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ABSTRACT 
Broadcast video products require every independently clocked 
video path to have at least one external voltage controlled crystal 
oscillator (VCXO) and corresponding PLL circuitry. This causes 
VCXOs to be a significant percentage of the bill of materials 
(BOM) cost for video customers, especially as FPGAs sizes have 
increased to allow handling of many video paths within a single 
device. 
 
In this paper we present the development of a system to use the 
fractional PLLs in Altera’s 28nm products as a replacement for 
costly external VCXOs and space consuming external PLL 
circuitry. Our implementation covers the design of a PLL in soft 
logic, using DSP resources, which is used to control an fPLL via 
dynamic reconfiguration. We describe some of challenges in 
generating the various required video clock rates from different 
types of reference sources. Our work also included experiments 
on configuring the engineering features of the fPLL to minimize 
transfer of fractional spurs and meet SDI jitter specifications. 
 
The resulting IP allows fPLLs to completely replace external 
VCXOs and any external circuitry. Multiple instances of this IP 
can be implemented to drive independent video paths. For 
broadcast customers this produces very significant cost savings, 
potentially exceeding the cost of the FPGA. This work has 
implications for future FPGA PLL and clocking architecture 
decisions. It may also serve as the foundation for VCXO 
replacement in areas such as Optical Transport Network (OTN). 
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1. INTRODUCTION 
Digitization of video signals has been common practice in 
broadcast video for many years. Early digital video was 
commonly encoded on a 10-bit parallel bus, but as higher 
processing speeds became practical, a serial form of the digitized 
video signal called the Serial Digital Interface (SDI) was 
developed and standardized. Serialization of the digital video 
stream greatly facilitates its distribution within a professional 
broadcast studio. 
 
SDI is based on a 27MHz, 74.25MHz, 148.5MHz, 74.25/1.001 or  
148.5/1.001 reference pixel clock depending on the exact standard 
– at the highest data rate this results in an approximately 3Gb/s 
serial signal for 20 bit/pixel High Definition (1080p) video. 

 
As with any source clocked streaming interface, there are small 
differences in local oscillator frequencies, causing different 
devices to produce video streams with slight offsets in their 
frequencies. The local oscillator frequency on a given device also 
varies over time due to voltage and temperature fluctuations – this 
shows up as jitter. The SDI specification allows for a maximum 
offset of +/-10ppm from the nominal refence clock frequencies for 
static offsets. There is also a specification on the maximum jitter 
allowed over a particular bandwidth. 
 
This variation in the clock frequency requires a device that 
retransmits the signal to lock to the incoming clock recovered 
from the data, and regenerate the clock to use as a reference for 
transmit.1 This is known as reclocking. 
 
The process of generating the transmit clock by using the 
recovered receive clock as a reference is accomplished using a 
phase locked loop (PLL). Because of the small frequency range 
involved, a VCXO is usually used as the oscillator.2 
 
Most SDI devices perform some type of reclocking, causing PLLs 
and correspondingly VCXOs to be commonplace in video 
equipment. Every independently clocked video path requires at 
least one VCXO device. As a result, VCXOs tend to be a 
significant percentage of the bill of materials. As FPGAs have 
grown to handle more video paths in a single device, the number 
of VCXOs on the board has also grown. To further complicate 
matters, becaue PLLs and VCXOs are analog circuits, board 
layout is made difficult by the need to make consessions to 
complex analog layout requirements.  
 
For Altera’s 28nm products, a delta-sigma fractional PLL 
architecture was introduced on top of the existing integer PLL. A 
fractional PLL (fPLL) allows output frequency to be multiplied by 
an integer and a high granularity fraction. In an fPLL the feedback 
divider is modulated continuously such that the averge divide 
ratio is a fractional value. A third-order delta-sigma modulator is 

                                                                 
1 The common exception to the rule that a device must regenerate the 

clock are non-reclocking video routers. These are often effectively 
digital switches based on multiplexers, where no clock recovery 
happens. However, non-reclocking devices generally add jitter. Note 
that not all routers are non-reclocking. 

2 In recent years VCXOs have been partially replaced by clock generating 

integrated circuits that perform similar functions. However the price 
and performance remains comparable. 



used to shift the fractional noise to high frequencies to be filtered 
out by the PLL. The high granularity and jitter reduction 
properties of Altera’s fPLL make it good system to use as an 
arbitrary frequency clock source. 
 
In this paper, we present the development of a system to use the 
fPLLs in Altera’s 28nm products as a replacement for costly 
external VCXOs and space consuming external PLL circuitry. 
This paper is organized as follows. The need of synchronization 
within video network components by using VCXO solution is 
described in Section 2. It is followed by introducing the VCXO-
less implementation that covers the development of an innovative 
clock control scheme and the creation of an extremely useful soft 
IP block for broadcast video applications in Section 3. The work 
covers the challenges of tuning the system to have sufficiently low 
jitter to meet the SDI specifications, while not relying on low 
noise external VCXOs. This extends to the challenges that faced 
and resolutions taken to counter the challenges that described in 
Section 4. The performance of the implementation is proven by 
several experiments. The results are presented in Section 5. 
Finally, the conclusion is drawn in Section 6.   
 

2. VCXO SOLUTION 
Many components are involved in the production of the final 
broadcast video signal. Distribution amplifiers send video signals 
around the studio and perform the job as a repeater to help clean 
up the signals they distribute. Frame synchronizers ensure that all 
video sources are synchronized making the process of switching, 
keying, and editing possible. Video routers provide a single point 
of switching and routing video signals to and from other studios. 
All of these video components must perform a receive and then 
subsequently re-transmit. An SDI reclocker is required in all of 
these components to help remove the jitter from the SDI data 
stream or to reclock the data onto a new clock domain. 
 
Reclocking can be used to recreate the receive clock to use for 
transmit, potentially with lower jitter. When an SDI device 
reclocks a video stream to a recoverd clock it can include a short 
FIFO buffer (phase compensation FIFO) between RX and TX. 
This will compensate for small temporary differences between the 
RX clock and the generated TX clock that are caused by jitter. 
Thus, if the PLL has a low bandwidth, reclocking can be used to 
reduce jitter on an SDI signal. 
 
Reclocking can also be used to transfer the video to a completely 
new clock domain. In video applications it is also desireable to 
switch between two video streams. Doing this without creating 
broken video output requires  the change from one video stream to 
another to happen between the active portion of the video frame. 
The active portion is effectively the portion that contains the 
image, the remainder of the frame contains either ancilliary data 
or is blank. When two video streams come from different sources, 
with different offsets in their clock rates, they must be 
synchronized onto a common clock domain to allow convenient 
switching between them. A device known as a master clock 
provides a reference signal that defines the new common clock 
domain. Each of the incoming asynchronous video streams is 
passed through a device that generates a transmit clock based on 
the master clock input. The device uses an elastic frame buffer to 
drop or repeat video frames whenever the accumulated offset 
between RX and TX reaches a point that would cause the buffer 

to overflow or underflow. The result is that video can be 
reclocked onto a completely new clock domain, and multiple 
video sources can be reclocked onto a common clock domain. The 
device in this case is known as a frame synchronizer. 
 

 
Figure 1 SDI reclocker 

 
Regardless of the application, the PLL circuitry is  similar. A 
reference is provided, either from the incoming video or a master 
clock. This feeds a phase-frequency detector (PFD) that measures 
the error between the reference and the generated clock. The PFD 
error, in the form of up/down pulses, is then averaged in a loop 
filter. Typically in VCXO based solutions the filter is 
implemented external to the FPGA as a charge pump and R-C 
lowpass filter made from discrete components. The output of the 
loop filter drives the control voltage of the VCXO. The VCXO 
output is used as the TX reference clock, and it is also used to 
close the feedback loop to the PFD. See references 1 and 2 for a 
thorough discussion of PLLs. 
 
If  any of the video components has more than one independent 
channel, more than one PLL circuit and VCXO is required is 
required. For example, a 4x4 video router acts like a switchboard  
for video signals. It routes video signals from one place to 
another. Video signals are switched through a cross-point matrix, 
reclocked, and sent to its destination. The video signal is 
processed as a serial stream from input to output. A total of 4 
VCXOs are required in this 4x4 video router. This is illustrated in 
Figure 2 
 



 
 

Figure 2 SDI 4x4 video router 

 
Considering another example, an SDI dual distribution amplifier 
has 2 SDI inputs to receive multiple video signals and help extend 
the distance that the video signal can reach or not to distribute the 
video signal to multiple sources. A total of 2 VCXOs are required 
in this dual distribution amplifier. This is illustrated in Figure 3. 
 

 
 

Figure 3 SDI dual distribution amplifier 

 

Using traditional VCXO design methods, a production switcher or 
broadcast router can require dozens of VCXOs to allow FPGAs to 
pass through (SD/HD/3G-SDI) video channels. Priced at US$15-
$25 each, the VCXOs add a significant and growing cost to the 
BOM because video networking equipment is scaled up to carry 
large numbers of channels. 
 
Altera FAEs are currently working with customers looking to 
place more than 16 independent video paths in a single FPGA. At 
this point the BOM cost of VCXOs can exceed the cost of the 
FPGA, and board design becomes extremely challenging. 

 

3. VCXO-LESS SOLUTION 
The VCXO-less solution replaces the conventional VCXO and 
discrete PLL with an fPLL and soft logic contained entirely within 
the FPGA. A dynamically reconfigurable fPLL can conceptually 
serve the same function as a VCXO, provided that it has sufficient 
granularity, range and frequency update speed. 
 
Fractional PLLs use divide counters to perform frequency 
synthesis. The counter settings can be reconfigured to adjust the 
fPLL output clock in real time without reconfiguring  the entire 
28nm FPGA devices. In the VCXO-less solution, the only fPLL 
component that is needed to be reconfigured in real time using the 
dynamic reconfiguration IP is the fractional division (Mfrac) for 
delta-sigma modulator (DSM). 
 
The Altera fPLL supports a 32-bit fractional divide word – this 
results in an approximate granularity of Fout*1/232. When 
generating 148.5MHz, this translates to 3.5x10-2Hz or 0.002 ppm 
per LSB step. This is comparable or better than the noise floor 
that can be achieved with a typical 100ppm pull range VCXO. 
 
Characterization results on dynamic reconfiguration of the fPLL 
show that the fractional value can be updated more than the 
equivalent of 1000ppm in a single step without the PLL losing 
lock. Additionally, the settling time for a small frequency update 
has been measured to be 10us. Both of these figures indicate that 
the fPLL has the reconfiguration characteristics to emulate a 
VCXO. 
 
In the VCXO-less implementation, soft IP with DSP resources is 
created to work in conjuction with the fPLL as a functional 
replacement of a discrete PLL. This is illustrated in Figure 4. The 
soft IP is complete PLL implementation, including a phase-
frequency detector (PFD) and loop filter. The reference signal is 
the HSYNC signal that is extracted from the incoming video 
stream, or an HSYNC pulse from a master clock, while the 
feedback signal is a divided version of the fPLL output clock. The 
HSYNC signal is a horizontal sync pulse indicating the start of a 
line of video. It is commonly used as timing reference since it 
occurs as a repetitive and accurate rate. In this application, the 
HSYNC signal is used in place of using the RX recovered clock 
directly to make the system easily switchable to use a master clock 
output, which only provides HSYNC signals. 
 
The PFD is a traditional flip-flop based PFD, that compares both 
reference and feedback signals to generate the up and down pulse 
width. The pulse length of the up and down pulses is measured 
relative to a fast clock, and subtracted to generate a phase error 
signal. This is then sent to the digital loop filter. The digital loop 
filter implements the Proportional-Integral (PI) control algorithm. 
The phase error drives the proportional and integral elements of 
the PI controller. The resulting signals are added and used to drive 
the fPLL. 
 



 
 

Figure 4 VCXO-less implementation  

 

In a typical PI controller, each of the proportional and intergral 
elements performs a different tasks and has a different effect on 
the functioning of a system. These elements are driven by a 
combination of the system command and the feedback signal from 
the object that is being controlled. Their outputs are added 
together to form the system output. The PI control algorithm that 
has been implemented does not require heavy mathematics and 
without requiring user to learn any control theory. 
 
Proportional control is the easiest feedback control to implement, 
and simple proportional control is probably the most common 
kind of control loop. A proportional controller is just the error 
signal multiplied by a proportional gain constant Kp and fed out 
to the drive. The proportional term gets calculated with the 
following formula: 

Pout = Kp * e(t) 

A high proportional gain results in a large change in the output for 
a given change in a error. If the proportional gain is too high, the 
system can become unstable. In contrast, a small gain results in a 
small output response to a large input error, and a less responsive 
or less sensitive controller. Figure 5 shows the pure proportional 
gain response. 

 

Figure 5 Pure proportional gain response  

 

Integral control is used to add long-term precision to a control 
loop. It is almost always used in conjunction with proportional 
control. The contribution from the integral term is proportional to 
both the magnitude of the error and the duration of the error. The 
integral in a PI controller is the sum of the instantaneous error 
over time and gives the accumulated offset that should have been 
corrected previously. The accumulated error is then multiplied by 
the integral gain Ki and added to the output. The integral term is 
given by: 

Iout = Ki * ∑ e(t) 

 

Figure 6 Pure integral gain response  

The integral term accelerates the movement of the process towards 
setpoint and eliminates the residual steady-state error that occurs 
with a pure proportional controller. However, since the integral 
term responds to accumulated errors from the past, it can cause 
the present value to overshoot the setpoint value. Integral control 
by itself usually decreases stability, or destroys it altogether. 
Figure 6 shows the system with pure integral control and the 
system does not settle or it may takes extremely longer time to 
settle. If the system is equipped with proportional and integral 
control as shown in Figure 7, the position takes longer to settle 
out than the system with pure proportional control (Figure 5), but 
it will not settle to the wrong spot. 

 



 

Figure 7 Combined proportional and integral gains response  

 

The sum of the integral and proportional terms, the control signal, 
is the fractional division (Mfrac) value provided to the the fPLL. 
This value will is updated in the fPLL via the PLL dynamic 
reconfiguration IP. The update rate varies between different video 
rates, but generally matches the HSYNC rate. The worst case is 
approximately 15kHz for standard definition video (SD-SDI - 
270Mbps) HSYNC rate. The update is continuously performed as 
long as the PFD detects phase error between the reference and 
feedback signals. The fPLL output clock is cascaded to the 
transmitter PLL in the high-speed serial interface (HSSI) channel. 
Each fPLL together with this soft IP in each SDI channel can be 
independently, dynamically, and continuously changed to track an 
independent reference and hence act as a VCXO replacement. 

 

4. CHALLENGES 
Tuning a control loop is the adjustment of its control parameters 
such as proportional (Kp) and integral (Ki) gains to the optimum 
values for the desired control response. Stability or bounded 
oscillation is a basic requirement, but beyond that, different 
systems have different behavior, different application have 
different requirements, and requirements may conflict with one 
another. Designing and tuning a PI controller appears to be 
conceptually intuitive, but can be hard in practice, if multiple and 
often conflicting objectives such as short lock acquisition time 
and high stability or low accumulated jitter are to be achieved.   
 
There are several methods for tuning a PI loop. One of most 
effective methods for clock synthesis application is to first set Ki 
value to zero and increase the Kp until the output of the loop 
oscillates. For example, consider that the incoming serial data rate 
is 2.96993396Gbps, for which the recovered clock rate is 
148496698Hz, and the  while the local reference clock rate which 
is the fPLL output clock is idealy 148500000Hz. By just tuning 
the Kp, keeping Ki=0, the system can achieve frequency lock 
between the incoming rate and  the local reference rate. The fPLL 
output clock will be dynamically reconfigured by the control loop 
from 148500000Hz to 148496698Hz. Figure 8 shows the 
signaltap waveform after Kp tuning. The first data bus shows the 
number of recovered clock cycles measured in one second. The 
second data bus shows the number for fPLL output clock cycles 
measured in one second. The third signal is the HSYNC reference 
extracted from the incoming video stream based on recovered 

clock domain. The fourth signal is the divided version of the fPLL 
output clock that is frequency matched and locked to the 
incoming HSYNC rate. The resf of the signals are PLL and Rx 
lock signals, respectively. From the figure, the system is able to 
achieve frequency lock, not phase lock with just proportional 
control. 
 

 
 

Figure 8 Frequency lock with Kp tuning  

 
Then, Kp is set and Ki is increased until the system achieves both 
frequency and phase lock. This is shown in Figure 9. 
 

 
 

Figure 9 Phase lock with Ki tuning  

 
As described in section 3, a high Kp results in a large change in 
the output for a given change in a error, meaning the system tends 
to achieve steady-state with short lock acquisition time. However, 
the system also tends to become unstable and oscillates. This 
results in bad accumulated jitter during steady-state. In contrast, a 
low Kp improves steady-state behavior in terms of oscillation and 
accumulated jitter, but the system will take longer time to settle. 
The two main objectives are conflicting with each other.  
 
To fulfill both objectives which are short lock acquisition time 
and good accumulated jitter, the system is enhanced to initially set 
a high Kp before it reaches steady-state and then switch to take 
low Kp once it reaches steady-state. The steady-state is considered 
reached if the very small phase error has been found consecutively 
between the reference and feedback signals.  

 
Figure 10 Initial Kp and steady-state Kp  

 
Apart from loop tuning, the system has to accommodate for 
various incoming reference rates to generate the desired output 
clock frequency. It could be as high as 67kHz for HD 1080p video 
(3G-SDI - 2.97Gbps or 2.967Gbps), around 33kHz for 1080i or 
720p video (HD-SDI - 1.485Gbps or 1.4835Gbps) and at worst of 
around 15kHz from SD-SDI (270Mbps). Further criteria that must 
be met are an ability to slew between +10ppm and -10ppm as 
required by the SMPTE SDI specification. In practice to 
accommodate for the variation in the reference clock feeding the 
fPLL the target lew range should be at least +/- 100ppm. A 
solution good enough for video test equipment would cover up to 
1000ppm. 
 



5. EXPERIMENTS 
The VCXO-less solution is first implemented in Altera’s high-end 
28nm device – Stratix V. The design and experiment setup is 
illustrated in Figure 11.  
 

 
 

Figure 11 Experiment setup  

 
An Arria II GX development kit is configured as a video source to 
transmit a SD/HD/3G-SDI video test stream with a colorbar test 
signal. A Stratix V is the device under test, loaded with test IP  
composed of an SDI receiver, transmitter, phase compensation 
FIFO and the fPLL together with the soft IP. A Tektronix 
WFM8300 video monitor is used to measure the jitter 
performance of the video stream that is clocked by the fPLL. 
 
Two types of jitter are defined by Society of Motion Picture and 
Television Engineers (SMPTE) in the SDI spedcification: timing 
jitter and alignment jitter. Timing jitter covers the entire jitter 
frequency spectrum starting at 10Hz – it is aimed at ensuring that 
low frequency variation is bounded to allow buffers to be 
reasonably sized.  Alignment jitter focuses on the jitter frequency 
spectrum that clock and data recovery unit (CDR) circuits cannot 
track. Table 1 shows the official jitters specification for different 
video standards. Jitter in the timing band is a function of the 
control loop, while jitter in the alignment band is a function of the 
clock source and transmitter. Thus tuning the control loop 
coefficients affects the resultant timing jitter, while ensuring that 
the fPLL and transmitter are optimally configured affects the 
alignment jitter. 
  

Video Standard Timing Jitter 

(10Hz) 

Alignment Jitter 

(1kHz:SD, 

100kHz:HD/3G) 

SD-SDI 
(270Mbps) 

0.2 UI 0.2 UI 

HD-SDI 
 (1.485 or 1.4835Gbps) 

1.0 UI 
 

0.2 UI 

3G-SDI 
(2.97 or 2.967Gbps) 

2.0 UI 0.3 UI 

 

Table 1 Offical jitter specification  

 
Other than getting the optimum gain values for the PI controller as 
described in Section 4, there are some other engineering features 
of the fPLL that could impact the jitter performance. Throughout 
the experiment, some hypotheses have been made that the 
following criteria must be met for minimal jitter: 
 

1. High frequency of the fPLL input reference clock 
2. High frequency of the fPLL VCO 
3. Mfrac in 32-bit that is closer to 0.5 
4. High bandwidth with optimum charge pump current 
5. Delta-sigma modulator set to 3rd order 

 
Based on the fPLL formulas, 
 

Fin * (M + Mfrac / 2^32) / (N * C) = Fout 

  
which Fin is the fPLL input reference clock; Fout is the desired 
fPLL output clock; M, N, C are the counters value; Mfrac is the 
fractional division that is dynamically changed.  
 
 Fvco = Fin / N * (M + Mfrac / 2^32) * pll_vco_div 

 
which  Fvco is the VCO frequency; pll_vco_div is the post-VCO 
divider.  
 
To fulfill all of the criteria, the optimum fPLL settings were 
determined  to be as listed in Table 2. 
 

fPLL Params Value 

Fin 125MHz 

Fout 148.5MHz 

M 10 

N 1 

C 9 

DSM mode 3rd order 

DSM bit 32-bit 

Initial Mfrac 2972117369 

pll_vco_div 1 

pll_cp_current 40 

pll_bwctrl 2000 

VCO frequency 1336.5MHz 

 

Table 2 fPLL optimum settings  

 
The VCXO-less solution with the optimum fPLL settings yields a 
low jitter stream and compliance with SMPTE SDI specifications. 
The jitter performance is competitive with a VCXO solution. 
Table 3 shows the results obtained from the experiment. 
 

Video Standard Timing Jitter 

(10Hz) 

Alignment Jitter 

(1kHz:SD, 

100kHz:HD/3G) 

SD-SDI 
(270Mbps) 

0.05 UI 0.04 UI 

HD-SDI 
 (1.485 or 1.4835Gbps) 

0.12 UI 
 

0.06 UI 

3G-SDI 
(2.97 or 2.967Gbps) 

0.26 UI 0.13 UI 

 

Table 3 Jitter performance with VCXO-less solution  

 
Figure 12-17 show the timing jitter eye diagram and alignment 
jitter number details for each video standard. These results are 
captured by WFM8300. 
 



 
 

Figure 12 Timing jitter (10Hz) for SD-SDI  

 

 
 

Figure 13 Alignment jitter (1kHz) for SD-SDI  

 

 
 

Figure 14 Timing jitter (10Hz) for HD-SDI  

 

 
 

Figure 15 Alignment jitter (100kHz) for HD-SDI  

 

 

 
Figure 16 Timing jitter (10Hz) for 3G-SDI  

 

 
Figure 17 Alignment jitter (100kHz) for 3G-SDI  

 

6. CONCLUSIONS 
The VCXO-less method provides considerable cost savings for 
customers, potentially in excess of the cost of the FPGA. This is 
an IP solution that is in very high demand from broadcast 
customers. This lays the foundation for the removal of external 
VCXOs, which may prove to be the biggest step in FPGA feature 
integration since the addition of onboard transceivers. Beyond 
broadcast, this has potential implications in the much larger 
market of wireline communications. 
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