
© November 2009 Altera Corporation

© November 2009
AN595: Vectored Interrupt Controller
Usage and Applications
AN-595-1.0
The ability to process interrupt events quickly and to handle large numbers of
interrupts can be critical to many embedded systems. The Vectored Interrupt
Controller (VIC) is designed to address these requirements. The VIC can provide
interrupt performance four to five times better than the Nios® II processor’s default
internal interrupt controller (IIC). The VIC also allows expansion to a virtually
unlimited number of interrupts, through daisy chaining.

This document explains how to use the VIC in your hardware design, from both a
hardware perspective and a software perspective. This document includes the
following sections:

■ “Overview of VIC Hardware” on page 1

■ “Reasons to Use the VIC” on page 2

■ “Implementing the VIC in SOPC Builder” on page 2

■ “Example Designs” on page 9

■ “Advanced Topics” on page 12

■ “Conclusion” on page 20

Prerequisites
A complete understanding of this document requires that you be familiar with the
following topics:

■ Creating systems in SOPC Builder

■ The Nios II processor’s external interrupt controller (EIC) interface

■ The VIC core

■ Developing software with the Nios II Embedded Design Suite (EDS)

■ The Altera® HAL interrupt application programming interfaces (APIs)

■ Creating and building software projects with the Nios II Software Build Tools

f For information about SOPC Builder, refer to Volume 4: SOPC Builder in the Quartus II
Handbook. For information about the Nios II processor’s EIC interface, refer to the
Processor Architecture and Programming Model chapters of the Nios II Processor Reference
Handbook. For information about the VIC core, refer to the Vectored Interrupt Controller
Core chapter in Volume 5: Embedded Peripherals of the Quartus II Handbook. For
information about the Nios II EDS, including the interrupt APIs and the Software
Build Tools, refer to the Nios II Software Developer’s Handbook.

Overview of VIC Hardware
This section describes the hardware components required in a Nios II system using
the VIC.
AN595: Vectored Interrupt Controller Usage and Applications

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf
http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

Page 2 Reasons to Use the VIC
External Interrupt Controller Interface
The VIC is Altera’s implementation of an EIC. An EIC is an interrupt controller
implemented as a component separate from the Nios II processor core. An EIC
provides a higher-performance alternative to the Nios II processor’s IIC.

The EIC interface is a feature that you can add to your Nios II processor in SOPC
Builder. The EIC interface includes an Avalon Streaming (Avalon-ST) sink, allowing
an EIC to communicate interrupt information to the processor. The EIC interface’s
Avalon-ST sink also allows the connected EIC to relay interrupt information from
daisy-chained EICs.

Although this application note discusses only the VIC, the EIC interface on the Nios II
processor is designed to support custom EICs, as well.

f For general information about the EIC interface, refer to the Processor Architecture and
Programming Model chapters of the Nios II Processor Reference Handbook.

Shadow Register Sets
You can add shadow register sets to the Nios II processor. Used in conjunction with
the VIC, shadow register sets eliminate much of the time normally spent switching
between exception context and application context. HAL interrupt support for EICs
requires at least one shadow register set.

Vectored Interrupt Controller
The VIC offers high-performance, low-latency interrupt handling. The VIC prioritizes
interrupts in hardware and outputs information about the highest-priority pending
interrupt.

The VIC works with the Nios II processor’s EIC interface. The VIC is designed for
hardware compatibility with any EIC in a daisy chain configuration. However, the
Nios II Hardware Abstraction Layer (HAL) requires that all EICs in a daisy chain be
of the same class, so that they are all supported by the same driver.

Reasons to Use the VIC
You might want to use the VIC in your hardware design for one or more of the
following reasons:

■ You need to reduce average response time to one or more interrupts.

■ You have hard real-time requirements for interrupt performance.

■ You require nonmaskable interrupts.

■ You need to handle more than 32 interrupts (the maximum supported by the IIC).

Implementing the VIC in SOPC Builder
This section describes how to incorporate one or more VICs in your SOPC Builder
system, and how to support the VIC in software.
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

Implementing the VIC in SOPC Builder Page 3
Adding VIC Hardware
When you add a VIC to your SOPC Builder system, you must perform the following
high-level tasks:

1. Add the EIC interface to your Nios II processor core

2. Optionally add shadow register sets to your Nios II processor core (required if you
intend to use HAL interrupt support)

3. Add and parameterize one or more VIC components

4. Connect interrupt sources to the VIC component(s)

Adding the EIC Interface Shadow Register Sets
This section describes how to add the EIC interface and shadow register sets to a
Nios II processor core in SOPC Builder, through the MegaWizard™ interface.

1. In SOPC Builder, double-click the Nios II processor to open the MegaWizard
interface.

2. Enable the EIC interface on the Nios II processor by selecting it in the Interrupt
Controller list in the Advanced Features tab, as shown in Figure 1.

There are two options for Interrupt Controller: Internal and External. If you select
Internal, the processor is implemented with the internal interrupt controller. Select
External to implement the processor with an EIC interface.

1 When you implement the EIC interface, you must connect an EIC, such as
the VIC. Failure to connect an EIC results in an SOPC Builder error.

3. Select the desired number of shadow register sets. In the Number of shadow
register sets list, select the number of register sets that matches your system
performance goals.

4. Click Finish to exit from the Nios II MegaWizard interface. Notice that the
processor shows an unconnected interrupt_controller_in Avalon-ST sink,
as shown in Figure 2.

Figure 1. Configuring the Interrupt Controller and Shadow Register Sets
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

Page 4 Implementing the VIC in SOPC Builder
Shadow register sets reduce the context switching overhead associated with saving
and restoring registers, which can otherwise be significant. If possible, add one
shadow register set for each interrupt that requires high performance.

VIC Instantiation, Parameterization, and Connection
After you add the EIC interface and shadow register set(s) to the Nios II processor,
you instantiate and parameterize the VIC in your SOPC Builder system.

Instantiation

To instantiate a VIC in your SOPC Builder system, execute the following steps:

1. Browse to the Component Library column in the System Contents tab of SOPC
Builder.

2. Type vector in the search box below this column. The MegaWizard interface
hides all components except the VIC, as shown in Figure 3.

3. Double click the Vectored Interrupt Controller component to add this component
to your SOPC Builder System.

Parameterization

When you add the VIC to your system, the Vectored Interrupt Controller
MegaWizard interface appears as shown in Figure 4.

Figure 2. Nios II Processor with EIC Interface

Figure 3. Vectored Interrupt Controller Component
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

Implementing the VIC in SOPC Builder Page 5
The VIC MegaWizard interface allows you to specify the following options:

■ Number of Interrupts—The number of interrupts your VIC must support.

■ Requested Interrupt Level (RIL) Width—The number of bits allocated to
represent the interrupt level for each interrupt.

f For a full description of the RIL, including the rules for default RIL
assignment, refer to the Vectored Interrupt Controller Core chapter in
Volume 5: Embedded Peripherals of the Quartus II Handbook.

■ DAISY_CHAIN_ENABLE—Allows the VIC to daisy chain to another EIC. Turn
on this option if you want to support multiple VICs in your system.

1 Study the VIC Daisy-Chain example that accompanies this document for a
usage example.

When you have finished parameterizing the VIC, click Finish to instantiate the
component in your SOPC Builder system.

VIC Connections
When you have added the VIC to your system, it appears in SOPC Builder as shown
in Figure 5.

Figure 4. Vectored Interrupt Controller Parameterization
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf

Page 6 Implementing the VIC in SOPC Builder
1 If you have enabled daisy chaining, SOPC Builder adds an Avalon-ST sink, called
interrupt_controller_in, to the VIC.

After adding a VIC to the SOPC Builder system, you must parameterize the VIC and
the EIC interface at the system level. Immediately after you add the VIC, several error
messages appear. Resolve these error messages by executing the following actions in
any order:

■ Connect the VIC’s interrupt_controller_out Avalon-ST source to the
interrupt_controller_in Avalon-ST sink on either the Nios II processor or
the next VIC in a daisy-chained configuration.

■ Connect the VIC’s dummy_master Avalon Memory-Mapped (Avalon-MM) port
to the csr_access Avalon-MM slave port.

■ Assign an interrupt number for each interrupt-based component in the system, as
shown in Figure 6. This step connects each component to an interrupt port on the
VIC.

1 If your system contains more than one EIC connected to a single processor,
you must ensure that each component is connected to an interrupt port on
only one EIC.

When you use the HAL VIC driver, the driver makes a default assignment from
register sets to interrupts. The default assignment makes some assumptions about
interrupt priorities, based on how devices are connected to the VIC.

f For details of the default assignment, including default RIL and RRL settings, refer to
“Altera HAL Software Programming Model” in the Vectored Interrupt Controller Core
chapter in Volume 5: Embedded Peripherals of the Quartus II Handbook.

1 To make effective use of the VIC interrupt setting defaults, assign your highest
priority interrupts to low interrupt port numbers on the VIC closest to the processor.

Figure 5. VIC Interfaces

Figure 6. Assigning Interrupt Numbers
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf

Implementing the VIC in SOPC Builder Page 7
Software
If you write an interrupt handler for a system based on the VIC component, you must
use the HAL enhanced interrupt API to register the handler and control its runtime
environment. The enhanced interrupt API provides a number of functions for use
with EICs, including the VIC. This section describes a subset of the functions in the
enhanced interrupt API.

f For information about the enhanced interrupt API, refer to “Interrupt Service
Routines” in the Exception Handling chapter of the Nios II Software Developer’s
Handbook.

In particular, this section shows how to code a driver so that it supports both the
enhanced API and the legacy API. This must include testing for the presence of the
enhanced API, and conditionally calling the appropriate function.

alt_ic_isr_register() versus alt_irq_register()
The enhanced API function alt_ic_isr_register() is very similar to the legacy
function alt_irq_register(), with a few important differences. The differences
between these two functions are best understood by examining the code in
Example 1. This example registers a timer interrupt in either the legacy API or the
enhanced API, whichever is implemented in the board support package (BSP).
Example 1 is taken directly from the example code accompanying this document.

The first line of Example 1 detects whether the BSP implements the enhanced
interrupt API. If the enhanced API is implemented, the
timer_interrupt_latency_init() function calls the enhanced function. If not,
timer_interrupt_latency_init() reverts to the legacy interrupt API function.

f For an explanation of how the Nios II Software Build Tools select which API to
implement in a BSP, refer to “Interrupt Service Routines” in the Exception Handling
chapter of the Nios II Software Developer’s Handbook.

Example 1. Registering an ISR with Both APIs

#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT
void timer_interrupt_latency_init (void* base, alt_u32 irq_controller_id, alt_u32 irq)
{
 /* Register the interrupt */
 alt_ic_isr_register(irq_controller_id, irq, timer_interrupt_latency_irq, base, NULL);
 /* Start timer */
 IOWR_ALTERA_AVALON_TIMER_CONTROL(base, ALTERA_AVALON_TIMER_CONTROL_ITO_MSK
 | ALTERA_AVALON_TIMER_CONTROL_START_MSK);
}
#else
void timer_interrupt_latency_init (void* base, alt_u32 irq)
{
 /* Register the interrupt */
 alt_irq_register(irq, base, timer_interrupt_latency_irq);
 /* Start timer */
 IOWR_ALTERA_AVALON_TIMER_CONTROL(base, ALTERA_AVALON_TIMER_CONTROL_ITO_MSK
 | ALTERA_AVALON_TIMER_CONTROL_START_MSK);
}
#endif
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Page 8 Implementing the VIC in SOPC Builder
Example 2 shows the function prototype for alt_ic_isr_register(), which
registers an ISR in the enhanced API. The interrupt controller identifier (for argument
ic_id) and the interrupt port number (for argument irq) are defined in system.h.

For comparison, Example 3 shows the function prototype for
alt_irq_register(), which registers an ISR in the legacy API.

The arguments passed into alt_ic_isr_register() are slightly different from
those passed into alt_irq_register(). Table 1 compares the arguments to the
two functions.

1 There are other significant differences between the legacy interrupt API and the
enhanced interrupt API. Some of these differences impact the ISR body itself. Notably,
the two APIs employ completely different interrupt preemption models. The example
code accompanying this application note illustrates many of the differences.

f For further information about the other functions in the HAL interrupt APIs, refer to
the Exception Handling and HAL API Reference chapters of the Nios II Software
Developer’s Handbook, and to the Vectored Interrupt Controller Core chapter in Volume 5:
Embedded Peripherals of the Quartus II Handbook.

Example 2. Enhanced Function alt_ic_isr_register()

extern int alt_ic_isr_register(alt_u32 ic_id,
 alt_u32 irq,
 alt_isr_func isr,
 void *isr_context,
 void *flags);

Example 3. Legacy Function alt_irq_register()

extern int alt_irq_register (alt_u32 id,
 void* context,
 alt_isr_func handler);

Table 1. Arguments to alt_ic_isr_register() versus alt_irq_register()

alt_ic_isr_register()
Argument Purpose

alt_irq_register()
Argument

alt_u32 ic_id Unique interrupt controller ID as defined in
system.h.

—

alt_u32 irq Interrupt request (IRQ) number as defined in
system.h.

alt_u32 id

alt_isr_func isr Interrupt service routine (ISR) function pointer handler

void* isr_context Optional pointer to a component-specific data
structure.

context

void* flags Reserved. Other EIC implementations might
use this argument.

None
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Example Designs Page 9
Example Designs
This section provides a brief description of the example designs provided with this
application note to demonstrate the usage of the VIC. Additionally, this section
provides instructions for running the software examples on the Nios II Embedded
Evaluation Kit (NEEK) hardware.

Example Description
The example designs are provided in a file called AN595_VIC_collateral.zip.

f AN595_VIC_collateral.zip is available on the Literature: Nios II Processor page of the
Altera website. A link to the file appears next to AN595: Vectored Interrupt Controller
Usage and Applications (this document).

Table 2 describes each example design found in the file.

The top-level folder in AN595_VIC_collateral.zip, called AN595_VIC_collateral,
contains the following files:

■ run_sw.sh—Shell script to run one, several or all of the examples

■ README.txt—Describes the .zip file contents

The hardware for each example is based on the designs shown in Figure 7 and
Figure 8. Figure 7 shows the VIC Basic example system in SOPC Builder.

Table 2. Example Designs in AN595_VIC_collateral.zip

Example Name Folder Name Description

VIC Basic VIC_Example A single VIC

VIC Daisy-Chain VIC_DaisyChain_Example Two daisy-chained VICs

VIC Table-Resident VIC_ISRnVectorTable_Example VIC with ISR located in vector table

IIC VIC_noVIC_Example IIC example, for comparison with the VIC
examples

Figure 7. VIC Basic Example
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

www.altera.com/literature/litnio2.jsp
http://www.altera.com/literature/an/AN595.pdf
http://www.altera.com/literature/an/AN595.pdf

Page 10 Example Designs
Figure 8 shows the VIC Daisy-Chain example system in SOPC Builder.

The IIC design is the same as the VIC Basic design, with the VIC and the EIC interface
replaced by the IIC. The VIC Table-Resident design is identical to the VIC Basic
design.

In each example, the software uses timers in conjunction with performance counters
to measure the interrupt performance. Each example’s software calculates the
performance and sends the results to stdout.

AN595_VIC_collateral.zip includes a script, run_sw.sh, to run one, several, or all of
the example. run_sw.sh downloads the SRAM Object File (.sof) and the Executable
and Linkable Format File (.elf) for each example, and executes the code on the NEEK
hardware, for the examples that you specify on the command line.

1 run_sw.sh assumes that you have only one JTAG download cable connected to your
host computer. If you have multiple JTAG cables, you must modify run_sw.sh to
specify the cable connected to your NEEK hardware.

Example Usage
Initially, Altera recommends that you run each example design as distributed, to see
the example’s performance on your own hardware. Thereafter, you can modify any of
the examples to investigate the VIC’s performance options, or customize the code for
you application.

Execute the following steps to run each example design:

1. Power up your NEEK hardware.

2. Connect the USB cable.

Figure 8. VIC Daisy-Chain Example
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

Example Designs Page 11
3. Unzip the AN595_VIC_collateral.zip file to a working directory, expanding folder
names.

1 The path name to your working directory must not contain any spaces.

4. In a Nios II Command Shell, change to the top-level directory,
AN595_VIC_collateral.

5. At the command prompt, type the following command:

./run_sw.shr

The script shows a list of options.

6. Run run_sw.sh again, using a command-line option that specifies the example you
would like to run, or to run all of the examples. Example 4 shows a sample session.

The run_sw.sh script performs the following steps:

a. Parses the command line argument(s) to determine which example(s) to run

b. Downloads the .sof for the selected example

c. Downloads the .elf for the selected example

d. Starts nios2-terminal to capture the software’s output

Software Description
The software for the various example designs is very similar. For example, the
difference between the software for the VIC Basic example and the software for the
IIC example is the printf() call that generates the output to the terminal.

All of the software performs the following steps:

1. Configures the timer used for measurement purposes

2. Registers an interrupt service routine (ISR)

3. Sets a global variable to 0xfeedface

4. Starts the performance counter to measure the interrupt time

5. Waits for the ISR to set the global variable to 0xfacefeed

6. Stops the performance counter and computes the interrupt time

The VIC Daisy-Chain example performs the measurement for both VICs connected in
the daisy chain, shown in Figure 8 on page 10.

For details about how the VIC Table-Resident example code works, refer to
“Positioning the ISR in the Vector Table”. For details about performance counter
usage in the example software, refer to “Latency Measurement with the Performance
Counter” on page 18.
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

Page 12 Advanced Topics
Advanced Topics
This section presents several topics that are useful for advanced interrupt handling.

Positioning the ISR in the Vector Table
If have a critical ISR of small size, you can achieve the best performance by
positioning the ISR code directly in the vector table. In this way, you eliminate the
overhead of branching from the vector table through the HAL funnel to your ISR.

Example 4.

[NiosII EDS]$./run_sw.sh --VIC_Example

Running software...

Running for VIC_Example
/cygdrive/c/Data/workdir/AN595_VIC_collateral/VIC_Example/software_examples/app/
vic_test /cygdrive/c/Data/workdir/AN595_VIC_collateral
Searching for SOF file:
in ../../../

VIC_Example.sof

Info: ***
Info: Running Quartus II Programmer
Info: Command: quartus_pgm --no_banner --mode=jtag -o p;c:/Data/workdir/
AN595_VIC_collateral/VIC_Example/
VIC_Example.sof
Info: Using programming cable "USB-Blaster [USB-0]"
Info: Started Programmer operation at Mon Nov 2 13:00:33 2009
Info: Configuring device index 1
Info: Device 1 contains JTAG ID code 0x020F30DD
Info: Configuration succeeded -- 1 device(s) configured
Info: Successfully performed operation(s)
Info: Ended Programmer operation at Mon Nov 2 13:00:35 2009
Info: Quartus II Programmer was successful. 0 errors, 0 warnings

Info: Peak virtual memory: 61 megabytes
Info: Processing ended: Mon Nov 2 13:00:35 2009
Info: Elapsed time: 00:00:02
Info: Total CPU time (on all processors): 00:00:00

Using cable "USB-Blaster [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Initializing CPU cache (if present)
OK
Downloaded 4KB in 0.0s
Verified OK
Starting processor at address 0x00004020
nios2-terminal: connected to hardware target using JTAG UART on cable
nios2-terminal: "USB-Blaster [USB-0]", device 1, instance 0
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Starting VIC Example roundtrip performance test.

Interrupt Time: 48 clocks.

Sending EOT to force an exit.

nios2-terminal: exiting due to ^D on remote

Done...
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

Advanced Topics Page 13
This section describes how to modify the VIC Basic example software to create the
VIC Table-Resident example. Use this example to ensure that you understand the
steps. Then you can make the equivalent changes in your custom code.

1 Positioning an ISR in a vector table is an advanced and error-prone technique, not
directly supported by the HAL. You must exercise great caution to ensure that the ISR
code fits in the vector table entry. If your ISR overflows the vector table entry, it
corrupts other entries in the vector table, and your entire interrupt handling system.

When locate your ISR in the vector table, it does not need to be registered. Do not call
alt_ic_isr_register(), because it overwrites the contents of the vector table.

When the ISR is in the vector table, the HAL does not provide funnel code. Therefore,
the ISR code must perform any context-switching actions normally handled by the
funnel. Funnel context switching can include some or all of the following actions:

■ Saving and restoring registers

■ Managing preemption

■ Managing the stack pointer

To create the fastest possible ISR, minimize or eliminate the context-switching actions
your ISR must perform by conforming to the following guidelines:

■ Write the ISR in assembly language.

■ Assign a shadow register set for the ISR’s use.

■ Ensure that the ISR cannot be preempted by another ISR using the same register
set. By default, preemption within a register set is disabled on the Nios II
processor. You can also ensure this condition by giving the ISR exclusive access to
its register set.

1 The VIC Table-Resident example requires modifying a BSP-generated file,
altera_vic1_vector_tbl.S. If you regenerate the BSP after making these modifications,
the Nios II Software Build Tools regenerate altera_vic1_vector_tbl.S, and your
changes are overwritten.

Increase the Vector Table Entry Size
To insert the ISR in the vector table, you must increase the size of the vector entries so
that your entire ISR fits in a vector table entry. Use the
altera_vic_driver.<vic_instance>.vec_size BSP setting to adjust the
vector table entry size. On the Nios II Software Build Tools command line, you can
manipulate this setting with the --set command-line option. You can also modify
this setting in the Nios II BSP Editor.

In the VIC Table-Resident example, <vic_instance> is VIC1 and <size> is set to 256
bytes.

Do Not Register the ISR
Remove the call to alt_ic_isr_register() for the interrupt that you place in the
vector table. Replace it with an alt_ic_irq_enable() call. You must not call
alt_ic_isr_register(), because it overwrites the contents of the vector table,
destroying the body of your ISR.
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

Page 14 Advanced Topics
Insert ISR in Vector Table
In the VIC Table-Resident example included with this document, the ISR code is in a
file called vector.h in the BSP folder.

To insert this code in the vector table, execute the following steps:

1. Generate the BSP by running the create-this-bsp script.

2. Modify altera_vic1_vector_tbl.S as shown in Example 4.

After completion of these steps, build the software, run it, and observe the reported
interrupt time. This example is about 20 clock cycles faster than the unmodified VIC
Basic example.

1 Some variation is likely for reasons discussed in “Real-Time Latency Concerns”.

f Refer to the example code for further details.

Real-Time Latency Concerns
This section presents an overview of interrupt latency, the elements that combine to
determine interrupt latency, and methods for measuring it. The following elements
comprise interrupt latency:

■ Pipeline Latency—“Pipeline Latency”

■ Cause Latency—Described in “Cause Latency”

■ Selection Latency—Described in “Selection Latency”

■ Funnel Latency—Described in “Funnel Latency”

■ Compiler-related latency—Described in “Compiler-Related Latency” on page 18

The interrupt latency diagram in Figure 9 illustrates these elements.

Example 5. Modifications to altera_vic1_vector_tbl.S

#include "altera_vic_funnel.h"
#include "vector.h" /* ADD THIS LINE MANUALLY */

.section .text

.align 2

.globl VIC1_VECTOR_TABLE
VIC1_VECTOR_TABLE:

MY_ISR 256 /* THIS LINE REPLACES THE FIRST VECTOR TABLE ENTRY */
ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

Advanced Topics Page 15
This section summarizes each element of latency and describes how to measure
latency. The accompanying example designs use the performance counter core to
capture all of the timing measurements. Performance counter core usage is described
in “Latency Measurement with the Performance Counter” on page 18.

f For information about the performance counter core, refer to the Performance Counter
Core chapter in Volume 5: Embedded Peripherals of the Quartus II Handbook.

Pipeline Latency
Pipeline latency is defined as the number of clock cycles between an interrupt signal
being asserted and the execution of the first instruction at the exception vector. It can
vary widely, depending on the type of memory the processor is executing from and
the impact of other master ports in your hardware. Theoretically, this time could be
infinite if an ill-behaved master port blocks the processor from accessing memory,
freezing the processor.

Cause Latency
Cause latency is the time required for the processor to identify an exception as a
hardware interrupt. With an EIC, such as the VIC, the cause latency is zero because
each hardware interrupt has a dedicated interrupt vector address, separate from the
software exception vector address.

Figure 9. The Elements of Interrupt Latency

Interrupt Request

Pipeline Latency

Interrupt Recovery
(Back-end Funnel)

Interrupt Latency

Cause,
Selection

&
Funnel
Latency

Background Background

ISR Code

Time
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf

Page 16 Advanced Topics
Selection Latency
Selection latency is the time required for the system to transfer control to the correct
interrupt vector, depending on which interrupt is triggered. The selection latency
with the VIC component depends on the number of interrupts that it services. Table 3
outlines selection latency on a single VIC as a function of the number of interrupts.

Funnel Latency
Funnel latency is the time required for the interrupt funnel to switch context. Funnel
latency can include saving and restoring registers, managing preemption, and
managing the stack pointer. Funnel latency depends on the following factors:

■ Whether a separate interrupt stack is used

■ The number of clock cycles required for load and store instructions

■ Whether the interrupt requires switching to a different register set

■ Whether the interrupt is preempting another interrupt within the same register set

■ Whether preemption within the register set is allowed

Preemption within the register set requires special attention. The HAL VIC driver
provides special funnel code if an interrupt is allowed to preempt another interrupt
assigned to the same register set. In this case, the funnel incurs additional overhead to
save and restore the register contents. When creating the BSP, you can control
preemption within the register set by using the VIC driver’s
altera_vic_driver_enable_preemption_rs_<n> setting.

1 For information about the altera_vic_driver_enable_preemption_rs_<n>
setting, refer to “Altera HAL Software Programming Model” in the Vectored Interrupt
Controller Core chapter in Volume 5: Embedded Peripherals of the Quartus II Handbook.

Table 4 and Table 5 show the funnel latencies for various configurations.

Table 3. The Components of VIC Latency

Total Number of
Interrupts

Interrupt
Request Clock
Delay (clocks)

Priority
Processing Clock

Delay (clocks)

Vector
Generation Clock

Delay (clocks)
Total Interrupt

Latency (clocks)

1 2 0 1 3

2—4 2 1 1 4

5—16 2 2 1 5

17—32 2 3 1 6
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf
http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf

Advanced Topics Page 17
Table 4. Single Stack HAL latency

Funnel Type

Clock Cycles Required for Load or Store (1)

1 2

Shadow register set,
preemption within
the register set
disabled

10 13

Shadow register set,
preemption within
the register set
enabled

42

Same register set
(sstatus.SRS=0)

64

Same register set
(sstatus.SRS=0)

26

Different register set
(sstatus.SRS=1)

32

Different register set
(sstatus.SRS=1)

Note to Table 4:

(1) With tightly-coupled memory, the Nios II processor can execute a load or store instruction in 1 clock cycle. With
onchip memory, not tightly-coupled, the processor requires two clock cycles.

Table 5. Separate Interrupt Stack HAL Latency

Funnel Type

Clock Cycles Required for Load or Store (1)

1 2

Shadow register set,
preemption within
the register set
disabled

11

Not preempting another interrupt
(sstatus.IH=0)

14

Not preempting another interrupt
(sstatus.IH=0)

12

Preempting another interrupt
(sstatus.IH=1)

15

Preempting another interrupt
(sstatus.IH=1)

Shadow register set,
preemption within
the register set
enabled

42

Same register set
(sstatus.SRS=0)

64

Same register set
(sstatus.SRS=0)

27

■ Different register set
(sstatus.SRS=1)

■ Not preempting another interrupt
(sstatus.IH=0)

33

■ Different register set
(sstatus.SRS=1)

■ Not preempting another interrupt
(sstatus.IH=0)

28

■ Different register set
(sstatus.SRS=1)

■ Preempting another interrupt
(sstatus.IH=1)

34

■ Different register set
(sstatus.SRS=1)

■ Preempting another interrupt
(sstatus.IH=1)

Note to Table 5:

(1) With tightly-coupled memory, the Nios II processor can execute a load or store instruction in 1 clock cycle. With
onchip memory, not tightly-coupled, the processor requires two clock cycles.
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

Page 18 Advanced Topics
In Table 4 and Table 5, notice that the lowest latencies occur under the following
conditions:

■ A different register set—Shadow register set switch; the ISR runs in a different
register set from the interrupted task, eliminating any need to save or restore
registers.

■ Preemption (nesting) within the register set disabled.

Conversely, the highest latencies occur under the following conditions:

■ The same register set—No shadow register set switch; the ISR runs in the same
register set as the interrupted task, requiring the funnel code to save and restore
registers.

■ Preemption within the register set enabled.

Of these two important factors, preemption makes the largest difference in latencies.
With preemption disabled, much lower latencies occur regardless of other factors.

Compiler-Related Latency
The GNU C compiler creates a prologue and epilogue for many C functions, including
ISRs. The prologue and epilogue are code sequences that take care of housekeeping
tasks, such as saving and restoring context for the C runtime environment. The time
required for the prologue and epilogue is called compiler-related latency.

The C compiler generates a prologue and epilogue as needed. If compiler
optimization is enabled, and the routine is compact, with few local variables, the
prologue and epilogue are usually omitted. You can determine whether a prologue
and epilogue are generated by examining the function’s assembly code.

Compiler latency normally has only a minor impact on overall interrupt servicing
performance. If you are concerned about compiler latency, you have two options:

■ Enable compiler optimizations, and simplify your ISR, minimizing local variables.

■ Write your ISR in assembly language.

Latency Measurement with the Performance Counter
The Altera Complete Design Suite provides tools that enable you to make fast,
accurate performance measurements. All examples included with this document use
the Performance Counter component to measure interrupt latency.

The examples execute the following steps to measure the total time spent to service an
interrupt:

1. Initialize a global variable, interrupt_watch_value, to a known value,
0xfeedface.

2. Set up a timer interrupt, registering an ISR that sets interrupt_watch_value
to 0xfacefeed.

3. Start the timer.

4. Wait in a while() loop until interrupt_watch_value becomes 0xfacefeed.

5. Immediately after exiting the while() loop, stop the performance counter,
compute clock cycles and display the calculated value on stdout.
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

Advanced Topics Page 19
You can use similar methods to determine the real-time interrupt latencies in your
system.

Using Software Interrupts
Software can trigger any VIC interrupt by writing to the appropriate VIC control and
status register (CSR). Software can trigger the interrupt connected to any hardware
interrupt source, as well as interrupts that are not connected to hardware
(software-only interrupts).

Triggering an interrupt from software is useful for debugging. Software can control
exactly when an interrupt is triggered, and measure the system’s interrupt response.

You can use a software-only interrupt to reprioritize an interrupt. An ISR that
responds to a high-priority hardware interrupt can perform the minimum processing
required by the hardware, and then trigger a software-only interrupt at a lower
priority level to complete the interrupt processing.

The following functions are available for managing software interrupts:

■ alt_vic_sw_interrupt_set()

■ alt_vic_sw_interrupt_clear()

■ alt_vic_sw_interrupt_status()

The implementations of these functions are in bsp/hal/drivers/src/
altera_vic_sw_intr.c after you generate the BSP. For detailed descriptions of the
functions, refer to the Vectored Interrupt Controller Core chapter in Volume 5: Embedded
Peripherals of the Quartus II Handbook.

Example 6 shows how to register a software interrupt.

1 You must define a value for the interrupt number in SOFT_IRQ.

For comparison purposes, Example 7 shows timer interrupt registration.

The following code generates a software interrupt:

alt_vic_sw_interrupt_set(VIC1_INTERRUPT_CONTROLLER_ID, SOFT_IRQ);

Example 6. Registering a Software Interrupt

alt_ic_isr_register(
VIC1_INTERRUPT_CONTROLLER_ID,
SOFT_IRQ,
soft_interrupt_latency_irq,
NULL, NULL)

Example 7. Registering a Timer Interrupt (for Comparison)

alt_ic_isr_register(
LATENCY_TIMER_IRQ_INTERRUPT_CONTROLLER_ID,
LATENCY_TIMER_IRQ,
timer_interrupt_latency_irq,
LATENCY_TIMER_BASE,
NULL);
© November 2009 Altera Corporation AN595: Vectored Interrupt Controller Usage and Applications

http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf

Page 20 Conclusion
Conclusion
This document describes the benefits and usage of the VIC and the Nios II EIC
interface. The hardware and software descriptions and usage examples provide you
with enough information to get started using the VIC in your system. The advanced
topic coverage provides methods to increase the performance gains that you can
achieve with the VIC.

Referenced Documents
This application note references the following documents:

■ Processor Architecture chapter of the Nios II Processor Reference Handbook

■ Programming Model chapter of the Nios II Processor Reference Handbook

■ Performance Counter Core chapter in Volume 5: Embedded Peripherals of the Quartus II
Handbook

■ Volume 4: SOPC Builder in the Quartus II Handbook

■ Vectored Interrupt Controller Core chapter in Volume 5: Embedded Peripherals of the
Quartus II Handbook

■ Exception Handling chapter of the Nios II Software Developer’s Handbook

■ HAL API Reference chapter of the Nios II Software Developer’s Handbook

■ Nios Community Wiki (www.nioswiki.com)

Document Revision History
Table 6 shows the revision history for this document.

Table 6. Document Revision History

Date and Document
Version Changes Made Summary of Changes

November 2009
v1.0

Initial Release. —
AN595: Vectored Interrupt Controller Usage and Applications © November 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.nioswiki.com/
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/qii5_vectored_interrupt_controller.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

	AN595: Vectored Interrupt Controller Usage and Applications
	Prerequisites
	Overview of VIC Hardware
	External Interrupt Controller Interface
	Shadow Register Sets
	Vectored Interrupt Controller

	Reasons to Use the VIC
	Implementing the VIC in SOPC Builder
	Adding VIC Hardware
	Adding the EIC Interface Shadow Register Sets
	VIC Instantiation, Parameterization, and Connection
	Instantiation
	Parameterization

	VIC Connections

	Software
	alt_ic_isr_register() versus alt_irq_register()

	Example Designs
	Example Description
	Example Usage
	Software Description

	Advanced Topics
	Positioning the ISR in the Vector Table
	Increase the Vector Table Entry Size
	Do Not Register the ISR
	Insert ISR in Vector Table

	Real-Time Latency Concerns
	Pipeline Latency
	Cause Latency
	Selection Latency
	Funnel Latency
	Compiler-Related Latency
	Latency Measurement with the Performance Counter

	Using Software Interrupts

	Conclusion
	Referenced Documents
	Document Revision History

