
The fPLL as a Replacement for External VCXOs

Chris Maryan
IPD Department
Altera Toronto

150 Bloor Street West Suite 400
Toronto, Ontario, Canada

Tel: +1.416.926.8392

cmaryan@altera.com

Boon Hong Oh
IPD Department
Altera Penang

Plot 6, Bayan Lepas Technoplex
11900 Bayan Lepas, Penang

Tel: +6.04.636.8366

bhoh@altera.com

Aiman Zakwan Jidin
IPD Department
Altera Penang

Plot 6, Bayan Lepas Technoplex
11900 Bayan Lepas, Penang

Tel: +6.04.636.6821

jazakwan@altera.com

ABSTRACT
Broadcast video products require every independently clocked
video path to have at least one external voltage controlled crystal
oscillator (VCXO) and corresponding PLL circuitry. This causes
VCXOs to be a significant percentage of the bill of materials
(BOM) cost for video customers, especially as FPGAs sizes have
increased to allow handling of many video paths within a single
device.

In this paper we present the development of a system to use the
fractional PLLs in Altera’s 28nm products as a replacement for
costly external VCXOs and space consuming external PLL
circuitry. Our implementation covers the design of a PLL in soft
logic, using DSP resources, which is used to control an fPLL via
dynamic reconfiguration. We describe some of challenges in
generating the various required video clock rates from different
types of reference sources. Our work also included experiments
on configuring the engineering features of the fPLL to minimize
transfer of fractional spurs and meet SDI jitter specifications.

The resulting IP allows fPLLs to completely replace external
VCXOs and any external circuitry. Multiple instances of this IP
can be implemented to drive independent video paths. For
broadcast customers this produces very significant cost savings,
potentially exceeding the cost of the FPGA. This work has
implications for future FPGA PLL and clocking architecture
decisions. It may also serve as the foundation for VCXO
replacement in areas such as Optical Transport Network (OTN).

Keywords
SDI, VCXO, fPLL, PFD, BOM, Mfrac, DSM, HSYNC, PID, Kp,
Ki

1. INTRODUCTION
Digitization of video signals has been common practice in
broadcast video for many years. Early digital video was
commonly encoded on a 10-bit parallel bus, but as higher
processing speeds became practical, a serial form of the digitized
video signal called the Serial Digital Interface (SDI) was
developed and standardized. Serialization of the digital video
stream greatly facilitates its distribution within a professional
broadcast studio.

SDI is based on a 27MHz, 74.25MHz, 148.5MHz, 74.25/1.001 or
148.5/1.001 reference pixel clock depending on the exact standard
– at the highest data rate this results in an approximately 3Gb/s
serial signal for 20 bit/pixel High Definition (1080p) video.

As with any source clocked streaming interface, there are small
differences in local oscillator frequencies, causing different
devices to produce video streams with slight offsets in their
frequencies. The local oscillator frequency on a given device also
varies over time due to voltage and temperature fluctuations – this
shows up as jitter. The SDI specification allows for a maximum
offset of +/-10ppm from the nominal refence clock frequencies for
static offsets. There is also a specification on the maximum jitter
allowed over a particular bandwidth.

This variation in the clock frequency requires a device that
retransmits the signal to lock to the incoming clock recovered
from the data, and regenerate the clock to use as a reference for
transmit.1 This is known as reclocking.

The process of generating the transmit clock by using the
recovered receive clock as a reference is accomplished using a
phase locked loop (PLL). Because of the small frequency range
involved, a VCXO is usually used as the oscillator.2

Most SDI devices perform some type of reclocking, causing PLLs
and correspondingly VCXOs to be commonplace in video
equipment. Every independently clocked video path requires at
least one VCXO device. As a result, VCXOs tend to be a
significant percentage of the bill of materials. As FPGAs have
grown to handle more video paths in a single device, the number
of VCXOs on the board has also grown. To further complicate
matters, becaue PLLs and VCXOs are analog circuits, board
layout is made difficult by the need to make consessions to
complex analog layout requirements.

For Altera’s 28nm products, a delta-sigma fractional PLL
architecture was introduced on top of the existing integer PLL. A
fractional PLL (fPLL) allows output frequency to be multiplied by
an integer and a high granularity fraction. In an fPLL the feedback
divider is modulated continuously such that the averge divide
ratio is a fractional value. A third-order delta-sigma modulator is

1 The common exception to the rule that a device must regenerate the

clock are non-reclocking video routers. These are often effectively
digital switches based on multiplexers, where no clock recovery
happens. However, non-reclocking devices generally add jitter. Note
that not all routers are non-reclocking.

2 In recent years VCXOs have been partially replaced by clock generating

integrated circuits that perform similar functions. However the price
and performance remains comparable.

used to shift the fractional noise to high frequencies to be filtered
out by the PLL. The high granularity and jitter reduction
properties of Altera’s fPLL make it good system to use as an
arbitrary frequency clock source.

In this paper, we present the development of a system to use the
fPLLs in Altera’s 28nm products as a replacement for costly
external VCXOs and space consuming external PLL circuitry.
This paper is organized as follows. The need of synchronization
within video network components by using VCXO solution is
described in Section 2. It is followed by introducing the VCXO-
less implementation that covers the development of an innovative
clock control scheme and the creation of an extremely useful soft
IP block for broadcast video applications in Section 3. The work
covers the challenges of tuning the system to have sufficiently low
jitter to meet the SDI specifications, while not relying on low
noise external VCXOs. This extends to the challenges that faced
and resolutions taken to counter the challenges that described in
Section 4. The performance of the implementation is proven by
several experiments. The results are presented in Section 5.
Finally, the conclusion is drawn in Section 6.

2. VCXO SOLUTION
Many components are involved in the production of the final
broadcast video signal. Distribution amplifiers send video signals
around the studio and perform the job as a repeater to help clean
up the signals they distribute. Frame synchronizers ensure that all
video sources are synchronized making the process of switching,
keying, and editing possible. Video routers provide a single point
of switching and routing video signals to and from other studios.
All of these video components must perform a receive and then
subsequently re-transmit. An SDI reclocker is required in all of
these components to help remove the jitter from the SDI data
stream or to reclock the data onto a new clock domain.

Reclocking can be used to recreate the receive clock to use for
transmit, potentially with lower jitter. When an SDI device
reclocks a video stream to a recoverd clock it can include a short
FIFO buffer (phase compensation FIFO) between RX and TX.
This will compensate for small temporary differences between the
RX clock and the generated TX clock that are caused by jitter.
Thus, if the PLL has a low bandwidth, reclocking can be used to
reduce jitter on an SDI signal.

Reclocking can also be used to transfer the video to a completely
new clock domain. In video applications it is also desireable to
switch between two video streams. Doing this without creating
broken video output requires the change from one video stream to
another to happen between the active portion of the video frame.
The active portion is effectively the portion that contains the
image, the remainder of the frame contains either ancilliary data
or is blank. When two video streams come from different sources,
with different offsets in their clock rates, they must be
synchronized onto a common clock domain to allow convenient
switching between them. A device known as a master clock
provides a reference signal that defines the new common clock
domain. Each of the incoming asynchronous video streams is
passed through a device that generates a transmit clock based on
the master clock input. The device uses an elastic frame buffer to
drop or repeat video frames whenever the accumulated offset
between RX and TX reaches a point that would cause the buffer

to overflow or underflow. The result is that video can be
reclocked onto a completely new clock domain, and multiple
video sources can be reclocked onto a common clock domain. The
device in this case is known as a frame synchronizer.

Figure 1 SDI reclocker

Regardless of the application, the PLL circuitry is similar. A
reference is provided, either from the incoming video or a master
clock. This feeds a phase-frequency detector (PFD) that measures
the error between the reference and the generated clock. The PFD
error, in the form of up/down pulses, is then averaged in a loop
filter. Typically in VCXO based solutions the filter is
implemented external to the FPGA as a charge pump and R-C
lowpass filter made from discrete components. The output of the
loop filter drives the control voltage of the VCXO. The VCXO
output is used as the TX reference clock, and it is also used to
close the feedback loop to the PFD. See references 1 and 2 for a
thorough discussion of PLLs.

If any of the video components has more than one independent
channel, more than one PLL circuit and VCXO is required is
required. For example, a 4x4 video router acts like a switchboard
for video signals. It routes video signals from one place to
another. Video signals are switched through a cross-point matrix,
reclocked, and sent to its destination. The video signal is
processed as a serial stream from input to output. A total of 4
VCXOs are required in this 4x4 video router. This is illustrated in
Figure 2

Figure 2 SDI 4x4 video router

Considering another example, an SDI dual distribution amplifier
has 2 SDI inputs to receive multiple video signals and help extend
the distance that the video signal can reach or not to distribute the
video signal to multiple sources. A total of 2 VCXOs are required
in this dual distribution amplifier. This is illustrated in Figure 3.

Figure 3 SDI dual distribution amplifier

Using traditional VCXO design methods, a production switcher or
broadcast router can require dozens of VCXOs to allow FPGAs to
pass through (SD/HD/3G-SDI) video channels. Priced at US$15-
$25 each, the VCXOs add a significant and growing cost to the
BOM because video networking equipment is scaled up to carry
large numbers of channels.

Altera FAEs are currently working with customers looking to
place more than 16 independent video paths in a single FPGA. At
this point the BOM cost of VCXOs can exceed the cost of the
FPGA, and board design becomes extremely challenging.

3. VCXO-LESS SOLUTION
The VCXO-less solution replaces the conventional VCXO and
discrete PLL with an fPLL and soft logic contained entirely within
the FPGA. A dynamically reconfigurable fPLL can conceptually
serve the same function as a VCXO, provided that it has sufficient
granularity, range and frequency update speed.

Fractional PLLs use divide counters to perform frequency
synthesis. The counter settings can be reconfigured to adjust the
fPLL output clock in real time without reconfiguring the entire
28nm FPGA devices. In the VCXO-less solution, the only fPLL
component that is needed to be reconfigured in real time using the
dynamic reconfiguration IP is the fractional division (Mfrac) for
delta-sigma modulator (DSM).

The Altera fPLL supports a 32-bit fractional divide word – this
results in an approximate granularity of Fout*1/232. When
generating 148.5MHz, this translates to 3.5x10-2Hz or 0.002 ppm
per LSB step. This is comparable or better than the noise floor
that can be achieved with a typical 100ppm pull range VCXO.

Characterization results on dynamic reconfiguration of the fPLL
show that the fractional value can be updated more than the
equivalent of 1000ppm in a single step without the PLL losing
lock. Additionally, the settling time for a small frequency update
has been measured to be 10us. Both of these figures indicate that
the fPLL has the reconfiguration characteristics to emulate a
VCXO.

In the VCXO-less implementation, soft IP with DSP resources is
created to work in conjuction with the fPLL as a functional
replacement of a discrete PLL. This is illustrated in Figure 4. The
soft IP is complete PLL implementation, including a phase-
frequency detector (PFD) and loop filter. The reference signal is
the HSYNC signal that is extracted from the incoming video
stream, or an HSYNC pulse from a master clock, while the
feedback signal is a divided version of the fPLL output clock. The
HSYNC signal is a horizontal sync pulse indicating the start of a
line of video. It is commonly used as timing reference since it
occurs as a repetitive and accurate rate. In this application, the
HSYNC signal is used in place of using the RX recovered clock
directly to make the system easily switchable to use a master clock
output, which only provides HSYNC signals.

The PFD is a traditional flip-flop based PFD, that compares both
reference and feedback signals to generate the up and down pulse
width. The pulse length of the up and down pulses is measured
relative to a fast clock, and subtracted to generate a phase error
signal. This is then sent to the digital loop filter. The digital loop
filter implements the Proportional-Integral (PI) control algorithm.
The phase error drives the proportional and integral elements of
the PI controller. The resulting signals are added and used to drive
the fPLL.

Figure 4 VCXO-less implementation

In a typical PI controller, each of the proportional and intergral
elements performs a different tasks and has a different effect on
the functioning of a system. These elements are driven by a
combination of the system command and the feedback signal from
the object that is being controlled. Their outputs are added
together to form the system output. The PI control algorithm that
has been implemented does not require heavy mathematics and
without requiring user to learn any control theory.

Proportional control is the easiest feedback control to implement,
and simple proportional control is probably the most common
kind of control loop. A proportional controller is just the error
signal multiplied by a proportional gain constant Kp and fed out
to the drive. The proportional term gets calculated with the
following formula:

Pout = Kp * e(t)

A high proportional gain results in a large change in the output for
a given change in a error. If the proportional gain is too high, the
system can become unstable. In contrast, a small gain results in a
small output response to a large input error, and a less responsive
or less sensitive controller. Figure 5 shows the pure proportional
gain response.

Figure 5 Pure proportional gain response

Integral control is used to add long-term precision to a control
loop. It is almost always used in conjunction with proportional
control. The contribution from the integral term is proportional to
both the magnitude of the error and the duration of the error. The
integral in a PI controller is the sum of the instantaneous error
over time and gives the accumulated offset that should have been
corrected previously. The accumulated error is then multiplied by
the integral gain Ki and added to the output. The integral term is
given by:

Iout = Ki * ∑ e(t)

Figure 6 Pure integral gain response

The integral term accelerates the movement of the process towards
setpoint and eliminates the residual steady-state error that occurs
with a pure proportional controller. However, since the integral
term responds to accumulated errors from the past, it can cause
the present value to overshoot the setpoint value. Integral control
by itself usually decreases stability, or destroys it altogether.
Figure 6 shows the system with pure integral control and the
system does not settle or it may takes extremely longer time to
settle. If the system is equipped with proportional and integral
control as shown in Figure 7, the position takes longer to settle
out than the system with pure proportional control (Figure 5), but
it will not settle to the wrong spot.

Figure 7 Combined proportional and integral gains response

The sum of the integral and proportional terms, the control signal,
is the fractional division (Mfrac) value provided to the the fPLL.
This value will is updated in the fPLL via the PLL dynamic
reconfiguration IP. The update rate varies between different video
rates, but generally matches the HSYNC rate. The worst case is
approximately 15kHz for standard definition video (SD-SDI -
270Mbps) HSYNC rate. The update is continuously performed as
long as the PFD detects phase error between the reference and
feedback signals. The fPLL output clock is cascaded to the
transmitter PLL in the high-speed serial interface (HSSI) channel.
Each fPLL together with this soft IP in each SDI channel can be
independently, dynamically, and continuously changed to track an
independent reference and hence act as a VCXO replacement.

4. CHALLENGES
Tuning a control loop is the adjustment of its control parameters
such as proportional (Kp) and integral (Ki) gains to the optimum
values for the desired control response. Stability or bounded
oscillation is a basic requirement, but beyond that, different
systems have different behavior, different application have
different requirements, and requirements may conflict with one
another. Designing and tuning a PI controller appears to be
conceptually intuitive, but can be hard in practice, if multiple and
often conflicting objectives such as short lock acquisition time
and high stability or low accumulated jitter are to be achieved.

There are several methods for tuning a PI loop. One of most
effective methods for clock synthesis application is to first set Ki
value to zero and increase the Kp until the output of the loop
oscillates. For example, consider that the incoming serial data rate
is 2.96993396Gbps, for which the recovered clock rate is
148496698Hz, and the while the local reference clock rate which
is the fPLL output clock is idealy 148500000Hz. By just tuning
the Kp, keeping Ki=0, the system can achieve frequency lock
between the incoming rate and the local reference rate. The fPLL
output clock will be dynamically reconfigured by the control loop
from 148500000Hz to 148496698Hz. Figure 8 shows the
signaltap waveform after Kp tuning. The first data bus shows the
number of recovered clock cycles measured in one second. The
second data bus shows the number for fPLL output clock cycles
measured in one second. The third signal is the HSYNC reference
extracted from the incoming video stream based on recovered

clock domain. The fourth signal is the divided version of the fPLL
output clock that is frequency matched and locked to the
incoming HSYNC rate. The resf of the signals are PLL and Rx
lock signals, respectively. From the figure, the system is able to
achieve frequency lock, not phase lock with just proportional
control.

Figure 8 Frequency lock with Kp tuning

Then, Kp is set and Ki is increased until the system achieves both
frequency and phase lock. This is shown in Figure 9.

Figure 9 Phase lock with Ki tuning

As described in section 3, a high Kp results in a large change in
the output for a given change in a error, meaning the system tends
to achieve steady-state with short lock acquisition time. However,
the system also tends to become unstable and oscillates. This
results in bad accumulated jitter during steady-state. In contrast, a
low Kp improves steady-state behavior in terms of oscillation and
accumulated jitter, but the system will take longer time to settle.
The two main objectives are conflicting with each other.

To fulfill both objectives which are short lock acquisition time
and good accumulated jitter, the system is enhanced to initially set
a high Kp before it reaches steady-state and then switch to take
low Kp once it reaches steady-state. The steady-state is considered
reached if the very small phase error has been found consecutively
between the reference and feedback signals.

Figure 10 Initial Kp and steady-state Kp

Apart from loop tuning, the system has to accommodate for
various incoming reference rates to generate the desired output
clock frequency. It could be as high as 67kHz for HD 1080p video
(3G-SDI - 2.97Gbps or 2.967Gbps), around 33kHz for 1080i or
720p video (HD-SDI - 1.485Gbps or 1.4835Gbps) and at worst of
around 15kHz from SD-SDI (270Mbps). Further criteria that must
be met are an ability to slew between +10ppm and -10ppm as
required by the SMPTE SDI specification. In practice to
accommodate for the variation in the reference clock feeding the
fPLL the target lew range should be at least +/- 100ppm. A
solution good enough for video test equipment would cover up to
1000ppm.

5. EXPERIMENTS
The VCXO-less solution is first implemented in Altera’s high-end
28nm device – Stratix V. The design and experiment setup is
illustrated in Figure 11.

Figure 11 Experiment setup

An Arria II GX development kit is configured as a video source to
transmit a SD/HD/3G-SDI video test stream with a colorbar test
signal. A Stratix V is the device under test, loaded with test IP
composed of an SDI receiver, transmitter, phase compensation
FIFO and the fPLL together with the soft IP. A Tektronix
WFM8300 video monitor is used to measure the jitter
performance of the video stream that is clocked by the fPLL.

Two types of jitter are defined by Society of Motion Picture and
Television Engineers (SMPTE) in the SDI spedcification: timing
jitter and alignment jitter. Timing jitter covers the entire jitter
frequency spectrum starting at 10Hz – it is aimed at ensuring that
low frequency variation is bounded to allow buffers to be
reasonably sized. Alignment jitter focuses on the jitter frequency
spectrum that clock and data recovery unit (CDR) circuits cannot
track. Table 1 shows the official jitters specification for different
video standards. Jitter in the timing band is a function of the
control loop, while jitter in the alignment band is a function of the
clock source and transmitter. Thus tuning the control loop
coefficients affects the resultant timing jitter, while ensuring that
the fPLL and transmitter are optimally configured affects the
alignment jitter.

Video Standard Timing Jitter

(10Hz)

Alignment Jitter

(1kHz:SD,

100kHz:HD/3G)

SD-SDI
(270Mbps)

0.2 UI 0.2 UI

HD-SDI
 (1.485 or 1.4835Gbps)

1.0 UI

0.2 UI

3G-SDI
(2.97 or 2.967Gbps)

2.0 UI 0.3 UI

Table 1 Offical jitter specification

Other than getting the optimum gain values for the PI controller as
described in Section 4, there are some other engineering features
of the fPLL that could impact the jitter performance. Throughout
the experiment, some hypotheses have been made that the
following criteria must be met for minimal jitter:

1. High frequency of the fPLL input reference clock
2. High frequency of the fPLL VCO
3. Mfrac in 32-bit that is closer to 0.5
4. High bandwidth with optimum charge pump current
5. Delta-sigma modulator set to 3rd order

Based on the fPLL formulas,

Fin * (M + Mfrac / 2^32) / (N * C) = Fout

which Fin is the fPLL input reference clock; Fout is the desired
fPLL output clock; M, N, C are the counters value; Mfrac is the
fractional division that is dynamically changed.

 Fvco = Fin / N * (M + Mfrac / 2^32) * pll_vco_div

which Fvco is the VCO frequency; pll_vco_div is the post-VCO
divider.

To fulfill all of the criteria, the optimum fPLL settings were
determined to be as listed in Table 2.

fPLL Params Value

Fin 125MHz

Fout 148.5MHz

M 10

N 1

C 9

DSM mode 3rd order

DSM bit 32-bit

Initial Mfrac 2972117369

pll_vco_div 1

pll_cp_current 40

pll_bwctrl 2000

VCO frequency 1336.5MHz

Table 2 fPLL optimum settings

The VCXO-less solution with the optimum fPLL settings yields a
low jitter stream and compliance with SMPTE SDI specifications.
The jitter performance is competitive with a VCXO solution.
Table 3 shows the results obtained from the experiment.

Video Standard Timing Jitter

(10Hz)

Alignment Jitter

(1kHz:SD,

100kHz:HD/3G)

SD-SDI
(270Mbps)

0.05 UI 0.04 UI

HD-SDI
 (1.485 or 1.4835Gbps)

0.12 UI

0.06 UI

3G-SDI
(2.97 or 2.967Gbps)

0.26 UI 0.13 UI

Table 3 Jitter performance with VCXO-less solution

Figure 12-17 show the timing jitter eye diagram and alignment
jitter number details for each video standard. These results are
captured by WFM8300.

Figure 12 Timing jitter (10Hz) for SD-SDI

Figure 13 Alignment jitter (1kHz) for SD-SDI

Figure 14 Timing jitter (10Hz) for HD-SDI

Figure 15 Alignment jitter (100kHz) for HD-SDI

Figure 16 Timing jitter (10Hz) for 3G-SDI

Figure 17 Alignment jitter (100kHz) for 3G-SDI

6. CONCLUSIONS
The VCXO-less method provides considerable cost savings for
customers, potentially in excess of the cost of the FPGA. This is
an IP solution that is in very high demand from broadcast
customers. This lays the foundation for the removal of external
VCXOs, which may prove to be the biggest step in FPGA feature
integration since the addition of onboard transceivers. Beyond
broadcast, this has potential implications in the much larger
market of wireline communications.

7. REFERENCES
[1] Phase Locked Loops: Design, Simulation, and Applications, Roland

Best, McGraw-Hill, 2007.

[2] Phaselock Techniques, Floyd M. Gardner, Wiley-Interscience, 2005.

[3] PID Control – PID without a P-hD, Tim Wescott, EE Times-India,
October 2000.

[4] Timing and Synchronization in Broadcast Video, Silicon
Laboratories, Rev.0.1 8/09, 2009.

[5] HD Video – Reclocking for restoring low-jitter HD digital video,
Mark Sauerwald, EE Times-India.

[6] VCXO Tuning Slope, Stability, and Absolute Pull Range, Silicon
Laboratories, rev.0.2 10/10, 2010.

[7] Implementing Fractional PLL Reconfiguration with ALTERA_PLL
and ALTERA_PLL_RECONFIG Megafunctions, AN661, May 2012

[8] Stratix V PLL SWIP Functional Description, Christian Refvik &
Kevin Mai, October 2009.

[9] PLL Dynamic Reconfiguration SWIP Functional Description,
Lyndon Calvalho, June 2011.

[10] SDI MegaCore Function User Guide, Altera, November 2011

[11] SDI II MegaCore IPD Functional Description, Boon Hong Oh,
August 2012.

