Nios Il Classic Software Developer’s
Handbook

@ Subscribe NII5V2
2015.05.14
C] Send Feedback

101 Innovation Drive I
San Jose, CA 95134 ! A ! U = D A
www.altera.com ®

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Classic%20Software%20Developer%E2%80%99s%20Handbook%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TOC-2

Contents

Overview of Nios II Embedded Development...........cccceevueirirreeiniineinissecressnnees 1-1
Prerequisites for Understanding the Nios II Embedded Design Suite...........cccoeuveueunierniccrnincuninecnnenes 1-1
Finding Nios IT EDS FILES.......c.vccuiiuiiiiiiciiciieeirecicie ettt sse e ssse s sssassenscses 1-1
Nios II Software Development ENVIrONMENT..........cocoeueuriririiucieiniriccieieseneeeieistseeeietstseeesesesesseeaenes 1-2
Nios IT EDS Development FLOWS.......cccccuririeeuririnieeieienireeeiertseceie sttt bttt ssseeacaens 1-2
Nios IT SBT Development FIOW........cccevriieirininnicieieirtreeeie ettt ssaseeseaenes 1-2

Ni0S II PrOGIamS......coiviiiiiiiiiiiiiiicicicc sttt 1-3
Makefiles and the SBT ..o 1-3

Nios II SOftware Project TYPeSs.......c.cceierricirineieiniiciicieieieeieeesesseiestie st ssssese s ssesesessesenns 1-4
Altera Software Packages for Embedded Systems............ccoeeeiieinieiniininicinicicececeiseeseieeenenes 1-4
Nios II Embedded Design EXamples..........cccveurieueinicinieinincieiieiieiieieieeseessssesesesessssesessesessesessesens 1-5
Hardware EXQMPLES........c.ouvirieeuiiriniieieiericeeiesestee ettt sttt bttt 1-5
SOFEWATe EXAMPLES.....cviviiiiicieiririiceteietr ettt ettt sttt ettt 1-5
Third-Party Embedded ToOLS SUPPOIt........cccvviuiieinieiiciriieieciicieieieeeieenee e sesesnee 1-6
Additional Nios IT INfOrmation........ccecuricurinieiniciniciieieiceeceeeeeeseie et s saesesesesssaes 1-6
Document Revision History for Overview of Nios Il Embedded Development...........ccccccocuvvuiunnee. 1-7
Getting Started with the Graphical User Interface........ccoceevveiriueivivucrinecncnncen. 2-1
Getting Started with Nios II Software in EClIPSe.......cccoveueuieunicineceiicnecnecieecieseeciseeeeeeeeesesenenns 2-1
The Nios II SBT for Eclipse WOrkbench..........coccvecueneeinicrncenecrecrcrsecsecieeeeeeesennenens 2-1
Creating @ PrOJeCt. ..ottt 2-2
Navigating the PrOJeCt........cvcurircuriniciniciricieineerect ettt esese e sseaeses 2-4
BUilding the ProOject. ...ttt seseseesns 2-4
Configuring the FPGA......c.occcrcrcecctsectseeseteie ettt seseaenn 2-4
Running the Project on Nios IT Hardware..........ccoccveeurecueeneeeinicinenciniceeeneesneesseesensesessescssenes 2-5
Debugging the Project on Nios II Hardware.........c.occeveeurecinenceeinecinecrniceecneceseeseesesennenes 2-5
Creating a SIMPLe BSP........c.oiiiiiiccce ettt sese e senne 2-11
Makefiles and the Nios IT SBT fOr ECLIPSe.......cvveueuiucunicirircieieeinicieiciereieinecsseeseseeesseeessesesesesenneacs 2-11
Eclipse SOUrce Management........coccuvecueueueureueurecrnuneuesseacssesesesesessesessssesesstaessesessssesessesessescsesns 2-12

User Source Management.......cooeueeeeeeeeieeueueueieierereeeseeeseseeeesesestses e ssssssesssssassssesesesesesesesens 2-13

BSP Source Management..........cccccceeiiirirrreririnerenereneseeeesesesesesesesesesesesesesesesssssssssesesssssssssesssssens 2-14

USING the BSP EQITOT....uiuiiiecieciricieecireciecteteictsect ettt esese st ssese et sesesesescsnnacs 2-14
Tcl Scripting and the Nios IT BSP EQItOr......c.coceuicuricrinceinecinecseecrececseeseeeeesescseesenees 2-14
Starting the Ni0s IT BSP EdItOr.....c.ccoceurieiiciriceiicireciriciciceciecte et ssesessesesessesens 2-14

The Nios II BSP Editor Screen Layout..........coccvecurercurineeenicineerrineeeineeeseetseeseesesessesessescsennes 2-15

The Command ATea.........ccciiiiiiiiicc e 2-15

The Console AT@a.........c.occiiiiiciiii bbb 2-18
EXPOrting @ TCl SCIIPL.. . cucuecericieieeiniciieietreierecssiesetseectsesese ettt esese s ssescseencs 2-19
Creating @ INEeW BSP......o et e 2-19

BSP Validation EITOTs..........ccocuiiiiniiiicisiiciciie it ssssssaes 2-20

Run Configurations in the SBT for EClIPSe......cccveueurecirincrrinicinicinicieinecrecisecieeieesesesseeseesesesseseaeene 2-21
Opening the Run Configuration Dialog BOX........ccoccveeurecrrincueinecinicineeieeneeinecsseeeeeesesnenens 2-21

Altera Corporation

The Project Tab......c.ccuiiiiiiiciciiicicctie e 2-21

The Target Connection Tab........cccciiiii i 2-21

The DebUG@er Tab......c.ccociiiiciiriccisee et saes 2-21

Ni0S IT HArdWare V2 (DELA).....cooiiiiriiirieiieiteisteesreteeestetstestsvessesestessssessesessessssessssessessssensssessasessensssons 2-22
Main Tab...oiiii s 2-22
DeDUGEET TaD......couieiiiiicicc et 2-22
Multi-Core LaUuNChes. ..o ssnes 2-22
Optimizing Project Build Time........cccociiiiiiiniiiiiiicccc e 2-22
Importing a Command-Line Project..........ccuiiiiiiiniiicciccis s 2-22
Nios I Command-Line Projects..........cocuiiininiiiiiiiicscsssssssss s sssssssnes 2-23
Importing through the Import Wizard...........cccccvenieicininiccniniccneeeeeeeeseseneneene 2-23

ROAA VAP ...ttt ettt bbbttt ettt tenaes 2-23
Import a Command-Line C/C++ APPLiCation........ccccueueveunevrieciciniericieireeeieieee s 2-23
Import a SUppOrting Project........coiiiiiiiiiiin e 2-24
User-Managed Source Files..........ccoiiiininiiiiiic s 2-25
Packaging a Library fOr REUSE........cccocuvvuiciiirieiciiiniciciiie ittt ssse e ses e 2-25
Creating the User Library........ccccooiccccs e 2-25

Using the LiDrary.......c s sssses 2-25
Creating a Software PaCKage...........ccovuiuiiiiiiiiii s 2-26
Programming Flash in Altera Embedded Systems.........ccccccoviiiiiniiniinicininiinccccceene 2-28
Starting the Flash Programmer..........ccccccociiiiiiccssssssessns 2-28
Creating a Flash Programmer Settings File..........ccccccooviiiinniiiicncnccccis 2-29

The Flash Programmer Screen Layout..........ccccoiiiiiiiiniciiiccesse s sssssses 2-29

The Command AT€a........ccccuiiiiiiii s sses 2-29

The Cons0le ATea........c.cuiiiiiiiiiii s 2-30
Saving a Flash Programmer Settings File..........ccccccviiiiiiiininininiiiiccccccnnnes 2-30

Flash Programmer OPtions...........cociuiiiiiiiiiisssssssssssssssssssssssssssssssssssssssens 2-30
Creating Memory Initialization Files..........cccccoviiiiiiniiiiiiccc e 2-31
Generate Memory Initialization Files...........cccociiiinininiiiiccccccscs 2-31
Generate Memory Initialization Files by the Legacy Method..........cccccoovvvivininiiniincinininnes 2-31
Memory Initialization Files for User-Defined Memories..........cccocueivirinininriniincincicinnn. 2-32
Running a Nios II System with ModelSim.........c.cccoouiiiiiniiniiiciiccc e 2-33
Using ModelSim with an SOPC Builder-Generated System............ccccccvvvrviniincicininininnne. 2-33

Using ModelSim with a Qsys-Generated System............cccccirinirininiiiiniiniicisiiceenns 2-33
Eclipse Usage NOES.........cc.iuiiciiiiiiiiiiirsciss s ss s sssssssnes 2-36
Configuring Application and Library Properties..........ccccocvuvirininineiniinciininininincininnnnes 2-36
Configuring BSP Properties..........ccciiiiiiiiiiciiiiiciisics s ssssses 2-36
Exclude from Build Not SUPPOIted.......c.cvuuieiiiiiriciiinicicieiiceeceeie e 2-36
Selecting the Correct Launch Configuration Type........cccocovivininiiininiincinnicisicisiscenns 2-37
Target Connection OPHONS.........cvveiiiiiiiiieii s 2-37
Renaming Nios IT PIOJECES.......cviiiiiiiiiiiiiiiii s 2-37
Running Shell Scripts from the SBT for EClipse........ccccveuirierirnieicineiniicieeienenesenseeenenens 2-37

Must Use Nios IT Build Configuration...........ccccuieiiinininiiiicisiciicssessse s 2-38

CDT LimMitatiOnS....cuovcueieeieiiieiiicieicticie sttt b s a s 2-38
Enhancements for Build Configurations in SBT and SBT for Eclipse........cccccccocuvuviriunnnce 2-40
Document Revision History for Getting Started with the Graphical User Interface....................... 2-43
Getting Started from the Command Line............ccovevieninniininnienienncninnnene. 3-1

Altera Corporation

TOC-4

Advantages of Command-Line Software Development............cccccccuriviiinininiinniniinciniiiecceenns 3-1
Outline of the Nios IT SBT Command-Line Interface...........ccoceueeuveureerernerneeieninieneneseeenseeensenne 3-1
UHHIEI@S. ..ot 3-1
SCIIPES ittt 3-2

Tl COMMEANAS.....viiiiiiiiciii ettt b 3-4

Tl SCIIPES. ettt bbb 3-4

The Nios IT Command Shell.........cccouiiiiirciceeeeee e 3-4
Getting Started in the SBT Command Line..........cccocueiiniiiininiiiiisiiisccscsscssssess e 3-5
PrereqUISItes.......ccoiviiiiiiniiiiiictc e 3-5
Creating Hello_World for an Altera Development Board.........c.ccccoouviuviviiniiiininininincininnns 3-6
Running Hello_World on an Altera Development Board..........cccccoeucuneunieicinernecrncrninnecnnens 3-6
Debugging hello_wWoOrld.........c.cccueuiiiciniiciccieeee et sesaesaenae 3-7
Software Build Tools Scripting Basics.........c.cccviuiimiiiiiiiiiiiiiicei s ssssssses 3-8
Creating @ BSP With @ SCIIPL.......coiiiiiiiiicc s 3-9
Creating an Application Project with @ SCIipt........ccccvvueieuniunieicininiccrieccsee s 3-11
RUNNING MAKE ...ttt 3-12
Creating Memory Initialization Files..........ccccocoiiiiiiiniiiiiiiiicccccenns 3-12
Document Revision History for Getting Started from the Command Line........ccccccoveviiviiiiininnnnes 3-12
Nios II Software Build ToOIS..........coueiviinnuiiniinniiiiinsiiniinenienneenennecnnenne 4-1
ROAd MaP fOr The SBT ..ottt ettt bttt 4-2
What the Build ToOls Create.........ccccouiiciiiiiiiciiiiiii s sesssssssaes 4-2
Comparing the Command Line with EClipse........cccoceviuiiieinieiiinicicreeiceecieicieienes 4-2
MaKEFILES.......ooiviiiiiii s 4-2
Modifying MaKefiles........cccieuiiiriiiriieiiciricieieieecieiecie et sesaesens 4-3
MaKELILE TAIELS.....vuieevrieciircieiciciieicie ettt bbbt s s 4-3

Nios II Embedded SOftWare PTOJECES.........ccceuiueiicinieiiiieiicieicieicieeeietseseneiessesessese e ssaessnaesensenes 4-4
Applications and LiDTaries........ooecceueuririrecueueinire ettt sttt seen 4-4

Board SUppOrt PACKAGES........c.cccueuiueiiciriciiciciecicce et 4-5
Software Build Process.........ccocviiiiiiiiiiicc s 4-7
Common BSP Tasks........cccviiiiiiiiiiiiiii s 4-7
Adding the Nios II SBT to YOUT TOOI FIOW......c.ccceuiiiniciniiiiiieiiciriciriceceeeseeeseseseneaes 4-8
Linking and LOCAtING......c.c.cceuieirieiriiciiciicieicctneeeieseiet sttt ssssesessesessacs 4-10

Other BSP TasKS......coiiiiiiiiiiiiii s sssaes 4-15
Details of BSP Creation.........coiiiiiiiiiiiii s sssssssssssaes 4-19
BSP Settings File Creation........coieuicuricirieieiieiicieicieeieiseeneresesesessesesessesesesesssaesensesensene 4-21
Generated and Copied Files.........cviiniininiceesr ettt 4-21

HAL BSP Files and FOIders.........cccviiiiiiiiiiiiiiiccsic e sssssssssssesssssns 4-21
Linker Map Validation.......ccceeeiriieirininiieieieireecieieistseeie ettt sttt ese s 4-26

Tl Scripts fOr BSP SEtNgS.......c.vvcueiiueiiciriiieiiieinicieicieitieirecteie et sesaesensenes 4-26
Calling a Custom BSP Tl SCIIPL....c.cuiiuiiiuiiieiiciricicieicieeiceeietee et sesesessesessesenenes 4-26
Revising YOUT BSP....ooooiiiiiiiiiiii s 4-29
Rebuilding YOUT BSP......ccuiiiiiiiciiciciieiicieceeet ettt sesacsenaes 4-29
Regenerating Your BSP........cccoiiiie s 4-30
Updating YOUT BSP......coviiiciriectcictccce ettt senas 4-32
Recreating Your BSP.......c.cciiiiiiiiiiin s 4-33
Specifying BSP Defaults.........cccvieiiciiciiiiiiiciiciicieieieieee ettt sstsesessssessssessssesesaes 4-34
Top Level Tcl Script for BSP Defaults.......ccccvvreniiieirininiieieririneeieiesteeeieiseseseese e 4-35

Altera Corporation

Specifying the Default stdio Device.........ccovuiimiiiiiiniiiiciii e 4-36
Specifying the Default System Timer.........ccccovuiiniiiiiiniiniiii e 4-37
Specifying the Default MemOry Map........ccocviiiiiniiiniiiiniiicssse e 4-37
Specifying Default Bootloader Parameters..........c.ccvviiiiincicicininienicscisscssinssnnnes 4-37

Using Individual Default Tcl Procedures...........ccccvuiiniiiiiniinicicisicicsiseiines 4-38
Device Drivers and Software Packages............cccviuiiininiiniiiiieiis s 4-39
Boot Configurations for Altera Embedded Software...........cccccocviiiniiiiiiinininiicccccns 4-39
MEMOTY TYPES...oviiiititiicitctt bbb 4-39

Boot from Flash Configuration............cccecuiiiiinininiiiicccss s 4-40

Boot from Monitor Configuration........c.cciiiiiini s 4-40

Run from Initialized Memory Configuration.............ccceuviiiiniiniincinininininscisiesiiens 4-41
Run-time Configurable Reset Configuration............ccccuveeiiiiniiniinicininiiceciciinens 4-41
Altera-Provided Embedded Development TOOLS........c.cveueureueuricerinieeinecinicirieseiseseiseseesiesessesesseseseene 4-41
Nios IT Software Build TOOL GUIS........c.cueueuniurieeiciiiicieisiieieieiseeenessesseiesessessssesessssessesesens 4-41

The Nios IT Command Shell..........cccouiiieiiiicee e 4-43

The Nios IT Command-Line Commands...........coceueueuriurreunemnieemernirnienersesesesessesesesessssenne 4-44
RESTIICTIONS. ..ttt 4-47
Document Revision History for Nios II Software Build T0OIS..........cccccurivininininiiniciiciciciane. 4-47
Overview of the Hardware Abstraction Layer..........cccccevveevirueenieeiinecnisneccnnnnes 5-1
Getting Started with the Hardware Abstraction Layer..........c..ccceeeuicinivcinnicnicnieeeenecseeenenenes 5-1
HAL Architecture for Embedded Software Systems...........cceveeuieunicrnicinicinicnieesecieeeenesenenens 5-2
SEIVICES.couvvivttiiirctte s 5-2
Layers of @ HAL-Based SYStem........ccoceuiiiiiiniiciiciicieceiecieiceiese et sesseseneaes 5-2
APPLICAtioNns VErSUS DITVELS.....c.ocecueueueiririieietiisieeeietststeeiet ettt ettt ettt eseteen 5-2
Generic Device MOdels...........ociiiiiiiiiii s 5-3

C Standard Library—newlib.........ccccooeiviiiiiiiiciciccceeeee e sesesensenens 5-4
Embedded Hardware Supported by the HAL........ccccovieiieiniiecirceeceeeeneesseesenesenaene 5-4
Ni0Ss IT Processor COre SUPPOIt.....coeueerruereiririereinirieietreeresetsaeretseesesetssesestsssenesesssseseesseneseaens 5-4
SUPPOTted Peripherals........c.co ittt ettt 5-4

MPU SUPPOIL.ceiuiiiriiririecirinicctreettne ettt ettt st sa et s e et s e et sa b et sae s s 5-6
MMU SUPPOTL..nririiriiriiiriereirinieetreeeeente et etseere ettt tsaesesttssesestnssesestsnssenesessesentaens 5-6
Document Revision History for Overview of the Hardware Abstraction Layer..........c.ccccccvveueunneee. 5-6
Developing Programs Using the Hardware Abstraction Layer......................... 6-1
HAL BSP SettingS.....cvcviiiiiiriiiiiiiiiiiii s sa s s bbb 6-1
The Nios IT Embedded Project Structure.............ccocuviciiinieniciniiiieciisiecieiescsssse e senens 6-2
The system.h System Description File..........ccocviiiiiiiniiiiiniiniciciiciccie e esssessenees 6-3
Data Widths and the HAL Type Definitions........ccccocvicieininiciniininiciciiiciccsiescissiee s 6-4
UNIX-Style INTErface.......cuuiuieiiiiiicicicicici e 6-4
FALE SYSEIML....ocvuiiiiiiiiccici s 6-5
Using Character-Mode DEVICES.........cceueurecuricuriieeiicinieeeieseesesesnesese s ssesessesessesesessssessescssssesessesesseaes 6-6
Standard Input, Standard Output and Standard Error..........cccveececvnecnecinencenecnecineenns 6-6
General Access to Character Mode Devices..........ccuuuuniunicinciniinicineiiieesieesesisesesseeens 6-7

Gt SETEAIMIS ...t bbbt 6-7
1A@V/MIUIL....oci s 6-7
Lightweight Character-Mode I/O........c.cccceuiiiiiiiiniiciiricieceeee e 6-7

Altera Corporation

TOC-6

Altera LOgEING FUNCHONS......c.cucuiiieiiiriiicieieeieie ettt sesesaens 6-7

Using File SUDSYStEMIS........ciuiiiiiiiici s 6-13

Host-Based File SyStem..........cociiiiiiiiiiiicicicic s ssssssses 6-13

Using Timer DEVICES.......ouiuiiiiiiiciiit s 6-14

System CIOCK DIIVET ..o sssas 6-14

ALGTTIIS oottt e 6-15

TIMESTAMP DIIVET ...eviieiiiiicieieieicciccecetieceee ettt ettt nene 6-16

Using FIash DEVICES........cuiiiiiiiiiiiiici s ssssses 6-17

SImple FLash ACCESS......c.vueuiuieieiiiiieicieiicieitie ettt e 6-18

Block Erasure 0r COITUPHION.c.cucuuiueiecieiieeieeieteeieieseiseiessessesssse e ssssssessesstaessessessssesaesseses 6-18

Fine-Grained FIash ACCESS........ouviiniriciiiieicititece et 6-19

USING DIMA DEVICES......oouotiieinetctettccte ettt 6-23

DMA Transmit Channels..........cccvcurieieiniinicinciniinieeieeeieie et ssessesessens 6-24

DMA Receive Channels..........occvciiuieeieiniinicicieieieieieieieiestie et ssesessessessssessens 6-24

Using Interrupt CONtrollers...........ociiiiiiiiiiiii s sssens 6-27

Reducing Code Footprint in Embedded Systems...........ccccceuiiniiniinnisiininiincccsscenes 6-27

Enable Compiler OptimiZations.........c.cucueurieeicuniunieieiiieieieiseeseiessssesessesessesessssessessesessenses 6-28

Use Reduced Device DIIVETS........c.euicuiuieeiciniinieeieieiseieiestiessesessseessesessssessessssessessessessssessens 6-28

Reduce the File Descriptor POOL........coccuriiuriieeinieirieieiceseeseeiseeiesseseeseseesees e ssesesessesenne 6-28

USE /A@V/TIULL....coeiiii et 6-28

Use a Smaller File I/O LibIary........ccccuiiiiniiicicis s ssssssssnsssssssssssssens 6-29

Use the Lightweight Device Driver APL.........ccccoviiiniiiiicees e 6-31

Use the Minimal Character-Mode APL..........cccveuiinieineinieieneeeeeiseenesessesessessesessenne 6-32

Eliminate Unused Device DITVETS.......cccvueicuniunieeieiiinicieiniieieesseee e ssessssessessens 6-33

Eliminate Unneeded EXit COde.........ccceuimrimiiimniuniciiiniiicieinecieeiseieie e ssesesessesaenas 6-33

TULD Off CA SUPPOTT.ccniiieiiiiiciirc e 6-34

Boot Sequence and ENtry POINt.. ..o sssssssssssssses 6-34

Hosted Versus Free-Standing Applications............ccueueeeemveuniueiernernieeieiesneenensessesenessesenaenne 6-34

Boot Sequence for HAL-Based Programs............cccocuicicinininninninnississssssessssenns 6-35

Customizing the Boot SEQUENCE..........ccouiuiiiiiiiiiic s 6-35

MEMOTY USAZE.....oveeierieriteiecictetetet ettt b st b s s anas 6-36

MeEMOTY SECHONS.....cuviiitiicticitt bbb sasaes 6-36

Assigning Code and Data to Memory Partitions...........cceevveinicinininininceiciis 6-37

Placement of the Heap and Stack.........cccoveieuninieiciniinicicniiccneeceecceeseeessesessennes 6-39

Global Pointer REGIStEr..........vuuiiiiiiiiciciicict s sssas 6-39

BOOt MOMES......ooiiiiiiiiiiiccii bbb 6-41

Working with HAL Source Files..........ccooiiiiiiccc s 6-41

FINAING HAL FILES......oiuiciiiiciciiiicicicetneie ettt 6-41

Overriding HAL FUNCHONS. ..o ssssssssses 6-41
Document Revision History for Developing Programs Using the Hardware Abstraction Layer

... 6-42

Developing Device Drivers for the Hardware Abstraction Layer.............cc....... 7-1

Driver Integration in the HAL APL.....c.cccooiiiiiiiiiiiiicc s 7-1

The HAL Peripheral-Specific APL........ccccoiiiiiiiiiiiciccic s 7-2

Preparing for HAL Driver Development.........cccccuiiiiiiiiiniiciiiciciiecisscssssss s 7-2

Development Flow for Creating Device DIIVers.......ccovuiiiiniciiiiiniicicccsiccnssesssceinns 7-2

Nios II Hardware Design CONCEPLS........ccouivimiiiiiiiiiciiciiicisssss s sssssssssssssessns 7-3

Altera Corporation

TOC-7

The Relationship Between the .sopcinfo File and system.h........cccccocvvceiviunivicncninccninicnee 7-3

Using the System Generation Tool to Optimize Hardware..........cccccoocvvvvviniincicinininininnn, 7-3

Components, Devices, and Peripherals...........cccoeeieiniciricnicenicncsieeeeseeiseeseesesesnenes 7-3

ACCeSSING HATAWATLE........cviieiiiiiciiicetee ettt 7-3

Creating Embedded Drivers for HAL Device Classes..........cuuuiiiiininiiiniieiisiisissessnnanes 7-5

Character-Mode Device DIIVETS..........cucuuriciciniirieiiiiieieneiesiesessesesiesessesessessessssesessssessesseses 7-5

File SUDSYStEmM DITVELS......c.ccviiuiiiiiiiiiiiii s 7-7

Timer Device DIIVETS.......cooiiiiiiiiiiiic s ssssssenes 7-8

Flash DeVICe DIIVETS......c.cucviuiuriecieiiieiieieisieeiestieese it sse s s sssssese s ssessssessesssasssesssses 7-9

DMA DeViCe DIIVETS.....ciuiiiiiiiiiiiiiiiiiiiiiii s 7-10

Ethernet Device DITVETS..........ccccuiiiiiiiiiiiiiiciiciiciiceeccisss et ssssssessssens 7-11

Integrating a Device Driver in the HAL........cccoeiiiiinicinicceeeieciene e sessssesaenns 7-15

OVEIVIBW ..ottt et 7-15

Assumptions and ReQUITEMENtS.........ccovureeueueiririricieinininiieieetsenecieie et esseseesesesesseeaenenes 7-16

The Ni0S§ IT BSP GENETALOL.......ccuiuiuicieeiiieieiieeieieseesessesseee e sessesessesess s ssssssessessssessenacs 7-17

File Names and LOCAtIONS........c.cucueuiurieeiciiiicieineieieteeseiesesseesesese i sae e ssese s ssessssesaees 7-18

Driver and Software Package Tcl Script Creation...........ccvccuvicicinininieniicinicicisisininnns 7-19

Creating a Custom Device Driver for the HAL........ccccooiiiiininiiiiccce e 7-28

Header Files and alt_Sys_iNit.C......ccooeurieieininieineiniciceiecicie e ssesessenae 7-28

Device Driver SOUICe COde........uuuiiieiiiiinieieitieieeiesiesessesssee e ssessese e ssessesessesseans 7-29

Reducing Code Footprint in HAL Embedded DIivers...........ccccocviiiiinininininisciicicicisisicecns 7-29

Provide Reduced FOOtPIint DIIVETS.......ccvuierireeeireucunineinieieineieineeisieseiesessesessesesessesessssessssesees 7-30

Support the Lightweight Device Driver APL........ccccccooiiiinininiiiniincscsieinens 7-30

HAL NameSpace AlLOCAtION.c.cueueuiueurieieireieirieirecie et teteseesese et sese s sssaesesesessesesesaesesneaes 7-31

Overriding the HAL Default Device DIIVETS.........ccociiiiiiniiiiiiiicisiiiicesscssss s 7-32
Document Revision History for Developing Device Drivers for the Hardware Abstraction

LAYET ittt sttt 7-32

Exception Handling........c.ccceeveiiieiiinuiinneiinniennneinneennneinnncsnneennesneesneenees. 8- 1

Nios II Exception Handling OVerVIEW...........cccueuiueinierniiiniiiciieieieeeiesesseesenseseseiessesesesesessssesessesenne 8-1
Exception Handling Terminology............ccceeiveinicininieinicinieeiicineeeeseesseesessesessesessssns 8-1
INETTUPT CONLIOIIELS. .. .eieieieeieiiiecietes ettt sttt ettt en 8-3
Latency and ReSponse Time.........ccvueueiieinicinieieiieinicineeeeie et s nsesesssscsenas 8-5

Nios II Interrupt Service ROULINES......cc.ccivirieriririiieiiriicieneetrenieetnte et eesesse et saeseseesaenesens 8-6
HAL APIs for Hardware INterrupts......cooeneneeeeurerineieeieiririteieietsteeieieistseesesetstseesesesesssseesesens 8-7
HAL ISR ReStIICHONS.oviiiiiiiiiciiiiiiiin st 8-11
Writing an ISR s 8-11
Registering an ISR with the Enhanced Interrupt APL.......cccocccvieinieincinnicnieiricricenenes 8-13
Enabling and Disabling INTEITUPLS.......ceceueuiuerrierricreinieiicieeienee et sesesessesenseaessnaes 8-14
Configuring an External Interrupt Controller...........ccooceuviceunieninicinicrnineeeeeeeecreseennene 8-14
C EXAMPIE....eiiiteieee ettt bttt bttt sttt ettt sttt bttt 8-15
Upgrading to the Enhanced HAL Interrupt APL.......cccccviiiieinciniiericreceeeecenne 8-16

Improving Nios II ISR Performance..........cceeuriiniieinicinicieieeiieseieseneesseesesesessesessssesessesenns 8-17
Software Performance IMpProvements.........cocococeueurerireeueieinireneeieieiseneeesetseseseesesesseseeesesessene 8-17
Hardware Performance ImMprovements..........cooeecueurerineeeeueinineneceeieseseeeieieeseseesesesesseeesesens 8-22

Debugg@ing NiOS II ISRS......ccceuiuiiieiieiiiieiciciictieieicieeeese sttt sssse s sesacsens 8-24

HAL Exception Handling System Implementation...........cccoceuicunicunieueenicinicrnieeeneenseenenesenenenne 8-25
Exception Handling System STIUCLUTE........c.cccueviueiriernieinicieiteiecticieee e sessesesseseseaesenaes 8-25

Altera Corporation

TOC-8

General Exception Funnel..........cccccoiiiiniiiiicicccee s 8-26
Hardware Interrupt FUNNEL......c.cocueiiiiiiiiniiericicie et ssesesssneaes 8-26
Software Exception FUnNel.......ccc.oveiiiiiciiiciccrccieicceeie e saees 8-28
INVAlid INSTIUCHONS. .. cuvieeiiaciricteieiete ettt enne 8-32

The Nios II Instruction-Related Exception Handler..........c.oocvveeinenicinnccnecnicncerecseceeees 8-32
Writing an Instruction-Related Exception Handler...........ccoccvuiercininicincnenicncniencnnn. 8-32
Registering an Instruction-Related Exception Handler..........cccoeviercininicineniencinerneennens 8-34
Removing an Instruction-Related Exception Handler...........ccccveuvieivcininicincininicincnneenn. 8-35
Document Revision History for Exception Handling.............ccccuveuveeinciniinicinenieicneneeneneeseenenn. 8-35
Cache and Tightly-Coupled MemOTry........ccecuerruensrinsnnisnensnnnsninsnenssnesssesssnessnees 9-1
Nios II Cache Implementation.........cccuceuierriiieiieinicirieieieeeeeiese et s s ssesesssesenacs 9-1
Defining Cache PrOpPerties........ccoiieiicrricininieiieiieieicieieeee st ssesesssessssesns 9-2

HAL API Functions for Managing Cache..........cccccceuveurieninieinicirieieiieneeeiceeeseesesesesesessssesenne 9-2
Initializing the Nios IT Cache after ReSet.........ccvueueuieiniciriiieiiciiciecieeeeeeneeseessesesesesesseaesenaes 9-2
Assembly Code to Initialize the Instruction Cache.........c.coceuviceuviccniniciniccnccceceiceenes 9-3
Assembly Code to Initialize the Data Cache.........ccocccuviviuriniciniciniciiercrceceeeeeieenes 9-3

FOI HAL USEIS....cuiuiiiiiiiiiiiniii sttt ns 9-3

Nios II Device Driver Cache Considerations..........c.ccoceuecuricuriiueinierniernncsenseeseesenesesssesseesensesenens 9-3
FOI HAL USEIS....ooiiiiiiiiiiii sttt e ns 9-4

Cache Considerations for Writing Program Loaders............cocceveueunieinicrninicnicrnieeneenecseeenenenes 9-4
FOr Users 0f the HAL.......c.oiiciciceeeie et ssssesssassenscaes 9-5
Managing Cache in Multi-Master and Multi-Processor SyStems.........c.cceceveeurecrreneuenneernesceeinerennenes 9-5
Bit-31 Cache BYPass.......ccceuiueiricrnieiriieinicieieieitie ittt ssssessssesessssenssaen 9-5

FOI HAL USEIS....uouiiiiiiiiiiiitc sttt b bbb e ns 9-6

Nios II Tightly-Coupled MEMOTY........ccvveurmiueiieinieinieieitietsteseiesesesessesesessese st ssesessssessssesessesens 9-6
Document Revision History for Cache and Tightly-Coupled Memory.........ccccccvuceurunereuneernicrencunnn. 9-6
MicroC/OS-II Real-Time Operating System..........cccecveeveiveesnensienseeneessensnennnes 10-1
Overview of the MicroC/OS-II RTOS.......cccviieiriciriceeineeiseeiseeeeiesetsesesseese e ssesessesesesesessescsnens 10-1
Further INformation........c.ccccccueicriceeirecieciecie ettt ssesens 10-1
LICENSING. ..ttt 10-2

Other RTOS PrOVIAETS......c.vueuiiueiicirieieineieinecieicie e eese e astsessasese s ssesesessssessesessesesessesesesesens 10-2
The Nios II Implementation of MicroC/OS-IL........ccccoueiininiiininiieiciiieesee e 10-2
MiCrOC/OS-II ATCRItECTULE.....cuveteeieieicieeciecte ettt seaesneaes 10-2
MicroC/OS-II Thread-Aware Debugging............ccccuviuiiineiniinicineinieieincisieieisceseeseieseeienaes 10-3
MicroC/OS-II Device DITVELS......c.cooiiiririrniririrerireeerieieeeeeeeeee et ssssssssaeaeaenes 10-3
Thread-Safe HAL DIIVETS....c.occreiieiricinicreeneieieeesseeseeeseaesesseseseesesessesessesessesesesesesssscssssesees 10-4

The newlib ANSI C Standard LiDrary.......ccecoceveeurecinincnencenecnecneceneeseesseeseeesessesesnenes 10-5
Interrupt Service Routines for MicroC/OS-IL.......ccocvuiuniiinicineininicicinisicieseeeiseiesennnns 10-6
Implementing MicroC/OS-II Projects for the Nios II Processor...........cccccceveuveuricineincenicineeneeeienn. 10-6
Document Revision History for MicroC/OS-II Real-Time Operating System............cccccuveuriucucnnee 10-6
Ethernet and the NicheStack TCP/IP Stack - Nios II Edition...........c..cceuueu.... 11-1
Prerequisites for Understanding the NicheStack TCP/IP StacK.........cccoecvivriiniiniiciininininininnnes 11-1
Introduction to the NicheStack TCP/IP Stack - Nios II Edition.........ccceuveurieevcrnerreencrnieenernenenennes 11-2

Altera Corporation

The NicheStack TCP/IP Stack Files and Directories..........ocveueuveerrcenernierncrnerneenersesenenens 11-2
LICENSING ..ttt 11-3
Other TCP/IP Stack Providers for the Nios IT PrOCESSOL...........ccccuiuieeiiuniuiemneieieieiereieneneseeeenaens 11-3
Using the NicheStack TCP/IP Stack - Nios IT Edition..........c.ccvviviniciniiciniiniccccieen. 11-3
Nios II System ReqUirements...........ccceuviueuicininieiiieiicicc s 11-3
The NicheStack TCP/IP Stack Tasks.......cccvueueuriirieineiriinieiericceiseeeieiesesesseesessesesaenaes 11-4
Initializing the Stack........ccoiiiii s 11-4
Calling the Sockets INtErface.........cccouviuiiuiiiiiiciiii s 11-7
Configuring the NicheStack TCP/IP Stack in a Nios II Program...........ccccccoeuvivivivinceneincicicinnnn. 11-8
NicheStack TCP/IP Stack General Settings...........ccovuuviviiiiniiniicininiiicceceeeas 11-8
IP OPtIONS....uiiiiiiciiiiicii bbb bbb 11-9
TCP OPHIONS....oiieiiiiiiictii bbb 11-9
Further INfOrmation........c.oucuciiriciciiiiciciic ettt naes 11-9
Known LIMitations. ... 11-10
Document Revision History for Ethernet and the NicheStack TCP/IP Stack - Nios II Edition....
11-10
Read-Only Zip File System........cooeiinuiiiiiniiiiiiinninniinnninniinneiniennennenseennens 12-1
Using the Read-Only Zip File System in @ PTOject........ccoceieuniciniininieiniciricceiecieeeseesenesenene 12-1
Preparing the Zip File......c.ciiiccccccte e seaens 12-1
Programming the Zip File to FIash.......c.cccccoviciniiiiiiiiiiiicrcceecececesecnennes 12-2
Document Revision History for Read-Only Zip File System..........ccoocceuveeurinieinicrrencrnnecnnecnnncnen. 12-2
Publishing Component Information to Embedded Software............c..ccueeuuene. 13-1
Embedded Component INformation FLOW..........cceucueuieinicinincininccnecsceeerecssecieeeesseaesseesenenes 13-1
Embedded Component Information Flow Diagram........c.ccveeeuevreeenecerincerenceernecusenceeenennn. 13-1
Tcl AsSIgNMENT STALEIMEIIS.cucvurueeiceeieiciiscieeeie et rees s teae et sesebe st sessese s ssencns 13-2
Embedded Software ASSIGNMENTS.......c.ceeueuriucurincurineueinicinieeeieieiesceseesessesetsesesseese s ssesessesesesesesseses 13-2
C MaACTO NAMESPACE.....cueiiriririreriieeierereaeie ettt sttt sttt s e s se s e ssaeaeaeas 13-2
Configuration NameESPACE.......c.ceveureeueuriucrrecteriieitietseeseeeseasesessesesetesessesessesesesesesseacsssscsesnenes 13-3
Memory Initialization NamMeSPACE........cccrecurieureneeeineicinicieeeie et sseaese s s seeseseene 13-8
Document Revision History for Publishing Component Information to Embedded Software.....13-9
HAL API Reference.........ccuueiueniiniiniisiennnensicnninninsnennensinssesensinsosesene 14-1
HAL APT FUNCHOIS. ...ttt sttt 14-1
EXEE() ovvvrreeeseseesesssessseseesesssssseee e s s s e e 14-1
I (= 11 00 1=1 (R 14-2
Alt_dCache fTUSRHQ) ..ottt ettt ettt ettt sa e ae b ne 14-3
alt_dcache fIush_all()....cooiviiiiiiiiictceecteeet ettt sttt et st ettt et st et sressenessenean 14-3
alt_dcache_flush_ No_WIIteDaCK()...cvvviiieiiiiieieeeteeteee ettt st st 14-4
alt_uncached_MalloC) ..ottt ettt b et b e ae e saesssbe st esesaeneans 14-5
Alt_UNCACREA_TTEE() vttt ettt ettt sttt et st st et ste st e e st ensstenssnensanens 14-6
alt_remap_uncached().....cooveeureerrinereineiciriciricecere sttt 14-7
alt_remap_CaChed()....oceueeeurecirieiei e 14-7
alt_icache fIUSh_all()...ooioiviiieiiceeecteee ettt sttt et et st sae e 14-8
=Y L Lor=Ted o TR 1 10 1Yo X () SOOI 14-9

Altera Corporation

TOC-10

Altera Corporation

Alt_AlATI STATT().eiuivieiieiiieie ettt ettt ettt b sttt ae e b et e r et enesae s eneas 14-10
Alt_Alarm_STOP().veueeeereerrincieieieireetri ettt et 14-11
alt_dma_rxchan_depth).....coccoerrnercceccrcce et 14-12
alt_dma_rXChan_ClOSE().....cuiieveriiieeereeeieeceee ettt r ettt sesesesssetesensesesesennas 14-13
ALt AEV_T@G().evurvereruiiiiicieiiie ittt e 14-14
alt_dma_rxchan_0Pen()......cooeeueeeureueirieieieieneeirieieiese ettt 14-15
alt_dma_rxchan_prepare().......cccoe ettt essese et sessesenns 14-16
alt_dma_rXchan_reg().....coeueuerriurieiriiniieieieieieeieiseie ettt 14-17
alt_dma_tXChan_ClOSE().....oveiieeereeieeeeteeeeereeee ettt s e st se s st ess s s essnsanes 14-18
alt_dma_tXChan_T0CtI).....cooveeeieeeeeeieeccc ettt ettt et aeneas 14-19
alt_dma_tXChan_OPen()......occvecuriiririeiriciric sttt 14-20
alt_dma_tXChan_reg().......ccoeueurirriueieiiiicieneie ettt 14-21
Alt_flash_CLOSE_AEV().uoviueeeirerieieeeeeieeetee ettt ettt s et esens s et ese s enetenensenes 14-22
alt_exception_cause_generated_bad_addr().........coceuveurerriuricireinicicininiceeeeeens 14-23
alt_erase_flash_ DIOCK()....ouoiviviiiiiiteictetceee ettt ettt et v b benssnessenis 14-23
alt_dma_rXchan_10CHH)......oioieieeeeiieeeeeee ettt ettt be e s s eaensenen 14-24
alt_dma_tXChan_SPace().....cecveueurereurereirineirineeirieisiei ettt ettt 14-26
alt_dma_tXchan_SeNd()......coeevereuiieeereeieeeeee ettt ettt nens 14-27
alt_flash_OPen_dev()....c.cveeureeericieirecrecr ettt 14-28
ALEES_T@E().vuuvuruiriucieiiieieet ettt 14-29
alt_get_flash_INfO()....ccccririeiniinieicciicc e 14-29
Alt_1C_Irq_diSADIE() .. uvueeereueirieieieierec st 14-30
alt_ic_irq_enabled (). ..ot 14-31
alt_iC_IST_T@GISTEI()..euuiuiuieiiciiiciiciic e 14-32
alt_ic_irq_enable().. oo ceerririceieirrceerre ettt 14-34
alt_instruction_exception_register().........ccocuriviiiniiiniiiniiieiieicieeee e 14-35
Alt_Irq_diSADIE()....vueeeeucericeeieicirc et 14-36
alt_irq_cpu_enable_interrupts ()......ccoeeerrerereeiririneneeiereiseneeeseseeseseesesesssseesesesesseseesesenes 14-37
alt_irq_disable_all().....ceoveeeureueurecirieieirecirect et 14-38
Alt_IrQ_eN@ble()..veueeeieeieieireeir ettt 14-39
alt_irq_enable_all().....cooeueueueireeiriciriciecietee ettt 14-39
Alt_irq_enabled().. et 14-40
ALE_IEQ INTE()cvevevreeneeeretrirereci ettt ettt et sttt 14-41
alt_irq_Pending ().....ccceeeueeereuiirieicineieie e 14-42
Alt_IrQ_reIStEr()...ccviueuiuiiiiiciiciic s 14-43
ALE_LLSE INISEIE() e cuiviniieiiieitciet ettt ettt ettt ettt b s b e st s s et ene s e st ssensesessenssensssensons 14-44
ALE_LLISE TEIMOVE() vttt ettt ettt s et sae st s e st esesae st ere st enesaenssrensone 14-45
Alt_10Ad_SECHION() uiviiieiiiictiiciete ettt ettt st a e s be st e e s enesae st ene s enesaensene 14-46
ALE_NIEICKS () evtevitieieteieeet ettt ettt ettt ettt e s s s e s b e st st e s ene s e st ssenteresbensesentsaeasens 14-46
Alt_TAd_fIASH)ucuiieieieieiiceeee ettt ettt ettt b et et ae s re s 14-47
ALE TICK) ettt ettt ettt ettt ettt n bbb e b a e b st en st et ere b enteae s enn 14-48
alt_tickS_Per_SECONA() .. uueuveuerrimeirieieireieirieieteie ettt ettt seae st ebe i 14-49
ALt tIMESTAMIP()..eueuceererririeerereirireceiet ettt ettt ettt sttt bbbttt se sttt aeae bt ea e aesesees 14-50
alt_timeStamp_freq() e eevreereerereerieirieirireieireie sttt 14-51
alt_timeStamP_STATT()..c.eveereceererririreeieretrtrerescietet sttt ettt se sttt b et seaeaene 14-51
AL WIIEE_ FIASH() cvviivieieeiieieee ettt sttt et s st s et sae b st e st sreseneanan 14-52
alt_write_flash_BIOCK()....ooviuiiieeetiieeeceeeeteeeeetee ettt ettt se et et nsnens 14-53
CLOSE() vttt ettt s ettt s et et et e ae et et eae st et et e sens et et eaeat et et ensasereteseas et et ensaseresennan 14-54
ESEAT() vttt ettt ettt et a bbbt R e a et b e bR e bt e r et eResbe st ere st enestenssaentane 14-55

FOTKQ) vttt ettt ettt ettt st et a et e st st e st st e s ese b est et essenessentesessoaeasenesantssesseneanan 14-56
0 018 () OO OO U TR 14-57
L (o (=L O TR 14-58
GEEPIA() ettt 14-58
KALLQ) vttt bbbttt 14-59
L =1 ()RR 14-60
SELHIMEOLAAY() ..o vvevrrrivrecirciieeicieii it 14-61
WATEC) e vvveeee e ssesseee e s s 14-61
UNINKO) ottt ettt ettt b b s e s et e s et e s e be st saasseresbensssessenessenessessne 14-62
SDIK() vttt ettt ettt sttt sttt e r et s st a et e s et e ne st ent st et e s et ereste s eae st eneaes 14-63
oY TR 14-63
LSEEK() . uvvitieietiieeeteeet ettt ettt ettt et ettt st ettt s st et st et en et ent st et et et en et entstenseressenestens 14-64
ALt SYSCIR_INTE().vuuvuvuerieeieireiicieiei ettt 14-65
OPCIL() euruverrtneueuereteteeaesetetsteseae bttt ettt b bt sttt sttt ettt bttt b ek s e eaeaes 14-66
1800 0 L=t TR 14-67
FEAA() vttt ettt ettt ettt st et et et e st et e st et e st e s et e st et e st et e b e s st en b et e b e R et en s et entere b en e benteaessens 14-68
TWITEE() eveereveerereereeetet ettt ettt ettt ettt et e b e e e se s ese b eseesesseseaseseesessesessesssessesensesensensesersesensensesensens 14-69
USLEEP() ettt ettt ettt 14-70
ALt LOCK _TTASII) ittt ettt ettt sttt ettt sttt sv et er et enesaenea 14-71
GEtMEOTAAY()..voveeverieicicicc e 14-72
TOCEL() cveeeeree ettt ettt ettt ettt bbb e eb bbb e e ebessebe s eneese s ebe s ens b eneesenneneeseneene 14-73
ESATEY() et 14-74
HAL Standard TYPes.........cccviiimimiiiicii s sssnsss 14-75
Alt_GEtChAT(). e 14-75
ALE PULSTI()euvvevreeneieieeetre ettt ettt sttt ettt bbbttt bbbt b et 14-76
ALE_PULCRAT() ettt 14-77
ALE PN) ettt 14-78
Document Revision History for HAL API Reference..........occuiereercrniunicnnerneieecrnenseeenenseseeeennens 14-78
Nios II Software Build Tools Reference...........coeevvueevveerinnicnsnecinecnisecnsnecnnne 15-1
Nios II Software Build Tools UHIItIes.cc.oceurureueirieirieieiieiriciricieeeteteereeeseeeseseseneseseseseeaens 15-1
LOGEING LOVELS......ouiiiiiiiiicicciictcecic ettt 15-1
SEHNG VALUES.....oueiieiiiicic ettt 15-2
Utility and SCript SUMMATY......c.coiciriiiriiicictceeeeeeeie et se s seaens 15-2
nios2-app-generate-mMakefile........ocouiiiiiiriniiinicinicicccccee e 15-3
NI0S2-DSP-Create-SELtNES.cvueriiiriieeiiciriciee ettt neaes 15-4
Ni082-bSP-Generate-files........ccviiiiiniiiniiiiieice et 15-6
NI0S2-DSP-QUETY-SELHINES.vuierieiiiiiciiciicce ettt s naeae 15-6
Ni0S2-DSP-UPAALE-SELHINGS.......cucvieiiiieiiciicice ettt sesaeae 15-7
nios2-lib-generate-makefile..........cocoeuiiiriciniiiiiniciiccccce e 15-9
NHOS2-DSP-EAILOT ...ttt ettt bbbttt 15-10
nios2-app-update-makefile........cccerriririiiiirininecereeee et 15-10
nios2-lib-update-makefile..........ccceururiniieeiiiriniiccreee et 15-12
NI0S2-SWEXAMPLE-CIOALE.vveiiueiieieiriecie ettt ettt bbbttt sesean 15-14
NHOS2-ELE-INSEI ...ttt s 15-15
NHOS2-lf-QUETY ..ottt 15-16
nios2-flash-programmer-generate...........cooeuieureeueiireiniersiesereseesesesseesenesessesessesessssesenses 15-17
THOS2-DISP .tttk b et es 15-19

Altera Corporation

TOC-12

Altera Corporation

NHOS2-DSP-CONSOLE.....cueviuiiiiictricie ettt 15-21
A-FI1E-CONVET L. ..ottt 15-22
Nios IT Design EXample SCIIPLS........cviuriueieiiirieiciiiieieitieieeiseiense s ssessssessessessssessessesessessesns 15-23
CTEATE- RIS DISP .. vveeieiiict ettt sttt 15-24
CTEATE-TNIS-APP v vecetieeiicte ettt sttt 15-24
Finding create-this-app and create-this-DSp.......ccccvuevcunernicieininiccrceccceeeaee 15-24
Settings Managed by the Software Build TOOIS...........cccoeuviiiiiiiiiiciininccccies 15-25
Overview of BSP SEttings........ccoviuiiiiiiiiiiiiiiiiiis s sssssssssenas 15-26
Overview of Component and Driver Settings...........cocuvuiuririnininiininniiieicicisiissssnnnns 15-27
Settings REfErencCe.........coviiiiiiiiiii s 15-28
Application and User Library Makefile Variables..........cocceeuviuriernerniricinernicicncnceeecieeneenne 15-61
Application Makefile Variables..........ccoceureurieieinieniciniceeccceceeeneeesese e 15-61
User Library Makefile Variables...........ccccccovuiiiinininiiiiiiiiiccccccies 15-63
Standard Build Flag Variables...........cccccouiiiiiiiiiiicccccccsnnnns 15-63
Software Build Tools Tcl COMMANAS.......c.cuiuieiiiiericiiiiieicieiieeieie e ssese e seens 15-64
Tcl Command ENVIFONIMENTS. ... nesessesesesssse s ssessessesessessessssessens 15-64
Tcl Commands for BSP Settings...........ccviiiiiiiiiiiiiscss s 15-64
Tcl Commands for BSP Generation Callbacks...........cccveurieucuniunicinernieeicrneneecrneneeenenens 15-90
Tcl Commands for Drivers and Packages...........cccccuiiiiiiiiiiniciiiiccciceeines 15-99
Software Build T0ols Path NAMES.......ccccceuereiniirieieiiiceieceireceei e saens 15-107
Command ATGUMENTS.........cuiimimiiiiiiiiss s ss s sssnes 15-107
Object File DIrectory TTEe. ..ot ssssssssenas 15-108
Document Revision History for Nios II Software Build Tools Reference..........ccccocuovuviviuninnnnes 15-109

Overview of Nios Il Embedded Development 1

2015.05.14

NII5V2 @ Subscribe C] Send Feedback

The Nios II Software Developer's Handbook has been divided into two documents - Nios II Classic Software
Developer's Handbook and Nios II Gen2 Software Developer's Handbook.

o The Nios II Classic Software Developer's Handbook is familiar to past users. There are no future updates
planned for this version.

o The Nios II Gen2 Software Developer's Handbook describes embedded software development tools for
the Nios IT Gen2. It does not describe IP cores. Future updates are planned for this version.

The Nios® II Classic Software Developer’s Handbook provides the basic information needed to develop
embedded software for the Altera® Nios II processor. This handbook describes the Nios II software
development environment, the Nios II Embedded Design Suite (EDS) tools available to you, and the
process for developing software.

Related Information

Nios IT Gen2 Software Developer's Handbook
For more information about the Gen2 version and for future updates.

Prerequisites for Understanding the Nios Il Embedded Design Suite

The Nios II Classic Software Developer’s Handbook assumes you have a basic familiarity with embedded
processor concepts. You do not need to be familiar with any specific Altera technology or with Altera
development tools. Familiarity with Altera hardware development tools can give you a deeper
understanding of the reasoning behind the Nios II software development environment. However,
software developers can create and debug applications without further knowledge of Altera technology.

Finding Nios Il EDS Files

When you install the Nios IT EDS, you specify a root directory for the EDS file structure. This root
directory must be adjacent to the Quartus® IT installation. When you install the latest release of the Nios IT
EDS on the Windows operating system, choose a local root folder that identifies the content, for example:
c:\altera\<latest release number>\nios2eds.

Note: For simplicity, this handbook refers to this directory as <Nios II EDS install path>.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2%202015.05.14)%20Overview%20of%20Nios%20II%20Embedded%20Development&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2Gen2.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

. . NII5V2
1-2 Nios Il Software Development Environment 2015.05.14

Nios Il Software Development Environment

The Nios IT EDS provides a consistent software development environment that works for all Nios II
processor systems. With the Nios IT EDS running on a host computer, an Altera FPGA, and a JTAG
download cable (such as an Altera USB-Blaster download cable), you can write programs for and
communicate with any Nios II processor system. The Nios II processor’s JTAG debug module provides a
single, consistent method to connect to the processor using a JTAG download cable. Accessing the
processor is the same, regardless of whether a device implements only a Nios II processor system, or
whether the Nios II processor is embedded deeply in a complex multiprocessor system. Therefore, you do
not need to spend time manually creating interface mechanisms for the embedded processor.

The Nios II EDS includes proprietary and open-source tools (such as the GNU C/C++ tool chain) for
creating Nios II programs. The Nios I EDS automates board support package (BSP) creation for Nios II
processor-based systems, eliminating the need to spend time manually creating BSPs. The BSP provides a
C/C++ runtime environment, insulating you from the hardware in your embedded system. Altera BSPs
contain the Altera hardware abstraction layer (HAL), an optional RTOS, and device drivers.

Nios Il EDS Development Flows

A development flow is a way of using a set of development tools together to create a software project. The
Nios IT EDS provides the following development flows for creating Nios II programs:

o The Nios II Software Build Tools (SBT), which provides two user interfaces:

o The Nios II SBT command line
« The Nios II SBT for Eclipse™

Nios Il SBT Development Flow

The Nios II SBT allows you to create Nios II software projects, with detailed control over the software
build process. The same Nios II SBT utilities, scripts and Tcl commands are available from both the
command line and the Nios II SBT for Eclipse graphical user interface (GUI).

The SBT allows you to create and manage single-threaded programs as well as complex applications based
on an RTOS and middleware libraries available from Altera and third-party vendors.

The SBT provides powerful T¢cl scripting capabilities. In a T¢cl script, you can query project settings,
specify project settings conditionally, and incorporate the software project creation process in a scripted
software development flow. Tcl scripting is supported both in Eclipse and at the command line.

Related Information
Nios II Software Build Tools on page 4-1
For more information about Tcl scripting.

Nios Il SBT for Eclipse
The Nios II SBT for Eclipse is a thin GUI layer that runs the Nios II SBT utilities and scripts behind the
scenes, presenting a unified development environment. The SBT for Eclipse provides a consistent
development platform that works for all Nios II processor systems. You can accomplish all software
development tasks within Eclipse, including creating, editing, building, running, debugging, and profiling
programs.

Altera Corporation Overview of Nios Il Embedded Development

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Nios Il SBT Command Line 1-3

The Nios II SBT for Eclipse is based on the popular Eclipse framework and the Eclipse C/C++ develop-
ment toolkit (CDT) plugins. The Nios II SBT creates your project makefiles for you, and Eclipse provides
extensive capabilities for interactive debugging and management of source files.

The SBT for Eclipse also allows you to import and debug projects you created in the Nios II Command
Shell.

Related Information

o Getting Started with the Graphical User Interface on page 2-1
For more information about the Nios II SBT for Eclipse.
o Eclipse Foundation
For more information about Eclipse, visit the Eclipse Foundation website.

Nios Il SBT Command Line

In the Nios IT SBT command line development flow, you create, modify, build, and run Nios II programs
with Nios II SBT commands typed at a command line or embedded in a script. You run the Nios II SBT
commands from the Nios II Command Shell.

Note: To debug your command-line program, import your SBT projects to Eclipse. You can further edit,
rebuild, run, and debug your imported project in Eclipse.

Related Information

Getting Started from the Command Line on page 3-1
For more information about the Nios II SBT in command-line mode

Nios Il Programs

Each Nios II program you develop consists of an application project, optional user library projects, and a
BSP project. You build your Nios II program to create an Executable and Linking Format File (.elf) which
runs on a Nios II processor.

The Nios II SBT creates software projects for you. Each project is based on a makefile.

Makefiles and the SBT

The makefile is the central component of a Nios II software project, whether the project is created with
the Nios II SBT for Eclipse, or on the command line. The makefile describes all the components of a
software project and how they are compiled and linked. With a makefile and a complete set of C/C++
source files, your Nios II software project is fully defined.

As a key part of creating a software project, the SBT creates a makefile for you. Nios II projects are
sometimes called "user-managed," because you, the user, are responsible for the content of the project
makefile. You use the Nios II SBT to control what goes in the makefile.

Related Information

Nios II Software Build Tools Reference on page 15-1
For more information about creating makefiles.

Overview of Nios Il Embedded Development Altera Corporation

C] Send Feedback

http://www.eclipse.org
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

)) NII5V2
1-4 Nios Il Software Project Types 2015.05.14

Nios Il Software Project Types

Application Project
A Nios II C/C++ application project consists of a collection of source code, plus a makefile. A typical
characteristic of an application is that one of the source files contains function main(). An application
includes code that calls functions in libraries and BSPs. The makefile compiles the source code and links it
with a BSP and one or more optional libraries, to create one .elf file.

User Library Project
A user library project is a collection of source code compiled to create a single library archive file (.a).
Libraries often contain reusable, general purpose functions that multiple application projects can share. A
collection of common arithmetical functions is one example. A user library does not contain a main()
function.

BSP Project
A Nios II BSP project is a specialized library containing system-specific support code. A BSP provides a
software runtime environment customized for one processor in a Nios IT hardware system. The Nios II
EDS provides tools to modify settings that control the behavior of the BSP.

A BSP contains the following elements:

« Hardware abstraction layer

« Optional custom newlib C standard library
 Device drivers

 Optional software packages

« Optional real-time operating system

Related Information

« Altera Software Packages for Embedded Systems on page 1-4
» Overview of the Hardware Abstraction Layer on page 5-1
+ Nios II Software Build Tools Reference on page 15-1
For more information, refer to the "Nios II Embedded Software Projects" chapter.

« Altera Software Packages for Embedded Systems on page 1-4
+ MicroC/OS-II Real-Time Operating System on page 10-1

Altera Software Packages for Embedded Systems

The Nios IT EDS includes software packages to extend the capabilities of your software. You can include
these software packages in your BSP.

Table 1-1: Altera Nios Il Software Packages Distributed with the Nios Il EDS

I S

NicheStack TCP/IP Stack - Nios II Edition Refer to the "Ethernet and the NicheStack TCP/IP
Stack - Nios II Edition" chapter.

Read-only zip file system Refer to the "Read-Only Zip File System" chapter.

)" The complete HTML documentation for newlib resides in the Nios I EDS directory.

Altera Corporation Overview of Nios || Embedded Development

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Nios Il Embedded Design Examples 1-5
I I

Host file system Refer to the "Developing Programs Using the
Hardware Abstraction Layer" chapter.

Related Information

o Ethernet and the NicheStack TCP/IP Stack - Nios II Edition on page 11-1
o Read-Only Zip File System
« Developing Programs Using the Hardware Abstraction Layer on page 6-1

o https://www.altera.com/products/design-software/embedded-software-developers/nios-ii-
eds.html#ES

o Embedded Software
For more information about a complete list of the additional software packages available from Altera’s
partners

Nios Il Embedded Design Examples

The Nios II EDS includes documented software examples to demonstrate all prominent features of the
Nios II processor and the development environment. The examples can help you start the development of
your custom design. They provide a stable starting point for exploring design options. Also, they
demonstrate many commonly used features of the Nios II EDS.

Note: The hardware design examples are available on the Embedded Processor Design Examples web
page.

Related Information

Embedded Processor Design Examples

Hardware Examples

You can run Nios II hardware designs on many Altera development boards. The hardware examples for
each Altera development board can be found in the kit installation provided with the board.

Note: The Nios II with MMU design is intended to demonstrate Linux. This design does not work with
the SBT, because the SBT does not support the Nios I MMU.

Related Information

+ Nios II Ethernet Standard Design Example
o Nios II Processor with Memory Management Unit Design Example
o Altera All Development Kits
For more information about the hardware examples for each Altera development board.

Software Examples

You can run Nios II software examples that run on many of the hardware design examples described in
the previous section.

The Nios II software examples include templates to create the software projects using the Nios II SBT.
These templates do everything necessary to create a BSP and an application project for each software
example.

There are multiple software examples and BSP examples, each with its own directory.

Overview of Nios Il Embedded Development Altera Corporation

C] Send Feedback

https://www.altera.com/products/design-software/embedded-software-developers/nios-ii-eds.html#ES
https://www.altera.com/products/design-software/embedded-software-developers/nios-ii-eds.html#ES
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html
https://www.altera.com/support/support-resources/design-examples/all-design-examples.html?cat=embedded
https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-net-std-de.html
https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-mmu.html
https://www.altera.com/products/boards_and_kits/all-development-kits.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
1-6 Third-Party Embedded Tools Support 2015.05.14

Each BSP example directory contains a create-this-bsp script. After this script is run, each software
example directory contains the following files:

» Source file (.c)
o Header file (.h)
¢ readme.txt

e template.xml

Figure 1-1: Software Design Example Directory Structure

e
(=design:= (eq. standard)

software_examples

1
‘ app
r
_‘ software examples (2.0 hello waorld)
r — p .h, .¢, readme.txt, template.xml
sp
L
o

‘ BSP eamples (2.9. hal standard)

createthis-bsp

Related Information

Getting Started from the Command Line on page 3-1
For more information about using these scripts to create software projects.

Third-Party Embedded Tools Support

Several third-party vendors support the Nios II processor, providing products such as design services,
operating systems, stacks, other software libraries, and development tools.

Related Information

Nios II Processor
For more information about the most up-to-date information about third-party support for the Nios II
processor

Additional Nios Il Information

This handbook is one part of the complete Nios II processor documentation suite. Consult the following
references for further Nios II information:

Altera Corporation Overview of Nios Il Embedded Development

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Document Revision History for Overview of Nios Il Embedded Development 1-7

The Nios II Processor Reference Handbook defines the processor hardware architecture and features,
including the instruction set architecture.

The Embedded Peripherals IP User Guide provides a reference for the peripherals distributed with the
Nios II processor. This handbook describes the hardware structure and Nios II software drivers for each
peripheral.

The Embedded Design Handbook describes how to use Altera software development tools effectively, and
recommends design styles and practices for developing, debugging, and optimizing embedded systems.

» The Altera Knowledge Database is an Internet resource that offers solutions to frequently asked
questions with an easy-to-use search engine.

o Altera application notes and tutorials offer step-by-step instructions on using the Nios II processor for
a specific application or purpose. These documents are available on the Altera website.

o The Nios IT EDS documentation launchpad. The launchpad is an HTML page installed with the Nios II
EDS, which provides links to Nios II documentation, examples, and other resources. The way you
open the launchpad depends on your software platform.

« Inthe Windows operating system, on the Start menu, point to Programs > Altera > Nios II EDS,

and click Nios II <version> Documentation.

« In the Linux operating system, open <Nios II EDS install path>/documents/index.html in a web
browser.

Related Information

o Nios IT Processor Reference Handbook
For more information on hardware architecture and features, including the instruction set architec-
ture.

« Embedded Peripherals IP User Guide
For more information on hardware structure and Nios II software drivers for each peripheral.
o Embedded Design Handbook
For more information on design styles and practices for developing, debugging, and optimizing
embedded systems.
» Knowledge Database
For more information, refer to the Knowledge Database page of the Altera website.
o Literature: Nios II Processor

Document Revision History for Overview of Nios Il Embedded
Development

I I S

May 2015 2015.05.14 |, Maintenance release.
« Renamed to Nios II Classic.
January 2014 13.1.0 « Removed references to Nios II IDE.
o Removed references to Nios IT C2H.
» Updated the "Hardware Examples” section.
May 2011 11.0.0 Introduced Qsys system integration tool
Overview of Nios Il Embedded Development Altera Corporation

C] Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/support/kdb/kdb-index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1-8

Document Revision History for Overview of Nios Il Embedded Development

NII5V2
2015.05.14

I I

February 2011 10.1.0 Removed "Referenced Documents" section.
July 2010 10.0.0 Installation method changed; Nios IT EDS always installed in a
directory adjacent to Quartus II tools.
November 2009 9.1.0 « Described the Nios II Software Build Tools for Eclipse.
+ Nios II IDE information moved to Appendix A.
o Detailed Nios II Software Build Tools utility information moved to
"Nios II Software Build Tools" chapter.
March 2009 9.0.0 o Incorporate information formerly in "Altera-Provided Develop-
ment Tools" chapter.
o Describe BSP Editor.
+ Reorganize and update information and terminology to clarify role
of Nios II Software Build Tools.
 Describe -data argument for IDE command-line tools.
+ Correct minor typographical errors.
May 2008 8.0.0 o Add "What's New" section.
o SOPC Information File (.sopcinfo).
» Design examples removed from EDS.
« Memory management unit (MMU) added to Nios II core.
October 2007 7.2.0 Maintenance release.
May 2007 7.1.0 + Revise entire chapter to introduce Nios II EDS design flows, Nios II
programs, Nios II Software Build Tools, and Nios II BSPs.
« Add table of contents to Introduction section.
» Add "Referenced Documents” section.
March 2007 7.0.0 Maintenance release.
November 2006 6.1.0 Maintenance release.
May 2006 6.0.0 Maintenance release.
October 2005 5.1.0 Maintenance release.
May 2005 5.0.0 Maintenance release.
May 2004 1.0 Initial release.

Altera Corporation

Overview of Nios Il Embedded Development

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Getting Started with the Graphical User
Interface 2

2015.05.14

NII5V2 @ Subscribe C] Send Feedback

The Nios II Software Build Tools (SBT) for Eclipse is a set of plugins based on the Eclipse framework and
the Eclipse C/C++ development toolkit (CDT) plugins. The Nios II SBT for Eclipse provides a consistent
development platform that works for all Nios I embedded processor systems. You can accomplish all
Nios II software development tasks within Eclipse, including creating, editing, building, running,
debugging, and profiling programs.

Getting Started with Nios Il Software in Eclipse

Writing software for the Nios II processor is similar to writing software for any other microcontroller
family.The easiest way to start designing effectively is to purchase a development kit from Altera that
includes documentation, a ready-made evaluation board, a getting-started reference design, and all the
development tools necessary to write Nios II programs.

Modifying existing code is a common, easy way to learn to start writing software in a new environment.
The Nios IT Embedded Design Suite (EDS) provides many example software designs that you can
examine, modify, and use in your own programs. The provided examples range from a simple "Hello
world" program, to a working RTOS example, to a full TCP/IP stack running a web server. Each example
is documented and ready to compile.

This section guides you through the most fundamental operations in the Nios II SBT for Eclipse in a
tutorial-like fashion. It shows how to create an application project for the Nios II processor, along with
the board support package (BSP) project required to interface with your hardware. It also shows how to

build the application and BSP projects in Eclipse, and how to run the software on an Altera development
board.

The Nios Il SBT for Eclipse Workbench

The term 'workbench' refers to the Nios II SBT for Eclipse desktop development environment. The
workbench is where you edit, compile and debug your programs in Eclipse.

Perspectives, Editors, and Views

Each workbench window contains one or more perspectives. Each perspective provides a set of capabili-
ties for accomplishing a specific type of task.

Most perspectives in the workbench comprise an editor area and one or more views. An editor allows you
to open and edit a project resource (i.e., a file, folder, or project). Views support editors, and provide
alternative presentations and ways to navigate the information in your workbench.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

AIEIE%A
101 Innovation Drive, San Jose, CA 95134 ®

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2%202015.05.14)%20Getting%20Started%20with%20the%20Graphical%20User%20Interface&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

NII5V2
2-2 The Altera Bytestream Console 2015.05.14

Any number of editors can be open at once, but only one can be active at a time. The main menu bar and
toolbar for the workbench window contain operations that are applicable to the active editor. Tabs in the
editor area indicate the names of resources that are currently open for editing. An asterisk (*) indicates
that an editor has unsaved changes. Views can also provide their own menus and toolbars, which, if
present, appear along the top edge of the view. To open the menu for a view, click the drop-down arrow

icon at the right of the view's toolbar or right-click in the view. A view might appear on its own, or stacked
with other views in a tabbed notebook.

For detailed information about the Eclipse workbench, perspectives, and views, refer to the Eclipse help
system.

Before you create a Nios II project, you must ensure that the Nios II perspective is visible. To open the
Nios II perspective, on the Window menu, point to Open Perspective, then Other, and click Nios II.

The Altera Bytestream Console
The workbench in Eclipse for Nios II includes a bytestream console, available through the Eclipse
Console view. The Altera bytestream console enables you to see output from the processor's stdout and
stderr devices, and send input to its stdin device.

Related Information

Using the Altera Bytestream Console on page 2-7
For more information about the Altera bytestream console.

Creating a Project

In the Nios II perspective, on the File menu, point to Nios II Application and BSP from Template. The
Nios II Application and BSP from Template wizard appears. This wizard provides a quick way to create
an application and BSP at the same time.

Alternatively, you can create separate application, BSP and user library projects.

Specifying the Application
In the first page of the Nios II Application and BSP from Template wizard, you specify a hardware
platform, a project name, and a project template. You optionally override the default location for the
application project, and specify a processor name if you are targeting a multiprocessor hardware platform.

You specify a BSP in the second page of the wizard.

Specifying the Hardware Platform
You specify the target hardware design by selecting a SOPC Information File (.sopcinfo) in the SOPC
Information File name box.

Specifying the Project Name

Select a descriptive name for your project. The SBT creates a folder with this name to contain the applica-
tion project files.

Letters, numbers, and the underscore (_) symbol are the only valid project name characters. Project
names cannot contain spaces or special characters. The first character in the project name must be a letter
or underscore. The maximum filename length is 250 characters.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 " ,
2015.05.14 Specifying the Project Template 2-3
Related Information
Specifying the BSP on page 2-3
For more information about how the SBT also creates a folder to contain BSP project files.

Specifying the Project Template
Project templates are ready-made, working software projects that serve as examples to show you how to
structure your own Nios II projects. It is often easier to start with a working project than to start a blank
project from scratch.

You select the project template from the Templates list.

The hello_world template provides an easy way to create your first Nios II project and verify that it builds
and runs correctly.

Specifying the Project Location
The project location is the parent directory in which the SBT creates the project folder. By default, the
project location is under the directory containing the .sopcinfo file, in a folder named software.

To place your application project in a different folder, turn off Use default location, and specity the path
in the Project location box.

Specifying the Processor
If your target hardware contains multiple Nios II processors, CPU name contains a list of all available
processors in your design. Select the processor on which your software is intended to run.

Specifying the BSP
When you have finished specifying the application project in the first page of the Nios II Application and
BSP from Template wizard, you proceed to the second page by clicking Next.

On the second page, you specify the BSP to link with your application. You can create a new BSP for your
application, or select an existing BSP. Creating a new BSP is often the simplest way to get a project
running the first time.

You optionally specify the name and location of the BSP.

Specifying the BSP Project Name
By default, if your application project name is <project>, the BSP is named <project>_bsp. You can type in a
different name if you prefer. The SBT creates a directory with this name, to contain the BSP project files.

Related Information

Specifying the Project Name on page 2-2

For more information about how the BSP project names are subject to the same restrictions as application
project names.

Specifying the BSP Project Location
The BSP project location is the parent directory in which the SBT creates the folder. The default project
location is the same as the default location for an application project. To place your BSP in a different
folder, turn off Use default location, and specify the BSP location in the Project location box.

Selecting an Existing BSP

As an alternative to creating a BSP automatically from a template, you can associate your application
project with a pre-existing BSP. Select Select an existing BSP project from your workspace, and select a

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
2-4 Creating the Projects 2015.05.14

BSP in the list. The Create and Import buttons to the right of the existing BSP list provide convenient
ways to add BSPs to the list.

Creating the Projects
When you have specified your BSP, you click Finish to create the projects.

The SBT copies required source files to your project directories, and creates makefiles and other generated
files. Finally, the SBT executes a make clean command on your BSP.

Related Information

Nios II Software Build Tools on page 4-1
For more information about the folders and files in a Nios II BSP.

Navigating the Project

When you have created a Nios II project, it appears in the Project Explorer view, which is typically
displayed at the left side of the Nios II perspective. You can expand each project to examine its folders and
files.

Related Information

Nios II Software Build Tools on page 4-1
For more information about what happens when Nios II projects are created, refer to "Nios II Software
Projects". For more information about the make clean command, refer to "Makefiles".

Building the Project

To build a Nios II project in the Nios II SBT for Eclipse, right-click the project name and click Build
Project. A progress bar shows you the build status. The build process can take a minute or two for a
simple project, depending on the speed of the host machine. Building a complex project takes longer.

During the build process, you view the build commands and command-line output in the Eclipse Console
view.

When the build process is complete, the following message appears in the Console view, under the C-
Build [<project name>] title:

[<project name> build complete]

If the project has a dependency on another project, such as a BSP or a user library, the SBT builds the
dependency project first. This feature allows you to build an application and its BSP with a single
command.

Related Information

Nios II Software Build Tools Reference on page 15-1

Configuring the FPGA

Before you can run your software, you must ensure that the correct hardware design is running on the
FPGA. To configure the FPGA, you use the Quartus II Programmer.

In the Windows operating system, you start the Quartus II Programmer from the Nios II SBT for Eclipse,
through the Nios II menu. In the Linux operating system, you start Quartus II Programmer from the
Quartus II software.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Running the Project on Nios Il Hardware 2-5

The project directory for your hardware design contains an SRAM Object File (.sof) along with
the .sopcinfo file. The .sof file contains the hardware design to be programmed in the FPGA.

Related Information

Quartus IT Programmer
For more information about programming an FPGA with Quartus IT Programmer.

Running the Project on Nios Il Hardware

This section describes how to run a Nios II program using the Nios IT SBT for Eclipse on Nios II
hardware, such as an Altera development board.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

To run a software project, right-click the application project name, point to Run As, and click Nios II
Hardware. To run a software project as a ModelSim simulation, right-click the application project name,
point to Run As, and click Nios IT ModelSim.

This command carries out the following actions:

« Creates a Nios II run configuration.
« Builds the project executable. If all target files are up to date, nothing is built.

+ Establishes communications with the target, and verifies that the FPGA is configured with the correct
hardware design.

« Downloads the Executable and Linking Format File (.elf) to the target memory
« Starts execution at the .elf entry point.

Program output appears in the Nios II Console view. The Nios II Console view maintains a terminal I/O
connection with a communication device connected to the Nios II processor in the hardware system, such
as a JTAG UART. When the Nios II program writes to stdout or stderr, the Nios II Console view
displays the text. The Nios II Console view can also accept character input from the host keyboard, which
is sent to the processor and read as stdin.

To disconnect the terminal from the target, click the Terminate icon in the Nios II Console view.
Terminating only disconnects the host from the target. The target processor continues executing the
program.

Related Information

» Run Configurations in the SBT for Eclipse on page 2-21
For more information about about run configurations.

o Lauterbach GmbH Website
For more information about the Nios II instruction set.

Debugging the Project on Nios Il Hardware

This section describes how to debug a Nios II program using the Nios I SBT for Eclipse on Nios II
hardware, such as an Altera development board.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii53022.pdf
http://www.lauterbach.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. NII5V2
2-6 List of Debugging Tasks with the Nios Il SBT for Eclipse 2015.05.14

To debug a software project, right-click the application project name, point to Debug As, and click Nios
IT Hardware. This command carries out the following actions:

« Creates a Nios II run configuration.

« Builds the project executable. If all target files are up to date, nothing is built.

o If debugging on hardware, establishes communications with the target, and verifies that the FPGA is
configured with the correct hardware design.

o Downloads the .elf to the target memory.

o Sets a breakpoint at the top of main().

« Starts execution at the .elf entry point.

The Eclipse debugger with the Nios II plugins provides a Nios II perspective, allowing you to perform
many common debugging tasks. Debugging a Nios II program with the Nios II plugins is generally the
same as debugging any other C/C++ program with Eclipse and the CDT plugins.

For information about debugging with Eclipse and the CDT plugins, refer to the Eclipse help system.

Related Information

Run Configurations in the SBT for Eclipse on page 2-21
For more information about about run configurations.

List of Debugging Tasks with the Nios Il SBT for Eclipse
The debugging tasks you can perform with the Nios II SBT for Eclipse include the following tasks:
« Controlling program execution with commands such as:

o Suspend (pause)

e Resume

o Terminate
» Step Into
o Step Over

o Step Return
o Setting breakpoints and watchpoints
+ Viewing disassembly
« Instruction stepping mode
« Displaying and changing the values of local and global variables in the following formats:

o Binary
o Decimal
» Hexadecimal
+ Displaying watch expressions
« Viewing and editing registers in the following formats:

o Binary
» Decimal
» Hexadecimal
« Viewing and editing memory in the following formats:

» Hexadecimal
« ASCII
« Signed integer
« Unsigned integer
» Viewing stack frames in the Debug view

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 Console View 2-7

Console View
Just as when running a program, Eclipse displays program output in the Console view of Eclipse. The
Console view maintains a terminal I/O connection with a communication device connected to the Nios II
processor in the hardware system, such as a JTAG UART. When the Nios I program writes to stdout or
stderr, the Console view displays the text. The Console view can also accept character input from the host
keyboard, which is sent to the processor and read as stdin.

Disconnecting the Terminal from the Target
To disconnect the terminal from the target, click the Terminate icon in the Console view. Terminating
only disconnects the host from the target. The target processor continues executing the program.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

Using the Altera Bytestream Console

The Altera bytestream console enables you to see output from the processor's stdout and stderr devices,
and send input to its stdin device. The function of the Altera bytestream console is similar to the nios2-
terminal command-line utility.

Open the Altera bytestream console in the Eclipse Console view the same way as any other Eclipse
console, by clicking the Open Console button.

When you open the Altera bytestream console, the Bytestream Console Selection dialog box shows you a
list of available bytestreams. This is the same set of bytestreams recognized by System Console. Select the
bytestream connected to the processor you are debugging.

You can send characters to the processor's stdin device by typing in the bytestream console. Be aware
that console input in buffered on a line-by-line basis. Therefore, the processor does not receive any
characters until you press the Enter key.

Note: A bytestream device can support only one connection at a time. You must close the Altera
bytestream console before attempting to connect to the processor with the nios2-terminal utility,
and vice versa.

Related Information

Analyzing and Debugging Designs with the System Console
For more information about how System Console recognizes bytestreams.

Run Time Stack Checking And Exception Debugging

Before you begin

To enable extra exception information, navigate to NiosII MegaWizard >
Advanced Features Exception Checking > Extra Information Register; and recompile the HW project
and regenerate the BSP in the Nios II SBT for Eclipse.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . NII5V2
2-8 Nios Il Exception Debugging 2015.05.14

1. Enable the Run Time Stack Checking in the BSP project from NIOS II SBT for Eclipce Nios II BSP
Editor. From the BSP project, right-click and navigate to Nios II > BSP editor Settings > Advanced >
hal > enable_run_time_stack_checking.

Rebuild BSP and software.
Ensure that the FPGA is configured.
Start the Debug Session by navigating to Debug As > Nios II Hardware.

DA

Run the Software.

Nios Il Exception Debugging

To allow easier debugging of Nios II exceptions, first enable the extra exception information in the Nios
II.

Note: This is already enabled if you have an MMU.

Also you can navigate to Nios II MegaWizard > Advanced Features Exception Checking > Extra
Information Register.

Note: There are other options you can choose, like unimplemented instructions.

When an exception is hit, the cause value in the Nios II Exception Register can be decoded using the
Nios II Exceptions (In Decreasing Priority Order) table from the Nios II Classic Processor Reference
Handbook.

Note: This table only provides the general cause.

Related Information

o Nios II Classic Processor Reference Handbook
For more information about the Exception Register Decode Table, refer to the "Exception Overview"
chapter in the "Programming Model" section.

+ Nios II Classic Processor Reference Handbook
For more information about the Exception Register Description, refer to the "The exception Register"
chapter in the "Programming Model" section.

Stack Overflow

To enable Stack Checking, go to the BSP Editor and click on the Settings tab, click on Advanced, hal,
and then click enable_runtime_stack_checking. When the Stack Checking is enabled, extra code is
added at the start of each function call to:

o Check the current value of the stack pointer
« Compare this to the max stack size, which is stored in the Exception Temp (ET) Register

If the stack pointed to is outside of the valid range, the software branches and calls a “break 3” instruc-
tion. This is seen by the Debug Control module.

Note: With stack checking on, malloc() and new() can detect heap exhaustion, as well.

Example 2-1: Example of function with stack checking code

_vfprintf_internal_r:
000002ec: addi sp,sp,-1308
000002f0: bgeu sp,et,0x2f8 <__ vfprintf_internal_r+12>
000002f4: break 3

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409335505730/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409334286419/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . .
2015.05.14 Recognizing and Debugging a Stack Overflow 2-9

The bgeu and break 3 lines are what is added for the stack overflow checking. If the stack pointer
has grown beyond its limits the break is called.

Related Information
Embedded Design Handbook

For more information, refer to the "Stack Overflow" chapter of the Embedded Design Handbook.
Recognizing and Debugging a Stack Overflow
When a stack overflow occurs, having registered an instruction-related exception handler helps you
identify it by its behavior.
Default Instruction-Related Exception Handler
The default value for an instruction-related exception handler is when it is not registered.

If you don’t register an instruction-related exception handler, the “break 3” instruction is picked up by
the software trap logic and a break is passed to the debugger. You must roll back through the history in
the debugger to find the memory operation that triggered the stack checking break.

Note: With stack checking on, malloc() and new() can detect heap exhaustion.
How to Isolate the Cause of a Sigtrap
How to isolate the cause of a sigtrap seen in the debugger with no instruction-related exception handle?
The Debugger breaks with sigtrap:
1. Use the thread view in the debug window and select the last state.

This is the highest number. The last thread will be the actual call than overflowed.

2. Switch to instruction stepping mode in the debugger by pressing the i-> button in the debug window,
which opens the memory disassembly view.
If there has been a stack overflow the disassembly view should show execution pointing to a break3
after the stack check:

____vfprintf_internal_r:
000002ec: addi sp,sp,-1308
000002f0: bgeu sp,et,0x2f8 < vfprintf_internal_r+12>
000002f4: break 3

3. Check the value of sp and et which holds the max stack side in the Nios II register view.
4. Move to the prior state in the debug window and re-check sp vs et.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/edh_ed_handbook.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2-10

Custom Instruction-Related Exception Handler

Figure 2-1: Nios Il Debug window

= - _ - - - - — . -
& Quartus Il 64-Bit - /net/uk-itnas01/rscdata/chatch/issues/ericsson/11006871_TSE/FB_Testing/RSCSocReferenceDesign_NIOSII_EPCQ_ECLISPE_DDR_OCM_OK/RSCSocReferenceDesign - RSCSoch _

File
g g
Project|

i Cyc|
&

[
i Hie|
Tasks

Flow:

LLLLLs

¥
£
=1
E
2
£
=

@.

Nios Il Debug - /localdata/altera/Linux/quartusii-13.0_b200/nios2eds/bin/gnu/src/newlib-1.16/newlib/libc/stdio/vfprintf.c - Eclipse

File Edit Source Refactor NMavigate Search Rum Project Niosll Window Help
e | O Qv | g

%5 Debug &3 i

[] rmoe s

= 4 HelloWoridBasic Nios 1l Hardware configusation [Nios II Hardware]
= §8 Altera COI GDB Debugger (8/20/14 1:55 PM) (Suspended)

= o® Thread (1] (Suspended: Signal 'SIGTRAP' received. Description: Trace/breakpoint trap.)

= 57 printf{) printf.c:55 0x00000168

= 56 fool) hello_worid.c:26 0x00000080
= 55 fool) hello_world.c:27 0x00000090
= 54 fool} hello_world.c:27 0x00000090
= 53 fool) hello_world.c:27 0x00000090
£ 52 fool} hello_world.c:27 0x 00000090
= 51 fool) hello_world.c:27 0x00000050
= 50 foo() hello_world.c:27 0x00000090
= 49 fool) hello_world.c:27 0200000090
= 48 fool) hello_worid.c:27 000000050

& wiprintf.c | viprintf.c =

int result;

2 hello_world.c

result = VFPRINTF R (_REENT, fp, fmte,

return result;

int
DEFUN[_VFPRINTF R, (data, fp, fmt®, ap),

struct reent *data ANO
FILE * fp AND
CONST char *fmt@ _AND
wa_list ap)

reaister char *fmt; /*

= 58 _viprintf_intemal() vfprintf.c:729 0x00002118

ap):

[console &) Tasks [Nios Il Console | &5 Disassembly 52

737
_ wiprintf_internal r:

006682ec: addi sp,sp,-1368

00600210: bgeu sp,et,@x2f8 <

» 009 : [break 3
: &tw rlf,1268(sp)
stw rd,1216(sp)
stw ra,1384(sp)
stw fp,1360(sp)
stw r23,1296(sp)
stw r22,1292(sp)
Stw r21,1288(sp)
stw r20.1284(sp)
Stw r19,12868(sp)

vprintf internal r+lz>

¥ = 0| e+ variables &

Name

|| b # data
b #ip

b o fmto
#ap

b oW fme
e ch

o

=0

=

5 |35 Nios |l De... [(@Nios Il EiC/C++

9 Breakpoints 131 Registers 33 0 Memery

Name Value
22 Oxcleadbeef

Oxdeadbeef
Oxf314
OxFfFT
Ox16fe0
0x0000e2b8
ox10118
Oxb5T4
Ot
Ox168
0x000002f4

sx36a

|oxbs7a ~

NII5V2
2015.05.14

®
TE®
mp| %
-
1
il 2
v
=n
=na
oo on
v

0 Errors, 4 Warnings

Custom Instruction-Related Exception Handler

Altera Corporat

For use outside the debugger, you can register your own instruction-related exception handler which is
called when the break (or any exception) is seen.

On an exception, including overflow, the HAL calls the instruction-related exception handler, passing in
the cause field from the exception register, and the address which caused the exception. At this point, it is
up to you to decide what do.

For more information about how to register an instruction-related exception, refer to

Related Information

« Exception Handling on page 8-1
This chapter provides more information about the details on how to register an instruction-related

exception.

« Writing an Instruction-Related Exception Handler on page 8-32
This chapter provides more information about the details on how to register an instruction-related

exception.

+ Registering an Instruction-Related Exception Handler on page 8-34
This chapter provides more information about the details on how to register an instruction-related

exception.

ion

Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Creating a Simple BSP 2-11

o Determining the Cause of Interrupt and Instruction-Related Exceptions
For more information, refer to the "Determining the Cause of Interrupt and Instruction-Related
Exceptions" chapter of the Nios II Classic Processor Reference Handbook.

o link/iga1409256728501/iga1409336670098

o Programming Model
For more information, refer to the "Programming Model" chapter of the Nios II Classic Processor
Reference Handbook.

o llink/iga1409256728501/iga1409267699502

Creating a Simple BSP

You create a BSP with default settings using the Nios II Board Support Package wizard. To start the
wizard, on the File menu, point to New and click Nios II Board Support Package. The Nios II Board
Support Package wizard enables you to specify the following BSP parameters:

o The name

o The underlying hardware design
+ The location

o The operating system and version

You can select the operating system only at the time you create the BSP. To change operating systems, you
must create a new BSP by using the Additional arguments to the nios2-bsp script.

If you intend to run the project in the Nios I ModelSim™ simulation environment, use the Additional
arguments parameter to specify the location of the testbench simulation package descriptor file (.spd).
The .spd file is located in the Quartus II project directory. Specify the path as follows: --set
QUARTUS_PROJECT_DIR=<rel ati ve pat h>.

Note: Altera recommends that you use a relative path name, to ensure that the location of your project is
independent of the installation directory.

After you have created the BSP, you have the following options for GUI-based BSP editing:

« To access and modify basic BSP properties, right-click the BSP project, click Properties > Nios II BSP
Properties.

« To modify parameters and settings in detail using the Nios II BSP Editor, refer to Using the BSP Editor.

Related Information

« Using the BSP Editor on page 2-14

For more information on how to modify parameters and settings in detail using the Nios II BSP Editor.
» Nios II Software Build Tools

For more information about nios2-bsp command arguments.

Makefiles and the Nios Il SBT for Eclipse

The Nios II SBT for Eclipse creates and manages the makefiles for Nios II software projects. When you
create a project, the Nios II SBT creates a makefile based on the source content you specify and the
parameters and settings you select. When you modify the project in Eclipse, the Nios IT SBT updates the
makefile to match.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409336670098/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409336670098/en-us
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2-12 Eclipse Source Management 2015.05.14
Details of how each makefile is created and maintained vary depending on the project type, and on project
options that you control. The authoritative specification of project contents is always the makefile,
regardless how it is created or updated.

By default, the Nios IT SBT manages the list of source files in your makefile, based on actions you take in
Eclipse. However, in the case of applications and libraries, you have the option to manage sources
manually. Both styles of source management are discussed in the following sections.

Eclipse Source Management

Nios II application and user library makefiles are based on source files and properties that you specify
directly. Eclipse source management allows you to add and remove source files with standard Eclipse
actions, such as dragging a source file into and out of the Project Explorer view and adding a new source
file through the File menu.

You can examine and modify many makefile properties in the Nios II Application Properties or Nios II
Library Properties dialog box. To open the dialog box, right-click the project, click Properties > Nios II
Application Properties or Properties > Nios II Library Properties.

Modifying a Makefile with Eclipse Source Management

Table 2-1: GUI Actions that Modify an Application or Makefile with Eclipse Source Management

Specifying the application or user library | Nios II Application Properties or Nios II Library

name Properties dialog box.

Adding or removing source files For more information, refer to the Eclipse help
system.

Specifying a path to an associated BSP Project References dialog box.

Specifying a path to an associated user Project References dialog box.

library

Enabling, disabling or modifying compiler | Nios II Application Properties or Nios II Library

options Properties dialog box.

After the SBT has created a makefile, you can modify the makefile in the following ways:

+ With the Nios II SBT for Eclipse.
o With Nios IT SBT commands from the Nios II Command Shell.

When modifying a makefile, the SBT preserves any previous nonconflicting modifications, regardless how
those modifications were made.

After you modify a makefile with the Nios II Command Shell, in Eclipse you must right-click the project
and click Update linked resource to keep the Eclipse project view in step with the makefile.

When the Nios II SBT for Eclipse modifies a makefile, it locks the makefile to prevent corruption by other
processes. You cannot edit the makefile from the command line until the SBT has removed the lock.

If you want to exclude a resource (a file or a folder) from the Nios II makefile temporarily, without
deleting it from the project, you can use the Remove from Nios II Build command. Right-click the
resource and click Remove from Nios II Build. When a resource is excluded from the build, it does not
appear in the makefile, and Eclipse ignores it. However, it is still visible in the Project Explorer, with a

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 Absolute Source Paths and Linked Resources 2-13

modified icon. To add the resource back into the build, right-click the resource and click Add to Nios II
Build.

Note: Do not use the Eclipse Exclude from build command. With Nios II software projects, you must
use the Remove from Nios II Build and Add to Nios II Build commands instead.

Absolute Source Paths and Linked Resources
By default, the source files for an Eclipse project are stored under the project directory. If your project
must incorporate source files outside the project directory, you can add them as linked resources.

An Eclipse linked resource can be either a file or a folder. With a linked folder, all source files in the folder
and its subfolders are included in the build.

When you add a linked resource (file or folder) to your project, the SBT for Eclipse adds the file or folder
to your makefile with an absolute path name. You might use a linked resource to refer to common source
files in a fixed location. In this situation, you can move the project to a different directory without
disturbing the common source file references.

A linked resource appears with a modified icon (green dot) in the Project Explorer, to distinguish it from
source files and folders that are part of the project. You can use the Eclipse debugger to step into a linked
source file, exactly as if it were part of the project.

You can reconfigure your project to refer to any linked resource either as an individual file, or through its
parent folder. Right-click the linked resource and click Update Linked Resource.

You can use the Remove from Nios II Build and Add to Nios II Build commands with linked resources.
When a linked resource is excluded from the build, its icon is modified with a white dot.

You can use Eclipse to create a path variable, defining the location of a linked resource. A path variable
makes it easy to modify the location of one or more files in your project.

For information about working with path variables and creating linked resources, refer to the Eclipse help
system.

User Source Management

You can remove a makefile from source management control through the Nios II Application Properties
or Nios II Library Properties dialog box.

Simply turn off Enable source management to convert the makefile to user source management. When
Enable source management is off, you must update your makefile manually to add or remove source files
to or from the project. The SBT for Eclipse makes no changes to the list of source files, but continues to
manage all other project parameters and settings in the makefile.

Modifying a Makefile with User Source Management
Editing a makefile manually is an advanced technique. Altera recommends that you avoid manual editing.
The SBT provides extensive capabilities for manipulating makefiles while ensuring makefile correctness.

In a makefile with user-managed sources, you can refer to source files with an absolute path. You might
use an absolute path to refer to common source files in a fixed location. In this situation, you can move
the project to a different directory without disturbing the common source file references.

Projects with user-managed sources do not support the following features:

o Linked resources
e The Add to Nios II Build command
o The Remove from Nios II Build command

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2-14 BSP Source Management 2015.05.14

Table 2-2: GUI Actions that Modify an Application or a Makefile with User Source Management

Specifying the application or user library | Nios II Application Properties or Nios II Library

name Properties dialog box
Specifying a path to an associated BSP Project References dialog box
Specifying a path to an associated user Project References dialog box
library

Enabling, disabling or modifying compiler | Nios IT Application Properties or Nios II Library
options Properties dialog box

Note: With user source management, the source files shown in the Eclipse Project Explorer view do not
necessarily reflect the sources built by the makefile. To update the Project Explorer view to match
the makefile, right-click the project and click Sync from Nios II Build.

BSP Source Management

Nios II BSP makefiles are handled differently from application and user library makefiles. BSP makefiles
are based on the operating system, BSP settings, selected software packages, and selected drivers. You do
not specify BSP source files directly.

BSP makefiles must be managed by the SBT, either through the BSP Editor or through the SBT
command-line utilities.

Related Information

Using the BSP Editor on page 2-14
For more information about specifying BSPs

Using the BSP Editor

Typically, you create a BSP with the Nios II SBT for Eclipse. The Nios II plugins provide the basic tools
and settings for defining your BSP. For more advanced BSP editing, use the Nios II BSP Editor. The BSP
Editor provides all the tools you need to create even the most complex BSPs.

Tcl Scripting and the Nios Il BSP Editor
The Nios II BSP Editor provides support for Tcl scripting. When you create a BSP in the BSP Editor, the
editor can run a Tcl script that you specify to supply BSP settings.

You can also export a Tcl script from the BSP Editor, containing all the settings in an existing BSP. By
studying such a script, you can learn about how BSP Tkl scripts are constructed.

Starting the Nios Il BSP Editor
You start the Nios II BSP Editor in one of the following ways:

 Right-click an existing project, point to Nios II, and click BSP Editor. The editor loads the BSP
Settings File (.bsp) associated with your project, and is ready to update it.

o On the Nios I menu, click Nios IT BSP Editor. The editor starts without loading a .bsp file.

« Right-click an existing BSP project and click Properties. In the Properties dialog box, select Nios II
BSP Properties > BSP Editor. The editor loads your .bsp file for update.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . .
2015.05.14 The Nios Il BSP Editor Screen Layout 2-15

The Nios Il BSP Editor Screen Layout

The Nios II BSP Editor screen is divided into two areas. The top area is the command area, and the
bottom is the console area. The details of the Nios II BSP Editor screen areas are described in this section.

Below the console area is the Generate button. This button is enabled when the BSP settings are valid. It
generates the BSP target files, as shown in the Target BSP Directory tab.

The Command Area

In the command area, you specify settings and other parameters defining the BSP. The command area
contains several tabs:

o The Main tab

o The Software Packages tab

o The Drivers tab

o The Linker Script tab

o The Enable File Generation tab
« The Target BSP Directory tab

Each tab allows you to view and edit a particular aspect of the .bsp, along with relevant command line
parameters and Tcl scripts.

The settings that appear on the Main, Software Packages and Drivers tabs are the same as the settings
you manipulate on the command line.

Related Information
Nios II Software Build Tools Reference on page 15-1

The Main Tab
The Main tab presents general settings and parameters, and operating system settings, for the BSP. The
BSP includes the following settings and parameters:

 The path to the .sopcinfo file specifying the target hardware
o The processor name
o The operating system and version

Note: You cannot change the operating system in an existing BSP. You must create a new BSP based on
the desired operating system.

» The BSP target directory—the destination for files that the SBT copies and creates for your BSP.
o BSP settings

BSP settings appear in a tree structure. Settings are organized into Common and Advanced categories.
Settings are further organized into functional groups. The available settings depend on the operating
system.

When you select a group of settings, the controls for those settings appear in the pane to the right of the
tree. When you select a single setting, the pane shows the setting control, the full setting name, and the
setting description.

Related Information

o The Software Packages Tab on page 2-16
o The Drivers Tab on page 2-16
For more information about how the software package and driver settings are presented separately.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2-16 The Software Packages Tab 2015.05.14

The Software Packages Tab
The Software Packages tab allows you to insert and remove software packages in your BSP, and control
software package settings.

At the top of the Software Packages tab is the software package table, listing each available software
package. The table allows you to select the software package version, and enable or disable the software
package.

The operating system determines which software packages are available.

Many software packages define settings that you can control in your BSP. When you enable a software
package, the available settings appear in a tree structure, organized into Common and Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane to the right of the
tree. When you select a single setting, the pane shows the setting control, the full setting name, and the
setting description.

Enabling and disabling software packages and editing software package settings can have a profound
impact on BSP behavior. Refer to the documentation for the specific software package for details.

Related Information

o The Drivers Tab on page 2-16
For more information about how the software package and driver settings are presented separately.
o The Main Tab on page 2-15
+ Read-Only Zip File System
For more information about the read-only zip file system.
« Ethernet and the NicheStack TCP/IP Stack - Nios II Edition
For more information about the NicheStack TCP/IP Stack - Nios II Edition.

The Drivers Tab
The Drivers tab allows you to select, enable, and disable drivers for devices in your system, and control
driver settings.

At the top of the Drivers tab is the driver table, mapping components in the hardware system to drivers.
The driver table shows components with driver support. Each component has a module name, module
version, module class name, driver name, and driver version, determined by the contents of the hardware
system. The table allows you to select the driver by name and version, as well as to enable or disable each
driver.

When you select a driver version, all instances of that driver in the BSP are set to the version you select.
Only one version of a given driver can be used in an individual BSP.

Many drivers define settings that you can control in your BSP. Available driver settings appear in a tree
structure below the driver table, organized into Common and Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane to the right of the
tree. When you select a single setting, the pane shows the setting control, the full setting name, and the
setting description.

Enabling and disabling device drivers, changing drivers and driver versions, and editing driver settings,
can have a profound impact on BSP behavior. Refer to the relevant component documentation and driver
information for details.

Related Information

o The Software Packages Tab on page 2-16

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V.
20155_(2)5'14 The Linker Script Tab 2-17
o The Main Tab on page 2-15
« Embedded Peripherals IP User Guide
For more information about Altera components.

The Linker Script Tab

The Linker Script tab allows you to view available memory in your hardware system, and examine and
modify the arrangement and usage of linker regions in memory.

When you make a change to the memory configuration, the SBT validates your change.

Note: Rearranging linker regions and linker section mappings can have a very significant impact on BSP
behavior.

Related Information
The Problems Tab on page 2-19
If there is a problem, a message appears in the Problems tab in the console area.

Linker Section Mappings
At the top of the Linker Script tab, the Linker Section Mappings table shows the mapping from linker
sections to linker regions. You can edit the BSP linker section mappings using the following buttons
located next to the linker section table:

o Add—Adds a linker section mapping to an existing linker region. The Add button opens the Add
Section Mapping dialog box, where you specify a new section name and an existing linker region.
+ Remove—Removes a mapping from a linker section to a linker region.

+ Restore Defaults—Restores the section mappings to the default configuration set up at the time of BSP
creation.

Linker Regions
At the bottom of the Linker Script tab, the Linker Memory Regions table shows all defined linker
regions. Each row of the table shows one linker region, with its address range, memory device name, size,
and offset into the selected memory device.

You reassign a defined linker region to a different memory device by selecting a different device name in
the Memory Device Name column. The Size and Offset columns are editable. You can also edit the list of
linker regions using the following buttons located next to the linker region table:

o Add—Adds a linker region in unused space on any existing device. The Add button opens the Add
Memory Region dialog box, where you specify the memory device, the new memory region name, the
region size, and the region's offset from the device base address.

« Remove—Removes a linker region definition. Removing a region frees the region's memory space to
be used for other regions.

o Add Memory Device—Creates a linker region representing a memory device that is outside the
hardware system. The button launches the Add Memory Device dialog box, where you can specify the
device name, memory size and base address. After you add the device, it appears in the linker region
table, the Memory Device Usage Table dialog box, and the Memory Map dialog box. This function-
ality is equivalent to the add_memory_device Tcl command.

Note: Ensure that you specify the correct base address and memory size. If the base address or size of an
external memory changes, you must edit the BSP manually to match. The SBT does not automati-
cally detect changes in external memory devices, even if you update the BSP by creating a new
settings file.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

) . NII5V2
2-18 Enable File Generation Tab 2015.05.14

» Restore Defaults—restores the memory regions to the default configuration set up at the time of BSP
creation.

o Memory Usage—Opens the Memory Device Usage Table. The Memory Device Usage Table allows
you to view memory device usage by defined memory region. As memory regions are added, removed,
and adjusted, each device's free memory, used memory, and percentage of available memory are
updated. The rightmost column is a graphical representation of the device’s usage, according to the
memory regions assigned to it.

o Memory Map—Opens the Memory Map dialog box. The memory map allows you to view a map of
system memory in the processor address space. The Device table is a read-only reference showing
memories in the hardware system that are mastered by the selected processor. Devices are listed in
memory address order.

To the right of the Device table is a graphical representation of the processor's memory space, showing
the locations of devices in the table. Gaps indicate unmapped address space.

Note: This representation is not to scale.

Related Information

Nios II Software Build Tools Reference on page 15-1

Enable File Generation Tab
The Enable File Generation tab allows you to take ownership of specific BSP files that are normally
generated by the SBT. When you take ownership of a BSP file, you can modify it, and prevent the SBT
from overwriting your modifications. The Enable File Generation tab shows a tree view of all target files
to be generated or copied when the BSP is generated. To disable generation of a specific file, expand the
software component containing the file, expand any internal directory folders, select the file, and right-
click. Each disabled file appears in a list at the bottom of the tab. This functionality is equivalent to the
set_ignore_file Tcl command.

Note: If you take ownership of a BSP file, the SBT can no longer update it to reflect future changes in the
underlying hardware. If you change the hardware, be sure to update the file manually.

Related Information
Nios II Software Build Tools Reference on page 15-1

Target BSP Directory Tab
The Target BSP Directory tab is a read-only reference showing you what output to expect when the BSP
is generated.

It does not depict the actual file system, but rather the files and directories to be created or copied when
the BSP is generated. Each software component, including the operating system, drivers, and software
packages, specifies source code to be copied into the BSP target directory. The files are generated in the
directory specified on the Main tab.

When you generate the BSP, existing BSP files are overwritten, unless you disable generation of the file in
the Enable File Generation tab.

The Console Area

The console area shows results of settings and commands that you select in the command area. The
console area consists of the following tabs:

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 The Information Tab 2-19

o The Information tab
e The Problems tab
o The Processing tab

The Information Tab
The Information tab shows a running list of high-level changes you make to your BSP, such as adding a
software package or changing a setting value.

The Problems Tab
The Problems tab shows warnings and errors that impact or prohibit BSP creation. For example, if you
inadvertently specify an invalid linker section mapping, a message appears in the Problems tab.

The Processing Tab
When you generate your BSP, the Processing tab shows files and folders created and copied in the BSP
target directory.

Exporting a Tcl Script

When you have configured your BSP to your satisfaction, you can export the BSP settings as a Tcl script.
This feature allows you to perform the following tasks:

» Regenerate the BSP from the command line

» Recreate the BSP as a starting point for a new BSP

o Recreate the BSP on a different hardware platform

« Examine the Tcl script to improve your understanding of Tcl command usage

The exported Tcl script captures all BSP settings that you have changed since the previous time the BSP
settings file was saved. If you export a Tcl script after creating a new BSP, the script captures all
nondefault settings in the BSP. If you export a Tcl script after editing a pre-existing BSP, the script
captures your changes from the current editing session.

To export a Tcl script, in the Tools menu, click Export Tcl Script, and specify a filename and destination
path. The file extension is .tcl.

You can later run your exported script as a part of creating a new BSP.

Related Information

o Using a Tcl Script in BSP Creation on page 2-20
For more information about how to run a Tcl script during BSP creation.
» Revising Your BSP on page 4-29
For more information about default BSP settings and recreating and regenerating BSPs.

Creating a New BSP

To create a BSP in the Nios II BSP Editor, use the New BSP command in the File menu to open the New
BSP dialog box. This dialog box controls the creation of a new BSP settings file. The BSP Editor loads this
new BSP after the file is created.

In this dialog box, you specify the following parameters:

 The .sopcinfo file defining the hardware platform.
o The CPU name of the targeted processor.
o The BSP type and version.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2-20 Using a Tcl Script in BSP Creation 2015.05.14

Note: You can select the operating system only at the time you create the BSP. To change operating
systems, you must create a new BSP.

o The operating system version.
« The name of the BSP settings file. It is created with file extension .bsp.

o Absolute or relative path names in the BSP settings file. By default, relative paths are enabled for
filenames in the BSP settings file.

« An optional T¢l script that you can run to supply additional settings.

Normally, you specify the path to your .sepcinfo file relative to the BSP directory. This enables you to
move, copy and archive the hardware and software files together. If you browse to the .sopcinfo file, or
specify an absolute path, the Nios II BSP Editor offers to convert your path to the relative form.

Using a Tcl Script in BSP Creation
When you create a BSP, the New BSP Settings File dialog box allows you to specify the path and filename
of a Tcl script. The Nios II BSP Editor runs this script after all other BSP creation steps are done, to
modify BSP settings.

This feature allows you to perform the following tasks:

» Recreate an existing BSP as a starting point for a new BSP
o Recreate a BSP on a different hardware platform
 Include custom settings common to a group of BSPs

The Tcl script can be created by hand or exported from another BSP.

Related Information

« Exporting a Tcl Script on page 2-19
For more information about how to create a Tcl script from an existing BSP.
 Nios II Software Build Tools on page 4-1
For more information about Tcl scripts and BSP settings, refer to "Tcl Scripts for BSP Settings".

BSP Validation Errors

If you modify a hardware system after basing a BSP on it, some BSP settings might no longer be valid.
This is a very common cause of BSP validation errors. Eliminating these errors usually requires correcting
a large number of interrelated settings.

If your modifications to the underlying hardware design result in BSP validation errors, the best practice
is to update or recreate the BSP. Updating and recreating BSPs is very easy with the BSP Editor.

If you recreate your BSP, you might find it helpful to capture your old BSP settings by exporting them to a
Tcl script. You can edit the Tcl script to remove any settings that are incompatible with the new hardware
design.

Related Information

o Using a Tcl Script in BSP Creation on page 2-20
For more information about how to run a Tcl script during BSP creation.
« Exporting a Tcl Script on page 2-19
For more information about how to create a Tcl script from an existing BSP.
 Nios II Software Build Tools on page 4-1
For more information about Tcl scripts and BSP settings, refer to "Tcl Scripts for BSP Settings".

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 i o .
2015.05.14 Run Configurations in the SBT for Eclipse 2-21

Run Configurations in the SBT for Eclipse

Eclipse uses run configurations to control how it runs and debugs programs. Run configurations in the
Nios II SBT for Eclipse have several features that help you debug Nios II software running on FPGA
platforms.

Opening the Run Configuration Dialog Box
You can open the run configuration dialog box two ways:

* You can right-click an application, point to Run As, and click Run Configurations.
» You can right-click an application, point to Debug As, and click Debug Configurations.

Depending on which way you opened the run configuration dialog box, the title is either Run Configura-
tion or Debug Configuration. However, both views show the same run configurations.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

Each run configuration is presented on several tabs. This section describes each tab.

The Project Tab

On this tab, you specify the application project to run. The Advanced button opens the Nios IT ELF

Section Properties dialog box. In this dialog box, you can control the runtime parameters in the following

ways:

o Specify the processor on which to execute the program (if the hardware design provides multiple
processors)

« Specify the device to use for standard I/O

+ Specify the expected location, timestamp and value of the system ID

« Specify the path to the Quartus II JTAG Debugging Information File (.jdi)

+ Enable or disable profiling

The Nios II SBT for Eclipse sets these parameters to reasonable defaults. Do not modify them unless you
have a clear understanding of their effects.

The Target Connection Tab

This tab allows you to control the connection between the host machine and the target hardware in the
following ways:

o Select the cable, if more than one cable is available
+ Allow software to run despite a system ID value or timestamp that differs from the hardware
+ Reset the processor when the software is downloaded

The System ID Properties button allows you to examine the system ID and timestamp in both the .elf file
and the hardware. This can be helpful when you need to analyze the cause of a system ID or timestamp
mismatch.

The Debugger Tab
In this tab, you optionally enable the debugger to halt at a specified entry point.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2-22 Nios Il Hardware v2 (beta) 2015.05.14

Nios Il Hardware v2 (beta)

Run configurations and debug configurations have a launch type called Nios II Hardware v2 (beta). To
create this launch type, in the Run menu select either Run Configurations or Debug Configurations. In
the Run/Debug Configurations dialog box, select Nios I Hardware v2 (beta) and click the New button
to create a new launch configuration.

Nios IT Hardware v2 (beta) has the following options:

o Main tab
« Debugger tab
e Multi-core launches

Main Tab

This tab allows you to select the following options:

 Specify the application project to run and the ELF File location

 Specify the processor and the JTAG UART connection to use

 Enable or disable system ID and timestamp checks

+ Enable or disable processor controls such as download ELF, reset processor or start processor

Debugger Tab
In this tab, you optionally enable the debugger to halt at a specified entry point.

Multi-Core Launches

If you have multiple run configurations, create an Eclipse launch group. Launch groups are an Eclipse
feature that allows multiple run configurations to be started at the same time. You choose which run
configurations are added to the group. You can use the launch group in any place where you can use a run
configuration.

For details about Eclipse launch groups, refer to the Eclipse help system.

Optimizing Project Build Time

When you build a Nios II project, the project makefile builds any components that are unbuilt or out of
date. For this reason, the first time you build a project is normally the slowest. Subsequent builds are fast,
only rebuilding sources that have changed.

To further optimize your project build time, disable generation of the objdump linker map.

Nios II software build performance is generally better on Linux platforms than on Windows platforms.

Importing a Command-Line Project

If you have software projects that were created with the Nios II SBT command line, you can import the
projects into the Nios II SBT for Eclipse for debugging and further development. This section discusses
the import process.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Nios Il Command-Line Projects 2-23

Your command-line C/C++ application, and its associated BSP, is created on the command line. Any
Nios IT SBT command-line project is ready to import into the Nios II SBT for Eclipse. No additional
preparation is necessary.

Nios Il Command-Line Projects
The Nios II SBT for Eclipse imports the following kinds of Nios I command-line projects:
« Command-line C/C++ application project

« Command-line BSP project
» Command-line user library project

You can edit, build, debug, and manage the settings of an imported project exactly the same way you edit,
build, debug, and manage the settings of a project created in Nios II SBT for Eclipse.

Importing through the Import Wizard

The Nios I SBT for Eclipse imports each type of project through the Import wizard. The Import wizard
determines the kind of project you are importing, and configures it appropriately.

You can continue to develop project code in your SBT project after importing the project into Eclipse.
You can edit source files and rebuild the project, using the SBT either in Eclipse or on the command line.

Related Information

Getting Started from the Command Line on page 3-1
For more information about creating projects with the command line.

Road Map

Importing and debugging a project typically involves several of the following tasks. You do not need to
perform these tasks in this order, and you can repeat or omit some tasks, depending on your needs.

o Import a command-line C/C++ application
o Import a supporting project

+ Debuga command-line C/C++ application
» Edit command-line C/C++ application code

When importing a project, the SBT for Eclipse might make some minor changes to your makefile. If the
makefile refers to a source file located outside the project directory tree, the SBT for Eclipse treats that file
as a linked resource. However, it does not add or remove any source files to or from your makefile.

When you import an application or user library project, the Nios II SBT for Eclipse allows you to choose
Eclipse source management or user source management. Unless your project has an unusual directory
structure, choose Eclipse source management, to allow the SBT for Eclipse to automatically maintain your
list of source files.

You debug and edit an imported project exactly the same way you debug and edit a project created in
Eclipse.

Import a Command-Line C/C++ Application
To import a command-line C/C++ application, perform the following steps:

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . NII5V2
2-24 Importing a Project with Absolute Source Paths 2015.05.14

1. Start the Nios IT SBT for Eclipse.
2. On the File menu, click Import. The Import dialog box appears.

Expand the Nios II Software Build Tools Project folder, and select Import Nios II Software Build
Tools Project.

»

Click Next. The File Import wizard appears.

Click Browse and locate the directory containing the C/C++ application project to import.
Click OK. The wizard fills in the project path.

Specify the project name in the Project name box.

NG e

Note: You might see a warning saying "There is already a .project file at: <path>". This warning
indicates that the directory already contains an Eclipse project. Either it is an Eclipse project, or
it is a command-line project that is already imported into Eclipse. If the project is already in
your workspace, do not re-import it.

8. Click Finish. The wizard imports the application project.

After you complete these steps, the Nios II SBT for Eclipse can build, debug, and run the complete
program, including the BSP and any libraries. The Nios II SBT for Eclipse builds the project using the
SBT makefiles in your imported C/C++ application project. Eclipse displays and steps through applica-
tion source code exactly as if the project were created in the Nios II SBT for Eclipse. However, Eclipse
does not have direct information about where BSP or user library code resides. If you need to view,
debug or step through BSP or user library source code, you need to import the BSP or user library.

Related Information

Import a Supporting Project on page 2-24
For more information about the process of importing supporting projects, such as BSPs and libraries.

Importing a Project with Absolute Source Paths
If your project uses an absolute path to refer to a source file, the SBT for Eclipse imports that source file as
a linked resource. In this case, the import wizard provides a page where you can manage how Eclipse
refers to the source: as a file, or through a parent directory.

Related Information

Absolute Source Paths and Linked Resources on page 2-13
For more information about managing linked resources.

Import a Supporting Project

While debugging a C/C++ application, you might need to view, debug or step through source code in a
supporting project, such as a BSP or user library. To make supporting project source code visible in the
Eclipse debug perspective, you need to import the supporting project.

If you do not need BSP or user library source code visible in the debugger, you can skip this task, and
proceed to debug your project exactly as if you had created it in Eclipse.

If you have several C/C++ applications based on one BSP or user library, import the BSP or user library
once, and then import each application that is based on the BSP or user library. Each application's
makefile contains the information needed to find and build any associated BSP or libraries.

Related Information
Import a Command-Line C/C++ Application on page 2-23
For more information about the steps for importing a supporting project.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 User-Managed Source Files 2-25

User-Managed Source Files

When you import a Nios II application or user library project, the Nios II SBT for Eclipse offers the
option of user source management. User source management is helpful if you prefer to update your
makefile manually to reflect source files added to or removed from the project.

With user source management, Eclipse never makes any changes to the list of source files in your
makefile. However, the SBT for Eclipse manages all other project parameters and settings, just as with any
other Nios II software project.

If your makefile refers to a source file with an absolute path, when you import with user source
management, the absolute path is untouched, like any other source path. You might use an absolute path
to refer to common source files in a fixed location. In this situation, you can move the project to a
different directory without disturbing the common source file references.

User source management is not available with BSP projects. BSP makefiles are based on the operating
system, BSP settings, selected software packages, and selected drivers. You do not specify BSP source files
directly.

Related Information

User Source Management on page 2-13
For more information about how the SBT for Eclipse handles makefiles with user-managed sources.

Packaging a Library for Reuse

This section shows how to create and use a library archive file (.a) in the Nios II Software Build Tools for
Eclipse. This technique enables you to provide a library to another engineer or organization without
providing the C source files. This process entails two tasks:

1. Create a Nios II user library
2. Create a Nios II application project based on the user library

Creating the User Library

To create a user library, perform the following steps:

In the File menu, point to New and click Nios II Library.

Type a project name, for example test_lib.

For Location, browse to the directory containing your library source files (.c and .h).
Click Finish.

Build the project to create the .a file (in this case libtest_lib.a).

AN

Using the Library

To use the library in a Nios II application project, perform the following steps:

1. Create your Nios II application project.
2. To set the library path in the application project, right-click the project, and click Properties.

3. Expand Nios IT Application Properties. In Nios II Application Paths, next to Application include
directories, click Add and browse to the directory containing your library header files.

4. Next to Application library directories, click Add and browse to the directory containing your .a file.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2-26 Creating a Software Package 2015.05.14
5. Next to Library name, click Add and type the library project name you selected when you created
your user library.
6. Click OK.

7. Build your application.

As this example shows, the .c source files are not required to build the application project. To hand off the
library to another engineer or organization for reuse, you provide the following files:

 Nios II library archive file (.a)
o Software header files (.h)

Related Information

Creating a Project on page 2-2

Creating a Software Package

This section shows how you can build a custom library into a BSP as a software package. The software
package can be linked to any BSP through the BSP Editor.

This section contains an example illustrating the steps necessary to include any software package into a
Nios II BSP.

To create and exercise the example software package, perform the following steps:

1. Locate the ip directory in your Altera Complete Design Suite installation. For example, if the Altera
Complete Design Suite version 14.1 is installed on the Windows operating system, the directory might
be c:\altera\14.1\ip. Under the ip directory, create a directory for the software package. For simplicity,
this section refers to this directory as <example package>.

2. In <example package>, create a subdirectory named EXAMPLE_SW_PACKAGE. In <example package>/
EXAMPLE_SW_PACKAGE, create two subdirectories named inc and lib.

3. In <example package>/EXAMPLE_SW_PACKAGE/inc, create a new header file named example_sw_package.h
containing the following code:

/* Example Software Package */
void example_sw_package(void);

4. In <example package>/EXAMPLE_SW_PACKAGE/lib, create a new C source file named example_sw_package.c
containing the following code:

/* Example Software Package */
#include <stdio.h>
#include . ._\inc\example_sw_package.h"

void example_sw_package(void)

{
}

5. In <example package>, create a new Tcl script file named example_sw_package_sw.tcl containing the
following code:

printf (“Example Software Package. \n'");

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2)
2015.05.14 Creating a Software Package 2-27

#
example_sw_package sw.tcl
#

Create a software package known as "example_sw_package'
create_sw_package example_sw_package

The version of this software
set_sw_property version 14.1

Location in generated BSP that sources should be copied into
set_sw_property bsp_subdirectory Example_SW_Package

#
Source file listings...
#

C/C++ source files
#add_sw_property c_source EXAMPLE_SW_PACKAGE/src/my_source.c

Include files
add_sw_property include_source
EXAMPLE_SW_PACKAGE/inc/example_sw_package.h

Lib Files
add_sw_property lib_source
EXAMPLE_SW_PACKAGE/Ii1b/l1ibexample_sw_package library.a

Include paths for headers which define the APls for this package
to share w/ app & bsp

Include paths are relative to the location of this software

package tcl file

add_sw_property include_directory EXAMPLE_SW_PACKAGE/inc

This driver supports HAL & UCOSII BSP (0S) types
add_sw_property supported_bsp_type HAL
add_sw_property supported_bsp_type UCOSII

Add example software package system.h setting to the BSP:

add_sw_setting quoted_string system_h_define \
example_sw_package_system _value EXAMPLE_SW_PACKAGE_SYSTEM_VALUE 1 \
"Example software package system value™

End of file

6. In the SBT for Eclipse, create a Nios II application and BSP project based on the Hello World template.
Set the application project name to hel lo_example_sw_package.

7. Create a new C file named hello_example_sw_package.c in the new application project containing the
following code:

/*
* "Hello World" example.
*

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
2-28 Programming Flash in Altera Embedded Systems 2015.05.14

* This example prints "Hello from Nios 11" to the STDOUT stream. It also
* tests inclusion of a user software package.
*/

#include <stdio.h>
#include "example_sw_package.h"

int mainQ)

{
printf(""Hello from Nios 111\n");

example_sw_package();
return O;

}

8. Delete hello_world.c from the hello_example_sw_package application project.
9. In the File menu, point to New and click Nios II Library

10.Set the project name to example_sw_package_library.

11.For Location, browse to <example package>\EXAMPLE_SW_PACKAGE\lib

Note: Building the library here is required, because the resulting .a is referenced here by example_sw_
package_sw.tcl.
12.Click Finish.

13.Build the example_sw_package_library project to create the libexample_sw_package_library.a library
archive file.

14.Right-click the BSP project, point to Nios II, and click BSP Editor to open the BSP Editor.

15.1n the Software Packages tab, find example_sw_package in the software package table, and enable it.
If there are any errors in a software package's *_sw.tcl file, such as an incorrect path that causes a file to
not be found, the software package does not appear in the BSP Editor.

16.Click the Generate button to regenerate the BSP. On the File menu, click Save to save your changes to
settings.bsp.

17.1n the File menu, click Exit to exit the BSP Editor.

18.Build the hello_example_sw_package_bsp BSP project.

19.Build the hello_example_sw_package application project.

hello_example_sw_package.elf is ready to download and execute.

Programming Flash in Altera Embedded Systems

Many Nios II processor systems use external flash memory to store one or more of the following items:

« Program code

o Program data

» FPGA configuration data
o File systems

The Nios II SBT for Eclipse provides flash programmer utilities to help you manage and program the
contents of flash memory. The flash programmer allows you to program any combination of software,
hardware, and binary data into flash memory in one operation.

Starting the Flash Programmer

You start the flash programmer by clicking Flash Programmer in the Nios II menu.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . . .
2015.05.14 Creating a Flash Programmer Settings File 2-29

When you first open the flash programmer, no controls are available until you open or create a Flash
Programmer Settings File (.flash-settings).

Creating a Flash Programmer Settings File

The .flash-settings file describes how you set up the flash programmer GUI to program flash. This
information includes the files to be programmed to flash, a .sopcinfo file describing the hardware
configuration, and the file programming locations. You must create or open a flash programmer settings
tile before you can program flash.

You create a flash programmer settings file through the File menu. When you click New, the New Flash
Programmer Settings File dialog box appears.

Specifying the Hardware Configuration

You specify the hardware configuration by opening a .sepcinfo file. You can locate the .sopcinfo file in
either of two ways:

« Browse to a BSP settings file. The flash programmer finds the .sopcinfo file associated with the BSP.
« Browse directly to a .sopcinfo file.

Once you have identified a hardware configuration, details about the target hardware appear at the top of
the Nios II flash programmer screen.

Also at the top of the Nios II flash programmer screen is the Hardware Connections button, which opens
the Hardware Connections dialog box. This dialog box allows you to select a download cable, and control
system ID behavior.

Related Information
The Target Connection Tab on page 2-21

The Flash Programmer Screen Layout
The flash programmer screen is divided into two areas. The top area is the command area, and the bottom
is the console area. The details of the flash programmer screen areas are described in this section.

Below the console area is the Start button. This button is enabled when the flash programmer parameters
are valid. It starts the process of programming flash.

The Command Area

In the command area, you specify settings and other parameters defining the flash programmer settings
tile. The command area contains one or more tabs. Each tab represents a flash memory component
available in the target hardware. Each tab allows you to view the parameters of the memory component,
and view and edit the list of files to be programmed in the component.

The Add and Remove buttons allow you to create and edit the list of files to be programmed in the flash
memory component.

The File generation command box shows the commands used to generate the Motorola S-record Files
(.flash) used to program flash memory.

The File programming command box shows the commands used to program the .flash files to flash
memory.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2-30 The Console Area 2015.05.14

The Properties button opens the Properties dialog box, which allows you to view and modify informa-
tion about an individual file. In the case of a .elf, the Properties button provides access to the project reset
address, the flash base and end addresses, and the boot loader file (if any).

The flash programmer determines whether a boot loader is required based on the load and run locations
of the .text section. You can use the Properties dialog box to override the default boot loader configura-
tion.

The Console Area

The console area shows results of settings and commands that you select in the command area. The
console area consists of the following tabs:

e The Information tab
o The Problems tab
o The Processing tab

The Information Tab
The Information tab shows the high-level changes you make to your flash programmer settings file.

The Problems Tab

The Problems tab shows warnings and error messages about the process of flash programmer settings file
creation.

The Processing Tab
When you program flash, the Processing tab shows the individual programming actions as they take
place.

Saving a Flash Programmer Settings File

When you have finished configuring the input files, locations, and other settings for programming your
project to flash, you can save the settings in a .flash-settings file. With a .flash-settings file, you can program
the project again without reconfiguring the settings. You save a .flash-settings file through the File menu.

Flash Programmer Options

Through the Options menu, you can control several global aspects of flash programmer behavior, as
described in this section.

Related Information

Nios II Flash Programmer User’s Guide
For more information about these features.

Staging Directories
Through the Staging Directories dialog box, you control where the flash programmer creates its script
and .flash-settings files.

Generate Files
If you disable this option, the flash programmer does not generate programming files, but programs files
already present in the directory. You might use this feature to reprogram a set of files that you have
previously created.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Program Files 2-31

Program Files
If you disable this option, the flash programmer generates the programming files and the script, but does
not program flash. You can use the files later to program flash by turning off the Generate Files option.

Erase Flash Before Programming
When enabled, this option erases flash memory before programming.

Run From Reset After Programming
When enabled, this option resets and starts the Nios II processor after programming flash.

Creating Memory Initialization Files

Sometimes it is useful to generate memory initialization files. For example, to program your FPGA with a
complete, running Nios II system, you must include the memory contents in your .sof file. In this
configuration, the processor can boot directly from internal memory without downloading.

Creating a Hexadecimal (Intel-Format) File (.hex) is a necessary intermediate step in creating such a .sof
file. The Nios II SBT for Eclipse can create .hex files and other memory initialization formats.

To generate correct memory initialization files, the Nios II SBT needs details about the physical memory
configuration and the types of files required. Typically, this information is specified when the hardware
system is generated.

Note: If your system contains a user-defined memory, you must specify these details manually.

Related Information

Generate Memory Initialization Files by the Legacy Method on page 2-31

Generate Memory Initialization Files

To generate memory initialization files, perform the following steps:

Right-click the application project.
Point to Make targets and click Build to open the Make Targets dialog box.
Select mem_init_generate.

b

Click Build. The makefile generates a separate file (or files) for each memory device. It also generates a
Quartus IT IP File (.qip). The .qip file tells the Quartus II software where to find the initialization files.

Add the .qip file to your Quartus II project.

o

6. Recompile your Quartus II project.

If your hardware system was generated with SOPC Builder, you can alternatively use the legacy
method to generate memory initialization files. However, this method is not preferred.

Generate Memory Initialization Files by the Legacy Method

To generate memory initialization files by the legacy method, perform the following steps:

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

T . . NII5V2
2-32 Memory Initialization Files for User-Defined Memories 2015.05.14

Right-click the application project.
Point to Make targets and click Build to open the Make Targets dialog box.
Select mem_init_install.

Ll M

Click Build. The makefile generates a separate file (or files) for each memory device. The makefile
inserts the memory initialization files directly in the Quartus II project directory for you.

5. Recompile your Quartus II project.

Related Information
Hardware Reference
For information about working in the stand-alone flow.

Memory Initialization Files for User-Defined Memories

Generating memory initialization files requires detailed information about the physical memory devices,
such as device names and data widths. Normally, the Nios II SBT extracts this information from

the .sopcinfo file. However, in the case of a user-defined memory, the .sopcinfo file does not contain
information about the data memory, which is outside the system. Therefore, you must provide this
information manually.

You specify memory device information when you add the user-defined memory device to your BSP. The
device information persists in the BSP settings file, allowing you to regenerate memory initialization files
at any time, exactly as if the memory device were part of the hardware system.

Specify the memory device information in the Advanced tab of the Add Memory Device dialog box.
Settings in this tab control makefile variables in mem_init.mk. On the Advanced tab, you can control the
following memory characteristics:

« The physical memory width. The device’s name in the hardware system.

o The memory initialization file parameter name. Every memory device can have an HDL parameter
specifying the name of the initialization file. The Nios II ModelSim launch configuration overrides the
HDL parameter to specify the memory initialization filename. When available, this method is
preferred for setting the memory initialization filename.

o The Mem init filename parameter can be used in Nios II systems as an alternative method of specifying
the memory initialization filename. The Mem init filename parameter directly overrides any filename
specified in the HDL.

« Connectivity to processor master ports. These parameters are used when creating the linker script.

« The memory type: volatile, CFI flash or EPCS flash.

+ Byte lanes.

» You can also enable and disable generation of the following memory initialization file types:
o ‘hexfile
o .datand .sym files
o .flash file

Related Information

Publishing Component Information to Embedded Software on page 13-1
For more information about this parameter, refer to "Embedded Software Assignments".

Specifying the Memory Device Information in the Advanced Tab

Specify the memory device information in the Advanced tab of the Add Memory Device dialog box.
Settings in this tab control makefile variables in mem_init.mk.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Running a Nios Il System with ModelSim 2-33

On the Advanced tab, you can control the following memory characteristics:

o The physical memory width.

o The device's name in the hardware system.

o The memory initialization file parameter name. Every memory device can have an HDL parameter
specifying the name of the initialization file. The Nios II ModelSim launch configuration overrides the
HDL parameter to specify the memory initialization filename. When available, this method is
preferred for setting the memory initialization filename.

o The Mem init filename parameter can be used in Nios II systems as an alternative method of
specifying the memory initialization filename. The Mem init filename parameter directly overrides
any filename specified in the HDL.

« Connectivity to processor master ports. These parameters are used when creating the linker script.
« The memory type: volatile, CFI flash or EPCS flash.

 Bytelanes.

» You can also enable and disable generation of the following memory initialization file types:

o .hexfile
o .datand .sym files
o flash file

Related Information

Publishing Component Information to Embedded Software on page 13-1
For more information about this parameter, refer to "Embedded Software Assignments".

Running a Nios Il System with ModelSim

You can run a Nios II program on Nios II hardware, such as an Altera development board, or you can run
it in the Nios I ModelSim simulation environment.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

Using ModelSim with an SOPC Builder-Generated System

If your hardware system was generated by SOPC Builder, running a software project in ModelSim is very
similar to running it on Nios II hardware.

To run Nios II software project in ModelSim, right-click the application project name, point to Run As,
and click Nios IT ModelSim.

Similarly, to debug a software project in ModelSim, right-click the application project name, point to
Debug As, and click Nios IT ModelSim.

Related Information
Running the Project on Nios II Hardware on page 2-5

Using ModelSim with a Qsys-Generated System

To run a Qsys-generated Nios II system with ModelSim, you must first create a simulation model and
testbench, and specify memory initialization files. You create your Nios II simulation model and
testbench using the steps that apply to any Qsys design.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
2-34 Preparing your Software for ModelSim 2015.05.14

Related Information

Creating a System with Qsys
For more information, refer to the "Qsys Design Flow".

Preparing your Software for ModelSim
Creating the software projects is nearly the same as when you run the project on hardware. To prepare
your software for ModelSim simulation, perform the following steps:

1. Create your software project.

If you need to initialize a user-defined memory, you must take special steps to create memory initiali-
zation files correctly.
2. Build your software project.
3. Create a ModelSim launch configuration with the following steps:
a. Right-click the application project name, point to Run As, and click Run Configurations. In the
Run Configurations dialog box, select Nios II ModelSim, and click the New button.
b. In the Main tab, ensure that the correct software project name and .elf file are selected.
c. Click Apply to save the launch configuration.
d. Click Close to close the dialog box.

If you are simulating multiple processors, create a launch configuration for each processor, and
create a launch group.

4. Open the run configuration you previously created. Click Run. The Nios II SBT for Eclipse performs a
make mem_init_generate command to create memory initialization files, and launches ModelSim.

5. At the ModelSim command prompt, type Idr.
Related Information

o Creating a Project on page 2-2

o Building the Project on page 2-4

o Generate Memory Initialization Files by the Legacy Method on page 2-31
e Multi-Core Launches on page 2-22

« Creating a Simple BSP on page 2-11

Potential Error Message
When you create the launch configuration, you might see the following error message:

SEVERE: The Quartus II project location has not been set in the ELF section. You can manually
override this setting in the launch configuration's ELF file 'Advanced' properties page.

Related Information
Creating a Simple BSP on page 2-11

Nios Il GCC Tool Chain

In Nios II EDS version 13.1 (Nios II Classic), the Nios II GNU tool chain is upgraded from GCC 4.1.2 to
GCC 4.7.3. When upgrading to the new tool chain you should note the following changes:

 Nios II specific changes
» GCC changes and enhancements

Note:

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Nios Il Specific Changes 2-35

Related Information

Porting to GCC 4.7

For more information about how GNU also provides a porting guide to GCC4.7 to document
common issues.

GCC Releases

For more information about full GCC release notes.

Nios Il Specific Changes

Use __buildin_custom_* instead of -mcustom-* or #pragma to reliably generate Nios II Floating
Point Custom Instructions (FPCI), independent of compiler optimization level and command line
flags.

To use -mcustom-* or #pragma for Nios II Floating Point Custom Instructions (FPCI):

o The -ffinite-math-only flag must be used to generate fmins and fmax FPCI

o The optimization (non -O0 flag) must be used to generate fsqrts FPCI

Users implementing transcendental functions in hardware must use the -funsafe-math-optimiza-
tions flag to generate the FPCI for the transcendental functions fsins(), fcoss(), ftans(),
fatans(), fexps(), Flogs() and corresponding double-precision functions.

The Pragma format has changed from eg. #pragma custom_fadds 253 to #pragma GCC
target('custom-fadds=253") and function attributes provide an alternative format
__attribute__ ((target('custom-fadds=253""))).

Use the -mel/-meb flags instead of ~-EL/-EB for endian settings. Software Build Tool for Eclipse
(SBTE) users must regenerate the BSP for this setting to take effect.

The -mreverse-bitfields flag and reverse_bitfields pragma are no longer supported.

The -fstack-check flag must be used instead of -mstack-check to enable stack checking.

GCC Changes and Enhancements

The -Wa, -relax-all flag in nios2-elf-gcc GCC 4.7.3 supports function calls and programs
exceeding the 256 MB limit.

When used with optimization, inline assembly code with the asm operator needs to declare values
imported from C and exported back to C, using the mechanisms described on the "Exteded Asm -
Assembler Instructions with C Expression Operands" page.

Pre-standard C++ headers are not supported in GCC 4.7.3. Replace pre-standard C++ with standard C
++ eg. #include <iostream.h>, cout, endl with #include <iostream>, std::cout and

std: zendl, respectively.

The compile flag -WI, --defsym foo=bar where bar is an undefined symbol, will generate error at the
linker level in GCC 4.7.3. GCC 4.1.2 does not include this check.

Related Information

Nios II Software Build Tools on page 4-1
For more information about the GCC toolchains.

Getting Started from the Command Line on page 3-1
Extended Asm - Assembler Instructions with C Expression Operands

Altera Software Installation and Licensing Manual
For more information about installing the Altera Complete Design Suite.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

http://gcc.gnu.org/gcc-4.7/porting_to.html
http://gcc.gnu.org/releases.html
http://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
http://www.altera.com/literature/manual/quartus_install.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2-36 Eclipse Usage Notes 2015.05.14

Eclipse Usage Notes

The behavior of certain Eclipse and CDT features is modified by the Nios II SBT for Eclipse. If you
attempt to use these features the same way you would with a non-Nios II project, you might have
problems configuring or building your project. This section discusses such features.

Configuring Application and Library Properties

To configure project properties specific to Nios IT SBT application and library projects, use the Nios II
Application Properties and Nios II Library Properties tabs of the Properties dialog box.

To open the appropriate properties tab, right-click the application or library project and click Properties.
Depending on the project type, Nios IT Application Properties or Nios II Library Properties tab appears
in the list of tabs. Click the appropriate Properties tab to open it.

Comparing the Nios Il Application Properties and Nios Il Library Properties tabs
The Nios II Application Properties and Nios II Library Properties tabs are nearly identical. These tabs
allow you to control the following project properties:

o The name of the target .elf file (application project only)
o The library name (library project only)

« Alist of symbols to be defined in the makefile

« Alist of symbols to be undefined in the makefile

o Alist of assembler flags

» Warning level flags

o Alist of user flags

« Generation of debug symbols

« Compiler optimization level

+ Generation of object dump file (application project only)
« Source file management

+ Path to associated BSP (required for application, optional for library)

Configuring BSP Properties
To configure BSP settings and properties, use the Nios II BSP Editor.

Related Information

« Using the BSP Editor on page 2-14

For more information about the BSP Editor.
o Using the BSP Editor on page 2-14

For more information about the BSP Editor.

Exclude from Build Not Supported

The Exclude from Build command is not supported. You must use the Remove from Nios IT Build and
Add to Nios II Build commands instead.

This behavior differs from the behavior of the Nios II SBT for Eclipse in version 9.1.

Altera Corporation Getting Started with the Graphical User Interface

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . . .
2015.05.14 Selecting the Correct Launch Configuration Type 2-37

Selecting the Correct Launch Configuration Type

If you try to debug a Nios II software project as a CDT Local C/C++ Application launch configuration
type, you see an error message, and the Nios II Debug perspective fails to open. This is expected CDT
behavior in the Eclipse platform. Local C/C++ Application is the launch configuration type for a standard
CDT project. To invoke the Nios II plugins, you must use a Nios II launch configuration type.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

Target Connection Options
The Nios II launch configurations offer the following Nios II-specific options in the Target Connection
tab:

« Disable 'Nios II Console' view

+ Ignore mismatched system ID

+ Ignore mismatched system timestamp

» Download ELF to selected target system
o Start processor

+ Reset the selected target system

Renaming Nios Il Projects
To rename a project in the Nios II SBT for Eclipse, perform the following steps:

1. Right-click the project and click Rename.
2. Type the new project name.
3. Right-click the project and click Refresh.

If you neglect to refresh the project, you might see the following error message when you attempt to
build it:

Resource <ori gi nal _project_name> is out of sync with the system

Running Shell Scripts from the SBT for Eclipse
Many SBT utilities are implemented as shell scripts. You can use Eclipse external tools configurations to
run shell scripts. However, you must ensure that the shell environment is set up correctly.
To run shell scripts from the SBT for Eclipse, execute the following steps:
1. Start the Nios II Command Shell.
2. Start the Nios II SBT for Eclipse by typing the following command:
eclipse-nios2

You must start the SBT for Eclipse from the command line in both the Linux and Windows operating
systems, to set up the correct shell environment.

3. From the Eclipse Run menu, select to External Tools > External Tools Configurations.
4. Create a new tools configuration, or open an existing tools configuration.
5. On the Main tab, set Location and Argument.

Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2-38 Must Use Nios Il Build Configuration 2015.05.14

Table 2-3: Location and Argument to Run Shell Script from Eclipse

Windows | ${env_var:QUARTUS_ROOTDIR}\bin\cygwin\ -c "<script name> <script args>"
bin\sh.exe

Linux ${env_var:SOPC_KIT_NI10S2}/bin/<script <script args>
name>

Table 2-4: Location and Argument Values Used to Run elf2hex --help from Eclipse

Windows | ${env_var:QUARTUS_ROOTDIR}\bin\cygwin\ -c "elf2hex --help”
bin\sh._exe

Linux ${env_var:SOPC_KIT_NI10S2}/bin/elf2hex --help

6. On the Build tab, ensure that Build before launch and its related options are set appropriately.

By default, a new tools configuration builds all projects in your workspace before executing the
command. This might not be the desired behavior.

7. Click Run. The command executes in the Nios II Command Shell, and the command output appears
in the Eclipse Console tab.

Related Information
Getting Started from the Command Line on page 3-1

Must Use Nios Il Build Configuration

Although Eclipse can support multiple build configurations, you must use the Nios II build configuration
for Nios II projects.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

CDT Limitations

The following tables describe the Eclipse CDT features not supported by the Nios II plugins. The features
listed in the left column are supported by the Eclipse CDT plugins, but are not supported by Nios II
plugins; and the right column lists alternative features supported by the Nios II plugins.

Table 2-5: New Project Wizard

Unsupported CDT Feature Alternative Nios Il Feature

C/C++ To create a new project, use one of the following
. Nios II wizards:
o CProject
o C++ Project « Nios II Application
« Convert to a C/C++ Project o Nios IT Application and BSP from Template
+ Source Folder Nios II Board Support Package
o Nios II Library
Altera Corporation Getting Started with the Graphical User Interface

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Table 2-6: Build configurations

CDT Limitations 2-39

Unsupported CDT Feature Alternative Nios Il Feature

« Right-click project and point to Build Configu-
rations

« Debugger tab
« Stop on startup

The Nios II plugins only support a single build
configuration. This feature is supported only at the

top of main(Q).

Table 2-7: Exclude from Build (from version 10.0 onwards)

Unsupported CDT Feature

Right-click source files

Alternative Nios Il Feature

Use Remove from Nios II Build and Add to Nios

IT Build.

Table 2-8: Project Properties

Unsupported CDT Feature Alternative Nios Il Feature

By default, the Nios II SBT generates makefiles

C/C++ Build
o Builder Settings

o Makefile generation
o Build location
+ Behavior

o Build on resource save (Auto build)
o Build Variables
» Discovery Options
« Environment
o Settings
o Tool Chain Editor

o Current builder
e Used tools

automatically.

The build location is determined with the Nios II
Application Properties or Nios II BSP Properties

dialog box.

To change the toolchain, use the Current tool chain

option.

C/C++ General

« Enable project specific settings
» Documentation tool comments
o Documentation

« File Types

 Indexer

« Build configuration for the indexer
» Language Mappings
« Paths and Symbols

The Nios II plugins only support a single build

configuration.

Use Nios II Application Properties and Nios II

Application Paths.

Getting Started with the Graphical User Interface

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . o . NII5V2
2-40 Enhancements for Build Configurations in SBT and SBT for Eclipse 2015.05.14

Table 2-9: Window Preferences

Unsupported CDT Feature Alternative Nios Il Feature

C/Ct+ The Nios II plugins only support a single build
« Build scope configuration.
« Build project configurations The Nios II plugins only support a single build
o Build Variables configuration.
« Environment
« File Types
 Indexer
« Build configuration for the indexer
« Language Mappings
+ New CDT project wizard

Enhancements for Build Configurations in SBT and SBT for Eclipse

The SBT command line tools nios2-app-update-make and nios2-1ib-update-makefile now support
six new options specifically for handling build configurations, which are fully backwards compatible even
if it is unused and omitted.

For SBT for Eclipse, a few GUI options are added:

« Dropdown combo box showing selected build config
+ Button for managing build configs (add/remove/activate)

Build Configurations in SBT
Application and library makefi le are enhanced to support multiple build configurations. There are new
command line options in nios2-app-update-makefile and nios2-1ib-update-makefile for creating,
deleting and updating build configurations.

These command line options are:

Table 2-10: New Command Line Options

I R

--add-build-config <config> <base> Adds a new build configuration with the name

<config>, initializes the new build configuration
using an existing build configuration named <base>

<base> is optional and defaults to the active
configuration. <base> is always ignored if only one
build configuration is available.

—obsieE b S s he Removes an existing build configuration.

No effect if only one build configuration is available.

Altera Corporation Getting Started with the Graphical User Interface

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Build Configurations in SBT for Eclipse 2-41
I R -
--list-build-config <config> Returns name of all build configurations.

Returns empty string if only one build configura-
tion is available.

--get-active-build-config Returns the name of active build configuration.

Returns empty string if only one build configura-
tion is available.

--set-active-build-config <config> Set the build configuration named <config> active.

No effect if only one build configuration is available.

--build-config <config> Only use (read or modify) the build configuration
named <config> but do not set it as the active build
configuration.

No effect if only one build configuration is available.

Note: These new options are optional and can be used together with all existing nios2-app-update-
makefile and nios2-1ib-update-makefile command line options.

Note: The BSP makefile does not support multiple build configurations.
Build Configurations in SBT for Eclipse

Application and library projects are enhanced to support multiple build configurations. There are new
GUI options available for creating, deleting, and unpdating build configurations.

Getting Started with the Graphical User Interface Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2-42 Build Configurations in SBT for Eclipse

NII5V2
2015.05.14

The following shows how the application properties page looks with the new build configuration options
highlighted in red:

Figure 2-2: Nios Il Application Properties

Resource

Builders

CJC++ Build

CjC++ General

Mios 11 Application Properties
Project References
Refactoring History
RunjDebug Settings

Task Repasitory

WikiText

Nios II Application Properties

iquration: | release

4| urations... ‘
—

—Flags
ELF name: | hello_world_win. elf
Defined symbols: |
Undefined symbols: l
Assembler flags: |
Warning flags: | -wall
User flags: |
Linker flags |

Debug level: on -
Optimization level: IOfF ']

¥ Create object dump
¥ Enable source management

Clicking on the Managed Configurations button shows the following dialog for adding, removing, and

activating build configurations:

Figure 2-3: Managed Configurations

& hello_world_win: Manage Configurations [p.3

ation Status
release
Set Active New... -Dr:-!ete I
oK Cancel |

Altera Corporation

Getting Started with the Graphical User Interface

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Document Revision History for Getting Started with the Graphical User... 2-43

Note: The BSP project does not support multiple build configurations.

Document Revision History for Getting Started with the Graphical User

Interface
I N
May 2015 2015.05.14 |, Maintenance release.
« Renamed to Nios IT Classic.
January 2014 13.1.0 « Added section on Nios II Hardware v2 beta
« Updated GCC4 toolchain from 4.1.2 to GCC 4.7.3
« Removed “Managing Toolchains in Eclipse” section.
May 2011 11.0.0 Introduction of Qsys system integration tool impacts ModelSim
flow
+ Launch configuration change requires re-importation of existing
projects
« Using variables to link to external resources
o The GCC 3 toolchain is an optional feature
+ Minor corrections to Table 2-5 on page 2-54
February 2011 10.1.0 « Do not mix versions of GCC.
« How to create and use a library archive file (.a).
» How to create a software package.
 Describe Eclipse launch groups.
o Removed “Referenced Documents” section.
July 2010 10.0.0 « Document how to import and use projects with user-managed
source files.
« Document how to import and use projects with linked resources.
o Document Remove from Nios II Build command.
o Update BSP Editor documentation.
Document Add Memory Device command.
Document Enable File Generation tab.
November 2009 9.1.0 Initial release.
Getting Started with the Graphical User Interface Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Getting Started from the Command Line

2015.05.14

NII5V2 @ Subscribe C] Send Feedback

The Nios II Software Build Tools (SBT) allows you to construct a wide variety of complex embedded
software systems using a command-line interface. From this interface, you can execute Software Built
Tools command utilities, and use scripts (or other tools) to combine the command utilities in many useful
ways.

Advantages of Command-Line Software Development
The Nios II SBT command line offers the following advantages over the Nios II SBT for Eclipse:

* You can invoke the command line tools from custom scripts or other tools that you might already use
in your development flow.

o Onacommand line, you can run several Tcl scripts to control the creation of a board support package
(BSP).

« You can use command line tools in a bash script to build several projects at once.
The Nios II SBT command-line interface is designed to work in the Nios II Command Shell.

Related Information
The Nios II Command Shell on page 3-4

Outline of the Nios Il SBT Command-Line Interface

The Nios II SBT command-line interface consists of:

o Command-line utilities
« Command-line scripts
o Tcl commands

o Tclscripts

These elements work together in the Nios II Command Shell to create software projects.

Utilities
The Nios IT SBT command-line utilities enable you to create software projects. You can call these utilities
from the command line or from a scripting language of your choice (such as perl or bash). On Windows,

these utilities have a .exe extension. The Nios II SBT resides in the <Nios II EDS install path>/sdk2/bin
directory.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

AIEIE%A
101 Innovation Drive, San Jose, CA 95134 ®

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2%202015.05.14)%20Getting%20Started%20from%20the%20Command%20Line&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

. NII5V2
3-2 Scripts 2015.05.14

For more information about the command-line utilities provided by the Nios II SBT, refer to “Altera-
Provided Development Tools” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Related Information
Nios IT Software Build Tools on page 4-45

Scripts
Nios II SBT scripts implement complex behavior that extends the capabilities provided by the utilities.

nios2-bsp Creates or updates a BSP

create-this-app Creates a software example and builds it

create-this-bsp Creates a BSP for a specific hardware design
example and builds it

Note: There are create-this-app scripts for each software example and several create-this-bsp scripts for
each hardware design example. For more information, refer to “Nios II Design Example Scripts” in
the "Nios II Software Build Tools Reference" chapter of the Nios II Software Developer’s Handbook.

Related Information
Nios II Design Example Scripts on page 15-23

nios2-bsp

Usage

nios2-bsp <bsp-type> <bsp-dir> [<sopc>] [<override>]...

Options

e <bsp-type>: hal or ucosii.

o <bsp-dir>: Path to the BSP directory.

+ <sopc>: The path to the .sopcinfo file or its directory.
o <override>: Options to override defaults.

Description

The nios2-bsp script calls nios2-bsp-create-settings or nios2-bsp-update-settings to create or update a
BSP settings file, and the nios2-bsp-generate-files command to create the BSP files. The Nios II
Embedded Design Suite (EDS) supports the following BSP types:

e hal
e ucosili

BSP type names are case-insensitive.

This utility produces a BSP of <bsp-type> in <bsp-dir>. If the BSP does not exist, it is created. If the BSP
already exists, it is updated to be consistent with the associated hardware system.

Altera Corporation Getting Started from the Command Line

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 nios2-bsp =

The default Tcl script is used to set the following system-dependent settings:

+ stdio character device

+ System timer device

o Default linker memory

« Boot loader status (enabled or disabled)

If the BSP already exists, nios2-bsp overwrites these system-dependent settings.

The default Tcl script is installed at <Nios Il EDS install path>/sdk2/bin/bsp-set-defaults.tcl

When creating a new BSP, this utility runs nios2-bsp-create-settings, which creates settings.bsp in <bsp-

dir>.

When updating an existing BSP, this utility runs nios2-bsp-update-settings, which updates settings.bsp in

<bsp-dir>.

After creating or updating the settings.bsp file, this utility runs nios2-bsp-generate-files, which generates

files in <bsp-dir>

Required arguments:

« <bsp-type>: Specifies the type of BSP. This argument is ignored when updating a BSP. This argument
is case-insensitive. The nios2-bsp script supports the following values of <bsp-type>:

+ hal
e ucosii

« <bsp-dir>: Path to the BSP directory. Use "." to specify the current directory.

Optional arguments:

« <sopc>: The path name of the .sopcinfo file. Alternatively, specify a directory containing a .sopcinfo file.
In the latter case, the tool finds a file with the extension .sepcinfo. This argument is ignored when
updating a BSP. If you omit this argument, it defaults to the current directory.

o <override>: Options to override defaults. The nios2-bsp script passes most overrides to nios2-bsp-
create-settings or nios2-bsp-update-settings. It also passes the --si lent, --verbose, --debug, and
--log options to nios2-bsp-generate-files.
nios2-bsp passes the following overrides to the default Tcl script:

o -—-default_stdio <device>|none] DONT_CHANGE
Specifies stdio device.
o --default_sys_timer <device>|none]DONT_CHANGE
Specifies system timer device.
e —-default_memory_regions DONT_CHANGE
Suppresses creation of new default memory regions when updating a BSP. Do not use this option
when creating a new BSP.
o --default_sections_mapping <region>|DONT_CHANGE
Specifies the memory region for the default sections.
e --use_bootloader O]1]DONT_CHANGE
Specifies whether a boot loader is required.
On a preexisting BSP, the value DONT_CHANGE prevents associated settings from changing their
current value.

Note: The "--" prefix is stripped when the option is passed to the underlying utility.

Getting Started from the Command Line Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

3-4 create-this-app 2015.05.14

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

create-this-app
Each application subdirectory contains a create-this-app script. The create-this-app script copies the C/C
++ application source code to the current directory, runs nios2-app-generate-makefile to create a
makefile (named Makefile), and then runs make to build the Executable and Linking Format File (.elf) for
your application. Each create-this-app script uses a particular example BSP. For further information,
refer to the script to determine the associated example BSP. If the BSP does not exist when create-this-
app runs, create-this-app calls the associated create-this-bsp script to create the BSP.

The create-this-app script takes no command-line arguments. Your current directory must be the same
directory as the create-this-app script. The exit value is zero on success and one on error.

create-this-bsp
Each BSP subdirectory contains a create-this-bsp script. The create-this-bsp script calls the nios2-bsp
script to create a BSP in the current directory. The create-this-bsp script has a relative path to the
directory containing the .sopcinfo file. The .sopcinfo file resides two directory levels above the directory
containing the create-this-bsp script.

The create-this-bsp script takes no command-line arguments. Your current directory must be the same
directory as the create-this-bsp script. The exit value is zero on success and one on error.

Tcl Commands

Tcl commands are a crucial component of the Nios II SBT. Tcl commands allow you to exercise detailed
control over BSP generation, as well as to define drivers and software packages.

Tcl Scripts

The SBT provides powerful T¢cl scripting capabilities. In a T¢cl script, you can query project settings,
specify project settings conditionally, and incorporate the software project creation process in a scripted
software development flow. The SBT uses Tcl scripting to customize your BSP according to your
hardware and the settings you select. You can also write custom Tcl scripts for detailed control over the
BSP.

The Nios Il Command Shell

The Nios IT Command Shell is a bash command-line environment initialized with the correct settings to
run Nios IT command-line tools. The Command Shell supports the GCC toolchain.

For more information about GCC toolchains, refer to “Altera-Provided Development Tools” in the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Related Information

o Nios II Software Build Tools on page 4-45
« GNU Compiler Tool Chain on page 4-44
« Overview of Nios II Embedded Development on page 1-1

Starting the Nios Il Command Shell
To open the Nios IT Command Shell, perform the following steps, depending on your environment:

Altera Corporation Getting Started from the Command Line

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Auto-Executing a Command in the Nios Il Command Shell 3-5

« In the Windows operating system, on the Start menu, point to Programs > Altera > Nios IT EDS
<version>,and click Nios II <version> Command Shell:.

o In the Linux operating system, in a command shell, change directories to <Nios II EDS install path>,
and type the command nios2_command_shell.sh.

Auto-Executing a Command in the Nios Il Command Shell
In certain situations, you might need to run a command or a script automatically after the Nios II
Command Shell is initialized. When you start the Nios II Command Shell environment, to automatically
execute a command perform one of the following steps, depending on your environment:

« Inthe Windows operating system, execute the following command:

“<Nios II EDS install path>/Nios II Command Shell.bat“ <command>r
« In the Linux operating system, execute the following command:

<Nios II EDS install path>/nios2_command_shell.sh <command>r
For example, in Windows, to run an automated build, you might execute the following command:
“<Nios II EDS install path>/Nios Il Command Shell.bat“ custom_build.shr

The Nios IT Command Shell startup script (Nios Il Command Shell.bat or nios2_command_shel I .sh)
makes no special assumptions about its initial environment. You can use the Nios II Command Shell with
auto-execution from any environment that accepts commands native to your host operating system. For
example, in Linux you can use crontab to schedule a job to run in the Nios II Command Shell at a later
time.

Getting Started in the SBT Command Line

Using the Nios II SBT on the command line is the best way to learn about it. The following tutorial guides
you through the process of creating, building, running, and debugging a “Hello World” program with a
minimal number of steps. Later chapters provide more of the underlying details, allowing you to take
more control of the process. The goal of this chapter is to show you that the basic process is simple and
straightforward.

The Nios II SBT includes a number of scripts that demonstrate how to combine command utilities to
obtain the results you need. This tutorial uses a create-this-app script as an example.

Prerequisites
To complete this tutorial, you must have the following:

o Altera Quartus II development software, version 8.0 or later. The software must be installed on a
Windows or Linux computer that meets the Quartus II minimum requirements.

o The Altera Nios II Embedded Design Suite (EDS), version 8.0 or later.
o An Altera development board.
« A download cable such as the Altera USB-Blaster " cable.

You run the Nios II SBT commands from the Nios II Command Shell.

Related Information
The Nios II Command Shell on page 3-4

Getting Started from the Command Line Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. NII5V2
3-6 Creating Hello_World for an Altera Development Board 2015.05.14

Creating Hello_World for an Altera Development Board

In this section you create a simple “Hello World” project. To create and build the hel lo_world example
for an Altera development board, perform the following steps:

1. Start the Nios II Command Shell.®

2. Create a working directory for your hardware and software projects. The following steps refer to this
directory as <projects>.
3. Change to the <projects> directory by typing the following command:

cd <projects>r

4. Locate a Nios II hardware example for your Altera development board. For example, if you have a
Stratix® IV GX FPGA Development Kit, you might select <Nios IT EDS install path>/examples/
verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design.

5. Copy the hardware example to your <projects> working directory, using a command such as the
following:

cp -R /altera/100/nios2eds/examples/verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design .r

6. Ensure that the working directory and all subdirectories are writable by typing the following
command:

chmod -R +w .r

7. The <projects> directory contains a subdirectory named software_examples/app/hello_world. The
following steps refer to this directory as <application>.

8. Change to the <application> directory by typing the following command:

cd <application>r
9. Type the following command to create and build the application:

./create-this-appr

The create-this-app script copies the application source code to the <application> directory, runs
nios2-app-generate-makefile to create a makefile (named Makefile), and then runs make to create an
Executable and Linking Format File (.elf). The create-this-app script finds a compatible BSP by
looking in <projects>/software_examples/bsp. In the case of hello_world, it selects the hal _default
BSP.

To create the example BSP, create-this-app calls the create-this-bsp script in the BSP directory.

Related Information
The Nios II Command Shell on page 3-4

Running Hello_World on an Altera Development Board

To run the hello_world example on an Altera development board, perform the following steps:

1. Start the Nios II Command Shell.

2. Download the SRAM Object File (.sof) for the Quartus II project to the Altera development board.
This step configures the FPGA on the development board with your project’s associated SOPC Builder
system.

@ For more information, refer to the "The Nios Il Command Shell" chapter.

Altera Corporation Getting Started from the Command Line

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 Debugging hello_world 3-7

The .sof file resides in <projects>, along with your Quartus II Project File (.qpf). You download it by
typing the following commands:

cd <projects>r
nios2-configure-sofr

The board is configured and ready to run the project’s executable code.

The nios2-configure-sof utility runs the Quartus II Programmer to download the .sof file. You can
also run the quartus_pgm command directly.

For more information about programming the hardware, refer to the Nios II Hardware Development
Tutorial.

3. Start another command shell. If practical, make both command shells visible on your desktop.
4. In the second command shell, run the Nios II terminal application to connect to the Altera develop-

ment board through the JTAG UART port by typing the following command:
nios2-terminalr

5. Return to the original command shell, and ensure that <projects>/software_examples/app/
hello_world is the current working directory.

6. Download and run the hello_world executable program as follows:
nios2-download -g hello_world.elfr
The following output appears in the second command shell:
Hello from Nios II!

Related Information
Nios I Hardware Development Tutorial

Debugging hello_world

An integrated development environment is the most powerful environment for debugging a software
project. You debug a command-line project by importing it to the Nios II SBT for Eclipse. After you
import the project, Eclipse uses your makefiles to build the project. This two-step process combines the
advantages of the SBT command line development flow with the convenience of a GUI debugger.

This section discusses the process of importing and debugging the hello_world application.

Import the hello_world Application
To import the hello_world application, perform the following steps:

Launch the Nios II SBT for Eclipse.

On the File menu, click Import. The Import dialog box appears.
Expand the Nios II Project folder, and select Import Nios II project.
Click Next. The File Import wizard appears.

MR

Click Browse and navigate to the <application> directory, containing the hello_world application
project.

Click OK. The wizard fills in the project path.

Type the project name hello_world in the Project name box.

&

8. Click Finish. The wizard imports the application project.

Getting Started from the Command Line Altera Corporation

C] Send Feedback

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
3-8 Download Executable Code and Start the Debugger 2015.05.14

Note: If you want to view the BSP source files while debugging, you also need to import the BSP
project into the Nios IT SBT for Eclipse.

Related Information

Getting Started with the Graphical User Interface on page 2-1
For a description of importing BSPs into Eclipse, refer to “Importing a Command-Line Project”.

Download Executable Code and Start the Debugger
To debug the software project, perform the following steps:

1. Right-click the hello_world project, point to Debug As, and click Nios IT Hardware.
2. If the Confirm Perspective Switch dialog box appears, click Yes.

After a moment, you see the main() function in the editor. There is a blue arrow next to the first line
of code, indicating that execution is stopped on this line.

When targeting Nios II hardware, the Debug As command does the following tasks:

+ Creates a default debug configuration for the target board.

+ Establishes communication with the target board

« Optionally verifies that the expected SOPC Builder system is configured in the FPGA.
« Downloads the .elf file to memory on the target board.

a. Sets a breakpoint at main().

o Instructs the Nios II processor to begin executing the code.
3. In the Run menu, click Resume to resume execution. You can also resume execution by pressing F8.

When debugging a project in Eclipse, you can also pause, stop, and single-step the program, set
breakpoints, examine variables, and perform many other common debugging tasks.

Related Information

+ Importing a Command-Line Project on page 2-22
For more information about debugging projects in the Nios II SBT for Eclipse.

+ Getting Started with the Graphical User Interface on page 2-1
For more information about debugging projects in the Nios II SBT for Eclipse, refer to “Getting
Started with Eclipse”.

Software Build Tools Scripting Basics

This section provides an example to teach you how you can create a software application using a
command line script.

In this section, assume that you want to build a software application for a Nios II system that features the
LAN91C111 10/100 Non-PCI Ethernet Single Chip MAC + PHY component and supports the
NicheStack® TCP/IP stack. Furthermore, assume that you have organized the hardware design files and
the software source files.

Altera Corporation Getting Started from the Command Line

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Creating a BSP with a Script 3-9

Figure 3-1: Simple Software Project Directory Structure

<design> (e.g. standard)
Quartus Il files (e.g. standard.qpf)

Hardware system files (e.g. standard.sopcinfo)

ﬁ software_examples
ﬁ app

ﬁ software examples (e.g. hello_world)

create-this-app
r;‘ bsp
r;‘ BSP examples (e.g. hal_standard)

create-this-bsp

Creating a BSP with a Script

A simple method for creating a BSP is to use the nios2-bsp script as in the following example:

nios2-bsp ucosii . ../SOPC/ --cmd enable_sw_package altera_iniche \
--set altera_iniche.iniche _default if lan91lclll

nios2-bsp Iwhal . ../user/data/FastNetProject/FastNetHW/

make

Table 3-1: Description of nios2-bsp Arguments

ucosii Sets the operating system to MicroC/ | gor more information, refer to

OS-II “Settings Managed by the Software
Build Tools”.

Specifies the directory in which the | —
BSP is to be created

../SopPc/ Points to the location of the hardware | —
project

Getting Started from the Command Line Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

3-10 Creating a BSP with a Script 2015.05.14
--cmd enable_sw_package Adds the NicheStack TCP/IP stack For more information, refer to
altera_iniche software package to the BSP “Settings Managed by the Software

Build Tools”.

For more information, refer to
"Software Build Tools Tcl

Commands".
--set altera_iniche.iniche_ |Specifies the default hardware For more information, refer to
default_if lan9lcl1l interface for the NicheStack TCP/IP | “Settings Managed by the Software
Stack - Nios II Edition Build Tools”.

The nios2-bsp script uses the .sopcinfo file to create the BSP files. You can override default settings
chosen by nios2-bsp by supplying command-line arguments, Tcl scripts, or both.

Figure 3-2: nios2-bsp Command Flow

<design> (e.g. standard)
Quartus Il files (e.g. standard.qpf)

Hardware system files (e.g. standard.sopcinfo)

r;‘ software_examples
ﬁ app

ﬁ software examples (e.g. hello_world)

create-this-app
ﬁ bsp
ﬁ BSP examples (e.g. hal_standard)

create-this-bsp

Altera Corporation Getting Started from the Command Line

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Creating an Application Project with a Script 3-11

SOPC Builder
system file (.sopcinfo)

Td
scripts

Command
line arguments

\J \ 4

A

nios2-bsp

!

BSP files

make

!

BSP library file

(a)

Related Information

+ Nios II Software Build Tools Utilities on page 15-1
For more information about the nios2-bsp command.

+ Settings Managed by the Software Build Tools on page 15-25
+ Software Build Tools Tcl Commands on page 15-64

Creating an Application Project with a Script

To create application projects, use nios2-app-generate-makefile as in the following example:.

nios2-app-generate-makefile --bsp-dir ../BSP \
--elf-name telnet-test.elf
--src-dir source/ make

Table 3-2: Description of nios2-app-generate-makefile Arguments

T e e

--bsp-dir ../BSP Specifies the location of the BSP on which
this application is based

--elf-name telnet-test.elf Specifies the name of the executable file
--src-dir source/ Tells nios2-app-generate-makefile where to
find the C source files
Getting Started from the Command Line Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

3-12 Running make 2015.05.14

Related Information

 Nios II Software Build Tools on page 4-1
For more information about the software example scripts, refer to “Nios II Design Example Scripts”.

o Nios II Software Build Tools Reference on page 15-1
For further information about each command argument in the table, refer to "Nios II Software Build
Tools Utilities" chapter; and for more information about the software example scripts, refer to "Nios II
Design Example Scripts".

Running make

nios2-bsp places all BSP files in the BSP directory, specified on the command line with argument --bsp-
dir. After running nios2-bsp, you run make, which compiles the source code. The result of compilation
is the BSP library file, also in the BSP directory. The BSP is ready to be linked with your application.

You can specify multiple targets on a make command line. For example, the following command removes
existing object files in the current project directory, builds the project, downloads the project to a board,
and runs it:

make clean download-elfr

You can modify an application or user library makefile with the nios2-lib-update-makefile and nios2-
app-update-makefile utilities. With these utilities, you can execute the following tasks:

« Add source files to a project

« Remove source files from a project

o Add compiler options to a project’s make rules

« Modify or remove compiler options in a project’s make rules

Creating Memory Initialization Files

To create memory initialization files for a Nios II system, you can use the Nios II Command Shell. Change
to the software application folder, and type:

make mem_init_generater

This command creates the memory initialization and simulation files for all memory devices. It also
generates a Quartus II IP File (.qip). The .qip file tells the Quartus II software where to find the initializa-
tion files. Add the .qip file to your Quartus II project.

Document Revision History for Getting Started from the Command Line

I I S

May 2015 2015.05.14 |, Maintenance release.
o Renamed to Nios II Classic.
January 2014 13.1.0 « Updated GCC4 toolchain from 4.1.2 to GCC 4.7.3.
o Removed references to the Nios II IDE.
o Removed references to GCC 3.
« Removed the “Using the Nios IT C2H Compiler” section.
Altera Corporation Getting Started from the Command Line

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Document Revision History for Getting Started from the Command Line 3-13
I T S
May 2011 11.0.0 « Can auto-execute a Command in the Nios II Command Shell
o The GCC 3 toolchain is an optional feature
February 2011 10.1.0 + Do not mix versions of GCC.
« Removed “Referenced Documents” section.
July 2010 10.0.0 + Introduction of GCC 4.
 Discuss usage of GCC 3 and GCC 4 command shells.
November 2009 9.1.0 « Repurpose and retitle this chapter as an introduction to Nios II
Software Build Tools command-line usage.
« Information about the BSP Editor moved to the "Getting Started
with the Graphical User Interface" chapter.
March 2009 9.0.0 « Describe BSP Editor.
 Reorganize and update information and terminology to clarify role
of Nios II Software Build Tools.
+ Correct minor typographical errors.
May 2008 8.1.0 Maintenance release.
October 2007 7.2.0 Repurpose this chapter as a “Getting Started” guide. Move descriptive
and reference material to separate chapters.
May 2007 7.1.0 Initial Release.
Getting Started from the Command Line Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios Il Software Build Tools 4

2015.05.14

NII5V2 @ Subscribe C] Send Feedback

This chapter describes the Nios II Software Build Tools (SBT), a set of utilities and scripts that creates and
builds embedded C/C++ application projects, user library projects, and board support packages (BSPs).
The Nios II SBT supports a repeatable, scriptable, and archivable process for creating your software
product.

You can invoke the Nios II SBT through either of the following user interfaces:

o The EclipseGUI
e The Nios II Command Shell

The purpose of this chapter is to make you familiar with the internal functionality of the Nios II SBT,
independent of the user interface employed.

Before reading this chapter, consider getting an introduction to the Nios IT SBT by first reading one of the
following chapters:

o "Getting Started with the Graphical User Interface”
o "Getting Started from the Command Line"

This chapter assumes you are familiar with the following topics:

o The GNU make utility. Altera recommends you use version 3.80 or later. On the Windows platform,
GNU make version 3.80 is provided with the Nios IT EDS.

You can obtain general information about GNU make from the Free Software Foundation, Inc.
website.

« Board support packages.
Depending on how you use the tools, you might also need to be familiar with the following topics:
e Micrium MicroC/OS-II.
For information, refer to MicroC/OS-II - The Real Time Kernel by Jean J. Labrosse (CMP Books).
o Tcl scripting language.
Related Information

« Overview of Nios II Embedded Development on page 1-1

o Getting Started with the Graphical User Interface on page 2-1
+ Getting Started from the Command Line on page 3-1

+ GNU Website

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 .tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2%202015.05.14)%20Nios%20II%20Software%20Build%20Tools&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.gnu.org
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

NII5V2

4-2 Road Map for the SBT 2015.05.14

Road Map for the SBT

Before you start using the Nios II SBT, it is important to understand its scope. This section helps you
understand their purpose, what they include, and what each tool does. Understanding these points helps
you determine how each tool fits in with your development process, what parts of the tools you need, and
what features you can disregard for now.

What the Build Tools Create

The purpose of the build tools is to create and build Nios II software projects. A Nios II project is a
makefile with associated source files.

The SBT creates the following types of projects:

+ Nios IT application—A program implementing some desired functionality, such as control or signal
processing.

 Nios II BSP—A library providing access to hardware in the Nios II system, such as UART's and other
I/O devices. A BSP provides a software runtime environment customized for one processor in a
hardware system. A BSP optionally also includes the operating system, and other basic system software
packages such as communications protocol stacks.

o+ User library—A library implementing a collection of reusable functions, such as graphics algorithms.

Comparing the Command Line with Eclipse

Aside from the Eclipse GUI, there are very few differences between the SBT command line and the Nios II
SBT for Eclipse.

Table 4-1: Differences between Nios Il SBT for Eclipse and the Command Line

I T T

Project source file management Specify sources automatically, | Specify sources manually
e.g. by dragging and dropping | using command arguments
into project

Debugging Yes Import project to Eclipse
environment
Integrates with custom shell scripts | No Yes

and tool flows

The Nios II SBT for Eclipse provides access to a large, useful subset of SBT functionality. Any project you
create in Eclipse can also be created using the SBT from the command line or in a script. Create your
software project using the interface that is most convenient for you. Later, it is easy to perform additional
project tasks in the other interface if you find it advantageous to do so.

Makefiles

Makefiles are a key element of Nios II C/C++ projects. The Nios II SBT includes powerful tools to create
makefiles. An understanding of how these tools work can help you make the most optimal use of them.

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Modifying Makefiles 4-3

The Nios II SBT creates two kinds of makefiles:

» Application or user library makefile—A simple makefile that builds the application or user library with
user-provided source files

o BSP makefile—A more complex makefile, generated to conform to user-specified settings and the
requirements of the target hardware system

It is not necessary to use to the generated application and user library makefiles if you prefer to write your
own. However, Altera recommends that you use the SBT to manage and modify BSP makefiles.

Generated makefiles are platform-independent, calling only utilities provided with the Nios II EDS (such
as nios2-elf-gcc).

The generated makefiles have a straightforward structure, and each makefile has in-depth comments
explaining how it works. Altera recommends that you study these makefiles for further information about
how they work. Generated BSP makefiles consist of a single main file and a small number of makefile
fragments, all of which reside in the BSP directory. Each application and user library has one makefile,
located in the application or user library directory.

Modifying Makefiles

It is not necessary to edit makefiles by hand. The Nios II SBT for Eclipse offers GUI tools for makefile
management.

For more information, refer to the Getting Started with the Graphical User Interface chapter of the Nios IT
Software Developer’s Handbook.

Table 4-2: Command-Line Utilities for Updating Makefiles

Application nios2-app-update-makefile

Library nios2-lib-update-makefile

BSP®) nios2-bsp-update-settings

nios2-bsp-generate-files

Note: After making changes to a makefile, run make clean before rebuilding your project. If you are
using the Nios IT SBT for Eclipse, this happens automatically.

Related Information

+ Getting Started with the Graphical User Interface on page 2-1
« Updating Your BSP on page 4-32

Makefile Targets

Altera recommends that you study the generated makefiles for further details about the application
makefile targets.

) For more information about updating BSP makefiles, refer to Updating Your BSP .

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4-4 Nios Il Embedded Software Projects

Table 4-3: Application Makefile Targets

help

Displays all available application makefile targets.

all (default)

Builds the associated BSP and libraries, and then builds the
application executable file.

app Builds only the application executable file.

bsp Builds only the BSP.

libs Builds only the libraries and the BSP.

clean Performs a clean build of the application. Deletes all applica-
tion-related generated files. Leaves associated BSP and
libraries alone.

clean_all Performs a clean build of the application, and associated
BSP and libraries (if any).

clean_bsp Performs a clean build of the BSP.

clean_libs

Performs a clean build of the libraries and the BSP.

download-elf

Builds the application executable file and then downloads
and runs it.

program-flash

Runs the Nios II flash programmer to program your flash
memory.

Note: You can use the download-elf makefile target if the host system is connected to a single USB-
Blaster download cable. If you have more than one download cable, you must download your
executable with a separate command. Set up a run configuration in the Nios II SBT for Eclipse, or
use nios2-download, with the --cable option to specify the download cable.

Nios Il Embedded Software Projects

The Nios II SBT supports the following kinds of software projects:

o C/C++ application projects
o C/C++ user library projects
« BSP projects

This section discusses each type of project in detail.

Applications and Libraries

The Nios I SBT has nearly identical support for C/C++ applications and libraries. The support for
applications and libraries is very simple. For each case, the SBT generates a private makefile (named
Makefile). The private makefile is used to build the application or user library.

The private makefile builds one of two types of files:

o A .elf file—For an application

« A library archive file (.a)—For a user library

Altera Corporation

NII5V2

2015.05.14

Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 Supported Source File Types 4-5

For a user library, the SBT also generates a public makefile, called public.mk. The public makefile is
included in the private makefile for any application (or other user library) that uses the user library.

When you create a makefile for an application or user library, you provide the SBT with a list of source
files and a reference to a BSP directory. The BSP directory is mandatory for applications and optional for
libraries.

Supported Source File Types

The Nios II SBT examines the extension of each source file to determine the programming language.

Table 4-4: Supported Programming Languages with the Corresponding File Extensions

Programming Language

C .«
C++ .CpPp, .CXX, .cC
Nios II assembly language; sources are built directly by the K3

Nios II assembler without preprocessing

Nios II assembly language; sources are preprocessed by the .S
Nios II C preprocessor, allowing you to include header files

Board Support Packages

A Nios II BSP project is a specialized library containing system-specific support code. A BSP provides a
software runtime environment customized for one processor in a hardware system. The BSP isolates your
application from system-specific details such as the memory map, available devices, and processor
configuration.

A BSP includes a .a file, header files (for example, system.h), and a linker script (linker.x). You use these
BSP files when creating an application.

The Nios II SBT supports two types of BSPs: Altera Hardware Abstraction Layer (HAL) and Micrium
MicroC/OS-II. MicroC/OS-1II is a layer on top of the Altera HAL and shares a common structure.

Overview of BSP Creation
The Nios II SBT creates your BSP for you. The tools provide a great deal of power and flexibility, enabling
you to control details of your BSP implementation while maintaining compatibility with a hardware
system that might change.

By default, the tools generate a basic BSP for a Nios II system. If you require more detailed control over
the characteristics of your BSP, the Nios II SBT provides that control, as described in the remaining
sections of this chapter.

Parts of a Nios Il BSP

Hardware Abstraction Layer

The HAL provides a single-threaded UNIX-like C/C++ runtime environment. The HAL provides generic
1/O devices, allowing you to write programs that access hardware using the newlib C standard library
routines, such as printf(). The HAL interfaces to HAL device drivers, which access peripheral registers

@ All file extensions are case-sensitive.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
4-6 newlib C Standard Library 2015.05.14
directly, abstracting hardware details from the software application. This abstraction minimizes or
eliminates the need to access hardware registers directly to connect to and control peripherals.

For more information about the HAL, refer to the "HAL API Reference" chapter of the Nios II Software
Developer’s Handbook.

Related Information
HAL API Reference on page 14-1

newlib C Standard Library
newlib is an open source implementation of the C standard library intended for use on embedded
systems. It is a collection of common routines such as printf(), malloc(), and open().

Device Drivers
Each device driver manages a hardware component. By default, the HAL instantiates a device driver for
each component in your hardware system that needs a device driver. In the Nios II software development
environment, a device driver has the following properties:

o A device driver is associated with a specific hardware component.
o A device driver might have settings that impact its compilation. These settings become part of the BSP
settings.

Optional Software Packages
A software package is source code that you can optionally add to a BSP project to provide additional
functionality. The NicheStack TCP/IP - Nios II Edition is an example of a software package.

In the Nios II software development environment, a software package typically has the following
properties:
« A software package is not associated with specific hardware.

» A software package might have settings that impact its compilation. These settings become part of the
BSP settings.

Note: In the Nios II software development environment, a software package is distinct from a library
project. A software package is part of the BSP project, not a separate library project.

Optional Real-Time Operating System
The Nios IT EDS includes an implementation of the third-party MicroC/OS-II RTOS that you can
optionally include in your BSP. MicroC/OS-II is built on the HAL, and implements a simple, well-
documented RTOS scheduler. You can modify settings that become part of the BSP settings. Other
operating systems are available from third-party vendors.

The Micrium MicroC/OS-1I is a multi-threaded run-time environment. It is built on the Altera HAL.

The MicroC/OS-II directory structure is a superset of the HAL BSP directory structure. All HAL BSP
generated files also exist in the MicroC/OS-II BSP.

The MicroC/OS-II source code resides in the UCOSII directory. The UCOSII directory is contained in
the BSP directory, like the HAL directory, and has the same structure (that is, src and inc directories). The
UCOSII directory contains only copied files.

The MicroC/OS-II BSP library archive is named libucosii_bsp.a. You use this file the same way you use
libhal_bsp.a in a HAL BSP.

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Software Build Process 4-7

Software Build Process

To create a software project with the Nios II SBT, you perform several high-level steps:

1.

Obtain the hardware design on which the software is to run. When you are learning about the build
tools, this might be a Nios II design example. When you are developing your own design, it is probably
a design developed by someone in your organization. Either way, you need to have the SOPC Informa-
tion File (.sopcinfo).

Decide what features the BSP requires. For example, does it need to support an RTOS? Does it need
other specialized software support, such as a TCP/IP stack? Does it need to fit in a small memory
footprint? The answers to these questions tell you what BSP features and settings to use.

For more information about available BSP settings, refer to the "Nios II Software Build Tools
Reference" chapter.

Define a BSP. Use the Nios II SBT to specify the components in the BSP, and the values of any relevant
settings. The result of this step is a BSP settings file, called settings.bsp.

For more information about creating BSPs, refer to the "Board Support Packages" chapter.

Create a BSP makefile using the Nios II build tools.

Optionally create a user library. If you need to include a custom software user library, you collect the
user library source files in a single directory, and create a user library makefile. The Nios II build tools
can create a makefile for you. You can also create a makefile by hand, or you can autogenerate a
makefile and then customize it by hand.

For more information about creating user library projects, refer to the “Applications and Libraries”
chapter.

Collect your application source code. When you are learning, this might be a Nios II software example.
When you are developing a product, it is probably a collection of C/C++ source files developed by
someone in your organization.

For more information about creating application projects, refer to the “Applications and Libraries”
chapter.

Create an application makefile. The easiest approach is to let the Nios II build tools create the makefile
for you. You can also create a makefile by hand, or you can autogenerate a makefile and then
customize it by hand.

For more information about creating makefiles, refer to the “Makefiles” chapter.

Related Information

Applications and Libraries on page 4-4

Makefiles on page 4-2

Board Support Packages on page 4-5

Nios II Software Build Tools Reference on page 15-1

Common BSP Tasks

The Nios II SBT creates a BSP for you with useful default settings. However, for many tasks you must
manipulate the BSP explicitly. This section describes the following common BSP tasks, and how you carry
them out.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
4-8 Adding the Nios Il SBT to Your Tool Flow 2015.05.14

Although this section describes tasks in terms of the SBT command line flow, you can also carry out most
of these tasks with the Nios IT SBT for Eclipse.

Related Information

« Using Version Control on page 4-8

» Copying, Moving, or Renaming a BSP on page 4-9

« Handing Off a BSP on page 4-10

« Changing the Default Linker Memory Region on page 4-14

« Changing a Linker Section Mapping on page 4-15

o Managing Device Drivers on page 4-16

o Creating a Custom Version of newlib on page 4-17

+ Creating a BSP for an Altera Development Board on page 4-15

+ Creating Memory Initialization Files on page 4-10

+ Modifying Linker Memory Regions on page 4-11

o Creating a Custom Linker Section on page 4-12

o Querying Settings on page 4-16

« Controlling the stdio Device on page 4-17

« Configuring Optimization and Debugger Options on page 4-17

o Getting Started with the Graphical User Interface on page 2-1
For more information about carrying out the tasks with the Nios II SBT for Eclipse, refer to the
"Getting Started with the Graphical User Interface" chapter.

Adding the Nios Il SBT to Your Tool Flow

A common reason for using the SBT is to enable you to integrate your software build process with other
tools that you use for system development, including non-Altera tools. This section describes several
scenarios in which you can incorporate the build tools in an existing tool chain.

Using Version Control
One common tool flow requirement is version control. By placing an entire software project, including
both source and makefiles, under version control, you can ensure reproducible results from software

builds.

When you are using version control, it is important to know which files to add to your version control
database. With the Nios II SBT, the version control requirements depend on what you are trying to do
and how you create the BSP.

Creating BSP by Running a User Defined Script to Call nios2-bsp
If you create a BSP by running your own script that calls nios2-bsp, you can put your script under version
control. If your script provides any Tcl scripts to nios2-bsp (using the --script option), you must also
put these Tcl scripts under version control. If you install a new release of Nios II EDS and run your script
to create a new BSP or to update an existing BSP, the internal implementation of your BSP might change
slightly due to improvements in Nios II EDS.

For more information, refer to Revising Your BSP for a discussion of BSP regeneration with Nios IT EDS
updates.

Related Information
Revising Your BSP on page 4-29

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . L
2015.05.14 Creating BSP by Manually Running nios2-bsp 4-9

Creating BSP by Manually Running nios2-bsp
If you create a BSP by running nios2-bsp manually on the command line or by running your own script
that calls nios2-bsp-generate-files, you can put your BSP settings file (typically named settings.bsp) under
version control. As in the scripted nios2-bsp case, if you install a new release of Nios II EDS and recreate
your BSP, the internal implementation might change slightly.

Creating BSP before Running Make
If you want the exact same BSP after installing a new release of Nios II EDS, create your BSP and then put
the entire BSP directory under version control before running make. If you have already run make, run
make clean to remove all built files before adding the directory contents to your version control database.
The SBT places all the files required to build a BSP in the BSP directory. If you install a new release of
Nios II EDS and run make on your BSP, the implementation is the same, but the binary output might not
be identical.

Creating a Script that Uses the Command-Line Tools
If you create a script that uses the command-line tools nios2-bsp-create-settings and nios2-bsp-
generate-files explicitly, or you use these tools directly on the command line, it is possible to create the
BSP settings file in a directory different from the directory where the generated BSP files reside. However,
in most cases, when you want to store a BSP’s generated files directory under source control, you also
want to store the BSP settings file. Therefore, it is best to keep the settings file with the other BSP files. You
can rebuild the project without the BSP settings file, but the settings file allows you to update and query
the BSP.

Note: Because the BSP depends on a .sopcinfo file, you must usually store the .sopcinfo file in source
control along with the BSP. The BSP settings file stores the .sopcinfo file path as a relative or
absolute path, according to the definition on the nios2-bsp or nios2-bsp-create-settings command
line. You must take the path into account when retrieving the BSP and the .sopcinfo file from
source control.

Copying, Moving, or Renaming a BSP
BSP makefiles have only relative path references to project source files. Therefore you are free to copy,
move, or rename the entire BSP. If you specify a relative path to the SOPC system file when you create the
BSP, you must ensure that the .sopcinfo file is still accessible from the new location of the BSP.
This .sopcinfo file path is stored in the BSP settings file.

Run make clean when you copy, move, or rename a BSP. The make dependency files (.d) have absolute
path references. make clean removes the .d files, as well as linker object files (.0) and .a files. You must
rebuild the BSP before linking an application with it. You can use the make clean_bsp command to
combine these two operations.

For more information about .d files, refer to the GNU make documentation, available from the Free
Software Foundation, Inc. website.

Another way to copy a BSP is to run the nios2-bsp-generate-files command to populate a BSP directory
and pass it the path to the BSP settings file of the BSP that you wish to copy.

If you rename or move a BSP, you must manually revise any references to the BSP name or location in
application or user library makefiles.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-10 Handing Off a BSP 2015.05.14

Related Information

o GNU Website
For more information about .d files.
o Nios II Embedded Design Suite Support

Handing Off a BSP
In some engineering organizations, one group (such as systems engineering) creates a BSP and hands it
off to another group (such as applications software) to use while developing an application. In this
situation, Altera recommends that you as the BSP developer generate the files for a BSP without building
it (that is, do not run make) and then bundle the entire BSP directory, including the settings file, with a

utility such as tar or zip. The software engineer who receives the BSP can simply run make to build the
BSP.

Linking and Locating

When auto-generating a HAL BSP, the SBT makes some reasonable assumptions about how you want to
use memory.

For more information, refer to Specifying the Default Memory Map.

However, in some cases these assumptions might not work for you. For example, you might implement a
custom boot configuration that requires a bootloader in a specific location; or you might want to specify
which memory device contains your interrupt service routines (ISRs).

This section describes several common scenarios in which the SBT allows you to control details of
memory usage.

Related Information

Specifying the Default Memory Map on page 4-37

Creating Memory Initialization Files

The mem_init.mk file includes targets designed to help you create memory initialization files

(.dat, .hex, .sym, and .flash). The mem_init.mk file is designed to be included in your application makefile.
Memory initialization files are used for HDL simulation, for Quartus II compilation of initializable FPGA
on-chip memories, and for flash programming. Initializable memories include M512 and M4K, but not
MRAM.

Although the application makefile provides the mem_init.mk targets, it does not build any of them by
default. The SBT creates the memory initialization files in the application directory (under a directory
named mem_init). The SBT optionally copies them to your Quartus II project directory and HDL
simulation directory.

Note: The Nios II SBT does not generate a definition of QUARTUS_PROJECT_DIR in your application
makefile.

If you have an on-chip RAM, and require that a compiled software image be inserted in your SRAM
Object File (.sof) at Quartus II compilation, you must manually specify the value of
QUARTUS_PROJECT_DIR in your application makefile. You must define QUARTUS_PROJECT_DIR before the
mem_init.mk file is included in the application makefile, as in the following example:

QUARTUS_PROJECT_DIR = ../my_hw_design

MEM_INIT_FILE := $(BSP_ROOT_DIR)/mem_init.mk
include $(MEM_INIT_FILE)

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

http://www.gnu.org
http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 L .
2015.05.14 Modifying Linker Memory Regions 4-11

Table 4-5: mem_init.mk Targets

mem_init_install Generates memory initialization files in the application mem_init
directory. If the QUARTUS_PROJECT_DIR variable is defined, mem_
init.mk copies memory initialization files to your Quartus II
project directory named $(QUARTUS_PROJECT_DIR). If the SOPC_
NAME variable is defined, mem_init.mk copies memory initialization
files to your HDL simulation directory named $(QUARTUS_
PROJECT_DIR)/$(SOPC_NAME)_siim.

mem_init_generate Generates all memory initialization files in the application mem_
init directory.

This target also generates a Quartus II IP File (.qip). The .qip file
tells the Quartus II software where to find the initialization files.

mem_init_clean Removes the memory initialization files from the application
mem_init directory.

hex Generates all hex files.

dat Generates all dat files.

sym Generates all sym files.

flash Generates all flash files.

<memory name> Generates all memory initialization files for <memory name>
component.

Modifying Linker Memory Regions
If the linker memory regions that are created by default do not meet your needs, BSP Tcl commands let
you modify the memory regions as desired.

Suppose you have a memory region named onchip_ram. The Tcl script named reserve_1024_onchip_ram.tcl
separates the top 1024 bytes of onchip_ram to create a new region named onchip_special.

For more information about an explanation of each Tcl command used in this example, refer to the "Nios
IT Software Build Tools Reference" chapter.

Get region information for onchip_ram memory region.
Returned as a list.

set region_info [get_memory_region onchip_ram]

Extract fields from region information list.

set region_name [lindex $region_info 0]

set slave_desc [lindex $region_info 1]

set offset [lindex $region_info 2]

set span [lindex $region_info 3]

Remove the existing memory region.
delete_memory_region $region_name

Compute memory ranges for replacement regions.

set split_span 1024

set new_span [expr $span-$split_span]

set split_offset [expr $offset+$new_span]

Create two memory regions out of the original region.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-12 Creating a Custom Linker Section 2015.05.14

add_memory_region onchip_ram $slave_desc $offset $new_span
add_memory_region onchip_special $slave_desc $split_offset $split_span

If you pass this Tcl script to nios2-bsp, it runs after the default Tcl script runs and sets up a linker region
named onchip_ram0. You pass the Tcl script to nios2-bsp as follows:

nios2-bsp hal my_bsp --script reserve_1024_onchip_ram.tclr
Note: Take care that one of the new memory regions has the same name as the original memory region.

If you run nios2-bsp again to update your BSP without providing the --script option, your BSP reverts
to the default linker memory regions and your onchip_special memory region disappears. To preserve

it, you can either provide the --script option to your Tcl script or pass the DONT_CHANGE keyword to the
default Tcl script as follows:

nios2-bsp hal my_bsp --default_memory_regions DONT_CHANGEr

Altera recommends that you use the --script approach when updating your BSP. This approach allows
the default Tcl script to update memory regions if memories are added, removed, renamed, or resized.
Using the DONT_CHANGE keyword approach does not handle any of these cases because the default Tcl
script does not update the memory regions at all.

For more information about using the --script argument, refer to the “Calling a Custom BSP Tcl Script”
chapter.

Related Information

« Calling a Custom BSP Tcl Script on page 4-26
+ Nios II Software Build Tools Reference on page 15-1

+ Nios II Software Build Tools Reference on page 15-1
For an explanation of each Tcl command used in this example, refer to the "Nios II Software Build
Tools Reference" chapter.

Creating a Custom Linker Section
The Nios II SBT provides a Tcl command, add_section_mapping, to create a linker section.

The default Tcl script creates these default sections for you using the add_section_mapping Tcl

command:

e .entry

e _exceptions
e _text

e _rodata

e _.rwdata

e _bss

e _heap

e _stack

Creating a Linker Section for an Existing Region
To create your own section named special_section that is mapped to the linker region named
onchip_special, use the following command to run nios2-bsp:

nios2-bsp hal my bsp --cmd add_section_mapping special_section onchip_specialr

When the nios2-bsp-generate-files utility (called by nios2-bsp) generates the linker script linker.x, the
linker script has a new section mapping. The order of section mappings in the linker script is determined

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 A
2015.05.14 Dividing a Linker Region to Create a New Region and Section 4-13

by the order in which the add_section_mapping command creates the sections. If you use nios2-bsp, the
default Tcl script runs before the --cmd option that creates the special_section section.

If you run nios2-bsp again to update your BSP, you do not need to provide the add_section_mapping
command again because the default Tcl script only modifies section mappings for the default sections
listed inthe Nios II Default Section Names table.

Dividing a Linker Region to Create a New Region and Section
This example works with any hardware design containing an on-chip memory named
tightly_coupled_instruction_memory connected to a Nios II instruction master.

Example 4-2. To Create a Section named .isrs in the tightly_coupled_instruction_memory on-chip
memory

Get region information for tightly_coupled_instruction_memory memory region.
Returned as a list.

set region_info [get_memory_region tightly coupled_instruction_memory]

Extract fields from region information list.

set region_name [lindex $region_info 0]

set slave [lindex $region_info 1]

set offset [lindex $region_info 2]

set span [lindex $region_info 3]

Remove the existing memory region.

delete_memory_region $region_name

Compute memory ranges for replacement regions.

set split_span 1024

set new_span [expr $span-$split_span]

set split_offset [expr $offset+$new_span]

Create two memory regions out of the original region.

add_memory_region tightly_coupled_instruction_memory $slave $offset $new_span
add_memory_region isrs_region $slave $split_offset $split_span
add_section_mapping .isrs isrs_region

The above Tcl script splits off 1 KB of RAM from the region named tightly_coupled_instruc-
tion_memory, gives it the name isrs_region, and then calls add_section_mapping to add the .isrs
section to isrs_region.

Using the Create a New Region and Section Tcl Script
To use such a T¢l script, you would execute the following steps:

1. Create the Tcl script as shown in the example, above.
2. Edit your create-this-bsp script, and add the following argument to the nios2-bsp command line:

--script <script name>.tcl

3. In the BSP project, edit timer_interrupt_latency.h. In the timer_interrupt_latency_irqQ
function, change the .section directive from .exceptions to .isrs.
4. Rebuild the application by running make.

Excerpts from Object Dump Files
After make completes successfully, you can examine the object dump file, <project name>.objdump. The
object dump file shows that the new .isrs section is located in the tightly coupled instruction memory.
This object dump file excerpt shows a hardware design with an on-chip memory whose base address is
0x04000000.

Example 4-3. Excerpts from Object Dump File

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. NII5V2
4-14 Excerpt from Linker.x 2015.05.14

Sections:
Idx Name Size VMA LMA File off Algn

6 .isrs 000000cO 04000c00 04000c00 000000b4 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

9 _tightly_coupled_instruction_memory 00000000 04000000 04000000 00013778 2**0
CONTENTS

SYMBOL TABLE:

00000000 1 d .entry 00000000

30000020 I d .exceptions 00000000

30000150 1 d .text 00000000

30010e14 1 d .rodata 00000000

30011788 1 d .rwdata 00000000

30013624 1 d .bss 00000000

04000c00 1 d .isrs 00000000

00000020 1 d .ext_flash 00000000

03200000 I d .epcs_controller 00000000

04000000 I d .tightly_coupled_instruction_memory 00000000
1 d .tightly_coupled_data_memory 00000000

04004000

Excerpt from Linker.x
If you examine the linker script file, linker.x, you can see that linker.x places the new region isrs_region
in tightly-coupled instruction memory, adjacent to the tightly_coupled_instruction_memory region.

Example 4-4. Excerpt From linker.x

MEMORY
{
reset - ORIGIN = OxO0, LENGTH = 32

tightly_coupled_instruction_memory : ORIGIN = 0x4000000, LENGTH = 3072
isrs_region : ORIGIN = 0x4000c00, LENGTH = 1024

Changing the Default Linker Memory Region
The default Tcl script chooses the largest memory region connected to your Nios II processor as the
default region.

For more information about all default memory sections mapped to this default region, refer to the
previous chapter, "Creating a Custom Linker Section".

You can pass in a command-line option to the default Tcl script to override this default mapping. To map
all default sections to onchip_ram, type the following command:

nios2-bsp hal my_bsp --default_sections_mapping onchip_ramr

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Changing a Linker Section Mapping 4-15

If you run nios2-bsp again to update your BSP, the default Tcl script overrides your default sections
mapping. To prevent your default sections mapping from being changed, provide nios2-bsp with the
original --default_sections_mapping command-line option or pass it the DONT_CHANGE value for the
memory name instead of onchip_ram.

Related Information
Creating a Custom Linker Section on page 4-12

Changing a Linker Section Mapping
If some of the default section mappings created by the default Tcl script do not meet your needs, you can
use a T'cl command to override the section mappings selectively. To map the .stack and .heap sections
into a memory region named ramo, use the following command:

nios2-bsp hal my_bsp --cmd add_section_mapping .stack ramO \

--cmd add_section_mapping .heap ramOr

The other section mappings (for example, .text) are still mapped to the default linker memory region.

If you run nios2-bsp again to update your BSP, the default Tcl script overrides your section mappings
for .stack and .heap because they are default sections. To prevent your section mappings from being
changed, provide nios2-bsp with the original add_section_mapping command-line options or pass the
--default_sections_mapping DONT_CHANGE command line to nios2-bsp.

Altera recommends using the --cmd add_section_mapping approach when updating your BSP because
it allows the default Tcl script to update the default sections mapping if memories are added, removed,
renamed, or resized.

Other BSP Tasks

This section covers some other common situations in which the SBT is useful.

Creating a BSP for an Altera Development Board
In some situations, you need to create a BSP separate from any application. Creating a BSP is similar to
creating an application. To create a BSP, perform the following steps:

1. Start the Nios II Command Shell.

For details about the Nios II Command Shell, refer to the Getting Started from the Command Line
chapter of the Nios II Software Developer’s Handbook.

2. Create a working directory for your hardware and software projects. The following steps refer to this
directory as <projects>.

3. Make <projects> the current working directory.

4. Find a Nios II hardware example corresponding to your Altera development board. For example, if
you have a Stratix® IV development board, you might select <Nios IT EDS install path>/examples/
verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design.

5. Copy the hardware example to your working directory, using a command such as the following:

cp -R Zalteras/100/nios2eds/examples/verilog\
/niosll_stratixlV_4sgx230/triple_speed_ethernet_design .r

6. Ensure that the working directory and all subdirectories are writable by typing the following
command:

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
4-16 Querying Settings 2015.05.14

chmod -R +w .r

The <projects> directory contains a subdirectory named software_examples/bsp. The bsp directory
contains several BSP example directories, such as hal_default. Select the directory containing an
appropriate BSP, and make it the current working directory.

For a description of the example BSPs, refer to “Nios II Design Example Scripts” in the Nios II Software
Build Tools Reference chapter of the Nios IT Software Developer’s Handbook.

7. Create and build the BSP with the create-this-bsp script by typing the following command:
.create-this-bspr
Now you have a BSP, with which you can create and build an application.

Note: Altera recommends that you examine the contents of the create-this-bsp script. It is a helpful
example if you are creating your own script to build a BSP. create-this-bsp calls nios2-bsp with
a few command-line options to create a customized BSP, and then calls make to build the BSP.

Related Information

« Overview of Nios II Embedded Development on page 1-1
 Nios II Software Build Tools Reference on page 15-1

For a description of the example BSPs, refer to “Nios II Design Example Scripts” chapter.
+ Getting Started from the Command Line on page 3-1

For details about the Nios II Command Shell.

Querying Settings
If you need to write a script that gets some information from the BSP settings file, use the nios2-bsp-
query-settings utility. To maintain compatibility with future releases of the Nios II EDS, avoid developing
your own code to parse the BSP settings file.

If you want to know the value of one or more settings, run nios2-bsp-query-settings with the appropriate
command-line options. This command sends the values of the settings you requested to stdout. Just
capture the output of stdout in some variable in your script when you call nios2-bsp-query-settings. By
default, the output of nios2-bsp-query-settings is an ordered list of all option values. Use the -show-
names option to display the name of the setting with its value.

For more information about the nios2-bsp-query-settings command-line options, refer to the Nios II
Software Build Tools Reference chapter of the Nios IT Software Developer’s Handbook.

Related Information

Nios II Software Build Tools Reference on page 15-1
For more information about the nios2-bsp-query-settings command-line options.

Managing Device Drivers
The Nios II SBT creates an alt_sys_init.c file. By default, the SBT assumes that if a device is connected to
the Nios II processor, and a driver is available, the BSP must include the most recent version of the driver.
However, you might want to use a different version of the driver, or you might not want a driver at all (for
example, if your application accesses the device directly).

The SBT includes BSP Tcl commands to manage device drivers. With these commands you can control
which driver is used for each device. When the alt_sys_init.c file is generated, it is set up to initialize drivers
as you have requested.

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Creating a Custom Version of newlib 4-17

If you are using nios2-bsp, you disable the driver for the uarto device as follows:
nios2-bsp hal my_bsp --cmd set_driver none uartOr

Use the --cmd option to call a Tcl command on the command line. The nios2-bsp-create-settings
command also supports the --cmd option. Alternatively, you can put the set_driver command in a Tcl
script and pass the script to nios2-bsp or nios2-bsp-create-settings with the --script option.

You replace the default driver for uart0 with a specific version of a driver as follows:

nios2-bsp hal my _bsp --cmd set_driver altera_avalon_uart:6.1 uartOr

Creating a Custom Version of newlib

The Nios IT EDS comes with a number of precompiled libraries. These libraries include the newlib
libraries (libc.a and libm.a). The Nios II SBT allows you to create your own custom compiled version of the
newlib libraries.

To create a custom compiled version of newlib, set a BSP setting to the desired compiler flags. If you are
using nios2-bsp, type the following command:

nios2-bsp hal my_bsp --set hal.custom_newlib_flags "-00 -pg'r

Because newlib uses the open source configure utility, its build flow differs from other files in the BSP.
When Makefile builds the BSP, it runs the configure utility. The configure utility creates a makefile in the
build directory, which compiles the newlib source. The newlib library files are copied to the BSP directory
named newlib. The newlib source files are not copied to the BSP.

Note: The Nios II SBT recompiles newlib whenever you introduce new compiler flags. For example, if
you use compiler flags to add floating point math hardware support, newlib is recompiled to use
the hardware. Recompiling newlib might take several minutes.

Controlling the stdio Device

The build tools offer several ways to control the details of your stdio device configuration, such as the
following:

o To prevent a default stdio device from being chosen, use the following command:

nios2-bsp hal my_bsp --default_stdio noner
« To override the default stdio device and replace it with uarti, use the following command:

nios2-bsp hal my bsp --default_stdio uartlr
o To override the stderr device and replace it with uart2, while allowing the default Tcl script to
choose the default stdout and stdin devices, use the following command:

nios2-bsp hal my_bsp --set hal.stderr uart2r

In all these cases, if you run nios2-bsp again to update your BSP, you must provide the original
command-line options again to prevent the default Tcl script from choosing its own default stdio
devices. Alternatively, you can call --default_stdio with the DONT_CHANGE keyword to prevent the
default T¢cl script from changing the stdio device settings.

Configuring Optimization and Debugger Options

By default, the Nios II SBT creates your project with the correct compiler options for debugging
environments. These compiler options turn off code optimization, and generate a symbol table for the
debugger.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

N . NII5V2
4-18 Configuring a BSP for Debugging 2015.05.14

You can control the optimization and debug level through the project makefile, which determines the
compiler options.

Example 4-5. Default Application Makefile Settings

APP_CFLAGS_OPTIMIZATION := -00
APP_CFLAGS_DEBUG_LEVEL := -g

When your project is fully debugged and ready for release, you might want to enable optimization and
omit the symbol table, to achieve faster, smaller executable code. To enable optimization and turn off the
symbol table, edit the application makefile to contain the symbol definitions shown in the following
example. The absence of a value on the right hand side of the APP_CFLAGS_DEBUG_LEVEL definition causes
the compiler to omit generating a symbol table.

Example 4-6. Application Makefile Settings with Optimization

APP_CFLAGS_OPTIMIZATION := -03
APP_CFLAGS_DEBUG_LEVEL :=

Note: When you change compiler options in a makefile, before building the project, run make clean to
ensure that all sources are recompiled with the correct flags.

For more information about makefile editing and make clean, refer to the “Applications and Libraries”

chapter.

Related Information

Applications and Libraries on page 4-4

Configuring a BSP for Debugging
You individually specify the optimization and debug level for the application and BSP projects, and any
user library projects you might be using. You use the BSP settings hal .make .bsp_cflags_debug and
hal .make.bsp_cflags_optimization to specify the optimization and debug level in a BSP, as shown in
the “Configuring a BSP for Debugging” example.

Example 4-7. Configuring a BSP for Debugging

nios2-bsp hal my_bsp --set hal_.make.bsp_cflags_debug -g \
--set hal .make.bsp_cflags_optimization -00r

Alternatively, you can manipulate the BSP settings with a Tcl script.
You can easily copy an existing BSP and modify it to create a different build configuration.
For more information, refer to the “Copying, Moving, or Renaming a BSP” chapter.

To change the optimization and debug level for a user library, use the same procedure as for an applica-
tion.

Note: Normally you must set the optimization and debug levels the same for the application, the BSP,
and all user libraries in a software project. If you mix settings, you cannot debug those components
which do not have debug settings. For example, if you compile your BSP with the -00 flag and
without the -g flag, you cannot step into the newlib printf() function.

Related Information

Copying, Moving, or Renaming a BSP on page 4-9

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Details of BSP Creation 4-19

Details of BSP Creation

BSP creation is the same in the Nios IT SBT for Eclipse as at the command line. The nios2-bsp-create-
settings utility creates a new BSP settings file.

For more information about BSP settings files, refer to the “BSP Settings File Creation” chapter.

nios2-bsp-generate-files creates the BSP files. The nios2-bsp-generate-files utility places all source files
in your BSP directory. It copies some files from the Nios II EDS installation directory. Others, such as
system.h and Makefile, it generates dynamically.

The SBT manages copied files slightly differently from generated files. If a copied file (such as a HAL
source file) already exists, the tools check the file timestamp against the timestamp of the file in the Nios II
EDS installation. The tools do not replace the BSP file unless it differs from the distribution file. The tools
normally overwrite generated files, such as the BSP Makefile, system.h, and linker.x, unless you have
disabled generation of the individual file with the set_ignore_file Tcl command or the Enable File
Generation tab in the BSP Editor. A comment at the top of each generated file warns you not to edit it.

For more information about set_ignore_file and other SBT Tcl commands, refer to Software Build
Tools Tcl Commands in the "Nios II Software Build Tools Reference" chapter.

Note: Avoid modifying BSP files. Use BSP settings, or custom device drivers or software packages, to
customize your BSP.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-20 Details of BSP Creation 2015.05.14

Figure 4-1: Default Tcl Script and nios2-bsp-generate-files Both Using the .sopcinfo file

Hardware iriard Td
system file line arguments scripts
(.sopdi

\/

Default Tel script

(bsp-set-defaults.tcl) nios2-bsp-create-settings

l

BSP settings file
(.bsp)

> nios2-hsp-generate-files

\4
BSP files

BSP library file
(:a)

Note: Nothing prevents you from modifying a BSP generated file. However, after you do so, it
becomes difficult to update your BSP to match changes in your hardware system. If you
regenerate your BSP, your previous changes to the generated file are destroyed.

For more information about regenerating your BSP, refer to the “Revising Your BSP” chapter.

Related Information

o Revising Your BSP on page 4-29
« BSP Settings File Creation on page 4-21
 Nios II Software Build Tools Reference on page 15-1

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . . .
2015.05.14 BSP Settings File Creation 4-21

BSP Settings File Creation

Each BSP has an associated settings file that saves the values of all BSP settings. The BSP settings file is in
extensible markup language (XML) format and has a .bsp extension by convention. When you create or
update your BSP, the Nios II SBT writes the value of all settings to the settings file.

The BSP settings file does not need to duplicate system information (such as base addresses of devices),
because the nios2-bsp-generate-files utility has access to the .sopcinfo file.

The nios2-bsp-create-settings utility creates a new BSP settings file. The nios2-bsp-update-settings
utility updates an existing BSP settings file. The nios2-bsp-query-settings utility reports the setting values
in an existing BSP settings file. The nios2-bsp-generate-files utility generates a BSP from the BSP settings
file.

Figure 4-2: Interaction between the Nios Il SBT and the BSP Settings File

nios2-bsp-create-settings

\J

BSP settings file

nios2-hsp-update-settings-<«—> (bsp]
.bsp

\J \J

nios2-bsp-query-settings nios2-hsp-generate-files

Generated and Copied Files

To understand how to build and modify Nios II C/C++ projects, it is important to understand the
difference between copied and generated files.

A copied file is installed with the Nios IT EDS, and copied to your BSP directory when you create your
BSP. It does not replace the BSP file unless it differs from the distribution file.

A generated file is dynamically created by the nios2-bsp-generate-files utility. Generated files reside in
the top-level BSP directory. BSP files are normally written every time nios2-bsp-generate-files runs.

You can disable generation of any BSP file in the BSP Editor, or on the command line with the
set_ignore_file Tcl command. Otherwise, if you modify a BSP file, it is destroyed when you regenerate
the BSP.

HAL BSP Files and Folders
The Nios II SBT creates the HAL BSP directory in the location you specify.

HAL BSP After Generating Files
The SBT places generated files in the top-level BSP directory, and copied files in the HAL and drivers
directories.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4-22 HAL BSP After Generating Files

NII5V2
2015.05.14

Figure 4-3: HAL BSP After Generating Files

my_hal_bsp

settings.bsp

summary.html

Makefile

public.mk

mem.init.mk

system.h

alt_sys_init.c

linker.h

linker.x

memory.gdb

HAL

;I src(*.¢, *.Sfiles)
;] inc (*.h files)
drivers

;I src(*.¢, *.Sfiles)
;] inc (*.h files)

A

Table 4-6: Generated BSP Files

rienane | i

settings.bsp

Contains all BSP settings. This file is coded in XML.

On the command line, settings.bsp is created by the nios2-bsp-create-
settings command, and optionally updated by the nios2-bsp-update-
settings command. The nios2-bsp-query-settings command is available to
parse information from the settings file for your scripts. The settings.bsp file
is an input to nios2-bsp-generate-files.

The Nios II SBT for Eclipse provides equivalent functionality.

Altera Corporation

Nios Il Software Build Tools

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

HAL BSP After Generating Files

summary.html

Provides summary documentation of the BSP. You can view summary.html
with a hypertext viewer or browser, such as Internet Explorer or Firefox. If
you change the settings.bsp file, the SBT updates the summary.html file the
next time you regenerate the BSP.

Makefile Used to build the BSP. The targets you use most often are all and clean.
The al I target (the default) builds the libhal_bsp.a library file. The clean
target removes all files created by a make of the al I target.

public.mk A makefile fragment that provides public information about the BSP. The file

is designed to be included in other makefiles that use the BSP, such as
application makefiles. The BSP Makefile also includes public.mk.

mem_init.mk

A makefile fragment that defines targets and rules to convert an application
executable file to memory initialization files (.dat, .hex, and .flash) for HDL
simulation, flash programming, and initializable FPGA memories. The mem_
init.mk file is designed to be included by an application makefile. For usage,
refer to any application makefile generated when you run the SBT.

For more information, refer to the “Creating Memory Initialization Files”
chapter.

alt_sys_init.c

Used to initialize device driver instances and software packages.

system.h Contains the C declarations describing the BSP memory map and other
system information needed by software applications.

linker.h Contains information about the linker memory layout. system.h includes the
linker.h file.

linker.x Contains a linker script for the GNU linker.

memory.gdb Contains memory region declarations for the GNU debugger.

obj Directory Contains the object code files for all source files in the BSP. The hierarchy of

the BSP source files is preserved in the obj directory.

libhal_bsp.a
Library

Contains the HAL BSP library. All object files are combined in the library
file.

The HAL BSP library file is always named libhal_bsp.a.

4-23

Note: For more information about the alt_sys_init.c and system.h files, refer to the Developing Programs

Using the Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Related Information

+ Creating Memory Initialization Files on page 4-10

Developing Programs Using the Hardware Abstraction Layer on page 6-1

Nios Il Software Build Tools

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4-24 Copied BSP Files

Copied BSP Files

NII5V2
2015.05.14

Table 4-7: Copied BSP Files

HAL Directory

Contains HAL source code files. These are all copied files. The src directory
contains the C-language and assembly-language source files. The inc
directory contains the header files.

The crt0.S source file, containing HAL C run-time startup code, resides in
the HAL/src directory.

drivers Directory

Contains all driver source code. The files in this directory are all copied files.
The drivers directory has src and inc subdirectories like the HAL directory.

Altera Corporation

Nios Il Software Build Tools

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

HAL BSP After Build

HAL BSP After Build

Nios Il Software Build Tools

C] Send Feedback

HAL BSP After Build

my_hal_bsp

settings.bsp
summary.html
Makefile
public.mk
mem.init.mk
system.h
alt_sys_init.c
linker.h
linker.x
memory.gdb
HAL

src(*.c,*.Sfiles)

inc (*.h files)

AN

drivers

src(*.¢,*.Sfiles)

) e e A

U

4-25

inc (*.h files)
obj
HAL
;I src (.o files)
—Ej drivers

libhal_bsp.a

src (.o files)

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-26 Linker Map Validation 2015.05.14

Linker Map Validation

When a BSP is generated, the SBT validates the linker region and section mappings, to ensure that they
are valid for a HAL project. The tools display an error in each of the following cases:

o The .entry section maps to a nonexistent region.

o The .entry section maps to a memory region that is less than 32 bytes in length.

o The .entry section maps to a memory region that does not start on the reset vector base address.
» The .exceptions section maps to a nonexistent region.

« The .exceptions section maps to a memory region that does not start on the exception vector base
address.

o The .entry section and .exceptions section map to the same device, and the memory region
associated with the .exceptions section precedes the memory region associated with the .entry
section.

o The .entry section and .exceptions section map to the same device, and the base address of the
memory region associated with the .exceptions section is less than 32 bytes above the base address of
the memory region associated with the .entry section.

Tcl Scripts for BSP Settings

In many cases, you can fully specify your Nios IT BSP with the Nios II SBT settings and defaults. However,
in some cases you might need to create some simple Tcl scripts to customize your BSP.

You control the characteristics of your BSP by manipulating BSP settings, using Tcl commands. The most
powerful way of using Tcl commands is by combining them in Tcl scripts.

Tcl scripting gives you maximum control over the contents of your BSP. One advantage of Tcl scripts over
command-line arguments is that a Tcl script can obtain information from the hardware system or pre-
existing BSP settings, and then use it later in script execution.

For more information about the Tcl commands used to manipulate BSPs, refer to “Software Build Tools
Tcl Commands” in the Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.

Related Information

Nios II Software Build Tools Reference on page 15-1

Calling a Custom BSP Tcl Script

From the Nios II Command Shell, you can call a custom BSP Tcl script with any of the following
commands:

nios2-bsp --script custom_bsp.tcl
nios2-bsp-create-settings --script custom_bsp.tcl
nios2-bsp-query-settings --script custom_bsp.tcl
nios2-bsp-update-settings --script custom_bsp.tcl

In the Nios IT BSP editor, you can execute a Tcl script when generating a BSP, through the New BSP
Settings File dialog box.

For more information about using Tcl scripts in the SBT for Eclipse, refer to Using the BSP Editor in the
"Getting Started with the Graphical User Interface" chapter.

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Simple Tcl Script 4-27

For more information, refer to an example of custom Tcl script usage in the “Creating Memory Initializa-
tion Files” chapter.

Note: Any settings you specify in your script override the BSP default values.
For more information about BSP defaults, refer to the “Specifying BSP Defaults” chapter.

Note: When you update an existing BSP, you must include any scripts originally used to create it.
Otherwise, your project’s settings revert to the defaults.

Note: When you use a custom Tcl script to create your BSP, you must include the script in the set of files
archived in your version control system.

For more information, refer to the “Using Version Control” chapter.

Related Information

o Specifying BSP Defaults on page 4-34

« Using Version Control on page 4-8

+ Creating Memory Initialization Files on page 4-10

o Getting Started with the Graphical User Interface on page 2-1

Simple Tcl Script

Example 4-8. To Set stdio to a Device with the name my_uart

set default_stdio my_uart

set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio

Tcl Script to Examine Hardware and Choose Settings

Note: The Nios II SBT uses slave descriptors to refer to components connected to the Nios II processor.
A slave descriptor is the unique name of a hardware component’s slave port.

If a component has only one slave port connected to the Nios II processor, the slave descriptor is the same
as the name of the component (for example, onchip_mem_0). If a component has multiple slave ports
connecting the Nios II to multiple resources in the component, the slave descriptor is the name of the
component followed by an underscore and the slave port name (for example, onchip_mem_0_s1).

Select a device connected to the processor as the default STDIO device.
It returns the slave descriptor of the selected device.
It gives first preference to devices with stdio in the name.
It gives second preference to JTAG UARTs.
IT no JTAG UARTs are found, it uses the last character device.
IT no character devices are found, it returns 'none'.
Procedure that does all the work of determining the stdio device
proc choose_default_stdio {} {
set last_stdio "none"
set first_jtag_uart 'none"
Get all slaves attached to the processor.
set slave_descs [get_slave_descs]
foreach slave _desc $slave_descs {
Lookup module class name for slave descriptor.
set module_name [get_module_name $slave_desc]
set module_class_name [get_module_class_name $module_name]
1T the module_name contains "stdio"™, we choose it

HoH R HHH R

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-28 Tcl Script to Examine Hardware and Choose Settings 2015.05.14

#

H H H

W

H o HH KRR

and return immediately.
it { [regexp .*stdio.* $module_name] } {
return $slave _desc

Assume it is a JTAG UART if the module class name contains
the string "jtag uart”. In that case, return the first one

found.
if { [regexp -*jtag_uart.* $module_class_name] } {
ifT {$First_jtag uart == "none"} {

set first_jtag_uart $slave_desc

Track last character device in case no JTAG UARTs found.
ifT { [is_char_device $slave_desc] } {
set last_stdio $slave_desc

if {$first_jtag_uart !'= "none"} {
return $first_jtag uart

return $last_stdio

Call routine to determine stdio

set default_stdio [choose_default_stdio]

Set stdio settings to use results of above call.

set_setting hal.stdin $default_stdio

set_setting hal.stdout $default_stdio

set_setting hal.stderr $default_stdio

Select a device connected to the processor as the default STDIO device.
It returns the slave descriptor of the selected device.

It gives first preference to devices with stdio in the name.

It gives second preference to JTAG UARTs.

If no JTAG UARTs are found, it uses the last character device.

IT no character devices are found, it returns 'none'".

Procedure that does all the work of determining the stdio device proc

choose_default_stdio {}

{

#

H* H#*

B oH Y o)

{

Altera Corporation

set last_stdio "none" set first_jtag uart '"none™
Get all slaves attached to the processor.
set slave_descs [get_slave_descs] foreach slave_desc $slave_descs

Lookup module class name for slave descriptor.

set module_name [get_module_name $slave_desc]

set module_class_name [get_module_class_name $module_name]
IT¥ the module_name contains "'stdio’, we choose it
and return immediately.

it { [regexp -*stdio.* $module_name] }

return $slave_desc
Assume it is a JTAG UART if the module class name contains
the string "jtag uart”. In that case, return the first one

found.
if { [regexp .-*jtag_uart.* $module_class_name] }

Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Revising Your BSP 4-29
if {$Ffirst_jtag uart == "none"
}
{
set first_jtag uart $slave_desc
}
}
Track last character device in case no JTAG UARTs found.

if { [is_char_device $slave_desc] }

set last_stdio $slave_desc

if {$Ffirst_jtag uart !'= "none"}
return $first_jtag uart

return $last_stdio

N L S

Call routine to determine stdio set default_stdio [choose default_stdio]
Set stdio settings to use results of above call.
set_setting hal.stdin $default_stdio set_setting hal.stdout
$default_stdio set_setting hal.stderr $default_stdio

Related Information

« Specifying BSP Defaults on page 4-34

+ Developing Device Drivers for the Hardware Abstraction Layer on page 7-1
For more information about slave descriptors, refer to the "Developing Device Drivers for the
Hardware Abstraction Layer".

+ Specifying BSP Defaults on page 4-34
For more information about determining what device to use for stdio, refer to "Specifyin BSP
Defaults".

Revising Your BSP

Your BSP is customized to your hardware design and your software requirements. If your hardware
design or software requirements change, you usually need to revise your BSP.

Every BSP is based on a Nios II processor in a hardware system. The BSP settings file does not duplicate
information available in the .sopcinfo file, but it does contain system-dependent settings that reference
system information. Because of these system-dependent settings, a BSP settings file can become inconsis-
tent with its system if the system changes.

You can revise a BSP at several levels. This section describes each level, and provides guidance about when
to use it.

Rebuilding Your BSP

Rebuilding a BSP is the most superficial way to revise a BSP.
What Happens

Rebuilding the BSP simply recreates all BSP object files and the .a library file. BSP settings, source files,
and compiler options are unchanged.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-30 How to Rebuild Your BSP 2015.05.14

Related Information

Regenerating Your BSP on page 4-30

How to Rebuild Your BSP
In the Nios II SBT for Eclipse, right-click the BSP project and click Build.

On the command line, change to the BSP directory and type make.

Regenerating Your BSP
Regenerating the BSP refreshes the BSP source files without updating the BSP settings.

What Happens
Regenerating a BSP has the following effects:

 Reads the .sopcinfo file for basic system parameters such as module base addresses and clock frequen-
cies.

+ Retrieves the current system identification (ID) from the .sopcinfo file. Ensures that the correct system
ID is inserted in the .elf file the next time the BSP is built.

o Adjusts the default memory map to correspond to changes in memory sizes. If you are using a custom
memory map, it is untouched.

« Retains all other existing settings in the BSP settings file.

Note: Except for adjusting the default memory map, the SBT does not ensure that the settings are
consistent with the hardware design in the .sopcinfo file.

+ Ensures that the correct set of BSP files is present, as follows:

« Copies all required source files to the BSP directory tree. Copied BSP files are listed in the
"Copied BSP Files" (Table 4-7).

If a copied file (such as a HAL source file) already exists, the SBT checks the file timestamp
against the timestamp of the file in the Nios II EDS installation. The tools do not replace the
BSP file unless it differs from the distribution file.

 Recreates all generated files. Generated BSP files are listed in the "Generated BSP Files" table
(Table 4-6).

Note: You can disable generation of any BSP file in the BSP Editor, or on the command line with the
set_ignore_file Tcl command. Otherwise, changes you make to a BSP file are lost when you
regenerate the BSP. Whenever possible, use BSP settings, or custom device drivers or software
packages, to customize your BSP.

« Removes any files that are not required, for example, source files for drivers that are no longer
in use.

When to Regenerate Your BSP
Regenerating your BSP is required (and sufficient) in the following circumstances:

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 How to Regenerate Your BSP 4-31

» You change your hardware design, but all BSP system-dependent settings remain consistent with the
new .sopcinfo file. The following are examples of system changes that do not affect BSP system-
dependent settings:

« Changing a component’s base address

« With the internal interrupt controller (IIC), adding or removing hardware interrupts
« With the IIC, changing a hardware interrupt number

« Changing a clock frequency

« Changing a simple processor option, such as cache size or core type

« Changing a simple component option, other than memory size.

« Adding a bridge

+ Adding a new component

« Removing or renaming a component, other than a memory component, the stdio device, or the
system timer device

« Changing the size of a memory component when you are using the default memory map

Note: Unless you are sure that your modified hardware design remains consistent with your BSP
settings, update your BSP. For more information, refer to the “Updating Your BSP” chapter.

« You want to eliminate any customized source files and revert to the distributed BSP code.

Note: To revert to the distributed BSP code, you must ensure that you have not disabled generation
on any BSP files.

« You have installed a new version of the Nios II EDS, and you want the updated BSP software
implementations.

« When you attempt to rebuild your project, an error message indicates that the BSP must be updated.
« You have updated or recreated the BSP settings file.

Related Information

Updating Your BSP on page 4-32

How to Regenerate Your BSP
You can regenerate your BSP in the Nios II SBT for Eclipse, or with SBT commands at the command line.

Regenerating Your BSP in Eclipse
In the Nios IT SBT for Eclipse, right-click the BSP project, point to Nios II, and click Generate BSP.

For more information about generating a BSP with the SBT for Eclipse, refer to the Getting Started with
the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

Related Information
Getting Started with the Graphical User Interface on page 2-1

Regenerating Your BSP from the Command Line
From the command line, use the nios2-bsp-generate-files command.

For more information about the nios2-bsp-generate-files command, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

Related Information

Nios II Software Build Tools Reference on page 15-1

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
4-32 Updating Your BSP 2015.05.14

Updating Your BSP

When you update a BSP, you recreate the BSP settings file based on the current hardware definition and
previous BSP settings.

Note: You must always regenerate your BSP after updating the BSP settings file.

What Happens
Updating a BSP has the following effects:

+ System-dependent settings are derived from the original BSP settings file, but adjusted to correspond
with any changes in the hardware system.

« Non-system-dependent BSP settings persist from the original BSP settings file.

For more information about actions taken when you regenerate the BSP after updating it, refer to the
“Regenerating Your BSP” chapter.

Related Information
Regenerating Your BSP on page 4-30

When to Update Your BSP
Updating your BSP is necessary in the following circumstances:

« A change to your BSP settings is required.
« Changes to your .sopcinfo file make it inconsistent with your BSP. The following are examples of
system changes that affect BSP system-dependent settings:

« Renaming the processor
« Renaming or removing a memory, the stdio device, or the system timer device
+ Changing the size of a memory component when using a custom memory map
« Changing the processor reset or exception slave port or offset
» Adding or removing an external interrupt controller (EIC)
+ Changing the parameters of an EIC
« When you attempt to rebuild your project, an error message indicates that you must update the BSP.

How to Update Your BSP
You can update your BSP at the command line. You have the option to use a Tcl script to control your
BSP settings.

From the command line, use the nios2-bsp-update-settings command. You can use the --script option
to define the BSP with a Tcl script.

For more information about the nios2-bsp-update-settings command, refer to the "Nios II Software
Build Tools Reference" chapter.

nios2-bsp-update-settings does not reapply default settings unless you explicitly call the top-level default
Tcl script with the --script option.

For more information about using the default T¢cl script, refer to the “Specifying BSP Defaults” chapter.

Alternatively, you can update your BSP with the nios2-bsp script. nios2-bsp determines that your BSP
already exists, and uses the nios2-bsp-update-settings command to update the BSP settings file.

The nios2-bsp script executes the default Tcl script every time it runs, overwriting previous default
settings.

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 Recreating Your BSP 4-33

For more information about preserving all settings, including the default settings, use the DONT_CHANGE
keyword, described in the “Top Level Tcl Script for BSP Defaults” chapter.

Alternatively, you can provide nios2-bsp with command-line options or Tcl scripts to override the default
settings.

For more information about using the nios2-bsp script, refer to the "Nios II Software Build Tools
Reference" chapter.

Related Information

+ Specifying BSP Defaults on page 4-34
» Top Level Tcl Script for BSP Defaults on page 4-35
o Nios II Software Build Tools Reference on page 15-1
For more information about the nios2-bsp-update-settings command and using the nios2-bsp script.

Recreating Your BSP

When you recreate your BSP, you start over as if you were creating a new BSP.

Note: After you recreate your BSP, you must always regenerate it.

What Happens
Recreating a BSP has the following effects:

« System-dependent settings are created based on the current hardware system.
« Non-system-dependent settings can be selected by the default Tcl script, by values you specity, or both.

For more information about actions taken when you generate the BSP after recreating it, refer to the
“Regenerating Your BSP” chapter.

Related Information

Regenerating Your BSP on page 4-30

When to Recreate Your BSP
If you are working exclusively in the Nios II SBT for Eclipse, and you modify the underlying hardware
design, the best practice is to create a new BSP. Creating a BSP is very easy with the SBT for Eclipse.
Manually correcting a large number of interrelated settings, on the other hand, can be difficult.

How to Recreate Your BSP
You can recreate your BSP in the Nios II SBT for Eclipse, or using the SBT at the command line.
Regardless which method you choose, you can use Tcl scripts to control and reproduce your BSP settings.
This section describes the options for recreating BSPs.

Using Tcl Scripts When Recreating Your BSP
A Tcl script automates selection of BSP settings. This automation ensures that you can reliably update or
recreate your BSP with its original settings. Except when creating very simple BSPs, Altera recommends
specifying all BSP settings with a Tcl script.

To use Tcl scripts most effectively, it is best to create a Tcl script at the time you initially create the BSP.
However, the BSP Editor enables you to export a Tcl script from an existing BSP.

For more information about exporting Tcl scripts, refer to Using the BSP Editor in the "Getting Started
with the Graphical User Interface" chapter.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . NII5V2
4-34 Recreating Your BSP in Eclipse 2015.05.14

By recreating the BSP settings file with a Tcl script that specifies all BSP settings, you can reproduce the
original BSP while ensuring that system-dependent settings are adjusted correctly based on any changes in
the hardware system.

For more information about Tcl scripting with the SBT, refer to the “Tcl Scripts for BSP Settings”.

Related Information

o Tcl Scripts for BSP Settings on page 4-26
+ Getting Started with the Graphical User Interface on page 2-1

Recreating Your BSP in Eclipse
The process for recreating a BSP is the same as the process for creating a new BSP. The Nios IT SBT for
Eclipse provides an option to import a Tcl script when creating a BSP.

For more information, refer to “Getting Started with Eclipse” and “Using the BSP Editor” in the Getting
Started with the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

Related Information
Getting Started with the Graphical User Interface on page 2-1

Recreating Your BSP at the Command Line
Recreate your BSP using the nios2-bsp-create-settings command. You can use the --script option to
define the BSP with a Tl script.

The nios2-bsp-create-settings command does not apply default settings to your BSP. However, you can
use the --script command-line option to run the default Tcl script.

For more information about the default Tcl script, refer to the “Specifying BSP Defaults” chapter.

For more information about using the nios2-bsp-create-settings command, refer to the "Nios II Software
Build Tools Reference" chapter.

Related Information

« Specifying BSP Defaults on page 4-34
 Nios II Software Build Tools Reference on page 15-1

Specifying BSP Defaults

The Nios IT SBT sets BSP defaults using a set of Tcl scripts. These scripts specify default BSP settings. The
scripts are located in the following directory:

<Nios II EDS install path>/sdk2/bin

Table 4-8: Default Tcl Script Components

s T e ey

bsp-set-defaults.tcl Top-level Sets system-dependent settings to default values.
bsp-call-proc.tcl Top-level Calls a specified procedure in one of the helper
scripts.
bsp-stdio-utils.tcl Helper Specifies stdio device settings.
Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Top Level Tcl Script for BSP Defaults 4-35
T T R
bsp-timer-utils.tcl Helper Specifies system timer device setting.
bsp-linker-utils.tcl Helper Specifies memory regions and section mappings

for linker script.

bsp-bootloader-utils.tcl Helper Specifies boot loader-related settings.

For more information about Tcl scripting with the SBT, refer to the “Tcl Scripts for BSP Settings” chapter.

The Nios II SBT uses the default Tcl scripts to specify default values for system-dependent settings.
System-dependent settings are BSP settings that reference system information in the .sopcinfo file.

The SBT executes the default Tcl script before any user-specified Tcl scripts. As a result, user input
overrides settings made by the default Tcl script.

You can pass command-line options to the default Tcl script to override the choices it makes or to prevent
it from making changes to settings.

For more information, refer to the “Top Level Tcl Script for BSP Defaults” chapter.
The default Tcl script makes the following choices for you based on your hardware system:

 stdio character device

+ System timer device

o Default linker memory regions
o Default linker sections mapping
 Default boot loader settings

The default Tcl scripts use slave descriptors to assign devices.

Related Information

o Tcl Scripts for BSP Settings on page 4-26
+ Top Level Tcl Script for BSP Defaults on page 4-35
o Tcl Scripts for BSP Settings on page 4-26
o Top Level Tcl Script for BSP Defaults on page 4-35

Top Level Tcl Script for BSP Defaults

The top level Tcl script for setting BSP defaults is bsp-set-defaults.tcl. This script specifies BSP system-
dependent settings, which depend on the hardware system. The nios2-bsp-create-settings and nios2-bsp-
update-settings utilities do not call the default Tcl script when creating or updating a BSP settings file.
The --script option must be used to specify bsp-set-defaults.tcl explicitly. Both the Nios II SBT for
Eclipse and the nios2-bsp script call the default T¢cl script by invoking either nios2-bsp-create-settings or
nios2-bsp-update-settings with the --script bsp-set-defaults.tcl option.

The default Tcl script consists of a top-level Tcl script named bsp-set-defaults.tcl plus the helper Tcl scripts
listed in the "Default Tcl Script Components” table (Table 4-8). The helper Tcl scripts do the real work of
examining the .sopcinfo file and choosing appropriate defaults.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4-36

o . . NII5V2
Specifying the Default stdio Device 2015.05.14

The bsp-set-defaults.tcl script sets the following defaults:

« stdio character device (bsp-stdio-utils.tcl)

« System timer device (bsp-timer-utils.tcl)

o Default linker memory regions (bsp-linker-utils.tcl)

o Default linker sections mapping (bsp-linker-utils.tcl)
o Default boot loader settings (bsp-bootloader-utils.tcl)

You run the default Tcl script on the nios2-bsp-create-settings, nios2-bsp-query-settings, or nios2-bsp-
update-settings command line, by using the --script argument. It has the following usage:

bsp-set-defaults.tcl [<argument name> <argument value>]*

All arguments are optional. If present, each argument must be in the form of a name and argument value,
separated by white space. All argument values are strings. For any argument not specified, the
corresponding helper script chooses a suitable default value. In every case, if the argument value is
DONT_CHANGE, the default Tcl scripts leave the setting unchanged. The DONT_CHANGE value allows fine-
grained control of what settings the default Tcl script changes and is useful when updating an existing
BSP.

Table 4-9: Default Tcl Script Command-Line Options

Argument Name Argument Value

default_stdio Slave descriptor of default stdio device

(stdin, stdout, stderr). Set to none if no
stdio device desired.

default_sys_timer Slave descriptor of default system timer
device. Set to none if no system timer device
desired.

default_memory_regions Controls generation of memory regions By

default, bsp-linker-utils.tcl removes and
regenerates all current memory regions.
Use the DONT_CHANGE keyword to suppress
this behavior.

default_sections_mapping | Slave descriptor of the memory device to

which the default sections are mapped. This
argument has no effect if default_memory_
regions == DONT_CHANGE.

enable_bootloader Boolean: 1 if a boot loader is present; 0

otherwise.

Specifying the Default stdio Device

The bsp-stdio-utils.tcl script provides procedures to choose a default stdio slave descriptor and to set the
hal .stdin, hal .stdout, and hal . stderr BSP settings to that value.

For more information about these settings, refer to the Nios II Software Build Tools Reference chapter of
the Nios II Software Developer’s Handbook.

The script searches the .sopcinfo file for a slave descriptor with the string stdio in its name. If bsp-stdio-
utils.tcl finds any such slave descriptors, it chooses the first as the default stdio device. If the script finds
no such slave descriptor, it looks for a slave descriptor with the string jtag_uart in its component class
name. If it finds any such slave descriptors, it chooses the first as the default stdio device. If the script

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 g - .
2015.05.14 Specifying the Default System Timer 4-37

finds no slave descriptors fitting either description, it chooses the last character device slave descriptor
connected to the Nios II processor. If bsp-stdio-utils.tcl does not find any character devices, there is no
stdio device.

Related Information
Nios II Software Build Tools Reference on page 15-1

Specifying the Default System Timer

The bsp-timer-utils.tcl script provides procedures to choose a default system timer slave descriptor and to
set the hal _sys_clk_timer BSP setting to that value.

For more information about this setting, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

The script searches the .sopcinfo file for a timer component to use as the default system timer. To be an
appropriate system timer, the component must have the following characteristics:

o It must be a timer, that is, is_timer_device must return true.

« It must have a slave port connected to the Nios II processor.

When the script finds an appropriate system timer component, it sets hal .sys_clk_timer to the timer

slave port descriptor. The script prefers a slave port whose descriptor contains the string sys_clk, if one
exists. If no appropriate system timer component is found, the script sets hal .sys_clk_timer to none.

Related Information

Nios II Software Build Tools Reference on page 15-1

Specifying the Default Memory Map

The bsp-linker-utils.tcl script provides procedures to add the default linker script memory regions and map
the default linker script sections to a default region. The bsp-linker-utils.tel script uses the
add_memory_region and add_section_mapping BSP Tcl commands.

For more information about these commands, refer to the Nios IT Software Build Tools Reference chapter
of the Nios II Software Developer’s Handbook.

The script chooses the largest volatile memory region as the default memory region. If there is no volatile
memory region, bsp-linker-utils.tcl chooses the largest non-volatile memory region. The script assigns

the .text, .rodata, .rwdata, .bss, .heap, and .stack section mappings to this default memory region. The
script also sets the hal . linker.exception_stack_memory_region BSP setting to the default memory
region. The setting is available in case the separate exception stack option is enabled (this setting is
disabled by default).

For more information about this setting, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Related Information

Nios II Software Build Tools Reference on page 15-1

Specifying Default Bootloader Parameters
The bsp-bootloader-utils.tcl script provides procedures to specify the following BSP boolean settings:

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4-38

Boot Loader Dependent Settings 201 5'\'1355.\1/2
e hal_linker.allow_code_at_reset

e hal.linker.enable_alt_load_copy_ rodata

e hal_linker.enable_alt_load_copy_rwdata

¢ hal_linker_enable_alt_load_copy_exceptions

For more information about these settings, refer to the Nios II Software Build Tools Reference chapter of
the Nios II Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Boot Loader Dependent Settings

The script examines the .text section mapping and the Nios II reset slave port. If the .text section is
mapped to the same memory as the Nios II reset slave port and the reset slave port is a flash memory
device, the script assumes that a boot loader is being used. You can override this behavior by passing the
enable_bootloader option to the default Tcl script.

If a boot loader is enabled, the assumption is that the boot loader is located at the reset address and
handles the copying of sections on reset. If there is no boot loader, the BSP might need to provide code to
handle these functions. You can use the alt_load() function to implement a boot loader.

Table 4-10: Boot Loader-Dependent Settings

Setting name!® Value When Value When Boot Loader
Boot Loader Disabled
Enabled

hal . linker.allow_code_at reset 0

hal . linker.enable_alt_load_copy_rodata 0 if .rodata memory different
than .text memory
and .rodata memory is
volatile; 0 otherwise

hal.linker.enable alt_load_copy rwdata 0 if .rwdata memory different
than .text memory; 0
otherwise

hal . linker.enable_alt_load_copy_exceptions |0 if .exceptions memory
different than .text memory
and .exceptions memory is
volatile; 0 otherwise

Related Information

Nios II Software Build Tools Reference on page 15-1

Using Individual Default Tcl Procedures

The default Tcl script consists of the top-level bsp-call-proc.tel script plus the helper scripts listed in the
"Default Tcl Script Components" table (Table 4-8). The procedure call Tcl script allows you to call a

) For more information about the settings in this table, refer to the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

Altera Corporation Nios Il Software Build Tools

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . . 4.39
2015.05.14 Device Drivers and Software Packages 3

specific procedure in the helper scripts, if you want to invoke some of the default Tcl functionality without
running the entire default Tcl script.

The procedure call Tcl script has the following usage:
bsp-call-proc.tcl <proc-name> [<args>]*

bsp-call-proc.tcl calls the specified procedure with the specified (optional) arguments. Refer to the default
Tcl scripts to view the available functions and their arguments. The bsp-call-proc.tel script includes the
same files as the bsp-set-defaults.tcl script, so any function in those included files is available.

Device Drivers and Software Packages

The Nios II SBT can incorporate device drivers and software packages supplied by Altera, supplied by
other third-party developers, or created by you.

For more information about integrating device drivers and software packages with the Nios II SBT, refer
to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

Related Information

Developing Device Drivers for the Hardware Abstraction Layer on page 7-1

Boot Configurations for Altera Embedded Software

The HAL and MicroC/OS-II BSPs support several boot configurations. The default Tcl script configures
an appropriate boot configuration based on your hardware system and other settings.

For more information about the HAL boot loader process, refer to the Developing Programs Using the
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Memory Types

The default Tcl script uses the IsFlash and IsNonVolatileStorage properties to determine what kind of
memory is in the system.

The IsFlash property of the memory module (defined in the .sopcinfo file) indicates whether

the .sopcinfo file identifies the memory as a flash memory device. The IsNonvVolatileStorage property
indicates whether the .sopcinfo file identifies the memory as a non-volatile storage device. The contents of
a non-volatile memory device are fixed and always present.

Note: Some FPGA memories can be initialized when the FPGA is configured. They are not considered
non-volatile because the default Tcl script has no way to determine whether they are actually
initialized in a particular system.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
4-40 Boot from Flash Configuration 2015.05.14

Table 4-11: Memory Types Recognized when Making Decisions about Your Boot Configura-

tion
| MemoryType | Bxamples | Isflash | IsNonVolatileStorage |
Flash Common flash interface (CFI), true true
erasable programmable configu-
rable serial (EPCS) device
ROM On-chip memory configured as false true
ROM, HardCopy ROM
RAM On-chip memory configured as false false
RAM, HardCopy RAM, SDRAM,
synchronous static RAM (SSRAM)

The following sections describe each supported build configuration in detail. The alt_load() facility is
HAL code that optionally copies sections from the boot memory to RAM. You can set an option to enable
the boot copy. This option only adds the code to your BSP if it needs to copy boot segments. The

hal .enable_alt_load setting enables alt_load() and there are settings for each of the three sections it
can copy (such as hal .enable_alt_load_copy_rodata). Enabling alt_load() also modifies the
memory layout specified in your linker script.

Boot from Flash Configuration

The reset address points to a boot loader in a flash memory. The boot loader initializes the instruction
cache, copies each memory section to its virtual memory address (VMA), and then jumps to start.

This boot configuration has the following characteristics:

e alt_load() not called
o No code at reset in executable file

The default Tcl script chooses this configuration when the memory associated with the processor reset
address is a flash memory and the .text section is mapped to a different memory (for example, SDRAM).

Altera provides example boot loaders for CFI and EPCS memory in the Nios II EDS, precompiled to
Motorola S-record Files (.srec). You can use one of these example boot loaders, or provide your own.

Boot from Monitor Configuration

The reset address points to a monitor in a nonvolatile ROM or initialized RAM. The monitor initializes
the instruction cache, downloads the application memory image (for example, using a UART or Ethernet
connection), and then jumps to the entry point provided in the memory image.

This boot configuration has the following characteristics:

o alt_load() not called
o No code at reset in executable file

The default Tcl script assumes no boot loader is in use, so it chooses this configuration only if you enable
it. To enable this configuration, pass the following argument to the default T¢cl script:enable_bootloader
1

If you are using the nios2-bsp script, call it as follows:

nios2-bsp hal my_bsp --use_bootloader 1

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 L . .
2015.05.14 Run from Initialized Memory Configuration 4-41

Run from Initialized Memory Configuration

The reset address points to the beginning of the application in memory (no boot loader). The reset
memory must have its contents initialized before the processor comes out of reset. The initialization
might be implemented by using a non-volatile reset memory (for example, flash, ROM, initialized FPGA
RAM) or by an external master (for example, another processor) that writes the reset memory. The HAL
C run-time startup code (crt0) initializes the instruction cache, uses alt_load() to copy select sections
to their VMAs, and then jumps to _start. For each associated section (. rwdata, .rodata, .exceptions),
boolean settings control this behavior. The default Tcl scripts set these to default values as described in the
"Boot Loader-Dependent Settings" table (Table 4-10).

alt_load() must copy the .rwdata section (either to another RAM or to a reserved area in the same
RAM as the .text RAM) if .rwdata needs to be correct after multiple resets.

This boot configuration has the following characteristics:

e alt_load() called
e Code at reset in executable file

The default Tcl script chooses this configuration when the reset and .text memory are the same.

In this boot configuration, when the processor core resets, by default the . rwdata section is not reinitial-
ized. Reinitialization would normally be done by a boot loader. However, this configuration has no boot
loader, because the software is running out of memory that is assumed to be preinitialized before startup.

If your software has a . rwdata section that must be reinitialized at processor reset, turn on the
hal . linker.enable_alt_load_copy_rwdata setting in the BSP.

Run-time Configurable Reset Configuration

The reset address points to a memory that contains code that executes before the normal reset code.
When the processor comes out of reset, it executes code in the reset memory that computes the desired
reset address and then jumps to it. This boot configuration allows a processor with a hard-wired reset
address to appear to reset to a programmable address.

This boot configuration has the following characteristics:

« alt_load() might be called (depends on boot configuration)
o No code at reset in executable file

Because the processor reset address points to an additional memory, the algorithms used by the default
Tcl script to select the appropriate boot configuration might make the wrong choice. The individual BSP
settings specified by the default Tcl script need to be explicitly controlled.

Altera-Provided Embedded Development Tools

This section lists the components of the Nios II SBT, and other development tools that Altera provides for
use with the SBT. This section does not describe detailed usage of the tools, but refers you to the most
appropriate documentation.

Nios Il Software Build Tool GUIs
The Nios IT EDS provides the following SBT GUTIs for software development:

o The Nios II SBT for Eclipse
« The Nios II BSP Editor
« The Nios II Flash Programmer

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-42 The Nios Il SBT for Eclipse 2015.05.14

For more information about how each GUI is primarily a thin layer providing graphical control of the
command-line tools, refer to “The Nios II Command-Line Commands” chapter.

Table 4-12: Summary of the Correlation Between GUI Features and the SBT Command Line

Creating an | Nios II SBT for Nios IT Application | create-this-app script
example Eclipse and BSP from
Nios IT Template wizard
program
Creating an | Nios II SBT for Nios II Application | nios2-app-generate-makefile utility
application | Eclipse wizard
Creatinga | Nios II SBT for Nios II Library nios2-lib-generate-makefile utility
user library | Eclipse wizard
Niqs II SBT for Nios II Board . Simple:
Eclipse Support Package
wizard nios2-bsp script
Creating a . ded:
BSP BSP Editor New BSP Detailed:
Setting File nios2-bsp-create-settings utility
dialog box nios2-bsp-generate-files utility
Modifying | Nios II SBT for Nios II Application | nios2-app-update-makefile utility
an applica- | Eclipse Properties page
tion
Modifying a | Nios II SBT for Nios II Library nios2-lib-update-makefile utility
user library | Eclipse Properties page
Nios II SBT for Nios II BSP . . T
. nios2-bsp-update-settings utilit
Updatinga | Eclipse Properties page PP g8ty
BSP : nios2-bsp-generate-files utility
BSP Editor —
Examining Nios II SBT for Nios II BSP
properties of Eclipse Properties page nios2-bsp-query-settings utility
a BSP BSP Editor —
Program- Nios II Flash — nios2-flash-programmer
ming flash | Programmer
memory
Importing a |Nios II SBT for Import dialog box | —

command- | Eclipse
line project

Related Information

The Nios II Command-Line Commands on page 4-44

The Nios 1l SBT for Eclipse
The Nios II SBT for Eclipse is a configuration of the popular Eclipse development environment, specially
adapted to the Nios II family of embedded processors. The Nios II SBT for Eclipse includes Nios II

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 The Nios Il BSP Editor 4-43

plugins for access to the Nios II SBT, enabling you to create applications based on the Altera HAL, and
debug them using the JTAG debugger.

You can launch the Nios IT SBT for Eclipse either of the following ways:

« In the Windows operating system, on the Start menu, point to Programs > Altera > Nios IT EDS
<version>, and click Nios II <version> Software Build Tools for Eclipse.

o From the Nios II Command Shell, by typing eclipse-nios2.

For more information about the Nios II SBT for Eclipse, refer to the Getting Started with the Graphical
User Interface chapter of the Nios II Software Developer’s Handbook.

Related Information

Getting Started with the Graphical User Interface on page 2-1

The Nios Il BSP Editor
You can create or modify a Nios II BSP project with the Nios II BSP Editor, a standalone GUI that also
works with the Nios II SBT for Eclipse. You can launch the BSP Editor either of the following ways:

o From the Nios II menu in the Nios II SBT for Eclipse
» From the Nios II Command Shell, by typing nios2-bsp-editor.

The Nios II BSP Editor enables you to edit settings, linker regions, and section mappings, and to select
software packages and device drivers.

The capabilities of the Nios II BSP Editor constitute a large subset of the capabilities of the nios2-bsp-
create-settings, nios2-bsp-update-settings, and nios2-bsp-generate-files utilities. Any project created in
the BSP Editor can also be created using the command-line utilities.

For more information about the BSP Editor, refer to “Using the BSP Editor” in the Getting Started with
the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

Related Information
Getting Started with the Graphical User Interface on page 2-1

The Nios Il Flash Programmer
The Nios II flash programmer allows you to program flash memory devices on a target board. The flash
programmer supports programming flash on any board, including Altera development boards and your
own custom boards. The flash programmer facilitates programming flash for the following purposes:

« Executable code and data

» Bootstrap code to copy code from flash to RAM, and then run from RAM
« HAL file subsystems

o FPGA hardware configuration data

You can launch the flash programmer either of the following ways:

o From the Nios II menu in the Nios II SBT for Eclipse
« From the Nios II Command Shell, by typing:

nios2-flash-programmer-generater

The Nios Il Command Shell

The Nios II Command Shell is a bash command-line environment initialized with the correct settings to
run Nios IT command-line tools. The Nios II EDS includes two versions of the Nios II Command Shell,
for the two supported GCC toolchain versions.

Nios Il Software Build Tools Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
4-44 The Nios Il Command-Line Commands 2015.05.14

For more information, refer to the “GNU Compiler Tool Chain” chapter.

For more information about launching the Nios II Command Shell, refer to the "Getting Started from the
Command Line" chapter.

The Nios Il Command-Line Commands

This section describes the Altera Nios II command-line tools. You can run these tools from the Nios II
Command Shell.

Each tool provides its own documentation in the form of help accessible from the command line. To view
the help, open the Nios II Command Shell, and type the following command:<nane of tool > --help

GNU Compiler Tool Chain
The Nios II compiler tool chain is based on the standard GNU GCC compiler, assembler, linker, and
make facilities. Altera provides and supports the standard GNU compiler tool chain for the Nios II
processor.

The Nios IT EDS includes version GCC 4.7.3 of the GCC toolchain.

For more information about installing the Altera Complete Design Suite, refer to the Altera Software
Installation and Licensing Manual.

GNU tools for the Nios II processor are generally named nios2-elf-<tool name>. The following list shows
some examples:

+ nios2-elf-gcc

 nios2-elf-as

+ nios2-elf-1d

+ nios2-elf-objdump

 nios2-elf-size

The exception is the make utility, which is simply named make.

The Nios II GNU tools reside in the following location:

+ <Nios Il EDS install path>/bin/gnu directory

Refer to the following additional sources of information:

+ For more information about managing GCC toolchains in the SBT for Eclipse— “Managing

Toolchains in Eclipse” in the "Getting Started with the Graphical User Interface" chapter.

« For more information about selecting the toolchain on the command line—the "Getting Started from
the Command Line" chapter.

« For more information about a comprehensive list of Nios II GNU tools—the GNU HTML documenta-
tion, refer to the Nios II Embedded Design Suite Support page on the Altera website.

o For more information about GNU, refer to the Free Software Foundation website.

Related Information

o Overview of Nios II Embedded Development on page 1-1

+ Getting Started with the Graphical User Interface on page 2-1
+ Getting Started from the Command Line on page 3-1

o Altera Software Installation and Licensing

+ GNU website

Altera Corporation Nios Il Software Build Tools

C] Send Feedback

http://www.gnu.org
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Nios Il Software Build Tools

Nios Il Software Build Tools 4-45

The Nios IT SBT utilities and scripts provide the functionality underlying the Nios II SBT for Eclipse. You
can create, modify, and build Nios II programs with commands typed at a command line or embedded in

a script.

You can call these utilities and scripts on the command line or from the scripting language of your choice

(such as perl or bash).

Note: For usage information, enter "--help" after the command and a list of required and optional
arguments for the command appears.

Table 4-13: Utilities and Scripts Included in the Nios Il SBT

I S A

nios2-app-generate-makefile

Creates an application makefile

nios2-lib-generate-makefile

Creates a user library makefile

nios2-app-update-makefile

Modifies an existing application makefile

nios2-lib-update-makefile

Modifies an existing user library makefile

nios2-bsp-create-settings

Creates a BSP settings file

nios2-bsp-update-settings

Updates the contents of a BSP settings file

nios2-bsp-query-settings

Queries the contents of a BSP settings file

nios2-bsp-generate-files

Generates all files for a given BSP settings
file

nios2-bsp

Creates or updates a BSP

The Nios II SBT utilities reside in the <Nios II EDS install path>/sdk2/bin directory.

For more information about the Nios II SBT, refer to the "Getting Started from the Command Line"

chapter.

Related Information

» Overview of Nios II Embedded Development on page 1-1

+ Getting Started from the Command Line on page 3-1

File Format Conversion Tools

File format conversion is sometimes necessary when passing data from one utility to another.

Note: For usage information, enter

appears.

Table 4-14: File Conversion Utilities

alt-file- General file conversion tool. Allows you to create a flash image
convert for the MAX10 device with a bootloader.

bin2flash | Converts binary files to a Nios II Flash Programmer File (.flash)

for programming to flash memory.

Nios Il Software Build Tools

D Send Feedback

"-h" after the command and a list of options for the command

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-46 Other Command-Line Tools 2015.05.14

elf2dat Converts a .elf file to a .dat file format appropriate for Verilog
HDL hardware simulators.

elf2flash | Converts a .elf file to a .flash file for programming to flash
memory.

elf2hex Converts a .elf file to a Hexadecimal (Intel-format) File (.hex).

elf2mem | Generates the memory contents for the memory devices in a
specific Nios II system.

elf2mif Converts a .elf file to a Quartus” II Memory Initialization File
(.mif).

flash2dat | Converts a .flash file to the .dat file format appropriate for
Verilog HDL hardware simulators.

sof2flash | Converts an SRAM Object File (.sof) to a .flash file.

The file format conversion tools are in the <Nios II EDS install path>/bin/ directory.

Other Command-Line Tools

Note:

For usage information, enter "--help" after the command and a list of options for the command
appears.

Table 4-15: Altera Command-Line Tools for Developing Nios Il Programs

nios2-download Downloads code to a target processor for debugging or
running.
nios2-flash-programmer-generate Allows multiple files to be converted to .flash files, and

optionally programs each file to the specified location
on a flash device.

nios2-flash-programmer Programs data to flash memory on the target board.

nios2-gdb-server Translates GNU debugger (GDB) remote serial

protocol packets over Transmission Control Protocol
(TCP) to JTAG transactions with a target Nios II

processor.

nios2-terminal Performs terminal I/O with a JTAG UART in a Nios II
system

validate_zip Verifies if a specified zip file is compatible with Altera’s

read-only zip file system.

nios2-debug Downloads a program to a Nios II processor and

launches the Insight debugger.

nios2-configure-sof Configures an Altera configurable part. If no

explicit .sof file is specified, it tries to determine the
correct file to use.

Altera Corporation

Nios Il Software Build Tools

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Restrictions 4-47

jtagconfig

Allows you configure the JTAG server on the host

download hardware configuration.

machine. It can also detect a JTAG chain and set up the

The command-line tools described in this section are in the <Nios II EDS install path>/bin/ directory.

Restrictions

The Nios II SBT supports BSPs incorporating the Altera HAL and Micrium
MicroC/OS-1II only.

Document Revision History for Nios Il Software Build Tools

I I S

May 2015 2015.05.14 |, Maintenance release.
o Renamed to Nios II Classic.
January 2014 13.1.0 « Updated GCC4 toolchain from 4.1.2 to GCC 4.7.3.
« Removed references to Nios II IDE.
o Removed references to Nios II GCC3.
May 2011 11.0.0 o Introduction of Qsys system integration tool
« The GCC 3 toolchain is an optional feature
February 2011 10.1.0 Removed “Referenced Documents” section.
July 2010 10.0.0 » Added explanation of the effects of disabled BSP file generation.
 Described regeneration of BSP with changed memory sizes.
o Described GCC 4.
e Described GCC 3 and GCC 4 command shells
November 2009 9.1.0 Chapter repurposed and retitled to cover Nios II Software Build
Tools functionality applicable to both command line and Eclipse.
 Describe the Nios II Flash Programmer
March 2009 9.0.0

Moved information about Tcl-based device drivers and software
packages, formerly in this chapter, to Developing device Drivers for

the Hardware Abstraction Layer.

Described how to work with compiler optimization and debugger

settings.
Described newlib recompilation.
Corrected minor typographical errors.

Nios Il Software Build Tools

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

4-48 Document Revision History for Nios Il Software Build Tools 2015.05.14

I I S

May 2008 8.0.0 « Advanced exceptions added to Nios II core.
o Added instructions for writing instruction-related exception
handler.
+ Design examples removed from list.
October 2007 7.2.0 Initial release. Material moved here from former "Nios II Software

Build Tools" chapter.

Altera Corporation

Nios Il Software Build Tools

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Overview of the Hardware Abstraction Layer 5

2015.05.14

NII5V2 @ Subscribe C] Send Feedback

The HAL is a lightweight embedded runtime environment that provides a simple device driver interface
for programs to connect to the underlying hardware. The HAL application program interface (API) is
integrated with the ANSI C standard library. The HAL API allows you to access devices and files using
familiar C library functions, such as printf(), fopen(), furite(), etc.

The HAL serves as a device driver package for Nios II processor systems, providing a consistent interface
to the peripherals in your system. The Nios II software development tools extract system information
from your SOPC Information File (.sopcinfo). The Nios II Software Build Tools (SBT) generate a custom
HAL board support package (BSP) specific to your hardware configuration. Changes in the hardware
configuration automatically propagate to the HAL device driver configuration. As a result, changes in the
underlying hardware are prevented from creating bugs.

HAL device driver abstraction provides a clear distinction between application and device driver software.
This driver abstraction promotes reusable application code that is resistant to changes in the underlying
hardware. In addition, the HAL standard makes it straightforward to write drivers for new hardware
peripherals that are consistent with existing peripheral drivers.

Getting Started with the Hardware Abstraction Layer

The easiest way to get started using the HAL is to create a software project. In the process of creating a
new project, you also create a HAL BSP. You need not create or copy HAL files, and you need not edit any
of the HAL source code. The Nios II SBT generates the HAL BSP for you.

For more information about an exercise in creating a simple Nios II HAL software project, refer to
“Getting Started with Eclipse” in the Getting Started with the Graphical User Interface chapter of the Nios
II Software Developer’s Handbook.

In the Nios IT SBT command line, you can create an example BSP based on the HAL using one of the
create-this-bsp scripts supplied with the Nios II Embedded Design Suite.

You must base the HAL on a specific hardware system. A Nios II system consists of a Nios II processor
core integrated with peripherals and memory. Nios II systems are generated by Qsys or SOPC Builder.

If you do not have a custom Nios II system, you can base your project on an Altera-provided example
hardware system. In fact, you can first start developing projects targeting an Altera® development board,
and later re-target the project to a custom board. You can easily change the target hardware system later.

For more information about creating a new project with the Nios II SBT, refer to the Getting Started with
the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2%202015.05.14)%20Overview%20of%20the%20Hardware%20Abstraction%20Layer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

5-2 HAL Architecture for Embedded Software Systems

NII5V2
2015.05.14

For more information about creating a new project with the Nios II SBT, refer to the Getting Started from

the Command Line chapter of the Nios II Software Developer’s Handbook.

Related Information

Getting Started with the Graphical User Interface on page 2-1
For more information about an exercise in creating a simple Nios II HAL software project; and for
more information about creating a new project with the Nios IT SBT.

Getting Started from the Command Line on page 3-1

For more information about creating a new project with the Nios II SBT.

HAL Architecture for Embedded Software Systems

Services

The HAL provides the following services:

Integration with the newlib ANSI C standard library—Provides the familiar C standard library

functions

Device drivers—Provides access to each device in the system
The HAL API—Provides a consistent, standard interface to HAL services, such as device access,
interrupt handling, and alarm facilities
System initialization—Performs initialization tasks for the processor and the runtime environment

before main()

Device initialization—Instantiates and initializes each device in the system before main() runs

Layers of a HAL-Based System

The Layers of a HAL-Based System

User Program
(Standard Library
HAL API
Device Device Device
Driver Driver Driver

Nios Il Processor System Hardware

Applications versus Drivers

Application developers are responsible for writing the system’s main() routine, among other routines.
Applications interact with system resources either through the C standard library, or through the HAL
API. Device driver developers are responsible for making device resources available to application

Altera Corporation

Overview of the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Generic Device Models 5-3

developers. Device drivers communicate directly with hardware through low-level hardware access
macros.

For further details about the HAL, refer to the "Developing Programs Using the Hardware Abstraction
Layer" and "Developing Device Drivers for the Hardware Abstraction Layer" chapters.

Related Information

o Developing Programs Using the Hardware Abstraction Layer on page 6-1
« Developing Device Drivers for the Hardware Abstraction Layer on page 7-1

Generic Device Models

The HAL provides generic device models for classes of peripherals found in embedded systems, such as
timers, Ethernet MAC/PHY chips, and I/O peripherals that transmit character data. The generic device
models are at the core of the HAL’s power. The generic device models allow you to write programs using a
consistent API, regardless of the underlying hardware.

Device Model Classes

The HAL provides models for the following classes of devices:

« Character-mode devices—Hardware peripherals that send and/or receive characters serially, such as a
UART.

o Timer devices—Hardware peripherals that count clock ticks and can generate periodic interrupt
requests.

o File subsystems—A mechanism for accessing files stored in physical device(s). Depending on the
internal implementation, the file subsystem driver might access the underlying device(s) directly or use
a separate device driver. For example, you can write a flash file subsystem driver that accesses flash
using the HAL API for flash memory devices.

 Ethernet devices—Devices that prov1de access to an Ethernet connection for a networking stack such
as the Altera-provided NicheStack” TCP/IP Stack - Nios II Edition. You need a networking stack to
use an ethernet device.

« Direct memory access (DMA) devices—Peripherals that perform bulk data transactions from a data
source to a destination. Sources and destinations can be memory or another device, such as an
Ethernet connection.

 Flash memory devices—Nonvolatile memory devices that use a special programming protocol to store
data.

Benefits to Application Developers

The HAL defines a set of functions that you use to initialize and access each class of device. The API is
consistent, regardless of the underlying implementation of the device hardware. For example, to access
character-mode devices and file subsystems, you can use the C standard library functions, such as
printf() and fopen(). For application developers, you need not write low-level routines just to establish
basic communication with the hardware for these classes of peripherals.

Benefits to Device Driver Developers

Each device model defines a set of driver functions necessary to manipulate the particular class of device.
If you are writing drivers for a new peripheral, you need only provide this set of driver functions. As a
result, your driver development task is predefined and well documented. In addition, you can use existing
HAL functions and applications to access the device, which saves software development effort. The HAL
calls driver functions to access hardware. Application programmers call the ANSI C or HAL API to access

Overview of the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
5-4 C Standard Library—newlib 2015.05.14
hardware, rather than calling your driver routines directly. Therefore, the usage of your driver is already
documented as part of the HAL APL

C Standard Library—newlib

The HAL integrates the ANSI C standard library in its runtime environment. The HAL uses newlib, an
open-source implementation of the C standard library. newlib is a C library for use on embedded
systems, making it a perfect match for the HAL and the Nios II processor. newl ib licensing does not
require you to release your source code or pay royalties for projects based on newl ib.

The ANSI C standard library is well documented.

For more information about the most well-known reference of the ANSI C standard library, refer to the
book: The C Programming Language by B. Kernighan and D. Ritchie, published by Prentice Hall. It is also
available in over 20 languages.

Related Information

Redhat Website
For more information, refer to the online documentation for newlib by Red Hat.

Embedded Hardware Supported by the HAL

Nios Il Processor Core Support

The Nios II HAL supports all available Nios II processor core implementations.
Supported Peripherals
Provide Full HAL Support
Altera provides many peripherals for use in Nios II processor systems. Most Altera peripherals provide

HAL device drivers that allow you to access the hardware with the HAL API. The following Altera
peripherals provide full HAL support:

Altera Corporation Overview of the Hardware Abstraction Layer

C] Send Feedback

http://sources.redhat.com/newlib
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . .
2015.05.14 Provide Partial HAL Support 5-5

e Character mode devices

o UART core

e JTAG UART core

« LCD 16207 display controller
 Flash memory devices

« Common flash interface compliant flash chips
 Altera’s erasable programmable configurable serial (EPCS) serial configuration device controller
o File subsystems

 Altera host based file system
o Altera read-only zip file system
« Timer devices

« Timer core
o DMA devices

o« DMA controller core
o Scatter-gather DMA controller core
o Ethernet devices

« Triple Speed Ethernet MegaCore® function

« Standard Microchip Solutions (SMSC) LAN91C111 10/100 Non-PCI Ethernet Single Chip MAC +
PHY

The LAN91C111 and Triple Speed Ethernet components require the MicroC/OS-II runtime environment.
For more information, refer to the "Ethernet and the NicheStack TCP/IP Stack - Nios II Edition" chapter.
Note: Third-party vendors offer additional peripherals not listed here.

Related Information

+ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition on page 11-1
o Altera Embedded Alliance
List of other peripherals available for the Nios II processor.

Provide Partial HAL Support
All peripherals (both from Altera and third party vendors) must provide a header file that defines the
peripheral’s low-level interface to hardware. Therefore, all peripherals support the HAL to some extent.
However, some peripherals might not provide device drivers. If drivers are not available, use only the
definitions provided in the header files to access the hardware. Do not use unnamed constants, such as
hard-coded addresses, to access a peripheral.

Inevitably, certain peripherals have hardware-specific features with usage requirements that do not map
well to a general-purpose API. The HAL handles hardware-specific requirements by providing the UNIX-
style ioctl () function. Because the hardware features depend on the peripheral, the ioctl () options are
documented in the description for each peripheral.

Some peripherals provide dedicated accessor functions that are not based on the HAL generic device
models. For example, Altera provides a general-purpose parallel I/O (PIO) core for use with the Nios II
processor system. The PIO peripheral does not fit in any class of generic device models provided by the
HAL, and so it provides a header file and a few dedicated accessor functions only.

For complete details regarding software support for a peripheral, refer to the peripheral’s description.

Overview of the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

https://www.altera.com/products/general/nios2/benefits/ni2-peripherals.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
5-6 MPU Support 2015.05.14

For more information about Altera-provided peripherals, refer to the Embedded Peripherals IP User
Guide.

Related Information
Embedded Peripherals IP User Guide

MPU Support

The HAL does not include explicit support for the optional memory protection unit (MPU) hardware.
However, it does support an advanced exception handling system that can handle Nios II MPU
exceptions.

For more information about handling MPU and other advanced exceptions, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

For more information about the MPU hardware implementation, refer to the Programming Model chapter
of the Nios II Processor Reference Handbook.

Related Information

+ Exception Handling on page 8-1
For more information about handling MPU and other advanced exceptions.

o Programming Model
For more information about the MPU hardware implementation.

MMU Support

The HAL does not support the optional memory management unit (MMU) hardware. To use the MMU,
you need to implement a full-featured operating system.

For more information about the Nios II MMU, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information

Programming Model
For more information about the Nios II MMU.

Document Revision History for Overview of the Hardware Abstraction
Layer

I I S

May 2015 2015.05.14 |, Maintenance release.
» Renamed to Nios II Classic.
May 2011 11.0.0 Introduction of Qsys system integration tool
February 2011 10.1.0 Removed “Referenced Documents” section.
July 2010 10.0.0 Maintenance release.
November 2009 9.1.0 Maintenance release.
Altera Corporation Overview of the Hardware Abstraction Layer

C] Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Document Revision History for Overview of the Hardware Abstraction Layer 5-7

I I S

March 2009 9.0.0 « Reorganized and updated information and terminology to clarify
role of Nios II Software Build Tools.
 Corrected minor typographical errors.
May 2008 8.0.0 Maintenance release.
October 2007 7.2.0 Maintenance release.
May 2007 7.1.0 o Scatter-gather DMA core.
o Triple-speed Ethernet MAC.
+ Refer to HAL generation with Nios II Software Build Tools.
o Added table of contents to “Introduction” section.
» Added Referenced Documents section.
March 2007 7.0.0 Maintenance release.
November 2006 6.1.0 NicheStack TCP/IP Stack - Nios II Edition.
May 2006 6.0.0 Maintenance release.
October 2005 5.1.0 Maintenance release.
May 2005 5.0.0 Maintenance release.
May 2004 1.0 Initial release

Overview of the Hardware Abstraction Layer

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Developing Programs Using the Hardware
Abstraction Layer 6

2015.05.14

NII5V2 @ Subscribe C] Send Feedback

This chapter discusses how to develop embedded programs for the Nios® IT embedded processor based on
the Altera® hardware abstraction layer (HAL). The application program interface (API) for HAL-based
systems is readily accessible to software developers who are new to the Nios II processor. Programs based
on the HAL use the ANSI C standard library functions and runtime environment, and access hardware
resources with the HAL APT’s generic device models. The HAL API largely conforms to the familiar ANSI
C standard library functions, though the ANSI C standard library is separate from the HAL. The close
integration of the ANSI C standard library and the HAL makes it possible to develop useful programs that
never call the HAL functions directly. For example, you can manipulate character mode devices and files
using the ANSI C standard library I/O functions, such as printf() and scanf().

For more information, refer to the book: The C Programming Language, Second Edition, by Brian
Kernighan and Dennis M. Ritchie (Prentice-Hall).

HAL BSP Settings

Every Nios II board support package (BSP) has settings that determine the BSP’s characteristics. For
example, HAL BSPs have settings to identify the hardware components associated with standard devices
such as stdout. Defining and manipulating BSP settings is an important part of Nios II project creation.
You manipulate BSP settings with the Nios II BSP Editor, with command-line options, or with Tcl scripts.

Note: For details about how to control BSP settings, refer to one or more of the following documents:

» For more information about the Nios II SBT for Eclipse, refer to the "Getting Started with the
Graphical User Interface” chapter.

o For more information about the Nios II SBT command line, refer to the "Nios II Software Build
Tools" chapter.

For more information about detailed descriptions of available BSP settings, refer to the "Nios II Software
Build Tools Reference" chapter.

Many HAL settings are reflected in the system.h file, which provides a helpful reference for details about
your BSP.

For more information about system.h, refer to the “The system.h System Description File” chapter.

Note: Do not edit system.h. The Nios II EDS provides tools to manipulate system settings.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1'2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered

product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2%202015.05.14)%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

) . NII5V2
6-2 The Nios Il Embedded Project Structure 2015.05.14

Related Information

o The system.h System Description File on page 6-3

o Getting Started with the Graphical User Interface on page 2-1
« Nios II Software Build Tools on page 4-1

+ Nios II Software Build Tools Reference on page 15-1

The Nios Il Embedded Project Structure

The creation and management of software projects based on the HAL is integrated tightly with the Nios II
SBT. This section discusses the Nios II projects as a basis for understanding the HAL.

Note: The label for each block describes what or who generated that block, and an arrow points to each
block’s dependency.

Figure 6-1: The Nios Il HAL Project Structure Emphasizing How the HAL BSP Fits In

Nios Il Program
Based on HAL

Also known as: Your program, or user project
Defined by: .¢, .h, .S, .sfiles

Application Project
Created by: You

\/

Defined by: Nios Il BSP settings

HAL BSP Project Created by: Nios Il command line tools

Also known as: Nios Il processor system, or the hardware
Hardware System Defined by: .sopcinfo file
Created by: System integration tool (Qsys)

Every HAL-based Nios II program consists of two Nios II projects.

For more information, refer to the figure above. Your application-specific code is contained in one project
(the user application project), and it depends on a separate BSP project (the HAL BSP).

The application project contains all the code you develop. The executable image for your program
ultimately results from building both projects.

With the Nios II SBT for Eclipse, the tools create the HAL BSP project when you create your application
project. In the Nios II SBT command line flow, you create the BSP using nios2-bsp or a related tool.

The HAL BSP project contains all information needed to interface your program to the hardware. The
HAL drivers relevant to your hardware system are incorporated in the BSP project.

The BSP project depends on the hardware system, defined by a SOPC Information File (.sopcinfo). The
Nios II SBT can keep your BSP up-to-date with the hardware system. This project dependency structure
isolates your program from changes to the underlying hardware, and you can develop and debug code
without concern about whether your program matches the target hardware.

You can use the Nios II SBT to update your BSP to match updated hardware. You control whether and
when these updates occur.

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 AU
2015.05.14 The system.h System Description File 6-3

For more information about how the SBT keeps your BSP up-to-date with your hardware system, refer to
“Revising Your BSP” in the "Nios II Software Build Tools" chapter.

In summary, when your program is based on a HAL BSP, you can always keep it synchronized with the
target hardware with a few simple SBT commands.

Related Information

o Nios II Software Build Tools Reference on page 15-1
« Nios I Embedded Software Projects on page 4-4

The system.h System Description File

The system.h file provides a complete software description of the Nios II system hardware. Not all
information in system.h is useful to you as a programmer, and it is rarely necessary to include it explicitly
in your C source files. Nonetheless, system.h holds the answer to the question, “What hardware is present
in this system?”

The system.h file describes each peripheral in the system and provides the following details:

o The hardware configuration of the peripheral
o The base address

 Interrupt request (IRQ) information (if any)
« A symbolic name for the peripheral

The Nios II SBT generates the system.h file for HAL BSP projects. The contents of system.h depend on
both the hardware configuration and the HAL BSP properties.

Note: Do not edit system.h. The SBT provides facilities to manipulate system settings.
For more information about how to control BSP settings, refer to the “HAL BSP Settings” chapter.

Example 6-1. Excerpts from a system.h File Detailing Hardware Configuration Options

/*

* sys_clk_timer configuration

*

*/

#define SYS_CLK_TIMER_NAME ''/dev/sys_clk_timer"
#define SYS_CLK_TIMER_TYPE "altera_avalon_timer"
#define SYS_CLK_TIMER_BASE 0x00920800

#define SYS_CLK_TIMER_IRQ O

#define SYS_CLK_TIMER_ALWAYS_RUN O

#define SYS_CLK_TIMER_FIXED_PERIOD O

/*

* jtag_uart configuration

*

*/

#define JTAG_UART_NAME "/dev/jtag_uart"

#define JTAG_UART_TYPE "altera_avalon_jtag_uart"
#define JTAG_UART_BASE 0x00920820

#define JTAG_UART_IRQ 1

Related Information
HAL BSP Settings on page 6-1

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

6-4 Data Widths and the HAL Type Definitions 2015.05.14

Data Widths and the HAL Type Definitions

For embedded processors such as the Nios II processor, it is often important to know the exact width and
precision of data. Because the ANSI C data types do not explicitly define data width, the HAL uses a set of
standard type definitions instead. The ANSI C types are supported, but their data widths are dependent
on the compiler’s convention.

The header file alt_types.h defines the HAL type definitions.
Table 6-1: The HAL Type Definitions

Cme T]

alt_8 Signed 8-bit integer.

alt_u8 |Unsigned 8-bit integer.

alt_16 | Signed 16-bit integer.

alt_ul6 | Unsigned 16-bit integer.

alt_32 | Signed 32-bit integer.

alt_u32 | Unsigned 32-bit integer.

alt_64 |Signed 64-bit integer.

alt_u64 | Unsigned 64-bit integer.

Table 6-2: GNU Toolchain Data Widths

=0 . - R

char 8 bits.

short 16 bits.

long 32 bits.

int 32 bits.

UNIX-Style Interface

The HAL API provides a number of UNIX-style functions. The UNIX-style functions provide a familiar
development environment for new Nios II programmers, and can ease the task of porting existing code to
run in the HAL environment. The HAL uses these functions primarily to provide the system interface for
the ANSI C standard library. For example, the functions perform device access required by the C library
functions defined in stdio.h.

The following list contains all of the available UNIX-style functions:

e _exitQ
e close()
o fTstat()
* getpid(Q)

¢ gettimeofday()

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

File System 6-5

o ioctl()
e 1iIsatty()
e killQO

o lIseek()
» openQ

e read(Q

e sbrkQ

¢ settimeofday()
¢ stat()

e usleep()
e wait(Q)

o writeQ)

The most commonly used functions are those that relate to file I/O.
For more information, refer to the “File System” chapter.

For more information about the use of these functions, refer to the "HAL API Reference" chapter.

Related Information

« File System on page 6-5
o HAL API Reference on page 14-1

File System

The HAL provides infrastructure for UNIX-style file access. You can use this infrastructure to build a file
system on any storage devices available in your hardware.

For more information, refer to an example in the "Read-Only Zip File System" chapter.

You can access files in a HAL-based file system by using either the C standard library file I/O functions in
the newlib C library (for example fopen(), fclose(), and fread()), or using the UNIX-style file I/O
provided by the HAL.

The HAL provides the following UNIX-style functions for file manipulation:

e close()
o fstat()
e ioctl()
e 1iIsatty()
o Iseek()
« open()

e read(Q)

o stat()

e write()

For more information about these functions, refer to the "HAL API Reference" chapter.

The HAL registers a file subsystem as a mount point in the global HAL file system. Attempts to access files
below that mount point are directed to the file subsystem. For example, if a read-only zip file subsystem
(zipfs) is mounted as /mount/zipfs0, the zipfs file subsystem handles calls to fopen() for /mount/zipfs0/
myfile.

There is no concept of a current directory. Software must access all files using absolute paths.

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

6-6 Using Character-Mode Devices 2015.05.14

The HAL file infrastructure also allows you to manipulate character mode devices with UNIX-style path
names. The HAL registers character mode devices as nodes in the HAL file system. By convention,
system.h defines the name of a device node as the prefix /dev/ plus the name assigned to the hardware
component at system generation time. For example, a UART peripheral that appears as uartl in Qsys or
SOPC builder is named /dev/uartl in system.h.

Note: The standard header files stdio.h, stddef.h, and stdlib_h are installed with the HAL.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#define BUF_SIZE (10)
int main(void)

{
FILE* fp;
char buffer[BUF_SIZE];
fp = fopen ('/mount/rozipfs/test”, "r'); if (fp == NULL)
{
printf (“'Cannot open file.\n");
exit (1);
}
fread (buffer, BUF_SIZE, 1, fp);
fclose (fp);
return O;
}

For more information about the use of these functions, refer to the newlib C library documentation
installed with the Nios II EDS. On the Windows Start menu, click Programs > Altera > Nios II > Nios II
Documentation.

Related Information

o HAL API Reference on page 14-1
o Read-Only Zip File System on page 12-1

Using Character-Mode Devices

A character-mode device is a hardware peripheral that sends and/or receives characters serially. A
common example is the UART. Character mode devices are registered as nodes in the HAL file system. In
general, a program associates a file descriptor to a device’s name, and then writes and reads characters to
or from the file using the ANSI C file operations defined in file.h. The HAL also supports the concept of
standard input, standard output, and standard error, allowing programs to call the stdio.h I/O functions.

Standard Input, Standard Output and Standard Error

Using standard input (stdin), standard output (stdout), and standard error (stderr) is the easiest way
to implement simple console I/O. The HAL manages stdin, stdout, and stderr behind the scenes,
which allows you to send and receive characters through these channels without explicitly managing file
descriptors. For example, the HAL directs the output of printf() to standard out, and perror() to
standard error. You associate each channel to a specific hardware device by manipulating BSP settings.

Note: This program sends characters to whatever device is associated with stdout when the program is
compiled.

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 General Access to Character Mode Devices 6-7

Example 6-3. Hello World

#include <stdio.h>
int main O

printf (“"Hello world!");
return O;

}

When using the UNIX-style API, you can use the file descriptors stdin, stdout, and stderr, defined in
unistd.h, to access, respectively, the standard in, standard out, and standard error character I/O streams.
unistd.h is installed with the Nios II EDS as part of the newlib C library package.

General Access to Character Mode Devices

Accessing a character-mode device other than stdin, stdout, or stderr is as easy as opening and writing
to a file.

Example 6-4. Writing Characters to a UART Called uvart1

#include <stdio.h>
#include <string.h>
int main (void)

char* msg = "hello world";
FILE* fp;

fp = fopen ("'/dev/uartl™, "w'™);
if (fp!=NULL)

fprintf(fp, "%s",msg);

fclose (fp);

}

return 0O;

}

C++ Streams

HAL-based systems can use the C++ streams API for manipulating files from C++.

/dev/null

All systems include the device /dev/null. Writing to /dev/null has no effect, and all data is discarded. /dev/
null is used for safe I/O redirection during system startup. This device can also be useful for applications
that wish to sink unwanted data.

This device is purely a software construct. It does not relate to any physical hardware device in the system.

Lightweight Character-Mode I/0

The HAL offers several methods of reducing the code footprint of character-mode device drivers.

For more information, refer to the “Reducing Code Footprint in Embedded Systems” chapter.

Related Information

Reducing Code Footprint in Embedded Systems on page 6-27

Altera Logging Functions

The Altera logging functions provide a separate channel for sending logging and debugging information
to a character-mode device, supplementing stdout and stderr. The Altera logging information can be

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.8 . . NII5V2
= Enabling Altera Logging 2015.05.14

printed in response to several conditions. Altera logging can be enabled and disabled independently of
any normal stdio output, making it a powerful debugging tool.

When Altera logging is enabled, your software can print extra messages to a specified port with HAL
function calls. The logging port, specified in the BSP, can be a UART or a JTAG UART device. In its
default configuration, Altera logging prints out boot messages, which trace each step of the boot process.

Note: Avoid setting the Altera logging device to the device used for stdout or stderr. If Altera logging
output is sent to stdout or stderr, the logging output might appear interleaved with the stdout
or stderr output

Several logging options are available, controlled by C preprocessor symbols. You can also choose to add
custom logging messages.

Note: Altera logging changes system behavior. The logging implementation is designed to be as simple as
possible, loading characters directly to the transmit register. It can have a negative impact on
software performance.

Altera logging functions are conditionally compiled. When logging is disabled, it has no impact on code
footprint or performance.

Note: The Altera reduced device drivers do not support Altera logging.

Enabling Altera Logging
The Nios IT SBT has a setting to enable Altera logging. The setting is called hal.log_port. It is similar to
hal.stdout, hal.stdin, and hal.stderr. To enable Altera logging, you set hal.log_port to a JTAG UART or
a UART device. The setting allows the HAL to send log messages to the specified device when a logging
macro is invoked.

When Altera logging is enabled, the Nios IT SBT defines ALT_LOG_ENABLE in public.mk to enable log
messages and sets ALT_LOG_FLAGS to 0. The build tools also set the ALT_LOG_PORT_TYPE and
ALT_LOG_PORT_BASE values in system.h to point to the specified device.

When Altera logging is enabled without special options, the HAL prints out boot messages to the selected
port. For typical software that uses the standard alt_main.c (such as the Hello World software example),
the messages appear as in the following example.

Example 6-5. Default Boot Logging Output

[crt0.S] Inst & Data Cache Initialized.

[crt0.S] Setting up stack and global pointers.
[crt0.S] Clearing BSS

[crt0.S] Calling alt_main.

[alt_main.c] Entering alt_main, calling alt_irqg_init.
[alt_main.c] Done alt_irg_init, calling alt_os_init.
[alt_main.c] Done OS Init, calling alt_sem_create.
[alt_main.c] Calling alt_sys_init.

[alt_main.c] Done alt_sys_init. Redirecting 10.
[alt_main.c] Calling C++ constructors.

[alt_main.c] Calling main.

[alt_exit.c] Entering _exit() function.

[alt_exit.c] Exit code from main was O.

[alt_exit.c] Calling ALT_OS_STOP()-

[alt_exit.c] Calling ALT_SIM_HALTQ)-

[alt_exit.c] Spinning forever.

Note: A write operation to the Altera logging device stalls in ALT_LOG_PRINTF() until the characters are
read from the Altera logging device’s output buffer. To ensure that the Nios II application

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2))
2015.05.14 Extra Logging Options 6-9

completes initialization, run the nios2-terminal command from the Nios II Command Shell to
accept the Altera logging output.

Extra Logging Options
In addition to the default boot messages, logging options are incorporated in Altera logging. Each option
is controlled by a C preprocessor symbol.

Table 6-3: Altera Logging Options and Option Modifiers

I

Purpose Prints out a message from the system clock interrupt handler at a
specified interval. This indicates that the system is still running. The
default interval is every 1 second.

Preprocessor | ALT_LOG_SYS_CLK_ON_FLAG_SETTING
symbol

Modifiers The system clock log has two modifiers, providing two different
ways to specify the logging interval.

System clock o ALT_LOG_SYS_CLK_INTERVAL—Specifies the logging interval in

log system clock ticks. The default is <clock ticks per second>, that
is, one second.

« ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER—Specifies the
logging interval in seconds. The default is 1. When you modify
ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER, ALT_LOG_SYS_CLK_
INTERVAL is recalculated.

Sample System Clock On 0

Output
p System Clock On 1

Purpose Every time alt_write() is called (normally, whenever characters
are sent to stdout), the first <n> characters are echoed to a logging
message. The message starts with the string "Write Echo:". <n> is
specified with ALT_LOG_WRITE_ECHO_LEN. The default is 15
characters.

Write echo | Preprocessor | ALT_LOG_WRITE_ON_FLAG_SETTING

symbol
Modifiers ALT_LOG_WRITE_ECHO_LEN—Number of characters to echo. Default
is 15.
Sample Write Echo: Hello from Nio
Output
Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

6-10 Extra Logging Options 2015.05.14
Mo T T Esmm]
Purpose At JTAG UART driver initialization, print out a line with the

number of characters in the software transmit buffer followed by
the JTAG UART control register contents. The number of
characters, prefaced by the string "'SW CirBuf", might be negative,
because it is computed as (<tail_pointer> - <head_pointer>) on a
circular buffer.

JTAG startup For more information about the JTAG UART control register
log fields, refer to the Embedded Peripherals IP User Guide.
Preprocessor | ALT_LOG_JTAG_UART_STARTUP_INFO_ON_FLAG_SETTING
symbol
Modifiers None
Sample JTAG Startup Info: SW CirBuf = 0, HW FIFO wspace=64
Output AC=0 WI=0 RI=0 WE=0 RE=1
Purpose Creates an alarm object to print out the same JTAG UART

information as the JTAG startup log, but at a repeated interval.
Default interval is 0.1 second, or 10 messages a second.

Preprocessor | ALT_LOG_JTAG_UART_ALARM_ON_FLAG_SETTING
symbol

Modifiers The JTAG interval log has two modifiers, providing two different
ways to specify the logging interval.

JTAG
interval log o ALT_LOG_JTAG_UART_TICKS—Logging interval in ticks. Default
is <ticks_per_second> / 10.
o ALT_LOG_JTAG_UART_TICKS_DIVISOR—Specifies the number of
logs per second. The default is 10. When you modify ALT_LOG_
JTAG_UART_TICKS_DIVISOR, ALT_LOG_JTAG_UART_TICKS is
recalculated.
Sample JTAG Alarm: SW CirBuf = 0, HW FIFO wspace=45 AC=0 WI=0
Output RI=0 WE=0 RE=1
Purpose Prints out a message every time the JTAG UART near-empty
interrupt triggers. Message contains the same JTAG UART
JTAG information as in the JTAG startup log.
interrupt Preprocessor | ALT_LOG_JTAG_UART_ISR_ON_FLAG_SETTING
service symbol
routine (ISR)
log Modifiers None
Sample JTAG IRQ: SW CirBuf = -20, HW FIFO wspace=64 AC=0 WI=1
Output RI=0 WE=1 RE=1
Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Logging Levels 6-11
T T e]
Purpose Prints out messages tracing the software boot process. The boot log

is turned on by default when Altera logging is enabled.

Preprocessor | ALT_LOG_BOOT_ON_FLAG_SETTING
Boot log symbol
Modifiers None

Sample For more information, refer to the “Enabling Altera Logging”
Output chapter .

Note: An option’s modifiers are meaningful only when the option is enabled.

Setting a preprocessor flag to 1 enables the corresponding option. Any value other than 1 disables the
option.

Several options have modifiers, which are additional preprocessor symbols controlling details of how the
options work. For example, the system clock log’s modifiers control the logging interval.

Related Information

+ Embedded Peripherals IP User Guide
« Enabling Altera Logging on page 6-8

Logging Levels
An additional preprocessor symbol, ALT_LOG_FLAGS, can be set to provide some grouping for the extra
logging options. ALT_LOG_FLAGS implements logging levels based on performance impact. With higher
logging levels, the Altera logging options take more processor time.

Table 6-4: ALT_LOG FLAGS Logging Levels

Logging Level Logging

Boot log (default)

Level 0 plus system clock log and JTAG startup log

0

1

2 Level 1 plus JTAG interval log and write echo
3 Level 2 plus JTAG ISR log

-1 Silent mode—No Altera logging

Note: You can use logging level -1 to turn off logging without changing the program footprint. The
logging code is still present in your executable image, as determined by other logging options
chosen. This is useful when you wish to switch the log output on or off without disturbing the
memory map.

Because each logging option is controlled by an independent preprocessor symbol, individual options in
the logging levels can be overridden.

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

D Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

))) NII5V2
6-12 Example: Creating a BSP with Logging 2015.05.14

Example: Creating a BSP with Logging

 System clock log

o JTAG startup log

« JTAG interval log, logging twice a second
» No write echo

Example 6-6. Creating BSP With Logging and Options

nios2-bsp hal my_bsp ../my_hardware.sopcinfo \
--set hal.log_port uartl \

--set hal .make._bsp_cflags_user_flags \
-DALT_LOG_FLAGS=2 \
-DALT_LOG_WRITE_ON_FLAG_SETTING=0 \
—-DALT_LOG_JTAG_UART_TICKS_DIVISOR=2r

The -DALT_LOG_FLAGS=2 argument adds -DALT_LOG_FLAGS=2 to the ALT_CPP_FLAGS make variable in
public.mk.

Custom Logging Messages
You can add custom messages that are sent to the Altera logging device. To define a custom message,
include the header file alt_log_printf.h in your C source file as follows:

#include "sys/alt_log_printf.h"
Then use the following macro function:
ALT_LOG_PRINTF(const char *format, ...)

This C preprocessor macro is a pared-down version of printf(). The format argument supports most
printf() options. It supports %c, %d %l %o %s %u %x, and %X, as well as some precision and spacing
modifiers, such as %-9.3o0. It does not support floating point formats, such as %f or %g. This function is
not compiled if Altera logging is not enabled.

If you want your custom logging message to be controlled by Altera logging preprocessor options, use the
appropriate Altera logging option preprocessor flags from the "ALT_LOG_FLAGS Logging Levels" table
(Table 6-4), or the "Altera Logging Options and Option Modifiers" table (Table 6-3).

Example 6-7. Implementing Logging Options with Custom Logging Messages

/* The following example prints "Level 2 logging message' if

logging is set to level 2 or higher */

#1Ff (ALT_LOG_FLAGS >= 2)

ALT_LOG_PRINTF ("Level 2 logging message");

#endif

/* The following example prints "Boot logging message™ if boot logging
is turned on */

#iT (ALT_LOG_BOOT_ON_FLAG_SETTING == 1)

ALT_LOG_PRINTF ("Boot logging message');

#endif

Altera Logging Files

Table 6-5: HAL Implementation Files for Altera Logging

i T eme

components/altera_hal/HAL/inc/sys/ ‘ alt_log_printf.h

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Using File Subsystems 6-13
T i T e
components/altera_hal/HAL/src/ alt_log_printf.c
components/altera_nios2/HAL/src/ alt_log_macro.S

Note: All file locations are relative to <Nios II EDS install path>.

These files implement the logging options listed in the "Altera Logging Options and Option Modifiers"
table (Table 6-3). They also serve as examples of logging usage.

Table 6-6: HAL Example Files for Altera Logging

T T

components/altera_avalon_jtag uart/HAL/src/ |altera_avalon_jtag_uart.c
components/altera_avalon_timer/HAL/src/ altera_avalon_timer_sc.c
components/altera_hal/HAL/src/ alt_exit.c
components/altera_hal/HAL/src/ alt_main.c
components/altera_hal/HAL/src/ alt_write.c
components/altera_nios2/HAL/src/ crt0.S

Note: All file locations are relative to <Nios II EDS install path>.

Using File Subsystems

The HAL generic device model for file subsystems allows access to data stored in an associated storage
device using the C standard library file I/O functions. For example, the Altera read-only zip file system
provides read-only access to a file system stored in flash memory.

A file subsystem is responsible for managing all file I/O access beneath a given mount point. For example,
if a file subsystem is registered with the mount point /mnt/rozipfs, all file access beneath this directory,
such as fopen(*'/mnt/rozipfs/myfile”, "r™),is directed to that file subsystem.

As with character mode devices, you can manipulate files in a file subsystem using the C file I/O functions
defined in file.h, such as fopen() and fread().

For more information about the use of file I/O functions, refer to the newlib C library documentation
installed with the Nios II EDS. On the Windows Start menu, click Programs > Altera > Nios II <version>
> Nios II EDS <version> Documentation.

Host-Based File System

The host-based file system enables programs executing on a target board to read and write files stored on
the host computer. The Nios II SBT for Eclipse transmits file data over the Altera download cable. Your
program accesses the host based file system using the ANSI C standard library I/O functions, such as
fopen() and fread(). The host-based file system is a software package which you add to your BSP.

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . NII5V2
6-14 Using Timer Devices 2015.05.14

The following features and restrictions apply to the host based file system:

 The host-based file system makes the Nios IT C/C++ application project directory and its subdirecto-
ries available to the HAL file system on the target hardware.

« The target processor can access any file in the project directory. Be careful not to corrupt project
source files.

o The host-based file system only operates while debugging a project. It cannot be used for run sessions.

« Host file data travels between host and target serially through the Altera download cable, and therefore
file access time is relatively slow. Depending on your host and target system configurations, it can take
several milliseconds per call to the host. For higher performance, use buffered I/O function such as
fread() and fwrite(), and increase the buffer size for large files.

You configure the host-based file system using the Nios II BSP Editor. The host-based file system has one
setting: the mount point, which specifies the mount point within the HAL file system. For example, if you
name the mount point /mnt/host and the project directory on you host computer is /software/projectl,
in a HAL-based program, the following code opens the file /software/project1/datafile.dat.:

fopen("/mnt/host/datafile.dat", "r");

Using Timer Devices

Timer devices are hardware peripherals that count clock ticks and can generate periodic interrupt
requests. You can use a timer device to provide a number of time-related facilities, such as the HAL
system clock, alarms, the time-of-day, and time measurement. To use the timer facilities, the Nios II
processor system must include a timer peripheral in hardware.

The HAL API provides two types of timer device drivers:

« System clock driver—Supports alarms, such as you would use in a scheduler.
o Timestamp driver—Supports high-resolution time measurement.

An individual timer peripheral can behave as either a system clock or a timestamp, but not both.

For more information about where the HAL-specific API functions for accessing timer devices are
defined, refer to the sys/alt_alarm.h and sys/alt_timestamp.h files.

System Clock Driver

The HAL system clock driver provides a periodic heartbeat, causing the system clock to increment on
each beat. Software can use the system clock facilities to execute functions at specified times, and to obtain
timing information. You select a specific hardware timer peripheral as the system clock device by
manipulating BSP settings.

For more information about how to control BSP settings, refer to the “HAL BSP Settings” chapter.

The HAL provides implementations of the following standard UNIX functions: gettimeofday(),
settimeofday(), and times(). The times returned by these functions are based on the HAL system
clock.

The system clock measures time in clock ticks. For embedded engineers who deal with both hardware and
software, do not confuse the HAL system clock with the clock signal driving the Nios II processor
hardware. The period of a HAL system clock tick is generally much longer than the hardware system
clock. system.h defines the clock tick frequency.

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Alarms 6-15
At runtime, you can obtain the current value of the system clock by calling the alt_nticks() function.
This function returns the elapsed time in system clock ticks since reset. You can get the system clock rate,
in ticks per second, by calling the function alt_ticks_per_second(). The HAL timer driver initializes
the tick frequency when it creates the instance of the system clock.

The standard UNIX function gettimeofday() is available to obtain the current time. You must first
calibrate the time of day by calling settimeofday(). In addition, you can use the times() function to
obtain information about the number of elapsed ticks. The prototypes for these functions appear in
times.h.
For more information about the use of these functions, refer to the "HAL API Reference" chapter.
Related Information
o HAL BSP Settings on page 6-1
o HAL API Reference on page 14-1
Alarms
You can register functions to be executed at a specified time using the HAL alarm facility. A software
program registers an alarm by calling the function alt_alarm_start():
int alt_alarm_start(alt_alarm* alarm,
alt_u32 nticks,
alt_u32 (*callback) (void* context),
void* context);
The function callback() is called after nticks have elapsed. The input argument context is passed as
the input argument to cal Iback() when the call occurs. The HAL does not use the context parameter. It
is only used as a parameter to the cal Iback() function.
Your code must allocate the al't_alarm structure, pointed to by the input argument alarm. This data
structure must have a lifetime that is at least as long as that of the alarm. The best way to allocate this
structure is to declare it as a static or global. alt_alarm_start() initializes *alarm.
The callback function can reset the alarm. The return value of the registered callback function is the
number of ticks until the next call to cal Iback. A return value of zero indicates that the alarm should be
stopped. You can manually cancel an alarm by calling alt_alarm_stop().
One alarm is created for each call to alt_alarm_start(). Multiple alarms can run simultaneously.
Alarm callback functions execute in an exception context. This imposes functional restrictions which you
must observe when writing an alarm callback.
For more information about the use of these functions, refer to the "Exception Handling" chapter.
Example 6-8. Using a Periodic Alarm Callback Function
#include <stddef.h>
#include <stdio.h>
#include "sys/alt_alarm_h"
#include "alt_types.h"
/*
* The callback function.
*/
alt_u32 my_alarm_callback (void* context)
/* This function is called once per second */
return alt_ticks_per_second();
}
Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
6-16 Timestamp Driver 2015.05.14

/* The alt_alarm must persist for the duration of the alarm. */
static alt_alarm alarm;

if (alt_alarm_start (&alarm,
alt_ticks_per_second(),
my_alarm_cal lback,

NULL) < 0)

printf (""No system clock available\n");

Related Information
Exception Handling on page 8-1

Timestamp Driver

Sometimes you want to measure time intervals with a degree of accuracy greater than that provided by
HAL system clock ticks. The HAL provides high resolution timing functions using a timestamp driver. A
timestamp driver provides a monotonically increasing counter that you can sample to obtain timing
information. The HAL only supports one timestamp driver in the system.

You specify a hardware timer peripheral as the timestamp device by manipulating BSP settings. The
Altera-provided timestamp driver uses the timer that you specify.

If a timestamp driver is present, the following functions are available:

e alt_timestamp_start()
o alt_timestamp()

Calling alt_timestamp_start() starts the counter running. Subsequent calls to alt_timestamp()
return the current value of the timestamp counter. Calling alt_timestamp_start() again resets the
counter to zero. The behavior of the timestamp driver is undefined when the counter reaches (232 - 1).

You can obtain the rate at which the timestamp counter increments by calling the function
alt_timestamp_freq(). This rate is typically the hardware frequency of the Nios II processor system—
usually millions of cycles per second. The timestamp drivers are defined in the alt_timestamp.h header file.

For more information about the use of these functions, refer to the HAL API Reference chapter of the Nios
II Software Developer’s Handbook.

Example 6-9. Using the Timestamp to Measure Code Execution Time

#include <stdio.h>

#include "sys/alt_timestamp.h"
#include "alt_types.h"

int main (void)

alt_u32 timel;
alt u32 time2;
alt_u32 time3;
if (alt_timestamp_start() < 0)

printf (""No timestamp device available\n™);
else

{]

timel = alt_timestamp();

funcl(); /* first function to monitor */
time2 = alt_timestamp();

func2(); /* second function to monitor */
time3 = alt_timestamp();

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Using Flash Devices 6-17

printf ('time in funcl = %u ticks\n",
(unsigned int) (time2 - timel));

printf ("time in func2 = %u ticks\n",
(unsigned int) (time3d - time2));

printf (“"Number of ticks per second = %u\n",
(unsigned int)alt_timestamp_freq());

return O;

}

Related Information
HAL API Reference on page 14-1

Using Flash Devices

The HAL provides a generic device model for nonvolatile flash memory devices. Flash memories use
special programming protocols to store data. The HAL API provides functions to write data to flash
memory. For example, you can use these functions to implement a flash-based file subsystem.

The HAL API also provides functions to read flash, although it is generally not necessary. For most flash
devices, programs can treat the flash memory space as simple memory when reading, and do not need to
call special HAL API functions. If the flash device has a special protocol for reading data, such as the
Altera erasable programmable configurable serial (EPCS) configuration device, you must use the HAL
API to both read and write data.

This section describes the HAL API for the flash device model. The following two APIs provide two
different levels of access to the flash:

« Simple flash access—Functions that write buffers to flash and read them back at the block level. In
writing, if the buffer is less than a full block, these functions erase preexisting flash data above and
below the newly written data.

« Fine-grained flash access—Functions that write buffers to flash and read them back at the buffer level.
In writing, if the buffer is less than a full block, these functions preserve preexisting flash data above
and below the newly written data. This functionality is generally required for managing a file
subsystem.

The API functions for accessing flash devices are defined in sys/alt_flash.h.

For more information about the use of these functions, refer to the HAL API Reference chapter of the Nios
I Software Developer’s Handbook.

For more information about the Common Flash Interface, including the organization of common flash
interface (CFI) erase regions and blocks, refer to the JEDEC website.

For more information about the CFI standard, refer to the JEDEC website and search for document
JESD®68.

Related Information

o HAL API Reference on page 14-1
o JEDEC Website
For more information about the Common Flash Interface standard, including the organization of

common flash interface (CFI) erase regions and blocks, refer to the JEDEC website and search for
document JESD68.

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

http://www.jedec.org
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
6-18 Simple Flash Access 2015.05.14

Simple Flash Access

This interface consists of the functions alt_flash_open_dev(), alt_write_flash(),
alt_read_flash(), and alt_flash_close_dev().

For more information about the use of all of these functions in one code example, refer to the code in the
“Using the Simple Flash API Functions to Access a Flash Device Named /dev/ext/flash” example in the
"Fine-Grained Flash Access" section.

You open a flash device by calling alt_flash_open_dev(), which returns a file handle to a flash device.
This function takes a single argument that is the name of the flash device, as defined in system.h.

After you obtain a handle, you can use the alt_write_flash() function to write data to the flash device.
The prototype is:

int alt_write_flash(alt_flash_fd* fd,
int offset,

const void* src_addr,

int length)

A call to this function writes to the flash device identified by the handle fd. The driver writes the data
starting at offset bytes from the base of the flash device. The data written comes from the address
pointed to by src_addr, and the amount of data written is length.

There is also an alt_read_flash() function to read data from the flash device. The prototype is:

int alt_read_flash(alt_flash_fd* fd,
int offset,

void* dest_addr,

int length)

A call to alt_read_flash() reads from the flash device with the handle fd, offset bytes from the
beginning of the flash device. The function writes the data to location pointed to by dest_addr, and the
amount of data read is Iength. For most flash devices, you can access the contents as standard memory,
making it unnecessary to use alt_read_flash().

The function alt_flash_close_dev() takes a file handle and closes the device. The prototype for this
function is:

void alt_flash_close_dev(alt_flash_fd* fd)

Related Information

Fine-Grained Flash Access on page 6-19

Block Erasure or Corruption

Generally, flash memory is divided into blocks. alt_write_flash() might need to erase the contents of a
block before it can write data to it. In this case, it makes no attempt to preserve the existing contents of the
block. This action can lead to unexpected data corruption (erasure), if you are performing writes that do
not fall on block boundaries. If you wish to preserve existing flash memory contents, use the fine-grained
flash functions. These are discussed in the following section.

The "Example of Writing Flash and Causing Unexpected Data Corruption” table (Table 6-7) shows the
example of an 8-kilobyte (KB) flash memory comprising two 4-KB blocks. First write 5 KB of all 0xAA to
flash memory at address 0x0000, and then write 2 KB of all 0xBB to address 0x1400. After the first write
succeeds (at time t(2)), the flash memory contains 5 KB of 0xAA, and the rest is empty (that is, OXFF).

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2))
2015.05.14 Fine-Grained Flash Access 6-19

Then the second write begins, but before writing to the second block, the block is erased. At this point,
t(3), the flash contains 4 KB of 0xAA and 4 KB of OxFF. After the second write finishes, at time t(4), the 2
KB of OxFF at address 0x1000 is corrupted.

Fine-Grained Flash Access

Three additional functions provide complete control for writing flash contents at the highest granularity:

e alt_get flash_info()
e alt_erase_flash_block()
o alt write_flash_block()

By the nature of flash memory, you cannot erase a single address in a block. You must erase (that is, set to
all ones) an entire block at a time. Writing to flash memory can only change bits from 1 to 0; to change
any bit from 0 to 1, you must erase the entire block along with it.

Therefore, to alter a specific location in a block while leaving the surrounding contents unchanged, you
must read out the entire contents of the block to a buffer, alter the value(s) in the buffer, erase the flash
block, and finally write the whole block-sized buffer back to flash memory. The fine-grained flash access
functions automate this process at the flash block level.

#include <stdio.h>
#include <string.h>
#include "sys/alt_flash.h"
#define BUF_SIZE 1024

int main

{
alt _flash_fd* fd;
int ret_code;
char source[BUF_SIZE];
char dest[BUF_SIZE];
/* Initialize the source buffer to all OxAA */
memset(source, OxAA, BUF_SIZE);
fd = alt_flash_open_dev("'/dev/ext_flash");
it (fdI=NULL)
{
ret_code = alt _write_flash(fd, 0, source, BUF_SIZE);
ifT (ret_code==0)
{
ret_code = alt_read_flash(fd, 0, dest, BUF_SIZE);
if (ret_code==0)
{
/*
* Success.
* At this point, the flash is all OxAA and we
* have read that all back to dest
*/
}
}
alt_flash_close_dev(fd);
}
else
{
printf(*'Cannot open flash device\n™);
}
Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
6-20 alt_get_flash_info() 2015.05.14

return O;

¥

alt_get_flash_info()
alt_get_flash_info() gets the number of erase regions, the number of erase blocks in each region, and
the size of each erase block. The function prototype is as follows:

int alt_get_flash_info (
alt_flash_fd* fd,
flash_region** info,
int* number_of_regions)

If the call is successful, on return the address pointed to by number_of_regions contains the number of
erase regions in the flash memory, and *info points to an array of flash_region structures. This array is
part of the file descriptor.

Table 6-7: Example of Writing Flash and Causing Unexpected Data Corruption

Second Write
Address | Block | pefore After After | After Erasing | After Writing
First Write Erasing Writing Block(s) Data 2
Block(s) Data 1
0x0000 | 1 Unknown | FF AA AA AA
0x0400 | 1 Unknown | FF AA AA AA
0x0800 | 1 Unknown | FF AA AA AA
0x0C00 | 1 Unknown | FF AA AA AA
0x1000 | 2 Unknown | FF AA FF FF©
0x1400 |2 Unknown | FF FF FF BB
0x1800 |2 Unknown | FF FF FF BB
0x1C00 |2 Unknown | FF FF FF FF

The flash_region structure is defined in sys/alt_flash_types.h. The data structure is defined as follows:

typedef struct flash_region
{

int offset; /* Offset of this region from start of the flash */
int region_size; /* Size of this erase region */

int number_of_blocks; /* Number of blocks in this region */

int block_size; /* Size of each block in this erase region */
}flash_region;

With the information obtained by calling alt_get_flash_info(), you are in a position to erase or
program individual blocks of the flash device.

alt_erase_flash()
alt_erase_flash() erases a single block in the flash memory. The function prototype is as follows:

(©) Unintentionally cleared to FF during erasure for second write.

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 alt_write_flash_block() 6-21

int alt_erase_flash_block (alt_flash_fd* fd, int offset, int length)

The flash memory is identified by the handle fd. The block is identified as being offset bytes from the
beginning of the flash memory, and the block size is passed in length.

alt_write_flash_block()
alt_write_flash_block() writes to a single block in the flash memory. The prototype is:

int alt_write_flash_block(alt_flash_fd* fd,
int block_offset,

int data_offset,

const void *data,

int length)

This function writes to the flash memory identified by the handle fd. It writes to the block located
block_offset bytes from the start of the flash device. The function writes length bytes of data from the
location pointed to by data to the location data_offset bytes from the start of the flash device.

Note: These program and erase functions do not perform address checking, and do not verify whether a
write operation spans into the next block. You must pass in valid information about the blocks to
program or erase.

Example 6-11. Using the Fine-Grained Flash Access API Functions

#include <string.h>

#include "sys/alt_flash_h"
#include "stdtypes.h"

#include "system_h"

#define BUF_SIZE 100

int main (void)

{

flash_region* regions;
alt_flash_fd* fd;

int number_of _regions;

int ret_code;

char write_data[BUF_SIZE];

/* Set write_data to all Oxa */
memset(write_data, OxA, BUF_SIZE);
fd = alt_flash_open_dev(EXT_FLASH_NAME);
it (fd)

ret_code = alt_get flash_info(fd, ®ions, &number_of regions);
it (number_of_regions && (regions->offset == 0))

{

/* Erase the first block */

ret_code = alt_erase_flash_block(fd,
regions->offset,
regions->block_size);

if (ret_code == 0) {

/*

* Write BUF_SIZE bytes from write_data 100 bytes to
* the first block of the flash

*/

ret_code = alt_write_flash_block (
fd,

regions->offset,
regions->o0ffset+0x100,

write_data,

BUF_SIZE);

}

}

}

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
6-22 alt_lock_flash() 2015.05.14

return 0O;

}
alt_lock flash()

Prototype
int alt_lock_flash(alt_flash_dev * flash_info,

alt_u32 sectors_to_lock)

Commonly Called By
C/C++ programs

Device drivers

Thread-safe
No.

Available from ISR
No.

Include

<sys/alt_flash_h>

Description

Locking to range of the flash memory sectors, which protected from writing and erasing by passing the
uninteger 32 bits value to the sectors_to_lock argument, where this argument depends on the specific
flash device being used,and this argument value can be found in the flash device datasheet. The flash
devices can be supported are shown as below:

EPCQ16, EPCQ32, EPCQ64, EPCQ128, EPCQ256, N25Q512, EPCQ512, EPCQL512, EPCQL1024

More Micron flash devices will be supported in future, and being updated into this document.

Arguments

« *flash_info: Pointer to general flash device structure.
o sectors_to_locL Block protection bits in EPCQ/QSPI ==>Bit4 | Bit3 | Bit2 | Bitl | Bit0 TB | BP3 | BP2 |
BP1 | BPO

Return

o *0 > Success

« -EINVL > Invalid arguments

o -ETIME > Time out and skipping the looping after 0.7 sec
o -ENOLCK > Sectors lock failed

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Using DMA Devices

Using DMA Devices 6-23

The HAL provides a device abstraction model for direct memory access (DMA) devices. These are
peripherals that perform bulk data transactions from a data source to a destination. Sources and
destinations can be memory or another device, such as an Ethernet connection.

In the HAL DMA device model, there are two categories of DMA transactions: transmit and receive. The
HAL provides two device drivers to implement transmit channels and receive channels. A transmit
channel takes data in a source buffer and transmits it to a destination device. A receive channel receives
data from a device and deposits it in a destination buffer. Depending on the implementation of the

underlying hardware, software might have access to only one of these two endpoints.

Copying data from memory to memory involves both receive and transmit DMA channels simultane-

ously.

Figure 6-2: Three Basic Types of DMA Transactions

- DMA
1. Receiving Data .
Peripheral ; Memor
from a Peripheral " Receive y
Channel
- DMA
2. Transml'Ftlng Data Memory Transmit Peripheral
to a Peripheral o)
Channe!
3.Transferring Data DMA DMA
from Memory to Memory Transmit Receive Memory
Memory Chiannel Clianne!

The API for access to DMA devices is defined in sys/alt_dma.h.

For more information about the use of these functions, refer to the HAL API Reference chapter of the Nios

II Software Developer’s Handbook.

DMA devices operate on the contents of physical memory, therefore when reading and writing data you

must consider cache interactions.

For more information about cache memory, refer to the Cache and Tightly-Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Related Information

« HAL API Reference on page 14-1

« Cache and Tightly-Coupled Memory

Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

6-24 DMA Transmit Channels 2015.05.14

DMA Transmit Channels

DMA transmit requests are queued using a DMA transmit device handle. To obtain a handle, use the
function alt_dma_txchan_open(). This function takes a single argument, the name of a device to use, as
defined in system.h.

Example 6-12. Obtaining a File Handle for a DMA Transmit Device dma_0

#include <stddef.h>
#include "sys/alt_dma.h"
int main (void)

alt_dma_txchan tx;
tx = alt_dma_txchan_open ('/dev/dma_0");
if (tx == NULL)

/* Error */

}

else

/* Success */

}

return 0O;

}

You can use this handle to post a transmit request using alt_dma_txchan_send(). The prototype is:

typedef void (alt_txchan_done)(void* handle);

int alt_dma_txchan_send (alt_dma_txchan dma,
const void* from,

alt_u32 length,

alt_txchan_done* done,

void* handle);

Calling alt_dma_txchan_send() posts a transmit request to channel dma. Argument length specifies the
number of bytes of data to transmit, and argument from specifies the source address. The function returns
before the full DMA transaction completes. The return value indicates whether the request is successfully
queued. A negative return value indicates that the request failed. When the transaction completes, the
user-supplied function done is called with argument handle to provide notification.

Two additional functions are provided for manipulating DMA transmit channels:
alt_dma_txchan_space(), and alt_dma_txchan_ioctl (). The alt_dma_txchan_space() function
returns the number of additional transmit requests that can be queued to the device. The
alt_dma_txchan_ioctl ()function performs device-specific manipulation of the transmit device.

Note: If you are using the Avalon Memory-Mapped® (Avalon-MM®) DMA device to transmit to
hardware (not memory-to-memory transfer), call the alt_dma_txchan_ioctl (Qfunction with the
request argument set to ALT_DMA_TX_ONLY_ON.

For more information, refer to the HAL API Reference chapter of the Nios II Software Developer’s
Handbook.

Related Information
HAL API Reference on page 14-1

DMA Receive Channels

DMA receive channels operate similarly to DMA transmit channels. Software can obtain a handle for a
DMA receive channel using the alt_dma_rxchan_open() function. You can then use the

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 DMA Receive Channels 6-25
alt_dma_rxchan_prepare() function to post receive requests. The prototype for
alt_dma_rxchan_prepare() is:

typedef void (alt_rxchan_done)(void* handle, void* data);
int alt_dma_rxchan_prepare (alt_dma_rxchan dma,

void* data,

alt_u32 length,

alt_rxchan_done* done,

void* handle);

A call to this function posts a receive request to channel dma, for up to Iength bytes of data to be placed at

address data. This function returns before the DMA transaction completes. The return value indicates

whether the request is successfully queued. A negative return value indicates that the request failed. When
the transaction completes, the user-supplied function done() is called with argument handle to provide
notification and a pointer to the receive data.

Certain errors can prevent the DMA transfer from completing. Typically this is caused by a catastrophic

hardware failure; for example, if a component involved in the transfer fails to respond to a read or write

request. If the DMA transfer does not complete (that is, less than length bytes are transferred), function
done() is never called.

Two additional functions are provided for manipulating DMA receive channels:

alt_dma_rxchan_depth() and alt_dma_rxchan_ioctl().

Note: If you are using the Avalon-MM DMA device to receive from hardware (not memory-to-memory
transfer), call the al't_dma_rxchan_ioctl () function with the request argument set to
ALT_DMA_RX_ ONLY_ON.

alt_dma_rxchan_depth() returns the maximum number of receive requests that can be queued to the

device. alt_dma_rxchan_ioctl () performs device-specific manipulation of the receive device.

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include "sys/alt_dma.h"

#include "alt_types.h"

/* flag used to indicate the transaction is complete */

volatile int dma_complete = 0;

/* function that is called when the transaction completes */

void dma_done (void* handle, void* data)

{
dma_complete = 1;
}
int main (void)
{
alt_u8 buffer[1024];
alt _dma_rxchan rx;
/* Obtain a handle for the device */
if ((rx = alt_dma_rxchan_open (*'/dev/dma_0"")) == NULL)
{
printf (“Error: failed to open device\n™);
exit (1);
Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

6-26 Memory-to-Memory DMA Transactions 2015.05.14

}

else

{

/* Post the receive request */
if (alt_dma_rxchan_prepare (rx, buffer, 1024, dma_done, NULL) < 0)
{

printf ("Error: failed to post receive request\n');
exit (1);
}
/* Wait for the transaction to complete */
while (!dma_complete);
printf ("Transaction complete\n');
alt_dma_rxchan_close (rx);

}

return O;

}

Related Information
HAL API Reference on page 14-1

Memory-to-Memory DMA Transactions

#include <stdio.h>

#include <stdlib.h>

#include "sys/alt_dma.h"

#include "'system.h"

static volatile int rx_done = 0;

/*

* Callback function that obtains notification that the data
* is received.*/

static void done (void* handle, void* data)

rx_done++;

}
/*

*/

int main (int argc, char* argv[], char* envp[])

{

int rc;

alt_dma_txchan txchan;

alt_dma_rxchan rxchan;

void* tx_data = (void*) 0x901000; /* pointer to data to send */
void* rx_buffer = (void*) 0x902000; /* pointer to rx buffer */
/* Create the transmit channel */

if ((txchan = alt_dma_txchan_open(*'/dev/dma_0')) == NULL)

printf (“Failed to open transmit channel\n™);
exit (1);

/* Create the receive channel */
if ((rxchan = alt_dma_rxchan_open(*'/dev/dma_0"")) == NULL)

printf ("Failed to open receive channel\n™);
exit (1);
}

/* Post the transmit request */

if ((rc = alt_dma_txchan_send (txchan,
tx _data,

128,

NULL,

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

[;:] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Using Interrupt Controllers 6-27
Null)) < 0)

printf ("Failed to post transmit request, reason = %i\n", rc);
exit (1);

/* Post the receive request */

if ((rc = alt_dma_rxchan_prepare (rxchan,
rx_buffer,

128,

done,

NULL}} < 0)

{

printf ("Failed to post read request, reason = %i\n", rc);
exit (1);

/* wait for transfer to complete */
while (Irx_done);

printf ("Transfer successful!\n');
return O;

}

Using Interrupt Controllers

The HAL supports two types of interrupt controllers:

o The Nios II internal interrupt controller
o An external interrupt controller component

For more information about working with interrupt controllers, refer to the "Exception Handling"
chapter.

Related Information
Exception Handling on page 8-1

Reducing Code Footprint in Embedded Systems

Code size is always a concern for embedded systems developers, because there is a cost associated with the
memory device that stores code. The ability to control and reduce code size is important in controlling
this cost.

The HAL environment is designed to include only those features that you request, minimizing the total
code footprint. If your Nios II hardware system contains exactly the peripherals used by your program,
the HAL contains only the drivers necessary to control the hardware.

The following sections describe options to consider when you need to further reduce code size. The
hello_world_small example project demonstrates the use of some of these options to reduce code size to
the absolute minimum.

Implementing the options in the following sections entails making changes to BSP settings.

For more information about manipulating BSP settings, refer to the “HAL BSP Settings”.

Related Information
HAL BSP Settings on page 6-1

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. L . NII5V2
6-28 Enable Compiler Optimizations 2015.05.14

Enable Compiler Optimizations

To enable compiler optimizations, use the -Os command-line option for the nios2-elf-gcc compiler. The
-0s option sets a compiler optimization level that optimizes for code size, and enables all -02
optimizations that do not increase code size. You can specify this command-line option through a BSP
setting.

With this option turned on, the Nios II compiler compiles code with the maximum optimization
available, for both size and speed.

Note: You must set this option for both the BSP and the application project.

Related Information
Specifying BSP Defaults on page 4-34

Use Reduced Device Drivers

Some devices provide two driver variants, a fast variant and a small variant. The feature sets provided by
these two variants are device specific. The fast variant is full-featured, and the small variant provides a
reduced code footprint.

By default the HAL always uses the fast driver variants. You can select the reduced device driver for all
hardware components, or for an individual component, through HAL BSP settings.

The small footprint option might also affect other peripherals. Refer to each peripheral’s data sheet for
complete details of its driver’s small footprint behavior.

Table 6-8: Altera Peripherals Offering Small Footprint Drivers

Peripheral Small Footprint Behavior

UART Polled operation, rather than IRQ-driven
JTAG UART Polled operation, rather than IRQ-driven

Common flash interface |Driver excluded in small footprint mode
controller

LCD module controller | Driver excluded in small footprint mode

EPCS serial configura- | Driver excluded in small footprint mode
tion device

Reduce the File Descriptor Pool

The file descriptors that access character mode devices and files are allocated from a file descriptor pool.
You can change the size of the file descriptor pool through a BSP setting. The default is 32.

Use /dev/null

At boot time, standard input, standard output, and standard error are all directed towards the null device,
that is, /dev/null. This direction ensures that calls to printf() during driver initialization do nothing and
therefore are harmless. After all drivers are installed, these streams are redirected to the channels
configured in the HAL. The footprint of the code that performs this redirection is small, but you can
eliminate it entirely by selecting nul I for stdin, stdout, and stderr. This selection assumes that you
want to discard all data transmitted on standard out or standard error, and your program never receives

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Use a Smaller File 1/0 Library 6-29

input through stdin. You can control the assignment of stdin, stdout, and stderr channels by

manipulating BSP settings.
Use a Smaller File 1/0 Library

Use the Small newlib C Library

The full newlib ANSI C standard library is often unnecessary for embedded systems. The GNU Compiler
Collection (GCC) provides a reduced implementation of the newlib ANSI C standard library, omitting
features of newl ib that are often superfluous for embedded systems. The small newl ib implementation
requires a smaller code footprint. When you use nios2-elf-gcc at the command line, the -msmallc

command-line option enables the small C library.

You can select the small newlib library through BSP settings.

Table 6-9: Limitations of the Nios Il Small newlib C Library

No floating-point support for printf() family of routines. The
functions listed are implemented, but %f and %g options are not
supported.

asprintf()
fiprintfQ
fprintf()
iprintfQ)
printf(Q)
siprintf()
snprintf()
sprintf()

No floating-point support for vprintf() family of routines. The
functions listed are implemented, but %f and %g options are not
supported.

vasprintf()
vFiprintf(Q)
viprintfQ
vprintf()
vsnprintf()
vsprintf(Q)

No support for scanf() family of routines. The functions listed
are not supported.

fscanf()
scanf()
sscanf()
vfscanf()
vscanf()

vsscanf()

No support for seeking. The functions listed are not supported.

fseek()
ftellQ

Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

6-30 Use the Small newlib C Library 2015.05.14
No support for opening/closing FILE *. Only pre-opened fopen()

stdout, stderr, and stdin are available. The functions listed

are not supported. fclose

fdopen()
fcloseall)
fileno()

No buffering of stdio.h output routines. functions supported with no
buffering:

fiprintfQ
fputc()
fputs(Q
perror()
putc()
putchar()
putsQ)
printf(Q)
functions not supported
setbuf()
setvbuf()

No stdio.h input routines. The functions listed are not fgetc)
supported. getsO
fscanf()
getcQ
getchar()
getsQO

getw()
scanf()

No support for locale. setlocale()

localeconv()

No support for C++, because the functions listed in this table are
not supported.

Note: These functions are a Nios II extension. GCC does not implement them in the small newlib C
library.

Note: The small newlib C library does not support MicroC/OS-II.

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 Use UNIX-Style File I/0 6-31

For more information about the GCC small newlib C library, refer to the newlib documentation installed
with the Nios II EDS. On the Windows Start menu, click Programs > Altera > Nios II > Nios II
Documentation.

Note: The Nios IT implementation of the small newlib C library differs slightly from GCC.

For more information about the differences, refer to the "Limitations of the Nios II Small newlib C
Library" table (Table 6-9).

Use UNIX-Style File I/0
If you need to reduce the code footprint further, you can omit the newlib C library, and use the UNIX-
style APL

For more information, refer to the “UNIX-Style Interface” chapter.

The Nios II EDS provides ANSI C file I/O, in the newlib C library, because there is a per-access perform-
ance overhead associated with accessing devices and files using the UNIX-style file I/O functions. The
ANSI C file I/0 provides buffered access, thereby reducing the total number of hardware I/O accesses
performed. Also the ANSI C API is more flexible and therefore easier to use. However, these benefits are
gained at the expense of code footprint.

Related Information
UNIX-Style Interface on page 6-4

Emulate ANSI C Functions
If you choose to omit the full implementation of newlib, but you need a limited number of ANSI-style
functions, you can implement them easily using UNIX-style functions.

Example 6-15. Unbuffered getchar()

/* getchar: unbuffered single character input */
int getchar (void)
{

char c;
return (read (0, &, 1) == 1) ? (unsigned char) c : EOF;
}

This example is from the book: The C Programming Language, Second Edition, by Brian W. Kernighan
and Dennis M. Ritchie. This standard textbook contains many other useful functions.

Use the Lightweight Device Driver API

The lightweight device driver API allows you to minimize the overhead of accessing device drivers. It has
no direct effect on the size of the drivers themselves, but lets you eliminate driver API features which you
might not need, reducing the overall size of the HAL code.

The lightweight device driver API is available for character-mode devices. The following device drivers
support the lightweight device driver API:

o JTAG UART
o UART
o Optrex 16207 LCD

For these devices, the lightweight device driver API conserves code space by eliminating the dynamic file
descriptor table and replacing it with three static file descriptors, corresponding to stdin, stdout, and
stderr. Library functions related to opening, closing, and manipulating file descriptors are unavailable,

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

6-32 Use the Minimal Character-Mode API 2015.05.14

but all other library functionality is available. You can refer to stdin, stdout, and stderr as you would to
any other file descriptor. You can also refer to the following predefined file numbers:

#define STDIN O
#define STDOUT 1
#define STDERR 2

This option is appropriate if your program has a limited need for file I/O. The Altera host-based file
system and the Altera read-only zip file system are not available with the reduced device driver API. You
can select the reduced device drivers through BSP settings.

By default, the lightweight device driver API is disabled.

For more information about the lightweight device driver API, refer to the Developing Device Drivers for
the Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Use the Minimal Character-Mode API

If you can limit your use of character-mode I/O to very simple features, you can reduce code footprint by
using the minimal character-mode API. This API includes the following functions:

o alt printfQ
e alt_putchar(Q
o alt_putstr()
e alt_getchar()

These functions are appropriate if your program only needs to accept command strings and send simple
text messages. Some of them are helpful only in conjunction with the lightweight device driver API.

For more information, refer to the “Use the Lightweight Device Driver API” chapter.
To use the minimal character-mode API, include the header file sys/alt_stdio.h.

The following sections outline the effects of the functions on code footprint.

Related Information
Use the Lightweight Device Driver API on page 6-31

alt_printf()
This function is similar to printf(), but supports only the %c %s, %x, and %% substitution strings.
alt_printf() takes up substantially less code space than printf(), regardless whether you select the
lightweight device driver API. alt_printf() occupies less than 1 KBKB with compiler optimization level
-02.

alt_putchar()
Equivalent to putchar(). In conjunction with the lightweight device driver API, this function further
reduces code footprint. In the absence of the lightweight API, it calls putchar().

alt_putstr()
Similar to puts(), except that it does not append a newline character to the string. In conjunction with
the lightweight device driver API, this function further reduces code footprint. In the absence of the
lightweight API, it calls puts().

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 alt_getchar() 6-33

alt_getchar()
Equivalent to getchar (). In conjunction with the lightweight device driver API, this function further
reduces code footprint. In the absence of the lightweight API, it calls getchar().

For more information about the minimal character-mode functions, refer to the "HAL API Reference"
chapter.

Related Information
HAL API Reference on page 14-1

Eliminate Unused Device Drivers

If a hardware device is present in the system, by default the Nios II development flows assume the device
needs drivers, and configure the HAL BSP accordingly. If the HAL can find an appropriate driver, it
creates an instance of this driver. If your program never actually accesses the device, resources are being
used unnecessarily to initialize the device driver.

If the hardware includes a device that your program never uses, consider removing the device from the
hardware. This reduces both code footprint and FPGA resource usage.

However, there are cases when a device must be present, but runtime software does not require a driver.
The most common example is flash memory. The user program might boot from flash, but not use it at
runtime; thus, it does not need a flash driver.

You can selectively omit any individual driver, select a specific driver version, or substitute your own
driver.

For more information about controlling driver configurations, refer to the "Nios II Software Build Tools"
chapter.

Another way to control the device driver initialization process is to use the free-standing environment.

For more information, refer to the “Boot Sequence and Entry Point” chapter.

Related Information

+ Boot Sequence and Entry Point on page 6-34
 Nios II Software Build Tools on page 4-1
» Boot Sequence and Entry Point on page 6-34

Eliminate Unneeded Exit Code
The HAL calls the exit() function at system shutdown to provide a clean exit from the program. exit()
flushes all of the C library internal I/O buffers and calls any C++ functions registered with atexit(). In

particular, exit() is called on return from main(). Two HAL options allow you to minimize or eliminate
this exit code.

Eliminate Clean Exit
To avoid the overhead associated with providing a clean exit, your program can use the function _exit()
in place of exit(). This function does not require you to change source code. You can select the _exit()
function through a BSP setting.

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
6-34 Eliminate All Exit Code 2015.05.14

Eliminate All Exit Code
Many embedded systems never exit at all. In such cases, exit code is unnecessary. You can eliminate all
exit code through a BSP setting.

Note: If you enable this option, ensure that your main() function (or alt_main() function) does not
return.

Turn off C++ Support

By default, the HAL provides support for C++ programs, including default constructors and destructors.
You can disable C++ support through a BSP setting.

Boot Sequence and Entry Point

Normally, your program’s entry point is the function main(). There is an alternate entry point,
alt_main(), that you can use to gain greater control of the boot sequence. The difference between
entering at main() and entering at alt_main() is the difference between hosted and free-standing
applications.

Hosted Versus Free-Standing Applications

The ANSI C standard defines a hosted application as one that calls main() to begin execution. At the start
of main(), a hosted application presumes the runtime environment and all system services are initialized
and ready to use. This is true in the HAL environment. If you are new to Nios II programming, the HAL’s
hosted environment helps you come up to speed more easily, because you need not consider what devices
exist in the system or how to initialize each one. The HAL initializes the whole system.

The ANSI C standard also provides for an alternate entry point that avoids automatic initialization, and
assumes that the Nios II programmer initializes any needed hardware explicitly. The alt_main() function
provides a free-standing environment, giving you complete control over the initialization of the system.
The free-standing environment places on the programmer the responsibility to initialize any system
features used in the program. For example, calls to printf() do not function correctly in the free-
standing environment, unless alt_main() first instantiates a character-mode device driver, and redirects
stdout to the device.

Note: Using the free-standing environment increases the complexity of writing Nios II programs,
because you assume responsibility for initializing the system.

For more information about reducing code footprint, refer to and use the suggestions described in the
“Reducing Code Footprint in Embedded Systems” chapter.

Note: It is easier to reduce the HAL BSP footprint by using BSP settings, than to use the free-standing
mode.

The Nios II EDS provides examples of both free-standing and hosted programs.

Related Information

Reducing Code Footprint in Embedded Systems on page 6-27

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Boot Sequence for HAL-Based Programs 6-35

Boot Sequence for HAL-Based Programs

System Initialization Code Boot Sequence
The HAL provides system initialization code in the C runtime library (crt0.S). This code performs the
following boot sequence:

o Flushes the instruction and data cache.
« Configures the stack pointer.
« Configures the global pointer register.

o Initializes the block started by symbol (BSS) region to zeroes using the linker-supplied symbols
__bss_startand __bss_end. These are pointers to the beginning and the end of the BSS region.

o If there is no boot loader present in the system, copies to RAM any linker section whose run address is
in RAM, such as .rwdata, .rodata, and .exceptions.

For more information, refer to Global Pointer Register.
o Callsalt_mainQ.

Related Information
Global Pointer Register on page 6-39

Default Implementation Steps
The HAL provides a default implementation of the alt_main() function, which performs the following
steps:

o Calls the alt_irg_init() function, located in alt_sys_init.c. alt_irq_init() initializes the
hardware interrupt controller. The Nios II development flow creates the file alt_sys_init.c for each HAL
BSP.

o Calls ALT_OS_INIT(Q) to perform any necessary operating system specific initialization. For a system
that does not include an operating system (OS) scheduler, this macro has no effect.

o Ifyou are using the HAL with an operating system, initializes the alt_fd_list_lock semaphore,
which controls access to the HAL file systems.

+ Enables interrupts.

o Calls the alt_sys_init() function, also located in alt_sys_init.c. al t_sys_init() initializes all
device drivers and software packages in the system.

o Redirects the C standard I/O channels (stdin, stdout, and stderr) to use the appropriate devices.

+ Calls the C++ constructors, using the _do_ctors() function.

« Registers the C++ destructors to be called at system shutdown.

o CallsmainQ.

« Calls exit(), passing the return code of main() as the input argument for exit().

alt_main.c, installed with the Nios II EDS, provides this default implementation. The SBT copies alt_main.c
to your BSP directory.

Customizing the Boot Sequence

You can provide your own implementation of the start-up sequence by simply defining alt_main() in
your Nios II project. This gives you complete control of the boot sequence, and allows you to selectively
enable HAL services. If your application requires an alt_main() entry point, you can copy the default
implementation as a starting point and customize it to your needs.

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
6-36 Memory Usage 2015.05.14
Function alt_main() calls function main(). After main() returns, the default alt_main() enters an
infinite loop. Alternatively, your custom alt_main() might terminate by calling exit(). Do not use a
return statement.

The following line of code is the prototype for alt_main():
void alt_main (void)

The HAL build environment includes mechanisms to override default HAL BSP code. This lets you
override boot loaders, as well as default device drivers and other system code, with your own implementa-
tion.

alt_sys_init.c is a generated file, which you must not modify. However, the Nios II SBT enables you to
control the generated contents of alt_sys_init.c. To specify the initialization sequence in alt_sys_init.c, you
manipulate the auto_initialize and alt_sys_init_priority properties of each driver, using the
set_sw_property Tcl command.

For more information about generated files and how to control the contents of alt_sys_init.c, refer to the
"Nios II Software Build Tools" chapter.

For more information about alt_sys_init.c, refer to the "Developing Device Drivers for the Hardware
Abstraction Layer" chapter.

For more information about the set_sw_property Tcl command, refer to the "Nios II Software Build
Tools" chapter.

Related Information

o Nios II Software Build Tools on page 4-1
For more information about generated files and how to control the contents of alt_sys_init.c; and for
more information about the set_sw_property Tcl command.

o Developing Device Drivers for the Hardware Abstraction Layer
For more information about alt_sys_init.c.

Memory Usage

This section describes how the HAL uses memory and arranges code, data, stack, and other logical
memory sections, in physical memory.

Memory Sections

By default, HAL-based systems are linked using a generated linker script that is created by the Nios II
SBT. This linker script controls the mapping of code and data to the available memory sections. The
autogenerated linker script creates standard code and data sections (. text, .rodata, .rwdata, and .bss),
plus a section for each physical memory device in the system. For example, if a memory component
named sdram is defined in the system.h file, there is a memory section named .sdram.

The memory devices that contain the Nios II processor’s reset and exception addresses are a special case.
The Nios II tools construct the 32-byte .entry section starting at the reset address. This section is reserved
exclusively for the use of the reset handler. Similarly, the tools construct a .exceptions section, starting at
the exception address.

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Assigning Code and Data to Memory Partitions 6-37

In a memory device containing the reset or exception address, the linker creates a normal (nonreserved)
memory section above the .entry or .exceptions section. If there is a region of memory below the .entry
or .exceptions section, it is unavailable to the Nios II software.

Assigning Code and Data to Memory Partitions

This section describes how to control the placement of program code and data in specific memory
sections. In general, the Nios II development flow specifies a sensible default partitioning. However, you
might wish to change the partitioning in special situations.

For example, to enhance performance, it is a common technique to place performance-critical code and
data in RAM with fast access time. It is also common during the debug phase to reset (that is, boot) the
processor from a location in RAM, but then boot from flash memory in the released version of the

software. In these cases, you must specify manually which code belongs in which section.

Figure 6-3: HAL Link Map - Unavailable Memory Region Below the .exceptions Section

Physical HAL Memory
Memory Sections
.entry
ext_flash .ext_flash
(unused)
sdram
.exceptions
text
odata
wdata
.bss
.sdram
ext_ram .ext_ram
epcs_controller | .epcs_controller

Simple Placement Options

The reset handler code is always placed at the base of the .reset partition. The general exception funnel
code is always the first code in the section that contains the exception address. By default, the remaining
code and data are divided into the following output sections:

Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
6-38 Advanced Placement Options 2015.05.14
o _text—All remaining code
o _rodata—The read-only data
o .rwdata—Read-write data
o .bss—Zero-initialized data

You can control the placement of .text, .rodata, .rwdata, and all other memory partitions by
manipulating BSP settings.

For more information about how to control BSP settings, refer to the “HAL BSP Settings” chapter.

The Nios II BSP Editor is a very convenient way to manipulate the linker’s memory map. The BSP Editor
displays memory section and region assignments graphically, allowing you to see overlapping or unused
sections of memory. The BSP Editor is available either through the Nios II SBT for Eclipse, or at the
command line of the Nios II SBT.

For more information, refer to the "Getting Started from the Command Line" chapter.

Related Information

o HAL BSP Settings on page 6-1
+ Getting Started from the Command Line on page 3-1

Advanced Placement Options
In your program source code, you can specify a target memory section for each piece of code. In C or C+
+, you can use the section attribute. This attribute must be placed in a function prototype; you cannot
place it in the function declaration itself.

Example 6-16. Manually Assigning C Code to a Specific Memory Section

/* data should be initialized when using the section attribute */
int foo _ attribute__ ((section (".ext_ram.rwdata'))) = O;

void bar (void) _ attribute__ ((section (".sdram.txt'™)));

void bar (void)

foo++;

}
Note: A variable foo is placed in the memory named ext_ram, and the function bar() is placed in the

memory named sdram.

In assembly you do this using the .section directive. For example, all code after the following line is
placed in the memory device named ext_ram:

.section .ext_ram.txt

Note: The section names ext_ram and sdram are examples. You need to use section names
corresponding to your hardware. When creating section names, use the following extensions:

o .txt for code: for example, .sdram. txt

« _rodata for read-only data: for example, .cfi_flash.rodata
« _rwdata for read-write data: for example, .ext_ram.rwdata

For more information about the use of these features, refer to the GNU compiler and assembler
documentation. This documentation is installed with the Nios IT EDS. To find it, open the Nios
IT EDS documentation launchpad, scroll down to Software Development, and click Using the
GNU Compiler Collection (GCC).

Note: A powerful way to manipulate the linker memory map is by using the Nios II BSP Editor. With the
BSP Editor, you can assign linker sections to specific physical regions, and then review a graphical

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Placement of the Heap and Stack 6-39

representation of memory showing unused or overlapping regions. You start the BSP Editor from
the Nios II Command Shell. For details about using the BSP Editor, refer to the editor’s tool tips.

Placement of the Heap and Stack

By default, the heap and stack are placed in the same memory partition as the .rwdata section. The stack
grows downwards (toward lower addresses) from the end of the section. The heap grows upwards from
the last used memory in the .rwdata section. You can control the placement of the heap and stack by
manipulating BSP settings.

By default, the HAL performs no stack or heap checking. This makes function calls and memory
allocation faster, but it means that malloc() (in C) and new (in C++) are unable to detect heap
exhaustion. You can enable run-time stack checking by manipulating BSP settings. With stack checking
on, malloc() and new() can detect heap exhaustion.

To specify the heap size limit, set the preprocessor symbol ALT_MAX_HEAP_BYTES to the maximum heap
size in decimal. For example, the preprocessor argument -DALT_MAX_HEAP_BYTES=1048576 sets the heap
size limit to 0x100000. You can specify this command-line option through a BSP setting.

For more information about manipulating BSP settings, refer to the “HAL BSP Settings” chapter.

Stack checking has performance costs. If you choose to leave stack checking turned off, you must code
your program so as to ensure that it operates within the limits of available heap and stack memory.

For more information about selecting stack and heap placement, and setting up stack checking, refer to
the "Nios II Software Build Tools" chapter.

For more information about how to control BSP settings, refer to the “HAL BSP Settings” chapter.

Related Information

o HAL BSP Settings on page 6-1
« Nios II Software Build Tools Reference on page 15-1
+ Nios I Embedded Software Projects on page 4-4

Global Pointer Register

The global pointer register enables fast access to global data structures in Nios II programs. The Nios II
compiler implements the global pointer, and determines which data structures to access with it. You do
not need to do anything unless you want to change the default compiler behavior.

The global pointer register can access a single contiguous region of 64 KB. To avoid overflowing this
region, the compiler only uses the global pointer with small global data structures. A data structure is
considered “small” if its size is less than or equal to a specified threshold. By default, this threshold is 8
bytes.

The small data structures are allocated to the small global data sections, .sdata, .sdata2, .sbss,
and .sbss2. The small global data sections are subsections of the .rwdata and .bss sections.

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
6-40 Global Pointer Register 2015.05.14

Figure 6-4: Small Global Data Sections

RAM *

sdata > Iwdata

shss2 > ‘bss

If the total size of the small global data structures is more than 64 KB, these data structures overflow the
global pointer region. The linker produces an error message saying ""Unable to reach <variable
name> ... Ffrom the global pointer ... because the offset ... is out of the allowed
range, -32678 to 32767."

You can fix this by using fewer globals or using the following compiler options:

« -mno-gpopt -- Do not generate global pointer accesses. You may need to specify this switch explicitly
when building programs that include large amounts of small data structures.

e -G <size>-- This option sets the threshold size. For example, -G 4 restricts global pointer usage to
data structures 4 bytes long or smaller. Reducing the global pointer threshold reduces the size of the
small global data sections. <size> is expressed in decimal. You can specify this compiler option
through a project setting. You must set this option to the same value for both the BSP and the applica-
tion project.

For information about manipulating project settings, refer to "HAL BSP Settings".

Related Information

o HAL BSP Settings on page 6-1
» GCC Nios II Options

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

https://gcc.gnu.org/onlinedocs/gcc/Nios-II-Options.html#Nios-II-Options
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Boot Modes 6-41

Boot Modes

The processor’s boot memory is the memory that contains the reset vector. This device might be an
external flash or an Altera EPCS serial configuration device, or it might be an on-chip RAM. Regardless of
the nature of the boot memory, HAL-based systems are constructed so that all program and data sections
are initially stored in it. The HAL provides a small boot loader program that copies these sections to their
run time locations at boot time. You can specify run time locations for program and data memory by
manipulating BSP settings.

If the runtime location of the .text section is outside of the boot memory, the Altera flash programmer
places a boot loader at the reset address. This boot loader is responsible for loading all program and data
sections before the call to _start. When booting from an EPCS device, this loader function is provided by
the hardware.

However, if the runtime location of the .text section is in the boot memory, the system does not need a
separate loader. Instead the _reset entry point in the HAL executable program is called directly. The
function _reset initializes the instruction cache and then calls _start. This initialization sequence lets
you develop applications that boot and execute directly from flash memory.

When running in this mode, the HAL executable program must take responsibility for loading any
sections that require loading to RAM. The .rwdata, .rodata, and .exceptions sections are loaded before
the call to alt_main(), as required. This loading is performed by the function alt_load(). To load any
additional sections, use the alt_load_section() function.

For more information about alt_load_section(), refer to the HAL API Reference chapter of the Nios II
Software Developer’s Handbook.

Related Information
HAL API Reference on page 14-1

Working with HAL Source Files

You might wish to view files in the HAL, especially header files, for reference. This section describes how
to find and use HAL source files.

Finding HAL Files

You determine the location of HAL source files when you create the BSP. HAL source files (and other BSP
files) are copied to the BSP directory.

For more information, refer to "Nios II Software Build Tools Reference" of the Nios II Software Developer’s
Handbook.

Related Information

 Nios II Software Build Tools Reference on page 15-1
+ Nios II Embedded Software Projects on page 4-4

Overriding HAL Functions

HAL source files are copied to your BSP directory when you create your BSP. If you regenerate a BSP, any
HAL source files that differ from the installation files are copied. Avoid modifying BSP files. To override
default HAL code, use BSP settings, or custom device drivers or software packages.

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. NII5V2
6-42 Document Revision History for Developing Programs Using the Hardware... 2015.05.14

For more information about what happens when you regenerate a BSP, refer to “Revising your BSP” in
the "Nios II Software Build Tools" chapter of the Nios II Software Developer’s Handbook.

Note: Avoid modifying HAL source files. If you modify a HAL source file, you cannot regenerate the BSP
without losing your changes. This makes it difficult to keep the BSP coordinated with changes to
the underlying hardware system.

For more information, refer to “Nios II Embedded Software Projects” in the "Nios II Software Build
Tools" chapter of the Nios II Software Developer’s Handbook.

Related Information

« Nios II Software Build Tools Reference on page 15-1
+ Nios II Embedded Software Projects on page 4-4

Document Revision History for Developing Programs Using the
Hardware Abstraction Layer

I I

May 2015 2015.05.14 |, Maintenance release.
« Renamed to Nios II Classic.
January 2014 13.1.0 Removed “Nios II Development Flows” section.
May 2011 11.0.0 Introduction of Qsys system integration tool
February 2011 10.1.0 Removed “Referenced Documents” section.
July 2010 10.0.0 Maintenance release.
November 2009 9.1.0 o Introduced external interrupt controller.
 BSP generation file-copy behavior changed.
o Described alt_irg_init() function.
o Inserted host-based file system description.
» Removed IDE-specific information.
» Updated information about overriding HAL functions.
March 2009 9.0.0 « Reorganized and updated information and terminology to clarify
role of Nios II Software Build Tools.
» Add documentation for Altera logging.
+ Corrected minor typographical errors.
May 2008 8.0.0 Maintenance release.
October 2007 7.2.0 + Added documentation for HAL program development with the
Nios II Software Build Tools.
+ Additional documentation of alarms functions.
o Correct alt_erase_flash_block() example.
Altera Corporation Developing Programs Using the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Document Revision History for Developing Programs Using the Hardware... 6-43

I I

May 2007 7.1.0 « Added table of contents to “Introduction” section.
o Added Referenced Documents section.
March 2007 7.0.0 Maintenance release.
November 2006 6.1.0 « Program never exits system library option.
+ Support C++ system library option.
« Lightweight device driver API system library option.
o Minimal character-mode API.
May 2006 6.0.0 o Revised text on instruction emulation.
+ Added section on global pointers.
October 2005 5.1.0 e Added alt_64 and alt_u64 types to Table 6-1 .
o Made changes to section Placement of the Heap and Stack .
May 2005 5.0.0 Added alt_load_section() function information.
December 2004 1.2 « Added boot modes information.
« Amended compiler optimizations.
« Updated Reducing Code Footprint section.
September 2004 1.1 Corrected DMA receive channels example code.
May 2004 1.0 Initial release.

Developing Programs Using the Hardware Abstraction Layer

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Developing Device Drivers for the Hardware
Abstraction Layer 7

2015.05.14

NII5V2 @ Subscribe C] Send Feedback

Embedded systems typically have application-specific hardware features that require custom device
drivers. This chapter describes how to develop device drivers and integrate them with the hardware
abstraction layer (HAL).

This chapter also describes how to develop software packages for use with HAL board support packages
(BSPs). The process of integrating a software package with the HAL is nearly identical with the process for
integrating a device driver.

Confine direct interaction with the hardware to device driver code. In general, the best practice is to keep
most of your program code free of low-level access to the hardware. Wherever possible, use the high-level
HAL application program interface (API) functions to access hardware. This makes your code more
consistent and more portable to other Nios® II systems that might have different hardware configurations.

When you create a new driver, you can integrate the driver with the HAL framework at one of the
following two levels:

o Integration in the HAL API
o Peripheral-specific API

Note: As an alternative to creating a driver, you can compile the device-specific code as a user library,
and link it with the application. This approach is workable if the device-specific code is
independent of the BSP, and does not require any of the extra services offered by the BSP, such as
the ability to add definitions to the system.h file.

Driver Integration in the HAL API

Integration in the HAL API is the preferred option for a peripheral that belongs to one of the HAL generic
device model classes, such as character-mode or direct memory access (DMA) devices.

For integration in the HAL API, you write device access functions as specified in this chapter, and the
device becomes accessible to software through the standard HAL API. For example, if you have a new
LCD screen device that displays ASCII characters, you write a character-mode device driver. With this
driver in place, programs can call the familiar printf() function to stream characters to the LCD screen.

Related Information

Overview of the Hardware Abstraction Layer on page 5-1
For more information about the descriptions of the HAL generic device model classes.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2%202015.05.14)%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

NII5V2

7-2 The HAL Peripheral-Specific API 2015.05.14

The HAL Peripheral-Specific API

If the peripheral does not belong to one of the HAL generic device model classes, you need to provide a
device driver with an interface that is specific to the hardware implementation. In this case, the API to the
device is separate from the HAL API. Programs access the hardware by calling the functions you provide,
not the HAL APIL

The up-front effort to implement integration in the HAL API is higher, but you gain the benefit of the
HAL and C standard library API to manipulate devices.

For details about integration in the HAL API, refer to the “Integrating a Device Driver in the HAL”
chapter.

All the other sections in this chapter apply to integrating drivers in the HAL API and creating drivers with
a peripheral-specific APL

Note: Although C++ is supported for programs based on the HAL, HAL drivers can not be written in C+
+. Restrict your driver code to either C or assembly language. C is preferred for portability.

Related Information

Integrating a Device Driver in the HAL on page 7-15

Preparing for HAL Driver Development
This chapter assumes that you are familiar with C programming for the HAL.

For more information, refer to the "Developing Programs Using the Hardware Abstraction Layer" chapter
of the Nios II Software Developer’s Handbook.

Note: This chapter uses the variable <Altera installation> to represent the location where the Altera®
Complete Design Suite is installed. On a Windows system, by default, that location is c:/altera/
<version number>.

Related Information

Developing Programs Using the Hardware Abstraction Layer on page 6-1

Development Flow for Creating Device Drivers

The steps to develop a new driver for the HAL depend on your device details. However, the following
generic steps apply to all device classes.

1. Create the device header file that describes the registers. This header file might be the only interface
required.

Implement the driver functionality.
Test from main(Q).
Proceed to the final integration of the driver in the HAL environment.

AN

Integrate the device driver in the HAL framework.

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . .
2015.05.14 Nios Il Hardware Design Concepts 7-3

Nios Il Hardware Design Concepts

This section discusses some basic concepts behind the Altera Qsys and SOPC Builder system integration
tools. These concepts can enhance your understanding of the driver development process. You do not
normally need to use a system integration tool when developing Nios II device drivers.

The Relationship Between the .sopcinfo File and system.h

The system.h header file provides a complete software description of the Nios II system hardware. The
system.h system description is a fundamental part of developing drivers. Because drivers interact with
hardware at the lowest level, it is worth understanding the relationship between the .sopcinfo file and
system.h.

The system generation tool, Qsys or SOPC Builder, generates the Nios II processor system hardware.
Hardware designers use the system generation tool to specify the architecture of the Nios II processor
system and integrate the necessary peripherals and memory. Therefore, the definitions in system.h, such as
the name and configuration of each peripheral, are a direct reflection of design choices made in the
system generation tool. These design choices are encapsulated in the .sopcinfo file. system.h is derived
from the .sopcinfo file.

For more information about the system.h header file, refer to the "Developing Programs Using the
Hardware Abstraction Layer" chapter.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Using the System Generation Tool to Optimize Hardware

If you find less-than-optimal definitions in system.h, remember that you can modify the contents of
system.h by changing the underlying hardware with the system generation tool, Qsys or SOPC Builder.
Before you write a device driver to accommodate imperfect hardware, it is worth considering whether the
hardware can be improved easily with the system generation tool.

Components, Devices, and Peripherals

The Qsys and SOPC Builder system generation tools use the term “component” to describe hardware
modules included in the system. In the context of Nios II software development, components are devices,
such as peripherals or memories. In the following sections, “component” is used interchangeably with
“device” and “peripheral” when the context is closely related to the system generation tool.

Accessing Hardware

Software accesses the hardware with macros that abstract the memory-mapped interface to the device.
This section describes the macros that define the hardware interface for each device.

All components provide a dlrectory that defines the device hardware and software. For example, each
component provided in the Quartus” II software has its own directory in the <Altera installation>/ip/
altera/sopc_builder_ip directory. Many components provide a header file that defines their hardware
interface. The header file is named <component name>_regs.h, included in the inc subdirectory for the
specific component. For example, the Altera-provided JTAG UART component defines its hardware
interface in the file <Altera installation>/ip/altera/sopc_builder_ip/altera_avalon_jtag_uart/inc/altera_avalon_
jtag_uart_regs.h.

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. NII5V2
7-4 Accessing Hardware 2015.05.14

The _regs.h header file defines the following access macros for the component:

« Register access macros that provide a read and/or write macro for each register in the component that
supports the operation. The macros are:

e 10RD_<component name>_<register name> (<component base address>)
e I0WR_<component name>_<register name> (<component base address>, <data>)

For example, altera_avalon_jtag_uart_regs.h defines the following macros:
o 10RD_ALTERA_AVALON_JTAG_UART_DATA(Q)
o 10WR_ALTERA AVALON_JTAG_UART DATAQ)
« 10RD_ALTERA_AVALON_JTAG_UART_CONTROL(Q)
e IOWR_ALTERA_AVALON_JTAG_UART_CONTROLQ)

o Register address macros that return the physical address for each register in a component. The address
register returned is the component’s base address + the specified register offset value. These macros are
named IOADDR_<component name>_<register name> (<component base address>).

For example, altera_avalon_jtag_uart_regs.h defines the following macros:

o 10ADDR_ALTERA_AVALON_JTAG_UART DATAQ)
o 10ADDR_ALTERA_AVALON_JTAG_UART_CONTROL()

Use these macros only as parameters to a function that requires the specific address of a data source
or destination. For example, a routine that reads a stream of data from a particular source register
in a component might require the physical address of the register as a parameter.
« Bit-field masks and offsets that provide access to individual bit-fields in a register. These macros have
the following names:

« <component name>_<register name>_<name of field>_MSK—A bit-mask of the field
« <component name>_<register name>_<name of field>_OFST—The bit offset of the start of the field

For example, ALTERA_AVALON_UART_STATUS_PE_MSK and ALTERA_AVALON_UART_STATUS_PE_OFST
access the pe field of the status register.

Access a device’s registers only with the macros defined in the _regs.h file. You must use the register access
functions to ensure that the processor bypasses the data cache when reading and or writing the device. Do
not use hard-coded constants, because they make your software susceptible to changes in the underlying
hardware.

If you are writing the driver for a completely new hardware device, you must prepare the _regs.h header
file.

For more information about a complete example of the _regs.h file, refer to the component directory for
any of the Altera-supplied components, such as <Altera installation>/ip/sopc_builder_ip/
altera_avalon_jtag uart/inc.

Related Information

o AN 459: Guidelines for Developing a Nios II HAL Device Driver
For more information about developing device drivers for HAL BSPs.

« Cache and Tightly-Coupled Memory
For more information about the effects of cache management and device access.

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

http://www.altera.com/literature/an/an459.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . . .
2015.05.14 Creating Embedded Drivers for HAL Device Classes 7-5

Creating Embedded Drivers for HAL Device Classes

The HAL supports a number of generic device model classes. By writing a device driver as described in
this section, you describe to the HAL an instance of a specific device that falls into one of its known device
classes. This section defines a consistent interface for driver functions so that the HAL can access the
driver functions uniformly.

The following sections define the API for the following classes of devices:

+ Character-mode devices

o File subsystems

« DMA devices

« Timer devices used as system clock

o Timer devices used as timestamp clock
+ Flash memory devices

o Ethernet devices

The following sections describe how to implement device drivers for each class of device, and how to
register them for use in HAL-based systems.

Related Information

Overview of the Hardware Abstraction Layer on page 5-1
Character-Mode Device Drivers

Create a Device Instance

For a device to be made available as a character mode device, it must provide an instance of the alt_dev
structure. The alt_dev structure, defined in <Nios II EDS install path>/components/altera_hal/HAL/inc/sys/
alt_dev.h, is essentially a collection of function pointers. These functions are called in response to applica-
tion accesses to the HAL file system. For example, if you call the function open() with a file name that
corresponds to this device, the result is a call to the open() function provided in this structure.

Example 7-1. alt_dev Structure

typedef struct {

alt_llist llist; /* for internal use */

const char* name;

int (fopen) (alt_fd* fd, const char* name, int flags, int mode);
int (*close) (alt_fd* fd);

int (*read) (alt_fd* fd, char* ptr, int len);

int (*write) (alt_fd* fd, const char* ptr, int len);

int (*Iseek) (alt_fd* fd, int ptr, int dir);

int (*fstat) (alt_fd* fd, struct stat* buf);

int (*ioctl) (alt_fd* fd, int req, void* arg);

} alt_dev;

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

- NII5V2
7-6 Modifying the Global Error Status, errno 2015.05.14

For more information about open(), close(), read(), write(), Iseek(), fstat(), and ioctl (), refer to
the "HAL API Reference" chapter of the Nios II Software Developer’s Handbook.

Related Information
HAL API Reference on page 14-1

Modifying the Global Error Status, errno
None of these functions directly modifies the global error status, errno. Instead, the return value is the
negation of the appropriate error code provided in errno.h.

For example, the ioctl () function returns -ENOTTY if it cannot handle a request rather than set errno to
ENOTTY directly. The HAL system routines that call these functions ensure that errno is set accordingly.

The function prototypes for these functions differ from their application level counterparts in that they
each take an input file descriptor argument of type alt_fd* rather than int.

A new alt_fd structure is created on a call to open(). This structure instance is then passed as an input
argument to all function calls made for the associated file descriptor.

The following code defines the alt_fd structure:

typedef struct
{

alt _dev* dev;
void* priv;
int fd_flags;
} alt_fd;

where:

« dev is a pointer to the device structure for the device being used.

o Td_flags is the value of Flags passed to open() -

o privisareserved, implementation-dependent argument, defined by the driver. If the driver requires
any special, non-HAL-defined values to be maintained for each file or stream, you can store them in a
data structure, and use priv maintains a pointer to the structure. The HAL ignores priv.

Allocate storage for the data structure in your open() function (pointed to by the alt_dev structure).
Free the storage in your close() function.

Note: To avoid memory leaks, ensure that the close() function is called when the file or stream is no
longer needed.

Default Behavior for Functions Defined in alt_dev
A driver is not required to provide all of the functions in the alt_dev structure. If a given function
pointer is set to NULL, a default action is used instead.

Table 7-1: Default Behavior for Functions Defined in alt_dev

m Default Behavior

open Calls to open() for this device succeed, unless the device was
previously locked by a call to ioctl () with req = TIOCEXCL.

close Calls to close() for a valid file descriptor for this device always
succeed.
read Calls to read() for this device always fail.
Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14 Register a Character Device 7-7
I
write Calls to write() for this device always fail.
Iseek Calls to I1seek() for this device always fail.
fstat The device identifies itself as a character mode device.
ioctl ioctl () requests that cannot be handled without reference to the
device fail.

In addition to the function pointers, the alt_dev structure contains two other fields: 11ist and name.
Ilist is for internal use, and must always be set to the value ALT_LLIST_ENTRY. name is the location of the
device in the HAL file system and is the name of the device as defined in system.h.

Register a Character Device
After you create an instance of the alt_dev structure, the device must be made available to the system by
registering it with the HAL and by calling the following function:

int alt_dev_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register. The return value is
zero upon success. A negative return value indicates that the device cannot be registered.

After a device is registered with the HAL file system, you can access it through the HAL API and the ANSI
C standard library. The node name for the device is the name specified in the alt_dev structure.

For more information, refer to the "Developing Programs Using the Hardware Abstraction Layer" chapter
of the Nios II Software Developer’s Handbook.

Related Information
Developing Device Drivers for the Hardware Abstraction Layer

File Subsystem Drivers

A file subsystem device driver is responsible for handling file accesses beneath a specified mount point in
the global HAL file system.

Create a Device Instance
Creating and registering a file system is very similar to creating and registering a character-mode device.
To make a file system available, create an instance of the alt_dev structure.

For more information, refer to the “Character-Mode Device Drivers” chapter.

The only distinction is that the name field of the device represents the mount point for the file subsystem.
Of course, you must also provide any necessary functions to access the file subsystem, such as read() and
write(), similar to the case of the character-mode device.

Note: If you do not provide an implementation of fstat(), the default behavior returns the value for a
character-mode device, which is incorrect behavior for a file subsystem.

Related Information
Character-Mode Device Drivers on page 7-5

Register a File Subsystem Device
You can register a file subsystem using the following function:

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . NII5V2
7-8 Timer Device Drivers 2015.05.14

int alt_fs_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register. A negative return
value indicates that the file system cannot be registered.

After a file subsystem is registered with the HAL file system, you can access it through the HAL API and
the ANSI C standard library. The mount point for the file subsystem is the name specified in the alt_dev
structure.

For more information, refer to the "Developing Programs Using the Hardware Abstraction Layer" chapter
of the Nios II Software Developer’s Handbook.

Related Information

Developing Device Drivers for the Hardware Abstraction Layer
Timer Device Drivers

System Clock Driver
A system clock device model requires a driver to generate the periodic clock tick. There can be only one
system clock driver in a system. You implement a system clock driver as an interrupt service routine (ISR)
for a timer peripheral that generates a periodic interrupt. The driver must provide periodic calls to the
following function:

void alt_tick (void)

The expectation is that alt_tick() is called in exception context.

To register the presence of a system clock driver, call the following function:
int alt_sysclk_init (alt_u32 nticks)

The input argument nticks is the number of system clock ticks per second, which is determined by your
system clock driver. The return value of this function is zero on success, and nonzero otherwise.

For more information about writing interrupt service routines, refer to the "Exception Handling" chapter
of the Nios II Software Developer’s Handbook.

Related Information

Exception Handling on page 8-1

Timestamp Driver
A timestamp driver provides implementations for the three timestamp functions:
alt_timestamp_start(), alt_timestamp(), and alt_timestamp_freq(). The system can only have
one timestamp driver.

For more information about using these functions, refer to the "Developing Programs Using the
Hardware Abstraction Layer" chapter of the Nios IT Software Developer’s Handbook.

For more information about using these functions, refer to the "HAL API Reference" chapter of the Nios II
Software Developer’s Handbook.

Related Information

o HAL API Reference on page 14-1
o Developing Device Drivers for the Hardware Abstraction Layer

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . .
2015.05.14 Flash Device Drivers 7-9

Flash Device Drivers

Create a Flash Driver
Flash device drivers must provide an instance of the alt_flash_dev structure, defined in sys/alt_flash_
dev.h. The following code shows the structure:

struct alt_flash_dev

alt_llist llist; // internal use only
const char* name;

alt_flash_open open;

alt_flash_close close;
alt_flash_write write;

alt_flash_read read;
alt_flash_get_flash_info get_info;
alt_flash_erase_block erase_block;
alt_flash_write_block write_block;
void* base_addr;

int length;

int number_of_regions;

flash_region region_info[ALT_MAX_NUMBER_OF_FLASH_REGIONS];
alt_flash_lock lock};

The first parameter 1list is for internal use, and must always be set to the value ALT_LLIST _ENTRY.
name is the location of the device in the HAL file system and is the name of the device as defined in
system.h.

The seven fields open to write_block are function pointers that implement the functionality behind the
application API calls to the following functions:

e alt_flash_open_dev()

e alt _flash_close dev()

o alt write_flash()

e alt_read_flashQ

e alt _get_flash_info()

e alt_erase_flash_block()
e alt write_flash_block()
o« alt_flash_lock(Q)

where:

« the base_addr parameter is the base address of the flash memory

« length is the size of the flash in bytes

« number_of_regions is the number of erase regions in the flash

« region_info contains information about the location and size of the blocks in the flash device

For more information about the format of the flash_region structure, refer to “Using Flash Devices” in
"Developing Programs Using the Hardware Abstraction Layer".

Some flash devices, such as common flash interface (CFI)-compliant devices, allow you to read out the
number of regions and their configuration at run time. For all other flash devices, these two fields must be
defined at compile time.

Related Information

Developing Device Drivers for the Hardware Abstraction Layer

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

7-10 Register a Flash Device 2015.05.14

Register a Flash Device
After creating an instance of the alt_flash_dev structure, you must make the device available to the
HAL system by calling the following function:

int alt_flash_device_register(alt_flash_fd* fd)

This function takes a single input argument, which is the device structure to register. The return value is
zero upon success. A negative return value indicates that the device cannot be registered.

DMA Device Drivers

The HAL models a DMA transaction as being controlled by two endpoint devices: a receive channel and a
transmit channel.

For more information about a complete description of the HAL DMA device model, refer to “Using DMA
Devices” in the "Developing Programs Using the Hardware Abstraction Layer" chapter of the Nios IT
Software Developer’s Handbook.

The DMA device driver interface is defined in sys/alt_dma_dev.h.

Related Information

Developing Device Drivers for the Hardware Abstraction Layer

DMA Transmit Channel

Example 7-2. alt_dma_txchan Structure

typedef struct alt_dma_txchan_dev_s alt_dma_txchan_dev;
struct alt_dma_txchan_dev_s

{

alt_llist llist;

const char* name;

int (*space) (alt_dma_txchan dma);

int (*send) (alt_dma_txchan dma,

const void* from,

alt_u32 len,

alt_txchan_done* done,

void* handle);

int (*ioctl) (alt_dma_txchan dma, int req, void* arg);

DMA Receive Channel

Example 7-3. alt_dma_rxchan Structure

typedef alt_dma_rxchan_dev_s alt_dma_rxchan;
struct alt_dma_rxchan_dev_s

{

alt_Ilist list;

const char* name;

alt_u32 depth;

int (*prepare) (alt_dma_rxchan dma,

void* data,

alt_u32 len,

alt_rxchan_done* done,

void* handle);

int (*ioctl) (alt_dma_rxchan dma, int req, void* arg);

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Ethernet Device Drivers 7-11

The prepare() function must be defined. If the ioctl field is set to null, calls to
alt_dma_rxchan_ioctl () return -ENOTTY for this device.

After creating an instance of the alt_dma_rxchan structure, you must register the device driver with the
HAL system to make it available by calling the following function:

int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

The input argument dev is the device to register. The return value is zero on success, or negative if the
device cannot be registered.

Table 7-2: Fields in the alt_dma_rxchan Structure

Ilist

This function is for internal use and must always be set to the value
ALT_LLIST_ENTRY.

name | The name that refers to this channel in calls to alt_dma_rxchan_
open(). name is the name of the device as defined in system.h.

depth | The total number of receive requests that can be outstanding at any
given time.

prepa | A pointer to a function that is called as a result of a call to the

re application API function alt_dma_rxchan_prepare(). This function

posts a receive request to the DMA device. The parameters passed to
alt_dma_rxchan_prepare() are passed directly to prepare(). For a
description of parameters and return values, refer to the "HAL API
Reference" chapter of the Nios II Software Developer’s Handbook.

ioctl | This is a function that provides device specific I/O control. Refer to

sys/alt_dma_dev.h for a list of the generic options that a device might
wish to support.

Related Information
HAL API Reference on page 14-1

Ethernet Device Drivers

Developing Device Drivers for the Hardware Abstraction Layer

The HAL generic device model for Ethernet devices provides access to the NicheStack® TCP/IP Stack -
Nios II Edition running on the MicroC/OS-II operating system. You can provide support for a new
Ethernet device by supplying the driver functions that this section defines.

Before you consider writing a device driver for a new Ethernet device, you need a basic understanding of
the Altera implementation of the NicheStack TCP/IP Stack and its usages.

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

7-12 Layered Software Model 2015.05.14

Layered Software Model

Architectural Layers of a Nios Il MicroC/OS-Il software application

Application

m,\\(at'\on-Spedf\c SYStem initializay, W

TCP/\P Stack software comp Oneny
MicroC/0S-11

HAL API

goftware device drives

Nios Il processor
system hardware

|:| Software
I Hardware

Each layer encapsulates the specific implementation details of that layer, abstracting the data for the next
outer layer. However, the hierarchy of layers is not absolute. For example, the application makes system
calls directly to the MicroC/OS-II or HAL API layers for services that do not require networking.

For more information, refer to the "Ethernet and the NicheStack TCP/IP Stack - Nios II Edition" chapter
of the Nios II Software Developer’s Handbook.

Related Information
Ethernet and the NicheStack TCP/IP Stack - Nios II Edition on page 11-1

Writing a New Ethernet Device Driver

The easiest way to write a new Ethernet device driver is to start with Altera’s implementation for the
Standard Microsystems Corporation (SMSC) lan91c111 device, and modify it to suit your Ethernet media
access controller (MAC). This section assumes you take this approach. Starting from a known working
example makes it easier for you to learn the most important details of the NicheStack TCP/IP Stack
implementation.

The source code for the LAN91C111 10/100 Non-PCl Ethernet Single Chip MAC + PHY driver is
provided with the Quartus II software located at <Altera installation>/ip/altera/sopc_builder_ip/
altera_avalon_lan91c111/UCOSII. For the sake of brevity, this section refers to this directory as <SMSC
path>. The source files are in the <SMSC path>/src/iniche and <SMSC path>/inc/iniche directories.

A number of useful NicheStack TCP/IP Stack files are installed with the Nios II Embedded Design Suite
(EDS), under the <Nios II EDS install path>/components/altera_iniche/UCOSII directory. For the sake
of brevity, this chapter refers to this directory as <iniche path>.

For more information about the NicheStack TCP/IP Stack implementation, refer to the NicheStack
Technical Reference Manual, available on the Altera website.

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

2015.05.14

Provide the NicheStack Hardware Interface Routines 7-13

You need not edit the NicheStack TCP/IP Stack source code to implement a NicheStack-compatible
driver. Nevertheless, Altera provides the source code for your reference. The files are installed with the
Nios II EDS in the <iniche path> directory. The Ethernet device driver interface is defined in <iniche

path>linc/alt_iniche_dev.h.

Related Information

o NicheStack Technical Reference Manual
For more information about the NicheStack TCP/IP Stack implementation, refer to the NicheStack
Technical Reference Manual, available on the Nios II Processor Documentation website.

» NicheStackRef.zip

For access to the NicheStackRef.zip file.

Provide the NicheStack Hardware Interface Routines
The NicheStack TCP/IP Stack architecture requires several network hardware interface routines:

o Initialize hardware
+ Send packet

» Receive packet

« Close

o Dump statistics

For more information about these routines, refer to "Porting Engineer Provided Functions" in the
NicheStack Technical Reference Manual.

The NicheStack TCP/IP Stack system code uses the

Table 7-3: SMSC LAN91C111 Hardware Interface Routines

n_initQ s91_initQ smsc91x.c The initialization routine can
install an ISR if applicable
pkt_send() s91 pkt_send() smsc91x.c
s91_isrQ) smsc91x.c Packet receive includes three
s91_rcv(Q) smsc91x.c key actions:

Packet receive mechanism

s91_dma_rx_done()

smsc_mem.c

pk_alloc()—Allocate a
netbuf structure
putq()—Place netbuf
structure on rcvdq
SignalPktDemux()—
Notify the Internet
protocol (IP) layer that it
can demux the packet

n_close()

s91_close()

smsc91x.c

n_statsQ

s91_stats()

smsc91x.c

Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

Altera Corporation

https://www.altera.com/products/general/nios2/literature.html
http://mysitespg/personal/mmtan/Shared%20Documents/niosII_docs_14_0/documents/NicheStackRef.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. NII5V2
7-14 Provide *INSTANCE and *INIT Macros 2015.05.14

net structure internally to define its interface to device drivers. The net structure is defined in net.h, in
<iniche path>/src/downloads/30src/h. Among other things, the net structure contains the following
things:

« A field for the IP address of the interface

+ A function pointer to a low-level function to initialize the MAC device

« Function pointers to low-level functions to send packets

Typical NicheStack code refers to type NET, which is defined as *net.

Related Information

o NicheStack Technical Reference Manual
For more information about the NicheStack TCP/IP Stack implementation, refer to the NicheStack
Technical Reference Manual, available on the Nios II Processor Documentation website.

o NicheStackRef.zip
For access to the NicheStackRef.zip file.

Provide *INSTANCE and *INIT Macros
To enable the HAL to use your driver, you must provide two HAL macros. The names of these macros are
based on the name of your network interface component, according to the following templates:

e« <component name>_INSTANCE
e <component name>_INIT

For examples, refer to ALTERA_AVALON_LAN91C111_INSTANCE and ALTERA_AVALON_LAN91C111_INIT in
<SMSC path>/inc/iniche/altera_avalon_lan91c111_iniche.h, which is included in <iniche path>/inc/altera_
avalon_lan91c111.h.

You can copy altera_avalon_lan91¢111_iniche.h and modify it for your own driver. The HAL expects to find
the *INIT and *INSTANCE macros in <component name>.h.

For more information, refer to the “Header Files and alt_sys_init.c” chapter. You can accomplish this with
a #include directive as in altera_avalon_lan91c111.h, or you can define the macros directly in
<component name>.h.

Your *INSTANCE macro declares data structures required by an instance of the MAC. These data
structures must include an alt_iniche_dev structure. The *INSTANCE macro must initialize the first
three fields of the alt_iniche_dev structure, as follows:

o The first field, 1list, is for internal use, and must always be set to the value ALT_LLIST_ENTRY.

o The second field, name, must be set to the device name as defined in system.h. For example, altera_
avalon_lan91¢111_iniche.h uses the C preprocessor’s ## (concatenation) operator to reference the
LAN91C111_NAME symbol defined in system.h.

o The third field, init_func, must point to your software initialization function.
For more information, refer to the “Provide a Software Initialization Function” chapter.
For example, altera_avalon_lan91c111_iniche.h inserts a pointer to alt_avalon_lan91cl111_init().

Your *INIT macro initializes the driver software. Initialization must include a call to the
alt_iniche_dev_reg() macro, defined in alt_iniche_dev.h. This macro registers the device with the HAL
by adding the driver instance to alt_iniche_dev_list.

When your driver is included in a Nios II BSP project, the HAL automatically initializes your driver by
invoking the *INSTANCE and *INIT macros from its alt_sys_init() function. For more information
about the *INSTANCE and *INIT macros, refer to the “Header Files and alt_sys_init.c” chapter.

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

https://www.altera.com/products/general/nios2/literature.html
http://mysitespg/personal/mmtan/Shared%20Documents/niosII_docs_14_0/documents/NicheStackRef.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NIISVZ . g . . .
2015.05.14 Provide a Software Initialization Function 7-15

Related Information

+ Header Files and alt_sys_init.c on page 7-28
o Provide a Software Initialization Function on page 7-15

Provide a Software Initialization Function
The *INSTANCE() macro inserts a pointer to your initialization function in the alt_iniche_dev
structure.

For more information, refer to the “Provide *INSTANCE and *INIT Macros” chapter.
Your software initialization function must perform at least the following three tasks:

o [Initialize the hardware and verify its readiness
« Finish initializing the alt_iniche_dev structure
o Call get_mac_addrQ)

The initialization function must perform any other initialization your driver needs, such as creation and
initialization of custom data structures and ISRs.

For more information about the get_mac_addr () function, refer to the "Ethernet and the NicheStack
TCP/IP Stack - Nios II Edition" chapter.

For more information about an example of a software initialization function, refer to
alt_avalon_lan91c111_init() in <SMSC path>/src/iniche/smsc91x.c.

Related Information

o Provide *INSTANCE and *INIT Macros on page 7-14
o Ethernet and the NicheStack TCP/IP Stack - Nios II Edition on page 11-1

Integrating a Device Driver in the HAL

The Nios II SBT can incorporate device drivers and software packages supplied by Altera, supplied by
other third-party developers, or created by you. This section describes how to prepare device drivers and
software packages so the BSP generator recognizes and adds them to a generated BSP.

You can take advantage of this service, whether you created a device driver for one of the HAL generic
device models, or you created a peripheral-specific device driver.

Note: The process required to integrate a device driver is nearly identical to that required to develop a
software package. The following sections describe the process for both. Certain steps are not
needed for software packages, as noted in the text.

Overview

To publish a device driver or a software package, you provide the following items:

o A header file defining the package or driver interface
o A Tcl script specifying how to add the package or driver to a BSP

The header file and Tcl script are described in the following sections.

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

7-16 Assumptions and Requirements 2015.05.14

Assumptions and Requirements

Typically, you are developing a device driver or software package for eventual incorporation in a BSP. The
driver or package is to be incorporated in the BSP by an end user who has limited knowledge of the driver
or package internal implementation. To add your driver or package to a BSP, the end user must rely on
the driver or package settings that you create with the tools described in this section.

For a device driver or software package to work with the Nios II SBT, it must meet the following criteria:

« It must have a defining Tcl script. The Tcl script for each driver or software package provides the Nios
IT SBT with a complete description of the driver or software. This description includes the following
information:

« Name—A unique name identifying the driver or software package

« Source files—The location, name, and type of each C/C++ or assembly language source or header
file

» Associated hardware class (device drivers only)—The name of the hardware peripheral class the
driver supports

« Version and compatibility information—The driver or package version, and (for drivers) informa-
tion about what device core versions it supports.

o BSP type(s)—The supported operating system(s)

o Settings—The visible parameters controlling software build and runtime configuration
o The Tdl script resides in the driver or software package root directory.
o The Tcl script’s file name ends with _sw.tcl. Example: custom_ip_block_sw.tcl.
o The root directory of the driver or software package is in one of the following places:

 Inany directory included in the SOPC_BUILDER_PATH environment variable, or in any directory
located one level beneath such a directory. This approach is recommended if your driver or
software packages are installed in a distribution you create.

« Inadirectory named ip, one level beneath the Quartus II project directory containing the design
your BSP targets. This approach is recommended if your driver or software package is used only
once, in a specific hardware project.

For more information on how file names and directory structures conform to certain conventions, refer to
the “File Names and Locations” chapter.

« Ifyour driver or software package uses the HAL auto initialization mechanism (alt_sys_init()),
certain macros must be defined in a header file.

For more information about this header file, refer to the “Header Files and alt_sys_init.c” chapter.

For more information about integrating a HAL device driver, refer to AN 459: Guidelines for
Developing a Nios II HAL Device Driver.

For more information about the commands you can use in a driver Tcl script, refer to the "Nios II
Software Build Tools Reference" chapter.

Related Information

+ File Names and Locations on page 7-18

o Header Files and alt_sys_init.c on page 7-28

o AN 459: Guidelines for Developing a Nios II HAL Device Driver
 Nios II Software Build Tools Reference on page 15-1

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

http://www.altera.com/literature/an/an459.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 The Nios Il BSP Generator 7-17

The Nios Il BSP Generator

This section describes the process by which the Nios II BSP generator adds device drivers and software
packages to your BSP. The Nios II BSP generator, a subset of the Nios II SBT, is a combination of
command utilities and scripts that enable you to create and manage BSPs and their settings.

For more information about the Nios II SBT, refer to the "Overview of Nios II Embedded Development"
chapter.

For more information about the Nios II SBT, refer to the "Getting Started from the Command Line"
chapter.

Related Information

« Overview of Nios II Embedded Development on page 1-1
+ Getting Started from the Command Line on page 3-1

Component Discovery
When you run any BSP generator utility, a library of available drivers and software packages is populated.

The BSP generator locates software packages and drivers by inspecting a li%t of known locations
determined by the Altera Nios IT EDS, Quartus II software, and MegaCore IP Library installers, as well as
searching locations specified in certain system environment variables.

The Nios II BSP tools identify drivers and software packages by locating and sourcing Tcl scripts with file
names ending in _sw.tcl in these locations.

Note: For run-time efficiency, the BSP generator only looks at driver files that conform to the criteria
listed in this section.

After locating each driver and software package, the Nios II SBT searches for a suitable driver for each
hardware module in the hardware system (mastered by the Nios II processor that the BSP is generated
for), as well as software packages that the BSP creator requested.

Device Driver Versions
In the case of device drivers, the highest version of driver that is compatible with the associated hardware
peripheral is added to the BSP, unless specified otherwise by the device driver management commands.

For more information, refer to the "Nios II Software Build Tools Reference" chapter of the Nios IT
Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Device Driver and Software Package Inclusion

Specific Requests
The BSP generator adds software packages to the BSP if they are specifically requested during BSP
generation, with the enable_sw_package command.

For more information, refer to “Software Build Tools Tcl Commands” in the "Nios II Software Build
Tools Reference" chapter.

Related Information

Nios II Software Build Tools Reference on page 15-1

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
7-18 No Specific Requests 2015.05.14

No Specific Requests
If no specific device driver is requested, and no compatible device driver is located for a particular
hardware module, the BSP generator issues an informative message visible in either the debug or verbose
generation output. This behavior is normal for many types of hardware, such as memory devices, that do
not have device drivers. If a software package or specific driver is requested and cannot be located, an
error is generated and BSP generation or settings update halts.

Creating a Tcl script allows you to add extra definitions in the system.h file, enable automatic driver
initialization through the alt_sys_init.c structure, and enable the Nios II SBT to control any extra
parameters that might exist.

With the Tcl software definition files in place, the SBT reads in the Tcl file and populate the makefiles and
other support files accordingly.

When the Nios I SBT adds each driver or software package to the system, it uses the data in the Tcl script
defining the driver or software package to control each file copied in to the BSP. This rule also affects
generated BSP files such as the BSP Makefile, public.mk, system.h, and the BSP settings and summary
HTML files.

When you create a new software project, the Nios II SBT generates the contents of alt_sys_init.c to match

the specific hardware contents of the system.

File Names and Locations

The Nios II build tools find a device driver or software package by locating a Tcl script with the file name
ending in _sw.tcl, and sourcing it.

For more information, refer to the “The Nios II BSP Generator” chapter.

Each peripheral in a Nios II system is associated with a specific component directory. This directory
contains a file defining the software interface to the peripheral.

For more information, refer to the “Accessing Hardware” chapter.

To enable the SBT to find your component device driver, place the Tcl script in a directory named ip
under your hardware project directory.

The file hierarchy that is suitable for the Nios II SBT is located in the <Altera installation>/ip/altera/
sopc_builder_ip directory. This example assumes a device driver supporting a hardware component
named custom_component.

Related Information

o The Nios II BSP Generator on page 7-17
o Accessing Hardware on page 7-3

Source Code Discovery
You use Tcl scripts to specify the location of driver source files.

For more information, refer to the “The Nios II BSP Generator” chapter.

Related Information
The Nios II BSP Generator on page 7-17

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . . .
2015.05.14 Driver and Software Package Tcl Script Creation 7-19

Driver and Software Package Tcl Script Creation

This section discusses writing a Tcl script to describe your software package or driver. The exact contents
of the Tcl script depends on the structure and complexity of your driver or software. For many simple
device drivers, you need only include a few commands. For more complex software, the Nios II SBT
provides powerful features that give the BSP end user control of your software or driver’s operation.

The Tcl command and argument descriptions in this section are not exhaustive. For a detailed explana-
tion of each command and all arguments, refer to the "Nios II Software Build Tools Reference" chapter of
the Nios II Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Example Device Driver File Hierarchy and Naming
For a reference in creating your own driver or software Tcl files, you can also view the driver and software
package Tcl scripts included with the Nios IT EDS and the MegaCore IP library. These scripts are in the
<Nios II EDS install path>/components and <MegaCore IP library install path>/sopc_builder_ip folders,
respectively.

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
7-20 Tcl Command Walkthrough for a Typical Driver or Software Package 2015.05.14

Figure 7-1: Example Device Driver File Hierarchy and Naming

custom_component

Hardware system generation files
custom_component_sw.tc
ﬁ inc

custom_component_regs.h
ﬁ HAL

/_;‘ inc
custom_component.h
Additional header files

ﬁ src
component.mk

Note: "inc" - Contains header file(s) that define the device hardware interfaces. Contents in this directory
are not HAL-specific and apply to a driver, regardless of whether it is based on the HAL,
MicroC/OS-II, or any other RTOS environment.

Note: "HAL" - Contains software files required to integrate the device with the Nios II hardware abstrac-
tion layer. Files in this directory pertain specifically to the HAL.
Tcl Command Walkthrough for a Typical Driver or Software Package

The Tcl script excerpts in this section describe a typical device driver or software package.

The example in this section creates a device driver for a hardware peripheral whose component class
name is my_custom_component. The driver supports both HAL and MicroC/OS-II BSP types. It has a
single C source file (.c) and two C header files (.h).

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . . .
2015.05.14 Creating and Naming the Driver or Package 7-21

Creating and Naming the Driver or Package
The first command in any driver or software package Tcl script must be the create_driver or
create_sw_package command. The remaining commands can be in any order. Use the appropriate
create command only once per Tcl file. Choose a unique driver or package name. For drivers, Altera

recommends appending _driver to the associated hardware class name. The following example illustrates
this convention:

create_driver my_custom_component_driver

Identifying the Hardware Component Class
Each driver must identify the hardware component class the driver is associated with in the
set_sw_property command’s hw_class_name argument. The following example associates the driver
with a hardware class called my_custom_component:

set_sw_property hw_class_name my_custom_component

Note: The set_sw_property command accepts several argument types. Each call to set_sw_property
sets or overwrites a property to the value specified in the second argument.

For more information about the set_sw_property command, refer to the "Nios II Software Build Tools
Reference" chapter.

The hw_class_name argument does not apply to software packages.

If you are creating your own driver to use in place of an existing one (for example, a custom UART driver
for the altera_avalon_uart component), specify a driver name different from the standard driver. The
Nios II SBT uses your driver only if you specify it explicitly.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Choose a name for your driver or software package that does not conflict with other Altera-supplied
software or IP, or any third-party software or IP installed on your host system. The BSP generator uses the
name you specify to look up the software package or driver during BSP creation. If the Nios II SBT finds
multiple compatible drivers or software packages with the same name, it might pick any of them.

If you intend to distribute your driver or software package, Altera recommends prefixing all names with
your organization’s name.

Related Information

Nios II Software Build Tools Reference on page 15-1

Setting the BSP Type
You must specify each operating system (or BSP type) that your driver or software package supports. Use
the add_sw_property command’s supported_bsp_type argument to specify each compatible operating
system. In most cases, a driver or software package supports both Altera HAL (hal) and Micrium
MicroC/OS-II (ucosii) BSP types, as in the following example:

add_sw_property supported_bsp_type hal
add_sw_property supported_bsp_type ucosii

Note: The add_sw_property command accepts several argument types. Each call to add_sw_property
adds the final argument to the property specified in the second argument.

Note: Support for additional operating system and BSP types is not present in this release of the Nios II
SBT.

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
7-22 Specifying an Operating System 2015.05.14
Specifying an Operating System
Many drivers and software packages do not require any particular operating system. However, you can
structure your software to provide different source files depending on the operating system used.

If your driver or software has different source files, paths, or settings that depend on the operating system
used, write a Tcl script for each variant of the driver or software package. Each script must specify the
same software package or driver name in the create_driver or create_sw_package command, and
same hw_class_name in the case of device drivers. Each script must specify only the files, paths, and other
settings that pertain to that operating system. During BSP generation, only drivers or software packages
that specify compatibility with the selected operating system (OS) type are eligible to add to the BSP.

Specifying Source Files
Using the Tcl command interface, you must specify each source file in your driver or software package
that you want in the generated BSP. The commands discussed in this section add driver source files and
specify their location in the file system and generated BSP.

The add_sw_property command’s c_source and asm_source arguments add a single .c or Nios II
assembly language source file (.s or .S) to your driver or software package. You must express path
information to the source relative to the driver root (the location of the Tcl file). add_sw_property copies
source files to BSPs that incorporate the driver, using the path information specified, and adds them to
source file list in the generated BSP makefile. When you build the BSP using make, the driver source files
are compiled as follows:

add_sw_property c_source HAL/src/my_driver.c

The add_sw_property command’s include_source argument adds a single header file in the path
specified to the driver. The paths are relative to the driver root. add_sw_property copies header files to
the BSP during generation, using the path information specified at generation time. It does not include
header files in the makefile.

add_sw_property include_source inc/my_custom_component_regs.h
add_sw_property include_source HAL/inc/my_custom_component.h

Specifying a Subdirectory
You can optionally specify a subdirectory in the generated BSP for your driver or software package files
using the bsp_subdirectory argument to set_sw_property. All driver source and header files are
copied to this directory, along with any path or hierarchy information specified with each source or
header file. If no bsp_subdirectory is specified, your driver or software package is placed under the
drivers folder of the generated BSP. Set the subdirectory as follows:

set_sw_property bsp_subdirectory my_driver

Note: If the path begins with the BSP type (e.g HAL or UCOSI 1), the BSP type is removed and replaced
with the value of the bsp_subdirectory property.

Enabling Software Initialization
If your driver or software package uses the HAL autoinitialization mechanism, your source code includes
INSTANCE and INIT macros, to create storage for each driver instance, and to call any initialization
routines. The generated alt_sys_init.c file invokes these macros, which must be defined in a header file
named <hardware component class>.h.

For more information, refer to the “Provide *INSTANCE and *INIT Macros” chapter.

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Adding Include Paths 7-23

To support this functionality in Nios II BSPs, you must set the set_sw_property command’s
auto_initialize argument to true using the following Tcl command:

set_sw_property auto_initialize true

If you do not turn on this attribute, alt_sys_init.c does not invoke the INIT and INSTANCE macros.

Related Information
Provide *INSTANCE and *INIT Macros on page 7-14

Adding Include Paths

By default, the generated BSP Makefile and public.mk add include paths to find header files in /inc or
<BSP type>/inc folders.

You might need to set up a header file directory hierarchy to logically organize your code. You can add
additional include paths to your driver or software package using the add_sw_property command’s
include_directory argument as follows:

add_sw_property include_directory UCOSII/inc/protocol/h

Note: If the path begins with the BSP type (e.g HAL or UCOSI 1), the BSP type is removed and replaced
with the value of the bsp_subdirectory property.

Additional include paths are added to the preprocessor flags in the BSP public.mk file. These preprocessor
flags allow BSP source files, as well as application and user library source files that reference the BSP, to
find the include path while each source file is compiled.

Note: Adding additional include paths is not required if your source code includes header files with
explicit path names. You can also specify the location of the header files with a #include directive
similar to the following:

#include "protocol/h/<filename>"

Version Compatibility

Your device driver or software package can optionally specify versioning information through the Tcl
command interface. The driver and software package Tcl commands specifying versioning information
allow the following functionality:

« You can request a specific version of your driver or software package with BSP settings.

« You can make updates to your device driver and specify that the driver is still compatible with a
minimum hardware class version, or specific hardware class versions. This facility is especially useful
in situations in which a hardware design is stable and you foresee making software updates over time.

The <version> argument in each of the following versioning-related commands can be a string containing
numbers and characters. Examples of version strings are 8.0,5.1.1, 6.1, and 6.1spl. The “.” character is
a separator. The BSP generator compares versions against each other to determine if one is more recent
than the other, or if two are equal, by successively comparing the strings between each separator. Thus,
2.1is greater than 2.0, and 2. 1sp1 is greater than 2.1. Two versions are equal if their version assignment

strings are identical.

Use the version argument of set_sw_property to assign a version to your driver or software package. If
you do not assign a version to your software or device driver, the version of the Nios II EDS installation
(containing the Nios II BSP commands being executed) is set for your driver or software package:

set_sw_property version 7.1

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

7-24 Creating Settings for Device Drivers and Software Packages 2015.05.14

Device drivers (but not software packages) can use the min_compatible_hw_version and
specific_compatible_hw_version arguments to establish compatibility with their associated hardware
class, as follows:

set_sw_property min_compatible_hw_version 5.0.1
add_sw_property specific_compatible_hw_version 6.1spl

You can add multiple specific compatible versions. This functionality allows you to roll out a new version
of a device driver that tracks changes supporting a hardware peripheral change.

For device drivers, if no compatible version information is specified, the version of the device driver must
be equal to the associated hardware class. Thus, if you do not wish to use this feature, Altera recommends
setting the min_compatible_hw_version of your driver to the lowest version of the associated hardware
class your driver is compatible with.

Creating Settings for Device Drivers and Software Packages
The BSP generator allows you to publish settings for individual device drivers and software packages.
These settings are visible and can be modified by the BSP user, if the BSP includes your driver or software
package. Use the Tcl command interface to create settings.

The Tcl command that publishes settings is especially useful if your driver or software package has build
or runtime options that are normally specified with #define statements or makefile definitions at
software build time. Settings can also add custom variable declarations to the BSP Makefile.

How Settings Affect the Generated BSP
Settings affect the generated BSP in several ways:

o Settings are added either to the BSP system.h or public.mk, or to the BSP makefile as a variable.

o Settings are stored in the BSP settings file, named with hierarchy information to prevent namespace
collision.

o A default value of your choice is assigned to the setting so that the end user of the driver or package
does not need to explicitly specify the setting when creating or updating a BSP.

o Settings are displayed in the BSP summary.html document, along with description text of your choice.

Arguments for add_sw_setting
Use the add_sw_setting T'cl command to add a setting. To specify the details, add_sw_setting requires
each of the following arguments, in the order shown:

« type - The data type, which controls formatting of the setting’s value assignment in the appropriate
generated file.

o destination - The destination file in the BSP.

« displayName - The name that is used to identify the setting when changing BSP settings or viewing the
BSP summary.html document.

o identifier - Conceptually, this argument is the macro defined in a C language definition (the text
immediately following #define), or the name of a variable in a makefile.

o value - A default value assigned to the setting if the BSP user does not manually change it.
o description - Descriptive text, shown in the BSP summary.html document.

Data Types
Several setting data types are available, controlled by the type argument to add_sw_setting. They
correspond to the data types you can express as #define statements or values concatenated to makefile
variables. The specific setting type depends on your software’s structure or BSP build needs.

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 7.5
2015.05.14 Setting Destination Files 9

Table 7-4: Data Type Settings

Boolean boolean_define_ | A definition that is generated when
definition only true, and absent when false. Use a
boolean definition in your C source
files with the #ifdef <setting> ...
#endi T construct.

Boolean boolean A definition assigned to 1 when true, 0

assignment when false. Use a boolean assignment
in your C source files with the #i f
<setting> ... #else ... construct.

Character character A definition with one character
surrounded by single quotation marks
O

Decimal decimal_number | A definition with an unquoted,

number unformatted decimal number, such as

123. Usetul for defining values in
software that, for example, might have a
configurable buffer size, such as int
buffer[SI1ZE];

Double double A definition with a double-precision

precision floating point number such as 123.4

number

Floating point | float A definition with a single-precision

number floating point number such as 234.5

Hexadecimal hex_number A definition with a number prefixed

number with 0x, such as 0x1000. Useful for
specifying memory addresses or bit
masks

Quoted string | quoted_string A definition with a string in quotes,
such as "Buffer"

Unquoted unquoted_string | A definition with a string not in quotes,

string such as BUFFER

Setting Destination Files
The destination argument of add_sw_setting specifies settings and their assigned values. This
argument controls the file to which the setting is saved in the BSP. The BSP generator formats the setting’s
assigned value based on the definition file and type of setting.

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . NII5V2
7-26 Setting Display Name 2015.05.14

Table 7-5: Destination File Settings

system.h system_h_ This destination file is recommended in most
define cases. Your source code must use a #include
<system.h> statement to make the setting
definitions available. Settings appear as
#define statements in system.h.

public.mk public_mk_ Definitions appear as -D statements in
define public.mk, in the C preprocessor flags
assembly. This setting type is passed directly
to the compiler during build and is visible
during compilation of application and
libraries referencing the BSP.

BSP makefile_ Settings appear as makefile variable
makefile variable assignments in the BSP makefile.

Note: Certain setting types are not compatible with the public.mk or Makefile destination file types.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Related Information

Nios II Software Build Tools Reference on page 15-1

Setting Display Name
The setting displayName controls what the end user of the driver or package (the BSP developer) types to
control the setting in their BSP. BSPs append the displayName text after a . (dot) separator to your driver
or software package’s name (as defined in the create_driver or create_sw_package command). For
example, if your driver is named my_peripheral_driver and your setting’s displayName is
smal I_driver, BSPs with your driver have a setting my_peripheral_driver.small_driver. Thus each
driver and software package has its own settings namespace.

Setting Generation Name
The setting generationName of add_sw_setting controls the physical name of the setting in the
generated BSP files. The physical name corresponds to the definition being created in public.mk and
system.h, or the make variable created in the BSP Makefile. The generationName is commonly the text
that your software uses in conditionally-compiled code. For example, suppose your software creates a
buffer as follows:

unsigned int driver_buffer[MY_DRIVER_BUFFER_SIZE];
You can enter the exact text, MY_DRIVER_BUFFER_SIZE, in the generationName argument.
Setting Default Value
The value argument of add_sw_setting holds the default value of your setting. This value propagates to

the generated BSP unless the end user of the driver or package (the BSP developer) changes the setting’s
assignment before BSP generation.

Note: The value assigned to any setting, whether it is the default value in the driver or software package
Tcl script, or entered by the user configuring the BSP, must be compatible with the selected setting.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 Setting Description 7-27
Related Information

Nios II Software Build Tools Reference on page 15-1

Setting Description
The description argument of add_sw_setting contains a brief description of the setting. The
description argument is required. Place quotation marks (**'*) around the text of the description. The
description text appears in the generated BSP summary.html document.

Setting Creation Example

#include "'system.h"
#ifdef MY_CUSTOM DRIVER_SMALL
int send_data(<args>)

{

// Small implementation
}

#else

int send_data(<args>)
{

// fast implementation
}

#endif

Note: This example implements a setting for a driver that has two variants of a function, one
implementing a small driver (minimal code footprint) and the other a fast driver (efficient
execution).

A simple Boolean definition setting is added to your driver Tcl file. This feature allows BSP users to
control your driver through the BSP settings interface. When users set the setting to true or 1, the BSP
defines MY_CUSTOM_DRIVER_SMALL in either system.h or the BSP public.mk file. When the user compiles the
BSP, your driver is compiled with the appropriate routine incorporated in the object file. When a user
disables the setting, MY_CUSTOM_DRIVER_SMALL is not defined.

You add the MY_CUSTOM_DRIVER_SMALL setting to your driver as follows using the add_sw_setting Tcl
command:

add_sw_setting boolean_define_only system_h_define small_driver
MY_CUSTOM_DRIVER_SMALL false
"Enable the small implementation of the driver for my_peripheral”

Note: Each Tcl command must reside on a single line of the Tcl file. This example is wrapped due to
space constraints.

Each argument has several variants.

For more information about detailed usage and restrictions, refer to the "Nios II Software Build Tools
Reference" chapter.

Related Information
Nios II Software Build Tools Reference on page 15-1

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . NII5V2
7-28 Creating a Custom Device Driver for the HAL 2015.05.14

Creating a Custom Device Driver for the HAL
This section describes how to provide appropriate files to integrate your device driver in the HAL.

For more information about the correct locations for the files, refer to the “Integrating a Device Driver in
the HAL” chapter.

Related Information

Integrating a Device Driver in the HAL on page 7-15

Header Files and alt_sys_init.c

At the heart of the HAL is the autogenerated source file, alt_sys_init.c. This file contains the source code
that the HAL uses to initialize the device drivers for all supported devices in the system. In particular, this
file defines the alt_sys_init() function, which is called before main() to initialize device drivers
software packages, and make them available to the program.

When you create the driver or software package, you specify in a Tcl script whether you want the
alt_sys_init() function to invoke your INSTANCE and INIT macros.

For more information, refer to the “Enabling Software Initialization” chapter.

Note: The remainder of this section assumes that you are using the alt_sys_init() HAL initialization
mechanism.

Related Information

Enabling Software Initialization on page 7-22

Creating alt_sys_init.c Based on Associated Header Files
The Software Build Tools (SBT) creates alt_sys_init.c based on the header files associated with each device
driver and software package. For a device driver, the header file must define the macros <component
name>_INSTANCE and <component name>_INIT.

Like a device driver, a software package provides an INSTANCE macro, which alt_sys_init() invokes
once. A software package header file can optionally provide an INIT macro.

Example 7-4. Excerpt from an alt_sys_init.c File Performing Driver Initialization

#include "system._h"

#include "sys/alt_sys_init_h"

/*

* device headers

*/

#include "altera_avalon_timer.h"

#include "altera_avalon_uart.h"

/*

* Allocate the device storage

*/

ALTERA_AVALON_UART_INSTANCE(UART1, uartl);
ALTERA_AVALON_TIMER_INSTANCE(SYSCLK, sysclk);
/*

* Initialize the devices

*/

void alt_sys_init(void)

{
ALTERA_AVALON_UART_INIT(UART1, uartl);
ALTERA_AVALON_TIMER_INIT(SYSCLK, sysclk);

}

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . .
2015.05.14 altera_avalon_jtag_uart.h Defining Macros 7-29

altera_avalon_jtag_uart.h Defining Macros
For example, altera_avalon_jtag_uart.h must define the macros ALTERA_AVALON_JTAG_UART_INSTANCE and
ALTERA_AVALON_JTAG_UART_INIT. The purpose of these macros is as follows:

o The *_INSTANCE macro performs any required static memory allocation. For drivers, *_INSTANCE is
invoked once per device instance, so that memory can be initialized on a per-device basis. For software
packages, *_INSTANCE is invoked once.

o The *_INIT macro performs runtime initialization of the device driver or software package.
In the case of a device driver, both macros take two input arguments:

o The first argument, name, is the capitalized name of the device instance.
o The second argument, dev, is the lower case version of the device name. dev is the name given to the
component at system generation time.

You can use these input parameters to extract device-specific configuration information from the system.h
file.

The name of the header file must be as follows:

 Device driver: <hardware component class>.h. For example, if your driver targets the
altera_avalon_uart component, the file name is altera_avalon_uart.h.

+ Software packages <package name>.h. For example, if you create the software package with the
following command:

create_sw_package my_sw_package
the header file is called my_sw_package.h.

For more information about a complete example, refer to any of the Altera-supplied device drivers,
such as the JTAG UART driver in <Altera installation>/ip/sopc_builder_ip/altera_avalon_jtag uart.

Note: For optimal project rebuild time, do not include the peripheral header in system.h. It is included in

alt_sys_init.c.

Device Driver Source Code

In addition to the header file, the component driver might need to provide compilable source code, to be
incorporated in the BSP. This source code is specific to the hardware component, and resides in one or
more C files (or assembly language files).

Reducing Code Footprint in HAL Embedded Drivers

The HAL provides several options for reducing the size, or footprint, of the BSP code. Some of these
options require explicit support from device drivers. If you need to minimize the size of your software,
consider using one or both of the following techniques in your custom device driver:

+ Provide reduced footprint drivers. This technique usually reduces driver functionality.

« Support the lightweight device driver API. This technique reduces driver overhead. It need not reduce
functionality, but it might restrict your flexibility in using the driver.

These techniques are discussed in the following sections.

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7-30 Provide Reduced Footprint Drivers

Provide Reduced Footprint Drivers

NII5V2
2015.05.14

The HAL defines a C preprocessor macro named ALT_USE_SMALL_DRIVERS that you can use in driver
source code to provide alternate behavior for systems that require a minimal code footprint. If
ALT_USE_SMALL_DRIVERS is not defined, driver source code implements a fully featured version of the
driver. If the macro is defined, the source code might provide a driver with restricted functionality. For
example a driver might implement interrupt-driven operation by default, but polled (and presumable
smaller) operation if ALT_USE_SMALL_DRIVERS is defined.

When writing a device driver, if you choose to ignore the value of ALT_USE_SMALL_DRIVERS, the same
version of the driver is used regardless of the definition of this macro.

You can enable ALT_USE_SMALL_DRIVERS in a BSP with the hal .enable_reduced_device_drivers BSP

setting.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Related Information

Nios II Software Build Tools Reference on page 15-1

Support the Lightweight Device Driver API

Using Character-Mode Functions
The lightweight device driver API allows you to minimize the overhead of character-mode device drivers.
It does this by removing the need for the alt_fd file descriptor table, and the alt_dev data structure
required by each driver instance.

If you want to support the lightweight device driver API on a character-mode device, you need to write at
least one of the lightweight character-mode functions listed in the "Driver Functions for Lightweight
Device Driver API" table (Table 7-6). Implement the functions needed by your software. For example, if
you only use the device for stdout, you only need to implement the <component class>_write()

function.

Table 7-6: Driver Functions for Lightweight Device Driver API

<component class>_read()

Implements character-
mode read functions

altera_avalon_jtag_uart_read()

<component class>_ write()

Implements character-
mode write functions

altera_avalon_jtag_uart _write()

<component class>_ioctl()

Implements device-
dependent functions

altera_avalon_jtag_uart_ioctl()

Using Macros

When you build your BSP with ALT_USE_DIRECT_DRIVERS enabled, instead of using file descriptors, the
HAL accesses your drivers with the following macros:

) Based on component altera_avalon_jtag_uart.

Altera Corporation

Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Invoking Macros in Your Application Software 7-31

e ALT_DRIVER_READ(instance, buffer, len, flags)
e ALT _DRIVER_WRITE(instance, buffer, len, flags)
e ALT_DRIVER_IOCTL(instance, req, arg)

These macros are defined in <Nios IT EDS install path>/components/altera_hal/HAL/inc/sys/alt_driver.h.

These macros, together with the system-specific macros that the Nios II SBT creates in system.h, generate
calls to your driver functions. For example, with lightweight drivers turned on, printf() calls the HAL
write() function, which directly calls your driver’s <component class>_write() function, bypassing
file descriptors.

You can enable ALT_USE_DIRECT_DRIVERS in a BSP with the
hal .enable_lightweight_device_driver_api BSP setting.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Related Information

Nios II Software Build Tools Reference on page 15-1

Invoking Macros in Your Application Software

You can also take advantage of the lightweight device driver API by invoking ALT_DRIVER_READ(),
ALT_DRIVER_WRITE(Q) and ALT_DRIVER_IOCTL() in your application software. To use these macros,
include the header file sys/alt_driver.h. Replace the instance argument with the device instance name
macro from system.h; or if you are confident that the device instance name will never change, you can use
a literal string, for example custom_uart_0.

Calling Direct Without Macros

Another way to use your driver functions is to call them directly, without macros. If your driver includes
functions other than <component class>_read(), <component class> write() and <component
class>_ioctl (), you must call those functions directly from your application.

HAL Namespace Allocation

To avoid conflicting names for symbols defined by devices in the hardware system, all global symbols
need a defined prefix. Global symbols include global variable and function names. For device drivers, the
prefix is the name of the component followed by an underscore. Because this naming can result in long
strings, an alternate short form is also permitted. This short form is based on the vendor name, for
example alt_ is the prefix for components published by Altera. It is expected that vendors test the
interoperability of all components they supply.

For example, for the altera_avalon_jtag_uart component, the following function names are valid:

o altera_avalon_jtag_uart_init(Q)
e alt_jtag uvart_init(Q

The following names are invalid:

e avalon_jtag_uart_init(Q)
e Jtag uart_init(Q)

As source files are located using search paths, these namespace restrictions also apply to file names for
device driver source and header files.

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

7-32 Overriding the HAL Default Device Drivers 2015.05.14

Overriding the HAL Default Device Drivers
All components can elect to provide a HAL device driver.
For more information, refer to Integrating a Device Driver in the HAL.

However, if the driver supplied with a component is inappropriate for your application, you can override
the default driver by supplying a different driver.

In the Nios II SBT for Eclipse, you can use the BSP Editor to specify a custom driver.

For more information about selecting device drivers, refer to “Using the BSP Editor” in the "Getting
Started with the Graphical User Interface" chapter.

On the command line, you specify a custom driver with the following BSP Tcl command:
set_driver <driver name> <component name>

For example, if you are using the nios2-bsp command, you replace the default driver for uarto with a
driver called custom_driver as follows:

nios2-bsp hal my _bsp --cmd set_driver custom_driver uartOr

Related Information

« Integrating a Device Driver in the HAL on page 7-15
+ Getting Started with the Graphical User Interface on page 2-1

Document Revision History for Developing Device Drivers for the
Hardware Abstraction Layer

I T

May 2015 2015.05.14 |, Maintenance release.
» Renamed to Nios IT Classic.
May 2011 11.0.0 « Introduction of Qsys system integration tool
 Added figure illustrating NicheStack implementation layers
February 2011 10.1.0 Removed “Referenced Documents” section.
July 2010 10.0.0 Maintenance release.
November 2009 9.1.0 o Introduced the Nios II Software Build Tools for Eclipse.
» Removed Nios II IDE-specific information.
Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Document Revision History for Developing Device Drivers for the... 7-33

I I S

March 2009 9.0.0 « Reorganized and updated information and terminology to clarify
role of Nios II Software Build Tools.
 Incorporated information about Tcl-based device drivers and
software packages, formerly in Using the Nios II Software Build
Tools.
o+ Described use of the INSTANCE macro in software packages.
+ Corrected minor typographical errors.
May 2008 8.0.0 Maintenance release.
October 2007 7.2.0 Added documentation for HAL device driver development with the
Nios II Software Build Tools.
May 2007 7.1.0 o Added table of contents to “Introduction” section.
o Added Referenced Documents section.
March 2007 7.0.0 Maintenance release.
November 2006 6.1.0 o Add section Reducing Code Footprint in HAL Embedded
Drivers .
o Replace IwIP driver section with NicheStack TCP/IP Stack driver
section.
May 2006 6.0.0 Maintenance release.
October 2005 5.1.0 Added IOADDR_* macro details to section Accessing Hardware .
May 2005 5.0.0 Updated reference to version of IwIP from 0.7.2 to 1.1.0.
December 2004 1.1 Updated reference to version of IwIP from 0.6.3 to 0.7.2.
May 2004 1.0 Initial release.

Developing Device Drivers for the Hardware Abstraction Layer

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Handling

2015.05.14

NII5V2 @ Subscribe C] Send Feedback

This chapter discusses how to write programs to handle exceptions in the Nios® II processor architecture.
Emphasis is placed on how to process hardware interrupt requests by registering a user-defined interrupt
service routine (ISR) with the hardware abstraction layer (HAL). This information applies to embedded
software projects created with the Nios II Software Build Tools (SBT), either in Eclipse or on the
command line.

For more information and low-level details about handling exceptions and hardware interrupts on the
Nios II architecture, refer to the "Programming Model" chapter.

Related Information
Programming Model

Nios Il Exception Handling Overview
The Nios II processor provides the following exception types:

o Hardware interrupts
« Software exceptions, which fall into the following categories:

« Unimplemented instructions
o Software traps
o Miscellaneous exceptions

The Nios II processor offers two distinct approaches to handling hardware interrupts:

o The internal interrupt controller (IIC)
o The external interrupt controller (EIC) interface

The interrupt controllers are discussed in detail in the “Interrupt Controllers” chapter.

Related Information

Interrupt Controllers on page 8-3

Exception Handling Terminology

The following list of HAL terms outlines basic exception handling concepts:

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 .tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2%202015.05.14)%20Exception%20Handling&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

8-2 . . . NII5V2
a Exception Handling Terminology 2015.05.14

« Application context—The status of the Nios II processor and the HAL during normal program
execution, outside of exception funnels and handlers.

« Context switch—The process of saving the Nios II processor’s registers on a software exception or
hardware interrupt, and restoring them on return from the exception handling routine or ISR.

o Exception—A transfer of control away from a program’s normal flow of execution, caused by an event,
either internal or external to the processor, which requires immediate attention. Exceptions include
software exceptions and hardware interrupts.

o Exception context—The status of the Nios II processor and the HAL after a software exception or
hardware interrupt, when funnel code, a software exception handler, or an ISR is executing.

 Exception handling system—The complete system of software routines that service all exceptions,
including hardware interrupts, and pass control to software exception handlers and ISRs as necessary.

« Exception (or interrupt) latency—The time elapsed between the event that causes the exception (such
as an unimplemented instruction or interrupt request) and the execution of the first instruction at the
exception (or interrupt vector) address.

« Exception (or interrupt) response time—The time elapsed between the event that causes the exception
and the execution of the handler.

« Exception overhead—Additional processing required to service a software exception or hardware
interrupt, including HAL-specific processing and RTOS-specific processing if applicable.

o Funnel code—HAL-provided code that sets up the correct processor environment for an exception-
specific handler, such as an ISR.

« Handler—Code specific to the exception type. The handler code is distinct from the funnel code,
which takes care of general exception overhead tasks.

» Hardware interrupt—An exception caused by an explicit hardware request signal from an external
device. A hardware interrupt diverts the processor’s execution flow to a ISR, to ensure that a hardware
condition is handled in a timely manner.

o Implementation-dependent instruction—A Nios II processor instruction that is not supported on all
implementations of the Nios II core. For example, the mul and div instructions are implementation-
dependent, because they are not supported on the Nios II/e core.

o Interrupt—Hardware interrupt.

o Interrupt controller—Hardware enabling the Nios II processor to respond to an interrupt by transfer-
ring control to an ISR.

o Interrupt request (IRQ)—Hardware interrupt.

o Interrupt service routine (ISR)—A software routine that handles an individual hardware interrupt.

o Invalid instruction—An instruction that is not defined for any implementation of the Nios II
processor.

o Maskable exceptions—Exceptions that can be disabled with the status.PIE flag, including internal
hardware interrupts, maskable external hardware interrupts, and software exceptions, but not
including nonmaskable external interrupts.

« Maximum disabled time—The maximum amount of continuous time that the system spends with
maskable exceptions disabled.

« Maximum masked time—The maximum amount of continuous time that the system spends with a
single interrupt masked.

o Miscellaneous exception—A software exception which is neither an unimplemented instruction nor a
trap instruction.

For more information, refer to the “Miscellaneous Exceptions” chapter.

+ Nested interrupts—See pre-emption.

o Pre-emption—The process of a high-priority interrupt taking control when a lower-priority ISR is
already running. Also: nested interrupts.

Altera Corporation Exception Handling

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14

Interrupt Controllers 8-3

« Software exception—An exception caused by a software condition; that is, any exception other than a
hardware interrupt. This includes unimplemented instructions and trap instructions.

« Unimplemented instruction—An implementation-dependent instruction that is not supported on the
particular Nios II core implementation that is in your system. For example, in the Nios II/e core, mul
and div are unimplemented.

» Worst-case exception (or interrupt) latency—The value of the exception (or interrupt) latency,
including the maximum disabled time or maximum masked time. Including the maximum disabled or
masked time accounts for the case when the exception (or interrupt) occurs at the beginning of the
masked or disabled time.

Related Information

Miscellaneous Exceptions on page 8-31

Interrupt Controllers

The configuration of Nios II exception processing depends on the type of hardware interrupt controller.
You select the hardware interrupt controller when you instantiate the Nios II processor in the system
integration tool, Qsys or SOPC Builder.

For more information and details about selecting a hardware interrupt controller, refer to the "Instanti-
ating the Nios II Processor" chapter of the Nios II Processor Reference Handbook.

Related Information

Instantiating the Nios II Processor
For more information and details about selecting a hardware interrupt controller.

Internal Interrupt Concepts

With the IIC, Nios II exception handling is implemented in classic RISC fashion. All exception types,
including hardware interrupts, are dispatched through a single top-level exception funnel. This means
that all exceptions (hardware and software) are handled by code residing at a single location, the
exception address.

The IIC is a simple, nonvectored hardware interrupt controller. Upon receipt of an interrupt request, the
IIC transfers control to the general exception address. The hardware indicates which IRQ is currently
asserted, and allows software to mask individual interrupts.

With the IIC, the HAL interrupt funnel identifies the hardware interrupt cause in software, and
dispatches the registered ISR.

The IIC is available in all revisions of the Nios II processor.

External Interrupt Concepts

The EIC interface enables the Nios II processor to work with a separate external interrupt controller
component. An EIC can be a custom component that you provide. Altera provides an example of an EIC,
the vectored interrupt controller (VIC).

For more information about the VIC, refer to the "Vectored Interrupt Controller Core" chapter in the
Embedded Peripherals IP User Guide.

With an EIC, hardware interrupts are handled separately from software exceptions. Hardware interrupts
have separate vectors and funnels. Each interrupt can have its own handler, or handlers can be shared.
Software exception handling is the same as with the IIC.

The EIC interface provides extensive capabilities for customizing your interrupt hardware. You can
design, connect and configure an interrupt controller that is optimal for your application.

Exception Handling Altera Corporation

C] Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409344984074/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
8-4 Requested Handler Address 2015.05.14

When an external hardware interrupt occurs, the Nios II processor transfers control to an individual
vector address, which can be unique for each interrupt. The HAL provides the following services:

» Registering ISRs
« Setting up the vector table
« Transferring control from the vector table to your ISR

An EIC can be used with shadow register sets. A shadow register set is a complete alternate set of Nios II
general-purpose registers, which can be used to maintain a separate runtime context for an ISR.

An EIC provides the following information about each hardware interrupt:

Related Information
Vectored Interrupt Controller Core

Requested Handler Address
The requested handler address (RHA) specifies the address of the funnel associated with the hardware
interrupt. The availability of an RHA for each interrupt allows the Nios II processor to jump directly to
the interrupt funnel specific to the interrupting device, reducing interrupt latency.

Requested Interrupt Level
The Nios II processor uses the requested interrupt level (RIL) to prioritize the hardware interrupt request
versus any interrupt it is currently processing. While handling an interrupt, the Nios II processor
normally only takes higher-level interrupts.

Requested Register Set
If shadow register sets are implemented on the Nios II core, an EIC specifies a requested register set (RRS)
when it asserts an interrupt request. When the Nios II processor takes the hardware interrupt, the
processor switches to the requested register set. When an interrupt has a dedicated register set, the ISR
avoids the overhead of saving registers for a context switch.

Multiple hardware interrupts can be configured to share a register set. However, at run time, the Nios II
processor does not allow pre-emption between interrupts assigned to the same register set unless this
feature is specifically enabled. In this case, the ISRs must be written so as to avoid register corruption.

For more information, refer to an example of a driver that manages pre-emption within a register set in
the "Vectored Interrupt Controller Core" chapter in the Embedded Peripherals IP User Guide.

Related Information
Vectored Interrupt Controller Core

Requested NMI Mode
If the interrupt is configured as a nonmaskable interrupt (NMI), the EIC asserts requested NMI (RNMI).
Any hardware interrupt can be nonmaskable, depending on the configuration of the EIC. An NMI
typically signals a critical system event requiring immediate handling, to ensure either system stability or
deterministic real-time performance.

Shadow Register Sets
Although shadow register sets can be implemented independently of the EIC interface, typically the two
features are used together. Combining shadow register sets with an appropriate EIC, you can minimize or
eliminate the context switch overhead for critical hardware interrupts.

Altera Corporation Exception Handling

C] Send Feedback

https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 Latency and Response Time 8-5

Latency and Response Time

Exception (interrupt) latency, as defined in the previous section, is the time required for the hardware to
respond to an exception. Response time, in contrast, is the time required to begin executing code specific
to the exception cause, such as a particular ISR. Response time includes latency plus the time required for
the HAL to carry out some or all of the following overhead tasks:

« Context save—Saving registers on the stack
o RTOS context switch—Calling context-switch function(s) if an RTOS is implemented

« Dispatch handler—Determining the cause of the exception, and transferring control to a specific
handler or ISR

If you are concerned with system performance, response time is the more important than latency, because
it reflects the time elapsed between the physical event and the system’s specific response to that event.

Internal or External Interrupt Controller
The Nios I IIC is nonvectored, requiring the processor to dispatch ISRs with a software routine. An EIC,
by contrast, can be vectored. With a vectored EIC, such as the Altera® VIC, ISR dispatch is managed by
hardware, eliminating the processing time required for ISR dispatch, and substantially reducing hardware
interrupt response time.

An EIC has no impact on software exception latency or response time.

Shadow Register Sets
In conjunction with an EIC, shadow register sets speed up hardware interrupt response by making it
unnecessary to save registers on the stack. This feature has no impact on interrupt latency, but
significantly reduces interrupt response time.

Shadow register sets have no impact on software exception response time.

How the Hardware Works

The Nios II processor can respond to exceptions including software exceptions and hardware interrupts.
When the Nios II processor responds to an exception, it performs the following tasks:

« Saves the status register in estatus. This means that if hardware interrupts are enabled, the PIE bit
of estatus is set.

+ Disables hardware interrupts.
o Saves the next execution address in ea (r29).
« Transfers control to the appropriate exception address, as follows:

« Software exception or internal hardware interrupt—Nios II processor general exception address
o External hardware interrupt—Device-specific interrupt address

All Nios II exception types are precise. This means that after an exception is handled, the Nios II
processor can re-execute the instruction that caused the exception.

The Nios II processor always re-executes the instruction after the software exception handler or ISR has
completed, when the exception processing system returns to the application context.

Several exception types, such as the advanced exceptions, are optional in the Nios II processor core. The
presence of these exception types depends on how the hardware designer configures the Nios II core at
the time of hardware generation.

Exception Handling Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

8-6 How the Internal Interrupt Controller Works 2015.05.14

The processor’s response to hardware interrupts depends on which interrupt controller is implemented.
The following sections describe the hardware behavior with each interrupt controller.

For more information about the Nios II processor exception controller and hardware interrupt control-
lers, including a list of optional exception types, refer to the "Processor Architecture” chapter of the Nios IT
Processor Reference Handbook.

Related Information

o Invalid Instructions on page 8-32
o Processor Architecture

How the Internal Interrupt Controller Works
With the IIC, 32 independent hardware interrupt signals are available. These interrupt signals allow
software to prioritize interrupts, although the interrupt signals themselves have no inherent priority.

Note: With the IIC, Nios II exceptions are not vectored. Therefore, the same exception address receives
control for all types of exceptions. The general exception funnel at that address must determine the
type of software exception or hardware interrupt.

How an External Interrupt Controller Works

With an EIC, the Nios II processor supports an arbitrary number of independent hardware interrupt
signals. Interrupts are typically vectored, with interrupt priority levels associated in hardware. Vectoring
allows the Nios II processor to transfer control directly to each ISR. Hardware interrupt levels allow the
most critical interrupts to pre-empt lower-priority interrupts. Because both of these features are
implemented in hardware, the system can handle an interrupt without executing general exception funnel
code.

Note: The details of hardware interrupt vectoring and prioritization are specific to the EIC implementa-
tion.

For more information, refer to an example of an EIC implementation in the "Vectored Interrupt
Controller Core" chapter in the Embedded Peripherals IP User Guide.

Note: The HAL supports external interrupt controllers only if they are connected in one of the following
ways:

« Directly to the Nios II EIC interface
« Through the daisy-chain port on another EIC

Related Information
Vectored Interrupt Controller Core

Nios Il Interrupt Service Routines

Software often communicates with peripheral devices using hardware interrupts. When a peripheral
asserts its IRQ, it diverts the processor’s normal execution flow. When such an interrupt occurs, an
appropriate ISR must handle this interrupt and return the processor to its pre-interrupt state on
completion.

Altera Corporation Exception Handling

C] Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409259423560/en-us
https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 HAL APIs for Hardware Interrupts 8-7

When you create a board support package (BSP) project, the build tools include all needed device drivers.
You do not need to write HAL ISRs unless you are interfacing to a custom peripheral. For reference
purposes, this section describes the framework provided by HAL BSPs for handling hardware interrupts.

For examples of HAL ISRs, refer to existing handlers for Altera components.

For more information about the Altera-provided HAL handlers, refer to the "Developing Programs Using
the Hardware Abstraction Layer" chapter of the Nios II Software Developer’s Handbook.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

HAL APIs for Hardware Interrupts
The HAL provides an enhanced application program interface (API) for writing, registering and

managing ISRs. This API is compatible with both internal and external hardware interrupt controllers.

Altera also supports a legacy hardware interrupt API. This API supports only the IIC. If you have a
custom driver written prior to Nios II version 9.1, it uses the legacy API.

Both interrupt APIs include the following types of routines:

« Routines to be called by a device driver to register an ISR
« Routines to be called by an ISR to manage its environment
« Routines to be called by BSP or application code to control ISR behavior

Both interrupt APIs support the following types of BSPs:

o HAL BSP without an RTOS
o HAL-based RTOS BSP, such as a MicroC/OS-1I BSP

Note: The legacy API is deprecated. Write new drivers using the enhanced API, even if they are only
intended to support the IIC. Drivers for devices supporting an EIC must use the enhanced APL
Existing legacy drivers continue to be supported until further notice. Make plans to port them to
the enhanced APIL

When an EIC is present, the controller’s driver provides driver settings for the BSP, which can be used to
configure the driver. The number and types of the settings depends on the EIC implementation and the
number of EICs present.

For more information, refer to an example of EIC driver settings in the "Vectored Interrupt Controller
Core" chapter in the Embedded Peripherals IP User Guide.

Related Information

o Vectored Interrupt Controller Core

o The Enhanced HAL Interrupt API
Selecting an Interrupt API

When the SBT creates a BSP, it determines whether the BSP must implement the legacy interrupt APL
Each driver that supports the enhanced API publishes this capability to the SBT through its <driver
name>_sw.tcl file. The BSP implements the enhanced API if all drivers support it. It implements the legacy
API only if required by the drivers.

Exception Handling Altera Corporation

C] Send Feedback

https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
8-8 The Enhanced HAL Interrupt API 2015.05.14

In determining the interrupt API to use, the SBT ignores any devices whose interrupts are not connected
to the Nios II processor associated with the BSP.

A driver can publish its interrupt API support by way of a software property. The driver’s <driver name>_
sw.tcl file uses the set_sw_property command to set supported_interrupt_apis to either
legacy_interrupt_api, enhanced_interrupt_api, or both.

Drivers supporting the enhanced API always publish that support. If supported_interrupt_apis is
undefined, the SBT assumes that the driver only supports the legacy API.

Starting in 9.1, all Altera device drivers support both APIs. These drivers can be used in a BSP along with
legacy drivers. The SBT determines whether the legacy API is required, and implements it only if it is
required. If there are no drivers requiring the legacy API, the BSP implements the enhanced APIL

A driver can be written to support only the enhanced API. However, you cannot combine such a driver
with legacy drivers.

For more information and details about writing a driver to support both APIs, refer to the "Supporting
Multiple Interrupt APIs” chapter.

Related Information
Supporting Multiple Interrupt APIs on page 8-10

The Enhanced HAL Interrupt API

Table 8-1: Enhanced HAL Interrupt API Functions that Manage Hardware Interrupt Processing

alt_ic_isr_register() |Interrupt controller driver ()

alt_ic_irqg_enable() Interrupt controller driver ()

alt_ic_irq_disable() |Interrupt controller driver ()

alt_ic_irg_enabled() |Interrupt controller driver ()

alt_irg_disable_all() |HAL

alt_irg_enable_all() |HAL
alt_irg_enabled() HAL

Note: If the system is based on an EIC, these functions must be implemented by the EIC driver. If the
system is based in the IIC, the functions are implemented by the HAL. For more information about
each function, refer to the "HAL API Reference" chapter of the Nios II Software Developer’s
Handbook.

Related Information
HAL API Reference on page 14-1

Using the Enhanced HAL Interrupt API to Implement ISRs
Using the enhanced HAL API to implement ISRs requires that you perform the following steps:

1. Write your ISR that handles hardware interrupts for a specific device.

2. Ensure that your program registers the ISR with the HAL by calling the alt_ic_isr_register()
function. alt_ic_isr_register() enables hardware interrupts for you.

Altera Corporation Exception Handling

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 .
2015.05.14 The External Interrupt Controller Driver 8-9

The SBT inserts the following symbol definitions in system.h, indicating the configuration of the
processor’s interrupt-related hardware options:

o N10S2_EIC_PRESENT—If defined, indicates that one or more EICs are present
« NI0S2_NUM_OF_SHADOW_REG_SETS—Indicates how many shadow register sets are present. The

maximum value is 63. If there are no shadow register sets, the value is 0.
The External Interrupt Controller Driver

To be compliant with the HAL enhanced interrupt API, the driver for an EIC must support the functions
listed under “The Enhanced HAL Interrupt API” chapter.

For more information, refer to the “The Enhanced HAL Interrupt API” chapter.
In addition, it can provide functions to support any special hardware features.

For more information, refer to the “Using the HAL Interrupt API with the VIC” chapter.

Related Information

« The Enhanced HAL Interrupt API on page 8-8
+ Using the HAL Interrupt API with the VIC on page 8-9

Using the HAL Interrupt APl with the VIC
The Altera driver for the VIC component supports the HAL enhanced interrupt API.

The VIC driver provides support for multiple, daisychained VIC devices. It also includes support for
shadow register sets. A BSP driver setting allows you to enable automatic pre-emption (fast nested
interrupts). Automatic pre-emption means that the Nios II processor leaves maskable exceptions enabled
when accepting a hardware interrupt.

For more information about fast nested interrupts, refer to “Exception Processing” in the "Programming
Model" chapter of the Nios II Processor Reference Handbook.

The VIC device driver also provides the following device-specific functions:

e iInt alt_vic_sw_interrupt_set(alt_u32 ic_id, alt u32 irq);

e 1iInt alt vic_sw_interrupt_clear(alt_u32 ic_id, alt_u32 irq);

e alt u32 alt _vic_sw_interrupt_status(alt_u32 ic_id, alt u32 irq);

e iInt alt_vic_irqg_set_level(alt_u32 ic_id, alt_u32 irq, alt_u32 level);

For more information, refer to a detailed discussion of the VIC device-specific driver routinesin the
"Vectored Interrupt Controller Core" chapter in the Embedded Peripherals IP User Guide.

The EIC driver controls where hardware interrupt vector tables are located. For example, the Altera VIC
driver locates the vector table in the .text section by default, but allows you to position the vector table in
a different section with a driver setting.

Note: The memory in which you place the vector table must be connected to both instruction and data
master ports on the Nios II processor.

Related Information

o Programming Model
o Vectored Interrupt Controller Core

The Legacy HAL Interrupt API
The legacy HAL interrupt API defines the following functions to manage hardware interrupt processing:

Exception Handling Altera Corporation

C] Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. NII5V2
8-10 Using the Legacy HAL API to Implement ISRs 2015.05.14

e alt_irg_register()

e alt_irg_disable()

e alt_irqg_enable()

e alt_irg_disable all()

e alt_irqg_enable_ all()

o alt_irg_interruptible()

e alt_irg_non_interruptible()
e alt_irg_enabled()

For more information about these functions, refer to the "HAL API Reference" chapter.

Legacy drivers do not define the supported_interrupt_apis property. The absence of this property
indicates to the SBT that they require the legacy interrupt API.

Using the Legacy HAL API to Implement ISRs
Using the legacy HAL API to implement ISRs requires that you perform the following steps:

1. Write your ISR that handles hardware interrupts for a specific device.

2. Ensure that your program registers the ISR with the HAL by calling the alt_irqg_register()
function. alt_irg_register() enables hardware interrupts for you, by calling
alt_irg_enable_all().

Supporting Multiple Interrupt APIs
When you write or update a custom device driver, Altera recommends that you write it in one of two
ways:
o Write it to support the enhanced HAL interrupt API—Write the driver this way if you intend to use it
only in combination with other drivers supporting the enhanced APIL

o Write it to support both the enhanced and the legacy API—Write the driver this way if you need to use
it in combination with legacy drivers supporting only the legacy APIL

Note: Altera recommends using the enhanced API even if your Nios II processor implements the IIC.
The enhanced API supports both types of interrupt controller, and the legacy API is deprecated.

When the SBT selects the interrupt API, it defines one of the following symbols in system.h, to identify
which interrupt API is available:

o ALT_ENHANCED_INTERRUPT_API_PRESENT—Defined if the enhanced API is implemented
o ALT_LEGACY_INTERRUPT_API_PRESENT—Defined if the legacy API is implemented

In your driver code, use these symbols to determine which API calls to make.

To support both APIs, your driver must publish its interrupt API support by way of a software property.
In your driver’s <driver name>_sw.tcl file, use the set_sw_property command to set
supported_interrupt_apis to both legacy_interrupt_api and enhanced_interrupt_api.

For more information about the set_sw_property command, refer to the “Software Build Tools Tcl
Commands” section of the "Nios II Software Build Tools Reference" chapter of the Nios II Software
Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Altera Corporation Exception Handling

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 L.
2015.05.14 HAL ISR Restrictions 8-11

HAL ISR Restrictions
When your system has an EIC, the HAL interrupt support imposes the following restrictions:

« Nonmaskable hardware interrupts must use a shadow register set.
» Nonmaskable hardware interrupts cannot share a register set with a maskable hardware interrupt.

Writing an ISR

The ISR you write must match the prototype that alt_ic_isr_register() expects. The prototype for
your ISR function must match the following prototype:

void (*alt_isr_func) (void* isr_context)
The parameter definition of context is the same as for the alt_ic_isr_register() function.

From the point of view of the HAL exception handling system, the most important function of an ISR is
to clear the associated peripheral’s interrupt condition. The procedure for clearing an hardware interrupt
condition is specific to the peripheral.

For more information, refer to the relevant chapter in the "Embedded Peripherals IP User Guide".

When the ISR has finished servicing the hardware interrupt, it must return to the HAL interrupt funnel
that called it.

Note: If you write your ISR in assembly language, use ret to return. The HAL interrupt funnel issues an
eret after restoring the application context.

Related Information
Embedded Peripheral IP User Guide

Using Interrupt Funnels
The HAL creates a vector table for each EIC connected to the Nios II processor. In the vector table, the
HAL inserts a branch to the correct funnel for each interrupt-driven device supported by the BSP,
depending on the device driver characteristics and pre-emption settings. Funnels can be shared by
multiple hardware interrupts, if the drivers have compatible characteristics.

The funnel code receives control from the general exception or interrupt vector, depending on which
interrupt controller is implemented. The funnel performs tasks such as switching the stack pointer, saving
registers and calling RTOS context-switch routines, and transfers control to the handler. When the
handler returns, the funnel code performs tasks such as calling RTOS process-dispatch routines and
restoring registers, and transfers control to the appropriate foreground task.

The HAL includes the following interrupt funnels:

 Shadow register set, pre-emption disabled—Hardware interrupt assigned to a shadow register set, with
pre-emption within the register set disabled. This funnel does not preserve register context. Hardware
guarantees that only one ISR runs with the shadow register set at any time.

« Shadow register set, pre-emption enabled—Hardware interrupt assigned to a shadow register set. An
interrupt can pre-empt another interrupt using the same register set. This funnel preserves register
context, so that handlers is assigned to the same register set do not corrupt one another’s context.

« Nonmaskable interrupt—Nonmaskable hardware interrupt assigned to a shadow register set, with pre-
emption within the register set disabled. This funnel does not preserve register context. Hardware
guarantees that only one ISR runs in the shadow register set at any time.

Exception Handling Altera Corporation

C] Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

o . . NII5V2
8-12 Running in a Restricted Environment 2015.05.14

The HAL funnel code is called from the vector table.

Running in a Restricted Environment
ISRs run in a restricted environment. A large number of the HAL API calls are not available from ISRs.
For example, accesses to the HAL file system are not permitted. As a general rule, when writing your own
ISR, never include function calls that can block for any reason (such as waiting for a hardware interrupt).

For more information about identifying these API functions that are not available to ISRs, refer to the
"HAL API Reference" chapter.

Be careful when calling ANSI C standard library functions inside of an ISR. Avoid using the C standard
library I/O API, because calling these functions can result in deadlock within the system, that is, the
system can become permanently blocked in the ISR.

In particular, do not call printf() from within an ISR unless you are certain that stdout is mapped to a
non-interrupt-based device driver. Otherwise, printf() can deadlock the system, waiting for a hardware
interrupt that never occurs because interrupts are disabled.

Related Information
HAL API Reference on page 14-1

Managing Pre-Emption

The HAL enhanced interrupt API supports interrupt pre-emption. When pre-emption is enabled, a
higher-level interrupt can take control even if an ISR is already running. A device driver must be specifi-
cally written to function correctly under pre-emption. When a device driver supports pre-emption, it
publishes this capability through the isr_preemption_supported driver setting. When constructing the
BSP, the SBT checks each device driver to determine whether it supports pre-emption. If all drivers in the
BSP support pre-emption, it is enabled.

Legacy device drivers do not publish the isr_preemption_supported property. Therefore the SBT
assumes that they do not support pre-emption. If your legacy custom driver supports pre-emption, and
you want to allow pre-emption in the BSP, you must update the driver to use the enhanced interrupt API.

Note: To enable the enhanced interrupt API, ensure that all drivers in the system are updated to use the
enhanced interrupt API.

For more information and details about the isr_preemption_supported driver setting, refer to the
set_sw_property command in the “Software Build Tools Tcl Commands” section of the "Nios II
Software Build Tools Reference" chapter.

Operating systems can also publish the isr_preemption_supported property.

The HAL enhanced interrupt API supports automatic pre-emption. Automatic pre-emption means that
maskable exceptions remain enabled when the processor accepts the hardware interrupt. This means that
your ISR can immediately be pre-empted by a higher-level ISR, without any need to execute the eret
instruction.

Automatic pre-emption can only take place when the pre-empting hardware interrupt uses a different
register set from the interrupt being pre-empted.

Automatic pre-emption is only available if you enable it in the BSP settings.

Related Information
Nios II Software Build Tools Reference on page 15-1

Altera Corporation Exception Handling

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 o .
2015.05.14 Registering an ISR with the Enhanced Interrupt API 8-13

Registering an ISR with the Enhanced Interrupt API

Before the software can use an ISR, you must register it by calling alt_ic_isr_register(). The
prototype for alt_ic_isr_register() is:

int alt_ic_isr_register(alt_u32 ic_id,
alt_u32 irq,

alt_isr_func isr,

void *isr_context,

void* flags)

The function has the following parameters:

« ic_idis the interrupt controller identifier (ID) as defined in system.h. With daisychained EICs, ic_id
identifies the EIC in the daisy chain. With the IIC, ic_id is not significant.

o irqis the hardware interrupt number for the device, as defined in system.h.

o For the IIC, irq is the IRQ number. Interrupt priority corresponds inversely to the IRQ number.
Therefore, IRQq represents the highest priority interrupt and IRQj3, is the lowest.
o Foran EIC, irqis the interrupt port ID.

« isr_context points to a data structure associated with the device driver instance. isr_context is
passed as the input argument to the isr function. It is used to pass context-specific information to the
ISR, and can point to any ISR-specific information. The context value is opaque to the HAL; it is
provided entirely for the benefit of the user-defined ISR.

« isrisa pointer to the ISR function that is called in response to IRQ number irg. The ISR function
prototype is:

void (void* isr_context);
The input argument provided to this function is the isr_context.
Note: Registering a null pointer for isr results in the interrupt being disabled.

o Tlags is reserved.

Related Information
The Enhanced HAL Interrupt API

Methods the HAL Uses to Register the ISR
The HAL registers the ISR by one of the following methods:

« For the IIC, by the storing the function pointer, isr, in a lookup table.
« For an EIC, by configuring the vector table with the appropriate funnel code

For more information, refer to the “Using Interrupt Funnels” chapter.
The return code from alt_ic_isr_register() is zero if the function succeeded, and nonzero if it failed.

If the HAL registers your ISR successfully, the associated Nios II hardware interrupt (as defined by irq) is
enabled on return from alt_ic_isr_register().

Note: Hardware-specific initialization might also be required.
When a specific interrupt occurs, the HAL code ensures that the registered ISR is correctly dispatched.

For more information and details about hardware interrupt initialization specific to your peripheral, refer
to the relevant chapter of the Embedded Peripherals IP User Guide.

Exception Handling Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2

8-14 Enabling and Disabling Interrupts 2015.05.14

For more information about alt_ic_isr_register(), refer to the "HAL API Reference" chapter.

Note: The HAL legacy interrupt API provides a different function for registering hardware interrupts.
For all new and updated drivers, Altera recommends using the enhanced API described in this
section.

For more information about the legacy API function, alt_irqg_register(), refer to the "HAL API
Reference" chapter.

Related Information

+ Using Interrupt Funnels on page 8-11
o HAL API Reference on page 14-1
+ Embedded Peripheral IP User Guide

Enabling and Disabling Interrupts

The HAL enhanced interrupt API provides the functions alt_ic_irg_disable(),
alt_ic_irg_enable(),alt_ic_irg_enabled(), alt_irqg_disable_all(),alt_irg_enable_all(),
and alt_irg_enabled() to allow a program to disable hardware interrupts for certain sections of code,
and reenable them later. alt_ic_irg_disable() and alt_ic_irg_enable() allow you to disable and
enable individual interrupts. alt_irqg_disable_all () disables all interrupts, and returns a context value.
To reenable hardware interrupts, you call al't_irg_enable_all1() and pass in the context parameter. In
this way, interrupts are returned to their state prior to the call to alt_irg_disable_all().
alt_irg_enabled() returns nonzero if maskable exceptions are enabled. alt_ic_irg_enabled()
determines whether a specified interrupt is enabled.

Note: Disable hardware interrupts for as short a time as possible. Maximum interrupt latency increases
with the longest amount of time interrupts are disabled.

For more information about disabled interrupts, refer to the “Keep Interrupts Enabled” chapter.
For more information about these functions, refer to the "HAL API Reference" chapter.

Note: The HAL legacy interrupt API provides different functions for enabling and disabling individual
interrupts. For all new and updated drivers, Altera recommends using the enhanced API described
in this section.

For more information about the legacy API functions, alt_irg_disable() and alt_irqg_enable(), refer
to the "HAL API Reference" chapter.

Related Information

« Keep Interrupts Enabled on page 8-18
o HAL API Reference on page 14-1

Configuring an External Interrupt Controller

The driver for an EIC provides specialized driver settings that are created at the time you generate the
BSP. These settings customize the driver to the EIC configuration found in the Nios II system. The
number and type of settings depends on the EIC implementation, as well as on the number and configura-
tion of EICs in the hardware system. The SBT creates the BSP with default values, selected to ensure useful
system performance. You can optimize these settings at the time you create the BSP. For details of how to
manipulate the EIC driver settings, refer to the documentation for your specific EIC.

Altera Corporation Exception Handling

C] Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
2015.05.14 C Example 8-15

The driver for an EIC can provide specialized functions to manage any implementation-specific features
of the EIC. An example would be modifying interrupt priority levels at runtime.

For more information, refer to the examples in the "Vectored Interrupt Controller Core" chapter in the
Embedded Peripherals IP User Guide.

Related Information

Vectored Interrupt Controller Core
C Example

An ISR to Service a Button PIO Interrupt

This example is based on a Nios II system with a 4-bit PIO peripheral connected to push buttons. An IRQ
is generated any time a button is pushed. The ISR code reads the PIO peripheral’s edge capture register
and stores the value to a global variable. The address of the global variable is passed to the ISR in the
context pointer.

Example 8-1: Example 8-1. An ISR to Service a Button PIO Interrupt

#include "system_h"

#include "altera_avalon_pio_regs.h"

#include "alt_types.h"

#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT

static void handle_button_interrupts(void* context)

#else

static void handle_button_interrupts(void* context, alt_u32 id)
#endif

/* Cast context to edge_capture®s type. It is important that this
be declared volatile to avoid unwanted compiler optimization. */
volatile int* edge_capture_ptr = (volatile int*) context;

/*

* Read the edge capture register on the button PIO.

* Store value.

*/

*edge_capture_ptr =
I0RD_ALTERA_AVALON_PI0O_EDGE_CAP(BUTTON_PIO_BASE);

/* Write to the edge capture register to reset it. */
I0WR_ALTERA_AVALON_PI10_EDGE_CAP(BUTTON_PIO_BASE, 0);

/* Read the P10 to delay ISR exit. This is done to prevent a
spurious interrupt in systems with high processor -> pio

latency and fast interrupts. */
10RD_ALTERA_AVALON_PI10_EDGE_CAP(BUTTON_PI0_BASE);

}

Registering the Button PIO ISR with the HAL
Based on the code in the example, the following execution flow is possible:

Exception Handling Altera Corporation

C] Send Feedback

https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2
8-16 Upgrading to the Enhanced HAL Interrupt API 2015.05.14

+ Button is pressed, generating an IRQ.
o The ISR gains control.

o With the IIC, the HAL general exception funnel gains control of the processor, and dispatches the
handle_button_interrupts() ISR.

o With an EIC, the processor branches to the address in the vector table, which transfers control to
the handle_button_interrupts() ISR.

« handle_button_interrupts() services the hardware interrupt and returns.
« Normal program operation continues with an updated value of edge_capture.

Example 8-2: Example 8-2. Registering the Button PIO ISR with the HAL

#include "sys/alt_irq.h"
#include "'system.h"

}’-‘-Declare a global variable to hold the edge capture value. */
volatile int edge_capture;

/* Initialize the button_pio. */
static void init_button_pio()

/* Recast the edge_capture pointer to match the
alt_irg_register() function prototype. */

void* edge_capture_ptr = (void*) &edge_capture;

/* Enable all 4 button interrupts. */
I0WR_ALTERA_AVALON_PI0_IRQ_MASK(BUTTON_PI0O_BASE, OxF);
/* Reset the edge capture register. */
I0WR_ALTERA_AVALON_PI0O_EDGE_CAP(BUTTON_PI0O_BASE, 0x0);
/* Register the ISR. */

#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT
alt_ic_isr_register(BUTTON_PI10_IRQ_INTERRUPT_CONTROLLER_ID,
BUTTON_PI10_IRQ,

handle_button_interrupts,

edge_capture_ptr, 0x0);

#else

alt_irg_register(BUTTON_PIO_IRQ,

edge_capture_ptr,

handle_button_interrupts);

#endif

}

Note: Additional software examples that demonstrate implementing ISRs, such as the
count_binary example project template, are installed with the Nios II Embedded
Design Suite (EDS).

Upgrading to the Enhanced HAL Interrupt API

If you have custom device drivers, Altera recommends that you upgrade them to use the enhanced HAL
interrupt API. The enhanced API maintains compatibility with the IIC, while supporting external
interrupt controllers. The legacy HAL interrupt API is deprecated.

If you plan to use an EIC, you must upgrade your custom driver to the enhanced HAL interrupt API.
Upgrading your device driver is very simple, requiring only minor changes to some function calls.

For more information and details of the API functions, refer to the "HAL API Reference" chapter.

Altera Corporation Exception Handling

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . .
2015.05.14 Improving Nios Il ISR Performance 8-17

Table 8-2: HAL Interrupt Legacy and Enhanced API Functions to

Legacy APl Function Enhanced API Function

alt_irg_register() alt_ic_isr_register()
alt_irg_disable() alt_ic_irg_disable()
alt_irg_enable() alt_ic_irg_enable()

If your upgraded driver might need to function in a BSP with legacy drivers, code it to support both APIs.

For more information, refer to the “Supporting Multiple Interrupt APIs” chapter.

Related Information

o Supporting Multiple Interrupt APIs on page 8-10
« HAL API Reference on page 14-1

Improving Nios Il ISR Performance

If your software uses hardware interrupts extensively, the performance of ISRs is probably the most
critical determinant of your overall software performance.

Software Performance Improvements

In improving your ISR performance, you probably consider software changes first. However, in some
cases it might require less effort to implement hardware design changes that increase system efficiency.

For more information about hardware optimizations, refer to the “Hardware Performance Improve-
ments” chapter.

The following sections describe changes you can make in the software design to improve ISR perform-
ance.

Related Information
Hardware Performance Improvements on page 8-22

Execute Time-Intensive Algorithms in the Application Context
ISRs provide rapid, low latency response to changes in the state of hardware. They do the minimum
necessary work to clear the hardware interrupt condition and then return. If your ISR performs lengthy,
noncritical processing, it can interfere with more critical tasks in the system.

If your ISR requires lengthy processing, design your software to perform this processing outside of the
exception context. The ISR can use a message-passing mechanism to notify the application code to
perform the lengthy processing tasks.

Deferring a task is simple in systems based on an RTOS such as MicroC/OS-II. In this case, you can create
a thread to handle the processor-intensive operation, and the ISR can communicate with this thread using
any of the RTOS communication mechanisms, such as event flags or message queues.

You can emulate this approach in a single-threaded HAL-based system. The main program polls a global
variable managed by the ISR to determine whether it needs to perform the processor-intensive operation.

Exception Handling Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . . NII5V2
8-18 Implement Time-Intensive Algorithms in Hardware 2015.05.14

Implement Time-Intensive Algorithms in Hardware
Processor-intensive tasks must often transfer large amounts of data to and from peripherals. A general-
purpose processor such as the Nios II processor is not the most efficient way to do this. Use direct
memory access (DMA) hardware if it is available.

For more information about programming with DMA hardware, refer to “Using DMA Devices” in the
"Developing Programs Using the Hardware Abstraction Layer chapter”.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Increase Buffer Size
If you are using DMA to transfer large data buffers, the buffer size can affect performance. Small buffers
imply frequent interrupts, which lead to high overhead.

Increase the size of the transaction data buffer(s).

Use Double Buffering
Using DMA to transfer large data buffers might not provide a large performance increase if the Nios II
processor must wait for DMA transactions to complete before it can perform the next task.

Double buffering allows the Nios II processor to process one data buffer while the hardware is transfer-

ring data to or from another.

Keep Interrupts Enabled
When interrupts are disabled, the Nios II processor cannot respond quickly to hardware interrupt events.
Buffers and queues can fill or overflow. Even in the absence of overflow, maximum interrupt processing
time can increase after interrupts are re-enabled, because the ISRs must process data backlogs.

Disable interrupts as infrequently as possible, and for the briefest time possible.

Instead of disabling all interrupts, call alt_ic_irg_disable() and alt_ic_irg_enable() to enable and
disable individual interrupts.

To protect shared data structures, use RTOS structures such as semaphores.
Disable all interrupts only during critical system operations. In the code where interrupts are disabled,

perform only the bare minimum of critical operations, and reenable interrupts immediately.

Use Fast Memory
ISR performance depends on memory speed.

For best performance, place the ISRs and the stack in the fastest available memory: preferably tightly-
coupled memory (if available), or on-chip memory.

If it is not possible to place the main stack in fast memory, consider using a separate exception stack,
mapped to a fast memory section, as described in the next section.

For more information about mapping memory, refer to “Memory Usage” in the "Developing Programs
Using the Hardware Abstraction Layer" chapter.

For more information about tightly-coupled memory, refer to the "Cache and Tightly-Coupled Memory"
chapter.

Related Information

o Developing Programs Using the Hardware Abstraction Layer on page 6-1

Altera Corporation Exception Handling

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NII5V2 . 819
2015.05.14 Use a Separate Exception Stack P

o Cache and Tightly-Coupled Memory

Use a Separate Exception Stack

The HAL implements two types of separate exception stack. Their availability depends on the interrupt
controller, as described in this section. The "Separate Exception Stack Usage" table (Table 8-3) outlines
the availability of separate exception stacks, and how they can be used with each type of interrupt
controller.

Note: Using a separate exception stack entails a slight additional overhead. When processing a software
exception or hardware interrupt, the processor must execute an additional instruction on entry and
exit, to change the stack pointer. Take this additional processing time into account if your interrupt
response requirements are extremely strict.

Separate General Exception Stack

The separate general exception stack is available with either the internal or the external interrupt
controller.

Use the hal . linker.enable_exception_stack BSP setting to enable a separate general exception stack.

The HAL general exception funnel code takes care of correctly changing the stack pointer on entry to and
exit from an exception handler.

Separate Hardware Interrupt Stack
The separate hardware interrupt stack is available with the EIC interface. The separate hardware interrupt
stack is not applicable to the IIC. With the IIC, hardware interrupts and software exceptions use the same
stack.The following BSP settings enable you to control the separate hardware interrupt stack:

o hal.linker.enable_interrupt_stack enables a separate hardware interrupt stack.
o hal.linker.interrupt_stack_size controls the size of the hardware interrupt stack.

o hal.linker.interrupt_stack_memory_region_name enables you to control where the hardware
interrupt stack is positioned in memory.

The HAL funnel code takes care of correctly changing the stack pointer on entry to and exit from an ISR.

Exception Handling

C] Send Fe