
March 2014 Altera Corporation

AN-458-2.2

© 2014 Altera Corporation. Al
QUARTUS and STRATIX are
All other trademarks and serv
www.altera.com/common/le
accordance with Altera’s stand
without notice. Altera assume
service described herein excep
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Alternative Nios II Boot Methods
Application Note
In any stand-alone embedded system that contains a microprocessor, the processor
runs a small piece of code called a boot copier, or boot loader, after the system resets.
The boot copier locates the appropriate application software in non-volatile memory,
copies it to RAM, initializes critical system components, and branches to the entry
point of the application software image. The block of data in non-volatile memory
that contains the application software is commonly referred to as the boot image. Boot
copiers range in complexity from basic byte-for-byte copy routines to comprehensive
applications that perform rigorous system tests, select among multiple software
applications, and unpack, decompress, and perform error detection on the proper
application.

This document teaches you how to implement your own custom boot copier software
using the Nios® II processor and Nios II software build tools. In addition, this
document provides the basic information needed to externally control the Nios II boot
process.

This document addresses how to implement a custom boot copier for a Nios II
processor already configured in the FPGA. It does not address custom methods of
configuring Altera® FPGAs.

f For information about custom methods of configuring Altera FPGAs, refer to the
Configuration Center page of the Altera website.

Assumptions About the Reader
This document assumes that you are an advanced Nios II user and that you are
comfortable reading and writing embedded software. If you are not familiar with the
Nios II hardware or software development flow, Altera strongly recommends that
you first become familiar with building a Nios II microprocessor system.

f For step-by-step procedures that build an example Nios II microprocessor system,
refer to the Nios II Hardware Development Tutorial.

This document also assumes you are familiar with the command line operation of the
Nios II flash programmer.

f For details about the Nios II flash programmer, refer to the Nios II Flash Programmer
User Guide.
Subscribe

l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries.
ice marks are the property of their respective holders as described at
gal.html. Altera warrants performance of its semiconductor products to current specifications in
ard warranty, but reserves the right to make changes to any products and services at any time

s no responsibility or liability arising out of the application or use of any information, product, or
t as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
s before relying on any published information and before placing orders for products or services.

http://www.altera.com/support/devices/configuration/cfg-index.html
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/common/legal.html
http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=AN-458

Page 2 Default Nios II Boot Copier
Implementing a Custom Boot Copier
Implementing a custom boot copier requires you to deviate from the normal Nios II
software build tools development flow. You must edit source files by hand and run
file conversion utilities from the Nios II command shell.

This document includes example source code for the following types of custom boot
copiers:

■ Advanced boot copier—Includes extra features such as dual boot image support
and CRC error checking.

■ Small boot copier—Is a bare-minimum boot copier that requires very little
memory space.

The files referenced in this application note are available in two .zip files on the Altera
website. One file contains the hardware design example and the other contains the
software program files.

Hardware Design Files
The Nios II Ethernet Standard Design Example page of the Altera website contains
the hardware design files for a number of Altera development boards. Navigate to the
web page and locate the Nios II Ethernet Standard design example .zip file that
corresponds to your board. Download and unzip the file in a project directory of your
choosing. The remainder of this application note refers to this directory as <project>.

f For more information about the design example and supported Altera development
boards, refer to the Nios II Ethernet Standard Design Example page of the Altera
website.

Software Files
The Design Files for AN458 contains the software program files and board support
package (BSP). Download and unzip the file into your <project> directory.

Default Nios II Boot Copier
This section discusses the operation of the default Nios II boot copier, describing the
workings of both the Common Flash Interface (CFI) flash memory and the Altera
erasable programmable configurable serial (EPCS) or quad serial configuration
(EPCQ) variant. If you are unfamiliar with the default boot copier, read this section
before implementing a custom boot copier.

Overview of the Default Nios II Boot Copier
The default boot copier included with the Nios II processor provides sufficient
functionality for most Nios II applications and is convenient to implement with the
Nios II software build tools development flow. The default boot copier is
automatically and transparently added to your system when you convert your
executable files to flash programming files.
Alternative Nios II Boot Methods March 2014 Altera Corporation

http://www.altera.com/support/examples/nios2/exm-alt-boot-methods.html
http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/support/examples/nios2/exm-net-std-de.html

Default Nios II Boot Copier Page 3
1 Altera recommends that you use the default Nios II boot copier unless you require a
custom boot copier with different or additional functionality. Implementing a custom
boot copier can complicate your software build process and hinder Altera's ability to
provide technical support.

The default Nios II boot copier has the following features:

■ Supports CFI or EPCS/EPCQ flash memory

■ Unpacks and copies boot image to RAM

■ Automatically branches to application code in RAM

The Default CFI Flash Boot Copier
The Nios II default boot copier is automatically included by the Nios II flash
programmer during the execution of the elf2flash utility. Based on the processor reset
address, the elf2flash utility determines the entry point of the application code and
the address range of flash memory, whether or not a boot copier is needed. A CFI boot
copier is needed whenever the processor’s reset address points to CFI flash memory
and the application’s .text section points to somewhere other than CFI flash memory.
When a boot copier is needed, elf2flash packs the application code in a boot record,
and then creates a Motorola S-record Flash Programming File (.flash) containing the
default boot copier and the boot record. The flash programmer downloads this boot
record to CFI flash memory.

Immediately after the Nios II processor completes reset, the boot copier executes,
reads the boot record as described in “Boot Images” on page 6, and copies the
application code to RAM. After copying is complete, the boot copier reads the entry
point of the application code from the boot record. The boot copier executes the jump
to that address, and the application software begins executing.

The Default EPCS/EPCQ Boot Copier
When the Nios II processor reset address is set to the base address of an EPCS/EPCQ
controller in the Qsys system integration tool, the default EPCS/EPCQ boot copier is
implemented. The EPCS/EPCQ controller supports the Nios II processor boot
sequence with a small block of on-chip memory mapped to the EPCS/EPCQ
controller base address. During Quartus II compilation, the EPCS/EPCQ boot copier
is designated as the initial contents of this on-chip memory. When booting from
EPCS/EPCQ, the elf2flash utility does not include a boot copier in the .flash. Instead,
it includes the application code, packaged into a boot record. The flash programmer
downloads the data, which is read by the EPCS/EPCQ boot copier located in on-chip
memory.

For IV-series and earlier devices, after the Nios II processor completes reset, the boot
copier executes from the on-chip memory block in the EPCS/EPCQ controller. The
boot copier reads the Control Block (CB) header to check if a Programmer Object File
(POF) FPGA configuration image is located at the beginning of the EPCS device. If it
finds such a file, the boot copier reads the POF data to extract the size of the FPGA
configuration image. The boot copier then looks for the software application boot
record at the EPCS/EPCQ offset immediately following the last byte of the FPGA
configuration image.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 4 Advanced Boot Copier Example
For V-series and later devices, after the Nios II processor completes reset, the boot
copier executes from the on-chip memory block in the EPCS/EPCQ controller. The
boot copier reads the POF header to check if the image is a POF file. The POF header
is the first three bytes of the FPGA configuration image generated by the sof2flash
utility. The boot copier then reads the POF header for the size of the FPGA
configuration image and looks for the software application boot record at the
EPCS/EPCQ offset immediately following the last byte of the FPGA configuration
image.

When a boot record is found, the boot copier reads it and copies the application code
to RAM. After copying completes, the boot copier reads the entry point of the
application code from the boot record. The boot copier executes the jump to that
address, and the application software begins executing.

The source code for both variants of the default boot copier is included with the
Nios II Embedded Design Suite (EDS) in the <install directory>/<version>/nios2eds/
components/altera_nios2/boot_loader_sources directory.

Advanced Boot Copier Example
This section describes an advanced boot copier example. You can build the example to
run either out of CFI flash or out of on-chip memory, and to support boot images
stored in CFI or EPCS/EPCQ flash devices. The example is written in C and is heavily
commented, making it easy to customize. This example includes the following
features in addition to those provided by the default boot copier:

■ Supports two separate boot images

■ Supports status messages using a JTAG UART

■ Performs error-checking on the boot image data

■ Supports non-word-aligned boot images

Driver Initialization
To keep memory requirements low, the advanced boot copier example performs only
the minimal driver initialization necessary to support the features of the boot copier
itself. By default, the example initializes these drivers:

■ System Clock Timer

■ JTAG UART

■ Processor Interrupt Handler

After the boot copier completes initialization of these drivers, it branches to the main
application code in RAM, which performs a full initialization of the system drivers.

If you decide that you do not require these components during boot, the example
allows you to disable the initialization of their drivers individually, reducing code
size.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Advanced Boot Copier Example Page 5
Printing to the JTAG UART
The boot copier in this example prints information to the JTAG UART peripheral
during the boot process. Printing is useful for debugging the boot copier, as well as for
monitoring the boot status of your system. By default, the example prints basic
information such as a start up message, the addresses in flash memory at which it is
searching for boot images, and an indication of the image it ultimately selects to boot.
You can add your own print messages to the code easily.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 6 Advanced Boot Copier Example
The advanced boot copier example avoids using the printf() library function, for the
following reasons:

■ The printf() library may cause the boot copier to stall if no host is reading output
from the JTAG UART.

■ The printf() library can potentially consume large amounts of program memory.

Preventing Stalls by the JTAG UART
The JTAG UART behaves differently than a traditional UART. A traditional UART
typically transmits serial data regardless of whether or not an external host is
listening. If no host reads the serial data, the data is lost. The JTAG UART, on the other
hand, writes its transmit data to an output buffer and relies on an external host to read
from the buffer to empty it. By default, the JTAG UART driver stalls when the output
buffer is full. The driver waits for an external host to read from the output buffer
before writing more transmit data. This process prevents the loss of transmit data.

During boot, however, it is possible that no host is connected to the JTAG UART. In
this case, no transmit data is read from the JTAG UART output buffer. When the
output buffer fills, the printf() function stalls the entire program. This stalling is a
problem, because the boot copier must continue bringing up the system regardless of
whether an external host has connected to the JTAG UART.

To avoid this problem, the advanced boot copier example implements its own
printing routine, called my_jtag_write(). This routine includes a user-adjustable
timeout feature that allows the JTAG UART to stall the program for a limited timeout
period. After the timeout period expires, the program continues without printing any
more output to the JTAG UART. Using this routine instead of printf() prevents the
boot copier from stalling if no host is connected to the JTAG UART.

Reducing Memory Use for Printing
The advanced boot copier example also allows you to disable JTAG UART printing
altogether. This can significantly reduce the memory requirements of the boot copier.
To disable JTAG UART printing in the example, follow these steps:

1. Locate the following line in the <project>/boot_copier_sw/app/
advanced_boot_copier/advanced_boot_copier.c file:
#define USING_JTAG_UART 1

2. Replace the line with the following line:
#define USING_JTAG_UART 0

Boot Images
The advanced boot copier example expects to find boot images that conform to a
specific format, and supports up to two boot images stored in flash memory. It does
not assume the boot image starts at a 32-bit data boundary in flash.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Advanced Boot Copier Example Page 7
Boot Image Format
The advanced boot copier example expects to find a boot image that conforms to a
specific format. The make_flash_image_script.sh script creates boot images that
comply with the expected format. The make_flash_image_script.sh script runs the
elf2flash utility to create a boot record of the application from the Executable and
Linking Format File (.elf), and prepends some header information to that boot record.

Figure 1 shows the format of a boot image created using the
make_flash_image_script.sh script.

Boot Image Header Format
Each boot image includes a header at offset 0x0. The example boot copier uses the
header information attached to each boot image to extract information about the
image and to make various decisions during the boot process. The
make_flash_image_script.sh command-shell script automatically adds the header
information to any boot image. Table 1 lists the information contained in the boot
image header.

Figure 1. Example Boot Image Format

Offset

0x00

Header

Signature

Version

Timestamp

Data length

Data CRC

Reserved 0

Reserved 1

Header CRC

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

Boot ImageOffset

Boot Record

0x00

0x20

??

Header

Table 1. Example Boot Image Header Format (Part 1 of 2)

Field Size Description Location

Signature 32 bits The signature used to locate the header in flash
memory.

Defined in make_flash_image_script.sh. The
default boot signature is 0xa5a5a5a5.

Version 32 bits A binary encoded version identifier for the
application. Defined in make_flash_image_script.sh.

Timestamp 32 bits
The time the header was created. Uses the
standard C time integer value, seconds since
JAN 01, 1970.

Generated by make_flash_image_script.sh.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 8 Advanced Boot Copier Example
Boot Record Format
The boot record immediately follows the boot image header. A boot record is a
representation of the application that is loaded by the boot copier. The boot record
contains an individual record for each code section of the application. A code section
is a consecutive piece of the code that is linked to a unique region in memory. The
boot copier reads the boot record to determine the destination address for each section
of the application software code, and performs the appropriate copy operations.

The boot record is necessary because the code sections of a software application might
not all be linked to one contiguous region in memory. Often, code sections of an
application are scattered all over the memory map. To boot the application, the flash
memory must contain the entire application and information about where its parts
should be copied in memory. However, the flash memory is too small to contain a
copy of the entire memory. The boot record representation packs all the code sections
of the application in a single, contiguous block of flash memory.

The boot record contains all the code sections of the software application in a
contiguous block of data, regardless of where those code sections are linked in RAM.
The boot record is a sequence of individual records, each containing the data for a
code section, preceded by its destination address and its length. While booting, the
boot copier reads the destination address (<destination address>) and the length
(<numbytes>) from the boot record, then copies the following <numbytes> bytes from
the boot record to <destination address>.

The final individual record in the boot record is a special jump record. Reading this
record informs the boot copier it has completed copying application code, and that it
now needs to jump to the 32-bit address stored in the following four bytes. The 32-bit
address is the entry point of the application. Jump records are always encoded as
0x00000000.

The third type of individual record is a halt record. A halt record instructs the boot
copier to halt its execution. Halt records are encoded as 0xFFFFFFFF. Erased areas of
flash memory contain the value 0xFF in each byte. Therefore, if the boot copier ever
encounters an erased area of flash, it interprets it as a halt record and stops execution.

Data length 32 bits The length of the application data contained in
the boot, in bytes. Generated by make_flash_image_script.sh.

Data CRC 32 bits The CRC32 value for the entire application data Generated by make_flash_image_script.sh.

Unused 0 32 bits Unspecified purpose. Defined in make_flash_image_script.sh.

Unused 1 32 bits Unspecified purpose. Defined in make_flash_image_script.sh.

Header CRC 32 bits The CRC32 value for the header data. Generated by make_flash_image_script.sh.

Table 1. Example Boot Image Header Format (Part 2 of 2)

Field Size Description Location
Alternative Nios II Boot Methods March 2014 Altera Corporation

Advanced Boot Copier Example Page 9
Figure 2 shows the memory map in an example boot record.

Choosing a Boot Image
The advanced boot copier example supports up to two boot images stored in flash
memory. The boot copier inspects two locations in flash memory, looking for a valid
boot image at each location, then chooses one of the images to copy to RAM and
execute. The two locations are predesignated as location numbers 1 and 2. To choose a
boot image, the boot copier uses the following criteria, in the order in which they
appear.

■ Image validity

■ If only one valid boot image is found, the boot copier boots using that image.

■ If no valid boot images are found, the boot copier waits five seconds, then
jumps back to the Nios II reset address.

■ Revision number

■ If both boot images are valid, the boot copier looks at the version number of
each image.

■ The boot copier chooses the boot image with the highest version number.

■ Timestamp

■ If both boot images have the same version number, the boot copier looks at the
timestamp of each image.

■ The boot copier chooses the boot image with the most recent timestamp.

■ Default

■ If both boot images have the same timestamp, the boot copier chooses the
image in location number 2.

Figure 2. Example Boot Record Memory Map

Offset

0x00

Boot Record

<Length_A>

<Address_A>

<Length_A> bytes of
application code data

<Length_B>

<Address_B>

<Length_B> bytes of
application code data

Jump Record

0x04

0x08

N

N + 0x04

N + 0x08

Boot ImageOffset

Boot Record

0x00

0x20

??

Header
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 10 Advanced Boot Copier Example
Word Alignment
In most cases, you can program a Nios II boot image starting at a 32-bit data boundary
in flash memory. This placement allows the boot copier to copy application data with
32-bit word transfers. However, the advanced boot copier example does not assume
this alignment. If the boot copier finds a valid boot image that is not 32-bit
word-aligned in flash memory, the boot copier can still copy the application to RAM
accurately. The boot copier uses the memcpy() library function to perform the copying.
The memcpy() function requires little memory, and using memcpy() is a fast and robust
method for copying data regardless of its alignment in memory.

Boot Methods
The advanced boot copier example supports the following boot methods:

■ Directly from CFI flash—Boot from CFI flash memory, copy the advanced boot
copier from CFI flash memory to RAM, run the advanced boot copier which
copies the application from CFI flash memory, and run the application image
from RAM.

■ From CFI flash, running from on-chip memory—Boot from on-chip RAM, copy
the application from CFI flash memory, and run the application image from
RAM.

■ From EPCS/EPCQ flash, running from on-chip memory—Boot from on-chip
RAM, copy the application from EPCS/EPCQ flash memory, and run the
application image from RAM.

Booting Directly From CFI Flash
This method uses a two-stage boot copier. The first boot copier runs from CFI flash
and the second runs from RAM. The Nios II reset address is set to an address in CFI
flash memory. The default CFI boot copier and advanced boot copier are then
programmed at that address in flash. The default CFI boot copier begins executing
when the Nios II processor is reset. The default CFI boot copier loads the second boot
copier from CFI Flash into RAM and branches to the advanced boot copier's entry
point. The advanced boot copier copies the application from CFI flash to RAM, and
then branches to the application entry point.

1 Make sure the code space for the advanced boot copier does not overlap with the
application's code space. In this example, we prevent overlap by dividing the SDRAM
into two sections, an upper and lower region. The advanced boot copier loads in the
upper region of the SDRAM and the application loads in the lower region of the
SDRAM.

Booting From CFI Flash, Running From On-Chip Memory
In this method, the Nios II reset address is set to the base address of a boot ROM
implemented as FPGA on-chip memory. The boot copier executable is loaded in the
boot ROM when the FPGA is configured, after the hardware design is compiled in the
Quartus II software. The boot copier begins executing when the Nios II processor is
reset. It copies the application code from CFI flash memory to RAM, and then
branches to the application entry point.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Advanced Boot Copier Example Page 11
Booting From EPCS/EPCQ Flash, Running From On-Chip Memory
This method is very similar to the previous method. The difference is the boot images
are stored in EPCS/EPCQ flash, not CFI flash. In this method, set the Nios II reset
address to the base address of a boot ROM implemented as FPGA on-chip memory.
Load the boot copier executable into the boot ROM when the FPGA is configured,
after the hardware design is compiled in the Quartus II software. The boot copier
begins executing when the Nios II processor is reset, copies the application code from
EPCS/EPCQ flash memory to RAM, and then branches to the application entry point.

Setting the Boot Method
The advanced boot copier example supports all three boot methods described above.
The following line in the <project>/boot_copier_sw/app/
advanced_boot_copier/advanced_boot_copier.c file controls the method that is
implemented:

#define BOOT_METHOD <boot method>

The options available for <boot method> are:

■ BOOT_FROM_CFI_FLASH

■ BOOT_CFI_FROM_ONCHIP_ROM

■ BOOT_EPCS_FROM_ONCHIP_ROM

Preventing Overlapping Data in Flash
When you set up your system to boot from a flash memory, consider other data that is
also stored in that flash memory. Altera development boards are designed to support
storing FPGA configuration images and software boot images together in either type
of flash device, CFI or EPCS/EPCQ. When storing multiple images in flash memory,
you must ensure that none of the images overlap one another.

Overlapping Data in CFI Flash
Use the nios2-elf-size utility to compute the size of each of your flash images, then
choose offsets in flash memory for those images based on their sizes (or estimated
future sizes) that ensure they do not overlap.

Overlapping Data in EPCS/EPCQ Flash
In EPCS/EPCQ flash, the FPGA configuration image must always start at offset 0x0.
To avoid programming any boot images on top of the FPGA configuration image, you
must determine the end offset of the FPGA configuration image. Convert your FPGA
configuration image SRAM Object File (.sof) to a .flash image using the sof2flash
utility, then run nios2-elf-size on that flash image. The result is the offset at the end of
the FPGA configuration image in EPCS/EPCQ flash. Ensure that any software boot
images you program into EPCS/EPCQ flash begin at an offset beyond the end of the
FPGA configuration image.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 12 Implementing the Advanced Boot Copier Example
Boot Copier Code Size
The advanced boot copier example, without modification, compiles to an executable
file of size approximately 8500 bytes. If you turn off all the JTAG UART and system
clock timer functionality, the example executable size is reduced to approximately
2000 bytes.

By comparison, the code size of the default boot copier, described in “Default Nios II
Boot Copier” on page 2, is approximately 200 bytes when compiled to boot from CFI
flash, and approximately 500 bytes when compiled to boot from EPCS/EPCQ flash.

If you require a customizable boot copier that is smaller than 2000 bytes, refer to
“Small Boot Copier Example” on page 19. The small boot copier is written in Nios II
assembly language, and includes very few features. When executed, it simply copies a
boot record located in CFI flash to RAM, and then branches to the copied application.
The compiled code size is approximately 200 bytes.

Implementing the Advanced Boot Copier Example
This section describes the steps required to build and run the advanced boot copier
example on the Nios II Ethernet Standard design example.

Setting Up the Software Tools and Development Board
To build and run the advanced boot copier example, you must first perform the
following steps:

1. Ensure that you have Nios II EDS version 11.0 (or later) and Quartus II software
version 11.0 (or later) installed on your computer.

2. Connect power and a USB-Blaster™ cable to your Altera development board.

Creating a Suitable Hardware Design
In the following steps, you can open, modify, and generate a Nios II system on which
you can run the advanced boot copier example. You must also decide which boot
method you want to implement. Several of the following steps require you to take
slightly different actions depending on the boot method you use.

To open the example project:

1. Verify that you have downloaded and unzipped the file described in “Hardware
Design Files” on page 2 to your <project> directory on your computer.

2. In the Quartus II software, on the File menu, click Open Project, and open the
<project>\niosii_ethernet_standard_<board>.qpf project file.

If you intend to boot directly from CFI flash, the standard design example works
without additional memory. You can proceed to “Building the Advanced Boot
Copier” on page 13.

To add on-chip boot ROM to the system:

1. On the Tools menu, click Qsys to start Qsys and then select
eth_std_main_system.qsys. Click Open when prompted to open the Qsys design
file.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Implementing the Advanced Boot Copier Example Page 13
2. In Qsys, on the System Contents tab, expand Memories and Memory
Controllers, expand On-Chip, and select On-Chip Memory (RAM or ROM).

3. Click Add to add the component to the system. Use the following settings in
specifying the memory:

■ Memory Type: RAM (Writable) (not ROM (Read-only))

■ Data width: 32 bits

■ Total memory size: 16384 Bytes

The specified peripheral size ensures that it can hold the entire code image for the
largest version of the example boot copier. This image includes the following code:

■ Reset code in the .entry section

■ The crt0.s startup code

■ The .text section containing the alt_main entry point

■ The .rodata section holding any initialized read only data

■ The .rwdata section holding any initialized read/write data

■ The .bss section holding initialized and static variables.

■ The exception handler located in the .exception section.

Some of these sections are copied to the exception RAM—the RAM that contains
the exception vectors—when the crt0.s startup code executes, but all of the
sections are stored initially in this on-chip memory.

4. In the Qsys connection matrix, ensure that the slave port of the on-chip memory is
connected to the Nios II instruction master and to the Nios II data master, and that
the reset port of the on-chip memory is connected to the reset output clock source.

5. If Qsys reports an error in the bottom window caused by the address of the new
on-chip memory overlapping another peripheral, select a suitable base address for
the on-chip memory that does not overlap anything else.

6. Modify the clock entry for the new on-chip memory to ensure that this memory is
clocked by the same clock as the cpu component.

7. Right-click the new On-Chip Memory component, and click Rename. Rename the
component with a descriptive name such as boot_rom.

8. To enable running the boot copier from on-chip memory, right-click the cpu
component in your system and click Edit.

9. In the Nios II Processor settings window, set the Reset Vector Memory to
boot_rom.s1 with an Offset of 0x00000000.

10. Click Finish to exit the Nios II Processor settings window.

11. Click Generate to generate the Qsys system.

Building the Advanced Boot Copier
To build the example advanced boot copier in a new Quartus II project directory,
perform the following steps:
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 14 Implementing the Advanced Boot Copier Example
1. Verify that you have downloaded and unzipped the file described in “Software
Files” on page 2 to your <project> directory on your computer.

2. Open the file <project>/boot_copier_sw/bsp/advanced_boot_copier_bsp/
bootcopier_bsp_settings.tcl in a text editor.

3. To ensure the proper bsp settings and memory linker locations, edit the following
settings in bootcopier_bsp_settings.tcl:

a. Set ONCHIP to 1 if you are booting from on-chip memory, or 0 otherwise.

b. Edit EXCEPTION_OFFSET and RESET_OFFSET to match values of the CPU
component in Qsys.

c. Update SDRAM_SIZE and FLASH_SIZE to match the memory sizes in Qsys.

4. Open the file <project>/boot_copier_sw/app/advanced_boot_copier/
advanced_boot_copier.c in a text editor.

5. Edit the line:

#define BOOT_METHOD <boot_method>

to indicate the boot method you intend to use. The following options are available
for <boot_method>:

■ BOOT_FROM_CFI_FLASH

■ BOOT_CFI_FROM_ONCHIP_ROM

■ BOOT_EPCS_FROM_ONCHIP_ROM

This #define directs the Compiler to build the boot copier appropriately for the
boot method you are using.

6. To prevent the application from printing messages to the JTAG UART during boot,
edit the line:

#define USING_JTAG_UART 1

to read:

#define USING_JTAG_UART 0

This #define directs the Compiler to build the boot copier leaving out all JTAG
UART code.

7. Open a Nios II command shell. (On Windows, click Start > All Programs > Altera
> Nios II EDS > Nios II Command Shell).

8. Change to the directory <project>/boot_copier_sw/app/advanced_boot_copier.

9. To create and build the BSP and application projects, type the following command:

./create-this-app r

You now have an executable boot copier that is ready to run on the Nios II processor.
Next, you must create an application to boot using the new boot copier.

Building a Test Application to Boot
To build a test application to boot with the advanced boot copier, perform the
following steps:
Alternative Nios II Boot Methods March 2014 Altera Corporation

Implementing the Advanced Boot Copier Example Page 15
1. Open a Nios II command shell. (On Windows, click Start > All Programs > Altera
> Nios II EDS > Nios II Command Shell).

2. Change to the directory <project>/boot_copier_sw/app/hello_world.

3. To create and build the test application BSP and application projects, and generate
an executable hello_world.elf file, type the following command:

./create-this-app r

Packing the Test Application in a Boot Record
In this section, package the test application to boot in a boot record that the boot
copier can understand. To package the application, run a script from a Nios II
command shell. The following scripts are included with the design files:

■ make_flash_image_script.sh

■ make_header.pl

■ read_flash_image.pl

To package the test application to boot using the advanced boot copier, perform the
following steps:

1. Open <project>/boot_copier_sw/app/hello_world/make_flash_image_script.sh in
a text editor and update the flash_base and flash_end parameters to match your
system.

2. In your Nios II command shell, run the make_flash_image_script.sh script to
package the .elf file in a boot record, by typing the following command:

./make_flash_image_script.sh hello_world.elf r

1 Running this script might issue a warning about an empty loadable segment and
display the name of an intermediate file fake_flash_copier.srec. You can safely ignore
these messages.

The script creates the files hello_world.elf.flash.bin and hello_world.elf.flash.srec in
the current directory. You now have all the binary images needed to boot a test
application with the example boot copier. Next, you program these images in the
appropriate locations.

Booting Directly From CFI Flash Memory
To use the Nios II flash programmer to program the boot copier and the test
application in CFI flash memory, perform the following steps:

1 If you intend to boot from on-chip memory, this section does not apply. Skip ahead to
“Booting CFI or EPCS/EPCQ Flash From On-Chip Memory” on page 16.

1. In the Quartus II software, on the Tools menu, click Programmer.

2. Make sure the <project>\niosii_ethernet_standard_<board>.sof filename appears
in the File column.

3. Make sure the Program/Configure option is turned on.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 16 Implementing the Advanced Boot Copier Example
4. Click Start to configure your FPGA with the .sof file.

5. In a Nios II command shell, change to the directory
<project>/boot_copier_sw/app/hello_world.

6. Set the offset in flash memory at which to locate the hello_world boot image, by
typing the command:

bin2flash --input=hello_world.elf.flash.bin \
--output=hello_world.flash \
--location=0x00240000 r

Set the offset to 0x00240000 or 0x00440000, because in boot from CFI flash mode,
these are the two locations where the boot copier expects boot images 1 and 2,
respectively. The two addresses work equally well.

You can also change these default locations by editing the #define statements for
BOOT_IMAGE_1_OFFSET and BOOT_IMAGE_2_OFFSET in the
<project>/boot_copier_sw/app/advanced_boot_copier/advanced_boot_copier.c
file, and then rebuilding the boot copier.

7. Program the hello_world boot image in flash memory by typing the following
command:

nios2-flash-programmer --base=<flash_base> \
hello_world.flashr

where <flash_base> is the base address of the CFI flash component in your Qsys
system.

8. In a Nios II command shell, change to the directory
<project>/boot_copier_sw/app/advanced_boot_copier.

9. Create the flash memory file for the boot copier by typing the following command:

make flash r

This command creates the file <flash_component>.flash, where <flash_component> is
the name of the CFI flash component in your Qsys system.

10. Program the boot copier to flash memory by typing the following command:

nios2-flash-programmer --base=<flash_base> \
<flash_component>.flash r

11. Skip ahead to “Running the Advanced Boot Copier Example” on page 18.

Booting CFI or EPCS/EPCQ Flash From On-Chip Memory
In this section, use the Quartus II software to program the boot copier in the boot_rom
memory of the FPGA, and then use the Nios II flash programmer to program the test
application boot record in either CFI or EPCS/EPCQ flash memory.

1 If you intend to boot directly from CFI flash memory, this section does not apply.
Booting directly from CFI flash memory is covered in “Booting Directly From CFI
Flash Memory” on page 15.

To program the boot copier in the FPGA’s boot_rom memory, perform the following
steps:
Alternative Nios II Boot Methods March 2014 Altera Corporation

Implementing the Advanced Boot Copier Example Page 17
1. In a Nios II command shell, change to the subdirectory
<project>/boot_copier_sw/app/advanced_boot_copier of your Quartus II project
directory.

2. To generate the memory initialization file for the boot_rom memory that contains
the boot copier, type the following command:

elf2hex advanced_boot_copier.elf <boot_rom_start_address>
<boot_rom_end_address> --width=32 --create-lanes=0
../../../boot_rom.hex r

3. On the Quartus II Processing menu, click Start Compilation to compile the
project.

4. When compilation is complete, on the Tools menu, click Programmer.

5. Make sure the <project>\niosii_ethernet_standard_<board>.sof filename appears
in the File column.

6. Make sure the Program/Configure option is turned on.

7. Click Start to configure your FPGA with the .sof file.

The boot_rom memory on the FPGA now contains an executable image of the
example boot copier.

To program the test application in flash memory, perform the following steps:

1. In a Nios II command shell, change to the subdirectory
<project>/boot_copier_sw/app/hello_world of your Quartus II project directory.

2. Set the offset in flash memory at which to locate the hello_world boot image, by
typing one of the following commands:

■ If you are booting from CFI flash memory, type the following command:

bin2flash --input=hello_world.elf.flash.bin \
--output=hello_world.flash \
--location=0x00240000 r

■ If you are booting from an EPCS/EPCQ device, type the following command:

bin2flash --input=hello_world.elf.flash.bin \
--output=hello_world.flash \
--location=0x00060000 r

Set the offset to 0x00240000 or 0x00440000 when booting from CFI flash memory,
and to 0x00060000 or 0x00080000 when booting from an EPCS/EPCQ device,
because in boot from the respective flash memory, these are the two locations
where the boot copier expects boot images 1 and 2, respectively. In both cases, the
two addresses work equally well.

You can also change these default locations by editing the #define statements for
BOOT_IMAGE_1_OFFSET and BOOT_IMAGE_2_OFFSET in the
<project>/boot_copier_sw/app/advanced_boot_copier/advanced_boot_copier.c
file, and then rebuilding the boot copier.

1 If you edited the flash image offsets in advanced_boot_copier.c, specify the
--location value as one of the image offsets you defined in
advanced_boot_copier.c, not the offsets mentioned here.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 18 Implementing the Advanced Boot Copier Example
3. Program the hello_world boot image in flash memory by typing the one of the
following commands:

■ If you are booting from CFI flash memory, type the following command:

nios2-flash-programmer --base=<flash_base> \
hello_world.flash r

■ If you are booting from an EPCS/EPCQ device, type the following command:

nios2-flash-programmer --base=<flash_base> \
--epcs hello_world.flash r

where <flash_base> is the base address of the CFI or EPCS/EPCQ flash component
in your Qsys system.

Running the Advanced Boot Copier Example
To run the advanced boot copier example on your development board, perform the
following step:

■ After the flash programmer completes, in a Nios II command shell, type the
following command to reset the Nios II processor:

nios2-download -r -g r

The boot loader and the test application both print status messages to the JTAG UART
if it is enabled. If the JTAG UART and SYS_CLK_TIMER are initialized in the
bsp/alt_sys_init.c file, and USING_JTAG_UART remains at value 1 in the
<project>/boot_copier_sw/app/advanced_boot_copier/advanced_boot_copier.c file,
you can view these messages.

To see the messages, perform the following step:

■ In a Nios II command shell, run the nios2-terminal utility by typing the following
command:

nios2-terminal r

1 If nios2-terminal cannot connect to the JTAG UART with the default settings, run it
with the --help option for a listing of the command line switches that might be
needed.

1 If your nios2-terminal displays truncated output from the boot copier, followed by
the boot image output, press the CPU Reset button on your development board to
repeat the boot process and view the full output. Refer to Figure 3 for the expected
output if you boot CFI flash memory from on-chip RAM.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Small Boot Copier Example Page 19
If the boot copier runs successfully, you see output from nios2-terminal, as shown in
Figure 3. Your output differs slightly if booting from external memory or booting
EPCS/EPCQ flash.

Small Boot Copier Example
This section describes a small code size boot copier example for users interested in
using as little memory as possible.

Small Boot Copier Features
The small boot copier example is a minimal program designed to use very little
program memory. It performs only the following operations:

1. Reads an application boot record from flash memory

2. Copies it to RAM

3. Jumps to the application's entry point

The small boot copier supports only one boot image, does not perform any error
checking, and does not support printing messages to the JTAG UART. If you are
interested in a more advanced boot copier, refer to “Advanced Boot Copier Example”
on page 4.

1 This example is designed to run on the Altera Nios II Ethernet Standard design
example. For more information about the design example and supported Altera
development boards, refer to the Nios II Ethernet Standard Design Example page of
the Altera website.

Figure 3. Advanced Boot Copier Output
March 2014 Altera Corporation Alternative Nios II Boot Methods

http://www.altera.com/support/examples/nios2/exm-net-std-de.html

Page 20 Implementing the Small Boot Copier Example
Implementation in Nios II Assembly Language
To keep the code size as small as possible, write the small boot copier example in
Nios II assembly language. All the variables that the boot copier uses are
implemented in Nios II processor general purpose registers, not in RAM. Therefore,
the boot copier itself has no data memory requirement. The small boot copier has no
.rodata, .rwdata, stack, or heap section. Because it does not require data memory,
this boot copier can easily be relocated anywhere in memory and can even run
directly from non-volatile flash memory without setting up a data memory section.

System Initialization
The small boot copier performs only the minimum necessary system initialization.
The following initialization tasks are performed by the boot copier:

■ Clears the processor status register to disable interrupts

■ Flushes the instruction cache

■ Flushes the processor pipeline

Code Size
The small boot copier compiles to an executable file that is only 200 bytes long. This
boot copier is small enough to fit in one M9K block, the smallest unit of memory in a
Cyclone III FPGA.

Implementing the Small Boot Copier Example
This section describes the steps required to build and run the small boot copier
example on the Nios II Ethernet Standard design example. This boot copier is a
bare-minimum, small-code-size version written in assembly language. If you want to
build a more full-featured boot copier, refer to “Implementing the Advanced Boot
Copier Example” on page 12.

The small boot copier example is built in a Nios II command shell using the make
utility.

Setting Up the Software Tools and Development Board
To build and run the small boot copier example, you must first perform the following
steps:

1. Ensure that you have Nios II EDS version 11.0 (or later) and the Quartus II
software version 11.0 (or later) installed on your computer.

2. Connect power and a USB Blaster to your Altera development board.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Implementing the Small Boot Copier Example Page 21
Creating a Suitable Hardware Design
In the following steps, you open, modify, and generate a Nios II system on which you
can run the small boot copier example.

To open the example project and add on-chip ROM to the system:

1. Verify that you have downloaded and unzipped the file described in “Hardware
Design Files” on page 2 to your <project> directory on your computer.

2. In the Quartus II software, on the File menu, click Open Project, and open the
<project>\niosii_ethernet_standard_<board>.qpf project file.

3. On the Tools menu, click Qsys to start Qsys.

4. In Qsys, on the System Contents tab, expand Memories and Memory
Controllers, and select On-Chip Memory (RAM or ROM).

5. Click Add to add the component to the system. Specify the following memory
settings:

■ Memory Type: ROM (Read-only)

■ Data width: 32 bits

■ Total memory size: 512 Bytes

The specified on-chip memory size ensures that no memory space is wasted. The
smallest usable block of memory in a Cyclone III FPGA is 512 bytes (one M9K
block). Although the small boot copier example requires only 200 bytes of
memory, the remainder of the M9K block can be used only after you enable it.
Therefore, Altera recommends that you enable the entire block, rather than waste
it.

6. Right-click the new On-Chip Memory and click Rename. Specify a descriptive
name such as boot_rom.

7. In the Qsys connection matrix, ensure that the slave port of the on-chip memory is
connected to the Nios II instruction master and to the Nios II data master, and that
the reset port of the on-chip memory is connected to the reset output of the clock
source.

8. If Qsys reports an error in the bottom window caused by the address of the new
on-chip memory overlapping another peripheral, select a suitable base address for
the on-chip memory that does not overlap anything else.

9. Modify the clock entry for the new on-chip memory to ensure that this memory is
clocked by the same clock as the cpu component.

10. To enable running the boot copier from on-chip memory, right-click the cpu
component in your system and click Edit.

11. In the Nios II Processor settings window, set the Reset Vector Memory to
boot_rom.s1 with an offset of 0x00000000.

12. Click Finish to exit the Nios II Processor settings window.

13. Click Generate to generate the Qsys system.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 22 Implementing the Small Boot Copier Example
Building the Small Boot Copier Using 'make'
This section describes how to build the example small boot copier from the Nios II
command shell.

To build the example small boot copier in a new Quartus II project directory, perform
the following steps:

1. Verify that you have downloaded and unzipped the file described in “Software
Files” on page 2 to your <project> directory on your computer.

2. Open a Nios II command shell. (On Windows, click Start > All Programs > Altera
> Nios II EDS > Nios II Command Shell).

3. Change to the directory <project>/boot_copier_sw/app/small_boot_copier.

4. In Qsys, determine the base address of your ext_flash component
(<flash_base_address>).

5. In the Nios II command shell, type the following command:

make all FLASH_BASE=<flash_base_address> \
 BOOT_IMAGE_OFFSET=0x00240000

This command builds the small boot copier, hardcoding it to look for a boot image
at offset 0x00240000 in flash memory and assumes no other important data is
located there. You can freely modify this offset to a value more relevant to your
application, but when you program the boot image in flash memory (in step 2 on
page 23), ensure that you program it to the same offset you choose in the current
step.

1 This example uses a makefile in place of the Nios II software build tools
because you are only compiling a single assembly file, with no associated
drivers.

You now have an executable boot copier named small_boot_copier.hex that is ready
to run on the Nios II processor. Next, you must create an application to boot using the
new boot copier.

Building a Test Application to Boot
To build a test application to boot using the small boot copier, perform the steps in
“Building a Test Application to Boot” on page 14.

Booting From On-Chip Memory
In this section, use the Quartus II software to program the small boot copier in the
boot_rom memory of the FPGA, and then use the Nios II flash programmer to
program the test application boot record in CFI flash memory.

To program the boot copier in the FPGA’s boot_rom memory, perform the following
steps:

1. Change to the <project>/boot_copier_sw/app/small_boot_copier directory.

2. Copy small_boot_copier.hex to the Quartus II project directory and rename it
boot_rom.hex using the following command:
Alternative Nios II Boot Methods March 2014 Altera Corporation

Implementing the Small Boot Copier Example Page 23
cp small_boot_copier.hex ../../../boot_rom.hex r

1 You may see a warning that a file by that name already exists in that
directory. If you are asked to replace the old file, click Yes.

The next Quartus II compilation implements the boot copier executable as the
contents of boot_rom.

3. If Qsys is still open, return to it and click Exit to close it.

4. In the Quartus II window, on the Assignments menu, click Settings.

5. In the Category list, click Compilation Process Settings, then turn on Use Smart
Compilation. This option prevents recompilation of the entire design when only
an update to the on-chip memory contents is required. The first Quartus II
compile, however, must be a full compile, because adding an on-chip memory to
the system changed the design.

6. On the Processing menu, click Start Compilation to compile the Quartus II
project.

7. When compilation is complete, on the Tools menu, click Programmer.

8. Make sure the <project>\niosii_ethernet_standard_<board>.sof filename appears
in the File column.

9. Make sure the Program/Configure option is turned on.

10. Click Start to configure your FPGA with the .sof file.

The boot_rom memory on the FPGA now contains an executable image of the
example boot copier.

To program the test application in CFI flash memory, perform the following steps:

1. In a Nios II command shell, change to the directory
<project>/boot_copier_sw/app/hello_world.

2. Set the offset in flash memory at which to locate the hello_world boot image, by
typing the command:

bin2flash --input=hello_world.elf.flash.bin \
--output=hello_world.flash \
--location=0x00240000 r

Set the location to 0x240000, because in boot from CFI flash mode, this is the
location where the small boot copier expects to find the boot image. The correct
value for the --location parameter is the value specified in the command in step 5
on page 22.

3. Program the hello_world boot image in flash memory by typing the following
command:

nios2-flash-programmer --base=<flash_base> \
hello_world.flash r

where <flash_base> is the base address of the CFI flash component in your Qsys
system.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 24 Debugging Boot Copiers
Running the Small Boot Copier Example
To run the small boot copier example on your development board:

1. After the flash programmer completes, in a Nios II command shell, type the
following command to reset the Nios II processor:

nios2-download -r -g r

The boot copier should now boot the test application.

2. To test that the test application actually loads and executes, run the nios2-terminal
utility in the Nios II command shell by typing the following command:

nios2-terminal r

If the boot copier runs successfully, you see output from nios2-terminal, as shown in
Figure 4.

1 If nios2-terminal cannot connect to the JTAG UART with the default settings, run it
with the --help option for a listing of the command line switches that might be
needed.

Debugging Boot Copiers
Some special considerations should be made when attaching the Nios II SBT for
Eclipse™ debugger to a processor running boot copier code. The following section
discusses the requirements for debugging boot copiers.

Figure 4. Small Boot Copier Output
Alternative Nios II Boot Methods March 2014 Altera Corporation

Debugging Boot Copiers Page 25
Hardware and Software Breakpoints
Boot copiers often run from non-volatile memory, which affects the types of
breakpoints that can be set in the code. The two types of breakpoints used by the
Nios II debugger are software breakpoints and hardware breakpoints. Software
breakpoints replace the processor instruction at the breakpoint location with a
different instruction that transfers control to the debugger. This replacement method
requires that the program memory be writable so that the breakpoint instruction can
be written. Because boot copiers often run from non-volatile memory such as flash
memory, software breakpoints cannot be set in boot copiers.

Hardware breakpoints detect the address value of the breakpoint on the instruction
address bus, and then transfer control to the debugger using hardware. Therefore, a
hardware breakpoint can be set in non-volatile memory. Only a hardware breakpoint
can be set in a boot copier that runs from flash memory.

Enabling Hardware Breakpoints
To enable hardware breakpoints in the Nios II processor:

1. In Qsys, open the Nios II MegaWizard interface by double clicking the system's
Nios II processor.

2. In the Nios II MegaWizard interface, click the JTAG Debug Module page.

3. Select Level 2 or greater, which allows two simultaneous hardware breakpoints
that the Nios II debugger can automatically use.

Breaking Before main()
When debugging a boot copier, you may want to start debugging immediately after
reset, instead of waiting until reaching the function main(). Some boot copiers do not
contain a function main() at all. In these cases, instruct the debugger to set a
breakpoint at the program entry point.

Setting Up the Debugger
To configure the Nios II debugger for debugging a boot copier:

1. Import your boot copier project to the Nios II SBT for Eclipse by performing the
following steps:

a. Open the Nios II SBT for Eclipse (selecting the workspace folder of your
choice).

b. On the File menu, click Import. The Import dialog box appears.

c. Expand the Nios II Software Build Tools Project folder, and select Import
Nios II Software Build Tools Project.

d. Click Next.

e. Under Project location, browse to your boot copier project folder.

f. Enter a project name.

g. Turn off Clean project when importing and Managed project.

h. Click Finish.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 26 Externally Controlling the Nios II Boot Process
2. In the Nios II SBT for Eclipse, highlight the name of the imported boot copier
project, and on the Run menu, click Debug Configurations.

3. In the Debug configuration dialog box, click the New icon to create a new debug
configuration.

4. Click the Target Connection tab.

5. In the Download box:

a. If your boot copier runs from ROM, turn on Start processor, turn on Reset the
selected target system, and turn off Download ELF to selected target system.

b. If your boot copier runs from RAM, turn on Start processor, turn off Reset the
selected target system, and turn on Download ELF to selected target system.

6. Click the Debugger tab.

7. Turn on Stop on Startup at: main.

8. Click Apply.

9. Click the Debug button to start the debugger. Once connected, the debugger
breaks at the entry point of the boot copier.

Externally Controlling the Nios II Boot Process
Another way to boot the Nios II processor is to have a different component, such as
another processor, control the boot process externally. In this situation, the external
processor reads the Nios II application code from some source and loads it into Nios II
program memory. The external processor can retrieve the Nios II application code
from various sources. For example, it might read the code from some non-volatile
storage medium such as hard disk, or download the code over an Ethernet
connection.

The method by which the external processor retrieves the Nios II application code is
outside the scope of this document. This section focuses on the process of safely
loading the application code in Nios II program memory, then directing the Nios II
processor to properly execute the application.

Overview
Two different methods are available to implement an externally controlled boot of a
Nios II system.

■ The external processor unpacks the Nios II boot image and writes the executable
application code to Nios II program memory.

■ The external processor only copies the boot image to RAM. The Nios II processor
takes over from there and unpacks the boot image itself.

The latter method, letting the Nios II processor unpack and load the application from
the boot image, is similar to the process of running a normal boot copier on the Nios II
processor. The only difference is that instead of a flash programmer placing the boot
image in flash memory, an external processor copies the boot image to RAM. After the
external processor releases the Nios II processor from reset, everything happens just
as if the Nios II processor were booting from flash memory.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Externally Controlling the Nios II Boot Process Page 27
This section focuses on the first method, in which the external processor unpacks the
Nios II boot image, copies the application code to Nios II program memory, and then
directs the Nios II processor to the application's entry point.

One common requirement, regardless of external boot method, is that you must
prevent the Nios II processor from executing any code in the memory space being
written by the external processor during the copying and unpacking processes.
Otherwise, you may encounter race condition and data corruption problems. The
process described in this section prevents the Nios II processor from executing code
by holding it in reset while the application code is copied to Nios II program memory.
After the application code is copied, the Nios II processor is released from reset to
execute the application.

Building an Appropriate Qsys System
Before you can successfully implement an externally controlled Nios II boot, you
must ensure your Qsys system contains the necessary hardware. An external
processor must be able to access the appropriate system peripherals and control the
reset state of the Nios II processor. The following list describes the minimum
hardware elements required to support an externally controlled Nios II boot.

■ External Processor Bridge

■ Nios II processor with the following features:

■ A cpu_resetrequest signal

■ A reset address that points to RAM

■ A one-bit parallel I/O (PIO) peripheral device

Figure 5 shows the block diagram of a system that can control the boot of a Nios II
processor externally.

Figure 5. Block Diagram of Externally Controlled Nios II Boot System

External
Processor

External
Processor
Bridge

SDRAM

Nios II

SDRAM
Controller

PIO

System Interconnect Fabric

resettaken
resetrequest

input
output

Altera FPGA
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 28 Externally Controlling the Nios II Boot Process
External Processor Bridge
To allow an external processor to access peripherals in your Qsys system, the system
must include a bridge between the Avalon fabric and the external processor bus.

Bridges to external processors can be acquired as intellectual property (IP) or
developed internally. Many designers develop their own external processor bridge
components for Qsys because it is usually relatively straightforward to bridge the
Avalon fabric architecture to other bus protocols. The Component Editor tool,
available in Qsys, is useful for creating IP such as external processor bridges.

f For a list of bridge IP available from Altera, refer to the Intellectual Property &
Reference Designs page of the Altera website.

The cpu_resetrequest Signal
In versions 6.0 and later of the Nios II processor, an optional cpu_resetrequest signal
is available to control the reset state of the processor. This signal differs from the
normal Qsys system-wide reset signal reset_n—the cpu_resetrequest signal resets
the Nios II processor only. The rest of the Qsys system remains operational. This
signal holds the Nios II processor in reset while code is moved into the Nios II
program memory.

The cpu_resetrequest signal does not cause the Nios II processor to enter the reset
state immediately. When cpu_resetrequest is held high, the Nios II processor finishes
executing any instructions currently in the pipeline, then enters reset. This process
may take an indeterminate number of clock cycles, so a status signal cpu_resettaken
is driven high by the Nios II processor when it reaches the reset state. The processor
holds this signal high for one cycle. The cpu_resettaken signal continues to assert
periodically while the cpu_resetrequest signal is held high.

To enable the cpu_resetrequest signal, open a project in Qsys that contains a Nios II
processor. Double-click the Nios II component to open the Nios II MegaWizard
interface, then click the Advanced Features page. Turn on Include cpu_resetrequest
and cpu_resettaken signals to enable the signals. They appear as ports on your
top-level Qsys system after you regenerate the system.

Nios II Reset Address
The Nios II reset address is the address of the first instruction the processor executes
after it is released from reset. Therefore, in a Nios II system capable of externally
controlled boot, the Nios II reset address must point to a writable memory (RAM).
This class of reset address is typically not what you want in a traditional boot
scenario, but in the external boot control situation described in this section, it is
important that the Nios II reset address point to RAM.

The Nios II reset address must point to RAM because, to direct the Nios II processor
to the application code that was just copied into RAM, the external processor must be
able to write the first instruction (or instructions) that the Nios II processor executes
upon reset. Typically, the instruction written to the reset address is an unconditional
branch (br) to the entry point of the application.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Externally Controlling the Nios II Boot Process Page 29
You can choose any unused 32-bit location in RAM as the reset address for the Nios II
processor, but the base address (offset 0x0) of the Nios II program memory—the
memory region that contains the .text section—is usually a good choice. By default,
the Nios II exception table is placed at offset 0x20 in the program memory, and the
remainder of the application code is placed following the exception table in
consecutive memory. This arrangement leaves offsets 0x0 through 0x1C available. A
reset address at offset 0x0 guarantees that the difference between the reset address
and the application entry point—assumed to be early in the application code—never
exceeds 64 Kbytes, as required for this process to work. For a description of why the
difference cannot exceed 64 Kbytes, see the discussion of instruction step 1 on
page 31.

One-Bit PIO Peripheral
A one-bit PIO peripheral is needed to control the Nios II cpu_resetrequest signal
from the external processor. The external processor accesses the Avalon-mapped PIO
peripheral through the external processor bridge. The external processor writes the
value 1 to the PIO to assert the cpu_resetrequest pin, or the value 0 to de-assert it.

The external processor can also read the state of the cpu_resettaken signal using the
same PIO peripheral. However, the Nios II processor asserts the cpu_resettaken
signal for only one clock cycle at a time. Therefore, sampling this signal from software
to see when reset has been achieved does not work. The signal can easily assert and
de-assert again between samples, so that a valid assertion of cpu_resettaken by the
Nios II processor might never be captured by the external processor.

The PIO component included with Qsys includes an edge-capture feature to use in
this situation. The edge-capture feature sets a bit in the edge-capture register of the
PIO whenever an edge of the predefined type is seen on that bit of the PIO’s input
port. The external processor can read the edge-capture register any time after it asserts
cpu_resetrequest. If the cpu_resettaken signal was asserted any time since the
cpu_resetrequest assertion, the relevant bit in the PIO’s edge-capture register is set.

To add a PIO component configured to use the edge-capture feature to detect
assertions of cpu_resettaken to your system, perform the following steps:

1. Open your system in Qsys.

2. On the System Contents tab, under Peripherals, and then under Microcontroller
Peripherals, click the PIO (Parallel I/O) component.

3. Click Add.

4. In the PIO MegaWizard interface, set the width to one bit and select InOut for
Directions.

5. Under the Edge capture register section, check the Synchronously Capture box,
and then select RISING for Edge type.

6. Click Finish to add the PIO component to your system.

Your system now contains a PIO component capable of asserting the Nios II
cpu_resetrequest signal and detecting rising edges on the cpu_resettaken signal.

1 Qsys does not automatically connect the input and output ports of the PIO
component to the Nios II cpu_resettaken and cpu_resetrequest signals. After Qsys
generation, you must make these connections at the top level in the Quartus II project.
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 30 Externally Controlling the Nios II Boot Process
The Boot Process
Now that you have learned the important hardware aspects of externally controlling
the Nios II boot process, this section describes the entire boot process from the
perspective of the software running on the external processor.

Boot Images
The procedure described here assumes you have a Nios II boot image in the format
described in “Boot Images” on page 6.

Example C Code
In the directory boot_copier_src/app/external_boot, you can find sample C source
code that you can run on an external processor to control the boot of a Nios II
processor. The code is heavily commented, making it relatively easy to modify and
customize. The example code happens to retrieve the boot image from offset 0x0 of a
CFI flash, but in a real system, the boot image could come from anywhere. That part
of the process is left to your discretion.

External Boot Flow
The following section describes the boot flow implemented in the example C code
mentioned in the previous section. These steps are written from the perspective of
software running on an external processor which is responsible for controlling the
Nios II boot process.

1. Retrieve the Nios II boot image.

The software can retrieve the Nios II boot image any number of ways. Common
methods include reading the boot image from non-volatile storage such as hard disk
or flash memory, downloading it over an Ethernet connection, or passing in a pointer
to its location in RAM. Most important is that the image be locally accessible in its
entirety before you attempt to unpack it and copy it to Nios II program memory.

1. Hold the Nios II processor in reset using the one-bit PIO, by performing the
following actions:

■ Write any 32-bit value to offset 0x3 of the PIO component to clear the
edge-capture register. Using the edge-capture register to detect when the
cpu_resettaken signal goes high requires that you clear the edge-capture
register first to ensure the register value does not represent an edge event that
occurred in the past.

■ Write the value 1 to offset 0x0 in the PIO component to assert the Nios II
cpu_resetrequest signal.

■ Continuously poll offset 0x3 of the PIO component until it holds the value 1.
This value indicates that the Nios II cpu_resettaken signal transitioned high,
which ensures the Nios II processor is now in a reset state and you can safely
begin copying application code to its program memory.

2. Copy the application to its destination address in memory space.
Alternative Nios II Boot Methods March 2014 Altera Corporation

Externally Controlling the Nios II Boot Process Page 31
Parse the boot record to copy each section of the application code to its appropriate
location in Nios II program memory. The final individual record in the boot record is a
jump record. Be sure to save the jump value, which contains the entry point of the
application code. In the next step, you must direct the Nios II processor to the
application entry point.

1. Construct a branch instruction to place at the Nios II reset address.

Constructing a Nios II branch (br) instruction allows Nios II to branch from its reset
address to the entry point of the application code. Because the Nios II branch
instruction is relative, meaning it branches relative to the current instruction, you
need to know both the Nios II reset address, and the application entry point address.

In the example code, the Nios II reset address is simply defined at the top of the file. If
your Nios II reset address changes, you must also change the relevant #define in the
example code.

Subtract the reset address from the entry point address (saved in the previous step) to
obtain the offset. For Nios II pipelining, the branch instruction actually requires the
offset to be relative to the next instruction, so subtract 4 from the offset to obtain the
actual offset needed for the instruction.

1 Because all Nios II instructions are 32 bits, every address and offset must be a multiple
of 4.

1 The offset used in the branch instruction is 16 bits, so your reset address must be less
than 64Kbytes away from the application entry point in memory space.

Using the branch instruction encoding shown in Table 2, construct a branch
instruction from the offset. The following C statements create a properly encoded
instruction from the reset address and entry point:

int offset = entry_point – reset_address;
unsigned int inst = ((offset - 4) << 6) | 0x6;

1. Write the branch instruction to the Nios II reset address.

2. Release the Nios II processor from reset.

Write a zero to offset 0x0 of the PIO peripheral to deassert the Nios II
cpu_resetrequest signal. The Nios II processor should come out of reset, execute the
branch instruction, branch to the entry point of the application, and begin to execute
it.

Booting is now complete. The Nios II processor is off and running, so the external
processor can go about its other system tasks.

Table 2. Nios II Branch Instruction Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 16-bit offset - 4 0x06
March 2014 Altera Corporation Alternative Nios II Boot Methods

Page 32 Document Revision History
Document Revision History
Table 3 shows the revision history for this document.

Table 3. Document Revision History

Date Version Changes

March 2014 2.2

■ Updated “Default Nios II Boot Copier” section to include the EPCQ variant.

■ Updated “The Default EPCS/EPCQ Boot Copier” section to describe behavior for IV-series
and earlier and V-series and later devices.

■ Globally changed EPCS to EPCS/EPCQ

May 2011 2.1
■ Replaced SOPC Builder with Qsys

■ Updated Figure 3 on page 18 and Figure 4 on page 23

August 2010 2.0 Updated for the Quartus II v10.0 software, the Nios II Software Build Tools for Eclipse, and
the Nios II Ethernet Standard design example.

September 2008 1.1
Updated for the Quartus II v8.0 software and the Nios II software build tools development
flow. New design examples target the Altera Nios II Embedded Evaluation Kit, Cyclone III
Edition.

November 2007 1.0 Initial release.
Alternative Nios II Boot Methods March 2014 Altera Corporation

	Alternative Nios II Boot Methods
	Assumptions About the Reader
	Implementing a Custom Boot Copier
	Hardware Design Files
	Software Files

	Default Nios II Boot Copier
	Overview of the Default Nios II Boot Copier
	The Default CFI Flash Boot Copier
	The Default EPCS/EPCQ Boot Copier

	Advanced Boot Copier Example
	Driver Initialization
	Printing to the JTAG UART
	Preventing Stalls by the JTAG UART
	Reducing Memory Use for Printing

	Boot Images
	Boot Image Format
	Boot Image Header Format
	Boot Record Format
	Choosing a Boot Image
	Word Alignment

	Boot Methods
	Booting Directly From CFI Flash
	Booting From CFI Flash, Running From On-Chip Memory
	Booting From EPCS/EPCQ Flash, Running From On-Chip Memory
	Setting the Boot Method

	Preventing Overlapping Data in Flash
	Overlapping Data in CFI Flash
	Overlapping Data in EPCS/EPCQ Flash

	Boot Copier Code Size

	Implementing the Advanced Boot Copier Example
	Setting Up the Software Tools and Development Board
	Creating a Suitable Hardware Design
	Building the Advanced Boot Copier
	Building a Test Application to Boot
	Packing the Test Application in a Boot Record
	Booting Directly From CFI Flash Memory
	Booting CFI or EPCS/EPCQ Flash From On-Chip Memory
	Running the Advanced Boot Copier Example

	Small Boot Copier Example
	Small Boot Copier Features
	Implementation in Nios II Assembly Language
	System Initialization
	Code Size

	Implementing the Small Boot Copier Example
	Setting Up the Software Tools and Development Board
	Creating a Suitable Hardware Design
	Building the Small Boot Copier Using 'make'
	Building a Test Application to Boot
	Booting From On-Chip Memory
	Running the Small Boot Copier Example

	Debugging Boot Copiers
	Hardware and Software Breakpoints
	Enabling Hardware Breakpoints
	Breaking Before main()
	Setting Up the Debugger

	Externally Controlling the Nios II Boot Process
	Overview
	Building an Appropriate Qsys System
	External Processor Bridge
	The cpu_resetrequest Signal
	Nios II Reset Address
	One-Bit PIO Peripheral

	The Boot Process
	Boot Images
	Example C Code
	External Boot Flow

	Document Revision History

