
Nios II Gen2 Processor Reference Guide

Subscribe

Send Feedback

NII5V1GEN2
2016.10.28

101 Innovation Drive
San Jose, CA 95134
www.altera.com

https://www.altera.com/servlets/subscriptions/alert?id=NII5V1GEN2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Processor%20Reference%20Guide%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

Introduction.. 1-1
Nios II Processor System Basics... 1-1
Getting Started with the Nios II Processor... 1-2
Customizing Nios II Processor Designs..1-3
Configurable Soft Processor Core Concepts.. 1-4

Configurable Soft Processor Core..1-4
Flexible Peripheral Set and Address Map... 1-4
Automated System Generation.. 1-5

OpenCore Plus Evaluation..1-5
Document Revision History... 1-6

Processor Architecture.. 2-1
Processor Implementation.. 2-2
Register File...2-3
Arithmetic Logic Unit... 2-4

Unimplemented Instructions... 2-4
Custom Instructions.. 2-4
Floating-Point Instructions...2-5

Reset and Debug Signals... 2-9
Exception and Interrupt Controllers... 2-10

Exception Controller... 2-10
EIC Interface...2-11
Internal Interrupt Controller..2-11

Memory and I/O Organization..2-12
Instruction and Data Buses...2-13
Cache Memory... 2-15
Tightly-Coupled Memory...2-16
Address Map... 2-17
Memory Management Unit.. 2-17
Memory Protection Unit...2-18

JTAG Debug Module... 2-19
JTAG Target Connection...2-19
Download and Execute Software... 2-20
Software Breakpoints... 2-20
Hardware Breakpoints...2-20
Hardware Triggers..2-20
Trace Capture..2-21

Document Revision History...2-22

Programming Model... 3-1
Operating Modes..3-1

TOC-2

Altera Corporation

Supervisor Mode.. 3-1
User Mode... 3-2

Memory Management Unit.. 3-2
Recommended Usage.. 3-2
Memory Management... 3-3
Address Space and Memory Partitions... 3-4
TLB Organization.. 3-5
TLB Lookups...3-7

Memory Protection Unit...3-7
Memory Regions.. 3-8
Overlapping Regions... 3-9
Enabling the MPU..3-9

Registers...3-9
General-Purpose Registers..3-9
Control Registers..3-10
Shadow Register Sets... 3-30

Working with the MPU...3-33
MPU Region Read and Write Operations.. 3-33
MPU Initialization... 3-34
Debugger Access.. 3-34

Working with ECC...3-35
Enabling ECC... 3-35
Handling ECC Errors.. 3-35
Injecting ECC Errors... 3-35

Exception Processing...3-38
Terminology..3-38
Exception Overview...3-39
Exception Latency..3-41
Reset Exceptions...3-42
Break Exceptions.. 3-42
Interrupt Exceptions.. 3-43
Instruction-Related Exceptions..3-46
Other Exceptions..3-50
Exception Processing Flow... 3-51
Determining the Cause of Interrupt and Instruction-Related Exceptions.............................3-54
Handling Nested Exceptions.. 3-55
Handling Nonmaskable Interrupts..3-57
Masking and Disabling Exceptions... 3-58

Memory and Peripheral Access..3-59
Cache Memory... 3-60

Instruction Set Categories...3-61
Data Transfer Instructions..3-61
Arithmetic and Logical Instructions... 3-62
Move Instructions.. 3-63
Comparison Instructions.. 3-63
Shift and Rotate Instructions..3-64
Program Control Instructions..3-64
Other Control Instructions...3-65
Custom Instructions.. 3-66

TOC-3

Altera Corporation

No-Operation Instruction.. 3-66
Potential Unimplemented Instructions...3-67

Document Revision History...3-67

Instantiating the Nios II Gen2 Processor... 4-1
Main Nios II Gen2 Tab..4-1
Vectors Tab..4-3

Reset Vector.. 4-3
Exception Vector.. 4-4
Fast TLB Miss Exception Vector.. 4-4

Caches and Memory Interfaces Tab.. 4-5
Instruction Cache...4-6
Flash Accelerator.. 4-6
Data Cache.. 4-7
Tightly-coupled Memories..4-7
Peripheral Region...4-7

Arithmetic Instructions Tab... 4-7
Arithmetic Instructions...4-8
Arithmetic Implementation..4-8

MMU and MPU Settings Tab...4-9
MMU... 4-10
MPU...4-11

JTAG Debug Tab.. 4-11
Advanced Features Tab..4-14

ECC..4-14
Interrupt Controller Interfaces...4-14
Shadow Register Sets... 4-15
Reset Signals..4-15
CPU ID Control Register Value... 4-15
Generate Trace File.. 4-15
Exception Checking...4-16
Branch Prediction.. 4-16
RAM Memory Protection... 4-16

The Quartus Prime IP File.. 4-16
Document Revision History...4-17

Nios II Core Implementation Details... 5-1
Device Family Support.. 5-4
Nios II/f Core..5-5

Overview... 5-5
Arithmetic Logic Unit... 5-6
Memory Access...5-7
Tightly-Coupled Memory...5-10
Memory Management Unit.. 5-10
Memory Protection Unit...5-11
Execution Pipeline... 5-11
Instruction Performance... 5-12

TOC-4

Altera Corporation

Exception Handling... 5-13
ECC..5-14
JTAG Debug Module... 5-17

Nios II/e Core... 5-17
Overview... 5-17
Arithmetic Logic Unit... 5-17
Memory Access.. 5-18
Instruction Execution Stages.. 5-18
Instruction Performance... 5-18
Exception Handling... 5-19
JTAG Debug Module... 5-19

Document Revision History...5-19

Nios II Processor Revision History...6-1
Nios II Versions.. 6-1
Architecture Revisions...6-1
Core Revisions.. 6-2

Nios II/f Core..6-2
Nios II/e Core... 6-2

JTAG Debug Module Revisions... 6-2
Document Revision History... 6-3

Application Binary Interface...7-1
Data Types...7-1
Memory Alignment... 7-2
Register Usage...7-2
Stacks... 7-3

Frame Pointer Elimination... 7-4
Call Saved Registers... 7-4
Further Examples of Stacks...7-4
Function Prologues.. 7-6

Arguments and Return Values... 7-7
Arguments...7-7
Return Values..7-8

DWARF-2 Definition...7-9
Object Files..7-9
Relocation... 7-9
ABI for Linux Systems...7-12

Linux Toolchain Relocation Information... 7-13
Linux Function Calls... 7-16
Linux Operating System Call Interface... 7-16
Linux Process Initialization.. 7-17
Linux Position-Independent Code.. 7-18
Linux Program Loading and Dynamic Linking.. 7-20
Linux Conventions...7-23
Development Environment.. 7-23

Document Revision History...7-23

TOC-5

Altera Corporation

Instruction Set Reference.. 8-1
Word Formats...8-1

I-Type...8-1
R-Type..8-1
J-Type...8-2

Instruction Opcodes.. 8-2
Assembler Pseudo-Instructions... 8-4
Assembler Macros..8-5
Instruction Set Reference.. 8-5

add ...8-6
addi ..8-8
and ...8-10
andhi ... 8-10
andi ..8-11
beq ...8-12
bge ... 8-12
bgeu..8-13
bgt...8-14
bgtu ... 8-14
ble .. 8-15
bleu ..8-15
blt ...8-16
bltu... 8-16
bne ...8-17
br ..8-18
break ..8-19
bret .. 8-20
call ... 8-20
callr ..8-21
cmpeq ... 8-22
cmpeqi .. 8-23
cmpge ..8-24
cmpgei ...8-24
cmpgeu ... 8-25
cmpgeui .. 8-26
cmpgt .. 8-27
cmpgti ... 8-27
cmpgtu .. 8-28
cmpgtui ...8-28
cmple..8-29
cmplei ..8-29
cmpleu .. 8-30
cmpleui ... 8-30
cmplt ... 8-31
cmplti .. 8-31
cmpltu ... 8-32
cmpltui ..8-33

TOC-6

Altera Corporation

cmpne ... 8-34
cmpnei .. 8-35
custom .. 8-35
div ..8-37
divu ... 8-38
eret ...8-39
flushd .. 8-39
flushda .. 8-41
flushi ..8-43
flushp ...8-44
initd ... 8-44
initda ... 8-46
initi .. 8-47
jmp .. 8-48
jmpi ... 8-49
ldb / ldbio ... 8-50
ldbu / ldbuio ...8-51
ldh / ldhio ...8-52
ldhu / ldhuio .. 8-54
ldw / ldwio ..8-55
mov ..8-57
movhi .. 8-57
movi .. 8-58
movia .. 8-58
movui .. 8-59
mul .. 8-59
muli ... 8-61
mulxss ... 8-62
mulxsu .. 8-62
mulxuu ..8-63
nextpc ..8-64
nop .. 8-65
nor ... 8-65
or ... 8-66
orhi .. 8-67
ori .. 8-67
rdctl ... 8-68
rdprs .. 8-68
ret ...8-69
rol .. 8-70
roli ... 8-71
ror ..8-71
sll ... 8-72
slli .. 8-73
sra .. 8-74
srai ... 8-74
srl ... 8-75
srli ..8-76
stb / stbio l... 8-76

TOC-7

Altera Corporation

sth / sthio ..8-78
stw / stwio ...8-79
sub.. 8-80
subi .. 8-82
sync ... 8-82
trap .. 8-83
wrctl .. 8-84
wrprs ... 8-85
xor ... 8-85
xorhi ..8-86
xori .. 8-87

Document Revision History...8-87

TOC-8

Altera Corporation

Introduction 1
2016.10.28

NII51001 Subscribe Send Feedback

We have ended development of new Nios II Classic processor features with the Quartus Prime 14.0
release. New Nios II processor features are implemented only in the Nios II Gen 2 processor core.
Although the Classic processor remains supported, we recommend that you use the Gen 2 core for future
designs.

This handbook describes the Nios® II Gen2 processor from a high-level conceptual description to the low-
level details of implementation. The chapters in this handbook describe the Nios II processor architecture,
the programming model, and the instruction set. The Nios II Gen2 processor is only availabe in the
Quartus Prime 14.1 release and above.

This handbook assumes you have a basic familiarity with embedded processor concepts. You do not need
to be familiar with any specific Altera technology or with Altera development tools. This handbook limits
discussion of hardware implementation details of the processor system. The Nios II processors are
designed for Altera® FPGA devices, and so this handbook does describe some FPGA implementation
concepts. Your familiarity with FPGA technology provides a deeper understanding of the engineering
trade-offs related to the design and implementation of the Nios II processor.

This chapter introduces the Altera Nios II embedded processor family and describes the similarities and
differences between the Nios II processor and traditional embedded processors.

Related Information
Literature: Nios II Processor
This handbook is the primary reference for the Nios II family of embedded processors and is part of a
larger collection of documents covering the Nios II processor and its usage that you can find on the
Literature: Nios II Processor Page of the Altera website.

Nios II Processor System Basics
The Nios II processor is a general-purpose RISC processor core with the following features:

• Full 32-bit instruction set, data path, and address space
• 32 general-purpose registers
• Optional shadow register sets
• 32 interrupt sources
• External interrupt controller interface for more interrupt sources
• Single-instruction 32 × 32 multiply and divide producing a 32-bit result
• Dedicated instructions for computing 64-bit and 128-bit products of multiplication

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos
are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants
performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51001
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51001%202016.10.28)%20Introduction&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Optional floating-point instructions for single-precision floating-point operations
• Single-instruction barrel shifter
• Access to a variety of on-chip peripherals, and interfaces to off-chip memories and peripherals
• Hardware-assisted debug module enabling processor start, stop, step, and trace under control of the

Nios II software development tools
• Optional memory management unit (MMU) to support operating systems that require MMUs
• Optional memory protection unit (MPU)
• Software development environment based on the GNU C/C++ tool chain and the Nios II Software

Build Tools (SBT) for Eclipse
• Integration with Altera’s SignalTap® II Embedded Logic Analyzer, enabling real-time analysis of

instructions and data along with other signals in the FPGA design
• Instruction set architecture (ISA) compatible across all Nios II processor systems
• Performance up to 250 DMIPS
• Error correcting code (ECC) support for all Nios II processor internal RAM blocks

A Nios II processor system is equivalent to a microcontroller or “computer on a chip” that includes a
processor and a combination of peripherals and memory on a single chip. A Nios II processor system
consists of a Nios II processor core, a set of on-chip peripherals, on-chip memory, and interfaces to off-
chip memory, all implemented on a single Altera device. Like a microcontroller family, all Nios II
processor systems use a consistent instruction set and programming model.

Getting Started with the Nios II Processor
The easiest way to start designing effectively is to use an Altera development kit that includes a ready-
made development board and the Nios II Embedded Design Suite (EDS) containing all the software
development tools necessary to write Nios II software.

The Nios II EDS includes the following two closely-related software development tool flows:

• The Nios II SBT
• The Nios II SBT for Eclipse

Both tools flows are based on the GNU C/C++ compiler. The Nios II SBT for Eclipse™ provides a familiar
and established environment for software development. Using the Nios II SBT for Eclipse, you can
immediately begin developing and simulating Nios II software applications.

The Nios II SBT also provides a command line interface.

Using the Nios II hardware reference designs included in an Altera development kit, you can prototype an
application running on a board before building a custom hardware platform.

1-2 Getting Started with the Nios II Processor
NII51001

2016.10.28

Altera Corporation Introduction

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Introduction%20(NII51001%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-1: Example of a Nios II Processor System

 Nios II
Processor Core

 SDRAM
Controller

On-Chip ROM

Tristate bridge to
off-chip memory

Sy
ste

m
 In

te
rco

nn
ec

t F
ab

ric

 JTAG
 Debug Module

SDRAM
Memory

 Flash
Memory

 SRAM
Memory

UART

Timer1

Timer2

LCD Display Driver

General-Purpose I/O

Ethernet Interface

CompactFlash
 Interface

 LCD
Screen

 Ethernet
MAC/PHY

Compact
 Flash

 Buttons,
LEDs, etc.

TXD
RXD

 JTAG connection
to software debugger

Clo
ck

Re
se

t

Data

Inst.

If the prototype system adequately meets design requirements using an Altera-provided reference design,
you can copy the reference design and use it without modification in the final hardware platform.
Otherwise, you can customize the Nios II processor system until it meets cost or performance require‐
ments.

Related Information
All Development Kits
For a list of available development kits, refer to the All Development Kits page of the Altera website.

Customizing Nios II Processor Designs
In practice, most FPGA designs implement some extra logic in addition to the processor system. Altera
FPGAs provide flexibility to add features and enhance performance of the Nios II processor system. You
can also eliminate unnecessary processor features and peripherals to fit the design in a smaller, lower-cost
device.

NII51001
2016.10.28 Customizing Nios II Processor Designs 1-3

Introduction Altera Corporation

Send Feedback

http://www.altera.com/products/devkits/kit-dev_platforms.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Introduction%20(NII51001%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Because the pins and logic resources in Altera devices are programmable, many customizations are
possible:

• You can rearrange the pins on the chip to simplify the board design. For example, you can move
address and data pins for external SDRAM memory to any side of the chip to shorten board traces.

• You can use extra pins and logic resources on the chip for functions unrelated to the processor. Extra
resources can provide a few extra gates and registers as glue logic for the board design; or extra
resources can implement entire systems. For example, a Nios II processor system consumes only 5% of
a large Altera FPGA, leaving the rest of the chip’s resources available to implement other functions.

• You can use extra pins and logic on the chip to implement additional peripherals for the Nios II
processor system. Altera offers a library of peripherals that easily connect to Nios II processor systems.

Configurable Soft Processor Core Concepts
This section introduces Nios II concepts that are unique or different from other discrete microcontrollers.
The concepts described in this section provide a foundation for understanding the rest of the features
discussed in this handbook.

Configurable Soft Processor Core
The Nios II processor is a configurable soft IP core, as opposed to a fixed, off-the-shelf microcontroller.
You can add or remove features on a system-by-system basis to meet performance or price goals. Soft
means the processor core is not fixed in silicon and can be targeted to any Altera FPGA family.

You are not required to create a new Nios II processor configuration for every new design. Altera provides
ready-made Nios II system designs that you can use as is. If these designs meet your system requirements,
there is no need to configure the design further. In addition, you can use the Nios II instruction set
simulator to begin writing and debugging Nios II applications before the final hardware configuration is
determined.

Flexible Peripheral Set and Address Map
A flexible peripheral set is one of the most notable differences between Nios II processor systems and fixed
microcontrollers. Because the Nios II processor is implemented in programmable logic, you can easily
build made-to-order Nios II processor systems with the exact peripheral set required for the target
applications.

Altera provides software constructs to access memory and peripherals generically, independently of
address location. Therefore, the flexible peripheral set and address map does not affect application
developers.

There are two broad classes of peripherals: standard peripherals and custom peripherals.

Standard Peripherals
Altera provides a set of peripherals commonly used in microcontrollers, such as timers, serial
communication interfaces, general-purpose I/O, SDRAM controllers, and other memory interfaces. The
list of available peripherals continues to increase as Altera and third-party vendors release new
peripherals.

Related Information
Embedded Peripherals IP User Guide
For information about the Altera-provided cores, refer to the Embedded Peripherals IP User Guide.

1-4 Configurable Soft Processor Core Concepts
NII51001

2016.10.28

Altera Corporation Introduction

Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Introduction%20(NII51001%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Custom Components

You can also create custom components and integrate them in Nios II processor systems. For perform‐
ance-critical systems that spend most CPU cycles executing a specific section of code, it is a common
technique to create a custom peripheral that implements the same function in hardware.

This approach offers a double performance benefit:

• Hardware implementation is faster than software.
• Processor is free to perform other functions in parallel while the custom peripheral operates on data.

Related Information
Creating Qsys Components
For information about creating custom components in Qsys, refer to the Creating Qsys Components
chapter in the Quartus Prime Handbook, Volume 1.

Custom Instructions
Like custom peripherals, custom instructions allow you to increase system performance by augmenting
the processor with custom hardware. You can achieve significant performance improvements, often on the
order of 10 to 100 times, by implementing performance-critical operations in hardware using custom
instruction logic.

The custom logic is integrated into the Nios II processor’s arithmetic logic unit (ALU). Similar to native
Nios II instructions, custom instruction logic can take values from up to two source registers and
optionally write back a result to a destination register.

Because the processor is implemented on reprogrammable Altera FPGAs, software and hardware
engineers can work together to iteratively optimize the hardware and test the results of software running
on hardware.

From the software perspective, custom instructions appear as machine-generated assembly macros or C
functions, so programmers do not need to understand assembly language to use custom instructions.

Automated System Generation
Altera’s Qsys system integration tools fully automate the process of configuring processor features and
generating a hardware design that you program in an Altera device. The Qsys graphical user interface
(GUI) enables you to configure Nios II processor systems with any number of peripherals and memory
interfaces. You can create entire processor systems without performing any schematic or HDL design
entry. Qsys can also import HDL design files, providing an easy mechanism to integrate custom logic in a
Nios II processor system.

After system generation, you can download the design onto a board, and debug software executing on the
board. To the software developer, the processor architecture of the design is set. Software development
proceeds in the same manner as for traditional, nonconfigurable processors.

OpenCore Plus Evaluation
You can evaluate the Nios II processor without a license. With Altera's free OpenCore Plus evaluation
feature, you can perform the following actions:

NII51001
2016.10.28 Custom Components 1-5

Introduction Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Introduction%20(NII51001%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Simulate the behavior of a Nios II processor within your system.
• Verify the functionality of your design, as well as evaluate its size and speed quickly and easily.
• Generate time-limited device programming files for designs that include Nios II processors.
• Program a device and verify your design in hardware.

You only need to purchase a license for the Nios II processor when you are completely satisfied with its
functionality and performance, and want to take your design to production.

Related Information
AN 320: OpenCore Plus Evaluation of Megafunctions
For more information about OpenCore Plus, refer to AN 320: OpenCore Plus Evaluation of
Megafunctions.

Document Revision History

Table 1-1: Document Revision History

Date Version Changes

October 2016 2016.10.28 Maintenance release

April 2015 2015.04.02 Initial release

1-6 Document Revision History
NII51001

2016.10.28

Altera Corporation Introduction

Send Feedback

http://www.altera.com/literature/an/an320.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Introduction%20(NII51001%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Processor Architecture 2
2016.10.28

NII51002 Subscribe Send Feedback

This chapter describes the hardware structure of the Nios II processor, including a discussion of all the
functional units of the Nios II architecture and the fundamentals of the Nios II processor hardware
implementation.

The Nios II architecture describes an instruction set architecture (ISA). The ISA in turn necessitates a set
of functional units that implement the instructions. A Nios II processor core is a hardware design that
implements the Nios II instruction set and supports the functional units described in this document. The
processor core does not include peripherals or the connection logic to the outside world. It includes only
the circuits required to implement the Nios II architecture.

The Nios II architecture defines the following functional units:

• Register file
• Arithmetic logic unit (ALU)
• Interface to custom instruction logic
• Exception controller
• Internal or external interrupt controller
• Instruction bus
• Data bus
• Memory management unit (MMU)
• Memory protection unit (MPU)
• Instruction and data cache memories
• Tightly-coupled memory interfaces for instructions and data
• JTAG debug module

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos
are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants
performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51002
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51002%202016.10.28)%20Processor%20Architecture&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 2-1: Nios II Processor Core Block Diagram

Exception
Controller

Internal
Interrupt

Controller

Arithmetic
Logic Unit

General
Purpose

Registers

 Control
Registers

Nios II Processor Core

reset
clock

JTAG
interface

to software
debugger

 Custom
I/O

Signals

irq[31..0]

JTAG
Debug Module

Program
Controller

&
Address

Generation

Custom
Instruction

Logic

Data Bus

Tightly Coupled
Data Memory

Tightly Coupled
Data Memory

Data
Cache

Instruction
Cache

Instruction Bus

Tightly Coupled
Instruction Memory

Tightly Coupled
Instruction Memory

cpu_resetrequest
cpu_resettaken

Memory
Management

Unit

Translation
 Lookaside

Buffer

 Instruction
Regions

Memory
Protection

Unit

 Data
Regions

External
Interrupt

Controller
Interface

eic_port_data[44..0]
eic_port_valid

Shadow
Register

Sets

Required
 Module

Optional
 Module

Key

Processor Implementation
The functional units of the Nios II architecture form the foundation for the Nios II instruction set.
However, this does not indicate that any unit is implemented in hardware. The Nios II architecture
describes an instruction set, not a particular hardware implementation. A functional unit can be
implemented in hardware, emulated in software, or omitted entirely.

A Nios II implementation is a set of design choices embodied by a particular Nios II processor core. All
implementations support the instruction set defined in the Instruction Set Reference chapter.

Each implementation achieves specific objectives, such as smaller core size or higher performance. This
flexibility allows the Nios II architecture to adapt to different target applications.

2-2 Processor Implementation
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Implementation variables generally fit one of three trade-off patterns: more or less of a feature; inclusion or
exclusion of a feature; hardware implementation or software emulation of a feature. An example of each
trade-off follows:

• More or less of a feature—For example, to fine-tune performance, you can increase or decrease the
amount of instruction cache memory. A larger cache increases execution speed of large programs,
while a smaller cache conserves on-chip memory resources.

• Inclusion or exclusion of a feature—For example, to reduce cost, you can choose to omit the JTAG
debug module. This decision conserves on-chip logic and memory resources, but it eliminates the
ability to use a software debugger to debug applications.

• Hardware implementation or software emulation—For example, in control applications that rarely
perform complex arithmetic, you can choose for the division instruction to be emulated in software.
Removing the divide hardware conserves on-chip resources but increases the execution time of
division operations.

For information about which Nios II cores supports what features, refer to the Nios II Core Implementation
Details chapter of the Nios II Processor Reference Handbook.
For complete details about user-selectable parameters for the Nios II processor, refer to the Instantiating
the Nios II Processor chapter of the Nios II Processor Reference Handbook.

Related Information

• Instantiating the Nios II Gen2 Processor on page 4-1
• Nios II Core Implementation Details on page 5-1
• Instruction Set Reference on page 8-1

Register File
The Nios II architecture supports a flat register file, consisting of thirty-two 32-bit general-purpose integer
registers, and up to thirty-two 32-bit control registers. The architecture supports supervisor and user
modes that allow system code to protect the control registers from errant applications.

The Nios II processor can optionally have one or more shadow register sets. A shadow register set is a
complete set of Nios II general-purpose registers. When shadow register sets are implemented, the CRS
field of the status register indicates which register set is currently in use. An instruction access to a
general-purpose register uses whichever register set is active.

A typical use of shadow register sets is to accelerate context switching. When shadow register sets are
implemented, the Nios II processor has two special instructions, rdprs and wrprs, for moving data
between register sets. Shadow register sets are typically manipulated by an operating system kernel, and
are transparent to application code. A Nios II processor can have up to 63 shadow register sets.

The Nios II architecture allows for the future addition of floating-point registers.

For details about shadow register set implementation and usage, refer to “Registers” and “Exception
Processing” in the Programming Model chapter of the Nios II Processor Reference Handbook.

For details about the rdprs and wrprs instructions, refer to the Instruction Set Reference chapter of the
Nios II Processor Reference Handbook.

Related Information

• Programming Model on page 3-1
• Instruction Set Reference on page 8-1

NII51002
2016.10.28 Register File 2-3

Processor Architecture Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arithmetic Logic Unit
The Nios II ALU operates on data stored in general-purpose registers. ALU operations take one or two
inputs from registers, and store a result back in a register. The ALU supports the data operations described
in the table below. To implement any other operation, software computes the result by performing a
combination of the fundamental operations.

Table 2-1: Operations Supported by the Nios II ALU

Category Details

Arithmetic The ALU supports addition, subtraction, multiplication, and division on signed and
unsigned operands.

Relational The ALU supports the equal, not-equal, greater-than-or-equal, and less-than
relational operations (==, != >=, <) on signed and unsigned operands.

Logical The ALU supports AND, OR, NOR, and XOR logical operations.
Shift and
Rotate

The ALU supports shift and rotate operations, and can shift/rotate data by 0 to 31
bit positions per instruction. The ALU supports arithmetic shift right and logical
shift right/left. The ALU supports rotate left/right.

Unimplemented Instructions
Some Nios II processor core implementations do not provide hardware to support the entire Nios II
instruction set. In such a core, instructions without hardware support are known as unimplemented
instructions.

The processor generates an exception whenever it issues an unimplemented instruction so your exception
handler can call a routine that emulates the operation in software. Unimplemented instructions do not
affect the programmer’s view of the processor.

For a list of potential unimplemented instructions, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information
Programming Model on page 3-1

Custom Instructions
The Nios II architecture supports user-defined custom instructions. The Nios II ALU connects directly to
custom instruction logic, enabling you to implement operations in hardware that are accessed and used
exactly like native instructions.

Refer to "Custom Instruction Tab" in the Instantiating the Nios II Processor chapter of the Nios II Processor
Reference Handbook for additional information.

Related Information

• Instantiating the Nios II Gen2 Processor on page 4-1
• Nios II Custom Instruction User Guide

For more information, refer to the Nios II Custom Instruction User Guide.

2-4 Arithmetic Logic Unit
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Floating-Point Instructions
The Nios II architecture supports single precision floating-point instructions with two components:

• Floating Point Hardware 2—This component supports floating-point instructions as specified by the
IEEE Std 754-2008 but with simplified, non-standard rounding modes. The basic set of floating-point
custom instructions includes single precision floating-point addition, subtraction, multiplication,
division, square root, integer to float conversion, float to integer conversion, minimum, maximum,
negate, absolute, and comparisons.

• Floating Point Hardware—This component supports floating-point instructions as specified by the
IEEE Std 754-1985. The basic set of floating-point custom instructions includes single precision
floating-point addition, subtraction, and multiplication. Floating-point division is available as an
extension to the basic instruction set.

These floating-point instructions are implemented as custom instructions. The Hardware Conformance
table below lists a detailed description of the conformance to the IEEE standards.

Table 2-2: Hardware Conformance with IEEE 754-1985 and IEEE 754-2008 Floating-Point Standard

Feature Floating-Point Hardware
Implementation with IEEE 754-

1985

Floating-Point Hardware 2
Implementation with IEEE 754-

2008

Operations

Addition/subtraction Implemented Implemented
Multiplication Implemented Implemented
Division Optional Implemented
Square root Not implemented, this

operation is implemented in
software.

Implemented

Integer to float/float to
integer

Not implemented, this
operation is implemented in
software.

Implemented

Minimum/maximum Not implemented, this
operation is implemented in
software.

Implemented

Negate/absolute Not implemented, this
operation is implemented in
software.

Implemented

Comparisons Not implemented, this
operation is implemented in
software.

Implemented

Precision

Single Implemented Implemented
Double Not implemented. Double

precision operations are
implemented in software.

Not implemented. Double
precision operations are
implemented in software.

NII51002
2016.10.28 Floating-Point Instructions 2-5

Processor Architecture Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Floating-Point Hardware
Implementation with IEEE 754-

1985

Floating-Point Hardware 2
Implementation with IEEE 754-

2008

Exception
conditions

Invalid operation Result is Not a Number (NaN) Result is Not a Number
(NaN)

Division by zero Result is ±infinity Result is ±infinity
Overflow Result is ±infinity Result is ±infinity
Inexact Result is a normal number Result is a normal number
Underflow Result is ±0 Result is ±0

Rounding Modes

Round to nearest Implemented Implemented (roundTiesTo‐
Away mode)

Round toward zero Not implemented Implemented (truncation
mode)

Round toward +infinity Not implemented Not implemented
Round toward –infinity Not implemented Not implemented

NaN

Quiet Implemented No distinction is made
between signaling and quiet
NaNs as input operands. A
result that produces a NaN
may produce either a
signaling or quiet NaN.

Signaling Not implemented

Subnormal
(denormalized)
numbers

Subnormal operands are
treated as zero. The floating-
point custom instructions do
not generate subnormal
numbers.

• The comparison,
minimum, maximum,
negate, and absolute
operations support
subnormal numbers.

• The add, subtract,
multiply, divide, square
root, and float to integer
operations do NOT
support subnormal
numbers. Subnormal
operands are treated as
signed zero. The floating-
point custom instruc‐
tions do not generate
subnormal numbers.(1)

• The integer to float
operation cannot create
subnormal numbers.

(1) This operation is not fully compliant with IEEE 754-2008.

2-6 Floating-Point Instructions
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Floating-Point Hardware
Implementation with IEEE 754-

1985

Floating-Point Hardware 2
Implementation with IEEE 754-

2008

Software
exceptions

Not implemented. IEEE 754-
1985 exception conditions are
detected and handled as
described elsewhere in this
table.

Not implemented. IEEE
754-2008 exception
conditions are detected and
handled as described
elsewhere in this table.(1)

Status flags Not implemented. IEEE 754-
1985 exception conditions are
detected and handled as
described elsewhere in this
table.

Not implemented. IEEE
754-2008 exception
conditions are detected and
handled as described
elsewhere in this table.(1)

Note: The Floating Point Hardware 2 component also supports faithful rounding, which is not an IEEE
754-defined rounding mode. Faithful rounding rounds results to either the upper or lower nearest
single-precision numbers. Therefore, the result produced is one of two possible values and the
choice between the two is not defined. The maximum error of faithful rounding is 1 unit in the last
place (ulp). Errors may not be evenly distributed.

Related Information
Nios II Custom Instruction User Guide
For more information about using floating-point custom instructions in software, refer to the Nios II
Custom Instruction User Guide.

Floating Point Custom Instruction 2 Component
You can add floating-point custom instructions to any Nios II processor design. The floating-point
division hardware requires more resources than the other instructions. The Floating Point Hardware 2
component supports the following single-precision floating-point operations:

• Add
• Subtract
• Multiply
• Divide
• Square root
• Comparison
• Integer conversion
• Minimum
• Maximum
• Negate
• Absolute

Other floating-point operations (including double-precision operations) are implemented with software
emulation. The component requires the following device resources:

• ~2,500 4-input LEs
• 9 x 9 bit multipliers
• 3x M9K memories

In the following table, a and b are assumed to be single-precision floating-point values.

NII51002
2016.10.28 Floating Point Custom Instruction 2 Component 2-7

Processor Architecture Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2-3: Floating Point Custom Instruction 2 Operation Summary

Operation(2) N(3) Cycles Result Subnormal Rounding GCC
Inference

fdivs 255 16 a ÷ b Flush to 0 Nearest a / b
fsubs 254 5 a – b Flush to 0 Faithful a – b
fadds 253 5 a + b Flush to 0 Faithful a + b
fmuls 252 4 a x b Flush to 0 Faithful a * b
fsqrts 251 8 a Flush to 0 Faithful sqrtf()(4)

floatis 250 4 int_to_float(a) Not
applicable

Not
applicable

Casting

fixsi 249 2 float_to_int(a) Flush to 0 Truncation Casting
round 248 2 float_to_int(a) Flush to 0 Nearest lroundf()(

4)

Reserved 234 to 247 Undefined Undefined
fmins 233 1 (a < b) ? a : b Supported None fminf()(4)

fmaxs 232 1 (a < b) ? b : a Supported None fmaxf()(4)

fcmplts 231 1 (a < b) ? 1 : 0 Supported None a < b
fcmples 230 1 (a ≤ b) ? 1 : 0 Supported None a <= b
fcmpgts 229 1 (a > b) ? 1 : 0 Supported None a > b
fcmpges 228 1 (a ≥ b) ? 1 : 0 Supported None a >= b
fcmpeqs 227 1 (a = b) ? 1 : 0 Supported None a == b
fcmpnes 226 1 (a ≠ b) ? 1 : 0 Supported None a != b
fnegs 225 1 -a Supported None -a
fabss 224 1 |a| Supported None fabsf()

The cycles column specifies the number of cycles required to execute the instruction. A combinatorial
custom instruction takes 1 cycle. A multi-cycle custom instruction requires at least 2 cycles. An N-cycle
multi-cycle custom instruction has N - 2 register stages inside the custom instruction because the Nios II
processor registers the result from the custom instruction and allows another cycle for g wire delays in the
source operand bypass multiplexers. The number of cycles does not include the extra cycles (maximum of
2) that an instruction following the multi-cycle custom instruction is stalled by the Nios II/f if the instruc‐

(2) These names match the names of the corresponding GCC command-line options except for round, which
GCC does not support.

(3) Specifies the 8 bit fixed custom instruction for the operation.
(4) Nios II GCC version 4.7.3 is not able to reliably replace calls to newlib floating-point functions with the

equivalent custom instruction even though it has -mcustom-<operation> command-line options and
pragma support for these operations. Instead, the custom instruction must be invoked directly using the
GCC __builtin_custom_* facility. The Floating Point Custom Instruction 2 component includes a C
header file that provides the required #define macros to invoke the custom instruction directly.

2-8 Floating Point Custom Instruction 2 Component
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

tion uses the result within 2 cycles. These extra cycles occur because multi-cycle instructions are late result
instructions

In Qsys, the Floating Point Hardware 2 component is under Embedded Processors on the Component
Library tab.

The Nios II Software Build Tools (SBT) include software support for the Floating Point Custom Instruc‐
tion 2 component. When the Floating Point Custom Instruction 2 component is present in hardware, the
Nios II compiler compiles the software codes to use the custom instructions for floating point operations.

Floating Point Custom Instruction Component
The Floating Point Hardware component supports addition, subtraction, multiplication, and (optionally)
division. The Floating Point Hardware parameter editor allows you to omit the floating-point division
hardware for cases in which code running on your hardware design does not make heavy use of floating-
point division. When you omit the floating-point divide instruction, the Nios II compiler implements
floating-point division in software.

In Qsys, the Floating Point Hardware component is under Embedded Processors on the Component
Library tab.

The Nios II floating-point custom instructions are based on the Altera® floating-point megafunctions:
ALTFP_MULT, ALTFP_ADD_SUB, and ALTFP_DIV.

The Nios II software development tools recognize C code that takes advantage of the floating-point
instructions present in the processor core. When the floating-point custom instructions are present in
your target hardware, the Nios II compiler compiles your code to use the custom instructions for floating-
point operations and the newlib math library.

Related Information
IP and Megafunctions
For information about each individual floating-point megafunction, including acceleration factors and
device resource usage, refer to the megafunction user guides, available on the IP and Megafunctions
literature page of the Altera website.

Reset and Debug Signals
The table below describes the reset and debug signals that the Nios II processor core supports.

Table 2-4: Nios II Processor Debug and Reset Signals

Signal Name Type Purpose

reset Reset This is a global hardware reset signal that forces the processor core to
reset immediately.

NII51002
2016.10.28 Floating Point Custom Instruction Component 2-9

Processor Architecture Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-ip.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Name Type Purpose

cpu_resetrequest Reset This is an optional, local reset signal that causes the processor to reset
without affecting other components in the Nios II system. The
processor finishes executing any instructions in the pipeline, and then
enters the reset state. This process can take several clock cycles, so be
sure to continue asserting the cpu_resetrequest signal until the
processor core asserts a cpu_resettaken signal.

The processor core asserts a cpu_resettaken signal for 1 cycle when
the reset is complete and then periodically if cpu_resetrequest
remains asserted. The processor remains in the reset state for as long
as cpu_resetrequest is asserted. While the processor is in the reset
state, it periodically reads from the reset address. It discards the result
of the read, and remains in the reset state.

The processor does not respond to cpu_resetrequest when the
processor is under the control of the JTAG debug module, that is,
when the processor is paused. The processor responds to the cpu_
resetrequest signal if the signal is asserted when the JTAG debug
module relinquishes control, both momentarily during each single
step as well as when you resume execution.

debugreq Debug This is an optional signal that temporarily suspends the processor for
debugging purposes. When you assert the signal, the processor pauses
in the same manner as when a breakpoint is encountered, transfers
execution to the routine located at the break address, and asserts a
debugack signal. Asserting the debugreq signal when the processor is
already paused has no effect.

reset_req Reset This optional signal prevents the memory corruption by performing a
reset handshake before the processor resets.

For more information on adding reset signals to the Nios II processor, refer to “Advanced Features Tab” in
the Instantiating the Nios II Processor chapter of the Nios II Processor Reference Handbook.
For more information on the break vector and adding debug signals to the Nios II processor, refer to
“JTAG Debug Module Tab” in the Instantiating the Nios II Processor chapter of the Nios II Processor
Reference Handbook.

Related Information
Instantiating the Nios II Gen2 Processor on page 4-1

Exception and Interrupt Controllers
The Nios II processor includes hardware for handling exceptions, including hardware interrupts. It also
includes an optional external interrupt controller (EIC) interface. The EIC interface enables you to speed
up interrupt handling in a complex system by adding a custom interrupt controller.

Exception Controller
The Nios II architecture provides a simple, nonvectored exception controller to handle all exception types.
Each exception, including internal hardware interrupts, causes the processor to transfer execution to an

2-10 Exception and Interrupt Controllers
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

exception address. An exception handler at this address determines the cause of the exception and
dispatches an appropriate exception routine.

Exception addresses are specified with the Qsys Nios II Processor parameter editor.

All exceptions are precise. Precise means that the processor has completed execution of all instructions
preceding the faulting instruction and not started execution of instructions following the faulting instruc‐
tion. Precise exceptions allow the processor to resume program execution once the exception handler
clears the exception.

EIC Interface
An EIC provides high performance hardware interrupts to reduce your program's interrupt latency. An
EIC is typically used in conjunction with shadow register sets and when you need more than the 32
interrupts provided by the Nios II internal interrupt controller.

The Nios II processor connects to an EIC through the EIC interface. When an EIC is present, the internal
interrupt controller is not implemented; Qsys connects interrupts to the EIC.

The EIC selects among active interrupts and presents one interrupt to the Nios II processor, with interrupt
handler address and register set selection information. The interrupt selection algorithm is specific to the
EIC implementation, and is typically based on interrupt priorities. The Nios II processor does not depend
on any specific interrupt prioritization scheme in the EIC.

For every external interrupt, the EIC presents an interrupt level. The Nios II processor uses the interrupt
level in determining when to service the interrupt.

Any external interrupt can be configured as an NMI. NMIs are not masked by the status.PIE bit, and
have no interrupt level.

An EIC can be software-configurable.

Note: When the EIC interface and shadow register sets are implemented on the Nios II core, you must
ensure that your software is built with the Nios II EDS version 9.0 or higher. Earlier versions have
an implementation of the eret instruction that is incompatible with shadow register sets.

For a typical example of an EIC, refer to the Vectored Interrupt Controller chapter in the Embedded
Peripherals IP User Guide.

For details about EIC usage, refer to “Exception Processing” in the Programming Model chapter of the
Nios II Processor Reference Handbook.

Related Information

• Embedded Peripherals IP User Guide
For a typical example of an EIC, refer to the Vectored Interrupt Controller chapter in the Embedded
Peripherals IP User Guide.

• Programming Model on page 3-1

Internal Interrupt Controller
The Nios II architecture supports 32 internal hardware interrupts. The processor core has 32 level-sensitive
interrupt request (IRQ) inputs, irq0 through irq31, providing a unique input for each interrupt source.
IRQ priority is determined by software. The architecture supports nested interrupts.

Your software can enable and disable any interrupt source individually through the ienable control
register, which contains an interrupt-enable bit for each of the IRQ inputs. Software can enable and disable

NII51002
2016.10.28 EIC Interface 2-11

Processor Architecture Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

interrupts globally using the PIE bit of the status control register. A hardware interrupt is generated if
and only if all of the following conditions are true:

• The PIE bit of the status register is 1
• An interrupt-request input, irq<n>, is asserted
• The corresponding bit n of the ienable register is 1

The interrupt vector custom instruction is less efficient than using the EIC interface with the Altera
vectored interrupt controller component, and thus is deprecated in Qsys. Altera recommends using the
EIC interface.

Memory and I/O Organization
This section explains hardware implementation details of the Nios II memory and I/O organization. The
discussion covers both general concepts true of all Nios II processor systems, as well as features that might
change from system to system.

The flexible nature of the Nios II memory and I/O organization are the most notable difference between
Nios II processor systems and traditional microcontrollers. Because Nios II processor systems are configu‐
rable, the memories and peripherals vary from system to system. As a result, the memory and I/O
organization varies from system to system.

A Nios II core uses one or more of the following to provide memory and I/O access:

• Instruction master port—An Avalon® Memory-Mapped (Avalon-MM) master port that connects to
instruction memory via system interconnect fabric

• Instruction cache—Fast cache memory internal to the Nios II core
• Data master port—An Avalon-MM master port that connects to data memory and peripherals via

system interconnect fabric
• Data cache—Fast cache memory internal to the Nios II core
• Tightly-coupled instruction or data memory port—Interface to fast on-chip memory outside the

Nios II core

The Nios II architecture handles the hardware details for the programmer, so programmers can develop
Nios II applications without specific knowledge of the hardware implementation.

For details that affect programming issues, refer to the Programming Model chapter of the Nios II Processor
Reference Handbook.

2-12 Memory and I/O Organization
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2-2: Nios II Memory and I/O Organization

S

MemoryS

Slave
Peripheral

Avalon Master Port

Avalon Slave Port

M

S

M

M

Tightly Coupled
Instruction
Memory N

Tightly Coupled
Data

Memory 1

Instruction
Cache

Data
Cache

Avalon System
Interconnect

Fabric
Program
Counter

General
Purpose
Register

File

Instruction
Bus

Selector
Logic

Tightly Coupled
Data

Memory N

Tightly Coupled
Instruction
Memory 1

Data
Bus

Selector
Logic

MMU
Translation

Lookaside Buffer

M

M

M

M

Data
Cache
Bypass
Logic

MPU Instruction Regions

MPU Data Regions

Related Information
Programming Model on page 3-1

Instruction and Data Buses
The Nios II architecture supports separate instruction and data buses, classifying it as a Harvard architec‐
ture. Both the instruction and data buses are implemented as Avalon-MM master ports that adhere to the
Avalon-MM interface specification. The data master port connects to both memory and peripheral
components, while the instruction master port connects only to memory components.

Note: The Nios II instruction and data masters have a combined address map. The memory model is
arranged so that instructions and data are in the same address space.

NII51002
2016.10.28 Instruction and Data Buses 2-13

Processor Architecture Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Avalon Interface Specifications
Refer to the Avalon Interface Specifications for details of the Avalon-MM interface.

Memory and Peripheral Access
The Nios II architecture provides memory-mapped I/O access. Both data memory and peripherals are
mapped into the address space of the data master port. The Nios II architecture uses little-endian byte
ordering. Words and halfwords are stored in memory with the more-significant bytes at higher addresses.

The Nios II architecture does not specify anything about the existence of memory and peripherals; the
quantity, type, and connection of memory and peripherals are system-dependent. Typically, Nios II
processor systems contain a mix of fast on-chip memory and slower off-chip memory. Peripherals typically
reside on-chip, although interfaces to off-chip peripherals also exist.

Instruction Master Port
The Nios II instruction bus is implemented as a 32-bit Avalon-MM master port. The instruction master
port performs a single function: it fetches instructions to be executed by the processor. The instruction
master port does not perform any write operations.

The instruction master port is a pipelined Avalon-MM master port. Support for pipelined Avalon-MM
transfers minimizes the impact of synchronous memory with pipeline latency and increases the overall
fMAX of the system. The instruction master port can issue successive read requests before data has returned
from prior requests. The Nios II processor can prefetch sequential instructions and perform branch
prediction to keep the instruction pipe as active as possible.

The instruction master port always retrieves 32 bits of data. The instruction master port relies on dynamic
bus-sizing logic contained in the system interconnect fabric. By virtue of dynamic bus sizing, every
instruction fetch returns a full instruction word, regardless of the width of the target memory.
Consequently, programs do not need to be aware of the widths of memory in the Nios II processor system.

The Nios II architecture supports on-chip cache memory for improving average instruction fetch perform‐
ance when accessing slower memory. Refer to the "Cache Memory" section of this chapter for details.

The Nios II architecture supports tightly-coupled memory, which provides guaranteed low-latency access
to on-chip memory. Refer to the "Tightly-Coupled Memory" section of this chapter for details.

Related Information

• Cache Memory on page 2-15
• Tightly-Coupled Memory on page 2-16

Data Master Port
The Nios II data bus is implemented as a 32-bit Avalon-MM master port. The data master port performs
two functions:

• Read data from memory or a peripheral when the processor executes a load instruction
• Write data to memory or a peripheral when the processor executes a store instruction

Byte-enable signals on the master port specify which of the four byte-lane(s) to write during store
operations. Load and store operations can complete in a single clock cycle when the data master port is
connected to zero-wait-state memory.

Note: Nios II Gen2 only supports a fixed 32-byte linesize for data cache.

The Nios II architecture supports on-chip cache memory for improving average data transfer performance
when accessing slower memory. Refer to the "Cache Memory" section of this chapter for details.

2-14 Memory and Peripheral Access
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Nios II architecture supports tightly-coupled memory, which provides guaranteed low-latency access
to on-chip memory. Refer to "Tightly-Coupled Memory" section of this chapter for details.

Related Information

• Cache Memory on page 2-15
• Tightly-Coupled Memory on page 2-16

Shared Memory for Instructions and Data
Usually the instruction and data master ports share a single memory that contains both instructions and
data. While the processor core has separate instruction and data buses, the overall Nios II processor
system might present a single, shared instruction/data bus to the outside world. The outside view of the
Nios II processor system depends on the memory and peripherals in the system and the structure of the
system interconnect fabric.

The data and instruction master ports never cause a gridlock condition in which one port starves the
other. For highest performance, assign the data master port higher arbitration priority on any memory
that is shared by both instruction and data master ports.

Cache Memory
The Nios II architecture supports cache memories on both the instruction master port (instruction cache)
and the data master port (data cache). Cache memory resides on-chip as an integral part of the Nios II
processor core. The cache memories can improve the average memory access time for Nios II processor
systems that use slow off-chip memory such as SDRAM for program and data storage.

The instruction and data caches are enabled perpetually at run-time, but methods are provided for
software to bypass the data cache so that peripheral accesses do not return cached data. Cache
management and cache coherency are handled by software. The Nios II instruction set provides instruc‐
tions for cache management.

Configurable Cache Memory Options
The cache memories are optional. The need for higher memory performance (and by association, the need
for cache memory) is application dependent. Many applications require the smallest possible processor
core, and can trade-off performance for size.

A Nios II processor core might include one, both, or neither of the cache memories. Furthermore, for
cores that provide data and/or instruction cache, the sizes of the cache memories are user-configurable.
The inclusion of cache memory does not affect the functionality of programs, but it does affect the speed at
which the processor fetches instructions and reads/writes data.

Effective Use of Cache Memory
The effectiveness of cache memory to improve performance is based on the following premises:

• Regular memory is located off-chip, and access time is long compared to on-chip memory
• The largest, performance-critical instruction loop is smaller than the instruction cache
• The largest block of performance-critical data is smaller than the data cache

Optimal cache configuration is application specific, although you can make decisions that are effective
across a range of applications. For example, if a Nios II processor system includes only fast, on-chip
memory (i.e., it never accesses slow, off-chip memory), an instruction or data cache is unlikely to offer any
performance gain. As another example, if the critical loop of a program is 2 KB, but the size of the instruc‐
tion cache is 1 KB, an instruction cache does not improve execution speed. In fact, an instruction cache
may degrade performance in this situation.

NII51002
2016.10.28 Shared Memory for Instructions and Data 2-15

Processor Architecture Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If an application always requires certain data or sections of code to be located in cache memory for
performance reasons, the tightly-coupled memory feature might provide a more appropriate solution.
Refer to the "Tightly-Coupled Memory" section for details.

Cache Bypass Methods

The Nios II architecture provides the following methods for bypassing the data cache:

• I/O load and store instructions
• Bit-31 cache bypass
• Peripheral Region

Note: By default the Bit-31 cache bypass is turned on.

I/O Load and Store Instructions Method

The load and store I/O instructions such as ldio and stio bypass the data cache and force an Avalon-MM
data transfer to a specified address.

The Bit-31 Cache Bypass Method

The bit-31 cache bypass method on the data master port uses bit 31 of the address as a tag that indicates
whether the processor should transfer data to/from cache, or bypass it. This is a convenience for software,
which might need to cache certain addresses and bypass others. Software can pass addresses as parameters
between functions, without having to specify any further information about whether the addressed data is
cached or not.

To determine which cores implement which cache bypass methods, refer to the Nios II Core Implementa‐
tion Details chapter of the Nios II Processor Reference Handbook.

Related Information
Nios II Core Implementation Details on page 5-1

Peripheral Region

Gen2 cores optionally support a new peripheral region mechanism to indicate cacheability. The peripheral
region cacheability mechanism allows a user at Qsys generation time to specify a region of address space
that is treated as non-cacheable. The peripheral region is any integer power of 2 bytes from a minimum of
4096 bytes up to a maximum of 2 GBytes and must be located at a base address aligned to the size of the
peripheral region. The peripheral region is available as long as an MMU is not present.

Tightly-Coupled Memory
Tightly-coupled memory provides guaranteed low-latency memory access for performance-critical
applications. Compared to cache memory, tightly-coupled memory provides the following benefits:

• Performance similar to cache memory
• Software can guarantee that performance-critical code or data is located in tightly-coupled memory
• No real-time caching overhead, such as loading, invalidating, or flushing memory

Physically, a tightly-coupled memory port is a separate master port on the Nios II processor core, similar
to the instruction or data master port. A Nios II core can have zero, one, or multiple tightly-coupled
memories. The Nios II architecture supports tightly-coupled memory for both instruction and data access.
Each tightly-coupled memory port connects directly to exactly one memory with guaranteed low, fixed
latency. The memory is external to the Nios II core and is located on chip.

2-16 Cache Bypass Methods
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Accessing Tightly-Coupled Memory
Tightly-coupled memories occupy normal address space, the same as other memory devices connected via
system interconnect fabric. The address ranges for tightly-coupled memories (if any) are determined at
system generation time.

Software accesses tightly-coupled memory using regular load and store instructions. From the software’s
perspective, there is no difference accessing tightly-coupled memory compared to other memory.

Effective Use of Tightly-Coupled Memory

A system can use tightly-coupled memory to achieve maximum performance for accessing a specific
section of code or data. For example, interrupt-intensive applications can place exception handler code
into a tightly-coupled memory to minimize interrupt latency. Similarly, compute-intensive digital signal
processing (DSP) applications can place data buffers into tightly-coupled memory for the fastest possible
data access.

If the application’s memory requirements are small enough to fit entirely on chip, it is possible to use
tightly-coupled memory exclusively for code and data. Larger applications must selectively choose what to
include in tightly-coupled memory to maximize the cost-performance trade-off.

Related Information
Using Tightly Coupled Memory with the Nios II Processor Tutorial
For additional tightly-coupled memory guidelines, refer to the Using Tightly Coupled Memory with the Nios
II Processor tutorial.

Address Map
The address map for memories and peripherals in a Nios II processor system is design dependent. You
specify the address map in Qsys.

There are three addresses that are part of the processor and deserve special mention:

• Reset address
• Exception address
• Break handler address

Programmers access memories and peripherals by using macros and drivers. Therefore, the flexible
address map does not affect application developers.

Memory Management Unit
The optional Nios II MMU provides the following features and functionality:

• Virtual to physical address mapping
• Memory protection
• 32-bit virtual and physical addresses, mapping a 4-GB virtual address space into as much as 4 GB of

physical memory
• 4-KB page and frame size
• Low 512 MB of physical address space available for direct access

NII51002
2016.10.28 Accessing Tightly-Coupled Memory 2-17

Processor Architecture Altera Corporation

Send Feedback

http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Hardware translation lookaside buffers (TLBs), accelerating address translation

• Separate TLBs for instruction and data accesses
• Read, write, and execute permissions controlled per page
• Default caching behavior controlled per page
• TLBs acting as n-way set-associative caches for software page tables
• TLB sizes and associativities configurable in the Nios II Processor parameter editor

• Format of page tables (or equivalent data structures) determined by system software
• Replacement policy for TLB entries determined by system software
• Write policy for TLB entries determined by system software

For more information about the MMU implementation, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

You can optionally include the MMU when you instantiate the Nios II processor in your Nios II hardware
system. When present, the MMU is always enabled, and the data and instruction caches are virtually-
indexed, physically-tagged caches. Several parameters are available, allowing you to optimize the MMU
for your system needs.

For complete details about user-selectable parameters for the Nios II MMU, refer to the Instantiating the
Nios II Processor chapter of the Nios II Processor Reference Handbook.

Note: The Nios II MMU is optional and mutually exclusive from the Nios II MPU. Nios II systems can
include either an MMU or MPU, but cannot include both an MMU and MPU on the same Nios II
processor core.

Related Information

• Programming Model on page 3-1
• Instantiating the Nios II Gen2 Processor on page 4-1

Memory Protection Unit
The optional Nios II MPU provides the following features and functionality:

• Memory protection
• Up to 32 instruction regions and 32 data regions
• Variable instruction and data region sizes
• Amount of region memory defined by size or upper address limit
• Read and write access permissions for data regions
• Execute access permissions for instruction regions
• Overlapping regions

For more information about the MPU implementation, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

You can optionally include the MPU when you instantiate the Nios II processor in your Nios II hardware
system. When present, the MPU is always enabled. Several parameters are available, allowing you to
optimize the MPU for your system needs.

For complete details about user-selectable parameters for the Nios II MPU, refer to the Instantiating the
Nios II Processor chapter of the Nios II Processor Reference Handbook.

Note: The Nios II MPU is optional and mutually exclusive from the Nios II MMU. Nios II systems can
include either an MPU or MMU, but cannot include both an MPU and MMU on the same Nios II
processor core.

2-18 Memory Protection Unit
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Programming Model on page 3-1
• Instantiating the Nios II Gen2 Processor on page 4-1

JTAG Debug Module
The Nios II architecture supports a JTAG debug module that provides on-chip emulation features to
control the processor remotely from a host PC. PC-based software debugging tools communicate with the
JTAG debug module and provide facilities, such as the following features:

• Downloading programs to memory
• Starting and stopping execution
• Setting breakpoints and watchpoints
• Analyzing registers and memory
• Collecting real-time execution trace data

Note: The Nios II MMU does not support the JTAG debug module trace.

The debug module connects to the JTAG circuitry in an Altera FPGA. External debugging probes can then
access the processor via the standard JTAG interface on the FPGA. On the processor side, the debug
module connects to signals inside the processor core. The debug module has nonmaskable control over the
processor, and does not require a software stub linked into the application under test. All system resources
visible to the processor in supervisor mode are available to the debug module. For trace data collection,
the debug module stores trace data in memory either on-chip or in the debug probe.

The debug module gains control of the processor either by asserting a hardware break signal, or by writing
a break instruction into program memory to be executed. In both cases, the processor transfers execution
to the routine located at the break address. The break address is specified with the Nios II Processor
parameter editor in Qsys.

Soft processor cores such as the Nios II processor offer unique debug capabilities beyond the features of
traditional, fixed processors. The soft nature of the Nios II processor allows you to debug a system in
development using a full-featured debug core, and later remove the debug features to conserve logic
resources. For the release version of a product, the JTAG debug module functionality can be reduced, or
removed altogether.

The following sections describe the capabilities of the Nios II JTAG debug module hardware. The usage of
all hardware features is dependent on host software, such as the Nios II Software Build Tools for Eclipse,
which manages the connection to the target processor and controls the debug process.

JTAG Target Connection
The JTAG target connection provides the ability to connect to the processor through the standard JTAG
pins on the Altera FPGA. This provides basic capabilities to start and stop the processor, and examine and
edit registers and memory. The JTAG target connection is the minimum requirement for the Nios II flash
programmer.

Note: While the processor has no minimum clock frequency requirements, Altera recommends that your
design’s system clock frequency be at least four times the JTAG clock frequency to ensure that the
on-chip instrumentation (OCI) core functions properly.

NII51002
2016.10.28 JTAG Debug Module 2-19

Processor Architecture Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Download and Execute Software
Downloading software refers to the ability to download executable code and data to the processor’s
memory via the JTAG connection. After downloading software to memory, the JTAG debug module can
then exit debug mode and transfer execution to the start of executable code.

Software Breakpoints
Software breakpoints allow you to set a breakpoint on instructions residing in RAM. The software
breakpoint mechanism writes a break instruction into executable code stored in RAM. When the
processor executes the break instruction, control is transferred to the JTAG debug module.

Hardware Breakpoints
Hardware breakpoints allow you to set a breakpoint on instructions residing in nonvolatile memory, such
as flash memory. The hardware breakpoint mechanism continuously monitors the processor’s current
instruction address. If the instruction address matches the hardware breakpoint address, the JTAG debug
module takes control of the processor.

Hardware breakpoints are implemented using the JTAG debug module’s hardware trigger feature.

Hardware Triggers
Hardware triggers activate a debug action based on conditions on the instruction or data bus during real-
time program execution. Triggers can do more than halt processor execution. For example, a trigger can
be used to enable trace data collection during real-time processor execution.

Hardware trigger conditions are based on either the instruction or data bus. Trigger conditions on the
same bus can be logically ANDed, enabling the JTAG debug module to trigger, for example, only on write
cycles to a specific address.

Table 2-5: Trigger Conditions

Condition Bus Description

Specific address Data, Instruction Trigger when the bus accesses a specific address.
Specific data value Data Trigger when a specific data value appears on the bus.
Read cycle Data Trigger on a read bus cycle.
Write cycle Data Trigger on a write bus cycle.
Armed Data, Instruction Trigger only after an armed trigger event. Refer to the

Armed Triggers section.
Range Data Trigger on a range of address values, data values, or both.

Refer to the Triggering on Ranges of Values section.

When a trigger condition occurs during processor execution, the JTAG debug module triggers an action,
such as halting execution, or starting trace capture. The table below lists the trigger actions supported by
the Nios II JTAG debug module.

2-20 Download and Execute Software
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2-6: Trigger Actions

Action Description

Break Halt execution and transfer control to the JTAG debug module.
External trigger Assert a trigger signal output. This trigger output can be used, for example, to

trigger an external logic analyzer.
Trace on Turn on trace collection.
Trace off Turn off trace collection.
Trace sample Store one sample of the bus to trace buffer.
Arm Enable an armed trigger.

Note: For the Trace sample triger action, only conditions on the data bus can trigger this action.

Armed Triggers

The JTAG debug module provides a two-level trigger capability, called armed triggers. Armed triggers
enable the JTAG debug module to trigger on event B, only after event A. In this example, event A causes a
trigger action that enables the trigger for event B.

Triggering on Ranges of Values

The JTAG debug module can trigger on ranges of data or address values on the data bus. This mechanism
uses two hardware triggers together to create a trigger condition that activates on a range of values within
a specified range.

Trace Capture
Trace capture refers to ability to record the instruction-by-instruction execution of the processor as it
executes code in real-time. The JTAG debug module offers the following trace features:

• Capture execution trace (instruction bus cycles).
• Capture data trace (data bus cycles).
• For each data bus cycle, capture address, data, or both.
• Start and stop capturing trace in real time, based on triggers.
• Manually start and stop trace under host control.
• Optionally stop capturing trace when trace buffer is full, leaving the processor executing.
• Store trace data in on-chip memory buffer in the JTAG debug module. (This memory is accessible only

through the JTAG connection.)
• Store trace data to larger buffers in an off-chip debug probe.

Certain trace features require additional licensing or debug tools from third-party debug providers. For
example, an on-chip trace buffer is a standard feature of the Nios II processor, but using an off-chip trace
buffer requires additional debug software and hardware provided by Imagination Technologies™, LLC or
Lauterbach GmbH.

Related Information
Lauterbach.com
For more information, refer to the Lauterbach GmbH website.

NII51002
2016.10.28 Armed Triggers 2-21

Processor Architecture Altera Corporation

Send Feedback

http://www.lauterbach.com/frames.html?home.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Execution vs. Data Trace
The JTAG debug module supports tracing the instruction bus (execution trace), the data bus (data trace),
or both simultaneously. Execution trace records only the addresses of the instructions executed, enabling
you to analyze where in memory (that is, in which functions) code executed. Data trace records the data
associated with each load and store operation on the data bus.

The JTAG debug module can filter the data bus trace in real time to capture the following:

• Load addresses only
• Store addresses only
• Both load and store addresses
• Load data only
• Load address and data
• Store address and data
• Address and data for both loads and stores
• Single sample of the data bus upon trigger event

Trace Frames
A frame is a unit of memory allocated for collecting trace data. However, a frame is not an absolute
measure of the trace depth.

To keep pace with the processor executing in real time, execution trace is optimized to store only selected
addresses, such as branches, calls, traps, and interrupts. From these addresses, host-side debug software
can later reconstruct an exact instruction-by-instruction execution trace. Furthermore, execution trace
data is stored in a compressed format, such that one frame represents more than one instruction. As a
result of these optimizations, the actual start and stop points for trace collection during execution might
vary slightly from the user-specified start and stop points.

Data trace stores 100% of requested loads and stores to the trace buffer in real time. When storing to the
trace buffer, data trace frames have lower priority than execution trace frames. Therefore, while data
frames are always stored in chronological order, execution and data trace are not guaranteed to be exactly
synchronized with each other.

Document Revision History

Table 2-7: Document Revision History

Date Version Changes

October 2016 2016.10.28 Maintenance release

April 2015 2015.04.02 Initial release

2-22 Execution vs. Data Trace
NII51002

2016.10.28

Altera Corporation Processor Architecture

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Processor%20Architecture%20(NII51002%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Programming Model 3
2016.10.28

NII51003 Subscribe Send Feedback

This chapter describes the Nios® II programming model, covering processor features at the assembly
language level. Fully understanding the contents of this chapter requires prior knowledge of computer
architecture, operating systems, virtual memory and memory management, software processes and
process management, exception handling, and instruction sets. This chapter assumes you have a detailed
understanding of these concepts and focuses on how these concepts are specifically implemented in the
Nios II processor. Where possible, this chapter uses industry-standard terminology.

Note: Because of the flexibility and capability range of the Nios II processor, this chapter covers topics
that support a variety of operating systems and runtime environments. While reading, be aware
that all sections might not apply to you. For example, if you are using a minimal system runtime
environment, you can ignore the sections covering operating modes, the MMU, the MPU, or the
control registers exclusively used by the MMU and MPU.

Related Information
Nios II Software Developer's Handbook
High-level software development tools are not discussed here. Refer to the Nios II Software Developer’s
Handbook for information about developing software.

Operating Modes
Operating modes control how the processor operates, manages system memory, and accesses peripherals.
The Nios II architecture supports these operating modes:

• Supervisor mode
• User mode

The following sections define the modes, their relationship to your system software and application code,
and their relationship to the Nios II MMU and Nios II MPU.

Supervisor Mode
Supervisor mode allows unrestricted operation of the processor. All code has access to all processor
instructions and resources. The processor may perform any operation the Nios II architecture provides.
Any instruction may be executed, any I/O operation may be initiated, and any area of memory may be
accessed.

Operating systems and other system software run in supervisor mode. In systems with an MMU, applica‐
tion code runs in user mode, and the operating system, running in supervisor mode, controls the applica‐

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos
are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants
performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51003
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51003%202016.10.28)%20Programming%20Model&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

tion’s access to memory and peripherals. In systems with an MPU, your system software controls the mode
in which your application code runs. In Nios II systems without an MMU or MPU, all application and
system code runs in supervisor mode.

Code that needs direct access to and control of the processor runs in supervisor mode. For example, the
processor enters supervisor mode whenever a processor exception (including processor reset or break)
occurs. Software debugging tools also use supervisor mode to implement features such as breakpoints and
watchpoints.

Note: For systems without an MMU or MPU, all code runs in supervisor mode.

User Mode
User mode is available only when the Nios II processor in your hardware design includes an MMU or
MPU. User mode exists solely to support operating systems. Operating systems (that make use of the
processor’s user mode) run your application code in user mode. The user mode capabilities of the
processor are a subset of the supervisor mode capabilities. Only a subset of the instruction set is available
in user mode.

The operating system determines which memory addresses are accessible to user mode applications.
Attempts by user mode applications to access memory locations without user access enabled are not
permitted and cause an exception. Code running in user mode uses system calls to make requests to the
operating system to perform I/O operations, manage memory, and access other system functionality in the
supervisor memory.

The Nios II MMU statically divides the 32-bit virtual address space into user and supervisor partitions.
Refer to Address Space and Memory Partitions section for more information about the MMU memory
partitions. The MMU provides operating systems access permissions on a per-page basis. Refer to Virtual
Addressing for more information about MMU pages.

The Nios II MPU supervisor and user memory divisions are determined by the operating system or
runtime environment. The MPU provides user access permissions on a region basis. Refer to Memory
Regions for more information about MPU regions.

Related Information

• Address Space and Memory Partitions on page 3-4
• Memory Regions on page 3-8
• Virtual Addressing on page 3-3

Memory Management Unit
The Nios II processor provides an MMU to support full-featured operating systems. Operating systems
that require virtual memory rely on an MMU to manage the virtual memory. When present, the MMU
manages memory accesses including translation of virtual addresses to physical addresses, memory
protection, cache control, and software process memory allocation.

Recommended Usage
Including the Nios II MMU in your Nios II hardware system is optional. The MMU is only useful with an
operating system that takes advantage of it.

Many Nios II systems have simpler requirements where minimal system software or a small-footprint
operating system (such as the Altera® hardware abstraction library (HAL) or a third party real-time
operating system) is sufficient. Such software is unlikely to function correctly in a hardware system with an

3-2 User Mode
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

MMU-based Nios II processor. Do not include an MMU in your Nios II system unless your operating
system requires it.

Note: The Altera HAL and HAL-based real-time operating systems do not support the MMU.

If your system needs memory protection, but not virtual memory management, refer to Memory
Protection Unit section.

Related Information
Memory Protection Unit on page 3-7

Memory Management
Memory management comprises two key functions:

• Virtual addressing—Mapping a virtual memory space into a physical memory space
• Memory protection—Allowing access only to certain memory under certain conditions

Virtual Addressing
A virtual address is the address that software uses. A physical address is the address which the hardware
outputs on the address lines of the Avalon® bus. The Nios II MMU divides virtual memory into 4-KB
pages and physical memory into 4-KB frames.

The MMU contains a hardware translation lookaside buffer (TLB). The operating system is responsible for
creating and maintaining a page table (or equivalent data structures) in memory. The hardware TLB acts
as a software managed cache for the page table. The MMU does not perform any operations on the page
table, such as hardware table walks. Therefore the operating system is free to implement its page table in
any appropriate manner.

There is a 20 bit virtual page number (VPN) and a 12 bit page offset.

Table 3-1: MMU Virtual Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Virtual Page Number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

As input, the TLB takes a VPN plus a process identifier (to guarantee uniqueness). As output, the TLB
provides the corresponding physical frame number (PFN).

Distinct processes can use the same virtual address space. The process identifier, concatenated with the
virtual address, distinguishes identical virtual addresses in separate processes. To determine the physical
address, the Nios II MMU translates a VPN to a PFN and then concatenates the PFN with the page offset.
The bits in the page offset are not translated.

Memory Protection

The Nios II MMU maintains read, write, and execute permissions for each page. The TLB provides the
permission information when translating a VPN. The operating system can control whether or not each
process is allowed to read data from, write data to, or execute instructions on each particular page. The
MMU also controls whether accesses to each data page are cacheable or uncacheable by default.

NII51003
2016.10.28 Memory Management 3-3

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Whenever an instruction attempts to access a page that either has no TLB mapping, or lacks the
appropriate permissions, the MMU generates an exception. The Nios II processor’s precise exceptions
enable the system software to update the TLB, and then re-execute the instruction if desired.

Memory Protection

The Nios II MMU maintains read, write, and execute permissions for each page. The TLB provides the
permission information when translating a VPN. The operating system can control whether or not each
process is allowed to read data from, write data to, or execute instructions on each particular page. The
MMU also controls whether accesses to each data page are cacheable or uncacheable by default.

Whenever an instruction attempts to access a page that either has no TLB mapping, or lacks the
appropriate permissions, the MMU generates an exception. The Nios II processor’s precise exceptions
enable the system software to update the TLB, and then re-execute the instruction if desired.

Address Space and Memory Partitions
The MMU provides a 4-GB virtual address space, and is capable of addressing up to 4 GB of physical
memory.

Note: The amount of actual physical memory, determined by the configuration of your hardware system,
might be less than the available 4 GB of physical address space.

Virtual Memory Address Space
The 4-GB virtual memory space is divided into partitions. The upper 2 GB of memory is reserved for the
operating system and the lower 2 GB is reserved for user processes.

Table 3-2: Virtual Memory Partitions

Partition Virtual Address Range Used By Memory Access User Mode
Access

Default Data
Cacheability

I/O 0xE0000000–0xFFFFFFFF Operating
system

Bypasses TLB No Disabled

Kernel 0xC0000000–0xDFFFFFFF Operating
system

Bypasses TLB No Enabled

Kernel
MMU

0x80000000–0xBFFFFFFF Operating
system

Uses TLB No Set by TLB

User 0x00000000–0x7FFFFFFF User processes Uses TLB Set by TLB Set by TLB

Note: All partitions except the user partition in the "Virtual Memory Partition" table are supervisor-only
partitions.

Each partition has a specific size, purpose, and relationship to the TLB:

• The 512-MB I/O partition provides access to peripherals.
• The 512-MB kernel partition provides space for the operating system kernel.
• The 1-GB kernel MMU partition is used by the TLB miss handler and kernel processes.
• The 2-GB user partition is used by application processes.

I/O and kernel partitions bypass the TLB. The kernel MMU and user partitions use the TLB. If all software
runs in the kernel partition, the MMU is effectively disabled.

3-4 Memory Protection
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Physical Memory Address Space
The 4-GB physical memory is divided into low memory and high memory. The lowest ½ GB of physical
address space is low memory. The upper 3½ GB of physical address space is high memory.

Figure 3-1: Division of Physical Memory

0x1FFFFFFF
0x00000000 0.5 GByte Low Memory

3.5 GByte High Memory

0xFFFFFFFF

0x20000000
Accessed directly or via TLB

Accessed only via TLB

High physical memory can only be accessed through the TLB. Any physical address in low memory (29-
bits or less) can be accessed through the TLB or by bypassing the TLB. When bypassing the TLB, a 29-bit
physical address is computed by clearing the top three bits of the 32-bit virtual address.

Note: To function correctly, the base physical address of all exception vectors (reset, general exception,
break, and fast TLB miss) must point to low physical memory so that hardware can correctly map
their virtual addresses into the kernel partition. The Nios II Processor parameter editor in Qsys
prevents you from choosing an address outside of low physical memory.

Data Cacheability
Each partition has a rule that determines the default data cacheability property of each memory access.
When data cacheability is enabled on a partition of the address space, a data access to that partition can be
cached, if a data cache is present in the system. When data cacheability is disabled, all access to that
partition goes directly to the Avalon switch fabric. Bit 31 is not used to specify data cacheability, as it is in
Nios II cores without MMUs. Virtual memory partitions that bypass the TLB have a default data
cacheability property, as described in the above table, Virtual Memory Partitions. For partitions that are
mapped through the TLB, data cacheability is controlled by the TLB on a per-page basis.

Non-I/O load and store instructions use the default data cacheability property. I/O load and store instruc‐
tions are always noncacheable, so they ignore the default data cacheability property.

TLB Organization
A TLB functions as a cache for the operating system’s page table. In Nios II processors with an MMU, one
main TLB is shared by instruction and data accesses. The TLB is stored in on-chip RAM and handles
translations for instruction fetches and instructions that perform data accesses.

The TLB is organized as an n-way set-associative cache. The software specifies the way (set) when loading
a new entry.

NII51003
2016.10.28 Physical Memory Address Space 3-5

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can configure the number of TLB entries and the number of ways (set associativity) of the TLB
with the Nios II Processor parameter editor in Qsys. By default, the TLB is a 16-way cache. The
default number of entries depends on the target device, as follows:

• Cyclone III®, Stratix III®, Stratix IV—256 entries, requiring one M9K RAM

For more information, refer to the Instantiating the Nios II Processor chapter of the Nios II
Processor Reference Handbook.

The operating system software is responsible for guaranteeing that multiple TLB entries do not map the
same virtual address. The hardware behavior is undefined when multiple entries map the same virtual
address.

Each TLB entry consists of a tag and data portion. This is analogous to the tag and data portion of instruc‐
tion and data caches.

Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference Handbook for
information about instruction and data caches.

The tag portion of a TLB entry contains information used when matching a virtual address to a TLB entry.

Table 3-3: TLB Tag Portion Contents

Field Name Description

VPN VPN is the virtual page number field. This field is compared with the top 20
bits of the virtual address.

PID PID is the process identifier field. This field is compared with the value of the
current process identifier stored in the tlbmisc control register, effectively
extending the virtual address. The field size is configurable in the Nios_II
Processor parameter editor, and can be between 8 and 14 bits.

G G is the global flag. When G = 1, the PID is ignored in the TLB lookup.

The TLB data portion determines how to translate a matching virtual address to a physical address.

Table 3-4: TLB Data Portion Contents

Field Name Description

PFN PFN is the physical frame number field. This field specifies the upper bits of the
physical address. The size of this field depends on the range of physical
addresses present in the system. The maximum size is 20 bits.

C C is the cacheable flag. Determines the default data cacheability of a page. Can
be overridden for data accesses using I/O load and store family of Nios II
instructions.

R R is the readable flag. Allows load instructions to read a page.
W W is the writable flag. Allows store instructions to write a page.
X X is the executable flag. Allows instruction fetches from a page.

Note: Because there is no “valid bit” in the TLB entry, the operating system software invalidates the TLB
by writing unique VPN values from the I/O partition of virtual addresses into each TLB entry.

3-6 TLB Organization
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Programming Model on page 3-1
• Nios II Core Implementation Details on page 5-1

TLB Lookups
A TLB lookup attempts to convert a virtual address (VADDR) to a physical address (PADDR).

Example 3-1: TLB Lookup Algorithm for Instruction Fetches

if (VPN match && (G == 1 || PID match))
 if (X == 1)
 PADDR = concat(PFN, VADDR[11:0])
 else take TLB permission violation exception
else
 if (EH bit of status register == 1)
 take double TLB miss exception
 else
 take fast TLB miss exception

Example 3-2: TLB Lookup Algorithm for Data Access Operations

if (VPN match && (G == 1 || PID match))
 if ((load && R == 1) || (store && W == 1) || flushda)
 PADDR = concatenate(PFN, VADDR[11:0])
 else
 take TLB permission violation exception
else
 if (EH bit of status register == 1)
 take double TLB miss exception
 else
 take fast TLB miss exception

Refer to “Instruction-Related Exceptions” for information about TLB exceptions.

Related Information
Instruction-Related Exceptions on page 3-46

Memory Protection Unit
The Nios II processor provides an MPU for operating systems and runtime environments that desire
memory protection but do not require virtual memory management. For information about memory
protection with virtual memory management, refer to the Memory Management Unit section.

When present and enabled, the MPU monitors all Nios II instruction fetches and data memory accesses to
protect against errant software execution. The MPU is a hardware facility that system software uses to
define memory regions and their associated access permissions. The MPU triggers an exception if software
attempts to access a memory region in violation of its permissions, allowing you to intervene and handle
the exception as appropriate. The precise exception effectively prevents the illegal access to memory.

NII51003
2016.10.28 TLB Lookups 3-7

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The MPU extends the Nios II processor to support user mode and supervisor mode. Typically, system
software runs in supervisor mode and end-user applications run in user mode, although all software can
run in supervisor mode if desired. System software defines which MPU regions belong to supervisor mode
and which belong to user mode.

Related Information
Memory Management Unit on page 3-2

Memory Regions
The MPU contains up to 32 instruction regions and 32 data regions. Each region is defined by the
following attributes:

• Base address
• Region type
• Region index
• Region size or upper address limit
• Access permissions
• Default cacheability (data regions only)

Base Address
The base address specifies the lowest address of the region. The base address is aligned on a region-sized
boundary. For example, a 4-KB region must have a base address that is a multiple of 4 KB. If the base
address is not properly aligned, the behavior is undefined.

Region Type
Each region is identified as either an instruction region or a data region.

Region Index
Each region has an index ranging from zero to the number of regions of its region type minus one. Index
zero has the highest priority.

Region Size or Upper Address Limit

A Qsys generation-time option controls whether the amount of memory in the region is defined by size or
upper address limit. The size is an integer power of two bytes. The limit is the highest address of the region
plus one. The minimum supported region size is 256 bytes but can be configured for larger minimum sizes
to save logic resources. The maximum supported region size equals the Nios II address space (a function
of the address ranges of slaves connected to the Nios II masters). Any access outside of the Nios II address
space is considered not to match any region and triggers an MPU region violation exception.

When regions are defined by size, the size is encoded as a binary mask to facilitate the following MPU
region address range matching:

(address & region_mask) == region_base_address

When regions are defined by limit, the limit is encoded as an unsigned integer to facilitate the following
MPU region address range matching:

(address >= region_base) && (address < region_limit)

The region limit uses a less-than instead of a less-than-or-equal-to comparison because less-than provides
a more efficient implementation. The limit is one bit larger than the address so that full address range may
be included in a range. Defining the region by limit results in slower and larger address range match logic
than defining by size but allows finer granularity in region sizes.

3-8 Memory Regions
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Access Permissions
The access permissions consist of execute permissions for instruction regions and read/write permissions
for data regions. Any instruction that performs a memory access that violates the access permissions
triggers an exception. Additionally, any instruction that performs a memory access that does not match
any region triggers an exception.

Default Cacheability

The default cacheability specifies whether normal load and store instructions access the data cache or
bypass the data cache. The default cacheability is only present for data regions. You can override the
default cacheability by using the ldio or stio instructions. The bit-31 cache and Peripheral Region featurs
are available when the MMU is not present.

Refer to the Cache Memory section for more information on cache bypass and Peripheral Region.

Related Information
Cache Memory on page 3-60

Overlapping Regions
The memory addresses of regions can overlap. Overlapping regions have several uses including placing
markers or small holes inside of a larger region. For example, the stack and heap may be located in the
same region, growing from opposite ends of the address range. To detect stack/heap overflows, you can
define a small region between the stack and heap with no access permissions and assign it a higher priority
than the larger region. Any access attempts to the hole region trigger an exception informing system
software about the stack/heap overflow.

If regions overlap so that a particular access matches more than one region, the region with the highest
priority (lowest index) determines the access permissions and default cacheability.

Enabling the MPU
The MPU is disabled on system reset. System software enables and disables the MPU by writing to a
control register. Before enabling the MPU, you must create at least one instruction and one data region,
otherwise unexpected results can occur. Refer to the Working with the MPU section for more
information.

Related Information
Working with the MPU on page 3-33

Registers
The Nios II register set includes general-purpose registers and control registers. In addition, the Nios II/f
core can optionally have shadow register sets. This section discusses each register type.

General-Purpose Registers
The Nios II architecture provides thirty-two 32-bit general-purpose registers, r0 through r31. Some
registers have names recognized by the assembler. For example, the zero register (r0) always returns the
value zero, and writing to zero has no effect. The ra register (r31) holds the return address used by
procedure calls and is implicitly accessed by the call, callr and ret instructions. C and C++ compilers
use a common procedure-call convention, assigning specific meaning to registers r1 through r23 and r26
through r28.

NII51003
2016.10.28 Access Permissions 3-9

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3-5: The Nios II General-Purpose Registers

Register Name Function Register Name Function

r0 zero 0x00000000 r16 Callee-saved register
r1 at Assembler temporary r17 Callee-saved register
r2 Return value r18 Callee-saved register
r3 Return value r19 Callee-saved register
r4 Register arguments r20 Callee-saved register
r5 Register arguments r21 Callee-saved register
r6 Register arguments r22 Callee-saved register
r7 Register arguments r23 Callee-saved register
r8 Caller-saved register r24 et Exception temporary
r9 Caller-saved register r25 bt Breakpoint temporary
r10 Caller-saved register r26 gp Global pointer
r11 Caller-saved register r27 sp Stack pointer
r12 Caller-saved register r28 fp Frame pointer
r13 Caller-saved register r29 ea Exception return address
r14 Caller-saved register r30 sstatus Status register
r15 Caller-saved register r31 ra Return address

Note: r25 is used exclusively by the JTAG debug module. It is used as the breakpoint temporary (bt)
register in the normal register set. In shadow register sets, r25 is reserved.

Note: r30 is used as the breakpoint return address (ba) in the normal register set, and as the shadow
register set status (sstatus) in each shadow register set. For details about sstatus, refer to The
Status Register section.

For more information, refer to the Application Binary Interface chapter of the Nios II Processor Reference
Handbook.

Related Information
Application Binary Interface on page 7-1

Control Registers
Control registers report the status and change the behavior of the processor. Control registers are accessed
differently than the general-purpose registers. The special instructions rdctl and wrctl provide the only
means to read and write to the control registers and are only available in supervisor mode.

Note: When writing to control registers, all undefined bits must be written as zero.

The Nios II architecture supports up to 32 control registers. All nonreserved control registers have names
recognized by the assembler.

3-10 Control Registers
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3-6: Control Register Names and Bits

Register Name Register Contents

0 status Refer to The status Register on page 3-13
1 estatus Refer to The estatus Register on page 3-15
2 bstatus Refer to The bstatus Register
3 ienable Internal interrupt-enable bits

The ienable Register
Available only when the external interrupt controller
interface is not present. Otherwise reserved.

4 ipending Pending internal interrupt bits

The ipending Register
Available only when the external interrupt controller
interface is not present. Otherwise reserved.

5 cpuid Unique processor identifier
6 Reserved Reserved
7 exception Refer to The exception Register
8 pteaddr Refer to The pteaddr Register

Available only when the MMU is present. Otherwise
reserved.

9 tlbacc Refer to The tlbacc Register
Available only when the MMU is present. Otherwise
reserved.

10 tlbmisc Refer to The tlbmisc Register
Available only when the MMU is present. Otherwise
reserved.

11 eccinj Refer to The eccinj Register
Available only when ECC is present.

12 badaddr Refer to The badaddr Register
13 config Refer to The config Register on page 3-23

Available only when the MPU or ECC is present.
Otherwise reserved.

14 mpubase Refer to The mpubase Register
Available only when the MPU is present. Otherwise
reserved.

NII51003
2016.10.28 Control Registers 3-11

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Name Register Contents

15 mpuacc Refer to The mpuacc Register for MASK variations
table.

Available only when the MPU is present. Otherwise
reserved.

16–31 Reserved Reserved

The following sections describe the nonreserved control registers.

Control registers report the status and change the behavior of the processor. Control registers are accessed
differently than the general-purpose registers. The special instructions rdctl and wrctl provide the only
means to read and write to the control registers and are only available in supervisor mode.

Note: When writing to control registers, all undefined bits must be written as zero.

The Nios II architecture supports up to 32 control registers. All nonreserved control registers have names
recognized by the assembler.

Table 3-7: Control Register Names and Bits

Register Name Register Contents

0 status Refer to The status Register on page 3-13
1 estatus Refer to The estatus Register on page 3-15
2 bstatus Refer to The bstatus Register
3 ienable Internal interrupt-enable bits

The ienable Register
Available only when the external interrupt controller
interface is not present. Otherwise reserved.

4 ipending Pending internal interrupt bits

The ipending Register
Available only when the external interrupt controller
interface is not present. Otherwise reserved.

5 cpuid Unique processor identifier
6 Reserved Reserved
7 exception Refer to The exception Register
8 pteaddr Refer to The pteaddr Register

Available only when the MMU is present. Otherwise
reserved.

9 tlbacc Refer to The tlbacc Register
Available only when the MMU is present. Otherwise
reserved.

3-12 Control Registers
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Name Register Contents

10 tlbmisc Refer to The tlbmisc Register
Available only when the MMU is present. Otherwise
reserved.

11 eccinj Refer to The eccinj Register
Available only when ECC is present.

12 badaddr Refer to The badaddr Register
13 config Refer to The config Register on page 3-23

Available when the MPU or ECC is present. Otherwise
reserved.

14 mpubase Refer to The mpubase Register
Available only when the MPU is present. Otherwise
reserved.

15 mpuacc Refer to The mpuacc Register for MASK variations
table.

Available only when the MPU is present. Otherwise
reserved.

16–31 Reserved Reserved

The following sections describe the nonreserved control registers.

The status Register
The value in the status register determines the state of the Nios II processor. All status bits are set to
predefined values at processor reset. Some bits are exclusively used by and available only to certain
features of the processor, such as the MMU, MPU or external interrupt controller (EIC) interface.

Table 3-8: status Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved RSIE NMI PRS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRS IL IH EH U PIE

NII51003
2016.10.28 The status Register 3-13

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3-9: status Control Register Field Descriptions

Bit Description Access Reset Available

RSIE RSIE is the register set interrupt-enable bit. When set to
1, this bit allows the processor to service external
interrupts requesting the register set that is currently in
use. When set to 0, this bit disallows servicing of such
interrupts.

Read/Write 1 EIC interface
and shadow
register sets
only(5)

NMI NMI is the nonmaskable interrupt mode bit. The
processor sets NMI to 1 when it takes a nonmaskable
interrupt.

Read 0 EIC interface
only(8)

PRS PRS is the previous register set field. The processor copies
the CRS field to the PRS field upon one of the following
events:

• In a processor with no MMU, on any exception
• In a processor with an MMU, on one of the following:

Break exception

Nonbreak exception when status.EH is zero

The processor copies CRS to PRS immediately after
copying the status register to estatus, bstatus or
sstatus.

The number of significant bits in the CRS and PRS
fields depends on the number of shadow register sets
implemented in the Nios II core. The value of CRS and
PRS can range from 0 to n-1, where n is the number of
implemented register sets. The processor core
implements the number of significant bits needed to
represent n-1. Unused high-order bits are always read
as 0, and must be written as 0.

1 Ensure that system software writes only valid
register set numbers to the PRS field. Processor
behavior is undefined with an unimplemented
register set number.

Read/Write 0 Shadow
register sets
only(8)

(5) When this field is unimplemented, the field value always reads as 1, and the processor behaves
accordingly.

3-14 The status Register
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Description Access Reset Available

CRS CRS is the current register set field. CRS indicates which
register set is currently in use. Register set 0 is the
normal register set, while register sets 1 and higher are
shadow register sets. The processor sets CRS to zero on
any noninterrupt exception.

The number of significant bits in the CRS and PRS fields
depends on the number of shadow register sets
implemented in the Nios II core. Unused high-order bits
are always read as 0, and must be written as 0.

Read(6) 0 Shadow
register sets
only(8)

IL IL is the interrupt level field. The IL field controls what
level of external maskable interrupts can be serviced. The
processor services a maskable interrupt only if its
requested interrupt level is greater than IL.

Read/Write 0 EIC interface
only(8)

IH IH is the interrupt handler mode bit. The processor sets
IH to one when it takes an external interrupt.

Read/Write 0 EIC interface
only(8)

EH(7) EH is the exception handler mode bit. The processor sets
EH to one when an exception occurs (including breaks).
Software clears EH to zero when ready to handle
exceptions again. EH is used by the MMU to determine
whether a TLB miss exception is a fast TLB miss or a
double TLB miss. In systems without an MMU, EH is
always zero.

Read/Write 0 MMU or ECC
only(8)

U(7) U is the user mode bit. When U = 1, the processor
operates in user mode. When U = 0, the processor
operates in supervisor mode. In systems without an
MMU, U is always zero.

Read/Write 0 MMU or MPU
only(8)

PIE PIE is the processor interrupt-enable bit. When PIE = 0,
internal and maskable external interrupts and
noninterrupt exceptions are ignored. When PIE = 1,
internal and maskable external interrupts can be taken,
depending on the status of the interrupt controller.
Noninterrupt exceptions are unaffected by PIE.

Read/Write 0 Always

Related Information
External Interrupt Controller Interface on page 3-43

The estatus Register
The estatus register holds a saved copy of the status register during nonbreak exception processing.

(6) The CRS field is read-only. For information about manually changing register sets, refer to the External
Interrupt Controller Interface section.

(7) The state where both EH and U are one is illegal and causes undefined results.
(8) When this field is unimplemented, the field value always reads as 0, and the processor behaves accordingly.

NII51003
2016.10.28 The estatus Register 3-15

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3-10: estatus Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved RSIE NMI PRS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRS IL IH EH U PIE

All fields in the estatus register have read/write access. All fields reset to 0.

When the Nios II processor takes an interrupt, if status.eh is zero (that is, the MMU is in nonexception
mode), the processor copies the contents of the status register to estatus.

Note: If shadow register sets are implemented, and the interrupt requests a shadow register set, the Nios II
processor copies status to sstatus, not to estatus.

For details about the sstatus register, refer to The sstatus Register section.

The exception handler can examine estatus to determine the pre-exception status of the processor. When
returning from an exception, the eret instruction restores the pre-exception value of status. The instruc‐
tion restores the pre-exception value by copying either estatus or sstatus back to status, depending on
the value of status.CRS.

Refer to the Exception Processing section for more information.

Related Information

• Exception Processing on page 3-38
• The sstatus Register on page 3-31

The bstatus Register
The bstatus register holds a saved copy of the status register during break exception processing.

Table 3-11: btatus Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved RSIE NMI PRS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRS IL IH EH U PIE

All fields in the bstatus register have read/write access. All fields reset to 0.

The Status Control Register Field Description table describes the details of the fields defined in the
bstatus register.

When a break occurs, the value of the status register is copied into bstatus. Using bstatus, the
debugger can restore the status register to the value prior to the break. The bret instruction causes the
processor to copy bstatus back to status. Refer to the Processing a Break section for more information.

3-16 The bstatus Register
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Processing a Break on page 3-42

The ienable Register
The ienable register controls the handling of internal hardware interrupts. Each bit of the ienable
register corresponds to one of the interrupt inputs, irq0 through irq31. A value of one in bit n means that
the corresponding irqn interrupt is enabled; a bit value of zero means that the corresponding interrupt is
disabled. Refer to the Exception Processing section for more information.

Note: When the internal interrupt controller is not implemented, the value of the ienable register is
always 0.

Related Information
Exception Processing on page 3-38

The ipending Register

The value of the ipending register indicates the value of the enabled interrupt signals driven into the
processor. A value of one in bit n means that the corresponding irq n input is asserted and enabled in the
ienable register. Writing a value to the ipending register has no effect.

Note: The ipending register is present only when the internal interrupt controller is implemented.

The cpuid Register
The cpuid register holds a constant value that you define in the Nios II Processor parameter editor to
uniquely identify each processor in a multiprocessor system. In Qsys, unique values must be assigned
manually. Writing to the cpuid register has no effect.

The exception Register

Nios II/f Processor provides information useful to system software for exception processing in the
exception and badaddr registers when an exception occurs.

Note: The exception register is not enabled for Nios II/e core.

For information about controlling the extra exception information option, refer to the Instantiating the
Nios II Processor chapter of the Nios II Processor Reference Handbook.

Table 3-12: exception Control Register Fields

Bit Fields

ECCFTL 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

Reserved

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Cause Rsvd

NII51003
2016.10.28 The ienable Register 3-17

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3-13: exception Control Register Field Descriptions

Field Description Access Reset Available

ECCFTL The Nios II processor writes to ECCFTL when it detects a
potentially fatal ECC error. When ECCFTL = 1, the Nios II
processor detects an ECC register file error. When ECCFTL
= 0, another ECC exception occurred.

Read 0 Only
with
ECC

CAUSE CAUSE is written by the Nios II processor when certain
exceptions occur. CAUSE contains a code for the highest-
priority exception occurring at the time. The Cause
column in the Nios II Exceptions (In Decreasing Priority
Order table lists the CAUSE field value for each exception.

CAUSE is not written on a break or an external interrupt.

Read 0 Only
with
Nios II/f

Related Information
Programming Model on page 3-1

The pteaddr Register
The pteaddr register contains the virtual address of the operating system’s page table and is only available
in systems with an MMU. The pteaddr register layout accelerates fast TLB miss exception handling.

Table 3-14: pteaddr Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PTBASE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Rsvd

Table 3-15: pteaddr Control Register Field Descriptions

Field Description Access Reset Available

PTBASE PTBASE is the base virtual address of the page table. Read/
Write

0 Only
with
MMU

VPN VPN is the virtual page number. VPN can be set by both
hardware and software.

Read/
Write

0 Only
with
MMU

Software writes to the PTBASE field when switching processes. Hardware never writes to the PTBASE field.

Software writes to the VPN field when writing a TLB entry. Hardware writes to the VPN field on a fast TLB
miss exception, a TLB permission violation exception, or on a TLB read operation. The VPN field is not
written on any exceptions taken when an exception is already active, that is, when status.EH is already
one.

3-18 The pteaddr Register
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The tlbacc Register
The tlbacc register is used to access TLB entries and is only available in systems with an MMU. The
tlbacc register holds values that software will write into a TLB entry or has previously read from a TLB
entry. The tlbacc register provides access to only a portion of a complete TLB entry. pteaddr.VPN and
tlbmisc.PID hold the remaining TLB entry fields.

Table 3-16: tlbacc Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IG C R W X G PFN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFN

Issuing a wrctl instruction to the tlbacc register writes the tlbacc register with the specified value. If
tlbmisc.WE = 1, the wrctl instruction also initiates a TLB write operation, which writes a TLB entry. The
TLB entry written is specified by the line portion of pteaddr.VPN and the tlbmisc.WAY field. The value
written is specified by the value written into tlbacc along with the values of pteaddr.VPN and
tlbmisc.PID. A TLB write operation also increments tlbmisc.WAY, allowing software to quickly modify
TLB entries.

Issuing a rdctl instruction to the tlbacc register returns the value of the tlbacc register. The tlbacc
register is written by hardware when software triggers a TLB read operation (that is, when wrctl sets
tlbmisc.RD to one).

Table 3-17: tlbacc Control Register Field Descriptions

Field Description Access Reset Available

IG IG is ignored by hardware and available to hold operating
system specific information. Read as zero but can be
written as nonzero.

Read/
Write

0 Only with MMU

C C is the data cacheable flag. When C = 0, data accesses are
uncacheable. When C = 1, data accesses are cacheable.

Read/
Write

0 Only with MMU

R R is the readable flag. When R = 0, load instructions are
not allowed to access memory. When R = 1, load
instructions are allowed to access memory.

Read/
Write

0 Only with MMU

W W is the writable flag. When W = 0, store instructions are
not allowed to access memory. When W = 1, store
instructions are allowed to access memory.

Read/
Write

0 Only with MMU

X X is the executable flag. When X = 0, instructions are not
allowed to execute. When X = 1, instructions are allowed
to execute.

Read/
Write

0 Only with MMU

G G is the global flag. When G = 0, tlbmisc.PID is included
in the TLB lookup. When G = 1, tlbmisc.PID is ignored
and only the virtual page number is used in the TLB
lookup.

Read/
Write

0 Only with MMU

NII51003
2016.10.28 The tlbacc Register 3-19

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Field Description Access Reset Available

PFN PFN is the physical frame number field. All unused upper
bits must be zero.

Read/
Write

0 Only with MMU

The tlbacc register format is the recommended format for entries in the operating system page table. The
IG bits are ignored by the hardware on wrctl to tlbacc and read back as zero on rdctl from tlbacc. The
operating system can use the IG bits to hold operating system specific information without having to clear
these bits to zero on a TLB write operation.

The tlbmisc Register
The tlbmisc register contains the remaining TLB-related fields and is only available in systems with an
MMU.

Table 3-18: tlbmisc Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved EE WAY RD WE PID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PID DBL BAD PERM D

Table 3-19: tlbmisc Control Register Field Descriptions

Field Description Access Reset Available

EE If this field is a 1, a software-triggered ECC error (1, 2, or
3 bit error) occurred because software initiated a TLB
read operation. Only set this field to 1 if CONFIG.ECCEN is
1.

Read/
Write

0 Only with MMU
and EEC

WAY The WAY field controls the mapping from the VPN to a
particular TLB entry.

This field size is variable. Unused upper bits must be
written as zero.

Read/
Write

0 Only with MMU

RD RD is the read flag. Setting RD to one triggers a TLB read
operation.

Write 0 Only with MMU

WE WE is the TLB write enable flag. When WE = 1, a write to
tlbacc writes through to a TLB entry.

Read/
Write

0 Only with MMU

PID PID is the process identifier field.

This field size is variable. Unused upper bits must be
written as zero.

Read/
Write

0 Only with MMU

DBL DBL is the double TLB miss exception flag. Read 0 Only with MMU
BAD BAD is the bad virtual address exception flag. Read 0 Only with MMU
PERM PERM is the TLB permission violation exception flag. Read 0 Only with MMU

3-20 The tlbmisc Register
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Field Description Access Reset Available

D D is the data access exception flag. When D = 1, the
exception is a data access exception. When D = 0, the
exception is an instruction access exception.

Read 0 Only with MMU

For DBL, BAD, and PERM fields you can also use exception.CAUSE to determine these exceptions.

The following sections provide more information about the tlbmisc fields.

The RD Flag
System software triggers a TLB read operation by setting tlbmisc.RD (with a wrctl instruction). A TLB
read operation loads the following register fields with the contents of a TLB entry:

• The tag portion of pteaddr.VPN
• tlbmisc.PID

• The tlbacc register

The TLB entry to be read is specified by the following values:

• the line portion of pteaddr.VPN
• tlbmisc.WAY

When system software changes the fields that specify the TLB entry, there is no immediate effect on
pteaddr.VPN, tlbmisc.PID, or the tlbacc register. The registers retain their previous values until the
next TLB read operation is initiated. For example, when the operating system sets pteaddr.VPN to a new
value, the contents of tlbacc continues to reflect the previous TLB entry. tlbacc does not contain the new
TLB entry until after an explicit TLB read.

The WE Flag
When WE = 1, a write to tlbacc writes the tlbacc register and a TLB entry. When WE = 0, a write to
tlbacc only writes the tlbacc register.

Hardware sets the WE flag to one on a TLB permission violation exception, and on a TLB miss exception
when status.EH = 0. When a TLB write operation writes the tlbacc register, the write operation also
writes to a TLB entry when WE = 1.

The WAY Field
The WAY field controls the mapping from the VPN to a particular TLB entry. WAY specifies the set to be
written to in the TLB. The MMU increments WAY when system software performs a TLB write operation.
Unused upper bits in WAY must be written as zero.

Note: The number of ways (sets) is configurable in Qsys at generation time, up to a maximum of 16.

The PID Field
PID is a unique identifier for the current process that effectively extends the virtual address. The process
identifier can be less than 14 bits. Any unused upper bits must be zero.

tlbmisc.PID contains the PID field from a TLB tag. The operating system must set the PID field when
switching processes, and before each TLB write operation.

Note: Use of the process identifier is optional. To implement memory management without process
identifiers, clear tlbmisc.PID to zero. Without a process identifier, all processes share the same
virtual address space.

NII51003
2016.10.28 The RD Flag 3-21

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The MMU sets tlbmisc.PID on a TLB read operation. When the software triggers a TLB read, by setting
tlbmisc.RD to one with the wrctl instruction, the PID value read from the TLB has priority over the value
written by the wrctl instruction.

The size of the PID field is configured in Qsys at system generation, and can be from 8 to 14 bits. If system
software defines a process identifier smaller than the PID field, unused upper bits must be written as zero.

The DBL Flag
During a general exception, the processor sets DBL to one when a double TLB miss condition exists.
Otherwise, the processor clears DBL to zero.

The DBL flag indicates whether the most recent exception is a double TLB miss condition. When a general
exception occurs, the MMU sets DBL to one if a double TLB miss is detected, and clears DBL to zero
otherwise.

The BAD Flag
During a general exception, the processor sets BAD to one when a bad virtual address condition exists, and
clears BAD to zero otherwise. The following exceptions set the BAD flag to one:

• Supervisor-only instruction address
• Supervisor-only data address
• Misaligned data address
• Misaligned destination address

Refer to Nios II Exceptions (In Decreasing Priority Order) table in the "Exception Overview" section for
more information on these exceptions.

Related Information
Exception Overview on page 3-39

The PERM Flag
During a general exception, the processor sets PERM to one for a TLB permission violation exception, and
clears PERM to zero otherwise.

The D Flag
The D flag indicates whether the exception is an instruction access exception or a data access exception.
During a general exception, the processor sets D to one when the exception is related to a data access, and
clears D to zero for all other nonbreak exceptions.

The following exceptions set the D flag to one:

• Fast TLB miss (data)
• Double TLB miss (data)
• TLB permission violation (read or write)
• Misaligned data address
• Supervisor-only data address

The badaddr Register

Nios II/f processor provides information useful to system software for exception processing in the
exception and badaddr registers when an exception occurs.

Note: The exception register is not enabled for Nios II/e.

3-22 The DBL Flag
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When an exception occurs in Nios II/f processor, the badaddr register contains the byte instruction or
data address associated with certain exceptions at the time the exception occurred. The Nios II Exceptions
Table lists which exceptions write the badaddr register along with the value written.

Table 3-20: badaddr Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BADDR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BADDR

Table 3-21: badaddr Control Register Field Descriptions

Field Description Access Reset Available

BADDR BADDR contains the byte instruction address or data
address associated with an exception when certain
exceptions occur. The Address column of the Nios II
Exceptions Table lists which exceptions write the BADDR
field.

Read 0 Only with Nios
II/f

The BADDR field allows up to a 32-bit instruction address or data address. If an MMU or MPU is present,
the BADDR field is 32 bits because MMU and MPU instruction and data addresses are always full 32-bit
values. When an MMU is present, the BADDR field contains the virtual address.

If there is no MMU or MPU and the Nios II address space is less than 32 bits, unused high-order bits are
written and read as zero. If there is no MMU, bit 31 of a data address (used to bypass the data cache) is
always zero in the BADDR field.

Related Information

• Exception Overview on page 3-39
• Programming Model on page 3-1

The config Register

The config register configures Nios II runtime behaviors that do not need to be preserved during
exception processing (in contrast to the information in the status register).

Table 3-22: config Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ECCE
XE

ECCE
N

ANI PE

NII51003
2016.10.28 The config Register 3-23

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3-23: config Control Register Field Descriptions

Field Description Access Reset Available

ANI ANI is the automatic nested interrupt mode bit. If ANI is
set to zero, the processor clears status.PIE on each
interrupt, disabling fast nested interrupts. If ANI is set to
one, the processor keeps status.PIE set to one at the
time of an interrupt, enabling fast nested interrupts.

If the EIC interface and shadow register sets are not
implemented in the Nios II core, ANI always reads as zero,
disabling fast nested interrupts.

Read/Write 0 Only
with the
EIC
interface
and
shadow
register
sets

ECCEXE ECCEX is the ECC error exception enable bit. When
ECCEXE = 1, the Nios II processor generates ECC error
exceptions.

Read/Write 0 Only
with
ECC

ECCEN ECCEN is the ECC enable bit. When ECCEN = 0, the Nios II
processor ignores all ECC errors. When ECCEN = 1, the
Nios II processor recovers all recoverable ECC errors.

Read/Write 0 Only
with
ECC

PE PE is the memory protection enable bit. When PE =1, the
MPU is enabled. When PE = 0, the MPU is disabled. In
systems without an MPU, PE is always zero.

Read/Write 0 Only
with
MPU

The mpubase Register

The mpubase register works in conjunction with the mpuacc register to set and retrieve MPU region
information and is only available in systems with an MPU.

Table 3-24: mpubase Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BASE(10)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BASE(10) 0 INDEX(9) D

Table 3-25: mpubase Control Register Field Descriptions

Field Description Access Reset Available

BASE BASE is the base memory address of the region identified
by the INDEX and D fields.

Read/
Write

0 Only with MPU

(9) This field size is variable. Unused upper bits must be written as zero.
(10) This field size is variable. Unused upper bits and unused lower bits must be written as zero.

3-24 The mpubase Register
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Field Description Access Reset Available

INDEX INDEX is the region index number. Read/
Write

0 Only with MPU

D D is the region access bit. When D =1, INDEX refers to a
data region. When D = 0, INDEX refers to an instruction
region.

Read/
Write

0 Only with MPU

The BASE field specifies the base address of an MPU region. The 25-bit BASE field corresponds to bits 6
through 30 of the base address, making the base address always a multiple of 64 bytes. If the minimum
region size set in Qsys at generation time is larger than 64 bytes, unused low-order bits of the BASE field
must be written as zero and are read as zero. For example, if the minimum region size is 1024 bytes, the
four least-significant bits of the BASE field (bits 6 though 9 of the mpubase register) must be zero. Similarly,
if the Nios II address space is less than 31 bits, unused high-order bits must also be written as zero and are
read as zero.

The INDEX and D fields specify the region information to access when an MPU region read or write
operation is performed. The D field specifies whether the region is a data region or an instruction region.
The INDEX field specifies which of the 32 data or instruction regions to access. If there are fewer than 32
instruction or 32 data regions, unused high-order bits must be written as zero and are read as zero.

Refer to the MPU Region Read and Write Operations section for more information on MPU region read
and write operations.

Related Information
MPU Region Read and Write Operations on page 3-33

The mpuacc Register

The mpuacc register works in conjunction with the mpubase register to set and retrieve MPU region
information and is only available in systems with an MPU. The mpuacc register consists of attributes that
will be set or have been retrieved which define the MPU region. The mpuacc register only holds a portion
of the attributes that define an MPU region. The remaining portion of the MPU region definition is held
by the BASE field of the mpubase register.

A Qsys generation-time option controls whether the mpuacc register contains a MASK or LIMIT field.

Table 3-26: mpuacc Control Register Fields for MASK Variation

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MASK(11)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MASK(11) MT PERM RD WR

Table 3-27: mpuacc Control Register Fields for LIMIT Variation

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NII51003
2016.10.28 The mpuacc Register 3-25

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

LIMIT(11)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LIMIT(11) MT PERM RD WR

Table 3-28: mpuacc Control Register Field Descriptions

Field Description Access Reset Available

MASK MASK specifies the size of the region. Read/
Write

0 Only with MPU

LIMIT LIMIT specifies the upper address limit of the region. Read/
Write

0 Only with MPU

MT (MT) Memory Type:

• 0 = peripheral (non-cacheable, non-write bufferable)
• 1 = normal (cacheable, write bufferable)
• 2 = device (non-cacheable, write bufferable)
• 3 = reserved

Read/
Write

0 Only with MPU

PERM PERM specifies the access permissions for the region. Read/
Write

0 Only with MPU

RD RD is the read region flag. When RD = 1, wrctl
instructions to the mpuacc register perform a read
operation.

Write 0 Only with MPU

WR WR is the write region flag. When WR = 1, wrctl
instructions to the mpuacc register perform a write
operation.

Write 0 Only with MPU

The MASK and LIMIT fields are mutually exclusive. Refer to mpucc Control Register Field for MASK
Variation Table and mpuacc Control Register Field for LIMIT Variation Table.

The following sections provide more information about the mpuacc fields.

Related Information

• The LIMIT Field on page 3-27
• The MASK Field on page 3-26

The MASK Field

When the amount of memory reserved for a region is defined by size, the MASK field specifies the size of the
memory region. The MASK field is the same number of bits as the BASE field of the mpubase register.

Note: Unused high-order or low-order bits must be written as zero and are read as zero.

(11) This field size is variable. Unused upper bits and unused lower bits must be written as zero.

3-26 The MASK Field
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

MASK Region Size Encodings Table lists the MASK field encodings for all possible region sizes in a full 31-
bit byte address space.

Table 3-29: MASK Region Size Encodings

MASK Encoding Region Size

0x1FFFFFC 256 bytes
0x1FFFFF8 512 bytes
0x1FFFFF0 1 KB
0x1FFFFE0 2 KB
0x1FFFFC0 4 KB
0x1FFFF80 8 KB
0x1FFFF00 16 KB
0x1FFFE00 32 KB
0x1FFFC00 64 KB
0x1FFF800 128 KB
0x1FFF000 256 KB
0x1FFE000 512 KB
0x1FFC000 1 MB
0x1FF8000 2 MB
0x1FF0000 4 MB
0x1FE0000 8 MB
0x1FC0000 16 MB
0x1F80000 32 MB
0x1F00000 64 MB
0x1E00000 128 MB
0x1C00000 256 MB
0x1800000 512 MB
0x1000000 1 GB
0x0000000 2 GB

The MASK field contains the following value, where region_size is in bytes:

MASK = 0x1FFFFFF << log2(region_size >> 6)

The LIMIT Field

When the amount of memory reserved for a region is defined by an upper address limit, the LIMIT field
specifies the upper address of the memory region plus one. For example, to achieve a memory range for
byte addresses 0x4000 to 0x4fff with a 256 byte minimum region size, the BASE field of the mpubase

NII51003
2016.10.28 The LIMIT Field 3-27

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

register is set to 0x40 (0x4000 >> 6) and the LIMIT field is set to 0x50 (0x5000 >> 6). Because the LIMIT
field is one more bit than the number of bits of the BASE field of the mpubase register, bit 31 of the mpuacc
register is available to the LIMIT field.

The C Flag

The C flag determines the default data cacheability of an MPU region. The C flag only applies to data
regions. For instruction regions, the C bit must be written with 0 and is always read as 0.

When data cacheability is enabled on a data region, a data access to that region can be cached, if a data
cache is present in the system. You can override the default cacheability and force an address to noncache‐
able with an ldio or stio instruction.

Note: The bit 31 cache bypass feature is supported when the MPU is present. Refer to the Cache memory
section for more information on cache bypass.

Related Information
Cache Memory on page 3-60

The MT Flag

The MT flag determines the default memory type of an MPU data region. . The MT flag only applies to data
regions. For instruction regions, the MT bit must be written with 0 for instruction regions and is always
read as 0.

When data cacheability is enabled on a data region, a data access to that region can be cached, if a data
cache is present in the system. You can override the default cacheability and force an address to noncache‐
able with an ldio or stio instruction. The encoding of the MT field is setup to be backwards-compatible
with the Nios II Classic core MPU where bit 5 of MPUACC contains the cacheable bit (0 = non-cacheable,
1 = cacheable) and bit 6 is zero.

Note: The bit 31 cache bypass and peripheral region features are supported when the MPU is present.
Refer to the Cache memory section for more information on cache bypass.

The PERM Field
The PERM field specifies the allowed access permissions.

Table 3-30: Instruction Region Permission Values

Value Supervisor Permissions User Permissions

0 None None
1 Execute None
2 Execute Execute

Table 3-31: Data Region Permission Values

Value Supervisor Permissions User Permissions

0 None None
1 Read None
2 Read Read
4 Read/Write None

3-28 The C Flag
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Value Supervisor Permissions User Permissions

5 Read/Write Read
6 Read/Write Read/Write

Note: Unlisted table values are reserved and must not be used. If you use reserved values, the resulting
behavior is undefined.

The RD Flag
Setting the RD flag signifies that an MPU region read operation should be performed when a wrctl
instruction is issued to the mpuacc register. Refer to the MPU Region Read and Write Operations section
for more information. The RD flag always returns 0 when read by a rdctl instruction.

Related Information
MPU Region Read and Write Operations on page 3-33

The WR Flag
Setting the WR flag signifies that an MPU region write operation should be performed when a wrctl
instruction is issued to the mpuacc register. Refer to the MPU Region Read and Write Operations section
for more information. The WR flag always returns 0 when read by a rdctl instruction.

Note: Setting both the RD and WR flags to one results in undefined behavior.

Related Information
MPU Region Read and Write Operations on page 3-33

The eccinj Register

The eccinj register injects 1 and 2 bit errors to the Nios II processor’s internal RAM blocks that support
ECC. Injecting errors allows the software to test the ECC error exception handling code. The error(s) are
injected in the data bits, not the parity bits. The eccinj register is only available when ECC is present.

Table 3-32: eccinj Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved DC WB DTCM 3 DTCM 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DTCM 1 DTCM 0 TLB DC DAT DC TAG ICDAT ICTAG RF

Software writes 0x1 to inject a 1 bit ECC error or 0x2 to inject a 2-bit ECC error to the RAM field.
Hardware sets the value of the inject field to 0x0 after the error injection has occurred.

Table 3-33: eccinj Control Register Field Descriptions

Field Description Access Reset Available

RF Inject an ECC error in the register file’s RAM. Read/
Write

0 Only with ECC

NII51003
2016.10.28 The RD Flag 3-29

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Field Description Access Reset Available

ICTAG Inject an ECC error in the instruction cache Tag RAM. Read/
Write

0 Only with ECC

ICDAT Inject an ECC error in the instruction cache data RAM. Read/
Write

0 Only with ECC

DCTAG Inject ECC error in data cache tag RAM. Read/
Write

0

DCDAT Inject an ECC error in the data cache data RAM.
Injection occurs on next store instruction that writes the
data cache or the next line fill.

Read/
Write

0

TLB Inject an ECC error in the MMU TLB RAM. Errors are
injected in the tag portion of the VPN field.

Read/
Write

0 Only with ECC

DTCM0 Inject ECC error in DTCM0. Injection occurs on next
store instruction that writes this DTCM.

Read/
Write

0

DTCM1 Inject ECC error in DTCM1. Injection occurs on next
store instruction that writes this DTCM.

Read/
Write

0

DTCM2 Inject ECC error in DTCM2. Injection occurs on next
store instruction that writes this DTCM.

Read/
Write

0

DTCM3 Inject ECC error in DTCM3. Injection occurs on next
store instruction that writes this DTCM.

Read/
Write

0

DC WB Inject ECC error in data cache victim line buffer RAM.
Injection occurs on the first word written into the victim
buffer RAM when a dirty line is being written back.

Read/
Write

0

Refer to “Working with ECC” for more information about when errors are injected.

Related Information
Working with ECC on page 3-35

Shadow Register Sets
The Nios II processor can optionally have one or more shadow register sets. A shadow register set is a
complete alternate set of Nios II general-purpose registers, which can be used to maintain a separate
runtime context for an interrupt service routine (ISR).

When shadow register sets are implemented, status.CRS indicates the register set currently in use. A
Nios II core can have up to 63 shadow register sets. If n is the configured number of shadow register sets,
the shadow register sets are numbered from 1 to n. Register set 0 is the normal register set.

A shadow register set behaves precisely the same as the normal register set. The register set currently in
use can only be determined by examining status.CRS.

Note: When shadow register sets and the EIC interface are implemented on the Nios II core, you must
ensure that your software is built with the Nios II EDS version 9.0 or later. Earlier versions have an
implementation of the eret instruction that is incompatible with shadow register sets.

Shadow register sets are typically used in conjunction with the EIC interface. This combination can
substantially reduce interrupt latency.

3-30 Shadow Register Sets
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For details of EIC interface usage, refer to the Exception Processing section.

System software can read from and write to any shadow register set by setting status.PRS and using the
rdprs and wrprs instructions.

For details of the rdprs and wrprs instructions, refer to the Instruction Set Reference chapter of the Nios II
Processor Reference Handbook.

Related Information

• Instruction Set Reference on page 8-1
• Exception Processing on page 3-38

The sstatus Register
The value in the sstatus register preserves the state of the Nios II processor during external interrupt
handling. The value of sstatus is undefined at processor reset. Some bits are exclusively used by and
available only to certain features of the processor.

The sstatus register is physically stored in general-purpose register r30 in each shadow register set. The
normal register set does not have an sstatus register, but each shadow register set has a separate sstatus
register.

Table 3-34: sstatus Control Register Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRS Reserved RSIE NMI PRS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRS IL IH EH U PIE

Table 3-35: sstatus Control Register Field Descriptions

Bit Description Access Reset Available

SRS(12) SRS is the switched register set bit.
The processor sets SRS to 1 when an
external interrupt occurs, if the
interrupt required the processor to
switch to a different register set.

Read/Write Undefined EIC interface and
shadow register sets
only

RSIE RSIE is the register set interrupt-
enable bit. When set to 1, this bit
allows the processor to service
external interrupts requesting the
register set that is currently in use.
When set to 0, this bit disallows
servicing of such interrupts.

Read/Write Undefined (13)

(12) If the EIC interface and shadow register sets are not present, SRS always reads as 0, and the processor behaves
accordingly.

NII51003
2016.10.28 The sstatus Register 3-31

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Description Access Reset Available

NMI NMI is the nonmaskable interrupt
mode bit. The processor sets NMI to 1
when it takes a nonmaskable
interrupt.

Read/Write Undefined (13)

PRS (13) Read/Write Undefined (13)

CRS (13) Read/Write Undefined (13)

IL (13) Read/Write Undefined (13)

IH (13) Read/Write Undefined (13)

EH (13) Read/Write Undefined (13)

U (13) Read/Write Undefined (13)

PIE (13) Read/Write Undefined (13)

The sstatus register is present in the Nios II core if both the EIC interface and shadow register sets are
implemented. There is one copy of sstatus for each shadow register set.

When the Nios II processor takes an interrupt, if a shadow register set is requested (RRS = 0) and the
MMU is not in exception handler mode (status.EH = 0), the processor copies status to sstatus.

For details about RRS, refer to "Requested Register Set”.

For details about status.EH, refer to the Nios II Processor Status After Taking Exceptions Table.

Related Information

• The status Register on page 3-13
• Exceptions and Processor Status on page 3-53
• Requested Register Set on page 3-44
• The status Register on page 3-13

Changing Register Sets
Modifying status.CRS immediately switches the Nios II processor to another register set. However,
software cannot write to status.CRS directly. To modify status.CRS, insert the desired value into the
saved copy of the status register, and then execute the eret instruction, as follows:

• If the processor is currently running in the normal register set, insert the new register set number in
estatus.CRS, and execute eret.

• If the processor is currently running in a shadow register set, insert the new register set number in
sstatus.CRS, and execute eret.

(13) Refer to the status Control Register Field Descriptions Table

3-32 Changing Register Sets
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before executing eret to change the register set, system software must set individual external interrupt
masks correctly to ensure that registers in the shadow register set cannot be corrupted. If an interrupt is
assigned to the register set, system software must ensure that one of the following conditions is true:

• The ISR is written to preserve register contents.
• The individual interrupt is disabled. The method for disabling an individual external interrupt is

specific to the EIC implementation.

Stacks and Shadow Register Sets

Depending on system requirements, the system software can create a dedicated stack for each register set,
or share a stack among several register sets. If a stack is shared, the system software must copy the stack
pointer each time the register set changes. Use the rdprs instruction to copy the stack register between the
current register set and another register set.

Initialization with Shadow Register Sets
At initialization, system software must carry out the following tasks to ensure correct software functioning
with shadow register sets:

• After the gp register is initialized in the normal register set, copy it to all shadow register sets, to ensure
that all code can correctly address the small data sections.

• Copy the zero register from the normal register set to all shadow register sets, using the wrprs instruc‐
tion.

Working with the MPU
This section provides a basic overview of MPU initialization and the MPU region read and write
operations.

MPU Region Read and Write Operations
MPU region read and write operations are operations that access MPU region attributes through the
mpubase and mpuacc control registers. The mpubase.BASE, mpuacc.MASK, mpuacc.LIMIT, mpuacc.C, and
mpuacc.PERM fields comprise the MPU region attributes.

MPU region read operations retrieve the current values for the attributes of a region. Each MPU region
read operation consists of the following actions:

• Execute a wrctl instruction to the mpubase register with the mpubase.INDEX and mpubase.D fields set
to identify the MPU region.

• Execute a wrctl instruction to the mpuacc register with the mpuacc.RD field set to one and the
mpuacc.WR field cleared to zero. This action loads the mpubase and mpuacc register values.

• Execute a rdctl instruction to the mpubase register to read the loaded the mpubase register value.
• Execute a rdctl instruction to the mpuacc register to read the loaded the mpuacc register value.

The MPU region read operation retrieves mpubase.BASE, mpuacc.MASK or mpuacc.LIMIT, mpuacc.C, and
mpuacc.PERM values for the MPU region.

Note: Values for the mpubase register are not actually retrieved until the wrctl instruction to the mpuacc
register is performed.

NII51003
2016.10.28 Stacks and Shadow Register Sets 3-33

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

MPU region write operations set new values for the attributes of a region. Each MPU region write
operation consists of the following actions:

• Execute a wrctl instruction to the mpubase register with the mpubase.INDEX and mpubase.D fields set
to identify the MPU region.

• Execute a wrctl instruction to the mpuacc register with the mpuacc.WR field set to one and the
mpuacc.RD field cleared to zero.

The MPU region write operation sets the values for mpubase.BASE, mpuacc.MASK or mpuacc.LIMIT,
mpuacc.C, and mpuacc.PERM as the new attributes for the MPU region.

Normally, a wrctl instruction flushes the pipeline to guarantee that any side effects of writing control
registers take effect immediately after the wrctl instruction completes execution. However, wrctl instruc‐
tions to the mpubase and mpuacc control registers do not automatically flush the pipeline. Instead, system
software is responsible for flushing the pipeline as needed (either by using a flushp instruction or a wrctl
instruction to a register that does flush the pipeline). Because a context switch typically requires
reprogramming the MPU regions for the new thread, flushing the pipeline on each wrctl instruction
would create unnecessary overhead.

MPU Initialization
Your system software must provide a data structure that contains the region information described in the
"Memory Regions" section of this chapter for each active thread. The data structure ideally contains two
32-bit values that correspond to the mpubase and mpuacc register formats.

The MPU is disabled on system reset. Before enabling the MPU, Altera recommends initializing all MPU
regions. Enable desired instruction and data regions by writing each region’s attributes to the mpubase and
mpuacc registers as described in the "MPU Region Read and Write Operations" section of this chapter. You
must also disable unused regions. When using region size, clear mpuacc.MASK to zero. When using limit,
set the mpubase.BASE to a nonzero value and clear mpuacc.LIMIT to zero.

Note: You must enable at least one instruction and one data region, otherwise unpredictable behavior
might occur.

To perform a context switch, use a wrctl to write a zero to the PE field of the config register to disable the
MPU, define all MPU regions from the new thread’s data structure, and then use another wrctl to write a
one to config.PE to enable the MPU.

Define each region using the pair of wrctl instructions described in the "MPU Region Read and Write
Operations" section of this chapter. Repeat this dual wrctl instruction sequence until all desired regions
are defined.

Related Information

• MPU Region Read and Write Operations on page 3-33
• Memory Regions on page 3-8

Debugger Access
The debugger can access all MPU-related control registers using the normal wrctl and rdctl instructions.
During debugging, the Nios II ignores the MPU, effectively temporarily disabling it.

3-34 MPU Initialization
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Working with ECC

Enabling ECC
The ECC is disabled on system reset. Before enabling the ECC, initialize the Nios II RAM blocks to avoid
spurious ECC errors.

The Nios II processor executes the INITI instruction on each cache line, which initializes the instruction
cache RAM. The RAM does not require special initialization because any detected ECC errors are ignored
if the line is invalid; the line is invalid after INITI instructions initialize the tag RAM.

Nios II processor instructions that write to every register (except register 0) initialize the register file RAM
blocks. If shadow register sets are present, this step is performed for all registers in the shadow register set
using the WRPRS instruction.

Nios II processor instructions that write every TLB RAM location initialize the MMU TLB RAM. This
RAM does not require special initialization.

Disabling ECC

Disable ECC in software by writing 0 to CONFIG.ECCEN. Software can re-enable ECC without reinitializing
the ECC-protected RAMs because the ECC parity bits are written to the RAM blocks even if ECC is
disabled.

Handling ECC Errors
ECC error exceptions occur when unrecoverable ECC errors are detected. The software’s ability to recover
from the ECC error depends on the nature of the error.

Typically, software can recover from an unrecoverable MMU TLB ECC error (2 bit error) because the TLB
is a software-managed cache of the operating system page tables stored in the main memory (e.g.,
SDRAM). Software can invalid the TLB entry, return to the instruction that took the ECC error exception,
and execute the TLB’s mishandled code to load a TLB entry from the page tables.

In general, software cannot recover from a register file ECC error (2 bit error) because the correct value of
a register is not known. If the exception handler reads a register that has a 2 bit ECC error associated with
it, another ECC error occurs and an exception handler loop can occur.

Exception handler loops occur when an ECC error exception occurs in the exception handler before it is
ready to handle nested exceptions. To minimize the occurrence or exception handler loops, locate the ECC
error exception handler code in normal cacheable memory, ensure that all data accesses are to non-
cacheable memory, and minimize register reading.

The ECC error signals (ecc_event_bus) provide the EEH signal for external logic to detect a possible
exception handler loop and reset the Nios II processor.

Injecting ECC Errors
This section describes the code sequence for injecting ECC errors for each ECC-protected RAM, assuming
the ECC is enabled and interrupts are disabled for the duration of the code sequence.

NII51003
2016.10.28 Working with ECC 3-35

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Cache Tag RAM

1. Ensure all code up to the JMP instruction is in the same instruction cache line or is located in an
ITCM.

2. Use a FLUSHI instruction to flush an instruction cache line other than the line containing the executing
code.

3. Use a FLUSHP instruction to flush the pipeline.
4. Use a WRCTL instruction to set ECCINJ.ICTAG to INJS or INJD. This setting causes an ECC error to

occur on the start of the next line fill.
5. Use a JMP instruction to jump to an instruction address in the flushed line.
6. The ECC error is injected when writing the tag RAM at the start of the line fill.
7. Use a RDCTL instruction to ensure that the value of ECCINJ.ICTAG is NOINJ.
8. The ECC error triggers after the target of the JMP instruction.

Instruction Cache Data RAM

1. Ensure all code up to the JMP instruction is in the same instruction cache line or is located in an
ITCM.

2. Use a FLUSHI instruction to flush an instruction cache line other than the line containing the executing
code.

3. Use a FLUSHP instruction to flush the pipeline.
4. Use a WRCTL instruction to set ECCINJ.ICDAT to INJS or INJD. This setting causes an ECC error to

occur on the start of the next line fill.
5. Use a JMP instruction to jump to an instruction address in the flushed line.
6. The ECC error is injected when writing the tag RAM at the start of the line fill.
7. Use a RDCTL instruction to ensure that the value of ECCINJ.ICDAT is NOINJ.
8. Execute the target of the JMP instruction twice (first to inject the ECC error and second to be triggered

by it).

ITCMs

Software running on the Nios II cannot directly inject an ECC error in an ITCM because the Nios II only
writes ITCMs when correcting ECC errors. To inject an ECC in an ITCM, the TCM RAM must also be
connected to a DTCM master. The Nios II provided DTCM error injection mechanism (i.e. ECCINJ register) is
used to inject an error in the TCM RAM as follows:

1. Use a WRCTL instruction to set ECCINJ so that it will inject ECC errors in the DTCM connected to the
ITCM.

2. Use a STW instruction to write the DTCM.
3. Use a RDCTL instruction to ensure the value of the ECCINJ field written by the WRCTL is NOINJ.
4. Use a JMP instruction to jump to an instruction address in the ITCM.
5. The ECC error should be triggered on the target of the JMP instruction.

Register File RAM Blocks

1. Use a WRCTL instruction to set ECCINJ.RF to INJS or INJD (as desired).
2. Execute any instruction that writes any register except R0.
3. Use a RDCTL instruction to ensure that the value of ECCINJ.RF is NOINJ.
4. Use an instruction to read the desired register from rA such as OR rd, r0, rx where rx is the register

written in the previous step. This action triggers the ECC error.
5. Use an instruction to read the desired register from rB such as OR rd, rx, r0 where rx is the register

written in the previous step.

3-36 Instruction Cache Tag RAM
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data Cache Tag RAM

1. Use a LOAD instruction from a data address to get the line in the cache. The line should be clean.
2. Use a WRCTL instruction to set ECCINJ.DCTAG to INJS or INJD.
3. Use a STORE instruction from a data address mapped to that line. The STORE instruction should hit in

the data cache and write the tag RAM to set the dirty bit.
4. The ECC error is injected when the tag RAM is written.
5. Use a RDCTL instruction to ensure the value of ECCINJ.DCTAG is NOINJ. Before the RDCTL, use a FLUSHP

instruction to avoid the RAW hazard on ECCINJ.
6. Do another LOAD or STORE instruction to the same line.
7. The ECC error should be triggered on this second LOAD/STORE instruction.

Data Cache Data RAM (Clean Line)

1. Use a FLUSHDA instruction to ensure the line isn’t in the data cache.
2. Use a LOAD instruction to load a clean data cache line.
3. Use a WRCTL instruction to set ECCINJ.DCDAT field to INJS or INJD.
4. Use a LOAD instruction to an address in the data cache line to inject the error.
5. Use a RDCTL instruction to ensure the values of the field written by the WRCTL to ECCINJ is NOINJ.

Before the RDCTL, use a FLUSHP instruction to avoid the RAW hazard on ECCINJ.
6. Use a LOAD instruction from the same address.
7. The ECC error should be triggered on the LOAD instruction.

Data Cache Data RAM (Dirty Line)

1. Use a LOAD instruction to load a data cache line.
2. Use a WRCTL instruction to set ECCINJ.DCDAT field to INJS or INJD (as desired).
3. Use a STORE instruction to an address in the data cache line.
4. Use a RDCTL instruction to ensure the values of the field written by the WRCTL to ECCINJ is NOINJ.

Before the RDCTL, use a FLUSHP instruction to avoid the RAW hazard on ECCINJ.
5. Either use a LOAD instruction from the same address or trigger a writeback of the dirty line (e.g.

FLUSHDA instruction)
6. The ECC error should be triggered on the LOAD instruction unless it is only detected during the

writeback of a dirty line. In the writeback of a dirty line case, the ECC error is triggered an undefined
number of instructions later.

Data Cache Victim Line Buffer RAM

1. Use a LOAD instruction to load a data cache line.
2. Use a WRCTL instruction to set ECCINJ.DCWB field to INJS or INJD (as desired).
3. Use a STORE instruction to an address in the data cache line.
4. Use a RDCTL instruction to ensure the values of the field written by the WRCTL to ECCINJ is NOINJ.

Before the RDCTL, use a FLUSHP instruction to avoid the RAW hazard on ECCINJ.
5. Either use a LOAD instruction from the same address or trigger a writeback of the dirty line (e.g.

FLUSHDA instruction)
6. The ECC error should be triggered on the LOAD instruction unless it is only detected during the

writeback of a dirty line. In the writeback of a dirty line case, the ECC error is triggered an undefined
number of instructions later.

NII51003
2016.10.28 Data Cache Tag RAM 3-37

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DTCMs

1. Use a WRCTL instruction to set the ECCINJ.DTCM field to INJS or INJD for the desired DTCM.
2. Use a STW instruction to write an address in the DTCM.
3. Use a RDCTL instruction to ensure the value of the field written by the WRCTL to ECCINJ is NOINJ.
4. Use a LOAD instruction from the same address in the DTCM.
5. The ECC error should be triggered on the LOAD instruction.

MMU TLB RAM

1. Use a WRCTL instruction to set ECCINJ.TLB to INJS or INJD.
2. Use a WRCTL instruction to write a TLB entry. The ECC error will be injected at this time and any

associated uTLB entry will be flushed.
3. Use a RDCTL instruction to ensure the value of ECCINJ.TLB is NOINJ.
4. Perform an instruction/data access to cause the hardware to read the TLB entry (copied into uTLB)

and the ECC decoder should detect the ECC error at this time. Alternatively, initiate a software read of
the TLB (by writing TLBMISC.RD to 1).

5. If a software read was initiated, the TLBMISC.EE field should be set to 1 on any instruction after the
WRCTL that triggered the software read.

6. If a hardware read was initiated, the ECC error should be triggered on the first instruction after the
hardware read.

Exception Processing
Exception processing is the act of responding to an exception, and then returning, if possible, to the pre-
exception execution state.

All Nios II exceptions are precise. Precise exceptions enable the system software to re-execute the instruc‐
tion, if desired, after handling the exception.

Terminology
Altera Nios II documentation uses the following terminology to discuss exception processing:

• Exception—a transfer of control away from a program’s normal flow of execution, caused by an event,
either internal or external to the processor, which requires immediate attention.

• Interrupt—an exception caused by an explicit request signal from an external device; also: hardware
interrupt.

• Interrupt controller—hardware that interfaces the processor to interrupt request signals from external
devices.

• Internal interrupt controller—the nonvectored interrupt controller that is integral to the Nios II
processor. The internal interrupt controller is available in all revisions of the Nios II processor.

• Vectored interrupt controller (VIC)—an Altera-provided external interrupt controller.
• Exception (interrupt) latency—The time elapsed between the event that causes the exception (assertion

of an interrupt request) and the execution of the first instruction at the handler address.
• Exception (interrupt) response time—The time elapsed between the event that causes the exception

(assertion of an interrupt request) and the execution of nonoverhead exception code, that is, specific to
the exception type (device).

• Global interrupts—All maskable exceptions on the Nios II processor, including internal interrupts and
maskable external interrupts, but not including nonmaskable interrupts.

3-38 DTCMs
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Worst-case latency—The value of the exception (interrupt) latency, assuming the maximum disabled
time or maximum masked time, and assuming that the exception (interrupt) occurs at the beginning of
the masked/disabled time.

• Maximum disabled time—The maximum amount of continuous time that the system spends with
maskable interrupts disabled.

• Maximum masked time—The maximum amount of continuous time that the system spends with a
single interrupt masked.

• Shadow register set—a complete alternate set of Nios II general-purpose registers, which can be used to
maintain a separate runtime context for an ISR.

Exception Overview
Each of the Nios II exceptions falls into one of the following categories:

• Reset exception—Occurs when the Nios II processor is reset. Control is transferred to the reset address
you specify in the Nios II processor IP core setup parameters.

• Break exception—Occurs when the JTAG debug module requests control. Control is transferred to the
break address you specify in the Nios II processor IP core setup parameters.

• Interrupt exception—Occurs when a peripheral device signals a condition requiring service
• Instruction-related exception—Occurs when any of several internal conditions occurs, as detailed in the

Nios II Exceptions Table. Control is transferred to the exception address you specify in the Nios II
processor IP core setup parameters.

The following table columns specify information for the exceptions:

• Exception—Gives the name of the exception.
• Type—Specifies the exception type.
• Available—Specifies when support for that exception is present.
• Cause—Specifies the value of the CAUSE field of the exception register, for exceptions that write the

exception.CAUSE field.
• Address—Specifies the instruction or data address associated with the exception.
• Vector—Specifies which exception vector address the processor passes control to when the exception

occurs.

Table 3-36: Nios II Exceptions (In Decreasing Priority Order)

Exception Type Available Cause Address Vector

Reset Reset Always 0 Reset
Hardware break Break Always — Break
Processor-only reset
request

Reset Always 1 Reset

ECC Data Cache
Writeback Error

Instruction-
related

ECC and data
cache

22 General exception

Internal interrupt Interrupt Internal interrupt
controller

2 ea–4(15) General exception

External nonmask‐
able interrupt

Interrupt External interrupt
controller interface

— ea–4(15) Requested handler
address (16)

External maskable
interrupt

Interrupt External interrupt
controller interface

2 ea–4(15) Requested handler
address (16)

NII51003
2016.10.28 Exception Overview 3-39

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Type Available Cause Address Vector

ECC TLB error
(instruction)

Instruction-
related

MMU and ECC 18 ea–4(15) General exception

Supervisor-only
instruction
address (14)

Instruction-
related

MMU 9 ea–4(15) General exception

Fast TLB miss
(instruction)(14)

Instruction-
related

MMU 12 pteaddr.VPN,
ea–4(15)

Fast TLB Miss
exception

Double TLB miss
(instruction) (14)

Instruction-
related

MMU 12 pteaddr.VPN,
ea–4(15)

General exception

TLB permission
violation (execute)
 (14)

Instruction-
related

MMU 13 pteaddr.VPN,
ea–4(15)

General exception

ECC register file
error

Instruction-
related

ECC 20 ea–4(15) General exception

MPU region
violation (instruc‐
tion) (14)

Instruction-
related

MPU 16 ea–4(15) General exception

Bus Instruction
Fetch Error

M Core 23 ea–4(15) General exception

ECC Fetch Error
(instruction fetch)

ECC and ITCM 19 ea–4(15) General exception

ECC Register File
Error

ECC 20 ea–4(15) General exception

Supervisor-only
instruction

Instruction-
related

MMU or MPU 10 ea–4(15) General exception

Trap instruction Instruction-
related

Always 3 ea–4(15) General exception

Illegal instruction Instruction-
related

Illegal instruction
detection on,
MMU, or MPU

5 ea–4(15) General exception

Unimplemented
instruction

Instruction-
related

Always 4 ea–4(15) General exception

Break instruction Instruction-
related

Always — ba–4(15) Break

Supervisor-only data
address

Instruction-
related

MMU 11 badaddr (data
address)

General exception

Misaligned data
address

Instruction-
related

Illegal memory
access detection
on, MMU, or MPU

6 badaddr (data
address)

General exception

Misaligned destina‐
tion address

Instruction-
related

Illegal memory
access detection
on, MMU, or MPU

7 badaddr

(destination
address)

General exception

3-40 Exception Overview
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Type Available Cause Address Vector

ECC TLB error
(data)

Instruction-
related

MMU and ECC 18 badaddr (data
address)

General exception

Division error Instruction-
related

Division error
detection on

8 ea–4(15) General exception

Fast TLB miss (data) Instruction-
related

MMU 12 pteaddr.VPN,
badaddr (data
address)

Fast TLB Miss
exception

Double TLB miss
(data)

Instruction-
related

MMU 12 pteaddr.VPN,
badaddr (data
address)

General exception

TLB permission
violation (read)

Instruction-
related

MMU 14 pteaddr.VPN,
badaddr (data
address)

General exception

TLB permission
violation (write)

Instruction-
related

MMU 15 pteaddr.VPN,
badaddr (data
address)

General exception

MPU region
violation (data)

Instruction-
related

MPU 17 badaddr (data
address)

General exception

Bus Data Region
Violation

M core 24 badaddr (data
address)

General exception

ECC Data Error ECC and (data
cache OR DTCM)

21 badaddr (data
address)

General exception

Related Information

• Requested Handler Address on page 3-44
• General-Purpose Registers on page 3-9

Exception Latency
Exception latency specifies how quickly the system can respond to an exception. Exception latency
depends on the type of exception, the software and hardware configuration, and the processor state.

Interrupt Latency

The interrupt controller can mask individual interrupts. Each interrupt can have a different maximum
masked time. The worst-case interrupt latency for interrupt i is determined by that interrupt’s maximum
masked time, or by the maximum disabled time, whichever is greater.

(14) It is possible for any instruction fetch to cause this exception.
(15) Refer to the Nios II General-Purpose Registers Table for descriptions of the ea and ba registers.
(16) For a description of the requested handler address, refer to the Requested Handler Address section of this

chapter.

NII51003
2016.10.28 Exception Latency 3-41

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Exceptions
When a processor reset signal is asserted, the Nios II processor performs the following steps:

1. Sets status.RSIE to 1, and clears all other fields of the status register.
2. Invalidates the instruction cache line associated with the reset vector.
3. Begins executing the reset handler, located at the reset vector.

Note: All noninterrupt exception handlers must run in the normal register set.

Clearing the status.PIE field disables maskable interrupts. If the MMU or MPU is present, clearing the
status.U field forces the processor into supervisor mode.

Note: Nonmaskable interrupts (NMIs) are not affected by status.PIE, and can be taken while processing
a reset exception.

Invalidating the reset cache line guarantees that instruction fetches for reset code comes from uncached
memory.

Aside from the instruction cache line associated with the reset vector, the contents of the cache memories
are indeterminate after reset. To ensure cache coherency after reset, the reset handler located at the reset
vector must immediately initialize the instruction cache. Next, either the reset handler or a subsequent
routine should proceed to initialize the data cache.

The reset state is undefined for all other system components, including but not limited to:

• General-purpose registers, except for zero (r0) in the normal register set, which is permanently zero.
• Control registers, except for status. status.RSIE is reset to 1, and the remaining fields are reset to 0.
• Instruction and data memory.
• Cache memory, except for the instruction cache line associated with the reset vector.
• Peripherals. Refer to the appropriate peripheral data sheet or specification for reset conditions.
• Custom instruction logic
• Nios II C-to-hardware (C2H) acceleration compiler logic.

For more information refer to the Nios II Custom Instruction User Guide for reset conditions.

Related Information
Nios II Custom Instruction User Guide

Break Exceptions
A break is a transfer of control away from a program’s normal flow of execution for the purpose of
debugging. Software debugging tools can take control of the Nios II processor via the JTAG debug module.

Break processing is the means by which software debugging tools implement debug and diagnostic
features, such as breakpoints and watchpoints. Break processing is a type of exception processing, but the
break mechanism is independent from general exception processing. A break can occur during exception
processing, enabling debug tools to debug exception handlers.

The processor enters the break processing state under either of the following conditions:

• The processor executes the break instruction. This is often referred to as a software break.
• The JTAG debug module asserts a hardware break.

Processing a Break
A break causes the processor to take the following steps:

3-42 Reset Exceptions
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Stores the contents of the status register to bstatus.
2. Clears status.PIE to zero, disabling maskable interrupts.

Note: Nonmaskable interrupts (NMIs) are not affected by status.PIE, and can be taken while processing
a break exception.

1. Writes the address of the instruction following the break to the ba register (r30) in the normal
register set.

2. Clears status.U to zero, forcing the processor into supervisor mode, when the system contains
an MMU or MPU.

3. Sets status.EH to one, indicating the processor is handling an exception, when the system
contains an MMU.

4. Copies status.CRS to status.PRS and then sets status.CRS to 0.
5. Transfers execution to the break handler, stored at the break vector specified in the Nios II

Processor parameter editor.

Note: All noninterrupt exception handlers, including the break handler, must run in the normal register
set.

Understanding Register Usage

The bstatus control register and general-purpose registers bt (r25) and ba (r30) in the normal register
set are reserved for debugging. Code is not prevented from writing to these registers, but debug code
might overwrite the values. The break handler can use bt (r25) to help save additional registers.

Returning From a Break

After processing a break, the break handler releases control of the processor by executing a bret instruc‐
tion. The bret instruction restores status by copying the contents of bstatus and returns program
execution to the address in the ba register (r30) in the normal register set. Aside from bt and ba, all
registers are guaranteed to be returned to their pre-break state after returning from the break handler.

Interrupt Exceptions
A peripheral device can request an interrupt by asserting an interrupt request (IRQ) signal. IRQs interface
to the Nios II processor through an interrupt controller. You can configure the Nios II processor with
either of the following interrupt controller options:

• The external interrupt controller interface
• The internal interrupt controller

External Interrupt Controller Interface
The Nios II EIC interface enables you to connect the Nios II processor to an external interrupt controller
component. The EIC can monitor and prioritize IRQ signals, and determine which interrupt to present to
the Nios II processor. An EIC can be software-configurable.

The Nios II processor does not depend on any particular implementation of an EIC. The degree of EIC
configurability, and EIC configuration methods, are implementation-specific. This section discusses the
EIC interface, and general features of EICs. For usage details, refer to the documentation for the specific
EIC in your system.

NII51003
2016.10.28 Understanding Register Usage 3-43

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When an IRQ is asserted, the EIC presents the following information to the Nios II processor:

• The requested handler address (RHA)—Refer to the Requested Handler Address section of this chapter
• The requested interrupt level (RIL)—Refer to the Requested Interrupt Level section of this chapter
• The requested register set (RRS)—Refer to Requested Register Set section of this chapter
• Requested nonmaskable interrupt (RNMI) mode—Refer to the Requested NMI Mode section of this

chapter

The Nios II processor EIC interface connects to a single EIC, but an EIC can support a daisy-chained
configuration. In a daisy-chained configuration, multiple EICs can monitor and prioritize interrupts. The
EIC directly connected to the processor presents the processor with the highest-priority interrupt from all
EICs in the daisy chain.

An EIC component can support an arbitrary level of daisy-chaining, potentially allowing the Nios II
processor to handle an arbitrary number of prioritized interrupts.

For a typical EIC implementation, refer to the Vectored Interrupt Controller chapter in the Embedded
Peripherals IP User Guide.

Related Information

• Embedded Peripherals IP User Guide
• Requested NMI Mode on page 3-45
• Requested Register Set on page 3-44
• Requested Interrupt Level on page 3-44

Requested Handler Address
The RHA specifies the address of the handler associated with the interrupt. The availability of an RHA for
each interrupt allows the Nios II processor to jump directly to the interrupt handler, reducing interrupt
latency.

The RHA for each interrupt is typically software-configurable. The method for specifying the RHA is
dependent on the specific EIC implementation.

If the Nios II processor is implemented with an MMU, the processor treats handler addresses as virtual
addresses.

Requested Interrupt Level
The Nios II processor uses the RIL to decide when to take a maskable interrupt. The interrupt is taken only
when the RIL is greater than status.IL.

The RIL is ignored for nonmaskable interrupts.

Requested Register Set
If shadow register sets are implemented on the Nios II core, the EIC specifies a register set when it asserts
an interrupt request. When it takes the interrupt, the Nios II processor switches to the requested register
set. When an interrupt has a dedicated register set, the interrupt handler avoids the overhead of saving
registers.

The method of assigning register sets to interrupts depends on the specific EIC implementation. Register
set assignments can be software-configurable.

3-44 Requested Handler Address
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Multiple interrupts can be configured to share a register set. In this case, the interrupt handlers must be
written so as to avoid register corruption. For example, one of the following conditions must be true:

• The interrupts cannot pre-empt one another. For example, all interrupts are at the same level.
• Registers are saved in software. For example, each interrupt handler saves its own registers on entry,

and restores them on exit.

Typically, the Nios II processor is configured so that when it takes an interrupt, other interrupts in the
same register set are disabled. If interrupt preemption within a register set is desired, the interrupt handler
can re-enable interrupts in its register set.

By default, the Nios II processor disables maskable interrupts when it takes an interrupt request. To enable
nested interrupts, system software or the ISR itself must re-enable interrupts after the interrupt is taken.

Requested NMI Mode
Any interrupt can be nonmaskable, depending on the configuration of the EIC. An NMI typically signals a
critical system event requiring immediate handling, to ensure either system stability or real-time
performance.

status.IL and RIL are ignored for nonmaskable interrupts.

Shadow Register Sets
Although shadow register sets can be implemented independently of the EIC interface, typically the two
features are used together. Combining shadow register sets with an appropriate EIC, you can minimize or
eliminate the context switch overhead for critical interrupts.

For the best interrupt performance, assign a dedicated register set to each of the most time-critical
interrupts. Less-critical interrupts can share register sets, provided the ISRs are protected from register
corruption as noted in the Requested Register Set section of this chapter.

The method for mapping interrupts to register sets is specific to the particular EIC implementation.

Related Information
Requested Register Set on page 3-44

Internal Interrupt Controller
When the internal interrupt controller is implemented, a peripheral device can request a hardware
interrupt by asserting one of the Nios II processor’s 32 interrupt-request inputs, irq0 through irq31. A
hardware interrupt is generated if and only if all three of these conditions are true:

• The PIE bit of the status control register is one.
• An interrupt-request input, irqn, is asserted.
• The corresponding bit n of the ienable control register is one.

Upon hardware interrupt, the processor clears the PIE bit to zero, disabling further interrupts, and
performs the other steps outlined in the "Exception Processing Flow" section of this chapter.

The value of the ipending control register shows which interrupt requests (IRQ) are pending. By
peripheral design, an IRQ bit is guaranteed to remain asserted until the processor explicitly responds to
the peripheral.

Note: Although shadow register sets can be implemented in any Nios II/f processor, the internal interrupt
controller does not have features to take advantage of it as external interrupt controllers do.

NII51003
2016.10.28 Requested NMI Mode 3-45

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-2: Relationship Between ienable, ipending, PIE and Hardware Interrupts

IPENDING0

IPENDING1

IPENDING2

ipending Register

IPENDING31

irq0

irq1

irq2

irq31

013

IENABLE0

IENABLE1

IENABLE2

013

ienable Register

External hardware
interrupt request
inputs irq[31..0]

. . .

. . .

. . .

PIE bit

Generate
Hardware
 Interrupt

IENABLE31

Related Information
Exception Processing Flow on page 3-51

Instruction-Related Exceptions
Instruction-related exceptions occur during execution of Nios II instructions. When they occur, the
processor perform the steps outlined in the "Exception Processing Flow" section of this chapter.

The Nios II processor generates the following instruction-related exceptions:

• Trap instruction
• Break instruction
• Unimplemented instruction
• Illegal instruction
• Supervisor-only instruction
• Supervisor-only instruction address
• Supervisor-only data address
• Misaligned data address
• Misaligned destination address

3-46 Instruction-Related Exceptions
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Division error
• Fast TLB miss
• Double TLB miss
• TLB permission violation
• MPU region violation

Note: All noninterrupt exception handlers must run in the normal register set.

Related Information
Exception Processing Flow on page 3-51

Trap Instruction
When a program issues the trap instruction, the processor generates a software trap exception. A
program typically issues a software trap when the program requires servicing by the operating system. The
general exception handler for the operating system determines the reason for the trap and responds
appropriately.

Break Instruction
The break instruction is treated as a break exception. For more information, refer to the "Break
Exceptions" section of this chapter.

Related Information
Break Exceptions on page 3-42

Unimplemented Instruction
When the processor issues a valid instruction that is not implemented in hardware, an unimplemented
instruction exception is generated. The general exception handler determines which instruction generated
the exception. If the instruction is not implemented in hardware, control is passed to an exception routine
that might choose to emulate the instruction in software.

For more information, refer to the "Potential Unimplemented Instructions" section of this chapter.

Related Information
Potential Unimplemented Instructions on page 3-67

Illegal Instruction

Illegal instructions are instructions with an undefined opcode or opcode-extension field. The Nios II
processor can check for illegal instructions and generate an exception when an illegal instruction is
encountered. Illegal instruction checking is always on regardless of MMU or MPU settings.

For information about controlling this option, refer to the Instantiating the Nios II Processor chapter of the
Nios II Processor Reference Handbook.
When the processor issues an instruction with an undefined opcode or opcode-extension field, and illegal
instruction exception checking is turned on, an illegal instruction exception is generated.

Refer to the OP Encodings and OPX Encodings for R-Type Instructions tables in the Instruction Set
Reference chapter of the Nios II Processor Reference Handbook to see the unused opcodes and opcode
extensions.

Note: All undefined opcodes are reserved. The processor does occasionally use some undefined encodings
internally. Executing one of these undefined opcodes does not trigger an illegal instruction
exception.

NII51003
2016.10.28 Trap Instruction 3-47

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference Handbook for
information about each specific Nios II core.

Related Information

• Instruction Set Reference on page 8-1
• Programming Model on page 3-1
• Nios II Core Implementation Details on page 5-1

Supervisor-Only Instruction
When your system contains an MMU or MPU and the processor is in user mode (status.U = 1),
executing a supervisor-only instruction results in a supervisor-only instruction exception. The supervisor-
only instructions are initd, initi, eret, bret, rdctl, and wrctl.

This exception is implemented only in Nios II processors configured to use supervisor mode and user
mode. Refer to the "Operating Modes" section of this chapter for more information.

Related Information
Operating Modes on page 3-1

Supervisor-Only Instruction Address
When your system contains an MMU and the processor is in user mode (status.U = 1), attempts to
access a supervisor-only instruction address result in a supervisor-only instruction address exception. Any
instruction fetch can cause this exception. For definitions of supervisor-only address ranges, refer to the
Virtual Memory Partitions Table.

This exception is implemented only in Nios II processors that include the MMU.

Related Information
Virtual Memory Address Space on page 3-4

Supervisor-Only Data Address
When your system contains an MMU and the processor is in user mode (status.U = 1), any attempt to
access a supervisor-only data address results in a supervisor-only data address exception. Instructions that
can cause a supervisor-only data address exception are all loads, all stores, and flushda.

This exception is implemented only in Nios II processors that include the MMU.

Misaligned Data Address
The Nios II processor can check for misaligned data addresses of load and store instructions and generate
an exception when a misaligned data address is encountered. When your system contains an MMU or
MPU, misaligned data address checking is always on. When no MMU or MPU is present, you have the
option to have the processor check for misaligned data addresses.

For information about controlling this option, refer to the Instantiating the Nios II Processor chapter of the
Nios II Processor Reference Handbook.
A data address is considered misaligned if the byte address is not a multiple of the width of the load or
store instruction data width (four bytes for word, two bytes for half-word). Byte load and store instructions
are always aligned so never take a misaligned address exception.

Related Information
Programming Model on page 3-1

3-48 Supervisor-Only Instruction
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Misaligned Destination Address
The Nios II processor can check for misaligned destination addresses of the callr, jmp, ret, eret, bret,
and all branch instructions and generate an exception when a misaligned destination address is
encountered. When your system contains an MMU or MPU, misaligned destination address checking is
always on. When no MMU or MPU is present, you have the option to have the processor check for
misaligned destination addresses.

For information about controlling this option, refer to the Instantiating the Nios II Processor chapter of the
Nios II Processor Reference Handbook.
A destination address is considered misaligned if the target byte address of the instruction is not a multiple
of four.

Related Information
Programming Model on page 3-1

Division Error
The Nios II processor can check for division errors and generate an exception when a division error is
encountered.

The division error exception detects divide instructions that produce a quotient that can't be represented.
The two cases are divide by zero and a signed division that divides the largest negative number
-2147483648 (0x80000000) by -1 (0xffffffff). Division error detection is only available if divide instructions
are supported by hardware.

Related Information
Programming Model on page 3-1

Fast TLB Miss
Fast TLB miss exceptions are implemented only in Nios II processors that include the MMU. The MMU
has a special exception vector (fast TLB miss), specified with the Nios II Processor parameter editor in
Qsys, specifically to handle TLB miss exceptions quickly. Whenever the processor cannot find a TLB entry
matching the VPN (optionally extended by a process identifier), the result is a TLB miss exception. At the
time of the exception, the processor first checks status.EH. When status.EH = 0, no other exception is
already in process, so the processor considers the TLB miss a fast TLB miss, sets status.EH to one, and
transfers control to the fast TLB miss exception handler (rather than to the general exception handler).

There are two kinds of fast TLB miss exceptions:

• Fast TLB miss (instruction)—Any instruction fetch can cause this exception.
• Fast TLB miss (data)—Load, store, initda, and flushda instructions can cause this exception.

The fast TLB miss exception handler can inspect the tlbmisc.D field to determine which kind of fast TLB
miss exception occurred.

Double TLB Miss
Double TLB miss exceptions are implemented only in Nios II processors that include the MMU. When a
TLB miss exception occurs while software is currently processing an exception (that is, when status.EH =
1), a double TLB miss exception is generated. Specifically, whenever the processor cannot find a TLB entry
matching the VPN (optionally extended by a process identifier) and status.EH = 1, the result is a double
TLB miss exception. The most common scenario is that a double TLB miss exception occurs during
processing of a fast TLB miss exception. The processor preserves register values from the original

NII51003
2016.10.28 Misaligned Destination Address 3-49

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

exception and transfers control to the general exception handler which processes the newly-generated
exception.

There are two kinds of double TLB miss exceptions:

• Double TLB miss (instruction)—Any instruction fetch can cause this exception.
• Double TLB miss (data)—Load, store, initda, and flushda instructions can cause this exception.

The general exception handler can inspect either the exception.CAUSE or tlbmisc.D field to determine
which kind of double TLB miss exception occurred.

TLB Permission Violation
TLB permission violation exceptions are implemented only in Nios II processors that include the MMU.
When a TLB entry is found matching the VPN (optionally extended by a process identifier), but the
permissions do not allow the access to complete, a TLB permission violation exception is generated.

There are three kinds of TLB permission violation exceptions:

• TLB permission violation (execute)—Any instruction fetch can cause this exception.
• TLB permission violation (read)—Any load instruction can cause this exception.
• TLB permission violation (write)—Any store instruction can cause this exception.

The general exception handler can inspect the exception.CAUSE field to determine which permissions
were violated.

Note: The data cache management instructions (initd, initda, flushd, and flushda) ignore the TLB
permissions and do not generate TLB permission violation exceptions.

MPU Region Violation
MPU region violation exceptions are implemented only in Nios II processors that include the MPU. An
MPU region violation exception is generated under any of the following conditions:

• An instruction fetch or data address matched a region but the permissions for that region did not allow
the action to complete.

• An instruction fetch or data address did not match any region.

The general exception handler reads the MPU region attributes to determine if the address did not match
any region or which permissions were violated.

There are two kinds of MPU region violation exceptions:

• MPU region violation (instruction)—Any instruction fetch can cause this exception.
• MPU region violation (data)—Load, store, initda, and flushda instructions can cause this exception.

The general exception handler can inspect the exception.CAUSE field to determine which kind of MPU
region violation exception occurred.

Other Exceptions
The preceding sections describe all of the exception types defined by the Nios II architecture at the time of
publishing. However, some processor implementations might generate exceptions that do not fall into the
categories listed in the preceding sections. Therefore, a robust exception handler must provide a safe
response (such as issuing a warning) in the event that it cannot identify the cause of an exception.

3-50 TLB Permission Violation
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Processing Flow
Except for the break exception (refer to the Processing a Break section of this chapter), this section
describes how the processor responds to exceptions, including interrupts and instruction-related
exceptions.

Related Information

• Exception Handling
For details about writing programs to take advantage of exception and interrupt handling, refer to the
Exception Handling chapter of the Nios II Software Developer’s Handbook.

• Processing a Break on page 3-42

Processing General Exceptions
The general exception handler is a routine that determines the cause of each exception (including the
double TLB miss exception), and then dispatches an exception routine to respond to the exception. The
address of the general exception handler, specified with the Nios II Processor parameter editor in Qsys, is
called the exception vector in the Nios II Processor parameter editor. At run time this address is fixed, and
software cannot modify it. Programmers do not directly access exception vectors, and can write programs
without awareness of the address.

Note: If the EIC interface is present, the general exception handler processes only noninterrupt
exceptions.

The fast TLB miss exception handler only handles the fast TLB miss exception. It is built for speed to
process TLB misses quickly. The fast TLB miss exception handler address, specified with the Nios II
Processor parameter editor in Qsys, is called the fast TLB miss exception vector in the Nios II Processor
parameter editor.

Exception Flow with the EIC Interface
If the EIC interface is present, interrupt processing differs markedly from noninterrupt exception
processing. The EIC interface provides the following information to the Nios II processor for each
interrupt request:

• RHA—The requested handler address for the interrupt handler assigned to the requested interrupt.
• RRS—The requested register set to be used when the interrupt handler executes. If shadow register sets

are not implemented, RRS must always be 0.
• RIL—The requested interrupt level specifies the priority of the interrupt.
• RNMI—The requested NMI flag specifies whether to treat the interrupt as nonmaskable.

For further information about the RHA, RRS, RIL and RNMI, refer to “The Nios II/f Core” in the
Nios II Core Implementation Details chapter of the Nios II Processor Reference Handbook.

NII51003
2016.10.28 Exception Processing Flow 3-51

Programming Model Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the EIC interface presents an interrupt to the Nios II processor, the processor uses several criteria,
as follows, to determine whether to take the interrupt:

• Nonmaskable interrupts—The processor takes any NMI as long as it is not processing a previous NMI.
• Maskable interrupts—The processor takes a maskable interrupt if maskable interrupts are enabled, and

if the requested interrupt level is higher than that of the interrupt currently being processed (if any).
However, if shadow register sets are implemented, the processor takes the interrupt only if the interrupt
requests a register set different from the current register set, or if the register set interrupt enable flag
(status.RSIE) is set.

Table 3-37: Conditions Required to Take External Interrupt

RNMI == 1 RNMI == 0

status.NMI
== 0

status.NMI
== 1

status.PIE
== 0

status.PIE == 1

RIL <=
status.IL

RIL > status.IL

Processor Has Shadow Register Sets
No Shadow

Register
Sets

RRS == status.CRS
RRS !=

status.CRSstatus.RSIE
== 0

status.RSIE
== 1

Yes No No No No (17) Yes Yes Yes

The Nios II processor supports fast nested interrupts with shadow register sets, as described in the
"Shadow Register Set" section of this chapter.

Keeping status.PIE set allows higher level interrupts to be taken immediate, without requiring the
interrupt handler to set status.PIE to 1.

The processor disables maskable interrupts when taking an exception, just as it does without shadow
register sets. An individual interrupt handler can re-enable interrupts by setting status.PIE to 1, if
desired.

Related Information

• Shadow Register Sets on page 3-45
• Nios II Core Implementation Details on page 5-1

Exception Flow with the Internal Interrupt Controller
A general exception handler determines which of the pending interrupts has the highest priority, and then
transfers control to the appropriate ISR. The ISR stops the interrupt from being visible (either by clearing
it at the source or masking it using ienable) before returning and/or before re-enabling PIE. The ISR also
saves estatus and ea (r29) before re-enabling PIE.

Interrupts can be re-enabled by writing one to the PIE bit, thereby allowing the current ISR to be
interrupted. Typically, the exception routine adjusts ienable so that IRQs of equal or lower priority are
disabled before re-enabling interrupts.

Refer to "Handling Nested Exceptions” for more information.

(17) Nested interrupts using the same register set are allowed only if system software has explicitly permitted
them by setting status.RSIE. This restriction ensures that such interrupts are taken only if the handler is
coded to save the register context.

3-52 Exception Flow with the Internal Interrupt Controller
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Handling Nested Exceptions on page 3-55

Exceptions and Processor Status
The Nios II Processor Status After Taking Exception Table lists all changes to the Nios II processor state as
a result of nonbreak exception processing actions performed by hardware. For systems with an MMU,
status.EH indicates whether or not exception processing is already in progress. When status.EH = 1,
exception processing is already in progress and the states of the exception registers are preserved to retain
the original exception states.

Table 3-38: Nios II Processor Status After Taking Exception

Processor Status Register

or Field

System Status Before Taking Exception

External Interrupt Asserted (18) Internal Interrupt Asserted or Noninterrupt Exception

status.EH==1 (33) status.EH==0

status.EH==1

status.EH==0

TLB

Miss (35)

No TLB Miss

RRS==0 (3

4)
RRS!=0 RRS==0 RRS!=0 TLB Permission

Violation (35)
No TLB

Permission

Violation

pteaddr.VPN (19) No change VPN (20) No change

status.PRS (34) No change status.CRS(34) (36) No change

pc RHA General
exception vector
(21)

Fast TLB
exception
vector (22)

General exception vector(34)

sstatus (23)(37) No change status (36)
(24)

No change

estatus(37) No change status (36) No change status (36)

ea No change return address (25) No change return address

tlbmisc.D (33) No change (26)

tlbmisc.DBL (33) No change (27)

tlbmisc.PERM(33) No change (28)

tlbmisc.BAD (33) No change (29)

status.PIE No change 0 (30)

(18) If the Nios II processor does not have an EIC interface, external interrupts do not occur.
(19) If the Nios II processor does not have an MMU, this register is not implemented.
(20) The VPN of the address triggering the exception
(21) Invokes the general exception handler
(22) Invokes the fast TLB miss exception handler
(23) If the Nios II processor does not have shadow register sets, this register is not implemented.
(24) sstatus.SRS is set to 1 if RRS is not equal to status.CRS.
(25) The address following the instruction being executed when the exception occurs
(26) Set to 1 on a data access exception, set to 0 otherwise
(27) Set to 1 on a double TLB miss, set to 0 otherwise
(28) Set to 1 on a TLB permission violation, set to 0 otherwise
(29) Set to 1 on a bad virtual address exception, set to 0 otherwise

NII51003
2016.10.28 Exceptions and Processor Status 3-53

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Processor Status Register

or Field

System Status Before Taking Exception

External Interrupt Asserted (18) Internal Interrupt Asserted or Noninterrupt Exception

status.EH==1 (33) status.EH==0

status.EH==1

status.EH==0

TLB

Miss (35)

No TLB Miss

RRS==0 (3

4)
RRS!=0 RRS==0 RRS!=0 TLB Permission

Violation (35)
No TLB

Permission

Violation

status.EH(33) No change 1 (31)

status.IH (39) 1 No change

status.NMI (39) RNMI No change

status.IL (39) RIL No change

status.RSIE (34)(39) 0 No change

status.CRS (34) RRS No change

status.U (33) 0 (32)

Determining the Cause of Interrupt and Instruction-Related Exceptions
The general exception handler must determine the cause of each exception and then transfer control to an
appropriate exception routine.

Nios II/f Exception Processing

The CAUSE field of the exception register contains a code for the highest-priority exception occurring at
the time. The BADDR field of the badaddr register contains the byte instruction address or data address for
certain exceptions.

Refer to the Nios II Exceptions table for more information in the Exception Overview section.

Note: External interrupts do not set exception.CAUSE.

To determine the cause of an exception, simply read the cause of the exception from exception.CAUSE and
then transfer control to the appropriate exception routine.

(18) If the Nios II processor does not have an EIC interface, external interrupts do not occur.
(30) Disables exceptions and nonmaskable interrupts
(31) If the MMU is implemented, indicates that the processor is handling an exception.
(32) Puts the processor in supervisor mode.
(33) If the Nios II processor does not have an MMU, this field is not implemented. Its value is always 0, and the

processor behaves accordingly.
(34) If the Nios II processor does not have shadow register sets, this field is not implemented. Its value is always 0,

and the processor behaves accordingly.
(35) If the Nios II processor does not have an MMU, TLB-related exceptions do not occur.
(36) The pre-exception value
(37) Saves the processor’s pre-exception status
(38) If the MMU is implemented, indicates that the processor is handling an exception.
(39) If the Nios II processor does not have an EIC interface, this field is not implemented.

3-54 Determining the Cause of Interrupt and Instruction-Related Exceptions
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II/e Exception Processing

Example 3-3: Determining Exception Cause for Nios II/e Exception Processing

/* With an internal interrupt controller, check for interrupt
 exceptions. With an external interrupt controller, ipending is
 always 0, and this check can be omitted. */
if (estatus.PIE == 1 and ipending != 0) {
 handle interrupt

/* Decode exception from instruction */
/* Note: Because the exception register is included with the MMU and */
/* MPU, you never need to determine MMU or MPU exceptions by decoding */
} else {
 decode instruction at $ea-4
 if (instruction is trap)
 handle trap exception
 else if (instruction is load or store)
 handle misaligned data address exception
 else if (instruction is branch, bret, callr, eret, jmp, or ret)
 handle misaligned destination address exception
 else if (instruction is unimplemented)
 handle unimplemented instruction exception
 else if (instruction is illegal)
 handle illegal instruction exception
 else if (instruction is divide) {
 if (denominator == 0)
 handle division error exception
 else if (instruction is signed divide and numerator == 0x80000000
 and denominator == 0xffffffff)
 handle division error exception
 }
 }

 /* Not any known exception */
 } else {
 handle unknown exception (If internal interrupt controller
 is implemented, could be spurious interrupt)
 }
}

Handling Nested Exceptions
The Nios II processor supports several types of nested exceptions, depending on which optional features
are implemented. Nested exceptions can occur under the following circumstances:

• An exception handler enables maskable interrupts
• An EIC is present, and an NMI occurs
• An EIC is present, and the processor is configured to keep maskable interrupts enabled when taking an

interrupt
• An exception handler triggers an instruction-related exception

For details about when the Nios II processor takes exceptions, refer to “Exception Processing Flow” on
page 3–44.

For details about unimplemented instructions, refer to the Processor Architecture chapter of the Nios II
Processor Reference Handbook.

NII51003
2016.10.28 Nios II/e Exception Processing 3-55

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For details about MMU and MPU exceptions, refer to the Instruction-Related Exceptions section of this
chapter.

A system can be designed to eliminate the possibility of nested exceptions. However, if nested exceptions
are possible, the exception handlers must be carefully written to prevent each handler from corrupting the
context in which a pre-empted handler runs.

If an exception handler issues a trap instruction, an optional instruction, or an instruction which could
generate an MMU or MPU exception, it must save and restore the contents of the estatus and ea
registers.

Related Information

• Exception Processing Flow on page 3-51
• Instruction-Related Exceptions on page 3-46
• Processor Architecture on page 2-1

Nested Exceptions with the Internal Interrupt Controller
You can enable nested exceptions in each exception handler on a case-by-case basis. If you want to allow a
given exception handler to be pre-empted, set status.PIE to 1 near the beginning of the handler.
Enabling maskable interrupts early in the handler minimizes the worst-case latency of any nested
exceptions.

Note: Ensure that all pre-empting handlers preserve the register contents.

Nested Exceptions with an External Interrupt Controller
With an EIC, handling of nested interrupts is more sophisticated than with the internal interrupt
controller. Handling of noninterrupt exceptions, however, is the same.

When individual external interrupts have dedicated shadow register sets, the Nios II processor supports
fast interrupt handling with no overhead for saving register contents. To take full advantage of fast
interrupt handling, system software must set up certain conditions. With the following conditions
satisfied, ISRs need not save and restore register contents on entry and exit:

• Automatic nested interrupts are enabled.
• Each interrupt is assigned to a dedicated shadow register set.
• All interrupts with the same RIL are assigned to dedicated shadow register sets.
• Multiple interrupts with different RILs can be assigned to a single shadow register set. However, with

multiple register sets, you must not allow the RILs assigned to one shadow register set to overlap the
RILs assigned to another register set.

The following tables demonstrate the validity of register set assignments when preemption within a
register set is enabled.

Table 3-39: Example of Illegal RIL Assignment

RIL Register Set 1 Register Set 2

1 IRQ0
2 IRQ1
3 IRQ2
4 IRQ3
5 IRQ4

3-56 Nested Exceptions with the Internal Interrupt Controller
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

RIL Register Set 1 Register Set 2

6 IRQ5
7 IRQ6

Table 3-40: Example of Legal RIL Assignment

RIL Register Set 1 Register Set 2

1 IRQ0
2 IRQ1
3 IRQ3
4 IRQ2
5 IRQ4
6 IRQ5
7 IRQ6

Note: Noninterrupt exception handlers must always save and restore the register contents, because they
run in the normal register set.

Multiple interrupts can share a register set, with some loss of performance. There are two techniques for
sharing register sets:

• Set status.RSIE to 0. When an ISR is running in a given register set, the processor does not take any
maskable interrupt assigned to the same register set. Such interrupts must wait for the running ISR to
complete, regardless of their interrupt level.

Note: This technique can result in a priority inversion.

• Ensure that each ISR saves and restores registers on entry and exit, and set status.RSIE to 1
after registers are saved. When an ISR is running in a given register set, the processor takes an
interrupt in the same register set if it has a higher interrupt level.

The Nios II processor disables interrupts when taking a maskable interrupt (nonmaskable interrupts
always disable maskable interrupts). Individual ISRs can re-enable nested interrupts by setting
status.PIE to 1, as described in the Nested "Exceptions with Internal Interrupt Controller" section of this
chapter.

Related Information
Nested Exceptions with the Internal Interrupt Controller on page 3-56

Handling Nonmaskable Interrupts
Writing an NMI handler involves the same basic techniques as writing any other interrupt handler.
However, nonmaskable interrupts always preempt maskable interrupts, and cannot be preempted. This
knowledge can simplify handler design in some ways, but it means that an NMI handler can have a
significant impact on overall interrupt latency. For the best system performance, perform the absolute
minimum of processing in your NMI handlers, and defer less-critical processing to maskable interrupt
handlers or foreground software.

NII51003
2016.10.28 Handling Nonmaskable Interrupts 3-57

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NMIs leave intact the processor state associated with maskable interrupts and other exceptions, as well as
normal, nonexception processing, when each NMI is assigned to a dedicated shadow register set.
Therefore, NMIs can be handled transparently.

Note: If not assigned to a dedicated shadow register set, an NMI can overwrite the processor status
associated with exception processing, making it impossible to return to the interrupted exception.

Note: Do not set status.PIE in a nonmaskable ISR. If status.PIE is set, a maskable interrupt can pre-
empt an NMI, and the processor exits NMI mode. It cannot be returned to NMI mode until the
next nonmaskable interrupt.

Masking and Disabling Exceptions
The Nios II processor provides several methods for temporarily turning off some or all exceptions from
software. The available methods depend on the hardware configuration. This section discusses all
potentially available methods.

Disabling Maskable Interrupts
Software can disable and enable maskable interrupts with the status.PIE bit. When PIE = 0, maskable
interrupts are ignored. When PIE = 1, internal and maskable external interrupts can be taken, depending
on the status of the interrupt controller.

Masking Interrupts with an External Interrupt Controller
Typical EIC implementations allow system software to mask individual interrupts. The method of masking
individual interrupts is implementation-specific.

The status.IL field controls what level of external maskable interrupts can be serviced. The processor
services a maskable interrupt only if its requested interrupt level is greater than status.IL.

An ISR can make run-time adjustments to interrupt nesting by manipulating status.IL. For example, if
an ISR is running at level 5, to temporarily allow pre-emption by another level 5 interrupt, it can set
status.IL to 4.

To enable all external interrupts, set status.IL to 0. To disable all external interrupts, set status.IL to
63.

Masking Interrupts with the Internal Interrupt Controller
The ienable register controls the handling of internal hardware interrupts. Each bit of the ienable
register corresponds to one of the interrupt inputs, irq0 through irq31. A value of one in bit n means that
the corresponding irqn interrupt is enabled; a bit value of zero means that the corresponding interrupt is
disabled.

Refer to the "Exception Processing" section of this chapter for more information.

An ISR can adjust ienable so that IRQs of equal or lower priority are disabled. Refer to the "Handling
Nested Exceptions" section of this chapter for more information.

Related Information

• Handling Nested Exceptions on page 3-55
• Exception Processing on page 3-38

Returning From Interrupt and Instruction-Related Exceptions
The eret instruction is used to resume execution at the pre-exception address.

3-58 Masking and Disabling Exceptions
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You must ensure that when an exception handler modifies registers, they are restored when it returns. This
can be taken care of in either of the following ways:

• In the case of ISRs, if the EIC interface and shadow register sets are implemented, and the ISR has a
dedicated register set, no software action is required. The Nios II processor returns to the previous
register set when it executes eret, which restores the register contents.

• For details, refer to the "Nested Exceptions with an External Interrupt Controller" section of this
chapter.

• In the case of noninterrupt exceptions, for ISRs in a system with the internal interrupt controller, and
for ISRs without a dedicated shadow register set, the exception handler must save registers on entry
and restore them on exit. Saving the register contents on the stack is a typical, re-entrant implementa‐
tion.

Note: It is not necessary to save and restore the exception temporary (et or r24) register.

When executing the eret instruction, the processor performs the following tasks:

1. Restores the previous contents of status as follows:

• If status.CRS is 0, copies estatus to status
• If status.CRS is nonzero, copies sstatus to status

2. Transfers program execution to the address in the ea register (r29) in the register set specified by the
original value of status.CRS.

Note: The eret instruction can cause the processor to exit NMI mode. However, it cannot make the
processor enter NMI mode. In other words, if status.NMI is 0 and estatus.NMI (or sstatus.NMI)
is 1, after an eret, status.NMI is still 0. This restriction prevents the processor from accidentally
entering NMI mode.

Note: When the EIC interface and shadow register sets are implemented on the Nios II core, you must
ensure that your software, including ISRs, is built with the version of the GCC compiler included in
Nios II EDS version 9.0 or later. Earlier versions have an implementation of the eret instruction
that is incompatible with shadow register sets.

Related Information
Nested Exceptions with the Internal Interrupt Controller on page 3-56

Return Address Considerations
The return address requires some consideration when returning from exception processing routines. After
an exception occurs, ea contains the address of the instruction following the point where the exception
occurred.

When returning from instruction-related exceptions, execution must resume from the instruction
following the instruction where the exception occurred. Therefore, ea contains the correct return address.

On the other hand, hardware interrupt exceptions must resume execution from the interrupted instruc‐
tion itself. In this case, the exception handler must subtract 4 from ea to point to the interrupted instruc‐
tion.

Memory and Peripheral Access
Nios II addresses are 32 bits, allowing access up to a 4-gigabyte address space. The MMU supports the full
32-bit physical address. Bit 31 bypass is optional, you can access full 32-bit addressing without the MMU.

For details, refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook.

NII51003
2016.10.28 Return Address Considerations 3-59

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Peripherals, data memory, and program memory are mapped into the same address space. The locations of
memory and peripherals within the address space are determined at system generation time. Reading or
writing to an address that does not map to a memory or peripheral produces an undefined result.

The processor’s data bus is 32 bits wide. Instructions are available to read and write byte, half-word (16-
bit), or word (32-bit) data.

The Nios II architecture uses little-endian byte ordering. For data wider than 8 bits stored in memory, the
more-significant bits are located in higher addresses.

The Nios II architecture supports register and immediate addressing.

Related Information
Nios II Core Implementation Details on page 5-1

Cache Memory
The Nios II architecture and instruction set accommodate the presence of data cache and instruction
cache memories. Cache management is implemented in software by using cache management instructions.
Instructions are provided to initialize the cache, flush the caches whenever necessary, and to bypass the
data cache to properly access memory-mapped peripherals.

The Nios II architecture provides the following mechanisms to bypass the cache:

• When no MMU is present, bit 31 of the address is reserved for the optinal bit-31 cache bypass. With
bit-31 cache bypass, the address space of processor cores is 2 GB, and the high bit of the address
controls the caching of data memory accesses.

• When the MMU is present, cacheability is controlled by the MMU, and bit 31 functions as a normal
address bit. For details, refer to the Address Space and Memory Partitions section , and the TLB
Organization section of this chapter.

• Cache bypass instructions, such as ldwio and stwio.

Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference Handbook for
details of which processor cores implement bit-31 cache bypass.

Refer to Instruction Set Reference chapter of the Nios II Processor Reference Handbook for details of the
cache bypass instructions.

Code written for a processor core with cache memory behaves correctly on a processor core without cache
memory. The reverse is not true. If it is necessary for a program to work properly on multiple Nios II
processor core implementations, the program must behave as if the instruction and data caches exist. In
systems without cache memory, the cache management instructions perform no operation, and their
effects are benign.

For a complete discussion of cache management, refer to theCache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Some consideration is necessary to ensure cache coherency after processor reset. Refer to "Reset
Exceptions" section of this chapter for more information.

For information about the cache architecture and the memory hierarchy refer to the Processor Architecture
chapter of the Nios II Processor Reference Handbook.

Related Information

• Cache and Tightly Coupled Memory
• Reset Exceptions on page 3-42
• TLB Organization on page 3-5

3-60 Cache Memory
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Address Space and Memory Partitions on page 3-4
• Instruction Set Reference on page 8-1
• Processor Architecture on page 2-1
• Nios II Core Implementation Details on page 5-1

Virtual Address Aliasing
A virtual address alias occurs when two virtual addresses map to the same physical address. When an
MMU and caches are present and the caches are larger than a page (4 KB), the operating system must
prevent illegal virtual address aliases. Because the caches are virtually-indexed and physically-tagged, a
portion of the virtual address is used to select the cache line. If the cache is 4 KB or less in size, the portion
of the virtual address used to select the cache line fits with bits 11:0 of the virtual address which have the
same value as bits 11:0 of the physical address (they are untranslated bits of the page offset). However, if
the cache is larger than 4 KB, bits beyond the page offset (bits 12 and up) are used to select the cache line
and these bits are allowed to be different than the corresponding physical address.

For example, in a 64-KB direct-mapped cache with a 16-byte line, bits 15:4 are used to select the line.
Assume that virtual address 0x1000 is mapped to physical address 0xF000 and virtual address 0x2000 is
also mapped to physical address 0xF000. This is an illegal virtual address alias because accesses to virtual
address 0x1000 use line 0x1 and accesses to virtual address 0x2000 use line 0x2 even though they map to
the same physical address. This results in two copies of the same physical address in the cache. With an n-
byte direct-mapped cache, there could be n/4096 copies of the same physical address in the cache if illegal
virtual address aliases are not prevented. The bits of the virtual address that are used to select the line and
are translated bits (bits 12 and up) are known as the color of the address. An operating system avoids
illegal virtual address aliases by ensuring that if multiple virtual addresses map the same physical address,
the virtual addresses have the same color. Note though, the color of the virtual addresses does not need to
be the same as the color as the physical address because the cache tag contains all the bits of the PFN.

Instruction Set Categories
This section introduces the Nios II instructions categorized by type of operation performed.

Data Transfer Instructions
The Nios II architecture is a load-store architecture. Load and store instructions handle all data movement
between registers, memory, and peripherals. Memories and peripherals share a common address space.
Some Nios II processor cores use memory caching and/or write buffering to improve memory bandwidth.
The architecture provides instructions for both cached and uncached accesses.

Table 3-41: Wide Data Transfer Instructions

Instruc‐
tion

Description

ldw

stw

The ldw and stw instructions load and store 32-bit data words from/to memory. The
effective address is the sum of a register's contents and a signed immediate value
contained in the instruction. Memory transfers can be cached or buffered to improve
program performance. This caching and buffering might cause memory cycles to occur
out of order, and caching might suppress some cycles entirely.

Data transfers for I/O peripherals should use ldwio and stwio.

NII51003
2016.10.28 Virtual Address Aliasing 3-61

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruc‐
tion

Description

ldwio

stwio

ldwio and stwio instructions load and store 32-bit data words from/to peripherals
without caching and buffering. Access cycles for ldwio and stwio instructions are
guaranteed to occur in instruction order and are never suppressed.

Table 3-42: Narrow Data Transfer Instructions

Instruction Description

ldb

ldbu

stb

ldh

ldhu

sth

ldb, ldbu, ldh and ldhu load a byte or half-word from memory to a register. ldb and
ldh sign-extend the value to 32 bits, and ldbu and ldhu zero-extend the value to 32 bits.

stb and sth store byte and half-word values, respectively.

Memory accesses can be cached or buffered to improve performance. To transfer data to
I/O peripherals, use the io versions of the instructions, described in the following table
cell.

ldbio

ldbuio

stbio

ldhio

ldhuio

sthio

These operations load/store byte and half-word data from/to peripherals without
caching or buffering.

Arithmetic and Logical Instructions
Logical instructions support and, or, xor, and nor operations. Arithmetic instructions support addition,
subtraction, multiplication, and division operations.

Table 3-43: Arithmetic and Logical Instructions

Instruction Description

and

or

xor

nor

These are the standard 32-bit logical operations. These operations take two register
values and combine them bit-wise to form a result for a third register.

andi

ori

xori

These operations are immediate versions of the and, or, and xor instructions. The 16-
bit immediate value is zero-extended to 32 bits, and then combined with a register value
to form the result.

andhi

orhi

xorhi

In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left
by 16 bits to form a 32-bit operand. Zeroes are shifted in from the right.

add

sub

mul

div

divu

These are the standard 32-bit arithmetic operations. These operations take two registers
as input and store the result in a third register.

3-62 Arithmetic and Logical Instructions
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Description

addi

subi

muli

These instructions are immediate versions of the add, sub, and mul instructions. The
instruction word includes a 16-bit signed value.

mulxss

mulxuu

These instructions provide access to the upper 32 bits of a 32x32 multiplication
operation. Choose the appropriate instruction depending on whether the operands
should be treated as signed or unsigned values. It is not necessary to precede these
instructions with a mul.

mulxsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication.

Move Instructions
These instructions provide move operations to copy the value of a register or an immediate value to
another register.

Table 3-44: Move Instructions

Instruction Description

mov

movhi

movi

movui

movia

mov copies the value of one register to another register. movi moves a 16-bit signed
immediate value to a register, and sign-extends the value to 32 bits. movui and movhi
move a 16-bit immediate value into the lower or upper 16-bits of a register, inserting
zeros in the remaining bit positions. Use movia to load a register with an address.

Comparison Instructions
The Nios II architecture supports a number of comparison instructions. All of these compare two registers
or a register and an immediate value, and write either one (if true) or zero to the result register. These
instructions perform all the equality and relational operators of the C programming language.

Table 3-45: Comparison Instructions

Instruction Description

cmpeq ==
cmpne !=
cmpge signed >=
cmpgeu unsigned >=
cmpgt signed >
cmpgtu unsigned >
cmple unsigned <=
cmpleu unsigned <=
cmplt signed <
cmpltu unsigned <

NII51003
2016.10.28 Move Instructions 3-63

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Description

cmpeqi

cmpnei

cmpgei

cmpgeui

cmpgti

cmpgtui

cmplei

cmpleui

cmplti

cmpltui

These instructions are immediate versions of the comparison operations. They
compare the value of a register and a 16-bit immediate value. Signed operations
sign-extend the immediate value to 32-bits. Unsigned operations fill the upper
bits with zero.

Shift and Rotate Instructions
The following instructions provide shift and rotate operations. The number of bits to rotate or shift can be
specified in a register or an immediate value.

Table 3-46: Shift and Rotate Instructions

Instruction Description

rol

ror

roli

The rol and roli instructions provide left bit-rotation. roli uses an immediate value to
specify the number of bits to rotate. The ror instructions provides right bit-rotation.

There is no immediate version of ror, because roli can be used to implement the
equivalent operation.

sll

slli

sra

srl

srai

srli

These shift instructions implement the << and >> operators of the C programming
language. The sll, slli, srl, srli instructions provide left and right logical bit-shifting
operations, inserting zeros. The sra and srai instructions provide arithmetic right bit-
shifting, duplicating the sign bit in the most significant bit. slli, srli and srai use an
immediate value to specify the number of bits to shift.

Program Control Instructions
The Nios II architecture supports the unconditional jump, branch, and call instructions. These instructions
do not have delay slots.

Table 3-47: Unconditional Jump and Call Instructions

Instruction Description

call This instruction calls a subroutine using an immediate value as the subroutine's absolute
address, and stores the return address in register ra.

callr This instruction calls a subroutine at the absolute address contained in a register, and
stores the return address in register ra. This instruction serves the roll of dereferencing a
C function pointer.

ret The ret instruction is used to return from subroutines called by call or callr. ret
loads and executes the instruction specified by the address in register ra.

3-64 Shift and Rotate Instructions
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Description

jmp The jmp instruction jumps to an absolute address contained in a register. jmp is used to
implement switch statements of the C programming language.

jmpi The jmpi instruction jumps to an absolute address using an immediate value to
determine the absolute address.

br This instruction branches relative to the current instruction. A signed immediate value
gives the offset of the next instruction to execute.

The conditional branch instructions compare register values directly, and branch if the expression is true.
The conditional branches support the following equality and relational comparisons of the C program‐
ming language:

• == and !=
• < and <= (signed and unsigned)
• > and >= (signed and unsigned)

The conditional branch instructions do not have delay slots.

Table 3-48: Conditional Branch Instructions

Instruction Description

bge

bgeu

bgt

bgtu

ble

bleu

blt

bltu

beq

bne

These instructions provide relative branches that compare two register values
and branch if the expression is true. Refer to the "Comparison Instructions"
section of this chapter for a description of the relational operations
implemented.

Related Information
Comparison Instructions on page 3-63

Other Control Instructions

Table 3-49: Other Control Instructions

Instruction Description

trap

eret

The trap and eret instructions generate and return from exceptions. These instruc‐
tions are similar to the call/ret pair, but are used for exceptions. trap saves the
status register in the estatus register, saves the return address in the ea register, and
then transfers execution to the general exception handler. eret returns from exception
processing by restoring status from estatus, and executing the instruction specified
by the address in ea.

NII51003
2016.10.28 Other Control Instructions 3-65

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Description

break

bret

The break and bret instructions generate and return from breaks. break and bret are
used exclusively by software debugging tools. Programmers never use these instruc‐
tions in application code.

rdctl

wrctl

These instructions read and write control registers, such as the status register. The
value is read from or stored to a general-purpose register.

flushd

flushda

flushi

initd

initda

initi

These instructions are used to manage the data and instruction cache memories.

flushp This instruction flushes all prefetched instructions from the pipeline. This is necessary
before jumping to recently-modified instruction memory.

sync This instruction ensures that all previously-issued operations have completed before
allowing execution of subsequent load and store operations.

rdprs

wrprs

These instructions read and write a general-purpose registers between the current
register set and another register set.

wrprs can set r0 to 0 in a shadow register set. System software must use wrprs to
initialize r0 to 0 in each shadow register set before using that register set.

Custom Instructions
The custom instruction provides low-level access to custom instruction logic. The inclusion of custom
instructions is specified with the Nios II Processor parameter editor in Qsys, and the function
implemented by custom instruction logic is design dependent.

For more information, refer to the “Custom Instructions” section of the Processor Architecture chapter of
the Nios II Processor Reference Handbook
For continued more information refer to the Nios II Custom Instruction User Guide.
Machine-generated C functions and assembly language macros provide access to custom instructions, and
hide implementation details from the user. Therefore, most software developers never use the custom
assembly language instruction directly.

Related Information

• Nios II Custom Instruction User Guide
• Processor Architecture on page 2-1

No-Operation Instruction
The Nios II assembler provides a no-operation instruction, nop.

3-66 Custom Instructions
NII51003

2016.10.28

Altera Corporation Programming Model

Send Feedback

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Potential Unimplemented Instructions
Some Nios II processor cores do not support all instructions in hardware. In this case, the processor
generates an exception after issuing an unimplemented instruction. Only the following instructions can
generate an unimplemented instruction exception:

• mul

• muli

• mulxss

• mulxsu

• mulxuu

• div

• divu

• initda

All other instructions are guaranteed not to generate an unimplemented instruction exception.

An exception routine must exercise caution if it uses these instructions, because they could generate
another exception before the previous exception is properly handled.

Refer to the "Unimplemented Instruction" section of this chapter for more information regarding
unimplemented instruction processing.

Related Information
Unimplemented Instruction on page 3-47

Document Revision History

Table 3-50: Document Revision History

Date Version Changes

October 2016 2016.10.28 Removed extra exception information
option from chapter

April 2015 2015.04.02 Initial release

NII51003
2016.10.28 Potential Unimplemented Instructions 3-67

Programming Model Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Model%20(NII51003%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instantiating the Nios II Gen2 Processor 4
2016.10.28

NII5V1GEN2 Subscribe Send Feedback

This chapter describes the Nios II Gen2 Processor parameter editor in Qsys. The Nios II Processor
parameter editor allows you to specify the processor features for a particular Nios II hardware system. This
chapter covers the features of the Nios II processor that you can configure with the Nios II Processor
parameter editor; it is not a user guide for creating complete Nios II processor systems.

To get started designing custom Nios II systems, refer to the Nios II Hardware Development Tutorial.

Development kits for Altera devices, available on the All Development Kits page of the Altera website, also
provide ready-made hardware design examples that demonstrate different configurations of the Nios II
processor.

Related Information
Nios II Hardware Development Tutorial

Main Nios II Gen2 Tab
The main purpose of the Main tab is to select the processor core. The core you select on this tab affects
other options available on this and other tabs.

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos
are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants
performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V1GEN2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V1GEN2%202016.10.28)%20Instantiating%20the%20Nios%20II%20Gen2%20Processor&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 4-1: Nios II Gen2 Qsys Main Tab

Altera offers the following Nios II cores:

• Nios II/f—The Nios II/f fast core is designed for fast performance. As a result, this core presents the
most configuration options allowing you to fine tune the processor for performance.

• Nios II/e—The Nios II/e economy core is designed to achieve the smallest possible core size. As a
result, this core has a limited feature set, and many settings are not available when the Nios II/e core is
selected.

The Main tab displays a selector guide table that lists the basic properties of each core.

For implementation information about each core, refer to the Nios II Core Implementation Details chapter
of the Nios II Processor Reference Handbook.

Related Information
Nios II Core Implementation Details on page 5-1

4-2 Main Nios II Gen2 Tab
NII5V1GEN2

2016.10.28

Altera Corporation Instantiating the Nios II Gen2 Processor

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Vectors Tab
Figure 4-2: Nios II Gen2 Qsys Vector Tab

Reset Vector
Parameters in this section select the memory module where the reset code (boot loader) resides, and the
location of the reset vector (reset address). The reset vector cannot be configured until your system
memory components are in place.

The Reset vector memory list, which includes all memory modules mastered by the Nios II processor,
selects the reset vector memory module. In a typical system, select a nonvolatile memory module for the
reset code.

Reset vector offset specifies the location of the reset vector relative to the memory module’s base address.
Qsys calculates the physical address of the reset vector when you modify the memory module, the offset,
or the memory module’s base address. In Qsys, Reset vector displays the read-only, calculated address.
The address is always a physical address, even when an MMU is present.

Note: Qsys provides an Absolute option, which allows you to specify an absolute address in Reset vector
offset. Use an absolute address when the memory storing the reset handler is located outside of the
processor system and subsystems of the processor system.

For information about reset exceptions, refer to the Programming Model chapter of the Nios II Processor
Reference Handbook.

NII5V1GEN2
2016.10.28 Vectors Tab 4-3

Instantiating the Nios II Gen2 Processor Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Programming Model on page 3-1

Exception Vector
Parameters in this section select the memory module where the general exception vector (exception
address) resides, and the location of the general exception vector. The general exception vector cannot be
configured until your system memory components are in place.

The Exception vector memory list, which includes all memory modules mastered by the Nios II
processor, selects the exception vector memory module. In a typical system, select a low-latency memory
module for the exception code.

Exception vector offset specifies the location of the exception vector relative to the memory module’s base
address. Qsys calculates the physical address of the exception vector when you modify the memory
module, the offset, or the memory module’s base address. In Qsys, Exception vector displays the read-
only, calculated address.. The address is always a physical address, even when an MMU is present.

Note: Qsys provides an Absolute option, which allows you to specify an absolute address in Exception
vector offset. Use an absolute address when the memory storing the exception handler is located
outside of the processor system and subsystems of the processor system.

For information about exceptions, refer to the Programming Model chapter of the Nios II Processor
Reference Handbook.

Related Information
Programming Model on page 3-1

Fast TLB Miss Exception Vector
The fast TLB miss exception vector is a special exception vector used exclusively by the MMU to handle
TLB miss exceptions. Parameters in this section select the memory module where the fast TLB miss
exception vector (exception address) resides, and the location of the fast TLB miss exception vector. The
fast TLB miss exception vector cannot be configured until your system memory components are in place.

The Fast TLB Miss Exception vector memory list, which includes all memory modules mastered by the
Nios II processor, selects the exception vector memory module. In a typical system, select a low-latency
memory module for the exception code.

Note: Qsys provides an Absolute option, which allows you to specify an absolute address in Fast TLB Miss
Exception vector offset. Use an absolute address when the memory storing the exception handler is
located outside of the processor system and subsystems of the processor system.

Fast TLB Miss Exception vector offset specifies the location of the exception vector relative to the memory
module’s base address. Qsys calculates the physical address of the exception vector when you modify the
memory module, the offset, or the memory module’s base address. In Qsys, Fast TLB Miss Exception
vector displays the readonly, calculated address. The address is always a physical address, even when an
MMU is present.

Note: The Nios II MMU is optional and mutually exclusive from the Nios II MPU. Nios II systems can
include either an MMU or MPU, but cannot include both an MMU and MPU in the same design.

For information about the Nios II MMU, refer to the Programming Model chapter of the Nios II Processor
Reference Handbook.

To function correctly with the MMU, the base physical address of all exception vectors (reset, general
exception, break, and fast TLB miss) must point to low physical memory so that hardware can correctly

4-4 Exception Vector
NII5V1GEN2

2016.10.28

Altera Corporation Instantiating the Nios II Gen2 Processor

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

map their virtual addresses into the kernel partition. This restriction is enforced by the Nios II Processor
parameter editor.

Related Information
Programming Model on page 3-1

Caches and Memory Interfaces Tab
The Caches and Memory Interfaces tab allows you to configure the cache and tightly-coupled memory
usage for the instruction and data master ports.

Figure 4-3: Nios II Gen2 Qsys Caches and Memory Interfaces Tab

NII5V1GEN2
2016.10.28 Caches and Memory Interfaces Tab 4-5

Instantiating the Nios II Gen2 Processor Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Cache
The Instruction cache parameters provide the following options for the Nios II/f core:

• Size—Specifies the size of the instruction cache. Valid sizes are from 512 bytes to 64 KBytes, or None.

Choosing None disables the instruction cache. The Avalon-MM instruction master port from the Nios
II processor will still available. In this case, you must include a tightly-coupled instruction memory.

• Add burstcount signal to instruction_master —The Nios II processor can fill its instruction cache
lines using burst transfers. Usually you enable bursts on the processor's instruction master when
instructions are stored in DRAM, and disable bursts when instructions are stored in SRAM.

Bursting to DRAM typically improves memory bandwidth, but might consume additional FPGA
resources. Be aware that when bursts are enabled, accesses to slaves might go through additional
hardware (called burst adapters) which might decrease your fMAX.

When the Nios II processor transfers execution to the first word of a cache line, the processor fills the
line by executing a sequence of word transfers that have ascending addresses, such as 0, 4, 8, 12, 16, 20,
24, 28.

However, when the Nios II processor transfers execution to an instruction that is not the first word of a
cache line, the processor fetches the required (or “critical”) instruction first, and then fills the rest of the
cache line. The addresses of a burst increase until the last word of the cache line is filled, and then
continue with the first word of the cache line. For example, with a 32-byte cache line, transferring
control to address 8 results in a burst with the following address sequence: 8, 12, 16, 20, 24, 28, 0, 4.

Flash Accelerator
The Flash accelerator is a small fully-associative cache for real-time applications. Use the Flash accelerator
when executing directly from on-chip memories such as flash.

You can choose either 64-bits or 128-bits for your line size option. After choosing a line size you are able to
choose either 2 or 4 cache lines for your system. After instantiating the Flash Accelerator the
flash_instruction_master signal becomes available.

Note: It is recommended to use the Flash Accelerator with MAX 10 on-chip flash.

4-6 Instruction Cache
NII5V1GEN2

2016.10.28

Altera Corporation Instantiating the Nios II Gen2 Processor

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data Cache
The Data Cache parameters provide the following options for the Nios II/f core:

• Size—Specifies the size of the data cache. Valid sizes are from 512 bytes to 64 KBytes, or None.
Depending on the value specified for Data cache, the following options are available:

• Victim buffer implementation—Specifies whether to use RAM or registers. The data cache victim
buffer temporarily holds a dirty cache line while the data is written back to external memory.

• Add burstcount signal to data_master—The Nios II processor can fill its data cache lines using burst
transfers. Usually you enable bursts on the processor's data bus when processor data is stored in
DRAM, and disable bursts when processor data is stored in SRAM.

Bursting to DRAM typically improves memory bandwidth but might consume additional FPGA
resources. Be aware that when bursts are enabled, accesses to slaves might go through additional
hardware (called burst adapters) which might decrease your fMAX.

The burst length is always 8 for a 32-byte line size. Data cache bursts are always aligned on the cache
line boundary. For example, with a 32-byte Nios II data cache line, a cache miss to the address 8 results
in a burst with the following address sequence: 0, 4, 8, 12, 16, 20, 24 and 28.

• Use most-significant address bit in processor to bypass data cache—This option is enabled by
default, the data master interfaces only support up to 31-bit byte address. Disable this option to support
full 32-bit byte address

Although the Nios II processor can operate entirely out of tightly-coupled memory without the need for
Avalon-MM instruction or data masters, software debug is not possible when either the Avalon-MM
instruction or data master is omitted.

Note: By default this feature is turned on for backwards compatibility with the Nios II Classic core.

Tightly-coupled Memories
Number of tightly coupled instruction master port(s) (Include tightly coupled instruction master
port(s))—Specifies one to four tightly-coupled instruction master ports for the Nios II Gen2 processor. In
Qsys, select the number from the Number of tightly coupled instruction master port(s) list. Tightly
coupled memory ports appear on the connection panel of the Nios II Gen2 processor on the Qsys System
Contents tab. You must connect each port to exactly one memory component in the system.

Peripheral Region
The Peripheral Region section in the Caches and Memory Interfaces tab has a maximum size of 2 Gbytes.
You can set the base address once the size has been selected. All addresses in the peripheral region produce
uncacheable data accesses.

Arithmetic Instructions Tab
Nios II/f cores offer hardware multiply and divide options. You can choose the best option to balance
embedded multiplier usage, logic element (LE) usage, and performance.

NII5V1GEN2
2016.10.28 Data Cache 4-7

Instantiating the Nios II Gen2 Processor Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-4: Nios II Gen2 Qsys Arithmetic Instructions Tab

Arithmetic Instructions
• Multiply/Shift/Rotate Hardware:—You have the option of either choosing auto or manually selected

hardware. It is recommended to choose auto, which selects the hardware according to the device family
in your current Qsys project.

• Divide Hardware:—Qsys allows you to choose SRT Radix-2 as your divide hardware option if selected.

Table 4-1: Divide Hardware: SRT Radix-2

Hardware Performance Resources Instructions

32-bit divide 35 cycles Logic elements All Divide

Arithmetic Implementation
This section is only available if you choose to manually select your multiply/shift/rotate hardware.

4-8 Arithmetic Instructions
NII5V1GEN2

2016.10.28

Altera Corporation Instantiating the Nios II Gen2 Processor

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• 32-bit multiply instruction implementation—You have three options for the 32-bit multiply instruc‐
tion. Choosing the 1 32-bit multiplier option allocates all resources to the 32-bit multiplier making it
the resource for the 64-bit multiply instruction and shift/rotate instruction.

Table 4-2: 32-bit multiply instruction implementation options

Performance Resources Instruction

11 cycles Logic elements All 32-bit Multiply
1 cycle 3 16-bit multipliers All 32-bit Multiply
1 cycle 1 32-bit multipliers All 32-bit Multiply

• 64-bit multiply instruction implementation— This option can only be used if the 32-bit multiply
instruction selection is set to the 3 16-bit multipliers option. The Nios II only supports up to a 32 x 32
bit multiplication. The 64-bit option is achieved by using the 32-bit multiplier along with the multiply
extended instructions (mulxss, mulxsu, mulxuu), which can be found in the Instruction Set Reference
chapter of this manual.

Table 4-3: 64-bit multiply instruction implementation options

Performance Resources Instruction

2 cycles 1 16-bit multiplier All 64-bit Multiply
• Shift/rotate instruction implementation—Qsys gives you the option of either choosing non-pipelined

or pipelined.

Table 4-4: Shift/rotate instruction implementation options

Performance Resources Instructions

2 - 11 cycles Logic elements (non-
pipelined)

All Shift/Rotate

1 cycle Logic elements (pipelined) All Shift/Rotate

Note: Highly recommend to chose auto selection. Qsys will make the selections according to the device
family previously selected.

MMU and MPU Settings Tab
The MMU and MPU Settings tab presents settings for configuring the MMU and MPU on the Nios II
Gen2 processor. You can select the features appropriate for your target application.

NII5V1GEN2
2016.10.28 MMU and MPU Settings Tab 4-9

Instantiating the Nios II Gen2 Processor Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-5: Nios II Gen2 Qsys MMU and MPU Settings Tab

Note: This tab is only avaliable for the Nios II/f core.

MMU
When Include MMU on the MMU and MPU Settings tab is on, the MMU settings on the MMU and
MPU Settings tab provide the following options for the MMU in the Nios II/f core. Typically, you should
not need to change any of these settings from their default values.

• Process ID (PID) bits—Specifies the number of bits to use to represent the process identifier.
• Optimize number of TLB entries based on device family—When on, specifies the optimal number of

TLB entries to allocate based on the device family of the target hardware and disables TLB entries.
• TLB entries—Specifies the number of entries in the translation lookaside buffer (TLB).
• TLB Set-Associativity—Specifies the number of set-associativity ways in the TLB.
• Micro DTLB entries—Specifies the number of entries in the micro data TLB.
• Micro ITLB entries—Specifies the number of entries in the micro instruction TLB.

For information about the MMU, refer to the Programming Model chapter of the Nios II Processor
Reference Handbook.

For specifics on the Nios II/f core, refer to the Nios II Core Implementation Details chapter of the Nios II
Processor Reference Handbook.

Related Information

• Programming Model on page 3-1

4-10 MMU
NII5V1GEN2

2016.10.28

Altera Corporation Instantiating the Nios II Gen2 Processor

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Nios II Core Implementation Details on page 5-1

MPU
When Include MPU on the MMU and MPU Settings tab is on, the MPU settings on the MMU and MPU
Settings tab provide the following options for the MPU in the Nios II/f core.

• Use Limit for region range—Controls whether the amount of memory in the region is defined by size
or by upper address limit. When on, the amount of memory is based on the given upper address limit.
When off, the amount of memory is based on the given size.

• Number of data regions—Specifies the number of data regions to allocate. Allowed values range from
2 to 32.

• Minimum data region size—Specifies the minimum data region size. Allowed values range from
256 bytes to 1 MB and must be a power of two.

• Number of instruction regions—Specifies the number of instruction regions to allocate. Allowed
values range from 2 to 32.

• Minimum instruction region size—Specifies the minimum instruction region size. Allowed values
range from 256 bytes to 1 MB and must be a power of two.

Note: The maximum region size is the size of the Nios II instruction and data addresses automatically
determined when the Nios II system is generated in Qsys. Maximum region size is based on the
address range of slaves connected to the Nios II instruction and data masters.

For information about the MPU, refer to the Programming Model chapter of the Nios II Processor Reference
Handbook.

For specifics on the Nios II/f core, refer to the Nios II Core Implementation Details chapter of the Nios II
Processor Reference Handbook.

Related Information

• Programming Model on page 3-1
• Nios II Core Implementation Details on page 5-1

JTAG Debug Tab
The JTAG Debug tab presents settings for configuring the JTAG debug module on the Nios II Gen2
processor. You can select the debug features appropriate for your target application.

NII5V1GEN2
2016.10.28 MPU 4-11

Instantiating the Nios II Gen2 Processor Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-6: Nios II Gen2 Qsys JTAB Debug Tab

Soft processor cores such as the Nios II Gen2 processor offer unique debug capabilities beyond the
features of traditional fixed processors. The soft nature of the Nios II processor allows you to debug a
system in development using a full-featured debug core, and later remove the debug features to conserve
logic resources. For the release version of a product, you might choose to reduce the JTAG debug module
functionality, or remove it altogether.

Table 4-5: Debug Configuration Features

Feature Description

JTAG Target
Connection

Connects to the processor through the standard JTAG pins on the Altera FPGA. This
connection provides the basic capabilities to start and stop the processor, and
examine/edit registers and memory.

Download
Software

Downloads executable code to the processor’s memory via the JTAG connection.

Software
Breakpoints

Sets a breakpoint on instructions residing in RAM.

Hardware
Breakpoints

Sets a breakpoint on instructions residing in nonvolatile memory, such as flash
memory.

4-12 JTAG Debug Tab
NII5V1GEN2

2016.10.28

Altera Corporation Instantiating the Nios II Gen2 Processor

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Description

Data Triggers Triggers based on address value, data value, or read or write cycle. You can use a
trigger to halt the processor on specific events or conditions, or to activate other
events, such as starting execution trace, or sending a trigger signal to an external logic
analyzer. Two data triggers can be combined to form a trigger that activates on a range
of data or addresses.

Instruction Trace Captures the sequence of instructions executing on the processor in real time.
Data Trace Captures the addresses and data associated with read and write operations executed by

the processor in real time.
On-Chip Trace Stores trace data in on-chip memory.
Off-Chip Trace Stores trace data in an external debug probe. Off-chip trace instantiates a PLL inside

the Nios II core. Off-chip trace requires a debug probe from Imagination Technologies
or Lauterbach GmbH.

The Include debugreq and debugack signals debug signals setting provides the following functionality.
When on, the Nios II processor includes debug request and acknowledge signals. These signals let another
device temporarily suspend the Nios II processor for debug purposes. The signals are exported to the top
level of your Qsys system.

For more information about the debug signals, refer to the Processor Architecture chapter of the Nios II
Processor Reference Handbook.

You can set the onchip trace buffer size to sizes from 128 to 64K trace frames, using OCI Onchip Trace.
Larger buffer sizes consume more on-chip M4K RAM blocks. Every M4K RAM block can store up to 128
trace frames.

Related Information
Processor Architecture on page 2-1

NII5V1GEN2
2016.10.28 JTAG Debug Tab 4-13

Instantiating the Nios II Gen2 Processor Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Advanced Features Tab
Figure 4-7: Nios II Gen2 Qsys Advanced Features Tab

ECC
ECC is only available for the Nios II/f core and provides ECC support for Nios II internal RAM blocks,
such as instruction cache, MMU TLB, and register file. The SECDED ECC algorithm is based on
Hamming codes, which detect 1 or 2 bit errors and corrects 1 bit errors. If the Nios II processor does not
attempt to correct any errors and only detects them, the ECC algorithm can detect 3 bit errors.

Refer to "ECC" section in the Nios II Core Implementation Details chapter for more information about
ECC support in the Nios II/f core.

Related Information
ECC on page 5-14

Interrupt Controller Interfaces
The Interrupt controller setting determines which of the following configurations is implemented:

• Internal interrupt controller
• External interrupt controller (EIC) interface

The EIC interface is available only on the Nios II/f core.

4-14 Advanced Features Tab
NII5V1GEN2

2016.10.28

Altera Corporation Instantiating the Nios II Gen2 Processor

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When the EIC interface and shadow register sets are implemented on the Nios II core, you must
ensure that your software is built with the latest Nios II Embedded Design Suite (EDS) version.
Earlier versions have an implementation of the eret instruction that is incompatible with shadow
register sets.

For details about the EIC interface, refer to “Exception Processing” in the Programming Model chapter of
the Nios II Processor Reference Handbook.

Related Information
Exception Processing on page 3-38

Shadow Register Sets
The Number of shadow register sets setting determines whether the Nios II core implements shadow
register sets. The Nios II core can be configured with up to 63 shadow register sets.

Shadow register sets are available only on the Nios II/f core.

Note: When the EIC interface and shadow register sets are implemented on the Nios II core, you must
ensure that your software is built with the Nios II EDS version 9.0 or higher.

For details about shadow register sets, refer to “Registers” in the Programming Model chapter of the Nios
II Processor Reference Handbook.

Related Information
Registers on page 3-9

Reset Signals
The Include cpu_resetrequest and cpu_resettaken signals reset signals setting provides the following
functionality. When on, the Nios II processor includes processor-only reset request signals. These signals
let another device individually reset the Nios II processor without resetting the entire system. The signals
are exported to the top level of your system.

Note: You must manually connect these signals to logic external to your Qsys system.

For more information on the reset signals, refer to the Processor Architecture chapter of the Nios II
Processor Reference Handbook.

Related Information
Processor Architecture on page 2-1

CPU ID Control Register Value
In Qsys, the automatically-assigned CPUID control register value is always 0x00000000, so Altera
recommends always assigning the value manually.

To assign the value yourself, turn on Assign cpuid control register value manually and type a 32-bit value
(in hexadecimal or decimal format) in the cpuid control register value box.

Generate Trace File
Through this selection, Qsys creates a trace file called "system_name"_"cpu_name".tr. Use the nios2-
trace command to display it.

NII5V1GEN2
2016.10.28 Shadow Register Sets 4-15

Instantiating the Nios II Gen2 Processor Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Checking
The Exception Checking settings provide the following options:

Misaligned memory access—Misaligned memory access detection is only available for the Nios II/f core.
When Misaligned memory access is on, the processor checks for misaligned memory accesses.

Note: When your system contains an MMU or MPU, the processor automatically generates misaligned
memory access exceptions. Therefore, the Misaligned memory access check box is always disabled
when Include MMU or Include MPU on the Core Nios II tab are on.

There are two misaligned memory address exceptions:

• Misaligned data address—Data addresses of load and store instructions are checked for misalignment.
A data address is considered misaligned if the byte address is not a multiple of the data width of the
load or store instruction (4 bytes for word, 2 bytes for half-word). Byte load and store instructions are
always aligned so never generate a misaligned data address exception.

• Misaligned destination address—Destination instruction addresses of br, callr, jmp, ret, eret, and
bret instructions are checked for misalignment. A destination instruction address is considered
misaligned if the target byte address of the instruction is not a multiple of four.

Your exception handler can use this code to quickly determine the proper action to take, rather than have
to determine the cause of an exception through instruction decoding. Additionally, some exceptions also
store the instruction or data address associated with the exception in the badaddr register.

For further descriptions of exceptions, exception handling, and control registers, refer to the Programming
Model chapter of the Nios II Processor Reference Handbook.

Related Information
Programming Model on page 3-1

Branch Prediction
This section in the tab allows you to choose either dynamic or static for your branch prediction type. As
for the number of entries (2-bits wide) you can choose to have 256, 4096, or up to 8192 entries.

RAM Memory Protection
Through the RAM Memory Protection section you can include the reset_req signal for OCI RAM and
Multi-Cycle Custom Instructions.

The Quartus Prime IP File
The Quartus® Prime IP file (.qip) is a file generated by the MegaWizard™ Plug-In Manager, that contains
information about a generated IP core. You are prompted to add this .qip file to the current project at the
time of Quartus Prime file generation. In most cases, the .qip file contains all of the necessary
assignments and information required to process the core or system in the Quartus Prime compiler.
Generally, a single .qip file is generated for each MegaCore function and for each Qsys system. However,
some complex components generate a separate .qip file, so the system .qip file references the
component .qip file.

4-16 Exception Checking
NII5V1GEN2

2016.10.28

Altera Corporation Instantiating the Nios II Gen2 Processor

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 4-6: Document Revision History

Date Version Changes

October 2016 2016.10.28 Removed extra exception information
option from chapter

April 2015 2015.04.02 Initial release

NII5V1GEN2
2016.10.28 Document Revision History 4-17

Instantiating the Nios II Gen2 Processor Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Gen2%20Processor%20(NII5V1GEN2%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Core Implementation Details 5
2016.10.28

NII51015 Subscribe Send Feedback

This document describes all of the Nios® II processor core implementations available at the time of
publishing. This document describes only implementation-specific features of each processor core. All
cores support the Nios II instruction set architecture.

For more information regarding the Nios II instruction set architecture, refer to the Instruction Set
Reference chapter of the Nios II Processor Reference Handbook.

For common core information and details on a specific core, refer to the appropriate section:

Table 5-1: Nios II Processor Cores

Feature
Core

Nios II/e Nios II/f

Objective Minimal core size Fast execution speed

Performance

DMIPS/
MHz(40)

0.15 1.16

Max.
DMIPS

31 218

Max. fMAX 200 MHz 185 MHz

(40) DMIPS performance for the Nios II/f core depends on the hardware multiply option.

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos
are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants
performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51015
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51015%202016.10.28)%20Nios%20II%20Core%20Implementation%20Details&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Feature
Core

Nios II/e Nios II/f

Area < 700 LEs;

< 350 ALMs

Without MMU or MPU:

 < 1800 LEs;

 < 900 ALMs

With MMU:

 < 3000 LEs;

 < 1500 ALMs

With MPU:

 < 2400 LEs;

 < 1200 ALMs

Pipeline 1 stage 6 stages

External Address Space 2 GB 4 GB without bit31 bypass

4 GB with MMU

Instruction Bus

Cache – 512 bytes to 64 KB

Pipelined
Memory
Access

– Yes

Branch
Prediction

– Dynamic or Static

Tightly-
Coupled
Memory

– Optional

Data Bus

Cache – 512 bytes to 64 KB

Pipelined
Memory
Access

– –

Cache
Bypass
Methods

– • I/O instructions
• Bit-31 cache bypass
• Optional MMU

Tightly-
Coupled
Memory

– Optional

5-2 Nios II Core Implementation Details
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature
Core

Nios II/e Nios II/f

Arithmetic Logic Unit

Hardware
Multiply

– 1-cycle(41)

Hardware
Divide

– Optional

Shifter 1 cycle-per-bit 1-cycle barrel

shifter
(41)

JTAG Debug Module

JTAG
interface,
run control,
software
breakpoints

Optional Optional

Hardware
Breakpoints

– Optional

Off-Chip
Trace Buffer

– Optional

Memory Management Unit – Optional

Memory Protection Unit – Optional

Exception Handling

Exception
Types

Software trap,
unimplemented
instruction, illegal
instruction,
hardware
interrupt

Software trap, unimplemented
instruction, illegal instruction,
supervisor-only instruction,
supervisor-only instruction address,
supervisor-only data address,
misaligned destination address,
misaligned data address, division
error, fast TLB miss, double TLB
miss, TLB permission violation,
MPU region violation, internal
hardware interrupt, external
hardware interrupt, nonmaskable
interrupt

Integrated
Interrupt
Controller

Yes Yes

External
Interrupt
Controller
Interface

No Optional

Shadow Register Sets No Optional, up to 63

NII51015
2016.10.28 Nios II Core Implementation Details 5-3

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature
Core

Nios II/e Nios II/f

User Mode Support No; Permanently
in supervisor
mode

Yes; When MMU or MPU present

Custom Instruction Support Yes Yes

ECC support Yes Yes

Related Information
Instruction Set Reference on page 8-1

Device Family Support
All Nios II cores provide the same support for target Altera® device families.

Table 5-2: Device Family Support

Device Family Support

Max 10 Final
Arria® GX Final
Arria II GX Final
Arria II GZ Final
Arria V Final
Arria 10 Final
Cyclone® II Final
Cyclone III Final
Cyclone III LS Final
Cyclone IV GX Final
Cyclone IV E Final
Cyclone V Final
Stratix II Final
Stratix II GX Final
Stratix III Final

(41) Multiply and shift performance depends on the hardware multiply option you use. If no hardware multiply
option is used, multiply operations are emulated in software, and shift operations require one cycle per bit.
For details, refer to the arithmetic logic unit description for each core.

5-4 Device Family Support
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device Family Support

Stratix IV E Final
Stratix IV GT Final
Stratix IV GX Final
Stratix V Final

Preliminary support—The core is verified with preliminary timing models for this device family. The core
meets all functional requirements, but might still be undergoing timing analysis for the device family. It
can be used in production designs with caution.

Final support—The core is verified with final timing models for this device family. The core meets all
functional and timing requirements for the device family and can be used in production designs.

Nios II/f Core

The Nios II/f fast core is designed for high execution performance. Performance is gained at the expense of
core size. Altera designed the Nios II/f core with the following design goals in mind:

• Maximize the instructions-per-cycle execution efficiency
• Optimize interrupt latency
• Maximize fMAX performance of the processor core

The resulting core is optimal for performance-critical applications, as well as for applications with large
amounts of code and/or data, such as systems running a full-featured operating system.

Overview
The Nios II/f core:

• Has separate optional instruction and data caches
• Provides optional MMU to support operating systems that require an MMU
• Provides optional MPU to support operating systems and runtime environments that desire memory

protection but do not need virtual memory management
• Can access up to 4 GB of external address space when bit31 is not enabled
• Supports optional external interrupt controller (EIC) interface to provide customizable interrupt

prioritization
• Supports optional shadow register sets to improve interrupt latency
• Supports optional tightly-coupled memory for instructions and data
• Employs a 6-stage pipeline to achieve maximum DMIPS/MHz
• Performs dynamic or static branch prediction
• Provides optional hardware multiply, divide, and shift options to improve arithmetic performance
• Supports the addition of custom instructions
• Optional ECC support for internal RAM blocks (data cache, data cache victim buffer RAM, instruction

and data tightly-coupled memories, instruction cache, MMU TLB, and register file)
• Supports the JTAG debug module
• Supports optional JTAG debug module enhancements, including hardware breakpoints and real-time

trace

NII51015
2016.10.28 Nios II/f Core 5-5

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following sections discuss the noteworthy details of the Nios II/f core implementation. This document
does not discuss low-level design issues or implementation details that do not affect Nios II hardware or
software designers.

Arithmetic Logic Unit
The Nios II/f core provides several arithmetic logic unit (ALU) options to improve the performance of
multiply, divide, and shift operations.

Multiply and Divide Performance

The Nios II/f core provides the following hardware multiplier options:

• DSP Block—Includes DSP block multipliers available on the target device. This option is available only
on Altera FPGAs that have a hardware multiplier that supports 32-bit multiplication.

• Embedded Multipliers—Includes dedicated embedded multipliers available on the target device. This
option is available only on Altera FPGAs that have embedded multipliers.

• Logic Elements—Includes hardware multipliers built from logic element (LE) resources.
• None—Does not include multiply hardware. In this case, multiply operations are emulated in software.

The Nios II/f core also provides a hardware divide option that includes LE-based divide circuitry in the
ALU.

Including an ALU option improves the performance of one or more arithmetic instructions.

Note: The performance of the embedded multipliers differ, depending on the target FPGA family.

Table 5-3: Hardware Multiply and Divide Details for the Nios II/f Core

ALU Option Hardware Details Cycles per
Instruction

Result Latency
Cycles

Supported Instructions

No hardware
multiply or divide

Multiply and divide
instructions generate
an exception

– – None

Logic elements ALU includes 32 x 4-bit
multiplier

11 +2 mul, muli

32-bit multiplier ALU includes 32 x 32-
bit multiplier

1 +2 mul, muli, mulxss,
mulxsu, mulxuu

16-bit multiplier ALU includes 3
16 x 16-bit multiplier

1 +2 mul, muli

16-bit multiplier ALU includes 4
16 x 16-bit multiplier

2 +2 mul, muli, mulxss,
mulxsu, mulxuu

Hardware divide ALU includes SRT
Radix-2 divide circuit

35 +2 div, divu

The cycles per instruction value determines the maximum rate at which the ALU can dispatch instructions
and produce each result. The latency value determines when the result becomes available. If there is no
data dependency between the results and operands for back-to-back instructions, then the latency does
not affect throughput. However, if an instruction depends on the result of an earlier instruction, then the
processor stalls through any result latency cycles until the result is ready.

5-6 Arithmetic Logic Unit
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the following code example, a multiply operation (with 1 instruction cycle and 2 result latency cycles) is
followed immediately by an add operation that uses the result of the multiply. On the Nios II/f core, the
addi instruction, like most ALU instructions, executes in a single cycle. However, in this code example,
execution of the addi instruction is delayed by two additional cycles until the multiply operation
completes.

mul r1, r2, r3 ; r1 = r2 * r3
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

In contrast, the following code does not stall the processor.

mul r1, r2, r3 ; r1 = r2 * r3
or r5, r5, r6 ; No dependency on previous results
or r7, r7, r8 ; No dependency on previous results
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

Shift and Rotate Performance
The performance of shift operations depends on the hardware multiply option. When a hardware
multiplier is present, the ALU achieves shift and rotate operations in three or four clock cycles. Otherwise,
the ALU includes dedicated shift circuitry that achieves one-bit-per-cycle shift and rotate performance.

Related Information
Instruction Performance on page 5-12

Memory Access
The Nios II/f core provides optional instruction and data caches. The cache size for each is user-definable,
between 512 bytes and 64 KB.

The memory address width in the Nios II/f core depends on whether the optional MMU is present.
Without an MMU, the Nios II/f core supports the bit-31 cache bypass method for accessing I/O on the
data master port. Therefore addresses are 31 bits wide, reserving bit 31 for the cache bypass function. With
an MMU, cache bypass is a function of the memory partition and the contents of the translation lookaside
buffer (TLB). Therefore bit-31 cache bypass is disabled, and 32 address bits are available to address
memory.

Instruction and Data Master Ports

The instruction master port is a pipelined Avalon Memory-Mapped (Avalon-MM) master port. The core
also includes a data cache with a fixed 32-byte line size, making he data master port a pipelined Avalon-
MM master port.

The instruction and data master ports on the Nios II/f core are optional. A master port can be excluded, as
long as the core includes at least one tightly-coupled memory to take the place of the missing master port.

Note: Although the Nios II processor can operate entirely out of tightly-coupled memory without the
need for Avalon-MM instruction or data masters, software debug is not possible when either the
Avalon-MM instruction or data master is omitted.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous memory with pipeline
latency. The pipelined instruction and data master ports can issue successive read requests before prior
requests complete.

NII51015
2016.10.28 Shift and Rotate Performance 5-7

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction and Data Caches
This section first describes the similar characteristics of the instruction and data cache memories, and then
describes the differences.

Both the instruction and data cache addresses are divided into fields based on whether or not an MMU is
present in your system.

Table 5-4: Cache Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

tag line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

Table 5-5: Cache Virtual Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

Table 5-6: Cache Physical Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset

Instruction Cache
The instruction cache memory has the following characteristics:

• Direct-mapped cache implementation.
• 32 bytes (8 words) per cache line.
• The instruction master port reads an entire cache line at a time from memory, and issues one read per

clock cycle.
• Critical word first.
• Virtually-indexed, physically-tagged, when MMU present.

The size of the tag field depends on the size of the cache memory and the physical address size. The size of
the line field depends only on the size of the cache memory. The offset field is always five bits (i.e., a 32-
byte line). The maximum instruction byte address size is 31 bits in systems without an MMU present. In

5-8 Instruction and Data Caches
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

systems with an MMU, the maximum instruction byte address size is 32 bits and the tag field always
includes all the bits of the physical frame number (PFN).

The instruction cache is optional. However, excluding instruction cache from the Nios II/f core requires
that the core include at least one tightly-coupled instruction memory.

Data Cache

• Direct-mapped cache implementation
• Line size of 32-bytes
• The data master port reads an entire cache line at a time from memory, and issues one read per clock

cycle.
• Write-back
• Write-allocate (i.e., on a store instruction, a cache miss allocates the line for that address)
• Virtually-indexed, physically-tagged, when MMU present

The size of the tag field depends on the size of the cache memory and the physical address size. The size of
the line field depends only on the size of the cache memory. The size of the offset field depends on the line
size. Line sizes of 32 bytes have offset widths of 5-bits. The maximum data byte address size is 31 bits in
systems without an MMU present. In systems with an MMU, the maximum data byte address size is 32
bits and the tag field always includes all the bits of the PFN.

The data cache is optional. If the data cache is excluded from the core, the data master port can also be
excluded.

The Nios II instruction set provides several different instructions to clear the data cache. There are two
important questions to answer when determining the instruction to use. Do you need to consider the tag
field when looking for a cache match? Do you need to write dirty cache lines back to memory before
clearing? Below the table lists the most appropriate instruction to use for each case.

Table 5-7: Data Cache Clearing Instructions

Instruction Ignore Tag Field Consider Tag Field

Write Dirty Lines flushd flushda

Do Not Write Dirty Lines initd initda

For more information regarding the Nios II instruction set, refer to the Instruction Set Reference chapter of
the Nios II Processor Reference Handbook.

The Nios II/f core implements all the data cache bypass methods.

For information regarding the data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook
Mixing cached and uncached accesses to the same cache line can result in invalid data reads. For example,
the following sequence of events causes cache incoherency.

1. The Nios II core writes data to cache, creating a dirty data cache line.
2. The Nios II core reads data from the same address, but bypasses the cache.

Note: Avoid mixing cached and uncached accesses to the same cache line, regardless whether you are
reading from or writing to the cache line. If it is necessary to mix cached and uncached data
accesses, flush the corresponding line of the data cache after completing the cached accesses and
before performing the uncached accesses.

NII51015
2016.10.28 Data Cache 5-9

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Instruction Set Reference on page 8-1
• Processor Architecture on page 2-1

Bursting
When the data cache is enabled, you can enable bursting on the data master port. Consult the
documentation for memory devices connected to the data master port to determine whether bursting can
improve performance.

Tightly-Coupled Memory
The Nios II/f core provides optional tightly-coupled memory interfaces for both instructions and data. A
Nios II/f core can use up to four each of instruction and data tightly-coupled memories. When a tightly-
coupled memory interface is enabled, the Nios II core includes an additional memory interface master
port. Each tightly-coupled memory interface must connect directly to exactly one memory slave port.

When tightly-coupled memory is present, the Nios II core decodes addresses internally to determine if
requested instructions or data reside in tightly-coupled memory. If the address resides in tightly-coupled
memory, the Nios II core fetches the instruction or data through the tightly-coupled memory interface.
Software accesses tightly-coupled memory with the usual load and store instructions, such as ldw or
ldwio.

Accessing tightly-coupled memory bypasses cache memory. The processor core functions as if cache were
not present for the address span of the tightly-coupled memory. Instructions for managing cache, such as
initd and flushd, do not affect the tightly-coupled memory, even if the instruction specifies an address
in tightly-coupled memory.

When the MMU is present, tightly-coupled memories are always mapped into the kernel partition and can
only be accessed in supervisor mode.

Memory Management Unit
The Nios II/f core provides options to improve the performance of the Nios II MMU.

For information about the MMU architecture, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information
Programming Model on page 3-1

Micro Translation Lookaside Buffers

The translation lookaside buffer (TLB) consists of one main TLB stored in on-chip RAM and two separate
micro TLBs (μTLB) for instructions μITLB) and data (μDTLB) stored in LE-based registers.

The TLBs have a configurable number of entries and are fully associative. The default configuration has 6
μDTLB entries and 4 μITLB entries. The hardware chooses the least-recently used μTLB entry when
loading a new entry.

The μTLBs are not visible to software. They act as an inclusive cache of the main TLB. The processor firsts
look for a hit in the μTLB. If it misses, it then looks for a hit in the main TLB. If the main TLB misses, the
processor takes an exception. If the main TLB hits, the TLB entry is copied into the μTLB for future
accesses.

5-10 Bursting
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The hardware automatically flushes the μTLB on each TLB write operation and on a wrctl to the tlbmisc
register in case the process identifier (PID) has changed.

Memory Protection Unit
The Nios II/f core provides options to improve the performance of the Nios II MPU.

For information about the MPU architecture, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information
Programming Model on page 3-1

Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of performance-critical
applications. Designers can use this information to minimize unnecessary processor stalling. Most
application programmers never need to analyze the performance of individual instructions.

The Nios II/f core employs a 6-stage pipeline.

Table 5-8: Implementation Pipeline Stages for Nios II/f Core

Stage Letter Stage Name

F Fetch
D Decode
E Execute
M Memory
A Align
W Writeback

Up to one instruction is dispatched and/or retired per cycle. Instructions are dispatched and retired in
order. Dynamic branch prediction is implemented using a 2-bit branch history table. The pipeline stalls for
the following conditions:

• Multicycle instructions
• Avalon-MM instruction master port read accesses
• Avalon-MM data master port read/write accesses
• Data dependencies on long latency instructions (e.g., load, multiply, shift).

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any earlier stages. No
“catching up” of pipeline stages is allowed, even if a pipeline stage is empty.

Only the A-stage and D-stage are allowed to create stalls.

NII51015
2016.10.28 Memory Protection Unit 5-11

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The A-stage stall occurs if any of the following conditions occurs:

• An A-stage memory instruction is waiting for Avalon-MM data master requests to complete. Typically
this happens when a load or store misses in the data cache, or a flushd instruction needs to write back
a dirty line.

• An A-stage shift/rotate instruction is still performing its operation. This only occurs with the
multicycle shift circuitry (i.e., when the hardware multiplier is not available).

• An A-stage divide instruction is still performing its operation. This only occurs when the optional
divide circuitry is available.

• An A-stage multicycle custom instruction is asserting its stall signal. This only occurs if the design
includes multicycle custom instructions.

The D-stage stall occurs if an instruction is trying to use the result of a late result instruction too early and
no M-stage pipeline flush is active. The late result instructions are loads, shifts, rotates, rdctl, multiplies
(if hardware multiply is supported), divides (if hardware divide is supported), and multicycle custom
instructions (if present).

Branch Prediction

The Nios II/f core performs dynamic and static branch predictions to minimize the cycle penalty
associated with taken branches.

Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other penalties associated with
their execution. Late result instructions have two cycles placed between them and an instruction that uses
their result. Instructions that flush the pipeline cause up to three instructions after them to be cancelled.
This creates a three-cycle penalty and an execution time of four cycles. Instructions that require Avalon-
MM transfers are stalled until any required Avalon-MM transfers (up to one write and one read) are
completed.

Table 5-9: Instruction Execution Performance for Nios II/f Core 4byte/line data cache

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1
Combinatorial custom instructions 1
Multicycle custom instructions > 1 Late result
Branch (correctly predicted, taken) 2
Branch (correctly predicted, not taken) 1
Branch (mispredicted) 4 Pipeline flush
trap, break, eret, bret, flushp, wrctl, wrprs; illegal and unimple‐
mented instructions

4 or 5 Pipeline flush

call, jmpi, rdprs 2
jmp, ret, callr 3
rdctl 1 Late result
load (without Avalon-MM transfer) 1 Late result
load (with Avalon-MM transfer) > 1 Late result

5-12 Branch Prediction
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Cycles Penalties

store (without Avalon-MM transfer) 1
store (with Avalon-MM transfer) > 1
flushd, flushda (without Avalon-MM transfer) 2
flushd, flushda (with Avalon-MM transfer) > 2
initd, initda 2
flushi, initi 4
Multiply Late result
Divide Late result
Shift/rotate (with hardware multiply using embedded multipliers) 1 Late result
Shift/rotate (with hardware multiply using LE-based multipliers) 2 Late result
Shift/rotate (without hardware multiply present) 1 to 32 Late result
All other instructions 1

For Multiply and Divide, the number of cycles depends on the hardware multiply or divide option. Refer
to "Arithmetic Logic Unit" and "Instruction and Data Caches" s for details.

In the default Nios II/f configuration, instructions trap, break, eret, bret, flushp, wrctl, wrprs
require four clock cycles. If any of the following options are present, they require five clock cycles:

• MMU
• MPU
• Division exception
• Misaligned load/store address exception
• EIC port
• Shadow register sets

Related Information

• Data Cache on page 5-9
• Instruction and Data Caches on page 5-8
• Arithmetic Logic Unit on page 5-6

Exception Handling
The Nios II/f core supports the following exception types:

• Hardware interrupts
• Software trap
• Illegal instruction
• Unimplemented instruction
• Supervisor-only instruction (MMU or MPU only)
• Supervisor-only instruction address (MMU or MPU only)
• Supervisor-only data address (MMU or MPU only)
• Misaligned data address
• Misaligned destination address

NII51015
2016.10.28 Exception Handling 5-13

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Division error
• Error-correcting code (ECC)
• Fast translation lookaside buffer (TLB) miss (MMU only)
• Double TLB miss (MMU only)
• TLB permission violation (MMU only)
• MPU region violation (MPU only)

External Interrupt Controller Interface

The EIC interface enables you to speed up interrupt handling in a complex system by adding a custom
interrupt controller.

The EIC interface is an Avalon-ST sink with the following input signals:

• eic_port_valid

• eic_port_data

Signals are rising-edge triggered, and synchronized with the Nios II clock input.

The EIC interface presents the following signals to the Nios II processor through the eic_port_data
signal:

• Requested handler address (RHA)—The 32-bit address of the interrupt handler associated with the
requested interrupt.

• Requested register set (RRS)—The six-bit number of the register set associated with the requested
interrupt.

• Requested interrupt level (RIL)—The six-bit interrupt level. If RIL is 0, no interrupt is requested.
• Requested nonmaskable interrupt (RNMI) flag—A one-bit flag indicating whether the interrupt is to

be treated as nonmaskable.

Table 5-10: eic_port_data Signal

Bit Fields

44 ...

RHA

... 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RHA RRS RNMI RIL

Following Avalon-ST protocol requirements, the EIC interface samples eic_port_data only when
eic_port_valid is asserted (high). When eic_port_valid is not asserted, the processor latches the
previous values of RHA, RRS, RIL and RNMI. To present new values on eic_port_data, the EIC must
transmit a new packet, asserting eic_port_valid. An EIC can transmit a new packet once per clock cycle.

For an example of an EIC implementation, refer to the Vectored Interrupt Controller chapter in the
Embedded Peripherals IP User Guide.

Related Information
Embedded Peripherals IP User Guide

ECC
The Nios II/f core has the option to add ECC support for the following Nios II internal RAM blocks.

5-14 External Interrupt Controller Interface
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Instruction cache

• ECC errors (1, 2, or 3 bits) that occur in the instruction cache are recoverable; the Nios II processor
flushes the cache line and reads from external memory instead of correcting the ECC error.

• Register file

• 1 bit ECC errors are recoverable
• 2 bit ECC errors are not recoverable and generate ECC exceptions

• MMU TLB

• 1 bit ECC errors triggered by hardware reads are recoverable
• 2 bit ECC errors triggered by hardware reads are not recoverable and generate ECC exception.
• 1 or 2 bit ECC errors triggered by software reads to the TLBMISC register do not trigger an

exception, instead, TLBMISC.EE is set to 1. Software must read this field and invalidate/overwrite the
TLB entry.

• Data Cache

• tag RAM—The ECCINJ.DCTAG field is used to inject ECC errors into the tag RAM.
• data RAM—The ECCINJ.DCDAT field is used to inject ECC errors into the data RAM

• Tightly-Coupled Memories (TCMs)—Nios II includes the ECC encoder/decoder logic for each TCM
and the TCM master port data width is increased to allow the Nios II to read and write the ECC parity
bits.The TCM must be a RAM and must store the ECC parity bits along with the data bits.

• Instruction Tightly-Coupled Memories (ITCM)—Nios II supports up to 4 ITCMs
• Data Tightly-Coupled Memories (DTCM)—Nios II supports up to 4 DTCMs

The ECC interface is an Avalon-ST source with the output signal ecc_event_bus. This interface allows
external logic to monitor ECC errors in the Nios II processor.

Table 5-11: ECC Error Signals

Bit Field Description Effect on
Software

Available

0 EEH ECC error exception while in exception handler mode
(i.e., STATUS.EH = 1).

Likely fatal Always

1 RF_RE Recoverable (1 bit) ECC error in register file RAM None Always
2 RF_UE Unrecoverable (2 bit) ECC error in register file RAM Likely fatal Always
3 ICTAG_RE Recoverable (1, 2, or 3 bit) ECC error in instruction cache

tag RAM
None Instruction

cache
present

4 ICDAT_RE Recoverable (1, 2, or 3 bit) ECC error in instruction cache
data RAM.

None Instruction
cache
present

5 ITCM0_RE Recoverable (1-bit) ECC error in ITCM0 None ITCM0

present
6 ITCM0_UE Unrecoverable (2-bit) ECC error in ITCM0 Possibly

fatal
ITCM0
present

7 ITCM1_RE Recoverable (1-bit) ECC error in ITCM1 None ITCM1
present

NII51015
2016.10.28 ECC 5-15

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Field Description Effect on
Software

Available

8 ITCM1_UE Unrecoverable (2-bit) ECC error in ITCM1 Likely fatal ITCM1
present

9 ITCM2_RE Recoverable (1-bit) ECC error in ITCM2 None ITCM2
present

10 ITCM2_UE Unrecoverable (2-bit) ECC error in ITCM2 Likely fatal ITCM2
present

11 ITCM3_RE Recoverable (1-bit) ECC error in ITCM3 None ITCM3
present

12 ITCM3_UE Unrecoverable (2-bit) ECC error in ITCM3 Likely fatal ITCM3
present

13 DCTAG_RE Recoverable (1-bit) ECC error in data cache tag RAM None Data cache
present

14 DCTAG_UE Unrecoverable (2-bit) ECC error in data cache tag RAM Likely fatal Data cache
present

15 DCDAT_RE Recoverable (1-bit with dirty line, 2-bit or 3-bit with clean
line) ECC error in data cache data RAM. Excludes
recoverable errors found during writeback of a dirty line.

None Data cache
present

16 DCDAT_UE Unrecoverable (2-bit with dirty line) ECC error in data
cache data RAM. Excludes unrecoverable errors found
during writeback of a dirty line.

Likely fatal Data cache
present

17 DCWB_RE Recoverable (1-bit) ECC error in data cache data RAM or
victim line buffer RAM during writeback of a dirty line.

None Data cache
present

18 DCWB_UE Unrecoverable (2-bit) ECC error in data cache data RAM
or victim line buffer RAM during writeback of a dirty line.

Likely fatal Data cache
present

19 TLB_RE Recoverable (1 bit) ECC error in TLB RAM (hardware
read of TLB)

None MMU
present

20 TLB_UE Unrecoverable (2 bit) ECC error in TLB RAM (hardware
read of TLB)

Possibly
fatal

MMU
present

21 TLB_SW Software-triggered (1, 2, or 3 bit) ECC error in software
read of TLB

Possibly
fatal

MMU
present

22 DTCM0_RE Recoverable (1-bit) ECC error in DTCM0 None DTCM0
present

23 DTCM0_UE Unrecoverable (2-bit) ECC error in DTCM0 Likely fatal DTCM0
present

24 DTCM1_RE Recoverable (1-bit) ECC error in DTCM1 None DTCM1
present

25 DTCM1_UE Unrecoverable (2-bit) ECC error in DTCM1 Likely fatal DTCM1
present

26 DTCM2_RE Recoverable (1-bit) ECC error in DTCM2 None DTCM2
present

5-16 ECC
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Field Description Effect on
Software

Available

27 DTCM2_UE Unrecoverable (2-bit) ECC error in DTCM2 Likely fatal DTCM2
present

28 DTCM3_RE Recoverable (1-bit) ECC error in DTCM3 None DTCM3
present

29 DTCM3_UE Unrecoverable (2-bit) ECC error in DTCM3 Likely fatal DTCM3
present

JTAG Debug Module
The Nios II/f core supports the JTAG debug module to provide a JTAG interface to software debugging
tools. The Nios II/f core supports an optional enhanced interface that allows real-time trace data to be
routed out of the processor and stored in an external debug probe.

Note: The Nios II MMU does not support the JTAG debug module trace.

Nios II/e Core
The Nios II/e economy core is designed to achieve the smallest possible core size. Altera designed the
Nios II/e core with a singular design goal: reduce resource utilization any way possible, while still
maintaining compatibility with the Nios II instruction set architecture. Hardware resources are conserved
at the expense of execution performance.

The resulting core is optimal for cost-sensitive applications as well as applications that require simple
control logic.

Overview
The Nios II/e core:

• Executes at most one instruction per six clock cycles
• Full 32-bit addressing
• Can access up to 4 GB of external address space
• Supports the addition of custom instructions
• Supports the JTAG debug module
• Does not provide hardware support for potential unimplemented instructions
• Has no instruction cache or data cache
• Does not perform branch prediction

The following sections discuss the noteworthy details of the Nios II/e core implementation. This document
does not discuss low-level design issues, or implementation details that do not affect Nios II hardware or
software designers.

Arithmetic Logic Unit
The Nios II/e core does not provide hardware support for any of the potential unimplemented
instructions. All unimplemented instructions are emulated in software.

The Nios II/e core employs dedicated shift circuitry to perform shift and rotate operations. The dedicated
shift circuitry achieves one-bit-per-cycle shift and rotate operations.

NII51015
2016.10.28 JTAG Debug Module 5-17

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Memory Access
The Nios II/e core does not provide instruction cache or data cache. All memory and peripheral accesses
generate an Avalon-MM transfer. The Nios II/e core can address up to 4 GB of external memory, full 32-
bit addressing.

For information regarding data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

The Nios II/e core does not provide instruction cache or data cache. All memory and peripheral accesses
generate an Avalon-MM transfer.

For information regarding data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

Related Information
Processor Architecture on page 2-1

Instruction Execution Stages
This section provides an overview of the pipeline behavior as a means of estimating assembly execution
time. Most application programmers never need to analyze the performance of individual instructions.

Instruction Performance
The Nios II/e core dispatches a single instruction at a time, and the processor waits for an instruction to
complete before fetching and dispatching the next instruction. Because each instruction completes before
the next instruction is dispatched, branch prediction is not necessary. This greatly simplifies the considera‐
tion of processor stalls. Maximum performance is one instruction per six clock cycles. To achieve six
cycles, the Avalon-MM instruction master port must fetch an instruction in one clock cycle. A stall on the
Avalon-MM instruction master port directly extends the execution time of the instruction.

Table 5-12: Instruction Execution Performance for Nios II/e Core

Instruction Cycles

Normal ALU instructions (e.g., add,
cmplt)

6

All branch, jmp, jmpi, ret, call, callr 6
trap, break, eret, bret,
flushp, wrctl, rdctl,
unimplemented

6

All load word 6 + Duration of Avalon-MM read transfer
All load halfword 9 + Duration of Avalon-MM read transfer
All load byte 10 + Duration of Avalon-MM read transfer
All store 6 + Duration of Avalon-MM write transfer
All shift, all rotate 7 to 38
All other instructions 6
Combinatorial custom instructions 6
Multicycle custom instructions 6

5-18 Memory Access
NII51015

2016.10.28

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Handling
The Nios II/e core supports the following exception types:

• Internal hardware interrupt
• Software trap
• Illegal instruction
• Unimplemented instruction

JTAG Debug Module
The Nios II/e core supports the JTAG debug module to provide a JTAG interface to software debugging
tools. The JTAG debug module on the Nios II/e core does not support hardware breakpoints or trace.

Document Revision History

Table 5-13: Document Revision History

Date Version Changes

October 2016 2016.10.28 Maintenance release

April 2015 2015.04.02 Initial release

NII51015
2016.10.28 Exception Handling 5-19

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Processor Revision History 6
2016.10.28

NII51018 Subscribe Send Feedback

Each release of the Nios® II Embedded Design Suite (EDS) introduces improvements to the Nios II
processor, the software development tools, or both. This chapter catalogs the history of revisions to the
Nios II processor; it does not track revisions to development tools, such as the Nios II Software Build Tools
(SBT).

Improvements to the Nios II processor might affect:

• Features of the Nios II architecture—An example of an architecture revision is adding instructions to
support floating-point arithmetic.

• Implementation of a specific Nios II core—An example of a core revision is increasing the maximum
possible size of the data cache memory for the Nios II/f core.

• Features of the JTAG debug module—An example of a JTAG debug module revision is adding an
additional trigger input to the JTAG debug module, allowing it to halt processor execution on a new
type of trigger event.

Altera implements Nios II revisions such that code written for an existing Nios II core also works on future
revisions of the same core.

Nios II Versions
The number for any version of the Nios II processor is determined by the version of the Nios II EDS.

Table 6-1: Document Revision History

Version Release Date Notes

14.0 January 2015 Initial release of the Nios II Gen2 processor.

Architecture Revisions
Architecture revisions augment the fundamental capabilities of the Nios II architecture, and affect all
Nios II cores. A change in the architecture mandates a revision to all Nios II cores to accommodate the
new architectural enhancement. For example, when Altera adds a new instruction to the instruction set,
Altera consequently must update all Nios II cores to recognize the new instruction.

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos
are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants
performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51018
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51018%202016.10.28)%20Nios%20II%20Processor%20Revision%20History&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Table 6-2: Nios II Architecture Revisions

Version Release Date Notes

14.0 January 2015 Initial release of the Nios II Gen2 processor architecture.

Core Revisions
Core revisions introduce changes to an existing Nios II core. Core revisions most commonly fix identified
bugs, or add support for an architecture revision. Not every Nios II core is revised with every release of the
Nios II architecture.

Nios II/f Core

Table 6-3: Nios II/f Core Revisions

Version Release Date Notes

14.0 January 2015 Initial release of the Nios II Gen2 f core.

Nios II/e Core

Table 6-4: Nios II/e Core Revisions

Version Release Date Notes

14.0 January 2015 Initial release of the Nios II Gen2 e core.

JTAG Debug Module Revisions
JTAG debug module revisions augment the debug capabilities of the Nios II processor, or fix bugs isolated
within the JTAG debug module logic.

JTAG debug module revisions augment the debug capabilities of the Nios II processor, or fix bugs isolated
within the JTAG debug module logic.

Table 6-5: JTAG Debug Module Revisions

Version Release Date Notes

14.0 January 2015 Initial release of the Gen2 JTAG debug module.

6-2 Core Revisions
NII51018

2016.10.28

Altera Corporation Nios II Processor Revision History

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII51018%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 6-6: Document Revision History

Date Version Changes

October 2016 2016.10.28 Maintenance release
April 2015 2015.04.02 Initial release

NII51018
2016.10.28 Document Revision History 6-3

Nios II Processor Revision History Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII51018%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Application Binary Interface 7
2016.10.28

NII51016 Subscribe Send Feedback

This chapter describes the Application Binary Interface (ABI) for the Nios® II processor. The ABI
describes:

• How data is arranged in memory
• Behavior and structure of the stack
• Function calling conventions

Data Types

Table 7-1: Representation of Data C/C++ Types

Type Size (Bytes) Representation

char, signed char 1 two’s complement (ASCII)

unsigned char 1 binary (ASCII)

short, signed short 2 two’s complement

unsigned short 2 binary

int, signed int 4 two’s complement

unsigned int 4 binary

long, signed long 4 two’s complement

unsigned long 4 binary

float 4 IEEE

double 8 IEEE

pointer 4 binary

long long 8 two’s complement

unsigned long long 8 binary

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos
are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants
performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51016
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51016%202016.10.28)%20Application%20Binary%20Interface&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Memory Alignment
Contents in memory are aligned as follows:

• A function must be aligned to a minimum of 32-bit boundary.
• The minimum alignment of a data element is its natural size. A data element larger than 32 bits need

only be aligned to a 32-bit boundary.
• Structures, unions, and strings must be aligned to a minimum of 32 bits.
• Bit fields inside structures are always 32-bit aligned.

Register Usage
The ABI adds additional usage conventions to the Nios II register file defined in the Programming Model
chapter of the Nios II Processor Reference Handbook.

Table 7-2: Nios II ABI Register Usage

Register Name Used by
Compiler

Callee
Saved(42)

Normal Usage

r0 zero v 0x00000000
r1 at Assembler temporary
r2 v Return value (least-significant 32 bits)
r3 v Return value (most-significant 32 bits)
r4 v Register arguments (first 32 bits)
r5 v Register arguments (second 32 bits)
r6 v Register arguments (third 32 bits)
r7 v Register arguments (fourth 32 bits)
r8 v

Caller-saved general-purpose registers

r9 v
r10 v
r11 v
r12 v
r13 v
r14 v
r15 v

(42) A function can use one of these registers if it saves it first. The function must restore the register’s original
value before exiting.

7-2 Memory Alignment
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Name Used by
Compiler

Callee
Saved(42)

Normal Usage

r16 v v

Callee-saved general-purpose registers

r17 v v
r18 v v
r19 v v
r20 v v
r21 v v
r22 v (43)

r23 v (44)

r24 et Exception temporary
r25 bt Break temporary
r26 gp v Global pointer
r27 sp v Stack pointer
r28 fp v (45) Frame pointer
r29 ea Exception return address
r30 ba • Normal register set: Break return address

• Shadow register sets: SSTATUS register

r31 ra v Return address

The endianness of values greater than 8 bits is little endian. The upper 8 bits of a value are stored at the
higher byte address.

Related Information

• Frame Pointer Elimination on page 7-4
• Programming Model on page 3-1

Stacks
The stack grows downward (i.e. towards lower addresses). The stack pointer points to the last used slot.
The frame pointer points to the saved frame pointer near the top of the stack frame.

(42) A function can use one of these registers if it saves it first. The function must restore the register’s original
value before exiting.

(43) In the GNU Linux operating system, r22 points to the global offset table (GOT). Otherwise, it is available
as a callee-saved general-purpose register.

(44) In the GNU Linux operating system, r23 is used as the thread pointer. Otherwise, it is available as a
callee-saved general-purpose register.

(45) If the frame pointer is not used, the register is available as a callee-saved temporary register. Refer to “Frame
Pointer Elimination” .

NII51016
2016.10.28 Stacks 7-3

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The figure below shows an example of the structure of a current frame. In this case, function a() calls
function b(), and the stack is shown before the call and after the prologue in the called function has
completed.

Figure 7-1: Stack Pointer, Frame Pointer and the Current Frame

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Stack pointer

Outgoing
stack

arguments

Higher addresses

Stack pointer

Lower addresses

Space for
stack

temporaries

Return address

Saved frame
pointerFrame pointer

Each section of the current frame is aligned to a 32-bit boundary. The ABI requires the stack pointer be
32-bit aligned at all times.

Frame Pointer Elimination
The frame pointer is provided for debugger support. If you are not using a debugger, you can optimize
your code by eliminating the frame pointer, using the -fomit-frame-pointer compiler option. When the
frame pointer is eliminated, register fp is available as a temporary register.

Call Saved Registers
The compiler is responsible for generating code to save registers that need to be saved on entry to a
function, and to restore the registers on exit. If there are any such registers, they are saved on the stack,
from high to low addresses, in the following order: ra, fp, sp, gp, r25, r24, r23, r22, r21, r20, r19, r18,
r17, r16, r15, r14, r13, r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, and r2. Stack space is not allocated for
registers that are not saved.

Further Examples of Stacks
There are a number of special cases for stack layout, which are described in this section.

7-4 Frame Pointer Elimination
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Stack Frame for a Function With alloca()

The Nios II stack frame implementation provides support for the alloca() function, defined in the
Berkeley Software Distribution (BSD) extension to C, and implemented by the gcc compiler. The space
allocated by alloca() replaces the outgoing arguments and the outgoing arguments get new space
allocated at the bottom of the frame.

Note: The Nios II C/C++ compiler maintains a frame pointer for any function that calls alloca(), even if
-fomit-frame-pointer is spec if ed

Figure 7-2: Stack Frame after Calling alloca()

higher addresses

lower addresses

space for
outgoing

stack
 arguments

sp

sp

space for
outgoing

stack
 arguments

memory
allocated

by
alloca()

)(acolla gnillac retfAerofeB

Stack Frame for a Function with Variable Arguments
Functions that take variable arguments (varargs) still have their first 16 bytes of arguments arriving in
registers r4 through r7, just like other functions.

In order for varargs to work, functions that take variable arguments allocate 16 extra bytes of storage on
the stack. They copy to the stack the first 16 bytes of their arguments from registers r4 through r7 as
shown below.

NII51016
2016.10.28 Stack Frame for a Function With alloca() 7-5

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-3: Stack Frame Using Variable Arguments

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Outgoing
stack

arguments

Higher addresses

Lower addresses

Stack pointer
Copy of r7
Copy of r6
Copy of r5
Copy of r4

Space for
stack

temporaries

Stack pointer

Return address

Saved frame
pointerFrame pointer

Stack Frame for a Function with Structures Passed By Value

Functions that take struct value arguments still have their first 16 bytes of arguments arriving in registers
r4 through r7, just like other functions.

If part of a structure is passed using registers, the function might need to copy the register contents back to
the stack. This operation is similar to that required in the variable arguments case as shown in the figure
above, Stack Frame Using Variable Arguments.

Related Information
Stack Frame for a Function with Variable Arguments on page 7-5

Function Prologues
The Nios II C/C++ compiler generates function prologues that allocate the stack frame of a function for
storage of stack temporaries and outgoing arguments. In addition, each prologue is responsible for saving
the state of the calling function. This entails saving certain registers on the stack. These registers, the
callee-saved registers, are listed in Nios II ABI Register Usage Table in the Register Usage section. A
function prologue is required to save a callee-saved register only if the function uses the register.

Given the function prologue algorithm, when doing a back trace, a debugger can disassemble instructions
and reconstruct the processor state of the calling function.

7-6 Stack Frame for a Function with Structures Passed By Value
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: An even better way to find out what the prologue has done is to use information stored in the
DWARF-2 debugging fields of the executable and linkable format (.elf) file.

The instructions found in a Nios II function prologue perform the following tasks:

• Adjust the stack pointer (to allocate the frame)
• Store registers to the frame
• Set the frame pointer to the location of the saved frame pointer

Example 7-1: A function prologue

/* Adjust the stack pointer */
addi sp, sp, -16 /* make a 16-byte frame */

/* Store registers to the frame */
stw ra, 12(sp) /* store the return address */
stw fp, 8(sp) /* store the frame pointer*/
stw r16, 4(sp) /* store callee-saved register */
stw r17, 0(sp) /* store callee-saved register */

/* Set the new frame pointer */
addi fp, sp, 8

Related Information
Register Usage on page 7-2

Prologue Variations
The following variations can occur in a prologue:

• If the function’s frame size is greater than 32,767 bytes, extra temporary registers are used in the
calculation of the new stack pointer as well as for the offsets of where to store callee-saved registers. The
extra registers are needed because of the maximum size of immediate values allowed by the Nios II
processor.

• If the frame pointer is not in use, the final instruction, recalculating the frame pointer, is not generated.
• If variable arguments are used, extra instructions store the argument registers on the stack.
• If the compiler designates the function as a leaf function, the return address is not saved.
• If optimizations are on, especially instruction scheduling, the order of the instructions might change

and become interlaced with instructions located after the prologue.

Arguments and Return Values
This section discusses the details of passing arguments to functions and returning values from functions.

Arguments
The first 16 bytes to a function are passed in registers r4 through r7. The arguments are passed as if a
structure containing the types of the arguments were constructed, and the first 16 bytes of the structure are
located in r4 through r7.

A simple example:

int function (int a, int b);

NII51016
2016.10.28 Prologue Variations 7-7

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The equivalent structure representing the arguments is:

struct { int a; int b; };

The first 16 bytes of the struct are assigned to r4 through r7. Therefore r4 is assigned the value of a and
r5 the value of b.

The first 16 bytes to a function taking variable arguments are passed the same way as a function not taking
variable arguments. The called function must clean up the stack as necessary to support the variable
arguments.

Refer to Stack Frame for a Function with Variable Arguments

Related Information
Stack Frame for a Function with Variable Arguments on page 7-5

Return Values
Return values of types up to 8 bytes are returned in r2 and r3. For return values greater than 8 bytes, the
caller must allocate memory for the result and must pass the address of the result memory as a hidden
zero argument.

The hidden zero argument is best explained through an example.

Example 7-2: Returned struct

/* b() computes a structure-type result and returns it */
STRUCT b(int i, int j)
{
 ...
 return result;
}
void a(...)
{
 ...
 value = b(i, j);
}

In the example above, if the result type is no larger than 8 bytes, b() returns its result in r2 and r3.

If the return type is larger than 8 bytes, the Nios II C/C++ compiler treats this program as if a() had
passed a pointer to b(). The example below shows how the Nios II C/C++ compiler sees the code in the
Returned Struct example above.

Example 7-3: Returned struct is Larger than 8 Bytes

void b(STRUCT *p_result, int i, int j)
{
 ...
 *p_result = result;
}

void a(...)
{
 STRUCT value;
 ...

7-8 Return Values
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 b(&value, i, j);
}

DWARF-2 Definition
Registers r0 through r31 are assigned numbers 0 through 31 in all DWARF-2 debugging sections.

Object Files

Table 7-3: Nios II-Specific ELF Header Values

Member Value

e_ident[EI_CLASS] ELFCLASS32

e_ident[EI_DATA] ELFDATA2LSB

e_machine EM_ALTERA_NIOS2 == 113

Relocation
In a Nios II object file, each relocatable address reference possesses a relocation type. The relocation type
specifies how to calculate the relocated address. The bit mask specifies where the address is found in the
instruction.

Table 7-4: Nios II Relocation Calculation

Name Value Overflow

check
(46)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_NONE 0 n/a None n/a n/a
R_NIOS2_S16 1 Yes S + A 0x003FFFC0 6
R_NIOS2_U16 2 Yes S + A 0x003FFFC0 6
R_NIOS2_PCREL16 3 Yes ((S + A) – 4) – PC 0x003FFFC0 6
R_NIOS2_CALL26(47) 4 Yes (S + A) >> 2 0xFFFFFFC0 6
R_NIOS2_CALL26_NOAT 41 No (S + A) >> 2 0xFFFFFFC0 6
R_NIOS2_IMM5 5 Yes (S + A) & 0x1F 0x000007C0 6
R_NIOS2_CACHE_OPX 6 Yes (S + A) & 0x1F 0x07C00000 22

(46) For relocation types where no overflow check is performed, the relocated address is truncated to fit the
instruction.

(47) Linker is permitted to clobber register AT in the course of resolving overflows

NII51016
2016.10.28 DWARF-2 Definition 7-9

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Value Overflow

check
(46)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_IMM6 7 Yes (S + A) & 0x3F 0x00000FC0 6
R_NIOS2_IMM8 8 Yes (S + A) & 0xFF 0x00003FC0 6
R_NIOS2_HI16 9 No ((S + A) >> 16) &

0xFFFF
0x003FFFC0 6

R_NIOS2_LO16 10 No (S + A) & 0xFFFF 0x003FFFC0 6
R_NIOS2_HIADJ16 11 No Adj(S+A) 0x003FFFC0 6
R_NIOS2_BFD_RELOC_32 12 No S + A 0xFFFFFFFF 0
R_NIOS2_BFD_RELOC_16 13 Yes (S + A) & 0xFFFF 0x0000FFFF 0
R_NIOS2_BFD_RELOC_8 14 Yes (S + A) & 0xFF 0x000000FF 0
R_NIOS2_GPREL 15 No (S + A – GP) &

0xFFFF
0x003FFFC0 6

R_NIOS2_GNU_VTINHERIT 16 n/a None n/a n/a
R_NIOS2_GNU_VTENTRY 17 n/a None n/a n/a
R_NIOS2_UJMP 18 No ((S + A) >> 16) &

0xFFFF,

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_CJMP 19 No ((S + A) >> 16) &
0xFFFF,

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_CALLR 20 No ((S + A) >> 16) &
0xFFFF)

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_ALIGN 21 n/a None n/a n/a
R_NIOS2_GOT16 22(48) Yes G 0x003FFFC0 6
R_NIOS2_CALL16 23(48) Yes G 0x003FFFC0 6
R_NIOS2_GOTOFF_LO 24(48) No (S + A – GOT) &

0xFFFF
0x003FFFC0 6

R_NIOS2_GOTOFF_HA 25(48) No Adj (S + A – GOT) 0x003FFFC0 6

(46) For relocation types where no overflow check is performed, the relocated address is truncated to fit the
instruction.

7-10 Relocation
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Value Overflow

check
(46)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_PCREL_LO 26(48) No (S + A – PC) &
0xFFFF

0x003FFFC0 6

R_NIOS2_PCREL_HA 27(48) No Adj (S + A – PC) 0x003FFFC0 6
R_NIOS2_TLS_GD16 28(48) Yes Refer to Thread-

Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_LDM16 29(48) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_LDO16 30(48) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_IE16 31(48) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_LE16 32(48) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_DTPMOD 33(48) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_TLS_DTPREL 34(48) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_TLS_TPREL 35(48) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_COPY 36(48) No Refer to Copy
Relocation section.

n/a n/a

R_NIOS2_GLOB_DAT 37(48) No S 0xFFFFFFFF 0
R_NIOS2_JUMP_SLOT 38(48) No Refer to Jump Slot

Relocation section.
0xFFFFFFFF 0

R_NIOS2_RELATIVE 39(48) No BA+A 0xFFFFFFFF 0
R_NIOS2_GOTOFF 40(48) No S+A 0xFFFFFFFF 0
R_NIOS2_GOT_LO 42(48) No G & 0xFFFF 0x003FFFC0 6
R_NIOS2_GOT_HA 43(48) No Adj(G) 0x003FFFC0 6

(46) For relocation types where no overflow check is performed, the relocated address is truncated to fit the
instruction.

NII51016
2016.10.28 Relocation 7-11

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Value Overflow

check
(46)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_CALL_LO 44(48) No G & 0xFFFF 0x003FFFC0 6
R_NIOS2_CALL_HA 45(48) No Adj(G) 0x003FFFC0 6

Expressions in the table above use the following conventions:

• S: Symbol address
• A: Addend
• PC: Program counter
• GP: Global pointer
• Adj(X): (((X >> 16) & 0xFFFF) + ((X >> 15) & 0x1)) & 0xFFFF
• BA: The base address at which a shared library is loaded
• GOT: The value of the Global Offset Table (GOT) pointer (Linux only)
• G: The offset into the GOT for the GOT slot for symbol S (Linux only)

With the information in the table above, any Nios II instruction can be relocated by manipulating it as an
unsigned 32-bit integer, as follows:

Xr = ((R << B) & M | (X & ~M));

where:

• R is the relocated address, calculated in the above table
• B is the bit shift
• M is the bit mask
• X is the original instruction
• Xr is the relocated instruction

Related Information

• Jump Slot Relocation on page 7-14
• Copy Relocation on page 7-14
• Thread-Local Storage on page 7-14

ABI for Linux Systems
This section describes details specific to Linux systems beyond the Linux-specific information in Nios II
ABI Register Usage Table and the Nios II Relocation Calculation Table.

Related Information

• Relocation on page 7-9

(46) For relocation types where no overflow check is performed, the relocated address is truncated to fit the
instruction.

(48) Relocation support is provided for Linux systems.

7-12 ABI for Linux Systems
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Register Usage on page 7-2

Linux Toolchain Relocation Information
Dynamic relocations can appear in the runtime relocation sections of executables and shared objects, but
never appear in object files (with the exception of R_NIOS2_TLS_DTPREL, which is used for debug
information). No other relocations are dynamic.

Table 7-5: Dynamic Relocations

R_NIOS2_TLS_DTPMOD
R_NIOS2_TLS_DTPREL
R_NIOS2_TLS_TPREL
R_NIOS2_COPY
R_NIOS2_GLOB_DAT
R_NIOS2_JUMP_SLOT
R_NIOS2_RELATIVE

A global offset table (GOT) entry referenced using R_NIOS2_GOT16, R_NIOS2_GOT_LO and/or
R_NIOS2_GOT_HA must be resolved at load time. A GOT entry referenced only using
R_NIOS2_CALL16, R_NIOS2_CALL_LO and/or R_NIOS2_CALL_HA can initially refer to a procedure
linkage table (PLT) entry and then be resolved lazily.

Because the TP-relative relocations are 16-bit relocations, no dynamic object using local dynamic or local
executable thread-local storage (TLS) can have more than 64 KB of TLS data. New relocations might be
added to support this in the future.

Several new assembler operators are defined to generate the Linux-specific relocations, as listed in the
table below.

Table 7-6: Relocation and Operator

Relocation Operator

R_NIOS2_GOT16 %got

R_NIOS2_CALL16 %call

R_NIOS2_GOTOFF_LO %gotoff_hiadj

R_NIOS2_GOTOFF_HA %gotoff_lo

R_NIOS2_PCREL_LO %hiadj

R_NIOS2_PCREL_HA %lo

R_NIOS2_TLS_GD16 %tls_gd

R_NIOS2_TLS_LDM16 %tls_ldm

R_NIOS2_TLS_LDO16 %tls_ldo

R_NIOS2_TLS_IE16 %tls_ie

R_NIOS2_TLS_LE16 %tls_le

NII51016
2016.10.28 Linux Toolchain Relocation Information 7-13

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Relocation Operator

R_NIOS2_TLS_DTPREL %tls_ldo

R_NIOS2_GOTOFF %gotoff

R_NIOS2_GOT_LO %got_lo

R_NIOS2_GOT_HA %got_hiadj

R_NIOS2_CALL_LO %call_lo

R_NIOS2_CALL_HA %call_hiadj

The %hiadj and %lo operators generate PC-relative or non-PC-relative relocations, depending whether
the expression being relocated is PC-relative. For instance, %hiadj(_gp_got - .) generates
R_NIOS2_PCREL_HA. %tls_ldo generates R_NIOS2_TLS_LDO16 when used as an immediate
operand, and R_NIOS2_TLS_DTPREL when used with the .word directive.

Copy Relocation
The R_NIOS2_COPY relocation is used to mark variables allocated in the executable that are defined in a
shared library. The variable’s initial value is copied from the shared library to the relocated location.

Jump Slot Relocation
Jump slot relocations are used for the PLT.

For information about the PLT, refer to "Procedure Linkage Table" section.

Related Information

• Procedure Linkage Table on page 7-21
• Procedure Linkage Table on page 7-21

Thread-Local Storage
The Nios II processor uses the Variant I model for thread-local storage.

The end of the thread control block (TCB) is located 0x7000 bytes before the thread pointer. The TCB is
eight bytes long. The first word is the dynamic thread pointer (DTV) pointer and the second word is
reserved. Each module’s dynamic thread pointer is biased by 0x8000 (when retrieved using
__tls_get_addr). The thread library can store additional private information before the TCB.

In the GNU Linux toolchain, the GOT pointer (_gp_got) is always kept in r22, and the thread pointer is
always kept in r23.

In the following examples, any registers can be used, except that the argument to __tls_get_addr is
always passed in r4 and its return value is always returned in r2. Calls to __tls_get_addr must use the
normal position-independent code (PIC) calling convention in PIC code; these sequences are for example
only, and the compiler might generate different sequences. No linker relaxations are defined.

Example 7-4: General Dynamic Model

addi r4, r22, %tls_gd(x) # R_NIOS2_TLS_GD16 x
call __tls_get_addr # R_NIOS2_CALL26 __tls_get_addr
Address of x in r2

7-14 Copy Relocation
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the general dynamic model, a two-word GOT slot is allocated for x, as shown in "GOT Slot for General
Dynamic Model" example.

Example 7-5: GOT Slot for General Dynamic Model

GOT[n] R_NIOS2_TLS_DTPMOD x
GOT[n+1] R_NIOS2_TLS_DTPREL x

Example 7-6: Local Dynamic Model

addi r4, r22, %tls_ldm(x) # R_NIOS2_TLS_LDM16 x
call __tls_get_addr # R_NIOS2_CALL26 __tls_get_addr
addi r5, r2, %tls_ldo(x) # R_NIOS2_TLS_LDO16 x
Address of x in r5
ldw r6, %tls_ldo(x2)(r2) # R_NIOS2_TLS_LDO16 x2
Value of x2 in r6

One 2-word GOT slot is allocated for all R_NIOS2_TLS_LDM16 operations in the linked object. Any
thread-local symbol in this object can be used, as shown in "GOT Slot with Thread-Local Storage"
example.

Example 7-7: GOT Slot with Thread-Local Storage

GOT[n] R_NIOS2_TLS_DTPMOD x
GOT[n+1] 0

Example 7-8: Initial Exec Model

ldw r4, %tls_ie(x)(r22) # R_NIOS2_TLS_IE16 x
add r4, r23, r4
Address of x in r4

A single GOT slot is allocated to hold the offset of x from the thread pointer, as shown in "GOT SLot for
Initial Exec Model" example.

Example 7-9: GOT Slot for Initial Exec Model

GOT[n] R_NIOS2_TLS_TPREL x

NII51016
2016.10.28 Thread-Local Storage 7-15

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-10: Local Exec Model

addi r4, r23, %tls_le(x) # R_NIOS2_TLS_LE16 x
Address of x in r4

There is no GOT slot associated with the local exec model.

Debug information uses the GNU extension DW_OP_GNU_push_tls_address.

Example 7-11: Debug Information

.byte 0x03 # DW_OP_addr

.word %tls_ldo(x) # R_NIOS2_TLS_DTPREL x

.byte 0xe0 # DW_OP_GNU_push_tls_address

Linux Function Calls
Register r23 is reserved for the thread pointer on GNU Linux systems. It is initialized by the C library and
it may be used directly for TLS access, but not modified. On non-Linux systems r23 is a general-purpose,
callee-saved register.

The global pointer, r26 or gp, is globally fixed. It is initialized in startup code and always valid on entry to
a function. This method does not allow for multiple gp values, so gp-relative data references are only
possible in the main application (that is, from position dependent code). gp is only used for small data
access, not GOT access, because code compiled as PIC may be used from shared libraries. The linker may
take advantage of gp for shorter PLT sequences when the addresses are in range. The compiler needs an
option to disable use of gprel; the option is necessary for applications with excessive amounts of small
data. For comparison, XUL (Mozilla display engine, 16 MB code, 2 MB data) has only 27 KB of small data
and the limit is 64 KB. This option is separate from -G 0, because -G 0 creates ABI incompatibility. A file
compiled with -G 0 puts global int variables into .data but files compiled with -G 8 expect such int
variables to be in .sdata.

PIC code which needs a GOT pointer needs to initialize the pointer locally using nextpc; the GOT pointer
is not passed during function calls. This approach is compatible with both static relocatable binaries and
System V style shared objects. A separate ABI is needed for shared objects with independently relocatable
text and data.

Stack alignment is 32-bit. The frame pointer points at the top of the stack when it is in use, to simplify
backtracing. Insert alloca between the local variables and the outgoing arguments. The stack pointer
points to the bottom of the outgoing argument area.

A large struct return value is handled by passing a pointer in the first argument register (not the disjoint
return value register).

Linux Operating System Call Interface

Table 7-7: Signals for Unhandled Instruction-Related Exceptions

Exception Signal

Supervisor-only instruction address SIGSEGV

7-16 Linux Function Calls
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Signal

TLB permission violation (execute) SIGSEGV

Supervisor-only instruction SIGILL

Unimplemented instruction SIGILL

Illegal instruction SIGILL

Break instruction SIGTRAP

Supervisor-only data address SIGSEGV

Misaligned data address SIGBUS

Misaligned destination address SIGBUS

Division error SIGFPE

TLB Permission Violation (read) SIGSEGV

TLB Permission Violation (write) SIGSEGV

There are no floating-point exceptions. The optional floating point unit (FPU) does not support exceptions
and any process wanting exact IEEE conformance needs to use a soft-float library (possibly accelerated by
use of the attached FPU).

The break instruction in a user process might generate a SIGTRAP signal for that process, but is not
required to. Userspace programs should not use the break instruction and userspace debuggers should not
insert one. If no hardware debugger is connected, the OS should assure that the break instruction does
not cause the system to stop responding.

For information about userspace debugging, refer to "Userspace Breakpoints”.

The page size is 4 KB. Virtual addresses in user mode are all below 2 GB due to the MMU design. The
NULL page is not mapped.

Related Information
Userspace Breakpoints on page 7-23

Linux Process Initialization
The stack pointer, sp, points to the argument count on the stack.

Table 7-8: Stack Initial State at User Process Start

Purpose Start Address Length

Unspecified High addresses
Referenced strings Varies
Unspecified
Null auxilliary vector entry 4 bytes
Auxilliary vector entries 8 bytes each
NULL terminator for envp 4 bytes

NII51016
2016.10.28 Linux Process Initialization 7-17

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Purpose Start Address Length

Environment pointers sp + 8 + 4 × argc 4 bytes each
NULL terminator for argv sp + 4 + 4 × argc 4 bytes
Argument pointers sp + 4 4 bytes each
Argument count sp 4 bytes
Unspecified Low addresses

If the application should register a destructor function with atexit, the pointer is placed in r4. Otherwise
r4 is zero.

The contents of all other registers are unspecified. User code should set fp to zero to mark the end of the
frame chain.

The auxiliary vector is a series of pairs of 32-bit tag and 32-bit value, terminated by an AT_NULL tag.

Linux Position-Independent Code
Every position-independent code (PIC) function which uses global data or global functions must load the
value of the GOT pointer into a register. Any available register may be used. If a caller-saved register is
used the function must save and restore it around calls. If a callee-saved register is used it must be saved
and restored around the current function. Examples in this document use r22 for the GOT pointer.

The GOT pointer is loaded using a PC-relative offset to the _gp_got symbol, as shown below.

Example 7-12: Loading the GOT Pointer

nextpc r22
1:
 orhi r1, %hiadj(_gp_got - 1b) # R_NIOS2_PCREL_HA _gp_got
 addi r1, r1, %lo(_gp_got - 1b) # R_NIOS2_PCREL_LO _gp_got - 4
 add r22, r22, r1
 # GOT pointer in r22

Data may be accessed by loading its location from the GOT. A single word GOT entry is generated for
each referenced symbol.

Example 7-13: Small GOT Model Entry for Global Symbols

addi r3, r22, %got(x) # R_NIOS2_GOT16

GOT[n] R_NIOS2_GLOB_DAT x

Example 7-14: Large GOT Model Entry for Global Symbols

movhi r3, %got_hiadj(x) # R_NIOS2_GOT_HA
addi r3, r3, %got_lo(x) # R_NIOS2_GOT_LO
add r3, r3, r22

7-18 Linux Position-Independent Code
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

GOT[n] R_NIOS2_GLOB_DAT x

For local symbols, the symbolic reference to x is replaced by a relative relocation against symbol zero, with
the link time address of x as an addend, as shown in the example below.

Example 7-15: Local Symbols for small GOT Model

addi r3, r22, %got(x) # R_NIOS2_GOT16

GOT[n] R_NIOS2_RELATIVE +x

Example 7-16: Local Symbols for large GOT Model

movhi r3, %got_hiadj(x) # R_NIOS2_GOT_HA
addi r3, r3, %got_lo(x) # R_NIOS2_GOT_LO
add r3, r3, r22

GOT[n] R_NIOS2_RELATIVE +x

The call and jmpi instructions are not available in position-independent code. Instead, all calls are made
through the GOT. Function addresses may be loaded with %call, which allows lazy binding. To initialize a
function pointer, load the address of the function with %got instead. If no input object requires the address
of the function its GOT entry is placed in the PLT GOT for lazy binding, as shown in the example below.

For information about the PLT, refer to the "Procedure Linkage Table" section.

Example 7-17: Small GOT Model entry in PLT GOT

ldw r3, %call(fun)(r22) # R_NIOS2_CALL16 fun
callr r3

PLTGOT[n] R_NIOS_JUMP_SLOT fun

Example 7-18: Large GOT Model entry in PLT GOT

movhi r3, %call_hiadj(x) # R_NIOS2_CALL_HA
addi r3, r3, %call_lo(x) # R_NIOS2_CALL_LO
add r3, r3, r22
ldw r3, 0(r3)
callr r3

PLTGOT[n] R_NIOS_JUMP_SLOT fun

When a function or variable resides in the current shared object at compile time, it can be accessed via a
PC-relative or GOT-relative offset, as shown below.

NII51016
2016.10.28 Linux Position-Independent Code 7-19

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-19: Accessing Function or Variable in Current Shared Object

orhi r3, %gotoff_hiadj(x) # R_NIOS2_GOTOFF_HA x
addi r3, r3, %gotoff_lo(x) # R_NIOS2_GOTOFF_LO x
add r3, r22, r3
Address of x in r3

Multiway branches such as switch statements can be implemented with a table of GOT-relative offsets, as
shown below.

Example 7-20: Switch Statement Implemented with Table

Scaled table offset in r4
 orhi r3, %gotoff_hiadj(Ltable) # R_NIOS2_GOTOFF_HA Ltable
 addi r3, r3, %gotoff_lo(Ltable) # R_NIOS2_GOTOFF_LO Ltable
 add r3, r22, r3 # r3 == &Ltable
 add r3, r3, r4
 ldw r4, 0(r3) # r3 == Ltable[index]
 add r4, r4, r22 # Convert offset into destina-
tion
 jmp r4
 ...
Ltable:
 .word %gotoff(Label1)
 .word %gotoff(Label2)
 .word %gotoff(Label3)

Related Information
Procedure Linkage Table on page 7-21

Linux Program Loading and Dynamic Linking

Global Offset Table
Because shared libraries are position-independent, they can not contain absolute addresses for symbols.
Instead, addresses are loaded from the GOT.

The first word of the GOT is filled in by the link editor with the unrelocated address of the _DYNAMIC,
which is at the start of the dynamic section. The second and third words are reserved for the dynamic
linker.

For information about the dynamic linker, refer to the "Procedure Linkage Table” section.

The linker-defined symbol _GLOBAL_OFFSET_TABLE_ points to the reserved entries at the beginning of the
GOT. The linker-defined symbol _gp_got points to the base address used for GOT-relative relocations.
The value of _gp_got might vary between object files if the linker creates multiple GOT sections.

Related Information
Procedure Linkage Table on page 7-21

7-20 Linux Program Loading and Dynamic Linking
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function Addresses
Function addresses use the same SHN_UNDEF and st_value convention for PLT entries as in other
architectures, such as x86_64.

Procedure Linkage Table

Function calls in a position-dependent executable may use the call and jmpi instructions, which address
the contents of a 256-MB segment. They may also use the %lo, %hi, and %hiadj operators to take the
address of a function. If the function is in another shared object, the link editor creates a callable stub in
the executable called a PLT entry. The PLT entry loads the address of the called function from the PLT
GOT (a region at the start of the GOT) and transfers control to it.

The PLT GOT entry needs a relocation referring to the final symbol, of type R_NIOS2_JUMP_SLOT. The
dynamic linker may immediately resolve it, or may leave it unmodified for lazy binding. The link editor
fills in an initial value pointing to the lazy binding stubs at the start of the PLT section.

Each PLT entry appears as shown in the example below.

Example 7-21: PLT Entry

.PLTn:
 orhi r15, r0, %hiadj(plt_got_slot_address)
 ldw r15, %lo(plt_got_slot_address)(r15)
 jmp r15

The example below shows the PLT entry when the PLT GOT is close enough to the small data area for a
relative jump.

Example 7-22: PLT Entry Near Small Data Area

.PLTn:
 ldw r15, %gprel(plt_got_slot_address)(gp)
 jmp r15

Example 7-23: Initial PLT Entry

res_0:
 br .PLTresolve
 ...
.PLTresolve:
 orhi r14, r0, %hiadj(res_0)
 addi r14, r14, %lo(res_0)
 sub r15, r15, r14
 orhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_)
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

In front of the initial PLT entry, a series of branches start of the initial entry (the nextpc instruction).
There is one branch for each PLT entry, labelled res_0 through res_N. The last several branches may be

NII51016
2016.10.28 Function Addresses 7-21

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

replaced by nop instructions to improve performance. The link editor arranges for the Nth PLT entry to
point to the Nth branch; res_N – res_0 is four times the index into the .rela.plt section for the
corresponding R_JUMP_SLOT relocation.

The dynamic linker initializes GOT[1] to a unique identifier for each library and GOT[2] to the address of
the runtime resolver routine. In order for the two loads in .PLTresolve to share the same %hiadj,
_GLOBAL_OFFSET_TABLE_ must be aligned to a 16-byte boundary.

The runtime resolver receives the original function arguments in r4 through r7, the shared library
identifier from GOT[1] in r14, and the relocation index times four in r15. The resolver updates the
corresponding PLT GOT entry so that the PLT entry transfers control directly to the target in the future,
and then transfers control to the target.

In shared objects, the call and jmpi instructions can not be used because the library load address is not
known at link time. Calls to functions outside the current shared object must pass through the GOT. The
program loads function addresses using %call, and the link editor may arrange for such entries to be
lazily bound. Because PLT entries are only used for lazy binding, shared object PLTs are smaller, as shown
below.

Example 7-24: Shared Object PLT

.PLTn:
 orhi r15, r0, %hiadj(index * 4)
 addi r15, r15, %lo(index * 4)
 br .PLTresolve

Example 7-25: Initial PLT Entry

.PLTresolve:
 nextpc r14
 orhi r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_)
 add r13, r13, r14
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

If the initial PLT entry is out of range, the resolver can be inline, because it is only one instruction longer
than a long branch, as shown below.

Example 7-26: Initial PLT Entry Out of Range

.PLTn:
 orhi r15, r0, %hiadj(index * 4)
 addi r15, r15, %lo(index * 4)
 nextpc r14
 orhi r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_)
 add r13, r13, r14
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

7-22 Procedure Linkage Table
NII51016

2016.10.28

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Linux Program Interpreter
The program interpreter is /lib/ld.so.1.

Linux Initialization and Termination Functions
The implementation is responsible for calling DT_INIT(), DT_INIT_ARRAY(), DT_PREINIT_ARRAY(),
DT_FINI(), and DT_FINI_ARRAY().

Linux Conventions

System Calls
The Linux system call interface relies on the trap instruction with immediate argument zero. The system
call number is passed in register r2. The arguments are passed in r4, r5, r6, r7, r8, and r9 as necessary.
The return value is written in r2 on success, or a positive error number is written to r2 on failure. A flag
indicating successful completion, to distinguish error values from valid results, is written to r7; 0 indicates
syscall success and 1 indicates r2 contains a positive errno value.

Userspace Breakpoints
Userspace breakpoints are accomplished using the trap instruction with immediate operand 31 (all ones).
The OS must distinguish this instruction from a trap 0 system call and generate a trap signal.

Atomic Operations
The Nios II architecture does not have atomic operations (such as load linked and store conditional).
Atomic operations are emulated using a kernel system call via the trap instruction. The toolchain provides
intrinsic functions which perform the system call. Applications must use those functions rather than the
system call directly. Atomic operations may be added in a future processor extension.

Processor Requirements
Linux requires that a hardware multiplier be present. The full 64-bit multiplier (mulx instructions) is not
required.

Development Environment
The following symbols are defined:

• __nios2

• __nios2__

• __NIOS2

• __NIOS2__

Document Revision History

Table 7-9: Document Revision History

Date Version Changes

October 2016 2016.10.28 Maintenance release

April 2015 2015.04.02 Initial release

NII51016
2016.10.28 Linux Program Interpreter 7-23

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII51016%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Set Reference 8
2016.10.28

NII51017 Subscribe Send Feedback

This section introduces the Nios® II instruction word format and provides a detailed reference of the
Nios II instruction set.

Word Formats
There are three types of Nios II instruction word format: I-type, R-type, and J-type.

I-Type
The defining characteristic of the I-type instruction word format is that it contains an immediate value
embedded within the instruction word. I-type instructions words contain:

• A 6-bit opcode field OP
• Two 5-bit register fields A and B
• A 16-bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field B specifies the destination
register. IMM16 is considered signed except for logical operations and unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi and andi; branch operations;
load and store operations; and cache management operations.

Table 8-1: I-Type Instruction Format

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 OP

R-Type
The defining characteristic of the R-type instruction word format is that all arguments and results are
specified as registers. R-type instructions contain:

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus and Stratix words and logos
are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants
performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51017
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51017%202016.10.28)%20Instruction%20Set%20Reference&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• A 6-bit opcode field OP
• Three 5-bit register fields A, B, and C
• An 11-bit opcode-extension field OPX

In most cases, fields A and B specify the source operands, and field C specifies the destination register.

Some R-Type instructions embed a small immediate value in the five low-order bits of OPX. Unused bits
in OPX are always 0.

R-type instructions include arithmetic and logical operations such as add and nor; comparison operations
such as cmpeq and cmplt; the custom instruction; and other operations that need only register operands.

Table 8-2: R-Type Instruction Format

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C OPX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPX OP

J-Type
J-type instructions contain:

• A 6-bit opcode field
• A 26-bit immediate data field

J-type instructions, such as call and jmpi, transfer execution anywhere within a 256-MB range.

Table 8-3: J-Type Instruction Format

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IMM26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 OP

Instruction Opcodes
The OP field in the Nios II instruction word specifies the major class of an opcode as listed in the two
tables below. Most values of OP are encodings for I-type instructions. One encoding, OP = 0x00, is the J-
type instruction call. Another encoding, OP = 0x3a, is used for all R-type instructions, in which case, the
OPX field differentiates the instructions. All undefined encodings of OP and OPX are reserved.

8-2 J-Type
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-4: OP Encodings

OP Instruction OP Instruction OP Instruction OP Instruction

0x00 call 0x10 cmplti 0x20 cmpeqi 0x30 cmpltui

0x01 jmpi 0x11 0x21 0x31

0x02 0x12 0x22 0x32 custom

0x03 ldbu 0x13 initda 0x23 ldbuio 0x33 initd

0x04 addi 0x14 ori 0x24 muli 0x34 orhi

0x05 stb 0x15 stw 0x25 stbio 0x35 stwio

0x06 br 0x16 blt 0x26 beq 0x36 bltu

0x07 ldb 0x17 ldw 0x27 ldbio 0x37 ldwio

0x08 cmpgei 0x18 cmpnei 0x28 cmpgeui 0x38 rdprs

0x09 0x19 0x29 0x39

0x0A 0x1A 0x2A 0x3A R-type
0x0B ldhu 0x1B flushda 0x2B ldhuio 0x3B flushd

0x0C andi 0x1C xori 0x2C andhi 0x3C xorhi

0x0D sth 0x1D 0x2D sthio 0x3D

0x0E bge 0x1E bne 0x2E bgeu 0x3E

0x0F ldh 0x1F 0x2F ldhio 0x3F

Table 8-5: OPX Encodings for R-Type Instructions

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

0x00 0x10 cmplt 0x20 cmpeq 0x30 cmpltu

0x01 eret 0x11 0x21 0x31 add

0x02 roli 0x12 slli 0x22 0x32

0x03 rol 0x13 sll 0x23 0x33

0x04 flushp 0x14 wrprs 0x24 divu 0x34 break

0x05 ret 0x15 0x25 div 0x35

0x06 nor 0x16 or 0x26 rdctl 0x36 sync

0x07 mulxuu 0x17 mulxsu 0x27 mul 0x37

0x08 cmpge 0x18 cmpne 0x28 cmpgeu 0x38

0x09 bret 0x19 0x29 initi 0x39 sub

0x0A 0x1A srli 0x2A 0x3A srai

0x0B ror 0x1B srl 0x2B 0x3B sra

0x0C flushi 0x1C nextpc 0x2C 0x3C

0x0D jmp 0x1D callr 0x2D trap 0x3D

NII51017
2016.10.28 Instruction Opcodes 8-3

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

0x0E and 0x1E xor 0x2E wrctl 0x3E

0x0F 0x1F mulxss 0x2F 0x3F

Assembler Pseudo-Instructions
Pseudo-instructions are used in assembly source code like regular assembly instructions. Each pseudo-
instruction is implemented at the machine level using an equivalent instruction. The movia pseudo-
instruction is the only exception, being implemented with two instructions. Most pseudo-instructions do
not appear in disassembly views of machine code.

Table 8-6: Assembler Pseudo-Instructions

Pseudo-Instruction Equivalent Instruction

bgt rA, rB, label blt rB, rA, label

bgtu rA, rB, label bltu rB, rA, label

ble rA, rB, label bge rB, rA, label

bleu rA, rB, label bgeu rB, rA, label

cmpgt rC, rA, rB cmplt rC, rB, rA

cmpgti rB, rA, IMMED cmpgei rB, rA, (IMMED+1)

cmpgtu rC, rA, rB cmpltu rC, rB, rA

cmpgtui rB, rA, IMMED cmpgeui rB, rA, (IMMED+1)

cmple rC, rA, rB cmpge rC, rB, rA

cmplei rB, rA, IMMED cmplti rB, rA, (IMMED+1)

cmpleu rC, rA, rB cmpgeu rC, rB, rA

cmpleui rB, rA, IMMED cmpltui rB, rA, (IMMED+1)

mov rC, rA add rC, rA, r0

movhi rB, IMMED orhi rB, r0, IMMED

movi rB, IMMED addi, rB, r0, IMMED

movia rB, label orhi rB, r0, %hiadj(label)

addi, rB, r0, %lo(label)

movui rB, IMMED ori rB, r0, IMMED

nop add r0, r0, r0

subi rB, rA, IMMED addi rB, rA, (-IMMED)

Refer to the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more
information about global pointers.

8-4 Assembler Pseudo-Instructions
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Application Binary Interface on page 7-1

Assembler Macros
The Nios II assembler provides macros to extract halfwords from labels and from 32-bit immediate values.
These macros return 16-bit signed values or 16-bit unsigned values depending on where they are used.
When used with an instruction that requires a 16-bit signed immediate value, these macros return a value
ranging from –32768 to 32767. When used with an instruction that requires a 16-bit unsigned immediate
value, these macros return a value ranging from 0 to 65535.

Table 8-7: Assembler Macros

Macro Description Operation

%lo(immed32) Extract bits [15..0] of immed32 immed32 & 0xFFFF
%hi(immed32) Extract bits [31..16] of immed32 (immed32 >> 16) & 0xFFFF
%hiadj(immed32) Extract bits [31..16] and adds bit 15 of

immed32
((immed32 >> 16) & 0xFFFF) +

((immed32 >> 15) & 0x1)

%gprel(immed32) Replace the immed32 address with an
offset from the global pointer

immed32 –_gp

Refer to the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more
information about global pointers.

Related Information
Application Binary Interface on page 7-1

Instruction Set Reference
The following pages list all Nios II instruction mnemonics in alphabetical order.

Table 8-8: Notation Conventions

Notation Meaning

X ← Y X is written with Y
PC ← X The program counter (PC) is written with address X; the instruction at X is the

next instruction to execute
PC The address of the assembly instruction in question
rA, rB, rC One of the 32-bit general-purpose registers
prs.rA General-purpose register rA in the previous register set
IMMn An n-bit immediate value, embedded in the instruction word
IMMED An immediate value

NII51017
2016.10.28 Assembler Macros 8-5

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Notation Meaning

Xn The nth bit of X, where n = 0 is the LSB
Xn..m Consecutive bits n through m of X
0xNNMM Hexadecimal notation
X : Y Bitwise concatenation

For example, (0x12 : 0x34) = 0x1234
σ(X) The value of X after being sign-extended to a full register-sized signed integer
X >> n The value X after being right-shifted n bit positions
X << n The value X after being left-shifted n bit positions
X & Y Bitwise logical AND
X | Y Bitwise logical OR
X ^ Y Bitwise logical XOR
~X Bitwise logical NOT (one’s complement)
Mem8[X] The byte located in data memory at byte address X
Mem16[X] The halfword located in data memory at byte address X
Mem32[X] The word located in data memory at byte address X
label An address label specified in the assembly file
(signed) rX The value of rX treated as a signed number
(unsigned) rX The value of rX treated as an unsigned number

Note: All register operations apply to the current register set, except as noted.

The following exceptions are not listed for each instruction because they can occur on any instruction
fetch:

• Supervisor-only instruction address
• Fast TLB miss (instruction)
• Double TLB miss (instruction)
• TLB permission violation (execute)
• MPU region violation (instruction)

For information about these and all Nios II exceptions, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

Related Information
Programming Model on page 3-1

add

Instruction add
Operation rC ← rA + rB

8-6 add
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Syntax add rC, rA, rB

Example add r6, r7, r8

Description Calculates the sum of rA and rB. Stores the result in rC. Used
for both signed and unsigned addition.

Usage Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be
detected by checking whether the unsigned sum is less than one
of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the
carry condition. The following code shows both cases:

add rC, rA, rB

cmpltu rD, rC, rA

add rC, rA, rB

bltu rC, rA, label

The original add operation

rD is written with the carry bit

The original add operation

Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the
sum is negative, or when two negatives are added and the sum
is positive. The overflow condition can control a conditional
branch, as shown in the following code:

add rC, rA, rB

xor rD, rC, rA

xor rE, rC, rB

and rD, rD, rE

blt rD, r0,label

The original add operation

Compare signs of sum and rA

Compare signs of sum and rB

Combine comparisons

Branch if overflow occurred

Exceptions None

Instruction Type R

NII51017
2016.10.28 add 8-7

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x31 0 0x3A

addi

Instruction addi
Operation rB ← rA + σ(IMM16)

Assembler Syntax addi rB, rA, IMM16

Example addi r6, r7, -100

Description Sign-extends the 16-bit immediate value and adds it to the
value of rA. Stores the sum in rB.

8-8 addi
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be
detected by checking whether the unsigned sum is less than one
of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the
carry condition. The following code shows both cases:

addi rB, rA, IMM16

cmpltu rD, rB, rA

addi rB, rA, IMM16

bltu rB, rA, label

The original add operation

rD is written with the carry bit

The original add operation

Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the
sum is negative, or when two negatives are added and the sum
is positive. The overflow condition can control a conditional
branch, as shown in the following code:

addi rB, rA, IMM16

xor rC, rB, rA

xorhi rD, rB, IMM16

and rC, rC, rD

blt rC, r0,label

The original add operation

Compare signs of sum and rA

Compare signs of sum and IMM16

Combine comparisons

Branch if overflow occurred

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

NII51017
2016.10.28 addi 8-9

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x04

and

Instruction bitwise logical and
Operation rC ← rA & rB

Assembler Syntax and rC, rA, rB

Example and r6, r7, r8

Description Calculates the bitwise logical AND of rA and rB and stores the
result in rC.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x0e

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0e 0 0x3A

andhi

Instruction bitwise logical and immediate into high halfword
Operation rB ← rA & (IMM16 : 0x0000)

Assembler Syntax andhi rB, rA, IMM16

8-10 and
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example andhi r6, r7, 100

Description Calculates the bitwise logical AND of rA and (IMM16 : 0x0000)
and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2c

andi

Instruction bitwise logical and immediate
Operation rB ← rA & (0x0000 : IMM16)

Assembler Syntax andi rB, rA, IMM16

Example andi r6, r7, 100

Description Calculates the bitwise logical AND of rA and (0x0000 : IMM16)
and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NII51017
2016.10.28 andi 8-11

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0c

beq

Instruction branch if equal
Operation if (rA == rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax beq rA, rB, label

Example beq r6, r7, label

Description If rA == rB, then beq transfers program control to the instruc‐
tion at label. In the instruction encoding, the offset given by
IMM16 is treated as a signed number of bytes relative to the
instruction immediately following beq. The two least-significant
bits of IMM16 are always zero, because instruction addresses
must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x26

bge

8-12 beq
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction branch if greater than or equal signed
Operation if ((signed) rA >= (signed) rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax bge rA, rB, label

Example bge r6, r7, top_of_loop

Description If (signed) rA >= (signed) rB, then bge transfers program
control to the instruction at label. In the instruction encoding,
the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bge. The
two least-significant bits of IMM16 are always zero, because
instruction addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0e

bgeu

Instruction branch if greater than or equal unsigned
Operation if ((unsigned) rA >= (unsigned) rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax bgeu rA, rB, label

Example bgeu r6, r7, top_of_loop

NII51017
2016.10.28 bgeu 8-13

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If (unsigned) rA >= (unsigned) rB, then bgeu transfers program
control to the instruction at label. In the instruction encoding,
the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bgeu.
The two least-significant bits of IMM16 are always zero, because
instruction addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2e

bgt

Instruction branch if greater than signed
Operation if ((signed) rA > (signed) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax bgt rA, rB, label

Example bgt r6, r7, top_of_loop

Description If (signed) rA > (signed) rB, then bgt transfers program control
to the instruction at label.

Pseudo-instruction bgt is implemented with the blt instruction by swapping the
register operands.

bgtu

Instruction branch if greater than unsigned

8-14 bgt
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation if ((unsigned) rA > (unsigned) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax bgtu rA, rB, label

Example bgtu r6, r7, top_of_loop

Description If (unsigned) rA > (unsigned) rB, then bgtu transfers program
control to the instruction at label.

Pseudo-instruction bgtu is implemented with the bltu instruction by swapping the
register operands.

ble

Instruction branch if less than or equal signed
Operation if ((signed) rA <= (signed) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax ble rA, rB, label

Example ble r6, r7, top_of_loop

Description If (signed) rA <= (signed) rB, then ble transfers program
control to the instruction at label.

Pseudo-instruction ble is implemented with the bge instruction by swapping the
register operands.

bleu

Instruction branch if less than or equal to unsigned
Operation if ((unsigned) rA <= (unsigned) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax bleu rA, rB, label

Example bleu r6, r7, top_of_loop

NII51017
2016.10.28 ble 8-15

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If (unsigned) rA <= (unsigned) rB, then bleu transfers program
counter to the instruction at label.

Pseudo-instruction bleu is implemented with the bgeu instruction by swapping the
register operands.

blt

Instruction branch if less than signed
Operation if ((signed) rA < (signed) rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax blt rA, rB, label

Example blt r6, r7, top_of_loop

Description If (signed) rA < (signed) rB, then blt transfers program control
to the instruction at label. In the instruction encoding, the
offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following blt. The two
least-significant bits of IMM16 are always zero, because instruc‐
tion addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x16

bltu

Instruction branch if less than unsigned

8-16 blt
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation if ((unsigned) rA < (unsigned) rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax bltu rA, rB, label

Example bltu r6, r7, top_of_loop

Description If (unsigned) rA < (unsigned) rB, then bltu transfers program
control to the instruction at label. In the instruction encoding,
the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bltu.
The two least-significant bits of IMM16 are always zero, because
instruction addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x36

bne

Instruction branch if not equal
Operation if (rA != rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax bne rA, rB, label

Example bne r6, r7, top_of_loop

NII51017
2016.10.28 bne 8-17

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If rA != rB, then bne transfers program control to the instruc‐
tion at label. In the instruction encoding, the offset given by
IMM16 is treated as a signed number of bytes relative to the
instruction immediately following bne. The two least-significant
bits of IMM16 are always zero, because instruction addresses
must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x1e

br

Instruction unconditional branch
Operation PC ← PC + 4 + σ(IMM16)

Assembler Syntax br label

Example br top_of_loop

Description Transfers program control to the instruction at label. In the
instruction encoding, the offset given by IMM16 is treated as a
signed number of bytes relative to the instruction immediately
following br. The two least-significant bits of IMM16 are always
zero, because instruction addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields IMM16 = 16-bit signed immediate value

8-18 br
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x06

break

Instruction debugging breakpoint
Operation bstatus ← status

PIE ← 0

U ← 0

ba ← PC + 4

PC ← break handler address

Assembler Syntax break

break imm5

Example break

Description Breaks program execution and transfers control to the debugger
break-processing routine. Saves the address of the next instruc‐
tion in register ba and saves the contents of the status register
in bstatus. Disables interrupts, then transfers execution to the
break handler.

The 5-bit immediate field imm5 is ignored by the processor, but
it can be used by the debugger.

break with no argument is the same as break 0.

Usage break is used by debuggers exclusively. Only debuggers should
place break in a user program, operating system, or exception
handler. The address of the break handler is specified with the
Nios_II Processor parameter editor in Qsys.

Some debuggers support break and break 0 instructions in
source code. These debuggers treat the break instruction as a
normal breakpoint.

Exceptions Break

Instruction Type R

Instruction Fields IMM5 = Type of breakpoint

NII51017
2016.10.28 break 8-19

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0x1e 0x34

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x34 IMM5 0x3a

bret

Instruction breakpoint return
Operation status ← bstatus

PC ← ba

Assembler Syntax bret

Example bret

Description Copies the value of bstatus to the status register, then
transfers execution to the address in ba.

Usage bret is used by debuggers exclusively and should not appear in
user programs, operating systems, or exception handlers.

Exceptions Misaligned destination address

Supervisor-only instruction

Instruction Type R

Instruction Fields None

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x1e 0 0x1e 0x09

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x09 0 0x3a

call

Instruction call subroutine

8-20 bret
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation ra ← PC + 4

PC ← (PC31..28 : IMM26 x 4)

Assembler Syntax call label

Example call write_char

Description Saves the address of the next instruction in register ra, and
transfers execution to the instruction at address (PC31..28 :
IMM26 x 4).

Usage call can transfer execution anywhere within the 256-MB range
determined by PC31..28. The Nios II GNU linker does not
automatically handle cases in which the address is out of this
range.

Exceptions None

Instruction Type J

Instruction Fields IMM26 = 26-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IMM26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0

callr

Instruction call subroutine in register
Operation ra ← PC + 4

PC ← rA

Assembler Syntax callr rA

Example callr r6

Description Saves the address of the next instruction in the return address
register, and transfers execution to the address contained in
register rA.

Usage callr is used to dereference C-language function pointers.

NII51017
2016.10.28 callr 8-21

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exceptions Misaligned destination address

Instruction Type R

Instruction Fields A = Register index of operand rA

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0x1f 0x1d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1d 0 0x3a

cmpeq

Instruction compare equal
Operation if (rA == rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpeq rC, rA, rB

Example cmpeq r6, r7, r8

Description If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC.

Usage cmpeq performs the == operation of the C programming
language. Also, cmpeq can be used to implement the C logical
negation operator “!”.

cmpeq rC, rA, r0

Implements rC = !rA

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

8-22 cmpeq
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x20 0 0x3a

cmpeqi

Instruction compare equal immediate
Operation if (rA σ(IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpeqi rB, rA, IMM16

Example cmpeqi r6, r7, 100

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA == σ(IMM16), cmpeqi
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpeqi performs the == operation of the C programming
language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x20

NII51017
2016.10.28 cmpeqi 8-23

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

cmpge

Instruction compare greater than or equal signed
Operation if ((signed) rA >= (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpge rC, rA, rB

Example cmpge r6, r7, r8

Description If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpge performs the signed >= operation of the C programming
language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x08 0 0x3a

cmpgei

Instruction compare greater than or equal signed immediate
Operation if ((signed) rA >= (signed) σ(IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpgei rB, rA, IMM16

Example cmpgei r6, r7, 100

8-24 cmpge
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA >= σ(IMM16), then cmpgei
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpgei performs the signed >= operation of the C program‐
ming language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x08

cmpgeu

Instruction compare greater than or equal unsigned
Operation if ((unsigned) rA >= (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpgeu rC, rA, rB

Example cmpgeu r6, r7, r8

Description If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpgeu performs the unsigned >= operation of the C program‐
ming language.

Exceptions None

Instruction Type R

NII51017
2016.10.28 cmpgeu 8-25

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x28

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x28 0 0x3a

cmpgeui

Instruction compare greater than or equal unsigned immediate
Operation if ((unsigned) rA >= (unsigned) (0x0000 : IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpgeui rB, rA, IMM16

Example cmpgeui r6, r7, 100

Description Zero-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA >= (0x0000 : IMM16), then
cmpgeui stores 1 to rB; otherwise stores 0 to rB.

Usage cmpgeui performs the unsigned >= operation of the C
programming language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

8-26 cmpgeui
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x28

cmpgt

Instruction compare greater than signed
Operation if ((signed) rA > (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpgt rC, rA, rB

Example cmpgt r6, r7, r8

Description If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpgt performs the signed > operation of the C programming
language.

Pseudo-instruction cmpgt is implemented with the cmplt instruction by swapping
its rA and rB operands.

cmpgti

Instruction compare greater than signed immediate
Operation if ((signed) rA > (signed) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax cmpgti rB, rA, IMMED

Example cmpgti r6, r7, 100

Description Sign-extends the immediate value IMMED to 32 bits and
compares it to the value of rA. If rA > σ(IMMED), then cmpgti
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpgti performs the signed > operation of the C programming
language. The maximum allowed value of IMMED is 32766.
The minimum allowed value is –32769.

NII51017
2016.10.28 cmpgt 8-27

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pseudo-instruction cmpgti is implemented using a cmpgei instruction with an
IMM16 immediate value of IMMED + 1.

cmpgtu

Instruction compare greater than unsigned
Operation if ((unsigned) rA > (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpgtu rC, rA, rB

Example cmpgtu r6, r7, r8

Description If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpgtu performs the unsigned > operation of the C program‐
ming language.

Pseudo-instruction cmpgtu is implemented with the cmpltu instruction by
swapping its rA and rB operands.

cmpgtui

Instruction compare greater than unsigned immediate
Operation if ((unsigned) rA > (unsigned) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax cmpgtui rB, rA, IMMED

Example cmpgtui r6, r7, 100

Description Zero-extends the immediate value IMMED to 32 bits and
compares it to the value of rA. If rA > IMMED, then cmpgtui
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpgtui performs the unsigned > operation of the C program‐
ming language. The maximum allowed value of IMMED is
65534. The minimum allowed value is 0.

8-28 cmpgtu
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pseudo-instruction cmpgtui is implemented using a cmpgeui instruction with an
IMM16 immediate value of IMMED + 1.

cmple

Instruction compare less than or equal signed
Operation if ((signed) rA <= (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmple rC, rA, rB

Example cmple r6, r7, r8

Description If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmple performs the signed <= operation of the C programming
language.

Pseudo-instruction cmple is implemented with the cmpge instruction by swapping
its rA and rB operands.

cmplei

Instruction compare less than or equal signed immediate
Operation if ((signed) rA < (signed) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax cmplei rB, rA, IMMED

Example cmplei r6, r7, 100

Description Sign-extends the immediate value IMMED to 32 bits and
compares it to the value of rA. If rA <= σ(IMMED), then
cmplei stores 1 to rB; otherwise stores 0 to rB.

Usage cmplei performs the signed <= operation of the C program‐
ming language. The maximum allowed value of IMMED is
32766. The minimum allowed value is –32769.

NII51017
2016.10.28 cmple 8-29

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pseudo-instruction cmplei is implemented using a cmplti instruction with an
IMM16 immediate value of IMMED + 1.

cmpleu

Instruction compare less than or equal unsigned
Operation if ((unsigned) rA < (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpleu rC, rA, rB

Example cmpleu r6, r7, r8

Description If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpleu performs the unsigned <= operation of the C program‐
ming language.

Pseudo-instruction cmpleu is implemented with the cmpgeu instruction by
swapping its rA and rB operands.

cmpleui

Instruction compare less than or equal unsigned immediate
Operation if ((unsigned) rA <= (unsigned) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax cmpleui rB, rA, IMMED

Example cmpleui r6, r7, 100

Description Zero-extends the immediate value IMMED to 32 bits and
compares it to the value of rA. If rA <= IMMED, then cmpleui
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpleui performs the unsigned <= operation of the C
programming language. The maximum allowed value of
IMMED is 65534. The minimum allowed value is 0.

8-30 cmpleu
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pseudo-instruction cmpleui is implemented using a cmpltui instruction with an
IMM16 immediate value of IMMED + 1.

cmplt

Instruction compare less than signed
Operation if ((signed) rA < (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmplt rC, rA, rB

Example cmplt r6, r7, r8

Description If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmplt performs the signed < operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x10 0 0x3a

cmplti

Instruction compare less than signed immediate

NII51017
2016.10.28 cmplt 8-31

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation if ((signed) rA < (signed) σ(IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmplti rB, rA, IMM16

Example cmplti r6, r7, 100

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA < σ(IMM16), then cmplti
stores 1 to rB; otherwise stores 0 to rB.

Usage cmplti performs the signed < operation of the C programming
language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x10

cmpltu

Instruction compare less than unsigned
Operation if ((unsigned) rA < (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpltu rC, rA, rB

Example cmpltu r6, r7, r8

Description If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

8-32 cmpltu
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage cmpltu performs the unsigned < operation of the C program‐
ming language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x30 0 0x3a

cmpltui

Instruction compare less than unsigned immediate
Operation if ((unsigned) rA < (unsigned) (0x0000 : IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpltui rB, rA, IMM16

Example cmpltui r6, r7, 100

Description Zero-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA < (0x0000 : IMM16), then
cmpltui stores 1 to rB; otherwise stores 0 to rB.

Usage cmpltui performs the unsigned < operation of the C program‐
ming language.

Exceptions None

Instruction Type I

NII51017
2016.10.28 cmpltui 8-33

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x30

cmpne

Instruction compare not equal
Operation if (rA != rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpne rC, rA, rB

Example cmpne r6, r7, r8

Description If rA != rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpne performs the != operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8-34 cmpne
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

0x18 0 0x3a

cmpnei

Instruction compare not equal immediate
Operation if (rA != σ(IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpnei rB, rA, IMM16

Example cmpnei r6, r7, 100

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA != σ(IMM16), then cmpnei
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpnei performs the != operation of the C programming
language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x18

custom

Instruction custom instruction

NII51017
2016.10.28 cmpnei 8-35

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation if c == 1

then rC ← fN(rA, rB, A, B, C)

else Ø ← fN(rA, rB, A, B, C)

Assembler Syntax custom N, xC, xA, xB

Where xA means either general purpose register rA, or custom
register cA.

Example custom 0, c6, r7, r8

Description The custom opcode provides access to up to 256 custom
instructions allowed by the Nios II architecture. The function
implemented by a custom instruction is user-defined and is
specified with the Nios_II Processor parameter editor in Qsys.
The 8-bit immediate N field specifies which custom instruction
to use. Custom instructions can use up to two parameters, xA
and xB, and can optionally write the result to a register xC.

Usage To access a custom register inside the custom instruction logic,
clear the bit readra, readrb, or writerc that corresponds to the
register field. In assembler syntax, the notation cN refers to
register N in the custom register file and causes the assembler to
clear the c bit of the opcode. For example,
custom 0, c3, r5, r0 performs custom instruction 0,
operating on general-purpose registers r5 and r0, and stores the
result in custom register 3.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand A

B = Register index of operand B

C = Register index of operand C

readra = 1 if instruction uses rA, 0 otherwise

readrb = 1 if instruction uses rB, 0 otherwise

writerc = 1 if instruction provides result for rC, 0 otherwise

N = 8-bit number that selects instruction

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C readra

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8-36 custom
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

readrb readrc N 0x32

div

Instruction divide
Operation rC ← rA ÷ rB

Assembler Syntax div rC, rA, rB

Example div r6, r7, r8

Description Treating rA and rB as signed integers, this instruction divides
rA by rB and then stores the integer portion of the resulting
quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception. After
dividing –2147483648 by –1, the value of rC is undefined (the
number +2147483648 is not representable in 32 bits). There is
no overflow exception.

Nios II processors that do not implement the div instruction
cause an unimplemented instruction exception.

Usage Remainder of Division:

If the result of the division is defined, then the remainder can be
computed in rD using the following instruction sequence:

div rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

The original div operation

rD = remainder

Exceptions Division error

Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

NII51017
2016.10.28 div 8-37

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x25 0 0x3a

divu

Instruction divide unsigned
Operation rC ← rA ÷ rB

Assembler Syntax divu rC, rA, rB

Example divu r6, r7, r8

Description Treating rA and rB as unsigned integers, this instruction divides
rA by rB and then stores the integer portion of the resulting
quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception.

Nios II processors that do not implement the divu instruction
cause an unimplemented instruction exception.

Usage Remainder of Division:

If the result of the division is defined, then the remainder can be
computed in rD using the following instruction sequence:

divu rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

The original divu operation

rD = remainder

Exceptions Division error

Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

8-38 divu
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x24 0 0x3a

eret

Instruction exception return
Operation status ← estatus

PC ← ea

Assembler Syntax eret

Example eret

Description Copies the value of estatus into the status register, and
transfers execution to the address in ea.

Usage Use eret to return from traps, external interrupts, and other
exception handling routines. Note that before returning from
hardware interrupt exceptions, the exception handler must
adjust the ea register.

Exceptions Misaligned destination address

Supervisor-only instruction

Instruction Type R

Instruction Fields None

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x1d 0x1e C 0x01

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x01 0 0x3a

flushd

Instruction flush data cache line

NII51017
2016.10.28 eret 8-39

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation Flushes the data cache line associated with address
rA + σ(IMM16).

Assembler Syntax flushd IMM16(rA)

Example flushd -100(r6)

Description If the Nios II processor implements a direct mapped data cache,
flushd writes the data cache line that is mapped to the
specified address back to memory if the line is dirty, and then
clears the data cache line. Unlike flushda, flushd writes the
dirty data back to memory even when the addressed data is not
currently in the cache. This process comprises the following
steps:

• Compute the effective address specified by the sum of rA
and the signed 16-bit immediate value.

• Identify the data cache line associated with the computed
effective address. Each data cache effective address
comprises a tag field and a line field. When identifying the
data cache line, flushd ignores the tag field and only uses
the line field to select the data cache line to clear.

• Skip comparing the cache line tag with the effective address
to determine if the addressed data is currently cached.
Because flushd ignores the cache line tag, flushd flushes
the cache line regardless of whether the specified data
location is currently cached.

• If the data cache line is dirty, write the line back to memory.
A cache line is dirty when one or more words of the cache
line have been modified by the processor, but are not yet
written to memory.

• Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the
flushd instruction performs no operation.

Usage Use flushd to write dirty lines back to memory even if the
addressed memory location is not in the cache, and then flush
the cache line. By contrast, refer to “flushda flush data cache
address”, “initd initialize data cache line”, and “initda initialize
data cache address” for other cache-clearing options.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

IMM16 = 16-bit signed immediate value

8-40 flushd
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x3b

Related Information

• Cache and Tightly-Coupled Memory
• flushda on page 8-41
• initda on page 8-46
• initd on page 8-44

flushda

Instruction flush data cache address
Operation Flushes the data cache line currently caching address

rA + σ(IMM16)

Assembler Syntax flushda IMM16(rA)

Example flushda -100(r6)

NII51017
2016.10.28 flushda 8-41

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If the Nios II processor implements a direct mapped data cache,
flushda writes the data cache line that is mapped to the
specified address back to memory if the line is dirty, and then
clears the data cache line. Unlike flushd, flushda writes the
dirty data back to memory only when the addressed data is
currently in the cache. This process comprises the following
steps:

• Compute the effective address specified by the sum of rA
and the signed 16-bit immediate value.

• Identify the data cache line associated with the computed
effective address. Each data cache effective address
comprises a tag field and a line field. When identifying the
line, flushda uses both the tag field and the line field.

• Compare the cache line tag with the effective address to
determine if the addressed data is currently cached. If the
tag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

• If the data cache line is dirty and the tag fields match, write
the dirty cache line back to memory. A cache line is dirty
when one or more words of the cache line have been
modified by the processor, but are not yet written to
memory.

• Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the
flushda instruction performs no operation.

Usage Use flushda to write dirty lines back to memory only if the
addressed memory location is currently in the cache, and then
flush the cache line. By contrast, refer to “flushd flush data
cache line”, “initd initialize data cache line”, and “initda initialize
data cache address” for other cache-clearing options.

For more information on the Nios II data cache, refer to the
Cache and Tightly Coupled Memory chapter of the Nios II
Software Developer’s Handbook.

Exceptions Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

IMM16 = 16-bit signed immediate value

8-42 flushda
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x1b

Related Information

• Cache and Tightly-Coupled Memory
• initda on page 8-46
• initd on page 8-44
• flushd on page 8-39

flushi

Instruction flush instruction cache line
Operation Flushes the instruction cache line associated with address rA.

Assembler Syntax flushi rA

Example flushi r6

Description Ignoring the tag, flushi identifies the instruction cache line
associated with the byte address in rA, and invalidates that line.

If the Nios II processor core does not have an instruction cache,
the flushi instruction performs no operation.

For more information about the data cache, refer to the Cache
and Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x0c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0c 0 0x3a

NII51017
2016.10.28 flushi 8-43

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Cache and Tightly-Coupled Memory

flushp

Instruction flush pipeline
Operation Flushes the processor pipeline of any prefetched instructions.

Assembler Syntax flushp

Example flushp

Description Ensures that any instructions prefetched after the flushp
instruction are removed from the pipeline.

Usage Use flushp before transferring control to newly updated
instruction memory.

Exceptions None

Instruction Type R

Instruction Fields None

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x04 0 0x3a

initd

Instruction initialize data cache line
Operation Initializes the data cache line associated with address

rA + σ(IMM16).

Assembler Syntax initd IMM16(rA)

Example initd 0(r6)

8-44 flushp
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If the Nios II processor implements a direct mapped data cache,
initd clears the data cache line without checking for (or
writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike initda, initd clears the cache
line regardless of whether the addressed data is currently
cached. This process comprises the following steps:

• Compute the effective address specified by the sum of rA
and the signed 16-bit immediate value.

• Identify the data cache line associated with the computed
effective address. Each data cache effective address
comprises a tag field and a line field. When identifying the
line, initd ignores the tag field and only uses the line field
to select the data cache line to clear.

• Skip comparing the cache line tag with the effective address
to determine if the addressed data is currently cached.
Because initd ignores the cache line tag, initd flushes the
cache line regardless of whether the specified data location is
currently cached.

• Skip checking if the data cache line is dirty. Because initd
skips the dirty cache line check, data that has been modified
by the processor, but not yet written to memory is lost.

• Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the
initd instruction performs no operation.

Usage Use initd after processor reset and before accessing data
memory to initialize the processor’s data cache. Use initd with
caution because it does not write back dirty data. By contrast,
refer to “flushd flush data cache line”, “flushda flush data cache
address”, and “initda initialize data cache address” for other
cache-clearing options. Altera recommends using initd only
when the processor comes out of reset.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only instruction

Instruction Type I

Instruction Fields A = Register index of operand rA

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 IMM16

NII51017
2016.10.28 initd 8-45

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x33

Related Information

• Cache and Tightly-Coupled Memory
• flushda on page 8-41
• initda on page 8-46
• flushd on page 8-39

initda

Instruction initialize data cache address
Operation Initializes the data cache line currently caching address

rA + σ(IMM16)

Assembler Syntax initda IMM16(rA)

Example initda -100(r6)

Description If the Nios II processor implements a direct mapped data cache,
initda clears the data cache line without checking for (or
writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike initd, initda clears the cache
line only when the addressed data is currently cached. This
process comprises the following steps:

• Compute the effective address specified by the sum of rA
and the signed 16-bit immediate value.

• Identify the data cache line associated with the computed
effective address. Each data cache effective address
comprises a tag field and a line field. When identifying the
line, initda uses both the tag field and the line field.

• Compare the cache line tag with the effective address to
determine if the addressed data is currently cached. If the
tag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

• Skip checking if the data cache line is dirty. Because initd
skips the dirty cache line check, data that has been modified
by the processor, but not yet written to memory is lost.

• Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the
initda instruction performs no operation.

8-46 initda
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Use initda to skip writing dirty lines back to memory and to
flush the cache line only if the addressed memory location is
currently in the cache. By contrast, refer to “flushd flush data
cache line”, “flushda flush data cache address”, and “initd
initialize data cache line” on page 8–55 for other cache-clearing
options. Use initda with caution because it does not write back
dirty data.

For more information on the Nios II data cache, refer to the
Cache and Tightly Coupled Memory chapter of the Nios II
Software Developer’s Handbook.

Exceptions Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Unimplemented instruction

Instruction Type I

Instruction Fields A = Register index of operand rA

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x13

Related Information

• Cache and Tightly-Coupled Memory
• flushda on page 8-41
• initd on page 8-44
• flushd on page 8-39

initi

Instruction initialize instruction cache line
Operation Initializes the instruction cache line associated with address rA.

Assembler Syntax initi rA

NII51017
2016.10.28 initi 8-47

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example initi r6

Description Ignoring the tag, initi identifies the instruction cache line
associated with the byte address in ra, and initi invalidates
that line.

If the Nios II processor core does not have an instruction cache,
the initi instruction performs no operation.

Usage This instruction is used to initialize the processor’s instruction
cache. Immediately after processor reset, use initi to
invalidate each line of the instruction cache.

For more information on instruction cache, refer to the Cache
and Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x29

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x29 0 0x3a

Related Information
Cache and Tightly-Coupled Memory

jmp

Instruction computed jump
Operation PC ← rA

Assembler Syntax jmp rA

Example jmp r12

Description Transfers execution to the address contained in register rA.

8-48 jmp
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage It is illegal to jump to the address contained in register r31. To
return from subroutines called by call or callr, use ret
instead of jmp.

Exceptions Misaligned destination address

Instruction Type R

Instruction Fields A = Register index of operand rA

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x0d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0d 0 0x3a

jmpi

Instruction jump immediate
Operation PC ← (PC31..28 : IMM26 x 4)

Assembler Syntax jmpi label

Example jmpi write_char

Description Transfers execution to the instruction at address (PC31..28 :
IMM26 x 4).

Usage jmpi is a low-overhead local jump. jmpi can transfer execution
anywhere within the 256-MB range determined by PC31..28. The
Nios II GNU linker does not automatically handle cases in
which the address is out of this range.

Exceptions None

Instruction Type J

Instruction Fields IMM26 = 26-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IMM26

NII51017
2016.10.28 jmpi 8-49

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0x01

ldb / ldbio

Instruction load byte from memory or I/O peripheral
Operation rB ← σ(Mem8[rA + σ(IMM16)])

Assembler Syntax ldb rB, byte_offset(rA)

ldbio rB, byte_offset(rA)

Example ldb r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the desired memory byte, sign extending the 8-
bit value to 32 bits. In Nios II processor cores with a data cache,
this instruction may retrieve the desired data from the cache
instead of from memory.

Usage Use the ldbio instruction for peripheral I/O. In processors with
a data cache, ldbio bypasses the cache and is guaranteed to
generate an Avalon-MM data transfer. In processors without a
data cache, ldbio acts like ldb.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

8-50 ldb / ldbio
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-9: ldb

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x07

Table 8-10: ldbio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x27

Related Information
Cache and Tightly-Coupled Memory

ldbu / ldbuio

Instruction load unsigned byte from memory or I/O peripheral
Operation rB ← 0x000000 : Mem8[rA + σ(IMM16)]

Assembler Syntax ldbu rB, byte_offset(rA)

ldbuio rB, byte_offset(rA)

Example ldbu r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the desired memory byte, zero extending the 8-
bit value to 32 bits.

Usage In processors with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory. Use
the ldbuio instruction for peripheral I/O. In processors with a
data cache, ldbuio bypasses the cache and is guaranteed to
generate an Avalon-MM data transfer. In processors without a
data cache, ldbuio acts like ldbu.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

NII51017
2016.10.28 ldbu / ldbuio 8-51

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-11: ldbu

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x03

Table 8-12: ldbuio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x23

Related Information
Cache and Tightly-Coupled Memory

ldh / ldhio

Instruction load halfword from memory or I/O peripheral
Operation rB ← σ(Mem16[rA + σ(IMM16)])

Assembler Syntax ldh rB, byte_offset(rA)

ldhio rB, byte_offset(rA)

8-52 ldh / ldhio
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example ldh r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the memory halfword located at the effective
byte address, sign extending the 16-bit value to 32 bits. The
effective byte address must be halfword aligned. If the byte
address is not a multiple of 2, the operation is undefined.

Usage In processors with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory. Use
the ldhio instruction for peripheral I/O. In processors with a
data cache, ldhio bypasses the cache and is guaranteed to
generate an Avalon-MM data transfer. In processors without a
data cache, ldhio acts like ldh.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-13: ldh

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0f

NII51017
2016.10.28 ldh / ldhio 8-53

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-14: ldhio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2f

Related Information
Cache and Tightly-Coupled Memory

ldhu / ldhuio

Instruction load unsigned halfword from memory or I/O peripheral
Operation rB ← 0x0000 : Mem16[rA + σ(IMM16)]

Assembler Syntax ldhu rB, byte_offset(rA)

ldhuio rB, byte_offset(rA)

Example ldhu r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the memory halfword located at the effective
byte address, zero extending the 16-bit value to 32 bits. The
effective byte address must be halfword aligned. If the byte
address is not a multiple of 2, the operation is undefined.

Usage In processors with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory. Use
the ldhuio instruction for peripheral I/O. In processors with a
data cache, ldhuio bypasses the cache and is guaranteed to
generate an Avalon-MM data transfer. In processors without a
data cache, ldhuio acts like ldhu.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

8-54 ldhu / ldhuio
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-15: ldhu

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0b

Table 8-16: ldhuio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2b

Related Information
Cache and Tightly-Coupled Memory

ldw / ldwio

Instruction load 32-bit word from memory or I/O peripheral
Operation rB ← Mem32[rA + σ(IMM14)]

Assembler Syntax ldw rB, byte_offset(rA)

ldwio rB, byte_offset(rA)

NII51017
2016.10.28 ldw / ldwio 8-55

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example ldw r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the memory word located at the effective byte
address. The effective byte address must be word aligned. If the
byte address is not a multiple of 4, the operation is undefined.

Usage In processors with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory. Use
the ldwio instruction for peripheral I/O. In processors with a
data cache, ldwio bypasses the cache and memory. Use the
ldwio instruction for peripheral I/O. In processors with a data
cache, ldwio bypasses the cache and is guaranteed to generate
an Avalon-MM data transfer. In processors without a data
cache, ldwio acts like ldw.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-17: ldw

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x17

8-56 ldw / ldwio
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-18: ldwio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x37

Related Information
Cache and Tightly-Coupled Memory

mov

Instruction move register to register
Operation rC ← rA

Assembler Syntax mov rC, rA

Example mov r6, r7

Description Moves the contents of rA to rC.

Pseudo-instruction mov is implemented as add rC, rA, r0.

movhi

Instruction move immediate into high halfword
Operation rB ← (IMMED : 0x0000)

Assembler Syntax movhi rB, IMMED

Example movhi r6, 0x8000

Description Writes the immediate value IMMED into the high halfword of
rB, and clears the lower halfword of rB to 0x0000.

NII51017
2016.10.28 mov 8-57

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage The maximum allowed value of IMMED is 65535. The
minimum allowed value is 0. To load a 32-bit constant into a
register, first load the upper 16 bits using a movhi pseudo-
instruction. The %hi() macro can be used to extract the upper
16 bits of a constant or a label. Then, load the lower 16 bits with
an ori instruction. The %lo() macro can be used to extract the
lower 16 bits of a constant or label as shown in the following
code:

movhi rB, %hi(value)

ori rB, rB, %lo(value)

An alternative method to load a 32-bit constant into a register
uses the %hiadj() macro and the addi instruction as shown in
the following code:

movhi rB, %hiadj(value)

addi rB, rB, %lo(value)

Pseudo-instruction movhi is implemented as orhi rB, r0, IMMED.

movi

Instruction move signed immediate into word
Operation rB ← σ(IMMED)

Assembler Syntax movi rB, IMMED

Example movi r6, -30

Description Sign-extends the immediate value IMMED to 32 bits and writes
it to rB.

Usage The maximum allowed value of IMMED is 32767. The
minimum allowed value is

–32768. To load a 32-bit constant into a register, refer to the
movhi instruction.

Pseudo-instruction movi is implemented as addi rB, r0, IMMED.

movia

Instruction move immediate address into word
Operation rB ← label

8-58 movi
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Syntax movia rB, label

Example movia r6, function_address

Description Writes the address of label to rB.

Pseudo-instruction movia is implemented as:

orhi rB, r0, %hiadj(label)

addi rB, rB, %lo(label)

movui

Instruction move unsigned immediate into word
Operation rB ← (0x0000 : IMMED)

Assembler Syntax movui rB, IMMED

Example movui r6, 100

Description Zero-extends the immediate value IMMED to 32 bits and
writes it to rB.

Usage The maximum allowed value of IMMED is 65535. The
minimum allowed value is 0. To load a 32-bit constant into a
register, refer to the movhi instruction.

Pseudo-instruction movui is implemented as ori rB, r0, IMMED.

mul

Instruction multiply
Operation rC ← (rA x rB) 31..0

Assembler Syntax mul rC, rA, rB

Example mul r6, r7, r8

Description Multiplies rA times rB and stores the 32 low-order bits of the
product to rC. The result is the same whether the operands are
treated as signed or unsigned integers.

Nios II processors that do not implement the mul instruction
cause an unimplemented instruction exception.

NII51017
2016.10.28 movui 8-59

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Carry Detection (unsigned operands):

Before or after the multiply operation, the carry out of the MSB
of rC can be detected using the following instruction sequence:

mul rC, rA, rB

mulxuu rD, rA, rB

cmpne rD, rD, r0

The mul operation (optional)

rD is nonzero if carry occurred

rD is 1 if carry occurred, 0 if not

The mulxuu instruction writes a nonzero value into rD if the
multiplication of unsigned numbers generates a carry
(unsigned overflow). If a 0/1 result is desired, follow the mulxuu
with the cmpne instruction.

Overflow Detection (signed operands):

After the multiply operation, overflow can be detected using the
following instruction sequence:

mul rC, rA, rB

cmplt rD, rC, r0

mulxss rE, rA, rB

add rD, rD, rE

cmpne rD, rD, r0

The original mul operation

rD is nonzero if overflow

rD is 1 if overflow, 0 if not

The cmplt–mulxss–add instruction sequence writes a nonzero
value into rD if the product in rC cannot be represented in 32
bits (signed overflow). If a 0/1 result is desired, follow the
instruction sequence with the cmpne instruction.

Exceptions Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

8-60 mul
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

A B C 0x27

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x27 0 0x3a

muli

Instruction multiply immediate
Operation rB ← (rA x σ(IMM16)) 31..0

Assembler Syntax muli rB, rA, IMM16

Example muli r6, r7, -100

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
multiplies it by the value of rA. Stores the 32 low-order bits of
the product to rB. The result is independent of whether rA is
treated as a signed or unsigned number.

Nios II processors that do not implement the muli instruction
cause an unimplemented instruction exception.

Carry Detection and Overflow Detection:

For a discussion of carry and overflow detection, refer to the
mul instruction.

Exceptions Unimplemented instruction

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x24

NII51017
2016.10.28 muli 8-61

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

mulxss

Instruction multiply extended signed/signed
Operation rC ← ((signed) rA) x ((signed) rB)) 63..32

Assembler Syntax mulxss rC, rA, rB

Example mulxss r6, r7, r8

Description Treating rA and rB as signed integers, mulxss multiplies rA
times rB, and stores the 32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxss instruc‐
tion cause an unimplemented instruction exception.

Usage Use mulxss and mul to compute the full 64-bit product of two
32-bit signed integers. Furthermore, mulxss can be used as part
of the calculation of a 128-bit product of two 64-bit signed
integers. Given two 64-bit integers, each contained in a pair of
32-bit registers, (S1 : U1) and (S2 : U2), their 128-bit product is
(U1 x U2) + ((S1 x U2) << 32) + ((U1 x S2) << 32) + ((S1 x S2)
<< 64). The mulxss and mul instructions are used to calculate
the 64-bit product S1 x S2.

Exceptions Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x1f

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1f 0 0x3a

mulxsu

Instruction multiply extended signed/unsigned
Operation rC ← ((signed) rA) x ((unsigned) rB)) 63..32

8-62 mulxss
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Syntax mulxsu rC, rA, rB

Example mulxsu r6, r7, r8

Description Treating rA as a signed integer and rB as an unsigned integer,
mulxsu multiplies rA times rB, and stores the 32 high-order bits
of the product to rC.

Nios II processors that do not implement the mulxsu instruc‐
tion cause an unimplemented instruction exception.

Usage mulxsu can be used as part of the calculation of a 128-bit
product of two 64-bit signed integers. Given two 64-bit integers,
each contained in a pair of 32-bit registers, (S1 : U1) and (S2 :
U2), their 128-bit product is: (U1 x U2) + ((S1 x U2) << 32) +
((U1 x S2) << 32) + ((S1 x S2) << 64). The mulxsu and mul
instructions are used to calculate the two 64-bit products S1 x
U2 and U1 x S2.

Exceptions Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x17

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x17 0 0x3a

mulxuu

Instruction multiply extended unsigned/unsigned
Operation rC ← ((unsigned) rA) x ((unsigned) rB)) 63..32

Assembler Syntax mulxuu rC, rA, rB

Example mulxuu r6, r7, r8

NII51017
2016.10.28 mulxuu 8-63

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Treating rA and rB as unsigned integers, mulxuu multiplies rA
times rB and stores the 32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxuu instruc‐
tion cause an unimplemented instruction exception.

Usage Use mulxuu and mul to compute the 64-bit product of two 32-
bit unsigned integers. Furthermore, mulxuu can be used as part
of the calculation of a 128-bit product of two 64-bit signed
integers. Given two 64-bit signed integers, each contained in a
pair of 32-bit registers, (S1 : U1) and (S2 : U2), their 128-bit
product is (U1 x U2) + ((S1 x U2) << 32) + ((U1 x S2) << 32) +
((S1 x S2) << 64). The mulxuu and mul instructions are used to
calculate the 64-bit product U1 x U2.

mulxuu also can be used as part of the calculation of a 128-bit
product of two 64-bit unsigned integers. Given two 64-bit
unsigned integers, each contained in a pair of 32-bit registers,
(T1 : U1) and (T2 : U2), their 128-bit product is (U1 x U2) +
((U1 x T2) << 32) + ((T1 x U2) << 32) + ((T1 x T2) << 64). The
mulxuu and mul instructions are used to calculate the four 64-
bit products U1 x U2, U1 x T2, T1 x U2, and T1 x T2.

Exceptions Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x07

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x07 0 0x3a

nextpc

Instruction get address of following instruction
Operation rC ← PC + 4

Assembler Syntax nextpc rC

Example nextpc r6

8-64 nextpc
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Stores the address of the next instruction to register rC.

Usage A relocatable code fragment can use nextpc to calculate the
address of its data segment. nextpc is the only way to access the
PC directly.

Exceptions None

Instruction Type R

Instruction Fields C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 C 0x1c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1c 0 0x3a

nop

Instruction no operation
Operation None

Assembler Syntax nop

Example nop

Description nop does nothing.

Pseudo-instruction nop is implemented as add r0, r0, r0.

nor

Instruction bitwise logical nor
Operation rC ← ~(rA | rB)

Assembler Syntax nor rC, rA, rB

Example nor r6, r7, r8

NII51017
2016.10.28 nop 8-65

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Calculates the bitwise logical NOR of rA and rB and stores the
result in rC.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x06 0 0x3a

or

Instruction bitwise logical or
Operation rC ← rA | rB

Assembler Syntax or rC, rA, rB

Example or r6, r7, r8

Description Calculates the bitwise logical OR of rA and rB and stores the
result in rC.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x16 0 0x3a

8-66 or
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

orhi

Instruction bitwise logical or immediate into high halfword
Operation rB ← rA | (IMM16 : 0x0000)

Assembler Syntax orhi rB, rA, IMM16

Example orhi r6, r7, 100

Description Calculates the bitwise logical OR of rA and (IMM16 : 0x0000)
and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x34

ori

Instruction bitwise logical or immediate
Operation rB ← rA | (0x0000 : IMM16)

Assembler Syntax ori rB, rA, IMM16

Example ori r6, r7, 100

Description Calculates the bitwise logical OR of rA and (0x0000 : IMM16)
and stores the result in rB.

Exceptions None

Instruction Type I

NII51017
2016.10.28 orhi 8-67

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x14

rdctl

Instruction read from control register
Operation rC ← ctlN

Assembler Syntax rdctl rC, ctlN

Example rdctl r3, ctl31

Description Reads the value contained in control register ctlN and writes it
to register rC.

Exceptions Supervisor-only instruction

Instruction Type R

Instruction Fields C = Register index of operand rC

N = Control register index of operand ctlN

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 C 0x26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x26 N 0x3a

rdprs

Instruction read from previous register set

8-68 rdctl
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation rB ← prs.rA + σ(IMM16)

Assembler Syntax rdprs rB, rA, IMM16

Example rdprs r6, r7, 0

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits, and
adds it to the value of rA from the previous register set. Places
the result in rB in the current register set.

Usage The previous register set is specified by status.PRS. By default,
status.PRS indicates the register set in use before an exception,
such as an external interrupt, caused a register set change.

To read from an arbitrary register set, software can insert the
desired register set number in status.PRS prior to executing
rdprs.

If shadow register sets are not implemented on the Nios II core,
rdprs is an illegal instruction.

Exceptions Supervisor-only instruction

Illegal instruction

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x38

ret

Instruction return from subroutine
Operation PC ← ra

Assembler Syntax ret

Example ret

NII51017
2016.10.28 ret 8-69

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Transfers execution to the address in ra.

Usage Any subroutine called by call or callr must use ret to return.

Exceptions Misaligned destination address

Instruction Type R

Instruction Fields None

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x1f 0 0 0x05

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x05 0 0x3a

rol

Instruction rotate left
Operation rC ← rA rotated left rB4..0 bit positions

Assembler Syntax rol rC, rA, rB

Example rol r6, r7, r8

Description Rotates rA left by the number of bits specified in rB4..0 and
stores the result in rC. The bits that shift out of the register
rotate into the least-significant bit positions. Bits 31–5 of rB are
ignored.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x03

8-70 rol
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x03 0 0x3a

roli

Instruction rotate left immediate
Operation rC ← rA rotated left IMM5 bit positions

Assembler Syntax roli rC, rA, IMM5

Example roli r6, r7, 3

Description Rotates rA left by the number of bits specified in IMM5 and
stores the result in rC. The bits that shift out of the register
rotate into the least-significant bit positions.

Usage In addition to the rotate-left operation, roli can be used to
implement a rotate-right operation. Rotating left by (32 –
IMM5) bits is the equivalent of rotating right by IMM5 bits.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 C 0x02

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x02 IMM5 0x3a

ror

Instruction rotate right
Operation rC ← rA rotated right rB4..0 bit positions

NII51017
2016.10.28 roli 8-71

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Syntax ror rC, rA, rB

Example ror r6, r7, r8

Description Rotates rA right by the number of bits specified in rB4..0 and
stores the result in rC. The bits that shift out of the register
rotate into the most-significant bit positions. Bits 31– 5 of rB
are ignored.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x0b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0b 0 0x3a

sll

Instruction shift left logical
Operation rC ← rA << (rB4..0)

Assembler Syntax sll rC, rA, rB

Example sll r6, r7, r8

Description Shifts rA left by the number of bits specified in rB4..0 (inserting
zeroes), and then stores the result in rC. sll performs the <<
operation of the C programming language.

Exceptions None

Instruction Type R

8-72 sll
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x13

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x13 0 0x3a

slli

Instruction shift left logical immediate
Operation rC ← rA << IMM5

Assembler Syntax slli rC, rA, IMM5

Example slli r6, r7, 3

Description Shifts rA left by the number of bits specified in IMM5 (inserting
zeroes), and then stores the result in rC.

Usage slli performs the << operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 C 0x12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x12 IMM5 0x3a

NII51017
2016.10.28 slli 8-73

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

sra

Instruction shift right arithmetic
Operation rC ← (signed) rA >> ((unsigned) rB4..0)

Assembler Syntax sra rC, rA, rB

Example sra r6, r7, r8

Description Shifts rA right by the number of bits specified in rB4..0
(duplicating the sign bit), and then stores the result in rC. Bits
31–5 are ignored.

Usage sra performs the signed >> operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x3b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3b 0 0x3a

srai

Instruction shift right arithmetic immediate
Operation rC ← (signed) rA >> ((unsigned) IMM5)

Assembler Syntax srai rC, rA, IMM5

Example srai r6, r7, 3

Description Shifts rA right by the number of bits specified in IMM5
(duplicating the sign bit), and then stores the result in rC.

8-74 sra
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage srai performs the signed >> operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 C 0x3a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3a IMM5 0x3a

srl

Instruction shift right logical
Operation rC ← (unsigned) rA >> ((unsigned) rB4..0)

Assembler Syntax srl rC, rA, rB

Example srl r6, r7, r8

Description Shifts rA right by the number of bits specified in rB4..0
(inserting zeroes), and then stores the result in rC. Bits 31–5 are
ignored.

Usage srl performs the unsigned >> operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

NII51017
2016.10.28 srl 8-75

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x1b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1b 0 0x3a

srli

Instruction shift right logical immediate
Operation rC ← (unsigned) rA >> ((unsigned) IMM5)

Assembler Syntax srli rC, rA, IMM5

Example srli r6, r7, 3

Description Shifts rA right by the number of bits specified in IMM5
(inserting zeroes), and then stores the result in rC.

Usage srli performs the unsigned >> operation of the C program‐
ming language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x1a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1a IMM5 0x3a

stb / stbio l

Instruction store byte to memory or I/O periphera
Operation Mem8[rA + σ(IMM16)] ← rB7..0

8-76 srli
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Syntax stb rB, byte_offset(rA)

stbio rB, byte_offset(rA)

Example stb r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Stores the
low byte of rB to the memory byte specified by the effective
address.

Usage In processors with a data cache, this instruction may not
generate an Avalon-MM bus cycle to noncache data memory
immediately. Use the stbio instruction for peripheral I/O. In
processors with a data cache, stbio bypasses the cache and is
guaranteed to generate an Avalon-MM data transfer. In
processors without a data cache, stbio acts like stb.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-19: stb

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x05

Table 8-20: stbio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

NII51017
2016.10.28 stb / stbio l 8-77

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x25

sth / sthio

Instruction store halfword to memory or I/O peripheral
Operation Mem16[rA + σ(IMM16)] ← rB15..0

Assembler Syntax sth rB, byte_offset(rA)

sthio rB, byte_offset(rA)

Example sth r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Stores the
low halfword of rB to the memory location specified by the
effective byte address. The effective byte address must be
halfword aligned. If the byte address is not a multiple of 2, the
operation is undefined.

Usage In processors with a data cache, this instruction may not
generate an Avalon-MM data transfer immediately. Use the
sthio instruction for peripheral I/O. In processors with a data
cache, sthio bypasses the cache and is guaranteed to generate
an Avalon-MM data transfer. In processors without a data
cache, sthio acts like sth.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

8-78 sth / sthio
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-21: sth

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0d

Table 8-22: sthio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2d

stw / stwio

Instruction store word to memory or I/O peripheral
Operation Mem32[rA + σ(IMM16)] ← rB

Assembler Syntax stw rB, byte_offset(rA)

stwio rB, byte_offset(rA)

Example stw r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Stores rB
to the memory location specified by the effective byte address.
The effective byte address must be word aligned. If the byte
address is not a multiple of 4, the operation is undefined.

Usage In processors with a data cache, this instruction may not
generate an Avalon-MM data transfer immediately. Use the
stwio instruction for peripheral I/O. In processors with a data
cache, stwio bypasses the cache and is guaranteed to generate
an Avalon-MM bus cycle. In processors without a data cache,
stwio acts like stw.

NII51017
2016.10.28 stw / stwio 8-79

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-23: stw

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x15

Table 8-24: stwio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x35

sub

Instruction subtract
Operation rC ← rA – rB

Assembler Syntax sub rC, rA, rB

Example sub r6, r7, r8

Description Subtract rB from rA and store the result in rC.

8-80 sub
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Carry Detection (unsigned operands):

The carry bit indicates an unsigned overflow. Before or after a
sub operation, a carry out of the MSB can be detected by
checking whether the first operand is less than the second
operand. The carry bit can be written to a register, or a
conditional branch can be taken based on the carry condition.
Both cases are shown in the following code:

sub rC, rA, rB

cmpltu rD, rA, rB

sub rC, rA, rB

bltu rA, rB, label

The original sub operation (optional)

rD is written with the carry bit

The original sub operation (optional)

Branch if carry generated

Overflow Detection (signed operands):

Detect overflow of signed subtraction by comparing the sign of
the difference that is written to rC with the signs of the
operands. If rA and rB have different signs, and the sign of rC is
different than the sign of rA, an overflow occurred. The
overflow condition can control a conditional branch, as shown
in the following code:

sub rC, rA, rB

xor rD, rA, rB

xor rE, rA, rC

and rD, rD, rE

blt rD, r0, label

The original sub operation

Compare signs of rA and rB

Compare signs of rA and rC

Combine comparisons

Branch if overflow occurred

Exceptions None

Instruction Type R

NII51017
2016.10.28 sub 8-81

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x39

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x39 0 0x3a

subi

Instruction subtract immediate
Operation rB ← rA – σ(IMMED)

Assembler Syntax subi rB, rA, IMMED

Example subi r8, r8, 4

Description Sign-extends the immediate value IMMED to 32 bits, subtracts
it from the value of rA and then stores the result in rB.

Usage The maximum allowed value of IMMED is 32768. The
minimum allowed value is

–32767.

Pseudo-instruction subi is implemented as addi rB, rA, -IMMED

sync

Instruction memory synchronization
Operation None

Assembler Syntax sync

Example sync

8-82 subi
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Forces all pending memory accesses to complete before
allowing execution of subsequent instructions. In processor
cores that support in-order memory accesses only, this instruc‐
tion performs no operation.

Exceptions None

Instruction Type R

Instruction Fields None

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0x36

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x36 0 0x3a

trap

Instruction trap
Operation estatus ← status

PIE ← 0

U ← 0

ea ← PC + 4

PC ← exception handler address

Assembler Syntax trap

trap imm5

Example trap

Description Saves the address of the next instruction in register ea, saves the
contents of the status register in estatus, disables interrupts,
and transfers execution to the exception handler. The address of
the exception handler is specified with the Nios_II Processor
parameter editor in Qsys.

The 5-bit immediate field imm5 is ignored by the processor, but
it can be used by the debugger.

trap with no argument is the same as trap 0.

NII51017
2016.10.28 trap 8-83

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage To return from the exception handler, execute an eret instruc‐
tion.

Exceptions Trap

Instruction Type R

Instruction Fields IMM5 = Type of breakpoint

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0x1d 0x2d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2d IMM5 0x3a

wrctl

Instruction write to control register
Operation ctlN ← rA

Assembler Syntax wrctl ctlN, rA

Example wrctl ctl6, r3

Description Writes the value contained in register rA to the control register
ctlN.

Exceptions Supervisor-only instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

N = Control register index of operand ctlN

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x2e

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2e N 0x3a

8-84 wrctl
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

wrprs

Instruction write to previous register set
Operation prs.rC ← rA

Assembler Syntax wrprs rC, rA

Example wrprs r6, r7

Description Copies the value of rA in the current register set to rC in the
previous register set. This instruction can set r0 to 0 in a
shadow register set.

Usage The previous register set is specified by status.PRS. By default,
status.PRS indicates the register set in use before an exception,
such as an external interrupt, caused a register set change.

To write to an arbitrary register set, software can insert the
desired register set number in status.PRS prior to executing
wrprs.

System software must use wrprs to initialize r0 to 0 in each
shadow register set before using that register set.

If shadow register sets are not implemented on the Nios II core,
wrprs is an illegal instruction.

Exceptions Supervisor-only instruction

Illegal instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 C 0x14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x14 0 0x3a

xor

Instruction bitwise logical exclusive or

NII51017
2016.10.28 wrprs 8-85

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operation rC ← rA ^ rB

Assembler Syntax xor rC, rA, rB

Example xor r6, r7, r8

Description Calculates the bitwise logical exclusive-or of rA and rB and
stores the result in rC.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x1e

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1e 0 0x3a

xorhi

Instruction bitwise logical exclusive or immediate into high halfword
Operation rB ← rA ^ (IMM16 : 0x0000)

Assembler Syntax xorhi rB, rA, IMM16

Example xorhi r6, r7, 100

Description Calculates the bitwise logical exclusive XOR of rA and
(IMM16 : 0x0000) and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

8-86 xorhi
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x3c

xori

Instruction bitwise logical exclusive or immediate
Operation rB ← rA ^ (0x0000 : IMM16)

Assembler Syntax xori rB, rA, IMM16

Example xori r6, r7, 100

Description Calculates the bitwise logical exclusive OR of rA and (0x0000 :
IMM16) and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x1c

Document Revision History

Table 8-25: Document Revision History

Date Version Changes

October 2016 2016.10.28 Maintenance release

NII51017
2016.10.28 xori 8-87

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

April 2015 2015.04.02 Initial release.

8-88 Document Revision History
NII51017

2016.10.28

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII51017%202016.10.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Nios II Gen2 Processor Reference Guide
	Contents
	1. Introduction
	Nios II Processor System Basics
	Getting Started with the Nios II Processor
	Customizing Nios II Processor Designs
	Configurable Soft Processor Core Concepts
	Configurable Soft Processor Core
	Flexible Peripheral Set and Address Map
	Standard Peripherals
	Custom Components
	Custom Instructions

	Automated System Generation

	OpenCore Plus Evaluation
	Document Revision History

	2. Processor Architecture
	Processor Implementation
	Register File
	Arithmetic Logic Unit
	Unimplemented Instructions
	Custom Instructions
	Floating-Point Instructions
	Floating Point Custom Instruction 2 Component
	Floating Point Custom Instruction Component

	Reset and Debug Signals
	Exception and Interrupt Controllers
	Exception Controller
	EIC Interface
	Internal Interrupt Controller

	Memory and I/O Organization
	Instruction and Data Buses
	Memory and Peripheral Access
	Instruction Master Port
	Data Master Port
	Shared Memory for Instructions and Data

	Cache Memory
	Configurable Cache Memory Options
	Effective Use of Cache Memory
	Cache Bypass Methods
	I/O Load and Store Instructions Method
	The Bit-31 Cache Bypass Method
	Peripheral Region

	Tightly-Coupled Memory
	Accessing Tightly-Coupled Memory
	Effective Use of Tightly-Coupled Memory

	Address Map
	Memory Management Unit
	Memory Protection Unit

	JTAG Debug Module
	JTAG Target Connection
	Download and Execute Software
	Software Breakpoints
	Hardware Breakpoints
	Hardware Triggers
	Armed Triggers
	Triggering on Ranges of Values

	Trace Capture
	Execution vs. Data Trace
	Trace Frames

	Document Revision History

	3. Programming Model
	Operating Modes
	Supervisor Mode
	User Mode

	Memory Management Unit
	Recommended Usage
	Memory Management
	Virtual Addressing
	Memory Protection

	Address Space and Memory Partitions
	Virtual Memory Address Space
	Physical Memory Address Space
	Data Cacheability

	TLB Organization
	TLB Lookups

	Memory Protection Unit
	Memory Regions
	Base Address
	Region Type
	Region Index
	Region Size or Upper Address Limit
	Access Permissions
	Default Cacheability

	Overlapping Regions
	Enabling the MPU

	Registers
	General-Purpose Registers
	Control Registers
	The status Register
	The estatus Register
	The bstatus Register
	The ienable Register
	The ipending Register
	The cpuid Register
	The exception Register
	The pteaddr Register
	The tlbacc Register
	The tlbmisc Register
	The RD Flag
	The WE Flag
	The WAY Field
	The PID Field
	The DBL Flag
	The BAD Flag
	The PERM Flag
	The D Flag

	The badaddr Register
	The config Register
	The mpubase Register
	The mpuacc Register
	The MASK Field
	The LIMIT Field
	The C Flag
	The MT Flag
	The PERM Field
	The RD Flag
	The WR Flag
	The eccinj Register

	Shadow Register Sets
	The sstatus Register
	Changing Register Sets
	Stacks and Shadow Register Sets

	Initialization with Shadow Register Sets

	Working with the MPU
	MPU Region Read and Write Operations
	MPU Initialization
	Debugger Access

	Working with ECC
	Enabling ECC
	Disabling ECC

	Handling ECC Errors
	Injecting ECC Errors
	Instruction Cache Tag RAM
	Instruction Cache Data RAM
	ITCMs
	Register File RAM Blocks
	Data Cache Tag RAM
	Data Cache Data RAM (Clean Line)
	Data Cache Data RAM (Dirty Line)
	Data Cache Victim Line Buffer RAM
	DTCMs
	MMU TLB RAM

	Exception Processing
	Terminology
	Exception Overview
	Exception Latency
	Interrupt Latency

	Reset Exceptions
	Break Exceptions
	Processing a Break
	Understanding Register Usage
	Returning From a Break

	Interrupt Exceptions
	External Interrupt Controller Interface
	Requested Handler Address
	Requested Interrupt Level
	Requested Register Set
	Requested NMI Mode
	Shadow Register Sets

	Internal Interrupt Controller

	Instruction-Related Exceptions
	Trap Instruction
	Break Instruction
	Unimplemented Instruction
	Illegal Instruction
	Supervisor-Only Instruction
	Supervisor-Only Instruction Address
	Supervisor-Only Data Address
	Misaligned Data Address
	Misaligned Destination Address
	Division Error
	Fast TLB Miss
	Double TLB Miss
	TLB Permission Violation
	MPU Region Violation

	Other Exceptions
	Exception Processing Flow
	Processing General Exceptions
	Exception Flow with the EIC Interface
	Exception Flow with the Internal Interrupt Controller
	Exceptions and Processor Status

	Determining the Cause of Interrupt and Instruction-Related Exceptions
	Nios II/f Exception Processing
	Nios II/e Exception Processing

	Handling Nested Exceptions
	Nested Exceptions with the Internal Interrupt Controller
	Nested Exceptions with an External Interrupt Controller

	Handling Nonmaskable Interrupts
	Masking and Disabling Exceptions
	Disabling Maskable Interrupts
	Masking Interrupts with an External Interrupt Controller
	Masking Interrupts with the Internal Interrupt Controller
	Returning From Interrupt and Instruction-Related Exceptions
	Return Address Considerations

	Memory and Peripheral Access
	Cache Memory
	Virtual Address Aliasing

	Instruction Set Categories
	Data Transfer Instructions
	Arithmetic and Logical Instructions
	Move Instructions
	Comparison Instructions
	Shift and Rotate Instructions
	Program Control Instructions
	Other Control Instructions
	Custom Instructions
	No-Operation Instruction
	Potential Unimplemented Instructions

	Document Revision History

	4. Instantiating the Nios II Gen2 Processor
	Main Nios II Gen2 Tab
	Vectors Tab
	Reset Vector
	Exception Vector
	Fast TLB Miss Exception Vector

	Caches and Memory Interfaces Tab
	Instruction Cache
	Flash Accelerator
	Data Cache
	Tightly-coupled Memories
	Peripheral Region

	Arithmetic Instructions Tab
	Arithmetic Instructions
	Arithmetic Implementation

	MMU and MPU Settings Tab
	MMU
	MPU

	JTAG Debug Tab
	Advanced Features Tab
	ECC
	Interrupt Controller Interfaces
	Shadow Register Sets
	Reset Signals
	CPU ID Control Register Value
	Generate Trace File
	Exception Checking
	Branch Prediction
	RAM Memory Protection

	The Quartus Prime IP File
	Document Revision History

	5. Nios II Core Implementation Details
	Device Family Support
	Nios II/f Core
	Overview
	Arithmetic Logic Unit
	Multiply and Divide Performance
	Shift and Rotate Performance

	Memory Access
	Instruction and Data Master Ports
	Instruction and Data Caches
	Instruction Cache
	Data Cache
	Bursting

	Tightly-Coupled Memory
	Memory Management Unit
	Micro Translation Lookaside Buffers

	Memory Protection Unit
	Execution Pipeline
	Pipeline Stalls
	Branch Prediction

	Instruction Performance
	Exception Handling
	External Interrupt Controller Interface

	ECC
	JTAG Debug Module

	Nios II/e Core
	Overview
	Arithmetic Logic Unit
	Memory Access
	Instruction Execution Stages
	Instruction Performance
	Exception Handling
	JTAG Debug Module

	Document Revision History

	6. Nios II Processor Revision History
	Nios II Versions
	Architecture Revisions
	Core Revisions
	Nios II/f Core
	Nios II/e Core

	JTAG Debug Module Revisions
	Document Revision History

	7. Application Binary Interface
	Data Types
	Memory Alignment
	Register Usage
	Stacks
	Frame Pointer Elimination
	Call Saved Registers
	Further Examples of Stacks
	Stack Frame for a Function With alloca()
	Stack Frame for a Function with Variable Arguments
	Stack Frame for a Function with Structures Passed By Value

	Function Prologues
	Prologue Variations

	Arguments and Return Values
	Arguments
	Return Values

	DWARF-2 Definition
	Object Files
	Relocation
	ABI for Linux Systems
	Linux Toolchain Relocation Information
	Copy Relocation
	Jump Slot Relocation
	Thread-Local Storage

	Linux Function Calls
	Linux Operating System Call Interface
	Linux Process Initialization
	Linux Position-Independent Code
	Linux Program Loading and Dynamic Linking
	Global Offset Table
	Function Addresses
	Procedure Linkage Table
	Linux Program Interpreter
	Linux Initialization and Termination Functions

	Linux Conventions
	System Calls
	Userspace Breakpoints
	Atomic Operations
	Processor Requirements

	Development Environment

	Document Revision History

	8. Instruction Set Reference
	Word Formats
	I-Type
	R-Type
	J-Type

	Instruction Opcodes
	Assembler Pseudo-Instructions
	Assembler Macros
	Instruction Set Reference
	add
	addi
	and
	andhi
	andi
	beq
	bge
	bgeu
	bgt
	bgtu
	ble
	bleu
	blt
	bltu
	bne
	br
	break
	bret
	call
	callr
	cmpeq
	cmpeqi
	cmpge
	cmpgei
	cmpgeu
	cmpgeui
	cmpgt
	cmpgti
	cmpgtu
	cmpgtui
	cmple
	cmplei
	cmpleu
	cmpleui
	cmplt
	cmplti
	cmpltu
	cmpltui
	cmpne
	cmpnei
	custom
	div
	divu
	eret
	flushd
	flushda
	flushi
	flushp
	initd
	initda
	initi
	jmp
	jmpi
	ldb / ldbio
	ldbu / ldbuio
	ldh / ldhio
	ldhu / ldhuio
	ldw / ldwio
	mov
	movhi
	movi
	movia
	movui
	mul
	muli
	mulxss
	mulxsu
	mulxuu
	nextpc
	nop
	nor
	or
	orhi
	ori
	rdctl
	rdprs
	ret
	rol
	roli
	ror
	sll
	slli
	sra
	srai
	srl
	srli
	stb / stbio l
	sth / sthio
	stw / stwio
	sub
	subi
	sync
	trap
	wrctl
	wrprs
	xor
	xorhi
	xori

	Document Revision History

