
Accelerator Functional Unit (AFU)
Developer’s Guide for Intel® FPGA
Programmable Acceleration Card
(Intel® FPGA PAC)

Updated for Intel® Acceleration Stack for Intel® Xeon® CPU with FPGAs: 1.2 and 2.0

Subscribe
Send Feedback

UG-20169 | 2019.08.05
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=bfr1522087299048
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-afu-dev.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html

Contents

1. About this Document.. 3
1.1. Intended Audience...3
1.2. Conventions..3
1.3. Acronym List for Accelerator Functional Unit Developer’s Guide....................................3
1.4. Acceleration Glossary... 5
1.5. Related Documentation.. 5

2. Introduction... 6
2.1. Getting Started with AFU Development...6

2.1.1. Development Environment References..6
2.1.2. FPGA Tools and IP Requirements..6

2.2. Base Knowledge and Skills Prerequisites... 7

3. Getting Started with Platform Configuration...8

4. The Accelerator Functional Unit (AFU).. 9
4.1. AFU Design Components...10
4.2. Basic Building Blocks..11

5. Developing AFUs with the OPAE SDK.. 12
5.1. Overview of the OPAE SDK..12
5.2. Overview of the OPAE Platform for AFUs... 13

5.2.1. Platform Device Classes..14
5.2.2. The Platform Interface Manager (PIM).. 16

5.3. OPAE SDK Design Flow for AFU Development...17
5.3.1. Overview of the Design Flow..17
5.3.2. Design Flow Details.. 21

6. AFU In-System Debug...34
6.1. Remote Signal Tap Setup and Use.. 34

6.1.1. Instrumenting the AFU Design for Signal Tap... 34
6.1.2. Enable Remote Debug and Signal Tap... 35
6.1.3. Generate the Remote Debug Enabled AF... 35
6.1.4. Prepare the Remote Debug Host.. 35
6.1.5. Running a Remote Debug Session.. 36
6.1.6. Remote Debug Guidelines... 38
6.1.7. Troubleshooting Remote Debug Connections..39

7. Hardware Platform OPAE Specifications..41
7.1. Intel FPGA PAC Platform... 41

7.1.1. The FPGA Interface Manager (FIM)...42
7.1.2. The PR Region... 44
7.1.3. Upgrading OPAE SDK Version...45

8. Accelerator Functional Unit (AFU) Developer’s Guide for Intel FPGA
Programmable Acceleration Card (Intel FPGA PAC) Archives.................................. 46

9. Document Revision History for AFU Developer's Guide for Intel FPGA
Programmable Acceleration Card (Intel FPGA PAC)...47

Contents

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. About this Document
This document serves as a hardware developers guide for developing Accelerator
Functional Units (AFUs) for the Intel Acceleration Stack for Intel Xeon® CPU with
FPGAs product, hereafter referred to as the Acceleration Stack.

1.1. Intended Audience

The intended audience consists of FPGA RTL designers developing AFUs for the
Acceleration Stack on the Intel FPGA Programmable Acceleration Card (Intel FPGA
PAC) and the hardware platforms (referred to as Intel FPGA PAC throughout this
document).

1.2. Conventions

Table 1. Document Conventions

Convention Description

Precedes a command that indicates the command is to be
entered as root.

$ Indicates a command is to be entered as a user.

This font Filenames, commands, and keywords are printed in this
font. Long command lines are printed in this font. Although
long command lines may wrap to the next line, the return is
not part of the command; do not press enter.

<variable_name> Indicates the placeholder text that appears between the
angle brackets must be replaced with an appropriate value.
Do not enter the angle brackets.

1.3. Acronym List for Accelerator Functional Unit Developer’s Guide

Table 2. Acronyms

Acronyms Expansion Description

AFU Accelerator Functional Unit Hardware Accelerator implemented in
FPGA logic which offloads a
computational operation for an
application from the CPU to improve
performance.

AF Accelerator Function Compiled Hardware Accelerator image
implemented in FPGA logic that
accelerates an application. An AFU and
associated AFs may also be referred to
as GBS (Green-Bits, Green BitStream)

continued...

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Acronyms Expansion Description

in the Acceleration Stack installation
directory tree and in source code
comments.

API Application Programming Interface A set of subroutine definitions,
protocols, and tools for building
software applications.

ASE AFU Simulation Environment Co-simulation environment that allows
you to use the same host application
and AF in a simulation environment.
ASE is part of the Intel Acceleration
Stack for FPGAs.

CCI-P Core Cache Interface CCI-P is the standard interface AFUs
use to communicate with the host.

FIU FPGA Interface Unit FIU is a platform interface layer that
acts as a bridge between platform
interfaces like PCIe*, UPI and AFU-side
interfaces such as CCI-P.

FIM FPGA Interface Manager The FPGA hardware containing the
FPGA Interface Unit (FIU) and external
interfaces for memory, networking,
etc.
The FIM may also be referred to as
BBS (Blue-Bits, Blue BitStream) in the
Acceleration Stack installation directory
tree and in source code comments.
The Accelerator Function (AF)
interfaces with the FIM at run time.

NLB Native Loopback The NLB performs reads and writes to
the CCI-P link to test connectivity and
throughput.

OPAE Open Programmable Acceleration
Engine

The OPAE is a software framework for
managing and accessing AFs.

PR Partial Reconfiguration The ability to dynamically reconfigure a
portion of an FPGA while the remaining
FPGA design continues to function.

TCP Transmission Control Protocol TCP is a standard internet protocol that
defines how to establish and maintain
a network conversation through which
application programs can exchange
data.

PIM Platform Interface Manager An abstraction layer for managing top-
level device ports and system-provided
clock crossing.

HSSI High Speed Serial Interface Reference to the multi-gigabit serial
transceiver I/O in the FIM and the
corresponding interface to the AFU.

1. About this Document

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Acceleration Glossary

Table 3. Acceleration Stack for Intel Xeon CPU with FPGAs Glossary

Term Abbreviation Description

Intel Acceleration Stack for Intel Xeon
CPU with FPGAs

Acceleration Stack A collection of software, firmware and
tools that provides performance-
optimized connectivity between an
Intel FPGA and an Intel Xeon
processor.

Intel FPGA Programmable Acceleration
Card (Intel FPGA PAC)

Intel FPGA PAC PCIe FPGA accelerator card.
Contains an FPGA Interface Manager
(FIM) that pairs with an Intel Xeon
processor over the PCIe bus.

1.5. Related Documentation

Table 4. Item Description

Item Description

Intel Acceleration Stack Quick Start Guide for
Intel Programmable Acceleration Card with Intel
Arria 10 GX FPGA

This document describes the Acceleration Stack and provides
instructions for hardware and software installation and setup required
for development with the stack.

Intel Acceleration Stack Quick Start Guide for
Intel FPGA Programmable Acceleration Card
D5005

This document describes the Acceleration Stack and provides
instructions for hardware and software installation and setup required
for development with the stack.

Acceleration Stack for Intel Xeon CPU with
FPGAs Core Cache Interface (CCI-P) Reference
Manual

This document describes the CCI-P protocol and requirements placed
on AFUs.

Networking Interface for Open Programmable
Acceleration Engine: Intel Programmable
Acceleration Card with Intel Arria 10 GX FPGA

This document describes the HSSI device interface offered by the Intel
PAC with Intel Arria 10 GX FPGA hardware platform and the OPAE tools
and driver features that support the network port feature.

Networking Interface for Open Programmable
Acceleration Engine: Intel FPGA Programmable
Acceleration Card D5005(1)

This document describes the HSSI device interface offered by the Intel
FPGA PAC D5005 platform and the OPAE tools and driver features that
support the network port feature.

Intel Accelerator Functional Unit (AFU)
Simulation Environment (ASE) User Guide

This document provides instructions on how to use the Intel Accelerator
Functional Unit (AFU) Simulation Environment (ASE).

Open Programmable Acceleration Engine (OPAE)
Tools Guide

This user guide documents the utilities provided in the Open
Programmable Acceleration Engine (OPAE) software component of the
Acceleration Stack.

(1) Contact your Intel support representative to access this document.

1. About this Document

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

5

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#sun1522441132364
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#sun1522441132364
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#sun1522441132364
https://www.intel.com/content/www/us/en/programmable/documentation/edj1542148561811.html#cxu1542149035471
https://www.intel.com/content/www/us/en/programmable/documentation/edj1542148561811.html#cxu1542149035471
https://www.intel.com/content/www/us/en/programmable/documentation/edj1542148561811.html#cxu1542149035471
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#nkh1506187979705
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#nkh1506187979705
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#nkh1506187979705
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html#heq1528674841964
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html#heq1528674841964
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html#heq1528674841964
https://opae.github.io/1.1.4/docs/ase_userguide/ase_userguide.html
https://opae.github.io/1.1.4/docs/ase_userguide/ase_userguide.html
https://opae.github.io/1.1.4/docs/fpga_tools/fpgainfo/fpgainfo.html
https://opae.github.io/1.1.4/docs/fpga_tools/fpgainfo/fpgainfo.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Introduction

2.1. Getting Started with AFU Development

Depending on which Intel FPGA PAC you are using, please refer to one of the following
Quick Start Guides:

• If you are using Intel PAC with Intel Arria® 10 GX FPGA, refer to the Intel
Acceleration Stack Quick Start Guide for Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA.

• If you are using Intel FPGA PAC D5005, refer to the Intel Acceleration Stack Quick
Start Guide for Intel FPGA Programmable Acceleration Card D5005.

The Quick Start Guide provides an overview of the Acceleration Stack and provides
instruction for installation and setup of hardware and software components of the
stack, including the OPAE SDK used to develop AFUs and generate loadable AF
images. It is essential to familiarize yourself with the concepts developed for the
Acceleration Stack and to complete the installation and setup procedures covered in
the Quick Start Guide.

This guide for AFU development builds on the concepts and environment setup
established in the Quick Start Guide.

Related Information

• Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration
Card with Intel Arria 10 GX FPGA

• Intel Acceleration Stack Quick Start Guide for Intel FPGA Programmable
Acceleration Card D5005

2.1.1. Development Environment References

The OPAE_PLATFORM_ROOT environment variable points to the OPAE SDK installation
as detailed in the Quick Start Guide.

2.1.2. FPGA Tools and IP Requirements

You need to download the Intel Acceleration Stack for Development to generate the
Accelerator Functions (AFs).

The Intel Acceleration Stack for Development installer includes licenses for the
following software and IPs required for the generation of the AF:

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#sun1522441132364
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#sun1522441132364
https://www.intel.com/content/www/us/en/programmable/documentation/edj1542148561811.html#cxu1542149035471
https://www.intel.com/content/www/us/en/programmable/documentation/edj1542148561811.html#cxu1542149035471
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus® Prime Pro Edition software

Note: For information on compatible version of the software for each platform,
refer to the platform specific Release Notes.

• Intel FPGA PCI Express SR-IOV Block IP license

• Network IP license

You do not need to purchase the license separately for these IPs.

For requirements when using the ASE for AFU functional verification, refer to the Intel
Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide.

Related Information

• Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide

• Intel Acceleration Stack for Intel Xeon CPU with FPGAs Version 1.2 Release Notes

• Installing the Intel Acceleration Stack Development Package on the Host Machine

2.2. Base Knowledge and Skills Prerequisites

The Acceleration Stack is an advanced application of FPGA technology. Most of the
platform-level complexity has been abstracted away for the AFU developer by the
FPGA Interface Manager (FIM) in the FPGA static region. This guide assumes the
following FPGA logic design-related knowledge and skills:

• Familiarity with PR compilation flows, including the Intel Quartus Prime Pro Edition
PR flow, concepts of physical and logical partitioning in the FPGA, module
boundary best practices, and resource restrictions.

The hardware compilation flow automates management of the partial
reconfiguration region.

• Knowledge and skills in static timing closure, including familiarity and skill with the
Timing Analyzer tool in Intel Quartus Prime Pro Edition, applying timing
constraints, Synopsys* Design Constraints (.sdc) language and Tcl scripting, and
design methods to close timing on critical paths.

• Knowledge and skills with industry standard RTL simulation tools supported by the
Acceleration Stack. For more information, refer to the Intel Accelerator Functional
Unit (AFU) Simulation Environment (ASE) User Guide.

Related Information

Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide

2. Introduction

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

7

https://opae.github.io/1.1.4/docs/ase_userguide/ase_userguide.html%20
https://www.intel.com/content/www/us/en/programmable/documentation/fqy1537586638245.html#zgt1537586842024
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html#isp1528500494491
https://opae.github.io/1.1.4/docs/ase_userguide/ase_userguide.html%20
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Getting Started with Platform Configuration

This chapter guides you through the process to generate an AF for the hello_afu
sample AFU provided in the Acceleration Stack installation. Successful completion of
the steps in this chapter quickly verifies your AFU development environment using a
known-good design.

Build the hello_afu sample AFU by invoking the run.sh script from a terminal
window as shown in Example 1.

Note: This step takes about 30 minutes to complete.

Example 1. Compile hello_afu Sample AFU

cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu
afu_synth_setup --source hw/rtl/filelist.txt build_synth
cd build_synth
$OPAE_PLATFORM_ROOT/bin/run.sh

When the shell script completes, it indicates successful generation of the AF:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/build_synth/hello_afu.gbs

You can optionally use the helper script clean.sh, to remove the following build
output from the Intel Quartus Prime PR compilation invoked by run.sh:

• ./build/*.qdb

• ./build/qdb

• ./build/output_files/

• ./build/*qarlog

• ./build/*.qdf

Example 2. Clean up from the PR Compilation (Optional)

cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/build_synth
$OPAE_PLATFORM_ROOT/bin/clean.sh

Successfully compiling the hello_afu sample AFU verifies that your environment is
setup and ready to begin developing your own custom AFUs.

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4. The Accelerator Functional Unit (AFU)
The AFU is a function or set of functions that can be accelerated on an OPAE hardware
platform. The AFU is described in RTL and then compiled with the OPAE SDK to
generate an Accelerated Function (AF) image for the target hardware platform. An AF
is a compiled hardware accelerator image implemented in FPGA logic that accelerates
an application. The AF image is used by OPAE to load the AFU to the PR region.

An AFU has two main communication paths between the host:

• FPGA to host transactions: The FPGA accesses host memory (256 terabyte
address space) using a 512 bit data path. This data path has separate channels for
read and write traffic allowing for simultaneous read and write to occur. The read
and write channels support bursts of 1, 2, and 4 cache lines.

• Host to FPGA (MMIO) transactions: The host can access a 256 KB address space
within the FPGA. This address space contains Device Feature Header (DFHs) and
the control and status registers of the AFU hardware. DFHs are small ROMs that
hold metadata about the hardware that are enumerated by the OPAE SDK.

The AFU can access host memory on a cache line basis (64 bytes) through the CCI-P
interface. OPAE defines up to 256 KB of memory mapped I/O (MMIO) space for AFUs
that the host can access using the OPAE driver and APIs. At the bottom of the MMIO
space, the AFU must implement the following OPAE requirements:

• AFU DFH - a 64-bit header at MMIO address offset 0x0

• AFU ID - a 128-bit UUID at MMIO address offset 0x2 (CCI-P D-word address)

The following sections of the CCI-P Reference Manual document the CCI-P protocol
and all OPAE requirements for an AFU design, including the DFH and AFU ID format:

• CCI-P Interface

• AFU Requirements

• Device Feature List

Related Information

Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P)
Reference Manual

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#nkh1506187979705
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#nkh1506187979705
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.1. AFU Design Components

Figure 1. AFU High Level Block Diagram

Host
Processor

FPGA
Interface

Unit
CCIP

Host Read Write Logic Local External Memory
Interface

Local External Memory
Interface

HSSI Network InterfaceMMIO Logic
(DFH and CSRs)

Host Interrupt Logic Algorithm Logic

Accelerator Function Unit

FPGA Interface Manager

CCIP

A typical AFU design includes the following components:

• RTL description of the algorithm or function being accelerated

• RTL description to implement the base requirements placed on AFUs by OPAE
(e.g., DFH, AFU ID in MMIO space). See the CCI-P Reference Manual for more
details on the RTL description.

• Supportive infrastructure

— Logic to map AFU CSRs into MMIO space

— Memory mastering logic

• FPGA to host memory access

• Local FPGA memory access

• Debug and Performance monitoring

— Signal Tap with the Remote Debug feature

— Performance monitoring and counters within the scope of the AFU

The interfaces provided by OPAE for host and local memory access are basic, slave
access interfaces. The host only has access to the AFU’s 256KB MMIO space. The AFU
must implement a DMA to move large workload data to and from host memory. The
dma_afu sample AFU in the OPAE platform installation provides an example for
moving data between the host and local memory.

The FIM supports notification for illegal accesses made on the CCI-P interface and
performance monitoring capabilities accessible by the host through the FME in the FIU.
Any error handling and performance monitoring must be implemented in the AFU by
developer.

The FIM provides for AFU remote debug through the FME connected to an OPAE tool
that hosts the debug connection over TCP. The AFU designer must instrument the AFU
with debug instances and nodes using tools such as Signal Tap. The nlb_mode_0_stp
sample AFU in the OPAE platform installation provides an example for enabling an AFU
for remote debug with Signal Tap over a TCP connection.

4. The Accelerator Functional Unit (AFU)

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2. Basic Building Blocks

Intel FPGA Basic Building Blocks (BBBs) are reference designs of common functions
that can be used in AFU designs to implement supportive infrastructure such as CCI-P
memory access property transformations and DMA. These references are provided as-
is. They are not validated by Intel. The available BBBs, including documentation, are
maintained at the GitHub site.

Related Information

Basic Building Blocks (BBB) for OPAE-managed Intel FPGAs

4. The Accelerator Functional Unit (AFU)

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

11

https://github.com/OPAE/intel-fpga-bbb
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Developing AFUs with the OPAE SDK

5.1. Overview of the OPAE SDK

The OPAE SDK is a development environment that supports synthesizing AFs targeted
for a specific OPAE-compliant hardware platform from an OPAE-compliant AFU.

The OPAE SDK consists of two hardware development components:

• The database, tools, scripts and ancillary files required to target AF generation for
a specific hardware platform.

• The OPAE version supported by the hardware platform used to configure a build
environment for AFU simulation and compilation on the target hardware platform.

Figure 2. Overview of the OPAE SDK

Open Programmable
Acceleration Engine

(OPAE)

RPM Installers Source Archive
opae-src-<version>.tar.gz (for Arria 10 GX)

opae-<version>.tar.gz (for Startix 10 SX)

Platform Interface Manager (PIM)

Platform
Database

AFU Top-Level
Interface
Database

AFU Simulation Environment (ASE)
 • Platform models
 • Build environment scripts

Tools
 • AF generation
 • AF/platform management
 • Diagnostics/BIST

Documentation

Software Application Development
 • APIs (source, headers)
 • Sample Applications

OPAE SDK
$OPAE_PLATFORM_ROOT/

sw/

opae-<version>/

bin/

hw/

blue_bits/

common/

platforms/

lib/

remote_debug/

samples/

ase/

tools/

libopae/
common/
samples/

doc/

AFU Samples

Remote Debug Support Images, Scripts

Target FIM
Static Region

PR Compilation
Database

ASE Runtime Scripts

Target Platform FIM Recovery Images

AF Generation Scripts

Target Hardware Platform-Specific
Support for AFU Synthesis,

Verification and Debug

Platform Interface
SystemVerilog

Implementations

Platform and Build
Environment
Configuration

Scripts

OPAE's Platform Interface Manager (PIM) defines a non-hardware specific OPAE
Platform that provides generic classes of device interfaces. The OPAE platform is an
abstraction of a hardware platform for which AFUs are designed. This level of
abstraction enables generating AFs from AFUs designed for the generic OPAE Platform
for any OPAE-compliant hardware platform that offers the device interfaces required

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

by the AFU. The PIM generates a platform shim based upon device interfaces and
properties requested by the AFU. The platform shim is inserted between the hardware
platform’s PR region boundary and the AFU and provides the top-level module
interface for the AFU.

See the Overview of the OPAE Platform for AFUs on page 13 for more details on the
OPAE.

See the OPAE SDK Design Flow for AFU Development on page 17 for the process
used by AFUs to request top-level interfaces and configure simulation and synthesis
build environments.

5.2. Overview of the OPAE Platform for AFUs

The PIM defines a generic OPAE Platform for which AFU top-levels should be designed
to ensure provisioning on multiple hardware platforms.

The figure below shows how the platform shim generated by the PIM enables AFU
integration on a specific target hardware platform.

Figure 3. OPAE Platform Block Diagram

clocks
Interface

Transform
Interface

Transform

Interface
Transform

Pipeline

Clock Cross

Interface
Transform

Interface
Transform

Interface
Tansform

power error
. . .

. . .

cci-p

AFU

power errorcci-pclocks

local-memory

Fixed Platform Framework Provided by the OPAE SDK

AFU-Specified Platform Framework Generated by the OPAE SDK (PIM)

FIM (Static Region)

Legend

Platform Shim

Device classes
Offered by the

Platform

Device interfaces
Requested by the

AFU

PR Region Boundary
(AFU Slot)

AFU
Top-Level Interface

Clock Cross

Pipeline
Interface

Transform
Interface

Transform

Clock Cross

Pipeline

hssi

local-memory hssi

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AFUs are designed to use generic top-level interfaces to a set of generic device classes
such as a host device (cci-p), local memory, network port I/O, clocks, and power
and error management. The AFU requests the device interfaces and properties it
needs from the PIM using a platform configuration file specification.

5.2.1. Platform Device Classes

The OPAE Platform provides for AFU integration into the stack through several device
classes. Each device class offers one or more port interfaces, each of which have
properties of their own. AFUs request a specific device interface and properties from
the PIM. The PIM implements the requested interfaces and properties in a platform
shim that translates hardware platform-specific device interfaces to the OPAE
Platform’s generic device interfaces used by the AFU.

The Intel FPGA PAC offers the following device classes:

• The clocks Device Class on page 14

• The cci-p Device Class on page 14

• The power Device Class on page 15

• The error Device Class on page 15

• The hssi Device Class on page 15

• The local-memory Device Class on page 15

5.2.1.1. The clocks Device Class

The Intel FPGA PAC platform offers the clocks device class with the pClk3_usr2
interface, which consists of a list of port signals documented in the CCI-P Reference
Manual.

5.2.1.2. The cci-p Device Class

The Intel FPGA PAC platform offers the cci-p device class with the struct interface.
The structures defined in the following package in the OPAE SDK:

$PLATFORM_ROOT/sw/<opae-version>/platforms/platform_if/rtl/device_if/
ccip_if_pkg.sv

The CCI-P interface is used by the AFU to access host memory and to respond to
MMIO requests from the host. It is composed of three command/response channels:

• Channel 0 - It is used by the AFU for host memory read requests and responses.
Channel 0’s response port is also used for receiving MMIO read and write requests
from the host.

• Channel 1 - It is used by the AFU for host memory write requests and responses.
It is also used for issuing write fences and interrupts.

• Channel 2 - It is used by the AFU for MMIO read responses back to the host.

The CCI-P interface and protocol are documented in the CCI-P Reference Manual.

Related Information

Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P)
Reference Manual

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

14

https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#nkh1506187979705
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#nkh1506187979705
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2.1.3. The power Device Class

The Intel FPGA PAC platform offers the power device class with a 2-bit interface. This
interface drives the signal that represents the power state requests documented in the
Additional Control Signals section of the CCI-P Reference Manual.

Related Information

Additional Control Signals

5.2.1.4. The error Device Class

The Intel FPGA PAC platform offers the error device class with a 1-bit interface. This
interface drives the signal that represents the CCI-P protocol error documented in the
Additional Control Signals section of the CCI-P Reference Manual.

Related Information

Additional Control Signals

5.2.1.5. The hssi Device Class

The Intel FPGA PAC platform offers the hssi device class with the raw_pr interface,
which consists of a SystemVerilog interface defined in the following Verilog header in
the OPAE SDK:

$PLATFORM_ROOT/hw/lib/build/platform/pr_hssi_if.vh

The HSSI interface is used by the AFU to access the network port on the Intel FPGA
PAC platforms. It is composed of the Native PHY Transceiver interface with a generic
parallel interface to support multiple configurations by the HSSI PHY in the FIM.

The HSSI interface is an optional interface that AFUs can request from the Intel FPGA
PAC platform. The Intel FPGA PAC platforms with HSSI interface contain sample AFUs
in the directories starting with eth_e2e_e<data_rate>.

Related Information

• Intel Arria 10 Transceiver PHY User Guide

• Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide

• Intel Stratix 10 E-Tile Transceiver PHY User Guide

• Networking Interface for Open Programmable Acceleration Engine: Intel
Programmable Acceleration Card with Intel Arria 10 GX FPGA

• 10 Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide
For Intel PAC with Intel Arria 10 GX FPGA

• 40 Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide

5.2.1.6. The local-memory Device Class

The Intel FPGA PAC platform offers the local-memory device class with the following
choice of interfaces:

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

15

https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#kgl1506289517619
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html#kgl1506289517619
https://www.altera.com/documentation/nik1398707230472.html
https://www.intel.com/content/altera-www/global/en_us/index/documentation/wry1479165198810.html
https://www.intel.com/content/www/us/en/programmable/documentation/kqh1479167866037.html
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html#heq1528674841964
https://www.intel.com/content/www/us/en/programmable/documentation/vqj1528674861813.html#heq1528674841964
https://www.intel.com/content/www/us/en/programmable/documentation/pnk1521134038474.html#ary1521591999529
https://www.intel.com/content/www/us/en/programmable/documentation/pee1521131718500.html#ary1521591999529
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• avalon_mm - a SystemVerilog interface defined in the following header file in the
OPAE SDK:

$PLATFORM_ROOT/sw/<opae-version>/platforms/platform_if/rtl/
device_if/avalon_mem_if.vh

• avalon_mm_legacy_wires_2bank - a fixed port list of signal wires specific to
the Intel FPGA PAC platform. This interface is for legacy support of AFUs
developed with earlier versions of the OPAE SDK. New AFU designs should use the
avalon_mm interface. For portability to future platforms, consider porting existing
AFUs designed with the legacy interface to the avalon_mm interface.

The AFU accesses local memory on the Intel FPGA PAC through the Avalon® Memory-
Mapped (Avalon-MM) slave interfaces provided by the FIM. The Intel FPGA PAC
platforms typically provide one or more bank of local memory. For detailed information
on bank of local memory, refer to the FIM Data Sheet. Each bank interface is
synchronous to its own clock source provided by the interface. The local memory
interfaces in the FIM support bursts of 1, 2, and 4 cache lines. Each FPGA external
memory interface supports burst lengths of 1 to 64 beats. There is no support for
response status or posted writes.

The local memory interface is an optional interface that AFUs can request from the
Intel FPGA PAC platform. See the following two sample AFUs for examples of using the
local memory interface:

• $OPAE_PLATFORM_ROOT/hw/samples/hello_mem_afu

• $OPAE_PLATFORM_ROOT/hw/samples/dma_afu

Intel recommends using avalom_mm interface for all the new designs and not use the
legacy interface.

5.2.2. The Platform Interface Manager (PIM)

The PIM contains a collection of shims. The PlM abstracts the details of the target
hardware platform from the AFU to support AFU portability to multiple platforms
without modifying the AFU. The PIM performs the following functions based upon the
AFU's platform configuration described in its .json file:

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Validates that an OPAE device interface requested by the AFU is provided by the
target platform.

• Properly terminates any OPAE device class offered by the platform but not
requested by the AFU.

• Enables an AFU to optionally request an OPAE device interface from the target
platform and adjust the build-out of its implementation based on whether the
requested interface is available. For example, the AFU can optionally request local
memory and build-out to use it if available from the target platform, otherwise it
builds-out to function without local memory. See the nlb_mode_0 sample AFU for
an example.

• Provides register pipeline stages on requested OPAE device interfaces to aid static
timing closure during AF generation.

• Provides asynchronous clock crossing from an OPAE device interface’s native clock
to a target clock requested by the AFU. For example, the AFU can request that all
requested OPAE device interfaces be retimed to the uClk_usr clock source
provided by the clocks interface. See the hello_mem_afu sample AFU for an
example.

5.2.2.1. Interface Transforms

The PIM transforms a device class offered by the platform into the specific device
interface requested by the AFU. Any device classes on the platform not requested by
the AFU are properly terminated to support AF generation. The transformation is
typically a simple, direct connection between the platform and AFU consisting of
device interface ports or structures or a bundling of the ports into an interface vector.
For example, the PIM directly connects the platform’s cci-p interface structures and
clocks, power , and error ports to the AFU. In the case of local-memory, the PIM
abstracts the hardware platform details from the AFU by packing the platform’s
interface into a SystemVerilog interface vector.

5.2.2.2. Pipelining

The PIM inserts register pipeline stages on device interfaces as requested by the AFU.

5.2.2.3. Clock Crossing

The PIM inserts asynchronous clock crossing on device interfaces to cross from the
interface's native clock to a clock specified by the AFU. For example, the AFU can
request that all device interfaces be synchronized to uClk_usr from the clocks
interface.

5.3. OPAE SDK Design Flow for AFU Development

5.3.1. Overview of the Design Flow

This section provides a summary overview of the OPAE SDK design flow for AFU
development. Refer to the Design Flow Details on page 21 for a detailed description
of each step included in the flow.

The figure below shows the design flow when using the OPAE SDK to verify and
synthesize AFs for a target hardware platform.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The minimal flow depicted in the figure shows the minimum flow steps to generate an
AF from an AFU design, while the depiction of the general flow shows where AFU
verification with ASE fits in the overall flow.

Figure 4. OPAE SDK Design Flow for AFU Development

Minimal Flow to Generate an AF General OPAE SDK Flow
for AFU Development

Specify the Platform Configuration Specify the Platform Configuration

Design the AFU

Specify the Build Configuration

Generate the ASE Build Environment

Verify the AFU with ASE

Design
Modifications

Required?

Generate the AF Build Environment

Generate the AF

Design the AFU

Specify the Build Configuration

Generate the AF Build Environment

Generate the AF

• Specify the Platform Configuration for the AFU in a platform configuration file
(.json) by requesting a top-level AFU interface along with any required interface
properties. The top-level interface requested by the AFU defines its SystemVerilog
top-level module port definition.

• Design the AFU within this top-level module port definition.

• With the AFU design file set established, Specify the Build Configuration for both
AFU simulation and AF synthesis with a single build configuration file
(filelist.txt), which lists the AFU’s design source (e.g., RTL, IP, Platform
Designer subsystems, constraints) along with any required macro definitions and
include files.

• Using the PIM, Generate the AF/ASE Build Environment based upon the AFU’s
platform and build configuration file specifications and the target hardware
platform. At this point in the flow, you can use ASE to run OPAE software
applications on a simulation target instantiated from the AFU's RTL source and the
hardware platform model provided by OPAE.

• Finally, Generate the AF using the AF generation scripts provided by the SDK.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.1.1. Minimal Flow Example

The following example shows the minimal flow necessary to generate an AF. It uses
the hello_afu sample AFU included in the OPAE SDK. The hello_afu sample can
be used as template for AFU designs that require only a host device interface and no
local memory or network port I/O.

The following is a synopsis of the minimal set of OPAE SDK commands required to
generate an AF from the hello_afu sample AFU:

cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

afu_synth_setup --source hw/rtl/filelist.txt build_synth

cd build_synth

$OPAE_PLATFORM_ROOT/bin/run.sh

The execution of these commands generates an AF (.gbs) image in the
build_synth sub-directory. The rest of this section elaborates on the minimal flow
steps.

5.3.1.1.1. Specify the Platform Configuration

The hello_afu sample specifies its platform configuration in the following .json file:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/hello_afu.json

The platform configuration file provides an example of the following:

• The AFU requests the ccip_std_afu top-level interface, which includes the
ccip, clocks, power and error device interfaces. If the target hardware
platform offers local-memory or hssi device classes, then the platform shim
generated by the PIM terminates those interfaces.

• Uses top-level interface default properties (i.e., no pipelining or clock crossing).

• Specifies the AFU’s UUID

5.3.1.1.2. Design the AFU

The AFU’s top-level interface request in its platform configuration file defines its top-
level module. The hello_afu sample’s top-level module definition is located here:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/ccip_std_afu.sv

The hello_afu sample implements the minimal requirements for an AFU specified in
the CCI-P Reference Manual in the AFU submodule instanced by the ccip_std_afu
top-level module and is described in the following SystemVerilog source:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/afu.sv

The afu.sv source file includes the afu_json_info.vh Verilog header file
generated by the PIM and uses the AFU_ACCEL_UUID macro defined by
afu_json_info.vh to set the UUID value as required by the CCI-P Reference
Manual.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each of the above SystemVerilog source files includes the platform_if.vh Verilog
header file generated by the PIM, which makes available all the interface definitions
used by the AFU.

5.3.1.1.3. Specify the Build Configuration

The hello_afu sample specifies its build configuration in the following text file:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/filelist.txt

It lists all source files, including its platform configuration file (.json). The file
references are relative to the build configuration file’s directory location.

5.3.1.1.4. Generate the AF Build Environment

To generate an AF build environment, open a terminal and enter the following
command sequence:

cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

afu_synth_setup --source hw/rtl/filelist.txt build_synth

The afu_synth_setup parses the build configuration file (filelist.txt) and
generates a Intel Quartus Prime project in the specified directory (build_synth).

5.3.1.1.5. Generate the AF

To generate an AF, enter the following commands:

cd build_synth

$OPAE_PLATFORM_ROOT/bin/run.sh

Completion of shell script indicates successful generation of the AF at the following
location:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/build_synth/hello_afu.gbs

5.3.1.2. General Flow Example

The OPAE SDK supports AFU verification with ASE which can be used at any time in
the flow once you have an initial AFU design and have specified platform and build
configurations. This section extends the minimal flow example by showing how to
generate an ASE build environment and use ASE to run an OPAE host application
against a combined RTL model of the AFU on the target hardware platform. This can
be done using the hello_afu sample AFU.

5.3.1.2.1. Generate the ASE Build Environment

Open a terminal window and enter the following commands to generate the ASE build
environment:

cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

afu_sim_setup --source hw/rtl/filelist.txt build_sim

The afu_sim_setup parses the filelist.txt file and generates a simulation
project in the build_sim directory.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.1.2.2. Verify the AFU with ASE

Type the following commands to compile the AFU and platform simulation models and
start the simulation server process:

cd build_sim

make

make sim

After the commands complete, ASE indicates that the server is ready for simulation.
Note the instructions for setting the ASE_WORKDIR environment variable in the ASE
client window.

Open a second terminal window and enter the following commands to start the ASE
client process:

<Set ASE_WORKDIR as directed by the simulator in the server window.>

cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu/sw

make clean

make USE_ASE=1

./hello_afu

The OPAE host application runs on the host in the ASE client window process and the
ASE server window process shows the AFU model responding to host MMIO accesses,
host memory accesses initiated by the AFU, and interrupt vector information signaled
by the AFU.

5.3.2. Design Flow Details

This section describes each step of the OPAE SDK design flow in detail.

5.3.2.1. Specify the Platform Configuration

An OPAE compliant AFU configures the OPAE Platform using a platform configuration
file to specify the following to the PIM:

• Specify the AFU’s UUID

• Request a top-level interface

• Extend a top-level interface with additional device interfaces

• Request pipelining on device interfaces

• Request clock crossing on device interfaces

• Specify a requested device interface as optional

• Specify AFU user clock timing

The platform configuration file uses the JSON format to specify the above tasks with
key:value pairs.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.1.1. Specify the AFU's UUID

The single place to specify the AFU’s UUID required by the OPAE Platform is in its
platform configuration file. The PIM and OPAE runtime tools extract the AFU UUID
from the platform configuration file for consumption by the AFU RTL implementation,
and OPAE host applications and tools.

Specify the AFU UUID with the afu-image:accelerator-
clusters:accelerator-type-uuid key as shown in the json file located at the
following location:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/hello_afu.json

Use the following command to generate a UUID for your AFU:

uuidgen

5.3.2.1.2. Request a Top-level Interface

The PIM defines the following two basic top-level AFU interfaces that consist of
multiple device interfaces: ccip_std_afu and ccip_std_afu_avalon_mm. AFUs
specify their top-level interface with the afu-image:afu-top-interface:name
key in the platform configuration file.

The SystemVerilog interface definitions for the device interfaces listed below are
documented in the following README:

$OPAE_PLATFORM_ROOT/sw/<opae-version>/platforms/afu_top_ifc_db/
README.md

1. ccip_std_afu

This top-level interface consists of the cci-p, clocks, power and error device
interfaces.

The top-level AFU module name remains ccip_std_afu. It includes the following
device interfaces (device-class:interface):

• cci-p:struct

• clocks:pClk3_usr2

• power:2bit

• error:1bit

See the hello_afu sample json file for an example of an AFU requesting the
ccip_std_afu top-level AFU interface at the following location:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/hello_afu.json

2. ccip_std_afu_avalon_mm

This top-level interface consists of the device interfaces included with the
ccip_std_afu top-level plus a local memory interface.

The top-level AFU module name remains ccip_std_afu. It includes the following
device interfaces (device-class:interfaces):

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• All device interfaces of the ccip_std_afu top-level AFU module interface

• local-memory:avalon_mm

See the hello_mem_afu sample JSON file for an example of an AFU requesting the
ccip_std_afu_avalon_mm top-level AFU interface:

$OPAE_PLATFORM_ROOT/hw/samples/hello_mem_afu/hw/rtl/
hello_mem_afu.json

The PIM also defines a top-level AFU interface with a deprecated local memory device
interface used by existing AFUs designed for earlier versions of the OPAE Platform.
New AFU designs with local memory interfaces should be designed for the
ccip_std_afu_avalon_mm top-level AFU interface. For example of an AFU
requesting the deprecated, legacy local memory device interface, see the dma_afu
sample AFU JSON file at the following location:

$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/hw/rtl/dma_afu.json

5.3.2.1.3. Extend a Top-level Interface

Additional device interfaces are accommodated by extending one of the predefined
basic top-level AFU interfaces.

For example, the eth_e2e_e10 and eth_e2e_e40 sample AFUs request an hssi
device interface by extending the ccip_std_afu top-level AFU interface using the
afu-image:afu-top-interface:module-ports:[class|interface] keys:

$OPAE_PLATFORM_ROOT/hw/samples/eth_e2e_e10/hw/rtl/
eth_e2e_e10.json

$OPAE_PLATFORM_ROOT/hw/samples/eth_e2e_e40/hw/rtl/
eth_e2e_e40.json

5.3.2.1.4. Request Pipelining on a Device Interface

The AFU can request the PIM to insert pipeline stages between the target hardware
platform’s PR region boundary and its top-level module device interfaces on the
following device classes:

• cci-p

• local-memory

Use the following key:value pair on the class key you want pipeline stages inserted:

afu-image:afu-top-interface:module-ports:params:add-extra-timing-reg-
stages:<integer-num>

For example, specify adding two pipeline stages on the local-memory device interfaces
as follows:

{
 'class': 'local-memory',
 'params':
 {
 'add-extra-timing-reg-stages': 2
 }
}

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.1.5. Request Clock-crossing on a Device Interface

The AFU requests the PIM to insert a clock crossing bridge to synchronize the following
device class interfaces to a clock of the AFU's choosing:

• cci-p

• local-memory

Use the following key:value pair on the device class key you want synchronized to a
clock chosen by the AFU:

afu-image:afu-top-interface:module-ports:params:clock:”<clock-name>”

For example, the hello_mem_afu sample AFU requests that the cci-p and local-
memory device interfaces be synchronized to uClk_usr from the clocks interface:

$OPAE_PLATFORM_ROOT/hw/samples/hello_mem_afu/hw/rtl/
hello_mem_afu.json

5.3.2.1.6. Specify a Requested Device as Optional

By default, the PIM does not generate a platform shim for a target hardware platform
that does not offer a device interface requested by the AFU. However, AFU’s can
specify a requested device interface as optional. For optionally requested device
interfaces, the PIM generates a platform shim and build environments as long as the
device interface is defined as optional by both the OPAE Platform and the target
hardware platform. If the target hardware platform offers the device interface, the PIM
transforms the interface with the properties requested by the AFU’s platform
configuration file, otherwise the PIM continues configuring the platform without any
action on the unavailable device interface. In either case, the PIM defines a Verilog
macro indicating whether the optionally requested interface is offered by the target
hardware platform. AFU implementations must elaborate based on the macro
definition.

Use the following key:value pair on the device class key you want to specify as
optional (the default value is false):

afu-image:afu-top-interface:module-ports:optional:true

For example, the nlb_mode_0 sample AFU optionally requests a local-memory
interface and instantiates a memory tester module based on the related Verilog macro
definition:

$OPAE_PLATFORM_ROOT/hw/samples/nlb_mode_0/hw/rtl/nlb_400.json

The cci-p and clocks device interfaces are mandatory for AFUs.

5.3.2.1.7. Specify AFU User Clock Timing

The clocks provided to the AFU by the clocks device interface are fixed in frequency
except for the following user clocks:

• uClk_usr

• uClk_usrDiv2

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The AFU specifies the frequency for uClk_usr in its platform configuration file using
the following key:value pairs:

afu-image:clock-frequency-high:[<float-value>|”auto”|”auto-<float-value>”]

afu-image:clock-frequency-low:[<float-value>|”auto”|”auto-<float-value>”]

The above key:value pairs drive timing closure on the user clocks during AF
generation and are used to bound the frequency value configured in the PLL circuits of
the target hardware platform that provides the user clocks through the clocks
interface. The chosen frequency may vary in each compilation.

Setting the value field to a float number (e.g., 200 to specify 200 MHz) drives the AF
generation process to close timing within the bounds set by the low and high keys
and set in the AF’s JSON metadata to specify the user clock PLL circuit frequency
values.

Note: There are two clock sources provided for the user clock. Clk_1x and Clk_2x. The
high setting controls the Clk_2x and low setting controls the Clk_1x. There is a fix
relationship between these two clocks, except when low clock exceeds 300 MHz, then
the high clock frequency matches the low clock frequency.

The "auto" setting enables the auto-timing closure mode during AF generation. The
AF generation build process automatically converge on a maximum frequency of
operation on the user clocks and generate AF JSON metadata to specify the auto-
timing closure frequency achieved to OPAE tools.

You can combine the "auto" mode with an upper and lower bound specification using
the "auto-<float-value>" format (e.g., "auto-300" to specify auto-timing
closure bounded to 300MHz).

For example, the hello_mem_afu sample AFU synchronizes all interfaces to
uClk_usr and uses auto-timing closure mode:

$OPAE_PLATFORM_ROOT/hw/samples/hello_mem_afu/hw/rtl/
hello_mem_afu.json

5.3.2.2. Design the AFU

5.3.2.2.1. Start with a Top-level Module Template

The top-level AFU interface requested in the platform configuration file defines the
AFU’s top-level RTL module port definition. Use the top-level module templates from
OPAE or a corresponding AFU sample’s top-level module as a reference for your AFU’s
top-level module port definition according to the top-level AFU interface requested in
the platform configuration file.

OPAE top-level AFU RTL module templates are in the following location in the OPAE
SDK: $OPAE_PLATFORM_ROOT/sw/opae-<version>/platforms/
afu_top_ifc_db/

You can find the AFU samples at the following location in the OPAE
SDK:$OPAE_PLATFORM_ROOT/hw/samples/

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 5. Associated Interface with Top-Level Module Template

Requested Top-Level Interface Top-Level AFU RTL Module Templates

ccip_std_afu Blank OPAE template: ccip_std_afu.sv.template
Sample AFU reference: hello_afu/hw/rtl/
ccip_std_afu.sv

ccip_std_afu_avalon_mm Blank OPAE template:
ccip_std_afu_avalon_mm.sv.template

Sample AFU reference: hello_mem_afu/hw/rtl/
ccip_std_afu.sv

If you extend one of the above basic top-level AFU interfaces to add additional device
interfaces (e.g., hssi), manually add the module ports for the added device
interfaces. For example, the Ethernet sample AFUs extend the ccip_std_afu top-
level AFU interface by adding an hssi device interface as shown in the following
sample AFU top-level module RTL source files:

$OPAE_PLATFORM_ROOT/hw/samples/eth_e2e_e10/hw/rtl/ccip_std_afu.sv

$OPAE_PLATFORM_ROOT/hw/samples/eth_e2e_e40/hw/rtl/ccip_std_afu.sv

5.3.2.2.2. Including the Platform Device Interface Definitions

All RTL source in the AFU’s implementation that references device interfaces defined
by the OPAE Platform (e.g., cci-p, local-memory) must include the following
Verilog header:`include “platform_if.vh”

The top-level AFU RTL module templates in OPAE and the sample AFUs all include
platform_if.vh.

5.3.2.2.3. Using the AFU UUID Header File

The AFU UUID should be specified in one place: the platform configuration file. The
AFU implementation should extract the UUID from the following header file emitted by
the PIM: afu_json_info.vh

The AFU should use the AFU_ACCEL_UUID macro defined within afu_json_info.vh
to set the AFU’s UUID in its implementation. For example, the hello_afu sample AFU
includes the afu_json_info.vh and sets the AFU UUID using the
afu_json_info.vh macro in the following SystemVerilog source file:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/hw/rtl/afu.sv

5.3.2.2.4. Clock Abstraction for the cci-p Device Interface

The PIM abstracts the clock and reset for the cci-p device interface passed to the
AFU with the following Verilog macros:

• PLATFORM_PARAM_CCI_P_CLOCK

• PLATFORM_PARAM_CCI_P_RESET

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following RTL code snippet shows how to utilize the above macros to set the clock
and reset signals in the AFU implementation for the cci-p interface:

`include “platform_if.vh”
logic clk;
assign clk = `PLATFORM_PARAM_CCI_P_CLOCK;
logic reset;
assign reset = `PLATFORM_PARAM_CCI_P_RESET;

This clock and reset abstraction enables compatibility for an AFU design's clock and
reset connectivity on the cci-p device interface regardless of any clock-crossing
requested in the platform configuration file.

The hello_mem_afu sample AFU provides an example for using the macro
abstractions:

$OPAE_PLATFORM_ROOT/hw/samples/hello_mem_afu/hw/rtl/
ccip_std_afu.sv

5.3.2.2.5. Generating an AF Build Environment for Source Development

The OPAE SDK design flows for AFU development shown in this guide apply exactly as
shown if the AFU design description is all RTL. However, if you want to design all or a
portion of your AFU with Platform Designer subsystems or IP variants or want to add
in-system debug components to the AFU design, it is helpful to generate an AF build
environment for use in developing the AFU design description.

First, configure the build environment with a build configuration file as specified in the
section Generate the AF Build Environment. The build configuration file is a text file
that, at a minimum, consists of a single line that references the AFU’s platform
configuration file (.json). The file reference can be absolute or relative to the
directory where the build configuration file resides.

Then, generate an AF build environment with the following command from an open
terminal window:

afu_synth_setup –-source \

<path-to-build-configuration-file>/<build-configuration-filename> build_synth

cd build_synth/build

quartus &

Once the Intel Quartus Prime Pro Edition GUI opens, open the dcp.qpf project file
and use the revisions feature to create a new revision based on the afu_synth
revision and give it a unique name (e.g.,afu_dev). Use the newly created revision as
a workspace to develop the AFU’s design description with tools such as Platform
Designer or to add debug instances with tools such as Signal Tap. This method enables
AFU design description development with high level, GUI-based tools in Quartus Prime
Pro without corrupting the PR compilation revisions provided by the OPAE SDK for
generating an AF.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3.2.3. AFU Design Guidelines

Follow these guidelines when designing a custom AFU:

5.3.2.3.1. General Guidelines

• The OPAE SDK supports the following RTL language standards:

— SystemVerilog 2005

— VHDL 1993

• Reset and initialize all output registers to OPAE device interfaces.

Related Information

Intel Quartus Prime Pro Edition Handbook Volume 1 Design and Compilation

5.3.2.3.2. Utilizing Clock Resources

The FIM provides several clock resources for use by AFUs. One set of clock resources
is the user clock group, which includes uClk_usr and uClk_usrDiv2. Unlike pClk
and its derivatives whose frequencies are fixed by the CCI-P Specification, the user
clocks can be programmed for a range of frequencies supported by the AFU.

User clocks get provisioned by OPAE when an AF is loaded by the fpgaconf utility.
When the fpgaconf utility loads an AF, it configures the PLL in the FIM that sources
the user clocks with the frequency specified by a key:value pair found in the AF
metadata generated by the packager utility. The desired user clock frequency
key:value pair can be specified in a .json file or can be specified with a command
line option (overrides entry in the .json file) to the packager utility. You can use the
packager to generate AFs with unique metadata user clock frequency values for a
single AFU PR bitstream.

The FIM reset resource, pck_cp2af_softReset, is not released until all clock
resources are stable and locked, including the user clocks.

The AFU design must close timing on the user clocks at the maximum frequency to be
supported by the AFU. Place associated clock timing constraints in a .sdc file and
refer to the .sdc file in the AFU's build configuration file.

For usage information on the Packager utility and .json file metadata format,
supported keyword parameters, and minimum metadata requirements, refer to the
packager tab in the Open Programmable Acceleration Engine (OPAE) Tools User Guide.

Related Information

Open Programmable Acceleration Engine (OPAE) Tools Guide

5.3.2.3.3. Interfacing with the FPGA Interface Manager (FIM)

The Intel Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-
P) Reference Manual documents all the requirements for an AFU interfacing with the
FIM using the CCI-P protocol. An AFU design must meet all the requirements specified
in the following sections of the CCI-P reference manual:

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

28

https://www.altera.com/documentation/jbr1437426657605.html
https://opae.github.io/1.1.4/docs/fpga_tools/packager/packager.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• CCI-P Interface

• AFU Requirements

• Device Feature List

The above sections in the CCI-P reference manual include requirements unique to the
Intel Xeon Processor with Integrated FPGA (referred to as Integrated FPGA Platform
throughout this document) hardware platform, but most of the information applies to
the Intel FPGA PAC. The notable differences between the two platforms are that the
Intel FPGA PACs do not have a UPI channel or second PCIe link and no accelerator
cache is implemented in the FIM.

The hello_afu example AFU included with the Acceleration Stack provides an
example implementation of a simple Device Feature List that meets the requirements
for an AFU as specified by the CCI-P reference manual. The nlb_mode_0 and
dma_afu example AFUs provide example implementations of more featured Device
Feature Lists.

5.3.2.4. Partial Reconfiguration Design Guidelines

• The bitstreams used for Partial Reconfiguration should be generated using the
script-method provided by the $OPAE_PLATFORM_ROOT/bin/run.sh script.

• Partial reconfiguration switches the PR region from one AFU to another AFU. Any
software application exercising an AFU in the PR region should be terminated
before initiating PR with OPAE to switch in a new AFU. This includes the remote
debug feature.

• After PR, the default initial state of the registers and the contents of the MLABs
and M20Ks in the PR region are indeterminate. To establish, a known initial
condition for synchronous elements in the AFU, follow the guidelines below:

— Design registers with reset logic sensitive to the FIU’s
pck_cp2af_softReset output. Do not rely on RTL initial value assignments
or initial blocks.

— Initialize MLAB and M20K contents using .mif files or RTL encoded values.
Please refer to the Intel Quartus Prime Pro Edition Handbook Volume 1 Design
and Compilation document for inferring or instantiating memory with initialized
contents.

• The PR region must contain only core resources such as LABs, RAMs and DSPs.
PLLs and Clock control blocks cannot be instantiated in the PR region.

• The placement and routing of a given AFU can vary between OPAE SDK releases
and different OPAE hardware platform targets. Use seed sweeps for large
resources or routing-intensive designs.

• If PR compilation fails due to M20K memory block over-utilization, add the
following quartus.ini setting to enable a more aggressive conversion to
available MLABs during compilation:

fit_restrict_meab_usage=2394

If a quartus.ini file does not already exist in the compilation build directory,
create it after invoking the afu_synth_setup script, then use your preferred text
editor to create it with the above setting added on a single line.

• If PR compilation results in timing violations in the FIM static region, retry PR
compilation with a different fitter seed value.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel Quartus Prime Pro Edition Handbook Volume 1 Design and Compilation

5.3.2.5. Specify the Build Configuration

The AFU configures the build environments generated by the PIM for simulation with
ASE and AF generation with a build configuration file. The build configuration file is a
text file created by the AFU designer to specify the following to the PIM:

• The AFU’s platform configuration file (.json)

• List of simulation and synthesis source files:

— RTL source (.v, .sv, .vhd)

— Platform Designer subsystems (.qsys)

— IP variants (.ip)

• List of additional source and constraints used during AF generation:

— Signal Tap files (.stp)

— Intel Quartus Prime Pro Edition settings (.qsf)

— Timing constraints (.sdc)

• List of search paths at simulation or AF generation time

• List of include files at PIM build environment generation time

— Reusable submodule (e.g., BBBs) build configuration files

• Verilog macro definitions

The build configuration file has the following format:

• Prefixes specify whether a reference is to a simulation or synthesis design file,
include file or macro definition.

• File references can be absolute or relative to the directory containing the build
configuration file.

For a full description of the build configuration file format and semantics, check the
rtl_src_config command help:

$ rtl_src_config -h

See the following AFU samples located at $OPAE_PLATFORM_ROOT/hw/samples for
examples of build configuration files:

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

30

https://www.altera.com/documentation/jbr1437426657605.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Simple examples:

— hello_afu/hw/rtl/filelist.txt

— hello_mem_afu/hw/rtl/filelist.txt

— hello_intr_afu/hw/rtl/filelist.txt

• Examples with IP references and macro definitions:

— dma_afu/hw/rtl/filelist.txt

— eth_e2e_e10/hw/rtl/filelist.txt

— eth_e2e_e40/hw/rtl/filelist.txt

• Examples with IP references, macro definitions and include references:

— nlb_mode_0/hw/rtl/filelist_mode_0.txt

— nlb_mode_0_stp/hw/rtl/filelist_mode_0_stp

5.3.2.6. Generate the ASE Build Environment

To generate a simulation build environment to verify your AFU with ASE, use the
afu_sim_setup command:

afu_sim_setup --src \
<path-to-build-configuration-file>/<build-configuration-filename> <build-dir-
name>

For example, the following command sequence generates a simulation build
environment for the hello_afu sample AFU in the build_sim directory:

cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

afu_sim_setup --src hw/rtl/filelist.txt build_sim

As you iterate on the verification flow, you need to regenerate the simulation build
environment with the afu_sim_setup command if either of the platform
configuration or build configuration files have been modified according to design
modifications. You can overwrite an existing simulation build directory by invoking the
afu_sim_setup command with the -f command line option, or you can create a
separate build environment by specifying a new target directory.

For a description of the full set of command line options and semantics, see the
afu_sim_setup command help:

afu_sim_setup -h

5.3.2.7. Verify the AFU with ASE

The ASE supports functional verification of AFU RTL code using host application C code
developed for the OPAE API without the need for accelerator hardware. The ASE
virtualizes the AFU’s physical link with the host, models certain aspects of the OPAE
host memory model, and supports communication between the OPAE host application
and supported RTL simulation tools used to emulate the AFU running on an actual
OPAE-compliant accelerator hardware target.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ASE is useful for verifying your AFU’s interoperability with the rest of the Acceleration
Stack using a quick, iterative functional debug environment to minimize time spent in
subsequent portions of the AFU development flow that involve more time-intensive
steps (for example, PAR, timing closure). ASE also enables a more cost-efficient
development environment by removing the dependency on accelerator hardware for
early functional debug of AFU interoperability within the Acceleration Stack.

After using the afu_sim_setup to configure a simulation build environment, you are
ready to start using ASE to verify your AFU.

Follow the example documented in the hello_afu sample AFU’s README file to
quickly get started with ASE:

$OPAE_PLATFORM_ROOT/hw/samples/hello_afu/README

If your AFU design contains Platform Designer subsystems or IP variations, or if you
need to pass arguments to the test OPAE host application, follow the example of the
dma_afu sample AFU to use custom simulation scripts to generate RTL for the
Platform Designer subsystems and IP variations and invoke the test OPAE host
application with passed arguments:

$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/README
$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/hw/sim/run_app.sh

Related Information

• Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide

• Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) Quick Start
Guide

For Intel PAC with Intel Arria 10 GX FPGA

• Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) Quick Start
User Guide

For Intel FPGA PAC D5005.

5.3.2.8. Generate the AF Build Environment

To generate a synthesis build environment to generate an AF, use the
afu_synth_setup command as follows:

afu_synth_setup --src \
<path-to-build-configuration-file>/<build-configuration-filename> <build-dir \
-name>

For example, the following command sequence generates a synthesis build
environment for the hello_afu sample AFU in the build_synth directory:

cd $OPAE_PLATFORM_ROOT/hw/samples/hello_afu

afu_synth_setup --src hw/rtl/filelist.txt build_synth

For a description of the full set of command line options and semantics, see the
afu_synth_setup command help:

afu_synth_setup -h

The afu_synth_setup command calls the rtl_src_config command as part of
the synthesis build environment generation process.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

32

https://opae.github.io/1.1.4/docs/ase_userguide/ase_userguide.html%20
https://www.intel.com/content/www/us/en/programmable/documentation/uux1498689964626.html#ueu1498690065294
https://www.intel.com/content/www/us/en/programmable/documentation/uux1498689964626.html#ueu1498690065294
https://www.intel.com/content/www/us/en/programmable/documentation/jan1522185564595.html
https://www.intel.com/content/www/us/en/programmable/documentation/jan1522185564595.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You need to regenerate the build environment with the afu_synth_setup command
if the platform configuration file has been modified. You also generally need to
regenerate the build environment if the build configuration file has been modified
except in the case where only the design file set has changed (source file addition,
deletion, move). If only the design file set has been modified, reflect those changes in
the build configuration file, and use the rtl_src_config command to update the
hw/afu.qsf Quartus Prime Pro settings file in the existing build directory:

cd build_synth
rtl_src_config --qsf --rel build \
<reference-to-updated-build-configuration-file> >hw/afu.qsf

If AFU design modifications require that the synthesis build environment be
regenerated, you can overwrite an existing synthesis build directory by invoking the
afu_synth_setup command with the -f command line option, or you can create a
separate build environment by specifying a new target directory.

Modifying existing RTL source files, Platform Designer subsystems or IP variants
without changing their location as you develop the AFU does not require that the
synthesis build environment be regenerated or that the Intel Quartus Prime Pro
settings file be updated.

5.3.2.9. Generate the AF

From the synthesis build directory generated by afu_synth_setup, enter the
following command from a terminal window to generate an AF for the target hardware
platform:

$OPAE_PLATFORM_ROOT/bin/run.sh

The run.sh AF generation script generates the AF image with the same base filename
as the AFU’s platform configuration file with a .gbs suffix.

The run.sh script indicates the status of timing closure – make sure the generated AF
has no hardware timing violations. Open the dcp.qpf Quartus project file in the
Quartus Prime Pro GUI with the synthesis build project’s afu_fit revision to view the
details of the timing report and perform interactive timing analysis. The Intel Quartus
Prime Pro Edition project directory is located in the build subdirectory of the
synthesis build environment’s top-level directory specified with the
afu_synth_setup command.

5. Developing AFUs with the OPAE SDK

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. AFU In-System Debug
The OPAE SDK provides a remote Signal Tap facility. Use remote Signal Tap to debug
an AFU on a target hardware platform. The Signal Tap II Logic Analyzer, included in
the Intel Quartus Prime Pro Edition, allows you to trigger on AFU signal events and
capture traces of signals in your AFU design. The remote capability allows for control
of trigger conditions and upload of captured signal traces from a networked
workstation running the Signal Tap GUI.

Signal Tap is an in-system logic analyzer that you can use to debug FPGA logic.
Conventional (non-remote) Signal Tap uses the physical FPGA JTAG interface and a
USB cable to bridge the Intel Quartus Prime Signal Tap application running on a host
system with the Signal Tap controller instances embedded in the FPGA logic. With
Remote Signal Tap, you can achieve the same result without physically connecting to
JTAG, which enables signal-level, in-system debug of AFUs deployed in servers where
physical access is limited.

In addition to Signal Tap, the remote debug facility in OPAE supports the following in-
system debug tools included with the Intel Quartus Prime Pro Edition:

• In-system Sources and Probes

• In-system Memory Content Editor

• Signal Probe

• System Console

This section describes how to generate an AF with remote Signal Tap enabled. This
section then describes how to debug a user AFU using OPAE’s mmlink utility, the
System Console utility, and Intel Quartus Prime Pro Edition.

The nlb_mode_0_stp variation of the nlb_400 sample AFU is used to illustrate how
to enable and use remote Signal Tap and can be found in the following location:

$OPAE_PLATFORM_ROOT/hw/samples/nlb_mode_0_stp/

Related Information

Design Debugging with the Signal Tap Logic Analyzer

6.1. Remote Signal Tap Setup and Use

6.1.1. Instrumenting the AFU Design for Signal Tap

To add Signal Tap instances and debug nodes to your AFU design, follow the procedure
outlined in the Generating an AF Build Environment for Source Development on page
27 section to create a development revision. Once you have created a development
revision, use the Signal Tap GUI to instrument the AFU for in-system debug as you
normally would. For more information, see the related documentation for Signal Tap.

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/nfc1513989909783.html#mwh1410384469524
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The nlb_mode_0_stp sample AFU has already been instrumented with Signal Tap
and the .stp file is located in the following OPAE SDK directory:
$OPAE_PLATFORM_ROOT/hw/samples/nlb_mode_0_stp/hw/par/
stp_basic.stp.

6.1.2. Enable Remote Debug and Signal Tap

Signal Tap must be enabled in the AF generation flow by adding the following entries
to the AFU's build configuration file:

+define+INCLUDE_REMOTE_STP
<path-relative-to-build-config-file>/<stp-filename>.stp

The nlb_mode_0_stp example already has the above settings added to its build
configuration files:

• $OPAE_PLATFORM_ROOT/hw/samples/nlb_mode_0_stp/hw/rtl/
filelist_mode_0_stp.txt

• $OPAE_PLATFORM_ROOT/hw/samples/nlb_mode_0_stp/hw/rtl/
filelist_base.txt

6.1.3. Generate the Remote Debug Enabled AF

After adding the above settings to the AFU's build configuration file, update the
synthesis build environment and generate the remote debug enabled AF:

cd <path-to-synth-build-environment>
$ rtl_src_config --qsf --rel build <path-to-build-config-file>/<build-config-
filename> >hw/afu.qsf
$OPAE_PLATFORM_ROOT/bin/run.sh

For <path-to-synth-build-environment>, use the directory path passed to the
afu_synth_setup script when you created the synthesis build environment.

The nlb_mode_0_stp example already has a remote debug enabled AF:
$OPAE_PLATFORM_ROOT/hw/samples/nlb_mode_0_stp/bin/
nlb_mode_0_stp.gbs.

6.1.4. Prepare the Remote Debug Host

Copy the following files from the Acceleration Stack installation over to a convenient
working directory on the remote debug host:

• The Signal Tap .stp file compiled with your AFU. In the case of the
nlb_mode_0_stp example AFU, the .stp file is located in the Acceleration Stack
installation as $OPAE_PLATFORM_ROOT/hw/samples/
nlb_mode_0_stp/hw/par/stp_basic.stp.

• The following two files support establishing a connection on the remote debug host
to the AFU Signal Tap instances on the Intel FPGA PAC. These files are part of the
Acceleration Stack release – do not modify them.

$OPAE_PLATFORM_ROOT/hw/remote_debug/mmlink_setup_profiled.tcl
$OPAE_PLATFORM_ROOT/hw/remote_debug/remote_debug.sof

6. AFU In-System Debug

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.5. Running a Remote Debug Session

6.1.5.1. Connect to the AFU Target

Follow these steps on the debug target host with the PAC installed:

1. If not already done, load the Signal Tap-enabled AFU.

sudo fpgaconf $OPAE_PLATFORM_ROOT/hw/samples/nlb_mode_0_stp/bin/
nlb_mode_0_stp.gbs

2. Open a TCP port to accept incoming connection requests from remote debug
hosts.

sudo mmlink -P 3333 -B <Bus number>

Follow these steps on the remote debug host:

1. Use System Console to connect to the debug target host’s TCP port for Signal
Tap debug connection on the target AFU. If the remote debug host is a Windows
platform, open a command shell to run the below commands.

cd <path-to-debug-working-directory>
system-console --rc_script=mmlink_setup_profiled.tcl
remote_debug.sof <IP-address-of-debug-target-host> 3333

The above command assumes your PATH environment variable on the remote
debug host is setup to point to the following location in the Intel Quartus Prime
Pro Edition installation:

<installation-path>/<q-edition>/sopc_builder/bin

where <q-edition> is "quartus" for Intel Quartus Prime Pro Edition or Intel
Quartus Prime Standard Edition. For an Intel Quartus Prime Programmer Edition
installation, <q-edition> is qprogrammer.

2. After issuing the above commands, the System Console window appears. Wait for
the “Remote system ready” message in the Tcl Console pane.

6. AFU In-System Debug

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.5.2. Using Signal Tap with a Remote Target Connection

Perform these steps on the remote debug host:

1. Invoke the Signal Tap GUI.

2. From File ➤ Menu, navigate to and open the .stp file you copied over from the
"Prepare the Remote Debug Host" section when you were preparing the remote
debug host for debugging the AFU.

3. Complete connecting to the Signal Tap controller instances in the target AFU by
selecting “System Console on … Sld Hub Controller System” from the
Hardware drop-down option box in the JTAG Chain Configuration pane.

4. Wait for the “JTAG ready” response.

At this point, you are ready to perform in-system debug with the Signal Tap GUI in the
same manner as with the conventional target connection method.

6.1.5.3. Stimulating the Target AFU for In-System Debug

Use host application C code software designed for the OPAE API to stimulate the AFU
and verify proper operation within the Acceleration Stack. Leave the mmlink tool
running in a separate terminal window on the debug target host while the remote
debug host is connected. The mmlink process continuously output the status to the
terminal window. Invoke OPAE host application or test software from their own
terminal windows on the debug target host.

6.1.5.3.1. Accessing the AFU in Shared Mode

When using OPAE application/test code running on the debug target host to stimulate
the AFU for the purposes of in-system debug, both the mmlink tool and your host
application/test code must have simultaneous access to the AFU. For this to happen,
any user space code calls to the fpgaOpen() OPAE API function must pass the
FPGA_OPEN_SHARED flag. The Acceleration Stack installation uses the
FPGA_OPEN_SHARED flag with calls to fpgaOpen() in the source code for the
mmlink tool and the hello_fpga sample application, which enables remote debug as
delivered in the installation for the nlb_mode_0_stp example AFU stimulated by the
hello_fpga sample application without modification.

Here is an example call to fpgaOpen() for shared access to the AFU:

fpgaOpen(afc_token, &afc_handle, FPGA_OPEN_SHARED);

Refer to the following sources in the Acceleration Stack installation for examples of
using the FPGA_OPEN_SHARED flag:

$OPAE_PLATFORM_ROOT/sw/<opae-version>/tools/mmlink/main.cpp
$OPAE_PLATFORM_ROOT/sw/<opae-version>/samples/hello_fpga.c.

Any other sample applications included in the Acceleration Stack installation or host
code of your own design must use the shared flag when used to stimulate the AFU
during in-system remote debug where mmlink is required to run simultaneously.

6. AFU In-System Debug

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.5.4. Disconnect from the AFU Target

When you are finished debugging, follow these steps to gracefully end the debug
connection:

First, on the remote debug host…

1. Save trace captures and exit the Signal Tap GUI.

2. From the System Console File menu, click exit to disconnect from the target
AFU.

On the debug target host…

You can either keep the mmlink instance active and host debug sessions from other
remote debug hosts, or you can terminate mmlink with the <Ctl-C> key sequence
from its terminal window. If you choose to keep mmlink active, you can only debug
the currently loaded AFU. If you want to debug another AFU, you must first terminate
the active mmlink process. Before loading another AFU, make sure to terminate any
OPAE host application code accessing the current AFU.

6.1.6. Remote Debug Guidelines

• The Signal Tap debug feature becomes non-functional when mmlink or System
Console applications are closed.

• When performing PR, the AFU is non-existent and cannot be debugged. Therefore,
System Console and mmlink applications should be terminated before
attempting a partial reconfiguration of the AFU. Failing to do so might cause both
PR and Signal Tap utilities to fail, taking the system into an unknown state. The
system might have to be rebooted to restore the initial condition.

• The time to upload Signal Tap trace captures increases exponentially with sample
depth. Intel recommends to use sample depths less than "2K" for a better Signal
Tap user experience. Remote debug is still functional even for larger depths, but
the time to upload the captured samples is significantly higher.

• System Console must be started after launching the mmlink application. If
System Console returns an error, close the mmlink application, re-invoke
mmlink, and launch System Console again.

• After generating an AF from an AFU with remote Signal Tap enabled, you may see
cross clock timing failures between source and destination nodes in the following
design hierarchy path:

fpga_top|inst_green_bs|auto_fab_0|alt_sld_fab_0|alt_sld_fab_0|
auto_signaltap_auto_signaltap_0|sld_signaltap_inst|
sld_signaltap_body|sld_signaltap_body
For any cross clock timing failures between source and destination nodes in the
above design hierarchy path, add the following constraint applied between the
nodes on each affected path to your .sdc timing constraint file:

set_false_path -from [get_registers <SOURCE_NODE_SDC_PATH>] -to
[get_registers <TO DESTINATION_NODE_SDC_PATH>]

The .sdc timing constraint file should be referenced in the build configuration file.

6. AFU In-System Debug

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6.1.7. Troubleshooting Remote Debug Connections

If you get a Failed to connect message after invoking System Console, consider
adding port tunneling. Do this when the debug target host is behind a firewall with
respect to your remote debug host is not.

On the debug target host, run mmlink as before. Note that mmlink provides an
option to specify a port number. Port 3333 is the default.

Refer to the following:

mmlink --port=3333

Setup port tunneling on the remote debug host. This example shows how to do so on
a Windows remote debug host using PuTTY.

Use a PuTTY configuration screen as shown in the SSH Tunneling with PuTTY figure.
For <SDP>, enter the name of the debug target host. This forwards the local port on
your Windows host 4444 to port 3333 on the debug target host.

Figure 5. SSH Tunneling with PuTTY

Then, Click Session, specify the name of the debug target host, click Save, and then
Open. Login to the debug target host. This is your tunneling session.

6. AFU In-System Debug

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Save and Open the Tunneling Session
This figure specifies local host and the port 4444.

Once the tunneling session is setup this forwarding is complete. Open a Windows
Command Window and issue the system-console command as shown in the "Save
and Open the Tunneling Session" figure.

Run the "System Console with Port Forwarding" command:

system-console --rc_script=mmlink_setup_profiled.tcl remote_debug.sof localhost
4444

As before, the Quartus System Console comes up. Wait for the Remote system
ready message on the tcl console of the System Console.

6. AFU In-System Debug

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Hardware Platform OPAE Specifications
This section contains OPAE specifications for OPAE-compliant hardware platforms
supported by the Acceleration Stack. For a functional overview and details on the set
of supported OPAE device class interfaces supported by a particular hardware
platform, refer to the specific sections in its related subsection below.

7.1. Intel FPGA PAC Platform

The following figures of the Intel FPGA PAC platform highlights the services and device
interfaces available for AFU development.

Figure 7. Intel PAC with Intel Arria 10 GX FPGA Platform Block Diagram

HS
SI

In
te

rfa
ce

HSSI
Reconfiguration

HSSI PLL

HSSI Reset

HSSI PHY

HSSI
Controller

QSFP+

Local Memory Interface

CCI-P Interface, Clocks, Power, Error

DDR4A
EMIF

DDR4B
EMIF

HSSI

Local
Memory

Fabric

PCIe Gen3x8 EP

PR

HSSI PHY Mode Control

FMEFIU

PCIe Gen3x8

OPAE

Host

4 GB DDR4 4 GB DDR4

Intel Arria 10 GX FPGA

Intel PAC with Arria 10 GX FPGA

FIM (static region)

Platform Device
Interfaces

CSR
Access

Data Paths

Platform
Management

Partial Reconfiguration (AFU Slot)

Resources Available to the AFU
ALMs: 391,213 (92% of device total)
M20K Blocks: 2549 (94% of device total)
DSP Blocks: 1518 (100% of device total)

PR region (AFU Slot)

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 8. Intel FPGA PAC D5005 Platform Block Diagram

HS
SI

In
te

rfa
ce

HSSI
Reconfiguration

HSSI PLL

HSSI Reset

HSSI PHY

HSSI
Controller

QSFP+

Local Memory Interface

CCI-P Interface, Clocks, Power, Error

DDR4B
EMIF

DDR4C
EMIF

HSSI

Local
Memory

Fabric

PCIe Gen3x16 EP

PR

HSSI PHY Mode Control

FMEFIU

PCIe Gen3x16

OPAE

Host

8 GB DDR4 8 GB DDR4

Intel Stratix 10 GX FPGA

Intel FPGA PAC D5005

FIM (static region)

Platform Device
Interfaces

CSR
Access

Data Paths

Platform
Management

Partial Reconfiguration (AFU Slot)

PR region (AFU Slot)

DDR4D
EMIF

8 GB DDR4

DDR4A
EMIF

8 GB DDR4

QSFP+

7.1.1. The FPGA Interface Manager (FIM)

The FIM includes the static region and one PR region partition for loading AFUs from
OPAE. The static region provides services to AFUs loaded in the PR region, which
includes a host connection via CCI-P protocol over PCIe SR-IOV, local SDRAM memory,
High Speed Serial Interfaces (HSSI) for network port I/O, and clock and reset
resources. The FIM static region also provides services to OPAE for dynamically
loading AFUs, initializing and configuring the network port PHY, and performing
platform management tasks (for example, version identification).

The FIM is part of the Intel FPGA PAC hardware platform and cannot be modified.

Upon power up, the PR region is preconfigured with an undefined AFU. Host
applications must use OPAE to load an AFU into the PR region.

The FIM bitstream is included in the Acceleration Stack installation and initially
configures the FPGA at power up from configuration flash residing on the Intel FPGA
PAC.

For instructions on flashing the on-board configuration flash with the FIM bitstream,
refer to the Quick Start Guide.

7. Hardware Platform OPAE Specifications

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7.1.1.1. FPGA Interface Unit (FIU)

The FIU block in the FIM provides the physical link between the host and the Intel
FPGA PAC, platform management services to OPAE, and a platform agnostic host
interface for the AFU.

The physical link on the Intel PAC with Intel Arria 10 GX FPGA platform is a PCIe Gen3
x 8 interface and the Intel FPGA PAC D5005 supports a PCIe Gen3 x 16 interface with
the SR-IOV.

The FPGA Management Engine (FME) sub-block provides platform management
services to OPAE such as partial reconfiguration of an AFU into the PR region,
initializing and configuring the network port PHY, and FIM version identification.

The CCI-P interface to the AFU provides a platform agnostic host interface that is
bridged to the physical PCIe host link through a fabric in the FIU. The CCI-P interface
allows the AFU to access host memory and provides a means for the host to access
the AFU's memory mapped I/O (MMIO) space.

Refer to the CCI-P Reference Manual for more details on the CCI-P interface protocol.

7.1.1.2. Network Port I/O (HSSI)

The High Speed Serial Interface (HSSI) I/O block in the FIM provides network port I/O
to the AFU. The HSSI block utilizes the FPGA multi-gigabit transceiver I/O and can be
configured by OPAE for the PHY modes.

• The Intel PAC with Intel Arria 10 GX FPGA supports following PHY modes:

— Four, 10 Gbps Ethernet ports (4x10GBASE-R PCS/PMA PHY)

— A Single, 40 Gbps Ethernet port (40GBASE-R PMA only)

• The Intel FPGA PAC D5005 supports following PHY mode:

— Eight, 10 Gbps Ethernet ports (8x10GBASE-SR PCS/PMA PHY)

The AFU must implement the MAC layer. For 40 Gbps Ethernet, the PCS PHY layer
must also be implemented in the AFU.

The Intel FPGA PAC platform installation includes two sample AFU designs for
evaluating the network port I/O feature and as an aid getting started designing your
own AFUs with network port I/O capabilities.

See the following sample AFUs in the platform installation and their related user
guides:

• A 4x10GbE Sample AFU and 8x10GbE Sample AFU: $OPAE_PLATFORM_ROOT/hw/
samples/eth_e2e_e10

• A 40GbE Sample AFU (Only available for Intel PAC with Intel Arria 10 GX FPGA):
$OPAE_PLATFORM_ROOT/hw/samples/eth_e2e_e40

7.1.1.3. Local Memory

The Intel PAC with Intel Arria 10 GX FPGA platform features two DDR4 SDRAM
memory banks, each of 4 GB capacity, and the Intel FPGA PAC D5005 platform
features four DDR4 SDRAM memory banks, each of 8 GB capacity. The SDRAM can be
used by the AFU as a local workspace for large workloads. Each bank can be accessed

7. Hardware Platform OPAE Specifications

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

independently by the AFU. Each memory bank interface is 64-bits and operates at
1066 MHz DDR for Intel PAC with Intel Arria 10 GX FPGA platform and at 1200 MHz
DDR for Intel FPGA PAC D5005 platform.

7.1.2. The PR Region

To facilitate dynamically loading AFUs, the Acceleration Stack utilizes a partial
reconfiguration scheme. The FIM contains one PR region for loading AFUs and a static
region that provides services and resources to loaded AFUs.

Host software uses OPAE utilities and APIs to load an AF into a PR region in the FIM.
An AF is the combination of an AFU PR bitstream and associated AFU metadata. The
AFU PR bitstream is the output from Intel Quartus Prime Pro Edition PR compilation of
your AFU RTL design with the FIM design database provided in the Acceleration Stack
installation. The AFU metadata is used to provide OPAE information on AFU
characteristics and operational parameters and is defined in a separate JSON file. The
Packager utility included in the Acceleration Stack installation generates the AF from
the AFU PR bitstream and AFU metadata. It is possible to have several AF variations
for a given AFU revision by combining its PR bitstream with unique metadata using the
Packager utility.

The current release of the Intel Acceleration Stack supports dynamically swapping
multiple AFUs within a single PR region for each Intel PAC installed in a system.

For usage information on the Packager utility and JSON file metadata format,
supported keyword parameters, and minimum metadata requirements, refer to the
packager tab in the Open Programmable Acceleration Engine (OPAE) Tools Guide.

Related Information

Open Programmable Acceleration Engine (OPAE) Tools Guide

7.1.2.1. Available FPGA Resources for the AFU

The PR region in the FIM has the following FPGA resources available to the AFU design
for two different Intel FPGA PAC platforms.

Intel PAC with Intel Arria 10 GX FPGA platform:

• ALMs: 391,213 (92% of device total)

• M20Ks: 2549 (94% of device total)

• DSP Blocks: 1518 (100% of device total)

Intel FPGA PAC D5005 platform:

• ALMs: 882,076 (95% of device total)

• M20Ks: 11,461 (98% of device total)

• DSP Blocks: 5760 (100% of device total)

7.1.2.2. FIM Interfaces Offered to the AFU

The FIM offers several interfaces to the AFU at the PR region boundary as shown in
the following diagram:

7. Hardware Platform OPAE Specifications

UG-20169 | 2019.08.05

Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

Send Feedback

44

https://opae.github.io/1.1.4/docs/fpga_tools/packager/packager.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9. Device Classes Offered by the Intel PAC

Legend

FIM (static region)

PR Region (AFU slot)

PR Region (AFU Slot)

cci-p clocks power error

hs
si

local-memory

Intel Arria 10 GX or Intel Stratix 10 SX FPGA

Intel PAC

Module Port Device
classes Offered by

Intel PAC

These interfaces are organized into a list of module ports consisting of various OPAE
device classes. Each device class has one or more interfaces available, which the AFU
requests from the platform in its design specification.

The SystemVerilog top-level AFU module port list definitions for each of the following
device class and interface offerings is documented in the following README included in
the Acceleration Stack installation: $OPAE_PLATFORM_ROOT/sw/<OPAE version>/
platforms/afu_top_ifc_db/README.md

7.1.3. Upgrading OPAE SDK Version

There are some changes to the FIM and PR region floorplan areas in the current
version of the OPAE SDK. These changes increase the overall number of DSP and
M20K blocks available to the AFU and also make the network port interface available.
AFU developers should note that because the floorplan and precise resource and
routing utilization is different, an AFU fits differently between OPAE versions.

7. Hardware Platform OPAE Specifications

UG-20169 | 2019.08.05

Send Feedback Accelerator Functional Unit (AFU) Developer’s Guide for Intel® FPGA
Programmable Acceleration Card (Intel® FPGA PAC)

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Accelerator Functional Unit (AFU) Developer’s Guide
for Intel FPGA Programmable Acceleration Card (Intel
FPGA PAC) Archives

Intel Acceleration Stack
Version

User Guide (PDF)

1.2 Accelerator Functional Unit (AFU) Developer's Guide for Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA

1.1 Accelerator Functional Unit (AFU) Developer's Guide

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-afu-dev-1-2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-afu-dev-1-2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-afu-dev-v1-1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

9. Document Revision History for AFU Developer's Guide
for Intel FPGA Programmable Acceleration Card (Intel
FPGA PAC)

Document
Version

Intel Acceleration Stack Version Changes

2019.08.05 2.0 (supported with Intel Quartus Prime Pro
Edition 18.1.2) and 1.2 (supported with Intel
Quartus Prime Pro Edition 17.1.1)

• Added support for the Intel FPGA PAC D5005
platform in the current release.

• Updated section FPGA Tools and IP
Requirements.

• Added new Figure: High Level Block Diagram
of AFU.

• Clarified the burst support information in
section The local-memory Device Class.

• Updated Figure: Save and Open the Tunneling
Session.

• Corrected a document title in section Related
Documentation:
From HSSI User Guide for Intel Programmable
Acceleration Card with Intel Arria 10 GX FPGA
to Networking Interface for Open
Programmable Acceleration Engine: Intel
Programmable Acceleration Card with Intel
Arria 10 GX FPGA.

2019.05.06 1.2 (supported with Intel Quartus Prime Pro
Edition 17.1.1)

Corrected the number of burst the local memory
interface supports in section The local-memory
Device Class.

2019.04.09 1.2 (supported with Intel Quartus Prime Pro
Edition 17.1.1)

Fixed broken PDF link in section Accelerator
Functional Unit (AFU) Developer's Guide for Intel
FPGA Programmable Acceleration Card (Intel
FPGA PAC) Archives.

2019.01.08 1.2 (supported with Intel Quartus Prime Pro
Edition 17.1.1)

Minor edits.

2018.12.20 1.2 (supported with Intel Quartus Prime Pro
Edition 17.1.1)

Updated reference link to the Packager utility tab
in The PR Region section.

2018.12.04 1.2 (supported with Intel Quartus Prime Pro
Edition 17.1.1)

Maintenance release

2018.08.06 1.1 (supported with Intel Quartus Prime Pro
Edition 17.1.1)

Initial release

UG-20169 | 2019.08.05

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20for%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20(Intel%20FPGA%20PAC)%20(UG-20169%202019.08.05)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

	Accelerator Functional Unit (AFU) Developer’s Guide for Intel FPGA Programmable Acceleration Card (Intel FPGA PAC)
	Contents
	1. About this Document
	1.1. Intended Audience
	1.2. Conventions
	1.3. Acronym List for Accelerator Functional Unit Developer’s Guide
	1.4. Acceleration Glossary
	1.5. Related Documentation

	2. Introduction
	2.1. Getting Started with AFU Development
	2.1.1. Development Environment References
	2.1.2. FPGA Tools and IP Requirements

	2.2. Base Knowledge and Skills Prerequisites

	3. Getting Started with Platform Configuration
	4. The Accelerator Functional Unit (AFU)
	4.1. AFU Design Components
	4.2. Basic Building Blocks

	5. Developing AFUs with the OPAE SDK
	5.1. Overview of the OPAE SDK
	5.2. Overview of the OPAE Platform for AFUs
	5.2.1. Platform Device Classes
	5.2.1.1. The clocks Device Class
	5.2.1.2. The cci-p Device Class
	5.2.1.3. The power Device Class
	5.2.1.4. The error Device Class
	5.2.1.5. The hssi Device Class
	5.2.1.6. The local-memory Device Class

	5.2.2. The Platform Interface Manager (PIM)
	5.2.2.1. Interface Transforms
	5.2.2.2. Pipelining
	5.2.2.3. Clock Crossing

	5.3. OPAE SDK Design Flow for AFU Development
	5.3.1. Overview of the Design Flow
	5.3.1.1. Minimal Flow Example
	5.3.1.1.1. Specify the Platform Configuration
	5.3.1.1.2. Design the AFU
	5.3.1.1.3. Specify the Build Configuration
	5.3.1.1.4. Generate the AF Build Environment
	5.3.1.1.5. Generate the AF

	5.3.1.2. General Flow Example
	5.3.1.2.1. Generate the ASE Build Environment
	5.3.1.2.2. Verify the AFU with ASE

	5.3.2. Design Flow Details
	5.3.2.1. Specify the Platform Configuration
	5.3.2.1.1. Specify the AFU's UUID
	5.3.2.1.2. Request a Top-level Interface
	5.3.2.1.3. Extend a Top-level Interface
	5.3.2.1.4. Request Pipelining on a Device Interface
	5.3.2.1.5. Request Clock-crossing on a Device Interface
	5.3.2.1.6. Specify a Requested Device as Optional
	5.3.2.1.7. Specify AFU User Clock Timing

	5.3.2.2. Design the AFU
	5.3.2.2.1. Start with a Top-level Module Template
	5.3.2.2.2. Including the Platform Device Interface Definitions
	5.3.2.2.3. Using the AFU UUID Header File
	5.3.2.2.4. Clock Abstraction for the cci-p Device Interface
	5.3.2.2.5. Generating an AF Build Environment for Source Development

	5.3.2.3. AFU Design Guidelines
	5.3.2.3.1. General Guidelines
	5.3.2.3.2. Utilizing Clock Resources
	5.3.2.3.3. Interfacing with the FPGA Interface Manager (FIM)

	5.3.2.4. Partial Reconfiguration Design Guidelines
	5.3.2.5. Specify the Build Configuration
	5.3.2.6. Generate the ASE Build Environment
	5.3.2.7. Verify the AFU with ASE
	5.3.2.8. Generate the AF Build Environment
	5.3.2.9. Generate the AF

	6. AFU In-System Debug
	6.1. Remote Signal Tap Setup and Use
	6.1.1. Instrumenting the AFU Design for Signal Tap
	6.1.2. Enable Remote Debug and Signal Tap
	6.1.3. Generate the Remote Debug Enabled AF
	6.1.4. Prepare the Remote Debug Host
	6.1.5. Running a Remote Debug Session
	6.1.5.1. Connect to the AFU Target
	6.1.5.2. Using Signal Tap with a Remote Target Connection
	6.1.5.3. Stimulating the Target AFU for In-System Debug
	6.1.5.3.1. Accessing the AFU in Shared Mode

	6.1.5.4. Disconnect from the AFU Target

	6.1.6. Remote Debug Guidelines
	6.1.7. Troubleshooting Remote Debug Connections

	7. Hardware Platform OPAE Specifications
	7.1. Intel FPGA PAC Platform
	7.1.1. The FPGA Interface Manager (FIM)
	7.1.1.1. FPGA Interface Unit (FIU)
	7.1.1.2. Network Port I/O (HSSI)
	7.1.1.3. Local Memory

	7.1.2. The PR Region
	7.1.2.1. Available FPGA Resources for the AFU
	7.1.2.2. FIM Interfaces Offered to the AFU

	7.1.3. Upgrading OPAE SDK Version

	8. Accelerator Functional Unit (AFU) Developer’s Guide for Intel FPGA Programmable Acceleration Card (Intel FPGA PAC) Archives
	9. Document Revision History for AFU Developer's Guide for Intel FPGA Programmable Acceleration Card (Intel FPGA PAC)

