
©2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS
and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in
other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as
described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
version of device specifications before relying on any published information and before placing orders for products or services.

NIOS II Custom Instruction for MAX 10 DECA

Development Kit

This document shows the Custom instruction for NIOS II design example for the MAX 10 DECA

Development Kit.

About Custom Instructions in NIOS II:

When a design includes an Altera Nios II embedded processor, the design can accelerate time-critical

software algorithms by adding custom instructions to the Nios II processor instruction set. Custom

instructions allow the user to reduce a complex sequence of standard instructions to a single instruction

implemented in hardware. This feature can be used for a variety of applications, for example, to optimize

Software inner loops for digital signal processing (DSP), packet header processing, and computation-

intensive applications. In Qsys, each custom instruction is a separate component in the Qsys system. The

user can add as many as 256 custom instructions to your system.

Refer to Nios II Custom Instruction User Guide for further information.

About this Design Example

This design example shows how to implement the cyclic redundancy check (CRC) algorithm as a Nios II

custom instruction. The CRC algorithm detects the corruption of data during transmission. The CRC

calculation consists of an iterative algorithm involving XOR and shift operations. These operations are

carried out concurrently in hardware and iteratively in software. Since the operations are carried out

concurrently, the execution is much faster in hardware. This example demonstrates the way to implement

an extended multi-cycle Nios II custom instruction.

This design Example performs the following:

1) Computation of CRC using the custom instruction

2) Computation of CRC using a software C code.

3) Computation of CRC using a optimized software C code.

Steps to Run the Program

The steps to run the Custom Instruction for the DECA MAX 10 Kit are:

1. Extract all the files from the custom_inst_DECA.par by following the instructions on the design

store.

The extracted files have the following the file structure:

i) Crc_hw folder consists of the 2 Verilog files CRC_Component.v and

CRC_Custom_Instruction.v for the custom instruction.

ii) The master_image folder consists of the custom_inst.sof and custom_inst.pof file which can

be directly used by the user to program the board. It also contains the custom_inst.hex file

which can be used to directly run the program from the Nios terminal.

iii) The software/src folder contains all the .c files

crc_main.c : is the main file which calls all the other files.

crc.c: contains the software implementation and the optimized software implementation of

CRC function.

ci_crc.c: is the .c file for executing the built in function for the custom instruction.

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf

ci_crc.h: hex file related to custom instruction

crc.h: hex file related to the software implementation.

iv) It also contains platform folder which contains files related to the qsys setup.

v) Also the top level file custom_inst.v, the sdc file custom_inst.sdc is included

2. Launch Quartus, Go to File ->Open Project and open the top.qpf file to open the project.

 After quartus launches:

i) Go to ToolsProgrammer.

ii) Click on Hardware Setup. A hardware Setup dialog box will open.

iii) Select USB Blaster under currently selected hardware. Click on close.

iv) Use the Add file tab to navigate to the master/images folder and select the custom_inst.sof

file.

v) Select the checkbox Program/Configure and Verify.

vi) Click on start. This starts the downloading of the .pof file on to the Eval Kit.

3. We are using the Nios terminal to display the results. To open the command shell go to:

StartAll Programs AlteraNios II EDS  Nios II Command Shell in Windows or <Nios II

EDS install path>/nios2_command_shell.sh in Unix.

4. Here, make sure that the reset pin on the Kit is in the OFF position. The reset pin is assigned to

SW0 switch. The switch should be pointing down (please find image attached).

5. In the Nios II command shell type the command: nios2-terminal.

The results of the CRC operation will be displayed.

Below is a screen shot of results which are observed on the NIOS II terminal.

Steps to Recreate the output files:

If you want to edit the project, follow the below procedure:

Hardware

1) Launch Quartus II and open the top.qpf project

File -> Open Project -> top.qpf

2) Compile the project (Processing -> Start Compilation).

3) Program the ./output_files/top.sof to the board using Quartus II Programmer (Tools ->

Programmer - > Add File -> top.sof -> OK -> Start).

Software

1) Open Tools->Nios II Software build tools from Quartus II. This launches the NIOS II Eclipse IDE

where you can modify your C Code.

2) Select the workspace for Nios II Eclipse. Then select File->New->Nios II application and BSP from

Template

3) In the Window which opens, select the nios_setup.sopcinfo file in your Quartus project folder This

file in included along with the package and is present in the root directory. The .sopcinfo file contains

information about the Qsys system, each module instantiated in the project, and parameter names and

values contained in the project.

4) Give the name to your nios project as cust_inst, select hello world small as the project template and

click finish. You can see that cust_inst and cust_inst_bsp is created on your workspace.

5) Now, we have to replace the contents of hello_world.c source with our source code. First Remove the

helloworld.c file from the project. To do this right click on ‘hello_world_small.c’ and click delete.

(screenshot attached below).

Next the 5 files in the software/src folder.

1) Import the required Files: Right Click on the custom_inst project. Click Import. A new Import

popup will open.

a. In this double click on General and the File System.

b. Select Browse and then browse to the directory software/src and select ok. All the

contents of this folder, the 5 .c files are shown in the right. Check the checkboxes for all

the 5 files. Click on finish.

Now all the files are present in the folder.

Attached below is a screenshot of the project explorer after importing the files.

6)Since the Qsys contains the timer, this needs to be added here as the timestamp timer. For this right

click on the custom_inst_bsp and select NIOS II  BSP Editor. A BSP Editor window will open. Here

select the timestamp timer as timer 0 and click on generate.

7) Right Click on the custom_inst and Select Build Project to build the project. The initial build may take
some time.

8) Once the build is finished, to run the project, right click on the project and select Run As -> Run
Configurations.

9) Double click on Nios II Hardware, and new configuration opens on the right pane . Make sure you
select the project name as custom_inst and .elf file as custom_inst.elf .

10) Select Target Connection Tab . Then Check the following two check boxes
Ignore mismatched system ID
Ignore mismatched system timestamp

Next Click Apply and Run.

11) The following output is observed:

The user can modify the number of buffer locations and size of the buffers and run the program to

observe the results.

NOTE:

The current project extracted from the .qar already contains the custom component added and

working.

However, the steps to add this custom component and generate the Qsys system are shown below

for user’s reference.

1) Open Qsys from Quartus. From the IP catalogue New component is selected. A new component

window will open. The new component’s name and display name is entered.

2) Click on Next. The Files Tab is displayed. The folder crc_hw contains the Verilog files,

CRC_Component.v and CRC_Custom_Instruction.v for the custom instruction. These files need to be

added here.

Next, we have to set the top level entity. For this, double click on the attributes section of the

CRC_Custom_Instruction.v file and check the top level file option. This sets the

CRC_Custom_Instruction.v file as the top level entity.

Next click on the analyze and synthesize files. This will report compilation errors if any in the .v files.

3) Click on the Next tab. Here the parameters present in the .v files will be displayed.

4) Click on next. The signals tab is displayed. Here, for the 1
st
 signal (the clock) in the interface section

select the “New Custom Instruction Slave”. After choosing this, the interface section will display the new

custom instruction slave as the nios_custom_instruction_slave.

In the interface section select nios_custom_instruction_slavefor all the signals.

In the Signal type select the same option as the signal name.

After selecting all the above the signals tab will have values as shown below.

5) Next Click on Interfaces. Click on Remove Interfaces with no signals. In the Parameters options select

the number of operands as 1.

6)Next, Click on finish. Save the changes to CRC_hw.tcl on being prompted.

Now a new component CRC will appear under the new component category in the IP catalogue.

7) Add the other components, such as the Nios, On Chip Memory, Timer, Jtag Uart to the Qsys system

and connect the ports. The overall Qsys system looks as below:

