Intel® Pentium® 4 Processor 6x1 Sequence

Specification Update
On 65 nm Process in the 775-land LGA Package, supporting Hyper-Threading Technology and Intel® Extended Memory 64 Technology

June 2008

Notice: The Intel® Pentium® 4 processor 6x1 sequence on 65 nm may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are documented in this Specification Update.
Contents

Preface5

Summary Tables of Changes ..7

Identification Information ..12

Errata ...15

Specification Changes ...26

Specification Clarifications ..28

Documentation Changes ...29
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>-001</td>
<td>Initial release</td>
<td>January 2006</td>
</tr>
<tr>
<td>-002</td>
<td>Updated related documents, updated processor identification table, and updated figure 1.</td>
<td>February 2006</td>
</tr>
<tr>
<td>-003</td>
<td>Added errata AB20, updated processor identification table</td>
<td>March 2006</td>
</tr>
<tr>
<td>-004</td>
<td>Added Errata AB21, AB22 and added C-step info</td>
<td>April 2006</td>
</tr>
<tr>
<td>-005</td>
<td>Added erratum AB23</td>
<td>May 2006</td>
</tr>
<tr>
<td>-006</td>
<td>Added errata AB24-27</td>
<td>June 2006</td>
</tr>
<tr>
<td>-007</td>
<td>Added Rtt Spec Change</td>
<td>August 2006</td>
</tr>
<tr>
<td>-008</td>
<td>Added erratum AB28</td>
<td>September 2006</td>
</tr>
<tr>
<td>-009</td>
<td>Added Vtt_SEL Spec Change</td>
<td>October 2006</td>
</tr>
<tr>
<td>-010</td>
<td>Added D0-step</td>
<td>December 2006</td>
</tr>
<tr>
<td>-011</td>
<td>Updated summary table of changes. Updated processor Identification Table.</td>
<td>April 2008</td>
</tr>
<tr>
<td>-012</td>
<td>Added erratum AB29</td>
<td>June 2008</td>
</tr>
</tbody>
</table>
Preface

This document is an update to the specifications contained in the documents listed in the following Affected Documents/Related Documents table. It is a compilation of device and document errata and specification clarifications and changes, and is intended for hardware system manufacturers and for software developers of applications, operating system, and tools.

Information types defined in the Nomenclature section of this document are consolidated into this update document and are no longer published in other documents. This document may also contain information that has not been previously published.

Affected Documents

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Document Number/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® Pentium® 4 Processor 6x1 Sequence Datasheet</td>
<td>310308</td>
</tr>
</tbody>
</table>

Related Documents

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Document Number/Location</th>
</tr>
</thead>
</table>
Nomenclature

S-Spec Number is a five-digit code used to identify products. Products are differentiated by their unique characteristics (e.g., core speed, L2 cache size, package type, etc.) as described in the processor identification information table. Care should be taken to read all notes associated with each S-Spec number.

QDF Number is a several digit code that is used to distinguish between engineering samples. These processors are used for qualification and early design validation. The functionality of these parts can range from mechanical only to fully functional. The NDA specification update has a processor identification information table that lists these QDF numbers and the corresponding product sample details.

Errata are design defects or errors. Errata may cause the processor’s behavior to deviate from published specifications. Hardware and software designed to be used with any given stepping must assume that all errata documented for that stepping are present on all devices.

Specification Changes are modifications to the current published specifications. These changes will be incorporated in the next release of the specifications.

Specification Clarifications describe a specification in greater detail or further highlight a specification’s impact to a complex design situation. These clarifications will be incorporated in the next release of the specifications.

Documentation Changes include typos, errors, or omissions from the current published specifications. These changes will be incorporated in the next release of the specifications.

Note: Errata remain in the specification update throughout the product’s lifecycle, or until a particular stepping is no longer commercially available. Under these circumstances, errata removed from the specification update are archived and available upon request. Specification changes, specification clarifications and documentation changes are removed from the specification update when the appropriate changes are made to the appropriate product specification or user documentation (datasheets, manuals, etc.).

§
Summary Tables of Changes

The following table indicates the Specification Changes, Errata, Specification Clarifications or Documentation Changes, which apply to the listed MCH steppings. Intel intends to fix some of the errata in a future stepping of the component, and to account for the other outstanding issues through documentation or Specification Changes as noted. This table uses the following notations:

Codes Used in Summary Table

Stepping

X: Erratum, Specification Change or Clarification that applies to this stepping.

(No mark) or (Blank Box): This erratum is fixed in listed stepping or specification change does not apply to listed stepping.

Status

Doc: Document change or update that will be implemented.

PlanFix: This erratum may be fixed in a future stepping of the product.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Row

Shaded: This item is either new or modified from the previous version of the document.

Note: Each Specification Update item is prefixed with a capital letter to distinguish the product. The key below details the letters that are used in Intel’s microprocessor Specification Updates:

A = Dual-Core Intel® Xeon® processor 7000 sequence

C = Intel® Celeron® processor

D = Dual-Core Intel® Xeon® processor 2.80 GHz
E = Intel® Pentium® III processor
F = Intel® Pentium® processor Extreme Edition and Intel® Pentium® D processor
I = Dual-Core Intel® Xeon® processor 5000 series
J = 64-bit Intel® Xeon® processor MP with 1MB L2 cache
K = Mobile Intel® Pentium® III processor
L = Intel® Celeron® D processor
M = Mobile Intel® Celeron® processor
N = Intel® Pentium® 4 processor
O = Intel® Xeon® processor MP
P = Intel® Xeon® processor
Q = Mobile Intel® Pentium® 4 processor supporting Hyper-Threading technology on 90-nm process technology
R = Intel® Pentium® 4 processor on 90 nm process
S = 64-bit Intel® Xeon® processor with 800 MHz system bus (1 MB and 2 MB L2 cache versions)
T = Mobile Intel® Pentium® 4 processor-M
U = 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache
V = Mobile Intel® Celeron® processor on .13 micron process in Micro-FCPGA package
W = Intel® Celeron® M processor
X = Intel® Pentium® M processor on 90nm process with 2-MB L2 cache and Intel® processor A100 and A110 with 512-KB L2 cache
Y = Intel® Pentium® M processor
Z = Mobile Intel® Pentium® 4 processor with 533 MHz system bus
AA = Intel® Pentium® D processor 900 sequence and Intel® Pentium® processor Extreme Edition 955, 965
AB = Intel® Pentium® 4 processor 6x1 sequence
AC = Intel(R) Celeron(R) processor in 478 pin package
AD = Intel(R) Celeron(R) D processor on 65nm process
AE = Intel® Core™ Duo processor and Intel® Core™ Solo processor on 65nm process
AF = Dual-Core Intel® Xeon® processor LV
Summary Tables of Changes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Dual-Core Intel® Xeon® processor 5100 series</td>
</tr>
<tr>
<td>AH</td>
<td>Intel® Core™2 Duo/Solo processor for Intel® Centrino® Duo processor technology</td>
</tr>
<tr>
<td>AI</td>
<td>Intel® Core™2 Extreme processor X6800 and Intel® Core™2 Duo desktop processor E6000 and E4000 sequence</td>
</tr>
<tr>
<td>AJ</td>
<td>Quad-Core Intel® Xeon® processor 5300 series</td>
</tr>
<tr>
<td>AK</td>
<td>Intel® Core™2 Extreme quad-core processor QX6000 sequence and Intel® Core™2 Quad processor Q6000 sequence</td>
</tr>
<tr>
<td>AL</td>
<td>Dual-Core Intel® Xeon® processor 7100 series</td>
</tr>
<tr>
<td>AM</td>
<td>Intel® Celeron® processor 400 sequence</td>
</tr>
<tr>
<td>AN</td>
<td>Intel® Pentium® dual-core processor</td>
</tr>
<tr>
<td>AQ</td>
<td>Quad-Core Intel® Xeon® processor 3200 series</td>
</tr>
<tr>
<td>AO</td>
<td>Dual-Core Intel® Xeon® processor 3000 series</td>
</tr>
<tr>
<td>AQ</td>
<td>Intel® Pentium® dual-core desktop processor E2000 sequence</td>
</tr>
<tr>
<td>AR</td>
<td>Intel® Celeron® processor 500 series</td>
</tr>
<tr>
<td>AS</td>
<td>Intel® Xeon® processor 7200, 7300 series</td>
</tr>
<tr>
<td>AT</td>
<td>Intel® Celeron® processor 200 series</td>
</tr>
<tr>
<td>AV</td>
<td>Intel® Core™2 Extreme processor QX9650 and Intel® Core™2 Quad processor Q9000 series</td>
</tr>
<tr>
<td>AW</td>
<td>Intel® Core™ 2 Duo processor E8000 series</td>
</tr>
<tr>
<td>AX</td>
<td>Quad-Core Intel® Xeon® processor 5400 series</td>
</tr>
<tr>
<td>AY</td>
<td>Dual-Core Intel® Xeon® processor 5200 series</td>
</tr>
<tr>
<td>AZ</td>
<td>Intel® Core™2 Duo Processor and Intel® Core™2 Extreme Processor on 45-nm Process</td>
</tr>
<tr>
<td>AAA</td>
<td>Quad-Core Intel® Xeon® processor 3300 series</td>
</tr>
<tr>
<td>AAB</td>
<td>Dual-Core Intel® Xeon® E3110 Processor</td>
</tr>
<tr>
<td>AAC</td>
<td>Intel® Celeron® dual-core processor E1000 series</td>
</tr>
<tr>
<td>AAD</td>
<td>Intel® Core™2 Extreme Processor QX9775Δ</td>
</tr>
<tr>
<td>AAE</td>
<td>Intel® Atom™ processor Z5xx series</td>
</tr>
<tr>
<td>Number</td>
<td>Steppings</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>B1</td>
</tr>
<tr>
<td>AB1</td>
<td>X</td>
</tr>
<tr>
<td>AB2</td>
<td>X</td>
</tr>
<tr>
<td>AB3</td>
<td>X</td>
</tr>
<tr>
<td>AB4</td>
<td>X</td>
</tr>
<tr>
<td>AB5</td>
<td>X</td>
</tr>
<tr>
<td>AB6</td>
<td>X</td>
</tr>
<tr>
<td>AB7</td>
<td>X</td>
</tr>
<tr>
<td>AB8</td>
<td>X</td>
</tr>
<tr>
<td>AB9</td>
<td>X</td>
</tr>
<tr>
<td>AB10</td>
<td>X</td>
</tr>
<tr>
<td>AB11</td>
<td>X</td>
</tr>
<tr>
<td>AB12</td>
<td>X</td>
</tr>
<tr>
<td>AB13</td>
<td>X</td>
</tr>
<tr>
<td>AB14</td>
<td>X</td>
</tr>
<tr>
<td>AB15</td>
<td>X</td>
</tr>
<tr>
<td>AB16</td>
<td>X</td>
</tr>
<tr>
<td>AB17</td>
<td>X</td>
</tr>
<tr>
<td>AB18</td>
<td>X</td>
</tr>
<tr>
<td>AB19</td>
<td>X</td>
</tr>
<tr>
<td>AB20</td>
<td>X</td>
</tr>
</tbody>
</table>
Specification Changes

<table>
<thead>
<tr>
<th>Number</th>
<th>Specification Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>RTT Specification change</td>
</tr>
<tr>
<td>AB2</td>
<td>VTT_SEL Specification Change</td>
</tr>
</tbody>
</table>

Specification Clarifications

There are no Specification Clarifications in this Specification Update revision.

Documentation Changes

There are no Documentation Changes in this Specification Update revision.

Steppings

<table>
<thead>
<tr>
<th>Number</th>
<th>Steppings</th>
<th>Plans</th>
<th>ERRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB21</td>
<td>X X X X</td>
<td>No Fix</td>
<td>Using 2M/4M Pages When A20M# Is Asserted May Result in Incorrect Address Translations</td>
</tr>
<tr>
<td>AB22</td>
<td>X X X X</td>
<td>No Fix</td>
<td>Writing Shared Unaligned Data that Crosses a Cache Line without Proper Semaphores or Barriers May Expose a Memory Ordering Issue</td>
</tr>
<tr>
<td>AB23</td>
<td>X X X X</td>
<td>No Fix</td>
<td>The IA32_MC0_STATUS and IA32_MC1_STATUS Overflow Bit is not set when Multiple Un-correctable Machine Check Errors Occur at the Same Time</td>
</tr>
<tr>
<td>AB24</td>
<td>X X X X</td>
<td>No Fix</td>
<td>IRET under Certain Conditions May Cause an Unexpected Alignment Check Exception</td>
</tr>
<tr>
<td>AB25</td>
<td>X X X X</td>
<td>No Fix</td>
<td>Processor May Fault When the Upper 8 Bytes of Segment Selector Is Loaded from a Far Jump through a Call Gate via the Local Descriptor Table</td>
</tr>
<tr>
<td>AB26</td>
<td>X X X X</td>
<td>No Fix</td>
<td>The Processor May Issue Front Side Bus Transactions up to 6 Clocks after RESET# is Asserted</td>
</tr>
<tr>
<td>AB27</td>
<td>X X X X</td>
<td>No Fix</td>
<td>Front Side Bus Machine Checks May be Reported as a Result of On-Going Transactions during Warm Reset</td>
</tr>
<tr>
<td>AB28</td>
<td>X X X X</td>
<td>No Fix</td>
<td>A Continuous Loop Executing Bus Lock Transactions on One Logical Processor may Prevent Another Logical Processor from Acquiring Resources</td>
</tr>
<tr>
<td>AB29</td>
<td>X X X X</td>
<td>No Fix</td>
<td>A VM Exit Occuring in IA-32e Mode May Not Produce a VMX Abort When Expected</td>
</tr>
</tbody>
</table>
General Information

Figure 1. Intel® Pentium® 4 Processor 6x1 Sequence Package supporting 775_VR_CONFIG_05A Specifications (Top Markings)
Identification Information

The Intel® Pentium® 4 processor 6x1 sequence may be identified by the following values:

<table>
<thead>
<tr>
<th>Family¹</th>
<th>Model²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111b</td>
<td>0110b</td>
</tr>
</tbody>
</table>

NOTES:
2. The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX register after the CPUID instruction is executed with a 1 in the EAX register, and the model field of the Device ID register accessible through Boundary Scan.

Cache and TLB descriptor parameters are provided in the EAX, EBX, ECX and EDX registers after the CPUID instruction is executed with a 2 in the EAX register. Refer to the Intel Processor Identification and the CPUID Instruction Application Note (AP-485) for further information on the CPUID instruction.

Table 1. Intel® Pentium® 4 Processor 6x1 Sequence Identification Information

<table>
<thead>
<tr>
<th>S-Spec</th>
<th>Core Stepping</th>
<th>L2 Cache Size (bytes)</th>
<th>Processor Signature</th>
<th>Processor Number</th>
<th>Speed Core/Bus</th>
<th>Package and Revision</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL8WJ</td>
<td>B1</td>
<td>2M</td>
<td>0F62h</td>
<td>631</td>
<td>3GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>SL8WH</td>
<td>B1</td>
<td>2M</td>
<td>0F62h</td>
<td>641</td>
<td>3.2GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>SL8WG</td>
<td>B1</td>
<td>2M</td>
<td>0F62h</td>
<td>651</td>
<td>3.4GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>SL8WF</td>
<td>B1</td>
<td>2M</td>
<td>0F62h</td>
<td>661</td>
<td>3.6GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>SL94Y</td>
<td>B1</td>
<td>2M</td>
<td>0F62h</td>
<td>631</td>
<td>3GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>SL94X</td>
<td>B1</td>
<td>2M</td>
<td>0F62h</td>
<td>641</td>
<td>3.2GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>SL94W</td>
<td>B1</td>
<td>2M</td>
<td>0F62h</td>
<td>651</td>
<td>3.4GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>SL94V</td>
<td>B1</td>
<td>2M</td>
<td>0F62h</td>
<td>661</td>
<td>3.6GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>SL96L</td>
<td>C1</td>
<td>2M</td>
<td>0F64h</td>
<td>631</td>
<td>3.00GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>SL96K</td>
<td>C1</td>
<td>2M</td>
<td>0F64h</td>
<td>641</td>
<td>3.20GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>
Table 1. Intel® Pentium® 4 Processor 6x1 Sequence Identification Information

<table>
<thead>
<tr>
<th>S-Spec</th>
<th>Core Stepping</th>
<th>L2 Cache Size (bytes)</th>
<th>Processor Signature</th>
<th>Processor Number</th>
<th>Speed Core/Bus</th>
<th>Package and Revision</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL96J</td>
<td>C1</td>
<td>2M</td>
<td>0F64h</td>
<td>651</td>
<td>3.40GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>SL96H</td>
<td>C1</td>
<td>2M</td>
<td>0F64h</td>
<td>661</td>
<td>3.60GHz/800MHz</td>
<td>775-Land LGA</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>SL9KG</td>
<td>D0</td>
<td>2M</td>
<td>0F65h</td>
<td>631</td>
<td>3.00GHz/800MHz</td>
<td>775-Land LGA</td>
<td>2, 3, 6</td>
</tr>
<tr>
<td>SL9KR</td>
<td>D0</td>
<td>2M</td>
<td>0F65h</td>
<td>631</td>
<td>3.00GHz/800MHz</td>
<td>775-Land LGA</td>
<td>2, 3, 6</td>
</tr>
<tr>
<td>SL9KF</td>
<td>D0</td>
<td>2M</td>
<td>0F65h</td>
<td>641</td>
<td>3.20GHz/800MHz</td>
<td>775-Land LGA</td>
<td>2, 3, 6</td>
</tr>
<tr>
<td>SL9KE</td>
<td>D0</td>
<td>2M</td>
<td>0F65h</td>
<td>661</td>
<td>3.40GHz/800MHz</td>
<td>775-Land LGA</td>
<td>2, 3, 6</td>
</tr>
<tr>
<td>SL9KD</td>
<td>D0</td>
<td>2M</td>
<td>0F65h</td>
<td>661</td>
<td>3.60GHz/800MHz</td>
<td>775-Land LGA</td>
<td>2, 3, 6</td>
</tr>
</tbody>
</table>

NOTES:

1. These processors support the 775_VR_CONFIG_05A (mainstream) specifications.
2. These parts support Enhanced Intel SpeedStep® Technology, Enhanced HALT State, and Thermal Monitor 2.
3. These parts support Hyper-Threading Technology.
4. These parts do NOT support Enhanced Intel SpeedStep® Technology, Enhanced HALT State, or Thermal Monitor 2.
5. These parts are affected by erratum AB19.
6. These processors support the 775_VR_CONFIG_06 specifications.
AB1. **Bus Locks and SMC Detection May Cause the Processor to Hang Temporarily**

Problem: The processor may temporarily hang in a Hyper-Threading Technology enabled system if one logical processor executes a synchronization loop that includes one or more locks and is waiting for release by the other logical processor. If the releasing logical processor is executing instructions that are within the detection range of the self-modifying code (SMC) logic, then the processor may be locked in the synchronization loop until the arrival of an interrupt or other event.

Implication: If this erratum occurs in a Hyper-Threading Technology enabled system, the application may temporarily stop making forward progress. Intel has not observed this erratum with any commercially available software.

Workaround: None identified.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB2. **Memory Aliasing of Pages As Uncacheable Memory Type and Write Back (WB) May Hang the System**

Problem: When a page is being accessed as either Uncacheable (UC) or Write Combining (WC) and WB, under certain bus and memory timing conditions, the system may loop in a continual sequence of UC fetch, implicit writeback, and Request For Ownership (RFO) retries.

Implication: This erratum has not been observed in any commercially available operating system or application. The aliasing of memory regions, a condition necessary for this erratum to occur, is documented as being unsupported in the IA-32 Intel® Architecture Software Developer’s Manual, *Volume 3*, section 10.12.4, Programming the PAT. However, if this erratum occurs the system may hang.

Workaround: The pages should not be mapped as either UC or WC and WB at the same time.

Status: For the steppings affected, see the *Summary Tables of Changes*.
AB3. **Data Breakpoints on the High Half of a Floating Point Line Split May Not Be Captured**

Problem: When a floating point load which splits a 64-byte cache line gets a floating point stack fault, and a data breakpoint register maps to the high line of the floating point load, internal boundary conditions exist that may prevent the data breakpoint from being captured.

Implication: When this erratum occurs, a data breakpoint will not be captured.

Workaround: None identified.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB4. **MOV CR3 Performs Incorrect Reserved Bit Checking When in PAE Paging**

Problem: The MOV CR3 instruction should perform reserved bit checking on the upper unimplemented address bits. This checking range should match the address width reported by CPUID instruction 0x80000008. This erratum applies whenever PAE is enabled.

Implication: Software that sets the upper address bits on a MOV CR3 instruction and expects a fault may fail. This erratum has not been observed with commercially available software.

Workaround: None identified.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB5. **Incorrect Access Controls to MSR_LASTBRANCH_0_FROM_LIP MSR Registers**

Problem: When an access is made to the MSR_LASTBRANCH_0_FROM_LIP MSR register, an expected #GP fault may not happen.

Implication: A read of the MSR_LASTBRANCH_0_FROM_LIP MSR register may not cause a #GP fault.

Workaround: None identified

Status: For the steppings affected, see the *Summary Tables of Changes*.
AB6. **FXRSTOR May Not Restore Non-canonical Effective Addresses on Processors with Intel® Extended Memory 64 Technology (Intel® EM64T) Enabled**

Problem: If an x87 data instruction has been executed with a non-canonical effective address, FXSAVE may store that non-canonical FP Data Pointer (FDP) value into the save image. An FXRSTOR instruction executed with 64-bit operand size may signal a General Protection Fault (#GP) if the FDP or FP Instruction Pointer (FIP) is in non-canonical form.

Implication: When this erratum occurs, Intel EM64T enabled systems may encounter an unintended #GP fault.

Workaround: Software should avoid using non-canonical effective addressing in EM64T enabled processors. BIOS can contain a workaround for this erratum removing the unintended #GP fault on FXRSTOR.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB7. **A Push of ESP That Faults May Zero the Upper 32 Bits of RSP**

Problem: In the event that a push ESP instruction, that faults, is executed in compatibility mode, the processor will incorrectly zero upper 32-bits of RSP.

Implication: A Push of ESP in compatibility mode will zero the upper 32-bits of RSP. Due to this erratum, this instruction fault may change the contents of RSP. This erratum has not been observed in commercially available software.

Workaround: None identified.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB8. **Checking of Page Table Base Address May Not Match the Address Bit Width Supported by the Platform**

Problem: If the page table base address, included in the page map level-4 table, page-directory pointer table, page-directory table or page table, exceeds the physical address range supported by the platform (e.g., 36-bit) and it is less than the implemented address range (e.g., 40-bit), the processor does not check if the address is invalid.

Implication: If software sets such invalid physical address in those tables, the processor does not generate a page fault (#PF) upon access to that virtual address, and the access results in an incorrect read or write. If BIOS provides only valid physical address ranges to the operating system, this erratum will not occur.

Workaround: BIOS must provide valid physical address ranges to the operating system.

Status: For the steppings affected, see the *Summary Tables of Changes*.
AB9. **With TF (Trap Flag) Asserted, FP Instruction That Triggers an Unmasked FP Exception May Take Single Step Trap before Retirement of Instruction**

Problem: If an FP instruction generates an unmasked exception with the EFLAGS.TF=1, it is possible for external events to occur, including a transition to a lower power state. When resuming from the lower power state, it may be possible to take the single step trap before the execution of the original FP instruction completes.

Implication: A Single Step trap will be taken when not expected.

Workaround: None identified.

Status: For the steppings affected, see the Summary Tables of Changes.

AB10. **BTS (Branch Trace Store) and PEBS (Precise Event Based Sampling) May Update Memory outside the BTS/PEBS Buffer**

Problem: If the BTS/PEBS buffer is defined such that:

- The difference between BTS/PEBS buffer base and BTS/PEBS absolute maximum is not an integer multiple of the corresponding record sizes
- BTS/PEBS absolute maximum is less than a record size from the end of the virtual address space
- The record that would cross BTS/PEBS absolute maximum will also continue past the end of the virtual address space
- A BTS/PEBS record can be written that will wrap at the 4G boundary (IA32) or 2^64 boundary (EM64T mode), and write memory outside of the BTS/PEBS buffer.

Implication: Software that uses BTS/PEBS near the 4G boundary (IA32) or 2^64 boundary (EM64T mode), and defines the buffer such that it does not hold an integer multiple of records can update memory outside the BTS/PEBS buffer.

Workaround: Define BTS/PEBS buffer such that BTS/PEBS absolute maximum minus BTS/PEBS buffer base is integer multiple of the corresponding record sizes as recommended in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3.

Status: For the steppings affected, see the Summary Tables of Changes.
Errata

AB11. **Control Register 2 (CR2) Can be Updated during a REP MOVS/STOS Instruction with Fast Strings Enabled**

Problem: Under limited circumstances while executing a REP MOVS/STOS string instruction, with fast strings enabled, it is possible for the value in CR2 to be changed as a result of an interim paging event, normally invisible to the user. Any higher priority architectural event that arrives and is handled while the interim paging event is occurring may see the modified value of CR2.

Implication: The value in CR2 is correct at the time that an architectural page fault is signaled. Intel has not observed this erratum with any commercially available software.

Workaround: None identified.

Status: For the steppings affected, see the Summary Tables of Changes.

AB12. **REP STOS/MOVs Instructions with RCX >= 2^32 May Cause a System Hang**

Problem: In IA-32e mode using Intel EM64T-enabled processors, executing a repeating string instruction with the iteration count greater than or equal to 2^32 and a pending event may cause the REP STOS/MOVs instruction to live lock and hang.

Implication: When this erratum occurs, the processor may live lock and result in a system hang. Intel has not observed this erratum with any commercially available software.

Workaround: Do not use strings larger than 4 GB.

Status: For the steppings affected, see the Summary Tables of Changes.

AB13. **A 64-Bit Value of Linear Instruction Pointer (LIP) May be Reported Incorrectly in the Branch Trace Store (BTS) Memory Record or in the Precise Event Based Sampling (PEBS) Memory Record**

Problem: On a processor supporting Intel® EM64T,

- If an instruction fetch wraps around the 4G boundary in Compatibility Mode, the 64-bit value of LIP in the BTS memory record will be incorrect (upper 32 bits will be set to FFFFFFFFh when they should be 0).

- If a PEBS event occurs on an instruction whose last byte is at memory location FFFFFFFFh, the 64-bit value of LIP in the PEBS record will be incorrect (upper 32 bits will be set to FFFFFFFFFFFFh when they should be 0).

Implication: Intel has not observed this erratum on any commercially available software.

Workaround: None identified.

Status: For the steppings affected, see the Summary Tables of Changes.
AB14. Two Correctable L2 Cache Errors in Close Proximity May Cause a System Hang

Problem: If two correctable L2 cache errors are detected in close proximity to each other, a livelock may occur as a result of the processor being unable to resolve this condition.

Implication: When this erratum occurs, the processor may livelock and result in a system hang. Intel has only observed this erratum while injecting cache errors in simulation.

Workaround: None identified.

Status: For the steppings affected, see the Summary Tables of Changes.

AB15. Processor May Hang with a 25% or Less STPCLK# Duty Cycle

Problem: If a system de-asserts STPCLK# at a 25% or less duty cycle and the processor thermal control circuit (TCC) on-demand clock modulation is active, the processor may hang. This erratum does not occur under the automatic mode of the TCC.

Implication: When this erratum occurs, the processor may hang.

Workaround: If use of the on-demand mode of the processor's TCC is desired in conjunction with STPCLK# modulation, then assure that STPCLK# is not asserted at a 25% duty cycle.

Status: For the steppings affected, see the Summary Tables of Changes.

AB16. Machine Check Exceptions May not Update Last-Exception Record MSRs (LERs)

Problem: If a system de-asserts STPCLK# at a 25% or less duty cycle and the processor thermal control circuit (TCC) on-demand clock modulation is active, the processor may hang. This erratum does not occur under the automatic mode of the TCC.

Implication: When this erratum occurs, the LER may not contain information relating to the machine check exception. They will contain information relating to the exception prior to the machine check exception.

Workaround: None identified.

Status: For the steppings affected, see the Summary Tables of Changes.
AB17. Writing the Local Vector Table (LVT) when an Interrupt is Pending May Cause an Unexpected Interrupt

Problem: If a local interrupt is pending when the LVT entry is written, an interrupt may be taken on the new interrupt vector even if the mask bit is set.

Implication: An interrupt may immediately be generated with the new vector when a LVT entry is written, even if the new LVT entry has the mask bit set. If there is no Interrupt Service Routine (ISR) set up for that vector the system will GP fault. If the ISR does not do an End of Interrupt (EOI) the bit for the vector will be left set in the in-service register and mask all interrupts at the same or lower priority.

Workaround: Any vector programmed into an LVT entry must have an ISR associated with it, even if that vector was programmed as masked. This ISR routine must do an EOI to clear any unexpected interrupts that may occur. The ISR associated with the spurious vector does not generate an EOI, therefore the spurious vector should not be used when writing the LVT.

Status: For the steppings affected, see the *Summary Tables of Changes.*

AB18. At a Bus Ratio of 13:1, RCNT and Address Parity May be Incorrect

Problem: In a system running at the 13:1 bus ratio, RCNT[0] (ADDR# [28], phase b) may report incorrect information.

Implication: RCNT[0] may contain incorrect information and cause address parity machine check errors.

Workaround: Address parity should be disabled and RCNT information should be ignored at the bus ratio of 13:1.

Status: For the steppings affected, see the *Summary Tables of Changes.*

AB19. During an Enhanced HALT, Enhanced Intel SpeedStep® Technology, or Thermal Monitor 2 Ratio Transition the System May Hang

Problem: The BNR signal may not function properly during an Enhanced HALT, Enhanced Intel SpeedStep technology, or Thermal Monitor 2 ratio transition.

Implication: The system may hang due to incorrect BNR signaling.

Workaround: It is possible for the BIOS to contain a workaround for this erratum.

Status: For the steppings affected, see the *Summary Tables of Changes.*
L2 Cache ECC Machine Check Errors May be erroneously Reported after an Asynchronous RESET# Assertion

Problem: Machine check status MSRs may incorrectly report the following L2 Cache ECC machine-check errors when cache transactions are in-flight and RESET# is asserted:

- Instruction Fetch Errors (IA32_MC2_STATUS with MCA error code 153)
- L2 Data Write Errors (IA32_MC1_STATUS with MCA error code 145)

Implication: Uncorrected or corrected L2 ECC machine check errors may be erroneously reported. Intel has not observed this erratum on any commercially available system.

Workaround: When a real run-time L2 Cache ECC Machine Check occurs, a corresponding valid error will normally be logged in the IA32_MC0_STATUS register. BIOS may clear IA32_MC2_STATUS and/or IA32_MC1_STATUS for these specific errors when IA32_MC0_STATUS does not have its VAL flag set.

Status: For the steppings affected, see the Summary Tables of Changes.

Using 2M/4M Pages When A20M# Is Asserted May Result in Incorrect Address Translations

Problem: An external A20M# pin if enabled forces address bit 20 to be masked (forced to zero) to emulate real-address mode address wraparound at 1 megabyte. However, if all of the following conditions are met, address bit 20 may not be masked:

- Paging is enabled.
- A linear address has bit 20 set.
- The address references a large page.
- A20M# is enabled.

Implication: When A20M# is enabled and an address references a large page the resulting translated physical address may be incorrect. This erratum has not been observed with any commercially available operating system.

Workaround: Operating systems should not allow A20M# to be enabled if the masking of address bit 20 could be applied to an address that references a large page. A20M# is normally only used with the first megabyte of memory.

Status: For the steppings affected, see the Summary Tables of Changes.
AB22. **Writing Shared Unaligned Data that Crosses a Cache Line without Proper Semaphores or Barriers May Expose a Memory Ordering Issue**

Problem: Software which is written so that multiple agents can modify the same shared unaligned memory location at the same time may experience a memory ordering issue if multiple loads access this shared data shortly thereafter. Exposure to this problem requires the use of a data write which spans a cache line boundary.

Implication: This erratum may cause loads to be observed out of order. Intel has not observed this erratum with any commercially available software or system.

Workaround: Software should ensure at least one of the following is true when modifying shared data by multiple agents:

- The shared data is aligned
- Proper semaphores or barriers are used in order to prevent concurrent data accesses

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB23. **The IA32_MC0_STATUS and IA32_MC1_STATUS Overflow Bit is not set when Multiple Un-correctable Machine Check Errors Occur at the Same Time**

Problem: When two enabled MC0/MC1 un-correctable machine check errors are detected in the same bank in the same internal clock cycle, the highest priority error will be logged in IA32_MC0_STATUS / IA32_MC1_STATUS register, but the overflow bit may not be set.

Implication: The highest priority error will be logged and signaled if enabled, but the overflow bit in the IA32_MC0_STATUS/ IA32_MC1_STATUS register may not be set.

Workaround: None identified.

Status: For the steppings affected, see the *Summary Tables of Changes*.
AB24. IRET under Certain Conditions May Cause an Unexpected Alignment Check Exception

Problem: In IA-32e mode, it is possible to get an Alignment Check Exception (#AC) on the IRET instruction even though alignment checks were disabled at the start of the IRET. This can only occur if the IRET instruction is returning from CPL3 code to CPL3 code. IRETs from CPL0/1/2 are not affected. This erratum can occur if the EFLAGS value on the stack has the AC flag set, and the interrupt handler's stack is misaligned. In IA-32e mode, RSP is aligned to a 16-byte boundary before pushing the stack frame.

Implication: In IA-32e mode, under the conditions given above, an IRET can get a #AC even if alignment checks are disabled at the start of the IRET. This erratum can only be observed with a software generated stack frame.

Workaround: Software should not generate misaligned stack frames for use with IRET.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB25. Processor May Fault When the Upper 8 Bytes of Segment Selector Is Loaded from a Far Jump through a Call Gate via the Local Descriptor Table

Problem: In IA-32e mode of the Intel EM64T processor, control transfers through a call gate via the Local Descriptor Table (LDT) that uses a 16-byte descriptor, the upper 8-byte access may wrap and access an incorrect descriptor in the LDT. This only occurs on an LDT with a LIMIT>0x10008 with a 16-byte descriptor that has a selector of 0xFFFC.

Implication: In the event this erratum occurs, the upper 8-byte access may wrap and access an incorrect descriptor within the LDT, potentially resulting in a fault or system hang. Intel has not observed this erratum with any commercially available software.

Workaround: None identified.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB26. The Processor May Issue Front Side Bus Transactions up to 6 Clocks after RESET# is Asserted

Problem: The processor may issue transactions beyond the documented 3 Front Side Bus (FSB) clocks and up to 6 FSB clocks after RESET# is asserted in the case of a warm reset. A warm reset is where the chipset asserts RESET# when the system is running.

Implication: The processor may issue transactions up to 6 FSB clocks after the RESET# is asserted.

Workaround: None identified.

Status: For the steppings affected, see the *Summary Tables of Changes*.
Errata

AB27. **Front Side Bus Machine Checks May be Reported as a Result of On-Going Transactions during Warm Reset**

Problem: Processor Front Side Bus (FSB) protocol/signal integrity machine checks may be reported if the transactions are initiated or in-progress during a warm reset. A warm reset is where the chipset asserts RESET# when the system is running.

Implication: The processor may log FSB protocol/signal integrity machine checks if transactions are allowed to occur during RESET# assertions.

Workaround: BIOS may clear FSB protocol/signal integrity machine checks for systems/chipsets which do not block new transactions during RESET# assertions.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB28. **A Continuous Loop Executing Bus Lock Transactions on One Logical Processor may Prevent Another Logical Processor from Acquiring Resources**

Problem: In a system supporting Hyper-Threading Technology, when one hardware thread is in a continuous loop executing bus locks plus other traffic, the other hardware thread may be prevented from acquiring resources to also execute a lock.

Implication: This erratum may cause system hang or unpredictable system behavior. This erratum has not been observed with commercially available software.

Workaround: None identified.

Status: For the steppings affected, see the *Summary Tables of Changes*.

AB29. **A VM Exit Occurring in IA-32e Mode May Not Produce a VMX Abort When Expected**

Problem: If a VM exit occurs while the processor is in IA-32e mode and the “host address-space size” VM-exit control is 0, a VMX abort should occur. Due to this erratum, the expected VMX aborts may not occur and instead the VM Exit will occur normally. The conditions required to observe this erratum are a VM entry that returns from SMM with the “IA-32e guest” VM-entry control set to 1 in the SMM VMCS and the “host address-space size” VM-exit control cleared to 0 in the executive VMCS.

Implication: A VM Exit will occur when a VMX Abort was expected.

Workaround: An SMM VMM should always set the “IA-32e guest” VM-entry control in the SMM VMCS to be the value that was in the LMA bit (IA32_EFER.LMA.LMA[bit 10]) in the IA32_EFER MSR (C0000080H) at the time of the last SMM VM exit. If this guideline is followed, that value will be 1 only if the “host address-space size” VM-exit control is 1 in the executive VMCS.

Status: For the steppings affected, see the *Summary Tables of Changes*.

§
Specification Changes

The Specification Changes listed in this section apply to the following document:

- *Intel® Pentium® 4 Processor 6x1Δ Sequence Datasheet*

All Specification Changes will be incorporated into a future version of the appropriate Pentium® 4 processor documentation.

Δ Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.

AB1. RTT Specification change

The following table is an updated RTT signal specification as defined in Table 4-3 (GTL+ Bus Voltage Definitions) of the *Intel® Pentium® 4 Processor 6x1Δ Sequence Processor Electrical, Mechanical, and Thermal Specifications (EMTS).*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTLREF_PU</td>
<td>GTLREF pull up resistor</td>
<td>124 * 0.99</td>
<td>124</td>
<td>124 * 1.01</td>
<td>W</td>
</tr>
<tr>
<td>GTLREF_PD</td>
<td>GTLREF pull down resistor</td>
<td>210 * 0.99</td>
<td>210</td>
<td>210 * 1.01</td>
<td>W</td>
</tr>
<tr>
<td>RPULLUP</td>
<td>On die pull-up for BOOTSELECT signal</td>
<td>500</td>
<td>5000</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>RTT</td>
<td>60W Platform Termination Resistance</td>
<td>51</td>
<td>60</td>
<td>66</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>50W Platform Termination Resistance</td>
<td>39</td>
<td>50</td>
<td>55</td>
<td>W</td>
</tr>
</tbody>
</table>

The RTT specification change from 42 Ohm to 39 Ohm at 50 Ohm Platform Termination resistance.

AB2. VTT_SEL Specification change

The following text is an updated description of VTT_SEL signal in the *Intel® Pentium® 4 Processor 6x1Δ Sequence Datasheet.*

- VTT_SEL will be moved from “Open Drain Signals” to “Signals with No RTT” in Table 2-7 (Signal Characteristics)
- The signal description for VTT_SEL will be updated to include “This land is connected internally in the package to VTT” in Table 5-3 (Signal Description)
 Specification Clarifications

The Specification Clarifications listed in this section apply to the following documents:

- Intel® Pentium® 4 Processor 6x1⁴ Sequence Datasheet

All Specification Clarifications will be incorporated into a future version of the appropriate Pentium® 4 processor 6x1 sequence documentation.

§
The Documentation Changes listed in this section apply to the following documents:

- Intel® Pentium® 4 Processor 6x14 Sequence Datasheet

All Documentation Changes will be incorporated into a future version of the appropriate Pentium® 4 processor 6x1 sequence documentation.

Note: Documentation changes for IA-32 Intel® Architecture Software Developer’s Manual volumes 1, 2A, 2B, 3A, and 3B will be posted in a separate document IA-32 Intel® Architecture Software Developer’s Manual Documentation Changes. Follow the link below to become familiar with this file.

There are no documentation changes in this Specification Update revision.