
Nios II Gen2 Software Developer's
Handbook

Subscribe

Send Feedback

NII5V2Gen2
2015.05.14

101 Innovation Drive
San Jose, CA 95134
www.altera.com

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Gen2%20Software%20Developers%20Handbook%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.)

Contents

Overview of Nios II Embedded Development.. 1-1
Prerequisites for Understanding the Nios II Embedded Design Suite...1-1
Finding Nios II EDS Files... 1-1
Nios II Software Development Environment.. 1-2
Nios II EDS Development Flows... 1-2

Nios II SBT Development Flow... 1-2
Nios II Programs..1-3

Makefiles and the SBT...1-3
Nios II Software Project Types...1-4

Altera Software Packages for Embedded Systems... 1-4
Nios II Embedded Design Examples...1-5

Hardware Examples...1-5
Software Examples... 1-5

Third-Party Embedded Tools Support... 1-6
Additional Nios II Information... 1-6
Document Revision History for Overview of Nios II Embedded Development................................ 1-7

Getting Started with the Graphical User Interface...2-1
Getting Started with Nios II Software in Eclipse... 2-1

The Nios II SBT for Eclipse Workbench.. 2-1
Creating a Project...2-2
Navigating the Project... 2-4
Building the Project... 2-4
Configuring the FPGA.. 2-4
Running the Project on Nios II Hardware... 2-5
Debugging the Project on Nios II Hardware... 2-5
Creating a Simple BSP...2-11

Makefiles and the Nios II SBT for Eclipse.. 2-11
Eclipse Source Management...2-12
User Source Management...2-13
BSP Source Management..2-14

Using the BSP Editor...2-14
Tcl Scripting and the Nios II BSP Editor..2-14
Starting the Nios II BSP Editor.. 2-14
The Nios II BSP Editor Screen Layout..2-15
The Command Area.. 2-15
The Console Area...2-18
Exporting a Tcl Script..2-19
Creating a New BSP...2-19
BSP Validation Errors... 2-20

Run Configurations in the SBT for Eclipse.. 2-21
Opening the Run Configuration Dialog Box... 2-21

TOC-2

Altera Corporation

The Project Tab.. 2-21
The Target Connection Tab... 2-21
The Debugger Tab... 2-21

Nios II Hardware v2 (beta)...2-22
Main Tab... 2-22
Debugger Tab... 2-22
Multi-Core Launches...2-22

Optimizing Project Build Time..2-22
Importing a Command-Line Project.. 2-22

Nios II Command-Line Projects..2-23
Importing through the Import Wizard...2-23
Road Map.. 2-23
Import a Command-Line C/C++ Application.. 2-23
Import a Supporting Project.. 2-24
User-Managed Source Files..2-25

Packaging a Library for Reuse..2-25
Creating the User Library... 2-25
Using the Library... 2-25

Creating a Software Package.. 2-26
Programming Flash in Altera Embedded Systems..2-28

Starting the Flash Programmer..2-28
Creating a Flash Programmer Settings File..2-29
The Flash Programmer Screen Layout..2-29
The Command Area.. 2-29
The Console Area...2-30
Saving a Flash Programmer Settings File... 2-30
Flash Programmer Options.. 2-30

Creating Memory Initialization Files..2-31
Generate Memory Initialization Files... 2-31
Generate Memory Initialization Files by the Legacy Method... 2-31
Memory Initialization Files for User-Defined Memories.. 2-32

Running a Nios II System with ModelSim... 2-33
Using ModelSim with an SOPC Builder-Generated System... 2-33
Using ModelSim with a Qsys-Generated System..2-33

Eclipse Usage Notes...2-35
Configuring Application and Library Properties.. 2-35
Configuring BSP Properties... 2-35
Exclude from Build Not Supported...2-36
Selecting the Correct Launch Configuration Type... 2-36
Target Connection Options..2-36
Renaming Nios II Projects..2-36
Running Shell Scripts from the SBT for Eclipse.. 2-36
Must Use Nios II Build Configuration..2-37
CDT Limitations.. 2-37
Enhancements for Build Configurations in SBT and SBT for Eclipse................................... 2-39

Document Revision History for Getting Started with the Graphical User Interface....................... 2-42

Getting Started from the Command Line...3-1

TOC-3

Altera Corporation

Advantages of Command-Line Software Development...3-1
Outline of the Nios II SBT Command-Line Interface.. 3-1

Utilities.. 3-1
Scripts.. 3-2
Tcl Commands... 3-4
Tcl Scripts..3-4
The Nios II Command Shell...3-4

Getting Started in the SBT Command Line... 3-5
Prerequisites..3-5
Creating Hello_World for an Altera Development Board...3-6
Running Hello_World on an Altera Development Board... 3-6
Debugging hello_world...3-7

Software Build Tools Scripting Basics...3-8
Creating a BSP with a Script...3-9
Creating an Application Project with a Script... 3-11

Running make.. 3-12
Creating Memory Initialization Files.. 3-12

Document Revision History for Getting Started from the Command Line......................................3-12

Nios II Software Build Tools...4-1
Road Map for the SBT... 4-2

What the Build Tools Create.. 4-2
Comparing the Command Line with Eclipse...4-2

Makefiles... 4-2
Modifying Makefiles..4-3
Makefile Targets... 4-3

Nios II Embedded Software Projects...4-4
Applications and Libraries..4-4
Board Support Packages..4-5
Software Build Process.. 4-7

Common BSP Tasks.. 4-7
Adding the Nios II SBT to Your Tool Flow... 4-8
Linking and Locating...4-10
Other BSP Tasks...4-15

Details of BSP Creation...4-19
BSP Settings File Creation.. 4-21
Generated and Copied Files... 4-21
HAL BSP Files and Folders...4-21
Linker Map Validation..4-26

Tcl Scripts for BSP Settings.. 4-26
Calling a Custom BSP Tcl Script..4-26

Revising Your BSP... 4-29
Rebuilding Your BSP...4-29
Regenerating Your BSP...4-30
Updating Your BSP... 4-32
Recreating Your BSP... 4-33

Specifying BSP Defaults.. 4-34
Top Level Tcl Script for BSP Defaults...4-35

TOC-4

Altera Corporation

Specifying the Default stdio Device...4-36
Specifying the Default System Timer.. 4-37
Specifying the Default Memory Map.. 4-37
Specifying Default Bootloader Parameters...4-37
Using Individual Default Tcl Procedures... 4-38

Device Drivers and Software Packages... 4-39
Boot Configurations for Altera Embedded Software..4-39

Memory Types..4-39
Boot from Flash Configuration..4-40
Boot from Monitor Configuration.. 4-40
Run from Initialized Memory Configuration..4-41
Run-time Configurable Reset Configuration...4-41

Altera-Provided Embedded Development Tools.. 4-41
Nios II Software Build Tool GUIs... 4-41
The Nios II Command Shell...4-43
The Nios II Command-Line Commands... 4-44

Restrictions... 4-47
Document Revision History for Nios II Software Build Tools..4-47

Overview of the Hardware Abstraction Layer.. 5-1
Getting Started with the Hardware Abstraction Layer... 5-1
HAL Architecture for Embedded Software Systems...5-2

Services.. 5-2
Layers of a HAL-Based System.. 5-2
Applications versus Drivers..5-2
Generic Device Models... 5-3
C Standard Library—newlib...5-4

Embedded Hardware Supported by the HAL..5-4
Nios II Processor Core Support... 5-4
Supported Peripherals... 5-4
MPU Support..5-5
MMU Support.. 5-6

Document Revision History for Overview of the Hardware Abstraction Layer.................................5-6

Developing Programs Using the Hardware Abstraction Layer......................... 6-1
HAL BSP Settings...6-1
The Nios II Embedded Project Structure... 6-2
The system.h System Description File.. 6-3
Data Widths and the HAL Type Definitions... 6-4
UNIX-Style Interface...6-4
File System.. 6-5
Using Character-Mode Devices... 6-6

Standard Input, Standard Output and Standard Error...6-6
General Access to Character Mode Devices...6-7
C++ Streams... 6-7
/dev/null.. 6-7
Lightweight Character-Mode I/O..6-7

TOC-5

Altera Corporation

Altera Logging Functions..6-7
Using File Subsystems... 6-13

Host-Based File System...6-13
Using Timer Devices... 6-14

System Clock Driver.. 6-14
Alarms... 6-15
Timestamp Driver..6-16

Using Flash Devices...6-17
Simple Flash Access... 6-18
Block Erasure or Corruption..6-18
Fine-Grained Flash Access... 6-19

Using DMA Devices.. 6-23
DMA Transmit Channels... 6-24
DMA Receive Channels.. 6-24

Using Interrupt Controllers... 6-27
Reducing Code Footprint in Embedded Systems..6-27

Enable Compiler Optimizations.. 6-28
Use Reduced Device Drivers.. 6-28
Reduce the File Descriptor Pool.. 6-28
Use /dev/null...6-28
Use a Smaller File I/O Library..6-29
Use the Lightweight Device Driver API... 6-31
Use the Minimal Character-Mode API.. 6-32
Eliminate Unused Device Drivers... 6-33
Eliminate Unneeded Exit Code..6-33
Turn off C++ Support... 6-34

Boot Sequence and Entry Point... 6-34
Hosted Versus Free-Standing Applications... 6-34
Boot Sequence for HAL-Based Programs...6-35
Customizing the Boot Sequence.. 6-35

Memory Usage... 6-36
Memory Sections..6-36
Assigning Code and Data to Memory Partitions.. 6-37
Placement of the Heap and Stack.. 6-39
Global Pointer Register... 6-39
Boot Modes... 6-41

Working with HAL Source Files..6-41
Finding HAL Files..6-41
Overriding HAL Functions.. 6-41

Document Revision History for Developing Programs Using the Hardware Abstraction Layer
...6-42

Developing Device Drivers for the Hardware Abstraction Layer...................... 7-1
Driver Integration in the HAL API... 7-1
The HAL Peripheral-Specific API... 7-2
Preparing for HAL Driver Development..7-2
Development Flow for Creating Device Drivers... 7-2
Nios II Hardware Design Concepts...7-3

TOC-6

Altera Corporation

The Relationship Between the .sopcinfo File and system.h... 7-3
Using the System Generation Tool to Optimize Hardware...7-3
Components, Devices, and Peripherals.. 7-3

Accessing Hardware.. 7-3
Creating Embedded Drivers for HAL Device Classes.. 7-5

Character-Mode Device Drivers..7-5
File Subsystem Drivers.. 7-7
Timer Device Drivers.. 7-8
Flash Device Drivers..7-9
DMA Device Drivers... 7-10
Ethernet Device Drivers..7-11

Integrating a Device Driver in the HAL... 7-15
Overview... 7-15
Assumptions and Requirements..7-16
The Nios II BSP Generator... 7-17
File Names and Locations...7-18
Driver and Software Package Tcl Script Creation... 7-19

Creating a Custom Device Driver for the HAL... 7-28
Header Files and alt_sys_init.c...7-28
Device Driver Source Code.. 7-29

Reducing Code Footprint in HAL Embedded Drivers...7-29
Provide Reduced Footprint Drivers.. 7-30
Support the Lightweight Device Driver API.. 7-30

HAL Namespace Allocation...7-31
Overriding the HAL Default Device Drivers... 7-32
Document Revision History for Developing Device Drivers for the Hardware Abstraction

Layer...7-32

Exception Handling...8-1
Nios II Exception Handling Overview..8-1

Exception Handling Terminology...8-1
Interrupt Controllers... 8-3
Latency and Response Time... 8-5

Nios II Interrupt Service Routines...8-6
HAL APIs for Hardware Interrupts.. 8-7
HAL ISR Restrictions.. 8-11
Writing an ISR..8-11
Registering an ISR with the Enhanced Interrupt API...8-13
Enabling and Disabling Interrupts.. 8-14
Configuring an External Interrupt Controller...8-14
C Example... 8-15
Upgrading to the Enhanced HAL Interrupt API.. 8-16

Improving Nios II ISR Performance... 8-17
Software Performance Improvements.. 8-17
Hardware Performance Improvements..8-22

Debugging Nios II ISRs...8-24
HAL Exception Handling System Implementation..8-25

Exception Handling System Structure.. 8-25

TOC-7

Altera Corporation

General Exception Funnel.. 8-26
Hardware Interrupt Funnel..8-26
Software Exception Funnel...8-28
Invalid Instructions... 8-32

The Nios II Instruction-Related Exception Handler.. 8-32
Writing an Instruction-Related Exception Handler... 8-32
Registering an Instruction-Related Exception Handler... 8-34
Removing an Instruction-Related Exception Handler... 8-35

Document Revision History for Exception Handling.. 8-35

Cache and Tightly-Coupled Memory..9-1
Nios II Cache Implementation...9-1

Defining Cache Properties..9-2
HAL API Functions for Managing Cache.. 9-2
Initializing the Nios II Cache after Reset..9-2

Assembly Code to Initialize the Instruction Cache...9-3
Assembly Code to Initialize the Data Cache.. 9-3
For HAL Users..9-3

Nios II Device Driver Cache Considerations...9-3
For HAL Users..9-4

Cache Considerations for Writing Program Loaders... 9-4
For Users of the HAL.. 9-5

Managing Cache in Multi-Master and Multi-Processor Systems... 9-5
Cache Implementation..9-5
Bit-31 Cache Bypass...9-6
For HAL Users..9-6

Nios II Tightly-Coupled Memory..9-6
Document Revision History for Cache and Tightly-Coupled Memory...9-7

MicroC/OS-II Real-Time Operating System.. 10-1
Overview of the MicroC/OS-II RTOS.. 10-1

Further Information.. 10-1
Licensing... 10-2

Other RTOS Providers.. 10-2
The Nios II Implementation of MicroC/OS-II..10-2

MicroC/OS-II Architecture.. 10-2
MicroC/OS-II Thread-Aware Debugging.. 10-3
MicroC/OS-II Device Drivers.. 10-3
Thread-Safe HAL Drivers...10-4
The newlib ANSI C Standard Library... 10-5
Interrupt Service Routines for MicroC/OS-II..10-6

Implementing MicroC/OS-II Projects for the Nios II Processor..10-6
Document Revision History for MicroC/OS-II Real-Time Operating System.................................10-6

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition.......................... 11-1
Prerequisites for Understanding the NicheStack TCP/IP Stack... 11-1

TOC-8

Altera Corporation

Introduction to the NicheStack TCP/IP Stack - Nios II Edition...11-2
The NicheStack TCP/IP Stack Files and Directories.. 11-2
Licensing... 11-3

Other TCP/IP Stack Providers for the Nios II Processor...11-3
Using the NicheStack TCP/IP Stack - Nios II Edition..11-3

Nios II System Requirements...11-3
The NicheStack TCP/IP Stack Tasks...11-4
Initializing the Stack.. 11-4
Calling the Sockets Interface.. 11-7

Configuring the NicheStack TCP/IP Stack in a Nios II Program... 11-8
NicheStack TCP/IP Stack General Settings..11-8
IP Options... 11-9
TCP Options...11-9

Further Information.. 11-9
Known Limitations..11-10
Document Revision History for Ethernet and the NicheStack TCP/IP Stack - Nios II Edition....

11-10

Read-Only Zip File System..12-1
Using the Read-Only Zip File System in a Project.. 12-1

Preparing the Zip File..12-1
Programming the Zip File to Flash..12-2

Document Revision History for Read-Only Zip File System.. 12-2

Publishing Component Information to Embedded Software..........................13-1
Embedded Component Information Flow...13-1

Embedded Component Information Flow Diagram.. 13-1
Tcl Assignment Statements.. 13-2

Embedded Software Assignments... 13-2
C Macro Namespace..13-2
Configuration Namespace.. 13-3
Memory Initialization Namespace.. 13-8

Document Revision History for Publishing Component Information to Embedded Software.....13-9

HAL API Reference... 14-1
HAL API Functions...14-1

_exit()...14-1
_rename()..14-2
alt_dcache_flush()..14-3
alt_dcache_flush_all()... 14-3
alt_dcache_flush_no_writeback()... 14-4
alt_uncached_malloc()..14-5
alt_uncached_free()... 14-6
alt_remap_uncached().. 14-7
alt_remap_cached()... 14-7
alt_icache_flush_all().. 14-8

TOC-9

Altera Corporation

alt_icache_flush()...14-9
alt_alarm_start().. 14-10
alt_alarm_stop()...14-11
alt_dma_rxchan_depth().. 14-12
alt_dma_rxchan_close()... 14-13
alt_dev_reg()...14-14
alt_dma_rxchan_open()... 14-15
alt_dma_rxchan_prepare()...14-16
alt_dma_rxchan_reg()...14-17
alt_dma_txchan_close()..14-18
alt_dma_txchan_ioctl()...14-19
alt_dma_txchan_open()..14-20
alt_dma_txchan_reg()...14-21
alt_flash_close_dev()... 14-22
alt_exception_cause_generated_bad_addr()... 14-23
alt_erase_flash_block()... 14-23
alt_dma_rxchan_ioctl().. 14-24
alt_dma_txchan_space()...14-26
alt_dma_txchan_send().. 14-27
alt_flash_open_dev()...14-28
alt_fs_reg()..14-29
alt_get_flash_info()..14-29
alt_ic_irq_disable()..14-30
alt_ic_irq_enabled().. 14-31
alt_ic_isr_register()..14-32
alt_ic_irq_enable()...14-34
alt_instruction_exception_register().. 14-35
alt_irq_disable()... 14-36
alt_irq_cpu_enable_interrupts ().. 14-37
alt_irq_disable_all()...14-38
alt_irq_enable().. 14-39
alt_irq_enable_all()..14-39
alt_irq_enabled()..14-40
alt_irq_init()... 14-41
alt_irq_pending ()..14-42
alt_irq_register().. 14-43
alt_llist_insert().. 14-44
alt_llist_remove()...14-45
alt_load_section().. 14-46
alt_nticks().. 14-46
alt_read_flash().. 14-47
alt_tick().. 14-48
alt_ticks_per_second().. 14-49
alt_timestamp()..14-50
alt_timestamp_freq()...14-51
alt_timestamp_start()..14-51
alt_write_flash()... 14-52
alt_write_flash_block()... 14-53
close().. 14-54

TOC-10

Altera Corporation

fstat()..14-55
fork()..14-56
fcntl()... 14-57
execve()..14-58
getpid().. 14-58
kill()..14-59
stat()...14-60
settimeofday()...14-61
wait()..14-61
unlink()..14-62
sbrk()..14-63
link().. 14-63
lseek()...14-64
alt_sysclk_init()..14-65
open().. 14-66
times()..14-67
read()... 14-68
write().. 14-69
usleep().. 14-70
alt_lock_flash()...14-71
gettimeofday().. 14-72
ioctl()... 14-73
isatty()..14-74

HAL Standard Types... 14-75
alt_getchar()..14-75
alt_putstr().. 14-76
alt_putchar()...14-77
alt_printf().. 14-78

Document Revision History for HAL API Reference...14-78

Nios II Software Build Tools Reference..15-1
Nios II Software Build Tools Utilities... 15-1

Logging Levels.. 15-1
Setting Values... 15-2
Utility and Script Summary..15-2
nios2-app-generate-makefile..15-3
nios2-bsp-create-settings.. 15-4
nios2-bsp-generate-files..15-6
nios2-bsp-query-settings.. 15-7
nios2-bsp-update-settings.. 15-8
nios2-lib-generate-makefile..15-9
nios2-bsp-editor...15-10
nios2-app-update-makefile.. 15-11
nios2-lib-update-makefile.. 15-12
nios2-swexample-create..15-15
nios2-elf-insert... 15-15
nios2-elf-query... 15-16
nios2-flash-programmer-generate.. 15-17

TOC-11

Altera Corporation

nios2-bsp... 15-19
nios2-bsp-console.. 15-21
alt-file-convert..15-22

Nios II Design Example Scripts... 15-23
create-this-bsp.. 15-24
create-this-app..15-24
Finding create-this-app and create-this-bsp..15-24

Settings Managed by the Software Build Tools... 15-25
Overview of BSP Settings..15-26
Overview of Component and Driver Settings... 15-27
Settings Reference.. 15-28

Application and User Library Makefile Variables...15-62
Application Makefile Variables... 15-62
User Library Makefile Variables.. 15-64
Standard Build Flag Variables..15-64

Software Build Tools Tcl Commands... 15-64
Tcl Command Environments.. 15-64
Tcl Commands for BSP Settings..15-65
Tcl Commands for BSP Generation Callbacks..15-91
Tcl Commands for Drivers and Packages.. 15-99

Software Build Tools Path Names...15-107
Command Arguments.. 15-107
Object File Directory Tree..15-108

Document Revision History for Nios II Software Build Tools Reference..................................... 15-109

TOC-12

Altera Corporation

Overview of Nios II Embedded Development 1
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

The Nios II Software Developer's Handbook has been divided into two documents - Nios II Classic Software
Developer's Handbook and Nios II Gen2 Software Developer's Handbook.

• The Nios II Classic Software Developer's Handbook is familiar to past users. There are no future updates
planned for this version.

• The Nios II Gen2 Software Developer's Handbook describes embedded software development tools for
the Nios II Gen2. It does not describe IP cores. Future updates are planned for this version.

The Nios® II Gen2 Software Developer’s Handbook provides the basic information needed to develop
embedded software for the Altera® Nios II processor. This handbook describes the Nios II software
development environment, the Nios II Embedded Design Suite (EDS) tools available to you, and the
process for developing software.

Related Information
Nios II Classic Software Developer's Handbook
For more information about the Classic version of this document.

Prerequisites for Understanding the Nios II Embedded Design Suite
The Nios II Gen2 Software Developer’s Handbook assumes you have a basic familiarity with embedded
processor concepts. You do not need to be familiar with any specific Altera technology or with Altera
development tools. Familiarity with Altera hardware development tools can give you a deeper
understanding of the reasoning behind the Nios II software development environment. However,
software developers can create and debug applications without further knowledge of Altera technology.

Finding Nios II EDS Files
When you install the Nios II EDS, you specify a root directory for the EDS file structure. This root
directory must be adjacent to the Quartus® II installation. When you install the latest release of the Nios II
EDS on the Windows operating system, choose a local root folder that identifies the content, for example:
c:\altera\<latest release number>\nios2eds.

Note: For simplicity, this handbook refers to this directory as <Nios II EDS install path>.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Overview%20of%20Nios%20II%20Embedded%20Development&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Nios II Software Development Environment
The Nios II EDS provides a consistent software development environment that works for all Nios II
processor systems. With the Nios II EDS running on a host computer, an Altera FPGA, and a JTAG
download cable (such as an Altera USB-Blaster™ download cable), you can write programs for and
communicate with any Nios II processor system. The Nios II processor’s JTAG debug module provides a
single, consistent method to connect to the processor using a JTAG download cable. Accessing the
processor is the same, regardless of whether a device implements only a Nios II processor system, or
whether the Nios II processor is embedded deeply in a complex multiprocessor system. Therefore, you do
not need to spend time manually creating interface mechanisms for the embedded processor.

The Nios II EDS includes proprietary and open-source tools (such as the GNU C/C++ tool chain) for
creating Nios II programs. The Nios II EDS automates board support package (BSP) creation for Nios II
processor-based systems, eliminating the need to spend time manually creating BSPs. The BSP provides a
C/C++ runtime environment, insulating you from the hardware in your embedded system. Altera BSPs
contain the Altera hardware abstraction layer (HAL), an optional RTOS, and device drivers.

Nios II EDS Development Flows
A development flow is a way of using a set of development tools together to create a software project. The
Nios II EDS provides the following development flows for creating Nios II programs:

• The Nios II Software Build Tools (SBT), which provides two user interfaces:

• The Nios II SBT command line
• The Nios II SBT for Eclipse™

Nios II SBT Development Flow
The Nios II SBT allows you to create Nios II software projects, with detailed control over the software
build process. The same Nios II SBT utilities, scripts and Tcl commands are available from both the
command line and the Nios II SBT for Eclipse graphical user interface (GUI).

The SBT allows you to create and manage single-threaded programs as well as complex applications based
on an RTOS and middleware libraries available from Altera and third-party vendors.

The SBT provides powerful Tcl scripting capabilities. In a Tcl script, you can query project settings,
specify project settings conditionally, and incorporate the software project creation process in a scripted
software development flow. Tcl scripting is supported both in Eclipse and at the command line.

Related Information
Nios II Software Build Tools on page 4-1
For more information about Tcl scripting.

Nios II SBT for Eclipse
The Nios II SBT for Eclipse is a thin GUI layer that runs the Nios II SBT utilities and scripts behind the
scenes, presenting a unified development environment. The SBT for Eclipse provides a consistent
development platform that works for all Nios II processor systems. You can accomplish all software
development tasks within Eclipse, including creating, editing, building, running, debugging, and profiling
programs.

1-2 Nios II Software Development Environment
NII5V2Gen2
2015.05.14

Altera Corporation Overview of Nios II Embedded Development

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Nios II SBT for Eclipse is based on the popular Eclipse framework and the Eclipse C/C++ develop‐
ment toolkit (CDT) plugins. The Nios II SBT creates your project makefiles for you, and Eclipse provides
extensive capabilities for interactive debugging and management of source files.

The SBT for Eclipse also allows you to import and debug projects you created in the Nios II Command
Shell.

Related Information

• Getting Started with the Graphical User Interface on page 2-1
For more information about the Nios II SBT for Eclipse.

• Eclipse Foundation
For more information about Eclipse, visit the Eclipse Foundation website.

Nios II SBT Command Line
In the Nios II SBT command line development flow, you create, modify, build, and run Nios II programs
with Nios II SBT commands typed at a command line or embedded in a script. You run the Nios II SBT
commands from the Nios II Command Shell.

Note: To debug your command-line program, import your SBT projects to Eclipse. You can further edit,
rebuild, run, and debug your imported project in Eclipse.

Related Information
Getting Started from the Command Line on page 3-1
For more information about the Nios II SBT in command-line mode

Nios II Programs
Each Nios II program you develop consists of an application project, optional user library projects, and a
BSP project. You build your Nios II program to create an Executable and Linking Format File (.elf) which
runs on a Nios II processor.

The Nios II SBT creates software projects for you. Each project is based on a makefile.

Makefiles and the SBT
The makefile is the central component of a Nios II software project, whether the project is created with
the Nios II SBT for Eclipse, or on the command line. The makefile describes all the components of a
software project and how they are compiled and linked. With a makefile and a complete set of C/C++
source files, your Nios II software project is fully defined.

As a key part of creating a software project, the SBT creates a makefile for you. Nios II projects are
sometimes called "user-managed," because you, the user, are responsible for the content of the project
makefile. You use the Nios II SBT to control what goes in the makefile.

Related Information
Nios II Software Build Tools Reference on page 15-1
For more information about creating makefiles.

NII5V2Gen2
2015.05.14 Nios II SBT Command Line 1-3

Overview of Nios II Embedded Development Altera Corporation

Send Feedback

http://www.eclipse.org
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Software Project Types

Application Project
A Nios II C/C++ application project consists of a collection of source code, plus a makefile. A typical
characteristic of an application is that one of the source files contains function main(). An application
includes code that calls functions in libraries and BSPs. The makefile compiles the source code and links it
with a BSP and one or more optional libraries, to create one .elf file.

User Library Project
A user library project is a collection of source code compiled to create a single library archive file (.a).
Libraries often contain reusable, general purpose functions that multiple application projects can share. A
collection of common arithmetical functions is one example. A user library does not contain a main()
function.

BSP Project
A Nios II BSP project is a specialized library containing system-specific support code. A BSP provides a
software runtime environment customized for one processor in a Nios II hardware system. The Nios II
EDS provides tools to modify settings that control the behavior of the BSP.

A BSP contains the following elements:

• Hardware abstraction layer
• Optional custom newlib C standard library(1)

• Device drivers
• Optional software packages
• Optional real-time operating system

Related Information

• Altera Software Packages for Embedded Systems on page 1-4
• Overview of the Hardware Abstraction Layer on page 5-1
• Nios II Software Build Tools Reference on page 15-1

For more information, refer to the "Nios II Embedded Software Projects" chapter.
• Altera Software Packages for Embedded Systems on page 1-4
• MicroC/OS-II Real-Time Operating System on page 10-1

Altera Software Packages for Embedded Systems
The Nios II EDS includes software packages to extend the capabilities of your software. You can include
these software packages in your BSP.

Table 1-1: Altera Nios II Software Packages Distributed with the Nios II EDS

Name Description

NicheStack TCP/IP Stack - Nios II Edition Refer to the "Ethernet and the NicheStack TCP/IP
Stack - Nios II Edition" chapter.

Read-only zip file system Refer to the "Read-Only Zip File System" chapter.

(1) The complete HTML documentation for newlib resides in the Nios II EDS directory.

1-4 Nios II Software Project Types
NII5V2Gen2
2015.05.14

Altera Corporation Overview of Nios II Embedded Development

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

Host file system Refer to the "Developing Programs Using the
Hardware Abstraction Layer" chapter.

Related Information

• Ethernet and the NicheStack TCP/IP Stack - Nios II Edition on page 11-1
• Read-Only Zip File System
• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• https://www.altera.com/products/design-software/embedded-software-developers/nios-ii-

eds.html#ES
• Embedded Software

For more information about a complete list of the additional software packages available from Altera’s
partners

Nios II Embedded Design Examples
The Nios II EDS includes documented software examples to demonstrate all prominent features of the
Nios II processor and the development environment. The examples can help you start the development of
your custom design. They provide a stable starting point for exploring design options. Also, they
demonstrate many commonly used features of the Nios II EDS.

Note: The hardware design examples are available on the Embedded Processor Design Examples web
page.

Related Information
Embedded Processor Design Examples

Hardware Examples
You can run Nios II hardware designs on many Altera development boards. The hardware examples for
each Altera development board can be found in the kit installation provided with the board.

Note: The Nios II with MMU design is intended to demonstrate Linux. This design does not work with
the SBT, because the SBT does not support the Nios II MMU.

Related Information

• Nios II Ethernet Standard Design Example
• Nios II Processor with Memory Management Unit Design Example
• Altera All Development Kits

For more information about the hardware examples for each Altera development board.

Software Examples
You can run Nios II software examples that run on many of the hardware design examples described in
the previous section.

The Nios II software examples include templates to create the software projects using the Nios II SBT.
These templates do everything necessary to create a BSP and an application project for each software
example.

There are multiple software examples and BSP examples, each with its own directory.

NII5V2Gen2
2015.05.14 Nios II Embedded Design Examples 1-5

Overview of Nios II Embedded Development Altera Corporation

Send Feedback

https://www.altera.com/products/design-software/embedded-software-developers/nios-ii-eds.html#ES
https://www.altera.com/products/design-software/embedded-software-developers/nios-ii-eds.html#ES
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html
https://www.altera.com/support/support-resources/design-examples/all-design-examples.html?cat=embedded
https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-net-std-de.html
https://www.altera.com/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-mmu.html
https://www.altera.com/products/boards_and_kits/all-development-kits.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each BSP example directory contains a create-this-bsp script. After this script is run, each software
example directory contains the following files:

• Source file (.c)
• Header file (.h)
• readme.txt
• template.xml

Figure 1-1: Software Design Example Directory Structure

Related Information
Getting Started from the Command Line on page 3-1
For more information about using these scripts to create software projects.

Third-Party Embedded Tools Support
Several third-party vendors support the Nios II processor, providing products such as design services,
operating systems, stacks, other software libraries, and development tools.

Related Information
Nios II Processor
For more information about the most up-to-date information about third-party support for the Nios II
processor

Additional Nios II Information
This handbook is one part of the complete Nios II processor documentation suite. Consult the following
references for further Nios II information:

1-6 Third-Party Embedded Tools Support
NII5V2Gen2
2015.05.14

Altera Corporation Overview of Nios II Embedded Development

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Nios II Processor Reference Handbook defines the processor hardware architecture and features,
including the instruction set architecture.

The Embedded Peripherals IP User Guide provides a reference for the peripherals distributed with the
Nios II processor. This handbook describes the hardware structure and Nios II software drivers for each
peripheral.

The Embedded Design Handbook describes how to use Altera software development tools effectively, and
recommends design styles and practices for developing, debugging, and optimizing embedded systems.

• The Altera Knowledge Database is an Internet resource that offers solutions to frequently asked
questions with an easy-to-use search engine.

• Altera application notes and tutorials offer step-by-step instructions on using the Nios II processor for
a specific application or purpose. These documents are available on the Altera website.

• The Nios II EDS documentation launchpad. The launchpad is an HTML page installed with the Nios II
EDS, which provides links to Nios II documentation, examples, and other resources. The way you
open the launchpad depends on your software platform.

• In the Windows operating system, on the Start menu, point to Programs > Altera > Nios II EDS,
and click Nios II <version> Documentation.

• In the Linux operating system, open <Nios II EDS install path>/documents/index.html in a web
browser.

Related Information

• Nios II Processor Reference Handbook
For more information on hardware architecture and features, including the instruction set architec‐
ture.

• Embedded Peripherals IP User Guide
For more information on hardware structure and Nios II software drivers for each peripheral.

• Embedded Design Handbook
For more information on design styles and practices for developing, debugging, and optimizing
embedded systems.

• Knowledge Database
For more information, refer to the Knowledge Database page of the Altera website.

• Literature: Nios II Processor

Document Revision History for Overview of Nios II Embedded
Development

Date Version Changes

May 2015 2015.05.14 Initial release.

NII5V2Gen2
2015.05.14 Document Revision History for Overview of Nios II Embedded Development 1-7

Overview of Nios II Embedded Development Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/support/kdb/kdb-index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20Nios%20II%20Embedded%20Development%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Getting Started with the Graphical User
Interface 2

2015.05.14

NII5V2Gen2 Subscribe Send Feedback

The Nios II Software Build Tools (SBT) for Eclipse is a set of plugins based on the Eclipse framework and
the Eclipse C/C++ development toolkit (CDT) plugins. The Nios II SBT for Eclipse provides a consistent
development platform that works for all Nios II embedded processor systems. You can accomplish all
Nios II software development tasks within Eclipse, including creating, editing, building, running,
debugging, and profiling programs.

Getting Started with Nios II Software in Eclipse
Writing software for the Nios II processor is similar to writing software for any other microcontroller
family.The easiest way to start designing effectively is to purchase a development kit from Altera that
includes documentation, a ready-made evaluation board, a getting-started reference design, and all the
development tools necessary to write Nios II programs.

Modifying existing code is a common, easy way to learn to start writing software in a new environment.
The Nios II Embedded Design Suite (EDS) provides many example software designs that you can
examine, modify, and use in your own programs. The provided examples range from a simple "Hello
world" program, to a working RTOS example, to a full TCP/IP stack running a web server. Each example
is documented and ready to compile.

This section guides you through the most fundamental operations in the Nios II SBT for Eclipse in a
tutorial-like fashion. It shows how to create an application project for the Nios II processor, along with
the board support package (BSP) project required to interface with your hardware. It also shows how to
build the application and BSP projects in Eclipse, and how to run the software on an Altera development
board.

The Nios II SBT for Eclipse Workbench
The term 'workbench' refers to the Nios II SBT for Eclipse desktop development environment. The
workbench is where you edit, compile and debug your programs in Eclipse.

Perspectives, Editors, and Views

Each workbench window contains one or more perspectives. Each perspective provides a set of capabili‐
ties for accomplishing a specific type of task.

Most perspectives in the workbench comprise an editor area and one or more views. An editor allows you
to open and edit a project resource (i.e., a file, folder, or project). Views support editors, and provide
alternative presentations and ways to navigate the information in your workbench.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Getting%20Started%20with%20the%20Graphical%20User%20Interface&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Any number of editors can be open at once, but only one can be active at a time. The main menu bar and
toolbar for the workbench window contain operations that are applicable to the active editor. Tabs in the
editor area indicate the names of resources that are currently open for editing. An asterisk (*) indicates
that an editor has unsaved changes. Views can also provide their own menus and toolbars, which, if
present, appear along the top edge of the view. To open the menu for a view, click the drop-down arrow
icon at the right of the view's toolbar or right-click in the view. A view might appear on its own, or stacked
with other views in a tabbed notebook.

For detailed information about the Eclipse workbench, perspectives, and views, refer to the Eclipse help
system.

Before you create a Nios II project, you must ensure that the Nios II perspective is visible. To open the
Nios II perspective, on the Window menu, point to Open Perspective, then Other, and click Nios II.

The Altera Bytestream Console
The workbench in Eclipse for Nios II includes a bytestream console, available through the Eclipse
Console view. The Altera bytestream console enables you to see output from the processor's stdout and
stderr devices, and send input to its stdin device.

Related Information
Using the Altera Bytestream Console on page 2-7
For more information about the Altera bytestream console.

Creating a Project
In the Nios II perspective, on the File menu, point to Nios II Application and BSP from Template. The
Nios II Application and BSP from Template wizard appears. This wizard provides a quick way to create
an application and BSP at the same time.

Alternatively, you can create separate application, BSP and user library projects.

Specifying the Application
In the first page of the Nios II Application and BSP from Template wizard, you specify a hardware
platform, a project name, and a project template. You optionally override the default location for the
application project, and specify a processor name if you are targeting a multiprocessor hardware platform.

You specify a BSP in the second page of the wizard.

Specifying the Hardware Platform
You specify the target hardware design by selecting a SOPC Information File (.sopcinfo) in the SOPC
Information File name box.

Specifying the Project Name

Select a descriptive name for your project. The SBT creates a folder with this name to contain the applica‐
tion project files.

Letters, numbers, and the underscore (_) symbol are the only valid project name characters. Project
names cannot contain spaces or special characters. The first character in the project name must be a letter
or underscore. The maximum filename length is 250 characters.

2-2 The Altera Bytestream Console
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Specifying the BSP on page 2-3
For more information about how the SBT also creates a folder to contain BSP project files.

Specifying the Project Template
Project templates are ready-made, working software projects that serve as examples to show you how to
structure your own Nios II projects. It is often easier to start with a working project than to start a blank
project from scratch.

You select the project template from the Templates list.

The hello_world template provides an easy way to create your first Nios II project and verify that it builds
and runs correctly.

Specifying the Project Location
The project location is the parent directory in which the SBT creates the project folder. By default, the
project location is under the directory containing the .sopcinfo file, in a folder named software.

To place your application project in a different folder, turn off Use default location, and specify the path
in the Project location box.

Specifying the Processor
If your target hardware contains multiple Nios II processors, CPU name contains a list of all available
processors in your design. Select the processor on which your software is intended to run.

Specifying the BSP
When you have finished specifying the application project in the first page of the Nios II Application and
BSP from Template wizard, you proceed to the second page by clicking Next.

On the second page, you specify the BSP to link with your application. You can create a new BSP for your
application, or select an existing BSP. Creating a new BSP is often the simplest way to get a project
running the first time.

You optionally specify the name and location of the BSP.

Specifying the BSP Project Name
By default, if your application project name is <project>, the BSP is named <project>_bsp. You can type in a
different name if you prefer. The SBT creates a directory with this name, to contain the BSP project files.

Related Information
Specifying the Project Name on page 2-2
For more information about how the BSP project names are subject to the same restrictions as application
project names.

Specifying the BSP Project Location
The BSP project location is the parent directory in which the SBT creates the folder. The default project
location is the same as the default location for an application project. To place your BSP in a different
folder, turn off Use default location, and specify the BSP location in the Project location box.

Selecting an Existing BSP
As an alternative to creating a BSP automatically from a template, you can associate your application
project with a pre-existing BSP. Select Select an existing BSP project from your workspace, and select a

NII5V2Gen2
2015.05.14 Specifying the Project Template 2-3

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

BSP in the list. The Create and Import buttons to the right of the existing BSP list provide convenient
ways to add BSPs to the list.

Creating the Projects
When you have specified your BSP, you click Finish to create the projects.

The SBT copies required source files to your project directories, and creates makefiles and other generated
files. Finally, the SBT executes a make clean command on your BSP.

Related Information
Nios II Software Build Tools on page 4-1
For more information about the folders and files in a Nios II BSP.

Navigating the Project
When you have created a Nios II project, it appears in the Project Explorer view, which is typically
displayed at the left side of the Nios II perspective. You can expand each project to examine its folders and
files.

Related Information
Nios II Software Build Tools on page 4-1
For more information about what happens when Nios II projects are created, refer to "Nios II Software
Projects". For more information about the make clean command, refer to "Makefiles".

Building the Project
To build a Nios II project in the Nios II SBT for Eclipse, right-click the project name and click Build
Project. A progress bar shows you the build status. The build process can take a minute or two for a
simple project, depending on the speed of the host machine. Building a complex project takes longer.

During the build process, you view the build commands and command-line output in the Eclipse Console
view.

When the build process is complete, the following message appears in the Console view, under the C-
Build [<project name>] title:

[<project name> build complete]

If the project has a dependency on another project, such as a BSP or a user library, the SBT builds the
dependency project first. This feature allows you to build an application and its BSP with a single
command.

Related Information
Nios II Software Build Tools Reference on page 15-1

Configuring the FPGA
Before you can run your software, you must ensure that the correct hardware design is running on the
FPGA. To configure the FPGA, you use the Quartus II Programmer.

In the Windows operating system, you start the Quartus II Programmer from the Nios II SBT for Eclipse,
through the Nios II menu. In the Linux operating system, you start Quartus II Programmer from the
Quartus II software.

2-4 Creating the Projects
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The project directory for your hardware design contains an SRAM Object File (.sof) along with
the .sopcinfo file. The .sof file contains the hardware design to be programmed in the FPGA.

Related Information
Quartus II Programmer
For more information about programming an FPGA with Quartus II Programmer.

Running the Project on Nios II Hardware
This section describes how to run a Nios II program using the Nios II SBT for Eclipse on Nios II
hardware, such as an Altera development board.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

To run a software project, right-click the application project name, point to Run As, and click Nios II
Hardware. To run a software project as a ModelSim simulation, right-click the application project name,
point to Run As, and click Nios II ModelSim.

This command carries out the following actions:

• Creates a Nios II run configuration.
• Builds the project executable. If all target files are up to date, nothing is built.
• Establishes communications with the target, and verifies that the FPGA is configured with the correct

hardware design.
• Downloads the Executable and Linking Format File (.elf) to the target memory
• Starts execution at the .elf entry point.

Program output appears in the Nios II Console view. The Nios II Console view maintains a terminal I/O
connection with a communication device connected to the Nios II processor in the hardware system, such
as a JTAG UART. When the Nios II program writes to stdout or stderr, the Nios II Console view
displays the text. The Nios II Console view can also accept character input from the host keyboard, which
is sent to the processor and read as stdin.

To disconnect the terminal from the target, click the Terminate icon in the Nios II Console view.
Terminating only disconnects the host from the target. The target processor continues executing the
program.

Related Information

• Run Configurations in the SBT for Eclipse on page 2-21
For more information about about run configurations.

• Lauterbach GmbH Website
For more information about the Nios II instruction set.

Debugging the Project on Nios II Hardware
This section describes how to debug a Nios II program using the Nios II SBT for Eclipse on Nios II
hardware, such as an Altera development board.

NII5V2Gen2
2015.05.14 Running the Project on Nios II Hardware 2-5

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii53022.pdf
http://www.lauterbach.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To debug a software project, right-click the application project name, point to Debug As, and click Nios
II Hardware. This command carries out the following actions:

• Creates a Nios II run configuration.
• Builds the project executable. If all target files are up to date, nothing is built.
• If debugging on hardware, establishes communications with the target, and verifies that the FPGA is

configured with the correct hardware design.
• Downloads the .elf to the target memory.
• Sets a breakpoint at the top of main().
• Starts execution at the .elf entry point.

The Eclipse debugger with the Nios II plugins provides a Nios II perspective, allowing you to perform
many common debugging tasks. Debugging a Nios II program with the Nios II plugins is generally the
same as debugging any other C/C++ program with Eclipse and the CDT plugins.

For information about debugging with Eclipse and the CDT plugins, refer to the Eclipse help system.

Related Information
Run Configurations in the SBT for Eclipse on page 2-21
For more information about about run configurations.

List of Debugging Tasks with the Nios II SBT for Eclipse
The debugging tasks you can perform with the Nios II SBT for Eclipse include the following tasks:

• Controlling program execution with commands such as:

• Suspend (pause)
• Resume
• Terminate
• Step Into
• Step Over
• Step Return

• Setting breakpoints and watchpoints
• Viewing disassembly
• Instruction stepping mode
• Displaying and changing the values of local and global variables in the following formats:

• Binary
• Decimal
• Hexadecimal

• Displaying watch expressions
• Viewing and editing registers in the following formats:

• Binary
• Decimal
• Hexadecimal

• Viewing and editing memory in the following formats:

• Hexadecimal
• ASCII
• Signed integer
• Unsigned integer

• Viewing stack frames in the Debug view

2-6 List of Debugging Tasks with the Nios II SBT for Eclipse
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Console View
Just as when running a program, Eclipse displays program output in the Console view of Eclipse. The
Console view maintains a terminal I/O connection with a communication device connected to the Nios II
processor in the hardware system, such as a JTAG UART. When the Nios II program writes to stdout or
stderr, the Console view displays the text. The Console view can also accept character input from the host
keyboard, which is sent to the processor and read as stdin.

Disconnecting the Terminal from the Target
To disconnect the terminal from the target, click the Terminate icon in the Console view. Terminating
only disconnects the host from the target. The target processor continues executing the program.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

Using the Altera Bytestream Console

The Altera bytestream console enables you to see output from the processor's stdout and stderr devices,
and send input to its stdin device. The function of the Altera bytestream console is similar to the nios2-
terminal command-line utility.

Open the Altera bytestream console in the Eclipse Console view the same way as any other Eclipse
console, by clicking the Open Console button.

When you open the Altera bytestream console, the Bytestream Console Selection dialog box shows you a
list of available bytestreams. This is the same set of bytestreams recognized by System Console. Select the
bytestream connected to the processor you are debugging.

You can send characters to the processor's stdin device by typing in the bytestream console. Be aware
that console input in buffered on a line-by-line basis. Therefore, the processor does not receive any
characters until you press the Enter key.

Note: A bytestream device can support only one connection at a time. You must close the Altera
bytestream console before attempting to connect to the processor with the nios2-terminal utility,
and vice versa.

Related Information
Analyzing and Debugging Designs with the System Console
For more information about how System Console recognizes bytestreams.

Run Time Stack Checking And Exception Debugging

Before you begin

To enable extra exception information, navigate to Nios II MegaWizard >
Advanced Features Exception Checking > Extra Information Register; and recompile the HW project
and regenerate the BSP in the Nios II SBT for Eclipse.

NII5V2Gen2
2015.05.14 Console View 2-7

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Enable the Run Time Stack Checking in the BSP project from NIOS II SBT for Eclipce Nios II BSP
Editor. From the BSP project, right-click and navigate to Nios II > BSP editor Settings > Advanced >
hal > enable_run_time_stack_checking.

2. Rebuild BSP and software.
3. Ensure that the FPGA is configured.
4. Start the Debug Session by navigating to Debug As > Nios II Hardware.
5. Run the Software.

Nios II Exception Debugging

To allow easier debugging of Nios II exceptions, first enable the extra exception information in the Nios
II.

Note: This is already enabled if you have an MMU.

Also you can navigate to Nios II MegaWizard > Advanced Features Exception Checking > Extra
Information Register.

Note: There are other options you can choose, like unimplemented instructions.

When an exception is hit, the cause value in the Nios II Exception Register can be decoded using the
Nios II Exceptions (In Decreasing Priority Order) table from the Nios II Gen2 Processor Reference
Handbook.

Note: This table only provides the general cause.

Related Information

• Nios II Gen2 Processor Reference Handbook
For more information about the Exception Register Decode Table, refer to the "Exception Overview"
chapter in the "Programming Model" section.

• link/iga1409256728501/iga1409334286419
• Nios II Gen2 Processor Reference Handbook

For more information about the Exception Register Description, refer to the "The exception Register"
chapter in the "Programming Model" section.

Stack Overflow

To enable Stack Checking, go to the BSP Editor and click on the Settings tab, click on Advanced, hal,
and then click enable_runtime_stack_checking. When the Stack Checking is enabled, extra code is
added at the start of each function call to:

• Check the current value of the stack pointer
• Compare this to the max stack size, which is stored in the Exception Temp (ET) Register

If the stack pointed to is outside of the valid range, the software branches and calls a “break 3” instruc‐
tion. This is seen by the Debug Control module.

Note: With stack checking on, malloc() and new() can detect heap exhaustion, as well.

Example 2-1: Example of function with stack checking code

 ___vfprintf_internal_r:
000002ec: addi sp,sp,-1308
000002f0: bgeu sp,et,0x2f8 <___vfprintf_internal_r+12>
000002f4: break 3

2-8 Nios II Exception Debugging
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409335505730/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409334286419/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409334286419/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The bgeu and break 3 lines are what is added for the stack overflow checking. If the stack pointer
has grown beyond its limits the break is called.

Related Information
Embedded Design Handbook
For more information, refer to the "Stack Overflow" chapter of the Embedded Design Handbook.

Recognizing and Debugging a Stack Overflow

When a stack overflow occurs, having registered an instruction-related exception handler helps you
identify it by its behavior.

Default Instruction-Related Exception Handler

The default value for an instruction-related exception handler is when it is not registered.

If you don’t register an instruction-related exception handler, the “break 3” instruction is picked up by
the software trap logic and a break is passed to the debugger. You must roll back through the history in
the debugger to find the memory operation that triggered the stack checking break.

Note: With stack checking on, malloc() and new() can detect heap exhaustion.

How to Isolate the Cause of a Sigtrap
How to isolate the cause of a sigtrap seen in the debugger with no instruction-related exception handle?

The Debugger breaks with sigtrap:

1. Use the thread view in the debug window and select the last state.

This is the highest number. The last thread will be the actual call than overflowed.
2. Switch to instruction stepping mode in the debugger by pressing the i-> button in the debug window,

which opens the memory disassembly view.
If there has been a stack overflow the disassembly view should show execution pointing to a break3
after the stack check:

 ___vfprintf_internal_r:
000002ec: addi sp,sp,-1308
000002f0: bgeu sp,et,0x2f8 <___vfprintf_internal_r+12>
000002f4: break 3

3. Check the value of sp and et which holds the max stack side in the Nios II register view.
4. Move to the prior state in the debug window and re-check sp vs et.

NII5V2Gen2
2015.05.14 Recognizing and Debugging a Stack Overflow 2-9

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/edh_ed_handbook.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2-1: Nios II Debug window

Custom Instruction-Related Exception Handler

For use outside the debugger, you can register your own instruction-related exception handler which is
called when the break (or any exception) is seen.

On an exception, including overflow, the HAL calls the instruction-related exception handler, passing in
the cause field from the exception register, and the address which caused the exception. At this point, it is
up to you to decide what do.

For more information about how to register an instruction-related exception, refer to

Related Information

• Exception Handling on page 8-1
This chapter provides more information about the details on how to register an instruction-related
exception.

• Writing an Instruction-Related Exception Handler on page 8-32
This chapter provides more information about the details on how to register an instruction-related
exception.

• Registering an Instruction-Related Exception Handler on page 8-34
This chapter provides more information about the details on how to register an instruction-related
exception.

2-10 Custom Instruction-Related Exception Handler
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• link/iga1409256728501/iga1409336670098
• Determining the Cause of Interrupt and Instruction-Related Exceptions

For more information, refer to the "Determining the Cause of Interrupt and Instruction-Related
Exceptions" chapter of the Nios II Gen2 Processor Reference Handbook.

• llink/iga1409256728501/iga1409267699502
• Programming Model

For more information, refer to the "Programming Model" chapter of the Nios II Gen2 Processor
Reference Handbook.

Creating a Simple BSP
You create a BSP with default settings using the Nios II Board Support Package wizard. To start the
wizard, on the File menu, point to New and click Nios II Board Support Package. The Nios II Board
Support Package wizard enables you to specify the following BSP parameters:

• The name
• The underlying hardware design
• The location
• The operating system and version

You can select the operating system only at the time you create the BSP. To change operating systems, you
must create a new BSP by using the Additional arguments to the nios2-bsp script.

If you intend to run the project in the Nios II ModelSim™ simulation environment, use the Additional
arguments parameter to specify the location of the testbench simulation package descriptor file (.spd).
The .spd file is located in the Quartus II project directory. Specify the path as follows: --set
QUARTUS_PROJECT_DIR=<relative path>.

Note: Altera recommends that you use a relative path name, to ensure that the location of your project is
independent of the installation directory.

After you have created the BSP, you have the following options for GUI-based BSP editing:

• To access and modify basic BSP properties, right-click the BSP project, click Properties > Nios II BSP
Properties.

• To modify parameters and settings in detail using the Nios II BSP Editor, refer to Using the BSP Editor.

Related Information

• Using the BSP Editor on page 2-14
For more information on how to modify parameters and settings in detail using the Nios II BSP Editor.

• Nios II Software Build Tools
For more information about nios2-bsp command arguments.

Makefiles and the Nios II SBT for Eclipse
The Nios II SBT for Eclipse creates and manages the makefiles for Nios II software projects. When you
create a project, the Nios II SBT creates a makefile based on the source content you specify and the
parameters and settings you select. When you modify the project in Eclipse, the Nios II SBT updates the
makefile to match.

NII5V2Gen2
2015.05.14 Creating a Simple BSP 2-11

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409336670098/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409336670098/en-us
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Details of how each makefile is created and maintained vary depending on the project type, and on project
options that you control. The authoritative specification of project contents is always the makefile,
regardless how it is created or updated.

By default, the Nios II SBT manages the list of source files in your makefile, based on actions you take in
Eclipse. However, in the case of applications and libraries, you have the option to manage sources
manually. Both styles of source management are discussed in the following sections.

Eclipse Source Management
Nios II application and user library makefiles are based on source files and properties that you specify
directly. Eclipse source management allows you to add and remove source files with standard Eclipse
actions, such as dragging a source file into and out of the Project Explorer view and adding a new source
file through the File menu.

You can examine and modify many makefile properties in the Nios II Application Properties or Nios II
Library Properties dialog box. To open the dialog box, right-click the project, click Properties > Nios II
Application Properties or Properties > Nios II Library Properties.

Modifying a Makefile with Eclipse Source Management

Table 2-1: GUI Actions that Modify an Application or Makefile with Eclipse Source Management

Modification Where Modified

Specifying the application or user library
name

Nios II Application Properties or Nios II Library
Properties dialog box.

Adding or removing source files For more information, refer to the Eclipse help
system.

Specifying a path to an associated BSP Project References dialog box.

Specifying a path to an associated user
library

Project References dialog box.

Enabling, disabling or modifying compiler
options

Nios II Application Properties or Nios II Library
Properties dialog box.

After the SBT has created a makefile, you can modify the makefile in the following ways:

• With the Nios II SBT for Eclipse.
• With Nios II SBT commands from the Nios II Command Shell.

When modifying a makefile, the SBT preserves any previous nonconflicting modifications, regardless how
those modifications were made.

After you modify a makefile with the Nios II Command Shell, in Eclipse you must right-click the project
and click Update linked resource to keep the Eclipse project view in step with the makefile.

When the Nios II SBT for Eclipse modifies a makefile, it locks the makefile to prevent corruption by other
processes. You cannot edit the makefile from the command line until the SBT has removed the lock.

If you want to exclude a resource (a file or a folder) from the Nios II makefile temporarily, without
deleting it from the project, you can use the Remove from Nios II Build command. Right-click the
resource and click Remove from Nios II Build. When a resource is excluded from the build, it does not
appear in the makefile, and Eclipse ignores it. However, it is still visible in the Project Explorer, with a

2-12 Eclipse Source Management
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

modified icon. To add the resource back into the build, right-click the resource and click Add to Nios II
Build.

Note: Do not use the Eclipse Exclude from build command. With Nios II software projects, you must
use the Remove from Nios II Build and Add to Nios II Build commands instead.

Absolute Source Paths and Linked Resources
By default, the source files for an Eclipse project are stored under the project directory. If your project
must incorporate source files outside the project directory, you can add them as linked resources.

An Eclipse linked resource can be either a file or a folder. With a linked folder, all source files in the folder
and its subfolders are included in the build.

When you add a linked resource (file or folder) to your project, the SBT for Eclipse adds the file or folder
to your makefile with an absolute path name. You might use a linked resource to refer to common source
files in a fixed location. In this situation, you can move the project to a different directory without
disturbing the common source file references.

A linked resource appears with a modified icon (green dot) in the Project Explorer, to distinguish it from
source files and folders that are part of the project. You can use the Eclipse debugger to step into a linked
source file, exactly as if it were part of the project.

You can reconfigure your project to refer to any linked resource either as an individual file, or through its
parent folder. Right-click the linked resource and click Update Linked Resource.

You can use the Remove from Nios II Build and Add to Nios II Build commands with linked resources.
When a linked resource is excluded from the build, its icon is modified with a white dot.

You can use Eclipse to create a path variable, defining the location of a linked resource. A path variable
makes it easy to modify the location of one or more files in your project.

For information about working with path variables and creating linked resources, refer to the Eclipse help
system.

User Source Management
You can remove a makefile from source management control through the Nios II Application Properties
or Nios II Library Properties dialog box.

Simply turn off Enable source management to convert the makefile to user source management. When
Enable source management is off, you must update your makefile manually to add or remove source files
to or from the project. The SBT for Eclipse makes no changes to the list of source files, but continues to
manage all other project parameters and settings in the makefile.

Modifying a Makefile with User Source Management
Editing a makefile manually is an advanced technique. Altera recommends that you avoid manual editing.
The SBT provides extensive capabilities for manipulating makefiles while ensuring makefile correctness.

In a makefile with user-managed sources, you can refer to source files with an absolute path. You might
use an absolute path to refer to common source files in a fixed location. In this situation, you can move
the project to a different directory without disturbing the common source file references.

Projects with user-managed sources do not support the following features:

• Linked resources
• The Add to Nios II Build command
• The Remove from Nios II Build command

NII5V2Gen2
2015.05.14 Absolute Source Paths and Linked Resources 2-13

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2-2: GUI Actions that Modify an Application or a Makefile with User Source Management

Modification Where Modified

Specifying the application or user library
name

Nios II Application Properties or Nios II Library
Properties dialog box

Specifying a path to an associated BSP Project References dialog box
Specifying a path to an associated user
library

Project References dialog box

Enabling, disabling or modifying compiler
options

Nios II Application Properties or Nios II Library
Properties dialog box

Note: With user source management, the source files shown in the Eclipse Project Explorer view do not
necessarily reflect the sources built by the makefile. To update the Project Explorer view to match
the makefile, right-click the project and click Sync from Nios II Build.

BSP Source Management
Nios II BSP makefiles are handled differently from application and user library makefiles. BSP makefiles
are based on the operating system, BSP settings, selected software packages, and selected drivers. You do
not specify BSP source files directly.

BSP makefiles must be managed by the SBT, either through the BSP Editor or through the SBT
command-line utilities.

Related Information
Using the BSP Editor on page 2-14
For more information about specifying BSPs

Using the BSP Editor
Typically, you create a BSP with the Nios II SBT for Eclipse. The Nios II plugins provide the basic tools
and settings for defining your BSP. For more advanced BSP editing, use the Nios II BSP Editor. The BSP
Editor provides all the tools you need to create even the most complex BSPs.

Tcl Scripting and the Nios II BSP Editor
The Nios II BSP Editor provides support for Tcl scripting. When you create a BSP in the BSP Editor, the
editor can run a Tcl script that you specify to supply BSP settings.

You can also export a Tcl script from the BSP Editor, containing all the settings in an existing BSP. By
studying such a script, you can learn about how BSP Tcl scripts are constructed.

Starting the Nios II BSP Editor
You start the Nios II BSP Editor in one of the following ways:

• Right-click an existing project, point to Nios II, and click BSP Editor. The editor loads the BSP
Settings File (.bsp) associated with your project, and is ready to update it.

• On the Nios II menu, click Nios II BSP Editor. The editor starts without loading a .bsp file.
• Right-click an existing BSP project and click Properties. In the Properties dialog box, select Nios II

BSP Properties > BSP Editor. The editor loads your .bsp file for update.

2-14 BSP Source Management
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Nios II BSP Editor Screen Layout
The Nios II BSP Editor screen is divided into two areas. The top area is the command area, and the
bottom is the console area. The details of the Nios II BSP Editor screen areas are described in this section.

Below the console area is the Generate button. This button is enabled when the BSP settings are valid. It
generates the BSP target files, as shown in the Target BSP Directory tab.

The Command Area
In the command area, you specify settings and other parameters defining the BSP. The command area
contains several tabs:

• The Main tab
• The Software Packages tab
• The Drivers tab
• The Linker Script tab
• The Enable File Generation tab
• The Target BSP Directory tab

Each tab allows you to view and edit a particular aspect of the .bsp, along with relevant command line
parameters and Tcl scripts.

The settings that appear on the Main, Software Packages and Drivers tabs are the same as the settings
you manipulate on the command line.

Related Information
Nios II Software Build Tools Reference on page 15-1

The Main Tab
The Main tab presents general settings and parameters, and operating system settings, for the BSP. The
BSP includes the following settings and parameters:

• The path to the .sopcinfo file specifying the target hardware
• The processor name
• The operating system and version

Note: You cannot change the operating system in an existing BSP. You must create a new BSP based on
the desired operating system.

• The BSP target directory—the destination for files that the SBT copies and creates for your BSP.
• BSP settings

BSP settings appear in a tree structure. Settings are organized into Common and Advanced categories.
Settings are further organized into functional groups. The available settings depend on the operating
system.

When you select a group of settings, the controls for those settings appear in the pane to the right of the
tree. When you select a single setting, the pane shows the setting control, the full setting name, and the
setting description.

Related Information

• The Software Packages Tab on page 2-16
• The Drivers Tab on page 2-16

For more information about how the software package and driver settings are presented separately.

NII5V2Gen2
2015.05.14 The Nios II BSP Editor Screen Layout 2-15

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Software Packages Tab
The Software Packages tab allows you to insert and remove software packages in your BSP, and control
software package settings.

At the top of the Software Packages tab is the software package table, listing each available software
package. The table allows you to select the software package version, and enable or disable the software
package.

The operating system determines which software packages are available.

Many software packages define settings that you can control in your BSP. When you enable a software
package, the available settings appear in a tree structure, organized into Common and Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane to the right of the
tree. When you select a single setting, the pane shows the setting control, the full setting name, and the
setting description.

Enabling and disabling software packages and editing software package settings can have a profound
impact on BSP behavior. Refer to the documentation for the specific software package for details.

Related Information

• The Drivers Tab on page 2-16
For more information about how the software package and driver settings are presented separately.

• The Main Tab on page 2-15
• Read-Only Zip File System

For more information about the read-only zip file system.
• Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

For more information about the NicheStack TCP/IP Stack - Nios II Edition.

The Drivers Tab
The Drivers tab allows you to select, enable, and disable drivers for devices in your system, and control
driver settings.

At the top of the Drivers tab is the driver table, mapping components in the hardware system to drivers.
The driver table shows components with driver support. Each component has a module name, module
version, module class name, driver name, and driver version, determined by the contents of the hardware
system. The table allows you to select the driver by name and version, as well as to enable or disable each
driver.

When you select a driver version, all instances of that driver in the BSP are set to the version you select.
Only one version of a given driver can be used in an individual BSP.

Many drivers define settings that you can control in your BSP. Available driver settings appear in a tree
structure below the driver table, organized into Common and Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane to the right of the
tree. When you select a single setting, the pane shows the setting control, the full setting name, and the
setting description.

Enabling and disabling device drivers, changing drivers and driver versions, and editing driver settings,
can have a profound impact on BSP behavior. Refer to the relevant component documentation and driver
information for details.

Related Information

• The Software Packages Tab on page 2-16

2-16 The Software Packages Tab
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The Main Tab on page 2-15
• Embedded Peripherals IP User Guide

For more information about Altera components.

The Linker Script Tab
The Linker Script tab allows you to view available memory in your hardware system, and examine and
modify the arrangement and usage of linker regions in memory.

When you make a change to the memory configuration, the SBT validates your change.

Note: Rearranging linker regions and linker section mappings can have a very significant impact on BSP
behavior.

Related Information
The Problems Tab on page 2-19
If there is a problem, a message appears in the Problems tab in the console area.

Linker Section Mappings
At the top of the Linker Script tab, the Linker Section Mappings table shows the mapping from linker
sections to linker regions. You can edit the BSP linker section mappings using the following buttons
located next to the linker section table:

• Add—Adds a linker section mapping to an existing linker region. The Add button opens the Add
Section Mapping dialog box, where you specify a new section name and an existing linker region.

• Remove—Removes a mapping from a linker section to a linker region.
• Restore Defaults—Restores the section mappings to the default configuration set up at the time of BSP

creation.

Linker Regions
At the bottom of the Linker Script tab, the Linker Memory Regions table shows all defined linker
regions. Each row of the table shows one linker region, with its address range, memory device name, size,
and offset into the selected memory device.

You reassign a defined linker region to a different memory device by selecting a different device name in
the Memory Device Name column. The Size and Offset columns are editable. You can also edit the list of
linker regions using the following buttons located next to the linker region table:

• Add—Adds a linker region in unused space on any existing device. The Add button opens the Add
Memory Region dialog box, where you specify the memory device, the new memory region name, the
region size, and the region's offset from the device base address.

• Remove—Removes a linker region definition. Removing a region frees the region's memory space to
be used for other regions.

• Add Memory Device—Creates a linker region representing a memory device that is outside the
hardware system. The button launches the Add Memory Device dialog box, where you can specify the
device name, memory size and base address. After you add the device, it appears in the linker region
table, the Memory Device Usage Table dialog box, and the Memory Map dialog box. This function‐
ality is equivalent to the add_memory_device Tcl command.

Note: Ensure that you specify the correct base address and memory size. If the base address or size of an
external memory changes, you must edit the BSP manually to match. The SBT does not automati‐
cally detect changes in external memory devices, even if you update the BSP by creating a new
settings file.

NII5V2Gen2
2015.05.14 The Linker Script Tab 2-17

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Restore Defaults—restores the memory regions to the default configuration set up at the time of BSP
creation.

• Memory Usage—Opens the Memory Device Usage Table. The Memory Device Usage Table allows
you to view memory device usage by defined memory region. As memory regions are added, removed,
and adjusted, each device's free memory, used memory, and percentage of available memory are
updated. The rightmost column is a graphical representation of the device’s usage, according to the
memory regions assigned to it.

• Memory Map—Opens the Memory Map dialog box. The memory map allows you to view a map of
system memory in the processor address space. The Device table is a read-only reference showing
memories in the hardware system that are mastered by the selected processor. Devices are listed in
memory address order.

To the right of the Device table is a graphical representation of the processor's memory space, showing
the locations of devices in the table. Gaps indicate unmapped address space.

Note: This representation is not to scale.

Related Information
Nios II Software Build Tools Reference on page 15-1

Enable File Generation Tab
The Enable File Generation tab allows you to take ownership of specific BSP files that are normally
generated by the SBT. When you take ownership of a BSP file, you can modify it, and prevent the SBT
from overwriting your modifications. The Enable File Generation tab shows a tree view of all target files
to be generated or copied when the BSP is generated. To disable generation of a specific file, expand the
software component containing the file, expand any internal directory folders, select the file, and right-
click. Each disabled file appears in a list at the bottom of the tab. This functionality is equivalent to the
set_ignore_file Tcl command.

Note: If you take ownership of a BSP file, the SBT can no longer update it to reflect future changes in the
underlying hardware. If you change the hardware, be sure to update the file manually.

Related Information
Nios II Software Build Tools Reference on page 15-1

Target BSP Directory Tab
The Target BSP Directory tab is a read-only reference showing you what output to expect when the BSP
is generated.

It does not depict the actual file system, but rather the files and directories to be created or copied when
the BSP is generated. Each software component, including the operating system, drivers, and software
packages, specifies source code to be copied into the BSP target directory. The files are generated in the
directory specified on the Main tab.

When you generate the BSP, existing BSP files are overwritten, unless you disable generation of the file in
the Enable File Generation tab.

The Console Area
The console area shows results of settings and commands that you select in the command area. The
console area consists of the following tabs:

2-18 Enable File Generation Tab
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The Information tab
• The Problems tab
• The Processing tab

The Information Tab
The Information tab shows a running list of high-level changes you make to your BSP, such as adding a
software package or changing a setting value.

The Problems Tab
The Problems tab shows warnings and errors that impact or prohibit BSP creation. For example, if you
inadvertently specify an invalid linker section mapping, a message appears in the Problems tab.

The Processing Tab
When you generate your BSP, the Processing tab shows files and folders created and copied in the BSP
target directory.

Exporting a Tcl Script
When you have configured your BSP to your satisfaction, you can export the BSP settings as a Tcl script.
This feature allows you to perform the following tasks:

• Regenerate the BSP from the command line
• Recreate the BSP as a starting point for a new BSP
• Recreate the BSP on a different hardware platform
• Examine the Tcl script to improve your understanding of Tcl command usage

The exported Tcl script captures all BSP settings that you have changed since the previous time the BSP
settings file was saved. If you export a Tcl script after creating a new BSP, the script captures all
nondefault settings in the BSP. If you export a Tcl script after editing a pre-existing BSP, the script
captures your changes from the current editing session.

To export a Tcl script, in the Tools menu, click Export Tcl Script, and specify a filename and destination
path. The file extension is .tcl.

You can later run your exported script as a part of creating a new BSP.

Related Information

• Using a Tcl Script in BSP Creation on page 2-20
For more information about how to run a Tcl script during BSP creation.

• Revising Your BSP on page 4-29
For more information about default BSP settings and recreating and regenerating BSPs.

Creating a New BSP
To create a BSP in the Nios II BSP Editor, use the New BSP command in the File menu to open the New
BSP dialog box. This dialog box controls the creation of a new BSP settings file. The BSP Editor loads this
new BSP after the file is created.

In this dialog box, you specify the following parameters:

• The .sopcinfo file defining the hardware platform.
• The CPU name of the targeted processor.
• The BSP type and version.

NII5V2Gen2
2015.05.14 The Information Tab 2-19

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can select the operating system only at the time you create the BSP. To change operating
systems, you must create a new BSP.

• The operating system version.
• The name of the BSP settings file. It is created with file extension .bsp.
• Absolute or relative path names in the BSP settings file. By default, relative paths are enabled for

filenames in the BSP settings file.
• An optional Tcl script that you can run to supply additional settings.

Normally, you specify the path to your .sopcinfo file relative to the BSP directory. This enables you to
move, copy and archive the hardware and software files together. If you browse to the .sopcinfo file, or
specify an absolute path, the Nios II BSP Editor offers to convert your path to the relative form.

Using a Tcl Script in BSP Creation
When you create a BSP, the New BSP Settings File dialog box allows you to specify the path and filename
of a Tcl script. The Nios II BSP Editor runs this script after all other BSP creation steps are done, to
modify BSP settings.

This feature allows you to perform the following tasks:

• Recreate an existing BSP as a starting point for a new BSP
• Recreate a BSP on a different hardware platform
• Include custom settings common to a group of BSPs

The Tcl script can be created by hand or exported from another BSP.

Related Information

• Exporting a Tcl Script on page 2-19
For more information about how to create a Tcl script from an existing BSP.

• Nios II Software Build Tools on page 4-1
For more information about Tcl scripts and BSP settings, refer to "Tcl Scripts for BSP Settings".

BSP Validation Errors
If you modify a hardware system after basing a BSP on it, some BSP settings might no longer be valid.
This is a very common cause of BSP validation errors. Eliminating these errors usually requires correcting
a large number of interrelated settings.

If your modifications to the underlying hardware design result in BSP validation errors, the best practice
is to update or recreate the BSP. Updating and recreating BSPs is very easy with the BSP Editor.

If you recreate your BSP, you might find it helpful to capture your old BSP settings by exporting them to a
Tcl script. You can edit the Tcl script to remove any settings that are incompatible with the new hardware
design.

Related Information

• Using a Tcl Script in BSP Creation on page 2-20
For more information about how to run a Tcl script during BSP creation.

• Exporting a Tcl Script on page 2-19
For more information about how to create a Tcl script from an existing BSP.

• Nios II Software Build Tools on page 4-1
For more information about Tcl scripts and BSP settings, refer to "Tcl Scripts for BSP Settings".

2-20 Using a Tcl Script in BSP Creation
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Run Configurations in the SBT for Eclipse
Eclipse uses run configurations to control how it runs and debugs programs. Run configurations in the
Nios II SBT for Eclipse have several features that help you debug Nios II software running on FPGA
platforms.

Opening the Run Configuration Dialog Box
You can open the run configuration dialog box two ways:

• You can right-click an application, point to Run As, and click Run Configurations.
• You can right-click an application, point to Debug As, and click Debug Configurations.

Depending on which way you opened the run configuration dialog box, the title is either Run Configura‐
tion or Debug Configuration. However, both views show the same run configurations.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

Each run configuration is presented on several tabs. This section describes each tab.

The Project Tab
On this tab, you specify the application project to run. The Advanced button opens the Nios II ELF
Section Properties dialog box. In this dialog box, you can control the runtime parameters in the following
ways:

• Specify the processor on which to execute the program (if the hardware design provides multiple
processors)

• Specify the device to use for standard I/O
• Specify the expected location, timestamp and value of the system ID
• Specify the path to the Quartus II JTAG Debugging Information File (.jdi)
• Enable or disable profiling

The Nios II SBT for Eclipse sets these parameters to reasonable defaults. Do not modify them unless you
have a clear understanding of their effects.

The Target Connection Tab
This tab allows you to control the connection between the host machine and the target hardware in the
following ways:

• Select the cable, if more than one cable is available
• Allow software to run despite a system ID value or timestamp that differs from the hardware
• Reset the processor when the software is downloaded

The System ID Properties button allows you to examine the system ID and timestamp in both the .elf file
and the hardware. This can be helpful when you need to analyze the cause of a system ID or timestamp
mismatch.

The Debugger Tab
In this tab, you optionally enable the debugger to halt at a specified entry point.

NII5V2Gen2
2015.05.14 Run Configurations in the SBT for Eclipse 2-21

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Hardware v2 (beta)
Run configurations and debug configurations have a launch type called Nios II Hardware v2 (beta). To
create this launch type, in the Run menu select either Run Configurations or Debug Configurations. In
the Run/Debug Configurations dialog box, select Nios II Hardware v2 (beta) and click the New button
to create a new launch configuration.

Nios II Hardware v2 (beta) has the following options:

• Main tab
• Debugger tab
• Multi-core launches

Main Tab
This tab allows you to select the following options:

• Specify the application project to run and the ELF File location
• Specify the processor and the JTAG UART connection to use
• Enable or disable system ID and timestamp checks
• Enable or disable processor controls such as download ELF, reset processor or start processor

Debugger Tab
In this tab, you optionally enable the debugger to halt at a specified entry point.

Multi-Core Launches
If you have multiple run configurations, create an Eclipse launch group. Launch groups are an Eclipse
feature that allows multiple run configurations to be started at the same time. You choose which run
configurations are added to the group. You can use the launch group in any place where you can use a run
configuration.

For details about Eclipse launch groups, refer to the Eclipse help system.

Optimizing Project Build Time
When you build a Nios II project, the project makefile builds any components that are unbuilt or out of
date. For this reason, the first time you build a project is normally the slowest. Subsequent builds are fast,
only rebuilding sources that have changed.

With Nios II Gen 2, the Windows® host compile and build time performance has improved. For example,
it is now three times faster to build the webserver example.

Importing a Command-Line Project
If you have software projects that were created with the Nios II SBT command line, you can import the
projects into the Nios II SBT for Eclipse for debugging and further development. This section discusses
the import process.

2-22 Nios II Hardware v2 (beta)
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Your command-line C/C++ application, and its associated BSP, is created on the command line. Any
Nios II SBT command-line project is ready to import into the Nios II SBT for Eclipse. No additional
preparation is necessary.

Nios II Command-Line Projects
The Nios II SBT for Eclipse imports the following kinds of Nios II command-line projects:

• Command-line C/C++ application project
• Command-line BSP project
• Command-line user library project

You can edit, build, debug, and manage the settings of an imported project exactly the same way you edit,
build, debug, and manage the settings of a project created in Nios II SBT for Eclipse.

Importing through the Import Wizard
The Nios II SBT for Eclipse imports each type of project through the Import wizard. The Import wizard
determines the kind of project you are importing, and configures it appropriately.

You can continue to develop project code in your SBT project after importing the project into Eclipse.
You can edit source files and rebuild the project, using the SBT either in Eclipse or on the command line.

Related Information
Getting Started from the Command Line on page 3-1
For more information about creating projects with the command line.

Road Map
Importing and debugging a project typically involves several of the following tasks. You do not need to
perform these tasks in this order, and you can repeat or omit some tasks, depending on your needs.

• Import a command-line C/C++ application
• Import a supporting project
• Debug a command-line C/C++ application
• Edit command-line C/C++ application code

When importing a project, the SBT for Eclipse might make some minor changes to your makefile. If the
makefile refers to a source file located outside the project directory tree, the SBT for Eclipse treats that file
as a linked resource. However, it does not add or remove any source files to or from your makefile.

When you import an application or user library project, the Nios II SBT for Eclipse allows you to choose
Eclipse source management or user source management. Unless your project has an unusual directory
structure, choose Eclipse source management, to allow the SBT for Eclipse to automatically maintain your
list of source files.

You debug and edit an imported project exactly the same way you debug and edit a project created in
Eclipse.

Import a Command-Line C/C++ Application
To import a command-line C/C++ application, perform the following steps:

NII5V2Gen2
2015.05.14 Nios II Command-Line Projects 2-23

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Start the Nios II SBT for Eclipse.
2. On the File menu, click Import. The Import dialog box appears.
3. Expand the Nios II Software Build Tools Project folder, and select Import Nios II Software Build

Tools Project.
4. Click Next. The File Import wizard appears.
5. Click Browse and locate the directory containing the C/C++ application project to import.
6. Click OK. The wizard fills in the project path.
7. Specify the project name in the Project name box.

Note: You might see a warning saying "There is already a .project file at: <path>". This warning
indicates that the directory already contains an Eclipse project. Either it is an Eclipse project, or
it is a command-line project that is already imported into Eclipse. If the project is already in
your workspace, do not re-import it.

8. Click Finish. The wizard imports the application project.

After you complete these steps, the Nios II SBT for Eclipse can build, debug, and run the complete
program, including the BSP and any libraries. The Nios II SBT for Eclipse builds the project using the
SBT makefiles in your imported C/C++ application project. Eclipse displays and steps through applica‐
tion source code exactly as if the project were created in the Nios II SBT for Eclipse. However, Eclipse
does not have direct information about where BSP or user library code resides. If you need to view,
debug or step through BSP or user library source code, you need to import the BSP or user library.

Related Information
Import a Supporting Project on page 2-24
For more information about the process of importing supporting projects, such as BSPs and libraries.

Importing a Project with Absolute Source Paths
If your project uses an absolute path to refer to a source file, the SBT for Eclipse imports that source file as
a linked resource. In this case, the import wizard provides a page where you can manage how Eclipse
refers to the source: as a file, or through a parent directory.

Related Information
Absolute Source Paths and Linked Resources on page 2-13
For more information about managing linked resources.

Import a Supporting Project
While debugging a C/C++ application, you might need to view, debug or step through source code in a
supporting project, such as a BSP or user library. To make supporting project source code visible in the
Eclipse debug perspective, you need to import the supporting project.

If you do not need BSP or user library source code visible in the debugger, you can skip this task, and
proceed to debug your project exactly as if you had created it in Eclipse.

If you have several C/C++ applications based on one BSP or user library, import the BSP or user library
once, and then import each application that is based on the BSP or user library. Each application's
makefile contains the information needed to find and build any associated BSP or libraries.

Related Information
Import a Command-Line C/C++ Application on page 2-23
For more information about the steps for importing a supporting project.

2-24 Importing a Project with Absolute Source Paths
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

User-Managed Source Files
When you import a Nios II application or user library project, the Nios II SBT for Eclipse offers the
option of user source management. User source management is helpful if you prefer to update your
makefile manually to reflect source files added to or removed from the project.

With user source management, Eclipse never makes any changes to the list of source files in your
makefile. However, the SBT for Eclipse manages all other project parameters and settings, just as with any
other Nios II software project.

If your makefile refers to a source file with an absolute path, when you import with user source
management, the absolute path is untouched, like any other source path. You might use an absolute path
to refer to common source files in a fixed location. In this situation, you can move the project to a
different directory without disturbing the common source file references.

User source management is not available with BSP projects. BSP makefiles are based on the operating
system, BSP settings, selected software packages, and selected drivers. You do not specify BSP source files
directly.

Related Information
User Source Management on page 2-13
For more information about how the SBT for Eclipse handles makefiles with user-managed sources.

Packaging a Library for Reuse
This section shows how to create and use a library archive file (.a) in the Nios II Software Build Tools for
Eclipse. This technique enables you to provide a library to another engineer or organization without
providing the C source files. This process entails two tasks:

1. Create a Nios II user library
2. Create a Nios II application project based on the user library

Creating the User Library
To create a user library, perform the following steps:

1. In the File menu, point to New and click Nios II Library.
2. Type a project name, for example test_lib.
3. For Location, browse to the directory containing your library source files (.c and .h).
4. Click Finish.
5. Build the project to create the .a file (in this case libtest_lib.a).

Using the Library
To use the library in a Nios II application project, perform the following steps:

1. Create your Nios II application project.
2. To set the library path in the application project, right-click the project, and click Properties.
3. Expand Nios II Application Properties. In Nios II Application Paths, next to Application include

directories, click Add and browse to the directory containing your library header files.
4. Next to Application library directories, click Add and browse to the directory containing your .a file.

NII5V2Gen2
2015.05.14 User-Managed Source Files 2-25

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Next to Library name, click Add and type the library project name you selected when you created
your user library.

6. Click OK.
7. Build your application.

As this example shows, the .c source files are not required to build the application project. To hand off the
library to another engineer or organization for reuse, you provide the following files:

• Nios II library archive file (.a)
• Software header files (.h)

Related Information
Creating a Project on page 2-2

Creating a Software Package
This section shows how you can build a custom library into a BSP as a software package. The software
package can be linked to any BSP through the BSP Editor.

This section contains an example illustrating the steps necessary to include any software package into a
Nios II BSP.

To create and exercise the example software package, perform the following steps:

1. Locate the ip directory in your Altera Complete Design Suite installation. For example, if the Altera
Complete Design Suite version 14.1 is installed on the Windows operating system, the directory might
be c:\altera\14.1\ip. Under the ip directory, create a directory for the software package. For simplicity,
this section refers to this directory as <example package>.

2. In <example package>, create a subdirectory named EXAMPLE_SW_PACKAGE. In <example package>/
EXAMPLE_SW_PACKAGE, create two subdirectories named inc and lib.

3. In <example package>/EXAMPLE_SW_PACKAGE/inc, create a new header file named example_sw_package.h
containing the following code:

/* Example Software Package */
void example_sw_package(void);

4. In <example package>/EXAMPLE_SW_PACKAGE/lib, create a new C source file named example_sw_package.c
containing the following code:

/* Example Software Package */
#include <stdio.h>
#include "..\inc\example_sw_package.h"

void example_sw_package(void)
{
 printf ("Example Software Package. \n");
}

5. In <example package>, create a new Tcl script file named example_sw_package_sw.tcl containing the
following code:

2-26 Creating a Software Package
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

#
example_sw_package_sw.tcl
#

Create a software package known as "example_sw_package"
create_sw_package example_sw_package

The version of this software
set_sw_property version 14.1

Location in generated BSP that sources should be copied into
set_sw_property bsp_subdirectory Example_SW_Package

#
Source file listings...
#

C/C++ source files
#add_sw_property c_source EXAMPLE_SW_PACKAGE/src/my_source.c

Include files
add_sw_property include_source
EXAMPLE_SW_PACKAGE/inc/example_sw_package.h

Lib files
add_sw_property lib_source
EXAMPLE_SW_PACKAGE/lib/libexample_sw_package_library.a

Include paths for headers which define the APIs for this package
to share w/ app & bsp
Include paths are relative to the location of this software
package tcl file

add_sw_property include_directory EXAMPLE_SW_PACKAGE/inc

This driver supports HAL & UCOSII BSP (OS) types
add_sw_property supported_bsp_type HAL
add_sw_property supported_bsp_type UCOSII

Add example software package system.h setting to the BSP:
add_sw_setting quoted_string system_h_define \
 example_sw_package_system_value EXAMPLE_SW_PACKAGE_SYSTEM_VALUE 1 \
 "Example software package system value"
End of file

6. In the SBT for Eclipse, create a Nios II application and BSP project based on the Hello World template.
Set the application project name to hello_example_sw_package.

7. Create a new C file named hello_example_sw_package.c in the new application project containing the
following code:

/*
 * "Hello World" example.
 *

NII5V2Gen2
2015.05.14 Creating a Software Package 2-27

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 * This example prints 'Hello from Nios II' to the STDOUT stream. It also
 * tests inclusion of a user software package.
 */

#include <stdio.h>
#include "example_sw_package.h"

int main()
{
 printf("Hello from Nios II!\n");
 example_sw_package();
 return 0;
}

8. Delete hello_world.c from the hello_example_sw_package application project.
9. In the File menu, point to New and click Nios II Library
10.Set the project name to example_sw_package_library.
11.For Location, browse to <example package>\EXAMPLE_SW_PACKAGE\lib

Note: Building the library here is required, because the resulting .a is referenced here by example_sw_
package_sw.tcl.

12.Click Finish.
13.Build the example_sw_package_library project to create the libexample_sw_package_library.a library

archive file.
14.Right-click the BSP project, point to Nios II, and click BSP Editor to open the BSP Editor.
15.In the Software Packages tab, find example_sw_package in the software package table, and enable it.

If there are any errors in a software package's *_sw.tcl file, such as an incorrect path that causes a file to
not be found, the software package does not appear in the BSP Editor.

16.Click the Generate button to regenerate the BSP. On the File menu, click Save to save your changes to
settings.bsp.

17.In the File menu, click Exit to exit the BSP Editor.
18.Build the hello_example_sw_package_bsp BSP project.
19.Build the hello_example_sw_package application project.

hello_example_sw_package.elf is ready to download and execute.

Programming Flash in Altera Embedded Systems
Many Nios II processor systems use external flash memory to store one or more of the following items:

• Program code
• Program data
• FPGA configuration data
• File systems

The Nios II SBT for Eclipse provides flash programmer utilities to help you manage and program the
contents of flash memory. The flash programmer allows you to program any combination of software,
hardware, and binary data into flash memory in one operation.

Starting the Flash Programmer
You start the flash programmer by clicking Flash Programmer in the Nios II menu.

2-28 Programming Flash in Altera Embedded Systems
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you first open the flash programmer, no controls are available until you open or create a Flash
Programmer Settings File (.flash-settings).

Creating a Flash Programmer Settings File
The .flash-settings file describes how you set up the flash programmer GUI to program flash. This
information includes the files to be programmed to flash, a .sopcinfo file describing the hardware
configuration, and the file programming locations. You must create or open a flash programmer settings
file before you can program flash.

You create a flash programmer settings file through the File menu. When you click New, the New Flash
Programmer Settings File dialog box appears.

Specifying the Hardware Configuration

You specify the hardware configuration by opening a .sopcinfo file. You can locate the .sopcinfo file in
either of two ways:

• Browse to a BSP settings file. The flash programmer finds the .sopcinfo file associated with the BSP.
• Browse directly to a .sopcinfo file.

Once you have identified a hardware configuration, details about the target hardware appear at the top of
the Nios II flash programmer screen.

Also at the top of the Nios II flash programmer screen is the Hardware Connections button, which opens
the Hardware Connections dialog box. This dialog box allows you to select a download cable, and control
system ID behavior.

Related Information
The Target Connection Tab on page 2-21

The Flash Programmer Screen Layout
The flash programmer screen is divided into two areas. The top area is the command area, and the bottom
is the console area. The details of the flash programmer screen areas are described in this section.

Below the console area is the Start button. This button is enabled when the flash programmer parameters
are valid. It starts the process of programming flash.

The Command Area
In the command area, you specify settings and other parameters defining the flash programmer settings
file. The command area contains one or more tabs. Each tab represents a flash memory component
available in the target hardware. Each tab allows you to view the parameters of the memory component,
and view and edit the list of files to be programmed in the component.

The Add and Remove buttons allow you to create and edit the list of files to be programmed in the flash
memory component.

The File generation command box shows the commands used to generate the Motorola S-record Files
(.flash) used to program flash memory.

The File programming command box shows the commands used to program the .flash files to flash
memory.

NII5V2Gen2
2015.05.14 Creating a Flash Programmer Settings File 2-29

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Properties button opens the Properties dialog box, which allows you to view and modify informa‐
tion about an individual file. In the case of a .elf, the Properties button provides access to the project reset
address, the flash base and end addresses, and the boot loader file (if any).

The flash programmer determines whether a boot loader is required based on the load and run locations
of the .text section. You can use the Properties dialog box to override the default boot loader configura‐
tion.

The Console Area
The console area shows results of settings and commands that you select in the command area. The
console area consists of the following tabs:

• The Information tab
• The Problems tab
• The Processing tab

The Information Tab
The Information tab shows the high-level changes you make to your flash programmer settings file.

The Problems Tab
The Problems tab shows warnings and error messages about the process of flash programmer settings file
creation.

The Processing Tab
When you program flash, the Processing tab shows the individual programming actions as they take
place.

Saving a Flash Programmer Settings File
When you have finished configuring the input files, locations, and other settings for programming your
project to flash, you can save the settings in a .flash-settings file. With a .flash-settings file, you can program
the project again without reconfiguring the settings. You save a .flash-settings file through the File menu.

Flash Programmer Options
Through the Options menu, you can control several global aspects of flash programmer behavior, as
described in this section.

Related Information
Nios II Flash Programmer User’s Guide
For more information about these features.

Staging Directories
Through the Staging Directories dialog box, you control where the flash programmer creates its script
and .flash-settings files.

Generate Files
If you disable this option, the flash programmer does not generate programming files, but programs files
already present in the directory. You might use this feature to reprogram a set of files that you have
previously created.

2-30 The Console Area
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Program Files
If you disable this option, the flash programmer generates the programming files and the script, but does
not program flash. You can use the files later to program flash by turning off the Generate Files option.

Erase Flash Before Programming
When enabled, this option erases flash memory before programming.

Run From Reset After Programming
When enabled, this option resets and starts the Nios II processor after programming flash.

Creating Memory Initialization Files
Sometimes it is useful to generate memory initialization files. For example, to program your FPGA with a
complete, running Nios II system, you must include the memory contents in your .sof file. In this
configuration, the processor can boot directly from internal memory without downloading.

Creating a Hexadecimal (Intel-Format) File (.hex) is a necessary intermediate step in creating such a .sof
file. The Nios II SBT for Eclipse can create .hex files and other memory initialization formats.

To generate correct memory initialization files, the Nios II SBT needs details about the physical memory
configuration and the types of files required. Typically, this information is specified when the hardware
system is generated.

Note: If your system contains a user-defined memory, you must specify these details manually.

Related Information
Generate Memory Initialization Files by the Legacy Method on page 2-31

Generate Memory Initialization Files
To generate memory initialization files, perform the following steps:

1. Right-click the application project.
2. Point to Make targets and click Build to open the Make Targets dialog box.
3. Select mem_init_generate.
4. Click Build. The makefile generates a separate file (or files) for each memory device. It also generates a

Quartus II IP File (.qip). The .qip file tells the Quartus II software where to find the initialization files.
5. Add the .qip file to your Quartus II project.
6. Recompile your Quartus II project.

If your hardware system was generated with SOPC Builder, you can alternatively use the legacy
method to generate memory initialization files. However, this method is not preferred.

Generate Memory Initialization Files by the Legacy Method
To generate memory initialization files by the legacy method, perform the following steps:

NII5V2Gen2
2015.05.14 Program Files 2-31

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Right-click the application project.
2. Point to Make targets and click Build to open the Make Targets dialog box.
3. Select mem_init_install.
4. Click Build. The makefile generates a separate file (or files) for each memory device. The makefile

inserts the memory initialization files directly in the Quartus II project directory for you.
5. Recompile your Quartus II project.

Related Information
Hardware Reference
For information about working in the stand-alone flow.

Memory Initialization Files for User-Defined Memories
Generating memory initialization files requires detailed information about the physical memory devices,
such as device names and data widths. Normally, the Nios II SBT extracts this information from
the .sopcinfo file. However, in the case of a user-defined memory, the .sopcinfo file does not contain
information about the data memory, which is outside the system. Therefore, you must provide this
information manually.

You specify memory device information when you add the user-defined memory device to your BSP. The
device information persists in the BSP settings file, allowing you to regenerate memory initialization files
at any time, exactly as if the memory device were part of the hardware system.

Specify the memory device information in the Advanced tab of the Add Memory Device dialog box.
Settings in this tab control makefile variables in mem_init.mk. On the Advanced tab, you can control the
following memory characteristics:

• The physical memory width. The device’s name in the hardware system.
• The memory initialization file parameter name. Every memory device can have an HDL parameter

specifying the name of the initialization file. The Nios II ModelSim launch configuration overrides the
HDL parameter to specify the memory initialization filename. When available, this method is
preferred for setting the memory initialization filename.

• The Mem init filename parameter can be used in Nios II systems as an alternative method of specifying
the memory initialization filename. The Mem init filename parameter directly overrides any filename
specified in the HDL.

• Connectivity to processor master ports. These parameters are used when creating the linker script.
• The memory type: volatile, CFI flash or EPCS flash.
• Byte lanes.
• You can also enable and disable generation of the following memory initialization file types:

• .hex file
• .dat and .sym files
• .flash file

Related Information
Publishing Component Information to Embedded Software on page 13-1
For more information about this parameter, refer to "Embedded Software Assignments".

Specifying the Memory Device Information in the Advanced Tab
Specify the memory device information in the Advanced tab of the Add Memory Device dialog box.
Settings in this tab control makefile variables in mem_init.mk.

2-32 Memory Initialization Files for User-Defined Memories
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

On the Advanced tab, you can control the following memory characteristics:

• The physical memory width.
• The device's name in the hardware system.
• The memory initialization file parameter name. Every memory device can have an HDL parameter

specifying the name of the initialization file. The Nios II ModelSim launch configuration overrides the
HDL parameter to specify the memory initialization filename. When available, this method is
preferred for setting the memory initialization filename.

• The Mem init filename parameter can be used in Nios II systems as an alternative method of
specifying the memory initialization filename. The Mem init filename parameter directly overrides
any filename specified in the HDL.

• Connectivity to processor master ports. These parameters are used when creating the linker script.
• The memory type: volatile, CFI flash or EPCS flash.
• Byte lanes.
• You can also enable and disable generation of the following memory initialization file types:

• .hex file
• .dat and .sym files
• .flash file

Related Information
Publishing Component Information to Embedded Software on page 13-1
For more information about this parameter, refer to "Embedded Software Assignments".

Running a Nios II System with ModelSim
You can run a Nios II program on Nios II hardware, such as an Altera development board, or you can run
it in the Nios II ModelSim simulation environment.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

Using ModelSim with an SOPC Builder-Generated System
If your hardware system was generated by SOPC Builder, running a software project in ModelSim is very
similar to running it on Nios II hardware.

To run Nios II software project in ModelSim, right-click the application project name, point to Run As,
and click Nios II ModelSim.

Similarly, to debug a software project in ModelSim, right-click the application project name, point to
Debug As, and click Nios II ModelSim.

Related Information
Running the Project on Nios II Hardware on page 2-5

Using ModelSim with a Qsys-Generated System
To run a Qsys-generated Nios II system with ModelSim, you must first create a simulation model and
testbench, and specify memory initialization files. You create your Nios II simulation model and
testbench using the steps that apply to any Qsys design.

NII5V2Gen2
2015.05.14 Running a Nios II System with ModelSim 2-33

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Creating a System with Qsys
For more information, refer to the "Qsys Design Flow".

Preparing your Software for ModelSim
Creating the software projects is nearly the same as when you run the project on hardware. To prepare
your software for ModelSim simulation, perform the following steps:

1. Create your software project.

If you need to initialize a user-defined memory, you must take special steps to create memory initiali‐
zation files correctly.

2. Build your software project.
3. Create a ModelSim launch configuration with the following steps:

a. Right-click the application project name, point to Run As, and click Run Configurations. In the
Run Configurations dialog box, select Nios II ModelSim, and click the New button.

b. In the Main tab, ensure that the correct software project name and .elf file are selected.
c. Click Apply to save the launch configuration.
d. Click Close to close the dialog box.

If you are simulating multiple processors, create a launch configuration for each processor, and
create a launch group.

4. Open the run configuration you previously created. Click Run. The Nios II SBT for Eclipse performs a
make mem_init_generate command to create memory initialization files, and launches ModelSim.

5. At the ModelSim command prompt, type ldr.

Related Information

• Creating a Project on page 2-2
• Building the Project on page 2-4
• Generate Memory Initialization Files by the Legacy Method on page 2-31
• Multi-Core Launches on page 2-22
• Creating a Simple BSP on page 2-11

Potential Error Message

When you create the launch configuration, you might see the following error message:

SEVERE: The Quartus II project location has not been set in the ELF section. You can manually
override this setting in the launch configuration's ELF file 'Advanced' properties page.

Related Information
Creating a Simple BSP on page 2-11

Nios II GCC Tool Chain

Note:
In Nios II EDS versions 14.0 and above (Nios II Gen2), the Nios II GNU tool chain is upgraded from
GCC 4.7.3 to GCC 4.8.3. When upgrading to the new tool chain you should note the following changes:

• Nios II specific changes
• GCC changes and enhancements

2-34 Preparing your Software for ModelSim
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Porting to GCC 4.8
For more information about how GNU also provides a porting guide to GCC4.8 to document
common issues.

• GCC Releases
For more information about full GCC release notes.

Eclipse Usage Notes
The behavior of certain Eclipse and CDT features is modified by the Nios II SBT for Eclipse. If you
attempt to use these features the same way you would with a non-Nios II project, you might have
problems configuring or building your project. This section discusses such features.

If you launch the Nios II Software Build Tools for Eclipse from the Nios II command shell, you cannot
pause execution of the Nios II application when debugging the application. Running the program in this
way closes the GDB connection to the target, leaving the processor running. This is caused by running
Eclipse from the Cygwin environment.

To ensure that the pause button works, launch the Nios II Software Build Tool for Eclipse either from
Qsys or directly from your operating system's Start menu.

Configuring Application and Library Properties
To configure project properties specific to Nios II SBT application and library projects, use the Nios II
Application Properties and Nios II Library Properties tabs of the Properties dialog box.

To open the appropriate properties tab, right-click the application or library project and click Properties.
Depending on the project type, Nios II Application Properties or Nios II Library Properties tab appears
in the list of tabs. Click the appropriate Properties tab to open it.

Comparing the Nios II Application Properties and Nios II Library Properties tabs
The Nios II Application Properties and Nios II Library Properties tabs are nearly identical. These tabs
allow you to control the following project properties:

• The name of the target .elf file (application project only)
• The library name (library project only)
• A list of symbols to be defined in the makefile
• A list of symbols to be undefined in the makefile
• A list of assembler flags
• Warning level flags
• A list of user flags
• Generation of debug symbols
• Compiler optimization level
• Generation of object dump file (application project only)
• Source file management
• Path to associated BSP (required for application, optional for library)

Configuring BSP Properties
To configure BSP settings and properties, use the Nios II BSP Editor.

NII5V2Gen2
2015.05.14 Eclipse Usage Notes 2-35

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

https://gcc.gnu.org/gcc-4.8/porting_to.html
http://gcc.gnu.org/releases.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Using the BSP Editor on page 2-14
For more information about the BSP Editor.

• Using the BSP Editor on page 2-14
For more information about the BSP Editor.

Exclude from Build Not Supported
The Exclude from Build command is not supported. You must use the Remove from Nios II Build and
Add to Nios II Build commands instead.

This behavior differs from the behavior of the Nios II SBT for Eclipse in version 9.1.

Selecting the Correct Launch Configuration Type
If you try to debug a Nios II software project as a CDT Local C/C++ Application launch configuration
type, you see an error message, and the Nios II Debug perspective fails to open. This is expected CDT
behavior in the Eclipse platform. Local C/C++ Application is the launch configuration type for a standard
CDT project. To invoke the Nios II plugins, you must use a Nios II launch configuration type.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

Target Connection Options
The Nios II launch configurations offer the following Nios II-specific options in the Target Connection
tab:

• Disable 'Nios II Console' view
• Ignore mismatched system ID
• Ignore mismatched system timestamp
• Download ELF to selected target system
• Start processor
• Reset the selected target system

Renaming Nios II Projects
To rename a project in the Nios II SBT for Eclipse, perform the following steps:

1. Right-click the project and click Rename.
2. Type the new project name.
3. Right-click the project and click Refresh.

If you neglect to refresh the project, you might see the following error message when you attempt to
build it:

Resource <original_project_name> is out of sync with the system

Running Shell Scripts from the SBT for Eclipse
Many SBT utilities are implemented as shell scripts. You can use Eclipse external tools configurations to
run shell scripts. However, you must ensure that the shell environment is set up correctly.

2-36 Exclude from Build Not Supported
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To run shell scripts from the SBT for Eclipse, execute the following steps:

1. Start the Nios II Command Shell.
2. Start the Nios II SBT for Eclipse by typing the following command:

eclipse-nios2

You must start the SBT for Eclipse from the command line in both the Linux and Windows operating
systems, to set up the correct shell environment.

3. From the Eclipse Run menu, select to External Tools > External Tools Configurations.
4. Create a new tools configuration, or open an existing tools configuration.
5. On the Main tab, set Location and Argument.

Table 2-3: Location and Argument to Run Shell Script from Eclipse

Platform Location Argument

Windows ${env_var:QUARTUS_ROOTDIR}\bin\cygwin\

bin\sh.exe

-c "<script name> <script args>"

Linux ${env_var:SOPC_KIT_NIOS2}/bin/<script
name>

<script args>

Table 2-4: Location and Argument Values Used to Run elf2hex --help from Eclipse

Platform Location Argument

Windows ${env_var:QUARTUS_ROOTDIR}\bin\cygwin\

bin\sh.exe

-c "elf2hex --help"

Linux ${env_var:SOPC_KIT_NIOS2}/bin/elf2hex --help

6. On the Build tab, ensure that Build before launch and its related options are set appropriately.

By default, a new tools configuration builds all projects in your workspace before executing the
command. This might not be the desired behavior.

7. Click Run. The command executes in the Nios II Command Shell, and the command output appears
in the Eclipse Console tab.

Related Information
Getting Started from the Command Line on page 3-1

Must Use Nios II Build Configuration
Although Eclipse can support multiple build configurations, you must use the Nios II build configuration
for Nios II projects.

Note: If your project was created with version 10.1 or earlier of the Nios II SBT, you must re-import it to
create the Nios II launch configuration correctly.

CDT Limitations
The following tables describe the Eclipse CDT features not supported by the Nios II plugins. The features
listed in the left column are supported by the Eclipse CDT plugins, but are not supported by Nios II
plugins; and the right column lists alternative features supported by the Nios II plugins.

NII5V2Gen2
2015.05.14 Must Use Nios II Build Configuration 2-37

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2-5: New Project Wizard

Unsupported CDT Feature Alternative Nios II Feature

C/C++

• C Project
• C++ Project
• Convert to a C/C++ Project
• Source Folder

To create a new project, use one of the following
Nios II wizards:

• Nios II Application
• Nios II Application and BSP from Template
• Nios II Board Support Package
• Nios II Library

Table 2-6: Build configurations

Unsupported CDT Feature Alternative Nios II Feature

• Right-click project and point to Build Configu‐
rations

• Debugger tab

• Stop on startup

The Nios II plugins only support a single build
configuration. This feature is supported only at the
top of main().

Table 2-7: Exclude from Build (from version 10.0 onwards)

Unsupported CDT Feature Alternative Nios II Feature

Right-click source files Use Remove from Nios II Build and Add to Nios
II Build.

Table 2-8: Project Properties

Unsupported CDT Feature Alternative Nios II Feature

C/C++ Build

• Builder Settings

• Makefile generation
• Build location

• Behavior

• Build on resource save (Auto build)
• Build Variables
• Discovery Options
• Environment
• Settings
• Tool Chain Editor

• Current builder
• Used tools

By default, the Nios II SBT generates makefiles
automatically.

The build location is determined with the Nios II
Application Properties or Nios II BSP Properties
dialog box.

To change the toolchain, use the Current tool chain
option.

2-38 CDT Limitations
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Unsupported CDT Feature Alternative Nios II Feature

C/C++ General

• Enable project specific settings
• Documentation tool comments
• Documentation
• File Types
• Indexer

• Build configuration for the indexer
• Language Mappings
• Paths and Symbols

The Nios II plugins only support a single build
configuration.

Use Nios II Application Properties and Nios II
Application Paths.

Table 2-9: Window Preferences

Unsupported CDT Feature Alternative Nios II Feature

C/C++

• Build scope
• Build project configurations
• Build Variables
• Environment
• File Types
• Indexer

• Build configuration for the indexer
• Language Mappings
• New CDT project wizard

The Nios II plugins only support a single build
configuration.

The Nios II plugins only support a single build
configuration.

Enhancements for Build Configurations in SBT and SBT for Eclipse
The SBT command line tools nios2-app-update-make and nios2-lib-update-makefile now support
six new options specifically for handling build configurations, which are fully backwards compatible even
if it is unused and omitted.

For SBT for Eclipse, a few GUI options are added:

• Dropdown combo box showing selected build config
• Button for managing build configs (add/remove/activate)

Build Configurations in SBT
Application and library makefile are enhanced to support multiple build configurations. There are new
command line options in nios2-app-update-makefile and nios2-lib-update-makefile for creating,
deleting and updating build configurations.

NII5V2Gen2
2015.05.14 Enhancements for Build Configurations in SBT and SBT for Eclipse 2-39

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

These command line options are:

Table 2-10: New Command Line Options

Option Description

--add-build-config <config> <base> Adds a new build configuration with the name
<config>, initializes the new build configuration
using an existing build configuration named <base>
.

<base> is optional and defaults to the active
configuration. <base> is always ignored if only one
build configuration is available.

--remove-build-config <config> Removes an existing build configuration.

No effect if only one build configuration is available.
--list-build-config <config> Returns name of all build configurations.

Returns empty string if only one build configura‐
tion is available.

--get-active-build-config Returns the name of active build configuration.

Returns empty string if only one build configura‐
tion is available.

--set-active-build-config <config> Set the build configuration named <config> active.

No effect if only one build configuration is available.
--build-config <config> Only use (read or modify) the build configuration

named <config> but do not set it as the active build
configuration.

No effect if only one build configuration is available.

Note: These new options are optional and can be used together with all existing nios2-app-update-
makefile and nios2-lib-update-makefile command line options.

Note: The BSP makefile does not support multiple build configurations.

Build Configurations in SBT for Eclipse
Application and library projects are enhanced to support multiple build configurations. There are new
GUI options available for creating, deleting, and unpdating build configurations.

2-40 Build Configurations in SBT for Eclipse
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following shows how the application properties page looks with the new build configuration options
highlighted in red:

Figure 2-2: Nios II Application Properties

Clicking on the Managed Configurations button shows the following dialog for adding, removing, and
activating build configurations:

Figure 2-3: Managed Configurations

NII5V2Gen2
2015.05.14 Build Configurations in SBT for Eclipse 2-41

Getting Started with the Graphical User Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The BSP project does not support multiple build configurations.

Document Revision History for Getting Started with the Graphical User
Interface

Date Version Changes

May 2015 2015.05.14 Initial release.

2-42 Document Revision History for Getting Started with the Graphical User...
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started with the Graphical User Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20with%20the%20Graphical%20User%20Interface%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Getting Started from the Command Line 3
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

The Nios II Software Build Tools (SBT) allows you to construct a wide variety of complex embedded
software systems using a command-line interface. From this interface, you can execute Software Built
Tools command utilities, and use scripts (or other tools) to combine the command utilities in many useful
ways.

Advantages of Command-Line Software Development
The Nios II SBT command line offers the following advantages over the Nios II SBT for Eclipse:

• You can invoke the command line tools from custom scripts or other tools that you might already use
in your development flow.

• On a command line, you can run several Tcl scripts to control the creation of a board support package
(BSP).

• You can use command line tools in a bash script to build several projects at once.

The Nios II SBT command-line interface is designed to work in the Nios II Command Shell.

Related Information
The Nios II Command Shell on page 3-4

Outline of the Nios II SBT Command-Line Interface
The Nios II SBT command-line interface consists of:

• Command-line utilities
• Command-line scripts
• Tcl commands
• Tcl scripts

These elements work together in the Nios II Command Shell to create software projects.

Utilities
The Nios II SBT command-line utilities enable you to create software projects. You can call these utilities
from the command line or from a scripting language of your choice (such as perl or bash). On Windows,
these utilities have a .exe extension. The Nios II SBT resides in the <Nios II EDS install path>/sdk2/bin
directory.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Getting%20Started%20from%20the%20Command%20Line&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

For more information about the command-line utilities provided by the Nios II SBT, refer to “Altera-
Provided Development Tools” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Related Information
Nios II Software Build Tools on page 4-45

Scripts
Nios II SBT scripts implement complex behavior that extends the capabilities provided by the utilities.

Command Summary

nios2-bsp Creates or updates a BSP
create-this-app Creates a software example and builds it
create-this-bsp Creates a BSP for a specific hardware design

example and builds it

Note: There are create-this-app scripts for each software example and several create-this-bsp scripts for
each hardware design example. For more information, refer to “Nios II Design Example Scripts” in
the "Nios II Software Build Tools Reference" chapter of the Nios II Software Developer’s Handbook.

Related Information
Nios II Design Example Scripts on page 15-23

nios2-bsp

Usage

nios2-bsp <bsp-type> <bsp-dir> [<sopc>] [<override>]...

Options

• <bsp-type>: hal or ucosii.
• <bsp-dir>: Path to the BSP directory.
• <sopc>: The path to the .sopcinfo file or its directory.
• <override>: Options to override defaults.

Description

The nios2-bsp script calls nios2-bsp-create-settings or nios2-bsp-update-settings to create or update a
BSP settings file, and the nios2-bsp-generate-files command to create the BSP files. The Nios II
Embedded Design Suite (EDS) supports the following BSP types:

• hal

• ucosii

BSP type names are case-insensitive.

This utility produces a BSP of <bsp-type> in <bsp-dir>. If the BSP does not exist, it is created. If the BSP
already exists, it is updated to be consistent with the associated hardware system.

3-2 Scripts
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started from the Command Line

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The default Tcl script is used to set the following system-dependent settings:

• stdio character device
• System timer device
• Default linker memory
• Boot loader status (enabled or disabled)

If the BSP already exists, nios2-bsp overwrites these system-dependent settings.

The default Tcl script is installed at <Nios II EDS install path>/sdk2/bin/bsp-set-defaults.tcl

When creating a new BSP, this utility runs nios2-bsp-create-settings, which creates settings.bsp in <bsp-
dir>.

When updating an existing BSP, this utility runs nios2-bsp-update-settings, which updates settings.bsp in
<bsp-dir>.

After creating or updating the settings.bsp file, this utility runs nios2-bsp-generate-files, which generates
files in <bsp-dir>

Required arguments:

• <bsp-type>: Specifies the type of BSP. This argument is ignored when updating a BSP. This argument
is case-insensitive. The nios2-bsp script supports the following values of <bsp-type>:

• hal

• ucosii

• <bsp-dir>: Path to the BSP directory. Use "." to specify the current directory.

Optional arguments:

• <sopc>: The path name of the .sopcinfo file. Alternatively, specify a directory containing a .sopcinfo file.
In the latter case, the tool finds a file with the extension .sopcinfo. This argument is ignored when
updating a BSP. If you omit this argument, it defaults to the current directory.

• <override>: Options to override defaults. The nios2-bsp script passes most overrides to nios2-bsp-
create-settings or nios2-bsp-update-settings. It also passes the --silent, --verbose, --debug, and
--log options to nios2-bsp-generate-files.

nios2-bsp passes the following overrides to the default Tcl script:

• --default_stdio <device>|none|DONT_CHANGE

Specifies stdio device.
• --default_sys_timer <device>|none|DONT_CHANGE

Specifies system timer device.
• --default_memory_regions DONT_CHANGE

Suppresses creation of new default memory regions when updating a BSP. Do not use this option
when creating a new BSP.

• --default_sections_mapping <region>|DONT_CHANGE

Specifies the memory region for the default sections.
• --use_bootloader 0|1|DONT_CHANGE

Specifies whether a boot loader is required.

On a preexisting BSP, the value DONT_CHANGE prevents associated settings from changing their
current value.

Note: The "--" prefix is stripped when the option is passed to the underlying utility.

NII5V2Gen2
2015.05.14 nios2-bsp 3-3

Getting Started from the Command Line Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

create-this-app
Each application subdirectory contains a create-this-app script. The create-this-app script copies the C/C
++ application source code to the current directory, runs nios2-app-generate-makefile to create a
makefile (named Makefile), and then runs make to build the Executable and Linking Format File (.elf) for
your application. Each create-this-app script uses a particular example BSP. For further information,
refer to the script to determine the associated example BSP. If the BSP does not exist when create-this-
app runs, create-this-app calls the associated create-this-bsp script to create the BSP.

The create-this-app script takes no command-line arguments. Your current directory must be the same
directory as the create-this-app script. The exit value is zero on success and one on error.

create-this-bsp
Each BSP subdirectory contains a create-this-bsp script. The create-this-bsp script calls the nios2-bsp
script to create a BSP in the current directory. The create-this-bsp script has a relative path to the
directory containing the .sopcinfo file. The .sopcinfo file resides two directory levels above the directory
containing the create-this-bsp script.

The create-this-bsp script takes no command-line arguments. Your current directory must be the same
directory as the create-this-bsp script. The exit value is zero on success and one on error.

Tcl Commands
Tcl commands are a crucial component of the Nios II SBT. Tcl commands allow you to exercise detailed
control over BSP generation, as well as to define drivers and software packages.

Tcl Scripts
The SBT provides powerful Tcl scripting capabilities. In a Tcl script, you can query project settings,
specify project settings conditionally, and incorporate the software project creation process in a scripted
software development flow. The SBT uses Tcl scripting to customize your BSP according to your
hardware and the settings you select. You can also write custom Tcl scripts for detailed control over the
BSP.

The Nios II Command Shell
The Nios II Command Shell is a bash command-line environment initialized with the correct settings to
run Nios II command-line tools. The Command Shell supports the GCC toolchain.

For more information about GCC toolchains, refer to “Altera-Provided Development Tools” in the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Related Information

• Nios II Software Build Tools on page 4-45
• GNU Compiler Tool Chain on page 4-44
• Overview of Nios II Embedded Development on page 1-1

Starting the Nios II Command Shell
To open the Nios II Command Shell, perform the following steps, depending on your environment:

3-4 create-this-app
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started from the Command Line

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• In the Windows operating system, on the Start menu, point to Programs > Altera > Nios II EDS
<version>,and click Nios II <version> Command Shell:.

• In the Linux operating system, in a command shell, change directories to <Nios II EDS install path>,
and type the command nios2_command_shell.sh.

Auto-Executing a Command in the Nios II Command Shell
In certain situations, you might need to run a command or a script automatically after the Nios II
Command Shell is initialized. When you start the Nios II Command Shell environment, to automatically
execute a command perform one of the following steps, depending on your environment:

• In the Windows operating system, execute the following command:

“<Nios II EDS install path>/Nios II Command Shell.bat“ <command>r
• In the Linux operating system, execute the following command:

<Nios II EDS install path>/nios2_command_shell.sh <command>r

For example, in Windows, to run an automated build, you might execute the following command:

“<Nios II EDS install path>/Nios II Command Shell.bat“ custom_build.shr

The Nios II Command Shell startup script (Nios II Command Shell.bat or nios2_command_shell.sh)
makes no special assumptions about its initial environment. You can use the Nios II Command Shell with
auto-execution from any environment that accepts commands native to your host operating system. For
example, in Linux you can use crontab to schedule a job to run in the Nios II Command Shell at a later
time.

Getting Started in the SBT Command Line
Using the Nios II SBT on the command line is the best way to learn about it. The following tutorial guides
you through the process of creating, building, running, and debugging a “Hello World” program with a
minimal number of steps. Later chapters provide more of the underlying details, allowing you to take
more control of the process. The goal of this chapter is to show you that the basic process is simple and
straightforward.

The Nios II SBT includes a number of scripts that demonstrate how to combine command utilities to
obtain the results you need. This tutorial uses a create-this-app script as an example.

Prerequisites
To complete this tutorial, you must have the following:

• Altera Quartus II development software, version 8.0 or later. The software must be installed on a
Windows or Linux computer that meets the Quartus II minimum requirements.

• The Altera Nios II Embedded Design Suite (EDS), version 8.0 or later.
• An Altera development board.
• A download cable such as the Altera USB-Blaster™ cable.

You run the Nios II SBT commands from the Nios II Command Shell.

Related Information
The Nios II Command Shell on page 3-4

NII5V2Gen2
2015.05.14 Auto-Executing a Command in the Nios II Command Shell 3-5

Getting Started from the Command Line Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating Hello_World for an Altera Development Board
In this section you create a simple “Hello World” project. To create and build the hello_world example
for an Altera development board, perform the following steps:

1. Start the Nios II Command Shell.(2)

2. Create a working directory for your hardware and software projects. The following steps refer to this
directory as <projects>.

3. Change to the <projects> directory by typing the following command:

cd <projects>r
4. Locate a Nios II hardware example for your Altera development board. For example, if you have a

Stratix® IV GX FPGA Development Kit, you might select <Nios II EDS install path>/examples/
verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design.

5. Copy the hardware example to your <projects> working directory, using a command such as the
following:

cp -R /altera/100/nios2eds/examples/verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design .r
6. Ensure that the working directory and all subdirectories are writable by typing the following

command:

chmod -R +w .r

7. The <projects> directory contains a subdirectory named software_examples/app/hello_world. The
following steps refer to this directory as <application>.

8. Change to the <application> directory by typing the following command:

cd <application>r
9. Type the following command to create and build the application:

./create-this-appr

The create-this-app script copies the application source code to the <application> directory, runs
nios2-app-generate-makefile to create a makefile (named Makefile), and then runs make to create an
Executable and Linking Format File (.elf). The create-this-app script finds a compatible BSP by
looking in <projects>/software_examples/bsp. In the case of hello_world, it selects the hal_default
BSP.

To create the example BSP, create-this-app calls the create-this-bsp script in the BSP directory.

Related Information
The Nios II Command Shell on page 3-4

Running Hello_World on an Altera Development Board
To run the hello_world example on an Altera development board, perform the following steps:

1. Start the Nios II Command Shell.
2. Download the SRAM Object File (.sof) for the Quartus II project to the Altera development board.

This step configures the FPGA on the development board with your project’s associated SOPC Builder
system.

(2) For more information, refer to the "The Nios II Command Shell" chapter.

3-6 Creating Hello_World for an Altera Development Board
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started from the Command Line

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The .sof file resides in <projects>, along with your Quartus II Project File (.qpf). You download it by
typing the following commands:

cd <projects>r

nios2-configure-sofr

The board is configured and ready to run the project’s executable code.

The nios2-configure-sof utility runs the Quartus II Programmer to download the .sof file. You can
also run the quartus_pgm command directly.

For more information about programming the hardware, refer to the Nios II Hardware Development
Tutorial.

3. Start another command shell. If practical, make both command shells visible on your desktop.
4. In the second command shell, run the Nios II terminal application to connect to the Altera develop‐

ment board through the JTAG UART port by typing the following command:

nios2-terminalr
5. Return to the original command shell, and ensure that <projects>/software_examples/app/

hello_world is the current working directory.
6. Download and run the hello_world executable program as follows:

nios2-download -g hello_world.elfr

The following output appears in the second command shell:

Hello from Nios II!

Related Information
Nios II Gen2 Hardware Development Tutorial

Debugging hello_world
An integrated development environment is the most powerful environment for debugging a software
project. You debug a command-line project by importing it to the Nios II SBT for Eclipse. After you
import the project, Eclipse uses your makefiles to build the project. This two-step process combines the
advantages of the SBT command line development flow with the convenience of a GUI debugger.

This section discusses the process of importing and debugging the hello_world application.

Import the hello_world Application
To import the hello_world application, perform the following steps:

1. Launch the Nios II SBT for Eclipse.
2. On the File menu, click Import. The Import dialog box appears.
3. Expand the Nios II Project folder, and select Import Nios II project.
4. Click Next. The File Import wizard appears.
5. Click Browse and navigate to the <application> directory, containing the hello_world application

project.
6. Click OK. The wizard fills in the project path.
7. Type the project name hello_world in the Project name box.
8. Click Finish. The wizard imports the application project.

NII5V2Gen2
2015.05.14 Debugging hello_world 3-7

Getting Started from the Command Line Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an717.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you want to view the BSP source files while debugging, you also need to import the BSP
project into the Nios II SBT for Eclipse.

Related Information
Getting Started with the Graphical User Interface on page 2-1
For a description of importing BSPs into Eclipse, refer to “Importing a Command-Line Project”.

Download Executable Code and Start the Debugger
To debug the software project, perform the following steps:

1. Right-click the hello_world project, point to Debug As, and click Nios II Hardware.
2. If the Confirm Perspective Switch dialog box appears, click Yes.

After a moment, you see the main() function in the editor. There is a blue arrow next to the first line
of code, indicating that execution is stopped on this line.

When targeting Nios II hardware, the Debug As command does the following tasks:

• Creates a default debug configuration for the target board.
• Establishes communication with the target board
• Optionally verifies that the expected SOPC Builder system is configured in the FPGA.
• Downloads the .elf file to memory on the target board.

a. Sets a breakpoint at main().

• Instructs the Nios II processor to begin executing the code.
3. In the Run menu, click Resume to resume execution. You can also resume execution by pressing F8.

When debugging a project in Eclipse, you can also pause, stop, and single-step the program, set
breakpoints, examine variables, and perform many other common debugging tasks.

Related Information

• Importing a Command-Line Project on page 2-22
For more information about debugging projects in the Nios II SBT for Eclipse.

• Getting Started with the Graphical User Interface on page 2-1
For more information about debugging projects in the Nios II SBT for Eclipse, refer to “Getting
Started with Eclipse”.

Software Build Tools Scripting Basics
This section provides an example to teach you how you can create a software application using a
command line script.

In this section, assume that you want to build a software application for a Nios II system that features the
LAN91C111 10/100 Non-PCI Ethernet Single Chip MAC + PHY component and supports the
NicheStack® TCP/IP stack. Furthermore, assume that you have organized the hardware design files and
the software source files.

3-8 Download Executable Code and Start the Debugger
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started from the Command Line

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-1: Simple Software Project Directory Structure

Quartus II files (e.g. standard.qpf)

Hardware system files (e.g. standard.sopcinfo)

BSP examples (e.g. hal_standard)

<design> (e.g. standard)

software_examples

bsp

create-this-bsp

app

software examples (e.g. hello_world)

create-this-app

Creating a BSP with a Script
A simple method for creating a BSP is to use the nios2-bsp script as in the following example:

nios2-bsp ucosii . ../SOPC/ --cmd enable_sw_package altera_iniche \
 --set altera_iniche.iniche_default_if lan91c111
nios2-bsp lwhal . ../user/data/FastNetProject/FastNetHW/
make

Table 3-1: Description of nios2-bsp Arguments

Argument Purpose Further Information

ucosii Sets the operating system to MicroC/
OS-II

For more information, refer to
“Settings Managed by the Software
Build Tools”.

. Specifies the directory in which the
BSP is to be created

—

../SOPC/ Points to the location of the hardware
project

—

NII5V2Gen2
2015.05.14 Creating a BSP with a Script 3-9

Getting Started from the Command Line Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Argument Purpose Further Information

--cmd enable_sw_package

altera_iniche

Adds the NicheStack TCP/IP stack
software package to the BSP

For more information, refer to
“Settings Managed by the Software
Build Tools”.

For more information, refer to
"Software Build Tools Tcl
Commands".

--set altera_iniche.iniche_

default_if lan91c111

Specifies the default hardware
interface for the NicheStack TCP/IP
Stack - Nios II Edition

For more information, refer to
“Settings Managed by the Software
Build Tools”.

The nios2-bsp script uses the .sopcinfo file to create the BSP files. You can override default settings
chosen by nios2-bsp by supplying command-line arguments, Tcl scripts, or both.

Figure 3-2: nios2-bsp Command Flow

Quartus II files (e.g. standard.qpf)

Hardware system files (e.g. standard.sopcinfo)

BSP examples (e.g. hal_standard)

<design> (e.g. standard)

software_examples

bsp

create-this-bsp

app

software examples (e.g. hello_world)

create-this-app

3-10 Creating a BSP with a Script
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started from the Command Line

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

nios2-bsp

BSP files

make

BSP library file
(.a)

SOPC Builder
system file (.sopcinfo)

Tcl
scripts

Command
line arguments

Related Information

• Nios II Software Build Tools Utilities on page 15-1
For more information about the nios2-bsp command.

• Settings Managed by the Software Build Tools on page 15-25
• Software Build Tools Tcl Commands on page 15-64

Creating an Application Project with a Script

To create application projects, use nios2-app-generate-makefile as in the following example:.

nios2-app-generate-makefile --bsp-dir ../BSP \
--elf-name telnet-test.elf
--src-dir source/ make

Table 3-2: Description of nios2-app-generate-makefile Arguments

Argument Purpose

--bsp-dir ../BSP Specifies the location of the BSP on which
this application is based

--elf-name telnet-test.elf Specifies the name of the executable file

--src-dir source/ Tells nios2-app-generate-makefile where to
find the C source files

NII5V2Gen2
2015.05.14 Creating an Application Project with a Script 3-11

Getting Started from the Command Line Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Nios II Software Build Tools on page 4-1
For more information about the software example scripts, refer to “Nios II Design Example Scripts”.

• Nios II Software Build Tools Reference on page 15-1
For further information about each command argument in the table, refer to "Nios II Software Build
Tools Utilities" chapter; and for more information about the software example scripts, refer to "Nios II
Design Example Scripts".

Running make
nios2-bsp places all BSP files in the BSP directory, specified on the command line with argument --bsp-
dir. After running nios2-bsp, you run make, which compiles the source code. The result of compilation
is the BSP library file, also in the BSP directory. The BSP is ready to be linked with your application.

You can specify multiple targets on a make command line. For example, the following command removes
existing object files in the current project directory, builds the project, downloads the project to a board,
and runs it:

make clean download-elfr

You can modify an application or user library makefile with the nios2-lib-update-makefile and nios2-
app-update-makefile utilities. With these utilities, you can execute the following tasks:

• Add source files to a project
• Remove source files from a project
• Add compiler options to a project’s make rules
• Modify or remove compiler options in a project’s make rules

Creating Memory Initialization Files
To create memory initialization files for a Nios II system, you can use the Nios II Command Shell. Change
to the software application folder, and type:

make mem_init_generater

This command creates the memory initialization and simulation files for all memory devices. It also
generates a Quartus II IP File (.qip). The .qip file tells the Quartus II software where to find the initializa‐
tion files. Add the .qip file to your Quartus II project.

Document Revision History for Getting Started from the Command Line
Date Version Changes

May 2015 2015.05.14 Initial release.

3-12 Running make
NII5V2Gen2
2015.05.14

Altera Corporation Getting Started from the Command Line

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Getting%20Started%20from%20the%20Command%20Line%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Software Build Tools 4
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

This chapter describes the Nios II Software Build Tools (SBT), a set of utilities and scripts that creates and
builds embedded C/C++ application projects, user library projects, and board support packages (BSPs).
The Nios II SBT supports a repeatable, scriptable, and archivable process for creating your software
product.

You can invoke the Nios II SBT through either of the following user interfaces:

• The EclipseGUI
• The Nios II Command Shell

The purpose of this chapter is to make you familiar with the internal functionality of the Nios II SBT,
independent of the user interface employed.

Before reading this chapter, consider getting an introduction to the Nios II SBT by first reading one of the
following chapters:

• "Getting Started with the Graphical User Interface"
• "Getting Started from the Command Line"

This chapter assumes you are familiar with the following topics:

• The GNU make utility. Altera recommends you use version 3.80 or later. On the Windows platform,
GNU make version 3.80 is provided with the Nios II EDS.

You can obtain general information about GNU make from the Free Software Foundation, Inc.
website.

• Board support packages.

Depending on how you use the tools, you might also need to be familiar with the following topics:

• Micrium MicroC/OS-II.

For information, refer to MicroC/OS-II - The Real Time Kernel by Jean J. Labrosse (CMP Books).
• Tcl scripting language.

Related Information

• Overview of Nios II Embedded Development on page 1-1
• Getting Started with the Graphical User Interface on page 2-1
• Getting Started from the Command Line on page 3-1
• GNU Website

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Nios%20II%20Software%20Build%20Tools&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.gnu.org
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Road Map for the SBT
Before you start using the Nios II SBT, it is important to understand its scope. This section helps you
understand their purpose, what they include, and what each tool does. Understanding these points helps
you determine how each tool fits in with your development process, what parts of the tools you need, and
what features you can disregard for now.

What the Build Tools Create
The purpose of the build tools is to create and build Nios II software projects. A Nios II project is a
makefile with associated source files.

The SBT creates the following types of projects:

• Nios II application—A program implementing some desired functionality, such as control or signal
processing.

• Nios II BSP—A library providing access to hardware in the Nios II system, such as UARTs and other
I/O devices. A BSP provides a software runtime environment customized for one processor in a
hardware system. A BSP optionally also includes the operating system, and other basic system software
packages such as communications protocol stacks.

• User library—A library implementing a collection of reusable functions, such as graphics algorithms.

Comparing the Command Line with Eclipse
Aside from the Eclipse GUI, there are very few differences between the SBT command line and the Nios II
SBT for Eclipse.

Table 4-1: Differences between Nios II SBT for Eclipse and the Command Line

Feature Eclipse Command Line

Project source file management Specify sources automatically,
e.g. by dragging and dropping
into project

Specify sources manually
using command arguments

Debugging Yes Import project to Eclipse
environment

Integrates with custom shell scripts
and tool flows

No Yes

The Nios II SBT for Eclipse provides access to a large, useful subset of SBT functionality. Any project you
create in Eclipse can also be created using the SBT from the command line or in a script. Create your
software project using the interface that is most convenient for you. Later, it is easy to perform additional
project tasks in the other interface if you find it advantageous to do so.

Makefiles
Makefiles are a key element of Nios II C/C++ projects. The Nios II SBT includes powerful tools to create
makefiles. An understanding of how these tools work can help you make the most optimal use of them.

4-2 Road Map for the SBT
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Nios II SBT creates two kinds of makefiles:

• Application or user library makefile—A simple makefile that builds the application or user library with
user-provided source files

• BSP makefile—A more complex makefile, generated to conform to user-specified settings and the
requirements of the target hardware system

It is not necessary to use to the generated application and user library makefiles if you prefer to write your
own. However, Altera recommends that you use the SBT to manage and modify BSP makefiles.

Generated makefiles are platform-independent, calling only utilities provided with the Nios II EDS (such
as nios2-elf-gcc).

The generated makefiles have a straightforward structure, and each makefile has in-depth comments
explaining how it works. Altera recommends that you study these makefiles for further information about
how they work. Generated BSP makefiles consist of a single main file and a small number of makefile
fragments, all of which reside in the BSP directory. Each application and user library has one makefile,
located in the application or user library directory.

Modifying Makefiles
It is not necessary to edit makefiles by hand. The Nios II SBT for Eclipse offers GUI tools for makefile
management.

For more information, refer to the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

Table 4-2: Command-Line Utilities for Updating Makefiles

Project Type Utilities

Application nios2-app-update-makefile
Library nios2-lib-update-makefile
BSP(3) nios2-bsp-update-settings

nios2-bsp-generate-files

Note: After making changes to a makefile, run make clean before rebuilding your project. If you are
using the Nios II SBT for Eclipse, this happens automatically.

Related Information

• Getting Started with the Graphical User Interface on page 2-1
• Updating Your BSP on page 4-32

Makefile Targets
Altera recommends that you study the generated makefiles for further details about the application
makefile targets.

(3) For more information about updating BSP makefiles, refer to Updating Your BSP .

NII5V2Gen2
2015.05.14 Modifying Makefiles 4-3

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4-3: Application Makefile Targets

Target Operation

help Displays all available application makefile targets.
all (default) Builds the associated BSP and libraries, and then builds the

application executable file.
app Builds only the application executable file.
bsp Builds only the BSP.
libs Builds only the libraries and the BSP.
clean Performs a clean build of the application. Deletes all applica‐

tion-related generated files. Leaves associated BSP and
libraries alone.

clean_all Performs a clean build of the application, and associated
BSP and libraries (if any).

clean_bsp Performs a clean build of the BSP.
clean_libs Performs a clean build of the libraries and the BSP.
download-elf Builds the application executable file and then downloads

and runs it.
program-flash Runs the Nios II flash programmer to program your flash

memory.

Note: You can use the download-elf makefile target if the host system is connected to a single USB-
Blaster download cable. If you have more than one download cable, you must download your
executable with a separate command. Set up a run configuration in the Nios II SBT for Eclipse, or
use nios2-download, with the --cable option to specify the download cable.

Nios II Embedded Software Projects
The Nios II SBT supports the following kinds of software projects:

• C/C++ application projects
• C/C++ user library projects
• BSP projects

This section discusses each type of project in detail.

Applications and Libraries
The Nios II SBT has nearly identical support for C/C++ applications and libraries. The support for
applications and libraries is very simple. For each case, the SBT generates a private makefile (named
Makefile). The private makefile is used to build the application or user library.

The private makefile builds one of two types of files:

• A .elf file—For an application
• A library archive file (.a)—For a user library

4-4 Nios II Embedded Software Projects
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For a user library, the SBT also generates a public makefile, called public.mk. The public makefile is
included in the private makefile for any application (or other user library) that uses the user library.

When you create a makefile for an application or user library, you provide the SBT with a list of source
files and a reference to a BSP directory. The BSP directory is mandatory for applications and optional for
libraries.

Supported Source File Types
The Nios II SBT examines the extension of each source file to determine the programming language.

Table 4-4: Supported Programming Languages with the Corresponding File Extensions

Programming Language File Extensions(4)

C .c

C++ .cpp, .cxx, .cc

Nios II assembly language; sources are built directly by the
Nios II assembler without preprocessing

.s

Nios II assembly language; sources are preprocessed by the
Nios II C preprocessor, allowing you to include header files

.S

Board Support Packages
A Nios II BSP project is a specialized library containing system-specific support code. A BSP provides a
software runtime environment customized for one processor in a hardware system. The BSP isolates your
application from system-specific details such as the memory map, available devices, and processor
configuration.

A BSP includes a .a file, header files (for example, system.h), and a linker script (linker.x). You use these
BSP files when creating an application.

The Nios II SBT supports two types of BSPs: Altera Hardware Abstraction Layer (HAL) and Micrium
MicroC/OS-II. MicroC/OS-II is a layer on top of the Altera HAL and shares a common structure.

Overview of BSP Creation
The Nios II SBT creates your BSP for you. The tools provide a great deal of power and flexibility, enabling
you to control details of your BSP implementation while maintaining compatibility with a hardware
system that might change.

By default, the tools generate a basic BSP for a Nios II system. If you require more detailed control over
the characteristics of your BSP, the Nios II SBT provides that control, as described in the remaining
sections of this chapter.

Parts of a Nios II BSP

Hardware Abstraction Layer

The HAL provides a single-threaded UNIX-like C/C++ runtime environment. The HAL provides generic
I/O devices, allowing you to write programs that access hardware using the newlib C standard library
routines, such as printf(). The HAL interfaces to HAL device drivers, which access peripheral registers

(4) All file extensions are case-sensitive.

NII5V2Gen2
2015.05.14 Supported Source File Types 4-5

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

directly, abstracting hardware details from the software application. This abstraction minimizes or
eliminates the need to access hardware registers directly to connect to and control peripherals.

For more information about the HAL, refer to the "HAL API Reference" chapter of the Nios II Software
Developer’s Handbook.

Related Information
HAL API Reference on page 14-1

newlib C Standard Library
newlib is an open source implementation of the C standard library intended for use on embedded
systems. It is a collection of common routines such as printf(), malloc(), and open().

Device Drivers
Each device driver manages a hardware component. By default, the HAL instantiates a device driver for
each component in your hardware system that needs a device driver. In the Nios II software development
environment, a device driver has the following properties:

• A device driver is associated with a specific hardware component.
• A device driver might have settings that impact its compilation. These settings become part of the BSP

settings.

Optional Software Packages
A software package is source code that you can optionally add to a BSP project to provide additional
functionality. The NicheStack TCP/IP - Nios II Edition is an example of a software package.

In the Nios II software development environment, a software package typically has the following
properties:

• A software package is not associated with specific hardware.
• A software package might have settings that impact its compilation. These settings become part of the

BSP settings.

Note: In the Nios II software development environment, a software package is distinct from a library
project. A software package is part of the BSP project, not a separate library project.

Optional Real-Time Operating System
The Nios II EDS includes an implementation of the third-party MicroC/OS-II RTOS that you can
optionally include in your BSP. MicroC/OS-II is built on the HAL, and implements a simple, well-
documented RTOS scheduler. You can modify settings that become part of the BSP settings. Other
operating systems are available from third-party vendors.

The Micrium MicroC/OS-II is a multi-threaded run-time environment. It is built on the Altera HAL.

The MicroC/OS-II directory structure is a superset of the HAL BSP directory structure. All HAL BSP
generated files also exist in the MicroC/OS-II BSP.

The MicroC/OS-II source code resides in the UCOSII directory. The UCOSII directory is contained in
the BSP directory, like the HAL directory, and has the same structure (that is, src and inc directories). The
UCOSII directory contains only copied files.

The MicroC/OS-II BSP library archive is named libucosii_bsp.a. You use this file the same way you use
libhal_bsp.a in a HAL BSP.

4-6 newlib C Standard Library
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Software Build Process
To create a software project with the Nios II SBT, you perform several high-level steps:

1. Obtain the hardware design on which the software is to run. When you are learning about the build
tools, this might be a Nios II design example. When you are developing your own design, it is probably
a design developed by someone in your organization. Either way, you need to have the SOPC Informa‐
tion File (.sopcinfo).

2. Decide what features the BSP requires. For example, does it need to support an RTOS? Does it need
other specialized software support, such as a TCP/IP stack? Does it need to fit in a small memory
footprint? The answers to these questions tell you what BSP features and settings to use.

For more information about available BSP settings, refer to the "Nios II Software Build Tools
Reference" chapter.

3. Define a BSP. Use the Nios II SBT to specify the components in the BSP, and the values of any relevant
settings. The result of this step is a BSP settings file, called settings.bsp.

For more information about creating BSPs, refer to the "Board Support Packages" chapter.
4. Create a BSP makefile using the Nios II build tools.
5. Optionally create a user library. If you need to include a custom software user library, you collect the

user library source files in a single directory, and create a user library makefile. The Nios II build tools
can create a makefile for you. You can also create a makefile by hand, or you can autogenerate a
makefile and then customize it by hand.

For more information about creating user library projects, refer to the “Applications and Libraries”
chapter.

6. Collect your application source code. When you are learning, this might be a Nios II software example.
When you are developing a product, it is probably a collection of C/C++ source files developed by
someone in your organization.

For more information about creating application projects, refer to the “Applications and Libraries”
chapter.

7. Create an application makefile. The easiest approach is to let the Nios II build tools create the makefile
for you. You can also create a makefile by hand, or you can autogenerate a makefile and then
customize it by hand.

For more information about creating makefiles, refer to the “Makefiles” chapter.

Related Information

• Applications and Libraries on page 4-4
• Makefiles on page 4-2
• Board Support Packages on page 4-5
• Nios II Software Build Tools Reference on page 15-1

Common BSP Tasks
The Nios II SBT creates a BSP for you with useful default settings. However, for many tasks you must
manipulate the BSP explicitly. This section describes the following common BSP tasks, and how you carry
them out.

NII5V2Gen2
2015.05.14 Software Build Process 4-7

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Although this section describes tasks in terms of the SBT command line flow, you can also carry out most
of these tasks with the Nios II SBT for Eclipse.

Related Information

• Using Version Control on page 4-8
• Copying, Moving, or Renaming a BSP on page 4-9
• Handing Off a BSP on page 4-10
• Changing the Default Linker Memory Region on page 4-14
• Changing a Linker Section Mapping on page 4-15
• Managing Device Drivers on page 4-16
• Creating a Custom Version of newlib on page 4-17
• Creating a BSP for an Altera Development Board on page 4-15
• Creating Memory Initialization Files on page 4-10
• Modifying Linker Memory Regions on page 4-11
• Creating a Custom Linker Section on page 4-12
• Querying Settings on page 4-16
• Controlling the stdio Device on page 4-17
• Configuring Optimization and Debugger Options on page 4-17
• Getting Started with the Graphical User Interface on page 2-1

For more information about carrying out the tasks with the Nios II SBT for Eclipse, refer to the
"Getting Started with the Graphical User Interface" chapter.

Adding the Nios II SBT to Your Tool Flow
A common reason for using the SBT is to enable you to integrate your software build process with other
tools that you use for system development, including non-Altera tools. This section describes several
scenarios in which you can incorporate the build tools in an existing tool chain.

Using Version Control
One common tool flow requirement is version control. By placing an entire software project, including
both source and makefiles, under version control, you can ensure reproducible results from software
builds.

When you are using version control, it is important to know which files to add to your version control
database. With the Nios II SBT, the version control requirements depend on what you are trying to do
and how you create the BSP.

Creating BSP by Running a User Defined Script to Call nios2-bsp
If you create a BSP by running your own script that calls nios2-bsp, you can put your script under version
control. If your script provides any Tcl scripts to nios2-bsp (using the --script option), you must also
put these Tcl scripts under version control. If you install a new release of Nios II EDS and run your script
to create a new BSP or to update an existing BSP, the internal implementation of your BSP might change
slightly due to improvements in Nios II EDS.

For more information, refer to Revising Your BSP for a discussion of BSP regeneration with Nios II EDS
updates.

Related Information
Revising Your BSP on page 4-29

4-8 Adding the Nios II SBT to Your Tool Flow
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating BSP by Manually Running nios2-bsp
If you create a BSP by running nios2-bsp manually on the command line or by running your own script
that calls nios2-bsp-generate-files, you can put your BSP settings file (typically named settings.bsp) under
version control. As in the scripted nios2-bsp case, if you install a new release of Nios II EDS and recreate
your BSP, the internal implementation might change slightly.

Creating BSP before Running Make
If you want the exact same BSP after installing a new release of Nios II EDS, create your BSP and then put
the entire BSP directory under version control before running make. If you have already run make, run
make clean to remove all built files before adding the directory contents to your version control database.
The SBT places all the files required to build a BSP in the BSP directory. If you install a new release of
Nios II EDS and run make on your BSP, the implementation is the same, but the binary output might not
be identical.

Creating a Script that Uses the Command-Line Tools
If you create a script that uses the command-line tools nios2-bsp-create-settings and nios2-bsp-
generate-files explicitly, or you use these tools directly on the command line, it is possible to create the
BSP settings file in a directory different from the directory where the generated BSP files reside. However,
in most cases, when you want to store a BSP’s generated files directory under source control, you also
want to store the BSP settings file. Therefore, it is best to keep the settings file with the other BSP files. You
can rebuild the project without the BSP settings file, but the settings file allows you to update and query
the BSP.

Note: Because the BSP depends on a .sopcinfo file, you must usually store the .sopcinfo file in source
control along with the BSP. The BSP settings file stores the .sopcinfo file path as a relative or
absolute path, according to the definition on the nios2-bsp or nios2-bsp-create-settings command
line. You must take the path into account when retrieving the BSP and the .sopcinfo file from
source control.

Copying, Moving, or Renaming a BSP
BSP makefiles have only relative path references to project source files. Therefore you are free to copy,
move, or rename the entire BSP. If you specify a relative path to the SOPC system file when you create the
BSP, you must ensure that the .sopcinfo file is still accessible from the new location of the BSP.
This .sopcinfo file path is stored in the BSP settings file.

Run make clean when you copy, move, or rename a BSP. The make dependency files (.d) have absolute
path references. make clean removes the .d files, as well as linker object files (.o) and .a files. You must
rebuild the BSP before linking an application with it. You can use the make clean_bsp command to
combine these two operations.

For more information about .d files, refer to the GNU make documentation, available from the Free
Software Foundation, Inc. website.

Another way to copy a BSP is to run the nios2-bsp-generate-files command to populate a BSP directory
and pass it the path to the BSP settings file of the BSP that you wish to copy.

If you rename or move a BSP, you must manually revise any references to the BSP name or location in
application or user library makefiles.

NII5V2Gen2
2015.05.14 Creating BSP by Manually Running nios2-bsp 4-9

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• GNU Website
For more information about .d files.

• Nios II Embedded Design Suite Support

Handing Off a BSP
In some engineering organizations, one group (such as systems engineering) creates a BSP and hands it
off to another group (such as applications software) to use while developing an application. In this
situation, Altera recommends that you as the BSP developer generate the files for a BSP without building
it (that is, do not run make) and then bundle the entire BSP directory, including the settings file, with a
utility such as tar or zip. The software engineer who receives the BSP can simply run make to build the
BSP.

Linking and Locating
When auto-generating a HAL BSP, the SBT makes some reasonable assumptions about how you want to
use memory.

For more information, refer to Specifying the Default Memory Map.

However, in some cases these assumptions might not work for you. For example, you might implement a
custom boot configuration that requires a bootloader in a specific location; or you might want to specify
which memory device contains your interrupt service routines (ISRs).

This section describes several common scenarios in which the SBT allows you to control details of
memory usage.

Related Information
Specifying the Default Memory Map on page 4-37

Creating Memory Initialization Files

The mem_init.mk file includes targets designed to help you create memory initialization files
(.dat, .hex, .sym, and .flash). The mem_init.mk file is designed to be included in your application makefile.
Memory initialization files are used for HDL simulation, for Quartus II compilation of initializable FPGA
on-chip memories, and for flash programming. Initializable memories include M512 and M4K, but not
MRAM.

Although the application makefile provides the mem_init.mk targets, it does not build any of them by
default. The SBT creates the memory initialization files in the application directory (under a directory
named mem_init). The SBT optionally copies them to your Quartus II project directory and HDL
simulation directory.

Note: The Nios II SBT does not generate a definition of QUARTUS_PROJECT_DIR in your application
makefile.

If you have an on-chip RAM, and require that a compiled software image be inserted in your SRAM
Object File (.sof) at Quartus II compilation, you must manually specify the value of
QUARTUS_PROJECT_DIR in your application makefile. You must define QUARTUS_PROJECT_DIR before the
mem_init.mk file is included in the application makefile, as in the following example:

QUARTUS_PROJECT_DIR = ../my_hw_design
MEM_INIT_FILE := $(BSP_ROOT_DIR)/mem_init.mk
include $(MEM_INIT_FILE)

4-10 Handing Off a BSP
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

http://www.gnu.org
http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4-5: mem_init.mk Targets

Target Operation

mem_init_install Generates memory initialization files in the application mem_init
directory. If the QUARTUS_PROJECT_DIR variable is defined, mem_
init.mk copies memory initialization files to your Quartus II
project directory named $(QUARTUS_PROJECT_DIR). If the SOPC_
NAME variable is defined, mem_init.mk copies memory initialization
files to your HDL simulation directory named $(QUARTUS_
PROJECT_DIR)/$(SOPC_NAME)_sim.

mem_init_generate Generates all memory initialization files in the application mem_
init directory.

This target also generates a Quartus II IP File (.qip). The .qip file
tells the Quartus II software where to find the initialization files.

mem_init_clean Removes the memory initialization files from the application
mem_init directory.

hex Generates all hex files.
dat Generates all dat files.
sym Generates all sym files.
flash Generates all flash files.
<memory name> Generates all memory initialization files for <memory name>

component.

Modifying Linker Memory Regions
If the linker memory regions that are created by default do not meet your needs, BSP Tcl commands let
you modify the memory regions as desired.

Suppose you have a memory region named onchip_ram. The Tcl script named reserve_1024_onchip_ram.tcl
separates the top 1024 bytes of onchip_ram to create a new region named onchip_special.

For more information about an explanation of each Tcl command used in this example, refer to the "Nios
II Software Build Tools Reference" chapter.

Get region information for onchip_ram memory region.
Returned as a list.
set region_info [get_memory_region onchip_ram]
Extract fields from region information list.
set region_name [lindex $region_info 0]
set slave_desc [lindex $region_info 1]
set offset [lindex $region_info 2]
set span [lindex $region_info 3]
Remove the existing memory region.
delete_memory_region $region_name
Compute memory ranges for replacement regions.
set split_span 1024
set new_span [expr $span-$split_span]
set split_offset [expr $offset+$new_span]
Create two memory regions out of the original region.

NII5V2Gen2
2015.05.14 Modifying Linker Memory Regions 4-11

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_memory_region onchip_ram $slave_desc $offset $new_span
add_memory_region onchip_special $slave_desc $split_offset $split_span

If you pass this Tcl script to nios2-bsp, it runs after the default Tcl script runs and sets up a linker region
named onchip_ram0. You pass the Tcl script to nios2-bsp as follows:

nios2-bsp hal my_bsp --script reserve_1024_onchip_ram.tclr

Note: Take care that one of the new memory regions has the same name as the original memory region.

If you run nios2-bsp again to update your BSP without providing the --script option, your BSP reverts
to the default linker memory regions and your onchip_special memory region disappears. To preserve
it, you can either provide the --script option to your Tcl script or pass the DONT_CHANGE keyword to the
default Tcl script as follows:

nios2-bsp hal my_bsp --default_memory_regions DONT_CHANGEr

Altera recommends that you use the --script approach when updating your BSP. This approach allows
the default Tcl script to update memory regions if memories are added, removed, renamed, or resized.
Using the DONT_CHANGE keyword approach does not handle any of these cases because the default Tcl
script does not update the memory regions at all.

For more information about using the --script argument, refer to the “Calling a Custom BSP Tcl Script”
chapter.

Related Information

• Calling a Custom BSP Tcl Script on page 4-26
• Nios II Software Build Tools Reference on page 15-1
• Nios II Software Build Tools Reference on page 15-1

For an explanation of each Tcl command used in this example, refer to the "Nios II Software Build
Tools Reference" chapter.

Creating a Custom Linker Section
The Nios II SBT provides a Tcl command, add_section_mapping, to create a linker section.

The default Tcl script creates these default sections for you using the add_section_mapping Tcl
command:

• .entry

• .exceptions

• .text

• .rodata

• .rwdata

• .bss

• .heap

• .stack

Creating a Linker Section for an Existing Region
To create your own section named special_section that is mapped to the linker region named
onchip_special, use the following command to run nios2-bsp:

nios2-bsp hal my_bsp --cmd add_section_mapping special_section onchip_specialr

When the nios2-bsp-generate-files utility (called by nios2-bsp) generates the linker script linker.x, the
linker script has a new section mapping. The order of section mappings in the linker script is determined

4-12 Creating a Custom Linker Section
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

by the order in which the add_section_mapping command creates the sections. If you use nios2-bsp, the
default Tcl script runs before the --cmd option that creates the special_section section.

If you run nios2-bsp again to update your BSP, you do not need to provide the add_section_mapping
command again because the default Tcl script only modifies section mappings for the default sections
listed inthe Nios II Default Section Names table.

Dividing a Linker Region to Create a New Region and Section
This example works with any hardware design containing an on-chip memory named
tightly_coupled_instruction_memory connected to a Nios II instruction master.

Example 4–2. To Create a Section named .isrs in the tightly_coupled_instruction_memory on-chip
memory

Get region information for tightly_coupled_instruction_memory memory region.
Returned as a list.
set region_info [get_memory_region tightly_coupled_instruction_memory]
Extract fields from region information list.
set region_name [lindex $region_info 0]
set slave [lindex $region_info 1]
set offset [lindex $region_info 2]
set span [lindex $region_info 3]
Remove the existing memory region.
delete_memory_region $region_name
Compute memory ranges for replacement regions.
set split_span 1024
set new_span [expr $span-$split_span]
set split_offset [expr $offset+$new_span]
Create two memory regions out of the original region.
add_memory_region tightly_coupled_instruction_memory $slave $offset $new_span
add_memory_region isrs_region $slave $split_offset $split_span
add_section_mapping .isrs isrs_region

The above Tcl script splits off 1 KB of RAM from the region named tightly_coupled_instruc-
tion_memory, gives it the name isrs_region, and then calls add_section_mapping to add the .isrs
section to isrs_region.

Using the Create a New Region and Section Tcl Script

To use such a Tcl script, you would execute the following steps:

1. Create the Tcl script as shown in the example, above.
2. Edit your create-this-bsp script, and add the following argument to the nios2-bsp command line:

--script <script name>.tcl
3. In the BSP project, edit timer_interrupt_latency.h. In the timer_interrupt_latency_irq()

function, change the .section directive from .exceptions to .isrs.
4. Rebuild the application by running make.

Excerpts from Object Dump Files
After make completes successfully, you can examine the object dump file, <project name>.objdump. The
object dump file shows that the new .isrs section is located in the tightly coupled instruction memory.
This object dump file excerpt shows a hardware design with an on-chip memory whose base address is
0x04000000.

Example 4–3. Excerpts from Object Dump File

NII5V2Gen2
2015.05.14 Dividing a Linker Region to Create a New Region and Section 4-13

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Sections:
Idx Name Size VMA LMA File off Algn
.
.
.

6 .isrs 000000c0 04000c00 04000c00 000000b4 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
.
.
.

9 .tightly_coupled_instruction_memory 00000000 04000000 04000000 00013778 2**0
CONTENTS
.
.
.
SYMBOL TABLE:
00000000 l d .entry 00000000
30000020 l d .exceptions 00000000
30000150 l d .text 00000000
30010e14 l d .rodata 00000000
30011788 l d .rwdata 00000000
30013624 l d .bss 00000000
04000c00 l d .isrs 00000000
00000020 l d .ext_flash 00000000
03200000 l d .epcs_controller 00000000
04000000 l d .tightly_coupled_instruction_memory 00000000
04004000 l d .tightly_coupled_data_memory 00000000
.
.
.

Excerpt from Linker.x
If you examine the linker script file, linker.x, you can see that linker.x places the new region isrs_region
in tightly-coupled instruction memory, adjacent to the tightly_coupled_instruction_memory region.

Example 4–4. Excerpt From linker.x

MEMORY
{
reset : ORIGIN = 0x0, LENGTH = 32
tightly_coupled_instruction_memory : ORIGIN = 0x4000000, LENGTH = 3072
isrs_region : ORIGIN = 0x4000c00, LENGTH = 1024
.
.
.
}

Changing the Default Linker Memory Region
The default Tcl script chooses the largest memory region connected to your Nios II processor as the
default region.

For more information about all default memory sections mapped to this default region, refer to the
previous chapter, "Creating a Custom Linker Section".

You can pass in a command-line option to the default Tcl script to override this default mapping. To map
all default sections to onchip_ram, type the following command:

nios2-bsp hal my_bsp --default_sections_mapping onchip_ramr

4-14 Excerpt from Linker.x
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you run nios2-bsp again to update your BSP, the default Tcl script overrides your default sections
mapping. To prevent your default sections mapping from being changed, provide nios2-bsp with the
original --default_sections_mapping command-line option or pass it the DONT_CHANGE value for the
memory name instead of onchip_ram.

Related Information
Creating a Custom Linker Section on page 4-12

Changing a Linker Section Mapping
If some of the default section mappings created by the default Tcl script do not meet your needs, you can
use a Tcl command to override the section mappings selectively. To map the .stack and .heap sections
into a memory region named ram0, use the following command:

nios2-bsp hal my_bsp --cmd add_section_mapping .stack ram0 \

 --cmd add_section_mapping .heap ram0r

The other section mappings (for example, .text) are still mapped to the default linker memory region.

If you run nios2-bsp again to update your BSP, the default Tcl script overrides your section mappings
for .stack and .heap because they are default sections. To prevent your section mappings from being
changed, provide nios2-bsp with the original add_section_mapping command-line options or pass the
--default_sections_mapping DONT_CHANGE command line to nios2-bsp.

Altera recommends using the --cmd add_section_mapping approach when updating your BSP because
it allows the default Tcl script to update the default sections mapping if memories are added, removed,
renamed, or resized.

Other BSP Tasks
This section covers some other common situations in which the SBT is useful.

Creating a BSP for an Altera Development Board
In some situations, you need to create a BSP separate from any application. Creating a BSP is similar to
creating an application. To create a BSP, perform the following steps:

1. Start the Nios II Command Shell.

For details about the Nios II Command Shell, refer to the Getting Started from the Command Line
chapter of the Nios II Software Developer’s Handbook.

2. Create a working directory for your hardware and software projects. The following steps refer to this
directory as <projects>.

3. Make <projects> the current working directory.
4. Find a Nios II hardware example corresponding to your Altera development board. For example, if

you have a Stratix® IV development board, you might select <Nios II EDS install path>/examples/
verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design.

5. Copy the hardware example to your working directory, using a command such as the following:

cp -R /altera/100/nios2eds/examples/verilog\

/niosII_stratixIV_4sgx230/triple_speed_ethernet_design .r
6. Ensure that the working directory and all subdirectories are writable by typing the following

command:

NII5V2Gen2
2015.05.14 Changing a Linker Section Mapping 4-15

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

chmod -R +w .r

The <projects> directory contains a subdirectory named software_examples/bsp. The bsp directory
contains several BSP example directories, such as hal_default. Select the directory containing an
appropriate BSP, and make it the current working directory.

For a description of the example BSPs, refer to “Nios II Design Example Scripts” in the Nios II Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

7. Create and build the BSP with the create-this-bsp script by typing the following command:

./create-this-bspr

Now you have a BSP, with which you can create and build an application.

Note: Altera recommends that you examine the contents of the create-this-bsp script. It is a helpful
example if you are creating your own script to build a BSP. create-this-bsp calls nios2-bsp with
a few command-line options to create a customized BSP, and then calls make to build the BSP.

Related Information

• Overview of Nios II Embedded Development on page 1-1
• Nios II Software Build Tools Reference on page 15-1

For a description of the example BSPs, refer to “Nios II Design Example Scripts” chapter.
• Getting Started from the Command Line on page 3-1

For details about the Nios II Command Shell.

Querying Settings
If you need to write a script that gets some information from the BSP settings file, use the nios2-bsp-
query-settings utility. To maintain compatibility with future releases of the Nios II EDS, avoid developing
your own code to parse the BSP settings file.

If you want to know the value of one or more settings, run nios2-bsp-query-settings with the appropriate
command-line options. This command sends the values of the settings you requested to stdout. Just
capture the output of stdout in some variable in your script when you call nios2-bsp-query-settings. By
default, the output of nios2-bsp-query-settings is an ordered list of all option values. Use the -show-
names option to display the name of the setting with its value.

For more information about the nios2-bsp-query-settings command-line options, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1
For more information about the nios2-bsp-query-settings command-line options.

Managing Device Drivers
The Nios II SBT creates an alt_sys_init.c file. By default, the SBT assumes that if a device is connected to
the Nios II processor, and a driver is available, the BSP must include the most recent version of the driver.
However, you might want to use a different version of the driver, or you might not want a driver at all (for
example, if your application accesses the device directly).

The SBT includes BSP Tcl commands to manage device drivers. With these commands you can control
which driver is used for each device. When the alt_sys_init.c file is generated, it is set up to initialize drivers
as you have requested.

4-16 Querying Settings
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are using nios2-bsp, you disable the driver for the uart0 device as follows:

nios2-bsp hal my_bsp --cmd set_driver none uart0r

Use the --cmd option to call a Tcl command on the command line. The nios2-bsp-create-settings
command also supports the --cmd option. Alternatively, you can put the set_driver command in a Tcl
script and pass the script to nios2-bsp or nios2-bsp-create-settings with the --script option.

You replace the default driver for uart0 with a specific version of a driver as follows:

nios2-bsp hal my_bsp --cmd set_driver altera_avalon_uart:6.1 uart0r

Creating a Custom Version of newlib
The Nios II EDS comes with a number of precompiled libraries. These libraries include the newlib
libraries (libc.a and libm.a). The Nios II SBT allows you to create your own custom compiled version of the
newlib libraries.

To create a custom compiled version of newlib, set a BSP setting to the desired compiler flags. If you are
using nios2-bsp, type the following command:

nios2-bsp hal my_bsp --set hal.custom_newlib_flags "-O0 -pg"r

Because newlib uses the open source configure utility, its build flow differs from other files in the BSP.
When Makefile builds the BSP, it runs the configure utility. The configure utility creates a makefile in the
build directory, which compiles the newlib source. The newlib library files are copied to the BSP directory
named newlib. The newlib source files are not copied to the BSP.

Note: The Nios II SBT recompiles newlib whenever you introduce new compiler flags. For example, if
you use compiler flags to add floating point math hardware support, newlib is recompiled to use
the hardware. Recompiling newlib might take several minutes.

Controlling the stdio Device
The build tools offer several ways to control the details of your stdio device configuration, such as the
following:

• To prevent a default stdio device from being chosen, use the following command:

nios2-bsp hal my_bsp --default_stdio noner
• To override the default stdio device and replace it with uart1, use the following command:

nios2-bsp hal my_bsp --default_stdio uart1r
• To override the stderr device and replace it with uart2, while allowing the default Tcl script to

choose the default stdout and stdin devices, use the following command:

nios2-bsp hal my_bsp --set hal.stderr uart2r

In all these cases, if you run nios2-bsp again to update your BSP, you must provide the original
command-line options again to prevent the default Tcl script from choosing its own default stdio
devices. Alternatively, you can call --default_stdio with the DONT_CHANGE keyword to prevent the
default Tcl script from changing the stdio device settings.

Configuring Optimization and Debugger Options
By default, the Nios II SBT creates your project with the correct compiler options for debugging
environments. These compiler options turn off code optimization, and generate a symbol table for the
debugger.

NII5V2Gen2
2015.05.14 Creating a Custom Version of newlib 4-17

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can control the optimization and debug level through the project makefile, which determines the
compiler options.

Example 4–5. Default Application Makefile Settings

APP_CFLAGS_OPTIMIZATION := -O0
APP_CFLAGS_DEBUG_LEVEL := -g

When your project is fully debugged and ready for release, you might want to enable optimization and
omit the symbol table, to achieve faster, smaller executable code. To enable optimization and turn off the
symbol table, edit the application makefile to contain the symbol definitions shown in the following
example. The absence of a value on the right hand side of the APP_CFLAGS_DEBUG_LEVEL definition causes
the compiler to omit generating a symbol table.

Example 4–6. Application Makefile Settings with Optimization

APP_CFLAGS_OPTIMIZATION := -O3
APP_CFLAGS_DEBUG_LEVEL :=

Note: When you change compiler options in a makefile, before building the project, run make clean to
ensure that all sources are recompiled with the correct flags.

For more information about makefile editing and make clean, refer to the “Applications and Libraries”
chapter.

Related Information
Applications and Libraries on page 4-4

Configuring a BSP for Debugging
You individually specify the optimization and debug level for the application and BSP projects, and any
user library projects you might be using. You use the BSP settings hal.make.bsp_cflags_debug and
hal.make.bsp_cflags_optimization to specify the optimization and debug level in a BSP, as shown in
the “Configuring a BSP for Debugging” example.

Example 4–7. Configuring a BSP for Debugging

nios2-bsp hal my_bsp --set hal.make.bsp_cflags_debug -g \
 --set hal.make.bsp_cflags_optimization -O0r

Alternatively, you can manipulate the BSP settings with a Tcl script.

You can easily copy an existing BSP and modify it to create a different build configuration.

For more information, refer to the “Copying, Moving, or Renaming a BSP” chapter.

To change the optimization and debug level for a user library, use the same procedure as for an applica‐
tion.

Note: Normally you must set the optimization and debug levels the same for the application, the BSP,
and all user libraries in a software project. If you mix settings, you cannot debug those components
which do not have debug settings. For example, if you compile your BSP with the -O0 flag and
without the -g flag, you cannot step into the newlib printf() function.

Related Information
Copying, Moving, or Renaming a BSP on page 4-9

4-18 Configuring a BSP for Debugging
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Details of BSP Creation
BSP creation is the same in the Nios II SBT for Eclipse as at the command line. The nios2-bsp-create-
settings utility creates a new BSP settings file.

For more information about BSP settings files, refer to the “BSP Settings File Creation” chapter.

nios2-bsp-generate-files creates the BSP files. The nios2-bsp-generate-files utility places all source files
in your BSP directory. It copies some files from the Nios II EDS installation directory. Others, such as
system.h and Makefile, it generates dynamically.

The SBT manages copied files slightly differently from generated files. If a copied file (such as a HAL
source file) already exists, the tools check the file timestamp against the timestamp of the file in the Nios II
EDS installation. The tools do not replace the BSP file unless it differs from the distribution file. The tools
normally overwrite generated files, such as the BSP Makefile, system.h, and linker.x, unless you have
disabled generation of the individual file with the set_ignore_file Tcl command or the Enable File
Generation tab in the BSP Editor. A comment at the top of each generated file warns you not to edit it.

For more information about set_ignore_file and other SBT Tcl commands, refer to Software Build
Tools Tcl Commands in the "Nios II Software Build Tools Reference" chapter.

Note: Avoid modifying BSP files. Use BSP settings, or custom device drivers or software packages, to
customize your BSP.

NII5V2Gen2
2015.05.14 Details of BSP Creation 4-19

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-1: Default Tcl Script and nios2-bsp-generate-files Both Using the .sopcinfo file

nios2-bsp-generate-files

BSP files

make

BSP library file
(.a)

Hardware
system file
(.sopcinfo)

Tcl
scripts

Command
line arguments

Default Tcl script
(bsp-set-defaults.tcl) nios2-bsp-create-settings

BSP settings file
(.bsp)

Note: Nothing prevents you from modifying a BSP generated file. However, after you do so, it
becomes difficult to update your BSP to match changes in your hardware system. If you
regenerate your BSP, your previous changes to the generated file are destroyed.

For more information about regenerating your BSP, refer to the “Revising Your BSP” chapter.

Related Information

• Revising Your BSP on page 4-29
• BSP Settings File Creation on page 4-21
• Nios II Software Build Tools Reference on page 15-1

4-20 Details of BSP Creation
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

BSP Settings File Creation
Each BSP has an associated settings file that saves the values of all BSP settings. The BSP settings file is in
extensible markup language (XML) format and has a .bsp extension by convention. When you create or
update your BSP, the Nios II SBT writes the value of all settings to the settings file.

The BSP settings file does not need to duplicate system information (such as base addresses of devices),
because the nios2-bsp-generate-files utility has access to the .sopcinfo file.

The nios2-bsp-create-settings utility creates a new BSP settings file. The nios2-bsp-update-settings
utility updates an existing BSP settings file. The nios2-bsp-query-settings utility reports the setting values
in an existing BSP settings file. The nios2-bsp-generate-files utility generates a BSP from the BSP settings
file.

Figure 4-2: Interaction between the Nios II SBT and the BSP Settings File

BSP settings file
(.bsp)

nios2-bsp-update-settings

nios2-bsp-create-settings

nios2-bsp-query-settings nios2-bsp-generate-files

Generated and Copied Files
To understand how to build and modify Nios II C/C++ projects, it is important to understand the
difference between copied and generated files.

A copied file is installed with the Nios II EDS, and copied to your BSP directory when you create your
BSP. It does not replace the BSP file unless it differs from the distribution file.

A generated file is dynamically created by the nios2-bsp-generate-files utility. Generated files reside in
the top-level BSP directory. BSP files are normally written every time nios2-bsp-generate-files runs.

You can disable generation of any BSP file in the BSP Editor, or on the command line with the
set_ignore_file Tcl command. Otherwise, if you modify a BSP file, it is destroyed when you regenerate
the BSP.

HAL BSP Files and Folders
The Nios II SBT creates the HAL BSP directory in the location you specify.

HAL BSP After Generating Files
The SBT places generated files in the top-level BSP directory, and copied files in the HAL and drivers
directories.

NII5V2Gen2
2015.05.14 BSP Settings File Creation 4-21

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-3: HAL BSP After Generating Files

my_hal_bsp

settings.bsp

public.mk

linker.x

memory.gdb

mem.init.mk

system.h

alt_sys_init.c

linker.h

Makefile

HAL

src (*.c, *.S files)

inc (*.h files)

drivers

src (*.c, *.S files)

inc (*.h files)

summary.html

Table 4-6: Generated BSP Files

File Name Function

settings.bsp Contains all BSP settings. This file is coded in XML.

On the command line, settings.bsp is created by the nios2-bsp-create-
settings command, and optionally updated by the nios2-bsp-update-
settings command. The nios2-bsp-query-settings command is available to
parse information from the settings file for your scripts. The settings.bsp file
is an input to nios2-bsp-generate-files.

The Nios II SBT for Eclipse provides equivalent functionality.

4-22 HAL BSP After Generating Files
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Function

summary.html Provides summary documentation of the BSP. You can view summary.html
with a hypertext viewer or browser, such as Internet Explorer or Firefox. If
you change the settings.bsp file, the SBT updates the summary.html file the
next time you regenerate the BSP.

Makefile Used to build the BSP. The targets you use most often are all and clean.
The all target (the default) builds the libhal_bsp.a library file. The clean
target removes all files created by a make of the all target.

public.mk A makefile fragment that provides public information about the BSP. The file
is designed to be included in other makefiles that use the BSP, such as
application makefiles. The BSP Makefile also includes public.mk.

mem_init.mk A makefile fragment that defines targets and rules to convert an application
executable file to memory initialization files (.dat, .hex, and .flash) for HDL
simulation, flash programming, and initializable FPGA memories. The mem_
init.mk file is designed to be included by an application makefile. For usage,
refer to any application makefile generated when you run the SBT.

For more information, refer to the “Creating Memory Initialization Files”
chapter.

alt_sys_init.c Used to initialize device driver instances and software packages.
system.h Contains the C declarations describing the BSP memory map and other

system information needed by software applications.
linker.h Contains information about the linker memory layout. system.h includes the

linker.h file.
linker.x Contains a linker script for the GNU linker.
memory.gdb Contains memory region declarations for the GNU debugger.
obj Directory Contains the object code files for all source files in the BSP. The hierarchy of

the BSP source files is preserved in the obj directory.
libhal_bsp.a
Library

Contains the HAL BSP library. All object files are combined in the library
file.

The HAL BSP library file is always named libhal_bsp.a.

Note: For more information about the alt_sys_init.c and system.h files, refer to the Developing Programs
Using the Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Related Information

• Creating Memory Initialization Files on page 4-10
• Developing Programs Using the Hardware Abstraction Layer on page 6-1

NII5V2Gen2
2015.05.14 HAL BSP After Generating Files 4-23

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Copied BSP Files

Table 4-7: Copied BSP Files

File Name Function

HAL Directory Contains HAL source code files. These are all copied files. The src directory
contains the C-language and assembly-language source files. The inc
directory contains the header files.

The crt0.S source file, containing HAL C run-time startup code, resides in
the HAL/src directory.

drivers Directory Contains all driver source code. The files in this directory are all copied files.
The drivers directory has src and inc subdirectories like the HAL directory.

4-24 Copied BSP Files
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HAL BSP After Build

HAL BSP After Build

my_hal_bsp

settings.bsp

public.mk

linker.x

memory.gdb

mem.init.mk

system.h

alt_sys_init.c

linker.h

Makefile

HAL

src (*.c,*.S files)

inc (*.h files)

drivers

src (*.c,*.S files)

inc (*.h files)

summary.html

libhal_bsp.a

obj

HAL

drivers

src (.o files)

src (.o files)

NII5V2Gen2
2015.05.14 HAL BSP After Build 4-25

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Linker Map Validation
When a BSP is generated, the SBT validates the linker region and section mappings, to ensure that they
are valid for a HAL project. The tools display an error in each of the following cases:

• The .entry section maps to a nonexistent region.
• The .entry section maps to a memory region that is less than 32 bytes in length.
• The .entry section maps to a memory region that does not start on the reset vector base address.
• The .exceptions section maps to a nonexistent region.
• The .exceptions section maps to a memory region that does not start on the exception vector base

address.
• The .entry section and .exceptions section map to the same device, and the memory region

associated with the .exceptions section precedes the memory region associated with the .entry
section.

• The .entry section and .exceptions section map to the same device, and the base address of the
memory region associated with the .exceptions section is less than 32 bytes above the base address of
the memory region associated with the .entry section.

Tcl Scripts for BSP Settings
In many cases, you can fully specify your Nios II BSP with the Nios II SBT settings and defaults. However,
in some cases you might need to create some simple Tcl scripts to customize your BSP.

You control the characteristics of your BSP by manipulating BSP settings, using Tcl commands. The most
powerful way of using Tcl commands is by combining them in Tcl scripts.

Tcl scripting gives you maximum control over the contents of your BSP. One advantage of Tcl scripts over
command-line arguments is that a Tcl script can obtain information from the hardware system or pre-
existing BSP settings, and then use it later in script execution.

For more information about the Tcl commands used to manipulate BSPs, refer to “Software Build Tools
Tcl Commands” in the Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Calling a Custom BSP Tcl Script
From the Nios II Command Shell, you can call a custom BSP Tcl script with any of the following
commands:

nios2-bsp --script custom_bsp.tcl

nios2-bsp-create-settings --script custom_bsp.tcl

nios2-bsp-query-settings --script custom_bsp.tcl

nios2-bsp-update-settings --script custom_bsp.tcl

In the Nios II BSP editor, you can execute a Tcl script when generating a BSP, through the New BSP
Settings File dialog box.

For more information about using Tcl scripts in the SBT for Eclipse, refer to Using the BSP Editor in the
"Getting Started with the Graphical User Interface" chapter.

4-26 Linker Map Validation
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information, refer to an example of custom Tcl script usage in the “Creating Memory Initializa‐
tion Files” chapter.

Note: Any settings you specify in your script override the BSP default values.

For more information about BSP defaults, refer to the “Specifying BSP Defaults” chapter.

Note: When you update an existing BSP, you must include any scripts originally used to create it.
Otherwise, your project’s settings revert to the defaults.

Note: When you use a custom Tcl script to create your BSP, you must include the script in the set of files
archived in your version control system.

For more information, refer to the “Using Version Control” chapter.

Related Information

• Specifying BSP Defaults on page 4-34
• Using Version Control on page 4-8
• Creating Memory Initialization Files on page 4-10
• Getting Started with the Graphical User Interface on page 2-1

Simple Tcl Script
Example 4–8. To Set stdio to a Device with the name my_uart

set default_stdio my_uart
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio

Tcl Script to Examine Hardware and Choose Settings

Note: The Nios II SBT uses slave descriptors to refer to components connected to the Nios II processor.
A slave descriptor is the unique name of a hardware component’s slave port.

If a component has only one slave port connected to the Nios II processor, the slave descriptor is the same
as the name of the component (for example, onchip_mem_0). If a component has multiple slave ports
connecting the Nios II to multiple resources in the component, the slave descriptor is the name of the
component followed by an underscore and the slave port name (for example, onchip_mem_0_s1).

Select a device connected to the processor as the default STDIO device.
It returns the slave descriptor of the selected device.
It gives first preference to devices with stdio in the name.
It gives second preference to JTAG UARTs.
If no JTAG UARTs are found, it uses the last character device.
If no character devices are found, it returns "none".
Procedure that does all the work of determining the stdio device
proc choose_default_stdio {} {
 set last_stdio "none"
 set first_jtag_uart "none"
Get all slaves attached to the processor.
 set slave_descs [get_slave_descs]
 foreach slave_desc $slave_descs {
Lookup module class name for slave descriptor.
 set module_name [get_module_name $slave_desc]
 set module_class_name [get_module_class_name $module_name]
If the module_name contains "stdio", we choose it

NII5V2Gen2
2015.05.14 Simple Tcl Script 4-27

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and return immediately.
 if { [regexp .*stdio.* $module_name] } {
 return $slave_desc
}
Assume it is a JTAG UART if the module class name contains
the string "jtag_uart". In that case, return the first one
found.
 if { [regexp .*jtag_uart.* $module_class_name] } {
 if {$first_jtag_uart == "none"} {
 set first_jtag_uart $slave_desc
}
}
Track last character device in case no JTAG UARTs found.
 if { [is_char_device $slave_desc] } {
 set last_stdio $slave_desc
}
}
 if {$first_jtag_uart != "none"} {
 return $first_jtag_uart
}
 return $last_stdio
}
Call routine to determine stdio
 set default_stdio [choose_default_stdio]
Set stdio settings to use results of above call.
 set_setting hal.stdin $default_stdio
 set_setting hal.stdout $default_stdio
 set_setting hal.stderr $default_stdio
Select a device connected to the processor as the default STDIO device.
It returns the slave descriptor of the selected device.
It gives first preference to devices with stdio in the name.
It gives second preference to JTAG UARTs.
If no JTAG UARTs are found, it uses the last character device.
If no character devices are found, it returns "none".
Procedure that does all the work of determining the stdio device proc
choose_default_stdio {}
{
 set last_stdio "none" set first_jtag_uart "none"
Get all slaves attached to the processor.
 set slave_descs [get_slave_descs] foreach slave_desc $slave_descs
{
Lookup module class name for slave descriptor.
 set module_name [get_module_name $slave_desc]
 set module_class_name [get_module_class_name $module_name]
If the module_name contains "stdio", we choose it
and return immediately.
 if { [regexp .*stdio.* $module_name] }
{
 return $slave_desc
}
Assume it is a JTAG UART if the module class name contains
the string "jtag_uart". In that case, return the first one
found.
 if { [regexp .*jtag_uart.* $module_class_name] }
{

4-28 Tcl Script to Examine Hardware and Choose Settings
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if {$first_jtag_uart == "none"
}
{
 set first_jtag_uart $slave_desc
}
}
Track last character device in case no JTAG UARTs found.
 if { [is_char_device $slave_desc] }
{
 set last_stdio $slave_desc
}
}
 if {$first_jtag_uart != "none"}
{
 return $first_jtag_uart
}
 return $last_stdio
}
Call routine to determine stdio set default_stdio [choose_default_stdio]
Set stdio settings to use results of above call.
 set_setting hal.stdin $default_stdio set_setting hal.stdout
 $default_stdio set_setting hal.stderr $default_stdio

Related Information

• Specifying BSP Defaults on page 4-34
• Developing Device Drivers for the Hardware Abstraction Layer on page 7-1

For more information about slave descriptors, refer to the "Developing Device Drivers for the
Hardware Abstraction Layer".

• Specifying BSP Defaults on page 4-34
For more information about determining what device to use for stdio, refer to "Specifyin BSP
Defaults".

Revising Your BSP
Your BSP is customized to your hardware design and your software requirements. If your hardware
design or software requirements change, you usually need to revise your BSP.

Every BSP is based on a Nios II processor in a hardware system. The BSP settings file does not duplicate
information available in the .sopcinfo file, but it does contain system-dependent settings that reference
system information. Because of these system-dependent settings, a BSP settings file can become inconsis‐
tent with its system if the system changes.

You can revise a BSP at several levels. This section describes each level, and provides guidance about when
to use it.

Rebuilding Your BSP
Rebuilding a BSP is the most superficial way to revise a BSP.

What Happens
Rebuilding the BSP simply recreates all BSP object files and the .a library file. BSP settings, source files,
and compiler options are unchanged.

NII5V2Gen2
2015.05.14 Revising Your BSP 4-29

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Regenerating Your BSP on page 4-30

How to Rebuild Your BSP
In the Nios II SBT for Eclipse, right-click the BSP project and click Build.

On the command line, change to the BSP directory and type make.

Regenerating Your BSP
Regenerating the BSP refreshes the BSP source files without updating the BSP settings.

What Happens
Regenerating a BSP has the following effects:

• Reads the .sopcinfo file for basic system parameters such as module base addresses and clock frequen‐
cies.

• Retrieves the current system identification (ID) from the .sopcinfo file. Ensures that the correct system
ID is inserted in the .elf file the next time the BSP is built.

• Adjusts the default memory map to correspond to changes in memory sizes. If you are using a custom
memory map, it is untouched.

• Retains all other existing settings in the BSP settings file.

Note: Except for adjusting the default memory map, the SBT does not ensure that the settings are
consistent with the hardware design in the .sopcinfo file.

• Ensures that the correct set of BSP files is present, as follows:

• Copies all required source files to the BSP directory tree. Copied BSP files are listed in the
"Copied BSP Files" (Table 4-7).

If a copied file (such as a HAL source file) already exists, the SBT checks the file timestamp
against the timestamp of the file in the Nios II EDS installation. The tools do not replace the
BSP file unless it differs from the distribution file.

• Recreates all generated files. Generated BSP files are listed in the "Generated BSP Files" table
(Table 4-6).

Note: You can disable generation of any BSP file in the BSP Editor, or on the command line with the
set_ignore_file Tcl command. Otherwise, changes you make to a BSP file are lost when you
regenerate the BSP. Whenever possible, use BSP settings, or custom device drivers or software
packages, to customize your BSP.

• Removes any files that are not required, for example, source files for drivers that are no longer
in use.

When to Regenerate Your BSP
Regenerating your BSP is required (and sufficient) in the following circumstances:

4-30 How to Rebuild Your BSP
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You change your hardware design, but all BSP system-dependent settings remain consistent with the
new .sopcinfo file. The following are examples of system changes that do not affect BSP system-
dependent settings:

• Changing a component’s base address
• With the internal interrupt controller (IIC), adding or removing hardware interrupts
• With the IIC, changing a hardware interrupt number
• Changing a clock frequency
• Changing a simple processor option, such as cache size or core type
• Changing a simple component option, other than memory size.
• Adding a bridge
• Adding a new component
• Removing or renaming a component, other than a memory component, the stdio device, or the

system timer device
• Changing the size of a memory component when you are using the default memory map

Note: Unless you are sure that your modified hardware design remains consistent with your BSP
settings, update your BSP. For more information, refer to the “Updating Your BSP” chapter.

• You want to eliminate any customized source files and revert to the distributed BSP code.

Note: To revert to the distributed BSP code, you must ensure that you have not disabled generation
on any BSP files.

• You have installed a new version of the Nios II EDS, and you want the updated BSP software
implementations.

• When you attempt to rebuild your project, an error message indicates that the BSP must be updated.
• You have updated or recreated the BSP settings file.

Related Information
Updating Your BSP on page 4-32

How to Regenerate Your BSP
You can regenerate your BSP in the Nios II SBT for Eclipse, or with SBT commands at the command line.

Regenerating Your BSP in Eclipse
In the Nios II SBT for Eclipse, right-click the BSP project, point to Nios II, and click Generate BSP.

For more information about generating a BSP with the SBT for Eclipse, refer to the Getting Started with
the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

Related Information
Getting Started with the Graphical User Interface on page 2-1

Regenerating Your BSP from the Command Line
From the command line, use the nios2-bsp-generate-files command.

For more information about the nios2-bsp-generate-files command, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

NII5V2Gen2
2015.05.14 How to Regenerate Your BSP 4-31

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Updating Your BSP
When you update a BSP, you recreate the BSP settings file based on the current hardware definition and
previous BSP settings.

Note: You must always regenerate your BSP after updating the BSP settings file.

What Happens
Updating a BSP has the following effects:

• System-dependent settings are derived from the original BSP settings file, but adjusted to correspond
with any changes in the hardware system.

• Non-system-dependent BSP settings persist from the original BSP settings file.

For more information about actions taken when you regenerate the BSP after updating it, refer to the
“Regenerating Your BSP” chapter.

Related Information
Regenerating Your BSP on page 4-30

When to Update Your BSP
Updating your BSP is necessary in the following circumstances:

• A change to your BSP settings is required.
• Changes to your .sopcinfo file make it inconsistent with your BSP. The following are examples of

system changes that affect BSP system-dependent settings:

• Renaming the processor
• Renaming or removing a memory, the stdio device, or the system timer device
• Changing the size of a memory component when using a custom memory map
• Changing the processor reset or exception slave port or offset
• Adding or removing an external interrupt controller (EIC)
• Changing the parameters of an EIC

• When you attempt to rebuild your project, an error message indicates that you must update the BSP.

How to Update Your BSP
You can update your BSP at the command line. You have the option to use a Tcl script to control your
BSP settings.

From the command line, use the nios2-bsp-update-settings command. You can use the --script option
to define the BSP with a Tcl script.

For more information about the nios2-bsp-update-settings command, refer to the "Nios II Software
Build Tools Reference" chapter.

nios2-bsp-update-settings does not reapply default settings unless you explicitly call the top-level default
Tcl script with the --script option.

For more information about using the default Tcl script, refer to the “Specifying BSP Defaults” chapter.

Alternatively, you can update your BSP with the nios2-bsp script. nios2-bsp determines that your BSP
already exists, and uses the nios2-bsp-update-settings command to update the BSP settings file.

The nios2-bsp script executes the default Tcl script every time it runs, overwriting previous default
settings.

4-32 Updating Your BSP
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about preserving all settings, including the default settings, use the DONT_CHANGE
keyword, described in the “Top Level Tcl Script for BSP Defaults” chapter.

Alternatively, you can provide nios2-bsp with command-line options or Tcl scripts to override the default
settings.

For more information about using the nios2-bsp script, refer to the "Nios II Software Build Tools
Reference" chapter.

Related Information

• Specifying BSP Defaults on page 4-34
• Top Level Tcl Script for BSP Defaults on page 4-35
• Nios II Software Build Tools Reference on page 15-1

For more information about the nios2-bsp-update-settings command and using the nios2-bsp script.

Recreating Your BSP
When you recreate your BSP, you start over as if you were creating a new BSP.

Note: After you recreate your BSP, you must always regenerate it.

What Happens
Recreating a BSP has the following effects:

• System-dependent settings are created based on the current hardware system.
• Non-system-dependent settings can be selected by the default Tcl script, by values you specify, or both.

For more information about actions taken when you generate the BSP after recreating it, refer to the
“Regenerating Your BSP” chapter.

Related Information
Regenerating Your BSP on page 4-30

When to Recreate Your BSP
If you are working exclusively in the Nios II SBT for Eclipse, and you modify the underlying hardware
design, the best practice is to create a new BSP. Creating a BSP is very easy with the SBT for Eclipse.
Manually correcting a large number of interrelated settings, on the other hand, can be difficult.

How to Recreate Your BSP
You can recreate your BSP in the Nios II SBT for Eclipse, or using the SBT at the command line.
Regardless which method you choose, you can use Tcl scripts to control and reproduce your BSP settings.
This section describes the options for recreating BSPs.

Using Tcl Scripts When Recreating Your BSP
A Tcl script automates selection of BSP settings. This automation ensures that you can reliably update or
recreate your BSP with its original settings. Except when creating very simple BSPs, Altera recommends
specifying all BSP settings with a Tcl script.

To use Tcl scripts most effectively, it is best to create a Tcl script at the time you initially create the BSP.
However, the BSP Editor enables you to export a Tcl script from an existing BSP.

For more information about exporting Tcl scripts, refer to Using the BSP Editor in the "Getting Started
with the Graphical User Interface" chapter.

NII5V2Gen2
2015.05.14 Recreating Your BSP 4-33

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By recreating the BSP settings file with a Tcl script that specifies all BSP settings, you can reproduce the
original BSP while ensuring that system-dependent settings are adjusted correctly based on any changes in
the hardware system.

For more information about Tcl scripting with the SBT, refer to the “Tcl Scripts for BSP Settings”.

Related Information

• Tcl Scripts for BSP Settings on page 4-26
• Getting Started with the Graphical User Interface on page 2-1

Recreating Your BSP in Eclipse
The process for recreating a BSP is the same as the process for creating a new BSP. The Nios II SBT for
Eclipse provides an option to import a Tcl script when creating a BSP.

For more information, refer to “Getting Started with Eclipse” and “Using the BSP Editor” in the Getting
Started with the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

Related Information
Getting Started with the Graphical User Interface on page 2-1

Recreating Your BSP at the Command Line
Recreate your BSP using the nios2-bsp-create-settings command. You can use the --script option to
define the BSP with a Tcl script.

The nios2-bsp-create-settings command does not apply default settings to your BSP. However, you can
use the --script command-line option to run the default Tcl script.

For more information about the default Tcl script, refer to the “Specifying BSP Defaults” chapter.

For more information about using the nios2-bsp-create-settings command, refer to the "Nios II Software
Build Tools Reference" chapter.

Related Information

• Specifying BSP Defaults on page 4-34
• Nios II Software Build Tools Reference on page 15-1

Specifying BSP Defaults
The Nios II SBT sets BSP defaults using a set of Tcl scripts. These scripts specify default BSP settings. The
scripts are located in the following directory:

<Nios II EDS install path>/sdk2/bin

Table 4-8: Default Tcl Script Components

Script Level Summary

bsp-set-defaults.tcl Top-level Sets system-dependent settings to default values.

bsp-call-proc.tcl Top-level Calls a specified procedure in one of the helper
scripts.

bsp-stdio-utils.tcl Helper Specifies stdio device settings.

4-34 Recreating Your BSP in Eclipse
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Script Level Summary

bsp-timer-utils.tcl Helper Specifies system timer device setting.

bsp-linker-utils.tcl Helper Specifies memory regions and section mappings
for linker script.

bsp-bootloader-utils.tcl Helper Specifies boot loader-related settings.

For more information about Tcl scripting with the SBT, refer to the “Tcl Scripts for BSP Settings” chapter.

The Nios II SBT uses the default Tcl scripts to specify default values for system-dependent settings.
System-dependent settings are BSP settings that reference system information in the .sopcinfo file.

The SBT executes the default Tcl script before any user-specified Tcl scripts. As a result, user input
overrides settings made by the default Tcl script.

You can pass command-line options to the default Tcl script to override the choices it makes or to prevent
it from making changes to settings.

For more information, refer to the “Top Level Tcl Script for BSP Defaults” chapter.

The default Tcl script makes the following choices for you based on your hardware system:

• stdio character device
• System timer device
• Default linker memory regions
• Default linker sections mapping
• Default boot loader settings

The default Tcl scripts use slave descriptors to assign devices.

Related Information

• Tcl Scripts for BSP Settings on page 4-26
• Top Level Tcl Script for BSP Defaults on page 4-35
• Tcl Scripts for BSP Settings on page 4-26
• Top Level Tcl Script for BSP Defaults on page 4-35

Top Level Tcl Script for BSP Defaults
The top level Tcl script for setting BSP defaults is bsp-set-defaults.tcl. This script specifies BSP system-
dependent settings, which depend on the hardware system. The nios2-bsp-create-settings and nios2-bsp-
update-settings utilities do not call the default Tcl script when creating or updating a BSP settings file.
The --script option must be used to specify bsp-set-defaults.tcl explicitly. Both the Nios II SBT for
Eclipse and the nios2-bsp script call the default Tcl script by invoking either nios2-bsp-create-settings or
nios2-bsp-update-settings with the --script bsp-set-defaults.tcl option.

The default Tcl script consists of a top-level Tcl script named bsp-set-defaults.tcl plus the helper Tcl scripts
listed in the "Default Tcl Script Components" table (Table 4-8). The helper Tcl scripts do the real work of
examining the .sopcinfo file and choosing appropriate defaults.

NII5V2Gen2
2015.05.14 Top Level Tcl Script for BSP Defaults 4-35

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The bsp-set-defaults.tcl script sets the following defaults:

• stdio character device (bsp-stdio-utils.tcl)
• System timer device (bsp-timer-utils.tcl)
• Default linker memory regions (bsp-linker-utils.tcl)
• Default linker sections mapping (bsp-linker-utils.tcl)
• Default boot loader settings (bsp-bootloader-utils.tcl)

You run the default Tcl script on the nios2-bsp-create-settings, nios2-bsp-query-settings, or nios2-bsp-
update-settings command line, by using the --script argument. It has the following usage:

bsp-set-defaults.tcl [<argument name> <argument value>]*

All arguments are optional. If present, each argument must be in the form of a name and argument value,
separated by white space. All argument values are strings. For any argument not specified, the
corresponding helper script chooses a suitable default value. In every case, if the argument value is
DONT_CHANGE, the default Tcl scripts leave the setting unchanged. The DONT_CHANGE value allows fine-
grained control of what settings the default Tcl script changes and is useful when updating an existing
BSP.

Table 4-9: Default Tcl Script Command-Line Options

Argument Name Argument Value

default_stdio Slave descriptor of default stdio device
(stdin, stdout, stderr). Set to none if no
stdio device desired.

default_sys_timer Slave descriptor of default system timer
device. Set to none if no system timer device
desired.

default_memory_regions Controls generation of memory regions By
default, bsp-linker-utils.tcl removes and
regenerates all current memory regions.
Use the DONT_CHANGE keyword to suppress
this behavior.

default_sections_mapping Slave descriptor of the memory device to
which the default sections are mapped. This
argument has no effect if default_memory_
regions == DONT_CHANGE.

enable_bootloader Boolean: 1 if a boot loader is present; 0
otherwise.

Specifying the Default stdio Device
The bsp-stdio-utils.tcl script provides procedures to choose a default stdio slave descriptor and to set the
hal.stdin, hal.stdout, and hal.stderr BSP settings to that value.

For more information about these settings, refer to the Nios II Software Build Tools Reference chapter of
the Nios II Software Developer’s Handbook.

The script searches the .sopcinfo file for a slave descriptor with the string stdio in its name. If bsp-stdio-
utils.tcl finds any such slave descriptors, it chooses the first as the default stdio device. If the script finds
no such slave descriptor, it looks for a slave descriptor with the string jtag_uart in its component class
name. If it finds any such slave descriptors, it chooses the first as the default stdio device. If the script

4-36 Specifying the Default stdio Device
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

finds no slave descriptors fitting either description, it chooses the last character device slave descriptor
connected to the Nios II processor. If bsp-stdio-utils.tcl does not find any character devices, there is no
stdio device.

Related Information
Nios II Software Build Tools Reference on page 15-1

Specifying the Default System Timer
The bsp-timer-utils.tcl script provides procedures to choose a default system timer slave descriptor and to
set the hal.sys_clk_timer BSP setting to that value.

For more information about this setting, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

The script searches the .sopcinfo file for a timer component to use as the default system timer. To be an
appropriate system timer, the component must have the following characteristics:

• It must be a timer, that is, is_timer_device must return true.
• It must have a slave port connected to the Nios II processor.

When the script finds an appropriate system timer component, it sets hal.sys_clk_timer to the timer
slave port descriptor. The script prefers a slave port whose descriptor contains the string sys_clk, if one
exists. If no appropriate system timer component is found, the script sets hal.sys_clk_timer to none.

Related Information
Nios II Software Build Tools Reference on page 15-1

Specifying the Default Memory Map
The bsp-linker-utils.tcl script provides procedures to add the default linker script memory regions and map
the default linker script sections to a default region. The bsp-linker-utils.tcl script uses the
add_memory_region and add_section_mapping BSP Tcl commands.

For more information about these commands, refer to the Nios II Software Build Tools Reference chapter
of the Nios II Software Developer’s Handbook.

The script chooses the largest volatile memory region as the default memory region. If there is no volatile
memory region, bsp-linker-utils.tcl chooses the largest non-volatile memory region. The script assigns
the .text, .rodata, .rwdata, .bss, .heap, and .stack section mappings to this default memory region. The
script also sets the hal.linker.exception_stack_memory_region BSP setting to the default memory
region. The setting is available in case the separate exception stack option is enabled (this setting is
disabled by default).

For more information about this setting, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Specifying Default Bootloader Parameters
The bsp-bootloader-utils.tcl script provides procedures to specify the following BSP boolean settings:

NII5V2Gen2
2015.05.14 Specifying the Default System Timer 4-37

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• hal.linker.allow_code_at_reset

• hal.linker.enable_alt_load_copy_rodata

• hal.linker.enable_alt_load_copy_rwdata

• hal.linker.enable_alt_load_copy_exceptions

For more information about these settings, refer to the Nios II Software Build Tools Reference chapter of
the Nios II Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Boot Loader Dependent Settings

The script examines the .text section mapping and the Nios II reset slave port. If the .text section is
mapped to the same memory as the Nios II reset slave port and the reset slave port is a flash memory
device, the script assumes that a boot loader is being used. You can override this behavior by passing the
enable_bootloader option to the default Tcl script.

If a boot loader is enabled, the assumption is that the boot loader is located at the reset address and
handles the copying of sections on reset. If there is no boot loader, the BSP might need to provide code to
handle these functions. You can use the alt_load() function to implement a boot loader.

Table 4-10: Boot Loader-Dependent Settings

Setting name(5) Value When
Boot Loader

Enabled

Value When Boot Loader
Disabled

hal.linker.allow_code_at_reset 0
hal.linker.enable_alt_load_copy_rodata 0 if .rodata memory different

than .text memory
and .rodata memory is
volatile; 0 otherwise

hal.linker.enable_alt_load_copy_rwdata 0 if .rwdata memory different
than .text memory; 0
otherwise

hal.linker.enable_alt_load_copy_exceptions 0 if .exceptions memory
different than .text memory
and .exceptions memory is
volatile; 0 otherwise

Related Information
Nios II Software Build Tools Reference on page 15-1

Using Individual Default Tcl Procedures
The default Tcl script consists of the top-level bsp-call-proc.tcl script plus the helper scripts listed in the
"Default Tcl Script Components" table (Table 4-8). The procedure call Tcl script allows you to call a

(5) For more information about the settings in this table, refer to the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

4-38 Boot Loader Dependent Settings
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

specific procedure in the helper scripts, if you want to invoke some of the default Tcl functionality without
running the entire default Tcl script.

The procedure call Tcl script has the following usage:

bsp-call-proc.tcl <proc-name> [<args>]*

bsp-call-proc.tcl calls the specified procedure with the specified (optional) arguments. Refer to the default
Tcl scripts to view the available functions and their arguments. The bsp-call-proc.tcl script includes the
same files as the bsp-set-defaults.tcl script, so any function in those included files is available.

Device Drivers and Software Packages
The Nios II SBT can incorporate device drivers and software packages supplied by Altera, supplied by
other third-party developers, or created by you.

For more information about integrating device drivers and software packages with the Nios II SBT, refer
to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

Related Information
Developing Device Drivers for the Hardware Abstraction Layer on page 7-1

Boot Configurations for Altera Embedded Software
The HAL and MicroC/OS-II BSPs support several boot configurations. The default Tcl script configures
an appropriate boot configuration based on your hardware system and other settings.

For more information about the HAL boot loader process, refer to the Developing Programs Using the
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Memory Types
The default Tcl script uses the IsFlash and IsNonVolatileStorage properties to determine what kind of
memory is in the system.

The IsFlash property of the memory module (defined in the .sopcinfo file) indicates whether
the .sopcinfo file identifies the memory as a flash memory device. The IsNonVolatileStorage property
indicates whether the .sopcinfo file identifies the memory as a non-volatile storage device. The contents of
a non-volatile memory device are fixed and always present.

Note: Some FPGA memories can be initialized when the FPGA is configured. They are not considered
non-volatile because the default Tcl script has no way to determine whether they are actually
initialized in a particular system.

NII5V2Gen2
2015.05.14 Device Drivers and Software Packages 4-39

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4-11: Memory Types Recognized when Making Decisions about Your Boot Configura‐
tion

Memory Type Examples IsFlash IsNonVolatileStorage

Flash Common flash interface (CFI),
erasable programmable configu‐
rable serial (EPCS) device

true true

ROM On-chip memory configured as
ROM, HardCopy ROM

false true

RAM On-chip memory configured as
RAM, HardCopy RAM, SDRAM,
synchronous static RAM (SSRAM)

false false

The following sections describe each supported build configuration in detail. The alt_load() facility is
HAL code that optionally copies sections from the boot memory to RAM. You can set an option to enable
the boot copy. This option only adds the code to your BSP if it needs to copy boot segments. The
hal.enable_alt_load setting enables alt_load() and there are settings for each of the three sections it
can copy (such as hal.enable_alt_load_copy_rodata). Enabling alt_load() also modifies the
memory layout specified in your linker script.

Boot from Flash Configuration
The reset address points to a boot loader in a flash memory. The boot loader initializes the instruction
cache, copies each memory section to its virtual memory address (VMA), and then jumps to start.

This boot configuration has the following characteristics:

• alt_load() not called
• No code at reset in executable file

The default Tcl script chooses this configuration when the memory associated with the processor reset
address is a flash memory and the .text section is mapped to a different memory (for example, SDRAM).

Altera provides example boot loaders for CFI and EPCS memory in the Nios II EDS, precompiled to
Motorola S-record Files (.srec). You can use one of these example boot loaders, or provide your own.

Boot from Monitor Configuration
The reset address points to a monitor in a nonvolatile ROM or initialized RAM. The monitor initializes
the instruction cache, downloads the application memory image (for example, using a UART or Ethernet
connection), and then jumps to the entry point provided in the memory image.

This boot configuration has the following characteristics:

• alt_load() not called
• No code at reset in executable file

The default Tcl script assumes no boot loader is in use, so it chooses this configuration only if you enable
it. To enable this configuration, pass the following argument to the default Tcl script:enable_bootloader
1

If you are using the nios2-bsp script, call it as follows:

nios2-bsp hal my_bsp --use_bootloader 1

4-40 Boot from Flash Configuration
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Run from Initialized Memory Configuration
The reset address points to the beginning of the application in memory (no boot loader). The reset
memory must have its contents initialized before the processor comes out of reset. The initialization
might be implemented by using a non-volatile reset memory (for example, flash, ROM, initialized FPGA
RAM) or by an external master (for example, another processor) that writes the reset memory. The HAL
C run-time startup code (crt0) initializes the instruction cache, uses alt_load() to copy select sections
to their VMAs, and then jumps to _start. For each associated section (.rwdata, .rodata, .exceptions),
boolean settings control this behavior. The default Tcl scripts set these to default values as described in the
"Boot Loader-Dependent Settings" table (Table 4-10).

alt_load() must copy the .rwdata section (either to another RAM or to a reserved area in the same
RAM as the .text RAM) if .rwdata needs to be correct after multiple resets.

This boot configuration has the following characteristics:

• alt_load() called
• Code at reset in executable file

The default Tcl script chooses this configuration when the reset and .text memory are the same.

In this boot configuration, when the processor core resets, by default the .rwdata section is not reinitial‐
ized. Reinitialization would normally be done by a boot loader. However, this configuration has no boot
loader, because the software is running out of memory that is assumed to be preinitialized before startup.

If your software has a .rwdata section that must be reinitialized at processor reset, turn on the
hal.linker.enable_alt_load_copy_rwdata setting in the BSP.

Run-time Configurable Reset Configuration
The reset address points to a memory that contains code that executes before the normal reset code.
When the processor comes out of reset, it executes code in the reset memory that computes the desired
reset address and then jumps to it. This boot configuration allows a processor with a hard-wired reset
address to appear to reset to a programmable address.

This boot configuration has the following characteristics:

• alt_load() might be called (depends on boot configuration)
• No code at reset in executable file

Because the processor reset address points to an additional memory, the algorithms used by the default
Tcl script to select the appropriate boot configuration might make the wrong choice. The individual BSP
settings specified by the default Tcl script need to be explicitly controlled.

Altera-Provided Embedded Development Tools
This section lists the components of the Nios II SBT, and other development tools that Altera provides for
use with the SBT. This section does not describe detailed usage of the tools, but refers you to the most
appropriate documentation.

Nios II Software Build Tool GUIs
The Nios II EDS provides the following SBT GUIs for software development:

• The Nios II SBT for Eclipse
• The Nios II BSP Editor
• The Nios II Flash Programmer

NII5V2Gen2
2015.05.14 Run from Initialized Memory Configuration 4-41

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about how each GUI is primarily a thin layer providing graphical control of the
command-line tools, refer to “The Nios II Command-Line Commands” chapter.

Table 4-12: Summary of the Correlation Between GUI Features and the SBT Command Line

Task Tool Feature Nios II SBT Command Line

Creating an
example
Nios II
program

Nios II SBT for
Eclipse

Nios II Application
and BSP from
Template wizard

create-this-app script

Creating an
application

Nios II SBT for
Eclipse

Nios II Application
wizard

nios2-app-generate-makefile utility

Creating a
user library

Nios II SBT for
Eclipse

Nios II Library
wizard

nios2-lib-generate-makefile utility

Creating a
BSP

Nios II SBT for
Eclipse

Nios II Board
Support Package
wizard

• Simple:

nios2-bsp script
• Detailed:

nios2-bsp-create-settings utility

nios2-bsp-generate-files utility

BSP Editor New BSP
Setting File
dialog box

Modifying
an applica‐
tion

Nios II SBT for
Eclipse

Nios II Application
Properties page

nios2-app-update-makefile utility

Modifying a
user library

Nios II SBT for
Eclipse

Nios II Library
Properties page

nios2-lib-update-makefile utility

Updating a
BSP

Nios II SBT for
Eclipse

Nios II BSP
Properties page

nios2-bsp-update-settings utility

nios2-bsp-generate-files utility
BSP Editor —

Examining
properties of
a BSP

Nios II SBT for
Eclipse

Nios II BSP
Properties page nios2-bsp-query-settings utility

BSP Editor —
Program‐
ming flash
memory

Nios II Flash
Programmer

— nios2-flash-programmer

Importing a
command-
line project

Nios II SBT for
Eclipse

Import dialog box —

Related Information
The Nios II Command-Line Commands on page 4-44

The Nios II SBT for Eclipse
The Nios II SBT for Eclipse is a configuration of the popular Eclipse development environment, specially
adapted to the Nios II family of embedded processors. The Nios II SBT for Eclipse includes Nios II

4-42 The Nios II SBT for Eclipse
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

plugins for access to the Nios II SBT, enabling you to create applications based on the Altera HAL, and
debug them using the JTAG debugger.

You can launch the Nios II SBT for Eclipse either of the following ways:

• In the Windows operating system, on the Start menu, point to Programs > Altera > Nios II EDS
<version>, and click Nios II <version> Software Build Tools for Eclipse.

• From the Nios II Command Shell, by typing eclipse-nios2.

For more information about the Nios II SBT for Eclipse, refer to the Getting Started with the Graphical
User Interface chapter of the Nios II Software Developer’s Handbook.

Related Information
Getting Started with the Graphical User Interface on page 2-1

The Nios II BSP Editor
You can create or modify a Nios II BSP project with the Nios II BSP Editor, a standalone GUI that also
works with the Nios II SBT for Eclipse. You can launch the BSP Editor either of the following ways:

• From the Nios II menu in the Nios II SBT for Eclipse
• From the Nios II Command Shell, by typing nios2-bsp-editor.

The Nios II BSP Editor enables you to edit settings, linker regions, and section mappings, and to select
software packages and device drivers.

The capabilities of the Nios II BSP Editor constitute a large subset of the capabilities of the nios2-bsp-
create-settings, nios2-bsp-update-settings, and nios2-bsp-generate-files utilities. Any project created in
the BSP Editor can also be created using the command-line utilities.

For more information about the BSP Editor, refer to “Using the BSP Editor” in the Getting Started with
the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

Related Information
Getting Started with the Graphical User Interface on page 2-1

The Nios II Flash Programmer
The Nios II flash programmer allows you to program flash memory devices on a target board. The flash
programmer supports programming flash on any board, including Altera development boards and your
own custom boards. The flash programmer facilitates programming flash for the following purposes:

• Executable code and data
• Bootstrap code to copy code from flash to RAM, and then run from RAM
• HAL file subsystems
• FPGA hardware configuration data

You can launch the flash programmer either of the following ways:

• From the Nios II menu in the Nios II SBT for Eclipse
• From the Nios II Command Shell, by typing:

nios2-flash-programmer-generater

The Nios II Command Shell
The Nios II Command Shell is a bash command-line environment initialized with the correct settings to
run Nios II command-line tools. The Nios II EDS includes two versions of the Nios II Command Shell,
for the two supported GCC toolchain versions.

NII5V2Gen2
2015.05.14 The Nios II BSP Editor 4-43

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information, refer to the “GNU Compiler Tool Chain” chapter.

For more information about launching the Nios II Command Shell, refer to the "Getting Started from the
Command Line" chapter.

The Nios II Command-Line Commands
This section describes the Altera Nios II command-line tools. You can run these tools from the Nios II
Command Shell.

Each tool provides its own documentation in the form of help accessible from the command line. To view
the help, open the Nios II Command Shell, and type the following command:<name of tool> --help

GNU Compiler Tool Chain
The Nios II compiler tool chain is based on the standard GNU GCC compiler, assembler, linker, and
make facilities. Altera provides and supports the standard GNU compiler tool chain for the Nios II
processor.

The Nios II EDS includes version GCC 4.8.3 of the GCC toolchain.

For more information about installing the Altera Complete Design Suite, refer to the Altera Software
Installation and Licensing Manual.
GNU tools for the Nios II processor are generally named nios2-elf-<tool name>. The following list shows
some examples:

• nios2-elf-gcc
• nios2-elf-as
• nios2-elf-ld
• nios2-elf-objdump
• nios2-elf-size
The exception is the make utility, which is simply named make.

The Nios II GNU tools reside in the following location:

• <Nios II EDS install path>/bin/gnu directory

Refer to the following additional sources of information:

• For more information about managing GCC toolchains in the SBT for Eclipse— “Managing
Toolchains in Eclipse” in the "Getting Started with the Graphical User Interface" chapter.

• For more information about selecting the toolchain on the command line—the "Getting Started from
the Command Line" chapter.

• For more information about a comprehensive list of Nios II GNU tools—the GNU HTML documenta‐
tion, refer to the Nios II Embedded Design Suite Support page on the Altera website.

• For more information about GNU, refer to the Free Software Foundation website.

Related Information

• Overview of Nios II Embedded Development on page 1-1
• Getting Started with the Graphical User Interface on page 2-1
• Getting Started from the Command Line on page 3-1
• Altera Software Installation and Licensing
• GNU website

4-44 The Nios II Command-Line Commands
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

http://www.gnu.org
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Software Build Tools
The Nios II SBT utilities and scripts provide the functionality underlying the Nios II SBT for Eclipse. You
can create, modify, and build Nios II programs with commands typed at a command line or embedded in
a script.

You can call these utilities and scripts on the command line or from the scripting language of your choice
(such as perl or bash).

Note: For usage information, enter "--help" after the command and a list of required and optional
arguments for the command appears.

Table 4-13: Utilities and Scripts Included in the Nios II SBT

Command Summary Utility Script

nios2-app-generate-makefile Creates an application makefile x
nios2-lib-generate-makefile Creates a user library makefile x
nios2-app-update-makefile Modifies an existing application makefile x
nios2-lib-update-makefile Modifies an existing user library makefile x
nios2-bsp-create-settings Creates a BSP settings file x
nios2-bsp-update-settings Updates the contents of a BSP settings file x
nios2-bsp-query-settings Queries the contents of a BSP settings file x
nios2-bsp-generate-files Generates all files for a given BSP settings

file
x

nios2-bsp Creates or updates a BSP x

The Nios II SBT utilities reside in the <Nios II EDS install path>/sdk2/bin directory.

For more information about the Nios II SBT, refer to the "Getting Started from the Command Line"
chapter.

Related Information

• Overview of Nios II Embedded Development on page 1-1
• Getting Started from the Command Line on page 3-1

File Format Conversion Tools
File format conversion is sometimes necessary when passing data from one utility to another.

Note: For usage information, enter "-h" after the command and a list of options for the command
appears.

Table 4-14: File Conversion Utilities

Utility Description

alt-file-
convert

General file conversion tool. Allows you to create a flash image
for the MAX10 device with a bootloader.

bin2flash Converts binary files to a Nios II Flash Programmer File (.flash)
for programming to flash memory.

NII5V2Gen2
2015.05.14 Nios II Software Build Tools 4-45

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Utility Description

elf2dat Converts a .elf file to a .dat file format appropriate for Verilog
HDL hardware simulators.

elf2flash Converts a .elf file to a .flash file for programming to flash
memory.

elf2hex Converts a .elf file to a Hexadecimal (Intel-format) File (.hex).
elf2mem Generates the memory contents for the memory devices in a

specific Nios II system.
elf2mif Converts a .elf file to a Quartus® II Memory Initialization File

(.mif).
flash2dat Converts a .flash file to the .dat file format appropriate for

Verilog HDL hardware simulators.
sof2flash Converts an SRAM Object File (.sof) to a .flash file.

The file format conversion tools are in the <Nios II EDS install path>/bin/ directory.

Other Command-Line Tools

Note: For usage information, enter "--help" after the command and a list of options for the command
appears.

Table 4-15: Altera Command-Line Tools for Developing Nios II Programs

Tool Description

nios2-download Downloads code to a target processor for debugging or
running.

nios2-flash-programmer-generate Allows multiple files to be converted to .flash files, and
optionally programs each file to the specified location
on a flash device.

nios2-flash-programmer (64-bit
support)

Programs data to flash memory on the target board.

nios2-gdb-server (64-bit support) Translates GNU debugger (GDB) remote serial
protocol packets over Transmission Control Protocol
(TCP) to JTAG transactions with a target Nios II
processor.

nios2-terminal (64-bit support) Performs terminal I/O with a JTAG UART in a Nios II
system

validate_zip Verifies if a specified zip file is compatible with Altera’s
read-only zip file system.

nios2-debug Downloads a program to a Nios II processor and
launches the Insight debugger.

4-46 Other Command-Line Tools
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tool Description

nios2-configure-sof Configures an Altera configurable part. If no
explicit .sof file is specified, it tries to determine the
correct file to use.

jtagconfig Allows you configure the JTAG server on the host
machine. It can also detect a JTAG chain and set up the
download hardware configuration.

The command-line tools described in this section are in the <Nios II EDS install path>/bin/ directory.

Restrictions
The Nios II SBT supports BSPs incorporating the Altera HAL and Micrium
MicroC/OS-II only.

Document Revision History for Nios II Software Build Tools
Date Version Changes

May 2015 2015.05.14 Initial release.

NII5V2Gen2
2015.05.14 Restrictions 4-47

Nios II Software Build Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Overview of the Hardware Abstraction Layer 5
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

The HAL is a lightweight embedded runtime environment that provides a simple device driver interface
for programs to connect to the underlying hardware. The HAL application program interface (API) is
integrated with the ANSI C standard library. The HAL API allows you to access devices and files using
familiar C library functions, such as printf(), fopen(), fwrite(), etc.

The HAL serves as a device driver package for Nios II processor systems, providing a consistent interface
to the peripherals in your system. The Nios II software development tools extract system information
from your SOPC Information File (.sopcinfo). The Nios II Software Build Tools (SBT) generate a custom
HAL board support package (BSP) specific to your hardware configuration. Changes in the hardware
configuration automatically propagate to the HAL device driver configuration. As a result, changes in the
underlying hardware are prevented from creating bugs.

HAL device driver abstraction provides a clear distinction between application and device driver software.
This driver abstraction promotes reusable application code that is resistant to changes in the underlying
hardware. In addition, the HAL standard makes it straightforward to write drivers for new hardware
peripherals that are consistent with existing peripheral drivers.

Getting Started with the Hardware Abstraction Layer
The easiest way to get started using the HAL is to create a software project. In the process of creating a
new project, you also create a HAL BSP. You need not create or copy HAL files, and you need not edit any
of the HAL source code. The Nios II SBT generates the HAL BSP for you.

For more information about an exercise in creating a simple Nios II HAL software project, refer to
“Getting Started with Eclipse” in the Getting Started with the Graphical User Interface chapter of the Nios
II Software Developer’s Handbook.

In the Nios II SBT command line, you can create an example BSP based on the HAL using one of the
create-this-bsp scripts supplied with the Nios II Embedded Design Suite.

You must base the HAL on a specific hardware system. A Nios II system consists of a Nios II processor
core integrated with peripherals and memory. Nios II systems are generated by Qsys or SOPC Builder.

If you do not have a custom Nios II system, you can base your project on an Altera-provided example
hardware system. In fact, you can first start developing projects targeting an Altera® development board,
and later re-target the project to a custom board. You can easily change the target hardware system later.

For more information about creating a new project with the Nios II SBT, refer to the Getting Started with
the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Overview%20of%20the%20Hardware%20Abstraction%20Layer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

For more information about creating a new project with the Nios II SBT, refer to the Getting Started from
the Command Line chapter of the Nios II Software Developer’s Handbook.

Related Information

• Getting Started with the Graphical User Interface on page 2-1
For more information about an exercise in creating a simple Nios II HAL software project; and for
more information about creating a new project with the Nios II SBT.

• Getting Started from the Command Line on page 3-1
For more information about creating a new project with the Nios II SBT.

HAL Architecture for Embedded Software Systems

Services
The HAL provides the following services:

• Integration with the newlib ANSI C standard library—Provides the familiar C standard library
functions

• Device drivers—Provides access to each device in the system
• The HAL API—Provides a consistent, standard interface to HAL services, such as device access,

interrupt handling, and alarm facilities
• System initialization—Performs initialization tasks for the processor and the runtime environment

before main()
• Device initialization—Instantiates and initializes each device in the system before main() runs

Layers of a HAL-Based System

The Layers of a HAL-Based System

User Program

C Standard Library

HAL API

Device
Driver

Device
Driver

...Device
Driver

Nios II Processor System Hardware

Applications versus Drivers
Application developers are responsible for writing the system’s main() routine, among other routines.
Applications interact with system resources either through the C standard library, or through the HAL
API. Device driver developers are responsible for making device resources available to application

5-2 HAL Architecture for Embedded Software Systems
NII5V2Gen2
2015.05.14

Altera Corporation Overview of the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

developers. Device drivers communicate directly with hardware through low-level hardware access
macros.

For further details about the HAL, refer to the "Developing Programs Using the Hardware Abstraction
Layer" and "Developing Device Drivers for the Hardware Abstraction Layer" chapters.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• Developing Device Drivers for the Hardware Abstraction Layer on page 7-1

Generic Device Models
The HAL provides generic device models for classes of peripherals found in embedded systems, such as
timers, Ethernet MAC/PHY chips, and I/O peripherals that transmit character data. The generic device
models are at the core of the HAL’s power. The generic device models allow you to write programs using a
consistent API, regardless of the underlying hardware.

Device Model Classes
The HAL provides models for the following classes of devices:

• Character-mode devices—Hardware peripherals that send and/or receive characters serially, such as a
UART.

• Timer devices—Hardware peripherals that count clock ticks and can generate periodic interrupt
requests.

• File subsystems—A mechanism for accessing files stored in physical device(s). Depending on the
internal implementation, the file subsystem driver might access the underlying device(s) directly or use
a separate device driver. For example, you can write a flash file subsystem driver that accesses flash
using the HAL API for flash memory devices.

• Ethernet devices—Devices that provide access to an Ethernet connection for a networking stack such
as the Altera-provided NicheStack® TCP/IP Stack - Nios II Edition. You need a networking stack to
use an ethernet device.

• Direct memory access (DMA) devices—Peripherals that perform bulk data transactions from a data
source to a destination. Sources and destinations can be memory or another device, such as an
Ethernet connection.

• Flash memory devices—Nonvolatile memory devices that use a special programming protocol to store
data.

Benefits to Application Developers
The HAL defines a set of functions that you use to initialize and access each class of device. The API is
consistent, regardless of the underlying implementation of the device hardware. For example, to access
character-mode devices and file subsystems, you can use the C standard library functions, such as
printf() and fopen(). For application developers, you need not write low-level routines just to establish
basic communication with the hardware for these classes of peripherals.

Benefits to Device Driver Developers
Each device model defines a set of driver functions necessary to manipulate the particular class of device.
If you are writing drivers for a new peripheral, you need only provide this set of driver functions. As a
result, your driver development task is predefined and well documented. In addition, you can use existing
HAL functions and applications to access the device, which saves software development effort. The HAL
calls driver functions to access hardware. Application programmers call the ANSI C or HAL API to access

NII5V2Gen2
2015.05.14 Generic Device Models 5-3

Overview of the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hardware, rather than calling your driver routines directly. Therefore, the usage of your driver is already
documented as part of the HAL API.

C Standard Library—newlib
The HAL integrates the ANSI C standard library in its runtime environment. The HAL uses newlib, an
open-source implementation of the C standard library. newlib is a C library for use on embedded
systems, making it a perfect match for the HAL and the Nios II processor. newlib licensing does not
require you to release your source code or pay royalties for projects based on newlib.

Note: For Nios II Gen2, newlib is upgraded to version 1.18.

The ANSI C standard library is well documented.

For more information about the most well-known reference of the ANSI C standard library, refer to the
book: The C Programming Language by B. Kernighan and D. Ritchie, published by Prentice Hall. It is also
available in over 20 languages.

Related Information
Redhat Website
For more information, refer to the online documentation for newlib by Red Hat.

Embedded Hardware Supported by the HAL

Nios II Processor Core Support
The Nios II HAL supports all available Nios II processor core implementations.

Supported Peripherals

Provide Full HAL Support
Altera provides many peripherals for use in Nios II processor systems. Most Altera peripherals provide
HAL device drivers that allow you to access the hardware with the HAL API. The following Altera
peripherals provide full HAL support:

• Character mode devices

• UART core
• JTAG UART core
• LCD 16207 display controller

• Flash memory devices

• Common flash interface compliant flash chips
• Altera’s erasable programmable configurable serial (EPCS) serial configuration device controller

• File subsystems

• Altera host based file system
• Altera read-only zip file system

• Timer devices

• Timer core

5-4 C Standard Library—newlib
NII5V2Gen2
2015.05.14

Altera Corporation Overview of the Hardware Abstraction Layer

Send Feedback

http://sources.redhat.com/newlib
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• DMA devices

• DMA controller core
• Scatter-gather DMA controller core

• Ethernet devices

• Triple Speed Ethernet MegaCore® function
• Standard Microchip Solutions (SMSC) LAN91C111 10/100 Non-PCI Ethernet Single Chip MAC +

PHY
• EPCQ soft IP peripheral

• Upgraded to add support for x4 mode and L devices, giving faster access to the EPCQ device from
Nios or other FPGA based masters

The LAN91C111 and Triple Speed Ethernet components require the MicroC/OS-II runtime environment.

For more information, refer to the "Ethernet and the NicheStack TCP/IP Stack - Nios II Edition" chapter.

Note: Third-party vendors offer additional peripherals not listed here.

Related Information

• Ethernet and the NicheStack TCP/IP Stack - Nios II Edition on page 11-1
• Altera Embedded Alliance

List of other peripherals available for the Nios II processor.

Provide Partial HAL Support
All peripherals (both from Altera and third party vendors) must provide a header file that defines the
peripheral’s low-level interface to hardware. Therefore, all peripherals support the HAL to some extent.
However, some peripherals might not provide device drivers. If drivers are not available, use only the
definitions provided in the header files to access the hardware. Do not use unnamed constants, such as
hard-coded addresses, to access a peripheral.

Inevitably, certain peripherals have hardware-specific features with usage requirements that do not map
well to a general-purpose API. The HAL handles hardware-specific requirements by providing the UNIX-
style ioctl() function. Because the hardware features depend on the peripheral, the ioctl() options are
documented in the description for each peripheral.

Some peripherals provide dedicated accessor functions that are not based on the HAL generic device
models. For example, Altera provides a general-purpose parallel I/O (PIO) core for use with the Nios II
processor system. The PIO peripheral does not fit in any class of generic device models provided by the
HAL, and so it provides a header file and a few dedicated accessor functions only.

For complete details regarding software support for a peripheral, refer to the peripheral’s description.

For more information about Altera-provided peripherals, refer to the Embedded Peripherals IP User
Guide.

Related Information
Embedded Peripherals IP User Guide

MPU Support
The HAL does not include explicit support for the optional memory protection unit (MPU) hardware.
However, it does support an advanced exception handling system that can handle Nios II MPU
exceptions.

NII5V2Gen2
2015.05.14 Provide Partial HAL Support 5-5

Overview of the Hardware Abstraction Layer Altera Corporation

Send Feedback

https://www.altera.com/products/general/nios2/benefits/ni2-peripherals.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about handling MPU and other advanced exceptions, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

For more information about the MPU hardware implementation, refer to the Programming Model chapter
of the Nios II Processor Reference Handbook.

Related Information

• Exception Handling on page 8-1
For more information about handling MPU and other advanced exceptions.

• Programming Model
For more information about the MPU hardware implementation.

MMU Support
The HAL does not support the optional memory management unit (MMU) hardware. To use the MMU,
you need to implement a full-featured operating system.

For more information about the Nios II MMU, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information
Programming Model
For more information about the Nios II MMU.

Document Revision History for Overview of the Hardware Abstraction
Layer

Date Version Changes

May 2015 2015.05.14 Initial release

5-6 MMU Support
NII5V2Gen2
2015.05.14

Altera Corporation Overview of the Hardware Abstraction Layer

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Overview%20of%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Developing Programs Using the Hardware
Abstraction Layer 6

2015.05.14

NII5V2Gen2 Subscribe Send Feedback

This chapter discusses how to develop embedded programs for the Nios® II embedded processor based on
the Altera® hardware abstraction layer (HAL). The application program interface (API) for HAL-based
systems is readily accessible to software developers who are new to the Nios II processor. Programs based
on the HAL use the ANSI C standard library functions and runtime environment, and access hardware
resources with the HAL API’s generic device models. The HAL API largely conforms to the familiar ANSI
C standard library functions, though the ANSI C standard library is separate from the HAL. The close
integration of the ANSI C standard library and the HAL makes it possible to develop useful programs that
never call the HAL functions directly. For example, you can manipulate character mode devices and files
using the ANSI C standard library I/O functions, such as printf() and scanf().

For more information, refer to the book: The C Programming Language, Second Edition, by Brian
Kernighan and Dennis M. Ritchie (Prentice-Hall).

HAL BSP Settings
Every Nios II board support package (BSP) has settings that determine the BSP’s characteristics. For
example, HAL BSPs have settings to identify the hardware components associated with standard devices
such as stdout. Defining and manipulating BSP settings is an important part of Nios II project creation.
You manipulate BSP settings with the Nios II BSP Editor, with command-line options, or with Tcl scripts.

Note: For details about how to control BSP settings, refer to one or more of the following documents:

• For more information about the Nios II SBT for Eclipse, refer to the "Getting Started with the
Graphical User Interface" chapter.

• For more information about the Nios II SBT command line, refer to the "Nios II Software Build
Tools" chapter.

For more information about detailed descriptions of available BSP settings, refer to the "Nios II Software
Build Tools Reference" chapter.

Many HAL settings are reflected in the system.h file, which provides a helpful reference for details about
your BSP.

For more information about system.h, refer to the “The system.h System Description File” chapter.

Note: Do not edit system.h. The Nios II EDS provides tools to manipulate system settings.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Related Information

• The system.h System Description File on page 6-3
• Getting Started with the Graphical User Interface on page 2-1
• Nios II Software Build Tools on page 4-1
• Nios II Software Build Tools Reference on page 15-1

The Nios II Embedded Project Structure
The creation and management of software projects based on the HAL is integrated tightly with the Nios II
SBT. This section discusses the Nios II projects as a basis for understanding the HAL.

Note: The label for each block describes what or who generated that block, and an arrow points to each
block’s dependency.

Figure 6-1: The Nios II HAL Project Structure Emphasizing How the HAL BSP Fits In

Nios II Program
Based on HAL

Also known as: Your program, or user project
Defined by: .c, .h, .S, .s files
Created by: You

Defined by: .sopcinfo file

Defined by: Nios II BSP settings

Also known as: Nios II processor system, or the hardware

Created by: System integration tool (Qsys)

Created by: Nios II command line tools

Application Project

HAL BSP Project

Hardware System

Every HAL-based Nios II program consists of two Nios II projects.

For more information, refer to the figure above. Your application-specific code is contained in one project
(the user application project), and it depends on a separate BSP project (the HAL BSP).

The application project contains all the code you develop. The executable image for your program
ultimately results from building both projects.

With the Nios II SBT for Eclipse, the tools create the HAL BSP project when you create your application
project. In the Nios II SBT command line flow, you create the BSP using nios2-bsp or a related tool.

The HAL BSP project contains all information needed to interface your program to the hardware. The
HAL drivers relevant to your hardware system are incorporated in the BSP project.

The BSP project depends on the hardware system, defined by a SOPC Information File (.sopcinfo). The
Nios II SBT can keep your BSP up-to-date with the hardware system. This project dependency structure
isolates your program from changes to the underlying hardware, and you can develop and debug code
without concern about whether your program matches the target hardware.

You can use the Nios II SBT to update your BSP to match updated hardware. You control whether and
when these updates occur.

6-2 The Nios II Embedded Project Structure
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about how the SBT keeps your BSP up-to-date with your hardware system, refer to
“Revising Your BSP” in the "Nios II Software Build Tools" chapter.

In summary, when your program is based on a HAL BSP, you can always keep it synchronized with the
target hardware with a few simple SBT commands.

Related Information

• Nios II Software Build Tools Reference on page 15-1
• Nios II Embedded Software Projects on page 4-4

The system.h System Description File
The system.h file provides a complete software description of the Nios II system hardware. Not all
information in system.h is useful to you as a programmer, and it is rarely necessary to include it explicitly
in your C source files. Nonetheless, system.h holds the answer to the question, “What hardware is present
in this system?”

The system.h file describes each peripheral in the system and provides the following details:

• The hardware configuration of the peripheral
• The base address
• Interrupt request (IRQ) information (if any)
• A symbolic name for the peripheral

The Nios II SBT generates the system.h file for HAL BSP projects. The contents of system.h depend on
both the hardware configuration and the HAL BSP properties.

Note: Do not edit system.h. The SBT provides facilities to manipulate system settings.

For more information about how to control BSP settings, refer to the “HAL BSP Settings” chapter.

Example 6–1. Excerpts from a system.h File Detailing Hardware Configuration Options

/*
* sys_clk_timer configuration
*
*/
#define SYS_CLK_TIMER_NAME "/dev/sys_clk_timer"
#define SYS_CLK_TIMER_TYPE "altera_avalon_timer"
#define SYS_CLK_TIMER_BASE 0x00920800
#define SYS_CLK_TIMER_IRQ 0
#define SYS_CLK_TIMER_ALWAYS_RUN 0
#define SYS_CLK_TIMER_FIXED_PERIOD 0
/*
* jtag_uart configuration
*
*/
#define JTAG_UART_NAME "/dev/jtag_uart"
#define JTAG_UART_TYPE "altera_avalon_jtag_uart"
#define JTAG_UART_BASE 0x00920820
#define JTAG_UART_IRQ 1

Related Information
HAL BSP Settings on page 6-1

NII5V2Gen2
2015.05.14 The system.h System Description File 6-3

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data Widths and the HAL Type Definitions
For embedded processors such as the Nios II processor, it is often important to know the exact width and
precision of data. Because the ANSI C data types do not explicitly define data width, the HAL uses a set of
standard type definitions instead. The ANSI C types are supported, but their data widths are dependent
on the compiler’s convention.

The header file alt_types.h defines the HAL type definitions.

Table 6-1: The HAL Type Definitions

Type Meaning

alt_8 Signed 8-bit integer.
alt_u8 Unsigned 8-bit integer.
alt_16 Signed 16-bit integer.
alt_u16 Unsigned 16-bit integer.
alt_32 Signed 32-bit integer.
alt_u32 Unsigned 32-bit integer.
alt_64 Signed 64-bit integer.
alt_u64 Unsigned 64-bit integer.

Table 6-2: GNU Toolchain Data Widths

Type Meaning

char 8 bits.
short 16 bits.
long 32 bits.
int 32 bits.

UNIX-Style Interface
The HAL API provides a number of UNIX-style functions. The UNIX-style functions provide a familiar
development environment for new Nios II programmers, and can ease the task of porting existing code to
run in the HAL environment. The HAL uses these functions primarily to provide the system interface for
the ANSI C standard library. For example, the functions perform device access required by the C library
functions defined in stdio.h.

The following list contains all of the available UNIX-style functions:

• _exit()

• close()

• fstat()

• getpid()

• gettimeofday()

6-4 Data Widths and the HAL Type Definitions
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• ioctl()

• isatty()

• kill()

• lseek()

• open()

• read()

• sbrk()

• settimeofday()

• stat()

• usleep()

• wait()

• write()

The most commonly used functions are those that relate to file I/O.

For more information, refer to the “File System” chapter.

For more information about the use of these functions, refer to the "HAL API Reference" chapter.

Related Information

• File System on page 6-5
• HAL API Reference on page 14-1

File System
The HAL provides infrastructure for UNIX-style file access. You can use this infrastructure to build a file
system on any storage devices available in your hardware.

For more information, refer to an example in the "Read-Only Zip File System" chapter.

You can access files in a HAL-based file system by using either the C standard library file I/O functions in
the newlib C library (for example fopen(), fclose(), and fread()), or using the UNIX-style file I/O
provided by the HAL.

The HAL provides the following UNIX-style functions for file manipulation:

• close()

• fstat()

• ioctl()

• isatty()

• lseek()

• open()

• read()

• stat()

• write()

For more information about these functions, refer to the "HAL API Reference" chapter.

The HAL registers a file subsystem as a mount point in the global HAL file system. Attempts to access files
below that mount point are directed to the file subsystem. For example, if a read-only zip file subsystem
(zipfs) is mounted as /mount/zipfs0, the zipfs file subsystem handles calls to fopen() for /mount/zipfs0/
myfile.

There is no concept of a current directory. Software must access all files using absolute paths.

NII5V2Gen2
2015.05.14 File System 6-5

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The HAL file infrastructure also allows you to manipulate character mode devices with UNIX-style path
names. The HAL registers character mode devices as nodes in the HAL file system. By convention,
system.h defines the name of a device node as the prefix /dev/ plus the name assigned to the hardware
component at system generation time. For example, a UART peripheral that appears as uart1 in Qsys or
SOPC builder is named /dev/uart1 in system.h.

Note: The standard header files stdio.h, stddef.h, and stdlib.h are installed with the HAL.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#define BUF_SIZE (10)
int main(void)
{
 FILE* fp;
 char buffer[BUF_SIZE];
 fp = fopen ("/mount/rozipfs/test", "r"); if (fp == NULL)
 {
 printf ("Cannot open file.\n");
 exit (1);
 }
 fread (buffer, BUF_SIZE, 1, fp);
 fclose (fp);
 return 0;
}

For more information about the use of these functions, refer to the newlib C library documentation
installed with the Nios II EDS. On the Windows Start menu, click Programs > Altera > Nios II > Nios II
Documentation.

Related Information

• HAL API Reference on page 14-1
• Read-Only Zip File System on page 12-1

Using Character-Mode Devices
A character-mode device is a hardware peripheral that sends and/or receives characters serially. A
common example is the UART. Character mode devices are registered as nodes in the HAL file system. In
general, a program associates a file descriptor to a device’s name, and then writes and reads characters to
or from the file using the ANSI C file operations defined in file.h. The HAL also supports the concept of
standard input, standard output, and standard error, allowing programs to call the stdio.h I/O functions.

Standard Input, Standard Output and Standard Error
Using standard input (stdin), standard output (stdout), and standard error (stderr) is the easiest way
to implement simple console I/O. The HAL manages stdin, stdout, and stderr behind the scenes,
which allows you to send and receive characters through these channels without explicitly managing file
descriptors. For example, the HAL directs the output of printf() to standard out, and perror() to
standard error. You associate each channel to a specific hardware device by manipulating BSP settings.

Note: This program sends characters to whatever device is associated with stdout when the program is
compiled.

6-6 Using Character-Mode Devices
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 6–3. Hello World

#include <stdio.h>
int main ()
{
printf ("Hello world!");
return 0;
}

When using the UNIX-style API, you can use the file descriptors stdin, stdout, and stderr, defined in
unistd.h, to access, respectively, the standard in, standard out, and standard error character I/O streams.
unistd.h is installed with the Nios II EDS as part of the newlib C library package.

General Access to Character Mode Devices
Accessing a character-mode device other than stdin, stdout, or stderr is as easy as opening and writing
to a file.

Example 6–4. Writing Characters to a UART Called uart1

#include <stdio.h>
#include <string.h>
int main (void)
{
char* msg = "hello world";
FILE* fp;
fp = fopen ("/dev/uart1", "w");
if (fp!=NULL)
{
fprintf(fp, "%s",msg);
fclose (fp);
}
return 0;
}

C++ Streams
HAL-based systems can use the C++ streams API for manipulating files from C++.

/dev/null
All systems include the device /dev/null. Writing to /dev/null has no effect, and all data is discarded. /dev/
null is used for safe I/O redirection during system startup. This device can also be useful for applications
that wish to sink unwanted data.

This device is purely a software construct. It does not relate to any physical hardware device in the system.

Lightweight Character-Mode I/O
The HAL offers several methods of reducing the code footprint of character-mode device drivers.

For more information, refer to the “Reducing Code Footprint in Embedded Systems” chapter.

Related Information
Reducing Code Footprint in Embedded Systems on page 6-27

Altera Logging Functions
The Altera logging functions provide a separate channel for sending logging and debugging information
to a character-mode device, supplementing stdout and stderr. The Altera logging information can be

NII5V2Gen2
2015.05.14 General Access to Character Mode Devices 6-7

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

printed in response to several conditions. Altera logging can be enabled and disabled independently of
any normal stdio output, making it a powerful debugging tool.

When Altera logging is enabled, your software can print extra messages to a specified port with HAL
function calls. The logging port, specified in the BSP, can be a UART or a JTAG UART device. In its
default configuration, Altera logging prints out boot messages, which trace each step of the boot process.

Note: Avoid setting the Altera logging device to the device used for stdout or stderr. If Altera logging
output is sent to stdout or stderr, the logging output might appear interleaved with the stdout
or stderr output

Several logging options are available, controlled by C preprocessor symbols. You can also choose to add
custom logging messages.

Note: Altera logging changes system behavior. The logging implementation is designed to be as simple as
possible, loading characters directly to the transmit register. It can have a negative impact on
software performance.

Altera logging functions are conditionally compiled. When logging is disabled, it has no impact on code
footprint or performance.

Note: The Altera reduced device drivers do not support Altera logging.

Enabling Altera Logging
The Nios II SBT has a setting to enable Altera logging. The setting is called hal.log_port. It is similar to
hal.stdout, hal.stdin, and hal.stderr. To enable Altera logging, you set hal.log_port to a JTAG UART or
a UART device. The setting allows the HAL to send log messages to the specified device when a logging
macro is invoked.

When Altera logging is enabled, the Nios II SBT defines ALT_LOG_ENABLE in public.mk to enable log
messages and sets ALT_LOG_FLAGS to 0. The build tools also set the ALT_LOG_PORT_TYPE and
ALT_LOG_PORT_BASE values in system.h to point to the specified device.

When Altera logging is enabled without special options, the HAL prints out boot messages to the selected
port. For typical software that uses the standard alt_main.c (such as the Hello World software example),
the messages appear as in the following example.

Example 6–5. Default Boot Logging Output

[crt0.S] Inst & Data Cache Initialized.
[crt0.S] Setting up stack and global pointers.
[crt0.S] Clearing BSS
[crt0.S] Calling alt_main.
[alt_main.c] Entering alt_main, calling alt_irq_init.
[alt_main.c] Done alt_irq_init, calling alt_os_init.
[alt_main.c] Done OS Init, calling alt_sem_create.
[alt_main.c] Calling alt_sys_init.
[alt_main.c] Done alt_sys_init. Redirecting IO.
[alt_main.c] Calling C++ constructors.
[alt_main.c] Calling main.
[alt_exit.c] Entering _exit() function.
[alt_exit.c] Exit code from main was 0.
[alt_exit.c] Calling ALT_OS_STOP().
[alt_exit.c] Calling ALT_SIM_HALT().
[alt_exit.c] Spinning forever.

Note: A write operation to the Altera logging device stalls in ALT_LOG_PRINTF() until the characters are
read from the Altera logging device’s output buffer. To ensure that the Nios II application

6-8 Enabling Altera Logging
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

completes initialization, run the nios2-terminal command from the Nios II Command Shell to
accept the Altera logging output.

Extra Logging Options
In addition to the default boot messages, logging options are incorporated in Altera logging. Each option
is controlled by a C preprocessor symbol.

Table 6-3: Altera Logging Options and Option Modifiers

Name Description

System clock
log

Purpose Prints out a message from the system clock interrupt handler at a
specified interval. This indicates that the system is still running. The
default interval is every 1 second.

Preprocessor
symbol

ALT_LOG_SYS_CLK_ON_FLAG_SETTING

Modifiers The system clock log has two modifiers, providing two different
ways to specify the logging interval.

• ALT_LOG_SYS_CLK_INTERVAL—Specifies the logging interval in
system clock ticks. The default is <clock ticks per second>, that
is, one second.

• ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER—Specifies the
logging interval in seconds. The default is 1. When you modify
ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER, ALT_LOG_SYS_CLK_
INTERVAL is recalculated.

Sample
Output

System Clock On 0

System Clock On 1

Write echo

Purpose Every time alt_write() is called (normally, whenever characters
are sent to stdout), the first <n> characters are echoed to a logging
message. The message starts with the string "Write Echo:". <n> is
specified with ALT_LOG_WRITE_ECHO_LEN. The default is 15
characters.

Preprocessor
symbol

ALT_LOG_WRITE_ON_FLAG_SETTING

Modifiers ALT_LOG_WRITE_ECHO_LEN—Number of characters to echo. Default
is 15.

Sample
Output

Write Echo: Hello from Nio

NII5V2Gen2
2015.05.14 Extra Logging Options 6-9

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

JTAG startup
log

Purpose At JTAG UART driver initialization, print out a line with the
number of characters in the software transmit buffer followed by
the JTAG UART control register contents. The number of
characters, prefaced by the string "SW CirBuf", might be negative,
because it is computed as (<tail_pointer> – <head_pointer>) on a
circular buffer.

For more information about the JTAG UART control register
fields, refer to the Embedded Peripherals IP User Guide.

Preprocessor
symbol

ALT_LOG_JTAG_UART_STARTUP_INFO_ON_FLAG_SETTING

Modifiers None
Sample
Output

JTAG Startup Info: SW CirBuf = 0, HW FIFO wspace=64

AC=0 WI=0 RI=0 WE=0 RE=1

JTAG
interval log

Purpose Creates an alarm object to print out the same JTAG UART
information as the JTAG startup log, but at a repeated interval.
Default interval is 0.1 second, or 10 messages a second.

Preprocessor
symbol

ALT_LOG_JTAG_UART_ALARM_ON_FLAG_SETTING

Modifiers The JTAG interval log has two modifiers, providing two different
ways to specify the logging interval.

• ALT_LOG_JTAG_UART_TICKS—Logging interval in ticks. Default
is <ticks_per_second> / 10.

• ALT_LOG_JTAG_UART_TICKS_DIVISOR—Specifies the number of
logs per second. The default is 10. When you modify ALT_LOG_
JTAG_UART_TICKS_DIVISOR, ALT_LOG_JTAG_UART_TICKS is
recalculated.

Sample
Output

JTAG Alarm: SW CirBuf = 0, HW FIFO wspace=45 AC=0 WI=0

RI=0 WE=0 RE=1

JTAG
interrupt
service
routine (ISR)
log

Purpose Prints out a message every time the JTAG UART near-empty
interrupt triggers. Message contains the same JTAG UART
information as in the JTAG startup log.

Preprocessor
symbol

ALT_LOG_JTAG_UART_ISR_ON_FLAG_SETTING

Modifiers None
Sample
Output

JTAG IRQ: SW CirBuf = -20, HW FIFO wspace=64 AC=0 WI=1

RI=0 WE=1 RE=1

6-10 Extra Logging Options
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

Boot log

Purpose Prints out messages tracing the software boot process. The boot log
is turned on by default when Altera logging is enabled.

Preprocessor
symbol

ALT_LOG_BOOT_ON_FLAG_SETTING

Modifiers None
Sample
Output

For more information, refer to the “Enabling Altera Logging”
chapter .

Note: An option’s modifiers are meaningful only when the option is enabled.

Setting a preprocessor flag to 1 enables the corresponding option. Any value other than 1 disables the
option.

Several options have modifiers, which are additional preprocessor symbols controlling details of how the
options work. For example, the system clock log’s modifiers control the logging interval.

Related Information

• Embedded Peripherals IP User Guide
• Enabling Altera Logging on page 6-8

Logging Levels
An additional preprocessor symbol, ALT_LOG_FLAGS, can be set to provide some grouping for the extra
logging options. ALT_LOG_FLAGS implements logging levels based on performance impact. With higher
logging levels, the Altera logging options take more processor time.

Table 6-4: ALT_LOG_FLAGS Logging Levels

Logging Level Logging

0 Boot log (default)
1 Level 0 plus system clock log and JTAG startup log
2 Level 1 plus JTAG interval log and write echo
3 Level 2 plus JTAG ISR log
-1 Silent mode—No Altera logging

Note: You can use logging level -1 to turn off logging without changing the program footprint. The
logging code is still present in your executable image, as determined by other logging options
chosen. This is useful when you wish to switch the log output on or off without disturbing the
memory map.

Because each logging option is controlled by an independent preprocessor symbol, individual options in
the logging levels can be overridden.

NII5V2Gen2
2015.05.14 Logging Levels 6-11

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example: Creating a BSP with Logging

• System clock log
• JTAG startup log
• JTAG interval log, logging twice a second
• No write echo

Example 6–6. Creating BSP With Logging and Options

nios2-bsp hal my_bsp ../my_hardware.sopcinfo \
--set hal.log_port uart1 \
--set hal.make.bsp_cflags_user_flags \
-DALT_LOG_FLAGS=2 \
-DALT_LOG_WRITE_ON_FLAG_SETTING=0 \
-DALT_LOG_JTAG_UART_TICKS_DIVISOR=2r

The -DALT_LOG_FLAGS=2 argument adds -DALT_LOG_FLAGS=2 to the ALT_CPP_FLAGS make variable in
public.mk.

Custom Logging Messages
You can add custom messages that are sent to the Altera logging device. To define a custom message,
include the header file alt_log_printf.h in your C source file as follows:

#include "sys/alt_log_printf.h"

Then use the following macro function:

ALT_LOG_PRINTF(const char *format, ...)

This C preprocessor macro is a pared-down version of printf(). The format argument supports most
printf() options. It supports %c, %d %I %o %s %u %x, and %X, as well as some precision and spacing
modifiers, such as %-9.3o. It does not support floating point formats, such as %f or %g. This function is
not compiled if Altera logging is not enabled.

If you want your custom logging message to be controlled by Altera logging preprocessor options, use the
appropriate Altera logging option preprocessor flags from the "ALT_LOG_FLAGS Logging Levels" table
(Table 6-4), or the "Altera Logging Options and Option Modifiers" table (Table 6-3).

Example 6–7. Implementing Logging Options with Custom Logging Messages

/* The following example prints "Level 2 logging message" if
logging is set to level 2 or higher */
#if (ALT_LOG_FLAGS >= 2)
ALT_LOG_PRINTF ("Level 2 logging message");
#endif
/* The following example prints "Boot logging message" if boot logging
is turned on */
#if (ALT_LOG_BOOT_ON_FLAG_SETTING == 1)
ALT_LOG_PRINTF ("Boot logging message");
#endif

Altera Logging Files

Table 6-5: HAL Implementation Files for Altera Logging

Location File Name

components/altera_hal/HAL/inc/sys/ alt_log_printf.h

6-12 Example: Creating a BSP with Logging
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Location File Name

components/altera_hal/HAL/src/ alt_log_printf.c

components/altera_nios2/HAL/src/ alt_log_macro.S

Note: All file locations are relative to <Nios II EDS install path>.

These files implement the logging options listed in the "Altera Logging Options and Option Modifiers"
table (Table 6-3). They also serve as examples of logging usage.

Table 6-6: HAL Example Files for Altera Logging

Location File Name

components/altera_avalon_jtag_uart/HAL/src/ altera_avalon_jtag_uart.c

components/altera_avalon_timer/HAL/src/ altera_avalon_timer_sc.c

components/altera_hal/HAL/src/ alt_exit.c

components/altera_hal/HAL/src/ alt_main.c

components/altera_hal/HAL/src/ alt_write.c

components/altera_nios2/HAL/src/ crt0.S

Note: All file locations are relative to <Nios II EDS install path>.

Using File Subsystems
The HAL generic device model for file subsystems allows access to data stored in an associated storage
device using the C standard library file I/O functions. For example, the Altera read-only zip file system
provides read-only access to a file system stored in flash memory.

A file subsystem is responsible for managing all file I/O access beneath a given mount point. For example,
if a file subsystem is registered with the mount point /mnt/rozipfs, all file access beneath this directory,
such as fopen("/mnt/rozipfs/myfile", "r"), is directed to that file subsystem.

As with character mode devices, you can manipulate files in a file subsystem using the C file I/O functions
defined in file.h, such as fopen() and fread().

For more information about the use of file I/O functions, refer to the newlib C library documentation
installed with the Nios II EDS. On the Windows Start menu, click Programs > Altera > Nios II <version>
> Nios II EDS <version> Documentation.

Host-Based File System
The host-based file system enables programs executing on a target board to read and write files stored on
the host computer. The Nios II SBT for Eclipse transmits file data over the Altera download cable. Your
program accesses the host based file system using the ANSI C standard library I/O functions, such as
fopen() and fread(). The host-based file system is a software package which you add to your BSP.

NII5V2Gen2
2015.05.14 Using File Subsystems 6-13

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following features and restrictions apply to the host based file system:

• The host-based file system makes the Nios II C/C++ application project directory and its subdirecto‐
ries available to the HAL file system on the target hardware.

• The target processor can access any file in the project directory. Be careful not to corrupt project
source files.

• The host-based file system only operates while debugging a project. It cannot be used for run sessions.
• Host file data travels between host and target serially through the Altera download cable, and therefore

file access time is relatively slow. Depending on your host and target system configurations, it can take
several milliseconds per call to the host. For higher performance, use buffered I/O function such as
fread() and fwrite(), and increase the buffer size for large files.

You configure the host-based file system using the Nios II BSP Editor. The host-based file system has one
setting: the mount point, which specifies the mount point within the HAL file system. For example, if you
name the mount point /mnt/host and the project directory on you host computer is /software/project1,
in a HAL-based program, the following code opens the file /software/project1/datafile.dat.:
fopen("/mnt/host/datafile.dat", "r");

Using Timer Devices
Timer devices are hardware peripherals that count clock ticks and can generate periodic interrupt
requests. You can use a timer device to provide a number of time-related facilities, such as the HAL
system clock, alarms, the time-of-day, and time measurement. To use the timer facilities, the Nios II
processor system must include a timer peripheral in hardware.

The HAL API provides two types of timer device drivers:

• System clock driver—Supports alarms, such as you would use in a scheduler.
• Timestamp driver—Supports high-resolution time measurement.

An individual timer peripheral can behave as either a system clock or a timestamp, but not both.

For more information about where the HAL-specific API functions for accessing timer devices are
defined, refer to the sys/alt_alarm.h and sys/alt_timestamp.h files.

System Clock Driver
The HAL system clock driver provides a periodic heartbeat, causing the system clock to increment on
each beat. Software can use the system clock facilities to execute functions at specified times, and to obtain
timing information. You select a specific hardware timer peripheral as the system clock device by
manipulating BSP settings.

For more information about how to control BSP settings, refer to the “HAL BSP Settings” chapter.

The HAL provides implementations of the following standard UNIX functions: gettimeofday(),
settimeofday(), and times(). The times returned by these functions are based on the HAL system
clock.

The system clock measures time in clock ticks. For embedded engineers who deal with both hardware and
software, do not confuse the HAL system clock with the clock signal driving the Nios II processor
hardware. The period of a HAL system clock tick is generally much longer than the hardware system
clock. system.h defines the clock tick frequency.

6-14 Using Timer Devices
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

At runtime, you can obtain the current value of the system clock by calling the alt_nticks() function.
This function returns the elapsed time in system clock ticks since reset. You can get the system clock rate,
in ticks per second, by calling the function alt_ticks_per_second(). The HAL timer driver initializes
the tick frequency when it creates the instance of the system clock.

The standard UNIX function gettimeofday() is available to obtain the current time. You must first
calibrate the time of day by calling settimeofday(). In addition, you can use the times() function to
obtain information about the number of elapsed ticks. The prototypes for these functions appear in
times.h.

For more information about the use of these functions, refer to the "HAL API Reference" chapter.

Related Information

• HAL BSP Settings on page 6-1
• HAL API Reference on page 14-1

Alarms
You can register functions to be executed at a specified time using the HAL alarm facility. A software
program registers an alarm by calling the function alt_alarm_start():

int alt_alarm_start(alt_alarm* alarm,
 alt_u32 nticks,
 alt_u32 (*callback) (void* context),
 void* context);

The function callback() is called after nticks have elapsed. The input argument context is passed as
the input argument to callback() when the call occurs. The HAL does not use the context parameter. It
is only used as a parameter to the callback() function.

Your code must allocate the alt_alarm structure, pointed to by the input argument alarm. This data
structure must have a lifetime that is at least as long as that of the alarm. The best way to allocate this
structure is to declare it as a static or global. alt_alarm_start() initializes *alarm.

The callback function can reset the alarm. The return value of the registered callback function is the
number of ticks until the next call to callback. A return value of zero indicates that the alarm should be
stopped. You can manually cancel an alarm by calling alt_alarm_stop().

One alarm is created for each call to alt_alarm_start(). Multiple alarms can run simultaneously.

Alarm callback functions execute in an exception context. This imposes functional restrictions which you
must observe when writing an alarm callback.

For more information about the use of these functions, refer to the "Exception Handling" chapter.

Example 6–8. Using a Periodic Alarm Callback Function

#include <stddef.h>
#include <stdio.h>
#include "sys/alt_alarm.h"
#include "alt_types.h"
/*
* The callback function.
*/
alt_u32 my_alarm_callback (void* context)
{
/* This function is called once per second */
return alt_ticks_per_second();
}

NII5V2Gen2
2015.05.14 Alarms 6-15

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

...
/* The alt_alarm must persist for the duration of the alarm. */
static alt_alarm alarm;
...
if (alt_alarm_start (&alarm,
alt_ticks_per_second(),
my_alarm_callback,
NULL) < 0)
{
printf ("No system clock available\n");
}

Related Information
Exception Handling on page 8-1

Timestamp Driver
Sometimes you want to measure time intervals with a degree of accuracy greater than that provided by
HAL system clock ticks. The HAL provides high resolution timing functions using a timestamp driver. A
timestamp driver provides a monotonically increasing counter that you can sample to obtain timing
information. The HAL only supports one timestamp driver in the system.

You specify a hardware timer peripheral as the timestamp device by manipulating BSP settings. The
Altera-provided timestamp driver uses the timer that you specify.

If a timestamp driver is present, the following functions are available:

• alt_timestamp_start()

• alt_timestamp()

Calling alt_timestamp_start() starts the counter running. Subsequent calls to alt_timestamp()
return the current value of the timestamp counter. Calling alt_timestamp_start() again resets the
counter to zero. The behavior of the timestamp driver is undefined when the counter reaches (232 - 1).

You can obtain the rate at which the timestamp counter increments by calling the function
alt_timestamp_freq(). This rate is typically the hardware frequency of the Nios II processor system—
usually millions of cycles per second. The timestamp drivers are defined in the alt_timestamp.h header file.

For more information about the use of these functions, refer to the HAL API Reference chapter of the Nios
II Software Developer’s Handbook.

Example 6–9. Using the Timestamp to Measure Code Execution Time

#include <stdio.h>
#include "sys/alt_timestamp.h"
#include "alt_types.h"
int main (void)
{
alt_u32 time1;
alt_u32 time2;
alt_u32 time3;
if (alt_timestamp_start() < 0)
{
printf ("No timestamp device available\n");
}
else
{
time1 = alt_timestamp();
func1(); /* first function to monitor */
time2 = alt_timestamp();
func2(); /* second function to monitor */
time3 = alt_timestamp();

6-16 Timestamp Driver
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

printf ("time in func1 = %u ticks\n",
(unsigned int) (time2 - time1));
printf ("time in func2 = %u ticks\n",
(unsigned int) (time3 - time2));
printf ("Number of ticks per second = %u\n",
(unsigned int)alt_timestamp_freq());
}
return 0;
}

Related Information
HAL API Reference on page 14-1

Using Flash Devices
The HAL provides a generic device model for nonvolatile flash memory devices. Flash memories use
special programming protocols to store data. The HAL API provides functions to write data to flash
memory. For example, you can use these functions to implement a flash-based file subsystem.

The HAL API also provides functions to read flash, although it is generally not necessary. For most flash
devices, programs can treat the flash memory space as simple memory when reading, and do not need to
call special HAL API functions. If the flash device has a special protocol for reading data, such as the
Altera erasable programmable configurable serial (EPCS) configuration device, you must use the HAL
API to both read and write data.

This section describes the HAL API for the flash device model. The following two APIs provide two
different levels of access to the flash:

• Simple flash access—Functions that write buffers to flash and read them back at the block level. In
writing, if the buffer is less than a full block, these functions erase preexisting flash data above and
below the newly written data.

• Fine-grained flash access—Functions that write buffers to flash and read them back at the buffer level.
In writing, if the buffer is less than a full block, these functions preserve preexisting flash data above
and below the newly written data. This functionality is generally required for managing a file
subsystem.

The API functions for accessing flash devices are defined in sys/alt_flash.h.

For more information about the use of these functions, refer to the HAL API Reference chapter of the Nios
II Software Developer’s Handbook.

For more information about the Common Flash Interface, including the organization of common flash
interface (CFI) erase regions and blocks, refer to the JEDEC website.

For more information about the CFI standard, refer to the JEDEC website and search for document
JESD68.

Related Information

• HAL API Reference on page 14-1
• JEDEC Website

For more information about the Common Flash Interface standard, including the organization of
common flash interface (CFI) erase regions and blocks, refer to the JEDEC website and search for
document JESD68.

NII5V2Gen2
2015.05.14 Using Flash Devices 6-17

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

http://www.jedec.org
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simple Flash Access
This interface consists of the functions alt_flash_open_dev(), alt_write_flash(),
alt_read_flash(), and alt_flash_close_dev().

For more information about the use of all of these functions in one code example, refer to the code in the
“Using the Simple Flash API Functions to Access a Flash Device Named /dev/ext/flash” example in the
"Fine-Grained Flash Access" section.

You open a flash device by calling alt_flash_open_dev(), which returns a file handle to a flash device.
This function takes a single argument that is the name of the flash device, as defined in system.h.

After you obtain a handle, you can use the alt_write_flash() function to write data to the flash device.
The prototype is:

int alt_write_flash(alt_flash_fd* fd,

int offset,

const void* src_addr,

int length)

A call to this function writes to the flash device identified by the handle fd. The driver writes the data
starting at offset bytes from the base of the flash device. The data written comes from the address
pointed to by src_addr, and the amount of data written is length.

There is also an alt_read_flash() function to read data from the flash device. The prototype is:

int alt_read_flash(alt_flash_fd* fd,

int offset,

void* dest_addr,

int length)

A call to alt_read_flash() reads from the flash device with the handle fd, offset bytes from the
beginning of the flash device. The function writes the data to location pointed to by dest_addr, and the
amount of data read is length. For most flash devices, you can access the contents as standard memory,
making it unnecessary to use alt_read_flash().

The function alt_flash_close_dev() takes a file handle and closes the device. The prototype for this
function is:

void alt_flash_close_dev(alt_flash_fd* fd)

Related Information
Fine-Grained Flash Access on page 6-19

Block Erasure or Corruption
Generally, flash memory is divided into blocks. alt_write_flash() might need to erase the contents of a
block before it can write data to it. In this case, it makes no attempt to preserve the existing contents of the
block. This action can lead to unexpected data corruption (erasure), if you are performing writes that do
not fall on block boundaries. If you wish to preserve existing flash memory contents, use the fine-grained
flash functions. These are discussed in the following section.

The "Example of Writing Flash and Causing Unexpected Data Corruption" table (Table 6-7) shows the
example of an 8-kilobyte (KB) flash memory comprising two 4-KB blocks. First write 5 KB of all 0xAA to
flash memory at address 0x0000, and then write 2 KB of all 0xBB to address 0x1400. After the first write
succeeds (at time t(2)), the flash memory contains 5 KB of 0xAA, and the rest is empty (that is, 0xFF).

6-18 Simple Flash Access
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Then the second write begins, but before writing to the second block, the block is erased. At this point,
t(3), the flash contains 4 KB of 0xAA and 4 KB of 0xFF. After the second write finishes, at time t(4), the 2
KB of 0xFF at address 0x1000 is corrupted.

Fine-Grained Flash Access
Three additional functions provide complete control for writing flash contents at the highest granularity:

• alt_get_flash_info()

• alt_erase_flash_block()

• alt_write_flash_block()

By the nature of flash memory, you cannot erase a single address in a block. You must erase (that is, set to
all ones) an entire block at a time. Writing to flash memory can only change bits from 1 to 0; to change
any bit from 0 to 1, you must erase the entire block along with it.

Therefore, to alter a specific location in a block while leaving the surrounding contents unchanged, you
must read out the entire contents of the block to a buffer, alter the value(s) in the buffer, erase the flash
block, and finally write the whole block-sized buffer back to flash memory. The fine-grained flash access
functions automate this process at the flash block level.

#include <stdio.h>
#include <string.h>
#include "sys/alt_flash.h"
#define BUF_SIZE 1024
int main ()
{
 alt_flash_fd* fd;
 int ret_code;
 char source[BUF_SIZE];
 char dest[BUF_SIZE];
 /* Initialize the source buffer to all 0xAA */
 memset(source, 0xAA, BUF_SIZE);
 fd = alt_flash_open_dev("/dev/ext_flash");
 if (fd!=NULL)
 {
 ret_code = alt_write_flash(fd, 0, source, BUF_SIZE);
 if (ret_code==0)
 {
 ret_code = alt_read_flash(fd, 0, dest, BUF_SIZE);
 if (ret_code==0)
 {
 /*
 * Success.
 * At this point, the flash is all 0xAA and we
 * have read that all back to dest
 */
 }
 }
 alt_flash_close_dev(fd);
 }
 else
 {
 printf("Cannot open flash device\n");
 }

NII5V2Gen2
2015.05.14 Fine-Grained Flash Access 6-19

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

return 0;
}

alt_get_flash_info()
alt_get_flash_info() gets the number of erase regions, the number of erase blocks in each region, and
the size of each erase block. The function prototype is as follows:

int alt_get_flash_info (

alt_flash_fd* fd,

flash_region** info,

int* number_of_regions)

If the call is successful, on return the address pointed to by number_of_regions contains the number of
erase regions in the flash memory, and *info points to an array of flash_region structures. This array is
part of the file descriptor.

Table 6-7: Example of Writing Flash and Causing Unexpected Data Corruption

Address Block

Time t(0) Time t(1) Time t(2) Time t(3) Time t(4)

Before
First Write

First Write Second Write

After
Erasing
Block(s)

After
Writing
Data 1

After Erasing
Block(s)

After Writing
Data 2

0x0000 1 Unknown FF AA AA AA
0x0400 1 Unknown FF AA AA AA
0x0800 1 Unknown FF AA AA AA
0x0C00 1 Unknown FF AA AA AA
0x1000 2 Unknown FF AA FF FF(6)

0x1400 2 Unknown FF FF FF BB
0x1800 2 Unknown FF FF FF BB
0x1C00 2 Unknown FF FF FF FF

The flash_region structure is defined in sys/alt_flash_types.h. The data structure is defined as follows:

typedef struct flash_region
{
int offset; /* Offset of this region from start of the flash */
int region_size; /* Size of this erase region */
int number_of_blocks; /* Number of blocks in this region */
int block_size; /* Size of each block in this erase region */
}flash_region;

With the information obtained by calling alt_get_flash_info(), you are in a position to erase or
program individual blocks of the flash device.

alt_erase_flash()
alt_erase_flash() erases a single block in the flash memory. The function prototype is as follows:

(6) Unintentionally cleared to FF during erasure for second write.

6-20 alt_get_flash_info()
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

int alt_erase_flash_block (alt_flash_fd* fd, int offset, int length)

The flash memory is identified by the handle fd. The block is identified as being offset bytes from the
beginning of the flash memory, and the block size is passed in length.

alt_write_flash_block()
alt_write_flash_block() writes to a single block in the flash memory. The prototype is:

int alt_write_flash_block(alt_flash_fd* fd,
int block_offset,
int data_offset,
const void *data,
int length)

This function writes to the flash memory identified by the handle fd. It writes to the block located
block_offset bytes from the start of the flash device. The function writes length bytes of data from the
location pointed to by data to the location data_offset bytes from the start of the flash device.

Note: These program and erase functions do not perform address checking, and do not verify whether a
write operation spans into the next block. You must pass in valid information about the blocks to
program or erase.

Example 6–11. Using the Fine-Grained Flash Access API Functions

#include <string.h>
#include "sys/alt_flash.h"
#include "stdtypes.h"
#include "system.h"
#define BUF_SIZE 100
int main (void)
{
flash_region* regions;
alt_flash_fd* fd;
int number_of_regions;
int ret_code;
char write_data[BUF_SIZE];
/* Set write_data to all 0xa */
memset(write_data, 0xA, BUF_SIZE);
fd = alt_flash_open_dev(EXT_FLASH_NAME);
if (fd)
{
ret_code = alt_get_flash_info(fd, ®ions, &number_of_regions);
if (number_of_regions && (regions->offset == 0))
{
/* Erase the first block */
ret_code = alt_erase_flash_block(fd,
regions->offset,
regions->block_size);
if (ret_code == 0) {
/*
* Write BUF_SIZE bytes from write_data 100 bytes to
* the first block of the flash
*/
ret_code = alt_write_flash_block (
fd,
regions->offset,
regions->offset+0x100,
write_data,
BUF_SIZE);
}
}
}

NII5V2Gen2
2015.05.14 alt_write_flash_block() 6-21

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

return 0;
}

alt_lock_flash()

Prototype

int alt_lock_flash(alt_flash_dev * flash_info,

alt_u32 sectors_to_lock)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_flash.h>

Description

Locking to range of the flash memory sectors, which protected from writing and erasing by passing the
uninteger 32 bits value to the sectors_to_lock argument, where this argument depends on the specific
flash device being used,and this argument value can be found in the flash device datasheet. The flash
devices can be supported are shown as below:

EPCQ16, EPCQ32, EPCQ64, EPCQ128, EPCQ256, N25Q512, EPCQ512, EPCQL512, EPCQL1024

More Micron flash devices will be supported in future, and being updated into this document.

Arguments

• *flash_info: Pointer to general flash device structure.
• sectors_to_locL Block protection bits in EPCQ/QSPI ==>Bit4 | Bit3 | Bit2 | Bit1 | Bit0 TB | BP3 | BP2 |

BP1 | BP0

Return

• *0 > Success
• -EINVL > Invalid arguments
• -ETIME > Time out and skipping the looping after 0.7 sec
• -ENOLCK > Sectors lock failed

6-22 alt_lock_flash()
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using DMA Devices
The HAL provides a device abstraction model for direct memory access (DMA) devices. These are
peripherals that perform bulk data transactions from a data source to a destination. Sources and
destinations can be memory or another device, such as an Ethernet connection.

In the HAL DMA device model, there are two categories of DMA transactions: transmit and receive. The
HAL provides two device drivers to implement transmit channels and receive channels. A transmit
channel takes data in a source buffer and transmits it to a destination device. A receive channel receives
data from a device and deposits it in a destination buffer. Depending on the implementation of the
underlying hardware, software might have access to only one of these two endpoints.

Copying data from memory to memory involves both receive and transmit DMA channels simultane‐
ously.

Figure 6-2: Three Basic Types of DMA Transactions

1. Receiving Data
 from a Peripheral

DMA
Recieve
Channel

Peripheral Memory

 2. Transmitting Data
 to a Peripheral

DMA
Receive
Channel

Peripheral

DMA
Transmit
Channel

DMA
Receive
Channel

DMA
Transmit
Channel

3. Transferring Data
 from Memory to
 Memory

Memory

MemoryMemory

The API for access to DMA devices is defined in sys/alt_dma.h.

For more information about the use of these functions, refer to the HAL API Reference chapter of the Nios
II Software Developer’s Handbook.

DMA devices operate on the contents of physical memory, therefore when reading and writing data you
must consider cache interactions.

For more information about cache memory, refer to the Cache and Tightly-Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Related Information

• HAL API Reference on page 14-1
• Cache and Tightly-Coupled Memory

NII5V2Gen2
2015.05.14 Using DMA Devices 6-23

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DMA Transmit Channels
DMA transmit requests are queued using a DMA transmit device handle. To obtain a handle, use the
function alt_dma_txchan_open(). This function takes a single argument, the name of a device to use, as
defined in system.h.

Example 6–12. Obtaining a File Handle for a DMA Transmit Device dma_0

#include <stddef.h>
#include "sys/alt_dma.h"
int main (void)
{
alt_dma_txchan tx;
tx = alt_dma_txchan_open ("/dev/dma_0");
if (tx == NULL)
{
/* Error */
}
else
{
/* Success */
}
return 0;
}

You can use this handle to post a transmit request using alt_dma_txchan_send(). The prototype is:

typedef void (alt_txchan_done)(void* handle);

int alt_dma_txchan_send (alt_dma_txchan dma,
const void* from,
alt_u32 length,
alt_txchan_done* done,
void* handle);

Calling alt_dma_txchan_send() posts a transmit request to channel dma. Argument length specifies the
number of bytes of data to transmit, and argument from specifies the source address. The function returns
before the full DMA transaction completes. The return value indicates whether the request is successfully
queued. A negative return value indicates that the request failed. When the transaction completes, the
user-supplied function done is called with argument handle to provide notification.

Two additional functions are provided for manipulating DMA transmit channels:
alt_dma_txchan_space(), and alt_dma_txchan_ioctl(). The alt_dma_txchan_space() function
returns the number of additional transmit requests that can be queued to the device. The
alt_dma_txchan_ioctl()function performs device-specific manipulation of the transmit device.

Note: If you are using the Avalon Memory-Mapped® (Avalon-MM®) DMA device to transmit to
hardware (not memory-to-memory transfer), call the alt_dma_txchan_ioctl()function with the
request argument set to ALT_DMA_TX_ONLY_ON.

For more information, refer to the HAL API Reference chapter of the Nios II Software Developer’s
Handbook.

Related Information
HAL API Reference on page 14-1

DMA Receive Channels
DMA receive channels operate similarly to DMA transmit channels. Software can obtain a handle for a
DMA receive channel using the alt_dma_rxchan_open() function. You can then use the

6-24 DMA Transmit Channels
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_dma_rxchan_prepare() function to post receive requests. The prototype for
alt_dma_rxchan_prepare() is:

typedef void (alt_rxchan_done)(void* handle, void* data);

int alt_dma_rxchan_prepare (alt_dma_rxchan dma,

 void* data,

 alt_u32 length,

 alt_rxchan_done* done,

 void* handle);

A call to this function posts a receive request to channel dma, for up to length bytes of data to be placed at
address data. This function returns before the DMA transaction completes. The return value indicates
whether the request is successfully queued. A negative return value indicates that the request failed. When
the transaction completes, the user-supplied function done() is called with argument handle to provide
notification and a pointer to the receive data.

Certain errors can prevent the DMA transfer from completing. Typically this is caused by a catastrophic
hardware failure; for example, if a component involved in the transfer fails to respond to a read or write
request. If the DMA transfer does not complete (that is, less than length bytes are transferred), function
done() is never called.

Two additional functions are provided for manipulating DMA receive channels:
alt_dma_rxchan_depth() and alt_dma_rxchan_ioctl().

Note: If you are using the Avalon-MM DMA device to receive from hardware (not memory-to-memory
transfer), call the alt_dma_rxchan_ioctl() function with the request argument set to
ALT_DMA_RX_ONLY_ON.

alt_dma_rxchan_depth() returns the maximum number of receive requests that can be queued to the
device. alt_dma_rxchan_ioctl() performs device-specific manipulation of the receive device.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include "sys/alt_dma.h"
#include "alt_types.h"
/* flag used to indicate the transaction is complete */
volatile int dma_complete = 0;
/* function that is called when the transaction completes */
void dma_done (void* handle, void* data)
 {
 dma_complete = 1;
 }
 int main (void)
 {
 alt_u8 buffer[1024];
 alt_dma_rxchan rx;
 /* Obtain a handle for the device */
 if ((rx = alt_dma_rxchan_open ("/dev/dma_0")) == NULL)
 {
 printf ("Error: failed to open device\n");
 exit (1);

NII5V2Gen2
2015.05.14 DMA Receive Channels 6-25

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 }
 else
 {
 /* Post the receive request */
 if (alt_dma_rxchan_prepare (rx, buffer, 1024, dma_done, NULL) < 0)
 {
 printf ("Error: failed to post receive request\n");
 exit (1);
 }
 /* Wait for the transaction to complete */
 while (!dma_complete);
 printf ("Transaction complete\n");
 alt_dma_rxchan_close (rx);
 }
 return 0;
}

Related Information
HAL API Reference on page 14-1

Memory-to-Memory DMA Transactions

#include <stdio.h>
#include <stdlib.h>
#include "sys/alt_dma.h"
#include "system.h"
static volatile int rx_done = 0;
/*
* Callback function that obtains notification that the data
* is received.*/
static void done (void* handle, void* data)
{
rx_done++;
}
/*
*
*/
int main (int argc, char* argv[], char* envp[])
{
int rc;
alt_dma_txchan txchan;
alt_dma_rxchan rxchan;
void* tx_data = (void*) 0x901000; /* pointer to data to send */
void* rx_buffer = (void*) 0x902000; /* pointer to rx buffer */
/* Create the transmit channel */
if ((txchan = alt_dma_txchan_open("/dev/dma_0")) == NULL)
{
printf ("Failed to open transmit channel\n");
exit (1);
}
/* Create the receive channel */
if ((rxchan = alt_dma_rxchan_open("/dev/dma_0")) == NULL)
{
printf ("Failed to open receive channel\n");
exit (1);
}

/* Post the transmit request */
if ((rc = alt_dma_txchan_send (txchan,
tx_data,
128,
NULL,

6-26 Memory-to-Memory DMA Transactions
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Null)) < 0)
{
printf ("Failed to post transmit request, reason = %i\n", rc);
exit (1);
}
/* Post the receive request */
if ((rc = alt_dma_rxchan_prepare (rxchan,
rx_buffer,
128,
done,
NULL}} < 0)
{
printf ("Failed to post read request, reason = %i\n", rc);
exit (1);
}
/* wait for transfer to complete */
while (!rx_done);
printf ("Transfer successful!\n");
return 0;
}

Using Interrupt Controllers
The HAL supports two types of interrupt controllers:

• The Nios II internal interrupt controller
• An external interrupt controller component

For more information about working with interrupt controllers, refer to the "Exception Handling"
chapter.

Related Information
Exception Handling on page 8-1

Reducing Code Footprint in Embedded Systems
Code size is always a concern for embedded systems developers, because there is a cost associated with the
memory device that stores code. The ability to control and reduce code size is important in controlling
this cost.

The HAL environment is designed to include only those features that you request, minimizing the total
code footprint. If your Nios II hardware system contains exactly the peripherals used by your program,
the HAL contains only the drivers necessary to control the hardware.

The following sections describe options to consider when you need to further reduce code size. The
hello_world_small example project demonstrates the use of some of these options to reduce code size to
the absolute minimum.

Implementing the options in the following sections entails making changes to BSP settings.

For more information about manipulating BSP settings, refer to the “HAL BSP Settings”.

Related Information
HAL BSP Settings on page 6-1

NII5V2Gen2
2015.05.14 Using Interrupt Controllers 6-27

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Enable Compiler Optimizations
To enable compiler optimizations, use the -Os command-line option for the nios2-elf-gcc compiler. The
-Os option sets a compiler optimization level that optimizes for code size, and enables all -O2
optimizations that do not increase code size. You can specify this command-line option through a BSP
setting.

With this option turned on, the Nios II compiler compiles code with the maximum optimization
available, for both size and speed.

Note: You must set this option for both the BSP and the application project.

Related Information
Specifying BSP Defaults on page 4-34

Use Reduced Device Drivers
Some devices provide two driver variants, a fast variant and a small variant. The feature sets provided by
these two variants are device specific. The fast variant is full-featured, and the small variant provides a
reduced code footprint.

By default the HAL always uses the fast driver variants. You can select the reduced device driver for all
hardware components, or for an individual component, through HAL BSP settings.

The small footprint option might also affect other peripherals. Refer to each peripheral’s data sheet for
complete details of its driver’s small footprint behavior.

Table 6-8: Altera Peripherals Offering Small Footprint Drivers

Peripheral Small Footprint Behavior

UART Polled operation, rather than IRQ-driven
JTAG UART Polled operation, rather than IRQ-driven
Common flash interface
controller

Driver excluded in small footprint mode

LCD module controller Driver excluded in small footprint mode
EPCS serial configura‐
tion device

Driver excluded in small footprint mode

Reduce the File Descriptor Pool
The file descriptors that access character mode devices and files are allocated from a file descriptor pool.
You can change the size of the file descriptor pool through a BSP setting. The default is 32.

Use /dev/null
At boot time, standard input, standard output, and standard error are all directed towards the null device,
that is, /dev/null. This direction ensures that calls to printf() during driver initialization do nothing and
therefore are harmless. After all drivers are installed, these streams are redirected to the channels
configured in the HAL. The footprint of the code that performs this redirection is small, but you can
eliminate it entirely by selecting null for stdin, stdout, and stderr. This selection assumes that you
want to discard all data transmitted on standard out or standard error, and your program never receives

6-28 Enable Compiler Optimizations
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

input through stdin. You can control the assignment of stdin, stdout, and stderr channels by
manipulating BSP settings.

Use a Smaller File I/O Library

Use the Small newlib C Library
The full newlib ANSI C standard library is often unnecessary for embedded systems. The GNU Compiler
Collection (GCC) provides a reduced implementation of the newlib ANSI C standard library, omitting
features of newlib that are often superfluous for embedded systems. The small newlib implementation
requires a smaller code footprint. When you use nios2-elf-gcc at the command line, the -msmallc
command-line option enables the small C library.

You can select the small newlib library through BSP settings.

Table 6-9: Limitations of the Nios II Small newlib C Library

Limitation Functions Affected

No floating-point support for printf() family of routines. The
functions listed are implemented, but %f and %g options are not
supported.

asprintf()

fiprintf()

fprintf()

iprintf()

printf()

siprintf()

snprintf()

sprintf()

No floating-point support for vprintf() family of routines. The
functions listed are implemented, but %f and %g options are not
supported.

vasprintf()

vfiprintf()

vfprintf()

vprintf()

vsnprintf()

vsprintf()

No support for scanf() family of routines. The functions listed
are not supported.

fscanf()

scanf()

sscanf()

vfscanf()

vscanf()

vsscanf()

No support for seeking. The functions listed are not supported. fseek()

ftell()

NII5V2Gen2
2015.05.14 Use a Smaller File I/O Library 6-29

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Limitation Functions Affected

No support for opening/closing FILE *. Only pre-opened
stdout, stderr, and stdin are available. The functions listed
are not supported.

fopen()

fclose()

fdopen()

fcloseall()

fileno()

No buffering of stdio.h output routines. functions supported with no
buffering:

fiprintf()

fputc()

fputs()

perror()

putc()

putchar()

puts()

printf()

functions not supported:

setbuf()

setvbuf()

No stdio.h input routines. The functions listed are not
supported.

fgetc()

gets()

fscanf()

getc()

getchar()

gets()

getw()

scanf()

No support for locale. setlocale()

localeconv()

No support for C++, because the functions listed in this table are
not supported.

Note: These functions are a Nios II extension. GCC does not implement them in the small newlib C
library.

Note: The small newlib C library does not support MicroC/OS-II.

6-30 Use the Small newlib C Library
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about the GCC small newlib C library, refer to the newlib documentation installed
with the Nios II EDS. On the Windows Start menu, click Programs > Altera > Nios II > Nios II
Documentation.

Note: The Nios II implementation of the small newlib C library differs slightly from GCC.

For more information about the differences, refer to the "Limitations of the Nios II Small newlib C
Library" table (Table 6-9).

Use UNIX-Style File I/O
If you need to reduce the code footprint further, you can omit the newlib C library, and use the UNIX-
style API.

For more information, refer to the “UNIX-Style Interface” chapter.

The Nios II EDS provides ANSI C file I/O, in the newlib C library, because there is a per-access perform‐
ance overhead associated with accessing devices and files using the UNIX-style file I/O functions. The
ANSI C file I/O provides buffered access, thereby reducing the total number of hardware I/O accesses
performed. Also the ANSI C API is more flexible and therefore easier to use. However, these benefits are
gained at the expense of code footprint.

Related Information
UNIX-Style Interface on page 6-4

Emulate ANSI C Functions
If you choose to omit the full implementation of newlib, but you need a limited number of ANSI-style
functions, you can implement them easily using UNIX-style functions.

Example 6–15. Unbuffered getchar()

/* getchar: unbuffered single character input */
int getchar (void)
{
char c;
return (read (0, &c, 1) == 1) ? (unsigned char) c : EOF;
}

This example is from the book: The C Programming Language, Second Edition, by Brian W. Kernighan
and Dennis M. Ritchie. This standard textbook contains many other useful functions.

Use the Lightweight Device Driver API
The lightweight device driver API allows you to minimize the overhead of accessing device drivers. It has
no direct effect on the size of the drivers themselves, but lets you eliminate driver API features which you
might not need, reducing the overall size of the HAL code.

The lightweight device driver API is available for character-mode devices. The following device drivers
support the lightweight device driver API:

• JTAG UART
• UART
• Optrex 16207 LCD

For these devices, the lightweight device driver API conserves code space by eliminating the dynamic file
descriptor table and replacing it with three static file descriptors, corresponding to stdin, stdout, and
stderr. Library functions related to opening, closing, and manipulating file descriptors are unavailable,

NII5V2Gen2
2015.05.14 Use UNIX-Style File I/O 6-31

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

but all other library functionality is available. You can refer to stdin, stdout, and stderr as you would to
any other file descriptor. You can also refer to the following predefined file numbers:

#define STDIN 0

#define STDOUT 1

#define STDERR 2

This option is appropriate if your program has a limited need for file I/O. The Altera host-based file
system and the Altera read-only zip file system are not available with the reduced device driver API. You
can select the reduced device drivers through BSP settings.

By default, the lightweight device driver API is disabled.

For more information about the lightweight device driver API, refer to the Developing Device Drivers for
the Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Use the Minimal Character-Mode API
If you can limit your use of character-mode I/O to very simple features, you can reduce code footprint by
using the minimal character-mode API. This API includes the following functions:

• alt_printf()

• alt_putchar()

• alt_putstr()

• alt_getchar()

These functions are appropriate if your program only needs to accept command strings and send simple
text messages. Some of them are helpful only in conjunction with the lightweight device driver API.

For more information, refer to the “Use the Lightweight Device Driver API” chapter.

To use the minimal character-mode API, include the header file sys/alt_stdio.h.

The following sections outline the effects of the functions on code footprint.

Related Information
Use the Lightweight Device Driver API on page 6-31

alt_printf()
This function is similar to printf(), but supports only the %c %s, %x, and %% substitution strings.
alt_printf() takes up substantially less code space than printf(), regardless whether you select the
lightweight device driver API. alt_printf() occupies less than 1 KBKB with compiler optimization level
-O2.

alt_putchar()
Equivalent to putchar(). In conjunction with the lightweight device driver API, this function further
reduces code footprint. In the absence of the lightweight API, it calls putchar().

alt_putstr()
Similar to puts(), except that it does not append a newline character to the string. In conjunction with
the lightweight device driver API, this function further reduces code footprint. In the absence of the
lightweight API, it calls puts().

6-32 Use the Minimal Character-Mode API
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_getchar()
Equivalent to getchar(). In conjunction with the lightweight device driver API, this function further
reduces code footprint. In the absence of the lightweight API, it calls getchar().

For more information about the minimal character-mode functions, refer to the "HAL API Reference"
chapter.

Related Information
HAL API Reference on page 14-1

Eliminate Unused Device Drivers
If a hardware device is present in the system, by default the Nios II development flows assume the device
needs drivers, and configure the HAL BSP accordingly. If the HAL can find an appropriate driver, it
creates an instance of this driver. If your program never actually accesses the device, resources are being
used unnecessarily to initialize the device driver.

If the hardware includes a device that your program never uses, consider removing the device from the
hardware. This reduces both code footprint and FPGA resource usage.

However, there are cases when a device must be present, but runtime software does not require a driver.
The most common example is flash memory. The user program might boot from flash, but not use it at
runtime; thus, it does not need a flash driver.

You can selectively omit any individual driver, select a specific driver version, or substitute your own
driver.

For more information about controlling driver configurations, refer to the "Nios II Software Build Tools"
chapter.

Another way to control the device driver initialization process is to use the free-standing environment.

For more information, refer to the “Boot Sequence and Entry Point” chapter.

Related Information

• Boot Sequence and Entry Point on page 6-34
• Nios II Software Build Tools on page 4-1
• Boot Sequence and Entry Point on page 6-34

Eliminate Unneeded Exit Code
The HAL calls the exit() function at system shutdown to provide a clean exit from the program. exit()
flushes all of the C library internal I/O buffers and calls any C++ functions registered with atexit(). In
particular, exit() is called on return from main(). Two HAL options allow you to minimize or eliminate
this exit code.

Eliminate Clean Exit
To avoid the overhead associated with providing a clean exit, your program can use the function _exit()
in place of exit(). This function does not require you to change source code. You can select the _exit()
function through a BSP setting.

NII5V2Gen2
2015.05.14 alt_getchar() 6-33

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Eliminate All Exit Code
Many embedded systems never exit at all. In such cases, exit code is unnecessary. You can eliminate all
exit code through a BSP setting.

Note: If you enable this option, ensure that your main() function (or alt_main() function) does not
return.

Turn off C++ Support
By default, the HAL provides support for C++ programs, including default constructors and destructors.
You can disable C++ support through a BSP setting.

Boot Sequence and Entry Point
Normally, your program’s entry point is the function main(). There is an alternate entry point,
alt_main(), that you can use to gain greater control of the boot sequence. The difference between
entering at main() and entering at alt_main() is the difference between hosted and free-standing
applications.

Hosted Versus Free-Standing Applications
The ANSI C standard defines a hosted application as one that calls main() to begin execution. At the start
of main(), a hosted application presumes the runtime environment and all system services are initialized
and ready to use. This is true in the HAL environment. If you are new to Nios II programming, the HAL’s
hosted environment helps you come up to speed more easily, because you need not consider what devices
exist in the system or how to initialize each one. The HAL initializes the whole system.

The ANSI C standard also provides for an alternate entry point that avoids automatic initialization, and
assumes that the Nios II programmer initializes any needed hardware explicitly. The alt_main() function
provides a free-standing environment, giving you complete control over the initialization of the system.
The free-standing environment places on the programmer the responsibility to initialize any system
features used in the program. For example, calls to printf() do not function correctly in the free-
standing environment, unless alt_main() first instantiates a character-mode device driver, and redirects
stdout to the device.

Note: Using the free-standing environment increases the complexity of writing Nios II programs,
because you assume responsibility for initializing the system.

For more information about reducing code footprint, refer to and use the suggestions described in the
“Reducing Code Footprint in Embedded Systems” chapter.

Note: It is easier to reduce the HAL BSP footprint by using BSP settings, than to use the free-standing
mode.

The Nios II EDS provides examples of both free-standing and hosted programs.

Related Information
Reducing Code Footprint in Embedded Systems on page 6-27

6-34 Eliminate All Exit Code
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Boot Sequence for HAL-Based Programs

System Initialization Code Boot Sequence
The HAL provides system initialization code in the C runtime library (crt0.S). This code performs the
following boot sequence:

• Flushes the instruction and data cache.
• Configures the stack pointer.
• Configures the global pointer register.
• Initializes the block started by symbol (BSS) region to zeroes using the linker-supplied symbols

__bss_start and __bss_end. These are pointers to the beginning and the end of the BSS region.
• If there is no boot loader present in the system, copies to RAM any linker section whose run address is

in RAM, such as .rwdata, .rodata, and .exceptions.

For more information, refer to Global Pointer Register.
• Calls alt_main().

Related Information
Global Pointer Register on page 6-39

Default Implementation Steps
The HAL provides a default implementation of the alt_main() function, which performs the following
steps:

• Calls the alt_irq_init() function, located in alt_sys_init.c. alt_irq_init() initializes the
hardware interrupt controller. The Nios II development flow creates the file alt_sys_init.c for each HAL
BSP.

• Calls ALT_OS_INIT() to perform any necessary operating system specific initialization. For a system
that does not include an operating system (OS) scheduler, this macro has no effect.

• If you are using the HAL with an operating system, initializes the alt_fd_list_lock semaphore,
which controls access to the HAL file systems.

• Enables interrupts.
• Calls the alt_sys_init() function, also located in alt_sys_init.c. alt_sys_init() initializes all

device drivers and software packages in the system.
• Redirects the C standard I/O channels (stdin, stdout, and stderr) to use the appropriate devices.
• Calls the C++ constructors, using the _do_ctors() function.
• Registers the C++ destructors to be called at system shutdown.
• Calls main().
• Calls exit(), passing the return code of main() as the input argument for exit().

alt_main.c, installed with the Nios II EDS, provides this default implementation. The SBT copies alt_main.c
to your BSP directory.

Customizing the Boot Sequence
You can provide your own implementation of the start-up sequence by simply defining alt_main() in
your Nios II project. This gives you complete control of the boot sequence, and allows you to selectively
enable HAL services. If your application requires an alt_main() entry point, you can copy the default
implementation as a starting point and customize it to your needs.

NII5V2Gen2
2015.05.14 Boot Sequence for HAL-Based Programs 6-35

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function alt_main() calls function main(). After main() returns, the default alt_main() enters an
infinite loop. Alternatively, your custom alt_main() might terminate by calling exit(). Do not use a
return statement.

The following line of code is the prototype for alt_main():

void alt_main (void)

The HAL build environment includes mechanisms to override default HAL BSP code. This lets you
override boot loaders, as well as default device drivers and other system code, with your own implementa‐
tion.

alt_sys_init.c is a generated file, which you must not modify. However, the Nios II SBT enables you to
control the generated contents of alt_sys_init.c. To specify the initialization sequence in alt_sys_init.c, you
manipulate the auto_initialize and alt_sys_init_priority properties of each driver, using the
set_sw_property Tcl command.

For more information about generated files and how to control the contents of alt_sys_init.c, refer to the
"Nios II Software Build Tools" chapter.

For more information about alt_sys_init.c, refer to the "Developing Device Drivers for the Hardware
Abstraction Layer" chapter.

For more information about the set_sw_property Tcl command, refer to the "Nios II Software Build
Tools" chapter.

Related Information

• Nios II Software Build Tools on page 4-1
For more information about generated files and how to control the contents of alt_sys_init.c; and for
more information about the set_sw_property Tcl command.

• Developing Device Drivers for the Hardware Abstraction Layer
For more information about alt_sys_init.c.

Memory Usage
This section describes how the HAL uses memory and arranges code, data, stack, and other logical
memory sections, in physical memory.

Memory Sections
By default, HAL-based systems are linked using a generated linker script that is created by the Nios II
SBT. This linker script controls the mapping of code and data to the available memory sections. The
autogenerated linker script creates standard code and data sections (.text, .rodata, .rwdata, and .bss),
plus a section for each physical memory device in the system. For example, if a memory component
named sdram is defined in the system.h file, there is a memory section named .sdram.

The memory devices that contain the Nios II processor’s reset and exception addresses are a special case.
The Nios II tools construct the 32-byte .entry section starting at the reset address. This section is reserved
exclusively for the use of the reset handler. Similarly, the tools construct a .exceptions section, starting at
the exception address.

6-36 Memory Usage
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In a memory device containing the reset or exception address, the linker creates a normal (nonreserved)
memory section above the .entry or .exceptions section. If there is a region of memory below the .entry
or .exceptions section, it is unavailable to the Nios II software.

Assigning Code and Data to Memory Partitions
This section describes how to control the placement of program code and data in specific memory
sections. In general, the Nios II development flow specifies a sensible default partitioning. However, you
might wish to change the partitioning in special situations.

For example, to enhance performance, it is a common technique to place performance-critical code and
data in RAM with fast access time. It is also common during the debug phase to reset (that is, boot) the
processor from a location in RAM, but then boot from flash memory in the released version of the
software. In these cases, you must specify manually which code belongs in which section.

Figure 6-3: HAL Link Map - Unavailable Memory Region Below the .exceptions Section

ext_flash

sdram

ext_ram

epcs_controller

HAL Memory
Sections

Physical
Memory

.entry

.ext_flash

(unused)

.exceptions

.text

.rodata

.rwdata

.bss

.sdram

.ext_ram

.epcs_controller

Simple Placement Options
The reset handler code is always placed at the base of the .reset partition. The general exception funnel
code is always the first code in the section that contains the exception address. By default, the remaining
code and data are divided into the following output sections:

NII5V2Gen2
2015.05.14 Assigning Code and Data to Memory Partitions 6-37

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• .text—All remaining code
• .rodata—The read-only data
• .rwdata—Read-write data
• .bss—Zero-initialized data

You can control the placement of .text, .rodata, .rwdata, and all other memory partitions by
manipulating BSP settings.

For more information about how to control BSP settings, refer to the “HAL BSP Settings” chapter.

The Nios II BSP Editor is a very convenient way to manipulate the linker’s memory map. The BSP Editor
displays memory section and region assignments graphically, allowing you to see overlapping or unused
sections of memory. The BSP Editor is available either through the Nios II SBT for Eclipse, or at the
command line of the Nios II SBT.

For more information, refer to the "Getting Started from the Command Line" chapter.

Related Information

• HAL BSP Settings on page 6-1
• Getting Started from the Command Line on page 3-1

Advanced Placement Options
In your program source code, you can specify a target memory section for each piece of code. In C or C+
+, you can use the section attribute. This attribute must be placed in a function prototype; you cannot
place it in the function declaration itself.

Example 6–16. Manually Assigning C Code to a Specific Memory Section

/* data should be initialized when using the section attribute */
int foo __attribute__ ((section (".ext_ram.rwdata"))) = 0;
void bar (void) __attribute__ ((section (".sdram.txt")));
void bar (void)
{
foo++;
}

Note: A variable foo is placed in the memory named ext_ram, and the function bar() is placed in the
memory named sdram.

In assembly you do this using the .section directive. For example, all code after the following line is
placed in the memory device named ext_ram:

.section .ext_ram.txt

Note: The section names ext_ram and sdram are examples. You need to use section names
corresponding to your hardware. When creating section names, use the following extensions:

• .txt for code: for example, .sdram.txt
• .rodata for read-only data: for example, .cfi_flash.rodata
• .rwdata for read-write data: for example, .ext_ram.rwdata

For more information about the use of these features, refer to the GNU compiler and assembler
documentation. This documentation is installed with the Nios II EDS. To find it, open the Nios
II EDS documentation launchpad, scroll down to Software Development, and click Using the
GNU Compiler Collection (GCC).

Note: A powerful way to manipulate the linker memory map is by using the Nios II BSP Editor. With the
BSP Editor, you can assign linker sections to specific physical regions, and then review a graphical

6-38 Advanced Placement Options
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

representation of memory showing unused or overlapping regions. You start the BSP Editor from
the Nios II Command Shell. For details about using the BSP Editor, refer to the editor’s tool tips.

Placement of the Heap and Stack
By default, the heap and stack are placed in the same memory partition as the .rwdata section. The stack
grows downwards (toward lower addresses) from the end of the section. The heap grows upwards from
the last used memory in the .rwdata section. You can control the placement of the heap and stack by
manipulating BSP settings.

By default, the HAL performs no stack or heap checking. This makes function calls and memory
allocation faster, but it means that malloc() (in C) and new (in C++) are unable to detect heap
exhaustion. You can enable run-time stack checking by manipulating BSP settings. With stack checking
on, malloc() and new() can detect heap exhaustion.

To specify the heap size limit, set the preprocessor symbol ALT_MAX_HEAP_BYTES to the maximum heap
size in decimal. For example, the preprocessor argument -DALT_MAX_HEAP_BYTES=1048576 sets the heap
size limit to 0x100000. You can specify this command-line option through a BSP setting.

For more information about manipulating BSP settings, refer to the “HAL BSP Settings” chapter.

Stack checking has performance costs. If you choose to leave stack checking turned off, you must code
your program so as to ensure that it operates within the limits of available heap and stack memory.

For more information about selecting stack and heap placement, and setting up stack checking, refer to
the "Nios II Software Build Tools" chapter.

For more information about how to control BSP settings, refer to the “HAL BSP Settings” chapter.

Related Information

• HAL BSP Settings on page 6-1
• Nios II Software Build Tools Reference on page 15-1
• Nios II Embedded Software Projects on page 4-4

Global Pointer Register
The global pointer register enables fast access to global data structures in Nios II programs. The Nios II
compiler implements the global pointer, and determines which data structures to access with it. You do
not need to do anything unless you want to change the default compiler behavior.

The global pointer register can access a single contiguous region of 64 KB. To avoid overflowing this
region, the compiler only uses the global pointer with small global data structures. A data structure is
considered “small” if its size is less than or equal to a specified threshold. By default, this threshold is 8
bytes.

The small data structures are allocated to the small global data sections, .sdata, .sdata2, .sbss,
and .sbss2. The small global data sections are subsections of the .rwdata and .bss sections.

NII5V2Gen2
2015.05.14 Placement of the Heap and Stack 6-39

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-4: Small Global Data Sections

RAM

.rwdata

.bss.sbss2

.sbss

.sdata2

.sdata

If the total size of the small global data structures is more than 64 KB, these data structures overflow the
global pointer region. The linker produces an error message saying "Unable to reach <variable
name> ... from the global pointer ... because the offset ... is out of the allowed
range, -32678 to 32767."

You can fix this by using fewer globals or using the following compiler options:

• -mno-gpopt -- Do not generate global pointer accesses. You may need to specify this switch explicitly
when building programs that include large amounts of small data structures.

• -G <size> -- This option sets the threshold size. For example, -G 4 restricts global pointer usage to
data structures 4 bytes long or smaller. Reducing the global pointer threshold reduces the size of the
small global data sections. <size> is expressed in decimal. You can specify this compiler option
through a project setting. You must set this option to the same value for both the BSP and the applica‐
tion project.

For information about manipulating project settings, refer to "HAL BSP Settings".

Related Information

• HAL BSP Settings on page 6-1
• GCC Nios II Options

6-40 Global Pointer Register
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

https://gcc.gnu.org/onlinedocs/gcc/Nios-II-Options.html#Nios-II-Options
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Boot Modes
The processor’s boot memory is the memory that contains the reset vector. This device might be an
external flash or an Altera EPCS serial configuration device, or it might be an on-chip RAM. Regardless of
the nature of the boot memory, HAL-based systems are constructed so that all program and data sections
are initially stored in it. The HAL provides a small boot loader program that copies these sections to their
run time locations at boot time. You can specify run time locations for program and data memory by
manipulating BSP settings.

If the runtime location of the .text section is outside of the boot memory, the Altera flash programmer
places a boot loader at the reset address. This boot loader is responsible for loading all program and data
sections before the call to _start. When booting from an EPCS device, this loader function is provided by
the hardware.

However, if the runtime location of the .text section is in the boot memory, the system does not need a
separate loader. Instead the _reset entry point in the HAL executable program is called directly. The
function _reset initializes the instruction cache and then calls _start. This initialization sequence lets
you develop applications that boot and execute directly from flash memory.

When running in this mode, the HAL executable program must take responsibility for loading any
sections that require loading to RAM. The .rwdata, .rodata, and .exceptions sections are loaded before
the call to alt_main(), as required. This loading is performed by the function alt_load(). To load any
additional sections, use the alt_load_section() function.

For more information about alt_load_section(), refer to the HAL API Reference chapter of the Nios II
Software Developer’s Handbook.

Related Information
HAL API Reference on page 14-1

Working with HAL Source Files
You might wish to view files in the HAL, especially header files, for reference. This section describes how
to find and use HAL source files.

Finding HAL Files
You determine the location of HAL source files when you create the BSP. HAL source files (and other BSP
files) are copied to the BSP directory.

For more information, refer to "Nios II Software Build Tools Reference" of the Nios II Software Developer’s
Handbook.

Related Information

• Nios II Software Build Tools Reference on page 15-1
• Nios II Embedded Software Projects on page 4-4

Overriding HAL Functions
HAL source files are copied to your BSP directory when you create your BSP. If you regenerate a BSP, any
HAL source files that differ from the installation files are copied. Avoid modifying BSP files. To override
default HAL code, use BSP settings, or custom device drivers or software packages.

NII5V2Gen2
2015.05.14 Boot Modes 6-41

Developing Programs Using the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about what happens when you regenerate a BSP, refer to “Revising your BSP” in
the "Nios II Software Build Tools" chapter of the Nios II Software Developer’s Handbook.

Note: Avoid modifying HAL source files. If you modify a HAL source file, you cannot regenerate the BSP
without losing your changes. This makes it difficult to keep the BSP coordinated with changes to
the underlying hardware system.

For more information, refer to “Nios II Embedded Software Projects” in the "Nios II Software Build
Tools" chapter of the Nios II Software Developer’s Handbook.

Related Information

• Nios II Software Build Tools Reference on page 15-1
• Nios II Embedded Software Projects on page 4-4

Document Revision History for Developing Programs Using the
Hardware Abstraction Layer

Date Version Changes

May 2015 2015.05.14 Initial release.

6-42 Document Revision History for Developing Programs Using the Hardware...
NII5V2Gen2
2015.05.14

Altera Corporation Developing Programs Using the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Programs%20Using%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Developing Device Drivers for the Hardware
Abstraction Layer 7

2015.05.14

NII5V2Gen2 Subscribe Send Feedback

Embedded systems typically have application-specific hardware features that require custom device
drivers. This chapter describes how to develop device drivers and integrate them with the hardware
abstraction layer (HAL).

This chapter also describes how to develop software packages for use with HAL board support packages
(BSPs). The process of integrating a software package with the HAL is nearly identical with the process for
integrating a device driver.

Confine direct interaction with the hardware to device driver code. In general, the best practice is to keep
most of your program code free of low-level access to the hardware. Wherever possible, use the high-level
HAL application program interface (API) functions to access hardware. This makes your code more
consistent and more portable to other Nios® II systems that might have different hardware configurations.

When you create a new driver, you can integrate the driver with the HAL framework at one of the
following two levels:

• Integration in the HAL API
• Peripheral-specific API

Note: As an alternative to creating a driver, you can compile the device-specific code as a user library,
and link it with the application. This approach is workable if the device-specific code is
independent of the BSP, and does not require any of the extra services offered by the BSP, such as
the ability to add definitions to the system.h file.

Driver Integration in the HAL API
Integration in the HAL API is the preferred option for a peripheral that belongs to one of the HAL generic
device model classes, such as character-mode or direct memory access (DMA) devices.

For integration in the HAL API, you write device access functions as specified in this chapter, and the
device becomes accessible to software through the standard HAL API. For example, if you have a new
LCD screen device that displays ASCII characters, you write a character-mode device driver. With this
driver in place, programs can call the familiar printf() function to stream characters to the LCD screen.

Related Information
Overview of the Hardware Abstraction Layer on page 5-1
For more information about the descriptions of the HAL generic device model classes.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

The HAL Peripheral-Specific API
If the peripheral does not belong to one of the HAL generic device model classes, you need to provide a
device driver with an interface that is specific to the hardware implementation. In this case, the API to the
device is separate from the HAL API. Programs access the hardware by calling the functions you provide,
not the HAL API.

The up-front effort to implement integration in the HAL API is higher, but you gain the benefit of the
HAL and C standard library API to manipulate devices.

For details about integration in the HAL API, refer to the “Integrating a Device Driver in the HAL”
chapter.

All the other sections in this chapter apply to integrating drivers in the HAL API and creating drivers with
a peripheral-specific API.

Note: Although C++ is supported for programs based on the HAL, HAL drivers can not be written in C+
+. Restrict your driver code to either C or assembly language. C is preferred for portability.

Related Information
Integrating a Device Driver in the HAL on page 7-15

Preparing for HAL Driver Development
This chapter assumes that you are familiar with C programming for the HAL.

For more information, refer to the "Developing Programs Using the Hardware Abstraction Layer" chapter
of the Nios II Software Developer’s Handbook.

Note: This chapter uses the variable <Altera installation> to represent the location where the Altera®

Complete Design Suite is installed. On a Windows system, by default, that location is c:/altera/
<version number>.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Development Flow for Creating Device Drivers
The steps to develop a new driver for the HAL depend on your device details. However, the following
generic steps apply to all device classes.

1. Create the device header file that describes the registers. This header file might be the only interface
required.

2. Implement the driver functionality.
3. Test from main().
4. Proceed to the final integration of the driver in the HAL environment.
5. Integrate the device driver in the HAL framework.

7-2 The HAL Peripheral-Specific API
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Hardware Design Concepts
This section discusses some basic concepts behind the Altera Qsys and SOPC Builder system integration
tools. These concepts can enhance your understanding of the driver development process. You do not
normally need to use a system integration tool when developing Nios II device drivers.

The Relationship Between the .sopcinfo File and system.h
The system.h header file provides a complete software description of the Nios II system hardware. The
system.h system description is a fundamental part of developing drivers. Because drivers interact with
hardware at the lowest level, it is worth understanding the relationship between the .sopcinfo file and
system.h.

The system generation tool, Qsys or SOPC Builder, generates the Nios II processor system hardware.
Hardware designers use the system generation tool to specify the architecture of the Nios II processor
system and integrate the necessary peripherals and memory. Therefore, the definitions in system.h, such as
the name and configuration of each peripheral, are a direct reflection of design choices made in the
system generation tool. These design choices are encapsulated in the .sopcinfo file. system.h is derived
from the .sopcinfo file.

For more information about the system.h header file, refer to the "Developing Programs Using the
Hardware Abstraction Layer" chapter.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Using the System Generation Tool to Optimize Hardware
If you find less-than-optimal definitions in system.h, remember that you can modify the contents of
system.h by changing the underlying hardware with the system generation tool, Qsys or SOPC Builder.
Before you write a device driver to accommodate imperfect hardware, it is worth considering whether the
hardware can be improved easily with the system generation tool.

Components, Devices, and Peripherals
The Qsys and SOPC Builder system generation tools use the term “component” to describe hardware
modules included in the system. In the context of Nios II software development, components are devices,
such as peripherals or memories. In the following sections, “component” is used interchangeably with
“device” and “peripheral” when the context is closely related to the system generation tool.

Accessing Hardware
Software accesses the hardware with macros that abstract the memory-mapped interface to the device.
This section describes the macros that define the hardware interface for each device.

All components provide a directory that defines the device hardware and software. For example, each
component provided in the Quartus® II software has its own directory in the <Altera installation>/ip/
altera/sopc_builder_ip directory. Many components provide a header file that defines their hardware
interface. The header file is named <component name>_regs.h, included in the inc subdirectory for the
specific component. For example, the Altera-provided JTAG UART component defines its hardware
interface in the file <Altera installation>/ip/altera/sopc_builder_ip/altera_avalon_jtag_uart/inc/altera_avalon_
jtag_uart_regs.h.

NII5V2Gen2
2015.05.14 Nios II Hardware Design Concepts 7-3

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The _regs.h header file defines the following access macros for the component:

• Register access macros that provide a read and/or write macro for each register in the component that
supports the operation. The macros are:

• IORD_<component name>_<register name> (<component base address>)

• IOWR_<component name>_<register name> (<component base address>, <data>)

For example, altera_avalon_jtag_uart_regs.h defines the following macros:
• IORD_ALTERA_AVALON_JTAG_UART_DATA()

• IOWR_ALTERA_AVALON_JTAG_UART_DATA()

• IORD_ALTERA_AVALON_JTAG_UART_CONTROL()

• IOWR_ALTERA_AVALON_JTAG_UART_CONTROL()

• Register address macros that return the physical address for each register in a component. The address
register returned is the component’s base address + the specified register offset value. These macros are
named IOADDR_<component name>_<register name> (<component base address>).

For example, altera_avalon_jtag_uart_regs.h defines the following macros:

• IOADDR_ALTERA_AVALON_JTAG_UART_DATA()

• IOADDR_ALTERA_AVALON_JTAG_UART_CONTROL()

Use these macros only as parameters to a function that requires the specific address of a data source
or destination. For example, a routine that reads a stream of data from a particular source register
in a component might require the physical address of the register as a parameter.

• Bit-field masks and offsets that provide access to individual bit-fields in a register. These macros have
the following names:

• <component name>_<register name>_<name of field>_MSK—A bit-mask of the field
• <component name>_<register name>_<name of field>_OFST—The bit offset of the start of the field

For example, ALTERA_AVALON_UART_STATUS_PE_MSK and ALTERA_AVALON_UART_STATUS_PE_OFST
access the pe field of the status register.

Access a device’s registers only with the macros defined in the _regs.h file. You must use the register access
functions to ensure that the processor bypasses the data cache when reading and or writing the device. Do
not use hard-coded constants, because they make your software susceptible to changes in the underlying
hardware.

If you are writing the driver for a completely new hardware device, you must prepare the _regs.h header
file.

For more information about a complete example of the _regs.h file, refer to the component directory for
any of the Altera-supplied components, such as <Altera installation>/ip/sopc_builder_ip/
altera_avalon_jtag_uart/inc.

Related Information

• AN 459: Guidelines for Developing a Nios II HAL Device Driver
For more information about developing device drivers for HAL BSPs.

• Cache and Tightly-Coupled Memory
For more information about the effects of cache management and device access.

7-4 Accessing Hardware
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

http://www.altera.com/literature/an/an459.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating Embedded Drivers for HAL Device Classes
The HAL supports a number of generic device model classes. By writing a device driver as described in
this section, you describe to the HAL an instance of a specific device that falls into one of its known device
classes. This section defines a consistent interface for driver functions so that the HAL can access the
driver functions uniformly.

The following sections define the API for the following classes of devices:

• Character-mode devices
• File subsystems
• DMA devices
• Timer devices used as system clock
• Timer devices used as timestamp clock
• Flash memory devices
• Ethernet devices

The following sections describe how to implement device drivers for each class of device, and how to
register them for use in HAL-based systems.

Related Information
Overview of the Hardware Abstraction Layer on page 5-1

Character-Mode Device Drivers

Create a Device Instance

For a device to be made available as a character mode device, it must provide an instance of the alt_dev
structure. The alt_dev structure, defined in <Nios II EDS install path>/components/altera_hal/HAL/inc/sys/
alt_dev.h, is essentially a collection of function pointers. These functions are called in response to applica‐
tion accesses to the HAL file system. For example, if you call the function open() with a file name that
corresponds to this device, the result is a call to the open() function provided in this structure.

Example 7–1. alt_dev Structure

typedef struct {

 alt_llist llist; /* for internal use */

 const char* name;

 int (*open) (alt_fd* fd, const char* name, int flags, int mode);

 int (*close) (alt_fd* fd);

 int (*read) (alt_fd* fd, char* ptr, int len);

 int (*write) (alt_fd* fd, const char* ptr, int len);

 int (*lseek) (alt_fd* fd, int ptr, int dir);

 int (*fstat) (alt_fd* fd, struct stat* buf);

 int (*ioctl) (alt_fd* fd, int req, void* arg);

} alt_dev;

NII5V2Gen2
2015.05.14 Creating Embedded Drivers for HAL Device Classes 7-5

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about open(), close(), read(), write(), lseek(), fstat(), and ioctl(), refer to
the "HAL API Reference" chapter of the Nios II Software Developer’s Handbook.

Related Information
HAL API Reference on page 14-1

Modifying the Global Error Status, errno
None of these functions directly modifies the global error status, errno. Instead, the return value is the
negation of the appropriate error code provided in errno.h.

For example, the ioctl() function returns -ENOTTY if it cannot handle a request rather than set errno to
ENOTTY directly. The HAL system routines that call these functions ensure that errno is set accordingly.

The function prototypes for these functions differ from their application level counterparts in that they
each take an input file descriptor argument of type alt_fd* rather than int.

A new alt_fd structure is created on a call to open(). This structure instance is then passed as an input
argument to all function calls made for the associated file descriptor.

The following code defines the alt_fd structure:

typedef struct

{

alt_dev* dev;

void* priv;

int fd_flags;

} alt_fd;

where:

• dev is a pointer to the device structure for the device being used.
• fd_flags is the value of flags passed to open().
• priv is a reserved, implementation-dependent argument, defined by the driver. If the driver requires

any special, non-HAL-defined values to be maintained for each file or stream, you can store them in a
data structure, and use priv maintains a pointer to the structure. The HAL ignores priv.

Allocate storage for the data structure in your open() function (pointed to by the alt_dev structure).
Free the storage in your close() function.

Note: To avoid memory leaks, ensure that the close() function is called when the file or stream is no
longer needed.

Default Behavior for Functions Defined in alt_dev
A driver is not required to provide all of the functions in the alt_dev structure. If a given function
pointer is set to NULL, a default action is used instead.

Table 7-1: Default Behavior for Functions Defined in alt_dev

Function Default Behavior

open Calls to open() for this device succeed, unless the device was
previously locked by a call to ioctl() with req = TIOCEXCL.

close Calls to close() for a valid file descriptor for this device always
succeed.

read Calls to read() for this device always fail.

7-6 Modifying the Global Error Status, errno
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function Default Behavior

write Calls to write() for this device always fail.
lseek Calls to lseek() for this device always fail.
fstat The device identifies itself as a character mode device.
ioctl ioctl() requests that cannot be handled without reference to the

device fail.

In addition to the function pointers, the alt_dev structure contains two other fields: llist and name.
llist is for internal use, and must always be set to the value ALT_LLIST_ENTRY. name is the location of the
device in the HAL file system and is the name of the device as defined in system.h.

Register a Character Device
After you create an instance of the alt_dev structure, the device must be made available to the system by
registering it with the HAL and by calling the following function:

int alt_dev_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register. The return value is
zero upon success. A negative return value indicates that the device cannot be registered.

After a device is registered with the HAL file system, you can access it through the HAL API and the ANSI
C standard library. The node name for the device is the name specified in the alt_dev structure.

For more information, refer to the "Developing Programs Using the Hardware Abstraction Layer" chapter
of the Nios II Software Developer’s Handbook.

Related Information
Developing Device Drivers for the Hardware Abstraction Layer

File Subsystem Drivers
A file subsystem device driver is responsible for handling file accesses beneath a specified mount point in
the global HAL file system.

Create a Device Instance
Creating and registering a file system is very similar to creating and registering a character-mode device.
To make a file system available, create an instance of the alt_dev structure.

For more information, refer to the “Character-Mode Device Drivers” chapter.

The only distinction is that the name field of the device represents the mount point for the file subsystem.
Of course, you must also provide any necessary functions to access the file subsystem, such as read() and
write(), similar to the case of the character-mode device.

Note: If you do not provide an implementation of fstat(), the default behavior returns the value for a
character-mode device, which is incorrect behavior for a file subsystem.

Related Information
Character-Mode Device Drivers on page 7-5

Register a File Subsystem Device
You can register a file subsystem using the following function:

NII5V2Gen2
2015.05.14 Register a Character Device 7-7

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

int alt_fs_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure to register. A negative return
value indicates that the file system cannot be registered.

After a file subsystem is registered with the HAL file system, you can access it through the HAL API and
the ANSI C standard library. The mount point for the file subsystem is the name specified in the alt_dev
structure.

For more information, refer to the "Developing Programs Using the Hardware Abstraction Layer" chapter
of the Nios II Software Developer’s Handbook.

Related Information
Developing Device Drivers for the Hardware Abstraction Layer

Timer Device Drivers

System Clock Driver
A system clock device model requires a driver to generate the periodic clock tick. There can be only one
system clock driver in a system. You implement a system clock driver as an interrupt service routine (ISR)
for a timer peripheral that generates a periodic interrupt. The driver must provide periodic calls to the
following function:

void alt_tick (void)

The expectation is that alt_tick() is called in exception context.

To register the presence of a system clock driver, call the following function:

int alt_sysclk_init (alt_u32 nticks)

The input argument nticks is the number of system clock ticks per second, which is determined by your
system clock driver. The return value of this function is zero on success, and nonzero otherwise.

For more information about writing interrupt service routines, refer to the "Exception Handling" chapter
of the Nios II Software Developer’s Handbook.

Related Information
Exception Handling on page 8-1

Timestamp Driver
A timestamp driver provides implementations for the three timestamp functions:
alt_timestamp_start(), alt_timestamp(), and alt_timestamp_freq(). The system can only have
one timestamp driver.

For more information about using these functions, refer to the "Developing Programs Using the
Hardware Abstraction Layer" chapter of the Nios II Software Developer’s Handbook.

For more information about using these functions, refer to the "HAL API Reference" chapter of the Nios II
Software Developer’s Handbook.

Related Information

• HAL API Reference on page 14-1
• Developing Device Drivers for the Hardware Abstraction Layer

7-8 Timer Device Drivers
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Flash Device Drivers

Create a Flash Driver
Flash device drivers must provide an instance of the alt_flash_dev structure, defined in sys/alt_flash_
dev.h. The following code shows the structure:

struct alt_flash_dev
{
 alt_llist llist; // internal use only
 const char* name;
 alt_flash_open open;
 alt_flash_close close;
 alt_flash_write write;
 alt_flash_read read;
 alt_flash_get_flash_info get_info;
 alt_flash_erase_block erase_block;
 alt_flash_write_block write_block;
 void* base_addr;
 int length;
 int number_of_regions;
 flash_region region_info[ALT_MAX_NUMBER_OF_FLASH_REGIONS];
alt_flash_lock lock};

The first parameter llist is for internal use, and must always be set to the value ALT_LLIST_ENTRY.
name is the location of the device in the HAL file system and is the name of the device as defined in
system.h.

The seven fields open to write_block are function pointers that implement the functionality behind the
application API calls to the following functions:

• alt_flash_open_dev()

• alt_flash_close_dev()

• alt_write_flash()

• alt_read_flash()

• alt_get_flash_info()

• alt_erase_flash_block()

• alt_write_flash_block()

• alt_flash_lock()

where:

• the base_addr parameter is the base address of the flash memory
• length is the size of the flash in bytes
• number_of_regions is the number of erase regions in the flash
• region_info contains information about the location and size of the blocks in the flash device

For more information about the format of the flash_region structure, refer to “Using Flash Devices” in
"Developing Programs Using the Hardware Abstraction Layer".

Some flash devices, such as common flash interface (CFI)-compliant devices, allow you to read out the
number of regions and their configuration at run time. For all other flash devices, these two fields must be
defined at compile time.

Related Information
Developing Device Drivers for the Hardware Abstraction Layer

NII5V2Gen2
2015.05.14 Flash Device Drivers 7-9

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register a Flash Device
After creating an instance of the alt_flash_dev structure, you must make the device available to the
HAL system by calling the following function:

int alt_flash_device_register(alt_flash_fd* fd)

This function takes a single input argument, which is the device structure to register. The return value is
zero upon success. A negative return value indicates that the device cannot be registered.

DMA Device Drivers
The HAL models a DMA transaction as being controlled by two endpoint devices: a receive channel and a
transmit channel.

For more information about a complete description of the HAL DMA device model, refer to “Using DMA
Devices” in the "Developing Programs Using the Hardware Abstraction Layer" chapter of the Nios II
Software Developer’s Handbook.

The DMA device driver interface is defined in sys/alt_dma_dev.h.

Related Information
Developing Device Drivers for the Hardware Abstraction Layer

DMA Transmit Channel

Example 7–2. alt_dma_txchan Structure

typedef struct alt_dma_txchan_dev_s alt_dma_txchan_dev;
struct alt_dma_txchan_dev_s
{
alt_llist llist;
const char* name;
int (*space) (alt_dma_txchan dma);
int (*send) (alt_dma_txchan dma,
const void* from,
alt_u32 len,
alt_txchan_done* done,
void* handle);
int (*ioctl) (alt_dma_txchan dma, int req, void* arg);
};

DMA Receive Channel

Example 7–3. alt_dma_rxchan Structure

typedef alt_dma_rxchan_dev_s alt_dma_rxchan;
struct alt_dma_rxchan_dev_s
{
alt_llist list;
const char* name;
alt_u32 depth;
int (*prepare) (alt_dma_rxchan dma,
void* data,
alt_u32 len,
alt_rxchan_done* done,
void* handle);
int (*ioctl) (alt_dma_rxchan dma, int req, void* arg);
};

7-10 Register a Flash Device
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The prepare() function must be defined. If the ioctl field is set to null, calls to
alt_dma_rxchan_ioctl() return -ENOTTY for this device.

After creating an instance of the alt_dma_rxchan structure, you must register the device driver with the
HAL system to make it available by calling the following function:

int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

The input argument dev is the device to register. The return value is zero on success, or negative if the
device cannot be registered.

Table 7-2: Fields in the alt_dma_rxchan Structure

Field Function

llist This function is for internal use and must always be set to the value
ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_rxchan_
open(). name is the name of the device as defined in system.h.

depth The total number of receive requests that can be outstanding at any
given time.

prepa

re

A pointer to a function that is called as a result of a call to the
application API function alt_dma_rxchan_prepare(). This function
posts a receive request to the DMA device. The parameters passed to
alt_dma_rxchan_prepare() are passed directly to prepare(). For a
description of parameters and return values, refer to the "HAL API
Reference" chapter of the Nios II Software Developer’s Handbook.

ioctl This is a function that provides device specific I/O control. Refer to
sys/alt_dma_dev.h for a list of the generic options that a device might
wish to support.

Related Information
HAL API Reference on page 14-1

Ethernet Device Drivers
The HAL generic device model for Ethernet devices provides access to the NicheStack® TCP/IP Stack -
Nios II Edition running on the MicroC/OS-II operating system. You can provide support for a new
Ethernet device by supplying the driver functions that this section defines.

Before you consider writing a device driver for a new Ethernet device, you need a basic understanding of
the Altera implementation of the NicheStack TCP/IP Stack and its usages.

NII5V2Gen2
2015.05.14 Ethernet Device Drivers 7-11

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Layered Software Model

Architectural Layers of a Nios II MicroC/OS-II software application

Application

Application-specific system initialization

NicheStack TCP/IP Stack software component
MicroC/OS-II

HAL API

Software device drivers

Nios II processor
system hardware

Hardware
Software

Each layer encapsulates the specific implementation details of that layer, abstracting the data for the next
outer layer. However, the hierarchy of layers is not absolute. For example, the application makes system
calls directly to the MicroC/OS-II or HAL API layers for services that do not require networking.

For more information, refer to the "Ethernet and the NicheStack TCP/IP Stack - Nios II Edition" chapter
of the Nios II Software Developer’s Handbook.

Related Information
Ethernet and the NicheStack TCP/IP Stack - Nios II Edition on page 11-1

Writing a New Ethernet Device Driver

The easiest way to write a new Ethernet device driver is to start with Altera’s implementation for the
Standard Microsystems Corporation (SMSC) lan91c111 device, and modify it to suit your Ethernet media
access controller (MAC). This section assumes you take this approach. Starting from a known working
example makes it easier for you to learn the most important details of the NicheStack TCP/IP Stack
implementation.

The source code for the LAN91C111 10/100 Non-PCI Ethernet Single Chip MAC + PHY driver is
provided with the Quartus II software located at <Altera installation>/ip/altera/sopc_builder_ip/
altera_avalon_lan91c111/UCOSII. For the sake of brevity, this section refers to this directory as <SMSC
path>. The source files are in the <SMSC path>/src/iniche and <SMSC path>/inc/iniche directories.

A number of useful NicheStack TCP/IP Stack files are installed with the Nios II Embedded Design Suite
(EDS), under the <Nios II EDS install path>/components/altera_iniche/UCOSII directory. For the sake
of brevity, this chapter refers to this directory as <iniche path>.

For more information about the NicheStack TCP/IP Stack implementation, refer to the NicheStack
Technical Reference Manual, available on the Altera website.

7-12 Layered Software Model
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You need not edit the NicheStack TCP/IP Stack source code to implement a NicheStack-compatible
driver. Nevertheless, Altera provides the source code for your reference. The files are installed with the
Nios II EDS in the <iniche path> directory. The Ethernet device driver interface is defined in <iniche
path>/inc/alt_iniche_dev.h.

Related Information

• NicheStack Technical Reference Manual
For more information about the NicheStack TCP/IP Stack implementation, refer to the NicheStack
Technical Reference Manual, available on the Nios II Processor Documentation website.

• NicheStackRef.zip
For access to the NicheStackRef.zip file.

Provide the NicheStack Hardware Interface Routines
The NicheStack TCP/IP Stack architecture requires several network hardware interface routines:

• Initialize hardware
• Send packet
• Receive packet
• Close
• Dump statistics

For more information about these routines, refer to "Porting Engineer Provided Functions" in the
NicheStack Technical Reference Manual.

The NicheStack TCP/IP Stack system code uses the

Table 7-3: SMSC LAN91C111 Hardware Interface Routines

Prototype Function LAN91C111 Function File Notes

n_init() s91_init() smsc91x.c The initialization routine can
install an ISR if applicable

pkt_send() s91_pkt_send() smsc91x.c

Packet receive mechanism

s91_isr() smsc91x.c Packet receive includes three
key actions:

• pk_alloc()—Allocate a
netbuf structure

• putq()—Place netbuf
structure on rcvdq

• SignalPktDemux()—
Notify the Internet
protocol (IP) layer that it
can demux the packet

s91_rcv() smsc91x.c

s91_dma_rx_done() smsc_mem.c

n_close() s91_close() smsc91x.c

n_stats() s91_stats() smsc91x.c

NII5V2Gen2
2015.05.14 Provide the NicheStack Hardware Interface Routines 7-13

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

https://www.altera.com/products/general/nios2/literature.html
http://mysitespg/personal/mmtan/Shared%20Documents/niosII_docs_14_0/documents/NicheStackRef.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

net structure internally to define its interface to device drivers. The net structure is defined in net.h, in
<iniche path>/src/downloads/30src/h. Among other things, the net structure contains the following
things:

• A field for the IP address of the interface
• A function pointer to a low-level function to initialize the MAC device
• Function pointers to low-level functions to send packets

Typical NicheStack code refers to type NET, which is defined as *net.

Related Information

• NicheStack Technical Reference Manual
For more information about the NicheStack TCP/IP Stack implementation, refer to the NicheStack
Technical Reference Manual, available on the Nios II Processor Documentation website.

• NicheStackRef.zip
For access to the NicheStackRef.zip file.

Provide *INSTANCE and *INIT Macros
To enable the HAL to use your driver, you must provide two HAL macros. The names of these macros are
based on the name of your network interface component, according to the following templates:

• <component name>_INSTANCE

• <component name>_INIT

For examples, refer to ALTERA_AVALON_LAN91C111_INSTANCE and ALTERA_AVALON_LAN91C111_INIT in
<SMSC path>/inc/iniche/altera_avalon_lan91c111_iniche.h, which is included in <iniche path>/inc/altera_
avalon_lan91c111.h.

You can copy altera_avalon_lan91c111_iniche.h and modify it for your own driver. The HAL expects to find
the *INIT and *INSTANCE macros in <component name>.h.

For more information, refer to the “Header Files and alt_sys_init.c” chapter. You can accomplish this with
a #include directive as in altera_avalon_lan91c111.h, or you can define the macros directly in
<component name>.h.
Your *INSTANCE macro declares data structures required by an instance of the MAC. These data
structures must include an alt_iniche_dev structure. The *INSTANCE macro must initialize the first
three fields of the alt_iniche_dev structure, as follows:

• The first field, llist, is for internal use, and must always be set to the value ALT_LLIST_ENTRY.
• The second field, name, must be set to the device name as defined in system.h. For example, altera_

avalon_lan91c111_iniche.h uses the C preprocessor’s ## (concatenation) operator to reference the
LAN91C111_NAME symbol defined in system.h.

• The third field, init_func, must point to your software initialization function.

For more information, refer to the “Provide a Software Initialization Function” chapter.

For example, altera_avalon_lan91c111_iniche.h inserts a pointer to alt_avalon_lan91c111_init().

Your *INIT macro initializes the driver software. Initialization must include a call to the
alt_iniche_dev_reg() macro, defined in alt_iniche_dev.h. This macro registers the device with the HAL
by adding the driver instance to alt_iniche_dev_list.

When your driver is included in a Nios II BSP project, the HAL automatically initializes your driver by
invoking the *INSTANCE and *INIT macros from its alt_sys_init() function. For more information
about the *INSTANCE and *INIT macros, refer to the “Header Files and alt_sys_init.c” chapter.

7-14 Provide *INSTANCE and *INIT Macros
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

https://www.altera.com/products/general/nios2/literature.html
http://mysitespg/personal/mmtan/Shared%20Documents/niosII_docs_14_0/documents/NicheStackRef.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Header Files and alt_sys_init.c on page 7-28
• Provide a Software Initialization Function on page 7-15

Provide a Software Initialization Function
The *INSTANCE() macro inserts a pointer to your initialization function in the alt_iniche_dev
structure.

For more information, refer to the “Provide *INSTANCE and *INIT Macros” chapter.

Your software initialization function must perform at least the following three tasks:

• Initialize the hardware and verify its readiness
• Finish initializing the alt_iniche_dev structure
• Call get_mac_addr()

The initialization function must perform any other initialization your driver needs, such as creation and
initialization of custom data structures and ISRs.

For more information about the get_mac_addr() function, refer to the "Ethernet and the NicheStack
TCP/IP Stack - Nios II Edition" chapter.

For more information about an example of a software initialization function, refer to
alt_avalon_lan91c111_init() in <SMSC path>/src/iniche/smsc91x.c.

Related Information

• Provide *INSTANCE and *INIT Macros on page 7-14
• Ethernet and the NicheStack TCP/IP Stack - Nios II Edition on page 11-1

Integrating a Device Driver in the HAL
The Nios II SBT can incorporate device drivers and software packages supplied by Altera, supplied by
other third-party developers, or created by you. This section describes how to prepare device drivers and
software packages so the BSP generator recognizes and adds them to a generated BSP.

You can take advantage of this service, whether you created a device driver for one of the HAL generic
device models, or you created a peripheral-specific device driver.

Note: The process required to integrate a device driver is nearly identical to that required to develop a
software package. The following sections describe the process for both. Certain steps are not
needed for software packages, as noted in the text.

Overview
To publish a device driver or a software package, you provide the following items:

• A header file defining the package or driver interface
• A Tcl script specifying how to add the package or driver to a BSP

The header file and Tcl script are described in the following sections.

NII5V2Gen2
2015.05.14 Provide a Software Initialization Function 7-15

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assumptions and Requirements
Typically, you are developing a device driver or software package for eventual incorporation in a BSP. The
driver or package is to be incorporated in the BSP by an end user who has limited knowledge of the driver
or package internal implementation. To add your driver or package to a BSP, the end user must rely on
the driver or package settings that you create with the tools described in this section.

For a device driver or software package to work with the Nios II SBT, it must meet the following criteria:

• It must have a defining Tcl script. The Tcl script for each driver or software package provides the Nios
II SBT with a complete description of the driver or software. This description includes the following
information:

• Name—A unique name identifying the driver or software package
• Source files—The location, name, and type of each C/C++ or assembly language source or header

file
• Associated hardware class (device drivers only)—The name of the hardware peripheral class the

driver supports
• Version and compatibility information—The driver or package version, and (for drivers) informa‐

tion about what device core versions it supports.
• BSP type(s)—The supported operating system(s)
• Settings—The visible parameters controlling software build and runtime configuration

• The Tcl script resides in the driver or software package root directory.
• The Tcl script’s file name ends with _sw.tcl. Example: custom_ip_block_sw.tcl.
• The root directory of the driver or software package is in one of the following places:

• In any directory included in the SOPC_BUILDER_PATH environment variable, or in any directory
located one level beneath such a directory. This approach is recommended if your driver or
software packages are installed in a distribution you create.

• In a directory named ip, one level beneath the Quartus II project directory containing the design
your BSP targets. This approach is recommended if your driver or software package is used only
once, in a specific hardware project.

For more information on how file names and directory structures conform to certain conventions, refer to
the “File Names and Locations” chapter.

• If your driver or software package uses the HAL auto initialization mechanism (alt_sys_init()),
certain macros must be defined in a header file.

For more information about this header file, refer to the “Header Files and alt_sys_init.c” chapter.

For more information about integrating a HAL device driver, refer to AN 459: Guidelines for
Developing a Nios II HAL Device Driver.

For more information about the commands you can use in a driver Tcl script, refer to the "Nios II
Software Build Tools Reference" chapter.

Related Information

• File Names and Locations on page 7-18
• Header Files and alt_sys_init.c on page 7-28
• AN 459: Guidelines for Developing a Nios II HAL Device Driver
• Nios II Software Build Tools Reference on page 15-1

7-16 Assumptions and Requirements
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

http://www.altera.com/literature/an/an459.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Nios II BSP Generator
This section describes the process by which the Nios II BSP generator adds device drivers and software
packages to your BSP. The Nios II BSP generator, a subset of the Nios II SBT, is a combination of
command utilities and scripts that enable you to create and manage BSPs and their settings.

For more information about the Nios II SBT, refer to the "Overview of Nios II Embedded Development"
chapter.

For more information about the Nios II SBT, refer to the "Getting Started from the Command Line"
chapter.

Related Information

• Overview of Nios II Embedded Development on page 1-1
• Getting Started from the Command Line on page 3-1

Component Discovery
When you run any BSP generator utility, a library of available drivers and software packages is populated.

The BSP generator locates software packages and drivers by inspecting a list of known locations
determined by the Altera Nios II EDS, Quartus II software, and MegaCore® IP Library installers, as well as
searching locations specified in certain system environment variables.

The Nios II BSP tools identify drivers and software packages by locating and sourcing Tcl scripts with file
names ending in _sw.tcl in these locations.

Note: For run-time efficiency, the BSP generator only looks at driver files that conform to the criteria
listed in this section.

After locating each driver and software package, the Nios II SBT searches for a suitable driver for each
hardware module in the hardware system (mastered by the Nios II processor that the BSP is generated
for), as well as software packages that the BSP creator requested.

Device Driver Versions
In the case of device drivers, the highest version of driver that is compatible with the associated hardware
peripheral is added to the BSP, unless specified otherwise by the device driver management commands.

For more information, refer to the "Nios II Software Build Tools Reference" chapter of the Nios II
Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Device Driver and Software Package Inclusion

Specific Requests
The BSP generator adds software packages to the BSP if they are specifically requested during BSP
generation, with the enable_sw_package command.

For more information, refer to “Software Build Tools Tcl Commands” in the "Nios II Software Build
Tools Reference" chapter.

Related Information
Nios II Software Build Tools Reference on page 15-1

NII5V2Gen2
2015.05.14 The Nios II BSP Generator 7-17

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

No Specific Requests
If no specific device driver is requested, and no compatible device driver is located for a particular
hardware module, the BSP generator issues an informative message visible in either the debug or verbose
generation output. This behavior is normal for many types of hardware, such as memory devices, that do
not have device drivers. If a software package or specific driver is requested and cannot be located, an
error is generated and BSP generation or settings update halts.

Creating a Tcl script allows you to add extra definitions in the system.h file, enable automatic driver
initialization through the alt_sys_init.c structure, and enable the Nios II SBT to control any extra
parameters that might exist.

With the Tcl software definition files in place, the SBT reads in the Tcl file and populate the makefiles and
other support files accordingly.

When the Nios II SBT adds each driver or software package to the system, it uses the data in the Tcl script
defining the driver or software package to control each file copied in to the BSP. This rule also affects
generated BSP files such as the BSP Makefile, public.mk, system.h, and the BSP settings and summary
HTML files.

When you create a new software project, the Nios II SBT generates the contents of alt_sys_init.c to match
the specific hardware contents of the system.

File Names and Locations
The Nios II build tools find a device driver or software package by locating a Tcl script with the file name
ending in _sw.tcl, and sourcing it.

For more information, refer to the “The Nios II BSP Generator” chapter.

Each peripheral in a Nios II system is associated with a specific component directory. This directory
contains a file defining the software interface to the peripheral.

For more information, refer to the “Accessing Hardware” chapter.

To enable the SBT to find your component device driver, place the Tcl script in a directory named ip
under your hardware project directory.

The file hierarchy that is suitable for the Nios II SBT is located in the <Altera installation>/ip/altera/
sopc_builder_ip directory. This example assumes a device driver supporting a hardware component
named custom_component.

Related Information

• The Nios II BSP Generator on page 7-17
• Accessing Hardware on page 7-3

Source Code Discovery
You use Tcl scripts to specify the location of driver source files.

For more information, refer to the “The Nios II BSP Generator” chapter.

Related Information
The Nios II BSP Generator on page 7-17

7-18 No Specific Requests
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Driver and Software Package Tcl Script Creation
This section discusses writing a Tcl script to describe your software package or driver. The exact contents
of the Tcl script depends on the structure and complexity of your driver or software. For many simple
device drivers, you need only include a few commands. For more complex software, the Nios II SBT
provides powerful features that give the BSP end user control of your software or driver’s operation.

The Tcl command and argument descriptions in this section are not exhaustive. For a detailed explana‐
tion of each command and all arguments, refer to the "Nios II Software Build Tools Reference" chapter of
the Nios II Software Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

Example Device Driver File Hierarchy and Naming
For a reference in creating your own driver or software Tcl files, you can also view the driver and software
package Tcl scripts included with the Nios II EDS and the MegaCore IP library. These scripts are in the
<Nios II EDS install path>/components and <MegaCore IP library install path>/sopc_builder_ip folders,
respectively.

NII5V2Gen2
2015.05.14 Driver and Software Package Tcl Script Creation 7-19

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-1: Example Device Driver File Hierarchy and Naming

Hardware system generation files

custom_component_sw.tcl

custom_component_regs.h

HAL

inc

custom_component

inc

custom_component.h

Additional header files

src

component.mk

driver_source_file.c

Additional source files

Note: "inc" - Contains header file(s) that define the device hardware interfaces. Contents in this directory
are not HAL-specific and apply to a driver, regardless of whether it is based on the HAL,
MicroC/OS-II, or any other RTOS environment.

Note: "HAL" - Contains software files required to integrate the device with the Nios II hardware abstrac‐
tion layer. Files in this directory pertain specifically to the HAL.

Tcl Command Walkthrough for a Typical Driver or Software Package
The Tcl script excerpts in this section describe a typical device driver or software package.

The example in this section creates a device driver for a hardware peripheral whose component class
name is my_custom_component. The driver supports both HAL and MicroC/OS-II BSP types. It has a
single C source file (.c) and two C header files (.h).

7-20 Tcl Command Walkthrough for a Typical Driver or Software Package
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating and Naming the Driver or Package
The first command in any driver or software package Tcl script must be the create_driver or
create_sw_package command. The remaining commands can be in any order. Use the appropriate
create command only once per Tcl file. Choose a unique driver or package name. For drivers, Altera
recommends appending _driver to the associated hardware class name. The following example illustrates
this convention:

create_driver my_custom_component_driver

Identifying the Hardware Component Class
Each driver must identify the hardware component class the driver is associated with in the
set_sw_property command’s hw_class_name argument. The following example associates the driver
with a hardware class called my_custom_component:

set_sw_property hw_class_name my_custom_component

Note: The set_sw_property command accepts several argument types. Each call to set_sw_property
sets or overwrites a property to the value specified in the second argument.

For more information about the set_sw_property command, refer to the "Nios II Software Build Tools
Reference" chapter.

The hw_class_name argument does not apply to software packages.

If you are creating your own driver to use in place of an existing one (for example, a custom UART driver
for the altera_avalon_uart component), specify a driver name different from the standard driver. The
Nios II SBT uses your driver only if you specify it explicitly.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Choose a name for your driver or software package that does not conflict with other Altera-supplied
software or IP, or any third-party software or IP installed on your host system. The BSP generator uses the
name you specify to look up the software package or driver during BSP creation. If the Nios II SBT finds
multiple compatible drivers or software packages with the same name, it might pick any of them.

If you intend to distribute your driver or software package, Altera recommends prefixing all names with
your organization’s name.

Related Information
Nios II Software Build Tools Reference on page 15-1

Setting the BSP Type
You must specify each operating system (or BSP type) that your driver or software package supports. Use
the add_sw_property command’s supported_bsp_type argument to specify each compatible operating
system. In most cases, a driver or software package supports both Altera HAL (hal) and Micrium
MicroC/OS-II (ucosii) BSP types, as in the following example:

add_sw_property supported_bsp_type hal
add_sw_property supported_bsp_type ucosii

Note: The add_sw_property command accepts several argument types. Each call to add_sw_property
adds the final argument to the property specified in the second argument.

Note: Support for additional operating system and BSP types is not present in this release of the Nios II
SBT.

NII5V2Gen2
2015.05.14 Creating and Naming the Driver or Package 7-21

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying an Operating System
Many drivers and software packages do not require any particular operating system. However, you can
structure your software to provide different source files depending on the operating system used.

If your driver or software has different source files, paths, or settings that depend on the operating system
used, write a Tcl script for each variant of the driver or software package. Each script must specify the
same software package or driver name in the create_driver or create_sw_package command, and
same hw_class_name in the case of device drivers. Each script must specify only the files, paths, and other
settings that pertain to that operating system. During BSP generation, only drivers or software packages
that specify compatibility with the selected operating system (OS) type are eligible to add to the BSP.

Specifying Source Files
Using the Tcl command interface, you must specify each source file in your driver or software package
that you want in the generated BSP. The commands discussed in this section add driver source files and
specify their location in the file system and generated BSP.

The add_sw_property command’s c_source and asm_source arguments add a single .c or Nios II
assembly language source file (.s or .S) to your driver or software package. You must express path
information to the source relative to the driver root (the location of the Tcl file). add_sw_property copies
source files to BSPs that incorporate the driver, using the path information specified, and adds them to
source file list in the generated BSP makefile. When you build the BSP using make, the driver source files
are compiled as follows:

add_sw_property c_source HAL/src/my_driver.c

The add_sw_property command’s include_source argument adds a single header file in the path
specified to the driver. The paths are relative to the driver root. add_sw_property copies header files to
the BSP during generation, using the path information specified at generation time. It does not include
header files in the makefile.

add_sw_property include_source inc/my_custom_component_regs.h
add_sw_property include_source HAL/inc/my_custom_component.h

Specifying a Subdirectory
You can optionally specify a subdirectory in the generated BSP for your driver or software package files
using the bsp_subdirectory argument to set_sw_property. All driver source and header files are
copied to this directory, along with any path or hierarchy information specified with each source or
header file. If no bsp_subdirectory is specified, your driver or software package is placed under the
drivers folder of the generated BSP. Set the subdirectory as follows:

set_sw_property bsp_subdirectory my_driver

Note: If the path begins with the BSP type (e.g HAL or UCOSII), the BSP type is removed and replaced
with the value of the bsp_subdirectory property.

Enabling Software Initialization
If your driver or software package uses the HAL autoinitialization mechanism, your source code includes
INSTANCE and INIT macros, to create storage for each driver instance, and to call any initialization
routines. The generated alt_sys_init.c file invokes these macros, which must be defined in a header file
named <hardware component class>.h.

For more information, refer to the “Provide *INSTANCE and *INIT Macros” chapter.

7-22 Specifying an Operating System
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To support this functionality in Nios II BSPs, you must set the set_sw_property command’s
auto_initialize argument to true using the following Tcl command:

set_sw_property auto_initialize true

If you do not turn on this attribute, alt_sys_init.c does not invoke the INIT and INSTANCE macros.

Related Information
Provide *INSTANCE and *INIT Macros on page 7-14

Adding Include Paths
By default, the generated BSP Makefile and public.mk add include paths to find header files in /inc or
<BSP type>/inc folders.

You might need to set up a header file directory hierarchy to logically organize your code. You can add
additional include paths to your driver or software package using the add_sw_property command’s
include_directory argument as follows:

add_sw_property include_directory UCOSII/inc/protocol/h

Note: If the path begins with the BSP type (e.g HAL or UCOSII), the BSP type is removed and replaced
with the value of the bsp_subdirectory property.

Additional include paths are added to the preprocessor flags in the BSP public.mk file. These preprocessor
flags allow BSP source files, as well as application and user library source files that reference the BSP, to
find the include path while each source file is compiled.

Note: Adding additional include paths is not required if your source code includes header files with
explicit path names. You can also specify the location of the header files with a #include directive
similar to the following:

#include "protocol/h/<filename>"

Version Compatibility
Your device driver or software package can optionally specify versioning information through the Tcl
command interface. The driver and software package Tcl commands specifying versioning information
allow the following functionality:

• You can request a specific version of your driver or software package with BSP settings.
• You can make updates to your device driver and specify that the driver is still compatible with a

minimum hardware class version, or specific hardware class versions. This facility is especially useful
in situations in which a hardware design is stable and you foresee making software updates over time.

The <version> argument in each of the following versioning-related commands can be a string containing
numbers and characters. Examples of version strings are 8.0, 5.1.1, 6.1, and 6.1sp1. The “.” character is
a separator. The BSP generator compares versions against each other to determine if one is more recent
than the other, or if two are equal, by successively comparing the strings between each separator. Thus,
2.1 is greater than 2.0, and 2.1sp1 is greater than 2.1. Two versions are equal if their version assignment
strings are identical.

Use the version argument of set_sw_property to assign a version to your driver or software package. If
you do not assign a version to your software or device driver, the version of the Nios II EDS installation
(containing the Nios II BSP commands being executed) is set for your driver or software package:

set_sw_property version 7.1

NII5V2Gen2
2015.05.14 Adding Include Paths 7-23

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device drivers (but not software packages) can use the min_compatible_hw_version and
specific_compatible_hw_version arguments to establish compatibility with their associated hardware
class, as follows:

set_sw_property min_compatible_hw_version 5.0.1
add_sw_property specific_compatible_hw_version 6.1sp1

You can add multiple specific compatible versions. This functionality allows you to roll out a new version
of a device driver that tracks changes supporting a hardware peripheral change.

For device drivers, if no compatible version information is specified, the version of the device driver must
be equal to the associated hardware class. Thus, if you do not wish to use this feature, Altera recommends
setting the min_compatible_hw_version of your driver to the lowest version of the associated hardware
class your driver is compatible with.

Creating Settings for Device Drivers and Software Packages
The BSP generator allows you to publish settings for individual device drivers and software packages.
These settings are visible and can be modified by the BSP user, if the BSP includes your driver or software
package. Use the Tcl command interface to create settings.

The Tcl command that publishes settings is especially useful if your driver or software package has build
or runtime options that are normally specified with #define statements or makefile definitions at
software build time. Settings can also add custom variable declarations to the BSP Makefile.

How Settings Affect the Generated BSP
Settings affect the generated BSP in several ways:

• Settings are added either to the BSP system.h or public.mk, or to the BSP makefile as a variable.
• Settings are stored in the BSP settings file, named with hierarchy information to prevent namespace

collision.
• A default value of your choice is assigned to the setting so that the end user of the driver or package

does not need to explicitly specify the setting when creating or updating a BSP.
• Settings are displayed in the BSP summary.html document, along with description text of your choice.

Arguments for add_sw_setting
Use the add_sw_setting Tcl command to add a setting. To specify the details, add_sw_setting requires
each of the following arguments, in the order shown:

• type - The data type, which controls formatting of the setting’s value assignment in the appropriate
generated file.

• destination - The destination file in the BSP.
• displayName - The name that is used to identify the setting when changing BSP settings or viewing the

BSP summary.html document.
• identifier - Conceptually, this argument is the macro defined in a C language definition (the text

immediately following #define), or the name of a variable in a makefile.
• value - A default value assigned to the setting if the BSP user does not manually change it.
• description - Descriptive text, shown in the BSP summary.html document.

Data Types
Several setting data types are available, controlled by the type argument to add_sw_setting. They
correspond to the data types you can express as #define statements or values concatenated to makefile
variables. The specific setting type depends on your software’s structure or BSP build needs.

7-24 Creating Settings for Device Drivers and Software Packages
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-4: Data Type Settings

Data Type Setting Value Notes

Boolean
definition

boolean_define_
only

A definition that is generated when
true, and absent when false. Use a
boolean definition in your C source
files with the #ifdef <setting> ...
#endif construct.

Boolean
assignment

boolean A definition assigned to 1 when true, 0
when false. Use a boolean assignment
in your C source files with the #if
<setting> ... #else ... construct.

Character character A definition with one character
surrounded by single quotation marks
(')

Decimal
number

decimal_number A definition with an unquoted,
unformatted decimal number, such as
123. Useful for defining values in
software that, for example, might have a
configurable buffer size, such as int
buffer[SIZE];

Double
precision
number

double A definition with a double-precision
floating point number such as 123.4

Floating point
number

float A definition with a single-precision
floating point number such as 234.5

Hexadecimal
number

hex_number A definition with a number prefixed
with 0x, such as 0x1000. Useful for
specifying memory addresses or bit
masks

Quoted string quoted_string A definition with a string in quotes,
such as "Buffer"

Unquoted
string

unquoted_string A definition with a string not in quotes,
such as BUFFER

Setting Destination Files
The destination argument of add_sw_setting specifies settings and their assigned values. This
argument controls the file to which the setting is saved in the BSP. The BSP generator formats the setting’s
assigned value based on the definition file and type of setting.

NII5V2Gen2
2015.05.14 Setting Destination Files 7-25

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-5: Destination File Settings

Destination File Setting Value Notes

system.h system_h_
define

This destination file is recommended in most
cases. Your source code must use a #include
<system.h> statement to make the setting
definitions available. Settings appear as
#define statements in system.h.

public.mk public_mk_
define

Definitions appear as -D statements in
public.mk, in the C preprocessor flags
assembly. This setting type is passed directly
to the compiler during build and is visible
during compilation of application and
libraries referencing the BSP.

BSP
makefile

makefile_
variable

Settings appear as makefile variable
assignments in the BSP makefile.

Note: Certain setting types are not compatible with the public.mk or Makefile destination file types.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Related Information
Nios II Software Build Tools Reference on page 15-1

Setting Display Name
The setting displayName controls what the end user of the driver or package (the BSP developer) types to
control the setting in their BSP. BSPs append the displayName text after a . (dot) separator to your driver
or software package’s name (as defined in the create_driver or create_sw_package command). For
example, if your driver is named my_peripheral_driver and your setting’s displayName is
small_driver, BSPs with your driver have a setting my_peripheral_driver.small_driver. Thus each
driver and software package has its own settings namespace.

Setting Generation Name
The setting generationName of add_sw_setting controls the physical name of the setting in the
generated BSP files. The physical name corresponds to the definition being created in public.mk and
system.h, or the make variable created in the BSP Makefile. The generationName is commonly the text
that your software uses in conditionally-compiled code. For example, suppose your software creates a
buffer as follows:

unsigned int driver_buffer[MY_DRIVER_BUFFER_SIZE];

You can enter the exact text, MY_DRIVER_BUFFER_SIZE, in the generationName argument.

Setting Default Value
The value argument of add_sw_setting holds the default value of your setting. This value propagates to
the generated BSP unless the end user of the driver or package (the BSP developer) changes the setting’s
assignment before BSP generation.

Note: The value assigned to any setting, whether it is the default value in the driver or software package
Tcl script, or entered by the user configuring the BSP, must be compatible with the selected setting.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

7-26 Setting Display Name
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Nios II Software Build Tools Reference on page 15-1

Setting Description
The description argument of add_sw_setting contains a brief description of the setting. The
description argument is required. Place quotation marks ("") around the text of the description. The
description text appears in the generated BSP summary.html document.

Setting Creation Example

#include "system.h"
#ifdef MY_CUSTOM_DRIVER_SMALL
int send_data(<args>)
{
// Small implementation
}
#else
int send_data(<args>)
{
// fast implementation
}
#endif

Note: This example implements a setting for a driver that has two variants of a function, one
implementing a small driver (minimal code footprint) and the other a fast driver (efficient
execution).

A simple Boolean definition setting is added to your driver Tcl file. This feature allows BSP users to
control your driver through the BSP settings interface. When users set the setting to true or 1, the BSP
defines MY_CUSTOM_DRIVER_SMALL in either system.h or the BSP public.mk file. When the user compiles the
BSP, your driver is compiled with the appropriate routine incorporated in the object file. When a user
disables the setting, MY_CUSTOM_DRIVER_SMALL is not defined.

You add the MY_CUSTOM_DRIVER_SMALL setting to your driver as follows using the add_sw_setting Tcl
command:

add_sw_setting boolean_define_only system_h_define small_driver
 MY_CUSTOM_DRIVER_SMALL false
 "Enable the small implementation of the driver for my_peripheral"

Note: Each Tcl command must reside on a single line of the Tcl file. This example is wrapped due to
space constraints.

Each argument has several variants.

For more information about detailed usage and restrictions, refer to the "Nios II Software Build Tools
Reference" chapter.

Related Information
Nios II Software Build Tools Reference on page 15-1

NII5V2Gen2
2015.05.14 Setting Description 7-27

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating a Custom Device Driver for the HAL
This section describes how to provide appropriate files to integrate your device driver in the HAL.

For more information about the correct locations for the files, refer to the “Integrating a Device Driver in
the HAL” chapter.

Related Information
Integrating a Device Driver in the HAL on page 7-15

Header Files and alt_sys_init.c
At the heart of the HAL is the autogenerated source file, alt_sys_init.c. This file contains the source code
that the HAL uses to initialize the device drivers for all supported devices in the system. In particular, this
file defines the alt_sys_init() function, which is called before main() to initialize device drivers
software packages, and make them available to the program.

When you create the driver or software package, you specify in a Tcl script whether you want the
alt_sys_init() function to invoke your INSTANCE and INIT macros.

For more information, refer to the “Enabling Software Initialization” chapter.

Note: The remainder of this section assumes that you are using the alt_sys_init() HAL initialization
mechanism.

Related Information
Enabling Software Initialization on page 7-22

Creating alt_sys_init.c Based on Associated Header Files
The Software Build Tools (SBT) creates alt_sys_init.c based on the header files associated with each device
driver and software package. For a device driver, the header file must define the macros <component
name>_INSTANCE and <component name>_INIT.

Like a device driver, a software package provides an INSTANCE macro, which alt_sys_init() invokes
once. A software package header file can optionally provide an INIT macro.

Example 7–4. Excerpt from an alt_sys_init.c File Performing Driver Initialization

#include "system.h"
#include "sys/alt_sys_init.h"
/*
* device headers
*/
#include "altera_avalon_timer.h"
#include "altera_avalon_uart.h"
/*
* Allocate the device storage
*/
ALTERA_AVALON_UART_INSTANCE(UART1, uart1);
ALTERA_AVALON_TIMER_INSTANCE(SYSCLK, sysclk);
/*
* Initialize the devices
*/
void alt_sys_init(void)
{
ALTERA_AVALON_UART_INIT(UART1, uart1);
ALTERA_AVALON_TIMER_INIT(SYSCLK, sysclk);
}

7-28 Creating a Custom Device Driver for the HAL
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

altera_avalon_jtag_uart.h Defining Macros
For example, altera_avalon_jtag_uart.h must define the macros ALTERA_AVALON_JTAG_UART_INSTANCE and
ALTERA_AVALON_JTAG_UART_INIT. The purpose of these macros is as follows:

• The *_INSTANCE macro performs any required static memory allocation. For drivers, *_INSTANCE is
invoked once per device instance, so that memory can be initialized on a per-device basis. For software
packages, *_INSTANCE is invoked once.

• The *_INIT macro performs runtime initialization of the device driver or software package.

In the case of a device driver, both macros take two input arguments:

• The first argument, name, is the capitalized name of the device instance.
• The second argument, dev, is the lower case version of the device name. dev is the name given to the

component at system generation time.

You can use these input parameters to extract device-specific configuration information from the system.h
file.

The name of the header file must be as follows:

• Device driver: <hardware component class>.h. For example, if your driver targets the
altera_avalon_uart component, the file name is altera_avalon_uart.h.

• Software packages <package name>.h. For example, if you create the software package with the
following command:

create_sw_package my_sw_package

the header file is called my_sw_package.h.

For more information about a complete example, refer to any of the Altera-supplied device drivers,
such as the JTAG UART driver in <Altera installation>/ip/sopc_builder_ip/altera_avalon_jtag_uart.

Note: For optimal project rebuild time, do not include the peripheral header in system.h. It is included in
alt_sys_init.c.

Device Driver Source Code
In addition to the header file, the component driver might need to provide compilable source code, to be
incorporated in the BSP. This source code is specific to the hardware component, and resides in one or
more C files (or assembly language files).

Reducing Code Footprint in HAL Embedded Drivers
The HAL provides several options for reducing the size, or footprint, of the BSP code. Some of these
options require explicit support from device drivers. If you need to minimize the size of your software,
consider using one or both of the following techniques in your custom device driver:

• Provide reduced footprint drivers. This technique usually reduces driver functionality.
• Support the lightweight device driver API. This technique reduces driver overhead. It need not reduce

functionality, but it might restrict your flexibility in using the driver.

These techniques are discussed in the following sections.

NII5V2Gen2
2015.05.14 altera_avalon_jtag_uart.h Defining Macros 7-29

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Provide Reduced Footprint Drivers
The HAL defines a C preprocessor macro named ALT_USE_SMALL_DRIVERS that you can use in driver
source code to provide alternate behavior for systems that require a minimal code footprint. If
ALT_USE_SMALL_DRIVERS is not defined, driver source code implements a fully featured version of the
driver. If the macro is defined, the source code might provide a driver with restricted functionality. For
example a driver might implement interrupt-driven operation by default, but polled (and presumable
smaller) operation if ALT_USE_SMALL_DRIVERS is defined.

When writing a device driver, if you choose to ignore the value of ALT_USE_SMALL_DRIVERS, the same
version of the driver is used regardless of the definition of this macro.

You can enable ALT_USE_SMALL_DRIVERS in a BSP with the hal.enable_reduced_device_drivers BSP
setting.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Related Information
Nios II Software Build Tools Reference on page 15-1

Support the Lightweight Device Driver API

Using Character-Mode Functions
The lightweight device driver API allows you to minimize the overhead of character-mode device drivers.
It does this by removing the need for the alt_fd file descriptor table, and the alt_dev data structure
required by each driver instance.

If you want to support the lightweight device driver API on a character-mode device, you need to write at
least one of the lightweight character-mode functions listed in the "Driver Functions for Lightweight
Device Driver API" table (Table 7-6). Implement the functions needed by your software. For example, if
you only use the device for stdout, you only need to implement the <component class>_write()
function.

Table 7-6: Driver Functions for Lightweight Device Driver API

Function Purpose Example(7)

<component class>_read() Implements character-
mode read functions

altera_avalon_jtag_uart_read()

<component class>_write() Implements character-
mode write functions

altera_avalon_jtag_uart_write()

<component class>_ioctl() Implements device-
dependent functions

altera_avalon_jtag_uart_ioctl()

Using Macros
When you build your BSP with ALT_USE_DIRECT_DRIVERS enabled, instead of using file descriptors, the
HAL accesses your drivers with the following macros:

(7) Based on component altera_avalon_jtag_uart.

7-30 Provide Reduced Footprint Drivers
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• ALT_DRIVER_READ(instance, buffer, len, flags)

• ALT_DRIVER_WRITE(instance, buffer, len, flags)

• ALT_DRIVER_IOCTL(instance, req, arg)

These macros are defined in <Nios II EDS install path>/components/altera_hal/HAL/inc/sys/alt_driver.h.

These macros, together with the system-specific macros that the Nios II SBT creates in system.h, generate
calls to your driver functions. For example, with lightweight drivers turned on, printf() calls the HAL
write() function, which directly calls your driver’s <component class>_write() function, bypassing
file descriptors.

You can enable ALT_USE_DIRECT_DRIVERS in a BSP with the
hal.enable_lightweight_device_driver_api BSP setting.

For more information, refer to the "Nios II Software Build Tools Reference" chapter.

Related Information
Nios II Software Build Tools Reference on page 15-1

Invoking Macros in Your Application Software
You can also take advantage of the lightweight device driver API by invoking ALT_DRIVER_READ(),
ALT_DRIVER_WRITE() and ALT_DRIVER_IOCTL() in your application software. To use these macros,
include the header file sys/alt_driver.h. Replace the instance argument with the device instance name
macro from system.h; or if you are confident that the device instance name will never change, you can use
a literal string, for example custom_uart_0.

Calling Direct Without Macros
Another way to use your driver functions is to call them directly, without macros. If your driver includes
functions other than <component class>_read(), <component class>_write() and <component
class>_ioctl(), you must call those functions directly from your application.

HAL Namespace Allocation
To avoid conflicting names for symbols defined by devices in the hardware system, all global symbols
need a defined prefix. Global symbols include global variable and function names. For device drivers, the
prefix is the name of the component followed by an underscore. Because this naming can result in long
strings, an alternate short form is also permitted. This short form is based on the vendor name, for
example alt_ is the prefix for components published by Altera. It is expected that vendors test the
interoperability of all components they supply.

For example, for the altera_avalon_jtag_uart component, the following function names are valid:

• altera_avalon_jtag_uart_init()

• alt_jtag_uart_init()

The following names are invalid:

• avalon_jtag_uart_init()

• jtag_uart_init()

As source files are located using search paths, these namespace restrictions also apply to file names for
device driver source and header files.

NII5V2Gen2
2015.05.14 Invoking Macros in Your Application Software 7-31

Developing Device Drivers for the Hardware Abstraction Layer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Overriding the HAL Default Device Drivers
All components can elect to provide a HAL device driver.

For more information, refer to Integrating a Device Driver in the HAL.

However, if the driver supplied with a component is inappropriate for your application, you can override
the default driver by supplying a different driver.

In the Nios II SBT for Eclipse, you can use the BSP Editor to specify a custom driver.

For more information about selecting device drivers, refer to “Using the BSP Editor” in the "Getting
Started with the Graphical User Interface" chapter.

On the command line, you specify a custom driver with the following BSP Tcl command:

set_driver <driver name> <component name>

For example, if you are using the nios2-bsp command, you replace the default driver for uart0 with a
driver called custom_driver as follows:

nios2-bsp hal my_bsp --cmd set_driver custom_driver uart0r

Related Information

• Integrating a Device Driver in the HAL on page 7-15
• Getting Started with the Graphical User Interface on page 2-1

Document Revision History for Developing Device Drivers for the
Hardware Abstraction Layer

Date Version Changes

May 2015 2015.05.14 Initial Release

7-32 Overriding the HAL Default Device Drivers
NII5V2Gen2
2015.05.14

Altera Corporation Developing Device Drivers for the Hardware Abstraction Layer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Developing%20Device%20Drivers%20for%20the%20Hardware%20Abstraction%20Layer%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Handling 8
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

This chapter discusses how to write programs to handle exceptions in the Nios® II processor architecture.
Emphasis is placed on how to process hardware interrupt requests by registering a user-defined interrupt
service routine (ISR) with the hardware abstraction layer (HAL). This information applies to embedded
software projects created with the Nios II Software Build Tools (SBT), either in Eclipse or on the
command line.

For more information and low-level details about handling exceptions and hardware interrupts on the
Nios II architecture, refer to the "Programming Model" chapter.

Related Information
Programming Model

Nios II Exception Handling Overview
The Nios II processor provides the following exception types:

• Hardware interrupts
• Software exceptions, which fall into the following categories:

• Unimplemented instructions
• Software traps
• Miscellaneous exceptions

The Nios II processor offers two distinct approaches to handling hardware interrupts:

• The internal interrupt controller (IIC)
• The external interrupt controller (EIC) interface

The interrupt controllers are discussed in detail in the “Interrupt Controllers” chapter.

Related Information
Interrupt Controllers on page 8-3

Exception Handling Terminology
The following list of HAL terms outlines basic exception handling concepts:

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Exception%20Handling&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Application context—The status of the Nios II processor and the HAL during normal program
execution, outside of exception funnels and handlers.

• Context switch—The process of saving the Nios II processor’s registers on a software exception or
hardware interrupt, and restoring them on return from the exception handling routine or ISR.

• Exception—A transfer of control away from a program’s normal flow of execution, caused by an event,
either internal or external to the processor, which requires immediate attention. Exceptions include
software exceptions and hardware interrupts.

• Exception context—The status of the Nios II processor and the HAL after a software exception or
hardware interrupt, when funnel code, a software exception handler, or an ISR is executing.

• Exception handling system—The complete system of software routines that service all exceptions,
including hardware interrupts, and pass control to software exception handlers and ISRs as necessary.

• Exception (or interrupt) latency—The time elapsed between the event that causes the exception (such
as an unimplemented instruction or interrupt request) and the execution of the first instruction at the
exception (or interrupt vector) address.

• Exception (or interrupt) response time—The time elapsed between the event that causes the exception
and the execution of the handler.

• Exception overhead—Additional processing required to service a software exception or hardware
interrupt, including HAL-specific processing and RTOS-specific processing if applicable.

• Funnel code—HAL-provided code that sets up the correct processor environment for an exception-
specific handler, such as an ISR.

• Handler—Code specific to the exception type. The handler code is distinct from the funnel code,
which takes care of general exception overhead tasks.

• Hardware interrupt—An exception caused by an explicit hardware request signal from an external
device. A hardware interrupt diverts the processor’s execution flow to a ISR, to ensure that a hardware
condition is handled in a timely manner.

• Implementation-dependent instruction—A Nios II processor instruction that is not supported on all
implementations of the Nios II core. For example, the mul and div instructions are implementation-
dependent, because they are not supported on the Nios II/e core.

• Interrupt—Hardware interrupt.
• Interrupt controller—Hardware enabling the Nios II processor to respond to an interrupt by transfer‐

ring control to an ISR.
• Interrupt request (IRQ)—Hardware interrupt.
• Interrupt service routine (ISR)—A software routine that handles an individual hardware interrupt.
• Invalid instruction—An instruction that is not defined for any implementation of the Nios II

processor.
• Maskable exceptions—Exceptions that can be disabled with the status.PIE flag, including internal

hardware interrupts, maskable external hardware interrupts, and software exceptions, but not
including nonmaskable external interrupts.

• Maximum disabled time—The maximum amount of continuous time that the system spends with
maskable exceptions disabled.

• Maximum masked time—The maximum amount of continuous time that the system spends with a
single interrupt masked.

• Miscellaneous exception—A software exception which is neither an unimplemented instruction nor a
trap instruction.

For more information, refer to the “Miscellaneous Exceptions” chapter.
• Nested interrupts—See pre-emption.
• Pre-emption—The process of a high-priority interrupt taking control when a lower-priority ISR is

already running. Also: nested interrupts.

8-2 Exception Handling Terminology
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Software exception—An exception caused by a software condition; that is, any exception other than a
hardware interrupt. This includes unimplemented instructions and trap instructions.

• Unimplemented instruction—An implementation-dependent instruction that is not supported on the
particular Nios II core implementation that is in your system. For example, in the Nios II/e core, mul
and div are unimplemented.

• Worst-case exception (or interrupt) latency—The value of the exception (or interrupt) latency,
including the maximum disabled time or maximum masked time. Including the maximum disabled or
masked time accounts for the case when the exception (or interrupt) occurs at the beginning of the
masked or disabled time.

Related Information
Miscellaneous Exceptions on page 8-31

Interrupt Controllers
The configuration of Nios II exception processing depends on the type of hardware interrupt controller.
You select the hardware interrupt controller when you instantiate the Nios II processor in the system
integration tool, Qsys or SOPC Builder.

For more information and details about selecting a hardware interrupt controller, refer to the "Instanti‐
ating the Nios II Processor" chapter of the Nios II Processor Reference Handbook.

Related Information
Instantiating the Nios II Processor
For more information and details about selecting a hardware interrupt controller.

Internal Interrupt Concepts
With the IIC, Nios II exception handling is implemented in classic RISC fashion. All exception types,
including hardware interrupts, are dispatched through a single top-level exception funnel. This means
that all exceptions (hardware and software) are handled by code residing at a single location, the
exception address.

The IIC is a simple, nonvectored hardware interrupt controller. Upon receipt of an interrupt request, the
IIC transfers control to the general exception address. The hardware indicates which IRQ is currently
asserted, and allows software to mask individual interrupts.

With the IIC, the HAL interrupt funnel identifies the hardware interrupt cause in software, and
dispatches the registered ISR.

The IIC is available in all revisions of the Nios II processor.

External Interrupt Concepts
The EIC interface enables the Nios II processor to work with a separate external interrupt controller
component. An EIC can be a custom component that you provide. Altera provides an example of an EIC,
the vectored interrupt controller (VIC).

For more information about the VIC, refer to the "Vectored Interrupt Controller Core" chapter in the
Embedded Peripherals IP User Guide.

With an EIC, hardware interrupts are handled separately from software exceptions. Hardware interrupts
have separate vectors and funnels. Each interrupt can have its own handler, or handlers can be shared.
Software exception handling is the same as with the IIC.

The EIC interface provides extensive capabilities for customizing your interrupt hardware. You can
design, connect and configure an interrupt controller that is optimal for your application.

NII5V2Gen2
2015.05.14 Interrupt Controllers 8-3

Exception Handling Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409344984074/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When an external hardware interrupt occurs, the Nios II processor transfers control to an individual
vector address, which can be unique for each interrupt. The HAL provides the following services:

• Registering ISRs
• Setting up the vector table
• Transferring control from the vector table to your ISR

An EIC can be used with shadow register sets. A shadow register set is a complete alternate set of Nios II
general-purpose registers, which can be used to maintain a separate runtime context for an ISR.

An EIC provides the following information about each hardware interrupt:

Related Information
Vectored Interrupt Controller Core

Requested Handler Address
The requested handler address (RHA) specifies the address of the funnel associated with the hardware
interrupt. The availability of an RHA for each interrupt allows the Nios II processor to jump directly to
the interrupt funnel specific to the interrupting device, reducing interrupt latency.

Requested Interrupt Level
The Nios II processor uses the requested interrupt level (RIL) to prioritize the hardware interrupt request
versus any interrupt it is currently processing. While handling an interrupt, the Nios II processor
normally only takes higher-level interrupts.

Requested Register Set
If shadow register sets are implemented on the Nios II core, an EIC specifies a requested register set (RRS)
when it asserts an interrupt request. When the Nios II processor takes the hardware interrupt, the
processor switches to the requested register set. When an interrupt has a dedicated register set, the ISR
avoids the overhead of saving registers for a context switch.

Multiple hardware interrupts can be configured to share a register set. However, at run time, the Nios II
processor does not allow pre-emption between interrupts assigned to the same register set unless this
feature is specifically enabled. In this case, the ISRs must be written so as to avoid register corruption.

For more information, refer to an example of a driver that manages pre-emption within a register set in
the "Vectored Interrupt Controller Core" chapter in the Embedded Peripherals IP User Guide.

Related Information
Vectored Interrupt Controller Core

Requested NMI Mode
If the interrupt is configured as a nonmaskable interrupt (NMI), the EIC asserts requested NMI (RNMI).
Any hardware interrupt can be nonmaskable, depending on the configuration of the EIC. An NMI
typically signals a critical system event requiring immediate handling, to ensure either system stability or
deterministic real-time performance.

Shadow Register Sets
Although shadow register sets can be implemented independently of the EIC interface, typically the two
features are used together. Combining shadow register sets with an appropriate EIC, you can minimize or
eliminate the context switch overhead for critical hardware interrupts.

8-4 Requested Handler Address
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Latency and Response Time
Exception (interrupt) latency, as defined in the previous section, is the time required for the hardware to
respond to an exception. Response time, in contrast, is the time required to begin executing code specific
to the exception cause, such as a particular ISR. Response time includes latency plus the time required for
the HAL to carry out some or all of the following overhead tasks:

• Context save—Saving registers on the stack
• RTOS context switch—Calling context-switch function(s) if an RTOS is implemented
• Dispatch handler—Determining the cause of the exception, and transferring control to a specific

handler or ISR

If you are concerned with system performance, response time is the more important than latency, because
it reflects the time elapsed between the physical event and the system’s specific response to that event.

Internal or External Interrupt Controller
The Nios II IIC is nonvectored, requiring the processor to dispatch ISRs with a software routine. An EIC,
by contrast, can be vectored. With a vectored EIC, such as the Altera® VIC, ISR dispatch is managed by
hardware, eliminating the processing time required for ISR dispatch, and substantially reducing hardware
interrupt response time.

An EIC has no impact on software exception latency or response time.

Shadow Register Sets
In conjunction with an EIC, shadow register sets speed up hardware interrupt response by making it
unnecessary to save registers on the stack. This feature has no impact on interrupt latency, but
significantly reduces interrupt response time.

Shadow register sets have no impact on software exception response time.

How the Hardware Works

The Nios II processor can respond to exceptions including software exceptions and hardware interrupts.
When the Nios II processor responds to an exception, it performs the following tasks:

• Saves the status register in estatus. This means that if hardware interrupts are enabled, the PIE bit
of estatus is set.

• Disables hardware interrupts.
• Saves the next execution address in ea (r29).
• Transfers control to the appropriate exception address, as follows:

• Software exception or internal hardware interrupt—Nios II processor general exception address
• External hardware interrupt—Device-specific interrupt address

All Nios II exception types are precise. This means that after an exception is handled, the Nios II
processor can re-execute the instruction that caused the exception.

The Nios II processor always re-executes the instruction after the software exception handler or ISR has
completed, when the exception processing system returns to the application context.

Several exception types, such as the advanced exceptions, are optional in the Nios II processor core. The
presence of these exception types depends on how the hardware designer configures the Nios II core at
the time of hardware generation.

NII5V2Gen2
2015.05.14 Latency and Response Time 8-5

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The processor’s response to hardware interrupts depends on which interrupt controller is implemented.
The following sections describe the hardware behavior with each interrupt controller.

For more information about the Nios II processor exception controller and hardware interrupt control‐
lers, including a list of optional exception types, refer to the "Processor Architecture" chapter of the Nios II
Processor Reference Handbook.

Related Information

• Invalid Instructions on page 8-32
• Processor Architecture

How the Internal Interrupt Controller Works
With the IIC, 32 independent hardware interrupt signals are available. These interrupt signals allow
software to prioritize interrupts, although the interrupt signals themselves have no inherent priority.

Note: With the IIC, Nios II exceptions are not vectored. Therefore, the same exception address receives
control for all types of exceptions. The general exception funnel at that address must determine the
type of software exception or hardware interrupt.

How an External Interrupt Controller Works

With an EIC, the Nios II processor supports an arbitrary number of independent hardware interrupt
signals. Interrupts are typically vectored, with interrupt priority levels associated in hardware. Vectoring
allows the Nios II processor to transfer control directly to each ISR. Hardware interrupt levels allow the
most critical interrupts to pre-empt lower-priority interrupts. Because both of these features are
implemented in hardware, the system can handle an interrupt without executing general exception funnel
code.

Note: The details of hardware interrupt vectoring and prioritization are specific to the EIC implementa‐
tion.

For more information, refer to an example of an EIC implementation in the "Vectored Interrupt
Controller Core" chapter in the Embedded Peripherals IP User Guide.

Note: The HAL supports external interrupt controllers only if they are connected in one of the following
ways:

• Directly to the Nios II EIC interface
• Through the daisy-chain port on another EIC

Related Information
Vectored Interrupt Controller Core

Nios II Interrupt Service Routines
Software often communicates with peripheral devices using hardware interrupts. When a peripheral
asserts its IRQ, it diverts the processor’s normal execution flow. When such an interrupt occurs, an
appropriate ISR must handle this interrupt and return the processor to its pre-interrupt state on
completion.

8-6 How the Internal Interrupt Controller Works
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409259423560/en-us
https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you create a board support package (BSP) project, the build tools include all needed device drivers.
You do not need to write HAL ISRs unless you are interfacing to a custom peripheral. For reference
purposes, this section describes the framework provided by HAL BSPs for handling hardware interrupts.

For examples of HAL ISRs, refer to existing handlers for Altera components.

For more information about the Altera-provided HAL handlers, refer to the "Developing Programs Using
the Hardware Abstraction Layer" chapter of the Nios II Software Developer’s Handbook.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

HAL APIs for Hardware Interrupts
The HAL provides an enhanced application program interface (API) for writing, registering and
managing ISRs. This API is compatible with both internal and external hardware interrupt controllers.

Altera also supports a legacy hardware interrupt API. This API supports only the IIC. If you have a
custom driver written prior to Nios II version 9.1, it uses the legacy API.

Both interrupt APIs include the following types of routines:

• Routines to be called by a device driver to register an ISR
• Routines to be called by an ISR to manage its environment
• Routines to be called by BSP or application code to control ISR behavior

Both interrupt APIs support the following types of BSPs:

• HAL BSP without an RTOS
• HAL-based RTOS BSP, such as a MicroC/OS-II BSP

Note: The legacy API is deprecated. Write new drivers using the enhanced API, even if they are only
intended to support the IIC. Drivers for devices supporting an EIC must use the enhanced API.
Existing legacy drivers continue to be supported until further notice. Make plans to port them to
the enhanced API.

When an EIC is present, the controller’s driver provides driver settings for the BSP, which can be used to
configure the driver. The number and types of the settings depends on the EIC implementation and the
number of EICs present.

For more information, refer to an example of EIC driver settings in the "Vectored Interrupt Controller
Core" chapter in the Embedded Peripherals IP User Guide.

Related Information

• Vectored Interrupt Controller Core
• The Enhanced HAL Interrupt API

Selecting an Interrupt API

When the SBT creates a BSP, it determines whether the BSP must implement the legacy interrupt API.
Each driver that supports the enhanced API publishes this capability to the SBT through its <driver
name>_sw.tcl file. The BSP implements the enhanced API if all drivers support it. It implements the legacy
API only if required by the drivers.

NII5V2Gen2
2015.05.14 HAL APIs for Hardware Interrupts 8-7

Exception Handling Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In determining the interrupt API to use, the SBT ignores any devices whose interrupts are not connected
to the Nios II processor associated with the BSP.

A driver can publish its interrupt API support by way of a software property. The driver’s <driver name>_
sw.tcl file uses the set_sw_property command to set supported_interrupt_apis to either
legacy_interrupt_api, enhanced_interrupt_api, or both.

Drivers supporting the enhanced API always publish that support. If supported_interrupt_apis is
undefined, the SBT assumes that the driver only supports the legacy API.

Starting in 9.1, all Altera device drivers support both APIs. These drivers can be used in a BSP along with
legacy drivers. The SBT determines whether the legacy API is required, and implements it only if it is
required. If there are no drivers requiring the legacy API, the BSP implements the enhanced API.

A driver can be written to support only the enhanced API. However, you cannot combine such a driver
with legacy drivers.

For more information and details about writing a driver to support both APIs, refer to the "Supporting
Multiple Interrupt APIs” chapter.

Related Information
Supporting Multiple Interrupt APIs on page 8-10

The Enhanced HAL Interrupt API

Table 8-1: Enhanced HAL Interrupt API Functions that Manage Hardware Interrupt Processing

Function Name Implemented By

alt_ic_isr_register() Interrupt controller driver ()
alt_ic_irq_enable() Interrupt controller driver ()
alt_ic_irq_disable() Interrupt controller driver ()
alt_ic_irq_enabled() Interrupt controller driver ()
alt_irq_disable_all() HAL
alt_irq_enable_all() HAL
alt_irq_enabled() HAL

Note: If the system is based on an EIC, these functions must be implemented by the EIC driver. If the
system is based in the IIC, the functions are implemented by the HAL. For more information about
each function, refer to the "HAL API Reference" chapter of the Nios II Software Developer’s
Handbook.

Related Information
HAL API Reference on page 14-1

Using the Enhanced HAL Interrupt API to Implement ISRs
Using the enhanced HAL API to implement ISRs requires that you perform the following steps:

1. Write your ISR that handles hardware interrupts for a specific device.
2. Ensure that your program registers the ISR with the HAL by calling the alt_ic_isr_register()

function. alt_ic_isr_register() enables hardware interrupts for you.

8-8 The Enhanced HAL Interrupt API
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The SBT inserts the following symbol definitions in system.h, indicating the configuration of the
processor’s interrupt-related hardware options:

• NIOS2_EIC_PRESENT—If defined, indicates that one or more EICs are present
• NIOS2_NUM_OF_SHADOW_REG_SETS—Indicates how many shadow register sets are present. The

maximum value is 63. If there are no shadow register sets, the value is 0.

The External Interrupt Controller Driver

To be compliant with the HAL enhanced interrupt API, the driver for an EIC must support the functions
listed under “The Enhanced HAL Interrupt API” chapter.

For more information, refer to the “The Enhanced HAL Interrupt API” chapter.

In addition, it can provide functions to support any special hardware features.

For more information, refer to the “Using the HAL Interrupt API with the VIC” chapter.

Related Information

• The Enhanced HAL Interrupt API on page 8-8
• Using the HAL Interrupt API with the VIC on page 8-9

Using the HAL Interrupt API with the VIC
The Altera driver for the VIC component supports the HAL enhanced interrupt API.

The VIC driver provides support for multiple, daisychained VIC devices. It also includes support for
shadow register sets. A BSP driver setting allows you to enable automatic pre-emption (fast nested
interrupts). Automatic pre-emption means that the Nios II processor leaves maskable exceptions enabled
when accepting a hardware interrupt.

For more information about fast nested interrupts, refer to “Exception Processing” in the "Programming
Model" chapter of the Nios II Processor Reference Handbook.

The VIC device driver also provides the following device-specific functions:

• int alt_vic_sw_interrupt_set(alt_u32 ic_id, alt_u32 irq);

• int alt_vic_sw_interrupt_clear(alt_u32 ic_id, alt_u32 irq);

• alt_u32 alt_vic_sw_interrupt_status(alt_u32 ic_id, alt_u32 irq);

• int alt_vic_irq_set_level(alt_u32 ic_id, alt_u32 irq, alt_u32 level);

For more information, refer to a detailed discussion of the VIC device-specific driver routinesin the
"Vectored Interrupt Controller Core" chapter in the Embedded Peripherals IP User Guide.

The EIC driver controls where hardware interrupt vector tables are located. For example, the Altera VIC
driver locates the vector table in the .text section by default, but allows you to position the vector table in
a different section with a driver setting.

Note: The memory in which you place the vector table must be connected to both instruction and data
master ports on the Nios II processor.

Related Information

• Programming Model
• Vectored Interrupt Controller Core

The Legacy HAL Interrupt API
The legacy HAL interrupt API defines the following functions to manage hardware interrupt processing:

NII5V2Gen2
2015.05.14 The External Interrupt Controller Driver 8-9

Exception Handling Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_irq_register()

• alt_irq_disable()

• alt_irq_enable()

• alt_irq_disable_all()

• alt_irq_enable_all()

• alt_irq_interruptible()

• alt_irq_non_interruptible()

• alt_irq_enabled()

For more information about these functions, refer to the "HAL API Reference" chapter.

Legacy drivers do not define the supported_interrupt_apis property. The absence of this property
indicates to the SBT that they require the legacy interrupt API.

Using the Legacy HAL API to Implement ISRs

Using the legacy HAL API to implement ISRs requires that you perform the following steps:

1. Write your ISR that handles hardware interrupts for a specific device.
2. Ensure that your program registers the ISR with the HAL by calling the alt_irq_register()

function. alt_irq_register() enables hardware interrupts for you, by calling
alt_irq_enable_all().

Supporting Multiple Interrupt APIs
When you write or update a custom device driver, Altera recommends that you write it in one of two
ways:

• Write it to support the enhanced HAL interrupt API—Write the driver this way if you intend to use it
only in combination with other drivers supporting the enhanced API.

• Write it to support both the enhanced and the legacy API—Write the driver this way if you need to use
it in combination with legacy drivers supporting only the legacy API.

Note: Altera recommends using the enhanced API even if your Nios II processor implements the IIC.
The enhanced API supports both types of interrupt controller, and the legacy API is deprecated.

When the SBT selects the interrupt API, it defines one of the following symbols in system.h, to identify
which interrupt API is available:

• ALT_ENHANCED_INTERRUPT_API_PRESENT—Defined if the enhanced API is implemented
• ALT_LEGACY_INTERRUPT_API_PRESENT—Defined if the legacy API is implemented

In your driver code, use these symbols to determine which API calls to make.

To support both APIs, your driver must publish its interrupt API support by way of a software property.
In your driver’s <driver name>_sw.tcl file, use the set_sw_property command to set
supported_interrupt_apis to both legacy_interrupt_api and enhanced_interrupt_api.

For more information about the set_sw_property command, refer to the “Software Build Tools Tcl
Commands” section of the "Nios II Software Build Tools Reference" chapter of the Nios II Software
Developer’s Handbook.

Related Information
Nios II Software Build Tools Reference on page 15-1

8-10 Using the Legacy HAL API to Implement ISRs
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HAL ISR Restrictions
When your system has an EIC, the HAL interrupt support imposes the following restrictions:

• Nonmaskable hardware interrupts must use a shadow register set.
• Nonmaskable hardware interrupts cannot share a register set with a maskable hardware interrupt.

Writing an ISR
The ISR you write must match the prototype that alt_ic_isr_register() expects. The prototype for
your ISR function must match the following prototype:

void (*alt_isr_func) (void* isr_context)

The parameter definition of context is the same as for the alt_ic_isr_register() function.

From the point of view of the HAL exception handling system, the most important function of an ISR is
to clear the associated peripheral’s interrupt condition. The procedure for clearing an hardware interrupt
condition is specific to the peripheral.

For more information, refer to the relevant chapter in the "Embedded Peripherals IP User Guide".

When the ISR has finished servicing the hardware interrupt, it must return to the HAL interrupt funnel
that called it.

Note: If you write your ISR in assembly language, use ret to return. The HAL interrupt funnel issues an
eret after restoring the application context.

Related Information
Embedded Peripheral IP User Guide

Using Interrupt Funnels
The HAL creates a vector table for each EIC connected to the Nios II processor. In the vector table, the
HAL inserts a branch to the correct funnel for each interrupt-driven device supported by the BSP,
depending on the device driver characteristics and pre-emption settings. Funnels can be shared by
multiple hardware interrupts, if the drivers have compatible characteristics.

The funnel code receives control from the general exception or interrupt vector, depending on which
interrupt controller is implemented. The funnel performs tasks such as switching the stack pointer, saving
registers and calling RTOS context-switch routines, and transfers control to the handler. When the
handler returns, the funnel code performs tasks such as calling RTOS process-dispatch routines and
restoring registers, and transfers control to the appropriate foreground task.

The HAL includes the following interrupt funnels:

• Shadow register set, pre-emption disabled—Hardware interrupt assigned to a shadow register set, with
pre-emption within the register set disabled. This funnel does not preserve register context. Hardware
guarantees that only one ISR runs with the shadow register set at any time.

• Shadow register set, pre-emption enabled—Hardware interrupt assigned to a shadow register set. An
interrupt can pre-empt another interrupt using the same register set. This funnel preserves register
context, so that handlers is assigned to the same register set do not corrupt one another’s context.

• Nonmaskable interrupt—Nonmaskable hardware interrupt assigned to a shadow register set, with pre-
emption within the register set disabled. This funnel does not preserve register context. Hardware
guarantees that only one ISR runs in the shadow register set at any time.

NII5V2Gen2
2015.05.14 HAL ISR Restrictions 8-11

Exception Handling Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The HAL funnel code is called from the vector table.

Running in a Restricted Environment
ISRs run in a restricted environment. A large number of the HAL API calls are not available from ISRs.
For example, accesses to the HAL file system are not permitted. As a general rule, when writing your own
ISR, never include function calls that can block for any reason (such as waiting for a hardware interrupt).

For more information about identifying these API functions that are not available to ISRs, refer to the
"HAL API Reference" chapter.

Be careful when calling ANSI C standard library functions inside of an ISR. Avoid using the C standard
library I/O API, because calling these functions can result in deadlock within the system, that is, the
system can become permanently blocked in the ISR.

In particular, do not call printf() from within an ISR unless you are certain that stdout is mapped to a
non-interrupt-based device driver. Otherwise, printf() can deadlock the system, waiting for a hardware
interrupt that never occurs because interrupts are disabled.

Related Information
HAL API Reference on page 14-1

Managing Pre-Emption

The HAL enhanced interrupt API supports interrupt pre-emption. When pre-emption is enabled, a
higher-level interrupt can take control even if an ISR is already running. A device driver must be specifi‐
cally written to function correctly under pre-emption. When a device driver supports pre-emption, it
publishes this capability through the isr_preemption_supported driver setting. When constructing the
BSP, the SBT checks each device driver to determine whether it supports pre-emption. If all drivers in the
BSP support pre-emption, it is enabled.

Legacy device drivers do not publish the isr_preemption_supported property. Therefore the SBT
assumes that they do not support pre-emption. If your legacy custom driver supports pre-emption, and
you want to allow pre-emption in the BSP, you must update the driver to use the enhanced interrupt API.

Note: To enable the enhanced interrupt API, ensure that all drivers in the system are updated to use the
enhanced interrupt API.

For more information and details about the isr_preemption_supported driver setting, refer to the
set_sw_property command in the “Software Build Tools Tcl Commands” section of the "Nios II
Software Build Tools Reference" chapter.

Operating systems can also publish the isr_preemption_supported property.

The HAL enhanced interrupt API supports automatic pre-emption. Automatic pre-emption means that
maskable exceptions remain enabled when the processor accepts the hardware interrupt. This means that
your ISR can immediately be pre-empted by a higher-level ISR, without any need to execute the eret
instruction.

Automatic pre-emption can only take place when the pre-empting hardware interrupt uses a different
register set from the interrupt being pre-empted.

Automatic pre-emption is only available if you enable it in the BSP settings.

Related Information
Nios II Software Build Tools Reference on page 15-1

8-12 Running in a Restricted Environment
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Registering an ISR with the Enhanced Interrupt API
Before the software can use an ISR, you must register it by calling alt_ic_isr_register(). The
prototype for alt_ic_isr_register() is:

int alt_ic_isr_register(alt_u32 ic_id,
 alt_u32 irq,
 alt_isr_func isr,
 void *isr_context,
 void* flags)

The function has the following parameters:

• ic_id is the interrupt controller identifier (ID) as defined in system.h. With daisychained EICs, ic_id
identifies the EIC in the daisy chain. With the IIC, ic_id is not significant.

• irq is the hardware interrupt number for the device, as defined in system.h.

• For the IIC, irq is the IRQ number. Interrupt priority corresponds inversely to the IRQ number.
Therefore, IRQ0 represents the highest priority interrupt and IRQ31 is the lowest.

• For an EIC, irq is the interrupt port ID.
• isr_context points to a data structure associated with the device driver instance. isr_context is

passed as the input argument to the isr function. It is used to pass context-specific information to the
ISR, and can point to any ISR-specific information. The context value is opaque to the HAL; it is
provided entirely for the benefit of the user-defined ISR.

• isr is a pointer to the ISR function that is called in response to IRQ number irq. The ISR function
prototype is:

void (void* isr_context);

The input argument provided to this function is the isr_context.

Note: Registering a null pointer for isr results in the interrupt being disabled.

• flags is reserved.

Related Information
The Enhanced HAL Interrupt API

Methods the HAL Uses to Register the ISR
The HAL registers the ISR by one of the following methods:

• For the IIC, by the storing the function pointer, isr, in a lookup table.
• For an EIC, by configuring the vector table with the appropriate funnel code

For more information, refer to the “Using Interrupt Funnels” chapter.

The return code from alt_ic_isr_register() is zero if the function succeeded, and nonzero if it failed.

If the HAL registers your ISR successfully, the associated Nios II hardware interrupt (as defined by irq) is
enabled on return from alt_ic_isr_register().

Note: Hardware-specific initialization might also be required.

When a specific interrupt occurs, the HAL code ensures that the registered ISR is correctly dispatched.

For more information and details about hardware interrupt initialization specific to your peripheral, refer
to the relevant chapter of the Embedded Peripherals IP User Guide.

NII5V2Gen2
2015.05.14 Registering an ISR with the Enhanced Interrupt API 8-13

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about alt_ic_isr_register(), refer to the "HAL API Reference" chapter.

Note: The HAL legacy interrupt API provides a different function for registering hardware interrupts.
For all new and updated drivers, Altera recommends using the enhanced API described in this
section.

For more information about the legacy API function, alt_irq_register(), refer to the "HAL API
Reference" chapter.

Related Information

• Using Interrupt Funnels on page 8-11
• HAL API Reference on page 14-1
• Embedded Peripheral IP User Guide

Enabling and Disabling Interrupts
The HAL enhanced interrupt API provides the functions alt_ic_irq_disable(),
alt_ic_irq_enable(), alt_ic_irq_enabled(), alt_irq_disable_all(), alt_irq_enable_all(),
and alt_irq_enabled() to allow a program to disable hardware interrupts for certain sections of code,
and reenable them later. alt_ic_irq_disable() and alt_ic_irq_enable() allow you to disable and
enable individual interrupts. alt_irq_disable_all() disables all interrupts, and returns a context value.
To reenable hardware interrupts, you call alt_irq_enable_all() and pass in the context parameter. In
this way, interrupts are returned to their state prior to the call to alt_irq_disable_all().
alt_irq_enabled() returns nonzero if maskable exceptions are enabled. alt_ic_irq_enabled()
determines whether a specified interrupt is enabled.

Note: Disable hardware interrupts for as short a time as possible. Maximum interrupt latency increases
with the longest amount of time interrupts are disabled.

For more information about disabled interrupts, refer to the “Keep Interrupts Enabled” chapter.

For more information about these functions, refer to the "HAL API Reference" chapter.

Note: The HAL legacy interrupt API provides different functions for enabling and disabling individual
interrupts. For all new and updated drivers, Altera recommends using the enhanced API described
in this section.

For more information about the legacy API functions, alt_irq_disable() and alt_irq_enable(), refer
to the "HAL API Reference" chapter.

Related Information

• Keep Interrupts Enabled on page 8-18
• HAL API Reference on page 14-1

Configuring an External Interrupt Controller
The driver for an EIC provides specialized driver settings that are created at the time you generate the
BSP. These settings customize the driver to the EIC configuration found in the Nios II system. The
number and type of settings depends on the EIC implementation, as well as on the number and configura‐
tion of EICs in the hardware system. The SBT creates the BSP with default values, selected to ensure useful
system performance. You can optimize these settings at the time you create the BSP. For details of how to
manipulate the EIC driver settings, refer to the documentation for your specific EIC.

8-14 Enabling and Disabling Interrupts
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The driver for an EIC can provide specialized functions to manage any implementation-specific features
of the EIC. An example would be modifying interrupt priority levels at runtime.

For more information, refer to the examples in the "Vectored Interrupt Controller Core" chapter in the
Embedded Peripherals IP User Guide.

Related Information
Vectored Interrupt Controller Core

C Example

An ISR to Service a Button PIO Interrupt

This example is based on a Nios II system with a 4-bit PIO peripheral connected to push buttons. An IRQ
is generated any time a button is pushed. The ISR code reads the PIO peripheral’s edge capture register
and stores the value to a global variable. The address of the global variable is passed to the ISR in the
context pointer.

Example 8-1: Example 8–1. An ISR to Service a Button PIO Interrupt

#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"
#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT
static void handle_button_interrupts(void* context)
#else
static void handle_button_interrupts(void* context, alt_u32 id)
#endif
{
/* Cast context to edge_capture's type. It is important that this
be declared volatile to avoid unwanted compiler optimization. */
volatile int* edge_capture_ptr = (volatile int*) context;
/*
* Read the edge capture register on the button PIO.
* Store value.
*/
*edge_capture_ptr =
IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);
/* Write to the edge capture register to reset it. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0);
/* Read the PIO to delay ISR exit. This is done to prevent a
spurious interrupt in systems with high processor -> pio
latency and fast interrupts. */
IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);
}

Registering the Button PIO ISR with the HAL
Based on the code in the example, the following execution flow is possible:

NII5V2Gen2
2015.05.14 C Example 8-15

Exception Handling Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Button is pressed, generating an IRQ.
• The ISR gains control.

• With the IIC, the HAL general exception funnel gains control of the processor, and dispatches the
handle_button_interrupts() ISR.

• With an EIC, the processor branches to the address in the vector table, which transfers control to
the handle_button_interrupts() ISR.

• handle_button_interrupts() services the hardware interrupt and returns.
• Normal program operation continues with an updated value of edge_capture.

Example 8-2: Example 8–2. Registering the Button PIO ISR with the HAL

#include "sys/alt_irq.h"
#include "system.h"
...
/* Declare a global variable to hold the edge capture value. */
volatile int edge_capture;
...
/* Initialize the button_pio. */
static void init_button_pio()
{
/* Recast the edge_capture pointer to match the
alt_irq_register() function prototype. */
void* edge_capture_ptr = (void*) &edge_capture;
/* Enable all 4 button interrupts. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);
/* Reset the edge capture register. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0x0);
/* Register the ISR. */
#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT
alt_ic_isr_register(BUTTON_PIO_IRQ_INTERRUPT_CONTROLLER_ID,
BUTTON_PIO_IRQ,
handle_button_interrupts,
edge_capture_ptr, 0x0);
#else
alt_irq_register(BUTTON_PIO_IRQ,
edge_capture_ptr,
handle_button_interrupts);
#endif
}

Note: Additional software examples that demonstrate implementing ISRs, such as the
count_binary example project template, are installed with the Nios II Embedded
Design Suite (EDS).

Upgrading to the Enhanced HAL Interrupt API
If you have custom device drivers, Altera recommends that you upgrade them to use the enhanced HAL
interrupt API. The enhanced API maintains compatibility with the IIC, while supporting external
interrupt controllers. The legacy HAL interrupt API is deprecated.

If you plan to use an EIC, you must upgrade your custom driver to the enhanced HAL interrupt API.

Upgrading your device driver is very simple, requiring only minor changes to some function calls.

For more information and details of the API functions, refer to the "HAL API Reference" chapter.

8-16 Upgrading to the Enhanced HAL Interrupt API
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-2: HAL Interrupt Legacy and Enhanced API Functions to

Legacy API Function Enhanced API Function

alt_irq_register() alt_ic_isr_register()

alt_irq_disable() alt_ic_irq_disable()

alt_irq_enable() alt_ic_irq_enable()

If your upgraded driver might need to function in a BSP with legacy drivers, code it to support both APIs.

For more information, refer to the “Supporting Multiple Interrupt APIs” chapter.

Related Information

• Supporting Multiple Interrupt APIs on page 8-10
• HAL API Reference on page 14-1

Improving Nios II ISR Performance
If your software uses hardware interrupts extensively, the performance of ISRs is probably the most
critical determinant of your overall software performance.

Software Performance Improvements
In improving your ISR performance, you probably consider software changes first. However, in some
cases it might require less effort to implement hardware design changes that increase system efficiency.

For more information about hardware optimizations, refer to the “Hardware Performance Improve‐
ments” chapter.

The following sections describe changes you can make in the software design to improve ISR perform‐
ance.

Related Information
Hardware Performance Improvements on page 8-22

Execute Time-Intensive Algorithms in the Application Context
ISRs provide rapid, low latency response to changes in the state of hardware. They do the minimum
necessary work to clear the hardware interrupt condition and then return. If your ISR performs lengthy,
noncritical processing, it can interfere with more critical tasks in the system.

If your ISR requires lengthy processing, design your software to perform this processing outside of the
exception context. The ISR can use a message-passing mechanism to notify the application code to
perform the lengthy processing tasks.

Deferring a task is simple in systems based on an RTOS such as MicroC/OS-II. In this case, you can create
a thread to handle the processor-intensive operation, and the ISR can communicate with this thread using
any of the RTOS communication mechanisms, such as event flags or message queues.

You can emulate this approach in a single-threaded HAL-based system. The main program polls a global
variable managed by the ISR to determine whether it needs to perform the processor-intensive operation.

NII5V2Gen2
2015.05.14 Improving Nios II ISR Performance 8-17

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Implement Time-Intensive Algorithms in Hardware
Processor-intensive tasks must often transfer large amounts of data to and from peripherals. A general-
purpose processor such as the Nios II processor is not the most efficient way to do this. Use direct
memory access (DMA) hardware if it is available.

For more information about programming with DMA hardware, refer to “Using DMA Devices” in the
"Developing Programs Using the Hardware Abstraction Layer chapter".

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Increase Buffer Size
If you are using DMA to transfer large data buffers, the buffer size can affect performance. Small buffers
imply frequent interrupts, which lead to high overhead.

Increase the size of the transaction data buffer(s).

Use Double Buffering
Using DMA to transfer large data buffers might not provide a large performance increase if the Nios II
processor must wait for DMA transactions to complete before it can perform the next task.

Double buffering allows the Nios II processor to process one data buffer while the hardware is transfer‐
ring data to or from another.

Keep Interrupts Enabled
When interrupts are disabled, the Nios II processor cannot respond quickly to hardware interrupt events.
Buffers and queues can fill or overflow. Even in the absence of overflow, maximum interrupt processing
time can increase after interrupts are re-enabled, because the ISRs must process data backlogs.

Disable interrupts as infrequently as possible, and for the briefest time possible.

Instead of disabling all interrupts, call alt_ic_irq_disable() and alt_ic_irq_enable() to enable and
disable individual interrupts.

To protect shared data structures, use RTOS structures such as semaphores.

Disable all interrupts only during critical system operations. In the code where interrupts are disabled,
perform only the bare minimum of critical operations, and reenable interrupts immediately.

Use Fast Memory
ISR performance depends on memory speed.

For best performance, place the ISRs and the stack in the fastest available memory: preferably tightly-
coupled memory (if available), or on-chip memory.

If it is not possible to place the main stack in fast memory, consider using a separate exception stack,
mapped to a fast memory section, as described in the next section.

For more information about mapping memory, refer to “Memory Usage” in the "Developing Programs
Using the Hardware Abstraction Layer" chapter.

For more information about tightly-coupled memory, refer to the "Cache and Tightly-Coupled Memory"
chapter.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1

8-18 Implement Time-Intensive Algorithms in Hardware
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Cache and Tightly-Coupled Memory

Use a Separate Exception Stack

The HAL implements two types of separate exception stack. Their availability depends on the interrupt
controller, as described in this section. The "Separate Exception Stack Usage" table (Table 8-3) outlines
the availability of separate exception stacks, and how they can be used with each type of interrupt
controller.

Note: Using a separate exception stack entails a slight additional overhead. When processing a software
exception or hardware interrupt, the processor must execute an additional instruction on entry and
exit, to change the stack pointer. Take this additional processing time into account if your interrupt
response requirements are extremely strict.

Separate General Exception Stack
The separate general exception stack is available with either the internal or the external interrupt
controller.

Use the hal.linker.enable_exception_stack BSP setting to enable a separate general exception stack.

The HAL general exception funnel code takes care of correctly changing the stack pointer on entry to and
exit from an exception handler.

Separate Hardware Interrupt Stack
The separate hardware interrupt stack is available with the EIC interface. The separate hardware interrupt
stack is not applicable to the IIC. With the IIC, hardware interrupts and software exceptions use the same
stack.The following BSP settings enable you to control the separate hardware interrupt stack:

• hal.linker.enable_interrupt_stack enables a separate hardware interrupt stack.
• hal.linker.interrupt_stack_size controls the size of the hardware interrupt stack.
• hal.linker.interrupt_stack_memory_region_name enables you to control where the hardware

interrupt stack is positioned in memory.

The HAL funnel code takes care of correctly changing the stack pointer on entry to and exit from an ISR.

NII5V2Gen2
2015.05.14 Use a Separate Exception Stack 8-19

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-3: Separate Exception Stack Usage

Interrupt Controller

BSP Settings

Application
Stack

General
Exception

Stack

Hardware Interrupt
Stack

Separate
General

Exception
Stack Enabled

Separate
Hardware

Interrupt Stack
Enabled

Internal

No — • Applica‐
tion

• Software
exceptions

• Hardware
interrupts

— —

Yes — Application • Software
exceptions

• Hardware
interrupts

—

External

No

No • Applica‐
tion

• Software
exceptions

• Hardware
interrupts

— —

Yes • Applica‐
tion

• Software
exceptions

— Hardware
interrupts

Yes

No • Applica‐
tion

• Hardware
interrupts

Software
exceptions

—

Yes Application Software
exceptions

Hardware
interrupts

Note: If your ISR is located in a vector table, the HAL does not provide funnel code. In this case, your
code must manage the stack pointer, as well as all other funnel code functions.

For more information about implementing a separate hardware interrupt stack, refer to AN595: Vectored
Interrupt Controller Applications and Usage.

Related Information
AN595: Vectored Interrupt Controller Usage and Applications

8-20 Separate Hardware Interrupt Stack
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an595.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use Nested Hardware Interrupts

By default, the HAL disables interrupts when it dispatches an ISR. This means that only one ISR can
execute at any time, and ISRs are executed on a first-come first-served basis. This reduces the system
overhead associated with interrupt processing, and simplifies ISR development. The ISR does not need to
be reentrant. ISRs can use and modify any global or static data structures or hardware registers that are
not shared with application code.

However, first-come first-served execution means that the HAL hardware interrupt priorities only have
an effect if two IRQs are active at the same time. A low-priority interrupt occurring before a higher-
priority interrupt can prevent the higher-priority ISR from executing. This is a form of priority inversion,
and it can have a significant impact on ISR performance in systems that generate frequent interrupts.

A software system can achieve full hardware interrupt prioritization by using nested ISRs. With nested
ISRs, higher-priority interrupts are allowed to interrupt lower-priority ISRs.

This technique can improve the response time for higher-priority interrupts.

Note: Nested ISRs increase the processing time for lower-priority hardware interrupts.

If your ISR is very short, it might not be worth the overhead to enable nested hardware interrupts.
Enabling nested interrupts for a short ISR can actually increase the response time for higher-priority
interrupts.

Note: If you use a separate exception stack with the IIC, you cannot nest hardware interrupts.

For more information about separate exception stacks, refer to Use a Separate Exception Stack.

Related Information
Use a Separate Exception Stack on page 8-19

Nested Hardware Interrupts with the Internal Interrupt Controller
To implement nested hardware interrupts with the IIC, use the alt_irq_interruptible() and
alt_irq_non_interruptible() functions to bracket code in a processor-intensive ISR. The call to
alt_irq_interruptible() adjusts the interrupt mask so that higher-priority interrupts can take control
from the running ISR. When your ISR calls alt_irq_non_interruptible(), the interrupt mask is
returned to its previous state.

Note: If your ISR calls alt_irq_interruptible(), it must call alt_irq_non_interruptible() before
returning. Otherwise, the HAL exception handling system might lock up.

Nested Hardware Interrupts with an External Interrupt Controller
The HAL enhanced interrupt API supports nested hardware interrupts, also known as interrupt pre-
emption. A device driver must be specifically written to function correctly under pre-emption.

Legacy device drivers do not publish the isr_preemption_supported property. Therefore the SBT
assumes that they do not support pre-emption. If your legacy custom driver supports pre-emption, and
you want to allow pre-emption in the BSP, you must update the driver to use the enhanced HAL interrupt
API.

The HAL enhanced interrupt API also supports automatic pre-emption. Automatic pre-emption means
that maskable exceptions remain enabled when the processor accepts the hardware interrupt.

For more information about pre-emption with an EIC, refer to the “Managing Pre-Emption” chapter.

In the vector table, the HAL inserts a branch to the correct funnel for each hardware interrupt, depending
on the pre-emption settings.

NII5V2Gen2
2015.05.14 Use Nested Hardware Interrupts 8-21

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Managing Pre-Emption on page 8-12

Locate ISR Body in Vector Table

If you are using a vectored EIC, and you have a critical ISR of small size, you might achieve a performance
improvement by positioning the ISR code directly in the vector table. In this way, you eliminate the
overhead of branching from the vector table through the HAL funnel to your ISR.

The EIC’s driver provides a default vector table entry size. For example, with the Altera VIC, the default
size is 16 bytes. To accommodate your ISR, adjust the entry size with a driver setting when you create the
BSP.

Note: Positioning an ISR in a vector table is an advanced and error-prone technique, not directly
supported by the HAL. You must exercise great caution to ensure that the ISR code fits in the
vector table entry. If your ISR overflows the vector table entry, it corrupts other entries in the
vector table, and your entire interrupt handling system. When your ISR is located in the vector
table, it does not need to be registered. Do not call alt_ic_isr_register(), because it overwrites
the contents of the vector table. The HAL does not provide funnel code. Therefore, your code must
manage all funnel code functions.

For more information about locating an ISR in a vector table, refer to AN595: Vectored Interrupt
Controller Usage and Applications.

Related Information
AN595: Vectored Interrupt Controller Usage and Applications

Use Compiler Optimization
For the best performance both in exception context and application context, use compiler optimization
level -O3. Level -O2 also produces good results. Removing optimization altogether significantly increases
exception response time.

For more information about compiler optimizations, refer to “Reducing Code Footprint in Embedded
Systems” in the "Developing Programs Using the Hardware Abstraction Layer chapter".

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Hardware Performance Improvements
Several simple hardware changes can provide a substantial improvement in ISR performance. These
changes involve editing and regenerating the hardware component, and recompiling the Quartus II
design.

In some cases, these changes also require changes in the software architecture or implementation.

For more information about these and other software optimizations, refer to the “Software Performance
Improvements” chapter.

The following sections describe changes you can make in the hardware design to improve ISR perform‐
ance.

Related Information
Software Performance Improvements on page 8-17

8-22 Locate ISR Body in Vector Table
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an595.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use Vectored Hardware Interrupts
By default, the Nios II processor has a nonvectored IIC. The HAL provides software to dispatch each
hardware interrupt to its specific ISR. By contrast, vectoring allows the processor to transfer control
directly to the ISR with minimal software intervention.

The options available for hardware interrupt vectoring depend on the interrupt controller configured in
the Nios II hardware, as described in this section.

Using the Interrupt Vector Custom Instruction
The Nios II processor core offers an interrupt vector custom instruction that accelerates hardware
interrupt vector dispatch in the HAL. You can include this custom instruction to improve your program’s
interrupt response time.

When the interrupt vector custom instruction is present in the Nios II processor, the HAL source detects
it at compile time and generates code using the custom instruction.

When using an interrupt vector custom instruction, you cannot use a separate exception stack.

Note: The interrupt vector custom instruction is only available in hardware systems generated by SOPC
Builder.

For more information about the interrupt vector custom instruction, refer to “Interrupt Vector Custom
Instruction” in the "Instantiating the Nios II Processor" chapter of the Nios II Processor Reference
Handbook.

Related Information

• Using Tightly Coupled Memory with the Nios II Processor Tutorial
• Instantiating the Nios II Processor

Using an External Interrupt Controller
The Nios II EIC port allows you to connect a customizable external interrupt controller component. An
EIC can be vectored. An example is the Altera VIC.

For more information about the VIC, refer to the "Vectored Interrupt Controller Core" chapter in the
Embedded Peripherals IP User Guide.

Related Information
Vectored Interrupt Controller Core

Add Fast Memory
Increase the amount of fast on-chip memory available for data buffers. Ideally, implement tightly-coupled
memory that the software can use for buffers.

For more information about tightly-coupled memory, refer to the "Cache and Tightly-Coupled Memory"
chapter.

For more information about tightly-coupled memory, refer to the" Using Tightly Coupled Memory with
the Nios II Processor Tutorial.

Related Information

• Cache and Tightly-Coupled Memory
• Using Tightly Coupled Memory with the Nios II Processor Tutorial
• Instantiating the Nios II Processor

NII5V2Gen2
2015.05.14 Use Vectored Hardware Interrupts 8-23

Exception Handling Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
https://documentation.altera.com/#/link/iga1409256728501/iga1409344984074/en-us
https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
https://documentation.altera.com/#/link/iga1409256728501/iga1409344984074/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Add a DMA Controller
A DMA controller performs bulk data transfers, reading data from a source address range and writing the
data to a different address range. Add DMA controllers to move large data buffers. This allows the Nios II
processor to carry out other tasks while data buffers are being transferred.

For more information about DMA controllers, refer to the "DMA Controller Core" and "Scatter-Gather
DMA Controller Core" chapters in the Embedded Peripherals IP User Guide.

Related Information
Embedded Peripheral IP User Guide

Place the Handler in Fast Memory
For the fastest execution of exception handler code, place the handler in a fast memory device. For
example, an on-chip RAM with zero wait states is preferable to a slow SDRAM. For best performance,
store exception handling code and data in tightly-coupled memory.

Use a Fast Nios II Core
For processing in both the exception context and the application context, the Nios II/f core is the fastest,
and the Nios II/e core (designed for small size) is the slowest.

Select Hardware Interrupt Priorities
Hardware interrupt priority levels can have a significant impact on system performance. If two interrupts
can be asserted at the same time, it is important to assign a higher priority level to the more critical
interrupt, so that it runs in preference to the less critical interrupt.

Hardware Interrupt Priorities with the Internal Interrupt Controller
When selecting the IRQ for each peripheral, remember that the HAL hardware interrupt funnel treats
IRQ0 as the highest priority. Assign each peripheral’s interrupt priority based on its need for fast servicing
in the overall system. Avoid assigning multiple peripherals to the same IRQ.

Hardware Interrupt Priorities with an External Interrupt Controller
With an EIC, the hardware interrupt priority level can be more flexible than with the IIC. The method of
assigning priority levels to IRQs depends on the specific EIC implementation.

For example, with the Altera VIC, you can adjust hardware interrupt priority levels at runtime, with the
alt_vic_irq_set_level() function.

For more information about the VIC, refer to the "Vectored Interrupt Controller Core" chapter in the
Embedded Peripherals IP User Guide.

Related Information
Vectored Interrupt Controller Core

Debugging Nios II ISRs
You can debug an ISR by setting breakpoints in the ISR. The debugger completely halts the processor on
reaching a breakpoint. In the meantime, however, the other hardware in your system continues to
operate. Therefore, it is inevitable that other interrupts are ignored while the processor is halted. You can
use the debugger to step through the ISR code, but the status of other interrupt-driven device drivers is

8-24 Add a DMA Controller
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://documentation.altera.com/#/link/sfo1400787952932/iga1401399659862/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

generally invalid by the time you return the processor to normal execution. You must reset the processor
to return the system to a valid state.

With the IIC, the ipending register (ctl4) is masked to all zeros during single-stepping. This masking
prevents the processor from servicing interrupts that are asserted while you single-step through code. As a
result, if you try to single-step through a part of the exception handling system that reads the ipending
register, such as alt_irq_entry() or alt_irq_handler(), the code does not detect any pending
interrupts. This issue does not affect debugging software exceptions. You can set breakpoints in your ISR
code (and single-step through it), because the interrupt funnel has already used ipending to determine
which device caused the hardware interrupt.

HAL Exception Handling System Implementation
Theexception handling system implementation is one of many possible implementations of an exception
handling system for the Nios II processor. Some features of the HAL exception handling system are
constrained by the Nios II hardware, while others provide generally useful services.

You can take advantage of the HAL exception handling system without a complete understanding of the
HAL implementation.

For more information about how to install ISRs using the HAL API, refer to the “Nios II Interrupt Service
Routines” chapter.

Related Information
Nios II Interrupt Service Routines on page 8-6

Exception Handling System Structure
The exception handling system consists of the following components:

• The general exception funnel
• The software exception funnel
• The hardware interrupt funnel(s)
• An ISR for each peripheral that generates hardware interrupts

With the IIC, there is a single hardware interrupt funnel. This funnel manages processor context switch
and RTOS overhead (if any). It determines the source of the IRQ, and dispatches the correct ISR.

With an EIC, hardware interrupt funnels are configured by the EIC driver. With a vectored EIC, such as
the Altera VIC, there are multiple hardware interrupt funnels. Each funnel manages processor context
switch if necessary, and RTOS overhead if any. ISR dispatch is managed by hardware.

With the IIC, when the Nios II processor generates an exception, the general exception funnel receives
control. The general exception funnel passes control to either the hardware interrupt funnel or the
software exception funnel. The hardware interrupt funnel passes control to one or more ISRs.

Each time an exception occurs, the exception handling system services either a software exception or
hardware interrupts, with hardware interrupts having a higher priority. The HAL IIC support does not
include nested exceptions, but can handle multiple hardware interrupts per context switch.

For more information, refer to the “Hardware Interrupt Funnel” chapter.

NII5V2Gen2
2015.05.14 HAL Exception Handling System Implementation 8-25

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With an EIC, the general exception funnel handles only software exceptions. An IRQ causes the processor
to transfer control to one of the interrupt funnels, which branches directly to the ISR.

Related Information
Hardware Interrupt Funnel on page 8-26

General Exception Funnel
The general exception funnel provided with the HAL is located at the Nios II processor’s exception
address. When a software exception or internal hardware interrupt occurs, and control transfers to the
general exception funnel, it does the following:

• Switches to the separate exception stack (if enabled)
• Stores register values onto the stack
• Determines the type of exception, and passes control to the software exception funnel or the hardware

interrupt funnel

Hardware Interrupt Dispatch with the Internal Interrupt Controller
With the IIC, the general exception funnel dispatches hardware interrupts as well as software exceptions.

The general exception funnel looks at the estatus register to determine the interrupt enable status. If the
PIE bit is set, hardware interrupts were enabled at the time the exception happened. If so, the general
exception funnel transfers control to the hardware interrupt funnel. The hardware interrupt funnel looks
at the IRQ bits in ipending. If any IRQs are asserted, the interrupt funnel calls the appropriate hardware
interrupt handler.

If hardware interrupts are not enabled at the time of the exception, it is not necessary to look at ipending.

If no IRQs are active, there is no hardware interrupt, and the exception is a software exception. In this
case, the general exception funnel calls the software exception funnel.

All hardware interrupts are higher priority than software exceptions.

Note: With an EIC, IRQs are dispatched by hardware. The HAL general exception funnel only handles
software exceptions.

For more information about the Nios II processor estatus and ipending registers, refer to the "Program‐
ming Model" chapter of the Nios II Processor Reference Handbook.

Related Information
Programming Model

Returning from Exceptions
After returning from the ISR or software exception handler, the general exception funnel performs the
following tasks:

• Restores the stack pointer, if a separate exception stack is used
• Restores the registers from the stack
• Exits by issuing an eret (exception return) instruction

Hardware Interrupt Funnel
The configuration of the HAL hardware interrupt funnel depends on the interrupt controller
implemented in the Nios II processor core.

8-26 General Exception Funnel
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-1: HAL Exception Handling System with the Internal Interrupt Controller

Hardware
interrupts
enabled?

Hardware
interrupts
pending?

Handle
software exception

No

Exit

Enter

NoYes

Yes

Restore context

Save context

Handle
hardware interrupts

31
ISRISR

10
ISR

Note: This figure shows the algorithm that the HAL general exception funnel uses to distinguish between
hardware interrupts and software exceptions.

Interrupt Funnel for the Internal Interrupt Controller
With the IIC, the Nios II processor supports 32 hardware interrupts. In the HAL funnel, hardware
interrupt 0 has the highest priority, and 31 the lowest. This prioritization is a feature of the HAL funnel,
and is not inherent in the Nios II interrupt controller.

The hardware interrupt funnel calls the user-registered ISRs. It goes through the IRQs in ipending
starting at 0, and finds the first (highest priority) active IRQ. Then it calls the corresponding registered
ISR. After this ISR executes, the funnel begins scanning the IRQs again, starting at IRQ0. In this way,
higher-priority interrupts are always processed before lower-priority interrupts. When all IRQs are clear,
the hardware interrupt funnel returns to the top level.

When the interrupt vector custom instruction is present in the Nios II processor, the HAL source detects
it at compile time and generates code using the custom instruction.

For more information, refer to the “Using the Interrupt Vector Custom Instruction” chapter.

Related Information
Using the Interrupt Vector Custom Instruction on page 8-23

NII5V2Gen2
2015.05.14 Interrupt Funnel for the Internal Interrupt Controller 8-27

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interrupt Funnels for External Interrupt Controllers
With the EIC interface, the Nios II processor supports a potentially unlimited number of hardware
interrupts on daisychained EICs. The interrupt priority level can be software-configurable. Details of
setting interrupt priorities depend on the particular EIC implementation. The hardware ensures that the
highest-priority interrupt is always serviced first.

You register ISRs at system initialization time. Interrupt dispatch is handled by hardware.

For more information, refer to the “Exception Handling System Structure” chapter.

Related Information
Exception Handling System Structure on page 8-25

Interrupt Funnels for Internal Interrupt Controllers

HAL Hardware Interrupt Funnel for the Internal Interrupt Controller

i = O

IRQ active?

NoYes

No

Exit

i = i + 1

i = = 32?

Enter

Call ISR i i
Yes

The HAL provides the following interrupt funnels:

• Shadow register set, pre-emption disabled
• Shadow register set, pre-emption enabled
• Nonmaskable interrupt

For more information, refer to the “Using Interrupt Funnels” chapter.

Related Information
Using Interrupt Funnels on page 8-11

Software Exception Funnel
Software exceptions can include unimplemented instructions, traps, and miscellaneous exceptions.

8-28 Interrupt Funnels for External Interrupt Controllers
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Software exception handling depends on options selected in the BSP. If you have enabled unimplemented
instruction emulation, the software exception funnel first checks whether an unimplemented instruction
caused the exception. If so, it emulates the instruction. Otherwise, it handles traps and miscellaneous
exceptions.

Unimplemented Instructions
You can include a handler to emulate unimplemented instructions. The Nios II processor architecture
defines the following implementation-dependent instructions:

• mul

• muli

• mulxss

• mulxsu

• mulxuu

• div

• divu

For more information about unimplemented instructions, refer to “Unimplemented Instructions” in
the "Processor Architecture" chapter of the Nios II Processor Reference Handbook.

For more information about how unimplemented instructions are different from invalid instructions,
refer to the “Invalid Instructions” chapter.

Related Information

• Invalid Instructions on page 8-32
• Processor Architecture

When to Use the Unimplemented Instruction Handler
You do not normally need the unimplemented instruction handler, because the HAL includes software
emulation for unimplemented instructions from its run-time libraries if you are compiling for a Nios II
processor that does not support the instructions.

You might need the unimplemented instruction handler under the following circumstances:

• You are running a Nios II program on an implementation of the Nios II processor other than the one
you compiled for. The best solution is to build your program for the correct Nios II processor
implementation. Resort to the unimplemented instruction handler only if it is not possible to
determine the processor implementation at compile time.

• You have assembly language code that uses an implementation-dependent instruction.

If unimplemented instruction emulation is disabled, but the processor encounters an unimplemented
instruction, the software exception funnel treats the exception as a miscellaneous exception.

For more information about miscellaneous exceptions, refer to the “Miscellaneous Exceptions” chapter.

Otherwise, if instruction emulation is not enabled, this logic is omitted.

Related Information
Miscellaneous Exceptions on page 8-31

Using the Unimplemented Instruction Handler
To include the unimplemented instruction handler, turn on the hal.enable_mul_div_emulation BSP
property. The emulation routines occupy less than ¾ kilobyte(KB) of memory.

NII5V2Gen2
2015.05.14 Unimplemented Instructions 8-29

Exception Handling Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409259423560/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: An exception handler must never execute an unimplemented instruction. The HAL exception
handling system does not support nested software exceptions.

Figure 8-2: HAL Software Exception Funnel Including the Optional Instruction Emulation
Logic

Exception at
unimplemented

instruction?

Exception
at trap

instruction

Yes

Enter

Exit

No

Emulate
unimplemented

instruction

Optional
Unimplemented
Instruction
Logic

No

Infinite
loop

Break

Optional
Trap Logic

Yes

Instruction-
related

exception handler
registered?

No Yes

Instruction-
related

exception
handler

Instruction-Related Exceptions
If the cause of the software exception is not an unimplemented instruction, the HAL software exception
funnel checks for a registered instruction-related exception handler. If no instruction-related exception
handler is registered, the exception is handled.

For more information, refer to the “Software Trap Handling” chapter. If a handler is registered, the HAL
software exception funnel calls it, then restores context and returns.

8-30 Instruction-Related Exceptions
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information, refer to the “The Nios II Instruction-Related Exception Handler” chapter for a
description of the instruction-related exception handler and how to register it.

Related Information

• The Nios II Instruction-Related Exception Handler on page 8-32
• Software Trap Handling on page 8-31

Software Trap Handling
If no instruction-related exception handler is registered, the HAL software exception funnel checks for a
trap instruction. If the exception is caused by a trap instruction, the trap exception handler executes a
break instruction. The break instruction transfers control to a hardware debug core, if one is available. If
the exception is not caused by a trap instruction, it is treated as a miscellaneous exception.

Miscellaneous Exceptions
If the software exception is not caused by an unimplemented instruction or a trap, it is a miscellaneous
exception.

If a debug core is present in the Nios II processor, traps and miscellaneous exceptions are handled
identically, by executing a break instruction.

For more information about the flowchart of the HAL software exception funnel, including the optional
trap logic, refer to the "HAL Software Exception Funnel Including the Optional Instruction Emulation
Logic" figure (Figure 8-2).

If a debug core is present in the Nios II processor, the trap logic is omitted.

In a debugging environment, the processor executes a break, allowing the debugger to take control. In a
nondebugging environment, the processor enters an infinite loop.

For more information about the Nios II processor break instruction, refer to the "Programming Model"
chapter.

For more information about the Nios II processor break instruction, refer to the "Instruction Set
Reference" chapter of the Nios II Processor Reference Handbook.

Miscellaneous exceptions can occur for these reasons:

• Advanced exceptions, the memory protection unit (MPU), or the memory management unit (MMU)
are implemented in the Nios II processor core.

• You need to include the unimplemented instruction handler.
• A peripheral is generating spurious hardware interrupts. This is a symptom of a serious hardware

problem. A peripheral might generate spurious hardware interrupts if it deasserts its interrupt output
before an ISR has explicitly serviced it.

For more information about how to handle advanced and MPU exceptions, refer to the “The Nios II
Instruction-Related Exception Handler” chapter.

For more information about how you need to implement a full-featured operating system to handle
MMU exceptions, refer to the "Programming Model" chapter.

For more information about the unimplemented instruction handler, refer to the “Unimplemented
Instructions” chapter.

Related Information

• The Nios II Instruction-Related Exception Handler on page 8-32
• Unimplemented Instructions on page 8-29

NII5V2Gen2
2015.05.14 Software Trap Handling 8-31

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Instruction Set Reference
• Programming Model

Invalid Instructions
An invalid instruction word contains invalid codes in the OP or OPX field. For normal Nios II core
implementations, the result of executing an invalid instruction is undefined; processor behavior is
dependent on the Nios II core.

Therefore, the software exception funnel cannot detect or respond to an invalid instruction.

For more information about how invalid instructions are different from unimplemented instructions,
refer to the “Unimplemented Instructions” chapter.

For more information, refer to the "Nios II Core Implementation Details" chapter of the Nios II Processor
Reference Handbook.

Related Information

• Unimplemented Instructions on page 8-29
• Nios II Core Implementation Details

The Nios II Instruction-Related Exception Handler
The software exception funnel lets you handle instruction-related exceptions, such as the advanced
exceptions. The instruction-related exception handler is a custom handler. Your software registers the
instruction-related exception handler with the HAL at startup time.

Note: The hal.enable_instruction_related_exceptions_api setting must be enabled in the BSP in
order for you to register an instruction-related exception handler.

For more information about the Nios II instruction-related exceptions, refer to the "Programming Model"
chapter of the Nios II Processor Reference Handbook.

For more information about enabling instruction-related exception handlers, refer to “Settings Managed
by the Software Build Tools” in the "Nios II Software Build Tools Reference" chapter of the Nios II
Software Developer’s Handbook.

When you register an instruction-related exception handler, it takes the place of the break/optional trap
logic.

When you remove the instruction-related exception handler, the HAL restores the default break/optional
trap logic.

Related Information

• Programming Model
• Nios II Software Build Tools Reference on page 15-1

Writing an Instruction-Related Exception Handler
The prototype for an instruction-related exception handler is as follows:

alt_exception_result handler (
 alt_exception_cause cause,

8-32 Invalid Instructions
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409764012031/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409349211173/en-us
https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 alt_u32 addr,
 alt_u32 bad_addr);

The instruction-related exception handler’s return value is a flag requesting that the HAL either re-
execute the instruction, or skip it.

The HAL exception funnel calls the instruction-related exception handler with the following arguments:

• cause—A value representing the exception type, as shown in the "Nios II Exception Cause Codes"
table (Table 8-4)

• addr—Instruction address at which exception occurred
• bad_addr—Bad address register (if implemented)

Include the following header file in your instruction-related exception handler code:

#include “sys/alt_exceptions.h”

alt_exceptions.h provides type macro definitions required to interface your instruction-related exception
handler to the HAL, including the cause codes shown in the "Nios II Exception Cause Codes" table (Table
8-4).

The API function alt_exception_cause_generated_bad_addr() is provided by the HAL, for the use of
the instruction-related exception handler. This function parses the cause argument and determines if
bad_addr contains the exception-causing address.

For more information about Nios II processor exception causes, refer to “Exception Processing” in the
"Programming Model" chapter of the Nios II Processor Reference Handbook.

Related Information
Programming Model

Exception Cause Codes

Table 8-4: Nios II Exception Cause Codes

Exception Cause
Code

Cause Symbol (8)

Reset 0 NIOS2_EXCEPTION_RESET

Processor-only Reset
Request

1 NIOS2_EXCEPTION_CPU_ONLY_RESET_REQUEST

Hardware Interrupt 2 NIOS2_EXCEPTION_INTERRUPT

Trap Instruction 3 NIOS2_EXCEPTION_TRAP_INST

Unimplemented Instruction 4 NIOS2_EXCEPTION_UNIMPLEMENTED_INST

Illegal Instruction 5 NIOS2_EXCEPTION_ILLEGAL_INST

Misaligned Data Address 6 NIOS2_EXCEPTION_MISALIGNED_DATA_ADDR

Misaligned Destination
Address

7 NIOS2_EXCEPTION_MISALIGNED_TARGET_PC

Division Error 8 NIOS2_EXCEPTION_DIVISION_ERROR

(8) Cause symbols are defined in sys/alt_exceptions.h.

NII5V2Gen2
2015.05.14 Exception Cause Codes 8-33

Exception Handling Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409267699502/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Cause
Code

Cause Symbol (8)

Supervisor-only Instruction
Address

9 NIOS2_EXCEPTION_SUPERVISOR_ONLY_INST_ADDR

Supervisor-only Instruction 10 NIOS2_EXCEPTION_SUPERVISOR_ONLY_INST

Supervisor-only Data
Address

11 NIOS2_EXCEPTION_SUPERVISOR_ONLY_DATA_ADDR

Translation lookaside buffer
(TLB) Miss

12 NIOS2_EXCEPTION_TLB_MISS

TLB Permission Violation
(execute)

13 NIOS2_EXCEPTION_TLB_EXECUTE_PERM_VIOLATION

TLB Permission Violation
(read)

14 NIOS2_EXCEPTION_TLB_READ_PERM_VIOLATION

TLB Permission Violation
(write)

15 NIOS2_EXCEPTION_TLB_WRITE_PERM_VIOLATION

MPU Region Violation
(instruction)

16 NIOS2_EXCEPTION_MPU_INST_REGION_VIOLATION

MPU Region Violation
(data)

17 NIOS2_EXCEPTION_MPU_DATA_REGION_VIOLATION

Cause unknown(9) -1 NIOS2_EXCEPTION_CAUSE_NOT_PRESENT

If there is an instruction-related exception handler, it is called at the end of the software exception funnel
(if the funnel has not recognized a hardware interrupt, unimplemented instruction or trap). It takes the
place of the break or infinite loop. Therefore, to support debugging, execute a break on a trap instruction.

Note: It is possible for an instruction-related exception to occur during execution of an ISR.

Registering an Instruction-Related Exception Handler
The HAL API function alt_instruction_exception_register() registers a single instruction-related
exception handler.

The function prototype is as follows:

alt_instruction_exception_register (

alt_exception_result (*handler)

(alt_exception_cause, alt_u32, alt_u32));

The handler argument is a pointer to the instruction-related exception handler.

To use alt_instruction_exception_register(), include the following header file:

#include "sys/alt_exceptions.h"

Note: The hal.enable_instruction_related_exceptions_api setting must be enabled in the BSP in
order for you to register an instruction-related exception handler.

(8) Cause symbols are defined in sys/alt_exceptions.h.
(9) This value is passed to the instruction-related exception handler if the cause argument if the cause is not

known; for example, if the cause register not implemented in the Nios II processor core.

8-34 Registering an Instruction-Related Exception Handler
NII5V2Gen2
2015.05.14

Altera Corporation Exception Handling

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information, refer to “Settings Managed by the Software Build Tools” in the "Nios II Software
Build Tools Reference" chapter of the Nios II Software Developer’s Handbook.

Note: Register the instruction-related exception handler as early as possible in function main(). This
allows you to handle abnormal condition during startup. You register an exception handler from
the alt_main() function.

For more information about alt_main(), refer to “Boot Sequence and Entry Point” in the "Developing
Programs Using the Hardware Abstraction Layer" chapter of the Nios II Software Developer’s Handbook.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• Nios II Software Build Tools Reference on page 15-1

Removing an Instruction-Related Exception Handler
To remove a registered instruction-related exception handler, your C code must call the
alt_instruction_exception_register() function, as follows:

alt_instruction_exception_register (null, null);

When the HAL removes the instruction-related exception handler, it restores the default break/optional
trap logic.

Document Revision History for Exception Handling
Date Version Changes

May 2015 2015.05.14 Initial release.

NII5V2Gen2
2015.05.14 Removing an Instruction-Related Exception Handler 8-35

Exception Handling Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Exception%20Handling%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Cache and Tightly-Coupled Memory 9
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

Nios II embedded processor cores can contain instruction and data caches. This chapter discusses cache-
related issues that you need to consider to guarantee that your program executes correctly on the Nios II
processor. Fortunately, most software based on the Nios II hardware abstraction layer (HAL) works
correctly without any special accommodations for caches. However, some software must manage the
cache directly.

For code that needs direct control over the cache, the Nios II architecture provides facilities to perform
the following actions:

• Initialize lines in the instruction and data caches
• Flush lines in the instruction and data caches
• Bypass the data cache during load and store instructions

This chapter discusses the following common cases in which you must manage the cache:

• Initializing cache after reset
• Writing device drivers
• Writing program loaders
• Managing cache in multi-master or multi-processor systems

This chapter covers cache management issues that affect Nios II programmers. It does not discuss the
fundamental operation of caches. Refer to The Cache Memory Book by Jim Handy for a discussion of
general cache management issues.

Nios II Cache Implementation
Depending on the Nios II core implementation, a Nios II processor system might or might not have data
or instruction caches. You can write programs generically so that they function correctly on any Nios II
processor, regardless of whether it has cache memory. For a Nios II core without one or both caches,
cache management operations are benign and have no effect.

The current Nios II cores have no hardware cache coherency mechanism. Therefore, if multiple masters
can access shared memory, software must explicitly maintain coherency across all masters.

For more information about the features of each Nios II core implementation, refer to the "Nios II Core
Implementation Details" chapter of the Nios II Processor Reference Handbook.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Cache%20and%20Tightly-Coupled%20Memory&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Related Information
Nios II Core Implementation Details

Defining Cache Properties
The details for a particular Nios II processor system are defined in the system.h file.

Example 9–1. An Excerpt from system.h that Defines the Cache Structure

#define NIOS2_ICACHE_SIZE 4096
#define NIOS2_DCACHE_SIZE 0
#define NIOS2_ICACHE_LINE_SIZE 32
#define NIOS2_DCACHE_LINE_SIZE 0

This system has a 4 KB instruction cache with 32 byte lines, and no data cache.

HAL API Functions for Managing Cache
The HAL application program interface (API) provides the following functions for managing cache
memory:

• alt_dcache_flush()

• alt_dcache_flush_no_writeback()

• alt_dcache_flush_all()

• alt_icache_flush()

• alt_icache_flush_all()

• alt_uncached_malloc()

• alt_uncached_free()

• alt_remap_uncached()

• alt_remap_cached()

For more information about API functions, refer to the "HAL API Reference" chapter of the Nios II
Software Developer’s Handbook.

Related Information
HAL API Reference on page 14-1

Initializing the Nios II Cache after Reset
After reset, the contents of the instruction cache and data cache are unknown. They must be initialized at
the start of the software reset handler for correct operation.

The Nios II caches cannot be disabled by software; they are always enabled. To allow proper operation, a
processor reset causes the instruction cache to invalidate the one instruction cache line that corresponds
to the reset handler address. This forces the instruction cache to fetch instructions corresponding to this
cache line from memory. The reset handler address must be aligned to the size of the instruction cache
line.

It is the responsibility of the first eight instructions of the reset handler to initialize the remainder of the
instruction cache. The Nios II initi instruction initializes a single instruction cache line. Do not use the
flushi instruction because it might cause undesired effects when used to initialize the instruction cache
in future Nios II implementations.

9-2 Defining Cache Properties
NII5V2Gen2
2015.05.14

Altera Corporation Cache and Tightly-Coupled Memory

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409349211173/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cache%20and%20Tightly-Coupled%20Memory%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembly Code to Initialize the Instruction Cache
Place the initi instruction in a loop that executes initi for each instruction cache line address.

Example 9–2. Assembly Code to Initialize the Instruction Cache

mov r4, r0
movhi r5, %hi(NIOS2_ICACHE_SIZE)
ori r5, r5, %lo(NIOS2_ICACHE_SIZE)
icache_init_loop:
initi r4
addi r4, r4, NIOS2_ICACHE_LINE_SIZE
bltu r4, r5, icache_init_loop

After the instruction cache is initialized, the data cache must also be initialized. The Nios II initd instruc‐
tion initializes a single data cache line. Do not use the flushd instruction for this purpose, because it
writes dirty lines back to memory. The data cache is undefined after reset, including the cache line tags.
Using flushd can cause unexpected writes of random data to random addresses. The initd instruction
does not write back dirty data.

Assembly Code to Initialize the Data Cache
Example 9–3. Assembly Code to Initialize the Data Cache

mov r4, r0
movhi r5, %hi(NIOS2_DCACHE_SIZE)
ori r5, r5, %lo(NIOS2_DCACHE_SIZE)
dcache_init_loop:
initd 0(r4)
addi r4, r4, NIOS2_DCACHE_LINE_SIZE
bltu r4, r5, dcache_init_loop

Note: Place the initd instruction in a loop that executes initd for each data cache line address.

It is legal to execute instruction and data cache initialization code on Nios II cores that do not implement
one or both of the caches. The initi and initd instructions are simply treated as nop instructions if there
is no cache of the corresponding type present.

For HAL Users
Programs based on the HAL need not manage the initialization of cache memory. The HAL C run-time
code (crt0.S) provides a default reset handler that performs cache initialization before alt_main() or
main() is called.

Nios II Device Driver Cache Considerations
Device drivers typically access control registers associated with their device. These registers are mapped
into the Nios II address space. When accessing device registers, the data cache must be bypassed to ensure
that accesses are not lost or deferred due to the data cache.

When writing a device driver, bypass the data cache with the ldio/stio family of instructions. On Nios II
cores without a data cache, these instructions behave just like their corresponding ld/st instructions, and
therefore are benign.

Note: Declaring a C pointer volatile does not make pointer accesses bypass the data cache. The
volatile keyword merely prevents the compiler from optimizing out accesses using the pointer.
This volatile behavior is different from the methodology for the first-generation Nios processor.

NII5V2Gen2
2015.05.14 Assembly Code to Initialize the Instruction Cache 9-3

Cache and Tightly-Coupled Memory Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cache%20and%20Tightly-Coupled%20Memory%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For HAL Users
The HAL provides the C-language macros IORD and IOWR that expand to the appropriate assembly
instructions to bypass the data cache. The IORD macro expands to the ldwio instruction, and the IOWR
macro expands to the stwio instruction. These macros are provided to enable HAL device drivers to
access device registers.

All of these macros bypass the data cache when they perform their operation. In general, your program
passes values defined in system.h as the BASE and REGNUM parameters. These macros are defined in the file
<Nios II EDS install path>/components/altera_nios2/HAL/inc/io.h.

Table 9-1: HAL I/O Macros to Bypass the Data Cache

Macro Use

IORD(BASE, REGNUM) Read the value of the register at offset REGNUM in a
device with base address BASE. Registers are
assumed to be offset by the address width of the
bus.

IOWR(BASE, REGNUM, DATA) Write the value DATA to the register at offset
REGNUM in a device with base address BASE.
Registers are assumed to be offset by the address
width of the bus.

IORD_32DIRECT(BASE, OFFSET) Make a 32-bit read access at the location with
address BASE+OFFSET.

IORD_16DIRECT(BASE, OFFSET) Make a 16-bit read access at the location with
address BASE+OFFSET.

IORD_8DIRECT(BASE, OFFSET) Make an 8-bit read access at the location with
address BASE+OFFSET.

IOWR_32DIRECT(BASE, OFFSET, DATA) Make a 32-bit write access to write the value DATA
at the location with address BASE+OFFSET.

IOWR_16DIRECT(BASE, OFFSET, DATA) Make a 16-bit write access to write the value DATA
at the location with address BASE+OFFSET.

IOWR_8DIRECT(BASE, OFFSET, DATA) Make an 8-bit write access to write the value DATA
at the location with address BASE+OFFSET.

Cache Considerations for Writing Program Loaders
Software that writes instructions to memory, such as program loaders, needs to ensure that old instruc‐
tions are flushed from the instruction cache and processor pipeline. This flushing is accomplished with
the flushi and flushp instructions, respectively. Additionally, if new instruction(s) are written to
memory using store instructions that do not bypass the data cache, you must use the flushd instruction
to flush the new instruction(s) from the data cache to memory.

Example 9–4. Assembly Code That Writes a New Instruction to Memory

/*
* Assume new instruction in r4 and
* instruction address already in r5.
*/

9-4 For HAL Users
NII5V2Gen2
2015.05.14

Altera Corporation Cache and Tightly-Coupled Memory

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cache%20and%20Tightly-Coupled%20Memory%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

stw r4, 0(r5)
flushd 0(r5)
flushi r5
flushp

Note: Notice that this example uses the stw/flushd pair instead of the stwio instruction. The stwio
instruction does not flush the data cache, and therefore might leave stale data in the data cache.

The stw instruction writes the new instruction in r4 to the instruction address specified by r5. If a data
cache is present, the instruction is written just to the data cache and the associated line is marked dirty.
The flushd instruction writes the data cache line associated with the address in r5 to memory and
invalidates the corresponding data cache line. The flushi instruction invalidates the instruction cache
line associated with the address in r5. Finally, the flushp instruction ensures that the processor pipeline
has not prefetched the old instruction at the address specified by r5.

This code sequence is correct for all Nios II implementations. If a Nios II core does not have a particular
kind of cache, the corresponding flush instruction (flushd or flushi) is executed as a nop.

For Users of the HAL
The HAL API does not provide functions for this cache management case.

Managing Cache in Multi-Master and Multi-Processor Systems
The Nios II architecture does not provide hardware cache coherency. Instead, software cache coherency
must be provided when communicating through shared memory. The data cache contents of all
processors accessing the shared memory must be managed by software to ensure that all masters read the
most recent values and do not overwrite new data with stale data. This management is done by using the
data cache flushing and bypassing facilities to move data between the shared memory and the data
cache(s) as needed.

Uncached data and cached data can no longer be allocated on the same line in the data cache because the
Nios II Gen2 core does not update the cache in an uncached line. This is the behavior for Nios II Classic.
If you have existing Nios II code and use a Nios II/f with a data cache, then you have to check your
software to ensure that it does not mix cacheable and uncacheable data on the same cache line.

Nios II Gen2 provides two options for data cache bypass:

• Bit-31cache bypass is set by default for compatibility
• If 32-bit addressing is selected, then any code/drivers that rely on bit-31 cache bypass needs modifica‐

tion to use cache bypass macros/instructions or the peripheral memory region.

Cache Implementation
When using the Nios II Classic core, for an uncached write, where bit 31 is set, the cache is still updated.
This behavior is not the industry standard. This method may cause a loss of coherency. So code that relies
on updates to the cache in cache lines containing cached and uncached data may suffer from loss of data
from memory when the cache is flushed and use of the old data when it is fetched from the cache.

When using the Nios II Gen2 core, the peripheral region is introduced, where there is a 32-bit address
option. With Nios II Gen2, for an uncached write, where bit 31 is set or in the peripheral memory region,
the cache is bypassed. This behavior is the industry standard.

NII5V2Gen2
2015.05.14 For Users of the HAL 9-5

Cache and Tightly-Coupled Memory Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cache%20and%20Tightly-Coupled%20Memory%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit-31 Cache Bypass
The ldio/stio family of instructions explicitly bypass the data cache. Bit-31 provides an alternate method
to bypass the data cache. Using the bit-31 cache bypass, the normal ld/st family of instructions can be
used to bypass the data cache if the most significant bit of the address (bit 31) is set to one. The value of bit
31 is only used internally to the processor; bit 31 is forced to zero in the actual address accessed. This
limits the maximum byte address space to 31 bits.

Using bit 31 to bypass the data cache is a convenient mechanism for software because the cacheability of
the associated address is contained in the address. This usage allows the address to be passed to code that
uses the normal ld/st family of instructions, while still guaranteeing that all accesses to that address
consistently bypass the data cache.

Bit-31 cache bypass is only provided in the Nios II/f core, and must not be used with other Nios II cores.
The other Nios II cores limit their maximum byte address space to 31 bits to ease migration of code from
one implementation to another. They effectively ignore the value of bit 31, which allows code written for a
Nios II/f core using bit 31 cache bypass to run correctly on other current Nios II implementations. In
general, this feature depends on the Nios II core implementation.

For more information, refer to the "Nios II Core Implementation Details" chapter of the Nios II Processor
Reference Handbook.

Related Information
Nios II Core Implementation Details

For HAL Users
The HAL provides the C-language IORD_*DIRECT macros that expand to the ldio family of instructions
and the IOWR_*DIRECT macros that expand to the stio family of instructions.

For more information, refer to the "HAL I/O Macros to Bypass the Data Cache" table (Table 9-1).

These macros are provided to access noncacheable memory regions.

The HAL provides the alt_uncached_malloc(), alt_uncached_free(), alt_remap_uncached(), and
alt_remap_cached() routines to allocate and manipulate regions of uncached memory. These routines
are available on Nios II cores with or without a data cache—code written for a Nios II core with a data
cache is completely compatible with a Nios II core without a data cache.

The alt_uncached_malloc() and alt_remap_uncached() routines guarantee that the allocated memory
region is not in the data cache and that all subsequent accesses to the allocated memory regions bypass the
data cache.

Nios II Tightly-Coupled Memory
If you want the performance of cache all the time, place your code or data in a tightly-coupled memory.
Tightly-coupled memory is fast on-chip memory that bypasses the cache and has guaranteed low latency.
Tightly-coupled memory gives the best memory access performance. You assign code and data to tightly-
coupled memory partitions in the same way as other memory sections.

Cache instructions do not affect tightly-coupled memory. However, cache-management instructions
become NOPs, which might result in unnecessary overhead.

For more information, refer to “Memory Usage” in the "Developing Programs Using the Hardware
Abstraction Layer" chapter of the Nios II Software Developer’s Handbook.

9-6 Bit-31 Cache Bypass
NII5V2Gen2
2015.05.14

Altera Corporation Cache and Tightly-Coupled Memory

Send Feedback

https://documentation.altera.com/#/link/iga1409256728501/iga1409349211173/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cache%20and%20Tightly-Coupled%20Memory%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

Document Revision History for Cache and Tightly-Coupled Memory
Date Version Changes

May 2015 2015.05.14 Initial release.

NII5V2Gen2
2015.05.14 Document Revision History for Cache and Tightly-Coupled Memory 9-7

Cache and Tightly-Coupled Memory Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cache%20and%20Tightly-Coupled%20Memory%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

MicroC/OS-II Real-Time Operating System 10
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

Overview of the MicroC/OS-II RTOS
MicroC/OS-II is a popular real-time kernel produced by Micrium® Inc. MicroC/OS-II is a portable,
ROMable, scalable, pre-emptive, real-time, multitasking kernel. First released in 1992, MicroC/OS-II is
used in hundreds of commercial applications. It is implemented on more than 40 different processor
architectures in addition to the Nios II processor.

MicroC/OS-II provides the following services:

• Tasks (threads)
• Event flags
• Message passing
• Memory management
• Semaphores
• Time management

The MicroC/OS-II kernel operates on top of the hardware abstraction layer (HAL) board support package
(BSP) for the Nios II processor. Because of this architecture, MicroC/OS-II development for the Nios II
processor has the following advantages:

• Programs are portable to other Nios II hardware systems.
• Programs are resistant to changes in the underlying hardware.
• Programs can access all HAL services, calling the UNIX-like HAL application program interface (API).
• ISRs are easy to implement.

Further Information
This chapter discusses the details of how to use MicroC/OS-II for the Nios II processor only.

MicroC/OS-II is not compatible with external interrupt controllers on the External Interrupt Controller
(EIC) interface. MicroC/OS-II can only run on systems using the internal interrupt controller.

For more information about MicroC/OS-II features and usage, refer to MicroC/OS-II - The Real-Time
Kernel by Jean J. Labrosse (CMP Books).

Related Information
Micrium website

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20MicroC/OS-II%20Real-Time%20Operating%20System&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.micrium.com
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Licensing
Altera distributes MicroC/OS-II in the Nios II Embedded Design Suite (EDS) for evaluation purposes
only.

Note: Micrium offers free licensing for universities and students. Contact Micrium for details.

Related Information
Micrium licensing website
For more information about what to do if you plan to use MicroC/OS-II in a commercial product, you
must obtain a license from Micrium.

Other RTOS Providers
Altera distributes MicroC/OS-II to provide you with immediate access to an easy-to-use RTOS. In
addition to MicroC/OS-II, many other RTOSs are available from third-party vendors.

Related Information

• Altera Embedded Alliance
For more information, refer to the complete list of RTOSs that support the Nios II processor.

• Embedded Software
For more information, refer to the complete list of RTOSs that support the Nios II processor.

The Nios II Implementation of MicroC/OS-II
Altera has ported MicroC/OS-II to the Nios II processor. Altera distributes MicroC/OS-II in the Nios II
EDS, and supports the Nios II implementation of the MicroC/OS-II kernel. Ready-made, working
examples of MicroC/OS-II programs are installed with the Nios II EDS. In addition, Altera development
boards are preprogrammed with a web server reference design based on MicroC/OS-II and the
NicheStack TCP/IP Stack - Nios II Edition.

The Altera implementation of MicroC/OS-II is designed to be easy to use. Using the Nios II project
settings, you can control the configuration for all the RTOS's modules.

You need not modify source files directly to enable or disable kernel features. Nonetheless, Altera
provides the Nios II processor-specific source code in case you wish to examine it. The MicroC/OS-II
source code is located in the following directories:

• Processor-specific code: <Nios II EDS install path>/components/altera_nios2/UCOSII

• Processor-independent code: <Nios II EDS install path>/components/micrium_uc_osii

The MicroC/OS-II software package behaves like the drivers for hardware components: When
MicroC/OS-II is included in a Nios II project, the header and source files from components/micrium_uc_osii
are included in the project path, causing the MicroC/OS-II kernel to compile and link as part of the
project.

MicroC/OS-II Architecture
The Altera implementation of MicroC/OS-II for the Nios II processor extends the single-threaded HAL
environment to include the MicroC/OS-II scheduler and the associated MicroC/OS-II API. The complete
HAL API is available to all MicroC/OS-II projects.

10-2 Licensing
NII5V2Gen2
2015.05.14

Altera Corporation MicroC/OS-II Real-Time Operating System

Send Feedback

http://www.micrium.com
http://www.altera.com/devices/processor/embedded-alliance/proc-embed-partners.html
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MicroC/OS-II%20Real-Time%20Operating%20System%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-1: Architecture of MicroC/OS-II Programs in Relation to the HAL API

User Program

C Standard
 Library

HAL API

Device
Driver

Device
Driver

...Device
Driver

Nios II Processor System Hardware

MicroC/OS-II
API

The multi-threaded environment affects certain HAL functions.

Related Information
HAL API Reference
For more information about the consequences of calling a particular HAL function in a multi-threaded
environment.

MicroC/OS-II Thread-Aware Debugging
When you debug a MicroC/OS-II application, you cannot use the debugger to change the current thread,
so you can only single step in one thread at a time.

Note: Thread-aware debugging does not change the behavior of the target application in any way.

MicroC/OS-II Device Drivers
Each peripheral (that is, each hardware component) can provide include files and source files in the inc
and src subdirectories of the component's HAL directory.

In addition to the HAL directory, a component can optionally provide a UCOSII directory that contains code
specific to the MicroC/OS-II environment. Similar to the HAL directory, the UCOSII directory contains inc
and src subdirectories.

When you create a MicroC/OS-II project, these directories are added to the search paths for source and
include files.

The Nios II Software Build Tools (SBT) copies the files to your BSP obj subdirectory.

You can use the UCOSII directory to provide code that is used only in a multi-threaded environment. Other
than these additional search directories, the mechanism for providing MicroC/OS-II device drivers is
identical to the process for any other device driver.

The HAL system initialization process calls the MicroC/OS-II function OSInit() before
alt_sys_init(), which instantiates and initializes each device in the system. Therefore, the complete
MicroC/OS-II API is available to device drivers, although the system is still running in single-threaded
mode until the program calls OSStart() from within main().

NII5V2Gen2
2015.05.14 MicroC/OS-II Thread-Aware Debugging 10-3

MicroC/OS-II Real-Time Operating System Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MicroC/OS-II%20Real-Time%20Operating%20System%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Developing Device Drivers for the Hardware Abstraction Layer
For more information about developing device drivers.

• Developing Device Drivers for the Hardware Abstraction Layer
For more information about developing device drivers.

• Nios II Software Build Tools on page 4-1
For more information about specifying file paths with the Nios II SBT, refer to "Nios II Embedded
Software Projects".

Thread-Safe HAL Drivers
To enable a driver to be ported between the HAL and MicroC/OS-II environments, Altera defines a set of
operating system-independent macros that provide access to operating system facilities. These macros
implement functionality that is only relevant to a multi-threaded environment. When compiled for a
MicroC/OS-II project, the macros expand to MicroC/OS-II API calls. When compiled for a single-
threaded HAL project, the macros expand to benign empty implementations. These macros are used in
Altera-provided device driver code, and you can use them if you need to write a device driver with similar
portability.

For more information about the functionality in the MicroC/OS-II environment, refer to MicroC/OS-II:
The Real-Time Kernel.

The path listed for the header file is relative to the <Nios II EDS install path>/components/micrium_uc_osii/
UCOSII/inc directory.

Table 10-1: OS-Independent Macros for Thread-Safe HAL Drivers

Macro Defined in
Header

MicroC/OS-II Implementation Single-Threaded
HAL Implementa‐

tion

ALT_FLAG_GRP(group) os/alt_flag.h Create a pointer to a flag group
with the name group.

Empty
statement

ALT_EXTERN_FLAG_

GRP(group)

os/alt_flag.h Create an external reference to a
pointer to a flag group with name
group.

Empty
statement

ALT_STATIC_FLAG_

GRP(group)

os/alt_flag.h Create a static pointer to a flag
group with the name group.

Empty
statement

ALT_FLAG_CREATE(group,

flags)

os/alt_flag.h Call OSFlagCreate() to initialize
the flag group pointer, group, with
the flags value flags. The error
code is the return value of the
macro.

Return 0
(success)

ALT_FLAG_PEND(group,

flags, wait_type,

timeout)

os/alt_flag.h Call OSFlagPend() with the first
four input arguments set to group,
flags, wait_type, and timeout
respectively. The error code is the
return value of the macro.

Return 0
(success)

10-4 Thread-Safe HAL Drivers
NII5V2Gen2
2015.05.14

Altera Corporation MicroC/OS-II Real-Time Operating System

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MicroC/OS-II%20Real-Time%20Operating%20System%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Macro Defined in
Header

MicroC/OS-II Implementation Single-Threaded
HAL Implementa‐

tion

ALT_FLAG_POST(group,

flags, opt)

os/alt_flag.h Call OSFlagPost() with the first
three input arguments set to
group, flags, and opt respectively.
The error code is the return value
of the macro.

Return 0
(success)

ALT_SEM(sem) os/alt_sem.h Create an OS_EVENT pointer with
the name sem.

Empty
statement

ALT_EXTERN_SEM(sem) os/alt_sem.h Create an external reference to an
OS_EVENT pointer with the name
sem.

Empty
statement

ALT_STATIC_SEM(sem) os/alt_sem.h Create a static OS_EVENT pointer
with the name sem.

Empty
statement

ALT_SEM_CREATE(sem,

value)

os/alt_sem.h Call OSSemCreate() with the
argument value to initialize the
OS_EVENT pointer sem. The return
value is zero on success, or
negative otherwise.

Return 0
(success)

ALT_SEM_PEND(sem,

timeout)

os/alt_sem.h Call OSSemPend() with the first
two argument set to sem and
timeout respectively. The error
code is the return value of the
macro.

Return 0
(success)

ALT_SEM_POST(sem) os/alt_sem.h Call OSSemPost() with the input
argument sem.

Return 0
(success)

The newlib ANSI C Standard Library
Programs based on MicroC/OS-II can also call the ANSI C standard library functions. Some
consideration is necessary in a multi-threaded environment to ensure that the C standard library
functions are thread-safe. The newlib C library stores all global variables in a single structure referenced
through the pointer _impure_ptr. However, the Altera MicroC/OS-II implementation creates a new
instance of the structure for each task. During a context switch, the value of _impure_ptr is updated to
point to the current task's version of this structure. In this way, the contents of the structure pointed to by
_impure_ptr are treated as thread local. For example, through this mechanism each task has its own
version of errno.

This thread-local data is allocated at the top of the task’s stack. You must make allowance for thread-local
data storage when allocating memory for stacks. In general, the _reent structure consumes approximately
900 bytes of data for the normal C library, or 90 bytes for the reduced-footprint C library.

For more information about the contents of the _reent structure, refer to the newlib documentation. On
the Windows Start menu, click Programs > Altera > Nios II > Nios II Documentation.

NII5V2Gen2
2015.05.14 The newlib ANSI C Standard Library 10-5

MicroC/OS-II Real-Time Operating System Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MicroC/OS-II%20Real-Time%20Operating%20System%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In addition, the MicroC/OS-II implementation provides appropriate task locking to ensure that heap
accesses (calls to malloc() and free()) are also thread-safe.

Interrupt Service Routines for MicroC/OS-II
Implementing ISRs for MicroC/OS-II normally involves some housekeeping details, as described in
MicroC/OS-II: The Real-Time Kernel. However, because the Nios II implementation of MicroC/OS-II is
based on the HAL, several of these details are taken care of for you. The HAL performs the following
housekeeping tasks for your interrupt service routine (ISR):

• Saves and restores processor registers
• Calls OSIntEnter() and OSIntExit()

The HAL also allows you to write your ISR in C, rather than assembly language.

Related Information
Exception Handling on page 8-1
For more information about writing ISRs with the HAL.

Implementing MicroC/OS-II Projects for the Nios II Processor
To create a program based on MicroC/OS-II, start by setting the BSP properties so that it is a MicroC/OS-
II project. You can control the configuration of the MicroC/OS-II kernel using BSP settings with the Nios
II SBT for Eclipse, or on the Nios II command line.

• You do not need to edit header files (such as OS_CFG.h) or source code to configure the MicroC/OS-II
features. The project settings are reflected in the BSP's system.h file; OS_CFG.h simply includes system.h.

• MicroC/OS-II settings are identified by the prefix ucosii.
• The meaning of each setting is defined fully in MicroC/OS-II: The Real-Time Kernel.

Related Information

• Getting Started with the Graphical User Interface on page 2-1
• Nios II Software Build Tools on page 4-1

For more information about how to configure MicroC/OS-II with BSP settings
• Nios II Software Build Tools Reference on page 15-1

For more information, refer to a list of available MicroC/OS-II BSP settings in "Settings Managed by
the Software Build Tools".

Document Revision History for MicroC/OS-II Real-Time Operating System
Date Version Changes

May 2015 2015.05.14 Initial release.

10-6 Interrupt Service Routines for MicroC/OS-II
NII5V2Gen2
2015.05.14

Altera Corporation MicroC/OS-II Real-Time Operating System

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MicroC/OS-II%20Real-Time%20Operating%20System%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Ethernet and the NicheStack TCP/IP Stack -
Nios II Edition 11

2015.05.14

NII5V2Gen2 Subscribe Send Feedback

The NicheStack TCP/IP Stack - Nios II Edition is a small-footprint implementation of the TCP/IP suite.
The focus of the NicheStack TCP/IP Stack implementation is to reduce resource usage while providing a
full-featured TCP/IP stack. The NicheStack TCP/IP Stack is designed for use in embedded systems with
small memory footprints, making it suitable for Nios II processor systems.

Altera provides the NicheStack TCP/IP Stack as a software package that you can add to your board
support package (BSP), available through the Nios II Software Build Tools (SBT). The NicheStack TCP/IP
Stack includes these features:

• Internet Protocol (IP) including packet forwarding over multiple network interfaces
• Internet control message protocol (ICMP) for network maintenance and debugging
• User datagram protocol (UDP)
• Transmission Control Protocol (TCP) with congestion control, round trip time (RTT) estimation, and

fast recovery and retransmit
• Dynamic host configuration protocol (DHCP)
• Address resolution protocol (ARP) for Ethernet
• Standard sockets application program interface (API)

This chapter discusses the details of how to use the NicheStack TCP/IP Stack for the Nios II processor
only.

Prerequisites for Understanding the NicheStack TCP/IP Stack
To make the best use of information in this chapter, you should be familiar with these topics:

• Sockets
• Nios II Embedded Design Suite (EDS)
• MicroC/OS-II RTOS

For more information about the several books available on the topic of programming with sockets,
refer to Unix Network Programming by Richard Stevens.

For more information about the several books available on the topic of programming with sockets,
refer to Internetworking with TCP/IP Volume 3 by Douglas Comer.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Related Information

• Overview of Nios II Embedded Development
For more information about the Nios II Embedded Design Suite (EDS).

• MicroC/OS-II Real-Time Operating System
For more information about MicroC/OS-II.

• Using MicroC/OS-II RTOS with the Nios II Processor Tutorial
For more information about MicroC/OS-II and a Nios II processor tutorial.

Introduction to the NicheStack TCP/IP Stack - Nios II Edition

Altera provides the Nios II implementation of the NicheStack TCP/IP Stack, including source code, in the
Nios II EDS. The NicheStack TCP/IP Stack provides you with immediate access to a stack for Ethernet
connectivity for the Nios II processor. Altera's implementation of the NicheStack TCP/IP Stack includes
an API wrapper, providing the standard, well documented socket API.

The NicheStack TCP/IP Stack uses the MicroC/OS-II RTOS multithreaded environment. Therefore, to
use the NicheStack TCP/IP Stack with the Nios II EDS, you must base your C/C++ project on the
MicroC/OS-II RTOS. The Nios II processor system must also contain an Ethernet interface, or media
access control (MAC). The Altera-provided NicheStack TCP/IP Stack includes driver support for the
following two MACs:

• The SMSC LAN91C111 device
• The Altera Triple Speed Ethernet MegaCore® function

The Nios II Embedded Design Suite includes hardware for both MACs. The NicheStack TCP/IP Stack
driver is interrupt-based, so you must ensure that interrupts for the Ethernet component are connected.

Altera's implementation of the NicheStack TCP/IP Stack is based on the hardware abstraction layer
(HAL) generic Ethernet device model. In the generic device model, you can write a new driver to support
any target Ethernet MAC, and maintain the consistent HAL and sockets API to access the hardware.

Related Information
Developing Device Drivers for the Hardware Abstraction Layer on page 7-1
For more information about writing an Ethernet device driver.

The NicheStack TCP/IP Stack Files and Directories
Altera provides the source code for your reference. By default the files are installed with the Nios II EDS
in the <Nios II EDS install path>/components/altera_iniche/UCOSII directory. For the sake of brevity, this
chapter refers to this directory as <iniche path>. You need not edit the NicheStack TCP/IP Stack source
code to use the stack in a Nios II C/C++ program.

Under <iniche path>, the original code is maintained; as much as possible; under the <iniche path>
directory. This organization facilitates upgrading to more recent versions of the NicheStack TCP/IP Stack.
The directory contains the original NicheStack TCP/IP Stack source code and documentation specific to
the Nios II implementation of the NicheStack TCP/IP Stack, including source code supporting
MicroC/OS-II.

Altera's implementation of the NicheStack TCP/IP Stack is based on version 3.1 of the protocol stack,
with wrappers around the code to integrate it with the HAL.

11-2 Introduction to the NicheStack TCP/IP Stack - Nios II Edition
NII5V2Gen2
2015.05.14

Altera Corporation Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf
http://www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Nios II Processor Documentation Page
For more information about the reference manual for the NicheStack TCP/IP Stack page of the Altera
website.

Licensing
The NicheStack TCP/IP Stack is a TCP/IP protocol stack created by InterNiche Technologies, Inc. The
version provided by Altera is supplied as example code only and is supplied without product support. If
you require a supported TCP/IP stack you should license a product from a third-party software vendor.

You can license a newer version of the NicheStack TCP/IP Stack and other protocol stacks directly from
InterNiche Technologies, Inc.

Related Information
InterNiche Technologies, Inc.

Other TCP/IP Stack Providers for the Nios II Processor
Other third party vendors also provide Ethernet support for the Nios II processor. Notably, third party
RTOS vendors often offer Ethernet modules for their particular RTOS frameworks.

Related Information
Embedded Software
For more information about products available from third party providers.

Using the NicheStack TCP/IP Stack - Nios II Edition
The primary interface to the NicheStack TCP/IP Stack is the standard sockets interface. In addition, you
call the following functions to initialize the stack and drivers:

• alt_iniche_init()

• netmain()

You also use the global variable iniche_net_ready in the initialization process.

You must provide the following simple functions, which the HAL system code calls to obtain the MAC
address and IP address:

• get_mac_addr()

• get_ip_addr()

Nios II System Requirements
To use the NicheStack TCP/IP Stack, your Nios II system must meet the following requirements:

NII5V2Gen2
2015.05.14 Licensing 11-3

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-nio2.jsp
http://www.interniche.com
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The system hardware must include an Ethernet interface with interrupts enabled.
• The BSP must be based on MicroC/OS-II.
• The MicroC/OS-II RTOS must be configured to have the following settings:

• TimeManagement / OSTimeTickHook must be enabled.
• Maximum Number of Tasks must be four or less.

• The system clock timer must be set to point to an appropriate timer device.

The NicheStack TCP/IP Stack Tasks
The NicheStack TCP/IP Stack, in its standard Nios II configuration, consists of two fundamental tasks.
Each of these tasks consumes a MicroC/OS-II thread resource, along with some memory for the thread's
stack. In addition to the tasks your program creates, the following tasks run continuously:

• The NicheStack main task, tk_netmain()—After initialization, this task sleeps until a new packet is
available for processing. Packets are received by an interrupt service routine (ISR). When the ISR
receives a packet, it places it in the receive queue, and wakes up the main task.

• The NicheStack tick task, tk_nettick()—This task wakes up periodically to monitor for time-out
conditions.

These tasks are started when the initialization process succeeds in the netmain() function.

Note: You can modify the task priority and stack sizes using #define statements in the configuration file
ipport.h. You can create additional system tasks by enabling other options in the NicheStack
TCP/IP Stack by editing ipport.h.

Related Information
netmain() on page 11-5

Initializing the Stack
Before you initialize the stack, start the MicroC/OS-II scheduler by calling OSStart() from main().
Perform stack initialization in a high priority task, to ensure that your code does not attempt further
initialization until the RTOS is running and I/O drivers are available.

To initialize the stack, call the functions alt_iniche_init() and netmain(). Global variable
iniche_net_ready is set true when stack initialization is complete.

Note: Ensure that your code does not use the sockets interface before iniche_net_ready is set to true.

Related Information
iniche_net_ready on page 11-5
For more information and example, call alt_iniche_init() and netmain() from the highest priority
task, and wait for iniche_net_ready before allowing other tasks to run.

alt_iniche_init()
alt_iniche_init() initializes the stack for use with the MicroC/OS-II operating system.

The prototype for alt_iniche_init() is:

void alt_iniche_init(void)

When used this way, alt_iniche_init() returns nothing and has no parameters.

11-4 The NicheStack TCP/IP Stack Tasks
NII5V2Gen2
2015.05.14

Altera Corporation Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

netmain()
netmain() is responsible for initializing and launching the NicheStack tasks. The prototype for
netmain() is:

void netmain(void)

netmain() returns nothing and has no parameters.

iniche_net_ready
When the NicheStack stack has completed initialization, it sets the global variable iniche_net_ready to a
non-zero value.

Note: Do not call any NicheStack API functions (other than for initialization) until iniche_net_ready is
true.

Example 11-1: Instantiating the NicheStack TCP/IP Stack Using iniche_net_ready

void SSSInitialTask(void *task_data)
{
 INT8U error_code;
 alt_iniche_init();
 netmain();

 while (!iniche_net_ready)
 TK_SLEEP(1);
 /* Now that the stack is running, perform the application
 initialization steps */
 .
 .
 .
}

Macro TK_SLEEP() is part of the NicheStack TCP/IP Stack operating system (OS) porting layer.

get_mac_addr() and get_ip_addr()
The NicheStack TCP/IP Stack system code calls get_mac_addr() and get_ip_addr() during the device
initialization process. These functions are necessary for the system code to set the MAC and IP addresses
for the network interface, which you select with the altera_iniche.iniche_default_if BSP setting.

Because you write these functions yourself, your system has the flexibility to store the MAC address and
IP address in an arbitrary location, rather than a fixed location hard-coded in the device driver. For
example, some systems might store the MAC address in flash memory, while others might have the MAC
address in on-chip embedded memory.

Both functions take as parameters device structures used internally by the NicheStack TCP/IP Stack.
However, you do not need to know the details of the structures. You only need to know enough to fill in
the MAC and IP addresses.

Prototype for get_mac_addr()
The prototype for get_mac_addr() is:

int get_mac_addr(NET net, unsigned char mac_addr[6]);

You must implement the get_mac_addr() function to assign the MAC address to the mac_addr
argument. Leave the net argument untouched.

NII5V2Gen2
2015.05.14 netmain() 11-5

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The prototype for get_mac_addr() is in the header file <iniche path><iniche path>/inc/alt_iniche_dev.h. The
NET structure is defined in the <iniche path>/src/h/net.h file.

For demonstration purposes only, the MAC address is stored at address CUSTOM_MAC_ADDR in this
example. There is no error checking in this example. In a real application, if there is an error,
get_mac_addr() must return -1.

Example 11-2: An Implementation of get_mac_addr()

#include <alt_iniche_dev.h>
#include "includes.h"
#include "ipport.h"
#include "tcpport.h"
#include <io.h>
int get_mac_addr(NET net, unsigned char mac_addr[6])
{
 int ret_code = -1;
 /* Read the 6-byte MAC address from wherever it is stored */
 mac_addr[0] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 4);
 mac_addr[1] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 5);
 mac_addr[2] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 6);
 mac_addr[3] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 7);
 mac_addr[4] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 8);
 mac_addr[5] = IORD_8DIRECT(CUSTOM_MAC_ADDR, 9);
 ret_code = ERR_OK;
 return ret_code;
}

Prototype for get_ip_addr()
You must write the function get_ip_addr() to assign the IP address of the protocol stack. Your program
can either assign a static address, or request the DHCP to find an IP address. The function prototype for
get_ip_addr() is:

int get_ip_addr(alt_iniche_dev* p_dev,
 ip_addr* ipaddr,
 ip_addr* netmask,
 ip_addr* gw,
 int* use_dhcp);

get_ip_addr() sets the return parameters as follows:

IP4_ADDR(&ipaddr, IPADDR0,IPADDR1,IPADDR2,IPADDR3);
IP4_ADDR(&gw, GWADDR0,GWADDR1,GWADDR2,GWADDR3);
IP4_ADDR(&netmask, MSKADDR0,MSKADDR1,MSKADDR2,MSKADDR3);

For the dummy variables IP_ADDR0-3, substitute expressions for bytes 0-3 of the IP address. For
GWADDR0-3, substitute the bytes of the gateway address. For MSKADDR0-3, substitute the bytes of the
network mask. For example, the following statement sets ip_addr to IP address 137.57.136.2:

IP4_ADDR (ip_addr, 137, 57, 136, 2);

To enable DHCP, include the line:

*use_dhcp = 1;

The NicheStack TCP/IP stack attempts to get an IP address from the server. If the server does not provide
an IP address within 30 seconds, the stack times out and uses the default settings specified in the
IP4_ADDR() function calls.

11-6 Prototype for get_ip_addr()
NII5V2Gen2
2015.05.14

Altera Corporation Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To assign a static IP address, include the lines:

*use_dhcp = 0;

The prototype for get_ip_addr() is in the header file <iniche path>/inc/alt_iniche_dev.h.

INICHE_DEFAULT_IF, defined in system.h, identifies the network interface that you defined at system
generation time. You can control INICHE_DEFAULT_IF through the iniche_default_if BSP setting.

DHCP_CLIENT, also defined in system.h, specifies whether to use the DHCP client application to obtain an
IP address. You can set or clear this property with the altera_iniche.dhcp_client setting.

Calling the Sockets Interface
After you initialize your Ethernet device, use the sockets API in the remainder of your program to access
the IP stack.

To create a new task that talks to the IP stack using the sockets API, you must use the function
TK_NEWTASK(). The TK_NEWTASK() function is part of the NicheStack TCP/IP Stack operating system
(OS) porting layer. TK_NEWTASK() calls the MicroC/OS-II OSTaskCreate() function to create a thread,
and performs some other actions specific to the NicheStack TCP/IP Stack.

The prototype for TK_NEWTASK() is:

int TK_NEWTASK(struct inet_task_info* nettask);

Example 11-3: An Implementation of get_ip_addr()

#include <alt_iniche_dev.h>
#include "includes.h"
#include "ipport.h"
#include "tcpport.h"
int get_ip_addr(alt_iniche_dev* p_dev,
 ip_addr* ipaddr,
 ip_addr* netmask,
 ip_addr* gw,
 int* use_dhcp)
{
 int ret_code = -1;
 /*
 * The name here is the device name defined in system.h
 */
 if (!strcmp(p_dev->name, "/dev/" INICHE_DEFAULT_IF))
 {
 /* The following is the default IP address if DHCP
 fails, or the static IP address if DHCP_CLIENT is
 undefined. */
 IP4_ADDR(&ipaddr, 10, 1, 1 ,3);
 /* Assign the Default Gateway Address */
 IP4_ADDR(&gw, 10, 1, 1, 254);
 /* Assign the Netmask */
 IP4_ADDR(&netmask, 255, 255, 255, 0);
#ifdef DHCP_CLIENT
 *use_dhcp = 1;
#else
 *use_dhcp = 0;
#endif /* DHCP_CLIENT */
 ret_code = ERR_OK;
 }
 return ret_code;
}

NII5V2Gen2
2015.05.14 Calling the Sockets Interface 11-7

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: There is no error checking in this example. In a real application, you might need to return -1 on
error.

The prototype is defined in <iniche path>/src/nios2/osport.h. You can include this header file as follows:

#include "osport.h"

You can find other details of the OS porting layer in the osport.c file in the NicheStack TCP/IP Stack
component directory, <iniche path>/src/nios2/.

Related Information
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial
For more information about how to use TK_NEWTASK() in an application.

Configuring the NicheStack TCP/IP Stack in a Nios II Program
The NicheStack TCP/IP Stack has many options that you can configure using #define directives in the
file ipport.h. The Nios II EDS allows you to configure certain options (that is, modify the #defines in
system.h) without editing source code. The most commonly accessed options are available through a set of
BSP options, identifiable by the prefix altera_iniche.

Some less-frequently-used options are not accessible through the BSP settings. If you need to modify these
options, you must edit the ipport.h file manually.

You can find ipport.h in the debug/system_description directory for your BSP project.

The following sections describe the features that you can configure using the Nios II SBT. Both develop‐
ment flows provide a default value for each feature. In general, these values provide a good starting point,
and you can later fine-tune the values to meet the needs of your system.

NicheStack TCP/IP Stack General Settings
The ARP, UDP, and IP protocols are always enabled.

Table 11-1: Protocol Options

Option Description

TCP Enables and disables the TCP.

Table 11-2: Global Options

Option Description

Use DHCP to
automatically
assign IP address

If this option is turned on, the component uses DHCP to
acquire an IP address. If this option is turned off, you
must assign a static IP address.

Enable statistics If this option is turned on, the stack keeps counters of
packets received, errors, etc. The counters are defined in
mib structures defined in various header files in directory
<iniche path>/src/downloads/30src/h.
For details about mib structures, refer to the NicheStack
documentation.

11-8 Configuring the NicheStack TCP/IP Stack in a Nios II Program
NII5V2Gen2
2015.05.14

Altera Corporation Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

Send Feedback

http://www.altera.com/literature/tt/tt_nios2_tcpip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

MAC interface If the IP stack has more than one network interface, this
parameter indicates which interface to use.

Related Information

• Known Limitations on page 11-10
• Nios II Software Build Tools Reference

For more information about BSP settings for the NicheStack, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer's Handbook.

IP Options

Table 11-3: IP Options

Option Description

Forward IP packets If there is more than one network interface, this
option is turned on, and the IP stack for one interface
receives packets that are not addressed to it, the stack
forwards the packet out of the other interface.

Reassemble IP packet
fragments

If this option is turned on, the NicheStack TCP/IP
Stack reassembles IP packet fragments as full IP
packets. Otherwise, it discards IP packet fragments.
This topic is explained in Unix Network Program‐
ming by Richard Stevens.

Related Information
Known Limitations on page 11-10

TCP Options

Table 11-4: TCP Zero Copy Options Available When Enabled

Option Description

Use TCP zero
copy

This option enables the NicheStack zero copy TCP API. This
option allows you to eliminate buffer-to-buffer copies when
using the NicheStack TCP/IP Stack. For details, refer to the
NicheStack reference manual. You must modify your
application code to take advantage of the zero copy API.

Further Information
The tutorial provides in-depth information about the NicheStack TCP/IP Stack, and illustrates how to use
it in a networking application.

NII5V2Gen2
2015.05.14 IP Options 11-9

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial
For more information about the Altera NicheStack implementation

• Literature: Nios II Processor
For more information about NicheStack

Known Limitations
Although the NicheStack code contains features intended to support multiple network interfaces, these
features are not tested in the Nios II edition. Refer to the NicheStack TCP/IP Stack reference manual and
source code for information about multiple network interface support.

Document Revision History for Ethernet and the NicheStack TCP/IP Stack
- Nios II Edition

Date Version Changes

May 2015 2015.05.14 Initial release.

11-10 Known Limitations
NII5V2Gen2
2015.05.14

Altera Corporation Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

Send Feedback

http://www.altera.com/literature/tt/tt_nios2_tcpip.pdf
http://www.altera.com/literature/lit-nio2.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Ethernet%20and%20the%20NicheStack%20TCP/IP%20Stack%20-%20Nios%20II%20Edition%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Read-Only Zip File System 12
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

Altera provides a read-only zip file system for use with the hardware abstraction layer (HAL). The read-
only zip file system provides access to a simple file system stored in flash memory. This file system is
suitable for embedded software use. The drivers take advantage of the HAL generic device driver
framework for file subsystems. Therefore, you can access the zip file subsystem using the ANSI C standard
library I/O functions, such as fopen() and fread().

The Altera read-only zip file system is provided as a software package. All source and header files for the
HAL drivers are located in the directory <Nios II EDS install path>/components/altera_ro_zipfs/HAL/.

Using the Read-Only Zip File System in a Project
The read-only zip file system is supported by both Nios II software development flows. You need not edit
any source code to include and configure the file system. To use the zip file system, you use the Nios II
development tools to include it as a software package for the board support package (BSP) project.

You must specify the following four parameters to configure the file system:

• The name of the flash device where you wish to program the file system.
• The offset in the address space of this flash device.
• The name of the mount point for this file subsystem in the HAL file system. For example, if you name

the mount point /mnt/zipfs, the following code opens a file in the zip file:

fopen("/mnt/zipfs/hello", "r");

This code, called from within a HAL-based program, opens the file hello for reading.
• The name of the zip file you wish to use.

The next time you build your project after you make these settings, the Nios II development tools include
and link the file subsystem in the project. After you rebuild the project, the system.h file reflects the
presence of this software package in the system.

Preparing the Zip File
The zip file must be uncompressed. The Altera read-only zip file system uses the zip format only for
bundling files together; it does not provide the file decompression features for which zip utilities are
known.

Creating a zip file with no compression is straightforward using the WinZip GUI. Alternately, use the -e0
option to disable compression when using either winzip or pkzip from a command line.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Read-Only%20Zip%20File%20System&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Programming the Zip File to Flash
For your program to access files in the zip file subsystem, you must first program the zip data to flash. As
part of the project build process, the Nios II development tools create a Motorola S-record file (.flash) that
includes the data for the zip file system.

You then use the Nios II Flash Programmer to program the zip file system data to flash memory on the
board.

Related Information
Nios II Flash Programmer User Guide
For more information about programming flash.

Document Revision History for Read-Only Zip File System
Date Version Changes

May 2015 2015.05.14 Initial release.

12-2 Programming the Zip File to Flash
NII5V2Gen2
2015.05.14

Altera Corporation Read-Only Zip File System

Send Feedback

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Read-Only%20Zip%20File%20System%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Publishing Component Information to
Embedded Software 13

2015.05.14

NII5V2Gen2 Subscribe Send Feedback

This document describes how to publish hardware component information for embedded software tools.
You can publish component information for use by software, such as a C compiler and a board support
package (BSP) generator. Information used by a C compiler might be a set of #define statements that
describe some aspect of a component. Information used by a BSP generator might be the identification of
memory components, so that the BSP generator can create a linker script.

Embedded Component Information Flow

Embedded Component Information Flow Diagram

Embedded Component Information Flow

Hardware
Component

_hw.tcl

 System Integration Tool
(Qsys or

SOPC Builder)

.sopcinfo

Embedded
Software Tool

*.sopc

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Publishing%20Component%20Information%20to%20Embedded%20Software&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Tcl Assignment Statements
A component publishes information by including Tcl assignment statements in its component description
file, <component_name>_hw.tcl. Each assignment is a name-value pair that can be associated with the
entire component, or with a single interface. When the assignment statement applies to the entire
component, it is set using the set_module_assignment command. Assignment statements that apply to
an interface are set using the set_interface_assignment command.

These assignments apply to the entire component
This is the syntax for the set_module_assignment command:
set_module_assignment <assignment_name> <value>
Here are 3 examples
set_module_assignment embeddedsw.CMacro.colorSpace "CMYK"
set_module_assignment embeddedsw.configuration.cpuArchitecture "My processor"
set_module_assignment embeddedsw.memoryInfo.IS_FLASH 1
This is the syntax of the set_interface_assignment command:
set_interface_assignment <interface_name> <assignment_name> <value>
Here is an example
set_interface_assignment lcd0 embeddedsw.configuration.isPrintableDevice 1

When you generate a hardware system, the system integration tool, Qsys or SOPC Builder, creates an
<sopc_builder_system>.sopcinfo file that includes all of the assignments for your component. The
embedded software tools use these assignments for further processing. The system integration tool does
not require any of the information included in these assignments to build the hardware representation of
the component. The tool simply passes the assignments from the _hw.tcl file to the SOPC Information File
(.sopcinfo).

Related Information
Volume 1: Design and Synthesis of the Quartus II Handbook
For more information about the _hw.tcl file and using Tcl to define hardware components, refer to the
"Creating a System With Qsys" chapter.

Embedded Software Assignments
Embedded software assignments are organized in a period-separated namespace. All of the assignments
for embedded software tools have the prefix embeddedsw. The embeddedsw namespace is further divided
into the following three sub-namespaces:

• C Macro—Assignment name prefix embeddedsw.CMacro
• Configuration—Assignment name prefix embeddedsw.configuration
• Memory Initialization—Assignment name prefix embeddedsw.memoryInfo

C Macro Namespace
You can use the C macro namespace to publish information about your component that is converted to
#define’s in a C or C++ system.h file. C macro assignments are associated with the entire hardware
component, not with individual interfaces.

The name of an assignment in the C macro namespace is embeddedsw.CMacro.<assignmentName>. You
must format the value as a legal C or C++ expression.

Example 13–2. Assignment Statement for the BAUD_RATE of uart_0 in a Hardware System

Tcl assignment statement included in the _hw.tcl file
add_parameter BAUD_RATE_PARAM integer 9600 "This is the default baud rate."
Dynamically reassign the baud rate based on the parameter value

13-2 Tcl Assignment Statements
NII5V2Gen2
2015.05.14

Altera Corporation Publishing Component Information to Embedded Software

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958596582/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Publishing%20Component%20Information%20to%20Embedded%20Software%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_module_assignment embeddedsw.CMacro.BAUD_RATE \
[get_parameter_value BAUD_RATE_PARAM]

Generated Macro in system.h

Example 13–3. Generated Macro in system.h After Dynamic Reassignment

/* Generated macro in the system.h file after dynamic reassignment */
#define UART_0_BAUD_RATE 15200

For more information about formatting constants, refer to the GNU web page.

Related Information

• GCC, the GNU Compiler Collection
For more information about formatting constants, refer to the GNU webpage.

• GNU web page
For more information about formatting constants

GCC C/C++ 32-bit Processor Constants

Table 13-1: Examples of How to Format GCC C/C++ 32-bit Processor Constants

C Data Type Examples

boolean (char, short, int) 1, 0

32-bit signed integer (int, long) 123, -50

32-bit unsigned integer (unsigned int, unsigned
long)

123u, 0xef8472a0

64-bit signed integer (long long int) 4294967296LL, -4294967296LL

64-bit unsigned integer (unsigned long long int) 4294967296ULL, 0xac458701fd64ULL

32-bit floating-point (float) 3.14f

64-bit floating-point (double) 2.78, 314e-2

character (char) 'x'

string (const char*) "Hello World!"

Configuration Namespace
You can use the configuration namespace to pass configuration information to embedded software tools.
You can associate configuration namespace assignments with the entire component or with a single
interface.

The assignment name for the configuration namespace is embeddedsw.configuration.<name>. Altera’s
embedded software tools already have definitions for the data types of the configuration names listed in
this section.

NII5V2Gen2
2015.05.14 Generated Macro in system.h 13-3

Publishing Component Information to Embedded Software Altera Corporation

Send Feedback

http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Publishing%20Component%20Information%20to%20Embedded%20Software%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuration Data Types

Table 13-2: Configuration Data Types and Corresponding Format

Configuration Data Type Format

boolean 1, 0

32-bit integer 123, -50

64-bit integer 4294967296, -4294967296

32-bit floating-point 3.14

64-bit floating-point 2.78, 314e-2

string ABC

Component Configuration Information

Table 13-3: Component Configuration Information - Assign with set_module_assignment

Configuration Name Type Default Meaning Example

cpuArchitecture string — Processor
instruction set
architecture.
Provide this
assignment if
you want your
component to be
considered a
processor.

My 8051

requiredDriver boolean 0 If this
configuration is
1 (true), the
component
requires a
software driver.
Software tools
are expected to
generate a
warning if no
driver is found.

1

13-4 Configuration Data Types
NII5V2Gen2
2015.05.14

Altera Corporation Publishing Component Information to Embedded Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Publishing%20Component%20Information%20to%20Embedded%20Software%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Memory-Mapped Slave Information

Table 13-4: Avalon Memory-Mapped Slave Information - Assign with set_interface_assignment

Configuration Name Type Default Meaning Examples

isMemoryDevice boolean 0 The slave port
provides access
to a memory
device.

Altera® On-Chip
Memory Component,
DDR Controller,
erasable programmable
configurable serial
(EPCS) Controller

isPrintableDevice boolean 0 The slave port
provides access
to a character-
based device.

Altera UART, Altera
JTAG UART, Altera
LCD

isTimerDevice boolean 0 The slave port
provides access
to a timer device.

Altera Timer

isEthernetMacDevice boolean 0 The slave port
provides access
to an Ethernet
media access
control (MAC).

Altera Triple-Speed
Ethernet

isNonVolatileS-

torage(10)
boolean 0 The memory

device is a non-
volatile memory
device. The
contents of a
non-volatile
memory device
are fixed and
always present.
In normal
operation, you
can only read
from this
memory. If this
property is true,
you must also set
isMemoryDevice

to true.

Common flash
interface (CFI) Flash,
EPCS Flash, on-chip
FPGA memory
configured as a ROM

(10) Some FPGA RAMs support initialization at power-up from the SRAM Object File (.sof) or programmer
object file (.pof), but are not considered non-volatile because this ability might not be used.

NII5V2Gen2
2015.05.14 Memory-Mapped Slave Information 13-5

Publishing Component Information to Embedded Software Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Publishing%20Component%20Information%20to%20Embedded%20Software%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuration Name Type Default Meaning Examples

isFlash boolean 0 The memory
device is a flash
memory device.
If isFlash is
true, you must
also set
isMemoryDevice

and
isNonVolatileS

torage to true.

CFI Flash, EPCS Flash

hideDevice boolean 0 Do not make this
slave port visible
to the embedded
software tools.

Nios II debug slave
port

13-6 Memory-Mapped Slave Information
NII5V2Gen2
2015.05.14

Altera Corporation Publishing Component Information to Embedded Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Publishing%20Component%20Information%20to%20Embedded%20Software%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuration Name Type Default Meaning Examples

affectsTransaction-

sOnMasters

string empty

string

A list of master
names delimited
by spaces, for
example m1 m2.
Used when the
slave port
provides access
to Avalon-MM
control registers
in the
component. The
control registers
control transfers
on the specified
master ports.

The slave port
can configure the
control registers
for master ports
on the listed
components. The
address space for
this slave port is
composed of the
address spaces of
the named
master ports.

Nios II
embedded
software tools
use this informa‐
tion to generate
#define

directives
describing the
address space of
these master
ports.

Altera direct memory
access (DMA), Altera
Scatter/Gather DMA

Note:

Streaming Source Information

Table 13-5: Avalon Streaming Slave Interface Source Information - Assign with set_interface_assignment

Configuration Name Type Default Meaning Examples

isInterruptController-

Sender (11)
boolean 0 The interface sends interrupts to

an interrupt controller receiver
interface.

Altera Vectored
Interrupt
Controller

NII5V2Gen2
2015.05.14 Streaming Source Information 13-7

Publishing Component Information to Embedded Software Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Publishing%20Component%20Information%20to%20Embedded%20Software%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuration Name Type Default Meaning Examples

transportsInterrupts-

FromReceivers (12)
string empty

string
A list of interrupt receiver
interface names delimited by
spaces. Used when the interrupt
controller sender interface can
transport daisy-chained
interrupts from one or more
interrupt controller receiver
ports on the same module.

Altera Vectored
Interrupt
Controller daisy-
chain input

Streaming Sink Information

Table 13-6: Streaming Sink Information - Assign with set_interface_assignment

Configuration Name Type Default Meaning Examples

isInterruptController-

Receiver (13)
boolean 0 The interface receives interrupts

(optionally daisy-chained) from
an interrupt controller sender
interface.

Altera Vectored
Interrupt
Controller, Altera
Nios II

Memory Initialization Namespace
You use the memory initialization namespace to pass memory initialization information to embedded
software tools. Use this namespace to create memory initialization files, including .flash, .hex, .dat,
and .sym files. You use memory initialization files for the following tasks:

• Flash programming
• RTL simulation
• Creating initialized FPGA RAMs for Quartus II compilation

You only need to provide these assignments if your component is a memory device that you want to
initialize.

The assignment name for the memory initialization namespace is embeddedsw.memoryInfo.<name>.
Altera embedded software tools already have definitions for the data types of the possible values.

Table 13-7: Memory Initialization Data Types and Corresponding Format

Memory Initialization Data Type Format

boolean 1, 0

32-bit integer 123, -50

string ABC

(11) An interrupt sender interface is an Avalon-ST source providing interrupt information according to the
external interrupt controller (EIC) protocol.

(12) An interrupt receiver interface is an Avalon-ST sink receiving interrupt information from an EIC.
(13) An interrupt controller receiver interface is an Avalon-ST sink receiving interrupt information from an EIC.

13-8 Streaming Sink Information
NII5V2Gen2
2015.05.14

Altera Corporation Publishing Component Information to Embedded Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Publishing%20Component%20Information%20to%20Embedded%20Software%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Quotation marks are not required.

Table 13-8: Memory Initialization Information - Assign with set_module_assignment Command

Memory Initialization
Name

Type Default Meaning

HAS_BYTE_LANE boolean 0 Create a memory initialization file for each
byte.

IS_FLASH boolean 0 Component is a flash device.

IS_EPCS boolean 0 If IS_FLASH and IS_EPCS are both 1,
component is an EPCS flash device. If IS_
FLASH is 1 and IS_EPCS is 0, the component is
a CFI flash device. If IS_EPCS is 1, IS_FLASH
must also be 1.

GENERATE_HEX boolean 0 Create an Intel hexadecimal file (.hex).

GENERATE_DAT_SYM boolean 0 Create a .dat and a .sym file.

GENERATE_FLASH boolean 0 Create a Motorola S-record File (.flash).

INCLUDE_WARNING_

MSG

string empty string Display a warning message when creating
memory initialization files.

MEM_INIT_FILENAME string Module
instance
name

Name of the memory initialization file,
without any file type suffix.

MEM_INIT_DATA_

WIDTH

32-bit

integer

none
(mandatory)

Width of memory initialization file in bits.
May be different than the slave port data
width.

Document Revision History for Publishing Component Information to
Embedded Software

Date Version Changes

May 2015 2015.05.14 Initial release.

NII5V2Gen2
2015.05.14 Document Revision History for Publishing Component Information to... 13-9

Publishing Component Information to Embedded Software Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Publishing%20Component%20Information%20to%20Embedded%20Software%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HAL API Reference 14
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

This chapter provides an alphabetically ordered list of all the functions in the hardware abstraction layer
(HAL) application program interface (API). Each function is listed with its C prototype and a short
description. Each listing provides information about whether the function is thread-safe when running in
a multi-threaded environment, and whether it can be called from an interrupt service routine (ISR).

This chapter only lists the functionality provided by the HAL. The complete newlib API is also available
from within HAL systems. For example, newlib provides printf(), and other standard I/O functions,
which are not described here.

Note: Each function description lists the C header file that your code must include to access the function.
Because header files include other header files, the function prototype might not be defined in the
listed header file. However, you must include the listed header file in order to include all
definitions on which the function depends.

For more information about the newlib API, refer to the newlib documentation. On the Windows
Start menu, click Programs > Altera > Nios II <version> > Nios II <version> > Documentation.

HAL API Functions

_exit()

Prototype

void _exit (int exit_code)

Commonly Called By

newlib C library

Thread-safe

Yes.

Available from ISR

No.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20HAL%20API%20Reference&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Include

<unistd.h>

Description

The newlib exit() function calls the _exit() function to terminate the current process. Typically,
exit() calls this function when main() completes. Because there is only a single process in HAL systems,
the HAL implementation blocks forever.

Interrupts are not disabled, so ISRs continue to execute.

The input argument, exit_code, is ignored.

Return

--

Related Information
newlib Library Documentation

_rename()

Prototype

int _rename(char *existing, char* new)

Commonly Called By

newlib C library

Thread-safe

Yes.

Available from ISR

Yes.

Include

<stdio.h>

Description

The _rename() function is provided for newlib compatibility.

Return

It always fails with return code –1, and with errno set to ENOSYS.

Related Information
newlib Library Documentation

14-2 _rename()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_dcache_flush()

Prototype

void alt_dcache_flush (void* start, alt_u32 len)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_cache.h>

Description

The alt_dcache_flush() function flushes the data cache for a memory region of length len bytes,
starting at address start. Flushing the cache consists of writing back dirty data and then invalidating the
cache.

In processors without data caches, it has no effect.

Return

--

Related Information

• alt_dcache_flush_all() on page 14-3
• alt_icache_flush() on page 14-9
• alt_icache_flush_all() on page 14-8
• alt_remap_cached() on page 14-7
• alt_remap_uncached() on page 14-7
• alt_uncached_free() on page 14-6
• alt_uncached_malloc() on page 14-5

alt_dcache_flush_all()

Prototype

void alt_dcache_flush_all (void)

Commonly Called By

C/C++ programs

NII5V2Gen2
2015.05.14 alt_dcache_flush() 14-3

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_cache.h>

Description

The alt_dcache_flush_all() function flushes, that is, writes back dirty data and then invalidates, the
entire contents of the data cache.

In processors without data caches, it has no effect.

Return

--

Related Information

• alt_dcache_flush() on page 14-3
• alt_icache_flush() on page 14-9
• alt_icache_flush_all() on page 14-8
• alt_remap_cached() on page 14-7
• alt_remap_uncached() on page 14-7
• alt_uncached_free() on page 14-6
• alt_uncached_malloc() on page 14-5

alt_dcache_flush_no_writeback()

Prototype

void alt_dcache_flush_no_writeback (void* start, alt_u32 len)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

14-4 alt_dcache_flush_no_writeback()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Include

<sys/alt_cache.h>

Description

The alt_dcache_flush_no_writeback() is called to flush the data cache for a memory region of length "len"
bytes, starting at address "start". Any dirty lines in the data cache are NOT written back to memory. The
cache will then be invalidated.

Return

--

alt_uncached_malloc()

Prototype

volatile void* alt_uncached_malloc (size_t size)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_cache.h>

Description

The alt_uncached_malloc() function allocates a region of uncached memory of length size bytes.
Regions of memory allocated in this way can be released using the alt_uncached_free() function.

Processors that do not have a data cache return uncached memory.

Return

If sufficient memory cannot be allocated, this function returns null, otherwise a pointer to the allocated
space is returned.

Related Information

• alt_dcache_flush() on page 14-3
• alt_dcache_flush_all() on page 14-3
• alt_icache_flush() on page 14-9
• alt_icache_flush_all() on page 14-8

NII5V2Gen2
2015.05.14 alt_uncached_malloc() 14-5

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_remap_cached() on page 14-7
• alt_remap_uncached() on page 14-7
• alt_uncached_free() on page 14-6

alt_uncached_free()

Prototype

void alt_uncached_free (volatile void* ptr)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_cache.h>

Description

The alt_uncached_free() function causes the memory pointed to by ptr to be deallocated, that is, made
available for future allocation through a call to alt_uncached_malloc(). The input pointer, ptr, points
to a region of memory previously allocated through a call to alt_uncached_malloc(). Behavior is
undefined if this is not the case.

Return

--

Related Information

• alt_dcache_flush() on page 14-3
• alt_dcache_flush_all() on page 14-3
• alt_icache_flush() on page 14-9
• alt_icache_flush_all() on page 14-8
• alt_remap_cached() on page 14-7
• alt_remap_uncached() on page 14-7
• alt_uncached_malloc() on page 14-5

14-6 alt_uncached_free()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_remap_uncached()

Prototype

volatile void* alt_remap_uncached (void* ptr,

alt_u32 len);

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_cache.h>

Description

The alt_remap_uncached() function remaps a region of memory for uncached access. The memory to
map is len bytes, starting at address ptr.

Processors that do not have a data cache return uncached memory.

Return

The return value for this function is the remapped memory region.

Related Information

• alt_dcache_flush() on page 14-3
• alt_dcache_flush_all() on page 14-3
• alt_icache_flush() on page 14-9
• alt_icache_flush_all() on page 14-8
• alt_remap_cached() on page 14-7
• alt_uncached_free() on page 14-6
• alt_uncached_malloc() on page 14-5

alt_remap_cached()

Prototype

void* alt_remap_cached (volatile void* ptr,

alt_u32 len);

NII5V2Gen2
2015.05.14 alt_remap_uncached() 14-7

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_cache.h>

Description

The alt_remap_cached() function remaps a region of memory for cached access. The memory to map is
len bytes, starting at address ptr.

Processors that do not have a data cache return uncached memory.

Return

The return value for this function is the remapped memory region.

Related Information

• alt_dcache_flush() on page 14-3
• alt_dcache_flush_all() on page 14-3
• alt_icache_flush() on page 14-9
• alt_icache_flush_all() on page 14-8
• alt_remap_uncached() on page 14-7
• alt_uncached_free() on page 14-6
• alt_uncached_malloc() on page 14-5

alt_icache_flush_all()

Prototype

void alt_icache_flush_all (void)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

14-8 alt_icache_flush_all()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Available from ISR

Yes.

Include

<sys/alt_cache.h>

Description

The alt_icache_flush_all() function invalidates the entire contents of the instruction cache.

In processors without instruction caches, it has no effect.

Return

--

Related Information

• alt_dcache_flush() on page 14-3
• alt_dcache_flush_all() on page 14-3
• alt_icache_flush() on page 14-9
• alt_remap_cached() on page 14-7
• alt_remap_uncached() on page 14-7
• alt_uncached_free() on page 14-6
• alt_uncached_malloc() on page 14-5

alt_icache_flush()

Prototype

void alt_icache_flush (void* start, alt_u32 len)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_cache.h>

Description

The alt_icache_flush() function invalidates the instruction cache for a memory region of length len
bytes, starting at address start.

NII5V2Gen2
2015.05.14 alt_icache_flush() 14-9

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In processors without instruction caches, it has no effect.

Return

--

Related Information

• alt_dcache_flush() on page 14-3
• alt_dcache_flush_all() on page 14-3
• alt_icache_flush_all() on page 14-8
• alt_remap_cached() on page 14-7
• alt_remap_uncached() on page 14-7
• alt_uncached_free() on page 14-6
• alt_uncached_malloc() on page 14-5

alt_alarm_start()

Prototype

int alt_alarm_start

(alt_alarm* alarm,

alt_u32 nticks,

alt_u32 (*callback) (void* context),

void* context)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_alarm.h>

Description

The alt_alarm_start() function schedules an alarm callback.

For more information, refer to “Using Timer Devices” in the "Developing Programs Using the Hardware
Abstraction Layer" chapter.

14-10 alt_alarm_start()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The HAL waits nticks system clock ticks before calling the callback() function. When the HAL calls
callback(), it passes it the input argument context. The HAL does not use the context parameter. It
only passes it as a parameter to the callback() function.

The alarm argument is a pointer to a structure that represents this alarm. You must create it, and it must
have a lifetime that is at least as long as that of the alarm. However, you are not responsible for initializing
the contents of the structure pointed to by alarm. This action is done by the call to alt_alarm_start().

One alarm is created for each call to alt_alarm_start(). Multiple alarms can run simultaneously.

Return

The return value for alt_alarm_start() is zero on success, and negative otherwise. This function fails if
there is no system clock available.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• alt_alarm_stop() on page 14-11
• alt_nticks() on page 14-46
• alt_sysclk_init() on page 14-65
• alt_tick() on page 14-48
• alt_ticks_per_second() on page 14-49
• gettimeofday() on page 14-72
• settimeofday() on page 14-61
• times() on page 14-67
• usleep() on page 14-70

alt_alarm_stop()

Prototype

void alt_alarm_stop (alt_alarm* alarm)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_alarm.h>

NII5V2Gen2
2015.05.14 alt_alarm_stop() 14-11

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

You can call the alt_alarm_stop() function to cancel an alarm previously registered by a call to
alt_alarm_start(). The input argument is a pointer to the alarm structure in the previous call to
alt_alarm_start().

On return the alarm is canceled, if it is still active.

Return

--

Related Information

• alt_alarm_start() on page 14-10
• alt_nticks() on page 14-46
• alt_sysclk_init() on page 14-65
• alt_tick() on page 14-48
• alt_ticks_per_second() on page 14-49
• gettimeofday() on page 14-72
• settimeofday() on page 14-61
• times() on page 14-67
• usleep() on page 14-70

alt_dma_rxchan_depth()

Prototype

alt_u32 alt_dma_rxchan_depth(alt_dma_rxchan dma)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_dma.h>

Description

The alt_dma_rxchan_depth() function returns the maximum number of receive requests that can be
posted to the specified DMA transmit channel, dma.

Whether this function is thread-safe, or can be called from an ISR, depends on the underlying device
driver. In general it safest to assume that it is not thread-safe.

14-12 alt_dma_rxchan_depth()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return

Returns the maximum number of receive requests that can be posted.

Related Information

• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_open() on page 14-20
• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

alt_dma_rxchan_close()

Prototype

int alt_dma_rxchan_close (alt_dma_rxchan rxchan)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_dma.h>

Description

The alt_dma_rxchan_close() function notifies the system that the application has finished using the
direct memory access (DMA) receive channel, rxchan. The current implementation always succeeds.

Return

The return value is zero on success and negative otherwise.

Related Information

• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15

NII5V2Gen2
2015.05.14 alt_dma_rxchan_close() 14-13

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_open() on page 14-20
• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

alt_dev_reg()

Prototype

int alt_dev_reg(alt_dev* dev)

Commonly Called By

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_dev.h>

Description

The alt_dev_reg() function registers a device with the system. After it is registered, you can access a
device using the standard I/O functions.

For more information, refer to the "Developing Programs Using the Hardware Abstraction Layer" section.

The system behavior is undefined in the event that a device is registered with a name that conflicts with an
existing device or file system.

The alt_dev_reg() function is not thread-safe in the sense that no other thread can use the device list at
the time that alt_dev_reg() is called. Call alt_dev_reg() only in the following circumstances:

• When running in single-threaded mode.
• From a device initialization function called by alt_sys_init(). alt_sys_init() may only be called

by the single-threaded C startup code.

Return

The return value is zero upon success. A negative return value indicates failure.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1

14-14 alt_dev_reg()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_fs_reg() on page 14-29

alt_dma_rxchan_open()

Prototype

alt_dma_rxchan alt_dma_rxchan_open (const char* name)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_dma.h>

Description

The alt_dma_rxchan_open() function obtains an alt_dma_rxchan descriptor for a DMA receive
channel. The input argument, name, is the name of the associated physical device, for example, /dev/
dma_0.

Return

The return value is null on failure and non-null otherwise. If an error occurs, errno is set to ENODEV.

Related Information

• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_open() on page 14-20
• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

NII5V2Gen2
2015.05.14 alt_dma_rxchan_open() 14-15

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_dma_rxchan_prepare()

Prototype

int alt_dma_rxchan_prepare (alt_dma_rxchan dma,

void* data,

alt_u32 length,

alt_rxchan_done* done,

void* handle)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

See description.

Include

<sys/alt_dma.h>

Description

The alt_dma_rxchan_prepare() posts a receive request to a DMA receive channel. The input arguments
are: dma, the channel to use; data, a pointer to the location that data is to be received to; length, the
maximum length of the data to receive in bytes; done, callback function that is called after the data is
received; handle, an opaque value passed to done.

Whether this function is thread-safe, or can be called from an ISR, depends on the underlying device
driver. In general it safest to assume that it is not thread-safe.

Return

The return value is zero upon success. A negative return value indicates that the request cannot be posted.

Related Information

• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_open() on page 14-20
• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

14-16 alt_dma_rxchan_prepare()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_dma_rxchan_reg()

Prototype

int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_dma_dev.h>

Description

The alt_dma_rxchan_reg() function registers a DMA receive channel with the system.

After it is registered, a device can be accessed using the functions described in “Using DMA Devices” in
the "Developing Programs Using the Hardware Abstraction Layer" section.

System behavior is undefined in the event that a channel is registered with a name that conflicts with an
existing channel.

The alt_dma_rxchan_reg() function is not thread-safe if other threads are using the channel list at the
time that alt_dma_rxchan_reg() is called. Call alt_dma_rxchan_reg() only in the following
circumstances:

• When running in single-threaded mode.
• From a device initialization function called by alt_sys_init(). alt_sys_init() may only be called

by the single-threaded C startup code.

Return

The return value is zero upon success. A negative return value indicates failure.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_open() on page 14-20

NII5V2Gen2
2015.05.14 alt_dma_rxchan_reg() 14-17

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

alt_dma_txchan_close()

Prototype

int alt_dma_txchan_close (alt_dma_txchan txchan)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_dma.h>

Description

The alt_dma_txchan_close function notifies the system that the application has finished using the DMA
transmit channel, txchan. The current implementation always succeeds.

Return

The return value is zero on success and negative otherwise.

Related Information

• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_open() on page 14-20
• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

14-18 alt_dma_txchan_close()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_dma_txchan_ioctl()

Prototype

int alt_dma_txchan_ioctl (alt_dma_txchan dma,

int req,

void* arg)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

See description.

Include

<sys/alt_dma.h>

Description

The alt_dma_txchan_ioctl() function performs device specific I/O operations on the DMA transmit
channel, dma. For example, some drivers support options to control the width of the transfer operations.
The input argument, req, is an enumeration of the requested operation; arg is an additional argument for
the request. The interpretation of arg is request dependent.

For more information, refer to the "Generic Requests DMA Might Support" table (Table 14-1) for the
generic requests a device might support.

Whether a call to alt_dma_txchan_ioctl() is thread-safe, or can be called from an ISR, is device
dependent. In general it safest to assume that it is not thread-safe.

Do not call the alt_dma_txchan_ioctl() function while DMA transfers are pending, or unpredictable
behavior could result.

Return

A negative return value indicates failure; otherwise the interpretation of the return value is request
specific.

Related Information

• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_open() on page 14-20

NII5V2Gen2
2015.05.14 alt_dma_txchan_ioctl() 14-19

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

alt_dma_txchan_open()

Prototype

alt_dma_txchan alt_dma_txchan_open (const char* name)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_dma.h>

Description

The alt_dma_txchan_open() function obtains an alt_dma_txchan() descriptor for a DMA transmit
channel. The input argument, name, is the name of the associated physical device, for example, /dev/
dma_0.

Return

The return value is null on failure and non-null otherwise. If an error occurs, errno is set to ENODEV.

Related Information

• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

14-20 alt_dma_txchan_open()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_dma_txchan_reg()

Prototype

int alt_dma_txchan_reg (alt_dma_txchan_dev* dev)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_dma_dev.h>

Description

The alt_dma_txchan_reg() function registers a DMA transmit channel with the system.

After it is registered, a device can be accessed using the functions described in “Using DMA Devices” in
the "Developing Programs Using the Hardware Abstraction Layer" section.

System behavior is undefined in the event that a channel is registered with a name that conflicts with an
existing channel.

The alt_dma_txchan_reg() function is not thread-safe if other threads are using the channel list at the
time that alt_dma_txchan_reg() is called. Call alt_dma_txchan_reg() only in the following
circumstances:

• When running in single-threaded mode.
• From a device initialization function called by alt_sys_init(). alt_sys_init() may only be called

by the single-threaded C startup code.

Return

The return value is zero upon success. A negative return value indicates failure.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_ioctl() on page 14-19

NII5V2Gen2
2015.05.14 alt_dma_txchan_reg() 14-21

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_dma_txchan_open() on page 14-20
• alt_dma_txchan_send() on page 14-27
• alt_dma_txchan_space() on page 14-26

alt_flash_close_dev()

Prototype

void alt_flash_close_dev(alt_flash_fd* fd)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_flash.h>

Description

The alt_flash_close_dev() function closes a flash device. All subsequent calls to alt_write_flash(),
alt_read_flash(), alt_get_flash_info(), alt_erase_flash_block(), or
alt_write_flash_block() for this flash device fail.

Call the alt_flash_close_dev() function only when operating in single-threaded mode.

The only valid values for the fd parameter are those returned from the alt_flash_open_dev function. If
any other value is passed, the behavior of this function is undefined.

Return

--

Related Information

• alt_flash_open_dev() on page 14-28
• alt_get_flash_info() on page 14-29
• alt_read_flash() on page 14-47
• alt_write_flash() on page 14-52
• alt_write_flash_block() on page 14-53

14-22 alt_flash_close_dev()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_exception_cause_generated_bad_addr()

Prototype

int alt_exception_cause_generated_bad_addr (alt_exception_cause cause)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

--

Available from ISR

--

Include

<sys/alt_exceptions.h>

Description

This function validates the bad_addr argument to an instruction-related exception handler. The function
parses the handler’s cause argument to determine whether the bad_addr register contains the exception-
causing address.

If the exception is of a type that generates a valid address in bad_addr, this function returns a nonzero
value. Otherwise, it returns zero.

If the cause register is unimplemented in the Nios II processor core, this function always returns zero.

Return

A nonzero value means bad_addr contains the exception-causing address.

Zero means the value of bad_addr is to be ignored.

Related Information
alt_instruction_exception_register() on page 14-35

alt_erase_flash_block()

Prototype

int alt_erase_flash_block(alt_flash_fd* fd,

int offset,

int length)

Commonly Called By

C/C++ programs

NII5V2Gen2
2015.05.14 alt_exception_cause_generated_bad_addr() 14-23

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_flash.h>

Description

The alt_erase_flash_block() function erases an individual flash erase block. The parameter fd
specifies the flash device; offset is the offset within the flash of the block to erase; length is the size of
the block to erase. No error checking is performed to check that this is a valid block, or that the length is
correct.

For more information, refer to “Using Flash Devices” in the "Developing Programs Using the Hardware
Abstraction Layer" chapter.

Call the alt_erase_flash_block() function only when operating in single-threaded mode.

The only valid values for the fd parameter are those returned from the alt_flash_open_dev function. If
any other value is passed, the behavior of this function is undefined.

Return

The return value is zero upon success. A negative return value indicates failure.

Related Information
Developing Programs Using the Hardware Abstraction Layer on page 6-1

alt_dma_rxchan_ioctl()

Prototype

int alt_dma_rxchan_ioctl (alt_dma_rxchan dma,

int req,

void* arg)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

14-24 alt_dma_rxchan_ioctl()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Available from ISR

See description.

Include

<sys/alt_dma.h>

Description

The alt_dma_rxchan_ioctl() function performs DMA I/O operations on the DMA receive channel,
dma. The I/O operations are device specific. For example, some DMA drivers support options to control
the width of the transfer operations. The input argument, req, is an enumeration of the requested
operation; arg is an additional argument for the request. The interpretation of arg is request dependent.

Whether a call to alt_dma_rxchan_ioctl() is thread-safe, or can be called from an ISR, is device
dependent. In general it safest to assume that it is not thread-safe.

Do not call the alt_dma_rxchan_ioctl() function while DMA transfers are pending, or unpredictable
behavior could result.

For device-specific information about the Altera DMA controller core, refer to the "DMA Controller
Core" chapter in the Embedded Peripherals IP User Guide.

Return

A negative return value indicates failure. The interpretation of nonnegative return values is request
specific.

Table 14-1: Generic Requests DMA Might Support

Request Meaning

ALT_DMA_SET_MODE_8 Transfer data in units of 8 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_16 Transfer data in units of 16 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_32 Transfer data in units of 32 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_64 Transfer data in units of 64 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_128 Transfer data in units of 128 bits. The value of arg is ignored.

ALT_DMA_GET_MODE Return the transfer width. The value of arg is ignored.

ALT_DMA_TX_ONLY_ON The ALT_DMA_TX_ONLY_ON request causes a DMA channel to operate in
a mode in which only the transmitter is under software control. The
other side writes continuously from a single location. The address to
which to write is the argument to this request.

ALT_DMA_TX_ONLY_OFF Return to the default mode, in which both the receive and transmit
sides of the DMA can be under software control.

ALT_DMA_RX_ONLY_ON The ALT_DMA_RX_ONLY_ON request causes a DMA channel to operate in
a mode in which only the receiver is under software control. The other
side reads continuously from a single location. The address to read is
the argument to this request.

NII5V2Gen2
2015.05.14 alt_dma_rxchan_ioctl() 14-25

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Request Meaning

ALT_DMA_RX_ONLY_OFF Return to the default mode, in which both the receive and transmit
sides of the DMA can be under software control.

Related Information
DMA Controller Core
For more information, refer to the "DMA Controller Core" section of the Embedded Peripherals IP User
Guide.

alt_dma_txchan_space()

Prototype

int alt_dma_txchan_space (alt_dma_txchan dma)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

See description/

Include

<sys/alt_dma.h>

Description

The alt_dma_txchan_space() function returns the number of transmit requests that can be posted to
the specified DMA transmit channel, dma. A negative value indicates that the value cannot be determined.

Whether this function is thread-safe, or can be called from an ISR, depends on the underlying device
driver. In general it safest to assume that it is not thread-safe.

Return

Returns the number of transmit requests that can be posted.

Related Information

• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_prepare() on page 14-16
• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18

14-26 alt_dma_txchan_space()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

https://documentation.altera.com/#/link/sfo1400787952932/iga1401397703359/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_open() on page 14-20
• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_send() on page 14-27

alt_dma_txchan_send()

Prototype

int alt_dma_txchan_send (alt_dma_txchan dma,

const void* from,

alt_u32 length,

alt_txchan_done* done,

void* handle)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

See description.

Include

<sys/alt_dma.h>

Description

The alt_dma_txchan_send() function posts a transmit request to a DMA transmit channel. The input
arguments are: dma, the channel to use; from, a pointer to the start of the data to send; length, the length
of the data to send in bytes; done, a callback function that is called after the data is sent; and handle, an
opaque value passed to done.

Whether this function is thread-safe, or can be called from an ISR, depends on the underlying device
driver. In general it safest to assume that it is not thread-safe.

Return

The return value is negative if the request cannot be posted, and zero otherwise.

Related Information

• alt_dma_rxchan_close() on page 14-13
• alt_dma_rxchan_depth() on page 14-12
• alt_dma_rxchan_open() on page 14-15
• alt_dma_rxchan_prepare() on page 14-16

NII5V2Gen2
2015.05.14 alt_dma_txchan_send() 14-27

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_dma_rxchan_reg() on page 14-17
• alt_dma_txchan_close() on page 14-18
• alt_dma_txchan_ioctl() on page 14-19
• alt_dma_txchan_open() on page 14-20
• alt_dma_txchan_reg() on page 14-21
• alt_dma_txchan_space() on page 14-26

alt_flash_open_dev()

Prototype

alt_flash_fd* alt_flash_open_dev(const char* name)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_flash.h>

Description

The alt_flash_open_dev() function opens a flash device. After it is opened, you can perform the
following operations:

• Write to a flash device using alt_write_flash()
• Read from a flash device using alt_read_flash()
• Control individual flash blocks using alt_get_flash_info(), alt_erase_flash_block(), or

alt_write_flash_block().

Call the alt_flash_open_dev function only when operating in single-threaded mode.

Return

The return value is zero upon failure. Any other value indicates success.

Related Information

• alt_flash_close_dev() on page 14-22
• alt_get_flash_info() on page 14-29
• alt_read_flash() on page 14-47
• alt_write_flash() on page 14-52
• alt_write_flash_block() on page 14-53

14-28 alt_flash_open_dev()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_fs_reg()

Prototype

int alt_fs_reg (alt_dev* dev)

Commonly Called By

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_dev.h>

Description

The alt_fs_reg() function registers a file system with the HAL. After it is registered, a file system can be
accessed using the standard I/O functions.

For more information, refer to the "Developing Programs Using the Hardware Abstraction Layer" section.

System behavior is undefined in the event that a file system is registered with a name that conflicts with an
existing device or file system.

alt_fs_reg() is not thread-safe if other threads are using the device list at the time that alt_fs_reg() is
called. Call alt_fs_reg() only in the following circumstances:

• When running in single-threaded mode.
• From a device initialization function called by alt_sys_init(). alt_sys_init() may only be called

by the single-threaded C startup code.

Return

The return value is zero upon success. A negative return value indicates failure.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• alt_dev_reg() on page 14-14

alt_get_flash_info()

Prototype

int alt_get_flash_info(alt_flash_fd* fd,

flash_region** info,

int* number_of_regions)

NII5V2Gen2
2015.05.14 alt_fs_reg() 14-29

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_flash.h>

Description

The alt_get_flash_info() function gets the details of the erase region of a flash part. The flash part is
specified by the descriptor fd, a pointer to the start of the flash_region structures is returned in the info
parameter, and the number of flash regions are returned in number of regions.

Call this function only when operating in single-threaded mode.

The only valid values for the fd parameter are those returned from the alt_flash_open_dev function. If
any other value is passed, the behavior of this function is undefined.

Return

The return value is zero upon success. A negative return value indicates failure.

Related Information

• alt_flash_close_dev() on page 14-22
• alt_flash_open_dev() on page 14-28
• alt_read_flash() on page 14-47
• alt_write_flash() on page 14-52
• alt_write_flash_block() on page 14-53

alt_ic_irq_disable()

Prototype

int alt_ic_irq_disable (alt_u32 ic_id, alt_u32 irq)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

14-30 alt_ic_irq_disable()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Available from ISR

No.

Include

<sys/alt_irq.h>

Description

The alt_ic_irq_disable() function disables a single interrupt.

The function arguments are as follows:

• ic_id is the interrupt controller identifier (ID) as defined in system.h, identifying the external
interrupt controller in the daisy chain. This argument is ignored if the external interrupt controller
interface is not implemented.

• irq is the interrupt request (IRQ) number, as defined in system.h, identifying the interrupt to enable.
• A driver for an external interrupt controller (EIC) must implement this function.

Return

This function returns zero if successful, or nonzero otherwise. The function fails if the irq parameter is
greater than the maximum interrupt port number supported by the external interrupt controller.

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_ic_irq_enabled()

Prototype

int alt_ic_irq_enabled (alt_u32 ic_id, alt_u32 irq)

Commonly Called By

C/C++ programs

Device drivers

NII5V2Gen2
2015.05.14 alt_ic_irq_enabled() 14-31

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_irq.h>

Description

This function determines whether a specified interrupt is enabled.

The function arguments are as follows:

• ic_id is the interrupt controller ID as defined in system.h, identifying the external interrupt controller
in the daisy chain. This argument is ignored if the external interrupt controller interface is not
implemented.

• irq is the IRQ number, as defined in system.h, identifying the interrupt to enable.
• A driver for an EIC must implement this function.

Return

Returns zero if the specified interrupt is disabled, and nonzero otherwise.

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_ic_isr_register()

Prototype

int alt_ic_isr_register (alt_u32 ic_id,

alt_u32 irq,

alt_isr_func isr,

void* isr_context,

14-32 alt_ic_isr_register()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

void* flags)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_irq.h>

Description

The alt_ic_isr_register() function registers an ISR. If the function is successful, the requested
interrupt is enabled on return, and isr and isr_context are inserted in the vector table.

The function arguments are as follows:

• ic_id is the interrupt controller ID as defined in system.h, identifying the external interrupt controller
in the daisy chain. This argument is ignored if the external interrupt controller interface is not
implemented.

• irq is the IRQ number, as defined in system.h, identifying the interrupt to register.
• isr is the function that is called when the interrupt is accepted.
• isr_context is the input argument to isr. isr_context points to a data structure associated with the

device driver instance.
• flags is reserved.

The ISR function prototype is defined as follows:

typedef void (*alt_isr_func) (void* isr_context);

Calls to alt_ic_isr_register() replace previously registered handlers for interrupt irq.

If isr is set to null, the interrupt is disabled.
• A driver for an EIC must implement this function.

Return

This function returns zero if successful, or nonzero otherwise. The function fails if the irq parameter is
greater than the maximum interrupt port number supported by the external interrupt controller.

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_irq_cpu_enable_interrupts () on page 14-37

NII5V2Gen2
2015.05.14 alt_ic_isr_register() 14-33

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_ic_irq_enable()

Prototype

int alt_ic_irq_enable (alt_u32 ic_id, alt_u32 irq)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_irq.h>

Description

The alt_ic_irq_enable() function enables a single interrupt.

The function arguments are as follows:

• ic_id is the interrupt controller ID as defined in system.h, identifying the external interrupt controller
in the daisy chain. This argument is ignored if the external interrupt controller interface is not
implemented.

• irq is the IRQ number, as defined in system.h, identifying the interrupt to enable.
• A driver for an EIC must implement this function.

Return

This function returns zero if successful, or nonzero otherwise. The function fails if the irq parameter is
greater than the maximum interrupt port number supported by the external interrupt controller.

Related Information

• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32

14-34 alt_ic_irq_enable()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_instruction_exception_register()

Prototype

void alt_instruction_exception_register (

alt_exception_result (*handler)

(alt_exception_cause cause,

alt_u32 exception_pc,

alt_u32 bad_addr))

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

Yes.

Include

<sys/alt_exceptions.h>

Description

The HAL API function alt_instruction_exception_register() registers an instruction-related
exception handler. The handler argument is a pointer to the instruction-related exception handler.

You can only use this API function if you have enabled the hal.enable_instruc-
tion_related_exceptions_api setting in the board support package (BSP).

For more information, refer to “Settings Managed by the Software Build Tools” in the "Nios II Software
Build Tools Reference" chapter.

Register the instruction-related exception handler as early as possible in function main(). This allows you
to handle abnormal conditions during startup.

You can register an exception handler from the alt_main() function.

NII5V2Gen2
2015.05.14 alt_instruction_exception_register() 14-35

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A call to alt_instruction_exception_register() replaces the previously registered exception handler,
if any. If handler is set to null, the instruction-related exception handler is removed.

For more information about usage, refer to the "Exception Handling" section.

Return

--

Related Information

• alt_exception_cause_generated_bad_addr() on page 14-23
• alt_irq_register() on page 14-43

alt_irq_disable()

Prototype

int alt_irq_disable (alt_u32 id)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<priv/alt_legacy_irq.h>

Description

The alt_irq_disable() function disables a single interrupt.

This function is part of the legacy HAL interrupt API, which is deprecated. Altera recommends using the
enhanced HAL interrupt API.

For more information about using the enhanced HAL interrupt API, refer to “Nios II Interrupt Service
Routines” in the "Exception Handling" chapter.

Return

The return value is zero.

Related Information

• Nios II Interrupt Service Routines on page 8-6
• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31

14-36 alt_irq_disable()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_irq_cpu_enable_interrupts ()

Prototype

void alt_irq_cpu_enable_interrupts ()

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_irq.h>

Description

The alt_irq_cpu_enable_interrupts () function enables the CPU to start taking interrupts.

Return

--

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40

NII5V2Gen2
2015.05.14 alt_irq_cpu_enable_interrupts () 14-37

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_irq_disable_all()

Prototype

alt_irq_context alt_irq_disable_all (void)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<sys/alt_irq.h>

Description

The alt_irq_disable_all() function disables all maskable interrupts. Nonmaskable interrupts (NMIs)
are unaffected.

Return

Pass the return value as the input argument to a subsequent call to alt_irq_enable_all().

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

14-38 alt_irq_disable_all()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_irq_enable()

Prototype

int alt_irq_enable (alt_u32 id)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<priv/alt_legacy_irq.h>

Description

The alt_irq_enable() function enables a single interrupt.

This function is part of the legacy HAL interrupt API, which is deprecated. Altera recommends using the
enhanced HAL interrupt API.

Return

The return value is zero.

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_irq_enable_all()

Prototype

void alt_irq_enable_all (alt_irq_context context)

NII5V2Gen2
2015.05.14 alt_irq_enable() 14-39

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_irq.h>

Description

The alt_irq_enable_all() function enables all interrupts that were previously disabled by
alt_irq_disable_all(). The input argument, context, is the value returned by a previous call to
alt_irq_disable_all(). Using context allows nested calls to alt_irq_disable_all() and
alt_irq_enable_all(). As a result, alt_irq_enable_all() does not necessarily enable all interrupts,
such as interrupts explicitly disabled by alt_irq_disable().

Return

--

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_irq_enabled()

Prototype

int alt_irq_enabled (void)

Commonly Called By

Device drivers

14-40 alt_irq_enabled()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_irq.h>

Description

Determines whether maskable exceptions (status.PIE) are enabled.

For more information about using the enhanced HAL interrupt API, refer to “Nios II Interrupt Service
Routines” in the "Exception Handling" chapter.

Return

Returns zero if interrupts are disabled, and non-zero otherwise.

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_irq_init()

Prototype

void alt_irq_init (void* base)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

NII5V2Gen2
2015.05.14 alt_irq_init() 14-41

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Available from ISR

Yes.

Include

<sys/alt_irq.h>

Description

The alt_irq_init () function calls the initilization macros for all interrupt controllers in the system at
config time, before any other non-interrupt controller driver is initialized. The "base" parameter is ignored
and only present for backwards-compatibility. It is recommended that NULL is passed in for the "base"
parameter.

Return

--

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_pending () on page 14-42
• alt_irq_register() on page 14-43

alt_irq_pending ()

Prototype

void alt_irq_pending (void)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

14-42 alt_irq_pending ()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Include

<sys/alt_irq.h>

Description

The alt_irq_pending () function returns a bit list of the current pending interrupts. This is used by
alt_irq_handler() to determine which registered interrupt handlers should be called. This routine is
only available for the Nios II internal interrupt controller.

Return

--

Related Information

• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_register() on page 14-43

alt_irq_register()

Prototype

int alt_irq_register (alt_u32 id,

void* context,

void (*isr)(void*, alt_u32))

Commonly Called By

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<priv/alt_legacy_irq.h>

NII5V2Gen2
2015.05.14 alt_irq_register() 14-43

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

The alt_irq_register() function registers an ISR. If the function is successful, the requested interrupt
is enabled on return.

The input argument id is the interrupt to enable. isr is the function that is called when the interrupt is
active. context and id are the two input arguments to isr.

Calls to alt_irq_register() replace previously registered handlers for interrupt id.

If irq_handler is set to null, the interrupt is disabled.

1 This function is part of the legacy HAL interrupt API, which is deprecated. Altera recommends using
the enhanced HAL interrupt API.

For more information about using the enhanced HAL interrupt API, refer to “Nios II Interrupt Service
Routines” in the "Exception Handling" chapter of the Nios II Software Developer’s Handbook.

Return

The alt_irq_register() function returns zero if successful, or non-zero otherwise.

Related Information

• Nios II Interrupt Service Routines on page 8-6
• alt_ic_irq_enable() on page 14-34
• alt_ic_irq_enabled() on page 14-31
• alt_ic_isr_register() on page 14-32
• alt_irq_cpu_enable_interrupts () on page 14-37
• alt_irq_disable() on page 14-36
• alt_irq_disable_all() on page 14-38
• alt_irq_enable() on page 14-39
• alt_irq_enable_all() on page 14-39
• alt_irq_enabled() on page 14-40
• alt_irq_init() on page 14-41
• alt_irq_pending () on page 14-42

alt_llist_insert()

Prototype

void alt_llist_insert(alt_llist* list,

alt_llist* entry)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

14-44 alt_llist_insert()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Available from ISR

Yes.

Include

<sys/alt_llist.h>

Description

The alt_llist_insert() function inserts the doubly linked list entry entry in the list list. This
operation is not reentrant. For example, if a list can be manipulated from different threads, or from within
both application code and an ISR, some mechanism is required to protect access to the list. Interrupts can
be locked, or in MicroC/OS-II, a mutex can be used.

Return

--

Related Information
alt_llist_remove() on page 14-45

alt_llist_remove()

Prototype

void alt_llist_remove(alt_llist* entry)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

Yes.

Include

<sys/alt_llist.h>

Description

The alt_llist_remove() function removes the doubly linked list entry entry from the list it is currently
a member of. This operation is not reentrant. For example if a list can be manipulated from different
threads, or from within both application code and an ISR, some mechanism is required to protect access
to the list. Interrupts can be locked, or in MicroC/OS-II, a mutex can be used.

Return

--

NII5V2Gen2
2015.05.14 alt_llist_remove() 14-45

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
alt_llist_insert() on page 14-44

alt_load_section()

Prototype

void alt_load_section(alt_u32* from,

alt_u32* to,

alt_u32* end)

Commonly Called By

C/C++ programs

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_load.h>

Description

When operating in run-from-flash mode, the sections .exceptions, .rodata, and .rwdata are
automatically loaded from the boot device to RAM at boot time. However, if there are any additional
sections that require loading, the alt_load_section() function loads them manually before these
sections are used.

The input argument from is the start address in the boot device of the section; to is the start address in
RAM of the section, and end is the end address in RAM of the section.

To load one of the additional memory sections provided by the default linker script, use the macro
ALT_LOAD_SECTION_BY_NAME rather than calling alt_load_section() directly. For example, to load the
section .onchip_ram, use the following code:

ALT_LOAD_SECTION_BY_NAME(onchip_ram);

The leading ‘.’ is omitted in the section name. This macro is defined in the header sys/alt_load.h.

Return

--

alt_nticks()

Prototype

alt_u32 alt_nticks (void)

14-46 alt_load_section()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_alarm.h>

Description

The alt_nticks() function.

Return

Returns the number of elapsed system clock tick since reset. It returns zero if there is no system clock
available.

Related Information

• alt_alarm_start() on page 14-10
• alt_alarm_stop() on page 14-11
• alt_sysclk_init() on page 14-65
• alt_tick() on page 14-48
• alt_ticks_per_second() on page 14-49
• gettimeofday() on page 14-72
• settimeofday() on page 14-61
• times() on page 14-67
• usleep() on page 14-70

alt_read_flash()

Prototype

int alt_read_flash(alt_flash_fd* fd,

int offset,

void* dest_addr,

int length)

Commonly Called By

C/C++ programs

Device drivers

NII5V2Gen2
2015.05.14 alt_read_flash() 14-47

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_flash.h>

Description

The alt_read_flash() function reads data from flash. length bytes are read from the flash fd, starting
offset bytes from the beginning of the flash and are written to the location dest_addr.

Call this function only when operating in single-threaded mode.

The only valid values for the fd parameter are those returned from the alt_flash_open_dev function. If
any other value is passed, the behavior of this function is undefined.

Return

The return value is zero on success and nonzero otherwise.

Related Information

• alt_flash_close_dev() on page 14-22
• alt_flash_open_dev() on page 14-28
• alt_get_flash_info() on page 14-29
• alt_write_flash() on page 14-52
• alt_write_flash_block() on page 14-53

alt_tick()

Prototype

void alt_tick (void)

Commonly Called By

Device drivers

Thread-safe

No.

Available from ISR

Yes.

Include

<sys/alt_alarm.h>

14-48 alt_tick()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Only the system clock driver may call the alt_tick() function. The driver is responsible for making
periodic calls to this function at the rate specified in the call to alt_sysclk_init(). This function
provides notification to the system that a system clock tick has occurred. This function runs as a part of
the ISR for the system clock driver.

Return

--

Related Information

• alt_alarm_start() on page 14-10
• alt_alarm_stop() on page 14-11
• alt_nticks() on page 14-46
• alt_sysclk_init() on page 14-65
• alt_ticks_per_second() on page 14-49
• gettimeofday() on page 14-72
• settimeofday() on page 14-61
• times() on page 14-67
• usleep() on page 14-70

alt_ticks_per_second()

Prototype

alt_u32 alt_ticks_per_second (void)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/alt_alarm.h>

Description

The alt_ticks_per_second() function returns the number of system clock ticks that elapse per second.
If there is no system clock available, the return value is zero.

Return

Returns the number of system clock ticks that elapse per second.

NII5V2Gen2
2015.05.14 alt_ticks_per_second() 14-49

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• alt_alarm_start() on page 14-10
• alt_alarm_stop() on page 14-11
• alt_nticks() on page 14-46
• alt_sysclk_init() on page 14-65
• alt_tick() on page 14-48
• gettimeofday() on page 14-72
• settimeofday() on page 14-61
• times() on page 14-67
• usleep() on page 14-70

alt_timestamp()

Prototype

alt_u32 alt_timestamp (void)

Commonly Called By

C/C++ programs

Thread-safe

See description.

Available from ISR

See description.

Include

<sys/alt_timestamp.h>

Description

The alt_timestamp() function returns the current value of the timestamp counter.

For more information, refer to “Using Timer Devices” in the "Developing Programs Using the Hardware
Abstraction Layer" chapter.

The implementation of this function is provided by the timestamp driver. Therefore, whether this
function is thread-safe and or available at interrupt level depends on the underlying driver.

Always call the alt_timestamp_start() function before any calls to alt_timestamp(). Otherwise the
behavior of alt_timestamp() is undefined.

Return

Returns the current value of the timestamp counter.

Related Information

• alt_timestamp_freq() on page 14-51
• alt_timestamp_start() on page 14-51

14-50 alt_timestamp()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

alt_timestamp_freq()

Prototype

alt_u32 alt_timestamp_freq (void)

Commonly Called By

C/C++ programs

Thread-safe

See description.

Available from ISR

See description.

Include

<sys/alt_timestamp.h>

Description

The alt_timestamp_freq() function returns the rate at which the timestamp counter increments.

For more information, refer to “Using Timer Devices” in the "Developing Programs Using the Hardware
Abstraction Layer" chapter.

The implementation of this function is provided by the timestamp driver. Therefore, whether this
function is thread-safe and or available at interrupt level depends on the underlying driver.

Return

The returned value is the number of counter ticks per second.

Related Information

• alt_timestamp() on page 14-50
• alt_timestamp_start() on page 14-51

alt_timestamp_start()

Prototype

int alt_timestamp_start (void)

Commonly Called By

C/C++ programs

Thread-safe

See description.

NII5V2Gen2
2015.05.14 alt_timestamp_freq() 14-51

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Available from ISR

See description.

Include

<sys/alt_timestamp.h>

Description

The alt_timestamp_start() function starts the system timestamp counter.

For more information, refer to “Using Timer Devices” in the "Developing Programs Using the Hardware
Abstraction Layer" chapter.

The implementation of this function is provided by the timestamp driver. Therefore, whether this
function is thread-safe and or available at interrupt level depends on the underlying driver.

This function resets the counter to zero, and starts the counter running.

Return

The return value is zero on success and nonzero otherwise.

Related Information

• alt_timestamp() on page 14-50
• alt_timestamp_freq() on page 14-51

alt_write_flash()

Prototype

int alt_write_flash(alt_flash_fd* fd,

int offset,

const void* src_addr,

int length)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_flash.h>

14-52 alt_write_flash()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

The alt_write_flash() function writes data to flash. The data to be written is at address src_addr.
length bytes are written to the flash fd, offset bytes from the beginning of the flash device address
space.

Call this function only when operating in single-threaded mode. This function does not preserve any
unwritten areas of any flash sectors affected by this write.

For more information, refer to “Using Flash Devices” in the "Developing Programs Using the Hardware
Abstraction Layer" chapter.

The only valid values for the fd parameter are those returned from the alt_flash_open_dev function. If
any other value is passed, the behavior of this function is undefined.

Return

The return value is zero on success and nonzero otherwise.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• alt_flash_close_dev() on page 14-22
• alt_flash_open_dev() on page 14-28
• alt_get_flash_info() on page 14-29
• alt_read_flash() on page 14-47
• alt_write_flash_block() on page 14-53

alt_write_flash_block()

Prototype

int alt_write_flash_block(alt_flash_fd* fd,

int block_offset,

int data_offset,

const void *data,

int length)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

NII5V2Gen2
2015.05.14 alt_write_flash_block() 14-53

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Include

<sys/alt_flash.h>

Description

The alt_write_flash_block() function writes one block of data of flash. The data to be written is at
address data. length bytes are written to the flash fd, into the block starting at offset block_offset from
the beginning of the flash address space. The data starts at offset data_offset from the beginning of the
flash address space.

No check is performed on any of the parameters.

For more information, refer to “Using Flash Devices” in the "Developing Programs Using the Hardware
Abstraction Layer" chapter.

Call this function only when operating in single-threaded mode.

The only valid values for the fd parameter are those returned from the alt_flash_open_dev function. If
any other value is passed, the behavior of this function is undefined.

Return

The return value is zero on success and nonzero otherwise.

Related Information

• Developing Programs Using the Hardware Abstraction Layer on page 6-1
• alt_flash_close_dev() on page 14-22
• alt_flash_open_dev() on page 14-28
• alt_get_flash_info() on page 14-29
• alt_read_flash() on page 14-47
• alt_write_flash() on page 14-52

close()

Prototype

int close (int fd)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

No.

Include

<unistd.h>

14-54 close()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

The close() function is the standard UNIX-style close() function, which closes the file descriptor fd.

Calls to close() are thread-safe only if the implementation of close() provided by the driver that is
manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin, and stderr, or any value returned from a call to
open().

Return

The return value is zero on success, and –1 otherwise. If an error occurs, errno is set to indicate the cause.

Related Information
newlib Library Documentation

fstat()

Prototype

int fstat (int fd, struct stat *st)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

No.

Include

<sys/stat.h>

Description

The fstat() function obtains information about the capabilities of an open file descriptor. The
underlying device driver fills in the input st structure with a description of its functionality. Refer to the
header file sys/stat.h provided with the compiler for the available options.

By default, file descriptors are marked as character devices, unless the underlying driver provides its own
implementation of the fstat() function.

Calls to fstat() are thread-safe only if the implementation of fstat() provided by the driver that is
manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin, and stderr, or any value returned from a call to
open().

NII5V2Gen2
2015.05.14 fstat() 14-55

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return

The return value is zero on success, or –1 otherwise. If the call fails, errno is set to indicate the cause of
the error.

Related Information

• fcntl() on page 14-57
• ioctl() on page 14-73
• isatty() on page 14-74
• lseek() on page 14-64
• open() on page 14-66
• read() on page 14-68
• stat() on page 14-60
• write() on page 14-69
• newlib Library Documentation

fork()

Prototype

pid_t fork (void)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

Include

<unistd.h>

Description

The fork() function is only provided for compatibility with newlib.

Return

Calls to fork() always fails with the return code –1 and errno set to ENOSYS.

Related Information
newlib Library Documentation

14-56 fork()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

fcntl()

Prototype

int fcntl(int fd, int cmd)

Commonly Called By

C/C++ programs

Thread-safe

No.

Available from ISR

No.

Include

<unistd.h>

<fcntl.h>

Description

The fcntl() function is a limited implementation of the standard fcntl() system call, which can change
the state of the flags associated with an open file descriptor. Normally these flags are set during the call to
open(). The main use of this function is to change the state of a device from blocking to nonblocking (for
device drivers that support this feature).

The input argument fd is the file descriptor to be manipulated. cmd is the command to execute, which can
be either F_GETFL (return the current value of the flags) or F_SETFL (set the value of the flags).

Return

If cmd is F_SETFL, the argument arg is the new value of flags, otherwise arg is ignored. Only the flags
O_APPEND and O_NONBLOCK can be updated by a call to fcntl(). All other flags remain unchanged. The
return value is zero on success, or –1 otherwise.

If cmd is F_GETFL, the return value is the current value of the flags. If an error occurs, –1 is returned.

In the event of an error, errno is set to indicate the cause.

Related Information

• fstat() on page 14-55
• ioctl() on page 14-73
• isatty() on page 14-74
• lseek() on page 14-64
• open() on page 14-66
• read() on page 14-68
• stat() on page 14-60
• write() on page 14-69
• newlib Library Documentation

NII5V2Gen2
2015.05.14 fcntl() 14-57

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

execve()

Prototype

int execve(const char *path,

char *const argv[],

char *const envp[])

Commonly Called By

C/C++ programs

Thread-safe

Yes.

Available from ISR

Yes.

Include

<unistd.h>

Description

The execve() function is only provided for compatibility with newlib.

Return

Calls to execve() always fail with the return code –1 and errno set to ENOSYS.

Related Information
newlib Library Documentation

getpid()

Prototype

pid_t getpid (void)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

14-58 execve()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Include

<unistd.h>

Description

The getpid() function is provided for newlib compatibility and obtains the current process ID.

Return

Because HAL systems cannot contain multiple processes, getpid() always returns the same ID number.

Related Information
newlib Library Documentation

kill()

Prototype

int kill(int pid, int sig)

Commonly Called By

newlib C library

Thread-safe

Yes.

Available from ISR

Yes.

Include

<signal.h>

Description

The kill() function is used by newlib to send signals to processes. The input argument pid is the ID of
the process to signal, and sig is the signal to send. As there is only a single process in the HAL, the only
valid values for pid are either the current process ID, as returned by getpid(), or the broadcast values,
that is, pid must be less than or equal to zero.

The following signals result in an immediate shutdown of the system, without call to exit(): SIGABRT,
SIGALRM, SIGFPE, SIGILL, SIGKILL, SIGPIPE, SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2, SIGBUS,
SIGPOLL, SIGPROF, SIGSYS, SIGTRAP, SIGVTALRM, SIGXCPU, and SIGXFSZ.

The following signals are ignored: SIGCHLD and SIGURG.

All the remaining signals are treated as errors.

Return

The return value is zero on success, or –1 otherwise. If the call fails, errno is set to indicate the cause of
the error.

NII5V2Gen2
2015.05.14 kill() 14-59

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
newlib Library Documentation

stat()

Prototype

int stat(const char *file_name,

struct stat *buf);

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

No.

Include

<sys/stat.h>

Description

The stat() function is similar to the fstat() function—It obtains status information about a file.
Instead of using an open file descriptor, like fstat(), stat() takes the name of a file as an input
argument.

Calls to stat() are thread-safe only if the implementation of stat() provided by the driver that is
manipulated is thread-safe.

Internally, the stat() function is implemented as a call to fstat().

Return

--

Related Information

• fcntl() on page 14-57
• fstat() on page 14-55
• ioctl() on page 14-73
• isatty() on page 14-74
• lseek() on page 14-64
• open() on page 14-66
• read() on page 14-68
• write() on page 14-69
• newlib Library Documentation

14-60 stat()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

settimeofday()

Prototype

int settimeofday (const struct timeval *t,

const struct timezone *tz)

Commonly Called By

C/C++ programs

Thread-safe

No.

Available from ISR

Yes.

Include

<sys/time.h>

Description

If the settimeofday() function is called concurrently with a call to gettimeofday(), the value returned
by gettimeofday() is unreliable.

Return

The return value is zero on success. If no system clock is available, the return value is -1, and errno is set
to ENOSYS.

Related Information

• alt_alarm_start() on page 14-10
• alt_alarm_stop() on page 14-11
• alt_nticks() on page 14-46
• alt_sysclk_init() on page 14-65
• alt_tick() on page 14-48
• alt_ticks_per_second() on page 14-49
• gettimeofday() on page 14-72
• times() on page 14-67
• usleep() on page 14-70

wait()

Prototype

int wait(int *status)

NII5V2Gen2
2015.05.14 settimeofday() 14-61

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Commonly Called By

newlib C library

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/wait.h>

Description

newlib uses the wait() function to wait for all child processes to exit. Because the HAL does not support
spawning child processes, this function returns immediately.

Return

On return, the content of status is set to zero, which indicates there is no child processes.

The return value is always –1 and errno is set to ECHILD, which indicates that there are no child processes
to wait for.

Related Information
newlib Library Documentation

unlink()

Prototype

int unlink(char *name)

Commonly Called By

newlib C library

Thread-safe

Yes.

Available from ISR

Yes.

Include

<unistd.h>

Description

The unlink() function is only provided for compatibility with newlib.

14-62 unlink()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return

Calls to unlink() always fails with the return code –1 and errno set to ENOSYS.

Related Information
newlib Library Documentation

sbrk()

Prototype

caddr_t sbrk(int incr)

Commonly Called By

newlib C library

Thread-safe

No.

Available from ISR

No.

Include

<unistd.h>

Description

The sbrk() function dynamically extends the data segment for the application. The input argument incr
is the size of the block to allocate. Do not call sbrk() directly. If you wish to dynamically allocate
memory, use the newlib malloc() function.

Return

--

Related Information
newlib Library Documentation

link()

Prototype

int link(const char *_path1,

const char *_path2)

Commonly Called By

newlib C library

Thread-safe

Yes.

NII5V2Gen2
2015.05.14 sbrk() 14-63

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Available from ISR

Yes.

Include

<unistd.h>

Description

The link() function is only provided for compatibility with newlib.

Return

Calls to link() always fails with the return code –1 and errno set to ENOSYS.

Related Information
newlib Library Documentation

lseek()

Prototype

off_t lseek(int fd, off_t ptr, int whence)

Commonly Called By

C/C++ programs

newlib C library

Thread-safe

See description.

Available from ISR

No.

Include

<unistd.h>

Description

The lseek() function moves the read/write pointer associated with the file descriptor fd. lseek() is
wrapper function that passes control directly to the lseek() function registered for the driver associated
with the file descriptor. If the driver does not provide an implementation of lseek(), an error is reported.

lseek() corresponds to the standard UNIX lseek() function.

14-64 lseek()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the following values for the input parameter, whence:

• SEEK_SET—The offset is set to ptr bytes.
• SEEK_CUR—The offset is incremented by ptr bytes.
• SEEK_END—The offset is set to the end of the file plus ptr bytes.

Calls to lseek() are thread-safe only if the implementation of lseek() provided by the driver that is
manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin, and stderr, or any value returned from a call to
open().

Return

On success, the return value is a nonnegative file pointer. The return value is –1 in the event of an error. If
the call fails, errno is set to indicate the cause of the error.

Related Information

• fcntl() on page 14-57
• fstat() on page 14-55
• ioctl() on page 14-73
• isatty() on page 14-74
• open() on page 14-66
• read() on page 14-68
• stat() on page 14-60
• write() on page 14-69
• newlib Library Documentation

alt_sysclk_init()

Prototype

int alt_sysclk_init (alt_u32 nticks)

Commonly Called By

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_alarm.h>

Description

The alt_sysclk_init() function registers the presence of a system clock driver. The input argument is
the number of ticks per second at which the system clock is run.

NII5V2Gen2
2015.05.14 alt_sysclk_init() 14-65

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The expectation is that this function is only called from within alt_sys_init(), that is, while the system
is running in single-threaded mode. Concurrent calls to this function might lead to unpredictable results.

Return

This function returns zero on success; otherwise it returns a negative value. The call can fail if a system
clock driver is already registered, or if no system clock device is available.

Related Information

• alt_alarm_start() on page 14-10
• alt_alarm_stop() on page 14-11
• alt_nticks() on page 14-46
• alt_tick() on page 14-48
• alt_ticks_per_second() on page 14-49
• gettimeofday() on page 14-72
• settimeofday() on page 14-61
• times() on page 14-67
• usleep() on page 14-70

open()

Prototype

int open (const char* pathname, int flags, mode_t mode)

Commonly Called By

C/C++ programs

Thread-safe

See description.

Available from ISR

No.

Include

<unistd.h>

<fcntl.h>

Description

The open() function opens a file or device and returns a file descriptor (a small, nonnegative integer for
use in read, write, etc.)

flags is one of: O_RDONLY, O_WRONLY, or O_RDWR, which request opening the file in read-only, write-only,
or read/write mode, respectively.

You can also bitwise-OR flags with O_NONBLOCK, which causes the file to be opened in nonblocking
mode. Neither open() nor any subsequent operation on the returned file descriptor causes the calling
process to wait.

14-66 open()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Not all file systems/devices recognize this option.

mode specifies the permissions to use, if a new file is created. It is unused by current file systems, but is
maintained for compatibility.

Calls to open() are thread-safe only if the implementation of open() provided by the driver that is
manipulated is thread-safe.

Return

The return value is the new file descriptor, and –1 otherwise. If an error occurs, errno is set to indicate the
cause.

Related Information

• fcntl() on page 14-57
• fstat() on page 14-55
• ioctl() on page 14-73
• isatty() on page 14-74
• lseek() on page 14-64
• read() on page 14-68
• stat() on page 14-60
• write() on page 14-69
• newlib Library Documentation

times()

Prototype

clock_t times (struct tms *buf)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

Yes.

Include

<sys/times.h>

Description

This times() function is provided for compatibility with newlib. It returns the number of clock ticks
since reset. It also fills in the structure pointed to by the input parameter buf with time accounting
information. The definition of the tms structure is:

NII5V2Gen2
2015.05.14 times() 14-67

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

typedef struct

{

clock_t tms_utime;

clock_t tms_stime;

clock_t tms_cutime;

clock_t tms_cstime;

};

The structure has the following elements:

• tms_utime: the processor time charged for the execution of user instructions
• tms_stime: the processor time charged for execution by the system on behalf of the process
• tms_cutime: the sum of the values of tms_utime and tms_cutime for all child processes
• tms_cstime: the sum of the values of tms_stime and tms_cstime for all child processes

In practice, all elapsed time is accounted as system time. No time is ever attributed as user time. In
addition, no time is allocated to child processes, as child processes cannot be spawned by the HAL.

Return

If there is no system clock available, the return value is zero, and errno is set to ENOSYS.

Related Information

• alt_alarm_start() on page 14-10
• alt_alarm_stop() on page 14-11
• alt_nticks() on page 14-46
• alt_sysclk_init() on page 14-65
• alt_tick() on page 14-48
• alt_ticks_per_second() on page 14-49
• gettimeofday() on page 14-72
• settimeofday() on page 14-61
• usleep() on page 14-70
• newlib Library Documentation

read()

Prototype

int read(int fd, void *ptr, size_t len)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

No.

14-68 read()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Include

<unistd.h>

Description

The read() function reads a block of data from a file or device. read() is wrapper function that passes
control directly to the read() function registered for the device driver associated with the open file
descriptor fd. The input argument, ptr, is the location to place the data read and len is the length of the
data to read in bytes.

Calls to read() are thread-safe only if the implementation of read() provided by the driver that is
manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin, and stderr, or any value returned from a call to
open().

Return

The return argument is the number of bytes read, which might be less than the requested length

The return value is –1 upon an error. In the event of an error, errno is set to indicate the cause.

Related Information

• fcntl() on page 14-57
• fstat() on page 14-55
• ioctl() on page 14-73
• isatty() on page 14-74
• lseek() on page 14-64
• open() on page 14-66
• stat() on page 14-60
• write() on page 14-69
• newlib Library Documentation

write()

Prototype

int write(int fd, const void *ptr, size_t len)

Commonly Called By

C/C++ programs

newlib C library

Thread-safe

See description.

Available from ISR

No.

NII5V2Gen2
2015.05.14 write() 14-69

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Include

<unistd.h>

Description

The write() function writes a block of data to a file or device. write() is wrapper function that passes
control directly to the write() function registered for the device driver associated with the file descriptor
fd. The input argument ptr is the data to write and len is the length of the data in bytes.

Calls to write() are thread-safe only if the implementation of write() provided by the driver that is
manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin, and stderr, or any value returned from a call to
open().

Return

The return argument is the number of bytes written, which might be less than the requested length.

The return value is –1 upon an error. In the event of an error, errno is set to indicate the cause.

Related Information

• fcntl() on page 14-57
• fstat() on page 14-55
• ioctl() on page 14-73
• isatty() on page 14-74
• lseek() on page 14-64
• open() on page 14-66
• read() on page 14-68
• stat() on page 14-60
• newlib Library Documentation

usleep()

Prototype

int usleep (unsigned int us)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

Yes.

Available from ISR

No.

14-70 usleep()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Include

<unistd.h>

Description

The usleep() function blocks until at least us microseconds have elapsed.

Return

The usleep() function returns zero on success, or –1 otherwise. If an error occurs, errno is set to
indicate the cause. The current implementation always succeeds.

Related Information

• alt_alarm_start() on page 14-10
• alt_alarm_stop() on page 14-11
• alt_nticks() on page 14-46
• alt_sysclk_init() on page 14-65
• alt_tick() on page 14-48
• alt_ticks_per_second() on page 14-49
• gettimeofday() on page 14-72
• settimeofday() on page 14-61
• times() on page 14-67

alt_lock_flash()

Prototype

int alt_lock_flash(alt_flash_dev * flash_info,

alt_u32 sectors_to_lock)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_flash.h>

Description

Locking to range of the flash memory sectors, which protected from writing and erasing by passing the
uninteger 32 bits value to the sectors_to_lock argument, where this argument depends on the specific

NII5V2Gen2
2015.05.14 alt_lock_flash() 14-71

HAL API Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

flash device being used,and this argument value can be found in the flash device datasheet. The flash
devices can be supported are shown as below:

EPCQ16, EPCQ32, EPCQ64, EPCQ128, EPCQ256, N25Q512, EPCQ512, EPCQL512, EPCQL1024

More Micron flash devices will be supported in future, and being updated into this document.

Arguments

• *flash_info: Pointer to general flash device structure.
• sectors_to_locL Block protection bits in EPCQ/QSPI ==>Bit4 | Bit3 | Bit2 | Bit1 | Bit0 TB | BP3 | BP2 |

BP1 | BP0

Return

• *0 > Success
• -EINVL > Invalid arguments
• -ETIME > Time out and skipping the looping after 0.7 sec
• -ENOLCK > Sectors lock failed

gettimeofday()

Prototype

int gettimeofday(struct timeval *ptimeval,

struct timezone *ptimezone)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

Yes.

Include

<sys/time.h>

Description

The gettimeofday() function obtains a time structure that indicates the current time. This time is
calculated using the elapsed number of system clock ticks, and the current time value set by the most
recent call to settimeofday().

If this function is called concurrently with a call to settimeofday(), the value returned by
gettimeofday() is unreliable; however, concurrent calls to gettimeofday() are legal.

14-72 gettimeofday()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return

The return value is zero on success. If no system clock is available, the return value is -ENOTSUP.

Related Information

• alt_alarm_start() on page 14-10
• alt_alarm_stop() on page 14-11
• alt_nticks() on page 14-46
• alt_sysclk_init() on page 14-65
• alt_tick() on page 14-48
• alt_ticks_per_second() on page 14-49
• settimeofday() on page 14-61
• times() on page 14-67
• usleep() on page 14-70
• newlib Library Documentation

ioctl()

Prototype

int ioctl (int fd, int req, void* arg)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

No.

Include

<sys/ioctl.h>

Description

The ioctl() function allows application code to manipulate the I/O capabilities of a device driver in
driver-specific ways. This function is equivalent to the standard UNIX ioctl() function. The input
argument fd is an open file descriptor for the device to manipulate, req is an enumeration defining the
operation request, and the interpretation of arg is request specific.

For file subsystems, ioctl() is wrapper function that passes control directly to the appropriate device
driver’s ioctl() function (as registered in the driver’s alt_dev structure).

For devices, ioctl() handles TIOCEXCL and TIOCNXCL requests internally, without calling the device
driver. These requests lock and release a device for exclusive access. For requests other than TIOCEXCL and
TIOCNXCL, ioctl() passes control to the device driver’s ioctl() function.

NII5V2Gen2
2015.05.14 ioctl() 14-73

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Calls to ioctl() are thread-safe only if the implementation of ioctl() provided by the driver that is
manipulated is thread-safe.

Valid values for the fd parameter are: stdout, stdin, and stderr, or any value returned from a call to
open().

Return

The interpretation of the return value is request specific. If the call fails, errno is set to indicate the cause
of the error.

Related Information

• fcntl() on page 14-57
• fstat() on page 14-55
• isatty() on page 14-74
• lseek() on page 14-64
• open() on page 14-66
• read() on page 14-68
• stat() on page 14-60
• write() on page 14-69
• newlib Library Documentation

isatty()

Prototype

int isatty(int fd)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

No.

Include

<unistd.h>

Description

The isatty() function determines whether the device associated with the open file descriptor fd is a
terminal device. This implementation uses the driver’s fstat() function to determine its reply.

Calls to isatty() are thread-safe only if the implementation of fstat() provided by the driver that is
manipulated is thread-safe.

14-74 isatty()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return

The return value is 1 if the device is a character device, and zero otherwise. If an error occurs, errno is set
to indicate the cause.

Related Information

• fcntl() on page 14-57
• fstat() on page 14-55
• ioctl() on page 14-73
• lseek() on page 14-64
• open() on page 14-66
• read() on page 14-68
• stat() on page 14-60
• write() on page 14-69
• newlib Library Documentation

HAL Standard Types
In the interest of portability, the HAL uses a set of standard type definitions in place of the ANSI C built-
in types. The Table below describes these types, which are defined in the header file alt_types.h.

Table 14-2: HAL Standard Types

Type Description

alt_8 Signed 8-bit integer.
alt_u8 Unsigned 8-bit integer.
alt_16 Signed 16-bit integer.
alt_u16 Unsigned 16-bit integer.
alt_32 Signed 32-bit integer.
alt_u32 Unsigned 32-bit integer.
alt_64 Signed 64-bit integer.
alt_u64 Unsigned 64-bit integer.

alt_getchar()

Prototype

alt_getchar()

Commonly Called By

C/C++ programs

Device drivers

NII5V2Gen2
2015.05.14 HAL Standard Types 14-75

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Thread-safe

See description.

Available from ISR

No.

Include

<sys/alt_driver.h>
<sys/alt_stdio.h>
<priv/alt_file.h>
<unistd.h>

Description

The alt_getchar() function uses the ALT_DRIVER_READ() macro to call directly to the driver, if
available; otherwise, it uses the newlib provided getchar() routine.

Return

--

Related Information

• alt_putchar() on page 14-77
• alt_putstr() on page 14-76
• alt_printf() on page 14-78
• newlib Library Documentation

alt_putstr()

Prototype

alt_putstr(const char* str)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

No.

Include

<sys/alt_driver.h>
<sys/alt_stdio.h>

14-76 alt_putstr()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

The alt_putstr() function ses the ALT_DRIVER_WRITE() macro to call directly to the driver, if available;
otherwise, it uses the newlib provided fputs() routine.

Return

The return value is zero on success and nonzero otherwise.

Related Information

• alt_putchar() on page 14-77
• alt_getchar() on page 14-75
• alt_printf() on page 14-78
• newlib Library Documentation

alt_putchar()

Prototype

alt_putchar(int c)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

See description.

Available from ISR

No.

Include

<sys/alt_driver.h>
<sys/alt_stdio.h>

Description

The alt_putchar() function uses the ALT_DRIVER_WRITE() macro to call directly to the driver, if
available; otherwise, it uses the newlib provided putchar() routine.

Return

The return value is zero on success and nonzero otherwise.

Related Information

• alt_putstr() on page 14-76
• alt_getchar() on page 14-75
• alt_printf() on page 14-78

NII5V2Gen2
2015.05.14 alt_putchar() 14-77

HAL API Reference Altera Corporation

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• newlib Library Documentation

alt_printf()

Prototype

alt_printf(const char* fmt, ...)

Commonly Called By

C/C++ programs

Device drivers

Thread-safe

No.

Available from ISR

No.

Include

<sys/alt_stdio.h>

Description

The alt_printf() function provides a very minimal printf implementation for use with very small
applications. Only the following format strings are supported: %x, %s, %c, and %%.

Return

--

Related Information

• alt_putchar() on page 14-77
• alt_putstr() on page 14-76
• alt_getchar() on page 14-75

Document Revision History for HAL API Reference
Date Version Changes

May 2015 2015.05.14 Initial release.

14-78 alt_printf()
NII5V2Gen2
2015.05.14

Altera Corporation HAL API Reference

Send Feedback

http://sourceware.org/newlib/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20HAL%20API%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Software Build Tools Reference 15
2015.05.14

NII5V2Gen2 Subscribe Send Feedback

This chapter provides a complete reference of all available commands, options, and settings for the Nios II
Software Build Tools (SBT). This reference is useful for developing your own embedded software projects,
packages, or device drivers.

Related Information

• Getting Started from the Command Line on page 3-1
For more information about what you should read before using this chapter.

• Nios II Software Build Tools on page 4-1
For more information about familiarizing yourself with its parts.

Nios II Software Build Tools Utilities
The build tools utilities are an entry point to the Nios II SBT. Everything you can do with the tools, such
as specifying settings, creating makefiles, and building projects, is made available by the utilities.

All Nios II SBT utilities share the following behavior:

• Sends error messages and warning messages to stderr.
• Sends normal messages (other than errors and warnings) to stdout.
• Displays one error message for each error.
• Returns an exit value of 1 if it detects any errors.
• Returns an exit value of 0 if it does not detect any errors. (Warnings are not errors.)
• If the help or version command-line option is specified, returns an exit value of 0, and takes no other

action. Sends the output (help or version number) to stdout.
• When an error is detected, suppresses all subsequent operations (such as writing files).

Logging Levels
All the utilities support multiple status-logging levels. You specify the logging level on the command line.
At each level, the utilities report the status as listed under Description. Each level includes the messages
from all lower levels.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V2Gen2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V2Gen2%202015.05.14)%20Nios%20II%20Software%20Build%20Tools%20Reference&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Table 15-1: Nios II SBT Logging Levels

Logging Level Description

silent
(lowest)

No information is provided except for errors and warnings (sent
to stderr).

default Minimal information is provided (for example, start and stop
operation of SBT phases).

verbose Detailed information is provided (for example, lists of files
written).

debug
(highest)

Debug information is provided (for example, stack backtraces
on errors). This level is for reporting problems to Altera.

Only one logging level is possible at a time, so these options are all mutually exclusive.

Table 15-2: Command-Line Options to Select Each Logging Level

Command-Line
Option

Logging
Level

Comments

none default If there is no command-line option, the
default level is selected.

--silent silent Selects silent level of logging.
--verbose verbose Selects verbose level of logging.
--debug debug Selects debug level of logging.
--log <fname> debug All information is written to <fname> in

addition to being sent to the stdout and
stderr devices.

For Nios II Gen2, there is full error correction code (ECC) support:

• Register file
• Instruction cache
• Data cache
• Tightly-Coupled Memory (TCM)

Setting Values
The value of a setting is specified with the --set command-line option to nios2-bsp-create-settings or
nios2-bsp-update-settings, or with the set_setting Tcl command. The value of a setting is obtained
with the --get command-line option to nios2-bsp-query-settings or with the get_setting Tcl
command.

Related Information
Settings Managed by the Software Build Tools on page 15-25

Utility and Script Summary
The following command-line utilities and scripts are available:

15-2 Setting Values
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• nios2-app-generate-makefile on page 15-3
• nios2-bsp-create-settings on page 15-4
• nios2-bsp-generate-files on page 15-6
• nios2-bsp-query-settings on page 15-7
• nios2-bsp-update-settings on page 15-8
• nios2-lib-generate-makefile on page 15-9
• nios2-bsp-editor on page 15-10
• nios2-app-update-makefile on page 15-11
• nios2-lib-update-makefile on page 15-12
• nios2-swexample-create on page 15-15
• nios2-elf-insert on page 15-15
• nios2-elf-query on page 15-16
• nios2-bsp on page 3-2
• nios2-bsp-console on page 15-21

nios2-app-generate-makefile

Usage

nios2-app-generate-makefile [--app-dir <directory>]
 --bsp-dir <directory> [--debug]
 [--elf-name <filename>] [--extended-help] [--help]
 [--log <filename>] [--no-src] [--set <name> <value>]
 [--silent] [--src-dir <directory>]
 [--src-files <filenames>] [--src-rdir <directory>]
 [--use-lib-dir <directory>] [--verbose]
 [--version]

Options

• --app-dir <directory>: Directory to place the application makefile and executable and linking
format file (.elf). If omitted, it defaults to the current directory.

• --bsp-dir <directory>: Specifies the path to the BSP generated files directory (populated using the
nios2-bsp-generate-files command).

• --debug: Output debug, exception traces, verbose, and default information about the command's
operation to stdout.

• --elf-name <filename>: Name of the .elf file to create. If omitted, it defaults to the first source file
specified with the file name extension replaced with .elf and placed in the application directory.

• --extended-help: Displays full information about this command and its options.
• --help: Displays basic information about this command and its options.
• --log <filename>: Create a debug log and write to specified file. Also logs debug information to

stdout.
• --no-src: Allows no sources files to be set in the Makefile. You must add source files in manually

before compiling
• --set <name> <value>: Set the makefile variable called <name> to <value>. If the variable exists in

the managed section of the makefile, <value> replaces the default settings. If the variable does not
already exist, it is added. Multiple --set options are allowed.

• --silent: Suppress information about the command's operation normally sent to stdout.

NII5V2Gen2
2015.05.14 nios2-app-generate-makefile 15-3

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --src-dir <directory>: Searches for source files in <directory>. Use . to look in the current
directory. Multiple --src-dir options are allowed.

• --src-files <filenames>: Adds a list of space-separated source file names to the makefile. The list of
file names is terminated by the next option or the end of the command line. Multiple --src-files
options are allowed.

• --src-rdir <directory>: Same as --src-dir option but recursively search for source files in or
under <directory>. Multiple --src-rdir options are allowed and can be freely mixed with --src-dir
options.

• --use-lib-dir <directory>: Specifies the path to a dependent user library directory. The user library
directory must contain a makefile fragment called public.mk. Multiple --use-lib-dir options are
allowed.

• --verbose: Output verbose, and default information about the command’s operation to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-app-generate-makefile command generates an application makefile (called Makefile). The
path to a BSP created by nios2-bsp-generate-files is a mandatory command-line option. If no command-
line arguments are specified, this command returns an exit value of 1 and sends a help message to stderr.

Note: For help about this command, use the --extended-help option to display comprehensive usage
information.

Related Information
Altera Software Installation and Licensing Manual
For more information about installing the Altera Complete Design Suite

nios2-bsp-create-settings

Usage

nios2-bsp-create-settings [--bsp-dir <directory>]

 [--cmd <tcl command>] [--cpu-name <cpu name>]

 [--debug] [--extended-help] [--get-cpu-arch]

 [--help] [--jdi <filename>]

 [--librarian-factory-path <directory>]

 [--librarian-path <directory>] [--log <filename>]

 [--script <filename>] [--set <name> <value>]

 --settings <filename> [--silent]

 --sopc <filename> --type <OS name> [--type-version <version>] [--verbose] [--
version]

15-4 nios2-bsp-create-settings
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

http://www.altera.com/literature/manual/quartus_install.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• --bsp-dir <directory>: Path to the directory where the BSP files are generated. Use . for the current
directory. The directory <directory> must exist. This command overwrites preexisting files in
<directory> without warning.

• --cmd <tcl command>: Runs the specified Tcl command. Multiple --cmd options are allowed.
• --cpu-name <cpu name>: The name of the Nios II processor that the BSP supports. Optional for a

single-processor system. Use ? to list available Nios II processor names.
• --debug: Sends debug information, exception traces, verbose output, and default information about

the command's operation, to stdout.
• --extended-help: Displays full information about this command and its options. Also displays Tcl

command help for the --cmd and --script options.
• --get-cpu-arch: Queries for processor architecture from the processor specified. Does not create a

BSP.
• --help: Displays basic information about this command and its options.
• --jdi <filename>: The location of the JTAG Debugging Information File (.jdi) generated by the

Quartus II software. The .jdi file specifies the name-to-node mappings for the JTAG chain elements.
The tool inserts the JTAG Debugging Information File (.jdi) path in public.mk. If no .jdi path is
specified, the command searches the directory containing the SOPC Information File (.sopcinfo), and
uses the first .jdi file found.

• --librarian-factory-path<directory> : Comma-separated librarian search path. Use $ for default
factory search path.

• --librarian-path<directory> : Comma-separated librarian search path. Use $ for default search
path.

• --log <filename>: Creates a debug log and write to specified file. Also logs debug information to
stdout.

• --script <filename>: Run the specified Tcl script with optional arguments. Multiple --script
options are allowed.

• --set <name> <value>: Sets the setting called <name> to <value>. Multiple --set options are
allowed.

• --settings <filename>: File name of the BSP settings file to create. This file is created with a .bsp file
extension. It overwrites any existing settings file.

• --silent: Suppresses information about the command's operation normally sent to stdout.
• --sopc <filename>: The .sopcinfo file used to create the BSP.
• --type <OS name>: BSP type. Use ? or types to list available BSP types for this option. Use names to

list the display names of available BSP types. For a Nios II DPX system, always set this argument to
lwhal.

• --type-version <version>: BSP software component version. By default the latest version is used.
default value can be used to reset to this default behavior. Use ? to list available BSP types and
versions.

• --verbose: Sends verbose output, and default information about the command's operation, to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

Description

If you use nios2-bsp-create-settings to create a settings file without any command-line options, Tcl
commands, or Tcl scripts to modify the default settings, it creates a settings file that fails when running
nios2-bsp-generate-files. Failure occurs because the nios2-bsp-create-settings command is able to create
reasonable defaults for most settings, but the command requires additional information for system-
dependent settings. The default Tcl scripts set the required system-dependent settings. Therefore it is
better to use default Tcl scripts when calling nios2-bsp-create-settings directly. For an example of how to
use the default Tcl scripts, refer to the nios2-bsp script.

NII5V2Gen2
2015.05.14 nios2-bsp-create-settings 15-5

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Note: For more information about this command, use the --extended-help option to display
comprehensive usage information.

Example

nios2-bsp-create-settings --settings my_settings.bsp --sopc \
 ../my_sopc.sopcinfo --type hal --script default_settings.tcl

Related Information
Tcl Commands for BSP Settings on page 15-65

nios2-bsp-generate-files

Usage

nios2-bsp-generate-files --bsp-dir <directory>
 [--debug] [--extended-help] [--help]
 [--librarian-factory-path <directory>]
 [--librarian-path <directory>] [--log <filename>]
 --settings <filename> [--silent] [--verbose]
 [--version]

Options

• --bsp-dir <directory>: Path to the directory where the BSP files are generated. Use . for the current
directory. The directory <directory> must exist. This command overwrites preexisting files in
<directory> without warning.

• --debug: Sends debug, exception trace, verbose, and default information about the command's
operation to stdout.

• --extended-help: Displays full information about this command and its options.
• --help: Displays basic information about this command and its options.
• --librarian-factory-path <directory>: Comma-separated librarian search path. Use $ for default

factory search path.
• --librarian-path <directory>: Comma-separated librarian search path. Use $ for default search

path.
• --log <filename>: Creates a debug log and writes to specified file. Also logs debug information to

stdout.
• --settings <filename>: File name of an existing BSP Settings File (.bsp) to generate files from.
• --silent: Suppresses information about the command's operation normally sent to stdout.
• --verbose: Sends verbose and default information about the command's operation to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-bsp-generate-files command populates the files in a BSP directory. The path to an
existing .bsp file and the path to the BSP directory are mandatory command-line options. Files are written
to the specified BSP directory. Generated files are created unconditionally. Copied files are copied from
the Nios II EDS installation folder only if they are not present in the BSP directory, or if the existing files
differ from the installation files.

15-6 nios2-bsp-generate-files
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Note: For more information about this command, use the --extended-help option to display
comprehensive usage information.

nios2-bsp-query-settings

Usage

nios2-bsp-query-settings [--cmd <tcl command>]
 [--debug] [--extended-help] [--get <name>]
 [--get-all] [--help]
 [--librarian-factory-path <directory>]
 [--librarian-path <directory>] [--log <filename>]
 [--script <filename>] --settings <filename>
 [--show-descriptions] [--show-names] [--silent]
 [--verbose] [--version]

Options

• --cmd <tcl command>: Run the specified Tcl command. Multiple --cmd options are allowed.
• --debug: Output debug, exception traces, verbose, and default information about the command's

operation to stdout.
• --extended-help: Displays full information about this command and its options.
• --get <name>: Display the value of the setting called <name>. Multiple --get options are allowed.

Each value appears on its own line in the order the --get options are specified. Mutually exclusive
with the --get-all option.

• --get-all: Display the value of all BSP settings in order sorted by option name. Each option appears
on its own line. Mutually exclusive with the --get option.

• --help: Displays basic information about this command and its options.
• --librarian-factory-path <directory>: Comma-separated librarian search path. Use $ for default

factory search path.
• --librarian-path <directory>: Comma-separated librarian search path. Use $ for default search

path.
• --log <filename>: Create a debug log and write to specified file. Also logs debug information to

stdout.
• --script <filename>: Run the specified Tcl script with optional arguments. Multiple --script

options are allowed.
• --settings <filename>: File name of an existing BSP settings file to query settings from.
• --show-descriptions: Displays the description of each option after the value.
• --show-names: Displays the name of each option before the value.
• --silent: Suppress information about the command's operation normally sent to stdout.
• --verbose: Output verbose, and default information about the command's operation to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-bsp-query-settings command provides information from a .bsp file. The path to an
existing .bsp file is a mandatory command-line option. The command does not modify the settings file.
Only requested information is displayed on stdout; no informational messages are displayed.

NII5V2Gen2
2015.05.14 nios2-bsp-query-settings 15-7

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Note: For more information about this command, use the --extended-help option to display
comprehensive usage information.

nios2-bsp-update-settings

Usage

nios2-bsp-update-settings [--bsp-dir <directory>]
 [--cmd <tcl command>] [--cpu-name <cpu name>]
 [--debug] [--extended-help] [--help] [--jdi <filename>]
 [--librarian-factory-path <directory>]
 [--librarian-path <directory>] [--log <filename>]
 [--script <filename>] [--set <name> <value>]
 --settings <filename> [--silent]
 [--sopc <filename>] [--verbose] [--version]

Options

• --bsp-dir <directory>: Path to the directory where the BSP files are generated. Use . for the current
directory. The directory <directory> must exist.

• --cmd <tcl command>: Run the specified Tcl command. Multiple --cmd options are allowed.
• --cpu-name <cpu name>: The name of the Nios II processor that the BSP supports. This argument is

useful if the hardware design contains multiple Nios II processors. Optional for a single-processor
design.

• --debug: Output debug, exception traces, verbose, and default information about the command's
operation to stdout.

• --extended-help: Displays full information about this command and its options.
• --help: Displays basic information about this command and its options.
• --jdi <filename>: The location of the .jdi file generated by the Quartus II software. The .jdi file

specifies the name-to-node mappings for the JTAG chain elements. The tool inserts the .jdi path in
public.mk. If no .jdi path is specified, the command searches the directory containing the .sopcinfo file,
and uses the first .jdi file found.

• --librarian-factory-path <directory>: Comma-separated librarian search path. Use $ for default
factory search path.

• --librarian-path <directory>: Comma-separated librarian search path. Use $ for default search
path.

• --log <filename>: Create a debug log and write to specified file. Also logs debug information to
stdout.

• --script <filename>: Run the specified Tcl script with optional arguments. Multiple --script
options are allowed.

• --set <name> <value>: Set the setting called <name> to <value>. Multiple --set options are allowed.
• --settings <filename>: File name of an existing BSP settings file to update.
• --silent: Suppress information about the command's operation normally sent to stdout.
• --sopc <filename>: The .sopcinfo file to update the BSP with. It is recommended to create a new BSP

if the design has changed significantly. This argument is useful if the path to the original .sopcinfo file
has changed.

• --verbose: Output verbose, and default information about the command's operation to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

15-8 nios2-bsp-update-settings
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

The nios2-bsp-update-settings command updates an existing Nios II .bsp file. The path to an
existing .bsp file is a mandatory command-line option. The command modifies the settings file so the file
must have write permissions. You might want to use the --script option to pass the default Tcl script to
the nios2-bsp-update-settings command to make sure that your BSP is consistent with your system (this
is what the nios2-bsp command does).

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Note: For more information about this command, use the --extended-help option to display
comprehensive usage information.

nios2-lib-generate-makefile

Usage

nios2-lib-generate-makefile [--bsp-dir <directory>]
 [--debug] [--extended-help] [--help]
 [--lib-dir <directory>] [--lib-name <filename>]
 [--log <filename>] [--no-src]
 [--public-inc-dir <directory>] [--set <name> <value>]
 [--silent] [--src-dir <directory>]
 [--src-files <filenames>] [--src-rdir <directory>]
 [--use-lib-dir <directory>] [--verbose]
 [--version]

Options

• --bsp-dir <directory>: Path to the BSP generated files directory (populated using the nios2-bsp-
generate-files command).

• --debug: Output debug, exception traces, verbose, and default information about the command's
operation to stdout.

• --extended-help: Displays full information about this command and its options.
• --help: Displays basic information about this command and its options.
• --lib-dir <directory>: Destination directory for the user library archive file (.a), the user library

makefile, and public.mk. If omitted, it defaults to the current directory.
• --lib-name <filename>: Name of the user library being created. The user library file name is the user

library name with a lib prefix and .a suffix added. Do not include these in the user library name itself. If
the user library name option is omitted, the user library name defaults to the name of the first source
file with its extension removed.

• --log <filename>: Create a debug log and write to specified file. Also logs debug information to
stdout.

• --no-src: Allows no sources files to be set in the Makefile. You must add source files manually before
compiling.

• --public-inc-dir <directory>: Path to a directory that contains C header files (.h) that are to be
made available (that is, public) to users of the user library. This directory is added to the appropriate
variable in public.mk. Multiple --public-inc-dir options are allowed.

• --set <name> <value>: Set the makefile variable called <name> to <value>. If the variable exists in
the managed section of the makefile, <value> replaces the default settings. It adds the makefile variable
if it does not already exist. Multiple --set options are allowed.

• --silent: Suppress information about the command's operation normally sent to stdout.

NII5V2Gen2
2015.05.14 nios2-lib-generate-makefile 15-9

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --src-dir <directory>: Search for source files in <directory>. Use . to look in the current directory.
Multiple --src-dir options are allowed.

• --src-files <filenames>: A list of space-separated source file names added to the makefile. The list
of file names is terminated by the next option or the end of the command line. Multiple --src-files
options are allowed.

• --src-rdir <directory>: Same as --src-dir option but recursively search for source files in or
under <directory>. Multiple --src-rdir options are allowed and can be freely mixed with --src-dir
options.

• --use-lib-dir <directory>: Path to a dependent user library directory. The user library directory
must contain a makefile fragment called public.mk. Multiple --use-lib-dir options are allowed.

• --verbose: Output verbose, and default information about the command's operation to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-lib-generate-makefile command generates a user library makefile (called Makefile). The path
to a BSP created by nios2-bsp-generate-files is an optional command-line option.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Note: For more information about this command, use the --extended-help option to display
comprehensive usage information.

nios2-bsp-editor

Usage

nios2-bsp-editor [--extended-help]
 [--fontsize <point size>] [--help]
 [--librarian-factory-path <directory>]
 [--librarian-path <directory>] [--log <filename>]
 [--settings <filename>] [--version]

Options

• --extended-help: Displays full information about this command and its options.
• --fontsize <point size>: The default point size for GUI fonts is 11. Use this option to adjust the

point size.
• --help: Displays basic information about this command and its options.
• --librarian-factory-path <directory>: Comma-separated librarian search path. Use $ for default

factory search path.
• --librarian-path <directory>: Comma-separated librarian search path. Use $ for default search

path.
• --log <filename>: Create a debug log and write to specified file.
• --settings <filename>: File name of an existing BSP settings file to update.
• --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-bsp-editor command is a GUI application for creating and editing board support packages for
Nios II designs.

15-10 nios2-bsp-editor
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For more information about this command, use the --extended-help option to display
comprehensive usage information.

nios2-app-update-makefile

Usage

nios2-app-update-makefile --app-dir <directory>
 [--add-lib-dir <directory>] [--add-src-dir <directory>]
 [--add-src-files <filenames>] [--add-src-rdir <directory>] [--debug]
 [--extended-help] [--force] [--get <name>] [--get-all]
 [--get-asflags] [--get-bsp-dir] [--get-debug-level]
 [--get-defined-symbols] [--get-elf-name] [--get-optimization]
 [--get-undefined-symbols] [--get-user-flags] [--get-warnings]
 [--help] [--list-lib-dir] [--list-src-files] [--lock]
 [--log <filename>] [--no-src] [--remove-lib-dir <directory>]
 [--remove-src-dir <directory>] [--remove-src-files <filenames>]
 [--remove-src-rdir <directory>] [--set <name>]
 [--set-asflags <value>] [--set-bsp-dir <directory>]
 [--set-debug-level <value>] [--set-defined-symbols <value>]
 [--set-elf-name <name>] [--set-optimization <value>]
 [--set-undefined-symbols <value>] [--set-user-flags <value>]
 [--set-warnings <value>] [--show-managed-section] [--show-names]
 [--silent] [--unlock] [--verbose] [--version]

Options

• --app-dir <directory>: Path to the Application Directory with the generated makefile.
• --add-lib-dir <directory>: Add a path to dependent user library directory
• --add-src-dir <directory>: Add source files in <directory>. Use . to look in the current directory.

Multiple --add-src-dir options are allowed.
• --add-src-files <filenames>: A list of space-separated source file names to be added to the

makefile. The list of file names is terminated by the next option or the end of the command line.
Multiple --src-files options are allowed.

• --add-src-rdir <directory>: Same as --add-src-dir option but recursively search for source files
in or under <directory>. Multiple --add-src-rdir options are allowed and can be freely mixed with
--src-dir options.

• --debug: Output debug, exception traces, verbose, and default information about the command’s
operation to stdout.

• --extended-help: Displays full information about this command and its options.
• --force: Update the Makefile even if it’s locked
• --get <name>: Get the values of Makefile variables
• --get-all: Get all variables in the managed section of the Makefile
• --get-asflags: Get user assembler flags
• --get-bsp-dir: Get the BSP generated files directory
• --get-debug-level: Get debug level flag
• --get-defined-symbols: Get defined symbols flag
• --get-elf-name: Get the name of .elf file
• --get-optimization: Get optimization flag
• --get-undefined-symbols: Get undefined symbols flag
• --get-user-flags: Get user flags
• --get-warnings: Get warnings flag
• --help: Displays basic information about this command and its options.
• --list-lib-dir: List all paths to dependent user library directories

NII5V2Gen2
2015.05.14 nios2-app-update-makefile 15-11

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --list-src-files: List all source files in the makefile.
• --lock: Lock the Makefile to prevent it from being updated
• --log <filename>: Create a debug log and write to specified file. Also logs debug information to

stdout.
• --no-src: Remove all source files in the makefile
• --remove-lib-dir <directory>: Remove a path to dependent user library directory
• --remove-src-dir <directory>: Remove source files in <directory>. Use . to look in the current

directory. Multiple --remove-src-dir options are allowed.
• --remove-src-files <filenames>: A list of space-separated source file names to be removed from

the makefile. The list of file names is terminated by the next option or the end of the command line.
Multiple --src-files options are allowed.

• --remove-src-rdir <directory>: Same as --remove-src-dir option but recursively search for
source files in or under <directory>. Multiple --remove-src-rdir options are allowed and can be
freely mixed with --src-dir options.

• --set <name> <value>: Set the value of a Makefile variable called <name>
• --set-asflags <value>: Set user assembler flags
• --set-bsp-dir <directory>: Set the BSP generated files directory
• --set-debug-level <value>: Set debug level flag
• --set-defined-symbols <value>: Set defined symbols flag
• --set-elf-name <name>: Set the name of .elf file
• --set-optimization <value>: Set optimization flag
• --set-undefined-symbols <value>: Set undefined symbols flag
• --set-user-flags <value>: Set user flags
• --set-warnings <value>: Set warnings flag
• --show-managed-section: Show the managed section in the Makefile
• --show-names: Show name of the variables
• --silent: Suppress information about the command's operation normally sent to stdout.
• --unlock: Unlock the Makefile
• --verbose: Output verbose, and default information about the command's operation to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-app-update-makefile command updates an application makefile to add or remove source files.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Note: The --add-src-dir, --add-src-rdir, --remove-src-dir, and --remove-src-rdir options add
and remove files found in <directory> at the time the command is executed. Files subsequently
added to or removed from the directory are not reflected in the makefile.

Note: For more information about this command, use the --extended-help option to display
comprehensive usage information.

nios2-lib-update-makefile

Usage

nios2-lib-update-makefile --lib-dir <directory>

 [--add-lib-dir <directory>] [--add-public-inc-dir <directory>]

15-12 nios2-lib-update-makefile
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 [--add-src-dir <directory>] [--add-src-files <filenames>]

 [--add-src-rdir <directory>] [--debug] [--extended-help] [--force]

 [--get <name>] [--get-all] [--get-asflags] [--get-bsp-dir]

 [--get-debug-level] [--get-defined-symbols] [--get-lib-name]

 [--get-optimization] [--get-undefined-symbols] [--get-user-flags]

 [--get-warnings] [--help] [--list-lib-dir] [--list-public-inc-dir]

 [--list-src-files] [--lock] [--log <filename>] [--no-src]

 [--remove-lib-dir <directory>] [--remove-public-inc-dir <directory>]

 [--remove-src-dir <directory>] [--remove-src-files <filenames>]

 [--remove-src-rdir <directory>] [--set <name> <value>]

 [--set-asflags <value>] [--set-bsp-dir <directory>]

 [--set-debug-level <value>] [--set-defined-symbols <value>]

 [--set-lib-name <name>] [--set-optimization <value>]

 [--set-undefined-symbols <value>] [--set-user-flags <value>]

 [--set-warnings <value>] [--show-managed-section] [--show-names]

 [--silent] [--unlock] [--verbose] [--version]

Options

• --add-lib-dir <directory>: Add a path to dependent user library directory
• --add-public-inc-dir <directory>: Add a directory that contains C-language header files
• --add-src-dir <directory>: Add source files in <directory>. Use . to look in the current directory.

Multiple --add-src-dir options are allowed.
• --add-src-files <filenames>: A list of space-separated source file names to be added to the

makefile. The list of file names is terminated by the next option or the end of the command line.
Multiple --src-files options are allowed.

• --add-src-rdir <directory>: Same as --add-src-dir option but recursively search for source files
in or under <directory>. Multiple --add-src-rdir options are allowed and can be freely mixed with --
src-dir options.

• --debug: Output debug, exception traces, verbose, and default information about the command's
operation to stdout.

• --extended-help: Displays full information about this command and its options.
• --force: Update the Makefile even if it is locked
• --get <name>: Get the values of Makefile variables
• --get-all: Get all variables in the managed section of the Makefile
• --get-asflags: Get user assembler flags
• --get-bsp-dir: Get the BSP generated files directory
• --get-debug-level: Get debug level flag
• --get-defined-symbols: Get defined symbols flag
• --get-lib-name: Get the name of user library
• --get-optimization: Get optimization flag
• --get-undefined-symbols: Get undefined symbols flag

NII5V2Gen2
2015.05.14 nios2-lib-update-makefile 15-13

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --get-user-flags: Get user flags
• --get-warnings: Get warnings flag
• --help: Displays basic information about this command and its options.
• --list-lib-dir: List all paths to dependent user library directories
• --list-public-inc-dir: List all public include directories
• --list-src-files: List all source files in the makefile.
• --lock: Lock the Makefile to prevent it from being updated
• --log <filename>: Create a debug log and write to specified file. Also logs debug information to

stdout.
• --no-src: Remove all source files
• --remove-lib-dir <directory>: Remove a path to dependent user library directory
• --remove-public-inc-dir <directory>: Remove a include directory
• --remove-src-dir <directory>: Remove source files in <directory>. Use . to look in the current

directory. Multiple --remove-src-dir options are allowed.
• --remove-src-files <filenames>: A list of space-separated source file names to be removed from

the makefile. The list of file names is terminated by the next option or the end of the command line.
Multiple --src-files options are allowed.

• --remove-src-rdir <directory>: Same as --remove-src-dir option but recursively search for
source files in or under <directory>. Multiple --remove-src-rdir options are allowed and can be
freely mixed with --src-dir options.

• --set <name> <value>: Set the value of a Makefile variable called <name>
• --set-asflags <value>: Set user assembler flags
• --set-bsp-dir <directory>: Set the BSP generated files directory
• --set-debug-level <value>: Set debug level flag
• --set-defined-symbols <value>: Set defined symbols flag
• --set-lib-name <name>: Set the name of user library
• --set-optimization <value>: Set optimization flag
• --set-undefined-symbols <value>: Set undefined symbols flag
• --set-user-flags <value>: Set user flags
• --set-warnings <value>: Set warnings flag
• --show-managed-section: Show the managed section in the Makefile
• --show-names: Show name of the variables
• --silent: Suppress information about the command's operation normally sent to stdout.
• --unlock: Unlock the Makefile
• --verbose: Output verbose, and default information about the command's operation to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-lib-update-makefile command updates a user library makefile to add or remove source files.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Note: The --add-src-dir, --add-src-rdir, --remove-src-dir, and --remove-src-rdir options add
and remove files found in <directory> at the time the command is executed. Files subsequently
added to or removed from the directory are not reflected in the makefile.

Note: For more information about this command, use the --extended-help option to display
comprehensive usage information.

15-14 nios2-lib-update-makefile
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

nios2-swexample-create

Usage

nios2-create-swexample [--name] --sopc-dir --type [--list] [--app-dir]
 [--bsp-dir] [--no-app] [--no-bsp] [--elf-name] [--describe]
 [--describeX] [--describeAll] [--search] [--help] [--silent]
 [--version]Options

• --name: Specify the name of the software project to create.
• --sopc-dir: Specify the hardware design directory. Required.
• --type: Specify the software design example template type. Required.
• --list: List all valid software design example template types.
• --app-dir: Specify the application directory to create. Default: <sopc-dir>/software_examples/app/

<name>
• --bsp-dir: Specify the bsp directory to create. Default: <sopc-dir>/software_examples/bsp/<bsp-type>
• --no-app: Do not generate the create-this-app script
• --no-bsp: Do not generate the create-this-bsp script
• --elf-name: Name of the .elf file to create.
• --describe: Describe the software example type specified and exit.
• --describeX: Verbosely describe the software example type specified and exit.
• --describeAll: Describe all the software example types and exit.
• --search: Search for software example templates in the specified directory. Default: <Nios II EDS

install path>/examples/software
• --help: Displays basic information about this command and its options.
• --silent: Do not echo commands.
• --version: Print the version number of nios2-create-swexample and exit.

Description

This utility creates a template software example for a given SOPC system.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

nios2-elf-insert

Usage

nios2-elf-insert <filename>
 [--cpu_name <cpuName>]
 [--stderr_dev <stderrDev>] [--stdin_dev <stdinDev>]
 [--stdout_dev <stdoutDev>] [--sidp <sysidBase>] [--id <sysidHash>]
 [--timestamp <sysidTime>] [--sof <sofFile>]
 [--sopcinfo <sopcinfoFile>] [--jar <jarFile>] [--jdi <jdiFile>]
 [--quartus_project_dir <quartusProjectDir>]
 [--sopc_system_name <sopcSystemName>]
 [--profiling_enabled <profilingEnabled>]
 [--simulation_enabled <simulationEnabled>]

NII5V2Gen2
2015.05.14 nios2-swexample-create 15-15

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• <filename>: the .elf filename
• --cpu_name <cpuName>
• --stderr_dev <stderrDev>
• --stdin_dev <stdinDev>
• --stdout_dev <stdoutDev>
• --sidp <sysidBase>
• --id <sysidHash>
• --timestamp <sysidTime>
• --sof <sofFile>
• --sopcinfo <sopcinfoFile>
• --jar <jarFile>
• --jdi <jdiFile>
• --quartus_project_dir <quartusProjectDir>
• --sopc_system_name <sopcSystemName>
• --profiling_enabled <profilingEnabled>
• --simulation_enabled <simulationEnabled>

Description

Inserts metadata into a .elf file for the Nios II processor so that downstream tools can extract that
information. With this added metadata, the .elf file can be the single handoff file for all downstream
embedded tools.

For example, the Nios II SBT uses nios-elf-insert to insert the CPU name and the system ID into the .elf
file at build time. Later on downstream, the Eclipse debugger can use nios2-elf-query to extract this
information and populate all the GUI settings with the correct default values.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a
command description to stderr.

Related Information
nios2-elf-query on page 15-16

nios2-elf-query

Usage

nios2-elf-query <filename> [--cpu_name] [--stderr_dev] [--stdin_dev]

 [--stdout_dev] [--sidp] [--id] [--timestamp] [--sof] [--sopcinfo]

 [--jar] [--jdi] [--quartus_project_dir] [--sopc_system_name]

 [--profiling_enabled] [--simulation_enabled]

Options

• <filename>: the .elf filename
• --cpu_name

• --stderr_dev

• --stdin_dev

15-16 nios2-elf-query
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --stdout_dev

• --sidp

• --id

• --timestamp

• --sof

• --sopcinfo

• --jar

• --jdi

• --quartus_project_dir

• --sopc_system_name

• --profiling_enabled

• --simulation_enabled

Description

Extracts metadata from a .elf file intended for the Nios II soft-core processor. This tool allows
downstream tools to extract information that was inserted in a .elf file by nios2-elf-insert. The main
motivation for this tool is to make the .elf file the single handoff file that all downstream embedded tools
can agree on.

For example, the Nios II SBT build flow will use nios-elf-insert to insert the cpu name and the sysid
information into the .elf file at build time. Later on downstream, the eclipse debugger can use nios2-elf-
query to extract this information to auto-populate all the various GUI settings with the correct default
values.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Related Information
nios2-elf-insert on page 15-15

nios2-flash-programmer-generate

Usage

nios2-flash-programmer-generate [--accept-bad-sysid]
 [--add-bin <fname> <flash-slave-desc> <offset>]
 [--add-elf <fname> <flash-slave-desc> <extra-elf2flash-arguments>]
 [--add-sof <fname> <flash-slave-desc> <offset>
 <extra-sof2flash-arguments>]
 [--cable <cable name>] [--cpu <processor_name>] [--debug]
 [--device <device name>] [--erase-first] [--extended-help]
 --flash-dir <directory> [--go] [--help] [--id <address>]
 [--instance <instance value>] [--log <filename>] [--mmu]
 [--program-flash] [--script-dir <directory>] [--sidp <address>]
 [--silent] --sopcinfo <filename> [--verbose] [--version]

NII5V2Gen2
2015.05.14 nios2-flash-programmer-generate 15-17

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• --accept-bad-sysid: Continue even if the system identifier (ID) comparison fails.
• --add-bin <fname> <flash-slave-desc> <offset>: Specify a binary file to convert and program.

The filename, target flash slave descriptor, and target offset amount are required. This option can be
used multiple times for SRAM Object Files (.sof).

• --add-elf <fname> <flash-slave-desc> <extra-elf2flash-arguments>: Specify a .elf file to convert and
program. The filename and target flash slave descriptor are required. This option can be used multiple
times for .elf files. <extra-elf2flash-arguments> can be any of the following options supported by
elf2flash:

• save

• sim_optimize

The following elf2flash options have default values computed, but are also supported as <extra-
elf2flash-arguments> for manual override of those defaults:

• base

• boot

• end

• reset

• --add-sof <fname> <flash-slave-desc> <offset> <extra-sof2flash-arguments>: Specify a .sof
file to convert and program. The filename, target flash slave descriptor, and target offset arguments are
required. This option can be used multiple times for .sof files. <extra-sof2flash-arguments> can be any
of the following options supported by sof2flash:

• activeparallel

• compress

• save

• timestamp

• options

• --cable <cable name>: Specifies which JTAG cable to use (not needed if you only have one cable).
Not used without --program-flash option.

• --cpu <processor_name>: The Nios II processor name from the .sopcinfo file. Not required if only one
Nios II processor in the system.

• --debug: Sends debug information, exception traces, verbose output, and default information about
the command's operation, to stdout.

• --device <device name>: Specifies in which device you want to look for the Nios II debug core.
Device 1 is the device nearest TDI. Not used without --program-flash option.

• --erase-first: Erase entire flash targets before programming them. Not used without --program-
flash option.

• --extended-help: Displays full information about this command and its options.
• --flash-dir <directory>: Path to the directory where the flash files are generated. Use . for the

current directory. This command overwrites pre-existing files in <directory> without warning.
• --go: Run processor from reset vector after program.
• --help: Displays basic information about this command and its options.
• --id <address>: Unique ID code for target system. Not used without --program-flash option.
• --instance <instance value>: Specifies the INSTANCE value of the debug core (not needed if there

is exactly one on the chain). Not used without --program-flash option.
• --log <filename>: Creates a debug log and write to specified file. Also logs debug information to

stdout.
• --mmu: Specifies if the processor with the corresponding INSTANCE value has an MMU (not needed if

there is exactly one processor in the system). Not used without --program-flash option.

15-18 nios2-flash-programmer-generate
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --program-flash: Providing this flag causes calls to nios2-flash-programmer to be generated and
executed. This results in flash targets being programmed.

• --script-dir <directory>: Path to the directory where a shell script of this tool’s executed
command lines is generated. This script can be used in place of this nios2-flash-programmer-
generate command. Use . for the current directory. This command overwrites pre-existing files in
<directory> without warning.

• --sidp <address>: Base address of system ID peripheral on the target. Not used without --program-
flash option.

• --silent: Suppresses information about the command's operation normally sent to stdout.
• --sopcinfo <filename>: The .sopcinfo file.
• --verbose: Sends verbose output, and default information about the command’s operation, to stdout.
• --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-flash-programmer-generate command converts multiple files to a .flash in Motorola S-record
format, and programs them to the designated target flash devices (--program-flash). This is a
convenience utility that manages calls to the following command line utilities

• bin2flash
• elf2flash
• sof2flash
• nios2-flash-programmer
This utility also generates a script that captures the sequence of conversion and flash programmer
commands.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

Example

nios2-flash-programmer-generate --sopcinfo=C:\my_design.sopcinfo \
 --flash-dir=. \
 --add-sof C:\my_design\test.sof 0x0C000000 memory_0 compress save \
 --add-elf C:\my_app\my_app.elf 0x08000000 memory_0 \
 --program-flash

nios2-bsp

Usage

nios2-bsp <bsp-type> <bsp-dir> [<sopc>] [<override>]...

Options

• <bsp-type>: hal or ucosii.
• <bsp-dir>: Path to the BSP directory.
• <sopc>: The path to the .sopcinfo file or its directory.
• <override>: Options to override defaults.

NII5V2Gen2
2015.05.14 nios2-bsp 15-19

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

The nios2-bsp script calls nios2-bsp-create-settings or nios2-bsp-update-settings to create or update a
BSP settings file, and the nios2-bsp-generate-files command to create the BSP files. The Nios II
Embedded Design Suite (EDS) supports the following BSP types:

• hal

• ucosii

BSP type names are case-insensitive.

This utility produces a BSP of <bsp-type> in <bsp-dir>. If the BSP does not exist, it is created. If the BSP
already exists, it is updated to be consistent with the associated hardware system.

The default Tcl script is used to set the following system-dependent settings:

• stdio character device
• System timer device
• Default linker memory
• Boot loader status (enabled or disabled)

If the BSP already exists, nios2-bsp overwrites these system-dependent settings.

The default Tcl script is installed at <Nios II EDS install path>/sdk2/bin/bsp-set-defaults.tcl

When creating a new BSP, this utility runs nios2-bsp-create-settings, which creates settings.bsp in <bsp-
dir>.

When updating an existing BSP, this utility runs nios2-bsp-update-settings, which updates settings.bsp in
<bsp-dir>.

After creating or updating the settings.bsp file, this utility runs nios2-bsp-generate-files, which generates
files in <bsp-dir>

Required arguments:

• <bsp-type>: Specifies the type of BSP. This argument is ignored when updating a BSP. This argument
is case-insensitive. The nios2-bsp script supports the following values of <bsp-type>:

• hal

• ucosii

• <bsp-dir>: Path to the BSP directory. Use "." to specify the current directory.

15-20 nios2-bsp
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optional arguments:

• <sopc>: The path name of the .sopcinfo file. Alternatively, specify a directory containing a .sopcinfo file.
In the latter case, the tool finds a file with the extension .sopcinfo. This argument is ignored when
updating a BSP. If you omit this argument, it defaults to the current directory.

• <override>: Options to override defaults. The nios2-bsp script passes most overrides to nios2-bsp-
create-settings or nios2-bsp-update-settings. It also passes the --silent, --verbose, --debug, and
--log options to nios2-bsp-generate-files.

nios2-bsp passes the following overrides to the default Tcl script:

• --default_stdio <device>|none|DONT_CHANGE

Specifies stdio device.
• --default_sys_timer <device>|none|DONT_CHANGE

Specifies system timer device.
• --default_memory_regions DONT_CHANGE

Suppresses creation of new default memory regions when updating a BSP. Do not use this option
when creating a new BSP.

• --default_sections_mapping <region>|DONT_CHANGE

Specifies the memory region for the default sections.
• --use_bootloader 0|1|DONT_CHANGE

Specifies whether a boot loader is required.

On a preexisting BSP, the value DONT_CHANGE prevents associated settings from changing their
current value.

Note: The "--" prefix is stripped when the option is passed to the underlying utility.

If no command-line arguments are specified, this command returns an exit value of 1 and sends a help
message to stderr.

nios2-bsp-console

Usage

nios2-bsp-console [--cmd <tcl> <command>] [--extended-help] [--gui]
 [--help] [--script <filename>] [--version]

Options

• --cmd <tcl> <command>: Runs the specified Tcl command. Multiple --cmd options are allowed.

• --extended-help: Displays full information about this command and its options. Lists Altera BSP Tcl
command help for the --cmd and --script options

• --gui: This option opens a Tcl console for creating, editing, and generating Altera BSPs.
• --help: Displays basic information about this command and its options.
• --script <filename>: Run the specified Tcl script with optional arguments. Multiple --script

options are allowed.

• --version: Displays the version of this command and exits with a zero exit status.

NII5V2Gen2
2015.05.14 nios2-bsp-console 15-21

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

When invoked with no arguments, nios2-bsp-console starts an interactive command-line Tcl interpreter
for creating, editing, and generating Altera BSPs.

Related Information
Tcl Commands for BSP Settings on page 15-65

alt-file-convert

Usage

alt-file-convert -I <input_type> -o <output_type> [option(s)] --input=<input_file>
--output=<output_file>

Options

-h, --help - prints usage
-I - input type
-O - output type
--base - base address (in hex) f target memory (default 0x0)
--end - end address (in hex) of target memory (default 0xFFFFFFFF)
--reset - reset address (in hex) of target memory (default None)
--input - path to input file
--output - path to output file
--in-data-width - data width of inputfile [8, 16, 32, 64, 128, 256] (default 8)
--out-data-width - data width of target memory [8, 16, 32, 64, 128, 256] (default
None)
--boot - location of boot file to be appended (srec format)

Description

The alt-file-convert tool is a general file conversion tool that allows you to create a flash image for the
MAX10 device with a bootloader.

For Nios II Gen2, the BETA version of this tool is limited to the following uses:

• Convert between Intel HEX (byte addressed) and Quartus HEX (word addr essed)
• Convert between Quartus HEX files of various widths
• Covert an .elf file to a HEX file and append a bootcopier (used for ap plication flash image for Max

Onchip Flash and EPCQ

Examples

Converting from Intel Hex (IHEX) to a Quartus Hex (HEX) for a memory with a 32-bit data width:

alt-file-convert –I ihex –O
 hex out-data-width 32 in.ihex out.hex

Converting from an .elf file to a flash and appending a bootcopier given as a srec file:

alt-file-convert –I elf32-littlenios2 –O flash in.elf out.flash –-have-boot-copier
–-boot boot.elf

15-22 alt-file-convert
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Converting from an HEX file for a 16-bit data width memory to a DAT file:

alt-file-convert –I hex –O
 dat in-data-width 16 in.hex out.dat

Nios II Design Example Scripts
The Nios II SBT includes scripts that allow you to create sample BSPs and applications. This section
describes each script and its location in the design example directory structure. Each hardware design
example in the Nios II EDS includes a software_examples directory with app and bsp subdirectories.

The bsp subdirectory contains a variety of example BSPs. The bsp directory for each hardware example
only includes BSP examples supported by the associated hardware example.
Example BSP (14) Summary

hal_reduced_footprint Hardware abstraction layer (HAL) BSP configured to minimize
memory footprint

hal_default HAL BSP configured with all defaults
hal_zipfs HAL BSP configured with the Altera read-only zip file system
ucosii_net MicroC/OS-II BSP configured with networking
ucosii_net_zipfs MicroC/OS-II BSP configured with networking and the Altera read-

only zip file system
ucosii_net_tse MicroC/OS-II BSP configured with networking support for the

Altera triple-speed Ethernet media access control (MAC)
ucosii_net_tse_zipfs MicroC/OS-II BSP configured with networking support for the

Altera triple-speed Ethernet MAC and the Altera read-only zip file
system

ucosii_default MicroC/OS-II BSP configured with all defaults

Application Name Summary

Hello World Prints "Hello from Nios II"
Board Diagnostics Tests peripherals on the development boards
Count Binary Displays a running count of 0x00 to 0xff
Hello Freestanding Prints "Hello from Nios II" from a free-standing

application
Hello MicroC/OS-II Prints "Hello from Nios II" using the MicroC/OS-

II RTOS
Hello World Small Prints "Hello from Nios II" from a small footprint

program
Memory Test Runs diagnostic tests on both volatile and flash

memory

(14) Some BSP examples might not be available on some hardware examples.

NII5V2Gen2
2015.05.14 Nios II Design Example Scripts 15-23

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Application Name Summary

Memory Test Small Runs diagnostic tests on volatile memory from a small
footprint

Simple Socket Server Runs a TCP/IP socket server
Web Server Runs a web server from a file system in flash memory
Zip File System Reads from a file system in flash memory

Note: Some application examples might not be available on some hardware examples, depending on BSP
support.

create-this-bsp
Each BSP subdirectory contains a create-this-bsp script. The create-this-bsp script calls the nios2-bsp
script to create a BSP in the current directory. The create-this-bsp script has a relative path to the
directory containing the .sopcinfo file. The .sopcinfo file resides two directory levels above the directory
containing the create-this-bsp script.

The create-this-bsp script takes no command-line arguments. Your current directory must be the same
directory as the create-this-bsp script. The exit value is zero on success and one on error.

create-this-app
Each application subdirectory contains a create-this-app script. The create-this-app script copies the C/C
++ application source code to the current directory, runs nios2-app-generate-makefile to create a
makefile (named Makefile), and then runs make to build the Executable and Linking Format File (.elf) for
your application. Each create-this-app script uses a particular example BSP. For further information,
refer to the script to determine the associated example BSP. If the BSP does not exist when create-this-
app runs, create-this-app calls the associated create-this-bsp script to create the BSP.

The create-this-app script takes no command-line arguments. Your current directory must be the same
directory as the create-this-app script. The exit value is zero on success and one on error.

Finding create-this-app and create-this-bsp
The create-this-app and create-this-bsp scripts are installed with your Nios II design examples. You can
easily find them from the following information:

• Where the Nios II EDS is installed
• Which Altera development board you are using
• Which HDL you are using
• Which Nios II hardware design example you are using
• The name of the Nios II software example

The create-this-app script for each software design example is in <Nios II EDS install path>/examples/
<HDL>/niosII_<board type>/<design name>/software_examples/app/<example name>. For example,
the create-this-app script for the Hello World software example running on the triple-speed ethernet
design example for the Stratix® IV GX FPGA Development Kit might be located in
c:/altera/100/nios2eds/examples/verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design/
software_examples/app/hello_world.

Similarly, the create-this-bsp script for each software design example is in <Nios II EDS install path>/
examples/<HDL>/niosII_<board type>/<design name>/software_examples/bsp/<BSP_type>. For
example, the create-this-bsp script for the basic HAL BSP to run on the triple-speed ethernet design

15-24 create-this-bsp
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

example for the Stratix IV GX FPGA Development Kit might be located in c:/altera/100/nios2eds/
examples/verilog/niosII_stratixIV_4sgx230/triple_speed_ethernet_design/software_examples/bsp/
hal_default.

Figure 15-1: Software Design Example Directory Structure

Quartus II files (e.g. standard.qpf)

Hardware system files (e.g. standard.sopcinfo)

BSP examples (e.g. hal_standard)

<design> (e.g. standard)

software_examples

bsp

create-this-bsp

app

software examples (e.g. hello_world)

create-this-app

Settings Managed by the Software Build Tools
Settings are central to how you create and work with BSPs, software packages, and device drivers. You
control the characteristics of your project by controlling the settings. The settings determine things like
whether or not an operating system is supported, and the device drivers and other packages that are
included.

Sometimes these settings are specified automatically, by scripts such as create-this-bsp, and sometimes
explicitly, with Tcl commands. Either way, settings are always involved.

This section contains a complete list of available settings for BSPs and for Altera-supported device drivers
and software packages. It does not include settings for device drivers or software packages furnished by
Altera partners or other third parties. If you are using a third-party driver or component, refer to the
supplier's documentation.

Settings used in the Nios II SBT are organized hierarchically, for logical grouping and to avoid name
conflicts. Each setting's position in the hierarchy is indicated by one or more prefixes. A prefix is an
identifier followed by a dot (.). For example, hal.enable_c_plus_plus is a hardware abstraction layer
(HAL) setting, while ucosii.event_flag.os_flag_accept_en is a member of the event flag subgroup of
MicroC/OS-II settings.

Setting names are case-insensitive.

NII5V2Gen2
2015.05.14 Settings Managed by the Software Build Tools 15-25

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Getting Started from the Command Line on page 3-1
• Nios II Software Build Tools on page 4-1

For more information, refer to the examples about specifying or manipulating settings.

Overview of BSP Settings
A BSP setting consists of a name/value pair.

The format in which you specify the setting value depends on the setting type. Several settings types are
supported.

Table 15-3: Allowed Formats for each Setting Type

Setting Type Format When Setting Format When Getting

boolean 0/1 or false/true 0/1
number 0x prefix for hexadecimal

or no prefix for a decimal
number

decimal

string Quoted string

Use "none" to set empty
string.

In the SBT command line,
to specify a string value
with embedded spaces,
surround the string with a
backslash-double-quote
sequence (\"). For
example:

--set APP_INCLUDE_DIRS

\"lcd board\"

Quoted string

Table 15-4: BSP Setting Contexts

Setting Context Description

Altera LWHAL Settings available with the Altera Lightweight HAL
BSP or any BSP based on it.

Altera HAL Settings available with the Altera HAL BSP or any
BSP based on it (for example, Micrium MicroC/OS-
II).

Micrium
MicroC/OS-II

Settings available if using the Micrium MicroC/OS-
II BSP. All Altera HAL BSP settings are also
available because MicroC/OS-II is based on the
Altera HAL BSP.

15-26 Overview of BSP Settings
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Context Description

Altera BSP Makefile Generator Settings available if using the Altera BSP makefile
generator (generates the Makefile and public.mk
files). These settings control the contents of
makefile variables. This generator is always present
in Altera HAL BSPs or any BSPs based on the Altera
HAL.

Altera BSP Linker Script Generator Settings available if using the Altera BSP linker
script generator (generates the linker.x and linker.h
files). This generator is always present in Altera
HAL BSPs or any BSPs based on the Altera HAL.

Do not confuse BSP settings with BSP Tcl commands. This section covers BSP settings, including their
types, meanings, and legal values.

Related Information
Tcl Commands for BSP Settings on page 15-65

Overview of Component and Driver Settings
The Nios II EDS includes a number of standard software packages and device drivers. All of the software
packages, and several drivers, have settings that you can manipulate when creating a BSP. This section
lists the packages and drivers that have settings.

You can enable a software package or driver in the Nios II BSP Editor.

Related Information
Tcl Commands for BSP Settings on page 15-65

Altera Host-Based File System Settings
The Altera host-based file system has one setting. If the Altera host-based file system is enabled, you must
debug (not run) applications based on the BSP for the host-based file system to function. The host-based
file system relies on the GNU debugger running on the host to provide host-based file operations.

The host-based file system enables debugging information in your project, by setting
APP_CFLAGS_OPTIMIZATION to -g in the makefile.

To include the host-based file system in your BSP, enable the altera_hostfs software package.

Altera Read-Only Zip File System Settings
The Altera read-only zip file system has several settings. If the read-only zip file system is enabled, it adds
-DUSE_RO_ZIPFS to ALT_CPPFLAGS in public.mk.

To include the read-only zip file system in your BSP, enable the altera_ro_zipfs software package.

Altera NicheStack TCP/IP - Nios II Edition Stack Settings
The Altera NicheStack TCP/IP Network Stack - Nios II Edition has several settings. The stack is only
available in MicroC/OS-II BSPs. If the NicheStack TCP/IP stack is enabled, it adds -DALT_INICHE to
ALT_CPPFLAGS in public.mk.

To include the NicheStack TCP/IP networking stack in your BSP, enable the altera_iniche software
package.

NII5V2Gen2
2015.05.14 Overview of Component and Driver Settings 15-27

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Altera Avalon-MM JTAG UART Driver Settings
The Altera Avalon Memory-Mapped® (Avalon-MM) JTAG UART driver settings are available if the
altera_avalon_jtag_uart driver is present. By default, this driver is used if your hardware system has
an altera_avalon_jtag_uart module connected to it.

Altera Avalon-MM UART Driver Settings
The Altera Avalon-MM UART driver settings are available if the altera_avalon_uart driver is present.
By default, this driver is used if your hardware system has an altera_avalon_uart module connected to
it.

Settings Reference
This section lists all settings for BSPs, software packages, and device drivers.

hal.enable_instruction_related_exceptions_api

• Identifier: none
• Type: Boolean definition
• Default Value: false
• Destination File: none
• Description: Enables application program interface (API) for registering handlers to service instruc‐

tion-related exceptions. These exception types can be generated if various processor options are
enabled, such as the memory management unit (MMU), memory protection unit (MPU), or other
advanced exception types. Enabling this setting increases the size of the exception entry code.

• Restrictions: none

hal.max_file_descriptors

• Identifier: none
• Type: Decimal number
• Default Value: 32
• Destination File: none
• Description: Determines the number of file descriptors statically allocated.
• Restriction: If hal.enable_lightweight_device_driver_api is true, there are no file descriptors so this

setting is ignored. If hal.enable_lightweight_device_driver_api is false, this setting must be at least 4
because HAL needs a file descriptor for /dev/null, /dev/stdin, /dev/stdout, and /dev/stderr. This setting
defines the value of ALT_MAX_FD in system.h.

hal.disable_startup_thread_sync

• Identifier: ALT_DISABLE_STARTUP_THREAD_SYNC
• Type: Boolean definition
• Default Value: false
• Destination File: system.h

15-28 Altera Avalon-MM JTAG UART Driver Settings
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Description: Disables thread synchronization checking on startup. By default, startup code in crt0.S
assumes that the .rwdata section must be reloaded every time the system is reset. Thread 0 waits until
the .rwdata section is reloaded before executing initialization code.

• The hal.disable_startup_thread_sync setting allows you to disable this restriction in your BSP, if
your software is written without initialized global or static variables. This setting might be useful if you
develop assembly language, and want to take advantage of initialization code in crt0.S.

• Restriction: Do not disable startup thread synchronization under the following circumstances:

• Your code uses initialized global or static variables
• Your application uses memory management functions such as alt_malloc(), alt_free() and

alt_calloc()

hal.enable_small_stack

• Identifier: none
• Type:Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: lwhal.enable_small_stack turns off a build warning that indicates the setting

'lwhal.thread_stack_size' might be too small (< 384 for printf) for your application.
• Restriction: none

hal.exclude_default_exception

• Identifier: ALT_EXCLUDE_DEFAULT_EXCEPTION
• Type: Boolean definition
• Default Value: false
• Destination File: system.h
• Description: Excludes default exception vector. If true, this setting defines the macro

ALT_EXCLUDE_DEFAULT_EXCEPTION in system.h.
• Restriction: none

hal.sys_clk_timer

• Identifier: none
• Type: Unquoted string
• Default Value: none
• Destination File: none
• Description: Slave descriptor of the system clock timer device. This device provides a periodic

interrupt ("tick") and is typically required for RTOS use. This setting defines the value of
ALT_SYS_CLK in system.h.

• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-29

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.timestamp_timer

• iIdentifier: none
• Type: Unquoted string
• Default Value: none
• Destination File: none
• Description: Slave descriptor of timestamp timer device. This device is used by Altera HAL timestamp

drivers for high-resolution time measurement. This setting defines the value of
ALT_TIMESTAMP_CLK in system.h.

• Restriction: none

ucosii.os_max_tasks

• Identifier: OS_MAX_TASKS
• Type: Decimal number
• Default Value: 10
• Destination File: system.h
• Description: Maximum number of tasks
• Restriction: none

ucosii.os_lowest_prio

• Identifier: OS_LOWEST_PRIO
• Type: Decimal number
• Default Value: 20
• Destination File: system.h
• Description: Lowest assignable priority
• Restriction: none

ucosii.os_thread_safe_newlib

• Identifier: OS_THREAD_SAFE_NEWLIB
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Thread safe C library
• Restriction: none

ucosii.miscellaneous.os_arg_chk_en

• Identifier: OS_ARG_CHK_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable argument checking
• Restriction: none

15-30 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.miscellaneous.os_cpu_hooks_en

• Identifier: OS_CPU_HOOKS_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable MicroC/OS-II hooks
• Restriction: none

ucosii.miscellaneous.os_debug_en

• Identifier: OS_DEBUG_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable debug variables
• Restriction: none

ucosii.miscellaneous.os_sched_lock_en

• Identifier: OS_SCHED_LOCK_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSSchedLock() and OSSchedUnlock()
• Restriction: none

ucosii.miscellaneous.os_task_stat_en

• Identifier: OS_TASK_STAT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable statistics task
• Restriction: none

ucosii.miscellaneous.os_task_stat_stk_chk_en

• Identifier: OS_TASK_STAT_STK_CHK_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Check task stacks from statistics task
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-31

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.miscellaneous.os_tick_step_en

• Identifier: OS_TICK_STEP_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable tick stepping feature for uCOS-View
• Restriction: none

ucosii.miscellaneous.os_event_name_size

• Identifier: OS_EVENT_NAME_SIZE
• Type: Decimal number
• Default Value: 32
• Destination File: system.h
• Description: Size of name of Event Control Block groups
• Restriction: none

ucosii.miscellaneous.os_max_events

• Identifier: OS_MAX_EVENTS
• Type: Decimal number
• Default Value: 60
• Destination File: system.h
• Description: Maximum number of event control blocks
• Restriction: none

ucosii.miscellaneous.os_task_idle_stk_size

• Identifier: OS_TASK_IDLE_STK_SIZE
• Type: Decimal number
• Default Value: 512
• Destination File: system.h
• Description: Idle task stack size
• Restriction: none

ucosii.miscellaneous.os_task_stat_stk_size

• Identifier: OS_TASK_STAT_STK_SIZE
• Type: Decimal number
• Default Value: 512
• Destination File: system.h
• Description: Statistics task stack size
• Restriction: none

15-32 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.task.os_task_change_prio_en

• Identifier: OS_TASK_CHANGE_PRIO_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTaskChangePrio()
• Restriction: none

ucosii.task.os_task_create_en

• Identifier: OS_TASK_CREATE_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTaskCreate()
• Restriction: none

ucosii.task.os_task_create_ext_en

• Identifier: OS_TASK_CREATE_EXT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTaskCreateExt()
• Restriction: none

ucosii.task.os_task_del_en

• Identifier: OS_TASK_DEL_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTaskDel()
• Restriction: none

ucosii.task.os_task_name_size

• Identifier: OS_TASK_NAME_SIZE
• Type: Decimal number
• Default Value: 32
• Destination File: system.h
• Description: Size of task name
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-33

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.task.os_task_profile_en

• Identifier: OS_TASK_PROFILE_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include data structure for run-time task profiling
• Restriction: none

ucosii.task.os_task_query_en

• Identifier: OS_TASK_QUERY_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTaskQuery
• Restriction: none

ucosii.task.os_task_suspend_en

• Identifier: OS_TASK_SUSPEND_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTaskSuspend() and OSTaskResume()
• Restriction: none

ucosii.task.os_task_sw_hook_en

• Identifier: OS_TASK_SW_HOOK_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTaskSwHook()
• Restriction: none

ucosii.time.os_time_tick_hook_en

• Identifier: OS_TIME_TICK_HOOK_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTimeTickHook()
• Restriction: none

15-34 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.time.os_time_dly_resume_en

• Identifier: OS_TIME_DLY_RESUME_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTimeDlyResume()
• Restriction: none

ucosii.time.os_time_dly_hmsm_en

• Identifier: OS_TIME_DLY_HMSM_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTimeDlyHMSM()
• Restriction: none

ucosii.time.os_time_get_set_en

• Identifier: OS_TIME_GET_SET_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSTimeGet and OSTimeSet()
• Restriction: none

ucosii.os_flag_en

• Identifier: OS_FLAG_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable code for Event Flags. This setting is enabled by default in MicroC-OS/II BSPs,

because it is required for correct functioning of Altera device drivers and the HAL in a multithreaded
environment. Avoid disabling it.

• Restriction: none

ucosii.event_flag.os_flag_wait_clr_en

• Identifier: OS_FLAG_WAIT_CLR_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for Wait on Clear Event Flags. This setting is enabled by default in MicroC-

OS/II BSPs, because it is required for correct functioning of Altera device drivers and the HAL in a
multithreaded environment. Avoid disabling it.

• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-35

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.event_flag.os_flag_accept_en

• Identifier: OS_FLAG_ACCEPT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSFlagAccept(). This setting is enabled by default in MicroC-OS/II

BSPs, because it is required for correct functioning of Altera device drivers and the HAL in a
multithreaded environment. Avoid disabling it.

• Restriction: none

ucosii.event_flag.os_flag_del_en

• Identifier: OS_FLAG_DEL_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSFlagDel(). This setting is enabled by default in MicroC-OS/II BSPs,

because it is required for correct functioning of Altera device drivers and the HAL in a multithreaded
environment. Avoid disabling it.

• Restriction: none

ucosii.event_flag.os_flag_query_en

• Identifier: OS_FLAG_QUERY_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSFlagQuery(). This setting is enabled by default in MicroC-OS/II

BSPs, because it is required for correct functioning of Altera device drivers and the HAL in a
multithreaded environment. Avoid disabling it.

• Restriction: none

ucosii.event_flag.os_flag_name_size

• Identifier: OS_FLAG_NAME_SIZE
• Type: Decimal number
• Default Value: 32
• Destination File: system.h
• Description: Size of name of Event Flags group. CAUTION: This is required by the HAL and many

Altera device drivers; use caution in reducing this value.
• Restriction: none

ucosii.event_flag.os_flags_nbits

• Identifier: OS_FLAGS_NBITS
• Type: Decimal number
• Default Value: 16
• Destination File: system.h
• Description: Event Flag bits (8,16,32). CAUTION: This is required by the HAL and many Altera

device drivers; use caution in changing this value.
• Restriction: none

15-36 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.event_flag.os_max_flags

• Identifier: OS_MAX_FLAGS
• Type: Decimal number
• Default Value: 20
• Destination File: system.h
• Description: Maximum number of Event Flags groups. CAUTION: This is required by the HAL and

many Altera device drivers; use caution in reducing this value.
• Restriction: none

ucosii.os_mutex_en

• Identifier: OS_MUTEX_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable code for Mutex Semaphores
• Restriction: none

ucosii.mutex.os_mutex_accept_en

• Identifier: OS_MUTEX_ACCEPT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMutexAccept()
• Restriction: none

ucosii.mutex.os_mutex_del_en

• Identifier: OS_MUTEX_DEL_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMutexDel()
• Restriction: none

ucosii.mutex.os_mutex_query_en

• Identifier: OS_MUTEX_QUERY_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMutexQuery
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-37

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.os_sem_en

• Identifier: OS_SEM_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable code for semaphores. This setting is enabled by default in MicroC-OS/II BSPs,

because it is required for correct functioning of Altera device drivers and the HAL in a multithreaded
environment. Avoid disabling it.

• Restriction: none

ucosii.semaphore.os_sem_accept_en

• Identifier: OS_SEM_ACCEPT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSSemAccept(). This setting is enabled by default in MicroC-OS/II

BSPs, because it is required for correct functioning of Altera device drivers and the HAL in a
multithreaded environment. Avoid disabling it.

• Restriction: none

ucosii.semaphore.os_sem_set_en

• Identifier: OS_SEM_SET_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSSemSet(). This setting is enabled by default in MicroC-OS/II BSPs,

because it is required for correct functioning of Altera device drivers and the HAL in a multithreaded
environment. Avoid disabling it.

• Restriction: none

ucosii.semaphore.os_sem_del_en

• Identifier: OS_SEM_DEL_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSSemDel(). This setting is enabled by default in MicroC-OS/II BSPs,

because it is required for correct functioning of Altera device drivers and the HAL in a multithreaded
environment. Avoid disabling it.

• Restriction: none

15-38 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.semaphore.os_sem_query_en

• Identifier: OS_SEM_QUERY_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSSemQuery(). This setting is enabled by default in MicroC-OS/II

BSPs, because it is required for correct functioning of Altera device drivers and the HAL in a
multithreaded environment. Avoid disabling it.

• Restriction: none

ucosii.os_mbox_en

• Identifier: OS_MBOX_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable code for mailboxes
• Restriction: none

ucosii.mailbox.os_mbox_accept_en

• Identifier: OS_MBOX_ACCEPT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMboxAccept()
• Restriction: none

ucosii.mailbox.os_mbox_del_en

• Identifier: OS_MBOX_DEL_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMboxDel()
• Restriction: none

ucosii.mailbox.os_mbox_post_en

• Identifier: OS_MBOX_POST_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMboxPost()
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-39

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.mailbox.os_mbox_post_opt_en

• Identifier: OS_MBOX_POST_OPT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMboxPostOpt()
• Restriction: none

ucosii.mailbox.os_mbox_query_en

• Identifier: OS_MBOX_QUERY_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMboxQuery()
• Restriction: none

ucosii.os_q_en

• Identifier: OS_Q_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable code for Queues
• Restriction: none

ucosii.queue.os_q_accept_en

• Identifier: OS_Q_ACCEPT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSQAccept()
• Restriction: none

ucosii.queue.os_q_del_en

• Identifier: OS_Q_DEL_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSQDel()
• Restriction: none

15-40 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.queue.os_q_flush_en

• Identifier: OS_Q_FLUSH_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSQFlush()
• Restriction: none

ucosii.queue.os_q_post_en

• Identifier: OS_Q_POST_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code of OSQFlush()
• Restriction: none

ucosii.queue.os_q_post_front_en

• Identifier: OS_Q_POST_FRONT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSQPostFront()
• Restriction: none

ucosii.queue.os_q_post_opt_en

• Identifier: OS_Q_POST_OPT_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSQPostOpt()
• Restriction: none

ucosii.queue.os_q_query_en

• Identifier: OS_Q_QUERY_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSQQuery()
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-41

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.queue.os_max_qs

• Identifier: OS_MAX_QS
• Type: Decimal number
• Default Value: 20
• Destination File: system.h
• Description: Maximum number of Queue Control Blocks
• Restriction: none

ucosii.os_mem_en

• Identifier: OS_MEM_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Enable code for memory management
• Restriction: none

ucosii.memory.os_mem_query_en

• Identifier: OS_MEM_QUERY_EN
• Type: Boolean assignment
• Default Value: 1
• Destination File: system.h
• Description: Include code for OSMemQuery()
• Restriction: none

ucosii.memory.os_mem_name_size

• Identifier: OS_MEM_NAME_SIZE
• Type: Decimal number
• Default Value: 32
• Destination File: system.h
• Description: Size of memory partition name
• Restriction: none

ucosii.memory.os_max_mem_part

• Identifier: OS_MAX_MEM_PART
• Type: Decimal number
• Default Value: 60
• Destination File: system.h
• Description: Maximum number of memory partitions
• Restriction: none

15-42 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.os_tmr_en

• Identifier: OS_TMR_EN
• Type: Boolean assignment
• Default Value: 0
• Destination File: system.h
• Description: Enable code for timers
• Restriction: none

ucosii.timer.os_task_tmr_stk_size

• Identifier: OS_TASK_TMR_STK_SIZE
• Type: Decimal number
• Default Value: 512
• Destination File: system.h
• Description: Stack size for timer task
• Restriction: none

ucosii.timer.os_task_tmr_prio

• Identifier: OS_TASK_TMR_PRIO
• Type: Decimal number
• Default Value: 2
• Destination File: system.h
• Description: Priority of timer task (0=highest)
• Restriction: none

ucosii.timer.os_tmr_cfg_max

• Identifier: OS_TMR_CFG_MAX
• Type: Decimal number
• Default Value: 16
• Destination File: system.h
• Description: Maximum number of timers
• Restriction: none

ucosii.timer.os_tmr_cfg_name_size

• Identifier: OS_TMR_CFG_NAME_SIZE
• Type: Decimal number
• Default Value: 16
• Destination File: system.h
• Description: Size of timer name
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-43

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ucosii.timer.os_tmr_cfg_ticks_per_sec

• Identifier: OS_TMR_CFG_TICKS_PER_SEC
• Type: Decimal number
• Default Value: 10
• Destination File: system.h
• Description: Rate at which timer management task runs (Hz)
• Restriction: none

ucosii.timer.os_tmr_cfg_wheel_size

• Identifier: OS_TMR_CFG_WHEEL_SIZE
• Type: Decimal number
• Default Value: 2
• Destination File: system.h
• Description: Size of timer wheel (number of spokes)
• Restriction: none

altera_avalon_uart_driver.enable_small_driver

• Identifier: ALTERA_AVALON_UART_SMALL
• Type: Boolean definition
• Default Value: false
• Destination File: public.mk
• Description: Small-footprint (polled mode) driver
• Restriction: none

altera_avalon_uart_driver.enable_ioctl

• Identifier: ALTERA_AVALON_UART_USE_IOCTL
• Type: Boolean definition
• Default Value: false
• Destination File: public.mk
• Description: Enable driver ioctl() support. This feature is not compatible with the small driver; ioctl()

support is not compiled if either the UART enable_small_driver or the HAL
enable_reduced_device_drivers setting is enabled.

• Restriction: none

altera_avalon_jtag_uart_driver.enable_small_driver

• Identifier: ALTERA_AVALON_JTAG_UART_SMALL
• Type: Boolean definition
• Default Value: false
• Destination File: public.mk
• Description: Small-footprint (polled mode) driver
• Restriction: none

15-44 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

altera_hostfs.hostfs_name

• Identifier: ALTERA_HOSTFS_NAME
• Type: Quoted string
• Default Value: /mnt/host
• Destination File: system.h
• Description: Mount point
• Restriction: none

altera_iniche.iniche_default_if

• Identifier: INICHE_DEFAULT_IF
• Type: Quoted string
• Default Value: NOT_USED
• Destination File: system.h
• Description: Deprecated setting: Default media access control (MAC) interface. This setting is used in

some legacy Altera networking examples. It is not needed in new projects. If this setting appears in an
existing project, Altera recommends that you make any necessary changes to remove it. This setting
might be removed in a future release.

• Restriction: none

altera_iniche.enable_dhcp_client

• Identifier: DHCP_CLIENT
• Type: Boolean definition
• Default Value: true
• Destination File: system.h
• Description: Use dynamic host configuration protocol (DHCP) to automatically assign Internet

protocol (IP) address
• Restriction: none

altera_iniche.enable_ip_fragments

• Identifier: IP_FRAGMENTS
• Type: Boolean definition
• Default Value: true
• Destination File: system.h
• Description: Reassemble IP packet fragments
• Restriction: none

altera_iniche.enable_include_tcp

• Identifier: INCLUDE_TCP
• Type: Boolean definition
• Default Value: true
• Destination File: system.h
• Description: Enable Transmission Control Protocol (TCP)
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-45

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

altera_iniche.enable_tcp_zerocopy

• Identifier: TCP_ZEROCOPY
• Type: Boolean definition
• Default Value: false
• Destination File: system.h
• Description: Use TCP zero-copy
• Restriction: none

altera_iniche.enable_net_stats

• Identifier: NET_STATS
• Type: Boolean definition
• Default Value: false
• Destination File: system.h
• Description: Enable statistics
• Restriction: none

altera_ro_zipfs.ro_zipfs_name

• Identifier: ALTERA_RO_ZIPFS_NAME
• Type: Quoted string
• Default Value: /mnt/rozipfs
• Destination File: system.h
• Description: Mount point
• Restriction: none

altera_ro_zipfs.ro_zipfs_offset

• Identifier: ALTERA_RO_ZIPFS_OFFSET
• Type: Hexadecimal number
• Default Value: 0x100000
• Destination File: system.h
• Description: Offset of file system from base of flash
• Restriction: none

altera_ro_zipfs.ro_zipfs_base

• Identifier: ALTERA_RO_ZIPFS_BASE
• Type: Hexadecimal number
• Default Value: 0x0
• Destination File: system.h
• Description: Base address of flash memory device
• Restriction: none

15-46 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.linker.allow_code_at_reset

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: none
• Description: Indicates if initialization code is allowed at the reset address. If true, defines the macro

ALT_ALLOW_CODE_AT_RESET in linker.h.
• Restriction: This setting is typically false if an external bootloader (e.g. flash bootloader) is present.

hal.linker.enable_alt_load

• Identifier: none
• Type: Boolean assignment
• Default Value: 1
• Destination File: none
• Description: Enables the alt_load() facility. The alt_load() facility copies sections from the .text

memory into RAM. If true, this setting sets up the VMA/LMA (virtual memory address/low memory
address) of sections in linker.x to allow them to be loaded into the .text memory.

• Restriction: This setting is typically false if an external bootloader (e.g. flash bootloader) is present.

hal.linker.enable_alt_load_copy_exceptions

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: none
• Description: Causes the alt_load() facility to copy the .exceptions section. If true, this setting defines

the macro ALT_LOAD_COPY_EXCEPTIONS in linker.h.
• Restriction: none

hal.linker.enable_alt_load_copy_rodata

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: none
• Description: Causes the alt_load() facility to copy the .rodata section. If true, this setting defines the

macro ALT_LOAD_COPY_RODATA in linker.h.
• Restriction: none

hal.linker.enable_alt_load_copy_rwdata

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: none
• Description: Causes the initialization code to copy the .rwdata section. If true, this setting defines the

macro ALT_LOAD_COPY_RWDATA in linker.h.
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-47

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.linker.enable_exception_stack

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: none
• Description: Enables use of a separate exception stack. If true, defines the macro

ALT_EXCEPTION_STACK in linker.h, adds a memory region called exception_stack to linker.x, and
provides the symbols __alt_exception_stack_pointer and __alt_exception_stack_limit in linker.x.

• Restriction: The hal.linker.exception_stack_size and
hal.linker.exception_stack_memory_region_name settings must also be valid. This setting must be
false for MicroC/OS-II BSPs. The exception stack can be used to improve interrupt and other
exception performance if an EIC is not implemented.

hal.linker.exception_stack_memory_region_name

• Identifier: none
• Type: Unquoted string
• Default Value: none
• Destination File: none
• Description: Name of the existing memory region to be divided up to create the exception_stack

memory region. The selected region name is adjusted automatically when the BSP is generated to
create the exception_stack memory region.

• Restriction: Only used if hal.linker.enable_exception_stack is true.

hal.linker.exception_stack_size

• Identifier: none
• Type: Decimal number
• Default Value: 1024
• Destination File: none
• Description: Size of the exception stack in bytes.
• Restriction: Only used if hal.linker.enable_exception_stack is true. none

hal.linker.enable_interrupt_stack

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: none
• Description: Enables use of a separate interrupt stack. If true, defines the macro

ALT_INTERRUPT_STACK in linker.h, adds a memory region called interrupt_stack to linker.x, and
provides the symbols __alt_interrupt_stack_pointer and __alt_interrupt_stack_limit in
linker.x.

• Restriction: The hal.linker.interrupt_stack_size and
hal.linker.interrupt_stack_memory_region_name settings must also be valid. This setting must
be false for MicroC/OS-II BSPs. Only enable this setting for systems with an EIC. If an EIC is not
implemented, use the separate exception stack to improve interrupt and other exception performance.

15-48 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

.linker.interrupt_stack_memory_region_name

• Identifier: none
• Type: Unquoted String
• Default Value: none
• Destination File: none
• Description: Name of the existing memory region that is divided up to create the interrupt_stack

memory region. The selected region name is adjusted automatically when the BSP is generated to
create the interrupt_stack memory region.

• Restriction: Only used if hal.linker.enable_interrupt_stack is true. none

hal.linker.interrupt_stack_size

• Identifier: none
• Type: Decimal Number
• Default Value: 1024
• Destination File: none
• Description: Size of the interrupt stack in bytes.
• Restriction: Only used if hal.linker.enable_interrupt_stack is true.

hal.make.ar

• Identifier: AR
• Type: Unquoted string
• Default Value: nios2-elf-ar
• Destination File: BSP makefile
• Description: Archiver command. Creates library files.
• Restriction: none

hal.make.ar_post_process

• Identifier: AR_POST_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed after archiver execution.
• Restriction: none

hal.make.ar_pre_process

• Identifier: AR_PRE_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed before archiver execution.
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-49

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.make.as

• Identifier: AS
• Type: Unquoted string
• Default Value: nios2-elf-gcc
• Destination File: BSP makefile
• Description: Assembler command. Note that CC is used for Nios II assembly language source files

(.S).
• Restriction: none

hal.make.as_post_process

• Identifier: AS_POST_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed after each assembly file is compiled.
• Restriction: none

hal.make.as_pre_process

• Identifier: AS_PRE_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed before each assembly file is compiled.
• Restriction: none

hal.make.bsp_arflags

• Identifier: BSP_ARFLAGS
• Type: Unquoted string
• Default Value: -src
• Destination File: BSP makefile
• Description: Custom flags only passed to the archiver. This content of this variable is directly passed

to the archiver rather than the more standard ARFLAGS. The reason for this is that GNU Make
assumes some default content in ARFLAGS.This setting defines the value of BSP_ARFLAGS in
Makefile.

• Restriction: none

hal.make.bsp_asflags

• Identifier: BSP_ASFLAGS
• Type: Unquoted string
• Default Value: -Wa,-gdwarf2
• Destination File: BSP makefile
• Description: Custom flags only passed to the assembler. This setting defines the value of

BSP_ASFLAGS in Makefile.
• Restriction: none

15-50 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.make.bsp_cflags_debug

• Identifier: BSP_CFLAGS_DEBUG
• Type: Unquoted string
• Default Value: -g
• Destination File: BSP makefile
• Description: C/C++ compiler debug level. -g provides the default set of debug symbols typically

required to debug a typical application. Omitting -g removes debug symbols from the .elf file. This
setting defines the value of BSP_CFLAGS_DEBUG in Makefile.

• Restriction: none

hal.make.bsp_cflags_defined_symbols

• Identifier: BSP_CFLAGS_DEFINED_SYMBOLS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Preprocessor macros to define. A macro definition in this setting has the same effect as a

#define in source code. Adding -DALT_DEBUG to this setting has the same effect as #define
ALT_DEBUG in a source file. Adding -DFOO=1 to this setting is equivalent to the macro #define FOO 1
in a source file. Macros defined with this setting are applied to all .S, C source (.c), and C++ files in the
BSP. This setting defines the value of BSP_CFLAGS_DEFINED_SYMBOLS in the BSP makefile.

• Restriction: none

hal.make.bsp_cflags_optimization

• Identifier: BSP_CFLAGS_OPTIMIZATION
• Type: Unquoted string
• Default Value: -O0
• Destination File: BSP makefile
• Description: C/C++ compiler optimization level. -O0 = no optimization, -O2 = normal optimization,

etc. -O0 is recommended for code that you want to debug since compiler optimization can remove
variables and produce nonsequential execution of code while debugging. This setting defines the value
of BSP_CFLAGS_OPTIMIZATION in Makefile.

• Restriction: none

hal.make.bsp_cflags_undefined_symbols

• Identifier: BSP_CFLAGS_UNDEFINED_SYMBOLS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Preprocessor macros to undefine. Undefined macros are similar to defined macros, but

replicate the #undef directive in source code. To undefine the macro FOO use the syntax -u FOO in this
setting. This is equivalent to #undef FOO in a source file. Note: the syntax differs from macro
definition (there is a space, i.e. -u FOO versus -DFOO). Macros defined with this setting are applied to
all .S, .c, and C++ files in the BSP. This setting defines the value of
BSP_CFLAGS_UNDEFINED_SYMBOLS in the BSP Makefile.

• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-51

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.make.bsp_cflags_user_flags

• Identifier: BSP_CFLAGS_USER_FLAGS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Custom flags passed to the compiler when compiling C, C++, and .S files. This setting

defines the value of BSP_CFLAGS_USER_FLAGS in Makefile.
• Restriction: none

hal.make.bsp_cflags_warnings

• Identifier: BSP_CFLAGS_WARNINGS
• Type: Unquoted string
• Default Value: -Wall
• Destination File: BSP makefile
• Description: C/C++ compiler warning level. -Wall is commonly used.This setting defines the value of

BSP_CFLAGS_WARNINGS in Makefile.
• Restriction: none

hal.make.bsp_cxx_flags

• Identifier: BSP_CXXFLAGS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Custom flags only passed to the C++ compiler. This setting defines the value of

BSP_CXXFLAGS in Makefile.
• Restriction: none

hal.make.bsp_inc_dirs

• Identifier: BSP_INC_DIRS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Space separated list of extra include directories to scan for header files. Directories are

relative to the top-level BSP directory. The -I prefix is added by the makefile, therefore you must not
include it in the setting value. This setting defines the value of BSP_INC_DIRS in the makefile.

• Restriction: none

hal.make.build_post_process

• Identifier: BUILD_POST_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed after BSP built.
• Restriction: none

15-52 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.make.build_pre_process

• Identifier: BUILD_PRE_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed before BSP built.
• Restriction: none

hal.make.cc

• Identifier: CC
• Type: Unquoted string
• Default Value: nios2-elf-gcc -xc
• Destination File: BSP makefile
• Description: C compiler command
• Restriction: none

hal.make.cc_post_process

• Identifier: CC_POST_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed after each .c or .S file is compiled.
• Restriction: none

hal.make.cc_pre_process

• Identifier: CC_PRE_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed before each .c or .S file is compiled.
• Restriction: none

hal.make.cxx

• Identifier: CXX
• Type: Unquoted string
• Default Value: nios2-elf-gcc -xc++
• Destination File: BSP makefile
• Description: C++ compiler command
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-53

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.make.cxx_post_process

• Identifier: CXX_POST_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed before each C++ file is compiled.
• Restriction: none

hal.make.cxx_pre_process

• Identifier: CXX_PRE_PROCESS
• Type: Unquoted string
• Default Value: none
• Destination File: BSP makefile
• Description: Command executed before each C++ file is compiled.
• Restriction: none

hal.make.ignore_system_derived.big_endian

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system is big endian. If true ignores export of

'ALT_CFLAGS += -meb' to public.mk if big endian system. If true ignores export of 'ALT_CFLAGS
+= -mel' if little endian system.

• Restriction: none

hal.make.ignore_system_derived.fpu_present

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system has FPU present. If true ignores export

of 'ALT_CFLAGS += -mhard-float' to public.mk if FPU is found in the system. If true ignores export
of 'ALT_CFLAGS += -mhard-soft' if FPU is not found in the system.

• Restriction: none

hal.make.ignore_system_derived.hardware_divide_present

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system has hardware divide present. If true

ignores export of 'ALT_CFLAGS += -mno-hw-div' to public.mk if no division is found in system. If
true ignores export of 'ALT_CFLAGS += -mhw-div' if division is found in the system.

• Restriction: none

15-54 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.make.ignore_system_derived.hardware_fp_cust_inst_divider_present

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system floating point custom instruction with a

divider is present. If true ignores export of 'ALT_CFLAGS += -mcustom-fpu-cfg=60-2' and
'ALT_LDFLAGS += -mcustom-fpu-cfg=60-2' to public.mk if the custom instruction is found in the
system.

• Restriction: none

hal.make.ignore_system_derived.hardware_fp_cust_inst_no_divider_present

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system floating point custom instruction

without a divider is present. If true ignores export of 'ALT_CFLAGS += -mcustom-fpu-cfg=60-1' and
'ALT_LDFLAGS += -mcustom-fpu-cfg=60-1' to public.mk if the custom instruction is found in the
system.

• Restriction: none

hal.make.ignore_system_derived.sopc_simulation_enabled

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system has simulation enabled. If true ignores

export of 'ELF_PATCH_FLAG += --simulation_enabled' to public.mk.
• Restriction: none

hal.make.ignore_system_derived.debug_core_present

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system has a debug core present. If true ignores

export of 'CPU_HAS_DEBUG_CORE = 1' to public.mk if a debug core is found in the system. If true
ignores export of 'CPU_HAS_DEBUG_CORE = 0' if no debug core is found in the system.

• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-55

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.make.ignore_system_derived.hardware_multiplier_present

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system has multiplier present. If true ignores

export of 'ALT_CFLAGS += -mno-hw-mul' to public.mk if no multiplier is found in the system. If true
ignores export of 'ALT_CFLAGS += -mhw-mul' if multiplier is found in the system.

• Restriction: none

hal.make.ignore_system_derived.hardware_mulx_present

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query if SOPC system has hardware mulx present. If true

ignores export of 'ALT_CFLAGS += -mno-hw-mulx' to public.mk if no mulx is found in the system. If
true ignores export of 'ALT_CFLAGS += -mhw-mulx' if mulx is found in the system.

• Restriction: none

hal.make.ignore_system_derived.sopc_system_base_address

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query SOPC system for system ID base address. If true ignores

export of 'SOPC_SYSID_FLAG += --sidp=<address>' and 'ELF_PATCH_FLAG += --sidp=<address>'
to public.mk.

• Restriction: none

hal.make.ignore_system_derived.sopc_system_id

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query SOPC system for system ID. If true ignores export of

'SOPC_SYSID_FLAG += --id=<sysid>' and 'ELF_PATCH_FLAG += --id=<sysid>' to public.mk.
• Restriction: none

15-56 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.make.ignore_system_derived.sopc_system_timestamp

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enable BSP generation to query SOPC system for system timestamp. If true ignores

export of 'SOPC_SYSID_FLAG += --timestamp=<timestamp>' and 'ELF_PATCH_FLAG += --
timestamp=<timestamp>' to public.mk.

• Restriction: none

hal.make.rm

• Identifier: RM
• Type: Unquoted string
• Default Value: rm -f
• Destination File: BSP makefile
• Description: Command used to remove files when building the clean target.
• Restriction: none

hal.custom_newlib_flags

• Identifier: CUSTOM_NEWLIB_FLAGS
• Type: Unquoted string
• Default Value: none
• Destination File: public.mk
• Description: Build a custom version of newlib with the specified space-separated compiler flags.
• Restriction: The custom newlib build is placed in the <bsp root>/newlib directory, and is used only

for applications that utilize this BSP.

hal.enable_c_plus_plus

• Identifier: ALT_NO_C_PLUS_PLUS
• Type: Boolean assignment
• Default Value: 1
• Destination File: public.mk
• Description: Enable support for a subset of the C++ language. This option increases code footprint by

adding support for C++ constructors. Certain features, such as multiple inheritance and exceptions are
not supported. If false, adds -DALT_NO_C_PLUS_PLUS to ALT_CPPFLAGS in public.mk, and reduces code
footprint.

• Restriction: none

hal.enable_clean_exit

• Identifier: ALT_NO_CLEAN_EXIT
• Type: Boolean assignment
• Default Value: 1
• Destination File: public.mk
• Description: When your application exits, close file descriptors, call C++ destructors, etc. Code

footprint can be reduced by disabling clean exit. If disabled, adds -DALT_NO_CLEAN_EXIT to
ALT_CPPFLAGS and -Wl, --defsym, exit=_exit to ALT_LDFLAGS in public.mk.

• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-57

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.enable_exit

• Identifier: ALT_NO_EXIT
• Type: Boolean assignment
• Default Value: 1
• Destination File: public.mk
• Description: Add exit() support. This option increases code footprint if your main() routine returns

or calls exit(). If false, adds -DALT_NO_EXIT to ALT_CPPFLAGS in public.mk, and reduces footprint.
• Restriction: none

hal.enable_gprof

• Identifier: ALT_PROVIDE_GMON
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Causes code to be compiled with gprof profiling enabled and the application .elf file to

be linked with the GPROF library. If true, adds -DALT_PROVIDE_GMON to ALT_CPPFLAGS and -pg to
ALT_CFLAGS in public.mk.

• Restriction: none

hal.enable_lightweight_device_driver_api

• Identifier: ALT_USE_DIRECT_DRIVERS
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Enables lightweight device driver API. This reduces code and data footprint by removing

the HAL layer that maps device names (e.g. /dev/uart0) to file descriptors. Instead, driver routines are
called directly. The open(), close(), and lseek() routines always fail if called. The read(), write(), fstat(),
ioctl(), and isatty() routines only work for the stdio devices. If true, adds -DALT_USE_DIRECT_DRIVERS
to ALT_CPPFLAGS in public.mk.

• Restriction: The Altera Host and read-only ZIP file systems cannot be used if
hal.enable_lightweight_device_driver_api is true.

15-58 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.enable_mul_div_emulation

• Identifier: ALT_NO_INSTRUCTION_EMULATION
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Adds code to the BSP to emulate multiply and divide instructions. This code is

independent of any emulation code added by the C/C++ compiler. If false, adds -DALT_NO_INSTRUC-
TION_EMULATION to ALT_CPPFLAGS in public.mk. You do not normally need to enable this option,
because the C/C++ compiler detects whether the target Nios II processor core supports the multiply
and divide instructions directly. If you compile for a core that lacks support for the instructions, the
HAL includes the required software emulation in its run-time libraries. However, you might need to
enable hal.enable_mul_div_emulation under the following circumstances:

• You expect to run the Nios II software on an implementation of the Nios II processor other than
the one you compiled for. The best solution is to build your program for the correct Nios II
processor implementation. Resort to the hal.enable_mul_div_emulation if it is not possible to
determine the processor implementation at compile time.

• You have assembly language code that uses an implementation-dependent instruction.
• Restriction: none

hal.enable_reduced_device_drivers

• Identifier: ALT_USE_SMALL_DRIVERS
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Certain drivers are compiled with reduced functionality to reduce code footprint. Not all

drivers observe this setting. If true, adds -DALT_USE_SMALL_DRIVERS to ALT_CPPFLAGS in public.mk.
Typically, drivers support this setting with a polled mode. For example, the altera_avalon_uart and
altera_avalon_jtag_uart reduced drivers operate in polled mode. Several device drivers are disabled
entirely in reduced drivers mode. These include the altera_avalon_cfi_flash,
altera_avalon_epcs_flash_controller, and altera_avalon_lcd_16207 drivers. As a result, certain API
routines fail (HAL flash access routines). You can define a symbol provided by each driver to prevent it
from being removed.

• Restriction: none

hal.enable_runtime_stack_checking

• Identifier: ALT_STACK_CHECK
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Turns on HAL runtime stack checking feature. Enabling this setting causes additional

code to be placed into each subroutine call to generate an exception if a stack collision occurs with the
heap or statically allocated data. If true, adds -DALT_STACK_CHECK and -fstack-check to
ALT_CPPFLAGS in public.mk.

• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-59

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.enable_sim_optimize

• Identifier: ALT_SIM_OPTIMIZE
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: The BSP is compiled with optimizations to speedup HDL simulation such as initializing

the cache, clearing the .bss section, and skipping long delay loops. If true, adds -DALT_SIM_OPTIMIZE
to ALT_CPPFLAGS in public.mk.

• Restriction: When this setting is true, the BSP cannot run on hardware.

hal.enable_small_c_library

• Identifier: none
• Type: Boolean assignment
• Default Value: 0
• Destination File: public.mk
• Description: Causes the small newlib (C library) to be used. This reduces code and data footprint at

the expense of reduced functionality. Several newlib features are removed such as floating-point
support in printf(), stdin input routines, and buffered I/O. The small C library is not compatible
with Micrium
MicroC/OS-II. If true, adds -msmallc to ALT_LDFLAGS and adds -DSMALL_C_LIB to ALT_CPPFLAGS in
public.mk.

• Restriction: none

hal.enable_sopc_sysid_check

• Identifier: none
• Type: Boolean assignment
• Default Value: 1
• Destination File: public.mk
• Description: Enables system ID check. If a System ID component is connected to the processor

associated with this BSP, the system ID check is enabled in the creation of command-line arguments to
download an .elf file to the target. Otherwise, system ID and timestamp values are left out of
public.mk for the application makefile download-elf target definition. With the system ID check
disabled, the Nios II EDS tools do not automatically ensure that the application ..elf file (and BSP it is
linked against) corresponds to the hardware design on the target. If false, adds --accept-bad-sysid
to SOPC_SYSID_FLAG in public.mk. Altera strongly recommends leaving hal.enable_sopc_sysid_check
enabled. This setting is exposed to support rare cases in which FPGA logic resources are in extremely
short supply. When the system ID check is disabled, the software is unable to detect whether the
software is running on the correct hardware version. This situation can lead to subtle errors that are
difficult to diagnose.

• Restriction: none

hal.log_port

• Identifier: LOG_PORT
• Type: Unquoted string
• Default Value: none
• Destination File: system.h
• Description: Slave descriptor of debug logging character-mode device. If defined, it enables extra

debug messages in the HAL source. This setting is used by the Altera logging functions.

15-60 Settings Reference
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hal.log_flags

• Identifier: ALT_LOG_FLAGS
• Type: Decimal Number
• Default Value: 0
• Destination File: public.mk
• Description: The value is assigned to ALT_LOG_FLAGS in the generated public.mk. Refer to

hal.log_port for further details. The valid range of this setting is -1 through 3.

hal.stderr

• Identifier: STDERR
• Type: Unquoted string
• Default Value: none
• Destination File: public.mk
• Description: Slave descriptor of STDERR character-mode device. This setting is used by the

ALT_STDERR family of defines in system.h.

hal.stdin

• Identifier: STDIN
• Type: Unquoted string
• Default Value: none
• Destination File: system.h
• Description: Slave descriptor of STDIN character-mode device. This setting is used by the

ALT_STDIN family of defines in system.h.

hal.stdout

• Identifier: STDOUT
• Type: Unquoted string
• Default Value: none
• Destination File: system.h
• Description: Slave descriptor of STDOUT character-mode device. This setting is used by the

ALT_STDOUT family of defines in system.h.

hal.thread_stack_size

• Identifier: ALT_THREAD_STACK_SIZE
• Type: Decimal number
• Default Value: The default value of lwhal.thread_stack_size is selected by the default Tcl script

launched when a LWHAL BSP is created. lwhal.thread_stack_size is set to 3/4 of the size of the
memory region to which the .stack section is assigned, if the region is shared with other sections (the
default case).

• Destination File: system.h
• Description: Defines stack size for a thread (in bytes). This setting defines the value of

ALT_THREAD_STACK_SIZE in system.h.
• Restriction: none

NII5V2Gen2
2015.05.14 Settings Reference 15-61

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Application and User Library Makefile Variables
The Nios II SBT constructs application and makefile libraries for you, inserting makefile variables
appropriate to your project configuration. You can control project build characteristics by manipulating
makefile variables at the time of project generation. You control a variable with the --set command line
option, as in the following example:

nios2-bsp hal my_bsp --set APP_CFLAGS_WARNINGS "-Wall"r

The following utilities and scripts support modifying makefile variables with the --set option:

• nios2-app-generate-makefile
• nios2-lib-generate-makefile
• nios2-app-update-makefile
• nios2-lib-update-makefile
• nios2-bsp

Application Makefile Variables
You can modify the following application makefile variables on the command line:

• CREATE_OBJDUMP—Assign 1 to this variable to enable creation of an object dump file (.objdump) after
linking the application. The nios2-elf-objdump utility is called to create this file. An object dump
contains information about all object files linked into the .elf file. It provides a complete view of all
code linked into your application. An object dump contains a disassembly view showing each instruc‐
tion and its address.

• OBJDUMP_INCLUDE_SOURCE—Assign 1 to this variable to include source code inline with disassembled
instructions in the object dump. When enabled, this includes the --source switch when calling the
object dump executable. This is useful for debugging and examination of how the preprocessor and
compiler generate instructions from higher level source code (such as C) or from macros.

• OBJDUMP_FULL_CONTENTS—Assign 1 to this variable to include a raw display of the contents of
the .text linker section. When enabled, this variable includes the --full-contents switch when
calling the object dump executable.

• CREATE_.elf_DERIVED_FILES—Setting this variable to 1 creates the HDL simulation and onchip
memory initialization files when you invoke the makefile with the all target. When this variable is 0
(the default), these files are only created when you make the mem_init_generate or
mem_init_install target.

Note: Creating the HDL simulation and onchip memory initialization files increases project build time.

15-62 Application and User Library Makefile Variables
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• CREATE_LINKER_MAP—Assign 1 to this variable to enable creation of a link map file (.map) after linking
the application. A link map file provides information including which object files are included in the
executable, the path to each object file, where objects and symbols are located in memory, and how the
common symbols are allocated.

• APP_CFLAGS_DEFINED_SYMBOLS—This variable allows you to define macros using the -D argument, for
example -D <macro name>. The contents of this variable are passed to the compiler and linker without
modification.

• APP_CFLAGS_UNDEFINED_SYMBOLS—This variable allows you to remove macro definitions using the -U
argument, for example -U <macro name>. The contents of this variable are passed to the compiler and
linker without modification.

• APP_CFLAGS_OPTIMIZATION—The C/C++ compiler optimization level. For example, -O0 provides no
optimization and -O2 provides standard optimization. -O0 is recommended for debugging code,
because compiler optimization can remove variables and produce non-sequential execution of code
while debugging.

• APP_CFLAGS_DEBUG_LEVEL—The C/C++ compiler debug level. -g provides the default set of debug
symbols typically required to debug an application. Omitting -g omits debug symbols from the .elf.

• APP_CFLAGS_WARNINGS—The C/C++ compiler warning level. -Wall is commonly used, enabling all
warning messages.

• APP_CFLAGS_USER_FLAGS

• APP_INCLUDE_DIRS—Use this variable to specify paths for the preprocessor to search. These paths
commonly contain C header files (.h) that application code requires. Each path name is formatted and
passed to the preprocessor with the -I option.

You can add multiple directories by enclosing them in double quotes, for example --set
APP_INCLUDE_DIRS "../my_includes ../../other_includes".

• APP_LIBRARY_DIRS—Use this variable to specify paths for additional libraries that your application
links with.

Note: When you specify a user library path with APP_LIBRARY_DIRS, you also need to specify the user
library names with the APP_LIBRARY_NAMES variable.

APP_LIBRARY_DIRS specifies only the directory where the user library file(s) are located, not the
library archive file (.a) name.

Note: Do not use this variable to specify the path to a BSP or user library created with the SBT. The paths
to these libraries are specified in public.mk files included in the application makefile.

You can add multiple directories by enclosing them in double quotes, for example --set
APP_LIBRARY_DIRS "../my_libs ../../other_libs".

• APP_LIBRARY_NAMES—Use this variable to specify the names of additional libraries that your applica‐
tion must link with. Library files are .a files.

Note: You do not specify the full name of the .a file. Instead, you specify the user library name <name>,
and the SBT constructs the filename lib<name>.a. For example, if you add the string "math" to
APP_LIBRARY_NAMES, the SBT assumes that your library file is named libmath.a.

Each specified user library name is passed to the linker with the -l option. The paths to locate these
libraries must be specified in the APP_LIBRARY_DIRS variable.

Note: You cannot use this variable to specify a BSP or user library created with the SBT. The paths to
these libraries are specified in public.mk file included in the application makefile.

NII5V2Gen2
2015.05.14 Application Makefile Variables 15-63

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• BUILD_PRE_PROCESS—This variable allows you to specify a command to be executed prior to building
the application, for example,
cp *.elf ../lastbuild.

• BUILD_POST_PROCESS—This variable allows you to specify a command to be executed after building
the application, for example,
cp *.elf //production/test/nios2executables.

User Library Makefile Variables
You can modify the following user library makefile variables on the command line:

• LIB_CFLAGS_DEFINED_SYMBOLS—This variable allows you to define macros using the -D argument, for
example -D <macro name>. The contents of this variable are passed to the compiler and linker
without modification.

• LIB_CFLAGS_UNDEFINED_SYMBOLS—This variable allows you to remove macro definitions using the -U
argument, for example -U <macro name>. The contents of this variable are passed to the compiler and
linker without modification.

• LIB_CFLAGS_OPTIMIZATION—The C/C++ compiler optimization level. For example, -O0 provides no
optimization and -O2 provides standard optimization. -O0 is recommended for debugging code,
because compiler optimization can remove variables and produce non-sequential execution of code
while debugging.

• LIB_CFLAGS_DEBUG_LEVEL—The C/C++ compiler debug level. -g provides the default set of debug
symbols typically required to debug an application. Omitting -g omits debug symbols from the .elf.

• LIB_CFLAGS_WARNINGS—The C/C++ compiler warning level. -Wall is commonly used, enabling all
warning messages.

• LIB_CFLAGS_USER_FLAGS

• LIB_INCLUDE_DIRS—You can add multiple directories by enclosing them in double quotes, for
example --set LIB_INCLUDE_DIRS
"../my_includes ../../other_includes"

Standard Build Flag Variables
The SBT creates makefiles supporting the following standard makefile command-line variables:

• CFLAGS

• CPPFLAGS

• ASFLAGS

• CXXFLAGS

You can define flags in these variables on the makefile command line, or in a script that invokes the
makefile. The makefile passes these flags on to the corresponding GCC tool.

Software Build Tools Tcl Commands
Tcl commands are a crucial component of the Nios II SBT. Tcl commands allow you to exercise detailed
control over BSP generation, as well as to define drivers and software packages. This section describes the
Tcl commands, the environments in which they run, and how the commands work together.

Tcl Command Environments
The Nios II SBT supports Tcl commands in the following environments:

15-64 User Library Makefile Variables
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• BSP setting specification—In this environment, you manipulate BSP settings to control the static
characteristics of the BSP. BSP setting commands are executed before the BSP is generated.

• BSP generation callbacks—In this environment, you exercise further control over BSP details,
managing settings that interact with one another and with the hardware design. BSP callbacks run at
BSP generation time.

• Device driver and software package definition—In this environment, you bundle source files into a
custom driver or package. This process prepares the driver or package so that a BSP developer can
include it in a BSP using the SBT.

The following sections describe each Tcl environment in detail, listing the available commands.

Tcl Commands for BSP Settings
There are two ways to use BSP Tcl commands to manipulate project settings:

• Calling the Tcl commands by using the --cmd option with the utilities nios2-bsp-create-settings,
nios2-bsp-update-settings, and nios2-bsp-query-settings

• Adding the Tcl commands in a Tcl script specified with the --script option

Related Information

• Settings Managed by the Software Build Tools on page 15-25
For more information about the settings that are available in a Nios II project and the tools that you
use to specify ad manipulate these settings.

• Nios II Software Build Tools Utilities on page 15-1
For more information about how to call Tcl commands from utilities.

• nios2-bsp-create-settings on page 15-4
• nios2-bsp-update-settings on page 15-8
• nios2-bsp-query-settings on page 15-7

add_memory_device

Usage

add_memory_device <device name> <base address>

Options

• <device name>: String with the name of the memory device.
• <base address>: The base address of the memory device. Hexadecimal or decimal string.
• : The size (span) of the memory device. Hexadecimal or decimal string.

Description

This command is provided to define a user-defined external memory device, outside the hardware system.
Such a device would typically be mapped through a bridge component. This command adds an external
memory device to the BSP's memory map, allowing the BSP to define memory regions and section
mappings for the memory as if it were part of the system. The external memory device parameters are
stored in the BSP settings file.

NII5V2Gen2
2015.05.14 Tcl Commands for BSP Settings 15-65

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_memory_region

Usage

add_memory_region <name> <slave_desc> <offset>

Options

• <name>: String with the name of the memory region to create.
• <slave_desc>: String with the slave descriptor of the memory device for this region.
• <offset>: String with the byte offset of the memory region from the memory device base address.
• : String with the span of the memory region in bytes.

Description

Creates a new memory region for the linker script. This memory region must not overlap with any other
memory region and must be within the memory range of the associated slave descriptor. The offset and
span are decimal numbers unless prefixed with 0x.

Example

add_memory_region onchip_ram0 onchip_ram0 0 0x100000

add_section_mapping

Usage

add_section_mapping <section_name> <memory_region_name>

Options

• <section_name>: String with the name of the linker section.
• <memory_region_name>: String with the name of the memory region to map.

Description

Maps the specified linker section to the specified linker memory region. If the section does not already
exist, add_section_mapping creates it. If it already exists, add_section_mapping overrides the existing
mapping with the new one. The linker creates the section mappings in the order in which they appear in
the linker script.

Example

add_section_mapping .text onchip_ram0

are_same_resource

Usage

are_same_resource <slave_desc1> <slave_desc2>

Options

• <slave_desc1>: String with the first slave descriptor to compare.
• <slave_desc2>: String with the second slave descriptor to compare.

15-66 add_memory_region
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Returns a boolean value that indicates whether the two slave descriptors are connected to the same
resource. To connect to the same resource, the two slave descriptors must be associated with the same
module. The module specifies whether two slaves access the same resource or different resources within
that module. For example, a dual-port memory has two slaves that access the same resource (the
memory). However, you could create a module that has two slaves that access two different resources such
as a memory and a control port.

delete_memory_region

Usage

delete_memory_region <region_name>

Options

• <region_name>: String with the name of the memory region to delete.

Description

Deletes the specified memory region. The region must exist to avoid an error condition.

delete_section_mapping

Usage

delete_section_mapping <section_name>

Options

• <section_name>: String with the name of the section.

Description

Deletes the specified section mapping.

Example

delete_section_mapping .text

disable_sw_package

Usage

disable_sw_package <software_package_name>

Options

• <software_package_name>: String with the name of the software package.

Description

Disables the specified software package. Settings belonging to the package are no longer available in the
BSP, and associated source files are not included in the BSP makefile. It is an error to disable a software
package that is not enabled.

NII5V2Gen2
2015.05.14 delete_memory_region 15-67

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

enable_sw_package

Usage

enable_sw_package <software_package_name>

Options

• <software_package_name>: String with the name of the software package, with the version number
optionally appended with a ':'.

Description

Enables a software package. Adds its associated source files and settings to the BSP. Specify the desired
version in the form <software_package_name>:<version>. If you do not specify the version,
enable_sw_package selects the latest available version.

Examples

• Example 1:enable_sw_package altera_hostfs:7.2
• Example 2:enable_sw_package my_sw_package

get_addr_span

Usage

get_addr_span <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns the address span (length in bytes) of the slave descriptor as an integer decimal number.

Example

puts [get_addr_span onchip_ram_64_kbytes] Returns: 65536

get_assignment

Usage

get_assignment <module_name> <assignment_name>

Options

• <module_name>: Module instance name to query for assignment
• <assignment_name>: Module instance assignment name to query for

Description

Returns the name of the value of the assignment for a specified module instance name.

15-68 enable_sw_package
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example

puts [get_assignment "cpu0" "embeddedsw.configuration.breakSlave"] Returns: memory_0.s0

get_available_drivers

Usage

get_available_drivers <module_name>

Options

• <module_name>: String with the name of the module to query.

Description

Returns a list of available device driver names that are compatible with the specified module instance. The
list is empty if there are no drivers available for the specified slave descriptor. The format of each entry in
the list is the driver name followed by a colon and the version number (if provided).

Example

puts [get_available_drivers jtag_uart] Returns: altera_avalon_jtag_uart_driver:7.2
altera_avalon_jtag_uart_driver:6.1

get_available_sw_packages

Usage

get_available_sw_packages

Options

None

Description

Returns a list of software package names that are available for the current BSP. The format of each entry
in the list is a string containing the package name followed by a colon and the version number (if
provided).

Example

puts [get_available_sw_packages] Returns: altera_hostfs:7.2 altera_ro_zipfs:7.2

get_base_addr

Usage

get_base_addr <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

NII5V2Gen2
2015.05.14 get_available_drivers 15-69

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Returns the base byte address of the slave descriptor as an integer decimal number.

Example

puts [get_base_addr jtag_uart] Returns: 67616

get_break_offset

Usage

get_break_offset

Options

None

Description

Returns the byte offset of the processor break address.

Example

puts [get_break_offset] Returns: 32

get_break_slave_desc

Usage

get_break_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor break address. If null, then the break device is
internal to the processor (debug module).

Example

puts [get_break_slave_desc] Returns: onchip_ram_64_kbytes

get_cpu_name

Usage

get_cpu_name

Options

None

15-70 get_break_offset
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Returns the name of the BSP specific processor.

Example

puts [get_cpu_name] Returns: cpu_0

get_current_memory_regions

Usage

get_current_memory_regions

Options

None

Description

Returns a sorted list of records representing the existing linker script memory regions. Each record in the
list represents a memory region. Each record is a list containing the region name, associated memory
device slave descriptor, offset, and span, in that order.

Example

puts [get_current_memory_regions] Returns: {reset onchip_ram0 0 32} {onchip_ram0
onchip_ram0 32 1048544}

get_current_section_mappings

Usage

get_current_section_mappings

Options

None

Description

Returns a list of lists for all the current section mappings. Each list represents a section mapping with the
format {section_name memory_region}. The order of the section mappings matches their order in the
linker script.

Example

puts [get_current_section_mappings] Returns: {.text onchip_ram0} {.rodata onchip_ram0}
{.rwdata onchip_ram0} {.bss onchip_ram0} {.heap onchip_ram0} {.stack onchip_ram0}

get_default_memory_regions

Usage

get_default_memory_regions

NII5V2Gen2
2015.05.14 get_current_memory_regions 15-71

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

None

Description

Returns a sorted list of records representing the default linker script memory regions. The default linker
script memory regions are the best guess for memory regions based on the reset address and exception
address of the processor associated with the BSP, and all other processors in the system that share
memories with the processor associated with the BSP. Each record in the list represents a memory region.
Each record is a list containing the region name, associated memory device slave descriptor, offset, and
span, in that order.

Example

puts [get_default_memory_regions]

Returns:

{reset onchip_ram0 0 32} {onchip_ram0 onchip_ram0 32 1048544}

get_driver

Usage

get_driver <module_name>

Options

• <module_name>: String with the name of the module instance to query.

Description

Returns the driver name associated with the specified module instance. The format is <driver name>
followed by a colon and the version (if provided). Returns the string "none" if there is no driver associated
with the specified module instance name.

Examples

• Example 1:puts [get_driver jtag_uart]

Returns:

altera_avalon_jtag_uart_driver:7.2

• Example 2:puts [get_driver onchip_ram_64_kbytes]

Returns:

none

get_enabled_sw_packages

Usage

get_enabled_sw_packages

15-72 get_driver
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

None

Description

Returns a list of currently enabled software packages. The format of each entry in the list is the software
package name followed by a colon and the version number (if provided).

Example

puts [get_enabled_sw_packages]

Returns:

altera_hostfs:7.2

get_exception_offset

Usage

get_exception_offset

Options

None

Description

Returns the byte offset of the processor exception address.

Example

puts [get_exception_offset]

Returns:

32

get_exception_slave_desc

Usage

get_exception_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor exception address.

Example

puts [get_exception_slave_desc]

NII5V2Gen2
2015.05.14 get_exception_offset 15-73

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Returns:

onchip_ram_64_kbytes

get_fast_tlb_miss_exception_offset

Usage

get_fast_tlb_miss_exception_offset

Options

None

Description

Returns the byte offset of the processor fast translation lookaside buffer (TLB) miss exception address.
Only a processor with an MMU has such an exception address.

Example

puts [get_fast_tlb_miss_exception_offset]

Returns:

32

get_fast_tlb_miss_exception_slave_desc

Usage

get_fast_tlb_miss_exception_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor fast TLB miss exception address. Only a
processor with an MMU has such an exception address.

Example

puts [get_fast_tlb_miss_exception_slave_desc]

Returns:

onchip_ram_64_kbytes

get_interrupt_controller_id

Usage

get_interrupt_controller_id <slave_desc>

15-74 get_fast_tlb_miss_exception_offset
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns the interrupt controller ID of the slave descriptor (-1 if not a connected interrupt controller).

get_irq_interrupt_controller_id

Usage

get_irq_interrupt_controller_id <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns the interrupt controller ID connected to the IRQ associated with the slave descriptor (-1 if none).

get_irq_number

Usage

get_irq_number <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns the interrupt request number of the slave descriptor, or -1 if no interrupt request number is
found.

get_memory_region

Usage

get_memory_region <name>

Options

• <name>: String with the name of the memory region.

Description

Returns the linker script region information for the specified region. The format of the region is a list
containing the region name, associated memory device slave descriptor, offset, and span in that order.

Example

puts [get_memory_region reset]

NII5V2Gen2
2015.05.14 get_irq_interrupt_controller_id 15-75

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Returns:

reset onchip_ram0 0 32

get_module_class_name

Usage

get_module_class_name <module_name>

Options

• <module_name>: String with the module instance name to query.

Description

Returns the name of the module class associated with the module instance.

Example

puts [get_module_class_name jtag_uart0]

Returns:

altera_avalon_jtag_uart

get_module_name

Usage

get_module_name <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns the name of the module instance associated with the slave descriptor. If a module with one slave,
or if it has multiple slaves connected to the same resource, the slave descriptor is the same as the module
name. If a module has multiple slaves that do not connect to the same resource, the slave descriptor
consists of the module name followed by an underscore and the slave name.

Example

puts [get_module_name multi_jtag_uart0_s1]

Returns:

multi_jtag_uart0

get_reset_offset

Usage

get_reset_offset

15-76 get_module_class_name
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

None

Description

Returns the byte offset of the processor reset address.

Example

puts [get_reset_offset]

Returns:

0

get_reset_slave_desc

Usage

get_reset_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor reset address.

Example

puts [get_reset_slave_desc]

Returns:

onchip_ram_64_kbytes

get_section_mapping

Usage

get_section_mapping <section_name>

Options

• <section_name>: String with the section name to query.

Description

Returns the name of the memory region for the specified linker section. Returns null if the linker section
does not exist.

Example

puts [get_section_mapping .text]

NII5V2Gen2
2015.05.14 get_reset_slave_desc 15-77

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Returns:

onchip_ram0

get_setting

Usage

get_setting <name>

Options

• <name>: String with the name of the setting to get.

Description

Returns the value of the specified BSP setting. get_setting returns boolean settings with the value 1 or 0.
If the value of the setting is an empty string, get_setting returns "none".

The get_setting command is equivalent to the --get command-line option.

Example

puts [get_setting hal.enable_gprof]

Returns:

0

get_setting_desc

Usage

get_setting_desc <name>

Options

• <name>: String with the name of the setting to get the description for.

Description

Returns a string describing the BSP setting.

Example

puts [get_setting_desc hal.enable_gprof]

Returns:

"This example compiles the code with gprof profiling enabled and links \
 the application .elf with the GPROF library. If true, adds \
-DALT_PROVIDE_GMON to ALT_CPPFLAGS and -pg to ALT_CFLAGS in public.mk."

15-78 get_setting
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_slave_descs

Usage

get_slave_descs

Options

None

Description

Returns a sorted list of all the slave descriptors connected to the Nios II processor.

Example

puts [get_slave_descs]

Returns:

jtag_uart0 onchip_ram0

is_char_device

Usage

is_char_device <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a character device.

Examples

• Example 1:puts [is_char_device jtag_uart]

Returns:

1

• Example 2:puts [is_char_device onchip_ram_64_kbytes]

Returns:

0

is_connected_interrupt_controller_device

Usage

is_connected_interrupt_controller_device <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

NII5V2Gen2
2015.05.14 get_slave_descs 15-79

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Returns a boolean value that indicates whether the slave descriptor is an interrupt controller device that is
connected to the processor so that the interrupt controller sends interrupts to the processor.

is_connected_to_data_master

Usage

is_connected_to_data_master <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is connected to a data master.

is_connected_to_instruction_master

Usage

is_connected_to_instruction_master <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is connected to an instruction master.

is_ethernet_mac_device

Usage

is_ethernet_mac_device <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is an Ethernet MAC device.

is_flash

Usage

is_flash <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

15-80 is_connected_to_data_master
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Returns a boolean value that indicates whether the slave descriptor is a flash memory device.

is_memory_device

Usage

is_memory_device <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a memory device.

Examples

• Example 1:

puts [is_memory_device jtag_uart]

Returns:

0

• Example 2:

puts [is_memory_device onchip_ram_64_kbytes]

Returns:

1

is_non_volatile_storage

Usage

is_non_volatile_storage <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a non-volatile storage device.

is_timer_device

Usage

is_timer_device <slave_desc>

Options

• <slave_desc>: String with the slave descriptor to query.

NII5V2Gen2
2015.05.14 is_memory_device 15-81

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Returns a boolean value that indicates whether the slave descriptor is a timer device.

log_debug

Usage

log_debug <message>

Options

• <message>: String with message to log.

Description

Displays a message to the host's stdout when the logging level is debug.

log_default

Usage

log_default <message>

Options

• <message>: String with message to log.

Description

Displays a message to the host’s stdout when the logging level is default or higher.

Example

log_default "This is a default message."

Displays:

INFO: Tcl message: "This is a default message."

log_error

Usage

log_error <message>

Options

• <message>: String with message to log.

Description

Displays a message to the host's stderr, regardless of logging level.

15-82 log_debug
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

log_verbose

Usage

log_verbose <message>

Options

• <message>: String with message to log.

Description

Displays a message to the host's stdout when the logging level is verbose or higher.

set_driver

Usage

set_driver <driver_name> <module_name>

Options

• <driver_name>: String with the name of the device driver to use.
• <module_name>: String with the name of the module instance to set.

Description

Selects the specified device driver for the specified module instance. The <driver_name> argument
includes a version number, delimited by a colon (:). If you omit the version number, set_driver uses the
latest available version of the driver that is compatible with the component specified by the
<module_name> argument.

If <driver_name> is none, the specified module instance does not use a driver. If <driver_name> is not
none, it must be the name of the associated component class.

Examples

• Example 1:set_driver altera_avalon_jtag_uart_driver:7.2 jtag_uart
• Example 2:set_driver none jtag_uart

set_ignore_file

Usage

set_ignore_file <software_component_name> <file_name> <ignore>

Options

• <software_component_name>: Name of the driver, software package, or operating system to which the
file belongs.

• <file_name>: Name of the file.
• <ignore>: Set to true to ignore (not generate or copy) the file, false to generate or copy the file

normally.

NII5V2Gen2
2015.05.14 log_verbose 15-83

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

You can use this command to have a specific BSP file ignored (not generated or copied) during BSP
generation. This command allows you to take ownership of a specific file, modify it, and prevent the SBT
from overwriting your modifications.

<software_component_name> can have one of the following values:

• <driver_name>—The name of a driver, as specified with the create_driver command in the *_sw.tcl
file that defines the driver. Specifies that <file_name> is a copied file associated with a device driver.

• <software_package_name>—The name of a software package, specified with the create_sw_package
command in the *_sw.tcl file that defines the package. Specifies that <file_name> is a copied file
associated with a software package.

• <OS_name>—The name of an OS, specified with the create_os command in the *_sw.tcl file that
defines the OS, and is used in the nios2-bsp-create-settings to specify the BSP type. Specifies that
<file_name> is a copied file associated with an OS.

• generated—Specifies that <file_name> is a generated top-level BSP file. The list of generated BSP files
depends on the BSP type.

Note: For a list of generated files associated with a third-party OS, refer to the OS supplier's documenta‐
tion.

Related Information
Nios II Software Build Tools on page 4-1
For more information about a list of generated files associated with HAL and MicroC/OS-II BSP

set_setting

Usage

set_setting <name> <value>

Options

• <name>: String with the name of the setting.
• <value>: String with the value of the setting.

Description

Sets the value for the specified BSP setting. Legal values for boolean settings are true, false, 1, and 0. Use
the keyword none instead of an empty string to set a string to an empty value. The set_setting
command is equivalent to the --set command-line option.

Example

set_setting hal.enable_gprof true

update_memory_region

Usage

update_memory_region <name> <slave_desc> <offset>

15-84 set_setting
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• <name>: String with the name of the memory region to update.
• <slave_desc>: String with the slave descriptor of the memory device for this region.
• <offset>: String with the byte offset of the memory region from the memory device base address.
• : String with the span of the memory region in bytes.

Description

Updates an existing memory region for the linker script. This memory region must not overlap with any
other memory region and must be within the memory range of the associated slave descriptor. The offset
and span are decimal numbers unless prefixed with 0x.

Example

update_memory_region onchip_ram0 onchip_ram0 0 0x100000

update_section_mapping

Usage

update_section_mapping <section_name> <memory_region_name>

Options

• <section_name>: String with the name of the linker section.
• <memory_region_name>: String with the name of the memory region to map.

Description

Updates the specified linker section. The linker creates the section mappings in the order in which they
appear in the linker script.

Example

update_section_mapping .text onchip_ram0

add_default_memory_regions

Usage

add_default_memory_regions

Description

Defaults the BSP to use default linker script memory regions. The default linker script memory regions
are the best guess for memory regions based on the reset address and exception address of the processor
associated with the BSP, and all other processors in the system that share memories with the processor
associated with the BSP.

create_bsp

Usage

create_bsp <bspType> <bsp version> <processor name> <sopcinfo>

NII5V2Gen2
2015.05.14 update_section_mapping 15-85

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• <bspType>: Type of BSP to create.
• <bsp version>: Version of BSP software element to utilize.
• <processor name>: Name of processor instance for BSP
• <sopcinfo>: .sopcinfo generated file that describes the system the BSP is for.

Description

Creates a new BSP.

generate_bsp

Usage

generate_bsp <bspDir>

Options

• <bspDir>: BSP directory to generate files to.

Description

Generates a new BSP.

get_available_bsp_type_versions

Usage

get_available_bsp_type_versions <bsp_type> <sopcinfo_path>

Options

• <bsp_type>: BSP type identifier (e.g. hal, ucosii).
• <sopcinfo_path>: SOPC Information File path. Its parent folder might include custom BSP IP

software components (*_sw.tcl).

Description

Gets the available BSP type versions.

get_available_bsp_types

Usage

get_available_bsp_types <sopcinfo_path>

Options

• <sopcinfo_path>: SOPC Information File path. Its parent folder might include custom BSP IP
software components (*_sw.tcl).

Description

Gets the available BSP type identifiers.

15-86 generate_bsp
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_available_cpu_architectures

Usage

get_available_cpu_architectures

Description

Gets the available processor architectures.

get_available_cpu_names

Usage

get_available_cpu_names <sopcinfo_path>

Options

• <sopcinfo_path>: SOPC Information File path that contains processor instances

Description

Gets the processor names given a SOPC system.

get_available_software

Usage

get_available_software <bsp_type> <filter> <sopcinfo_path>

Options

• <bsp_type>: BSP type identifier (e.g. hal, ucosii).
• <sopcinfo_path>: SOPC Information File path. Its parent folder might include custom BSP IP

software components (*_sw.tcl).
• <filter>: A filter can be applied to restrict results. The following filters are available:

• all

• drivers

• sw_packages

• os_elements

Note: Comma-separated tokens are acceptable.

Description

Gets the available software (drivers, software packages, and bsp components) for a given BSP type.

get_available_software_setting_properties

Usage

get_available_software_setting_properties <setting_name> <software_name>

<software_version> <sopcinfo_path>

NII5V2Gen2
2015.05.14 get_available_cpu_architectures 15-87

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• <software_name>: Name of a software component (for example, "altera_avalon_uart_driver", or
"hal").

• <software_version>: Enter "default" for latest version, or a specific version number.
• <setting_name>: Name of a selected software component setting to get properties for(e.g.

hal.linker.allow_code_at_reset).
• <sopcinfo_path>: SOPC Information File path. Its parent folder might include custom BSP IP

software components (*_sw.tcl).

Description

Gets the available setting names for a software component.

get_available_software_settings

Usage

get_available_software_settings <software_name> <software_version> <sopcinfo_path>

Options

• <software_name>: Name of a software component (e.g. altera_avalon_uart_driver).
• <software_version>: Enter "default" for latest version, or a specific version number.
• <sopcinfo_path>: SOPC Information File path. Its parent folder can include custom BSP IP software

components (*_sw.tcl).

Description

Gets the available setting names for a software component.

get_bsp_version

Usage

get_bsp_version

Description

Gets the version of the BSP operating system software element.

get_cpu_architecture

Usage

get_cpu_architecture <processor_name> <sopcinfo_path>

Options

• <processor_name>: processor instance name
• <sopcinfo_path>: SOPC Information File path that contains processor_name instance

Description

Gets the processor architecture (e.g. nios2) of a specified processor instance given a SOPC system.

15-88 get_available_software_settings
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_nios2_dpx_thread_num

Usage

get_nios2_dpx_thread_num

Description

If the BSP is mastered by a Nios II DPX processor, then this function returns the number of threads the
processor supports. Otherwise it returns null.

get_sopcinfo_file

Usage

get_sopcinfo_file

Description

Returns the path of the BSP specific SOPC Information File.

get_supported_bsp_types

Usage

get_supported_bsp_types <processor_name> <sopcinfo_path>

Options

• <processor_name>: processor instance name
• <sopcinfo_path>: SOPC Information File path. Its parent folder can include custom BSP IP software

components (*_sw.tcl).

Description

Gets the BSP types supported for a given processor and SOPC system.

is_bsp_hal_extension

Usage

is_bsp_hal_extension

Description

Returns a boolean value that indicates whether the BSP instantiated is of a type based on Altera HAL.

is_bsp_lwhal_extension

Usage

is_bsp_lwhal_extension

NII5V2Gen2
2015.05.14 get_nios2_dpx_thread_num 15-89

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Returns a boolean value that indicates whether the BSP instantiated is of a type based on Altera
Lightweight HAL.

open_bsp

Usage

open_bsp <settingsFile>

Options

• <settingsFile>: .bsp settings file to open.

Description

Opens an existing BSP.

save_bsp

Usage

save_bsp <settingsFile>

Options

• <settingsFile>: .bsp settings file to save BSP to.

Description

Saves a new BSP.

set_bsp_version

Usage

set_bsp_version <version>

Options

• <version>: Version of BSP type software element to use.

Description

Sets the version of the BSP operating system software element to a specific value. The value "default'
uses the latest version available. If this call is not used, the BSP is created using the 'default' BSP software
element version.

set_logging_mode

Usage

set_logging_mode <mode>

15-90 open_bsp
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• <mode>: Logging Mode: 'silent', 'default', 'verbose', 'debug'

Description

Sets the verbosity level of the logger. Useful to eliminate tool informative messages

Tcl Commands for BSP Generation Callbacks
If you are defining a device driver or a software package, you can define Tcl callback functions to run
whenever a BSP is generated containing your driver or package. Tcl callback functions enable you to
create settings dynamically for the driver or package. This capability is essential when the driver or
package settings must be customized to the hardware configuration, or to other BSP settings.

Tcl callback scripts are defined and controlled from the *_sw.tcl file associated with the driver or package.
In *_sw.tcl, you can specify where the Tcl functions come from, when function runs, and the scope of each
Tcl function’s operation.

When the BSP is generated with your driver or software package, the settings you define in the callback
scripts are inserted in settings.bsp.

You specify the source of the callback functions with the set_sw_property command, using the
callback_source_file property.

A Tcl callback function can run at one of the following times:

• BSP initialization
• BSP generation
• BSP validation

Note: Although you can specify a new setting’s value when you create the setting at BSP initialization, the
setting’s value can change between initialization and generation. For example, the BSP developer
might edit the setting in the BSP Editor.

A Tcl callback can function in either of the following scopes:

• Component class
• Component instance

You specify each callback function’s runtime environment by using the appropriate property in the
set_sw_property command, as shown in the table, below.

Table 15-5: Callback Properties

Property as specified in set_sw_
property

Run time Scope Callback Arguments

initialization_callback Initialization Component
instance

Component instance name

validation_callback Validation Component
instance

Component instance name

NII5V2Gen2
2015.05.14 Tcl Commands for BSP Generation Callbacks 15-91

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Property as specified in set_sw_
property

Run time Scope Callback Arguments

generation_callback Generation Component
instance

• Component instance name
• BSP generate target directory
• Driver BSP subdirectory(15)

class_initialization_

callback

Initialization Component
class

Driver class name

class_validation_callback Validation Component
class

Driver class name

class_generation_callback Generation Component
class

• Driver class name
• BSP generate target directory
• Driver BSP subdirectory(1)

Tcl callbacks have access to a specialized set of commands, described in this section. In addition, Tcl
callbacks can use any read-only BSP setting Tcl command.

Note: For more information about BSP setting Tcl commands, refer to the “Tcl Commands for BSP
Settings” chapter. When a Tcl callback creates a setting, it can specify the value. However, callbacks
cannot change the value of a pre-existing setting.

Related Information
Tcl Commands for BSP Settings on page 15-65

add_class_sw_setting

Usage

add_class_sw_setting <setting-name> <setting-type>

Options

• <setting-name>: Name of the setting to persist in the BSP settings file. This is prepended with the
driver class name associated with this callback script

• <setting-type>: Type of the setting to persist in the BSP settings file.

Description

Creates a BSP setting that is associated with a particular software driver element class. The
set_class_sw_setting_property command is required to set the values for fields pertaining to a BSP
software setting definition. This command is only valid for a callback script. A callback script is set in the
driver's *_sw.tcl file, using the command set_sw_property callback_source_file <filename>.

Example

add_class_sw_setting MY_FAVORITE_SETTING String

(15) The BSP subdirectory into which the driver or package files are copied

15-92 add_class_sw_setting
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_class_systemh_line

Usage

add_class_systemh_line <macro-name> <macro-value>

Options

• <macro-name>: Macro to be added to the system.h file for the generated BSP
• <macro-value>: Value associated with the macro-name to be added to the system.h file for the

generated BSP

Description

This adds a system.h assignment or macro during a driver callback execution. The BSP typically uses this
during the generate phase depending on the generator. This command is only valid for a callback script. A
callback script is set in the driver's *_sw.tcl file, using the command set_sw_property
callback_source_file <filename>.

Example

add_class_systemh_line MY_MACRO "Macro_Value";

add_module_sw_property

Usage

add_module_sw_property <property-name> <property-value>

Options

• <property-name>: Name of the property to add to the BSP for a module instance
• <property-value>: Value of the property to add to the BSP for a module instance

Description

This adds a software property to the BSP driver of this module instance. The BSP typically uses this
during the generate phase depending on the generator. This command is only valid for a callback script. A
callback script is set in the driver's *_sw.tcl file, using the command set_sw_property
callback_source_file <filename>.

Example

add_module_sw_setting MY_FAVORITE_SETTING String

add_module_sw_setting

Usage

add_module_sw_setting <setting-name> <setting-type>

NII5V2Gen2
2015.05.14 add_class_systemh_line 15-93

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• <setting-name>: Name of the setting to persist in the BSP settings file. This is prepended with the
module name associated with this callback script

• <setting-type>: Type of the setting to persist in the BSP settings file.

Description

Creates a BSP setting that is associated with a particular instance of hardware module in a SOPC system.
The set_module_sw_setting_property command is required to set the values for fields pertaining to a
BSP software setting definition. This command is only valid for a callback script. A callback script is set in
the driver's *_sw.tcl file, using the command set_sw_property callback_source_file <filename>.

Example

add_module_sw_setting MY_FAVORITE_SETTING String

add_module_systemh_line

Usage

add_module_systemh_line <macro-name> <macro-value>

Options

• <macro-name>: Macro to be added to the system.h file for the generated BSP
• <macro-value>: Value associated with the macro-name to be added to the system.h file for the

generated BSP

Description

This adds a system.h assignment or macro during a driver callback execution. The BSP typically uses this
during the generate phase depending on the generator. This command is only valid for a callback script. A
callback script is set in the driver's *_sw.tcl file, using the command set_sw_property
callback_source_file <filename>.

Example

add_module_systemh_line MY_MACRO "Macro_Value";

add_systemh_line

Usage

add_systemh_line <sw> <name> <value

• <sw>: The software (OS) that the system.h text is associated with
• <name>: Name of macro to write into system.h (left-hand side of #define)
• <value>: Name of value to assign to macro in system.h (right-hand side of #define)

Description

Adds a line of text to the system.h file. The <sw> argument is the name of the software type (typically an
operating system name) that the system.h text applies to. In the context of an operating system Tcl script,

15-94 add_module_systemh_line
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the name in the create_os <name> command must be used. The text is a name-value pair that creates a
macro (#define statement) in the system.h file.

Note: This command can only be used by Tcl scripts that are registered to run at BSP generation time by
an operating system.

Example

add_systemh_line UCOSII OS_TICKS_PER_SEC 100

get_class_peripheral

Usage

get_class_peripheral <instance-name> <irq-number>

Options

• <instance-name>: Name of EIC module instance to find connected peripheral for.
• <irq-number>: IRQ number to locate connected peripheral device

Description

This command is used on an EIC instance callback to obtain a peripheral slave descriptor connected to a
specific IRQ port number. This command is only valid for a callback script.

Example

get_class_peripheral eic_1 $irq_2;

get_module_assignment

Usage

get_module_assignment <assignment-name>

Options

• <assignment-name>: Name of the module assignment to retrieve the value for, as defined for the
module instance in the .sopcinfo file

Description

Given a module assignment key, return the assignment value of a module associated with the callback
script using this command. The callback script must be set in the *_sw.tcl file using the following
command:

set_sw_property callback_source_file <filename>

Example

puts [get_module_assignment embeddedsw.configuration.isMemoryDevice]

Returns:

true

NII5V2Gen2
2015.05.14 get_class_peripheral 15-95

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_name

Usage

get_module_name

Options

None

Description

Returns the name of the module associated with the callback script using this command. The callback
script must be set in the *_sw.tcl file using the following command:

set_sw_property callback_source_file <filename>

Example

puts [get_module_name]

Returns:

jtag_uart

get_module_peripheral

Usage

get_module_peripheral <irq-number>

Options

• <irq-number>: IRQ number to locate connected peripheral device

Description

This command is used on an EIC instance callback to obtain a peripheral slave descriptor connected to a
specific IRQ port number. This command is only valid for a callback script.

Example

get_module_peripheral 2;

get_module_sw_setting_value

Usage

get_module_sw_setting_value <setting-name>

Options

• <setting-name>: Name of the module software setting to retrieve the value for, as defined by the
add_module_sw_setting command.

15-96 get_module_name
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

Given a module software setting name, return the setting value. The callback script using this command
must be set in the *_sw.tcl file using the following command:

set_sw_property callback_source_file <filename>

You can use this command in a generation or validation callback to retrieve the current value of a setting
created in an initialization callback.

Example

puts [get_module_sw_setting_value MY_SETTING]

Returns:

"My setting value"

get_peripheral_property

Usage

get_peripheral_property <slave-descriptor> <property-name>

Options

• <slave-descriptor>: Slave descriptor of a connected peripheral device
• <property-name>: Property name to query from the connected peripheral device

Description

This command is used on an EIC instance callback to obtain a connected peripheral property value. This
command is only valid for a callback script. A callback script is set in the driver's *_sw.tcl file, using the
command set_sw_property callback_source_file <filename>.

Example

get_peripheral_property jtag_uart supports_preemption;

remove_class_systemh_line

Usage

remove_class_systemh_line <macro-name>

Options

• <macro-name>: Macro to be removed to the system.h file for the generated BSP

Description

This removes a system.h assignment or macro during a driver callback execution. The BSP typically uses
this during the generate phase depending on the generator. This command is only valid for a callback
script. A callback script is set in the driver's *_sw.tcl file, using the command set_sw_property
callback_source_file <filename>.

NII5V2Gen2
2015.05.14 get_peripheral_property 15-97

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example

remove_class_systemh_line MY_MACRO;

remove_module_systemh_line

Usage

remove_module_systemh_line <macro-name>

Options

• <macro-name>: Macro to be removed to the system.h file for the generated BSP

Description

This removes a system.h assignment or macro during a driver callback execution. The BSP typically uses
this during the generate phase depending on the generator. This command is only valid for a callback
script. A callback script is set in the driver's *_sw.tcl file, using the command set_sw_property
callback_source_file <filename>.

Example

remove_module_systemh_line MY_MACRO;

set_class_sw_setting_property

Usage

set_class_sw_setting_property <setting-name> <property> <value>

Options

• <setting-name>: Name of the setting to persist in the BSP settings file associated with the driver class
of this callback script

• <property>: Name of the setting property to update
• <value>: Value of the setting property to update

Description

Update a driver class software setting property. The setting must be added using the
add_class_sw_setting command before calling this method. This command is only valid for a callback
script. A callback script is set in the driver's *_sw.tcl file, using the command set_sw_property
callback_source_file <filename>.

You can set the following setting properties:

• destination

• identifier

• value

• default_value

• description

• restrictions

• group

15-98 remove_module_systemh_line
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example

set_class_sw_setting_property MY_FAVORITE_SETTING default-value '42'

set_module_sw_setting_property

Usage

set_module_sw_setting_property <setting-name> <property> <value>

Options

• <setting-name>: Name of the setting to persist in the BSP settings file associated with the SOPC
module of this callback script

• <property>: Name of the setting property to update
• <value>: Value of the setting property to update

Description

Update a module's software setting property. The setting must be added using the
add_module_sw_setting command before calling this method. This command is only valid for a callback
script. A callback script is set in the driver's *_sw.tcl file, using the command set_sw_property
callback_source_file <filename>.

You can set the following setting properties:

• destination

• identifier

• value

• default_value

• description

• restrictions

• group

Example

set_module_sw_setting_property MY_FAVORITE_SETTING default-value '42'

Tcl Commands for Drivers and Packages
This section describes the tools that you use to specify and manipulate the settings and characteristics of a
custom software package or driver. Typically, when creating a custom software package or device driver,
or importing a package or driver from another development environment, you need these more powerful
tools.

For more information about how to manipulate settings on existing software packages and device drivers,
refer to Settings Managed by the Software Build Tools.

For more information about how to manipulate settings on existing software packages and device drivers,
refer to Tcl Commands for BSP Settings.

A device driver and a software package are both collections of source files added to the BSP. A device
driver is associated with a particular component class (for example, altera_avalon_jtag_uart). A
software package is not associated with any particular component class, but implements a functionality
such as TCP/IP.

NII5V2Gen2
2015.05.14 set_module_sw_setting_property 15-99

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To define a device driver or software package, you create a Tcl script defining its characteristics. This
section describes the Tcl commands available to define device drivers and software packages.

For more information about creating Tcl scripts, refer to “Tcl Scripts for BSP Settings” in the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

The following commands are available for device driver and software package creation:

• For more information, refer to add_sw_property
• For more information, refer to add_sw_setting
• For more information, refer to create_driver
• For more information, refer to create_os
• For more information, refer to create_sw_package
• For more information, refer to set_sw_property

Related Information

• Settings Managed by the Software Build Tools on page 15-25
• Tcl Commands for BSP Settings on page 15-65
• add_sw_property on page 15-100
• add_sw_setting on page 15-102
• create_driver on page 15-103
• create_os on page 15-104
• create_sw_package on page 15-104
• set_sw_property on page 15-105

add_sw_property

Usage

add_sw_property <property> <value>

Options

• <property>: Name of property.
• <value>: Value assigned, or appended to the current value.

Description

This command defines a property for a device driver or software package. A property is a list of values (for
example, a list of file names). The add_sw_property command defines a property if it is not already
defined. The command appends a new value to the list of values if the property is already defined.

In the case of a property consisting of a file name or directory name, use a relative path. Specify the path
relative to the directory containing the Tcl script.

This command supports the following properties:

asm_source

15-100 add_sw_property
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Adds a Nios II assembly language source file (.s or .S) to BSPs containing your package. nios2-bsp-
generate-files copies assembly source files into a BSP and adds them to the source build list in the BSP
makefile. This property is optional.

• c_source—Adds a C source file (.c) to BSPs containing your package. nios2-bsp-generate-files copies
C source files into a BSP and adds them to the source build list in the BSP makefile. This property is
optional.

• cpp_source—Adds a C++ source file (.cpp, .cc, or .cxx) to BSPs containing your package. nios2-bsp-
generate-files copies the C++ source files into a BSP and adds them to the source build list in the BSP
makefile. This property is optional.

• include_source—Adds an include file (typically .h) to BSPs containing your package. nios2-bsp-
generate-files copies include files into a BSP, but does not add them to the generated makefile. This
property is optional.

• include_directory—Adds a directory to the ALT_INCLUDE_DIRS variable in the BSP's public.mk file.
Adding a directory to ALT_INCLUDE_DIRS allows all source files to find include files in this directory.
add_sw_property adds the path to the generated public makefile shared by the BSP and applications
or libraries referencing it. add_sw_property compiles all files with the include directory listed in the
compiler arguments. This property is optional.

• lib_source—Adds a precompiled library file (typically .a) to each BSP containing the driver or
package. nios2-bsp-generate-files copies the precompiled library file into the BSP directory and adds
both the library file name and the path (required to locate the library file) into to the BSP's public.mk
file. Applications using the BSP link with the library file. The library file name must conform to the
following pattern: lib<name>.a where <name> is a nonempty string. Example: add_sw_property
lib_source HAL/lib/libcomponent.aThis property is optional.

• specific_compatible_hw_version—Specifies that the device driver only supports the specified
component hardware version. See the version property of the set_sw_property command for
information about version strings. This property applies only to device drivers (see the create_driver
command), not to software packages. If your driver supports all versions of a peripheral after a specific
release, use the set_property min_compatible_hw_version command instead. This property is
optional. This property is only available for device drivers.

• supported_bsp_type—Adds a specific BSP type (operating system) to the list of supported operating
systems that the driver or software package supports. Specify HAL if the software supports the Altera
HAL, or operating systems that extend it. If your software is operating system-neutral and works on
multiple HAL-based operating systems, state HAL only. If your software or driver contains code that
depends on a particular operating system, state compatibility with that operating system only, but not
HAL.
The name of another operating system to support must match the name of the operating system
exactly. This operating system name string is the same as that used to create a BSP with the nios2-
bsp-* commands, as well as in the .tcl script that describes the operating system, in its create_os
command.
When you create a BSP with an operating system that extends HAL, such as UCOSII, and the BSP tools
select a driver for a particular hardware module, precedence is given to drivers which state compati‐
bility with a that specific operating system (OS) before a more generic driver stating HAL compatibility.
This property is only available for device drivers and software packages. This property must be set to at
least one operating system.

NII5V2Gen2
2015.05.14 add_sw_property 15-101

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• alt_cppflags_addition—Adds a line of arbitrary text to the ALT_CPPFLAGS variable in the BSP
public.mk file. This technique can be useful if you wish to have a static compilation flag or definition
that all BSP, application, and library files receive during software build. This property is optional.

• excluded_hal_source—Specifies a file to exclude from the a BSP generated with an operating system
that extends HAL. The value is the path to a BSP file to exclude, with respect to the BSP root. This
property is optional.

• systemh_generation_script—Specifies a .tcl script to execute during generation of the BSP system.h
file. This script runs with the tcl commands available to other BSP settings tcl scripts, and allow you to
influence the contents of the system.h file. This property is available only to operating systems, created
with the create_os command. This property is optional.

add_sw_setting

Usage

add_sw_setting <type> <destination> <displayName> <identifier> <value> <description>

Options

• <type>: Setting type - Boolean, QuotedString, UnquotedString.
• <destination>: The destination BSP file associated with the setting, or the module generator that

processes this setting.
• <displayName>: Setting name.
• <identifier>: Name of the macro created for a generated destination file.
• <value>: Default value of the setting.
• <description>: Setting description.

Description

This command creates a BSP setting associated with a software package or device driver. The setting is
available whenever the software package or device driver is present in the BSP. nios2-bsp-generate-files
converts the setting and its value into either a C preprocessor macro or BSP makefile variable.
add_sw_setting passes macro definitions to the compiler using the -D command-line option, or adds
them to the system.h file as #define statements.

The setting only exists once even if there are multiple instances of a software package. Set or get the
setting with the --set and --get command-line options of the nios2-bsp, nios2-bsp-create-settings,
nios2-bsp-query-settings, and nios2-bsp-update-settings commands. You can also use the BSP Tcl
commands set_setting and get_setting to set or get the setting. The value of the setting persists in the
BSP settings file.

To create a setting, you must define each of the following parameters.

type—This parameter formats the setting value during BSP generation. The following supported types
and usage restrictions apply:

• boolean_define_only—Defines a macro if the setting’s value is 1 or true. Example: #define
LCD_PRESENT. No macro is defined if the setting’s value is 0 or false. This setting type supports the
system_h_define and public_mk_define destinations, defined below.

• boolean—Defines a macro or makefile variable and sets it to 1 (if the value is 1 or true) or 0 (if the
value is 0 or false). Example: #define LCD_PRESENT 1. This type supports all destinations.

• character—Defines a macro as a single character with single quotes around the character. Example:
#define DELIMITER ':'. This type supports the system_h_define destination, defined below.

• decimal_number—Defines a macro or makefile variable and sets it with an unquoted decimal (integer)
number. Example: #define NUM_COPROCESSORS 3. This type supports all destinations.

15-102 add_sw_setting
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• double—Defines a macro name and sets it to a value with a decimal point. Example: #define PI
3.1416. This type supports the system_h_define destination, defined below.

• float—Defines a macro name and sets it to a value with a decimal point and f character. Example:
#define PI 3.1416f. This type supports the system_h_define destination, defined below.

• hex_number—Defines a macro name and sets it to a value with a 0x prepended to the value. Example:
#define LCD_SIZE 0x1000. This type supports the system_h_define destination, defined below.

• quoted_string—Quoted strings always have the macro name and setting value added to the destina‐
tion files. In the destination, the setting value is enclosed in quotation marks. Example: #define
DFLT_ERR "General error"

If the setting value contains white space, you must place quotation marks around the value string in
the Tcl script. This type supports the system_h_define destination, defined below.

• unquoted_string—Unquoted strings define a macro or makefile variable with setting name and value
in the destination file. In the destination file, the setting value is not enclosed in quotation marks.
Example: #define DFLT_ERROR Error This type supports all destinations.

destination—The destination parameter specifies where add_sw_setting puts the setting in the
generated BSP. add_sw_settings supports the following destinations:

• system_h_define—With this destination, add_sw_settings formats settings as #define <setting
name> [<setting value>] macros in the system.h file

• public_mk_define—With this destination, add_sw_settings formats settings as -D<setting
name>[=<setting value>] additions to the ALT_CPPFLAGS variable in the BSP public.mk file. public.mk
passes the flag to the C preprocessor for each source file in the BSP, and in applications and libraries
using the BSP.

• makefile_variable—With this destination, add_sw_settings formats settings as makefile variable
additions to the BSP makefile. The variable name must be unique in the makefile.

displayName—The name of the setting. Settings exist in a hierarchical namespace. A period separates
levels of the hierarchy. Settings created in your Tcl script are located in the hierarchy under the driver or
software package name you specified in the create_driver or create_sw_package command. Example:
my_driver.my_setting. The Nios II SBT adds the hierarchical prefix to the setting name.

identifier—The name of the macro or makefile variable being defined. In a setting added to the
system.h file at generation time, this parameter corresponds to the text immediately following the #define
statement.

value—The default value associated with the setting. If you do not assign a value to the option, its value is
this default value. Valid initial values are TRUE, 1, FALSE, and 0 for boolean and boolean_define_only
setting types, a single character for the character type, integer numbers for the decimal_number setting
type, integer numbers with or without a 0x prefix for the hex_number type, numbers with decimals for
float_number and double_number types, or an arbitrary string of text for quoted and unquoted string
setting types. For string types, if the value contains any white space, you must enclose it in quotation
marks.

description—Descriptive text that is inserted along with the setting value and name in the summary.html
file. You must enclose the description in quotation marks if it contains any spaces. If the description
includes any special characters (such as quotation marks), you must escape them with the backslash (\)
character. The description field is mandatory, but can be an empty string ("").

create_driver

Usage

create_driver <name>

NII5V2Gen2
2015.05.14 create_driver 15-103

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Options

• <name>: Name of device driver.

Description

This command creates a new device driver instance available for the Nios II SBT. This command must
precede all others that describe the device driver in its Tcl script. You can only have one create_driver
command in each Tcl script. If the create_driver command appears in the Tcl script, the
create_sw_package and create_os commands cannot appear.

The name argument is usually distinct from all other device drivers and software packages that the SBT
might locate. You can specify driver name identical to another driver if the driver you are describing has a
unique version number assignment.

If your driver differs for different operating systems, you need to provide a unique name for each BSP
type.

This command is required, unless you use the create_sw_package or create_os commands, as
appropriate.

create_os

Usage

create_os <name>

Options

• <name>: Name of operating system (BSP type).

Description

This command creates a new operating system (OS) instance (also known as a BSP type) available for the
Nios II BSP tools. This command must precede all others that describe the OS in its Tcl script. You can
only have one create_os command in each Tcl script. If the create_os command appears in the Tcl
script, the create_driver or create_sw_package commands cannot appear.

The name argument is usually distinct from all other operating systems that the SBT might locate. You
can specify an OS name identical to OS if the OS you are describing has a unique version number
assignment.

This command is required, unless you use the create_driver or create_sw_package commands, as
appropriate.

create_sw_package

Usage

create_sw_package <name>

Options

• <name>: Name of the software package.

15-104 create_os
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description

This command creates a new software package instance available for the Nios II SBT. This command
must precede all others that describe the software package in its Tcl script. You can only have one
create_sw_package command in each Tcl script. If the create_sw_package command appears in the
Tcl script, the create_driver or create_os commands cannot appear.

The name argument is usually distinct from all other device drivers and software packages that the SBT
might locate. You can specify a name identical to another software package if the software package you are
describing has a unique version number assignment.

If your software package differs for different operating systems, you need to provide a unique name for
each BSP type.

This command is required, unless you use the create_driver or create_os commands, as appropriate.

set_sw_property

Usage

set_sw_property <property> <value>

Options

• <property>: Type of software property being set.
• <value>: Value assigned to the property.

Description

Sets the specified value to the specified property. The properties this command supports can only hold a
single value. This command overwrites the existing (or default) contents of a particular property with the
specified value. This command applies to device drivers and software packages.

This command supports the following properties:

• hw_class_name—The name of the hardware class which your device driver supports. The hardware
class name is also the Component Name shown in the Component Editor. Example:
altera_avalon_uart. This property is only available for device drivers. This property is required for
all drivers.

• version—The version number of this package. set_sw_property uses version numbers to determine
compatibility between hardware (peripherals) and their software (drivers), as well as to choose the
most recent software or driver if multiple compatible versions are available. A version can be any
alphanumeric string, but is usually a major and one or more minor revision integers. The dot (.)
character separates major and minor revision numbers. Examples: 9.0, 5.0sp1, 3.2.11. This property
is optional, but recommended. If you do not specify a version, the newest version of the package is
used.

• min_compatible_hw_version—Specifies that the device driver supports the specified hardware
version, or all greater versions. This property is only available for device drivers. If your device driver
supports only one or more specific versions of a hardware class, use the add_sw_property
specific_compatible_hw_version command instead. See the version property documentation for
information about version strings. This property is optional. This property is only available for device
drivers.

• auto_initialize—Boolean value that specifies alt_sys_init.c needs to initialize your package. If
enabled, you must provide a header file containing INSTANCE and INIT macros.

This property is optional; if unspecified, alt_sys_init.c does not contain references to your driver or
software. This property is only available for device drivers and software packages.

NII5V2Gen2
2015.05.14 set_sw_property 15-105

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• bsp_subdirectory—Specifies the top-level directory where nios2-bsp-generate-files copies all source
files for this package. This property is a path relative to the top-level BSP directory. This property is
optional; if unspecified, nios2-bsp-generate-files copies the driver or software package into the
drivers subdirectory of any BSP including this software.

• alt_sys_init_priority—This property assigns a priority to the software package or device driver.
The value of this property must be a positive integer. Use this property to customize the order of
macro calls in the BSP alt_sys_init.c file. Specifying the priority is useful if your software or driver must
be initialized before or after other software in the system. For example, your driver might depend on
another driver already being initialized.
This property is optional. The default priority is 1000. This property is only available for device drivers
and software packages.

• display_name—This property is used for user interfaces and other tools that wish to show a human-
readable name to identify the software being described in the .tcl script. display_name is set to a few
words of text (in quotes) that name your software. For example: Altera Nios II driver.
This property is optional. If not set, tools that attempt to use the display name use the package name
created with the appropriate create_ command.

• extends_bsp_type—This property specifies which BSP type that an operating system (created with
the create_os command) extends (if any). Currently, only the Altera HAL (HAL) is supported. This
command is required for all operating systems that wish to use HAL-compatible generators in the Nios
II BSP tools. It is also required for operating systems that require the Altera HAL, device driver, or
software package source files that are HAL compatible in BSPs created with that operating system. An
operating system that extends HAL is presumed to be compatible with device drivers that support
HAL. This command is only available for operating systems.

• callback_source_file—This property specifies a Tcl source file containing callback functions.
• initialization_callback—This property specifies the name of a Tcl callback function which is

intended to run in the following environment:

• Run time: initialization
• Scope: component instance
• Function argument(s): component instance name

• validation_callback—This property specifies the name of a Tcl callback function which is intended
to run in the following environment:

• Run time: validation
• Scope: component instance
• Function argument(s): component instance name

• generation_callback—This property specifies the name of a callback function which is intended to
run in the following environment:

• Run time: generation
• Scope: component instance
• Function argument(s): component instance name, BSP generate target directory, driver BSP

subdirectory
• class_initialization_callback—This property specifies the name of a callback function which is

intended to run in the following environment:

• Run time: initialization
• Scope: component instance
• Function argument(s): driver class name

15-106 set_sw_property
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• class_validation_callback—This property specifies the name of a callback function which is
intended to run in the following environment:

• Run time: validation
• Scope: component instance
• Function argument(s): driver class name

• class_generation_callback—This property specifies the name of a callback function which is
intended to run in the following environment:

• Run time: generation
• Scope: component instance
• Function argument(s): driver class name, BSP generate target directory, driver BSP subdirectory

• supported_interrupt_apis—Specifies the interrupt API that the device driver supports. Specify
legacy_interrupt_api if the device driver supports the legacy API only or
enhanced_interrupt_api if the device driver supports the enhanced API only. Specify both using a
quoted list if the device driver supports both APIs.

If you do not specify which API your device driver supports, the Nios II SBT assumes that only the
legacy interrupt API is supported. The Nios II SBT analyzes this property for each driver in the system
to determine the appropriate API to be used in the system.

Note: This property is only available for device drivers.

• isr_preemption_supported—Specify true if your device driver ISR can be preempted by a higher
priority ISR. If you do not specify whether ISR preemption is supported, the Nios II SBT assumes that
your device driver does not support preemption. If your driver does not have an ISR, but the
associated device has an interrupt port, you can set this property to true.

Note: This property is valid for operating systems and device drivers.

Related Information
Nios II Software Build Tools on page 4-1
For more information about the legacy and enhanced APIs, refer to "Exception Handling".

Software Build Tools Path Names
There are some restrictions on how you can specify file paths when working with the Nios II SBT. The
tools are designed for the maximum possible compatibility with a variety of computing environments. By
following the restrictions in this section, you can ensure that the build tools work smoothly with other
tools in your tool chain.

Command Arguments
Many Nios II software build tool commands take file name and directory path arguments. You can
provide these arguments in any of several supported cross-platform formats. The Nios II SBT supports
the following path name formats:

NII5V2Gen2
2015.05.14 Software Build Tools Path Names 15-107

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Quoted Windows—A drive letter followed by a colon, followed by directory names delimited with
backslashes, surrounded by double quotes. Example of a quoted Windows absolute path:"c:\altera
\72\nios2eds\examples\verilog\niosII_cyclone_1c20\standard"

Quoted Windows relative paths omit the drive letter, and begin with two periods followed by a
backslash. Example:

"..\niosII_cyclone_1c20\standard"

• Escaped Windows—The same as quoted Windows, except that each backslash is replaced by a double
backslash, and the double quotes are omitted. Examples:c:\\altera\\72\\nios2eds\\examples\
\verilog\\niosII_cyclone_1c20\\standard ..\\niosII_cyclone_1c20\\standard

• Linux—An optional forward slash, followed by directory names delimited with forward slashes.
Examples:/altera/72/nios2eds/examples/verilog/niosII_cyclone_1c20/standard
verilog/niosII_cyclone_1c20/standard

Linux relative paths begin with two periods followed by a forward slash. Example:

../niosII_cyclone_1c20/standard

• Mixed—The same as quoted Windows, except that each backslash is replaced by a forward slash, and
the double quotes are omitted. Examples:c:/altera/72/nios2eds/examples/verilog/
niosII_cyclone_1c20/standard../niosII_cyclone_1c20/standard

• Cygwin—An absolute Cygwin path consists of the pseudo-directory name
"/cygdrive/", followed by the lower case Windows drive name, followed by directory names
delimited with forward slashes. Example:/cygdrive/c/altera/72/nios2eds/examples/verilog/
niosII_cyclone_1c20/standard

Cygwin relative paths are the same as Linux relative paths. Example:

../niosII_cyclone_1c20/standard

The Nios II SBT accepts both relative and absolute path names.

Table 15-6: Path Name Format Support for Nios II SBT utilities and makefiles

Context Formats supported on Linux (16) Formats supported on Windows
with Cygwin

Utilities and
scripts

Linux • Quoted Windows (17)

• Mixed
• Escaped Windows
• Cygwin

Makefiles Linux • Mixed(18)

• Cygwin

Object File Directory Tree
The makefile created by the Nios II SBT creates a new directory tree for generated object files. To the
extent possible, the object file directory tree retains the structure of the corresponding source directory.

(16) These rules apply to any Unix-like platform.
(17) These rules apply to other Unix-like shells running on Windows. The Nios II Command Shell, provided

with the Nios II EDS, is based on Cygwin. Examples in this chapter are designed for the Nios II
Command Shell.

(18) The build tools automatically convert path names to Cygwin format.

15-108 Object File Directory Tree
NII5V2Gen2
2015.05.14

Altera Corporation Nios II Software Build Tools Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if you specify the path to a source file as

src/util/special/tools.c

the makefile places the corresponding object code in

obj/util/special/tools.o

The makefile does not create object directories outside the project directory root. If the source file path
you specify is a relative path beginning with "..", the Nios II SBT flattens the path name prior to creating
the object directory structure.

For example, if you specify the path to a source file as

../special/tools.c

the makefile places the corresponding object code in

obj/tools.o

If you specify an absolute path to source files under Cygwin, the Nios II SBT creates the obj directory
structure as if you had used the Cygwin form of the path name. For example, if you specify the path to a
source file as

c:/dev/app/special/tools.c

the Nios II SBT places the corresponding object code in

obj/cygdrive/c/dev/app/special/tools.o

Related Information
Nios II Embedded Software Projects on page 4-4
For more information about the object file directory structure.

Document Revision History for Nios II Software Build Tools Reference
Date Version Changes

May 2015 2015.05.14 Initial release.

NII5V2Gen2
2015.05.14 Document Revision History for Nios II Software Build Tools Reference 15-109

Nios II Software Build Tools Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Software%20Build%20Tools%20Reference%20(NII5V2Gen2%202015.05.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Nios II Gen2 Software Developer's Handbook
	Contents
	1. Overview of Nios II Embedded Development
	Prerequisites for Understanding the Nios II Embedded Design Suite
	Finding Nios II EDS Files
	Nios II Software Development Environment
	Nios II EDS Development Flows
	Nios II SBT Development Flow
	Nios II SBT for Eclipse
	Nios II SBT Command Line

	Nios II Programs
	Makefiles and the SBT
	Nios II Software Project Types
	Application Project
	User Library Project
	BSP Project

	Altera Software Packages for Embedded Systems
	Nios II Embedded Design Examples
	Hardware Examples
	Software Examples

	Third-Party Embedded Tools Support
	Additional Nios II Information
	Document Revision History for Overview of Nios II Embedded Development

	2. Getting Started with the Graphical User Interface
	Getting Started with Nios II Software in Eclipse
	The Nios II SBT for Eclipse Workbench
	Perspectives, Editors, and Views
	The Altera Bytestream Console

	Creating a Project
	Specifying the Application
	Specifying the Hardware Platform
	Specifying the Project Name
	Specifying the Project Template
	Specifying the Project Location
	Specifying the Processor

	Specifying the BSP
	Specifying the BSP Project Name
	Specifying the BSP Project Location
	Selecting an Existing BSP

	Creating the Projects

	Navigating the Project
	Building the Project
	Configuring the FPGA
	Running the Project on Nios II Hardware
	Debugging the Project on Nios II Hardware
	List of Debugging Tasks with the Nios II SBT for Eclipse
	Console View
	Disconnecting the Terminal from the Target

	Using the Altera Bytestream Console
	Run Time Stack Checking And Exception Debugging
	Nios II Exception Debugging
	Stack Overflow
	Recognizing and Debugging a Stack Overflow
	Default Instruction-Related Exception Handler
	How to Isolate the Cause of a Sigtrap

	Custom Instruction-Related Exception Handler

	Creating a Simple BSP

	Makefiles and the Nios II SBT for Eclipse
	Eclipse Source Management
	Modifying a Makefile with Eclipse Source Management
	Absolute Source Paths and Linked Resources

	User Source Management
	Modifying a Makefile with User Source Management

	BSP Source Management

	Using the BSP Editor
	Tcl Scripting and the Nios II BSP Editor
	Starting the Nios II BSP Editor
	The Nios II BSP Editor Screen Layout
	The Command Area
	The Main Tab
	The Software Packages Tab
	The Drivers Tab
	The Linker Script Tab
	Linker Section Mappings
	Linker Regions

	Enable File Generation Tab
	Target BSP Directory Tab

	The Console Area
	The Information Tab
	The Problems Tab
	The Processing Tab

	Exporting a Tcl Script
	Creating a New BSP
	Using a Tcl Script in BSP Creation

	BSP Validation Errors

	Run Configurations in the SBT for Eclipse
	Opening the Run Configuration Dialog Box
	The Project Tab
	The Target Connection Tab
	The Debugger Tab

	Nios II Hardware v2 (beta)
	Main Tab
	Debugger Tab
	Multi-Core Launches

	Optimizing Project Build Time
	Importing a Command-Line Project
	Nios II Command-Line Projects
	Importing through the Import Wizard
	Road Map
	Import a Command-Line C/C++ Application
	Importing a Project with Absolute Source Paths

	Import a Supporting Project
	User-Managed Source Files

	Packaging a Library for Reuse
	Creating the User Library
	Using the Library

	Creating a Software Package
	Programming Flash in Altera Embedded Systems
	Starting the Flash Programmer
	Creating a Flash Programmer Settings File
	Specifying the Hardware Configuration

	The Flash Programmer Screen Layout
	The Command Area
	The Console Area
	The Information Tab
	The Problems Tab
	The Processing Tab

	Saving a Flash Programmer Settings File
	Flash Programmer Options
	Staging Directories
	Generate Files
	Program Files
	Erase Flash Before Programming
	Run From Reset After Programming

	Creating Memory Initialization Files
	Generate Memory Initialization Files
	Generate Memory Initialization Files by the Legacy Method
	Memory Initialization Files for User-Defined Memories
	Specifying the Memory Device Information in the Advanced Tab

	Running a Nios II System with ModelSim
	Using ModelSim with an SOPC Builder-Generated System
	Using ModelSim with a Qsys-Generated System
	Preparing your Software for ModelSim
	Potential Error Message
	Nios II GCC Tool Chain

	Eclipse Usage Notes
	Configuring Application and Library Properties
	Comparing the Nios II Application Properties and Nios II Library Properties tabs

	Configuring BSP Properties
	Exclude from Build Not Supported
	Selecting the Correct Launch Configuration Type
	Target Connection Options
	Renaming Nios II Projects
	Running Shell Scripts from the SBT for Eclipse
	Must Use Nios II Build Configuration
	CDT Limitations
	Enhancements for Build Configurations in SBT and SBT for Eclipse
	Build Configurations in SBT
	Build Configurations in SBT for Eclipse

	Document Revision History for Getting Started with the Graphical User Interface

	3. Getting Started from the Command Line
	Advantages of Command-Line Software Development
	Outline of the Nios II SBT Command-Line Interface
	Utilities
	Scripts
	nios2-bsp
	create-this-app
	create-this-bsp

	Tcl Commands
	Tcl Scripts
	The Nios II Command Shell
	Starting the Nios II Command Shell
	Auto-Executing a Command in the Nios II Command Shell

	Getting Started in the SBT Command Line
	Prerequisites
	Creating Hello_World for an Altera Development Board
	Running Hello_World on an Altera Development Board
	Debugging hello_world
	Import the hello_world Application
	Download Executable Code and Start the Debugger

	Software Build Tools Scripting Basics
	Creating a BSP with a Script
	Creating an Application Project with a Script

	Running make
	Creating Memory Initialization Files

	Document Revision History for Getting Started from the Command Line

	4. Nios II Software Build Tools
	Road Map for the SBT
	What the Build Tools Create
	Comparing the Command Line with Eclipse

	Makefiles
	Modifying Makefiles
	Makefile Targets

	Nios II Embedded Software Projects
	Applications and Libraries
	Supported Source File Types

	Board Support Packages
	Overview of BSP Creation
	Parts of a Nios II BSP
	Hardware Abstraction Layer
	newlib C Standard Library
	Device Drivers
	Optional Software Packages
	Optional Real-Time Operating System

	Software Build Process

	Common BSP Tasks
	Adding the Nios II SBT to Your Tool Flow
	Using Version Control
	Creating BSP by Running a User Defined Script to Call nios2-bsp
	Creating BSP by Manually Running nios2-bsp
	Creating BSP before Running Make
	Creating a Script that Uses the Command-Line Tools

	Copying, Moving, or Renaming a BSP
	Handing Off a BSP

	Linking and Locating
	Creating Memory Initialization Files
	Modifying Linker Memory Regions
	Creating a Custom Linker Section
	Creating a Linker Section for an Existing Region
	Dividing a Linker Region to Create a New Region and Section
	Using the Create a New Region and Section Tcl Script

	Excerpts from Object Dump Files
	Excerpt from Linker.x

	Changing the Default Linker Memory Region
	Changing a Linker Section Mapping

	Other BSP Tasks
	Creating a BSP for an Altera Development Board
	Querying Settings
	Managing Device Drivers
	Creating a Custom Version of newlib
	Controlling the stdio Device
	Configuring Optimization and Debugger Options
	Configuring a BSP for Debugging

	Details of BSP Creation
	BSP Settings File Creation
	Generated and Copied Files
	HAL BSP Files and Folders
	HAL BSP After Generating Files
	Copied BSP Files
	HAL BSP After Build

	Linker Map Validation

	Tcl Scripts for BSP Settings
	Calling a Custom BSP Tcl Script
	Simple Tcl Script
	Tcl Script to Examine Hardware and Choose Settings

	Revising Your BSP
	Rebuilding Your BSP
	What Happens
	How to Rebuild Your BSP

	Regenerating Your BSP
	What Happens
	When to Regenerate Your BSP
	How to Regenerate Your BSP
	Regenerating Your BSP in Eclipse
	Regenerating Your BSP from the Command Line

	Updating Your BSP
	What Happens
	When to Update Your BSP
	How to Update Your BSP

	Recreating Your BSP
	What Happens
	When to Recreate Your BSP
	How to Recreate Your BSP
	Using Tcl Scripts When Recreating Your BSP
	Recreating Your BSP in Eclipse
	Recreating Your BSP at the Command Line

	Specifying BSP Defaults
	Top Level Tcl Script for BSP Defaults
	Specifying the Default stdio Device
	Specifying the Default System Timer
	Specifying the Default Memory Map
	Specifying Default Bootloader Parameters
	Boot Loader Dependent Settings

	Using Individual Default Tcl Procedures

	Device Drivers and Software Packages
	Boot Configurations for Altera Embedded Software
	Memory Types
	Boot from Flash Configuration
	Boot from Monitor Configuration
	Run from Initialized Memory Configuration
	Run-time Configurable Reset Configuration

	Altera-Provided Embedded Development Tools
	Nios II Software Build Tool GUIs
	The Nios II SBT for Eclipse
	The Nios II BSP Editor
	The Nios II Flash Programmer

	The Nios II Command Shell
	The Nios II Command-Line Commands
	GNU Compiler Tool Chain
	Nios II Software Build Tools
	File Format Conversion Tools
	Other Command-Line Tools

	Restrictions
	Document Revision History for Nios II Software Build Tools

	5. Overview of the Hardware Abstraction Layer
	Getting Started with the Hardware Abstraction Layer
	HAL Architecture for Embedded Software Systems
	Services
	Layers of a HAL-Based System
	Applications versus Drivers
	Generic Device Models
	Device Model Classes
	Benefits to Application Developers
	Benefits to Device Driver Developers

	C Standard Library—newlib

	Embedded Hardware Supported by the HAL
	Nios II Processor Core Support
	Supported Peripherals
	Provide Full HAL Support
	Provide Partial HAL Support

	MPU Support
	MMU Support

	Document Revision History for Overview of the Hardware Abstraction Layer

	6. Developing Programs Using the Hardware Abstraction Layer
	HAL BSP Settings
	The Nios II Embedded Project Structure
	The system.h System Description File
	Data Widths and the HAL Type Definitions
	UNIX-Style Interface
	File System
	Using Character-Mode Devices
	Standard Input, Standard Output and Standard Error
	General Access to Character Mode Devices
	C++ Streams
	/dev/null
	Lightweight Character-Mode I/O
	Altera Logging Functions
	Enabling Altera Logging
	Extra Logging Options
	Logging Levels
	Example: Creating a BSP with Logging
	Custom Logging Messages
	Altera Logging Files

	Using File Subsystems
	Host-Based File System

	Using Timer Devices
	System Clock Driver
	Alarms
	Timestamp Driver

	Using Flash Devices
	Simple Flash Access
	Block Erasure or Corruption
	Fine-Grained Flash Access
	alt_get_flash_info()
	alt_erase_flash()
	alt_write_flash_block()
	alt_lock_flash()

	Using DMA Devices
	DMA Transmit Channels
	DMA Receive Channels
	Memory-to-Memory DMA Transactions

	Using Interrupt Controllers
	Reducing Code Footprint in Embedded Systems
	Enable Compiler Optimizations
	Use Reduced Device Drivers
	Reduce the File Descriptor Pool
	Use /dev/null
	Use a Smaller File I/O Library
	Use the Small newlib C Library
	Use UNIX-Style File I/O
	Emulate ANSI C Functions

	Use the Lightweight Device Driver API
	Use the Minimal Character-Mode API
	alt_printf()
	alt_putchar()
	alt_putstr()
	alt_getchar()

	Eliminate Unused Device Drivers
	Eliminate Unneeded Exit Code
	Eliminate Clean Exit
	Eliminate All Exit Code

	Turn off C++ Support

	Boot Sequence and Entry Point
	Hosted Versus Free-Standing Applications
	Boot Sequence for HAL-Based Programs
	System Initialization Code Boot Sequence
	Default Implementation Steps

	Customizing the Boot Sequence

	Memory Usage
	Memory Sections
	Assigning Code and Data to Memory Partitions
	Simple Placement Options
	Advanced Placement Options

	Placement of the Heap and Stack
	Global Pointer Register
	Boot Modes

	Working with HAL Source Files
	Finding HAL Files
	Overriding HAL Functions

	Document Revision History for Developing Programs Using the Hardware Abstraction Layer

	7. Developing Device Drivers for the Hardware Abstraction Layer
	Driver Integration in the HAL API
	The HAL Peripheral-Specific API
	Preparing for HAL Driver Development
	Development Flow for Creating Device Drivers
	Nios II Hardware Design Concepts
	The Relationship Between the .sopcinfo File and system.h
	Using the System Generation Tool to Optimize Hardware
	Components, Devices, and Peripherals

	Accessing Hardware
	Creating Embedded Drivers for HAL Device Classes
	Character-Mode Device Drivers
	Create a Device Instance
	Modifying the Global Error Status, errno
	Default Behavior for Functions Defined in alt_dev

	Register a Character Device

	File Subsystem Drivers
	Create a Device Instance
	Register a File Subsystem Device

	Timer Device Drivers
	System Clock Driver
	Timestamp Driver

	Flash Device Drivers
	Create a Flash Driver
	Register a Flash Device

	DMA Device Drivers
	DMA Transmit Channel
	DMA Receive Channel

	Ethernet Device Drivers
	Layered Software Model
	Writing a New Ethernet Device Driver
	Provide the NicheStack Hardware Interface Routines
	Provide *INSTANCE and *INIT Macros
	Provide a Software Initialization Function

	Integrating a Device Driver in the HAL
	Overview
	Assumptions and Requirements
	The Nios II BSP Generator
	Component Discovery
	Device Driver Versions
	Device Driver and Software Package Inclusion
	Specific Requests
	No Specific Requests

	File Names and Locations
	Source Code Discovery

	Driver and Software Package Tcl Script Creation
	Example Device Driver File Hierarchy and Naming
	Tcl Command Walkthrough for a Typical Driver or Software Package
	Creating and Naming the Driver or Package
	Identifying the Hardware Component Class
	Setting the BSP Type
	Specifying an Operating System
	Specifying Source Files
	Specifying a Subdirectory
	Enabling Software Initialization
	Adding Include Paths
	Version Compatibility

	Creating Settings for Device Drivers and Software Packages
	How Settings Affect the Generated BSP
	Arguments for add_sw_setting

	Data Types
	Setting Destination Files
	Setting Display Name
	Setting Generation Name
	Setting Default Value
	Setting Description
	Setting Creation Example

	Creating a Custom Device Driver for the HAL
	Header Files and alt_sys_init.c
	Creating alt_sys_init.c Based on Associated Header Files
	altera_avalon_jtag_uart.h Defining Macros

	Device Driver Source Code

	Reducing Code Footprint in HAL Embedded Drivers
	Provide Reduced Footprint Drivers
	Support the Lightweight Device Driver API
	Using Character-Mode Functions
	Using Macros
	Invoking Macros in Your Application Software
	Calling Direct Without Macros

	HAL Namespace Allocation
	Overriding the HAL Default Device Drivers
	Document Revision History for Developing Device Drivers for the Hardware Abstraction Layer

	8. Exception Handling
	Nios II Exception Handling Overview
	Exception Handling Terminology
	Interrupt Controllers
	Internal Interrupt Concepts
	External Interrupt Concepts
	Requested Handler Address
	Requested Interrupt Level
	Requested Register Set
	Requested NMI Mode
	Shadow Register Sets

	Latency and Response Time
	Internal or External Interrupt Controller
	Shadow Register Sets
	How the Hardware Works

	How the Internal Interrupt Controller Works
	How an External Interrupt Controller Works

	Nios II Interrupt Service Routines
	HAL APIs for Hardware Interrupts
	Selecting an Interrupt API
	The Enhanced HAL Interrupt API
	Using the Enhanced HAL Interrupt API to Implement ISRs
	The External Interrupt Controller Driver
	Using the HAL Interrupt API with the VIC

	The Legacy HAL Interrupt API
	Using the Legacy HAL API to Implement ISRs

	Supporting Multiple Interrupt APIs

	HAL ISR Restrictions
	Writing an ISR
	Using Interrupt Funnels
	Running in a Restricted Environment
	Managing Pre-Emption

	Registering an ISR with the Enhanced Interrupt API
	Methods the HAL Uses to Register the ISR

	Enabling and Disabling Interrupts
	Configuring an External Interrupt Controller
	C Example
	An ISR to Service a Button PIO Interrupt
	Registering the Button PIO ISR with the HAL

	Upgrading to the Enhanced HAL Interrupt API

	Improving Nios II ISR Performance
	Software Performance Improvements
	Execute Time-Intensive Algorithms in the Application Context
	Implement Time-Intensive Algorithms in Hardware
	Increase Buffer Size
	Use Double Buffering
	Keep Interrupts Enabled
	Use Fast Memory
	Use a Separate Exception Stack
	Separate General Exception Stack
	Separate Hardware Interrupt Stack

	Use Nested Hardware Interrupts
	Nested Hardware Interrupts with the Internal Interrupt Controller
	Nested Hardware Interrupts with an External Interrupt Controller

	Locate ISR Body in Vector Table
	Use Compiler Optimization

	Hardware Performance Improvements
	Use Vectored Hardware Interrupts
	Using the Interrupt Vector Custom Instruction
	Using an External Interrupt Controller

	Add Fast Memory
	Add a DMA Controller
	Place the Handler in Fast Memory
	Use a Fast Nios II Core
	Select Hardware Interrupt Priorities
	Hardware Interrupt Priorities with the Internal Interrupt Controller
	Hardware Interrupt Priorities with an External Interrupt Controller

	Debugging Nios II ISRs
	HAL Exception Handling System Implementation
	Exception Handling System Structure
	General Exception Funnel
	Hardware Interrupt Dispatch with the Internal Interrupt Controller
	Returning from Exceptions

	Hardware Interrupt Funnel
	Interrupt Funnel for the Internal Interrupt Controller
	Interrupt Funnels for External Interrupt Controllers
	Interrupt Funnels for Internal Interrupt Controllers

	Software Exception Funnel
	Unimplemented Instructions
	When to Use the Unimplemented Instruction Handler
	Using the Unimplemented Instruction Handler

	Instruction-Related Exceptions
	Software Trap Handling
	Miscellaneous Exceptions

	Invalid Instructions

	The Nios II Instruction-Related Exception Handler
	Writing an Instruction-Related Exception Handler
	Exception Cause Codes

	Registering an Instruction-Related Exception Handler
	Removing an Instruction-Related Exception Handler

	Document Revision History for Exception Handling

	9. Cache and Tightly-Coupled Memory
	Nios II Cache Implementation
	Defining Cache Properties

	HAL API Functions for Managing Cache
	Initializing the Nios II Cache after Reset
	Assembly Code to Initialize the Instruction Cache
	Assembly Code to Initialize the Data Cache
	For HAL Users

	Nios II Device Driver Cache Considerations
	For HAL Users

	Cache Considerations for Writing Program Loaders
	For Users of the HAL

	Managing Cache in Multi-Master and Multi-Processor Systems
	Cache Implementation
	Bit-31 Cache Bypass
	For HAL Users

	Nios II Tightly-Coupled Memory
	Document Revision History for Cache and Tightly-Coupled Memory

	10. MicroC/OS-II Real-Time Operating System
	Overview of the MicroC/OS-II RTOS
	Further Information
	Licensing

	Other RTOS Providers
	The Nios II Implementation of MicroC/OS-II
	MicroC/OS-II Architecture
	MicroC/OS-II Thread-Aware Debugging
	MicroC/OS-II Device Drivers
	Thread-Safe HAL Drivers
	The newlib ANSI C Standard Library
	Interrupt Service Routines for MicroC/OS-II

	Implementing MicroC/OS-II Projects for the Nios II Processor
	Document Revision History for MicroC/OS-II Real-Time Operating System

	11. Ethernet and the NicheStack TCP/IP Stack - Nios II Edition
	Prerequisites for Understanding the NicheStack TCP/IP Stack
	Introduction to the NicheStack TCP/IP Stack - Nios II Edition
	The NicheStack TCP/IP Stack Files and Directories
	Licensing

	Other TCP/IP Stack Providers for the Nios II Processor
	Using the NicheStack TCP/IP Stack - Nios II Edition
	Nios II System Requirements
	The NicheStack TCP/IP Stack Tasks
	Initializing the Stack
	alt_iniche_init()
	netmain()
	iniche_net_ready
	get_mac_addr() and get_ip_addr()
	Prototype for get_mac_addr()
	Prototype for get_ip_addr()

	Calling the Sockets Interface

	Configuring the NicheStack TCP/IP Stack in a Nios II Program
	NicheStack TCP/IP Stack General Settings
	IP Options
	TCP Options

	Further Information
	Known Limitations
	Document Revision History for Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

	12. Read-Only Zip File System
	Using the Read-Only Zip File System in a Project
	Preparing the Zip File
	Programming the Zip File to Flash

	Document Revision History for Read-Only Zip File System

	13. Publishing Component Information to Embedded Software
	Embedded Component Information Flow
	Embedded Component Information Flow Diagram
	Tcl Assignment Statements

	Embedded Software Assignments
	C Macro Namespace
	Generated Macro in system.h
	GCC C/C++ 32-bit Processor Constants

	Configuration Namespace
	Configuration Data Types
	Component Configuration Information
	Memory-Mapped Slave Information
	Streaming Source Information
	Streaming Sink Information

	Memory Initialization Namespace

	Document Revision History for Publishing Component Information to Embedded Software

	14. HAL API Reference
	HAL API Functions
	_exit()
	_rename()
	alt_dcache_flush()
	alt_dcache_flush_all()
	alt_dcache_flush_no_writeback()
	alt_uncached_malloc()
	alt_uncached_free()
	alt_remap_uncached()
	alt_remap_cached()
	alt_icache_flush_all()
	alt_icache_flush()
	alt_alarm_start()
	alt_alarm_stop()
	alt_dma_rxchan_depth()
	alt_dma_rxchan_close()
	alt_dev_reg()
	alt_dma_rxchan_open()
	alt_dma_rxchan_prepare()
	alt_dma_rxchan_reg()
	alt_dma_txchan_close()
	alt_dma_txchan_ioctl()
	alt_dma_txchan_open()
	alt_dma_txchan_reg()
	alt_flash_close_dev()
	alt_exception_cause_generated_bad_addr()
	alt_erase_flash_block()
	alt_dma_rxchan_ioctl()
	alt_dma_txchan_space()
	alt_dma_txchan_send()
	alt_flash_open_dev()
	alt_fs_reg()
	alt_get_flash_info()
	alt_ic_irq_disable()
	alt_ic_irq_enabled()
	alt_ic_isr_register()
	alt_ic_irq_enable()
	alt_instruction_exception_register()
	alt_irq_disable()
	alt_irq_cpu_enable_interrupts ()
	alt_irq_disable_all()
	alt_irq_enable()
	alt_irq_enable_all()
	alt_irq_enabled()
	alt_irq_init()
	alt_irq_pending ()
	alt_irq_register()
	alt_llist_insert()
	alt_llist_remove()
	alt_load_section()
	alt_nticks()
	alt_read_flash()
	alt_tick()
	alt_ticks_per_second()
	alt_timestamp()
	alt_timestamp_freq()
	alt_timestamp_start()
	alt_write_flash()
	alt_write_flash_block()
	close()
	fstat()
	fork()
	fcntl()
	execve()
	getpid()
	kill()
	stat()
	settimeofday()
	wait()
	unlink()
	sbrk()
	link()
	lseek()
	alt_sysclk_init()
	open()
	times()
	read()
	write()
	usleep()
	alt_lock_flash()
	gettimeofday()
	ioctl()
	isatty()

	HAL Standard Types
	alt_getchar()
	alt_putstr()
	alt_putchar()
	alt_printf()

	Document Revision History for HAL API Reference

	15. Nios II Software Build Tools Reference
	Nios II Software Build Tools Utilities
	Logging Levels
	Setting Values
	Utility and Script Summary
	nios2-app-generate-makefile
	nios2-bsp-create-settings
	nios2-bsp-generate-files
	nios2-bsp-query-settings
	nios2-bsp-update-settings
	nios2-lib-generate-makefile
	nios2-bsp-editor
	nios2-app-update-makefile
	nios2-lib-update-makefile
	nios2-swexample-create
	nios2-elf-insert
	nios2-elf-query
	nios2-flash-programmer-generate
	nios2-bsp
	nios2-bsp-console
	alt-file-convert

	Nios II Design Example Scripts
	create-this-bsp
	create-this-app
	Finding create-this-app and create-this-bsp

	Settings Managed by the Software Build Tools
	Overview of BSP Settings
	Overview of Component and Driver Settings
	Altera Host-Based File System Settings
	Altera Read-Only Zip File System Settings
	Altera NicheStack TCP/IP - Nios II Edition Stack Settings
	Altera Avalon-MM JTAG UART Driver Settings
	Altera Avalon-MM UART Driver Settings

	Settings Reference

	Application and User Library Makefile Variables
	Application Makefile Variables
	User Library Makefile Variables
	Standard Build Flag Variables

	Software Build Tools Tcl Commands
	Tcl Command Environments
	Tcl Commands for BSP Settings
	add_memory_device
	add_memory_region
	add_section_mapping
	are_same_resource
	delete_memory_region
	delete_section_mapping
	disable_sw_package
	enable_sw_package
	get_addr_span
	get_assignment
	get_available_drivers
	get_available_sw_packages
	get_base_addr
	get_break_offset
	get_break_slave_desc
	get_cpu_name
	get_current_memory_regions
	get_current_section_mappings
	get_default_memory_regions
	get_driver
	get_enabled_sw_packages
	get_exception_offset
	get_exception_slave_desc
	get_fast_tlb_miss_exception_offset
	get_fast_tlb_miss_exception_slave_desc
	get_interrupt_controller_id
	get_irq_interrupt_controller_id
	get_irq_number
	get_memory_region
	get_module_class_name
	get_module_name
	get_reset_offset
	get_reset_slave_desc
	get_section_mapping
	get_setting
	get_setting_desc
	get_slave_descs
	is_char_device
	is_connected_interrupt_controller_device
	is_connected_to_data_master
	is_connected_to_instruction_master
	is_ethernet_mac_device
	is_flash
	is_memory_device
	is_non_volatile_storage
	is_timer_device
	log_debug
	log_default
	log_error
	log_verbose
	set_driver
	set_ignore_file
	set_setting
	update_memory_region
	update_section_mapping
	add_default_memory_regions
	create_bsp
	generate_bsp
	get_available_bsp_type_versions
	get_available_bsp_types
	get_available_cpu_architectures
	get_available_cpu_names
	get_available_software
	get_available_software_setting_properties
	get_available_software_settings
	get_bsp_version
	get_cpu_architecture
	get_nios2_dpx_thread_num
	get_sopcinfo_file
	get_supported_bsp_types
	is_bsp_hal_extension
	is_bsp_lwhal_extension
	open_bsp
	save_bsp
	set_bsp_version
	set_logging_mode

	Tcl Commands for BSP Generation Callbacks
	add_class_sw_setting
	add_class_systemh_line
	add_module_sw_property
	add_module_sw_setting
	add_module_systemh_line
	add_systemh_line
	get_class_peripheral
	get_module_assignment
	get_module_name
	get_module_peripheral
	get_module_sw_setting_value
	get_peripheral_property
	remove_class_systemh_line
	remove_module_systemh_line
	set_class_sw_setting_property
	set_module_sw_setting_property

	Tcl Commands for Drivers and Packages
	add_sw_property
	add_sw_setting
	create_driver
	create_os
	create_sw_package
	set_sw_property

	Software Build Tools Path Names
	Command Arguments
	Object File Directory Tree

	Document Revision History for Nios II Software Build Tools Reference

