations found with the
table walk are only temporarily valid (i.e. not stored in MMU.List), and are invalidated at each Go or Step.

See also chapter “Debugging Linux Kernel and User Processes”
 RTOS Debugger for Linux - Stop Mode 13 Features

Symbol Autoloader

The RTOS Debugger for Linux contains an “Autoloader”, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding Linux components and the appropriate load
command. Whenever the user accesses an address within an address range specified in the autoloader, the
debugger invokes the according command. The command is usually a call to a PRACTICE script, that
handles loading the symbol file to the appropriate addresses.

The command “sYmbol.AutoLoad.List” shows a list of all known address ranges/components and their
symbol load commands.

The autoloader can be configured to react only on processes, kernel modules, (all) libraries, or libraries of
the current process (see also TASK.sYmbol.Option AutoLoad). It is recommended to set only those
components, that you are interested in, because this decreases the time of the autoloader checks highly.

The autoloader reads the target’s tables for the chosen components and fills the autoloader list with the
components found on the target. All necessary information, such as load addresses and space ids, are
retrieved from kernel internal information.

If an address is accessed, that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space id of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the demo directory.

The point of time, at which the component information is retrieved from the target, can be set:

A single “sYmbol.AutoLoad.CHECK” command manually triggers the refreshing of the target’s information.

If “sYmbol.AutoLoad.CHECK ON” is set, the debugger automatically reads the information on every go/halt
or step cycle. This significantly slows down the debugger’s speed. If “sYmbol.AutoLoad.CHECK OFF” is set,
no automatic read will be done, you have to manually trigger the information read when necessary.

NOTE: The autoloader covers only components, that are already started. Components, that are not in the
current process, module or library table are not covered.

Format: sYmbol.AutoLoad.CHECKLINUX “<action>”

<action> action to take for symbol load, e.g. “do autoload”

Format: sYmbol.AutoLoad.CHECK [ON | OFF]
 RTOS Debugger for Linux - Stop Mode 14 Features

SMP Support

The RTOS Debugger for Symbian supports symmetric multiprocessing (SMP).

An SMP system consists of several equal CPU cores. The operating system distributes the ready threads to
all available cores, so that several threads are running in parallel. This means, that an application may run on
any availabe core. Moreover, the core, at which the application runs, may change in time.

To support such SMP systems, the debugger allows a “system view”, where one PowerView UI is used for
the whole system, i.e. for all cores that are used by the SMP OS. Please see the target guides how to set up
the debugger with SMP support

All core relevant windows (e.g. Register) show the information of the actual core. The status line of the
debugger indicates the actual core. You can switch the core view with the CORE command.

Target breaks, be it manual breaks or halting at a breakpoint, halt all cores synchronously. Similar, a “Go”
starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches the view
to the core, that hit the breakpoint.

Because is is undeterminated, at which core an application runs, breakpoints are set on all cores
simultaneously; i.e. the breakpoint will always hit, regardless which core addresses it.

In SMP systems, the TASK.TaSK command contains an additional column, that shows at which core the
task is running, or was running the last time.

Dynamic Task Performance Measurement

The debugger may execute a dynamic performance measurement by evaluating the current running task in
fixed time intervals. Start the measurement with the command PERF.Mode TASK, and view the contents
with PERF.List. The evaluation is done by reading the ’magic’ location (= current running task) in memory.
This memory read may be non-intrusive or intrusive, depending on the PERF.METHOD used.

For a general description of the PERF command refer to ”General Commands Reference Guide P”
(general_ref_p.pdf).
 RTOS Debugger for Linux - Stop Mode 15 Features

Task Runtime Statistics

NOTE: This feature is only available, if your debugger equipment is able to trace task switches (see below).

Out of the recordings done by the Trace (if available), the debugger is able to evaluate the time spent in a
task and display it statistically and graphically. To do this, the debugger must be able to detect the task
switches out of the trace, i.e. the task switches need to be recorded.

Usually, there’s a variable in the system that holds the current running task. By recording the accesses to this
memory location (aka “magic” location), the debugger detects a task switch by a change of this variable.
Please note, that the debugger equipment must be able to trace memory data accesses in this case,
program flow trace is not sufficient.

If a hardware trace solution is available, that provide a so called “context id” (e.g. ARM11 ETM), and if this
context id is served by the operating system, it is sufficient to enable the recording of the context id (owner
cycle); no data trace is needed.

To do a selective recording on task switches with state analyzers (ICE and FIRE), use the following
PRACTICE commands:

To do a selective recording on task switches with flow traces (ICD, e.g. ETM and NEXUS trace), based on
the data accesses, use the following PRACTICE command:

To do a selective recording on task switches with flow traces, based on the context id, use the following
PRACTICE command:

; Mark the magic location with an Alpha breakpoint
Break.Set task.config(magic)++(task.config(magicsize)-1) /Alpha

; Program the Analyzer to record only task switches
Analyzer.ReProgram
(

Sample.Enable if AlphaBreak&&Write
)

; Enable tracing only on the magic location
Break.Set task.config(magic) /TraceEnable

; Enable tracing of the context id (e.g. 32bit)
ETM.ContextID 32
 RTOS Debugger for Linux - Stop Mode 16 Features

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know, which task is running, is calculated as
“(root)”.

All kernel activities up to the task switch are added to the calling task.

Some Linux distributions/versions support the context id. In most cases, the context id is only served with the
address space id of the process. This allows tracking the program flow of the processes and evaluation of
the process switches. But it does not provide performance information of threads.

To allow a detailed performance analysis on Linux threads, the context id must contain the Linux pid of the
thread (each thread gets its own pid - despite the name). Set the lower 8 bit of the context id register with the
Linux own ASID, and set the upper 24 bit with the pid of the thread, i.e. “(pid << 8) | ASID”.

The Linux awareness needs to be informed about the changed format of the context id:

TASK.Option THRCTX ON

Example for an ARM926:

Include an assembler routine to set the context id in arch/arm/mm/proc-arm926.S:

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.FindAll Address task.config(magic) Display all data access records to the “magic” location

Trace.FindAll CYcle owner OR CYcle context Display all context id records

ENTRY(cpu_arm926_set_context_id)
 mcr p15, 0, r0, c13, c0, 1 @ set context id register
 mov pc, lr
 RTOS Debugger for Linux - Stop Mode 17 Features

Additionally, extend the context_switch() function in kernel/sched.c (additional lines are in bold):

Task State Analysis

NOTE: This feature is only available, if your debugger equipment is able to trace memory data accesses
(flow trace is not sufficient). E.g. the state analyzers of ICE or FIRE are capable of doing so. The scripts
mentioned herein are based on state analyzers.

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically. This feature is implemented by recording all accesses to the status
words of all tasks. Additionally the accesses to the current task pointer (=magic) are traced. The breakpoints
to the task status words are set by the TASK.TASKState command.

“running” means the currently running task. “ready” defines runnable (R) tasks. The task states sleeping (S),
disk sleep (D) and paging (W) are counted as “suspended”. “waiting” defines zombie (Z) and stopped (T)
processes.

unsigned int ctxid;
void cpu_arm926_set_context_id(unsigned int);

arch_enter_lazy_cpu_mode();

cpu_arm926_set_context_id(0);

if (!mm) {
 next->active_mm = oldmm;
 atomic_inc(&oldmm->mm_count);
 enter_lazy_tlb(oldmm, next);
 ctxid = next->pid << 8;
} else {
#ifdef CONFIG_CPU_HAS_ASID
 ctxid = (mm->context.id & (unsigned int) 0xFF) | (next->pid << 8);
#else
 ctxid = next->pid << 8;
#endif
 switch_mm(oldmm, mm, next);
}

cpu_arm926_set_context_id(ctxid);
 RTOS Debugger for Linux - Stop Mode 18 Features

To do a selective recording on task states, the following PRACTICE commands can be used:

To evaluate the contents of the trace buffer, use these commands:

All kernel activities up to the task switch are added to the calling task. The start of the recording time, when
the calculation doesn’t know, which task is running, is calculated as “(root)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debugger equipment is able to trace memory data accesses
(program flow trace is not sufficient).

All function related statistic and timechart evaluations can be used with task specific information. The
function timings will be calculated dependent on the task, that called this funciton. To do this, additionally to
the function entries and exits, the task switches must be recorded.

; Mark the magic location with an Alpha breakpoint
Break.Set task.config(magic)++(task.config(magicsize)-1) /Alpha

; Mark all task state words with Alpha breakpoints
TASK.TASKState

; Program the Analyzer to record task state transitions
Analyzer.ReProgram
(

Sample.Enable if AlphaBreak&&Write
)

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state time chart
 RTOS Debugger for Linux - Stop Mode 19 Features

To do a selective recording on task related function runtimes with state analyzers (ICE and FIRE), use the
following PRACTICE commands:

To do a selective recording on task related function runtimes with flow traces (ICD, e.g. ETM and NEXUS
trace), use the following PRACTICE command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know, which task is running, is calculated as
“(root)”.

All kernel activities up to the task switch are added to the calling task.

Linux Specific Menu

The file “linux.men” contains an alternate menu with Linux specific topics. Load this menu with the
MENU.ReProgram command.

You will find a new pull-down menu called “Linux”.

; Mark the magic location with an Alpha breakpoint
Break.Set task.config(magic)++(task.config(magicsize)-1) /Alpha

; Mark the function entries/exits with Alpha/Beta breakpoints
Break.SetFunc

; Program the Analyzer to record function entries/exits and task switches
Analyzer.ReProgram
(

Sample.Enable if AlphaBreak||BetaBreak
Mark.A if AlphaBreak
Mark.B if BetaBreak

)

; Enable tracing only on the magic location
Break.Set task.config(magic) /TraceData

Trace.List List.TASK FUNC Display function nesting

Trace.STATistic.TASKFunc Display function runtime statistic

Trace.STATistic.TASKTREE Display functions as call tree

Trace.Chart.TASKFunc Display function timechart
 RTOS Debugger for Linux - Stop Mode 20 Features

The “Display” topics launch the kernel resource display windows. See chapter “Display of Kernel
Resources”.

“Process Debugging” refers to actions related to process based debugging.
See also chapter “Debugging the Process”.

• Use “Load Symbols…” and “Delete Symbols…” to load rsp. delete the symbols of a specific
process. You may select a symbol file on the host with the “Browse” button. See also
TASK.sYmbol.

• “Debug Process on main…” allows you to start debugging a process on it’s main() function.
Select this prior to starting the process. Specify the name of the process you want to debug.
Then start the process in your Linux terminal. The debugger will load the symbols and halt at
main(). See also the demo script “app_debug.cmm”.

• “Watch Processes” opens a process watch window or adds or removes processes from the
process watch window. Specify a process name. See TASK.Watch for details.

• “Scan Process MMU Pages…” scans the MMU pages of the specified process.

“Scan All MMU Tables” performs a scan over all target side kernel and process MMU pages.

See also chapter “Scanning System and Processes”.

“Module Debugging” refers to actions related to kernel module based debugging.
See also chapter “Kernel Modules”.

• Use “Load Symbols…” and “Delete Symbols…” to load rsp. delete the symbols of a specific
kernel module. You may select a symbol file on the host with the “Browse” button. See also
TASK.sYmbol.

• “Debug Module on init…” allows you to start debugging a kernel module on it’s init function.
Select this prior to inserting the module. Specify the name of the module you want to debug.
Then insert the module in your Linux terminal. The debugger will load the symbols and halt at the
init function (if available). See also the demo script “mod_debug.cmm”.

• “Scan All MMU Tables” performs a scan over all target side kernel and process MMU pages.

See also chapter “Scanning System and Processes”.

“Library Debugging” refers to actions related to library based debugging.
See also chapter “Debugging into Shared Libraries”.

• Use “Load Symbols…” and “Delete Symbols…” to load rsp. delete the symbols of a specific
library. Please specify the library name and the process name that uses this library. You may
select a symbol file on the host with the “Browse” button. See also TASK.sYmbol.

• “Scan Process MMU Pages…” scans the MMU pages of the specified process. Specify the
name of the process that uses the library you want to debug.
“Scan All MMU Tables” performs a scan over all target side kernel and process MMU pages.

See also chapter “Scanning System and Processes”.
 RTOS Debugger for Linux - Stop Mode 21 Features

Use the “Autoloader” submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

• “List Components” opens a sYmbol.AutoLOAD.List window showing all components currently
active in the autoloader.

• “Check Now!” performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

• “Set Loader Script…” allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

• Use “Set Components Checked…” to specify, which Linux components should be managed by
the autoloader. See also TASK.sYmbol.Option AutoLOAD.

“Linux Terminal” opens a terminal window, that can be configured prior to opening with “Configure
Terminal…”.

The “Trace” pull-down menu is extended. In the “List” submenu, you can choose for an trace list window
showing only task switches (if any) or task switches together with default display.

The “Perf” menu contains additional submenus for task runtime statistics, task related function runtime
statistics or statistics on task states, if a trace is available. See also chapter “Task Runtime Statistics”.
 RTOS Debugger for Linux - Stop Mode 22 Features

Basics of HW-based Debugging

This chapter moved into the “Training RTOS Debugger for Linux - Stop Mode” in , page 1
(training_rtos_linux.pdf)“.

We strongly recommend to read this training manual.

Debugging Linux Kernel and User Processes

Linux runs on virtual address spaces. The kernel uses a static address translation, usually starting from
virtual address 0xc0000000 mapped to the physical start address of the RAM. Each user process gets its
own user address space when loaded, usually starting from virtual 0x0, mapped to any physical RAM area,
that is currently free. Due to this address translations, debugging the Linux kernel and the user processes
requires some settings to the Debugger.

To distinguish those different memory mappings, TRACE32 uses “space ids”, defining individual address
translations for each id. The kernel itself is attached to the space id zero. Each process, that has an own
memory space, gets a space id, that is equal to its process id. Linux threads get the space id of the parent
process.

See also chapter “MMU Support”.
 RTOS Debugger for Linux - Stop Mode 23 Basics of HW-based Debugging

Linux Kernel

The Linux make process can generate different outputs (e.g. zipped, non-zipped, with or without debug info).
For downloading the linux kernel, you may choose whatever format you prefer. However, the Linux
awareness needs several kernel symbols, i.e. you have to compile your kernel with debug information and
preserve the resulting kernel file “vmlinux”. This file is in ELF format, and all other kernel images are derived
from this file.

Downloading the Kernel

If you start the linux kernel from Flash, or if you download the kernel via Ethernet, do this as you are doing it
without debugging.

If you want to download the kernel image using the debugger, you have to specify, to which address to
download it. The Linux kernel image is usually located at the physical start address of the RAM (sometimes
the vector table is skipped, check label _stext in the system map).

When downloading a binary image, specify the start address, where to load. E.g., if the physical address
starts at 0xa0000000:

When downloading the ELF image, you have to relocate the virtual addresses of the file to the physical
addresses of the RAM. E.g., if the kernel starts virtually at 0xc0000000 (default), and the RAM starts
physically at 0xa0000000:

When downloading the kernel via the debugger, remember to set startup options, that the kernel may
require, before booting the kernel.

Data.LOAD.Binary vmlinux.bin 0xa0000000 /nosymbol

Data.LOAD.Elf vmlinux 0xa0000000-0xc0000000 /nosymbol
 RTOS Debugger for Linux - Stop Mode 24 Debugging Linux Kernel and User Processes

Debugging the Kernel Startup

The kernel image starts with MMU switched off, i.e. the processor operates on physical addresses. However,
all symbols of the vmlinux file are virtual addresses. If you want to debug this (tiny) startup sequence, you
have to load and relocate the symbols as mentioned above.

• Downloading the kernel via debugger:

Just omit the /nosymbol option, when downloading the kernel:

(assuming physical address 0xa0000000 and virtual address 0xc0000000)

After downloading, set your PC to the physical start address, and you’re ready to debug.

• Downloading the kernel via Ethernet:

Just load the symbols into the debugger before it is downloaded by the boot monitor:

(assuming physical address 0xa0000000 and virtual address 0xc0000000)

Then, set an on-chip(!) breakpoint to the physical start address of the kernel (software
breakpoints won’t work, as they would be overwritten by the kernel download):

Now let the boot monitor download and start the Linux image. It will halt on the start address,
ready to debug. Delete the breakpoint when hit.

As soon as the processor MMU is switched on, you have to reload the symbol table to it’s virtual addresses.
See the next chapter on how to debug the kernel in the virtual address space.

Debugging the Kernel

For debugging the kernel itself, and for using the Linux awareness, you have to load the virtual addressed
symbols of the kernel into the debugger. The vmlinux ELF image contains all addresses in virtual format, so
it’s enough to simply load the file:

You have to inform the debugger about the kernel address translations. See chapter “MMU Declaration”
how to set up the MMU format to the debugger.

The kernel address translation covers the kernel code and data (sections of vmlinux) and is mapped in
continuous pages to the physical RAM space.

Data.LOAD.Elf vmlinux 0xa0000000-0xc0000000

Data.LOAD.Elf vmlinux 0xa0000000-0xc0000000 /nocode

Break.Set 0xa0000000 /Onchip

Data.LOAD.Elf vmlinux /nocode
 RTOS Debugger for Linux - Stop Mode 25 Debugging Linux Kernel and User Processes

User Processes

Each user process in Linux gets its own virtual memory space, each usually starting at address zero. To
distinguish the different memory spaces, the debugger assigns a “space id”, which is equal to the process id.
Using this space id, it is possible to address an unique memory location, even if several processes use the
same virtual address.

Linux uses the “on demand paging” mechanism to load the code and data of processes and shared libraries.
Debugging those pages is not trivial, see “On Demand Paging” for details and work around.

Note, that at every time the Linux awareness is used, it needs the kernel symbols. Please see the chapters
above, how to load them. Hence, load all process symbols with the option /noclear, to preserve the kernel
symbols.

Debugging the Process

To correlate the symbols of an user process with the virtual addresses of this process, it is necessary to load
the symbols into this space id.

Please watch out for demand paging (see chapter “On Demand Paging”).

Manually Load Process Symbols:

For example, if you’ve got a a process called “hello” with the process id 12 (the dot specifies a decimal
number!):

The space id of a process may also be calculated by using the PRACTICE function
task.proc.spaceid() (see chapter “Linux Practice Functions”).

If MMU.TableWalk is OFF, you need to scan the MMu translation of this process:

See also chapter “Scanning System and Processes”.

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

This command loads the symbols of “hello” and scans the MMU of the process “hello”. See
TASK.sYmbol.LOAD for more information.

Data.LOAD.Elf hello 12.:0 /nocode /noclear

MMU.TaskPageTable.SCAN 12.:0 ; scan MMU of process id 12.

TASK.sYmbol.LOAD “hello” ; load symbols and scan MMU
 RTOS Debugger for Linux - Stop Mode 26 Debugging Linux Kernel and User Processes

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the process. You can also force the loading of the
symbols of a process with

Debugging a Process From Scratch, Using a Script:

If you want to debug your process right from the beginning (at “main()”), you have to load the symbols before
starting the process. This is a tricky thing, because you have to know the process id, which is assigned first
at the process startup. Set a breakpoint into the process start handler of Linux, when the process is already
loaded but not yet started. The function set_binfmt() may serve as a good point. When the breakpoint is hit,
check if the process is already loaded. If so, extract the process id, and load the symbols. Don’t scan the
process MMU now, because it’s not yet set up. Linux loads the code first, if it is accessed by the CPU. So
you’re not able to set a software breakpoint yet into the process, because it will be overwritten by the
swapper, when it loads actually the code. Instead, set an on-chip breakpoint to the main() routine of the
process. As soon as the process is started, the code will be loaded and the breakpoint will be hit. Now you’re
able to scan the process MMU and set software breakpoints. See the script “app_debug.cmm” in the demo
directory, how to do this.

The “Linux” menu contains this procedure in a menu item: “Linux” -> “Process Debugging” -> “Debug
Process on main…”. See also chapter “Linux Specific Menu”.

When finished debugging with a process, or if restarting the process, you have to delete the symbols and
restart the application debugging. Delete the symbols with:

If the autoloader is configured:
 sYmbol.AutoLoad.CLEAR “hello”

Debugging a Process From Scratch, with Automatic Detection:

The TASK.Watch command group implements the above script as an automatic handler and keeps track of
a process launch and the availability of the process symbols. See TASK.Watch.View for details.

sYmbol.AutoLoad.CHECK
sYmbol.AutoLoad.TOUCH “hello”

sYmbol.Delete \\hello
 RTOS Debugger for Linux - Stop Mode 27 Debugging Linux Kernel and User Processes

Debugging into Shared Libraries

If the process uses shared libraries, Linux loads them into the address space of the process. The process
itself contains no symbols of the libraries. If you want to debug those libraries, you have to load the
corresponding symbols into the debugger.

Dynamically loaded libraries will be first linked, when they’re called the first time. I.e. when stepping into a
library function the first time, you may step into the dynamic loader instead of your library. To prevent this, set
the environment variable “LD_BIND_NOW=1” on your target. This instructs the loader, to link all functions at
load time instead of at run time.

Please watch out for demand paging (see chapter “On Demand Paging”).

Manually Load Library Symbols:

Start your process and open a TASK.DTask window. Double click on the “magic” of the process using the
library, and expand the “code files” tree (if available). A list will appear, that shows the loaded libraries and
the corresponding load addresses. Load the symbols to this address and into the space id of the process.
E.g. if the process has the space id 12., the library is called “lib.so” and it is loaded on address 0xff8000, use
the command:

Of course, this library must be compiled with debugging information.

Automatically Load Library Symbols:

If a library name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

This command loads the symbols of the library “libc.so”, used by the process “hello”, and scans the MMU of
the process “hello”. See TASK.sYmbol.LOADLib for more information.

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the library. You can also force the loading of the
symbols of a library with

Data.LOAD.Elf lib.so 12.:0xff8000 /nocode /noclear

TASK.sYmbol.LOADLib “hello” “libc.so” ; load symbols and scan MMU

sYmbol.AutoLoad.CHECK
sYmbol.AutoLoad.TOUCH “libc.so”
 RTOS Debugger for Linux - Stop Mode 28 Debugging Linux Kernel and User Processes

Debugging Linux Threads

Linux Threads are implemented as tasks, that share the same virtual memory. The Linux RTOS Debugger
assigns one space id for all threads that belong to a specific process. It is sufficient, to load the debug
information of this process only once (onto it’s space id) to debug all threads of this process. See chapter
“Debugging the Process” for loading the process’ symbols.

There are several different mechanisms how threads are managed inside the Linux kernel. The Linux
Awareness tries to detect them automatically, but this may fail on some systems. If the TASK.DTask window
doesn’t show all threads of a process, declare the threading method manually with the TASK.Option
Threading command.

The TASK.DTask window shows which thread is currently running (“current”).

On Demand Paging

When a process is started, Linux doesn’t load any code or data of this process. Instead, it uses the “on
demand paging” mechanism. This means, Linux loads memory pages first, when they are accessed. As
long as they aren't accessed by the CPU, they're not present in the system.

A “memory page” is a 4 KByte continuous memory region, with a dedicated virtual and physical address
range. The MMU handles the whole (user space) memory in such pages.

When starting a process, Linux just sets up it’s task structures and loads the characteristics of the process’
code and data sections from the process’ file (size and addresses of the sections), but not the sections
themselves. Then the kernel jumps to the “main” routine of the process. The first instruction fetch will then
cause a code page fault, because the code is not yet present. The page fault handler then loads the actual
code page (4 KByte), that contains the code of the “main” entrypoint, from the file. Note that only one page is
loaded. If the program jumps to a location outside this page, or steps over a page boundary, another code
page fault happens. While running, more and more pages will be loaded. (While on desktop systems it is
common, that pages are also discarded, on embedded systems this is usually not the case.) If a process
terminates, all pages of this process are removed.

The same page loading mechanism applies to data and stack addresses. Variables are first visible to the
system, after the CPU accessed them (by reading or writing the address and thus urging a page load). The
stack grows page wise, as it is used.
 RTOS Debugger for Linux - Stop Mode 29 Debugging Linux Kernel and User Processes

When debugging those paged processes, you have to take care about this paging.

• The process’ code and data is first visible to the debugger, after the pages were loaded.

• You cannot set a software breakpoint onto a function, that is located in a page which is not yet
loaded. The code for this function simply not yet exists, and thus cannot be patched with the
breakpoint instruction. In such cases, use on-chip breakpoints instead.

• The CPU handles on-chip breakpoints before code page faults. If the CPU jumps onto an on-chip
breakpoint, and the appropriate page is not yet loaded, the debugger will halt before the page is
loaded. You’ll see the program counter on a location with no actual code (usually the debugger
shows “???” then). The same may happen, if you single step over a page boundary. In such
cases, set an on-chip(!) breakpoint onto the next instruction and let the system “Go”. The page
fault handler will then load the page, the processor will execute the first instruction and halt on the
next breakpoint. Use MMU.SCANALL to rescan the MMU and the newly loaded page. A simple
work around for functions is to set the breakpoint at the function entry plus 4 (e.g. "main+4").
Then the application will halt *after* the page was loaded.

For already loaded processes, the demo directory contains a script called “app_page_load.cmm”, that
forces loading all code and data pages of the process by patching the application’s code. Please see the
comments inside this script for details.

The on demand paging is a basic design feature of Linux, that cannot be switched off.

However, there are two (different) ways to force Linux to load the appropriate pages in advance, before
they’re actually used. This eases debugging in those pages. The solutions need modifications (patches) to
the kernel. You may use one of both, or both patched together, depending on your needs.
 RTOS Debugger for Linux - Stop Mode 30 Debugging Linux Kernel and User Processes

1. Forcing the load of pages used by processes (without libraries)

The following kernel modification accesses (reads) each code and data page, right before the process’ main
entry point is started. This forces a page load to all pages in advance. As soon as the process entry point is
called, all pages are present in the system. A subsequent MMU.SCANALL scans the translation table of the
whole process. You may then set software breakpoints anywhere in the process’ code, and view the data
area at any time.

A note to the stack: The stack space of a Linux process is not limited. If the stack grows, while the application
is running, the stack pages will be allocated. Thus, there's no chance to calculate the stack space in
advance. The following patch loads only the first stack page (4 kB).

Libraries used by the process are still subject to the demand paging.

Please note, that this patch changes the behavior of the system.

This loading in advance will only work, if there is enough (physical) memory free to load the whole process
code and data pages. If this is not the case, pages will be discarded again!

There is a variable called "t32_force_process_page_load" initialized to zero. Only if this variable is
non-zero, the loading of the pages is performed. To enable the page loading, set

Data.Set t32_force_process_page_load 1

The function "load_elf_binary()" in fs/binfmt_elf.c calls "start_thread()". start_thread() is
either defined as function in arch/mips/kernel/process.c, or as a macro in include/asm-<arch>/processor.h.

At the beginning of start_thread, add a call to load all pages; e.g.:

void start_thread() {
/**** TRACE32 patch ****/

void t32_load_all_process_pages (void);

/* prototype */

t32_load_all_process_pages();

/* load all pages before start */

…

 RTOS Debugger for Linux - Stop Mode 31 Debugging Linux Kernel and User Processes

then, somewhere in process.c, add the following code snippet:

/**** TRACE32 patch to force loading of all pages ***/
/**** of the new thread in advance ***/

volatile char t32_force_process_page_load = 0;

/* to be set by TRACE32 */

void t32_process_page_load_done (void)
{

/* dummy function to inform TRACE32 */

}

void t32_load_all_process_pages (void)
{

unsigned long page, end;
volatile char dummy;

if (!t32_force_process_page_load)
return;

if (!current->mm)
return;

/* load code pages */
page = current->mm->start_code & 0xfffff000;
end = (current->mm->end_code-1) & 0xfffff000;
if (page)

for (; page <= end; page += 0x1000)
dummy = *((char*) page);

/* force page load */

/* load data pages */
page = current->mm->start_data & 0xfffff000;
end = (current->mm->brk-1) & 0xfffff000;
if (page)

for (; page <= end; page += 0x1000)
dummy = *((char*) page);

/* force page load */

/* load stack page */
page = current->mm->start_stack & 0xfffff000;
dummy = *((char*) page);

/* force page load */

t32_process_page_load_done();
}

 RTOS Debugger for Linux - Stop Mode 32 Debugging Linux Kernel and User Processes

Now, if "t32_force_process_page_load" is set to one, all pages of the process are loaded. When
debugging a process from scratch, set a breakpoint to "t32_process_page_load_done()". The MMU
Scan at that stage then scans all code and data pages, that the process might use. After that, you should be
able to debug your process without the demand paging troubles.
 RTOS Debugger for Linux - Stop Mode 33 Debugging Linux Kernel and User Processes

2. Forcing the load of all ELF pages (of processes and static libraries)

The following kernel modification accesses (reads) each page, right after Linux built a virtual memory map
for it (actually, after reading the ELF memory map of the file). This forces a page load to all pages of
processes and libraries, that are read with the Linux kernel ELF loader. As soon as the process entry point is
called, all pages are present in the system. A subsequent MMU.SCANALL scans the translation table of the
whole process. You may then set software breakpoints anywhere in the process’ or libraries’s code, and view
the data area at any time. (Please note, that this does not cover dynamic libraries, that are loaded with ld.so.)

The pages of uninitialized data (.bss segment) and the stack are not subject to the ELF loader, thus these
pages are NOT forced to load, using this patch.

Please note, that this patch changes the behavior of the system.

This loading in advance will only work, if there is enough (physical) memory free to load the whole process’
and libraries code and data pages. If this is not the case, pages will be discarded again!

There is a variable called "t32_force_elf_page_load" initialized to zero. Only if this variable is non-
zero, the loading of the pages is performed. To enable the page loading, set

Modify the function “elf_map()” in fs/binfmt_elf.c. Add right before return (but after up_write()!):

Data.Set t32_force_elf_page_load 1

…
up_write(¤t->mm->mmap_sem);
{

/**** TRACE32 patch ****/
void t32_load_elf_page (unsigned long addr, unsigned long len);
t32_load_elf_page(map_addr,

eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr));
}
return(map_addr);
…

 RTOS Debugger for Linux - Stop Mode 34 Debugging Linux Kernel and User Processes

then, somewhere in binfmt_elf.c, add the following code snippet:

Now, if "t32_force_elf_page_load" is set to one, all pages of all processes and static libraries are
loaded in advance. After that, you should be able to debug your process without the demand paging
troubles.

/**** TRACE32 patch to force load of mapped page in advance ****/

volatile char t32_force_elf_page_load = 0;

/* to be set by TRACE32
*/

void t32_load_elf_page (unsigned long addr, unsigned long len)
{

volatile char dummy;
unsigned long page, end;

if (!t32_force_elf_page_load)
return;

if (!addr || !len)
return;

/* load all mapped pages */

page = addr & 0xfffff000;
end = (addr + len-1) & 0xfffff000;

for (; page <= end; page += 0x1000)
dummy = *((char*) page);

/* force page load */

}

 RTOS Debugger for Linux - Stop Mode 35 Debugging Linux Kernel and User Processes

Kernel Modules

Kernel modules are dynamically loaded and linked by the kernel into the kernel space. If you want to debug
kernel modules, you have to load the symbols of the kernel module into the debugger, and to relocate the
code and data address information.

All information about a module is stored in the module’s header, that is created dynamically while the module
loads. In order to get access to all module headers after a new module was loaded, the debugger needs to
get informed about the newly created module’s address translation. If MMU.TableWalk is OFF, you need to
rescan the MMU translation with “MMU.SCANALL”. See also chapter “Scanning System and Processes”.

The handling of kernel modules in Linux is completely different in Kernel versions 2.4 and 2.6.

Kernel Modules in Linux Kernel Version 2.4:

The kernel does not hold any information about the module’s loaded sections. To successfully load the
symbols of a kernel modules, you may 1) manually load and relocate the sections or 2) let the debugger
guess the section addresses or 3) patch the modutils to provide the necessary information.

1. Manually Load Symbols (2.4)

If you’re using insmod of the standard modutils (not busybox), then load your kernel module and
generate relocation information with the option “-m”:

The output of this command will tell you, where Linux relocated the sections of the module.

Now, load the symbols of the modules into the debugger, using the sections and addresses given by
insmod. Give the option “/reloc” to the load command for each section:

/sbin/insmod -m mymodul

Data.LOAD.Elf mymodul.o /gnu /nocode /noclear /reloc .text at 0x…
/reloc .data at 0x… /reloc .bss at 0x… …
 RTOS Debugger for Linux - Stop Mode 36 Debugging Linux Kernel and User Processes

2. Debugger’s Address Guessing (2.4)

While it is easy to compute the address of the .text section of a kernel module, calculating the others
is very hard and not safe. The debugger makes some wild guesses to get the address of the .data
section. It may give correct results, but it may also be wrong.

Open the TASK.MODule window. It will give you a correct code address, and a guessed data
address. Use these addresses to load the module’s symbols.In PRACTICE script files, you may use
the functions task.mod.codeaddr() and task.mod.dataaddr() to retrieve the load addresses:

TASK.sYmbol.LOADMod will use the same addresses to automatically load the symbols.

3. Patching modutils (2.4)

The Linux Awareness contains a special detection of section’s addresses, that needs a patch to
insmod. When using this patch, all section information will be available in the module header, and all
sections can be loaded correctly. Appendix A shows the necessary patch.

Now use the function task.mod.section() to get the addresses of all sections and relocate the symbols
accordingly. Example PRACTICE script file for a module called “mymod”:

If the section information is available, TASK.sYmbol.LOADMod will use the standard sections to
automatically load the symbols.

&code=task.mod.codeaddr(“mymodule”);
&data=task.mod.dataaddr(“mymodule”);
Data.LOAD.Elf mymodul.o /gnu /nocode /noclear \

/reloc .text at &code /reloc .rodata after .text \
/reloc .data at &data /reloc .bss after .data

local &modulename &modulemagic &text &rodata &data &bss

&modulename=”mymod” ; without “.o” !

&modulemagic=task.mod.magic("&modulename")

&text=task.mod.section(".text",&modulemagic)
&rodata=task.mod.section(".rodata",&modulemagic)
&data=task.mod.section(".data",&modulemagic)
&bss=task.mod.section(".bss",&modulemagic)

Data.LOAD.Elf &modulename.o /nocode /noclear /gnu \
/reloc .text at &text /reloc .rodata at &rodata \
/reloc .data at &data /reloc .bss at &bss
 RTOS Debugger for Linux - Stop Mode 37 Debugging Linux Kernel and User Processes

Kernel Modules in Linux Kernel Version 2.6:

In Linux kernel version 2.6, the kernel contains all section information, if the kernel is configured with
CONFIG_KALLSYMS=y. When configuring the kernel set the option “General Setup”->”Configure standard
kernel features”->”Load all symbols” to yes. You may say no to all sub-options.

Without setting KALLSYMS, no section information is available, and debugging kernel modules is not
possible.

If the section information is available, use the function task.mod.section() to get the addresses of all sections
and relocate the symbols accordingly. Example PRACTICE script file for a module called “mymod”:

TASK.sYmbol.LOADMod will use the standard sections to automatically load the symbols.

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the kernel module. You can also force the loading of
the symbols of a kernel module with

Debugging the kernel module’s init routine:

To debug the kernel module’s init routine, you need to break into the kernel, right when the module is loaded.
Either use the script “mod_debug.cmm” in the demo directory, or use the “Linux” menu item: “Linux” ->
“Module Debugging” -> “Debug Module on init…”. See also chapter “Linux Specific Menu”.

local &modulename &modulemagic &text &rodata &data &bss

&modulename=”mymod” ; without “.ko” !

&modulemagic=task.mod.magic("&modulename")

&text=task.mod.section(".text",&modulemagic)
&rodata=task.mod.section(".rodata",&modulemagic)
&data=task.mod.section(".data",&modulemagic)
&bss=task.mod.section(".bss",&modulemagic)

Data.LOAD.Elf &modulename.ko /nocode /noclear /gnu \
/reloc .text at &text /reloc .rodata at &rodata \
/reloc .data at &data /reloc .bss at &bss

sYmbol.AutoLoad.CHECK
sYmbol.AutoLoad.TOUCH “mymod”
 RTOS Debugger for Linux - Stop Mode 38 Debugging Linux Kernel and User Processes

Trapping Segmentation Violation

“Segmentation Violation” happens, if the code tries to access a memory location that cannot be mapped in
an appropriate way. E.g. if a process tries to write to a read-only area, or if the kernel tries to read from a
non-existent address. A segmentation violation is detected inside the kernel routine “do_page_fault()” (in
arch/<processor>/mm/fault.c), if the mapping of page fails. If so, it (usually) jumps to a local label called
“bad_area:”.

To trap segmentation violations, set a breakpoint onto the label “bad_area”. Some compilers don’t expose
local labels; in this case, search the appropriate line in “do_page_fault()” and set the breakpoint manually, or
modify the code to call a dummy function after “bad_area:” and set the breakpoint onto this dummy function.

Use “Var.Local” to display the local variables of “do_page_fault()”. This function is called with three
parameters:

• “address” contains the memory address, that caused the fault;

• “write” specifies, if it was a write (true) or read (false) access;

• “regs” is a structure containing the complete register set at the location, where the fault occurred.

When halted at “bad_area”, you may load the temporary register set of TRACE32 with these values. See the
example script “segv.cmm” in the demo directory.

Use “Data.List”, “Var.Local” etc. then to analyze the fault.

As soon as debugging is continued (e.g. “Step”, “Go”, …), the original register settings at “bad_area” are
restored.
 RTOS Debugger for Linux - Stop Mode 39 Debugging Linux Kernel and User Processes

Linux Commands

TASK.DTask Display tasks

Displays the task table of Linux or detailed information about one specific task.
“Tasks” are activated processes.

Without any arguments, a table with all created tasks will be shown.
Specify a task name, id or magic number to display detailed information on that task.

“magic” is an unique id, used by the RTOS Debugger to identify a specific task (address of the task struct).
The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

A “task” in Linux maps to a non-threaded process and to each thread of a threaded process.

There are several different mechanisms how threads are managed inside the Linux kernel. The Linux
Awareness tries to detect them automatically, but this may fail on some systems. If the TASK.DTask window
doesn’t show all threads of a process, declare the threading method manually with the TASK.Option
Threading command.

Format: TASK.DTask [<task>]

B::TASK.DTask
magic command state uid pid tty flags nice
01072000 swapper running 0. 0. 0 00000100 20.
010FE000 init sleeping 0. 1. 0 00000100 0.
010FC000 keventd sleeping 0. 2. 0 00000040 0.
010F8000 ksoftirqd_CPU0 sleeping 0. 3. 0 00000040 19.
010F6000 kswapd sleeping 0. 4. 0 00000840 0.
010F4000 bdflush sleeping 0. 5. 0 00000040 0.
010F2000 kupdated sleeping 0. 6. 0 00000040 0.
010C6000 sh running 0. 14. S0 00000000 0.
011D2000 hello current 0. 17. S0 00000000 0.

B::TASK.DTask "sh"
magic command state uid pid tty flags nice
010C6000 sh running 0. 14. S0 00000000 0.

gid sigpending vm size ttb tty name path
0. 00000000 00000000 - ttyS0 /bin/sh

+' flags
-" parent youngest child younger sibling older sibling

init hello - keventd
-" arguments

/bin/sh
-" environment

TERM=linux
PATH=/bin:/usr/bin:/etc:/sbin:/usr/sbin

+' open files
-" code addr/size data addr/size stack start/end

011F0040 / 0000BB00 011FBB44 / 000015E0 011FFF98 / 011FEFA9
+' times
 RTOS Debugger for Linux - Stop Mode 40 Linux Commands

TASK.PS Display “ps” output

Displays the process table of Linux.
The display is similar to the output of the “ps” shell command.

TASK.MODule Display kernel modules

Displays a table with all loaded kernel modules of Linux. The display is similar to the output of “lsmod”.

“magic” is an unique id, used by the RTOS Debugger to identify a module (address of the module struct).
“code addr” and “data addr” specify the address of the .text segment rsp. the .data segment.
The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.PS <items>

<items>: pid | ppid | uid | sid | pgid | cmd | pri | flags | tty | time | stat | nice | stackp
| tmout | alarm | pending | blocked | vsz | rss | start | majflt | minflt | trs |
drs | rss | count | nswap | ttb

Format: TASK.MODule

B::TASK.PS pid ppid uid tty flags time nice count stat cmd
pid ppid uid tty flags time nice count state command

0. 0. 0. - 0100 00001A3C 20. -100. running [swapper]
1. 0. 0. - 0100 00000000 0. 9. sleeping init
2. 1. 0. - 0040 00000000 0. 9. sleeping [keventd]
3. 0. 0. - 0040 00000000 19. 1. sleeping [ksoftirqd_CPU0]
4. 0. 0. - 0840 00000000 0. 9. sleeping [kswapd]
5. 0. 0. - 0040 00000000 0. 7. sleeping [bdflush]
6. 0. 0. - 0040 00000000 0. 7. sleeping [kupdated]

14. 1. 0. ttyS0 0000 00000000 0. 4. running /bin/sh
17. 14. 0. ttyS0 0000 00000000 0. 5. running hello

B::TASK.MODule
magic name size code addr data addr used by
C685D000 pcmcia_core 37984. C685D060 C686597C 0. (unused)
C017B284 0. C017B2E4 C0177F90 1. (unused)
 RTOS Debugger for Linux - Stop Mode 41 Linux Commands

TASK.FS Display file system internals

This command displays internal data structures of the used file systems. See the appropriate command
description for details.

TASK.FS.Types Display file system types

This command displays the all file system types that are currently registered in the Linux kernel.

TASK.FS.Mount Display mount points

This command displays the current mount points.

TASK.FS.MountDevs Display mounted devices

This command displays all currently mounted devices (i.e. super blocks).

TASK.FS.PROC Display /proc file system

This command displays the contents of the “/proc” file system (procfs), even if it is not mounted.

Format: TASK.FS.<Types | Mount | MountDevs | PROC>

Format: TASK.FS.Types

Format: TASK.FS.Mount

Format: TASK.FS.MountDevs

Format: TASK.FS.PROC
 RTOS Debugger for Linux - Stop Mode 42 Linux Commands

TASK.TASKState Mark task state words

This command sets Alpha breakpoints on all tasks status words.

The statistic evaluation of task states (see Task State Analysis) requires recording of the accesses to the
task state words. By setting Alpha breakpoints to this words, and selectively recording Alpha’s, you can do a
selective recording of task state transitions.

Because setting the Alpha breakpoints by hand is very hard to do, this utility command sets automatically
the Alpha’s to the status words of all tasks currently created. It does NOT set breakpoints to tasks, that
terminated or haven’t yet been created.

TASK.MMU.SCAN Scan process MMU space

If a process magic, id or name is specified, this command scans the target MMU of the space id, specified by
the given process, and sets the Debugger MMU appropriately, to cover the physical to logical address
conversion of this specific process.

If no argument is specified, the command scans all current processes.

Space IDs must be enabled (SYStem.Option MMUSPACES ON) to successfully execute this command.

The command walks through all page tables which are defined for the memory spaces of the process and
prepares the Debugger MMU to hold the physical to logical address conversion of this process. This is
needed to provide full HLL support. If a process was loaded dynamically, you must set the Debugger MMU
to this process, otherwise the Debugger won’t know, where the physical image of the process is placed.

See also MMU Support.

Example:

Format: TASK.TASKState

Format: TASK.MMU.SCAN [<process>]

; scan the memory space of the process “hello”
TASK.MMU.SCAN “hello”
 RTOS Debugger for Linux - Stop Mode 43 Linux Commands

TASK.sYmbol Process/Module symbol management

(Not available for all processors!)

The TASK.sYmbol command group helps to load and unload symbols and MMU settings of a given process
or kernel module. In particular the commands are:

See also

■ TASK.sYmbol.DELete ■ TASK.sYmbol.DELeteMod ■ TASK.sYmbol.LOAD ■ TASK.sYmbol.LOADMod

TASK.sYmbol.LOAD Load process symbols & MMU

Specify the process name or path (in quotes) or magic to load the symbols of this process.

In order to debug a user process, the debugger needs the symbols of this process, and the process specific
MMU settings (see chapter “Debugging User Processes”).
This command retrieves the appropriate space id, loads the symbol file of an existing process and reads its
MMU entries. Note, that this command works only with processes, that are already loaded in Linux (i.e. that
show up in the TASK.DTask window).

Example:
If the TASK.DTask window shows the entry:

magic___|command_|state___|uid___|pid___|tty|flags___|nice__|
80044000|hello |current | 0.| 24.| 0 |00000000| 0.|

the command:

TASK.sYmbol.LOAD “hello”

will execute internally the commands:

TASK.sYmbol.LOAD Load Process Symbols & MMU

TASK.sYmbol.DELete Unload Process Symbols & MMU

TASK.sYmbol.LOADMod Load Module Symbols & MMU

TASK.sYmbol.DELeteMod Unload Module Symbols & MMU

TASK.sYmbol.LOADLib Load Library Symbols

TASK.sYmbol.DELeteLib Unload Library Symbols

TASK.sYmbol.Option Set symbol management options

Format: TASK.sYmbol.LOAD <process>
 RTOS Debugger for Linux - Stop Mode 44 Linux Commands

TASK.MMU.SCAN 24.
Data.LOAD.Elf hello 24.:0 /gnu /nocode /noclear

If the symbol file is not within the current directory, specify the path to the ELF file. E.g.:

TASK.sYmbol.LOAD “C:\mypath\hello”

Loads the ELF file “C:\mypath\hello” of the process “hello”. Note, that the process name must equal to the
filename of the ELF file.

See also

■ TASK.sYmbol

TASK.sYmbol.DELete Unload process symbols & MMU

Specify the process name or path (in quotes) or magic to unload the symbols of this process.

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols and MMU entries. Otherwise the remained entries may disturb further debugging.
This command deletes the symbols of the specified process and deletes it’s MMU entries.

Example:
when deleting the above loaded symbols with the command:

TASK.sYmbol.DELete “hello”

the debugger will execute internally the commands:

MMU.Delete 24.:0--0xffffffff
sYmbol.Delete \\hello

See also

■ TASK.sYmbol

TASK.sYmbol.LOADMod Load module symbols & MMU

Specify the module name (in quotes) or magic to load the symbols of this module.

Format: TASK.sYmbol.DELete <process>

Format: TASK.sYmbol.LOADMod <module>
 RTOS Debugger for Linux - Stop Mode 45 Linux Commands

In order to debug a kernel module, the debugger needs the symbols of this module, and the module specific
MMU settings. This command retrieves the appropriate load addresses, loads the .o/.ko symbol file of an
existing module and reads its MMU entries. Note, that this command works only with modules, that are
already loaded in Linux (i.e. that show up in the TASK.MODule window).

Example:

TASK.sYmbol.LOADMod “pcmcia_core”

See also chapter “Debugging Kernel Modules”

See also

■ TASK.sYmbol

TASK.sYmbol.DELeteMod Unload module symbols & MMU

Specify the module name (in quotes) or magic to unload the symbols of this kernel module.

When debugging of a module is finished, or if the module is removed from the kernel, you should remove
loaded module symbols and MMU entries. Otherwise the remained entries may disturb further debugging.
This command deletes the symbols of the specified module and deletes it’s MMU entries.

Example:

TASK.sYmbol.DELeteMod “pcmcia_core”

See also chapter “Debugging Kernel Modules”

See also

■ TASK.sYmbol

Format: TASK.sYmbol.DELeteMod <module>
 RTOS Debugger for Linux - Stop Mode 46 Linux Commands

TASK.sYmbol.LOADLib Load library symbols

As first parameter, specify the process to which the desired library belongs (name in quotes or magic).
Specify the library name in quotes as second parameter. The library name must match the name as shown
in TASK.DTASK <process>, ”code files”.

In order to debug a library, the debugger needs the symbols of this library, relocated to the correct addresses
where Linux linked this library. This command retrieves the appropriate load addresses and loads the .so
symbol file of an existing library. Note, that this command works only with libraries, that are already loaded in
Linux (i.e. that show up in the TASK.DTASK <process> window).

Example:

TASK.sYmbol.LOADLib “hello” “libc-2.2.1.so”

See also chapter “Debugging Into Shared Libraries”

TASK.sYmbol.DELeteLib Unload library symbols

As first parameter, specify the process to which the desired library belongs (name in quotes or magic).
Specify the library name in quotes as second parameter. The library name must match the name as shown
in TASK.DTASK <process>, ”code files”.

When debugging of a library is finished, or if the library is removed from the kernel, you should remove
loaded library symbols. Otherwise the remained entries may disturb further debugging.
This command deletes the symbols of the specified library.

Example:

TASK.sYmbol.DELeteLib “hello” “libc-2.2.1.so”

See also chapter “Debugging Into Shared Libraries”

Format: TASK.sYmbol.LOADLib <process> <library>

Format: TASK.sYmbol.DELeteLib <process> <library>
 RTOS Debugger for Linux - Stop Mode 47 Linux Commands

TASK.sYmbol.Option Set symbol management options

Set a specific option to the symbol management.

LOADCMD:
This setting is only active, if the symbol autoloader for processes is off.
TASK.sYmbol.LOAD uses a default load command to load the symbol file of the process. This loading
command can be customized using this option with the command enclosed in quotes. Two parameters are
passed to the command in a fixed order:

Examples:

LOADMCMD:
This setting is only active, if the symbol autoloader for kernel modules is off.
TASK.sYmbol.LOADMod uses a default load command to load the symbol file of the module. This loading
command can be customized using this option with the command enclosed in quotes. Three parameters are
passed to the command in a fixed order:

Examples:

Format: TASK.sYmbol.Option <option>

<option> LOADCMD <command>
LOADMCMD <command>
LOADLCMD <command>
MMUSCAN <ON | OFF>
AutoLoad <option>

%s name of the process

%v space id of the process

TASK.sYmbol.Option LOADCMD “data.load.elf %s 0x%x:0 /nocode /noclear”

TASK.sYmbol.Option LOADCMD “do myloadscript %s 0x%x”

%s name of the module

%x start (=code) address of the module

%x data address of the module (if applicable)

TASK.sYmbol.Option LOADMCMD “data.load.elf %s /nocode /noclear /gcc3
/reloc .text at 0x%x /reloc .data at 0x%x /reloc .bss after .data”

TASK.sYmbol.Option LOADMCMD “do myloadmscript %s 0x%x 0x%x”
 RTOS Debugger for Linux - Stop Mode 48 Linux Commands

LOADLCMD:
This setting is only active, if the symbol autoloader for libraries is off.
TASK.sYmbol.LOADLib uses a default load command to load the symbol file of the library. This loading
command can be customized using this option with the command enclosed in quotes. Three parameters are
passed to the command in a fixed order:

Examples:

MMUSCAN:
This option controls, if the symbol loading mechanisms of TASK.sYmbol scan the MMU page tables of the
loaded components, too. When using MMU.TableWalk, then switch this off.

AutoLoad:
This option controls, which components are checked and managed by the AutoLoader:

The options are set *additionally*, not removing previous settings.

Example:

%s name of the library

%x space id of the library

%x oad address of the library

TASK.sYmbol.Option LOADLCMD “D.LOAD.Elf %s 0x%x:0x%x /nocode /noclear”

TASK.sYmbol.Option LOADMCMD “do myloadlscript %s 0x%x 0x%x”

Process check processes

Library check all libraries of all processes

Module check kernel modules

CurrLib check only libraries of current process

ALL check processes, libraries and kernel modules

NoProcess don’t check processes

NoLibrary don’t check libraries

NoModule don’t check modules

NONE check nothing.

; check processes and kernel modules
TASK.sYmbol.Option AutoLoad Process
TASK.sYmbol.Option AutoLoad Module
 RTOS Debugger for Linux - Stop Mode 49 Linux Commands

TASK.Watch Watch processes

(Not available for all processors!)

The TASK.Watch command group build a watch system that watches your Linux target for specified
processes. It loads and unloads process symbols automatically. Additionally it covers process creation and
may stop watched processes at their entry points.

In particular the watch commands are:

See also

■ TASK.Watch.ADD ■ TASK.Watch.DELete ■ TASK.Watch.DISable ■ TASK.Watch.DISableBP
■ TASK.Watch.ENable ■ TASK.Watch.ENableBP ■ TASK.Watch.View

TASK.Watch.View Activate watch system and show watched processes

TASK.Watch.ADD Add process to watch list

TASK.Watch.DELete Remove process from watch list

TASK.Watch.DISable Disable watch system

TASK.Watch.ENable Enable watch system

TASK.Watch.DISableBP Disable process creation breakpoints

TASK.Watch.ENableBP Enable process creation breakpoints

TASK.Watch.Option Set watch system options
 RTOS Debugger for Linux - Stop Mode 50 Linux Commands

TASK.Watch.View Show watched processes

Activates the watch system for processes and shows a table of watched processes.

NOTE: This feature may affect the realtime behavior of the target application!
(Please see below for details.)

The argument takes a process name for the initial process to watch.

The watch system for processes is able to automatically load and unload the symbols of a process and it’s
MMU settings, depending on their state in the target. Additionally, the watch system can detect the creation
of a process and halts the process at it’s entry point.

Add processes to the watch list with the command TASK.Watch.ADD.
Remove processes from the watch list with the command TASK.Watch.DELete.
The watch system for processes is active, as long as the TASK.Watch.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Format: TASK.Watch.View [<process>]

process Specifies the name of the process to watch for.

spaceid Specifies the current space id (= process id) of the watched process.
 If greyed, the debugger is currently not able to determine the space id of the
process (e.g. the target is running).

state Indicates the current watch state of the process.
If greyed, the debugger is currently not able to determine the watch state.
no process: the debugger couldn’t find the process in the actual Linux process
list.
no symbols: the debugger found the process and loaded it’s MMU settings, but
couldn’t load the symbols of the process (most likely because the according
symbol files were missing).
loaded: the debugger found the process, loaded it’s MMU settings and loaded
it’s symbols

entry Specifies the process entry point, which is main().
If greyed, the debugger is currently not able to detect the entry point, or is
unable to set the process entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP)

B::TASK.Watch.View "ping"
process spaceid state entry
ping 6. loaded main
visadm -- no process --
filesys 1. no symbols --
 RTOS Debugger for Linux - Stop Mode 51 Linux Commands

Automatic loading and unloading of process symbols:

In order to detect the current processes, the debugger must have full access to the target, i.e. the target
application must be stopped (with one exception, see below for creation of processes). As long as the target
runs in real time, the watch system is not able to get the current process list, and the display will be greyed
(inactive).

If the target is halted (either by running on a breakpoint, or by halting it manually), the watch system starts it’s
work. For each of the processes in the watch list, it determines the state of this process in the target.

If a process is active on the target, which was previously not found there, the watch system scans it’s MMU
entries and loads the appropriate symbol files. In fact, it executes TASK.sYmbol.LOAD for the new process
(see there).

If a watched process was previously loaded, but is no longer found on the Linux process list, the watch
system unloads the symbols and removes the MMU settings from the debugger MMU table. The watch
system executes TASK.sYmbol.DELete for this process.

If the process was previously loaded, and is now found with another space id (e.g. if the process terminated
and started again), the watch system first removes the process symbols and reloads them to the appropriate
space id.

You can disable the loading / unloading of process symbols with the command TASK.Watch.DISable.

Detection of process creation:

To halt a process at it’s main entry point, the watch system can detect the process creation and set the
appropriate breakpoints.

To detect the process creation, the watch system sets an on-chip breakpoint on a kernel function, that is
called upon creation of processes. Every time, the breakpoint is hit, the debugger checks if a watched
process is started. If not, it simply resumes the target. If the debugger detects the start of a newly created
(and watched) process, it sets an on-chip breakpoint onto the main entry point of the process (main()), and
resumes the target. A short while after this, the main breakpoint will hit and halt the target at the entry point
of the process. The process is now ready to be debugged.

NOTE: This feature uses one permanent on-chip breakpoint, and one temporary on-chip breakpoint, when a
process is created. Please ensure, that those breakpoints are available when using this feature.

NOTE: Upon every process creation, the target application is halted for a short time and resumed after
searching for the watched processes. This impacts the realtime behavior of your target.

If you don’t want the watch system to set breakpoints, you can disable them by TASK.Watch.DISableBP. Of
course, detection of process creation won’t work then.

See also

■ TASK.Watch
 RTOS Debugger for Linux - Stop Mode 52 Linux Commands

TASK.Watch.ADD Add process to watch list

Specify the process name (in quotes) or magic to add this process to the watched processes list.

Please see TASK.Watch.View for details.

See also

■ TASK.Watch

TASK.Watch.DELete Remove process from watch list

Specify the process name (in quotes) or magic to remove this process from the watched processes list.

Please see TASK.Watch.View for details.

See also

■ TASK.Watch

TASK.Watch.DISable Disable watch system

This command disables the complete watch system. The watched processes list is no longer checked
against the target and is not updated. You’ll see the TASK.Watch.View window greyed.

This feature is useful, if you want to keep process symbols in the debugger, even if the process terminated.

See also

■ TASK.Watch

Format: TASK.Watch.ADD <process>

Format: TASK.Watch.DELete <process>

Format: TASK.Watch.DISable
 RTOS Debugger for Linux - Stop Mode 53 Linux Commands

TASK.Watch.DISableBP Disable process creation breakpoints

This command prevents the debugger from setting on-chip breakpoints for the detection of process creation.
After executing this command, the target will run in realtime. However, the watch system can no longer
detect process creation. Automatic loading of process symbols will still work.

This feature is useful, if you’d like to use the on-chip breakpoints for other purposes.

Please see TASK.Watch.View for details.

See also

■ TASK.Watch

TASK.Watch.ENable Enable watch system

This command enables the previously disabled watch system. It enables the automatic loading of process
symbols as well as the detection of process creation.

Please see TASK.Watch.View for details.

See also

■ TASK.Watch

Format: TASK.Watch.DISableBP

Format: TASK.Watch.ENable
 RTOS Debugger for Linux - Stop Mode 54 Linux Commands

TASK.Watch.ENableBP Enable process creation breakpoints

This command enables the previously disabled on-chip breakpoints for detection of process creation.

Please see TASK.Watch.View for details.

See also

■ TASK.Watch

TASK.Watch.Option Set watch system options

Set various options to the watch system.

Please see TASK.Watch.View for details.

Format: TASK.Watch.ENable

Format: TASK.Watch.Option <option>

<option>: BreakFunC <function>

BreakFunC Set the breakpoint location for process creation detection.
The default value is “set_binfmt”.
Example: TASK.Watch.Option BreakFunC “set_binfmt”

BreakOptC Set the option that is used to set the breakpoint for process creation detection.
The default value is “/Onchip”
Example: TASK.Watch.Option BreakOptC “/Soft”
 RTOS Debugger for Linux - Stop Mode 55 Linux Commands

TASK.Option Set awareness options

Set various options to the awareness.

See also chapter “Debugging Threads”.

Format: TASK.Option <option>

<option>: Threading <threading> [ON | OFF]
MEMMAP <mem_map>
NameMode [comm | TaskName | ARG0]
THRCTX [ON | OFF]

Threading Set the Threading type used by Linux.
TGROUP: threads are organized by the thread_group list.

MEMMAP For ColdFire only:
Set the MMU memory mapping table (default is symbol “mem_map”).
If no mapping table is used within the MMU, specify “0”.

NameMode Set the mode how the task names are evaluated.
comm: use the “comm” field in the task structure (default).
TaskName: use the name evaluated by TASK.NAME and comm (allows
renaming of the tasks with TASK.NAME.Set).
ARG0: use the arg[0] statement of the process call.

THRCTX Set the context id type, that is recorded with the real-time trace (e.g. ETM).
If set to on, the context id in the trace contains thread switch detection.
See Task Runtime Statistics.
 RTOS Debugger for Linux - Stop Mode 56 Linux Commands

Linux PRACTICE Functions

There are special definitions for Linux specific PRACTICE functions.

TASK.CONFIG(<item>) Reports configuration parameters

TASK.CONFIG(magic) Returns the address for the magic number

TASK.CONFIG(magicsize) Returns the size of the magic number (1,2 or 4)

TASK.CURRENT(spaceid) Returns the current space id.

TASK.ERROR.CODE() Checks for Awareness errors and returns the
error code (0 = no error)

TASK.ERROR.HELP() Checks for Awareness errors and returns the
error help id.

TASK.LIB.ADDRESS
 (<libraryname>, <processmagic>)

Returns the load address of the library, loaded
by the specified process

TASK.LIB.CODESIZE
 (<libraryname>, <processmagic>)

Returns the code size of the library, loaded by
the specified process

TASK.MOD.CODEADDR(<modulename>) Returns the code start address of the module

TASK.MOD.DATAADDR(<modulename>) Returns the data start address of the module

TASK.MOD.MAGIC(<modulename>) Returns the “magic” value of the module

TASK.MOD.NAME(<modulemagic>) Returns the name of the given module magic

TASK.MOD.SECTION
 (<sectionname>,<modulemagic>)

Returns the address of the section of the
specified module

TASK.PROC.CODEADDR(<processname>) Returns the code start address of the process

TASK.PROC.CODESIZE(<processname>) Returns the code size of the process
 RTOS Debugger for Linux - Stop Mode 57 Linux PRACTICE Functions

TASK.PROC.DATAADDR(<processname>) Returns the data start address of the process

TASK.PROC.DATASIZE(<processname>) Returns the data size of the process

TASK.PROC.MAGIC(<processname>) Returns the “magic” value of the process

TASK.PROC.NAME(<processmagic>) Returns the name of the specified process

TASK.PROC.PSID(<processname>) Returns the process id of the specified process

TASK.PROC.SPACEID(<processname>) Returns the space id of the specified process

TASK.PROC.VMAEND
 (<processname>, <address>)

Returns the end address of the given process
virtual memory area holding the given address

TASK.PROC.VMASTART
 (<processname>, <address>)

Returns the start address of the given process
virtual memory area holding the given address
 RTOS Debugger for Linux - Stop Mode 58 Linux PRACTICE Functions

Error Messages

While using the Linux Awareness, error messages may occur. This chapter explains the meanings of the
messages, and what could cause the error.

No error.

No error was detected by the Awareness.

Failed to detect kernel symbols.

The awareness couldn’t find the necessary kernel symbols.

Are the symbols of the Linux kernel loaded?
Are the kernel symbols still accessible?
Maybe a missing “/noclear” option when loading symbols of other components?

Failed to detect kernel structures.

The awareness couldn’t find the HLL information of the kernel.

Is the kernel compiled with debug information?

Failed to detect kernel structure members.

The Awareness couldn’t find the HLL structure member information of the kernel structures.

Is the kernel fully compiled with debug information?
Try to execute “sYmbol.CLEANUP”.

Unknown Error Id.

An error was detected, but the error code couldn’t be resolved.

Probably a bug in the Linux Awareness. Please execute “print task.error.code()” and report it to
LAUTERBACH.
 RTOS Debugger for Linux - Stop Mode 59 Error Messages

Appendix

Appendix A: insmod patch for Linux 2.4

This patch provides section information in the kernel module headers, to ease symbol loading for kernel
modules in Linux 2.4.
The patch applies to two function in the file modutils/obj/obj_reloc.c

Change the function obj_load_size():

unsigned long
obj_load_size (struct obj_file *f)
{

unsigned long dot = 0;
struct obj_section *sec;

/* TRACE32: next lines inserted */

unsigned long strsize = 0;

/* calculate space for section names in front of sections */
for (sec = f->load_order; sec ; sec = sec->load_next)
{

strsize += 4 + strlen(sec->name)+1; /* address plus zero
terminated name */
if (strsize & 3) strsize += 4-(strsize&3); /* align to 32bit */

}
strsize += 8; /* start and end marker */

/* preserve first (struct module) section */
sec = f->load_order;
{

ElfW(Addr) align;

align = sec->header.sh_addralign;
if (align && (dot & (align - 1)))
dot = (dot | (align - 1)) + 1;

sec->header.sh_addr = dot;
dot += sec->header.sh_size;

}
sec = sec->load_next;
 RTOS Debugger for Linux - Stop Mode 60 Appendix

/* add section name size */
if (dot & 3) dot += 4-(dot&3);
dot += strsize;

/* TRACE32: end insert */

/* Finalize the positions of the sections relative to one */
/* another.*/

/* TRACE32: line changed: */
/*for (sec = f->load_order; sec ; sec = sec->load_next)*/
for (; sec ; sec = sec->load_next)
{

ElfW(Addr) align;

align = sec->header.sh_addralign;
if (align && (dot & (align - 1)))
dot = (dot | (align - 1)) + 1;

sec->header.sh_addr = dot;
dot += sec->header.sh_size;

}

return dot;
}

 RTOS Debugger for Linux - Stop Mode 61 Appendix

Change the function obj_create_image():

int
obj_create_image (struct obj_file *f, char *image)
{

struct obj_section *sec;
ElfW(Addr) base = f->baseaddr;

/* TRACE32: next lines inserted */

struct obj_section *sec2;

/* preserve first (struct module) section */
sec = f->load_order;
{

char *secimg = image;

if (sec->contents != 0)
{

secimg = image + (sec->header.sh_addr - base);

/* Note that we allocated data for NOBITS sections */
/* earlier. */
memcpy(secimg, sec->contents, sec->header.sh_size);

}

/* create section names in front of sections */
secimg += (sec->header.sh_size);
if ((int)secimg & 3) secimg += 4-((int)secimg&3);
strncpy (secimg, "T32S", 4); /* start marker */
secimg += 4;
for (sec2 = f->load_order; sec2 ; sec2 = sec2->load_next)
{

((unsigned long) secimg) = sec2->header.sh_addr;
secimg += 4;
strcpy (secimg, sec2->name);
secimg += strlen (sec2->name) + 1;
if ((int)secimg & 3) secimg += 4-((int)secimg&3);

}
strncpy (secimg, "T32E", 4); /* end marker */

}

sec = sec->load_next;

/* TRACE32: end insert */
 RTOS Debugger for Linux - Stop Mode 62 Appendix

/* TRACE32: line changed: */
/* for (sec = f->load_order; sec ; sec = sec->load_next)*/
for (; sec ; sec = sec->load_next)
{

char *secimg;

if (sec->contents == 0)
continue;

secimg = image + (sec->header.sh_addr - base);

/* Note that we allocated data for NOBITS sections */
/* earlier. */
memcpy(secimg, sec->contents, sec->header.sh_size);

}

return 1;
}

 RTOS Debugger for Linux - Stop Mode 63 Appendix

	RTOS Debugger for Linux - Stop Mode
	Debugging Modes for Embedded Linux
	Run Mode Debugging with TRACE32 as GDB Front-end
	Stop Mode Debugging via JTAG
	Integrated Run & Stop Mode Debuggings via JTAG
	Supported Debugging Modes sorted by Architectures

	Overview
	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in Linux

	Features
	Display of Kernel Resources
	Task Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration
	Scanning System and Processes

	Symbol Autoloader
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	Linux Specific Menu

	Basics of HW-based Debugging
	Debugging Linux Kernel and User Processes
	Linux Kernel
	Downloading the Kernel
	Debugging the Kernel Startup
	Debugging the Kernel

	User Processes
	Debugging the Process
	Debugging into Shared Libraries
	Debugging Linux Threads
	On Demand Paging

	Kernel Modules
	Trapping Segmentation Violation

	Linux Commands
	TASK.DTask Display tasks
	TASK.PS Display “ps” output
	TASK.MODule Display kernel modules
	TASK.FS Display file system internals
	TASK.FS.Types Display file system types
	TASK.FS.Mount Display mount points
	TASK.FS.MountDevs Display mounted devices
	TASK.FS.PROC Display /proc file system
	TASK.TASKState Mark task state words
	TASK.MMU.SCAN Scan process MMU space
	TASK.sYmbol Process/Module symbol management
	TASK.sYmbol.LOAD Load process symbols & MMU
	TASK.sYmbol.DELete Unload process symbols & MMU
	TASK.sYmbol.LOADMod Load module symbols & MMU
	TASK.sYmbol.DELeteMod Unload module symbols & MMU
	TASK.sYmbol.LOADLib Load library symbols
	TASK.sYmbol.DELeteLib Unload library symbols
	TASK.sYmbol.Option Set symbol management options
	TASK.Watch Watch processes
	TASK.Watch.View Show watched processes
	TASK.Watch.ADD Add process to watch list
	TASK.Watch.DELete Remove process from watch list
	TASK.Watch.DISable Disable watch system
	TASK.Watch.DISableBP Disable process creation breakpoints
	TASK.Watch.ENable Enable watch system
	TASK.Watch.ENableBP Enable process creation breakpoints
	TASK.Watch.Option Set watch system options
	TASK.Option Set awareness options

	Linux PRACTICE Functions
	Error Messages
	Appendix
	Appendix A: insmod patch for Linux 2.4

