

Intel[®] X48 Express Chipset

Datasheet

March 2008

Document Number: 319122-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel[®] X48 Chipset Memory Controller Hub (MCH) may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

 I^2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I^2C bus/protocol and was developed by Intel. Implementations of the I^2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel, Pentium, Intel Core, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright[©] 2008, Intel Corporation

Contents

1	Intro	duction	15
	1.1	Terminology	
	1.2	Reference Documents	
	1.3	MCH Overview	
	1.5	1.3.1 Host Interface	
		1.3.3 Direct Media Interface (DMI)	
		1.3.4 PCI Express* Interface	
		1.3.5 MCH Clocking	
		1.3.6 Power Management	
		1.3.7 Thermal Sensor	21
2	Signa	al Description	23
	2.1	Host Interface Signals	24
	2.2	System Memory (DDR3) Interface Signals	27
		2.2.1 System Memory Channel A Interface Signals	27
		2.2.2 System Memory Channel B Interface Signals	28
		2.2.3 System Memory Miscellaneous Signals	
	2.3	PCI Express* Interface Signals	
	2.4	Controller Link Interface Signals	
	2.5	Clocks, Reset, and Miscellaneous	
	2.6	Direct Media Interface	
	2.7	Power and Grounds	
_			
3	•	em Address Map	
	3.1	Legacy Address Range	
		3.1.1 DOS Range (0h – 9_FFFFh)	
		3.1.2 Expansion Area (C_0000h-D_FFFFh)	
		3.1.3 Extended System BIOS Area (E_0000h-E_FFFFh)	
		3.1.4 System BIOS Area (F_0000h_F_FFFFh)	
		3.1.5 PAM Memory Area Details	38
	3.2	Main Memory Address Range (1MB - TOLUD)	38
		3.2.1 ISA Hole (15 MB –16 MB)	39
		3.2.2 TSEG	40
		3.2.3 Pre-allocated Memory	40
	3.3	PCI Memory Address Range (TOLUD – 4GB)	
		3.3.1 APIC Configuration Space (FEC0_0000h – FECF_FFFFh)	
		3.3.2 HSEG (FEDA_0000h – FEDB_FFFFh)	
		3.3.3 FSB Interrupt Memory Space (FEE0_0000 – FEEF_FFFF)	
		3.3.4 High BIOS Area	
	3.4	Main Memory Address Space (4 GB to TOUUD)	
	5.4	3.4.1 Memory Re-claim Background	1/
	2 E	3.4.2 Memory Reclaiming	
	3.5	PCI Express* Configuration Address Space	
	3.6	PCI Express* Address Space	
	3.7	System Management Mode (SMM)	
		3.7.1 SMM Space Definition	
		3.7.2 SMM Space Restrictions	
		3.7.3 SMM Space Combinations	
		3.7.4 SMM Control Combinations	
		3.7.5 SMM Space Decode and Transaction Handling	48

			Processor WB Transaction to an Enabled SMM Address Space	
		3.7.7		
	3.8		y Shadowing	
	3.9	I/O Add	dress Space	
		3.9.1	PCI Express* I/O Address Mapping	50
4	MCH	Registe	er Description	51
	4.1	Registe	er Terminology	52
	4.2		uration Process and Registers	
		4.2.1	Platform Configuration Structure	
	4.3	Configu	uration Mechanisms	
		4.3.1	Standard PCI Configuration Mechanism	
		4.3.2	PCI Express Enhanced Configuration Mechanism	
	4.4	Routing	g Configuration Accesses	
		4.4.1	Internal Device Configuration Accesses	57
		4.4.2	Bridge Related Configuration Accesses	58
			4.4.2.1 PCI Express Configuration Accesses	58
			4.4.2.2 DMI Configuration Accesses	
	4.5		egister Introduction	
	4.6	I/O Ma _l	pped Registers	
		4.6.1	CONFIG_ADDRESS—Configuration Address Register	
		4.6.2	CONFIG_DATA—Configuration Data Register	60
5	DRA	M Contro	oller Registers (D0:F0)	61
	5.1		uration Register Details	
	0.1	5.1.1	VID—Vendor Identification	
		5.1.2	DID—Device Identification	
		5.1.3	PCICMD—PCI Command	
		5.1.4	PCISTS—PCI Status	
		5.1.5	RID—Revision Identification	
		5.1.6	CC—Class Code	
		5.1.7	MLT—Master Latency Timer	
		5.1.8	HDR—Header Type	
		5.1.9	SVID—Subsystem Vendor Identification	67
		5.1.10	SID—Subsystem Identification	
			CAPPTR—Capabilities Pointer	
			PXPEPBAR—PCI Express* Egress Port Base Address	
			MCHBAR—MCH Memory Mapped Register Range Base	
			DEVEN—Device Enable	
		5.1.15	PCIEXBAR—PCI Express* Register Range Base Address	71
			DMIBAR—Root Complex Register Range Base Address	
			PAMO—Programmable Attribute Map 0	
		5.1.18	PAM1—Programmable Attribute Map 1	75
		5.1.19	PAM2—Programmable Attribute Map 2	75
		5.1.20	PAM3—Programmable Attribute Map 3	76
		5.1.21	PAM4—Programmable Attribute Map 4	76
		5.1.22	PAM5—Programmable Attribute Map 5	77
		5.1.23	PAM6—Programmable Attribute Map 6	77
		5.1.24	LAC—Legacy Access Control	78
		5.1.25	REMAPBASE—Remap Base Address Register	78
		5.1.26	REMAPLIMIT—Remap Limit Address Register	78
		5.1.27	SMRAM—System Management RAM Control	79
		5.1.28	ESMRAMC—Extended System Management RAM Control	80
			TOM—Top of Memory	
		5.1.30	TOUUD—Top of Upper Usable Dram	81
			BSM—Base of Stolen Memory	

		TSEGMB—TSEG Memory Base	
	5.1.33	TOLUD—Top of Low Usable DRAM	83
	5.1.34	ERRSTS—Error Status	84
	5.1.35	ERRCMD—Error Command	85
	5.1.36	SMICMD—SMI Command	86
	5.1.37	SKPD—Scratchpad Data	86
	5.1.38	CAPIDO—Capability Identifier	87
5.2	MCHBA	R	90
	5.2.1	CHDECMISC—Channel Decode Misc	91
	5.2.2	CODRBO—Channel O DRAM Rank Boundary Address O	92
	5.2.3	CODRB1—Channel O DRAM Rank Boundary Address 1	93
	5.2.4	CODRB2—Channel O DRAM Rank Boundary Address 2	
	5.2.5	CODRB3—Channel O DRAM Rank Boundary Address 3	
	5.2.6	CODRAO1—Channel O DRAM Rank 0,1 Attribute	95
	5.2.7	CODRA23—Channel O DRAM Rank 2,3 Attribute	96
	5.2.8	COCYCTRKPCHG—Channel 0 CYCTRK PCHG	
	5.2.9	COCYCTRKACT—Channel 0 CYCTRK ACT	97
	5.2.10	COCYCTRKWR—Channel 0 CYCTRK WR	
		COCYCTRKRD—Channel O CYCTRK READ	
		COCYCTRKREFR—Channel O CYCTRK REFR	
	5.2.13	COCKECTRL—Channel 0 CKE Control	100
		COREFRCTRL—Channel O DRAM Refresh Control	
	5.2.15	COECCERRLOG—Channel O ECC Error Log	103
	5.2.16	COODTCTRL—Channel 0 ODT Control	104
		C1DRB0—Channel 1 DRAM Rank Boundary Address 0	
		C1DRB1—Channel 1 DRAM Rank Boundary Address 1	
		C1DRB2—Channel 1 DRAM Rank Boundary Address 2	
		C1DRB3—Channel 1 DRAM Rank Boundary Address 3	
		C1DRA01—Channel 1 DRAM Rank 0,1 Attributes	
		C1DRA23—Channel 1 DRAM Rank 2,3 Attributes	
		C1CYCTRKPCHG—Channel 1 CYCTRK PCHG	
		C1CYCTRKACT—Channel 1 CYCTRK ACT	
		C1CYCTRKWR—Channel 1 CYCTRK WR	
		C1CYCTRKRD—Channel 1 CYCTRK READ	
		C1CKECTRL—Channel 1 CKE Control	
		C1REFRCTRL—Channel 1 DRAM Refresh Control	
		C1ECCERRLOG—Channel 1 ECC Error Log	
		C1ODTCTRL—Channel 1 ODT Control	
Host-	-Primar	y PCI Express* Bridge Registers (D1:F0)	115
6.1	VID1—	Vendor Identification	117
6.2	DID1—	Device Identification	118
6.3	PCICME	D1—PCI Command	118
6.4	PCISTS	1—PCI Status	120
6.5	RID1—	Revision Identification	121
6.6		Class Code	
6.7		ache Line Size	
6.8		-Header Type	
6.9		1—Primary Bus Number	
6.10		1—Secondary Bus Number	
6.11		N1—Subordinate Bus Number	
6.12		E1—I/O Base Address	
6.13		T1—I/O Limit Address	
6.14		-Secondary Status	
6.15	MBASE	1—Memory Base Address	126

7

6.16	MLIMIT1—Memory Limit Address	127
6.17	PMBASE1—Prefetchable Memory Base Address	128
6.18	PMLIMIT1—Prefetchable Memory Limit Address	
6.19	PMBASEU1—Prefetchable Memory Base Address Upper	
6.20	PMLIMITU1—Prefetchable Memory Limit Address Upper	
6.21	CAPPTR1—Capabilities Pointer	
6.22	INTRLINE1—Interrupt Line	
6.23	INTRPIN1—Interrupt Pin	
6.24	BCTRL1—Bridge Control	
6.25	PM_CAPID1—Power Management Capabilities	
6.26	PM_CS1—Power Management Control/Status	
6.27	SS_CAPID—Subsystem ID and Vendor ID Capabilities	
6.28	SS—Subsystem ID and Subsystem Vendor ID	136
6.29	MSI_CAPID—Message Signaled Interrupts Capability ID	
6.30	MC—Message Control	
6.31	MA—Message Address	
6.32	MD—Message Data	
6.33	PE_CAPL—PCI Express* Capability List	
6.34	PE_CAP—PCI Express* Capabilities	
6.35	DCAP—Device Capabilities	
6.36	DCTL—Device Control	
6.37	DSTS—Device Status	
6.38	LCAP—Link Capabilities	
6.39	LCTL—Link Control	
6.40	LSTS—Link Status	
6.41	SLOTCAP—Slot Capabilities	
6.42	SLOTCTL—Slot Control	
6.43	SLOTSTS—Slot Status	
6.44	RCTL—Root Control	
6.45	RSTS—Root Status	
6.46	PELC—PCI Express Legacy Control	
6.47	VCECH—Virtual Channel Enhanced Capability Header	
6.48	PVCCAP1—Port VC Capability Register 1	153
6.49	PVCCAP2—Port VC Capability Register 2	154
6.50	PVCCTL—Port VC Control	
6.51	VCORCAP—VCO Resource Capability	
6.52	VCORCTL—VCO Resource Control	156
6.53	VCORSTS—VCO Resource Status	157
6.54	RCLDECH—Root Complex Link Declaration Enhanced	157
6.55	ESD—Element Self Description	
6.56	LE1D—Link Entry 1 Description	158
6.57	LE1A—Link Entry 1 Address	
6.58	PESSTS—PCI Express* Sequence Status	
	-Secondary PCI Express* Bridge Registers (D6:F0)	
7.1	VID1—Vendor Identification	
7.2	DID1—Device Identification	
7.3	PCICMD1—PCI Command	
7.4	PCISTS1—PCI Status	
7.5	RID1—Revision Identification	
7.6	CC1—Class Code	
7.7	CL1—Cache Line Size	
7.8	HDR1—Header Type	
7.9	PBUSN1—Primary Bus Number	
7.10	SBUSN1—Secondary Bus Number	169

7.11	SUBUSNI—Subordinate Bus Number	
7.12	IOBASE1—I/O Base Address	
7.13	IOLIMIT1—I/O Limit Address	170
7.14	SSTS1—Secondary Status	
7.15	MBASE1—Memory Base Address	172
7.16	MLIMIT1—Memory Limit Address	
7.17	PMBASE1—Prefetchable Memory Base Address Upper	
7.18	PMLIMIT1—Prefetchable Memory Limit Address	
7.19	PMBASEU1—Prefetchable Memory Base Address Upper	
7.20	PMLIMITU1—Prefetchable Memory Limit Address Upper	
7.21	CAPPTR1—Capabilities Pointer	
7.22	INTRLINE1—Interrupt Line	
7.23	INTRPIN1—Interrupt Pin	
7.24	BCTRL1—Bridge Control	
7.25	PM_CAPID1—Power Management Capabilities	
7.26	PM_CS1—Power Management Control/Status	
7.27	SS_CAPID—Subsystem ID and Vendor ID Capabilities	
7.28	SS—Subsystem ID and Subsystem Vendor ID	
7.29	MSI_CAPID—Message Signaled Interrupts Capability ID	
7.30	MC—Message Control	
7.31	MA—Message Address	
7.32	MD—Message Data	
7.33	PE_CAPL—PCI Express* Capability List	
7.34	PE_CAP—PCI Express* Capabilities	
7.35	DCAP—Device Capabilities	
7.36	DCTL—Device Control	
7.37	DSTS—Device Status	
7.38	LCAP—Link Capabilities	
7.39	LCTL—Link Control	
7.40	LSTS—Link Status	
7.41	SLOTCAP—Slot Capabilities	
7.42	SLOTCTL—Slot Control	
7.43	SLOTSTS—Slot Status	
7.44	RCTL—Root Control	
7.45	RSTS—Root Status	
7.46	PELC—PCI Express Legacy Control	
7.47	VCECH—Virtual Channel Enhanced Capability Header	199
7.48	PVCCAP1—Port VC Capability Register 1	199
7.49	PVCCAP2—Port VC Capability Register 2	
7.50	PVCCTL—Port VC Control	200
7.51	VCORCAP—VCO Resource Capability	201
7.52	VCORCTL—VCO Resource Control	202
7.53	VCORSTS—VCO Resource Status	203
7.54	RCLDECH—Root Complex Link Declaration Enhanced	
7.55	ESD—Element Self Description	
7.56	LE1D—Link Entry 1 Description	
7.57	LE1A—Link Entry 1 Address	
	•	
	t Media Interface (DMI) RCRB	
8.1	DMIVCECH—DMI Virtual Channel Enhanced Capability	
8.2	DMIPVCCAP1—DMI Port VC Capability Register 1	
8.3	DMIPVCCTL—DMI Port VC Control	
8.4	DMIVCORCAP—DMI VCO Resource Capability	
8.5	DMIVCORCTLO—DMI VCO Resource Control	
8.6	DMIVCORSTS—DMI VCO Resource Status	211

	8.7	DMIVC1RCAP—DMI VC1 Resource Capability	211
	8.8	DMIVC1RCTL1—DMI VC1 Resource Control	212
	8.9	DMIVC1RSTS—DMI VC1 Resource Status	213
	8.10	DMILCAP—DMI Link Capabilities	213
	8.11	DMILCTL—DMI Link Control	214
	8.12	DMILSTS—DMI Link Status	214
9	Func	tional Description	215
	9.1	Host Interface	215
		9.1.1 FSB IOQ Depth	215
		9.1.2 FSB OOQ Depth	215
		9.1.3 FSB GTL+ Termination	
		9.1.4 FSB Dynamic Bus Inversion	215
		9.1.5 APIC Cluster Mode Support	216
	9.2	System Memory Controller	217
		9.2.1 System Memory Organization Modes	217
		9.2.1.1 Single Channel Mode	217
		9.2.1.2 Dual Channel Modes	
		9.2.2 System Memory Technology Supported	. 219
		9.2.3 Intel [®] Extreme Memory Profile (XMP) Support	
	9.3	PCI Express*	
		9.3.1 PCI Express* Architecture	
		9.3.1.1 Transaction Layer	220
		9.3.1.2 Data Link Layer	
	0.4	9.3.1.3 Physical Layer	
	9.4	Power Management	
	9.5	Clocking	
10	Elect	rical Characteristics	
	10.1	Absolute Minimum and Maximum Ratings	
	10.2	Current Consumption	
	10.3	Signal Groups	
	10.4	Buffer Supply and DC Characteristics	
		10.4.1 I/O Buffer Supply Voltages	
		10.4.2 General DC Characteristics	. 229
11	Ballo	ut and Package Information	233
	11.1	Ballout	
	11.2	Package Information	
12	Testa	ability	261
	12.1	XOR Test Mode Initialization	
		12.1.1 XOR Chain Definition	
		12.1.2 XOR Chains	

Figu	res	
1	Intel® X48 Express Chipset System Diagram Example	15
2	MCH System Address Ranges	
3	DOS Legacy Address Range	36
4	Main Memory Address Range	39
5	PCI Memory Address Range	
6	Conceptual Intel® X48 Platform PCI Configuration Diagram	
7	Memory Map to PCI Express Device Configuration Space	
8	MCH Configuration Cycle Flow Chart	
9	Intel® X48 Chipset Clocking Diagram	222
10	MCH Ballout Diagram (Top View Left – Columns 45–31)	
11	MCH Ballout Diagram (Top View Left – Columns 30–16)	
12	MCH Ballout Diagram (Top View Left – Columns 15–1)	
13	MCH Package Drawing	
14	XOR Test Mode Initialization Cycles	261
Tabl	es	
1	Intel Specification	
2	Expansion Area Memory Segments	
3	Extended System BIOS Area Memory Segments	
4	System BIOS Area Memory Segments	
5	Pre-allocated Memory Example for 64 MB DRAM, 1 MB stolen and 1 MB TSEG	
6	Transaction Address Ranges – Compatible, High, and TSEG	
7	SMM Space	
8	SMM Control Table	
9	DRAM Controller Register Address Map	
10	MCHBAR Register Address Map	
11	DRAM Rank Attribute Register Programming	
12 13	Host-PCI Express Bridge Register Address Map (D1:F0)	
14	Host-Secondary PCI Express* Bridge Register Address Map (D6:F0) Direct Media Interface Register Address Map	۱۵۱
15	Host Interface 4X, 2X, and 1X Signal Groups	
16	Sample System Memory Dual Channel Symmetric Organization Mode	
17	Sample System Memory Dual Channel Asymmetric Organization Mode with	∠ 1 /
1 /	Intel® Flex Memory Mode Enabled	218
18	Sample System Memory Dual Channel Asymmetric Organization Mode with	
	Intel® Flex Memory Mode Disabled	218
19	Supported DIMM Module Configurations	
20	• • • • • • • • • • • • • • • • • • • •	
21	Current Consumption in S0	224
22	Signal Groups	226
23	I/O Buffer Supply Voltage	
24	DC Characteristics	
25	MCH Ballout Sorted By Signal Name	
26	MCH Ballout Sorted By Ball Number	
27	XOR Chain 14 Functionality	
28	XOR Chain Outputs	
29	XOR Chain 0 (DDR3)	
30	XOR Chain 1 (DDR3)	
31	XOR Chain 2 (DDR3)	
32	XOR Chain 3 (DDR3)	
33	XOR Chain 5 (DDR3)	
34 35	XOR Chain 5 (DDR3)XOR Chain 6 (DDR3)	
.53	AUN GHAIH & (DDR3)	∠00

36	XOR Chain 7 (DDR3)	267
	XOR Chain 8 (DDR3)	
	XOR Chain 9 (DDR3)	
	XOR Chain 10 (DDR3)	
40	XOR Chain 11 (DDR3)	269
	XOR Chain 12 (DDR3)	
	XOR Chain 13 (DDR3)	
	XOR Chain 14 (DDR3)	

Revision History

Revision Number	Description	Revision Date
-001	Initial Release	March 2008

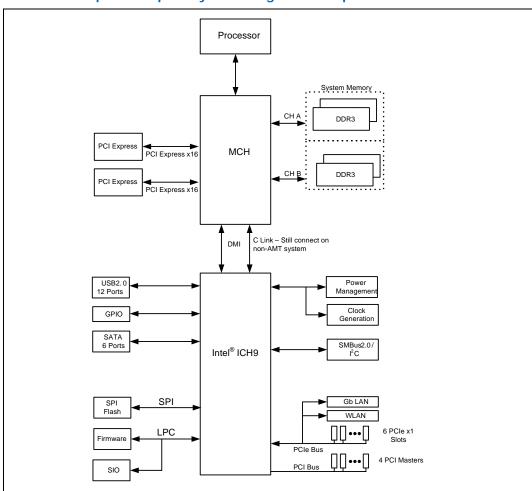
Intel® 82X48 MCH Features

- · Processor/Host Interface (FSB)
 - Supports Intel[®] Core[™]2 Duo desktop processor, Intel[®] Core[™]2 Quad desktop processor, Intel Core[™]2 Extreme processor Ox9770
 - 800/1067/1333/1600 MT/s (200/266/333/400 MHz) FSB
 - Hyper-Threading Technology (HT Technology)
 - FSB Dynamic Bus Inversion (DBI)
 - 36-bit host bus addressing
 - 12-deep In-Order Queue
 - 1-deep Defer Queue
 - GTL+ bus driver with integrated GTL termination resistors
 - Supports cache Line Size of 64 bytes
- · System Memory Interface
 - One or two channels (each channel consisting of 64 data lines)
 - Single or Dual Channel memory organization
 - DDR3-/1333/1066/800 frequencies
 - Intel[®] Extreme Memory Profile (XMP) DDR memory support at 1600 MHz
 - Unbuffered, non-ECC DDR3 DIMMs
 - Supports 1-Gb, 512-Mb DDR3 technologies for x8 and x16 devices
 - 8 GB maximum memory
- · Direct Media Interface (DMI)
 - Chip-to-chip connection interface to Intel ICH9
 - 2 GB/s point-to-point DMI to ICH9 (1 GB/s each direction)
 - 100 MHz reference clock (shared with PCI Express graphics attach)
 - 32-bit downstream addressing
 - Messaging and Error Handling

- PCI Express* Interface
 - Two x16 PCI Express ports
 - Compatible with the PCI Express Base Specification, Revision 2.0
 - Raw bit rate on data pins of 5 Gb/s resulting in a real bandwidth per pair of 500 MB/s
- · Thermal Sensor
 - Catastrophic Trip Point support
- · Power Management
 - PC99 suspend to DRAM support ("STR", mapped to ACPI state S3)
 - ACPI Revision 2.0 compatible power management
 - Supports processor states: C0 and C1
 - Supports System states: S0, S1, S3 (Cold), and S5
 - Supports processor Thermal Management 2
- Package
 - FC-BGA
 - 40 mm × 40 mm package size
 - 1300 balls, located in a non-grid pattern

Ş

1 Introduction


The Intel[®] X48 Express Chipset is designed for use with the Intel[®] CoreTM2 Duo processors, Intel[®] Core[™]2 Quad processors, and Intel Core[™]2 Extreme processor QX9770 with a 1600 MHz FSB in high-end desktop and workstation platforms. The chipset contains two components: 82X48 MCH for the host bridge and I/O Controller Hub 9 (ICH9) for the I/O subsystem. The ICH9 is the ninth generation I/O Controller Hub and provides a multitude of I/O related functions. Figure 1 shows an example system block diagram for the Intel[®] X48 Express Chipset.

This document is the datasheet for the Intel[®] 82X48 Memory Controller Hub (MCH). Topics covered include; signal description, system memory map, PCI register description, a description of the MCH interfaces and major functional units, electrical characteristics, ballout definitions, and package characteristics.

Note: Unless otherwise specified, ICH9 refers to the Intel[®] 82801IB ICH9 and Intel[®] 82801IR ICH9R I/O Controller Hub 9 components.

Note: The term ICH9 refers to the ICH9 and ICH9R components.

Figure 1. Intel® X48 Express Chipset System Diagram Example

1.1 Terminology

Term	Description	
Chipset / Root - Complex	Used in this specification to refer to one or more hardware components that connect processor complexes to the I/O and memory subsystems. The chipset may include a variety of integrated devices.	
Controller Link is a proprietary chip-to-chip connection between t ICH. The Intel [®] X48 Express Chipset requires that Clink is conne platform.		
Core	The internal base logic in the MCH	
CPU	Refers to the processors.	
DBI	Dynamic Bus Inversion	
DDR3	A third generation Double Data Rate SDRAM memory technology	
DMI	Direct Media Interface is a proprietary chip-to-chip connection between the MCH and ICH. This interface is based on the standard PCI Express* specification.	
Domain	A collection of physical, logical or virtual resources that are allocated to work together. Domain is used as a generic term for virtual machines, partitions, etc.	
EP	PCI Express Egress Port	
FSB	Front Side Bus. Synonymous with Host or processor bus	
Full Reset	Full reset is when PWROK is de-asserted. Warm reset is when both RSTIN# and PWROK are asserted.	
Memory Controller Hub component that contains the processor int DRAM controller, and PCI Express port. It communicates with the I controller hub (Intel [®] ICH9) over the DMI interconnect. Throughout this document, MCH refers to the Intel [®] X48 Express MCH, unless otherwise specified.		
Host	This term is used synonymously with processor	
INTx	An interrupt request signal where X stands for interrupts A, B, C and D	
Intel [®] ICH9	Ninth generation I/O Controller Hub component that contains the primary PCI interface, LPC interface, USB2.0, SATA, and other I/O functions. For this MCH, the term ICH refers to the ICH9.	
100	In Order Queue	
MSI	Message Signaled Interrupt. A transaction conveying interrupt information to the receiving agent through the same path that normally carries read and write commands.	
000	Out of Order Queueing	
PCI Express*	A high-speed serial interface whose configuration is software compatible with the legacy PCI specifications.	
Primary PCI	The physical PCI bus that is driven directly by the Intel [®] ICH9 component. Communication between Primary PCI and the MCH occurs over DMI. The Primary PCI bus is not PCI Bus 0 from a configuration standpoint.	
Rank	A unit of DRAM corresponding to eight x8 SDRAM devices in parallel or four x16 SDRAM devices in parallel, ignoring ECC. These devices are usually, but not always, mounted on a single side of a DIMM.	

Term	Description	
SCI System Control Interrupt. Used in ACPI protocol.		
SERR System Error. An indication that an unrecoverable error has occurred I/O bus.		
SMI	System Management Interrupt. Used to indicate any of several system conditions such as thermal sensor events, throttling activated, access to System Management RAM, chassis open, or other system state related activity.	
VCO	Voltage Controlled Oscillator	

1.2 Reference Documents

Table 1. Intel Specification

Document Name	Location
Intel [®] X48 Express Chipset Specification Update	http://www.intel.com/design/ chipsets/specupdt/319123.htm
Intel [®] X38 and X48 Express Chipset Thermal and Mechanical Design Guide	http://www.intel.com/design/ chipsets/designex/317612.htm
Intel [®] Core [™] 2 Duo Processor and Intel [®] Pentium [®] Dual Core Thermal and Mechanical Design Guide	http://www.intel.com/design/ processor/designex/317804.htm
Intel [®] I/O Controller Hub 9 (ICH9) Family Thermal Mechanical Design Guide.	http://www.intel.com/design/ chipsets/designex/316974.htm
Intel [®] I/O Controller Hub 9 (ICH9) Family Datasheet	http://www.intel.com/design/ chipsets/datashts/316972.htm
Intel [®] X48 Express Chipset Memory Technology and Configuration Guide White Paper	http://www.intel.com/design/ chipsets/applnots/319125.htm
Intel® Extreme Memory Profile (Intel® XMP) supporting Intel® X48 Express Chipset with DDR3 White Paper	http://www.intel.com/design/ chipsets/applnots/319124.htm
Advanced Configuration and Power Interface Specification, Version 2.0	http://www.acpi.info/
Advanced Configuration and Power Interface Specification, Version 1.0b	http://www.acpi.info/
The PCI Local Bus Specification, Version 2.3	http://www.pcisig.com/ specifications
PCI Express* Specification, Version 1.1	http://www.pcisig.com/ specifications

1.3 MCH Overview

The role of a MCH in a system is to manage the flow of information between its four interfaces: the processor interface, the System Memory interface, the PCI Express interface, and the I/O Controller through DMI interface. This includes arbitrating between the four interfaces when each initiates transactions. The MCH supports one or two channels of DDR3 SDRAM. It also supports the PCI Express based external device attach. The Intel[®] X48 Express Chipset platform supports the ninth generation I/O Controller Hub (Intel[®] ICH9) to provide I/O related features.

1.3.1 Host Interface

The MCH supports a single LGA775 socket processor. The MCH supports a FSB frequency of 800/1066/1333/1600 MHz. Host initiated I/O cycles are decoded to PCI Express, DMI, or the MCH configuration space. Host initiated memory cycles are decoded to PCI Express, DMI or system memory. PCI Express device accesses to non-cacheable system memory are not snooped on the host bus. Memory accesses initiated from PCI Express using PCI semantics and from DMI to system SDRAM will be snooped on the host bus.

Processor/Host Interface (FSB) Details

- Supports the Intel[®] Core[™]2 Duo processors, Intel[®] Core[™]2 Quad processors, and Intel Core[™]2 Extreme processor QX9770 with a 1600 MHz FSB
- Supports Front Side Bus (FSB) at the following Frequency Ranges:
 - 800/1066/1333/1600 MT/s
- Supports FSB Dynamic Bus Inversion (DBI)
- Supports 36-bit host bus addressing, allowing the processor to access the entire 64 GB of the host address space.
- Has a 12-deep In-Order Queue to support up to twelve outstanding pipelined address requests on the host bus
- · Has a 1-deep Defer Queue
- Uses GTL+ bus driver with integrated GTL termination resistors
- Supports a Cache Line Size of 64 bytes

1.3.2 System Memory Interface

The MCH integrates a system memory DDR3 controller with two, 64-bit wide interfaces. The buffers support SSTL_1.5 (Stub Series Terminated Logic for 1.5V) signal interfaces. The memory controller interface is fully configurable through a set of control registers.

System Memory Interface Details

- Supports memory data transfer rates of 800, 1066, 1333, 1600 MHz for DDR3. The 1600 MHz memory support requires Intel[®] Extreme Memory Profile (XMP) DDR3-1600 DIMMs.
- Directly supports one or two channels of DDR3 memory with a maximum of two DIMMs per channel. When using DDR3-1600 XMP DIMMs the X48 MCH supports single DIMM per channel where DIMM1 is populated and DIMM0 is not populated
- Supports single and dual channel memory organization modes.
- Supports a data burst length of eight for all memory organization modes.

- I/O Voltage of 1.5 V for DDR3-800, DDR3-1066, and DDR3-1333. DDR3-1600XMP DIMMs use an I/O voltage of 1.9 V.
- · Supports non-ECC DDR3 DIMMs.
- Supports maximum memory bandwidth of 12.8GB/s in single-channel mode or 25.6GB/s in dual-channel mode assuming DDR3-1600 XMP DIMMs are used.
- Supports 512-Mb and 1-Gb DDR3 DRAM technologies for x8 and x16 devices.
- Using 512 Mb device technologies, the smallest memory capacity possible is 256 MB, assuming Single Channel Mode with a single x16 single sided un-buffered non-ECC DIMM memory configuration.
- Using 1 Gb device technologies, the largest memory capacity possible is 8 GB, assuming Dual Channel Mode with four x8 double sided un-buffered non-ECC or ECC DIMM memory configurations. Note: The ability to support greater than the largest memory capacity is subject to availability of higher density memory devices.
- Supports up to 32 simultaneous open pages per channel (assuming 4 ranks of 8 bank devices)
- · Supports opportunistic refresh scheme
- · Supports Partial Writes to memory using Data Mask (DM) signals

1.3.3 Direct Media Interface (DMI)

Direct Media Interface (DMI) is the chip-to-chip connection between the MCH and ICH9. This high-speed interface integrates advanced priority-based servicing allowing for concurrent traffic and true isochronous transfer capabilities. Base functionality is completely software transparent permitting current and legacy software to operate normally.

In order to provide for true isochronous transfers and configurable Quality of Service (QoS) transactions, the ICH9 supports two virtual channels on DMI: VCO and VC1. These two channels provide a fixed arbitration scheme where VC1 is always the highest priority. VCO is the default conduit of traffic for DMI and is always enabled. VC1 must be specifically enabled and configured at both ends of the DMI link (i.e., the ICH9 and MCH).

- A chip-to-chip connection interface to Intel ICH9
- · 2 GB/s point-to-point DMI to ICH9 (1 GB/s each direction)
- · 100 MHz reference clock (shared with PCI Express)
- · 32-bit downstream addressing
- APIC and MSI interrupt messaging support. Will send Intel-defined "End Of Interrupt" broadcast message when initiated by the processor.
- · Message Signaled Interrupt (MSI) messages
- · SMI, SCI, and SERR error indication

1.3.4 PCI Express* Interface

PCI Express* Interface

The MCH supports two 16-lane (x16) PCI Express ports. The PCI Express ports are compliant to the *PCI Express* Base Specification* revision 2.0. The x16 ports operate at a frequency of 5 Gb/s on each lane while employing 8b/10b encoding, and support a maximum theoretical bandwidth of 8.0 GB/s in each direction.

- For the Intel[®] X48 Express Chipset, two 16-lane PCI Express ports intended for external device attach are supported and compatible to the PCI Express* Base Specification revision 2.0.
- PCI Express frequency of 2.5 GHz resulting in 5.0 Gb/s each direction per lane.
- Raw bit-rate on the data pins of 5.0 Gb/s, resulting in a real bandwidth per pair of 500 MB/s given the 8b/10b encoding used to transmit data across this interface
- Maximum theoretical realized bandwidth on the interface of 8 GB/s in each direction simultaneously, for an aggregate of 16 GB/s when x16.
- PCI Express Enhanced Addressing Mechanism allows for accessing the device configuration space in a flat memory mapped fashion.
- · Automatic discovery, negotiation, and training of link out of reset.
- · Supports traditional PCI style traffic (asynchronous snooped, PCI ordering)
- Supports traditional AGP style traffic (asynchronous non-snooped, PCI Expressrelaxed ordering)
- Hierarchical PCI-compliant configuration mechanism for downstream devices (i.e., normal PCI 2.3 Configuration space as a PCI-to-PCI bridge).
- Supports "static" lane numbering reversal. This method of lane reversal is controlled by a Hardware Reset strap, and reverses both the receivers and transmitters for all lanes (e.g., TX[15]->TX[0], RX[15]->RX[0]). This method is transparent to all external devices and is different than lane reversal as defined in the PCI Express Specification. In particular, link initialization is not affected by static lane reversal.
- When two, 16-lane PCI Express ports are used, the second port will support either PCI Express Gen1.1 I/O cards with x8, x4 or x1 lanes or PCI Express Gen1/Gen2 Graphics cards with x16 or x1 lanes.

1.3.5 MCH Clocking

- Differential host clock of 200/266/333/400 MHz. Supports FSB transfer rates of 800/1066/1333/1600 MT/s.
- Differential memory clocks of 400/533/667/800 MHz. Supports memory transfer rates of DDR3-800, DDR3-1067, DDR3-1333, and DDR3-1600 (Intel[®] XMP memory).
- The PCI Express* PLL of 100 MHz Serial Reference Clock generates the PCI Express core clock of 250 MHz.
- · All of the above clocks are capable of tolerating Spread Spectrum clocking.
- · Host, memory, and PCI Express PLLs are disabled until PWROK is asserted.

1.3.6 Power Management

MCH Power Management support includes:

- PC99 suspend to DRAM support ("STR", mapped to ACPI state S3)
- SMRAM space remapping to A0000h (128 KB)
- Supports extended SMRAM space above 256 MB, and cacheable (cacheability controlled by processor)
- ACPI Rev 1.0b compatible power management
- · Supports processor states: C0 and C1
- · Supports System states: S0, S1, S3(Cold), and S5
- Supports processor Thermal Management 2 (TM2)

1.3.7 Thermal Sensor

The MCH Thermal Sensor support includes:

Catastrophic Trip Point support for emergency clock gating for the MCH

§ §

2 Signal Description

This section provides a detailed description of MCH signals. The signals are arranged in functional groups according to their associated interface.

The following notations are used to describe the signal type.

Signal Type	Description
PCI Express*	PCI Express interface signals. These signals are compatible with PCI Express 2.0 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+-D-) * 2 = 1.2 \text{ Vmax}$. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.
DMI	Direct Media Interface signals. These signals are compatible with PCI Express 1.1 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+-D-) * 2 = 1.2 \text{ Vmax}$. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.
CMOS	CMOS buffers. 1.5 V tolerant.
COD	CMOS Open Drain buffers. 3.3 V tolerant.
HVCMOS	High Voltage CMOS buffers. 3.3 V tolerant.
HVIN	High Voltage CMOS input-only buffers. 3.3 V tolerant.
SSTL_1.5	Stub Series Termination Logic. These are 1.5 V output capable buffers. 1.5 V tolerant. DDR3-1600 XMP DIMMs buffers will operate at 1.9 V which is within the SSTL_1.5 tolerances.
А	Analog reference or output. May be used as a threshold voltage or for buffer compensation.
GTL+	Gunning Transceiver Logic signaling technology. Implements a voltage level as defined by V_{TT} of 1.2 V and/or 1.1 V.

2.1 Host Interface Signals

Note:

Unless otherwise noted, the voltage level for all signals in this interface is tied to the termination voltage of the Host Bus (V_{TT}) .

Signal Name	Туре	Description
FSB_ADSB	I/O GTL+	Address Strobe: The processor bus owner asserts FSB_ADSB to indicate the first of two cycles of a request phase. The MCH can assert this signal for snoop cycles and interrupt messages.
FSB_BNRB	I/O GTL+	Block Next Request: Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.
FSB_BPRIB	O GTL+	Priority Agent Bus Request: The MCH is the only Priority Agent on the processor bus. It asserts this signal to obtain the ownership of the address bus. This signal has priority over symmetric bus requests and will cause the current symmetric owner to stop issuing new transactions unless the FSB_LOCKB signal was asserted.
FSB_BREQ0B	O GTL+	Bus Request 0: The MCH pulls the processor bus' FSB_BREQOB signal low during FSB_CPURSTB. The processors sample this signal on the active-to-inactive transition of FSB_CPURSTB. The minimum setup time for this signal is 4 HCLKs. The minimum hold time is 2 HCLKs and the maximum hold time is 20 HCLKs. FSB_BREQOB should be tristated after the hold time requirement has been satisfied.
FSB_CPURSTB	O GTL+	CPU Reset: The FSB_CPURSTB pin is an output from the MCH. The MCH asserts FSB_CPURSTB while RSTINB (PCIRST# from the ICH) is asserted and for approximately 1 ms after RSTINB is de-asserted. The FSB_CPURSTB allows the processors to begin execution in a known state.
FSB_DBSYB	I/O GTL+	Data Bus Busy: Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
FSB_DEFERB	O GTL+	Defer: Signals that the MCH will terminate the transaction currently being snooped with either a deferred response or with a retry response.
FSB_DINVB_[3:0]	I/O GTL+ 4x	Dynamic Bus Inversion: Driven along with the FSB_DB_[63:0] signals. Indicates if the associated signals are inverted or not. FSB_DINVB_[3:0] are asserted such that the number of data bits driven electrically low (low voltage) within the corresponding 16 bit group never exceeds 8. FSB_DINVB_X Data Bits FSB_DINVB_3 FSB_DB_[63:48] FSB_DINVB_2 FSB_DB_[47:32] FSB_DINVB_1 FSB_DB_[31:16] FSB_DINVB_0 FSB_DB_[15:0]
FSB_DRDYB	I/O GTL+	Data Ready: Asserted for each cycle that data is transferred.

Signal Name	Туре	Description
FSB_AB_[35:3]	I/O GTL+ 2x	Host Address Bus: FSB_AB_[35:3] connect to the processor address bus. During processor cycles the FSB_AB_[35:3] are inputs. The MCH drives FSB_AB_[35:3] during snoop cycles on behalf of DMI and PCI Express initiators. FSB_AB_[35:3] are transferred at 2x rate. Note that the address is inverted on the processor bus. The values are driven by the MCH between PWROK assertion and FSB_CPURSTINB de-assertion to allow processor configuration.
FSB_ADSTBB_[1:0]	I/O GTL+ 2x	Host Address Strobe: The source synchronous strobes used to transfer FSB_AB_[31:3] and FSB_REQB_[4:0] at the 2x transfer rate. Strobe Address Bits FSB_ADSTBB_0 FSB_AB_[16:3], FSB_REQB_[4:0] FSB_ADSTBB_1 FSB_AB_[31:17]
FSB_DB_[63:0]	I/O GTL+ 4x	Host Data: These signals are connected to the processor data bus. Data on FSB_DB_[63:0] is transferred at a 4x rate. Note that the data signals may be inverted on the processor bus, depending on the FSB_DINVB_[3:0] signals.
FSB_DSTBPB_[3:0] FSB_DSTBNB_[3:0]	I/O GTL+ 4x	Differential Host Data Strobes: The differential source synchronous strobes used to transfer FSB_DB_[63:0] and FSB_DINVB_[3:0] at the 4x transfer rate. Named this way because they are not level sensitive. Data is captured on the falling edge of both strobes. Hence, they are pseudo-differential, and not true differential. Strobe Data Bits FSB_DSTB[P,N]B_3 FSB_DB_[63:48], HDINVB_3 FSB_DSTB[P,N]B_2 FSB_DB_[47:32], HDINVB_2 FSB_DSTB[P,N]B_1 FSB_DB_[31:16], HDINVB_1 FSB_DSTB[P,N]B_0 FSB_DB_[15:0], HDINVB_0
FSB_HITB	I/O GTL+	Hit: Indicates that a caching agent holds an unmodified version of the requested line. Also, driven in conjunction with FSB_HITMB by the target to extend the snoop window.
FSB_HITMB	I/O GTL+	Hit Modified: Indicates that a caching agent holds a modified version of the requested line and that this agent assumes responsibility for providing the line. Also, driven in conjunction with FSB_HITB to extend the snoop window.
FSB_LOCKB	I GTL+	Host Lock: All processor bus cycles sampled with the assertion of FSB_LOCKB and FSB_ADSB, until the negation of FSB_LOCKB must be atomic (i.e. <i>no DMI or PCI Express access</i> to DRAM are allowed when FSB_LOCKB is asserted by the processor).
FSB_REQB_[4:0]	I/O GTL+ 2x	Host Request Command: Defines the attributes of the request. FSB_REQB_[4:0] are transferred at 2x rate. Asserted by the requesting agent during both halves of Request Phase. In the first half the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second half the signals carry additional information to define the complete transaction type. The transactions supported by the MCH Host Bridge are defined in the Host Interface section of this document.

Signal Name	Туре	Description
FSB_TRDYB	O GTL+	Host Target Ready: Indicates that the target of the processor transaction is able to enter the data transfer phase.
FSB_RSB_[2:0]	O GTL+	Response Signals: Indicates type of response according to the table at left: Encoding Response Type 000 Idle state 001 Retry response 010 Deferred response 011 Reserved (not driven by MCH) 100 Hard Failure (not driven by MCH) 101 No data response 110 Implicit Writeback 111 Normal data response
FSB_RCOMP	I/O A	Host RCOMP: Used to calibrate the Host GTL+ I/O buffers. This signal is powered by the Host Interface termination rail (V _{TT}). Connects to FSB_XRCOMP1IN in the package.
FSB_SCOMP	I/O A	Slew Rate Compensation: Compensation for the Host Interface for rising edges.
FSB_SCOMPB	I/O A	Slew Rate Compensation: Compensation for the Host Interface for falling edges.
FSB_SWING	I/O A	Host Voltage Swing: These signals provide reference voltages used by the FSB RCOMP circuits. FSB_XSWING is used for the signals handled by FSB_XRCOMP.
FSB_DVREF	I/O A	Host Reference Voltage: Reference voltage input for the Data signals of the Host GTL interface.
FSB_ACCVREF	I/O A	Host Reference Voltage: Reference voltage input for the Address signals of the Host GTL interface.

2.2 System Memory (DDR3) Interface Signals

2.2.1 System Memory Channel A Interface Signals

Signal Name	Туре	Description
DDR_A_CK	O SSTL-1.5	SDRAM Differential Clocks: — DDR3: Two per DIMM
DDR_A_CKB	O SSTL-1.5	SDRAM Inverted Differential Clocks: — DDR3: Two per DIMM
DDR_A_CSB_3 DDR_A_CSB_2 DDR_A_CSB_0	O SSTL-1.5	DDR3 Device Rank 3, 2, and 0 Chip Selects
DDR3_A_CSB_1	O SSTL-1.5	DDR3 Device Rank 1 Chip Select
DDR_A_CKE_[3:0]	O SSTL-1.5	DDR3 Clock Enable: (1 per Device Rank)
DDR_A_ODT_[3:0]	O SSTL-1.5	DDR3 On Die Termination: (1 per Device Rank)
DDR_A_MA_[14:1]	O SSTL-1.5	DDR3 Address Signals [14:1]
DDR3_A_MA_0	O SSTL-1.5	DDR3 Address Signal 0
DDR_A_BS_[2:0]	O SSTL-1.5	DDR3 Bank Select
DDR_A_RASB	O SSTL-1.5	DDR3 Row Address Select signal
DDR_A_CASB	O SSTL-1.5	DDR3 Column Address Select signal
DDR3_A_WEB	O SSTL-1.5	DDR3 Write Enable signal
DDR_A_DQ_[63:0]	I/O SSTL-1.5	DDR3 Data Lines
DDR_A_DM_[7:0]	O SSTL-1.5	DDR3 Data Mask
DDR_A_DQS_[8:0]	I/O SSTL-1.5	DDR3 Data Strobes
DDR_A_DQSB_[8:0]	I/O SSTL-1.5	DDR3 Data Strobe Complements

2.2.2 System Memory Channel B Interface Signals

Signal Name	Туре	Description
DDR_B_CK	O SSTL-1.5	SDRAM Differential Clocks: — DDR3: Two per DIMM
DDR_B_CKB	O SSTL-1.5	SDRAM Inverted Differential Clocks: — DDR3: Two per DIMM
DDR_B_CSB_[3:0]	O SSTL-1.5	DDR3 Device Rank 3, 2, 1, and 0 Chip Select
DDR_B_CKE_[3:0]	O SSTL-1.5	DDR3 Clock Enable: (1 per Device Rank)
DDR_B_ODT_[2:0]	O SSTL-1.5	DDR3 Device Rank 2, 1, and 0 On Die Termination
DDR3_B_ODT_3	O SSTL-1.5	DDR3 Device Rank 3 On Die Termination
DDR_B_MA_[14:0]	O SSTL-1.5	DDR3 Address Signals [14:0]
DDR_B_BS_[2:0]	O SSTL-1.5	DDR3 Bank Select
DDR_B_RASB	O SSTL-1.5	DDR3 Row Address Select signal
DDR_B_CASB	O SSTL-1.5	DDR3 Column Address Select signal
DDR_B_WEB	O SSTL-1.5	DDR3 Write Enable signal
DDR_B_DQ_[63:0]	I/O SSTL-1.5	DDR3 Data Lines
DDR_B_DM_[7:0]	O SSTL-1.5	DDR3 Data Mask
DDR_B_DQS_[8:0]	I/O SSTL-1.5	DDR3 Data Strobes
DDR_B_DQSB_[8:0]	I/O SSTL-1.5	DDR3 Data Strobe Complements

2.2.3 System Memory Miscellaneous Signals

Signal Name	Туре	Description
DDR_RCOMPXPD	I/O A	System Memory Pull-down RCOMP
DDR_RCOMPXPU	I/O A	System Memory Pull-up RCOMP
DDR_RCOMPYPD	I/O A	System Memory Pull-down RCOMP
DDR_RCOMPYPU	I/O A	System Memory Pull-up RCOMP
DDR_VREF	I A	System Memory Reference Voltage
DDR_RCOMPVOH	I A	System Memory Pull-up Reference Signal
DDR_RCOMPVOL	I A	System Memory Pull-down Reference Signal
DDR3_DRAM_PWROK	I A	DDR3 VCC_DDR Power OK
DDR3_DRAMRSTB	O SSTL-1.5	DDR3 Reset Signal

2.3 PCI Express* Interface Signals

Signal Name	Туре	Description	
PEG_RXN_[15:0]	1/0	Primary PCI Express Receive Differential Pair. The MCH	
PEG_RXP_[15:0]	PCIE	supports a maximum width of x16 where all lanes are used.	
PEG_TXN_[15:0]	0	Primary PCI Express Transmit Differential Pair. The MCH	
PEG_TXP_[15:0]	PCIE	supports a maximum width of x16 where all lanes are used.	
PEG2_RXN_[15:0]	1/0	Secondary PCI Express Receive Differential Pair. The MCH	
PEG2_RXP_[15:0]	PCIE	supports a maximum width of x16 where all lanes are used.	
PEG2_TXN_[15:0]	0	Secondary PCI Express Transmit Differential Pair. The MCH	
PEG2_TXP_[15:0]	PCIE	supports a maximum width of x16 where all lanes are used.	
EXP COMPO	1	Primary PCI Express Output Current Compensation	
EXI _OOMI O	Α	Triniary For Express output ourrent compensation	
EXP COMPI	1	Primary PCI Express Input Current Compensation	
EXT_OOM 1	Α	Trimary For Express Input ourient compensation	
EXP2 COMPO	I	Secondary PCI Express Output Current Compensation	
EXI Z_COMPO	Α	occordary for Express output current compensation	
EXP2 COMPI	Ī	Secondary PCI Express Input Current Compensation	
EXI Z_COWF1	Α	Secondary 1 of Express riput ourrent compensation	

2.4 Controller Link Interface Signals

Signal Name	Туре	Description
CL_DATA	I/O CMOS	Controller Link Data (Bi-directional)
CL_CLK	I/O CMOS	Controller Link Clock (Bi-directional)
CL_VREF	I CMOS	Controller Link VREF
CL_RST#	I CMOS	Controller Link Reset (Active low)

2.5 Clocks, Reset, and Miscellaneous

Signal Name	Туре	Description
HPL_CLKINP HPL_CLKINN	I CMOS	Differential Host Clock In: These pins receive a differential host clock from the external clock synthesizer. This clock is used by all of the MCH logic that is in the Host clock domain.
EXP_CLKINP EXP_CLKINN	I CMOS	Differential Primary PCI Express Clock In: These pins receive a differential 100 MHZ Serial Reference clock from the external clock synthesizer. This clock is used to generate the clocks necessary for the support of Primary PCI Express and DMI.
EXP2_CLKINP EXP2_CLKINN	I CMOS	Differential Secondary PCI Express Clock In: These pins receive a differential 100 MHZ Serial Reference clock from the external clock synthesizer. This clock is used to generate the clocks necessary for the support of Secondary PCI Express.
RSTINB	l SSTL	Reset In: When asserted this signal will asynchronously reset the MCH logic. This signal is connected to the PCIRST# output of the ICH. All PCI Express output signals and DMI output signals will also tri-state compliant to PCI Express Rev 2.0 specification. This input should have a Schmitt trigger to avoid spurious resets. This signal is required to be 3.3 V tolerant.
CL_PWROK	I/O SSTL	CL Power OK: When asserted, CL_PWROK is an indication to the MCH that core power (VCC_CL) has been stable for at least 10us.
EXP_SLR	I CMOS	PCI Express* Static Lane Reversal/Form Factor Selection: MCH's PCI Express lane numbers are reversed to differentiate BTX and ATX form factors 0 = MCH PCI Express lane numbers are reversed (BTX) 1 = Normal operation (ATX)

Signal Name	Туре	Description
BSEL[2:0]	I CMOS	Bus Speed Select: At the de-assertion of PWROK, the value sampled on these pins determines the expected frequency of the bus.
MTYPE	I GTL+	Memory Type: This pin determines memory support. 0 = DDR3 1 = N/A
PWROK	I/O SSTL	Power OK: When asserted, PWROK is an indication to the MCH that core power has been stable for at least 10 us.
ICH_SYNCB	O HVCMOS	ICH Sync: This signal synchronizes the MCH with the ICH.
ALLZTEST	I GTL+	All Z Test: Used for Chipset Bed of Nails testing to execute All Z Test. It is used as output for XOR Chain testing.
XORTEST	I GTL+	XOR Chain Test: Used for Chipset Bed of Nails testing to execute XOR Chain Test.
TEST[3:0]	I/O A	In Circuit Test: These pins should be connected to test points on the motherboard. They are internally shorted to the package ground and can be used to determine if the corner balls on the MCH are correctly soldered down to the motherboard. These pins should NOT connect to ground on the motherboard. If TEST[3:0] are not going to be used, they should be left as no connects.

2.6 Direct Media Interface

Signal Name	Туре	Description
DMI_RXP_[3:0] DMI_RXN_[3:0]	I DMI	Direct Media Interface: Receive differential pair (RX). MCH-ICH serial interface input
DMI_TXP_[3:0] DMI_TXN_[3:0]	O DMI	Direct Media Interface: Transmit differential pair (TX). MCH-ICH serial interface output

2.7 Power and Grounds

Name	Voltage	Description
VCC	1.25 V	Core Power
VTT	1.1 V/1.2 V	Processor System Bus Power
VCC_EXP	1.25 V	PCI Express* and DMI Power
VCC_DDR	1.5V ¹	DDR3 System Memory Power
VCC_CKDDR	1.5V ¹	DDR3 System Clock Memory Power
VCC3_3	3.3 V	3.3 V CMOS Power
VCCAPLL_EXP	1.25 V	Primary PCI Express PLL Analog Power
VCCAPLL_EXP2	1.25 V	Secondary PCI Express PLL Analog Power
VCCA_hplL	1.25 V	Host PLL Analog Power
VCCA_mpl	1.25 V	System Memory PLL Analog Power
VCCABG_EXP	3.3 V	PCI Express* Analog Power
VCC_CL	1.25 V	Controller Link Aux Power
VSS	0 V	Ground

NOTES:

 DDR3-800, DDR3-1066, and DDR3-1333 DIMMs require 1.5 V derived from the boards VCCSM power rail. DDR3-1600 XMP DIMMs require 1.9 V.

§ §§

3 System Address Map

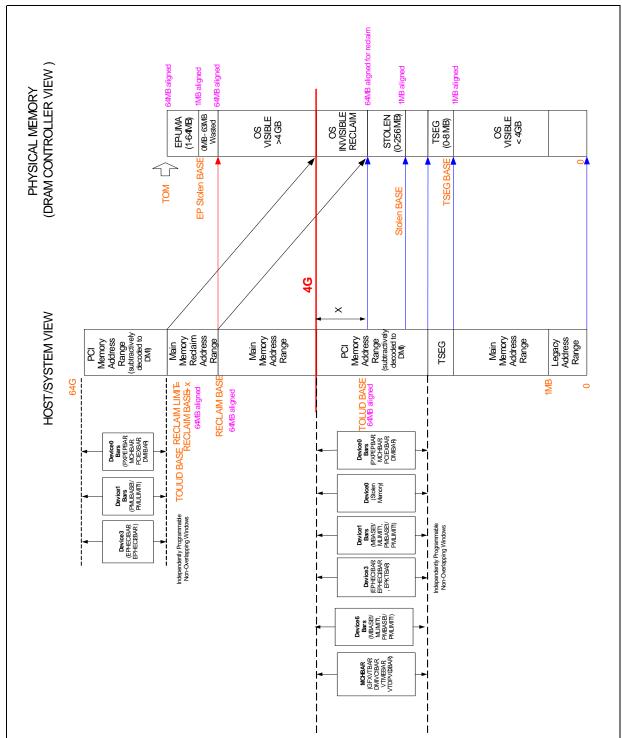
The MCH supports 64 GB (36 bit) of host address space and 64 KB+3 of addressable I/O space. There is a programmable memory address space under the 1 MB region which is divided into regions which can be individually controlled with programmable attributes such as Disable, Read/Write, Write Only, or Read Only. Attribute programming is described in the Register Description section. This section focuses on how the memory space is partitioned and what the separate memory regions are used for. I/O address space has simpler mapping and is explained near the end of this section.

The MCH supports PCI Express* upper pre-fetchable base/limit registers. This allows the PCI Express unit to claim I/O accesses above 36 bit, complying with the PCI Express Specification. Addressing of greater than 8 GB is allowed on either the DMI Interface or PCI Express interface. The MCH supports a maximum of 8 GB of DRAM. No DRAM memory will be accessible above 8 GB.

In the following sections, it is assumed that all of the compatibility memory ranges reside on the DMI Interface. The MCH does not remap APIC or any other memory spaces above TOLUD (Top of Low Usable DRAM). The TOLUD register is set to the appropriate value by BIOS. The reclaim base/reclaim limit registers remap logical accesses bound for addresses above 4 GB onto physical addresses that fall within DRAM.

The Address Map includes a number of programmable ranges:

- Device 0
 - PXPEPBAR Egress port registers. Necessary for setting up VC1 as an isochronous channel using time based weighted round robin arbitration. (4 KB window)
 - MCHBAR Memory mapped range for internal MCH registers. For example, memory buffer register controls. (16 KB window)
 - PCIEXBAR Flat memory-mapped address spaced to access device configuration registers. This mechanism can be used to access PCI configuration space (0–FFh) and Extended configuration space (100h–FFFh) for PCI Express devices. This enhanced configuration access mechanism is defined in the PCI Express specification. (64 MB, 128 MB, or 256 MB window).
 - DMIBAR –This window is used to access registers associated with the Direct Media Interface (DMI) register memory range. (4 KB window)
- Device 1
 - MBASE1/MLIMIT1 PCI Express port non-prefetchable memory access window.
 - PMBASE1/PMLIMIT1 PCI Express port prefetchable memory access window.
 - PMUBASE/PMULIMIT PCI Express port upper prefetchable memory access window
 - IOBASE1/IOLIMIT1 PCI Express port I/O access window.
- · Device 6, Function 0
 - MBASE1/MLIMIT1 PCI Express port non-prefetchable memory access window.
 - PMBASE1/PMLIMIT1 PCI Express port prefetchable memory access window.
 - PMUBASE/PMULIMIT PCI Express port upper prefetchable memory access window
 - IOBASE1/IOLIMIT1 PCI Express port I/O access window.

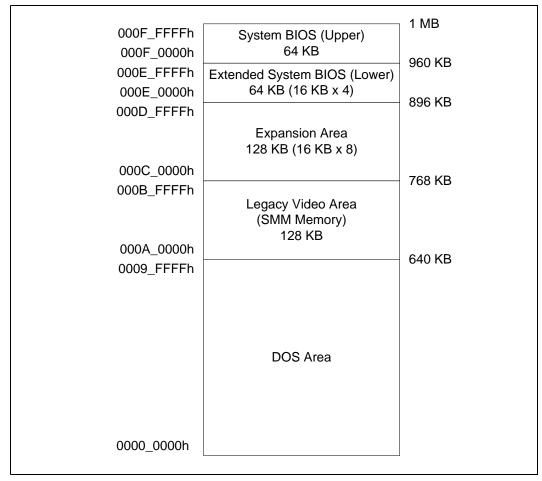

The rules for the above programmable ranges are:

- ALL of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or system designers' responsibility to limit memory population so that adequate PCI, PCI Express, High BIOS, and PCI Express Memory Mapped space, and APIC memory space can be allocated.
- 2. In the case of overlapping ranges with memory, the memory decode will be given priority.
- 3. There are NO Hardware Interlocks to prevent problems in the case of overlapping ranges.
- 4. Accesses to overlapped ranges may produce indeterminate results.
- 5. The only peer-to-peer cycles allowed below the top of Low Usable memory (register TOLUD) are DMI Interface to PCI Express range writes.

Figure 2 represents system memory address map in a simplified form.

Figure 2. MCH System Address Ranges

NOTE: For non-AMT system such as Intel $^{\circledR}$ X48 chipset platforms, do not follow the EP UMA requirement.



3.1 Legacy Address Range

This area is divided into the following address regions:

- 0 640 KB DOS Area
- 640 768 KB Legacy Video Buffer Area
- 768 896 KB in 16 KB sections (total of 8 sections) Expansion Area
- 896 -960 KB in 16 KB sections (total of 4 sections) Extended System BIOS Area
- 960 KB 1 MB Memory System BIOS Area

Figure 3. DOS Legacy Address Range

3.1.1 DOS Range (0h – 9_FFFFh)

The DOS area is 640 KB (0000_0000h - 0009_FFFFh) in size and is always mapped to the main memory controlled by the MCH.

3.1.2 Expansion Area (C_0000h-D_FFFFh)

This 128 KB ISA Expansion region (000C_0000h - 000D_FFFFh) is divided into eight 16 KB segments. Each segment can be assigned one of four Read/Write states: read-only, write-only, read/write, or disabled. Typically, these blocks are mapped through MCH and are subtractive decoded to ISA space. Memory that is disabled is not remapped.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Table 2. Expansion Area Memory Segments

Memory Segments	Attributes	Comments
0C0000h - 0C3FFFh	WE RE	Add-on BIOS
0C4000h – 0C7FFFh	WE RE	Add-on BIOS
0C8000h – 0CBFFFh	WE RE	Add-on BIOS
OCCOOOh – OCFFFFh	WE RE	Add-on BIOS
0D0000h – 0D3FFFh	WE RE	Add-on BIOS
0D4000h – 0D7FFFh	WE RE	Add-on BIOS
0D8000h – 0DBFFFh	WE RE	Add-on BIOS
ODCOOOh – ODFFFFh	WE RE	Add-on BIOS

3.1.3 Extended System BIOS Area (E_0000h-E_FFFFh)

This 64 KB area (000E_0000h – 000E_FFFFh) is divided into four 16 KB segments. Each segment can be assigned independent read and write attributes so it can be mapped either to main DRAM or to DMI Interface. Typically, this area is used for RAM or ROM. Memory segments that are disabled are not remapped elsewhere.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Table 3. Extended System BIOS Area Memory Segments

Memory Segments	Attributes	Comments
0E0000h – 0E3FFFh	WE RE	BIOS Extension
0E4000h – 0E7FFFh	WE RE	BIOS Extension
0E8000h – 0EBFFFh	WE RE	BIOS Extension
0EC000h – 0EFFFFh	WE RE	BIOS Extension

3.1.4 System BIOS Area (F_0000h-F_FFFFh)

This area is a single 64 KB segment (000F_0000h - 000F_FFFFh). This segment can be assigned read and write attributes. It is by default (after reset) Read/Write disabled and cycles are forwarded to DMI Interface. By manipulating the Read/Write attributes, the MCH can "shadow" BIOS into the main DRAM. When disabled, this segment is not remapped.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Table 4. System BIOS Area Memory Segments

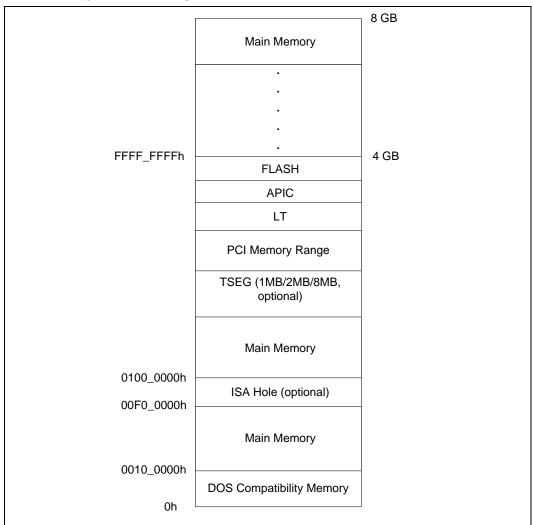
Memory Segments	Attributes	Comments	
0F0000h – 0FFFFFh	WE RE	BIOS Area	

3.1.5 PAM Memory Area Details

The 13 sections from 768 KB to 1 MB comprise what is also known as the PAM Memory Area.

The MCH does not handle IWB (Implicit Write-Back) cycles targeting DMI. Since all memory residing on DMI should be set as non-cacheable, there will normally not be IWB cycles targeting DMI. However, DMI becomes the default target for processor and DMI originated accesses to disabled segments of the PAM region. If the MTRRs covering the PAM regions are set to WB or RD it is possible to get IWB cycles targeting DMI. This may occur for processor originated cycles (in a DP system) and for DMI originated cycles to disabled PAM regions.

For example, say that a particular PAM region is set for "Read Disabled" and the MTRR associated with this region is set to WB. A DMI master generates a memory read targeting the PAM region. A snoop is generated on the FSB and the result is an IWB. Since the PAM region is "Read Disabled" the default target for the Memory Read becomes DMI. The IWB associated with this cycle will cause the MCH to hang.


Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

3.2 Main Memory Address Range (1MB - TOLUD)

This address range extends from 1 MB to the top of Low Usable physical memory that is permitted to be accessible by the MCH (as programmed in the TOLUD register). All accesses to addresses within this range will be forwarded by the MCH to the DRAM unless it falls into the optional TSEG, or optional ISA Hole.

Figure 4. Main Memory Address Range

3.2.1 ISA Hole (15 MB –16 MB)

A hole can be created at 15 MB –16 MB as controlled by the fixed hole enable in Device 0 space. Accesses within this hole are forwarded to the DMI Interface. The range of physical DRAM memory disabled by opening the hole is not remapped to the top of the memory – that physical DRAM space is not accessible. This 15 MB – 16 MB hole is an optionally enabled ISA hole.

The ISA Hole is used by validation and customer SV teams for some of their test cards. That is why it is being supported. There is no inherent BIOS request for the 15 - 16 MB window.

3.2.2 TSEG

TSEG is optionally 1 MB, 2 MB, or 8 MB in size. TSEG is below stolen memory, which is at the top of Low Usable physical memory (TOLUD). SMM-mode processor accesses to enabled TSEG access the physical DRAM at the same address. Non-processor originated accesses are not allowed to SMM space. PCI Express, and DMI originated cycles to enabled SMM space are handled as invalid cycle type with reads and writes to location 0 and byte enables turned off for writes. When the extended SMRAM space is enabled, processor accesses to the TSEG range without a SMM attribute or without WB attribute are also forwarded to memory as invalid accesses. Non-SMM-mode Write Back cycles that target TSEG space are completed to DRAM for cache coherency. When SMM is enabled the maximum amount of memory available to the system is equal to the amount of physical DRAM minus the value in the TSEG register which is fixed at 1 MB, 2 MB, or 8 MB.

3.2.3 Pre-allocated Memory

Voids of physical addresses that are not accessible as general system memory and reside within system memory address range (< TOLUD) are created for SMM-mode, and stolen memory. It is the responsibility of BIOS to properly initialize these regions. Table 7 details the location and attributes of the regions.

Table 5. Pre-allocated Memory Example for 64 MB DRAM, 1 MB stolen and 1 MB TSEG

Memory Segments	Attributes	Comments
0000_0000h - 03CF_FFFFh	R/W	Available System Memory 61 MB
03D0_0000h – 03DF_FFFFh	SMM Mode Only - processor Reads	TSEG Address Range & Pre-allocated Memory

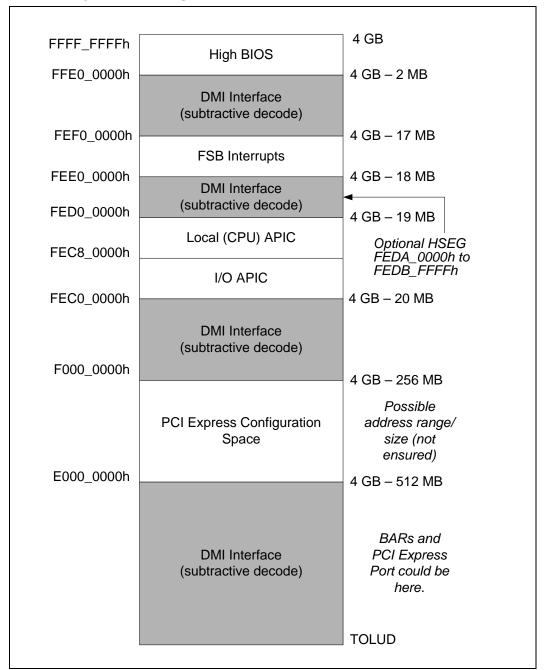
3.3 PCI Memory Address Range (TOLUD – 4GB)

This address range, from the top of low usable DRAM (TOLUD) to 4 GB is normally mapped to the DMI Interface.

Device 0 exceptions are:

- · Addresses decoded to the egress port registers (PXPEPBAR)
- Addresses decoded to the memory mapped range for internal MCH registers (MCHBAR)
- Addresses decoded to the flat memory-mapped address spaced to access device configuration registers (PCIEXBAR)
- Addresses decoded to the registers associated with the Direct Media Interface (DMI) register memory range. (DMIBAR)

With PCI Express port, there are two exceptions to this rule.


- Addresses decoded to the PCI Express Memory Window defined by the MBASE1, MLIMIT1, registers are mapped to PCI Express.
- Addresses decoded to the PCI Express prefetchable Memory Window defined by the PMBASE1, PMLIMIT1, registers are mapped to PCI Express.

Some of the MMIO Bars may be mapped to this range or to the range above TOUUD.

There are sub-ranges within the PCI Memory address range defined as APIC Configuration Space, FSB Interrupt Space, and High BIOS Address Range. The exceptions listed above for the PCI Express ports *MUST NOT* overlap with these ranges.

Figure 5. PCI Memory Address Range

3.3.1 APIC Configuration Space (FECO_0000h - FECF_FFFFh)

This range is reserved for APIC configuration space. The I/O APIC(s) usually reside in the ICH portion of the chip-set.

The IOAPIC spaces are used to communicate with IOAPIC interrupt controllers that may be populated in the system. Since it is difficult to relocate an interrupt controller using plug-and-play software, fixed address decode regions have been allocated for them. Processor accesses to the default IOAPIC region (FECO_0000h to FEC7_FFFFh) are always forwarded to DMI.

The MCH optionally supports additional I/O APICs behind the PCI Express port. When enabled via the PCI Express Configuration register (Device 1 Offset 200h), the PCI Express port will positively decode a subset of the APIC configuration space – specifically FEC8_0000h thru FECF_FFFFh. Memory request to this range would then be forwarded to the PCI Express port. When disabled, any access within entire APIC Configuration space (FEC0_0000h to FECF_FFFFh) is forwarded to DMI.

3.3.2 HSEG (FEDA_0000h - FEDB_FFFFh)

This optional segment from FEDA_0000h to FEDB_FFFFh provides a remapping window to SMM Memory. It is sometimes called the High SMM memory space. SMM-mode processor accesses to the optionally enabled HSEG are remapped to 000A_0000h – 000B_FFFFh. Non-SMM-mode processor accesses to enabled HSEG are considered invalid and are terminated immediately on the FSB. The exceptions to this rule are Non-SMM-mode Write Back cycles which are remapped to SMM space to maintain cache coherency. PCI Express and DMI originated cycles to enabled SMM space are not allowed. Physical DRAM behind the HSEG transaction address is not remapped and is not accessible. All cacheline writes with WB attribute or Implicit write backs to the HSEG range are completed to DRAM like an SMM cycle.

3.3.3 FSB Interrupt Memory Space (FEE0_0000 – FEEF_FFFF)

The FSB Interrupt space is the address used to deliver interrupts to the FSB. Any device on PCI Express or DMI may issue a Memory Write to OFEEx_xxxxh. The MCH will forward this Memory Write along with the data to the FSB as an Interrupt Message Transaction. The MCH terminates the FSB transaction by providing the response and asserting HTRDYB. This Memory Write cycle does not go to DRAM.

3.3.4 High BIOS Area

The top 2 MB (FFE0_0000h – FFFF_FFFFh) of the PCI Memory Address Range is reserved for System BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system BIOS. The processor begins execution from the High BIOS after reset. This region is mapped to DMI Interface so that the upper subset of this region aliases to 16 MB-256 KB range. The actual address space required for the BIOS is less than 2 MB but the minimum processor MTRR range for this region is 2 MB so that full 2 MB must be considered.

3.4 Main Memory Address Space (4 GB to TOUUD)

The MCH supports 36 bit addressing. The maximum main memory size supported is 8 GB total DRAM memory. A hole between TOLUD and 4 G occurs when main memory size approaches 4 GB or larger. As a result, TOM, and TOUUD registers and RECLAIMBASE/RECLAIMLIMIT registers become relevant.

The new reclaim configuration registers exist to reclaim lost main memory space. The greater than 32 bit reclaim handling will be handled similar to other MCHs.

Upstream read and write accesses above 36-bit addressing will be treated as invalid cycles by PCI Express and DMI.

Top of Memory

The "Top of Memory" (TOM) register reflects the total amount of populated physical memory. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped I/O above TOM). TOM is used to allocate the Intel Management Engine's stolen memory. The Intel ME stolen size register reflects the total amount of physical memory stolen by the Intel ME. The ME stolen memory is located at the top of physical memory. The ME stolen memory base is calculated by subtracting the amount of memory stolen by the Intel ME from TOM.

The Top of Upper Usable Dram (TOUUD) register reflects the total amount of addressable DRAM. If reclaim is disabled, TOUUD will reflect TOM minus Intel ME stolen size. If reclaim is enabled, then it will reflect the reclaim limit. Also, the reclaim base will be the same as TOM minus ME stolen memory size to the nearest 64 MB alignment.

TOLUD register is restricted to 4 GB memory (A[31:20]), but the MCH can support up to 16 GB, limited by DRAM pins. For physical memory greater than 4 GB, the TOUUD register helps identify the address range in between the 4 GB boundary and the top of physical memory. This identifies memory that can be directly accessed (including reclaim address calculation) which is useful for memory access indication, early path indication, and trusted read indication. When reclaim is enabled, TOLUD must be 64 MB aligned, but when reclaim is disabled, TOLUD can be 1 MB aligned.

C1DRB3 cannot be used directly to determine the effective size of memory as the values programmed in the DRBs depend on the memory mode (stacked, interleaved). The Reclaim Base/Limit registers also can not be used because reclaim can be disabled. The C0DRB3 register is used for memory channel identification (channel 0 vs. channel 1) in the case of stacked memory.

3.4.1 Memory Re-claim Background

The following are examples of Memory Mapped I/O devices are typically located below 4 GB:

- · High BIOS
- HSEG
- TSEG
- XAPIC
- Local APIC
- FSB Interrupts
- Mbase/Mlimit
- · Memory Mapped IO space that supports only 32 B addressing

The MCH provides the capability to re-claim the physical memory overlapped by the Memory Mapped I/O logical address space. The MCH re-maps physical memory from the Top of Low Memory (TOLUD) boundary up to the 4 GB boundary to an equivalent sized logical address range located just below the Intel ME's stolen memory.

3.4.2 Memory Reclaiming

An incoming address (referred to as a logical address) is checked to see if it falls in the memory re-map window. The bottom of the re-map window is defined by the value in the RECLAIMBASE register. The top of the re-map window is defined by the value in the RECLAIMLIMIT register. An address that falls within this window is reclaimed to the physical memory starting at the address defined by the TOLUD register. The TOLUD register must be 64 MB aligned when RECLAIM is enabled, but can be 1 MB aligned when reclaim is disabled.

3.5 PCI Express* Configuration Address Space

There is a device 0 register, PCIEXBAR, which defines the base address for the configuration space associated with all devices and functions that are potentially a part of the PCI Express root complex hierarchy. The size of this range will be programmable for the MCH. BIOS must assign this address range such that it will not conflict with any other address ranges.

See the configuration portion of this document for more details.

3.6 PCI Express* Address Space

The MCH can be programmed to direct memory accesses to the PCI Express interface when addresses are within either of two ranges specified via registers in MCH's Device 1 configuration space.

- The first range is controlled via the Memory Base Register (MBASE) and Memory Limit Register (MLIMIT) registers.
- The second range is controlled via the Pre-fetchable Memory Base (PMBASE) and Pre-fetchable Memory Limit (PMLIMIT) registers.

Conceptually, address decoding for each range follows the same basic concept. The top 12 bits of the respective Memory Base and Memory Limit registers correspond to address bits A[31:20] of a memory address. For the purpose of address decoding, the MCH assumes that address bits A[19:0] of the memory base are zero and that address bits A[19:0] of the memory limit address are FFFFFh. This forces each memory address range to be aligned to 1 MB boundary and to have a size granularity of 1 MB.

The MCH positively decodes memory accesses to PCI Express memory address space as defined by the following equations:

Memory_Base_Address ≤ Address ≤ Memory_Limit_Address

Prefetchable_Memory_Base_Address ≤ Address ≤ Prefetchable_Memory_Limit_Address

The window size is programmed by the plug-and-play configuration software. The window size depends on the size of memory claimed by the PCI Express device. Normally these ranges will reside above the Top-of-Low Usable-DRAM and below High BIOS and APIC address ranges. They MUST reside above the top of low memory (TOLUD) if they reside below 4 GB and MUST reside above top of upper memory (TOUUD) if they reside above 4 GB or they will steal physical DRAM memory space.

It is essential to support a separate Pre-fetchable range in order to apply USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining.

Note that the MCH Device 1 memory range registers described above are used to allocate memory address space for any PCI Express devices sitting on PCI Express that require such a window.

The PCICMD1 register can override the routing of memory accesses to PCI Express. In other words, the memory access enable bit must be set in the device 1 PCICMD1 register to enable the memory base/limit and pre-fetchable base/limit windows.

For the MCH, the upper PMUBASE1/PMULIMIT1 registers have been implemented for PCI Express Spec compliance. The MCH locates MMIO space above 4 GB using these registers.

3.7 System Management Mode (SMM)

System Management Mode uses main memory for System Management RAM (SMM RAM). The MCH supports: Compatible SMRAM (C_SMRAM), High Segment (HSEG), and Top of Memory Segment (TSEG). System Management RAM space provides a memory area that is available for the SMI handlers and code and data storage. This memory resource is normally hidden from the system OS so that the processor has immediate access to this memory space upon entry to SMM. MCH provides three SMRAM options:

- Below 1 MB option that supports compatible SMI handlers.
- Above 1 MB option that allows new SMI handlers to execute with write-back cacheable SMRAM.
- Optional TSEG area of 1 MB, 2 MB, or 8 MB in size. The TSEG area lies below stolen memory.

The above 1 MB solutions require changes to compatible SMRAM handlers code to properly execute above 1 MB.

Note: DMI Interface and PCI Express masters are not allowed to access the SMM space.

3.7.1 SMM Space Definition

SMM space is defined by its **addressed** SMM space and its DRAM SMM space. The addressed SMM space is defined as the range of bus addresses used by the processor to access SMM space. DRAM SMM space is defined as the range of physical DRAM memory locations containing the SMM code. SMM space can be accessed at one of three transaction address ranges: Compatible, High and TSEG. The Compatible and TSEG SMM space is not remapped and therefore the addressed and DRAM SMM space is the same address range. Since the High SMM space is remapped the addressed and DRAM SMM space is a different address range. Note that the High DRAM space is the same as the Compatible Transaction Address space. Table 6 describes three unique address ranges:

- · Compatible Transaction Address
- · High Transaction Address
- · TSEG Transaction Address

Table 6. Transaction Address Ranges – Compatible, High, and TSEG

SMM Space Enabled	Transaction Address Space	DRAM Space (DRAM)
Compatible	000A_0000h to 000B_FFFFh	000A_0000h to 000B_FFFFh
High	FEDA_0000h to FEDB_FFFFh	000A_0000h to 000B_FFFFh
TSEG	(TOLUD-STOLEN-TSEG) to TOLUD-STOLEN	(TOLUD-STOLEN-TSEG) to TOLUD-STOLEN

3.7.2 SMM Space Restrictions

If any of the following conditions are violated the results of SMM accesses are unpredictable and may cause the system to hang:

- 1. The Compatible SMM space **must not** be set-up as cacheable.
- High or TSEG SMM transaction address space must not overlap address space assigned to system DRAM, or to any "PCI" devices (including DMI Interface, PCI-Express). This is a BIOS responsibility.
- 3. Both D_OPEN and D_CLOSE must not be set to 1 at the same time.
- 4. When TSEG SMM space is enabled, the TSEG space **must not** be reported to the OS as available DRAM. This is a BIOS responsibility.
- Any address translated through the GMADR TLB must not target DRAM from A_0000h-F_FFFFh.

3.7.3 SMM Space Combinations

When High SMM is enabled (G_SMRAME=1 and H_SMRAM_EN=1), the Compatible SMM space is effectively disabled. processor originated accesses to the Compatible SMM space are forwarded to PCI Express; otherwise, they are forwarded to the DMI Interface. PCI Express and DMI Interface originated accesses are **never** allowed to access SMM space.

Table 7. SMM Space

Global Enable G_SMRAME	High Enable H_SMRAM_EN	TSEG Enable TSEG_EN	Compatible (C) Range	High (H) Range	TSEG (T) Range
0	X	Х	Disable	Disable	Disable
1	0	0	Enable	Disable	Disable
1	0	1	Enable	Disable	Enable
1	1	0	Disabled	Enable	Disable
1	1	1	Disabled	Enable	Enable

3.7.4 SMM Control Combinations

The G_SMRAME bit provides a global enable for all SMM memory. The D_OPEN bit allows software to write to the SMM ranges without being in SMM mode. BIOS software can use this bit to initialize SMM code at powerup. The D_LCK bit limits the SMM range access to only SMM mode accesses. The D_CLS bit causes SMM (both CSEG and TSEG) data accesses to be forwarded to the DMI Interface or PCI Express. The SMM software can use this bit to write to video memory while running SMM code out of DRAM.

Table 8. SMM Control Table

G_SMRAME	D_LCK	D_CLS	D_OPEN	Processor in SMM Mode	SMM Code Access	SMM Data Access
0	х	Х	х	×	Disable	Disable
1	0	Х	0	0	Disable	Disable
1	0	0	0	1	Enable	Enable
1	0	0	1	x	Enable	Enable
1	0	1	0	1	Enable	Disable
1	0	1	1	x	Invalid	Invalid
1	1	Х	х	0	Disable	Disable
1	1	0	х	1	Enable	Enable
1	1	1	Х	1	Enable	Disable

3.7.5 SMM Space Decode and Transaction Handling

Only the processor is allowed to access SMM space. PCI Express and DMI Interface originated transactions are not allowed to SMM space.

3.7.6 Processor WB Transaction to an Enabled SMM Address Space

Processor Writeback transactions (REQa[1]#=0) to enabled SMM Address Space must be written to the associated SMM DRAM even though D_OPEN=0 and the transaction is not performed in SMM mode. This ensures SMM space cache coherency when cacheable extended SMM space is used.

3.7.7 SMM Access Through TLB

Accesses through TLB address translation to enabled SMM DRAM space are not allowed. Writes will be routed to Memory address 000C_0000h with byte enables de-asserted and reads will be routed to Memory address 000C_0000h. If a TLB translated address hits enabled SMM DRAM space, an error is recorded.

PCI Express and DMI Interface originated accesses are **never** allowed to access SMM space directly or through the TLB address translation. If a TLB translated address hits enabled SMM DRAM space, an error is recorded.

PCI Express and DMI Interface write accesses through GMADR range will be snooped. Assesses to GMADR linear range (defined via fence registers) are supported. PCI Express and DMI Interface writes to GMADR are not supported. If, when translated, the resulting physical address is to enabled SMM DRAM space, the request will be remapped to address 000C_0000h with de-asserted byte enables.

PCI Express and DMI Interface read accesses to the GMADR range are not supported therefore will have no address translation concerns. PCI Express and DMI Interface reads to GMADR will be remapped to address 000C_0000h. The read will complete with UR (unsupported request) completion status.

Fetches are always decoded (at fetch time) to ensure not in SMM (actually, anything above base of TSEG or 640 KB – 1 MB). Thus, they will be invalid and go to address 000C_0000h, but that isn't specific to PCI Express or DMI; it applies to the processor. Also, since the GMADR snoop would not be directly to the SMM space, there wouldn't be a writeback to SMM. In fact, the writeback would also be invalid (because it uses the same translation) and go to address 000C 0000h.

3.8 Memory Shadowing

Any block of memory that can be designated as read-only or write-only can be "shadowed" into MCH DRAM memory. Typically this is done to allow ROM code to execute more rapidly out of main DRAM. ROM is used as a read-only during the copy process while DRAM at the same time is designated write-only. After copying, the DRAM is designated read-only so that ROM is shadowed. Processor bus transactions are routed accordingly.

3.9 I/O Address Space

The MCH does not support the existence of any other I/O devices beside itself on the processor bus. The MCH generates either DMI Interface or PCI Express bus cycles for all processor I/O accesses that it does not claim. Within the host bridge, the MCH contains two internal registers in the processor I/O space, Configuration Address Register (CONFIG_ADDRESS) and the Configuration Data Register (CONFIG_DATA). These locations are used to implement configuration space access mechanism.

The processor allows 64 K+3 bytes to be addressed within the I/O space. The MCH propagates the processor I/O address without any translation on to the destination bus and therefore provides addressability for 64K+3 byte locations. Note that the upper 3 locations can be accessed only during I/O address wrap-around when processor bus HAB_16 address signal is asserted. HAB_16 is asserted on the processor bus whenever an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. HAB_16 is also asserted when an I/O access is made to 2 bytes from address 0FFFFh.

The I/O accesses (other than ones used for configuration space access) are forwarded normally to the DMI Interface bus unless they fall within the PCI Express I/O address range as defined by the mechanisms explained below. I/O writes are NOT posted. Memory writes to ICH or PCI Express are posted. The PCICMD1 register can disable the routing of I/O cycles to the PCI Express.

The MCH responds to I/O cycles initiated on PCI Express or DMI with an UR status. Upstream I/O cycles and configuration cycles should never occur. If one does occur, the request will route as a read to Memory address 000C_0000h so a completion is naturally generated (whether the original request was a read or write). The transaction will complete with an UR completion status.

I/O reads that lie within 8-byte boundaries but cross 4-byte boundaries are issued from the processor as 1 transaction. The MCH will break this into 2 separate transactions. I/O writes that lie within 8-byte boundaries but cross 4-byte boundaries are assumed to be split into 2 transactions by the processor.

3.9.1 PCI Express* I/O Address Mapping

The MCH can be programmed to direct non-memory (I/O) accesses to the PCI Express bus interface when processor initiated I/O cycle addresses are within the PCI Express I/O address range. This range is controlled via the I/O Base Address (IOBASE) and I/O Limit Address (IOLIMIT) registers in MCH Device 1 configuration space.

Address decoding for this range is based on the following concept. The top 4 bits of the respective I/O Base and I/O Limit registers correspond to address bits A[15:12] of an I/O address. For the purpose of address decoding, the MCH assumes that lower 12 address bits A[11:0] of the I/O base are zero and that address bits A[11:0] of the I/O limit address are FFFh. This forces the I/O address range alignment to 4 KB boundary and produces a size granularity of 4 KB.

The MCH positively decodes I/O accesses to PCI Express I/O address space as defined by the following equation:

I/O_Base_Address ≤ Processor I/O Cycle Address ≤ I/O_Limit_Address

The effective size of the range is programmed by the plug-and-play configuration software and it depends on the size of I/O space claimed by the PCI Express device.

Note that the MCH Device 1 and/or Device 6 I/O address range registers defined above are used for all I/O space allocation for any devices requiring such a window on PCI Express.

The PCICMD1 register can disable the routing of I/O cycles to PCI Express.

4 MCH Register Description

The MCH contains two sets of software accessible registers, accessed via the Host processor I/O address space: Control registers and internal configuration registers.

- Control registers are I/O mapped into the processor I/O space, which control access to PCI and PCI Express configuration space (see Section 6).
- Internal configuration registers residing within the MCH are partitioned into two logical device register sets ("logical" since they reside within a single physical device). The first register set is dedicated to Host Bridge functionality (i.e., DRAM configuration, other chipset operating parameters, and optional features). The second register block is dedicated to Host-to-PCI Express Bridge functions (controls PCI Express interface configurations and operating parameters).

The MCH internal registers (I/O Mapped, Configuration, and PCI Express Extended Configuration registers) are accessible by the processor. The registers that reside within the lower 256 bytes of each device can be accessed as Byte, Word (16-bit), or DWord (32-bit) quantities, with the exception of CONFIG_ADDRESS, which can only be accessed as a DWord. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field). Registers which reside in bytes 256 through 4095 of each device may only be accessed using memory-mapped transactions in DWord (32-bit) quantities.

Some of the MCH registers described in this section contain reserved bits. These bits are labeled "Reserved". Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note the software does not need to perform read, merge, and write operation for the Configuration Address Register.

In addition to reserved bits within a register, the MCH contains address locations in the configuration space of the Host Bridge entity that are marked either "Reserved" or "Intel Reserved". The MCH responds to accesses to "Reserved" address locations by completing the host cycle. When a "Reserved" register location is read, a zero value is returned. ("Reserved" registers can be 8-, 16-, or 32-bits in size). Writes to "Reserved" registers have no effect on the MCH. Registers that are marked as "Intel Reserved" must not be modified by system software. Writes to "Intel Reserved" registers may cause system failure. Reads from "Intel Reserved" registers may return a non-zero value.

Upon a Full Reset, the MCH sets its entire set of internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionality feature set required to successfully bringing up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BIOS) to properly determine the DRAM configurations, operating parameters and optional system features that are applicable, and to program the MCH registers accordingly.

4.1 Register Terminology

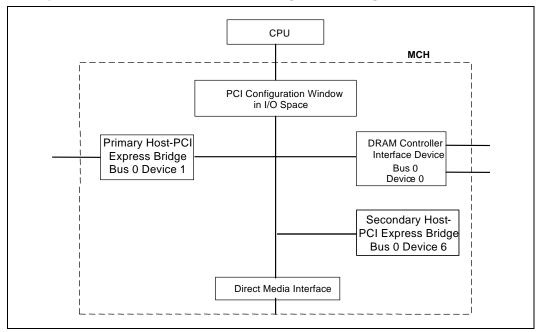
The following table shows the register-related terminology that is used.

Item	Description
RO	Read Only bit(s). Writes to these bits have no effect.
RO/S	Read Only / Sticky. Writes to these bits have no effect. These are status bits only. Bits are not returned to their default values by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits, a cold reset is "Power Good Reset" as defined in the PCI Express specification).
RS/WC	Read Set / Write Clear bit(s). These bits are set to '1' when read and then will continue to remain set until written. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect.
R/W	Read / Write bit(s). These bits can be read and written.
R/WC	Read / Write Clear bit(s). These bits can be read. Internal events may set this bit. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect.
R/WC/S	Read / Write Clear / Sticky bit(s). These bits can be read. Internal events may set this bit. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a cold reset is "Power Good Reset" as defined in the <i>PCI Express Specification</i>).
R/W/L	Read / Write / Lockable bit(s). These bits can be read and written. Additionally, there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).
R/W/K	Read / Write / Key bit(s). These bits can be read and written by software. Additionally this bit when set, prohibits some other bit field(s) from being writeable (bit fields become Read Only).
R/W/L	Read / Write / Lockable bit(s). These bits can be read and written. Additionally there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).
R/W/S	Read / Write / Sticky bit(s). These bits can be read and written. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a cold reset is "Power Good Reset" as defined in the PCI Express Specification).
R/WSC	Read / Write Self Clear bit(s). These bits can be read and written. When the bit is '1', hardware may clear the bit to '0' based upon internal events, possibly sooner than any subsequent read could retrieve a '1'.
R/WSC/L	Read / Write Self Clear / Lockable bit(s). These bits can be read and written. When the bit is '1', hardware may clear the bit to '0' based upon internal events, possibly sooner than any subsequent read could retrieve a '1'. Additionally there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).
R/WO	Write Once bit(s). Once written, bits with this attribute become Read Only. These bits can only be cleared by a Reset.
W	Write Only. Whose bits may be written, but will always-return zeros when read. They are used for write side effects. Any data written to these registers cannot be retrieved.

Note:

4.2 Configuration Process and Registers

4.2.1 Platform Configuration Structure


The DMI physically connects the MCH and the Intel ICH9; thus, from a configuration standpoint, the DMI is logically PCI bus 0. As a result, all devices internal to the MCH and the ICH appear to be on PCI bus 0.

Note: The ICH9 internal LAN controller does not appear on bus 0 – it appears on the external PCI bus and this number is configurable.

The system's primary PCI expansion bus is physically attached to the ICH and from a configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge; therefore, it has a programmable PCI Bus number. The PCI Express Interface appears to system software to be a real PCI bus behind a PCI-to-PCI bridge that is a device resident on PCI bus 0.

A physical PCI bus 0 does not exist; DMI and the internal devices in the MCH and ICH logically constitute PCI Bus 0 to configuration software. This is shown in Figure 6.

Figure 6. Conceptual Intel® X48 Platform PCI Configuration Diagram

The MCH contains four PCI devices within a single physical component. The configuration registers for the four devices are mapped as devices residing on PCI bus 0.

- Device 0: Host Bridge/DRAM Controller. Logically this appears as a PCI device residing on PCI bus 0. Device 0 contains the standard PCI header registers, PCI Express base address register, DRAM control (including thermal/throttling control), and configuration for the DMI and other MCH specific registers.
- Device 1: Primary Host-PCI Express Bridge. Logically this appears as a "virtual" PCI-to-PCI bridge residing on PCI bus 0 and is compliant with PCI Express Specification Revision 2.0. Device 1 contains the standard PCI-to-PCI bridge registers and the standard PCI Express/PCI configuration registers (including the PCI Express memory address mapping). It also contains Isochronous and Virtual Channel controls in the PCI Express extended configuration space.
- Device 6: Secondary Host-PCI Express Bridge. Logically this appears as a "virtual" PCI-to-PCI bridge residing on PCI bus 0 and is compliant with PCI Express Specification Revision 2.0. Device 6 contains the standard PCI-to-PCI bridge registers and the standard PCI Express/PCI configuration registers (including the PCI Express memory address mapping). It also contains Isochronous and Virtual Channel controls in the PCI Express extended configuration space.

4.3 Configuration Mechanisms

The processor is the originator of configuration cycles so the FSB is the only interface in the platform where these mechanisms are used. The MCH translates transactions received through both configuration mechanisms to the same format.

4.3.1 Standard PCI Configuration Mechanism

The following is the mechanism for translating processor I/O bus cycles to configuration cycles.

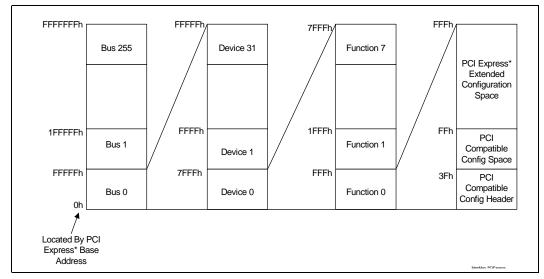
The PCI specification defines a slot based "configuration space" that allows each device to contain up to 8 functions with each function containing up to 256 8-bit configuration registers. The PCI specification defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration Write. Memory and I/O spaces are supported directly by the processor. Configuration space is supported by a mapping mechanism implemented within the MCH.

The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at I/O address OCF8h though OCF8h) and CONFIG_DATA Register (at I/O address OCFCh though OCFFh). To reference a configuration register a DWord I/O write cycle is used to place a value into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the device and a specific configuration register of the device function being accessed. CONFIG_ADDRESS[31] must be 1 to enable a configuration cycle. CONFIG_DATA then becomes a window into the four bytes of configuration space specified by the contents of CONFIG_ADDRESS. Any read or write to CONFIG_DATA will result in the MCH translating the CONFIG_ADDRESS into the appropriate configuration cycle.

The MCH is responsible for translating and routing the processor's I/O accesses to the CONFIG_ADDRESS and CONFIG_DATA registers to internal MCH configuration registers, DMI or PCI Express.

4.3.2 PCI Express Enhanced Configuration Mechanism

PCI Express extends the configuration space to 4096 bytes per device/function as compared to 256 bytes allowed by PCI Specification Revision 2.3. PCI Express configuration space is divided into a PCI 2.3 compatible region, which consists of the first 256B of a logical device's configuration space and a PCI Express extended region, which consists of the remaining configuration space.

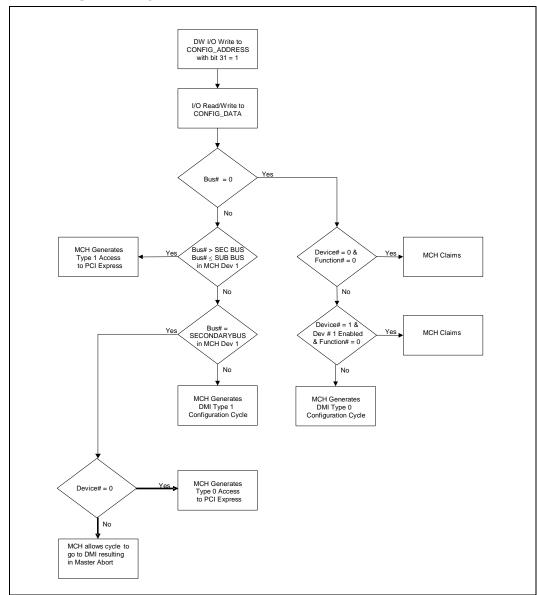

The PCI compatible region can be accessed using either the Standard PCI Configuration Mechanism or using the PCI Express Enhanced Configuration Mechanism described in this section. The extended configuration registers may only be accessed using the PCI Express Enhanced Configuration Mechanism. To maintain compatibility with PCI configuration addressing mechanisms, system software must access the extended configuration space using 32-bit operations (32-bit aligned) only. These 32-bit operations include byte enables allowing only appropriate bytes within the DWord to be accessed. Locked transactions to the PCI Express memory mapped configuration address space are not supported. All changes made using either access mechanism are equivalent.

The PCI Express Enhanced Configuration Mechanism utilizes a flat memory-mapped address space to access device configuration registers. This address space is reported by the system firmware to the operating system. There is a register, PCIEXBAR, that defines the base address for the block of addresses below 4 GB for the configuration space associated with busses, devices and functions that are potentially a part of the PCI Express root complex hierarchy. In the PCIEXBAR register there exists controls to limit the size of this reserved memory mapped space. 256 MB is the amount of address space required to reserve space for every bus, device, and function that could possibly exist. Options for 128 MB and 64 MB exist in order to free up those addresses for other uses. In these cases the number of busses and all of their associated devices and functions are limited to 128 or 64 busses respectively.

The PCI Express Configuration Transaction Header includes an additional 4 bits (ExtendedRegisterAddress[3:0]) between the Function Number and Register Address fields to provide indexing into the 4 KB of configuration space allocated to each potential device. For PCI Compatible Configuration Requests, the Extended Register Address field must be all zeros.

As with PCI devices, each device is selected based on decoded address information that is provided as a part of the address portion of Configuration Request packets. A PCI Express device will decode all address information fields (bus, device, function and extended address numbers) to provide access to the correct register.

To access this space (steps 1, 2, 3 are done only once by BIOS):


- 1. Use the PCI compatible configuration mechanism to enable the PCI Express enhanced configuration mechanism by writing 1 to bit 0 of the PCIEXBAR register.
- 2. Use the PCI compatible configuration mechanism to write an appropriate PCI Express base address into the PCIEXBAR register.
- 3. Calculate the host address of the register you wish to set using (PCI Express base + (bus number * 1 MB) + (device number * 32KB) + (function number * 4 KB) + (1 B * offset within the function) = host address).
- 4. Use a memory write or memory read cycle to the calculated host address to write or read that register.

4.4 Routing Configuration Accesses

The MCH supports two PCI related interfaces: DMI and PCI Express. The MCH is responsible for routing PCI and PCI Express configuration cycles to the appropriate device that is an integrated part of the MCH or to one of these two interfaces. Configuration cycles to the ICH internal devices and Primary PCI (including downstream devices) are routed to the ICH via DMI. Configuration cycles to the PCI Express PCI compatibility configuration space are routed to the PCI Express port device or associated link.

Figure 8. MCH Configuration Cycle Flow Chart

4.4.1 Internal Device Configuration Accesses

The MCH decodes the Bus Number (bits 23:16) and the Device Number fields of the CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0 the configuration cycle is targeting a PCI Bus #0 device.

If the targeted PCI Bus #0 device exists in the MCH and is not disabled, the configuration cycle is claimed by the appropriate device.

4.4.2 Bridge Related Configuration Accesses

Configuration accesses on PCI Express or DMI are PCI Express Configuration TLPs (Transaction Layer Packets):

- Bus Number [7:0] is Header Byte 8 [7:0]
- Device Number [4:0] is Header Byte 9 [7:3]
- Function Number [2:0] is Header Byte 9 [2:0]

And special fields for this type of TLP:

- Extended Register Number [3:0] is Header Byte 10 [3:0]
- Register Number [5:0] is Header Byte 11 [7:2]

See the PCI Express specification for more information on both the PCI 2.3 compatible and PCI Express Enhanced Configuration Mechanism and transaction rules.

4.4.2.1 PCI Express Configuration Accesses

When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express Enhanced Configuration access matches the Device 1 Secondary Bus Number a PCI Express Type 0 Configuration TLP is generated on the PCI Express link targeting the device directly on the opposite side of the link. This should be Device 0 on the bus number assigned to the PCI Express link (likely Bus #1).

The device on other side of link must be Device 0. The MCH will Master Abort any Type 0 Configuration access to a non-zero Device number. If there is to be more than one device on that side of the link there must be a bridge implemented in the downstream device.

When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express Enhanced Configuration access is within the claimed range (between the upper bound of the bridge device's Subordinate Bus Number register and the lower bound of the bridge device's Secondary Bus Number register) but doesn't match the Device 1 Secondary Bus Number, a PCI Express Type 1 Configuration TLP is generated on the secondary side of the PCI Express link.

PCI Express Configuration Writes:

- Internally the host interface unit will translate writes to PCI Express extended configuration space to configuration writes on the backbone.
- Writes to extended space are posted on the FSB, but non-posted on the PCI Express or DMI (i.e., translated to config writes)

4.4.2.2 DMI Configuration Accesses

Accesses to disabled MCH internal devices, bus numbers not claimed by the Host-PCI Express bridge, or PCI Bus #0 devices not part of the MCH will subtractively decode to the ICH and consequently be forwarded over the DMI via a PCI Express configuration TLP.

If the Bus Number is zero, the MCH will generate a Type 0 Configuration Cycle TLP on DMI. If the Bus Number is non-zero, and falls outside the range claimed by the Host-PCI Express bridge, the MCH will generate a Type 1 Configuration Cycle TLP on DMI.

The ICH routes configurations accesses in a manner similar to the MCH. The ICH decodes the configuration TLP and generates a corresponding configuration access. Accesses targeting a device on PCI Bus #0 may be claimed by an internal device. The ICH compares the non-zero Bus Number with the Secondary Bus Number and

Subordinate Bus Number registers of its PCI-to-PCI bridges to determine if the configuration access is meant for Primary PCI, or some other downstream PCI bus or PCI Express link.

Configuration accesses that are forwarded to the ICH9, but remain unclaimed by any device or bridge will result in a master abort.

4.5 MCH Register Introduction

4.6 I/O Mapped Registers

The MCH contains two registers that reside in the processor I/O address space – the Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data (CONFIG_DATA) Register. The Configuration Address Register enables/disables the configuration space and determines what portion of configuration space is visible through the Configuration Data window.

4.6.1 CONFIG_ADDRESS—Configuration Address Register

I/O Address: OCF8h Accessed as a DW

Default Value: 00000000h

Access: R/W Size: 32 bits

CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DW. A Byte or Word reference will "pass through" the Configuration Address Register and DMI onto the Primary PCI bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent configuration access is intended.

Bit	Access & Default	Description	
31	R/W Ob	Configuration Enable (CFGE) 0 = Disable 1 = Enable	
30:24		Reserved	
23:16	R/W 00h	Bus Number: If the Bus Number is programmed to 00h the target of the Configuration Cycle is a PCI Bus 0 agent. If this is the case and the MCH is not the target (i.e., the device number is ≥ 2), then a DMI Type 0 Configuration Cycle is generated. If the Bus Number is non-zero and does not fall within the ranges enumerated by device 1's Secondary Bus Number or Subordinate Bus Number Register, then a DMI Type 1 Configuration Cycle is generated. If the Bus Number is non-zero and matches the value programmed into the Secondary Bus Number Register of device 1, a Type 0 PCI configuration cycle will be generated on PCI Express. If the Bus Number is non-zero, greater than the value in the Secondary Bus Number register of device 1 and less than or equal to the value programmed into the Subordinate Bus Number Register of device 1 a Type 1 PCI configuration cycle will be generated on PCI Express. This field is mapped to byte 8 [7:0] of the request header format during PCI Express Configuration cycles and A[23:16] during the DMI Type 1 configuration cycles.	

Bit	Access & Default	Description
15:11	R/W 00h	Device Number: This field allows the configuration registers of a particular function in a multi-function device to be accessed. The MCH ignores configuration cycles to its internal devices if the function number is not equal to 0 or 1. This field is mapped to byte 6 [2:0] of the request header format during PCI Express Configuration cycles and A[10:8] during the DMI configuration cycles.
10:8	R/W 000b	Function Number: This field allows the configuration registers of a particular function in a multi-function device to be accessed. The MCH ignores configuration cycles to its internal devices if the function number is not equal to 0 or 1. This field is mapped to byte 6 [2:0] of the request header format during PCI Express Configuration cycles and A[10:8] during the DMI configuration cycles.
7:2	R/W 00h	Register Number: This field selects one register within a particular Bus, Device, and Function as specified by the other fields in the Configuration Address Register. This field is mapped to byte 7 [7:2] of the request header format during PCI Express Configuration cycles and A[7:2] during the DMI Configuration cycles.
1:0		Reserved

4.6.2 CONFIG_DATA—Configuration Data Register

I/O Address: OCFCh Default Value: 00000000h

Access: R/W Size: 32 bits

CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of configuration space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS.

Bit	Access & Default	Description	
31:0	R/W 0000 0000h	Configuration Data Window (CDW): If bit 31 of CONFIG_ADDRESS is 1, any I/O access to the CONFIG_DATA register will produce a configuration transaction using the contents of CONFIG_ADDRESS to determine the bus, device, function, and offset of the register to be accessed.	

§ §

5 DRAM Controller Registers (D0:F0)

The DRAM Controller registers are in Device 0 (D0), Function 0 (F0).

Warning:

Address locations that are not listed are considered Intel Reserved registers locations. Reads to Reserved registers may return non-zero values. Writes to reserved locations may cause system failures.

All registers that are defined in the PCI 2.3 specification, but are not necessary or implemented in this component are simply not included in this document. The reserved/unimplemented space in the PCI configuration header space is not documented as such in this summary.

Table 9. DRAM Controller Register Address Map

Address Offset	Register Symbol	Register Name	Default Value	Access
0–1h	VID	Vendor Identification	8086h	RO
2–3h	DID	Device Identification	29E0h	RO
4–5h	PCICMD	PCI Command	0006h	RO, RW
6–7h	PCISTS	PCI Status	0090h	RO, RWC
8h	RID	Revision Identification	see register description	RO
9–Bh	CC	Class Code	060000h	RO
Dh	MLT	Master Latency Timer	00h	RO
Eh	HDR	Header Type	00h	RO
2C-2Dh	SVID	Subsystem Vendor Identification	0000h	RWO
2E-2Fh	SID	Subsystem Identification	0000h	RWO
34h	CAPPTR	Capabilities Pointer	E0h	RO
40–47h	PXPEPBAR	PCI Express Egress Port Base Address	000000000 000000h	RO, RW/L
48–4Fh	MCHBAR	MCH Memory Mapped Register Range Base	000000000 000000h	RO, RW/L
54–57h	DEVEN	Device Enable	000023DBh	RO, RW/L
60–67h	PCIEXBAR	PCI Express Register Range Base Address	0000000E0 000000h	RO, RW/L, RW/L/K
68–6Fh	DMIBAR	Root Complex Register Range Base Address	000000000 000000h	RO, RW/L
90h	PAMO	Programmable Attribute Map 0	00h	RO, RW/L
91h	PAM1	Programmable Attribute Map 1	00h	RO, RW/L
92h	PAM2	Programmable Attribute Map 2	00h	RO, RW/L
93h	PAM3	Programmable Attribute Map 3	00h	RO, RW/L
94h	PAM4	Programmable Attribute Map 4	00h	RO, RW/L

Table 9. DRAM Controller Register Address Map

Address Offset	Register Symbol	Register Name	Default Value	Access
95h	PAM5	Programmable Attribute Map 5	00h	RO, RW/L
96h	PAM6	Programmable Attribute Map 6	00h	RO, RW/L
97h	LAC	Legacy Access Control	00h	RW, RW/L, RO
98–99h	REMAPBASE	Remap Base Address Register	03FFh	RO, RW/L
9A–9Bh	REMAPLIMIT	Remap Limit Address Register	0000h	RO, RW/L
9Dh	SMRAM	System Management RAM Control	02h	RO, RW/L, RW, RW/L/K
9Eh	ESMRAMC	Extended System Management RAM Control	38h	RW/L, RWC, RO
A0–A1h	TOM	Top of Memory	0001h	RO, RW/L
A2–A3h	TOUUD	Top of Upper Usable Dram	0000h	RW/L
A4–A7h	BSM	Base of Stolen Memory	00000000h	RW/L, RO
AC–AFh	TSEGMB	TSEG Memory Base	00000000h	RO, RW/L
B0-B1h	TOLUD	Top of Low Usable DRAM	0010h	RW/L, RO
C8-C9h	ERRSTS	Error Status	0000h	RWC/S, RO
CA-CBh	ERRCMD	Error Command	0000h	RW, RO
CC-CDh	SMICMD	SMI Command	0000h	RO, RW
DC-DFh	SKPD	Scratchpad Data	00000000h	RW
E0–EBh	CAPID0	Capability Identifier	0000000181 064000010C 0009h	RO

Datasheet Datasheet

5.1 Configuration Register Details

5.1.1 VID—Vendor Identification

B/D/F/Type: 0/0/0/PCI
Address Offset: 0-1h
Default Value: 8086h
Access: RO
Size: 16 bits

This register combined with the Device Identification register uniquely identifies any PCI device.

Bit	Access	Default Value	Description
15:0	RO	8086h	Vendor I dentification Number (VID): PCI standard identification for Intel.

5.1.2 DID—Device Identification

B/D/F/Type: 0/0/0/PCI
Address Offset: 2–3h
Default Value: 29E0h
Access: RO
Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Access	Default Value	Description
15:0	RO	29E0h	Device Identification Number (DID): This field identifier assigned to the MCH core/primary PCI device.

5.1.3 PCICMD—PCI Command

B/D/F/Type: 0/0/0/PCI Address Offset: 4–5h Default Value: 0006h Access: RO, RW Size: 16 bits

Since MCH Device 0 does not physically reside on PCI_A many of the bits are not implemented.

Bit	Access	Default Value	Description
15:9	RO	00h	Reserved
8	RW	Ob	SERR Enable (SERRE): This bit is a global enable bit for Device 0 SERR messaging. The MCH does not have an SERR signal. The MCH communicates the SERR condition by sending an SERR message over DMI to the ICH. 1 = The MCH is enabled to generate SERR messages over DMI for specific Device 0 error conditions that are individually enabled in the ERRCMD and DMIUEMSK registers. The error status is reported in the ERRSTS, PCISTS, and DMIUEST registers. 0 = The SERR message is not generated by the MCH for Device 0. Note that this bit only controls SERR messaging for the Device 0. Device 1 has its own SERRE bits to control error reporting for error conditions occurring in that device. The control bits are used in a logical OR manner to enable the SERR DMI message mechanism.
7	RO	Ob	Address/Data Stepping Enable (ADSTEP): Address/data stepping is not implemented in the MCH, and this bit is hardwired to 0. Writes to this bit position have no effect.
6	RW	Ob	Parity Error Enable (PERRE): Controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set. 0 = Master Data Parity Error bit in PCI Status register can NOT be set. 1 = Master Data Parity Error bit in PCI Status register CAN be set.
5	RO	0b	Reserved
4	RO	Ob	Memory Write and Invalidate Enable (MWIE): The MCH will never issue memory write and invalidate commands. This bit is therefore hardwired to 0. Writes to this bit position will have no effect.
3	RO	0b	Reserved
2	RO	1b	Bus Master Enable (BME): The MCH is always enabled as a master on the backbone. This bit is hardwired to a "1". Writes to this bit position have no effect.
1	RO	1b	Memory Access Enable (MAE): The MCH always allows access to main memory. This bit is not implemented and is hardwired to 1. Writes to this bit position have no effect.
0	RO	0b	I/O Access Enable (IOAE): This bit is not implemented in the MCH and is hardwired to a 0. Writes to this bit position have no effect.

Datasheet Datasheet

5.1.4 PCISTS—PCI Status

B/D/F/Type: 0/0/0/PCI Address Offset: 6–7h Default Value: 0090h Access: RO, RWC Size: 16 bits

This status register reports the occurrence of error events on Device 0's PCI interface. Since the MCH Device 0 does not physically reside on PCI_A many of the bits are not implemented.

Bit	Access	Default Value	Description
15	RWC	0b	Detected Parity Error (DPE): This bit is set when this Device receives a Poisoned TLP.
14	RWC	Ob	Signaled System Error (SSE): This bit is set to 1 when the MCH Device 0 generates an SERR message over DMI for any enabled Device 0 error condition. Device 0 error conditions are enabled in the PCICMD, ERRCMD, and DMIUEMSK registers. Device 0 error flags are read/reset from the PCISTS, ERRSTS, or DMIUEST registers. Software clears this bit by writing a 1 to it.
13	RWC	0b	Received Master Abort Status (RMAS): This bit is set when the MCH generates a DMI request that receives an Unsupported Request completion packet. Software clears this bit by writing a 1 to it.
12	RWC	0b	Received Target Abort Status (RTAS): This bit is set when the MCH generates a DMI request that receives a Completer Abort completion packet. Software clears this bit by writing a 1 to it.
11	RO	0b	Signaled Target Abort Status (STAS): The MCH will not generate a Target Abort DMI completion packet or Special Cycle. This bit is not implemented in the MCH and is hardwired to a 0. Writes to this bit position have no effect.
10:9	RO	00b	DEVSEL Timing (DEVT): These bits are hardwired to "00". Writes to these bit positions have no affect. Device 0 does not physically connect to PCI_A. These bits are set to "00" (fast decode) so that optimum DEVSEL timing for PCI_A is not limited by the MCH.
8	RWC	Ob	Master Data Parity Error Detected (DPD): This bit is set when DMI received a Poisoned completion from ICH. This bit can only be set when the Parity Error Enable bit in the PCI Command register is set.
7	RO	1b	Fast Back-to-Back (FB2B): This bit is hardwired to 1. Writes to these bit positions have no effect. Device 0 does not physically connect to PCI_A. This bit is set to 1 (indicating fast back-to-back capability) so that the optimum setting for PCI_A is not limited by the MCH.
6	RO	0b	Reserved
5	RO	0b	66 MHz Capable: Does not apply to PCI Express. Hardwired to 0.
4	RO	1b	Capability List (CLIST): This bit is hardwired to 1 to indicate to the configuration software that this device/function implements a list of new capabilities. A list of new capabilities is accessed via register CAPPTR at configuration address offset 34h. Register CAPPTR contains an offset pointing to the start address within configuration space of this device where the Capability Identification register resides.
3:0	RO	0000b	Reserved

5.1.5 RID—Revision Identification

B/D/F/Type: 0/0/0/PCI

Address Offset: 8h

Default Value: See table below

Access: RO Size: 8 bits

This register contains the revision number of the MCH Device 0. These bits are read only and writes to this register have no effect.

Bit	Access	Default Value	Description
7:0	RO	see description	Revision I dentification Number (RID): This is an 8-bit value that indicates the revision identification number for the MCH Device 0. Refer to the <i>Intel® X48 Express Chipset Specification Update</i> for the value of this register.

5.1.6 CC—Class Code

B/D/F/Type: 0/0/0/PCI Address Offset: 9–Bh Default Value: 060000h Access: RO Size: 24 bits

This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface.

Bit	Access	Default Value	Description
23:16	RO	06h	Base Class Code (BCC): This is an 8-bit value that indicates the base class code for the MCH. This code has the value 06h, indicating a Bridge device.
15:8	RO	00h	Sub-Class Code (SUBCC): This is an 8-bit value that indicates the category of Bridge into which the MCH falls. The code is 00h indicating a Host Bridge.
7:0	RO	00h	Programming Interface (PI): This is an 8-bit value that indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

5.1.7 MLT—Master Latency Timer

B/D/F/Type: 0/0/0/PCI
Address Offset: Dh
Default Value: 00h
Access: RO
Size: 8 bits

Device 0 in the MCH is not a PCI master. Therefore this register is not implemented.

Bit	Access	Default Value	Description
7:0	RO	00h	Reserved

5.1.8 HDR—Header Type

B/D/F/Type: 0/0/0/PCI

Address Offset: Eh
Default Value: 00h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access	Default Value	Description
7:0	RO	00h	PCI Header (HDR): This field always returns 0 to indicate that the MCH is a single function device with standard header layout. Reads and writes to this location have no effect.

5.1.9 SVID—Subsystem Vendor Identification

B/D/F/Type: 0/0/0/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: RWO
Size: 16 bits

This value is used to identify the vendor of the subsystem.

Bit	Access	Default Value	Description
15:0	RWO	0000h	Subsystem Vendor ID (SUBVID): This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

5.1.10 SID—Subsystem Identification

B/D/F/Type: 0/0/0/PCI Address Offset: 2E–2Fh Default Value: 0000h Access: RWO Size: 16 bits

This value is used to identify a particular subsystem.

Bit	Access	Default Value	Description
15:0	RWO	0000h	Subsystem ID (SUBID): This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

5.1.11 CAPPTR—Capabilities Pointer

B/D/F/Type: 0/0/0/PCI
Address Offset: 34h
Default Value: E0h
Access: RO
Size: 8 bits

The CAPPTR provides the offset that is the pointer to the location of the first device capability in the capability list.

Bit	Access	Default Value	Description
7:0	RO	E0h	Capabilities Pointer (CAPPTR): Pointer to the offset of the first capability ID register block. In this case the first capability is the product-specific Capability Identifier (CAPIDO).

5.1.12 PXPEPBAR—PCI Express* Egress Port Base Address

B/D/F/Type: 0/0/0/PCI Address Offset: 40–47h

Default Value: 0000000000000000h

Access: RO, RW/L Size: 64 bits

This is the base address for the PCI Express Egress Port MMIO Configuration space. There is no physical memory within this 4 KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the EGRESS port MMIO configuration space is disabled and must be enabled by writing a 1 to PXPEPBAREN [Dev 0, offset 40h, bit 0]

Bit	Access	Default Value	Description
63:36	RO	0000000h	Reserved
35:12	RW/L	000000h	PCI Express Egress Port MMIO Base Address (PXPEPBAR): This field corresponds to bits 35 to 12 of the base address PCI Express Egress Port MMIO configuration space. BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4KB space is allocated within the first 64 GB of addressable memory space. System Software uses this base address to program the MCH MMIO register set.
11:1	RO	000h	Reserved
0	RW/L	Ob	PXPEPBAR Enable (PXPEPBAREN): 0 = PXPEPBAR is disabled and does not claim any memory 1 = PXPEPBAR memory mapped accesses are claimed and decoded appropriately

5.1.13 MCHBAR—MCH Memory Mapped Register Range Base

B/D/F/Type: 0/0/0/PCI Address Offset: 48–4Fh

Default Value: 0000000000000000h

Access: RO, RW/L Size: 64 bits

This is the base address for the MCH Memory Mapped Configuration space. There is no physical memory within this 16KB window that can be addressed. The 16 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the MCH MMIO Memory Mapped Configuration space is disabled and must be enabled by writing a 1 to MCHBAREN [Dev 0, offset48h, bit 0].

The register space contains memory control, initialization, timing, and buffer strength registers; clocking registers; and power and thermal management registers.

Bit	Access	Default Value	Description
63:36	RO	0000000h	Reserved
35:14	RW/L	000000h	MCH Memory Mapped Base Address (MCHBAR): This field corresponds to bits 35:14 of the base address MCH Memory Mapped configuration space. BIOS will program this register resulting in a base address for a 16 KB block of contiguous memory address space. This register ensures that a naturally aligned 16 KB space is allocated within the first 64 GB of addressable memory space. System Software uses this base address to program the MCH Memory Mapped register set.
13:1	RO	0000h	Reserved
0	RW/L	Ob	MCHBAR Enable (MCHBAREN): 0 = MCHBAR is disabled and does not claim any memory 1 = MCHBAR memory mapped accesses are claimed and decoded appropriately

5.1.14 DEVEN—Device Enable

B/D/F/Type: 0/0/0/PCI Address Offset: 54–57h Default Value: 000023DBh Access: RO, RW/L Size: 32 bits

Allows for enabling/disabling of PCI devices and functions that are within the MCH. The table below the bit definitions describes the behavior of all combinations of transactions to devices controlled by this register.

Bit	Access	Default Value	Description
31:14	RO	00000h	Reserved
13			PE1 Enable (D6EN):
	RW/L	1b	0 = Bus 0, Device 6 is disabled and hidden.
			1 = Bus 1, Device 6 is enabled and visible. NOTE:
12:11	RO	00b	Reserved
			EP Function 3 (D3F3EN):
			0 = Bus 0, Device 3, Function 3 is disabled and hidden
			1 = Bus 0, Device 3, Function 3 is enabled and visible
9	RW/L	1b	If Device 3 Function 0 is disabled and hidden, then Device 3 Function 3 is also disabled and hidden independent of the state of this bit.
			If this MCH does not have ME capability (CAPIDO[57] = 1 or CAPIDO[56] = 1), then Device 3, Function 3 is disabled and hidden independent of the state of this bit.
		1b	EP Function 2 (D3F2EN):
			0 = Bus 0, Device 3, Function 2 is disabled and hidden
			1 = Bus 0, Device 3, Function 2 is enabled and visible
8	RW/L		If Device 3 Function 0 is disabled and hidden, then Device 3 Function 2 is also disabled and hidden independent of the state of this bit.
			If this MCH does not have ME capability (CAPIDO[57] = 1 or CAPIDO[56] = 1), then Device 3, Function 2 is disabled and hidden independent of the state of this bit.
	RW/L	1b	EP Function 1 (D3F1EN):
			0 = Bus 0, Device 3, Function 1 is disabled and hidden
			1 = Bus 0, Device 3, Function 1 is enabled and visible.
7			If Device 3 Function 0 is disabled and hidden, then Device 3 Function 1 is also disabled and hidden independent of the state of this bit.
			If this MCH does not have ME capability (CAPIDO[57] = 1), then Device 3, Function 1 is disabled and hidden independent of the state of this bit.
6	RW/L	1b	EP Function 0 (D3F0EN):
			0 = Bus 0, Device 3, Function 0 is disabled and hidden
			1 = Bus 0, Device 3, Function 0 is enabled and visible.
			If this MCH does not have ME capability (CAPIDO[57] = 1), then Device 3, Function 0 is disabled and hidden independent of the state of this bit.

Bit	Access	Default Value	Description
5:2	RO	0s	Reserved
1	RW/L	1b	PCI Express Port (D1EN): 0 = Bus 0, Device 1, Function 0 is disabled and hidden. Bus 0, Device 1, Function 0 is enabled and visible.
0	RO	1b	Host Bridge (D0EN): Bus 0, Device 0, Function 0 may not be disabled and is therefore hardwired to 1.

5.1.15 PCIEXBAR—PCI Express* Register Range Base Address

B/D/F/Type: 0/0/0/PCI Address Offset: 60–67h

Default Value: 00000000E0000000h Access: RO, RW/L, RW/L/K

Size: 64 bits

This is the base address for the PCI Express configuration space. This window of addresses contains the 4 KB of configuration space for each PCI Express device that can potentially be part of the PCI Express Hierarchy associated with the MCH. There is not actual physical memory within this window of up to 256 MB that can be addressed. The actual length is determined by a field in this register. Each PCI Express Hierarchy requires a PCI Express BASE register. The MCH supports one PCI Express hierarchy. The region reserved by this register does not alias to any PCI 2.3 compliant memory mapped space.

On reset, this register is disabled and must be enabled by writing a 1 to the enable field in this register. This base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register), above TOLUD and still within 64 bit addressable memory space. All other bits not decoded are read only 0. The PCI Express Base Address cannot be less than the maximum address written to the Top of physical memory register (TOLUD). Software must guarantee that these ranges do not overlap with known ranges located above TOLUD. Software must ensure that the sum of Length of enhanced configuration region + TOLUD + (other known ranges reserved above TOLUD) is not greater than the 64-bit addressable limit of 64 GB. In general system implementation and number of PCI/PCI express/PCI-X buses supported in the hierarchy will dictate the length of the region.

Bit	Access	Default Value	Description
63:36	RO	0000000h	Reserved
35:28	RW/L	0Eh	PCI Express Base Address (PCIEXBAR): This field corresponds to bits [35:28] of the base address for PCI Express enhanced configuration space. BIOS will program this register resulting in a base address for a contiguous memory address space; size is defined by bits [2:1] of this register. This Base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register) above TOLUD and still within 64-bit addressable memory space. The address bits decoded depend on the length of the region defined by this register. The address used to access the PCI Express configuration space for a specific device can be determined as follows: PCI Express Base Address + Bus Number * 1MB + Device Number * 32KB + Function Number * 4KB The address used to access the PCI Express configuration space for Device 1 in this component would be PCI Express Base Address + 0 * 1MB + 1 * 32KB + 0 * 4KB = PCI Express Base Address + 32KB. Remember that this address is the beginning of the 4KB space that contains both the PCI compatible configuration space and the PCI Express extended configuration space.
27	RW/L	Ob	128MB Base Address Mask (128ADMSK): This bit is either part of the PCI Express Base Address (R/W) or part of the Address Mask (RO, read 0b), depending on the value of bits [2:1] in this register.
26	RW/L	Ob	64MB Base Address Mask (64ADMSK): This bit is either part of the PCI Express Base Address (R/W) or part of the Address Mask (RO, read 0b), depending on the value of bits [2:1] in this register.
25:3	RO	000000h	Reserved
2:1	RW/L/K	00b	Length (LENGTH): This Field describes the length of this region. Enhanced Configuration Space Region/Buses Decoded 00 = 256 MB (buses 0-255). Bits [31:28] are decoded in the PCI Express Base Address Field 01 = 128 MB (Buses 0–127). Bits [31:27] are decoded in the PCI Express Base Address Field. 10 = 64 MB (Buses 0–63). Bits [31:26] are decoded in the PCI Express Base Address Field. 11 = Reserved
0	RW/L	Ob	PCIEXBAR Enable (PCIEXBAREN): 0 = The PCIEXBAR register is disabled. Memory read and write transactions proceed as if there were no PCIEXBAR register. PCIEXBAR bits [35:26] are R/W with no functionality behind them. 1 = The PCIEXBAR register is enabled. Memory read and write transactions whose address bits [35:26] match PCIEXBAR will be translated to configuration reads and writes within the MCH. These Translated cycles are routed as shown in the table above.

5.1.16 DMIBAR—Root Complex Register Range Base Address

B/D/F/Type: 0/0/0/PCI Address Offset: 68–6Fh

Default Value: 0000000000000000h

Access: RO, RW/L Size: 64 bits

This is the base address for the Root Complex configuration space. This window of addresses contains the Root Complex Register set for the PCI Express Hierarchy associated with the MCH. There is no physical memory within this 4 KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the Root Complex configuration space is disabled and must be enabled by writing a 1 to DMIBAREN [Dev 0, offset 68h, bit 0].

Bit	Access	Default Value	Description
63:36	RO	0000000h	Reserved
35:12	RW/L	000000h	DMI Base Address (DMIBAR): This field corresponds to bits 35:12 of the base address DMI configuration space. BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4KB space is allocated within the first 64 GB of addressable memory space. System Software uses this base address to program the DMI register set.
11:1	RO	000h	Reserved
0	RW/L	Ob	DMIBAR Enable (DMIBAREN): 0 = DMIBAR is disabled and does not claim any memory 1 = DMIBAR memory mapped accesses are claimed and decoded appropriately

5.1.17 PAMO—Programmable Attribute Map 0

B/D/F/Type: 0/0/0/PCI Address Offset: 90h Default Value: 00h Access: RO, RW/L Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS area from 0F0000h–0FFFFFh. The MCH allows programmable memory attributes on 13 Legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) Registers are used to support these features. Cacheability of these areas is controlled via the MTRR registers in the processor. Two bits are used to specify memory attributes for each memory segment. These bits apply to both host accesses and PCI initiator accesses to the PAM areas. These attributes are:

RE - Read Enable. When RE = 1, the processor read accesses to the

corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when RE = 0, the host

read accesses are directed to PCI_A.

WE - Write Enable. When WE = 1, the host write accesses to the corresponding

memory segment are claimed by the MCH and directed to main memory. Conversely, when WE = 0, the host write accesses are

directed to PCI_A.

The RE and WE attributes permit a memory segment to be Read Only, Write Only, Read/Write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is Read Only. Each PAM Register controls two regions, typically 16 KB in size.

Note that the MCH may hang if a PCI Express Link Attach or DMI originated access to Read Disabled or Write Disabled PAM segments occur (due to a possible IWB to non-DRAM).

For these reasons the following critical restriction is placed on the programming of the PAM regions: At the time that a DMI or PCI Express Link Attach accesses to the PAM region may occur, the targeted PAM segment must be programmed to be both readable and writeable.

Bit	Access	Default Value	Description
7:6	RO	00b	Reserved
5:4	RW/L	00b	OFOOOO—OFFFFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0F0000h to 0FFFFh. 00 = DRAM Disabled: All accesses are directed to DMI. 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:0	RO	0h	Reserved

5.1.18 PAM1—Programmable Attribute Map 1

B/D/F/Type: 0/0/0/PCI Address Offset: 91h Default Value: 00h Access: RO, RW/L Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C0000h – 0C7FFFh.

Bit	Access	Default Value	Description
7:6	RO	00b	Reserved
5:4	RW/L	00b	OC4000h–OC7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from OC4000h to OC7FFFh. OO = DRAM Disabled: Accesses are directed to DMI. O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2	RO	00b	Reserved
1:0	RW/L	00b	OCOOOOh—OC3FFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C0000h to 0C3FFFh. 00 = DRAM Disabled: Accesses are directed to DMI. 01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

5.1.19 PAM2—Programmable Attribute Map 2

B/D/F/Type: 0/0/0/PCI Address Offset: 92h Default Value: 00h Access: RO, RW/L Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C8000h– 0CFFFFh.

Bit	Access	Default Value	Description
7:6	RO	00b	Reserved
5:4	RW/L	00b	OCCOOOh—OCFFFFh Attribute (HIENABLE): 00 = DRAM Disabled: Accesses are directed to DMI. 01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 =: Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2	RO	00b	Reserved
1:0	RW/L	00b	OC8000h—OCBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C8000h to 0CBFFFh. 00 = DRAM Disabled: Accesses are directed to DMI. 01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

5.1.20 PAM3—Programmable Attribute Map 3

B/D/F/Type: 0/0/0/PCI Address Offset: 93h Default Value: 00h Access: RO, RW/L Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D0000h – 0D7FFFh.

Bit	Access	Default Value	Description
7:6	RO	00b	Reserved
5:4	RW/L	00b	OD4000h–OD7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from OD4000h to OD7FFFh. O0 = DRAM Disabled: Accesses are directed to DMI. O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2	RO	00b	Reserved
1:0	RW/L	00b	ODOOOOh—OD3FFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D0000h to 0D3FFFh. 00 = DRAM Disabled: Accesses are directed to DMI. 01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

5.1.21 PAM4—Programmable Attribute Map 4

B/D/F/Type: 0/0/0/PCI Address Offset: 94h Default Value: 00h Access: RO, RW/L Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D8000h – 0DFFFFh.

Bit	Access	Default Value	Description
7:6	RO	00b	Reserved
5:4	RW/L	00b	ODCOOh—ODFFFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from ODCOOOh to ODFFFFh. OO = DRAM Disabled: Accesses are directed to DMI. O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2	RO	00b	Reserved
1:0	RW/L	00b	OD8000h–ODBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from OD8000h to ODBFFFh. O0 = DRAM Disabled: Accesses are directed to DMI. O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

5.1.22 PAM5—Programmable Attribute Map 5

B/D/F/Type: 0/0/0/PCI Address Offset: 95h Default Value: 00h Access: RO, RW/L Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E0000h – 0E7FFFh.

Bit	Access	Default Value	Description
7:6	RO	00b	Reserved
5:4	RW/L	00b	OE4000h–OE7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000 to 0E7FFF. O0 = DRAM Disabled: Accesses are directed to DMI. O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2	RO	00b	Reserved
1:0	RW/L	00b	OEOOOOh—OE3FFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000 to 0E3FFF. 00 = DRAM Disabled: Accesses are directed to DMI. 01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

5.1.23 PAM6—Programmable Attribute Map 6

B/D/F/Type: 0/0/0/PCI Address Offset: 96h Default Value: 00h Access: RO, RW/L Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E8000h–0EFFFFh.

Bit	Access	Default Value	Description
7:6	RO	00b	Reserved
5:4	RW/L	00b	OECOOh-OEFFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000h to 0E7FFh. 00 = DRAM Disabled: Accesses are directed to DMI. 01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2	RO	00b	Reserved
1:0	RW/L	00b	OE8000h–OEBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000h to 0E3FFFh. 00 = DRAM Disabled: Accesses are directed to DMI. 01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.

5.1.24 LAC—Legacy Access Control

B/D/F/Type: 0/0/0/PCI Address Offset: 97h Default Value: 00h Access: RW/L, RO Size: 8 bits

This 8-bit register controls a fixed DRAM hole from 15–16 MB.

Bit	Access	Default Value	Description
7	RW/L	Ob	Hole Enable (HEN): This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped. 0 = No memory hole. 1 = Memory hole from 15 MB to 16 MB.
6:0	RO	0s	Reserved

5.1.25 REMAPBASE—Remap Base Address Register

B/D/F/Type: 0/0/0/PCI Address Offset: 98–99h Default Value: 03FFh Access: RO, RW/L Size: 16 bits

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	3FFh	Remap Base Address [35:26] (REMAPBASE): The value in this register defines the lower boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the Remap Base Address are assumed to be 0s. Thus the bottom of the defined memory range will be aligned to a 64 MB boundary. When the value in this register is greater than the value programmed into the Remap Limit register, the Remap window is disabled.

5.1.26 REMAPLIMIT—Remap Limit Address Register

B/D/F/Type: 0/0/0/PCI Address Offset: 9A–9Bh Default Value: 0000h Access: RO, RW/L Size: 16 bits

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	000h	Remap Limit Address [35:26] (REMAPLMT): The value in this register defines the upper boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the remap limit address are assumed to be Fs. Thus the top of the defined range will be one less than a 64 MB boundary. When the value in this register is less than the value programmed into the Remap Base register, the Remap window is disabled.

5.1.27 SMRAM—System Management RAM Control

B/D/F/Type: 0/0/0/PCI Address Offset: 9Dh Default Value: 02h

Access: RO, RW/L, RW, RW/L/K

Size: 8 bits

The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are treated. The Open, Close, and Lock bits function only when G_SMRAME bit is set to a 1. Also, the OPEN bit must be reset before the LOCK bit is set.

Bit	Access	Default Value	Description
7	RO	0b	Reserved
6	RW/L	Ob	SMM Space Open (D_OPEN): When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.
5	RW	Ob	SMM Space Closed (D_CLS): When D_CLS = 1 SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This will allow SMM software to reference through SMM space to update the display. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.
4	RW/L/K	Ob	SMM Space Locked (D_LCK): When D_LCK is set to 1 then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function.
3	RW/L	Ob	Global SMRAM Enable (G_SMRAME): If set to a 1, then Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADSB with SMM decode). To enable Extended SMRAM function this bit has be set to 1. Refer to the section on SMM for more details. Once D_LCK is set, this bit becomes read only.
2:0	RO	010b	Compatible SMM Space Base Segment (C_BASE_SEG): This field indicates the location of SMM space. SMM DRAM is not remapped. It is simply made visible if the conditions are right to access SMM space, otherwise the access is forwarded to DMI. Since the MCH supports only the SMM space between A0000 and BFFFF, this field is hardwired to 010b.

5.1.28 ESMRAMC—Extended System Management RAM Control

B/D/F/Type: 0/0/0/PCI Address Offset: 9Eh Default Value: 38h

Access: RW/L, RWC, RO

Size: 8 bits

The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MB.

Bit	Access	Default Value	Description
7	RW/L	Ob	Enable High SMRAM (H_SMRAME): This bit controls the SMM memory space location (i.e., above 1 MB or below 1 MB) When G_SMRAME is 1 and H_SMRAME is set to 1, the high SMRAM memory space is enabled. SMRAM accesses within the range 0FEDA0000h to 0FEDBFFFFh are remapped to DRAM addresses within the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read only.
6	RWC	Ob	Invalid SMRAM Access (E_SMERR): This bit is set when processor has accessed the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with the D-OPEN bit = 0. It is software's responsibility to clear this bit. The software must write a 1 to this bit to clear it.
5	RO	1b	SMRAM Cacheable (SM_CACHE): This bit is forced to 1 by the MCH.
4	RO	1b	L1 Cache Enable for SMRAM (SM_L1): This bit is forced to 1 by the MCH.
3	RO	1b	L2 Cache Enable for SMRAM (SM_L2): This bit is forced to 1 by the MCH.
2:1	RW/L	00b	TSEG Size (TSEG_SZ): Selects the size of the TSEG memory block if enabled. Memory from the top of DRAM space is partitioned away so that it may only be accessed by the processor interface and only then when the SMM bit is set in the request packet. Non-SMM accesses to this memory region are sent to DMI when the TSEG memory block is enabled. 00 = 1 MB TSEG. (TOLUD – Stolen Memory Size – 1M) to (TOLUD – Stolen Memory Size). 01 = 2 MB TSEG (TOLUD – Stolen Memory Size – 2M) to (TOLUD – Stolen Memory Size). 10 = 8 MB TSEG (TOLUD – Stolen Memory Size – 8M) to (TOLUD – Stolen Memory Size). 11 = Reserved. Once D_LCK has been set, these bits become read only.
0	RW/L	Ob	TSEG Enable (T_EN): This bit is for enabling of SMRAM memory for Extended SMRAM space only. When G_SMRAME = 1 and TSEG_EN = 1, the TSEG is enabled to appear in the appropriate physical address space. Note that once D_LCK is set, this bit becomes read only.

5.1.29 TOM—Top of Memory

B/D/F/Type: 0/0/0/PCI Address Offset: A0-A1h Default Value: 0001h Access: RO, RW/L Size: 16 bits

This Register contains the size of physical memory. BIOS determines the memory size reported to the OS using this Register.

Bit	Access	Default Value	Description
15:10	RO	00h	Reserved
9:0	RW/L	001h	Top of Memory (TOM): This register reflects the total amount of populated physical memory. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped IO). These bits correspond to address bits 35:26 (64MB granularity). Bits 25:0 are assumed to be 0.

5.1.30 TOUUD—Top of Upper Usable Dram

B/D/F/Type: 0/0/0/PCI Address Offset: A2–A3h Default Value: 0000h Access: RW/L Size: 16 bits

This 16 bit register defines the Top of Upper Usable DRAM.

Configuration software must set this value to TOM minus all EP stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to reclaim limit + 1byte 64 MB aligned since reclaim limit is 64 MB aligned. Address bits 19:0 are assumed to be 000_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register and greater than or equal to 4 GB.

В	Bit	Access	Default Value	Description
15	5:0	RW/L	0000h	TOUUD (TOUUD): This register contains bits 35:20 of an address one byte above the maximum DRAM memory above 4 GB that is usable by the operating system. Configuration software must set this value to TOM minus all EP stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to reclaim limit 64 MB aligned since reclaim limit + 1byte is 64 MB aligned. Address bits 19:0 are assumed to be 000_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register and greater than 4 GB.

5.1.31 BSM—Base of Stolen Memory

B/D/F/Type: 0/0/0/PCI Address Offset: A4-A7h Default Value: 00000000h Access: RW/L, RO Size: 32 bits

This register contains the base address of stolen DRAM memory. BIOS determines the base of stolen memory by subtracting the stolen memory size (PCI Device 0 offset 52 bits [6:4]) from TOLUD (PCI Device 0 offset B0 bits [15:04]).

Note: This register is locked and becomes Read Only when the D_LCK bit in the SMRAM register is set.

Bit	Access	Default Value	Description
31:20	RW/L	000h	Base of Stolen Memory (BSM): This register contains bits 31 to 20 of the base address of stolen DRAM memory. BIOS determines the base of stolen memory by subtracting the stolen memory size (PCI Device 0, offset 52h, bits 6:4) from TOLUD (PCI Device 0, offset B0h, bits 15:4). NOTE: This register is locked and becomes Read Only when the D_LCK bit in the SMRAM register is set.
19:0	RO	00000h	Reserved

5.1.32 TSEGMB—TSEG Memory Base

B/D/F/Type: 0/0/0/PCI Address Offset: AC-AFh Default Value: 00000000h Access: RO, RW/L Size: 32 bits

This register contains the base address of TSEG DRAM memory. BIOS determines the base of TSEG memory by subtracting the TSEG size (PCI Device 0 offset 9E bits [2:1]) from stolen base (PCI Device 0 offset A4 bits [31:20]).

Once D_LCK has been set, these bits becomes read only.

Bit	Access	Default Value	Description
31:20	RW/L	000h	TESG Memory base (TSEGMB): This register contains bits [31:20] of the base address of TSEG DRAM memory. BIOS determines the base of TSEG memory by subtracting the TSEG size (PCI Device 0 offset 9E bits [2:1]) from stolen base (PCI Device 0 offset A8 bits [31:20]). Once D_LCK has been set, these bits becomes read only.
19:0	RO	00000h	Reserved

5.1.33 TOLUD—Top of Low Usable DRAM

B/D/F/Type: 0/0/0/PCI Address Offset: B0-B1h Default Value: 0010h Access: RW/L, RO Size: 16 bits

This 16 bit register defines the Top of Low Usable DRAM. TSEG, and Stolen Memory are within the DRAM space defined. From the top, MCH optionally claims 1, 2 MB of DRAM for Stolen Memory and 1, 2, or 8 MB of DRAM for TSEG if enabled.

Programming Example:

C1DRB3 is set to 4 GB

TSEG is enabled and TSEG size is set to 1 MB

Stolen Memory Size set to 2 MB

BIOS knows the OS requires 1 GB of PCI space.

BIOS also knows the range from FECO_0000h to FFFF_FFFFh is not usable by the system. This 20 MB range at the very top of addressable memory space is lost to APIC.

According to the above equation, TOLUD is originally calculated to: $4~GB = 1_0000_0000h$

The system memory requirements are: 4GB (max addressable space) – 1GB (PCI space) – 35 MB (lost memory) = 3 GB – 35 MB (minimum granularity) = ECBO_0000h

Since ECB0_0000h (PCI and other system requirements) is less than 1_0000_0000h, TOLUD should be programmed to ECBh.

Bit	Access	Default Value	Description
15:4	RW/L	001h	Top of Low Usable DRAM (TOLUD): This register contains bits [31:20] of an address one byte above the maximum DRAM memory below 4GB that is usable by the operating system. Address bits [31:20] programmed to 01h implies a minimum memory size of 1 MB. Configuration software must set this value to the smaller of the following 2 choices: maximum amount memory in the system minus ME stolen memory plus one byte or the minimum address allocated for PCI memory. Address bits [19:0] are assumed to be 0_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register. Note that the Top of Low Usable DRAM is the lowest address above both Stolen memory and TSEG. BIOS determines the base of Stolen Memory by subtracting the Stolen Memory Size from TOLUD and further decrements by TSEG size to determine base of TSEG. This register must be 64 MB aligned when reclaim is enabled.
3:0	RO	0000b	Reserved

5.1.34 ERRSTS—Error Status

B/D/F/Type: 0/0/0/PCI Address Offset: C8–C9h Default Value: 0000h Access: RWC/S, RO Size: 16 bits

This register is used to report various error conditions via the SERR DMI messaging mechanism. An SERR DMI message is generated on a zero to one transition of any of these flags (if enabled by the ERRCMD and PCICMD registers).

These bits are set regardless of whether or not the SERR is enabled and generated. After the error processing is complete, the error logging mechanism can be unlocked by clearing the appropriate status bit by software writing a 1 to it.

Bit	Access	Default Value	Description
15	RO	0b	Reserved
14	RWC/S	Ob	Isochronous TBWRR Run Behind FIFO Full (ITCV): If set, this bit indicates a VC1 TBWRR is running behind, resulting in the slot timer to stop until the request is able to complete. If this bit is already set, then a interrupt message will not be sent on a new error event.
13	RWC/S	Ob	Isochronous TBWRR Run behind FIFO Put (ITSTV): If set, this bit indicates a VC1 TBWRR request was put into the run behind. This will likely result in a resulting in a contract violation due to the MCH egress port taking too long to service the isochronous request. If this bit is already set, then a interrupt message will not be sent on a new error event.
12:10	RO	000b	Reserved
9	RWC/S	0b	LOCK to non-DRAM Memory Flag (LCKF): When this bit is set to 1, the MCH has detected a lock operation to memory space that did not map into DRAM.
8	RO	0b	Reserved
7	RWC/S	Ob	DRAM Throttle Flag (DTF): 1 = Indicates that a DRAM Throttling condition occurred. 0 = Software has cleared this flag since the most recent throttling event.
6:2	RO	00h	Reserved
1	RWC/S	Ob	Multiple-bit DRAM ECC Error Flag (DMERR): If this bit is set to 1, a memory read data transfer had an uncorrectable multiple-bit error. When this bit is set, the address, channel number, and device number that caused the error are logged in the register. Once this bit is set, the fields are locked until the processor clears this bit by writing a 1. Software uses bits [1:0] to detect whether the logged error address is for Single or Multiple-bit error. This bit is reset on PWROK.
0	RWC/S	Ob	Single-bit DRAM ECC Error Flag (DSERR): If this bit is set to 1, a memory read data transfer had a single-bit correctable error and the corrected data was sent for the access. When this bit is set the address and device number that caused the error are logged in the DEAP register. Once this bit is set the DEAP, DERRSYN, and DERRDST fields are locked to further single bit error updates until the processor clears this bit by writing a 1. A multiple bit error that occurs after this bit is set will overwrite the DEAP and DERRSYN fields with the multiple-bit error signature and the DMERR bit will also be set. A single bit error that occurs after a multi-bit error will set this bit but will not overwrite the other fields. This bit is reset on PWROK.

5.1.35 ERRCMD—Error Command

B/D/F/Type: 0/0/0/PCI Address Offset: CA-CBh Default Value: 0000h Access: RW, RO Size: 16 bits

This register controls the MCH responses to various system errors. Since the MCH does not have an SERRB signal, SERR messages are passed from the MCH to the ICH over DMI.

When a bit in this register is set, a SERR message will be generated on DMI whenever the corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device 0 via the PCI Command register.

Bit	Access	Default Value	Description
15:10	RO	0s	Reserved
9	RW	Ob	SERR on LOCK to non-DRAM Memory (LCKERR): 1 = The MCH will generate a DMI SERR special cycle whenever a processor lock cycle is detected that does not hit DRAM. 0 = Reporting of this condition via SERR messaging is disabled.
8:2	RO	0s	Reserved
1	RW	Ob	SERR Multiple-Bit DRAM ECC Error (DMERR): 1 = The MCH generates an SERR message over DMI when it detects a multiple-bit error reported by the DRAM controller. 0 = Reporting of this condition via SERR messaging is disabled. For systems not supporting ECC this bit must be disabled.
0	RW	Ob	SERR on Single-bit ECC Error (DSERR): 1 = The MCH generates an SERR special cycle over DMI when the DRAM controller detects a single bit error. 0 = Reporting of this condition via SERR messaging is disabled. For systems that do not support ECC this bit must be disabled.

5.1.36 SMICMD—SMI Command

B/D/F/Type: 0/0/0/PCI
Address Offset: CC-CDh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register enables various errors to generate an SMI DMI special cycle. When an error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively. Note that one and only one message type can be enabled.

Bit	Access	Default Value	Description
15:2	RO	0s	Reserved
1	RW	Ob	 SMI on Multiple-Bit DRAM ECC Error (DMESMI): 1 = The MCH generates an SMI DMI message when it detects a multiple-bit error reported by the DRAM controller. 0 = Reporting of this condition via SMI messaging is disabled. For systems not supporting ECC this bit must be disabled.
0	RW	Ob	 SMI on Single-bit ECC Error (DSESMI): 1 = The MCH generates an SMI DMI special cycle when the DRAM controller detects a single bit error. 0 = Reporting of this condition via SMI messaging is disabled. For systems that do not support ECC this bit must be disabled.

5.1.37 SKPD—Scratchpad Data

B/D/F/Type: 0/0/0/PCI Address Offset: DC-DFh Default Value: 00000000h

Access: RW Size: 32 bits

This register holds 32 writable bits with no functionality behind them. It is for the convenience of BIOS drivers.

Bit	Access	Default Value	Description
31:0	RW	0000000 0h	Scratchpad Data (SKPD): 1 DWord of data storage.

CAPIDO—Capability Identifier 5.1.38

B/D/F/Type: Address Offset: Default Value: 0/0/0/PCI E0-EBh

000000181064000010C0009h

Access: RO 96 bits Size: **BIOS Optimal Default** 0h

This register provides control of bits in this register are only required for customer visible component differentiation.

Bit	Access	Default Value	Description
95:90	RO	0s	Reserved
89	RO	1b	Chipset Detect: 0 = Intel X38 Express Chipset 1 = Intel X48 Express Chipset
88:78	RO	0s	Reserved
77	RO	Ob	Dual Channel Disable (DCD): Disables dual-channel operation 0 = Dual channel operation allowed 1 = Only single channel operation allowed - Only channel 0 will operate, channel 1 will be turned off and tri-stated to save power. This setting hardwires the rank population field for channel 1 to zero. (MCHBAR offset 660h, bits 20:23).
76	RO	Ob	2 DIMMS per Channel Disable (2DPCD): Allows Dual-Channel operation but only supports 1 DIMM per channel. 0 = 2 DIMMs per channel Enabled 1 = 2 DIMMs per channel disabled. This setting hardwires bits 2 and 3 of the rank population field for each channel to zero. (MCHBAR offset 260h, bits 22:23 for channel 0 and MCHBAR offset 660h, bits 22:23 for channel 1).
75:73	RO	0s	Reserved
72	RO	0b	Agent Presence Disable (APD):
71	RO	0b	Circuit Breaker Disable (CBD):
70	RO	Ob	Multiprocessor Disable (MD): 0 = MCH capable of Multiple Processors 1 = MCH capable of uni-processor only.
69	RO	0b	FAN Speed Control Disable (FSCD):
68	RO	0b	EastFork Disable (EFD):
67:65	RO	000b	Reserved
64:62	RO	110	Reserved
61:58	RO	0000b	Reserved
57	RO	Ob	ME Disable (MED): 0 = ME feature is enabled 1 = ME feature is disabled
56	RO	1b	Reserved
55:51	RO	0s	Reserved
50:49	RO	11b	Reserved

Bit	Access	Default Value	Description
			VT-d Disable (VTDD):
48	RO	0b	0 = Enable VT-d
			1 = Disable VT-d
47	RO	0b	Reserved
46	RO	1b	Reserved
45	RO	Ob	Primary PCI Express Port x16 Disable (PEX16D): 0 = Capable of x16 PCI Express Port. 1 = Not Capable of x16 PCI Express port; instead PCI Express is limited to x8 and below. This causes PCI Express port to enable and train logical lanes [7:0] only. Logical lanes [15:8] are powered down, and the Max Link Width field of the Link Capability register reports x8 instead of x16. (In the case of x8 lane reversal, lanes [15:8] are active and lanes [7:0] are powered down.).
			Primary PCI Express Port Disable (PEPD):
44	RO	Ob	 0 = There is a PCI Express Port on this MCH. Device 1 and associated memory spaces are accessible. 1 = There is no PCI Express Port on this MCH. Device 1 and associated memory and I/O spaces are disabled by hardwiring the D1EN field bit 1 of the Device Enable register (DEVEN Dev 0 Offset 54h). In addition, Next_Pointer = 00h, and IO cannot decode to the PCI Express interface. From a Physical Layer perspective, all 16 lanes are powered down and the link does not attempt to train.
			Secondary PCI Express Port X16 Disable (PE2X16D):
43	RO	Ob	 0 = Capable of x16 PCI Express1 Port. 1 = Not Capable of x16 PCI Express1 port; instead PCI Express1 is limited to x8 and below. This causes PCI Express1 port to enable and train logical lanes [7:0] only. Logical lanes [15:8] are powered down, and the Max Link Width field of the Link Capability register reports x8 instead of x16. (In the case of x8 lane reversal, lanes [15:8] are active and lanes [7:0] are powered down.)
			Secondary PCI Express Port Disable (PE2PD):
42	RO	Ob	 0 = There is a secondary PCI Express Port on this MCH. Device 6 and associated memory spaces are accessible. 1 = There is no secondary PCI Express Port on this MCH. Device 6 and associated memory and IO spaces are disabled by hardwiring the D6EN field bit [13] of the Device Enable register (DEVEN Dev 0 Offset 54h). All 16 lanes are powered down and the link does not attempt to train. In addition, Next_Pointer = 00h, and IO cannot decode to the PCI Express interface. From a Physical Layer perspective, all 16 lanes are powered down and the link does not attempt to train.
41	RO	0b	Reserved
40	RO	Ob	ECC Disable (ECCDIS): 0 = ECC capable 1 = Not ECC capable. Hardwires ECC enable field, bit 7, of the CWB Control Registers (MCHBAR Offset 243h and 643h) to "0".
39	RO	0b	Reserved
			DDR3 Disable (DDR3D):
38	RO	0b	0 = Capable of supporting DDR3 SDRAM
			1 = Not Capable of supporting DDR3 SDRAM
37:35	RO	000b	Reserved

Bit	Access	Default Value	Description		
34	RO	Ob	Primary and Secondary PCI Express Gen 2 Disable (PEPSD): 0 = Primary and secondary PCI Express Gen 2 enabled 1 = Primary and secondary PCI Express Gen 2 disabled		
33:32	RO	00b	Reserved		
31:30	RO	00b	DDR Frequency Capability (DDRFC): This field controls which values may be written to the Memory Frequency Select field [6:4] of the Clocking Configuration registers (MCHBAR Offset COOh). Any attempt to write an unsupported value will be ignored. 00 = MCH capable of "All" Memory Frequencies 01 = MCH capable of up to DDR3 1067 10 = MCH capable of up to DDR3 800 11 = MCH capable of up to DDR3 667		
29:28	RO	00b	FSB Frequency Capability (FSBFC): This field controls which values are allowed in the FSB Frequency Select Field [2:0] of the Clocking Configuration Register. These values are determined by the BSEL[2:0] frequency straps. Any unsupported strap values will render the MCH System Memory Interface inoperable. 00 = MCH capable of "All" Memory Frequencies 01 = MCH capable of up to FSB 1333 10 = MCH capable of up to FSB 1067 11 = MCH capable of up to FSB 800		
27:24	RO	1h	CAPID Version (CAPIDV): This field has the value 0001b to identify the first revision of the CAPID register definition.		
23:16	RO	0Ch	CAPID Length (CAPIDL): This field has the value 0Ch to indicate the structure length (12 bytes).		
15:8	RO	00h	Next Capability Pointer (NCP): This field is hardwired to 00h indicating the end of the capabilities linked list.		
7:0	RO	09h	Capability Identifier (CAP_ID): This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers.		

5.2 MCHBAR

Table 10. MCHBAR Register Address Map

Address Offset	Register Symbol	Register Name	Default Value	Access
111h	CHDECMISC	Channel Decode Misc	00h	RW/L
200–201h	CODRB0	CODRBO Channel O DRAM Rank Boundary Address 0		RO, RW/L
202–203h	CODRB1	Channel 0 DRAM Rank Boundary Address 1	0000h	RW/L, RO
204–205h	CODRB2	Channel 0 DRAM Rank Boundary Address 2	0000h	RW/L, RO
206–207h	CODRB3	Channel 0 DRAM Rank Boundary Address 3	0000h	RO, RW/L
208–209h	CODRA01	Channel 0 DRAM Rank 0,1 Attribute	0000h	RW/L
20A	CODRA23	Channel 0 DRAM Rank 2,3 Attribute	0000h	RW/L
250–251h	COCYCTRKPCHG	Channel 0 CYCTRK PCHG	0000h	RO, RW
252–255h	COCYCTRKACT	Channel 0 CYCTRK ACT	00000000h	RW, RO
256–257h	COCYCTRKWR	Channel 0 CYCTRK WR	0000h	RW
258–25Ah	COCYCTRKRD Channel 0 CYCTRK READ		000000h	RO, RW
25B-25Ch	COCYCTRKREFR	RKREFR Channel 0 CYCTRK REFR		RO, RW
260–263h	COCKECTRL	Channel 0 CKE Control	00000800h	RW, RW/L, RO
269–26Eh	COREFRCTRL	Channel 0 DRAM Refresh Control	021830000C 30h	RW, RO
280–287h	COECCERRLOG	Channel 0 ECC Error Log	000000000 000000h	RO/P, RO
29C-29Fh	COODTCTRL	COODTCTRL Channel 0 ODT Control		RO, RW
600–601h	C1DRB0	Channel 1 DRAM Rank Boundary Address 0	0000h	RW/L, RO
602–603h	C1DRB1	Channel 1 DRAM Rank Boundary Address 1	0000h	RO, RW/L
604–605h	C1DRB2	Channel 1 DRAM Rank Boundary Address 2	0000h	RW/L, RO
606–607h	C1DRB3 Channel 1 DRAM Rank Boundary Address 3		0000h	RW/L, RO
608–609h	C1DRA01	Channel 1 DRAM Rank 0,1 Attributes	0000h	RW/L
60A-60Bh	C1DRA23	Channel 1 DRAM Rank 2,3 Attributes	0000h	RW/L
650–651h	C1CYCTRKPCHG	Channel 1 CYCTRK PCHG	0000h	RW, RO
652–655h	C1CYCTRKACT	Channel 1 CYCTRK ACT	00000000h	RO, RW
656–657h	C1CYCTRKWR	Channel 1 CYCTRK WR	0000h	RW

Table 10. MCHBAR Register Address Map

Address Offset	Register Symbol	Register Name	Default Value	Access
658–65Ah	C1CYCTRKRD	Channel 1 CYCTRK READ	000000h	RW, RO
660–663h	C1CKECTRL	Channel 1 CKE Control	00000800h	RO, RW/L, RW
669–66Eh	C1REFRCTRL	Channel 1 DRAM Refresh Control	021830000C 30h	RW, RO
680–687h	C1ECCERRLOG	Channel 1 ECC Error Log	000000000 000000h	RO/P, RO
69C-69Fh	C10DTCTRL	Channel 1 ODT Control	00000000h	RO, RW

5.2.1 CHDECMISC—Channel Decode Misc

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 111h

Default Value: 00h Access: RW/L Size: 8 bits

This register provides miscellaneous CHDEC/MAGEN configuration bits.

Bit	Access	Default Value	Description		
7	RW/L	0b	Reserved		
6:5	RW/L	00b	Enhanced Mode Select (ENHMODESEL): 00 = Swap Enabled for Bank Selects and Rank Selects 01 = XOR Enabled for Bank Selects and Rank Selects 10 = Swap Enabled for Bank Selects only 11 = XOR Enabled for Bank Select only This register is locked by ME stolen Memory lock.		
4	RW/L	0b	Channel 2 Enhanced Mode (CH2_ENHMODE):		
3	RW/L	0b	Channel 1 Enhanced Mode (CH1_ENHMODE):		
2	RW/L	0b	Channel 0 Enhanced Mode (CH0_ENHMODE):		
1	RW/L	0b	Reserved		
0	RW/L	Ob	EP Present (EPPRSNT): This bit indicates whether EP UMA is present in the system or not. This register is locked by ME stolen Memory lock.		

5.2.2 CODRBO—Channel O DRAM Rank Boundary Address O

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 200–201h
Default Value: 0000h
Access: RO, RW/L
Size: 16 bits

The DRAM Rank Boundary Registers define the upper boundary address of each DRAM rank with a granularity of 64MB. Each rank has its own single-word DRB register. These registers are used to determine which chip select will be active for a given address. Channel and rank map:

ch0 rank0: 200h ch0 rank1: 202h ch0 rank2: 204h ch0 rank3: 206h 600h ch1 rank0: ch1 rank1: 602h ch1 rank2: 604h ch1 rank3: 606h

Programming Guide:

Non-stacked mode:

If Channel 0 is empty, all of the CODRBs are programmed with 00h.

CODRBO = Total memory in ch0 rank0 (in 64 MB increments)

CODRB1 = Total memory in ch0 rank0 + ch0 rank1 (in 64 MB increments) and so on.

If Channel 1 is empty, all of the C1DRBs are programmed with 00h.

C1DRB0 = Total memory in ch1 rank0 (in 64 MB increments)

C1DRB1 = Total memory in ch1 rank0 + ch1 rank1 (in 64 MB increments) and so on.

Stacked mode:

CODRBs:

Similar to Non-stacked mode.

C1DRB0, C1DRB1 and C1DRB2:

They are also programmed similar to non-stacked mode. Only exception is, the DRBs corresponding to the topmost populated rank and the (unpopulated) higher ranks in Channel 1 must be programmed with the value of the total Channel 1 population plus the value of total Channel 0 population (CODRB3).

Example: If only ranks 0 and 1 are populated in Ch1 in stacked mode, then

C1DRB0 = Total memory in ch1 rank0 (in 64MB increments)

C1DRB1 = C0DRB3 + Total memory in ch1 rank0 + ch1 rank1 (in 64M B increments)

(rank 1 is the topmost populated rank)

C1DRB2 = C1DRB1

C1DRB3 = C1DRB1

C1DRB3:

C1DRB3 = C0DRB3 + Total memory in Channel 1.

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	000h	Channel O Dram Rank Boundary Address O (CODRBAO): This register defines the DRAM rank boundary for rank0 of Channel O (64 MB granularity) = RO RO = Total rank0 memory size/64MB R1 = Total rank1 memory size/64MB R2 = Total rank2 memory size/64MB R3 = Total rank3 memory size/64MB This register is locked by ME stolen Memory lock.

5.2.3 CODRB1—Channel 0 DRAM Rank Boundary Address 1

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 202–203h
Default Value: 0000h
Access: RW/L, RO
Size: 16 bits

See CODRBO register.

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	000h	Channel O Dram Rank Boundary Address 1 (CODRBA1): This field defines the DRAM rank boundary for rank1 of Channel 0 (64 MB granularity) =(R1 + R0) R0 = Total rank0 memory size/64MB R1 = Total rank1 memory size/64MB R2 = Total rank2 memory size/64MB R3 = Total rank3 memory size/64MB This register is locked by ME stolen Memory lock.

5.2.4 CODRB2—Channel O DRAM Rank Boundary Address 2

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 204–205h
Default Value: 0000h
Access: RW/L, RO
Size: 16 bits

See CODRBO register.

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	000h	Channel O DRAM Rank Boundary Address 2 (CODRBA2): This register defines the DRAM rank boundary for rank2 of Channel 0 (64 MB granularity) = (R2 + R1 + R0) R0 = Total rank0 memory size/64MB R1 = Total rank1 memory size/64MB R2 = Total rank2 memory size/64MB R3 = Total rank3 memory size/64MB This register is locked by ME stolen Memory lock.

5.2.5 CODRB3—Channel O DRAM Rank Boundary Address 3

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 206–207h
Default Value: 0000h
Access: RO, RW/L
Size: 16 bits

See CODRBO register.

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	000h	Channel O DRAM Rank Boundary Address 3 (CODRBA3): This register defines the DRAM rank boundary for rank3 of Channel 0 (64 MB granularity) =(R3 + R2 + R1 + R0) R0 = Total rank0 memory size/64MB R1 = Total rank1 memory size/64MB R2 = Total rank2 memory size/64MB R3 = Total rank3 memory size/64MB This register is locked by ME stolen Memory lock.

5.2.6 CODRA01—Channel O DRAM Rank 0,1 Attribute

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 208–209h
Default Value: 0000h
Access: RW/L
Size: 16 bits

The DRAM Rank Attribute Registers define the page sizes/number of banks to be used when accessing different ranks. These registers should be left with their default value (all zeros) for any rank that is unpopulated, as determined by the corresponding CxDRB registers. Each byte of information in the CxDRA registers describes the page size of a pair of ranks. Channel and rank map:

Ch0 Rank0, 1: 208h–209h
Ch0 Rank2, 3: 20Ah–20Bh
Ch1 Rank0, 1: 608h–609h
Ch1 Rank2, 3: 60Ah–60Bh

DRA[6:0] = "00" means cfg0, DRA[6:0] = "01" means cfg1.... DRA[6:0] = "09" means cfg9 and so on.

DRA[7] indicates whether it's an 8 bank config or not. DRA[7] = 0 means 4 bank, DRA[7] = 1 means 8 bank.

Table 11. DRAM Rank Attribute Register Programming

Config	Tech	DDRx	Depth	Width	Row	Col	Bank	Row Size	Page Size
0	256Mb	2	32M	8	13	10	2	256 MB	8k
1	256Mb	2	16M	16	13	9	2	128 MB	4k
2	512Mb	2	64M	8	14	10	2	512 MB	8k
3	512Mb	2	32M	16	13	10	2	256 MB	8k
4	512Mb	3	64M	8	13	10	3	512 MB	8k
5	512Mb	3	32M	16	12	10	3	256 MB	8k
6	1 Gb	2,3	128M	8	14	10	3	1 GB	8k
7	1 Gb	2,3	64M	16	13	10	3	512 MB	8k

Bit	Access	Default Value	Description
15:8	RW/L	00h	Channel O DRAM Rank-1 Attributes (CODRA1): This register defines DRAM pagesize/number-of-banks for rank1 for given channel. See table in register description for programming. This register is locked by ME stolen Memory lock.
7:0	RW/L	00h	Channel O DRAM Rank-O Attributes (CODRAO): This register defines DRAM page size/number-of-banks for rankO for given channel. See table in register description for programming. This register is locked by ME stolen Memory lock.

5.2.7 CODRA23—Channel O DRAM Rank 2,3 Attribute

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 20A-20Bh Default Value: 0000h

Access: RW/L Size: 16 bits

See CODRA01 register.

Bit	Access	Default Value	Description
15:8	RW/L	00h	Channel O DRAM Rank-3 Attributes (CODRA3): This register defines DRAM pagesize/number-of-banks for rank3 for given channel. See table in register description for programming. This register is locked by ME stolen Memory lock.
7:0	pagesize/number-of-banks for rank2 for given channel.		See table in register description for programming.

5.2.8 COCYCTRKPCHG—Channel 0 CYCTRK PCHG

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 250–251h Default Value: 0000h Access: RO, RW Size: 16 bits

This is the Channel 0 CYCTRK Precharge registers.

Bit	Access	Default Value	Description
15:11	RO	00000b	Reserved
10:6	RW	00000b	Write To PRE Delayed (C0sd_cr_wr_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the same rank-bank. This field corresponds to t _{WR} in the DDR Specification.
5:2	RW	0000b	READ To PRE Delayed (COsd_cr_rd_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and PRE commands to the same rank-bank
1:0	RW	00b	PRE To PRE Delayed (COsd_cr_pchg_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between two PRE commands to the same rank.

5.2.9 COCYCTRKACT—Channel 0 CYCTRK ACT

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 252–255h
Default Value: 00000000h
Access: RW, RO
Size: 32 bits

Channel 0 CYCTRK Activate registers.

Bit	Access	Default Value	Description
31:28	RO	0h	Reserved
27:22	RW	000000b	ACT Window Count (COsd_cr_act_windowcnt): This field indicates the window duration (in DRAM clocks) during which the controller counts the # of activate commands which are launched to a particular rank. If the number of activate commands launched within this window is greater than 4, then a check is implemented to block launch of further activates to this rank for the rest of the duration of this window.
21	RW	Ob	Max ACT Check Disable (C0sd_cr_maxact_dischk): This field enables the check which ensures that there are no more than four activates to a particular rank in a given window.
20:17	RW	0000b	ACT to ACT Delayed (C0sd_cr_act_act[): This field indicates the minimum allowed spacing (in DRAM clocks) between two ACT commands to the same rank. This field corresponds to t_{RRD} in the DDR Specification.
16:13	RW	0000b	PRE to ACT Delayed (C0sd_cr_pre_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE and ACT commands to the same rank-bank: 12:9R/W0000bPRE-ALL to ACT Delayed. (C0sd_cr_preall_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and ACT commands to the same rank. This field corresponds to t_{RP} in the DDR Specification.
12:9	RW	Oh	ALLPRE to ACT Delay (COsdO_cr_preall_act): From the launch of a prechargeall command wait for these many # of memory clocks before launching a activate command. This field corresponds to t _{PALL_RP} in the DDR Specification.
8:0	RW	0000000 00b	REF to ACT Delayed (COsd_cr_rfsh_act): This field indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT commands to the same rank. This field corresponds to $t_{\rm RFC}$ in the DDR Specification.

5.2.10 COCYCTRKWR—Channel 0 CYCTRK WR

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 256–257h

Address Offset: 256–257h
Default Value: 0000h
Access: RW
Size: 16 bits

Channel 0 CYCTRK WR registers.

Bit	Access	Default Value	Description
15:12	RW	0h	ACT To Write Delay (COsd_cr_act_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the same rank-bank. This field corresponds to t _{RCD_wr} in the DDR Specificaiton.
11:8	RW	Oh	Same Rank Write To Write Delayed (COsd_cr_wrsr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to the same rank.
7:4	RW	Oh	Different Rank Write to Write Delay (Cosd_cr_wrdr_wr): This field register indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to different ranks. This field corresponds to t _{WR_WR} in the DDR Specification.
3:0	RW	0h	READ To WRTE Delay (C0sd_cr_rd_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and WRITE commands. This field corresponds to t _{RD_WR} .

5.2.11 COCYCTRKRD—Channel O CYCTRK READ

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 258–25Ah
Default Value: 000000h
Access: RO, RW
Size: 24 bits

Channel 0 CYCTRK RD registers.

Bit	Access	Default Value	Description
23:21	RO	000b	Reserved
20:17	RW	Oh	Min ACT To READ Delayed (COsd_cr_act_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and READ commands to the same rank-bank. This field corresponds to t _{RCD_rd} in the DDR specification.
16:12	RW	00000b	Same Rank Write To READ Delayed (COsd_cr_wrsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to the same rank. This field corresponds to t _{WTR} in the DDR specification.
11:8	RW	0000b	Different Ranks Write To READ Delayed (COsd_cr_wrdr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to different ranks. This field corresponds to t _{WR_RD} in the DDR specification.
7:4	RW	0000b	Same Rank Read To Read Delayed (COsd_cr_rdsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to the same rank.
3:0	RW	0000b	Different Ranks Read To Read Delayed (Cosd_cr_rddr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to different ranks. This field corresponds to t _{RD_RD} .

5.2.12 COCYCTRKREFR—Channel 0 CYCTRK REFR

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 25B-25Ch Default Value: 0000h Access: RO, RW Size: 16 bits

Channel 0 CYCTRK Refresh registers.

Bit	Access	Default Value	Description
15:13	RO	000b	Reserved
12:9	RW	0000b	Same Rank PALL to REF Delayed (COsd_cr_pchgall_rfsh): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and REF commands to the same rank.
8:0	RW	0000000 00b	Same Rank REF to REF Delayed (COsd_cr_rfsh_rfsh): This field indicates the minimum allowed spacing (in DRAM clocks) between two REF commands to same ranks.

5.2.13 COCKECTRL—Channel 0 CKE Control

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 260–263h Default Value: 00000800h Access: RW, RW/L, RO

Size: 32 bits

This register provides CKE controls for Channel 0.

Bit	Access	Default Value	Description
31:28	RO	0000b	Reserved
27	RW	0b	Start the Self-Refresh Exit Sequence (sd0_cr_srcstart): This field indicates the request to start the self-refresh exit sequence
26:24	RW	000b	CKE Pulse Width Requirement in High Phase (sd0_cr_cke_pw_hl_safe): This field indicates CKE pulse width requirement in high phase. This field corresponds to t _{CKE} (high) in the DDR specification.
23	RW/L	Ob	Rank 3 Population (sd0_cr_rankpop3): 1 = Rank 3 populated 0 = Rank 3 not populated This register is locked by ME stolen Memory lock.
22	RW/L	Ob	Rank 2 Population (sd0_cr_rankpop2): 1 = Rank 2 populated 0 = Rank 2 not populated This register is locked by ME stolen Memory lock.
21	RW/L	Ob	Rank 1 Population (sd0_cr_rankpop1): 1 = Rank 1 populated 0 = Rank 1 not populated This register is locked by ME stolen Memory lock.
20	RW/L	Ob	Rank 0 Population (sd0_cr_rankpop0): 1 = Rank 0 populated 0 = Rank 0 not populated This register is locked by ME stolen Memory lock.
19:17	RW	000b	CKE Pulse Width Requirement in Low Phase (sd0_cr_cke_pw_lh_safe): This configuration register indicates CKE pulse width requirement in low phase. This field corresponds to t _{CKE} (low) in the DDR specification.
16	RW	0b	Enable CKE Toggle for PDN Entry/Exit (sd0_cr_pdn_enable): This bit indicates that the toggling of CKEs (for PDN entry/exit) is enabled.
15:14	RO	00b	Reserved
13:10	RW	0010b	Minimum Powerdown exit to Non-Read command spacing (sd0_cr_txp): This field indicates the minimum number of clocks to wait following assertion of CKE before issuing a non-read command. 1010-1111 = Reserved. 0010-1001 = 2-9clocks. 0000-0001 = Reserved.
9:1	RW	0000000 00b	Self Refresh Exit Count (sd0_cr_slfrfsh_exit_cnt): This field indicates the Self refresh exit count. (Program to 255). This field corresponds to t_{XSNR}/t_{XSRD} in the DDR Specification.
0	RW	0b	Indicates only 1 DIMM Populated (sd0_cr_singledimmpop): This field indicates the that only 1 DIMM is populated.

5.2.14 COREFRCTRL—Channel O DRAM Refresh Control

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 269–26Eh Default Value: 021830000C30h

Access: RW, RO Size: 48 bits

Settings to configure the DRAM refresh controller.

Bit	Access	Default Value	Description
47:42	RO	00h	Reserved
41:37	RW	10000b	Direct Rcomp Quiet Window (DIRQUIET): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.
36:32	RW	11000b	Indirect Rcomp Quiet Window (INDIRQUIET): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.
31:27	RW	00110b	Rcomp Wait (RCOMPWAIT): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.
26	RW	0b	Reserved
25	RW	Ob	Refresh Counter Enable (REFCNTEN): This bit is used to enable the refresh counter to count during times that DRAM is not in self-refresh, but refreshes are not enabled. Such a condition may occur due to need to reprogram DIMMs following DRAM controller switch. This bit has no effect when Refresh is enabled (i.e. there is no mode where Refresh is enabled but the counter does not run) So, in conjunction with bit [23] REFEN, the modes are: [REFEN:REFCNTEN] Description [0:0] Normal refresh disable [0:1] Refresh disabled, but counter is accumulating refreshes. [1:X] Normal refresh enable
24	RW	Ob	All Rank Refresh (ALLRKREF): This configuration bit enables (by default) that all the ranks are refreshed in a staggered/atomic fashion. If set, the ranks are refreshed in an independent fashion.
23	RW	Ob	Refresh Enable (REFEN): Refresh is enabled. 0 = Disabled 1 = Enabled
22	RW	Ob	DDR Initialization Done (INITDONE): Indicates that DDR initialization is complete.
21:20	RW	00b	Reserved
19:18	RW	00b	DRAM Refresh Panic Watermark (REFPANICWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_panic flag is set. 00 = 5 01 = 6 10 = 7 11 = 8

Bit	Access	Default Value	Description
17:16	RW	00b	DRAM Refresh High Watermark (REFHIGHWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_high flag is set. 00 = 3 01 = 4 10 = 5 11 = 6
15:14	RW	00b	DRAM Refresh Low Watermark (REFLOWWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_low flag is set. 00 = 1 01 = 2 10 = 3 11 = 4
13:0	RW	00110000 110000b	Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a value that will provide 7.8 us at the memory clock frequency. At various memory clock frequencies, this results in the following values: 400 Mhz -> C30 hex (Default Value) 533 Mhz -> 104B hex 666 Mhz -> 1450 hex

5.2.15 COECCERRLOG—Channel O ECC Error Log

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 280–287h

Default Value: 0000000000000000h

Access: RO/P, RO Size: 64 bits

This register is used to store the error status information in ECC enabled configurations, along with the error syndrome and the rank/bank/row/column address information of the address block of main memory of which an error (single bit or multibit error) has occurred. Note that the address fields represent the address of the first single or the first multiple bit error occurrence after the error flag bits in the ERRSTS register have been cleared by software. A multiple bit error will overwrite a single bit error. Once the error flag bits are set as a result of an error, this bit field is locked and doesn't change as a result of a new error until the error flag is cleared by software. Same is the case with error syndrome field, but the following priority needs to be followed if more than one error occurs on one or more of the 4 QWs. MERR on QW0 MERR on QW1 MERR on QW2 MERR on QW3 CERR on QW0 CERR on QW1 CERR on QW2 CERR on QW3 CERR on QW4 CE

Bit	Access	Default Value	Description
63:48	RO/P	0000h	Error Column Address (ERRCOL): Row address of the address block of main memory of which an error (single bit or multi-bit error) has occurred.
47:32	RO/P	0000h	Error Row Address (ERRROW): Row address of the address block of main memory of which an error (single bit or multi-bit error) has occurred.
31:29	RO/P	000b	Error Bank Address (ERRBANK): Rank address of the address block of main memory of which an error (single bit or multi-bit error) has occurred.
28:27	RO/P	00b	Error Rank Address (ERRRANK): Rank address of the address block of main memory of which an error (single bit or multi-bit error) has occurred. 00 = rank 0 (DIMM0) 01 = rank 1 (DIMM0) 10 = rank 2 (DIMM1) 11 = rank 3 (DIMM1)
26:24	RO	0h	Reserved
23:16	RO/P	00h	Error Syndrome (ERRSYND): Syndrome that describes the set of bits associated with the first failing quadword.
15:2	RO	0h	Reserved
1	RO/P	Ob	Multiple Bit Error Status (MERRSTS): This bit is set when an uncorrectable multiple-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked until this bit is cleared. This bit is cleared when it receives an indication that the processor has cleared the corresponding bit in the ERRSTS register.
0	RO/P	Ob	Correctable Error Status (CERRSTS): This bit is set when a correctable single-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked to further single bit errors, until this bit is cleared. But, a multiple bit error that occurs after this bit is set will over-write the address/error syndrome info. This bit is cleared when it receives an indication that the processor has cleared the corresponding bit in the ERRSTS register.

5.2.16 COODTCTRL—Channel 0 ODT Control

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 29C-29Fh
Default Value: 00000000h
Access: RO, RW
Size: 32 bits

This register provides ODT controls.

Bit	Access	Default Value	Description
31:12	RO	00000h	Reserved
11:8	RW	Oh	DRAM ODT for Read Commands (sd0_cr_odt_duration_rd): Specifies the duration in MDCLKs to assert DRAM ODT for Read Commands. The Async value should be used when the Dynamic Powerdown bit is set. Else use the Sync value.
7:4	RW	Oh	DRAM ODT for Write Commands (sd0_cr_odt_duration_wr): Specifies the duration in MDCLKs to assert DRAM ODT for Write Commands. The Async value should be used when the Dynamic Powerdown bit is set. Else use the Sync value.
3:0	RW	0h	MCH ODT for Read Commands (sd0_cr_mchodt_duration): Specifies the duration in MDCLKs to assert MCH ODT for Read Commands

5.2.17 C1DRB0—Channel 1 DRAM Rank Boundary Address 0

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 600–601h
Default Value: 0000h
Access: RW/L, RO
Size: 16 bits

The operation of this register is detailed in the description for the CODRBO register.

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	000h	Channel 1 DRAM Rank Boundary Address 0 (C1DRBAO): See C0DRB0 register. In stacked mode, if this is the topmost populated rank in Channel 1, program this value to be cumulative of Ch0 DRB3. This register is locked by ME stolen Memory lock.

5.2.18 C1DRB1—Channel 1 DRAM Rank Boundary Address 1

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 602–603h
Default Value: 0000h
Access: RO, RW/L
Size: 16 bits

The operation of this register is detailed in the description for the CODRBO register.

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	000h	Channel 1 DRAM Rank Boundary Address 1 (C1DRBA1): See C0DRB1 register. In stacked mode, if this is the topmost populated rank in Channel 1, program this value to be cumulative of Ch0 DRB3. This register is locked by ME stolen Memory lock.

5.2.19 C1DRB2—Channel 1 DRAM Rank Boundary Address 2

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 604–605h
Default Value: 0000h
Access: RW/L, RO
Size: 16 bits

The operation of this register is detailed in the description for the CODRBO register.

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
			Channel 1 DRAM Rank Boundary Address 2 (C1DRBA2): See C0DRB2 register.
9:0	RW/L	000h	In stacked mode, if this is the topmost populated rank in Channel 1, program this value to be cumulative of Ch0 DRB3. This register is locked by ME stolen Memory lock.

Size:

5.2.20 C1DRB3—Channel 1 DRAM Rank Boundary Address 3

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 606–607h Default Value: 0000h Access: RW/L, RO

16 bits

The operation of this register is detailed in the description for the CODRBO register.

Bit	Access	Default Value	Description
15:10	RO	000000b	Reserved
9:0	RW/L	000h	Channel 1 DRAM Rank Boundary Address 3 (C1DRBA3): See C0DRB3 register. In stacked mode, this will be cumulative of Ch0 DRB3. This register is locked by ME stolen Memory lock.

5.2.21 C1DRA01—Channel 1 DRAM Rank 0,1 Attributes

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 608–609h Default Value: 0000h Access: RW/L

Size: 16 bits

The operation of this register is detailed in the description for register CODRA01.

Bit	Access	Default Value	Description
15:8	RW/L	00h	Channel 1 DRAM Rank-1 Attributes (C1DRA1): See C0DRA1 register. This register is locked by ME stolen Memory lock.
7:0	RW/L	00h	Channel 1 DRAM Rank-0 Attributes (C1DRA0): See C0DRA0 register. This register is locked by ME stolen Memory lock.

5.2.22 C1DRA23—Channel 1 DRAM Rank 2,3 Attributes

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 60A-60Bh
Default Value: 0000h
Access: RW/L
Size: 16 bits

The operation of this register is detailed in the description for the CODRA01 register.

Bit	Access	Default Value	Description
15:8	RW/L	00h	Channel 1 DRAM Rank-3 Attributes (C1DRA3): See C0DRA3 register. This register is locked by ME stolen Memory lock.
7:0	RW/L	00h	Channel 1 DRAM Rank-2 Attributes (C1DRA2): See C0DRA2 register. This register is locked by ME stolen Memory lock.

5.2.23 C1CYCTRKPCHG—Channel 1 CYCTRK PCHG

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 650–651h Default Value: 0000h Access: RW, RO Size: 16 bits

Channel 1 CYCTRK Precharge registers.

Bit	Access	Default Value	Description
15:11	RO	00000b	Reserved
10:6	RW	00000b	Write To PRE Delayed (C1sd_cr_wr_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the same rank-bank. This field corresponds to t _{WR} in the DDR Specification.
5:2	RW	0000b	READ To PRE Delayed (C1sd_cr_rd_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and PRE commands to the same rank-bank
1:0	RW	00b	PRE To PRE Delayed (C1sd_cr_pchg_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between two PRE commands to the same rank.

5.2.24 C1CYCTRKACT—Channel 1 CYCTRK ACT

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 652–655h
Default Value: 00000000h
Access: RO, RW
Size: 32 bits

Channel 1 CYCTRK ACT registers.

Bit	Access	Default Value	Description
31:28	RO	0h	Reserved
27:22	RW	000000b	ACT Window Count (C1sd_cr_act_windowcnt): This field indicates the window duration (in DRAM clocks) during which the controller counts the # of activate commands which are launched to a particular rank. If the number of activate commands launched within this window is greater than 4, then a check is implemented to block launch of further activates to this rank for the rest of the duration of this window.
21	RW	Ob	Max ACT Check Disable (C1sd_cr_maxact_dischk): This field enables the check which ensures that there are no more than four activates to a particular rank in a given window.
20:17	RW	0000b	ACT to ACT Delayed (C1sd_cr_act_act[): This field indicates the minimum allowed spacing (in DRAM clocks) between two ACT commands to the same rank. This field corresponds to t _{RRD} in the DDR specification.

Bit	Access	Default Value	Description
16:13	RW	0000b	PRE to ACT Delayed (C1sd_cr_pre_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE and ACT commands to the same rank-bank:12:9R/W0000bPRE-ALL to ACT Delayed (C1sd_cr_preall_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and ACT commands to the same rank. This field corresponds to t_{RP} in the DDR Specification.
12:9	RW	0h	ALLPRE to ACT Delay (C1sd_cr_preall_act): From the launch of a prechargeall command wait for these many # of memory clocks before launching a activate command. This field corresponds to t _{PALL_RP}
8:0	RW	0000000 00b	REF to ACT Delayed (C1sd_cr_rfsh_act): This field indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT commands to the same rank. This field corresponds to t_{RFC} in the DDR specification.

5.2.25 C1CYCTRKWR—Channel 1 CYCTRK WR

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 656–657h Default Value: 0000h Access: RW Size: 16 bits

Channel 1 CYCTRK WR registers.

Bit	Access	Default Value	Description
15:12	RW	Oh	ACT To Write Delay (C1sd_cr_act_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the same rank-bank. This field corresponds to t _{RCD_wr} in the DDR Specification.
11:8	RW	Oh	Same Rank Write To Write Delayed (C1sd_cr_wrsr_wr): This field register indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to the same rank.
7:4	RW	Oh	Different Rank Write to Write Delay (C1sd_cr_wrdr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to different ranks. This field corresponds to t _{WR_WR} in the DDR Specification.
3:0	RW	Oh	READ To WRTE Delay (C1sd_cr_rd_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and WRITE commands. This field corresponds to t_{RD_WR} .

5.2.26 C1CYCTRKRD—Channel 1 CYCTRK READ

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 658–65Ah
Default Value: 000000h
Access: RW, RO
Size: 24 bits

Channel 1 CYCTRK READ registers.

Bit	Access	Default Value	Description	
23:21	RO	0h	Reserved	
20:17	RW	Oh	Min ACT To READ Delayed (C1sd_cr_act_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and READ commands to the same rank-bank. This field Corresponds to t _{RCD_rd} in the DDR Specification	
16:12	RW	00000b	Same Rank Write To READ Delayed (C1sd_cr_wrsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to the same rank. This field corresponds to t _{WTR} in the DDR Specification.	
11:8	RW	0000b	Different Ranks Write To READ Delayed (C1sd_cr_wrdr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to different ranks. This field corresponds to t _{WR_RD} in the DDR Specification.	
7:4	RW	0000b	Same Rank Read To Read Delayed (C1sd_cr_rdsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to the same rank.	
3:0	RW	0000b	Different Ranks Read To Read Delayed (C1sd_cr_rddr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to different ranks. This field corresponds to t _{RD_RD} .	

5.2.27 C1CKECTRL—Channel 1 CKE Control

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 660–663h Default Value: 00000800h Access: RO, RW/L, RW

Size: 32 bits

Channel 1 CKE Control registers.

Bit	Access	Default Value	Description		
31:28	RO	0h	Reserved		
27	RW	Ob	Start the Self-Refresh Exit Sequence (sd1_cr_srcstart): This bit indicates the request to start the self-refresh exit sequence		
26:24	RW	000b	CKE Pulse Width Requirement in High Phase (sd1_cr_cke_pw_hl_safe): This bit indicates CKE pulse width requirement in high phase. This field Corresponds to t _{CKE} (high) in the DDR Specification.		
23	RW/L	Ob	Rank 3 Population (sd1_cr_rankpop3): 1 = Rank 3 populated 0 = Rank 3 not populated This register is locked by ME stolen Memory lock.		
22	RW/L	Ob	Rank 2 Population (sd1_cr_rankpop2): 1 = Rank 2 populated 0 = Rank 2 not populated This register is locked by ME stolen Memory lock.		
21	RW/L	Ob	Rank 1 Population (sd1_cr_rankpop1): 1 = Rank 1 populated 0 = Rank 1 not populated This register is locked by ME stolen Memory lock.		
20	RW/L	Ob	Rank 0 Population (sd1_cr_rankpop0): 1 = Rank 0 populated 0 = Rank 0 not populated This register is locked by ME stolen Memory lock.		
19:17	RW	000b	CKE Pulse Width Requirement in Low Phase (sd1_cr_cke_pw_lh_safe): This field indicates CKE pulse width requirement in low phase. This field Corresponds to t _{CKE} (low) in the DDR Specification.		
16	RW	Ob	Enable CKE Toggle for PDN Entry/Exit (sd1_cr_pdn_enable): This bit indicates that the toggling of CKEs (for PDN entry/exit) is enabled.		
15:14	RO	00b	Reserved		
13:10	RW	0010b	Minimum Powerdown Exit to Non-Read Command Spacing (sd1_cr_txp): This field indicates the minimum number of clocks to wait following assertion of CKE before issuing a non-read command. 1010-1111 = Reserved. 0010-1001 = 2-9 clocks 0000-0001 = Reserved.		
9:1	RW	0000000 00b	Self Refresh Exit Count (sd1_cr_slfrfsh_exit_cnt): This configuration register indicates the Self refresh exit count. (Program to 255) Corresponds to txsnR/txsRD in the DDR Specification.		
0	RW	Ob	Indicates Only 1 DIMM Populated (sd1_cr_singledimmpop): This field indicates the that only 1 DIMM is populated.		

5.2.28 C1REFRCTRL—Channel 1 DRAM Refresh Control

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 669–66Eh Default Value: 021830000C30h

Access: RW, RO Size: 48 bits

Settings to configure the DRAM refresh controller.

Bit	Access	Default Value	Description	
47:42	RO	00h	Reserved	
41:37	RW	10000b	Direct Rcomp Quiet Window (DIRQUIET): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.	
36:32	RW	11000b	Indirect Rcomp Quiet Window (INDIRQUIET): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.	
31:27	RW	00110b	Rcomp Wait (RCOMPWAIT): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.	
26	RO	0b	Reserved	
25	RW	Ob	Refresh Counter Enable (REFCNTEN): This bit is used to enable the refresh counter to count during times that DRAM is not in self-refresh, but refreshes are not enabled. Such a condition may occur due to need to reprogram DIMMs following DRAM controller switch. This bit has no effect when Refresh is enabled (i.e. there is no mode where Refresh is enabled but the counter does not run) So, in conjunction with bit 23 REFEN, the modes are: [REFEN:REFCNTEN]Description [0:0] Normal refresh disable [0:1] Refresh disabled, but counter is accumulating refreshes. [1:X] Normal refresh enable	
24	RW	0b	All Rank Refresh (ALLRKREF): This configuration bit enables (by default) that all the ranks are refreshed in a staggered/atomic fashion. If set, the ranks are refreshed in an independent fashion.	
23	RW	Ob	Refresh Enable (REFEN): Refresh is enabled. 0 = Disabled 1 = Enabled	
22	RW	0b	DDR Initialization Done (INITDONE): Indicates that DDR initialization is complete.	
21:20	RO	00b	Reserved	
19:18	RW	00b	DRAM Refresh Panic Watermark (REFPANICWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_panic flag is set. 00 = 5 01 = 6 10 = 7 11 = 8	

Bit	Access	Default Value	Description
17:16	RW	00b	DRAM Refresh High Watermark (REFHIGHWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_high flag is set. 00 = 3 01 = 4 10 = 5 11 = 6
15:14	RW	00b	DRAM Refresh Low Watermark (REFLOWWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_low flag is set. 00 = 1 01 = 2 10 = 3 11 = 4
13:0	value that will provide 7.8 0011000 At various memory clock f		

5.2.29 C1ECCERRLOG—Channel 1 ECC Error Log

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 680–687h

Default Value: 000000000000000h

Access: RO/P, RO Size: 64 bits

This register is used to store the error status information in ECC enabled configurations, along with the error syndrome and the rank/bank/row/column address information of the address block of main memory of which an error (single bit or multibit error) has occurred. Note that the address fields represent the address of the first single or the first multiple bit error occurrence after the error flag bits in the ERRSTS register have been cleared by software. A multiple bit error will overwrite a single bit error. Once the error flag bits are set as a result of an error, this bit field is locked and does not change as a result of a new error until the error flag is cleared by software. Same is the case with error syndrome field, but the following priority needs to be followed if more than one error occurs on one or more of the 4 QWs. MERR on QW0, MERR on QW1, MERR on QW2, MERR on QW3, CERR on QW1, CERR on QW1, CERR on QW3.

Bit	Access	Default Value	Description	
63:48	RO/P	0000h	Error Column Address (ERRCOL): Row address of the address block of main memory of which an error (single bit or multi-bit error) has occurred.	
47:32	RO/P	0000h	Error Row Address (ERRROW): Row address of the address block of main memory of which an error (single bit or multi-bit error) has occurred.	
31:29	RO/P	000b	Error Bank Address (ERRBANK): Rank address of the address block of main memory of which an error (single bit or multi-bit error) has occurred.	

Bit	Access	Default Value	Description	
28:27	RO/P	00b	Error Rank Address (ERRRANK): Rank address of the address block of main memory of which an error (single bit or multi-bit error) has occurred. 00 = rank 0 (DIMM0) 01 = rank 1 (DIMM0) 10 = rank 2 (DIMM1) 11 = rank 3 (DIMM1)	
26:24	RO	0h	Reserved	
23:16	RO/P	00h	Error Syndrome (ERRSYND): Syndrome that describes the set of bits associated with the first failing quadword.	
15:2	RO	0h	Reserved	
1	RO/P	Ob Multiple Bit Error Status (MERRSTS): This bit is set when an uncorrectable multiple-bit error occurs on a memory read data transfer. When this bit is set the address that caused the error and the error syndrome are also logged at they are locked until this bit is cleared. This bit is cleared when it receives are indication that the processor has cleared the corresponding bit in the ERRST register.		
0	single-bit error occurs on a memory read data transfer. When this bit is set address that caused the error and the error syndrome are also logged and are locked to further single bit errors, until this bit is cleared. But, a multiperror that occurs after this bit is set will over-write the address/error syndrome.		Correctable Error Status (CERRSTS): This bit is set when a correctable single-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked to further single bit errors, until this bit is cleared. But, a multiple bit error that occurs after this bit is set will over-write the address/error syndrome info. This bit is cleared when it receives an indication that the processor has cleared the corresponding bit in the ERRSTS register.	

5.2.30 C1ODTCTRL—Channel 1 ODT Control

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 69C-69Fh Default Value: 00000000h Access: RO, RW Size: 32 bits

This register provides ODT controls.

Bit	Access	Default Value	Description	
31:12	RO	00000h	Reserved	
11:8	RW	0h	DRAM ODT for Read Commands (sd1_cr_odt_duration_rd): Specifies the duration in MDCLKs to assert DRAM ODT for Read Commands. The Async value should be used when the Dynamic Powerdown bit is set. Else use the Sync value.	
7:4	RW	0h	DRAM ODT for Write Commands (sd1_cr_odt_duration_wr): Specifies the duration in MDCLKs to assert DRAM ODT for Write Commands. The Async value should be used when the Dynamic Powerdown bit is set. Else use the Sync value.	
3:0	RW	0h	MCH ODT for Read Commands (sd1_cr_mchodt_duration): Specifies the duration in MDCLKs to assert MCH ODT for Read Commands.	

§ §

6 Host-Primary PCI Express* Bridge Registers (D1:F0)

Device 1 contains the controls associated with the PCI Express root port that is the intended attach point for external devices. In addition, it also functions as the virtual PCI-to-PCI bridge. The table below provides an address map of the D1:F0 registers listed by address offset in ascending order. This chapter provides a detailed bit description of the registers.

Warning:

When reading the PCI Express "conceptual" registers such as this, you may not get a valid value unless the register value is stable.

The PCI Express* Specification defines two types of reserved bits:

Reserved and Preserved:

- Reserved for future RW implementations; software must preserve value read for writes to bits.
- Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for writes to bits.

Unless explicitly documented as Reserved and Zero, all bits marked as reserved are part of the Reserved and Preserved type, which have historically been the typical definition for Reserved.

Note:

Most (if not all) control bits in this device cannot be modified unless the link is down. Software is required to first disable the link, then program the registers, and then reenable the link (which will cause a full-retrain with the new settings).

Table 12. Host-PCI Express Bridge Register Address Map (D1:F0) (Sheet 1 of 3)

Address Offset	Register Symbol	Register Name	Default Value	Access
0–1h	VID1	Vendor Identification	8086h	RO
2–3h	DID1	Device Identification	29E1h	RO
4–5h	PCICMD1	PCI Command	0000h	RO, RW
6–7h	PCISTS1	PCI Status	0010h	RO, RWC
8h	RID1	Revision Identification	see register description	RO
9–Bh	CC1	Class Code	060400h	RO
Ch	CL1	Cache Line Size	00h	RW
Eh	HDR1	Header Type	01h	RO
18h	PBUSN1	Primary Bus Number	00h	RO
19h	SBUSN1	Secondary Bus Number	00h	RW
1Ah	SUBUSN1	Subordinate Bus Number	00h	RW
1Ch	IOBASE1	I/O Base Address	F0h	RO, RW
1Dh	IOLIMIT1	I/O Limit Address	00h	RW, RO
1E–1Fh	SSTS1	Secondary Status	0000h	RO, RWC

Table 12. Host-PCI Express Bridge Register Address Map (D1:F0) (Sheet 2 of 3)

Address Offset	Register Symbol	Register Name	Default Value	Access
20–21h	MBASE1	Memory Base Address	FFF0h	RW, RO
22–23h	MLIMIT1	Memory Limit Address	0000h	RW, RO
24–25h	PMBASE1	Prefetchable Memory Base Address	FFF1h	RW, RO
26–27h	PMLIMIT1	Prefetchable Memory Limit Address	0001h	RO, RW
28–2Bh	PMBASEU1	Prefetchable Memory Base Address Upper	00000000h	RW
2C-2Fh	PMLIMITU1	Prefetchable Memory Limit Address Upper	00000000h	RW
34h	CAPPTR1	Capabilities Pointer	88h	RO
3Ch	INTRLINE1	Interrupt Line	00h	RW
3Dh	INTRPIN1	Interrupt Pin	01h	RO
3E–3Fh	BCTRL1	Bridge Control	0000h	RO, RW
80–83h	PM_CAPID1	Power Management Capabilities	C8039001h	RO
84–87h	PM_CS1	Power Management Control/Status	00000008h	RO, RW, RW/P
88–8Bh	SS_CAPID	Subsystem ID and Vendor ID Capabilities	0000800Dh	RO
8C-8Fh	SS	Subsystem ID and Subsystem Vendor ID	00008086h	RWO
90–91h	MSI_CAPID	Message Signaled Interrupts Capability ID	A005h	RO
92–93h	MC	Message Control	0000h	RW, RO
94–97h	MA	Message Address	00000000h	RO, RW
98–99h	MD	Message Data	0000h	RW
A0–A1h	PE_CAPL	PCI Express Capability List	0010h	RO
A2–A3h	PE_CAP	PCI Express Capabilities	0142h	RO, RWO
A4–A7h	DCAP	Device Capabilities	00008000h	RO
A8–A9h	DCTL	Device Control	0000h	RW, RO
AA–ABh	DSTS	Device Status	0000h	RO, RWC
AC–AFh	LCAP	Link Capabilities	020214D02h	RO, RWO
B0-B1h	LCTL	Link Control	0000h	RO, RW, RW/SC
B2-B3h	LSTS	Link Status	1000h	RWC, RO
B4-B7h	SLOTCAP	Slot Capabilities	00040000h	RWO, RO
B8-B9h	SLOTCTL	Slot Control	0000h	RO, RW
BA-BBh	SLOTSTS	Slot Status	0000h	RO, RWC
BC-BDh	RCTL	Root Control	0000h	RO, RW
CO-C3h	RSTS	Root Status	00000000h	RO, RWC
EC-EFh	PELC	PCI Express Legacy Control	00000000h	RO, RW
100–103h	VCECH	Virtual Channel Enhanced Capability Header	14010002h	RO
104–107h	PVCCAP1	Port VC Capability Register 1	00000000h	RO

Table 12. Host-PCI Express Bridge Register Address Map (D1:F0) (Sheet 3 of 3)

Address Offset	Register Symbol	Register Name	Default Value	Access
108–10Bh	PVCCAP2	Port VC Capability Register 2	00000000h	RO
10C- 10Dh	PVCCTL	Port VC Control	0000h	RO, RW
110–113h	VCORCAP	VCO Resource Capability	00000001h	RO
114–117h	VCORCTL	VC0 Resource Control	800000FFh	RO, RW
11A-11Bh	VCORSTS	VC0 Resource Status	0002h	RO
140–143h	RCLDECH	Root Complex Link Declaration Enhanced	00010005h	RO
144–147h	ESD	Element Self Description	02000100h	RO, RWO
150–153h	LE1D	Link Entry 1 Description	00000000h	RO, RWO
158–15Fh	LE1A	Link Entry 1 Address	000000000 000000h	RO, RWO
218–21Fh	PESSTS	PCI Express Sequence Status	000000000 000FFFh	RO

6.1 VID1—Vendor Identification

B/D/F/Type: 0/1/0/PCI Address Offset: 0–1h Default Value: 8086h Access: RO Size: 16 bits

This register combined with the Device Identification register uniquely identify any PCI device.

Bit	Access	Default Value	Description	
15:0	RO	8086h	Vendor Identification (VID1): PCI standard identification for Intel.	

6.2 DID1—Device Identification

B/D/F/Type: 0/1/0/PCI Address Offset: 2–3h Default Value: 29E1h Access: RO Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Access	Default Value	Description	
15:8	RO	29h	Device Identification Number (DID1(UB)): Identifier assigned to the MCH device 1 (virtual PCI-to-PCI bridge, PCI Express port).	
7:4	RO	Eh	Device Identification Number (DID1(HW)): Identifier assigned to the MCH device 1 (virtual PCI-to-PCI bridge, PCI Express port).	
3:0	RO	1h	Device I dentification Number (DID1(LB)): Identifier assigned to the MCH device 1 (virtual PCI-to-PCI bridge, PCI Express port).	

6.3 PCICMD1—PCI Command

B/D/F/Type: 0/1/0/PCI Address Offset: 4–5h Default Value: 0000h Access: RO, RW Size: 16 bits

Bit	Access	Default Value	Description
15:11	RO	00h	Reserved
10	RW	Ob	INTA Assertion Disable (INTAAD): 0 = This device is permitted to generate INTA interrupt messages. 1 = This device is prevented from generating interrupt messages. Any INTA emulation interrupts already asserted must be de-asserted when this bit is set. Only affects interrupts generated by the device (PCI INTA from a PME event) controlled by this command register. It does not affect upstream MSIs, upstream PCI INTA-INTD assert and de-assert messages.
9	RO	0b	Fast Back-to-Back Enable (FB2B): Not Applicable or Implemented. Hardwired to 0.

Bit	Access	Default Value	Description
8	RW	Ob	SERR# Message Enable (SERRE1): Controls Device 1 SERR# messaging. The MCH communicates the SERR# condition by sending an SERR message to the ICH. This bit, when set, enables reporting of non-fatal and fatal errors detected by the device to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI-Express specific bits in the Device Control Register. 0 = The SERR message is generated by the MCH for Device 1 only under conditions enabled individually through the Device Control Register. 1 = The MCH is enabled to generate SERR messages which will be sent to the ICH for specific Device 1 error conditions generated/detected on the primary side of the virtual PCI to PCI bridge (not those received by the secondary side). The status of SERRs generated is reported in the PCISTS1 register.
7	RO	0b	Reserved
6	RW	Ob	Parity Error Response Enable (PERRE): Controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set. 0 = Master Data Parity Error bit in PCI Status register can NOT be set. 1 = Master Data Parity Error bit in PCI Status register CAN be set.
5:3	RO	0b	Reserved
2	RW	Ob	Bus Master Enable (BME): Controls the ability of the PCI Express port to forward Memory and IO Read/Write Requests in the upstream direction. 0 = This device is prevented from making memory or IO requests to its primary bus. Note that according to PCI Specification, as MSI interrupt messages are in-band memory writes, disabling the bus master enable bit prevents this device from generating MSI interrupt messages or passing them from its secondary bus to its primary bus. Upstream memory writes/reads, IO writes/reads, peer writes/reads, and MSIs will all be treated as illegal cycles. Writes are forwarded to memory address C0000h with byte enables deasserted. Reads will be forwarded to memory address C0000h and will return Unsupported Request status (or Master abort) in its completion packet. 1 = This device is allowed to issue requests to its primary bus. Completions for previously issued memory read requests on the primary bus will be issued when the data is available. This bit does not affect forwarding of Completions from the primary interface to the secondary interface.
1	RW	Ob	Memory Access Enable (MAE): 0 = All of device 1's memory space is disabled. 1 = Enable the Memory and Pre-fetchable memory address ranges defined in the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.
0	RW	Ob	I/O Access Enable (IOAE): 0 = All of device 1's I/O space is disabled. 1 = Enable the I/O address range defined in the IOBASE1, and IOLIMIT1 registers.

6.4 PCISTS1—PCI Status

B/D/F/Type: 0/1/0/PCI
Address Offset: 6-7h
Default Value: 0010h
Access: RO, RWC
Size: 16 bits

This register reports the occurrence of error conditions associated with primary side of the "virtual" Host-PCI Express bridge embedded within the MCH.

Bit	Access	Default Value	Description
15	RO	Ob	Detected Parity Error (DPE): Not Applicable or Implemented. Hardwired to 0. Parity (generating poisoned Transaction Layer Packets) is not supported on the primary side of this device.
14	RWC	Ob	Signaled System Error (SSE): This bit is set when this Device sends an SERR due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the Command register is 1. Both received (if enabled by BCTRL1[1]) and internally detected error messages do not affect this field.
13	RO	Ob	Received Master Abort Status (RMAS): Not Applicable or Implemented. Hardwired to 0. The concept of a master abort does not exist on primary side of this device.
12	RO	Ob	Received Target Abort Status (RTAS): Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
11	RO	Ob	Signaled Target Abort Status (STAS): Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
10:9	RO	00b	DEVSELB Timing (DEVT): This device is not the subtractively decoded device on bus 0. This bit field is therefore hardwired to 00 to indicate that the device uses the fastest possible decode.
8	RO	Ob	Master Data Parity Error (PMDPE): Because the primary side of the PCI Express's virtual peer-to-peer bridge is integrated with the MCH functionality, there is no scenario where this bit will get set. Because hardware will never set this bit, it is impossible for software to have an opportunity to clear this bit or otherwise test that it is implemented. The PCI specification defines it as a R/WC, but for our implementation an RO definition behaves the same way and will meet all Microsoft testing requirements. This bit can only be set when the Parity Error Enable bit in the PCI Command register is set.
7	RO	0b	Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.
6	RO	0b	Reserved
5	RO	Ob	66/60MHz capability (CAP66): Not Applicable or Implemented. Hardwired to 0.
4	RO	1b	Capabilities List (CAPL): Indicates that a capabilities list is present. Hardwired to 1.
3	RO	Ob	INTA Status (INTAS): Indicates that an interrupt message is pending internally to the device. Only PME sources feed into this status bit (not PCI INTA-INTD assert and de-assert messages). The INTA Assertion Disable bit, PCICMD1[10], has no effect on this bit.
2:0	RO	000b	Reserved

6.5 RID1—Revision Identification

B/D/F/Type: 0/1/0/PCI

Address Offset: 8h

Default Value: see table below

Access: RO Size: 8 bits

This register contains the revision number of the MCH device 1. These bits are read only and writes to this register have no effect.

Bit	Access	Default Value	Description
7:0	RO		Revision Identification Number (RID1): This is an 8-bit value that indicates the revision identification number for the MCH Device 0. Refer to the <i>Intel® X48 Express Chipset Specification Update</i> for the value of this register.

6.6 CC1—Class Code

B/D/F/Type: 0/1/0/PCI Address Offset: 9–Bh Default Value: 060400h Access: RO Size: 24 bits

This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface.

Bit	Access	Default Value	Description
23:16	RO	06h	Base Class Code (BCC): Indicates the base class code for this device. This code has the value 06h, indicating a Bridge device.
15:8	RO	04h	Sub-Class Code (SUBCC): Indicates the sub-class code for this device. The code is 04h indicating a PCI to PCI Bridge.
7:0	RO	00h	Programming Interface (PI): Indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

6.7 CL1—Cache Line Size

B/D/F/Type: 0/1/0/PCI

Address Offset: Ch
Default Value: 00h
Access: RW
Size: 8 bits

Bit	Access	Default Value	Description
7:0	RW		Cache Line Size (Scratch pad): Implemented by PCI Express devices as a read-write field for legacy compatibility purposes but has no impact on any PCI Express device functionality.

6.8 HDR1—Header Type

B/D/F/Type: 0/1/0/PCI

Address Offset: Eh
Default Value: 01h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access	Default Value	Description
7:0	RO	01h	Header Type Register (HDR): Returns 01h to indicate that this is a single function device with bridge header layout.

6.9 PBUSN1—Primary Bus Number

B/D/F/Type: 0/1/0/PCI Address Offset: 18h Default Value: 00h Access: RO Size: 8 bits

This register identifies that this "virtual" Host-PCI Express bridge is connected to PCI bus 0.

Bit	Access	Default Value	Description
7:0	RO		Primary Bus Number (BUSN): Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since device 1 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.

6.10 SBUSN1—Secondary Bus Number

B/D/F/Type: 0/1/0/PCI Address Offset: 19h Default Value: 00h Access: RW Size: 8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" bridge. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express.

Bit	Access	Default Value	Description
7:0	RW	00h	Secondary Bus Number (BUSN): This field is programmed by configuration software with the bus number assigned to PCI Express.

6.11 SUBUSN1—Subordinate Bus Number

B/D/F/Type: 0/1/0/PCI Address Offset: 1Ah Default Value: 00h Access: RW Size: 8 bits

This register identifies the subordinate bus (if any) that resides at the level below PCI Express. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express.

Bit	Access	Default Value	Description
7:0	RW	00h	Subordinate Bus Number (BUSN): This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the device 1 bridge. When only a single PCI device resides on the PCI Express segment, this register will contain the same value as the SBUSN1 register.

6.12 IOBASE1—I/O Base Address

B/D/F/Type: 0/1/0/PCI
Address Offset: 1Ch
Default Value: F0h
Access: RO, RW
Size: 8 bits

This register controls the processor to PCI Express I/O access routing based on the following formula:

IO_BASE ≤ address ≤ IO_LIMIT

Only upper 4 bits are programmable. For the purpose of address decode address bits A[11:0] are treated as 0. Thus the bottom of the defined I/O address range will be aligned to a 4 KB boundary.

Bit	Access	Default Value	Description
7:4	RW	Fh	I/O Address Base (IOBASE): Corresponds to A[15:12] of the I/O addresses passed by bridge 1 to PCI Express.
3:0	RO	0h	Reserved

6.13 IOLIMIT1—I/O Limit Address

B/D/F/Type: 0/1/0/PCI Address Offset: 1Dh Default Value: 00h Access: RW, RO Size: 8 bits

This register controls the processor to PCI Express I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4 KB aligned address block.

Bit	Access	Default Value	Description
7:4	RW	0h	I/O Address Limit (IOLIMIT): Corresponds to A[15:12] of the I/O address limit of device #1. Devices between this upper limit and IOBASE1 will be passed to the PCI Express hierarchy associated with this device.
3:0	RO	0h	Reserved

6.14 SSTS1—Secondary Status

B/D/F/Type: 0/1/0/PCI
Address Offset: 1E-1Fh
Default Value: 0000h
Access: RO, RWC
Size: 16 bits

SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side of the "virtual" PCI-PCI bridge embedded within MCH.

Bit	Access	Default Value	Description
15	RWC	Ob	Detected Parity Error (DPE): This bit is set by the Secondary Side for a Type 1 Configuration Space header device whenever it receives a Poisoned Transaction Layer Packet, regardless of the state of the Parity Error Response Enable bit in the Bridge Control Register.
14	RWC	0b	Received System Error (RSE): This bit is set when the Secondary Side for a Type 1 configuration space header device receives an ERR_FATAL or ERR_NONFATAL.
13	RWC	Ob	Received Master Abort (RMA): This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Unsupported Request Completion Status.
12	RWC	Ob	Received Target Abort (RTA): This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Completer Abort Completion Status.
11	RO	Ob	Signaled Target Abort (STA): Not Applicable or Implemented. Hardwired to 0. The MCH does not generate Target Aborts (the MCH will never complete a request using the Completer Abort Completion status).
10:9	RO	00b	DEVSELB Timing (DEVT): Not Applicable or Implemented. Hardwired to 0.
8	RWC	Ob	Master Data Parity Error (SMDPE): When set indicates that the MCH received across the link (upstream) a Read Data Completion Poisoned Transaction Layer Packet (EP=1). This bit can only be set when the Parity Error Enable bit in the Bridge Control register is set.
7	RO	0b	Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.
6	RO	0b	Reserved
5	RO	0b	66/60 MHz capability (CAP66): Not Applicable or Implemented. Hardwired to 0.
4:0	RO	00h	Reserved

6.15 MBASE1—Memory Base Address

B/D/F/Type: 0/1/0/PCI Address Offset: 20–21h Default Value: FFF0h Access: RW, RO Size: 16 bits

This register controls the processor to PCI Express non-prefetchable memory access routing based on the following formula:

MEMORY_BASE ≤ address ≤ MEMORY_LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access	Default Value	Description
15:4	RW	FFFh	Memory Address Base (MBASE): This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express.
3:0	RO	0h	Reserved

6.16 MLIMIT1—Memory Limit Address

B/D/F/Type: 0/1/0/PCI Address Offset: 22–23h Default Value: 0000h Access: RW, RO Size: 16 bits

This register controls the processor to PCI Express non-prefetchable memory access routing based on the following formula:

MEMORY BASE ≤ address ≤ MEMORY LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note:

Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable PCI Express address ranges (typically where control/status memory-mapped I/O data structures of the controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically device local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved processor- PCI Express memory access performance.

Note:

Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges (i.e., prevent overlap with each other and/or with the ranges covered with the main memory). There is no provision in the MCH hardware to enforce prevention of overlap and operations of the system in the case of overlap are not ensured.

Bit	Access	Default Value	Description
15:4	RW	000h	Memory Address Limit (MLIMIT): This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express.
3:0	RO	0h	Reserved

6.17 PMBASE1—Prefetchable Memory Base Address

B/D/F/Type: 0/1/0/PCI Address Offset: 24–25h Default Value: FFF1h Access: RW, RO Size: 16 bits

This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1MB boundary.

Bit	Access	Default Value	Description
15:4	RW	FFFh	Prefetchable Memory Base Address (MBASE): Corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express.
3:0	RO	1h	64-bit Address Support: Indicates that the upper 32 bits of the prefetchable memory region base address are contained in the Prefetchable Memory base Upper Address register at 28h.

6.18 PMLIMIT1—Prefetchable Memory Limit Address

B/D/F/Type: 0/1/0/PCI Address Offset: 26–27h Default Value: 0001h Access: RO, RW Size: 16 bits

This register in conjunction with the corresponding Upper Limit Address register controls the processor to PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block. Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

Bit	Access	Default Value	Description
15:4	RW	000h	Prefetchable Memory Address Limit (PMLIMIT): This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express.
3:0	RO	1h	64-bit Address Support: This field indicates that the upper 32 bits of the prefetchable memory region limit address are contained in the Prefetchable Memory Base Limit Address register at 2Ch

6.19 PMBASEU1—Prefetchable Memory Base Address Upper

B/D/F/Type: 0/1/0/PCI Address Offset: 28–2Bh Default Value: 00000000h

Access: RW Size: 32 bits

The functionality associated with this register is present in the PCI Express design implementation.

This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1MB boundary.

Bit	Access	Default Value	Description
31:0	RW	0000000	Prefetchable Memory Base Address (MBASEU): This field corresponds to A[63:32] of the lower limit of the prefetchable memory range that will be passed to PCI Express.

6.20 PMLIMITU1—Prefetchable Memory Limit Address Upper

B/D/F/Type: 0/1/0/PCI Address Offset: 2C-2Fh Default Value: 00000000h

Access: RW Size: 32 bits

The functionality associated with this register is present in the PCI Express design implementation.

This register in conjunction with the corresponding Upper Limit Address register controls the processor to PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40- bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1MB aligned memory block.

Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e. prefetchable) from the processor perspective.

Bit	Access	Default Value	Description
31:0	RW	0000000	Prefetchable Memory Address Limit (MLIMITU): This field corresponds to A[63:32] of the upper limit of the prefetchable Memory range that will be passed to PCI Express.

6.21 CAPPTR1—Capabilities Pointer

B/D/F/Type: 0/1/0/PCI Address Offset: 34h Default Value: 88h Access: RO Size: 8 bits

The capabilities pointer provides the address offset to the location of the first entry in this device's linked list of capabilities.

Bit	Access	Default Value	Description
7:0	RO	88h	First Capability (CAPPTR1): The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability.

6.22 INTRLINE1—Interrupt Line

B/D/F/Type: 0/1/0/PCI Address Offset: 3Ch Default Value: 00h Access: RW Size: 8 bits

This register contains interrupt line routing information. The device itself does not use this value, rather it is used by device drivers and operating systems to determine priority and vector information.

Bit	Access	Default Value	Description
7:0	RW	00h	Interrupt Connection (INTCON): This field is used to communicate interrupt line routing information.

6.23 INTRPIN1—Interrupt Pin

B/D/F/Type: 0/1/0/PCI Address Offset: 3Dh Default Value: 01h Access: RO Size: 8 bits

This register specifies which interrupt pin this device uses.

Bit	Access	Default Value	Description
7:0	RO	01h	Interrupt Pin (INTPIN): As a single function device, the PCI Express device specifies INTA as its interrupt pin. 01h=INTA.

6.24 BCTRL1—Bridge Control

B/D/F/Type: 0/1/0/PCI Address Offset: 3E-3Fh Default Value: 0000h Access: RO, RW Size: 16 bits

This register provides extensions to the PCICMD1 register that are specific to PCI-PCI bridges. The BCTRL provides additional control for the secondary interface as well as some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge embedded within MCH.

Bit	Access	Default Value	Description
15:12	RO	0h	Reserved
11	RO	0b	Discard Timer SERR# Enable (DTSERRE): Not Applicable or Implemented. Hardwired to 0.
10	RO	Ob	Discard Timer Status (DTSTS): Not Applicable or Implemented. Hardwired to 0.

Bit	Access	Default Value	Description
9	RO	Ob	Secondary Discard Timer (SDT): Not Applicable or Implemented. Hardwired to 0.
8	RO	Ob	Primary Discard Timer (PDT): Not Applicable or Implemented. Hardwired to 0.
7	RO	0b	Fast Back-to-Back Enable (FB2BEN): Not Applicable or Implemented. Hardwired to 0.
6	RW	Ob	Secondary Bus Reset (SRESET): Setting this bit triggers a hot reset on the corresponding PCI Express Port. This will force the LTSSM to transition to the Hot Reset state (via Recovery) from L0 or L1 states.
5	RO	Ob	Master Abort Mode (MAMODE): Does not apply to PCI Express. Hardwired to 0.
4	RW	Ob	VGA 16-bit Decode (VGA16D): Enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address precluding the decoding of alias addresses every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also set to 1, enabling VGA I/O decoding and forwarding by the bridge. 0 = Execute 10-bit address decodes on VGA I/O accesses. 1 = Execute 16-bit address decodes on VGA I/O accesses.
3	RW	Ob	VGA Enable (VGAEN): Controls the routing of processor initiated transactions targeting VGA compatible I/O and memory address ranges. See the VGAEN/MDAP table in device 0, offset 97h[0].
2	RW	Ob	ISA Enable (ISAEN): Needed to exclude legacy resource decode to route ISA resources to legacy decode path. Modifies the response by the MCH to an I/O access issued by the processor that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers. O = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to PCI Express. 1 = MCH will not forward to PCI Express any I/O transactions addressing the last 768 bytes in each 1KB block even if the addresses are within the range defined by the IOBASE and IOLIMIT registers.
1	RW	Ob	SERR Enable (SERREN): 0 = No forwarding of error messages from secondary side to primary side that could result in an SERR. 1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR message when individually enabled by the Root Control register.
0	RW	Ob	Parity Error Response Enable (PEREN): Controls whether or not the Master Data Parity Error bit in the Secondary Status register is set when the MCH receives across the link (upstream) a Read Data Completion Poisoned Transaction Layer Packet. 0 = Master Data Parity Error bit in Secondary Status register can NOT be set. 1 = Master Data Parity Error bit in Secondary Status register CAN be set.

6.25 PM_CAPID1—Power Management Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: 80–83h Default Value: C8039001h

Access: RO Size: 32 bits

Bit	Access	Default Value	Description
31:27	RO	19h	PME Support (PMES): This field indicates the power states in which this device may indicate PME wake via PCI Express messaging. D0, D3hot & D3cold. This device is not required to do anything to support D3hot & D3cold, it simply must report that those states are supported. Refer to the PCI Power Management 1.1 specification for encoding explanation and other power management details.
26	RO	Ob	D2 Power State Support (D2PSS): Hardwired to 0 to indicate that the D2 power management state is NOT supported.
25	RO	Ob	D1 Power State Support (D1PSS): Hardwired to 0 to indicate that the D1 power management state is NOT supported.
24:22	RO	000b	Auxiliary Current (AUXC): Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary current requirements.
21	RO	Ob	Device Specific Initialization (DSI): Hardwired to 0 to indicate that special initialization of this device is NOT required before generic class device driver is to use it.
20	RO	0b	Auxiliary Power Source (APS): Hardwired to 0.
19	RO	Ob	PME Clock (PMECLK): Hardwired to 0 to indicate this device does NOT support PMEB generation.
18:16	RO	011b	PCI PM CAP Version (PCIPMCV): A value of 011b indicates that this function complies with revision 1.2 of the PCI Power Management Interface Specification.
15:8	RO	90h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled Interrupts (MSI) capability at 90h.
7:0	RO	01h	Capability ID (CID): Value of 01h identifies this linked list item (capability structure) as being for PCI Power Management registers.

6.26 PM_CS1—Power Management Control/Status

B/D/F/Type: 0/1/0/PCI Address Offset: 84–87h Default Value: 00000008h Access: RO, RW, RW/P

Size: 32 bits

Bit	Access	Default Value	Description
31:16	RO	0000h	Reserved
15	RO	Ob	PME Status (PMESTS): Indicates that this device does not support PMEB generation from D3cold.
14:13	RO	00b	Data Scale (DSCALE): Indicates that this device does not support the power management data register.
12:9	RO	0h	Data Select (DSEL): Indicates that this device does not support the power management data register.
8	RW/P	Ob	PME Enable (PMEE): Indicates that this device does not generate PMEB assertion from any D-state. 0 = PMEB generation not possible from any D State 1 = PMEB generation enabled from any D State The setting of this bit has no effect on hardware. See PM_CAP[15:11]
7:2	RO	0000b	Reserved
1:0	RW	00b	Power State (PS): Indicates the current power state of this device and can be used to set the device into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs. 00 = D0 11 = D3 Support of D3cold does not require any special action. While in the D3hot state, this device can only act as the target of PCI configuration transactions (for power management control). This device also cannot generate interrupts or respond to MMR cycles in the D3 state. The device must return to the D0 state in order to be fully-functional. When the Power State is other than D0, the bridge will Master Abort (i.e. not claim) any downstream cycles (with exception of type 0 configuration cycles). Consequently, these unclaimed cycles will go down DMI and come back up as Unsupported Requests, which the MCH logs as Master Aborts in Device 0 PCISTS[13] There is no additional hardware functionality required to support these Power States.

6.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: 88–8Bh Default Value: 0000800Dh

Access: RO Size: 32 bits

This capability is used to uniquely identify the subsystem where the PCI device resides. Because this device is an integrated part of the system and not an add-in device, it is anticipated that this capability will never be used. However, it is necessary because Microsoft will test for its presence.

Bit	Access	Default Value	Description
31:16	RO	0000h	Reserved
15:8	RO	80h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list which is the PCI Power Management capability.
7:0	RO	0Dh	Capability ID (CID): Value of 0Dh identifies this linked list item (capability structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge.

6.28 SS—Subsystem ID and Subsystem Vendor ID

B/D/F/Type: 0/1/0/PCI Address Offset: 8C-8Fh Default Value: 00008086h Access: RWO Size: 32 bits

System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be preserved through power management transitions and a hardware reset.

Bit	Access	Default Value	Description
31:16	RWO	0000h	Subsystem ID (SSID): Identifies the particular subsystem and is assigned by the vendor.
15:0	RWO	8086h	Subsystem Vendor ID (SSVID): Identifies the manufacturer of the subsystem and is the same as the vendor ID which is assigned by the PCI Special Interest Group.

6.29 MSI_CAPID—Message Signaled Interrupts Capability ID

B/D/F/Type: 0/1/0/PCI Address Offset: 90–91h Default Value: A005h Access: RO Size: 16 bits

When a device supports MSI, it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address.

Bit	Access	Default Value	Description
15:8	RO	A0h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list which is the PCI Express capability.
7:0	RO	05h	Capability ID (CID): Value of 05h identifies this linked list item (capability structure) as being for MSI registers.

6.30 MC—Message Control

B/D/F/Type: 0/1/0/PCI Address Offset: 92–93h Default Value: 0000h Access: RW, RO Size: 16 bits

System software can modify bits in this register, but the device is prohibited from doing so.

If the device writes the same message multiple times, only one of those messages is ensured to be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one.

Bit	Access	Default Value	Description
15:8	RO	00h	Reserved
7	RO	0b	64-bit Address Capable (64AC): Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address.
6:4	RW	000b	Multiple Message Enable (MME): System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested. The encoding is the same as for the MMC field below.
3:1	RO	000b	Multiple Message Capable (MMC): System software reads this field to determine the number of messages being requested by this device. The value of 000b equates to 1 message requested. 000 = 1 message requested All other encodings are reserved.
0	RW	Ob	MSI Enable (MSIEN): Controls the ability of this device to generate MSIs. 0 = 0MSI will not be generated. 1 = MSI will be generated when we receive PME messages. INTA will not be generated and INTA Status (PCISTS1[3]) will not be set.

6.31 MA—Message Address

B/D/F/Type: 0/1/0/PCI Address Offset: 94–97h Default Value: 00000000h Access: RO, RW Size: 32 bits

Bit	Access	Default Value	Description
31:2	RW	0000000 0h	Message Address (MA): Used by system software to assign an MSI address to the device. The device handles an MSI by writing the padded contents of the MD register to this address.
1:0	RO	00b	Force DWord Align (FDWA): Hardwired to 0 so that addresses assigned by system software are always aligned on a dword address boundary.

6.32 MD—Message Data

B/D/F/Type: 0/1/0/PCI Address Offset: 98–99h Default Value: 0000h Access: RW Size: 16 bits

Bit	Access	Default Value	Description
15:0	RW	0000h	Message Data (MD): Base message data pattern assigned by system software and used to handle an MSI from the device. When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA register. The upper 16-bits are always set to 0. The lower 16-bits are supplied by this register.

6.33 PE_CAPL—PCI Express* Capability List

B/D/F/Type: 0/1/0/PCI Address Offset: A0-A1h Default Value: 0010h Access: RO Size: 16 bits

This register enumerates the PCI Express capability structure.

Bit	Access	Default Value	Description
15:8	RO	00h	Pointer to Next Capability (PNC): This value terminates the capabilities list. The Virtual Channel capability and any other PCI Express specific capabilities that are reported via this mechanism are in a separate capabilities list located entirely within PCI Express Extended Configuration Space.
7:0	RO	10h	Capability ID (CID): Identifies this linked list item (capability structure) as being for PCI Express registers.

6.34 PE_CAP—PCI Express* Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: A2-A3h Default Value: 0142h Access: RO, RWO Size: 16 bits

This register indicates PCI Express device capabilities.

Bit	Access	Default Value	Description
15:14	RO	00b	Reserved
13:9	RO	00h	Interrupt Message Number (IMN): Not Applicable or Implemented. Hardwired to 0.
8	RWO	1b	Slot Implemented (SI): 0 = The PCI Express Link associated with this port is connected to an integrated component or is disabled. 1 = The PCI Express Link associated with this port is connected to a slot.
7:4	RO	4h	Device/Port Type (DPT): Hardwired to 4h to indicate root port of PCI Express Root Complex.
3:0	RO	2h	PCI Express Capability Version (PCIECV): Hardwired to 2h to indicate compliance to the PCI Express Capabilities Register Expansion ECN.

6.35 DCAP—Device Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: A4–A7h Default Value: 00008000h Access: RO

Size: 32 bits

This register indicates PCI Express device capabilities.

Bit	Access	Default Value	Description
31:16	RO	0000h	Reserved
15	RO	1b	Role Based Error Reporting (RBER): Role Based Error Reporting (RBER): Indicates that this device implements the functionality defined in the Error Reporting ECN as required by the PCI Express 1.1 spec.
14:6	RO	000h	Reserved
5	RO	0b	Extended Tag Field Supported (ETFS): Hardwired to indicate support for 5-bit Tags as a Requestor.
4:3	RO	00b	Phantom Functions Supported (PFS): Not Applicable or Implemented. Hardwired to 0.
2:0	RO	000b	Max Payload Size (MPS): Hardwired to indicate 128B max supported payload for Transaction Layer Packets (TLP).

6.36 DCTL—Device Control

B/D/F/Type: 0/1/0/PCI Address Offset: A8-A9h Default Value: 0000h Access: RW, RO Size: 16 bits

This register provides control for PCI Express device specific capabilities.

The error reporting enable bits are in reference to errors detected by this device, not error messages received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root Port Command Register.

Bit	Access	Default Value	Description
15:8	RO	0h	Reserved
7:5	RW	000Ь	Max Payload Size (MPS): 000 = 128B max supported payload for Transaction Layer Packets (TLP). As a receiver, the Device must handle TLPs as large as the set value; as transmitter, the Device must not generate TLPs exceeding the set value. All other encodings are reserved. Hardware will actually ignore this field. It is writeable only to support compliance testing.
4	RO	0b	Reserved.
3	RW	Ob	Unsupported Request Reporting Enable (URRE): When set, this bit allows signaling ERR_NONFATAL, ERR_FATAL, or ERR_CORR to the Root Control register when detecting an unmasked Unsupported Request (UR). An ERR_CORR is signaled when an unmasked Advisory Non-Fatal UR is received. An ERR_FATAL or ERR_NONFATAL is sent to the Root Control register when an uncorrectable non-Advisory UR is received with the severity bit set in the Uncorrectable Error Severity register.
2	RW	Ob	Fatal Error Reporting Enable (FERE): When set, this bit enables signaling of ERR_FATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
1	RW	Ob	Non-Fatal Error Reporting Enable (NERE): When set, this bit enables signaling of ERR_NONFATAL to the Rool Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
0	RW	Ob	Correctable Error Reporting Enable (CERE): When set, this bit enables signaling of ERR_CORR to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.

6.37 DSTS—Device Status

B/D/F/Type: 0/1/0/PCI Address Offset: AA-ABh Default Value: 0000h Access: RO, RWC Size: 16 bits

Reflects status corresponding to controls in the Device Control register. The error reporting bits are in reference to errors detected by this device, not errors messages received across the link.

Bit	Access	Default Value	Description
15:6	RO	000h	Reserved
5	RO	Ob	Transactions Pending (TP): 0 = All pending transactions (including completions for any outstanding non-posted requests on any used virtual channel) have been completed. 1 = Indicates that the device has transaction(s) pending (including completions for any outstanding non-posted requests for all used Traffic Classes).
4	RO	0b	Reserved
3	RWC	Ob	Unsupported Request Detected (URD): When set, this bit indicates that the Device received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register. Additionally, the Non-Fatal Error Detected bit or the Fatal Error Detected bit is set according to the setting of the Unsupported Request Error Severity bit. In production systems setting the Fatal Error Detected bit is not an option as support for AER will not be reported.
2	RWC	Ob	Fatal Error Detected (FED): When set, this bit indicates that fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the uncorrectable error mask register.
1	RWC	Ob	Non-Fatal Error Detected (NFED): When set, this bit indicates that non-fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the uncorrectable error mask register.
0	RWC	Ob	Correctable Error Detected (CED): When set, this bit indicates that correctable error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the correctable error mask register.

6.38 LCAP—Link Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: AC—AFh Default Value: 02214D02h Access: RO, RWO Size: 32 bits

This register indicates PCI Express device specific capabilities.

Bit	Access	Default Value	Description
31:24	RO	02h	Port Number (PN): This field indicates the PCI Express port number for the given PCI Express link. Matches the value in Element Self Description[31:24].
23:22	RO	000b	Reserved
21	RO	1b	Link Bandwidth Notification Capability: A value of 1b indicates support for the Link Bandwidth Notification status and interrupt mechanisms. This capability is required for all Root Ports and Switch downstream ports supporting Links wider than x1 and/or multiple Link speeds. This field is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches. Devices that do not implement the Link Bandwidth Notification capability must hardwire this bit to 0b.
20	RO	Ob	Data Link Layer Link Active Reporting Capable (DLLLARC): For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of reporting the DL_Active state of the Data Link Control and Management State Machine. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.
19	RO	Ob	Surprise Down Error Reporting Capable (SDERC): For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of detecting and reporting a Surprise Down error condition. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.
18	RO	Ob	Clock Power Management (CPM): A value of 1b in this bit indicates that the component tolerates the removal of any reference clock(s) when the link is in the L1 and L2/3 Ready link states. A value of 0b indicates the component does not have this capability and that reference clock(s) must not be removed in these link states. This capability is applicable only in form factors that support "clock request" (CLKREQ#) capability. For a multi-function device, each function indicates its capability independently. Power Management configuration software must only permit reference clock removal if all functions of the multifunction device indicate a 1b in this bit.
17:15	RWO	010b	L1 Exit Latency (L1ELAT): Indicates the length of time this Port requires to complete the transition from L1 to L0. The value 010 b indicates the range of 2 us to less than 4 us. Both bytes of this register that contain a portion of this field must be written simultaneously in order to prevent an intermediate (and undesired) value from ever existing.
14:12	RO	100b	Reserved
11:10	RWO	11b	Active State Link PM Support (ASLPMS): The MCH supports ASPM L1.

Bit	Access	Default Value	Description
9:4	RO	10h	Max Link Width (MLW): This field indicates the maximum number of lanes supported for this link. 10h = x16
3:0	RWO	2h	Max Link Speed (MLS): Supported Link Speed - This field indicates the supported Link speed(s) of the associated Port. 0001b = 2.5 GT/s Link speed supported 0010b = 5.0 GT/s and 2.5 GT/s Link speeds supported All other encodings are reserved.

6.39 LCTL—Link Control

B/D/F/Type: 0/1/0/PCI Address Offset: B0-B1h Default Value: 0000h

Access: RO, RW, RW/SC

Size: 16 bits

This register allows control of PCI Express link.

Bit	Access	Default Value	Description
15:12	RO	0000b	Reserved
11	RW	Ob	Link Autonomous Bandwidth Interrupt Enable: When set, this bit enables the generation of an interrupt to indicate that the Link Autonomous Bandwidth Status bit has been set. This bit is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches. Devices that do not implement the Link Bandwidth Notification capability must hardwire this bit to 0b.
10	RW	Ob	Link Bandwidth Management Interrupt Enable: When set, this bit enables the generation of an interrupt to indicate that the Link Bandwidth Management Status bit has been set. This bit is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches.
9	RO	Ob	Hardware Autonomous Width Disable: When set, this bit disables hardware from changing the Link width for reasons other than attempting to correct unreliable Link operation by reducing Link width. Devices that do not implement the ability autonomously to change Link width are permitted to hardwire this bit to 0b. The MCH does not support autonomous width change. So, this bit is "RO".
8	RO	Ob	 Enable Clock Power Management (ECPM): Applicable only for form factors that support a "Clock Request" (CLKREQ#) mechanism, this enable functions as follows: 0 = Clock power management is disabled and device must hold CLKREQ# signal low 1 = When this bit is set to 1 the device is permitted to use CLKREQ# signal to power manage link clock according to protocol defined in appropriate form factor specification. Default value of this field is 0b. Components that do not support Clock Power Management (as indicated by a 0b value in the Clock Power Management bit of the Link Capabilities Register) must hardwire this bit to 0b.
7	RW	Ob	Extended Synch (ES): 0 = Standard Fast Training Sequence (FTS). 1 = Forces the transmission of additional ordered sets when exiting the LOs state and when in the Recovery state. This mode provides external devices (e.g., logic analyzers) monitoring the Link time to achieve bit and symbol lock before the link enters LO and resumes communication. This is a test mode only and may cause other undesired side effects such as buffer overflows or underruns. NOTE: The 82X48 MCH does not support LOs.

Bit	Access	Default Value	Description
6	RW	Ob	Common Clock Configuration (CCC): 0 = Indicates that this component and the component at the opposite end of this Link are operating with asynchronous reference clock. 1 = Indicates that this component and the component at the opposite end of this Link are operating with a distributed common reference clock.
5	RW/SC	Ob	Retrain Link (RL): 0 = Normal operation. 1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from LO or L1 states to the Recovery state. This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0). It is permitted to write 1b to this bit while simultaneously writing modified values to other fields in this register. If the LTSSM is not already in Recovery or Configuration, the resulting Link training must use the modified values. If the LTSSM is already in Recovery or Configuration, the modified values are not required to affect the Link training that's already in progress.
4	RW	Ob	Link Disable (LD): 0 = Normal operation. 1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (via Recovery) from L0 or L1 states. Link retraining happens automatically on 0-to-1 transition, just like when coming out of reset. Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state.
3	RO	0b	Read Completion Boundary (RCB): Hardwired to 0 to indicate 64 byte.
2	RO	0b	Reserved
1:0	RW	00b	Active State PM (ASPM): Controls the level of active state power management supported on the given link. 00 = Disabled 01 = Reserved 10 = Reserved 11 = L1 Entry Supported

6.40 LSTS—Link Status

B/D/F/Type: 0/1/0/PCI Address Offset: B2-B3h Default Value: 1000h Access: RWC, RO Size: 16 bits

This register indicates PCI Express link status.

Bit	Access	Default Value	Description
15	RWC	Ob	Link Autonomous Bandwidth Status (LABWS): This bit is set to 1b by hardware to indicate that hardware has autonomously changed link speed or width, without the port transitioning through DL_Down status, for reasons other than to attempt to correct unreliable link operation. This bit must be set if the Physical Layer reports a speed or width change was initiated by the downstream component that was indicated as an autonomous change.
14	RWC	Ob	Link Bandwidth Management Status (LBWMS): This bit is set to 1b by hardware to indicate that either of the following has occurred without the port transitioning through DL_Down status: A link retraining initiated by a write of 1b to the Retrain Link bit has completed. NOTE: This bit is Set following any write of 1b to the Retrain Link bit, including when the Link is in the process of retraining for some other reason. Hardware has autonomously changed link speed or width to attempt to correct unreliable link operation, either through an LTSSM timeout or a higher level process This bit must be set if the Physical Layer reports a speed or width change was initiated by the downstream component that was not indicated as an autonomous change.
13	RO	Ob	Data Link Layer Link Active (Optional) (DLLLA): This bit indicates the status of the Data Link Control and Management State Machine. It returns a 1b to indicate the DL_Active state, 0b otherwise. This bit must be implemented if the corresponding Data Link Layer Active Capability bit is implemented. Otherwise, this bit must be hardwired to 0b.
12	RO	1b	Slot Clock Configuration (SCC): 0 = The device uses an independent clock irrespective of the presence of a reference on the connector. 1 = The device uses the same physical reference clock that the platform provides on the connector.
11	RO	Ob	Link Training (LTRN): Indicates that the Physical Layer LTSSM is in the Configuration or Recovery state, or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit when the LTSSM exits the Configuration/Recovery state once Link training is complete.
10	RO	Ob	Undefined: The value read from this bit is undefined. In previous versions of this specification, this bit was used to indicate a Link Training Error. System software must ignore the value read from this bit. System software is permitted to write any value to this bit.

Bit	Access	Default Value	Description
9:4	RO	00h	Negotiated Link Width (NLW): Indicates negotiated link width. This field is valid only when the link is in the LO or L1 states (after link width negotiation is successfully completed). 01h = x1 04h = 'x4 — This is not a supported PCIe Gen2.0 link width. Link width x4 is only valid when PCIe Gen1.1 I/O card is used in the secondary port. 08h = x8 — This is not a supported PCIe Gen2.0 link width. Link width x8 is only valid when PCIe Gen1.1 I/O card is used in the secondary port. 10h = x16 All other encodings are reserved.
3:0	RO	Oh	Current Link Speed (CLS): This field indicates the negotiated Link speed of the given PCI Express Link. 0001b = 2.5 GT/s PCI Express Link 0010b = 5 GT/s PCI Express Link All other encodings are reserved. The value in this field is undefined when the Link is not up.

6.41 SLOTCAP—Slot Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: B4-B7h Default Value: 00040000h Access: RWO, RO Size: 32 bits

PCI Express Slot related registers.

Bit	Access	Default Value	Description
31:19	RWO	0000h	Physical Slot Number (PSN): Indicates the physical slot number attached to this Port.
18	RO	1b	Reserved
17	RO	Ob	Electromechanical Interlock Present (EIP): When set to 1b, this bit indicates that an Electromechanical Interlock is implemented on the chassis for this slot.
16:15	RWO	00b	Slot Power Limit Scale (SPLS): Specifies the scale used for the Slot Power Limit Value. 00 = 1.0x 01 = 0.1x 10 = 0.01x 11 = 0.001x If this field is written, the link sends a Set_Slot_Power_Limit message.
14:7	RWO	00h	Slot Power Limit Value (SPLV): In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. Power limit (in Watts) is calculated by multiplying the value in this field by the value in the Slot Power Limit Scale field. If this field is written, the link sends a Set_Slot_Power_Limit message.
6:5	RO	00b	Reserved

Bit	Access	Default Value	Description
4	RO	0b	Power Indicator Present (PIP): When set to 1b, this bit indicates that a Power Indicator is electrically controlled by the chassis for this slot.
3	RO	0b	Attention Indicator Present (AIP): When set to 1b, this bit indicates that an Attention Indicator is electrically controlled by the chassis.
2	RO	0b	MRL Sensor Present (MSP): When set to 1b, this bit indicates that an MRL Sensor is implemented on the chassis for this slot.
1	RO	Ob	Power Controller Present (PCP): When set to 1b, this bit indicates that a software programmable Power Controller is implemented for this slot/adapter (depending on form factor).
0	RO	Ob	Attention Button Present (ABP): When set to 1b, this bit indicates that an Attention Button for this slot is electrically controlled by the chassis.

6.42 SLOTCTL—Slot Control

B/D/F/Type: 0/1/0/PCI Address Offset: B8-B9h Default Value: 0000h Access: RO, RW Size: 16 bits

PCI Express Slot related registers.

Bit	Access	Default Value	Description
15:13	RO	000b	Reserved
12	RO	Ob	Data Link Layer State Changed Enable (DLLSCE): If the Data Link Layer Link Active capability is implemented, when set to 1b, this field enables software notification when Data Link Layer Link Active field is changed. If the Data Link Layer Link Active capability is not implemented, this bit is permitted to be read-only with a value of 0b.
11	RO	Ob	Electromechanical Interlock Control (EIC): If an Electromechanical Interlock is implemented, a write of 1b to this field causes the state of the interlock to toggle. A write of 0b to this field has no effect. A read to this register always returns a 0.
10	RO	Ob	Power Controller Control (PCC): If a Power Controller is implemented, this field when written sets the power state of the slot per the defined encodings. Reads of this field must reflect the value from the latest write, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. Depending on the form factor, the power is turned on/off either to the slot or within the adapter. Note that in some cases the power controller may autonomously remove slot power or not respond to a power-up request based on a detected fault condition, independent of the Power Controller Control setting. The defined encodings are: 0 = Power On 1 = Power Off If the Power Controller Implemented field in the Slot Capabilities register is set to 0b, then writes to this field have no effect and the read value of this field is undefined.

Bit	Access	Default Value	Description
9:8	RO	00b	Power Indicator Control (PIC): If a Power Indicator is implemented, writes to this field set the Power Indicator to the written state. Reads of this field must reflect the value from the latest write, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. O0 = Reserved O1 = On 10 = Blink 11 = Off If the Power Indicator Present bit in the Slot Capabilities register is 0b, this field is permitted to be read-only with a value of 00b.
7:6	RO	00b	Attention Indicator Control (AIC): If an Attention Indicator is implemented, writes to this field set the Attention Indicator to the written state. Reads of this field must reflect the value from the latest write, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. If the indicator is electrically controlled by chassis, the indicator is controlled directly by the downstream port through implementation specific mechanisms. 00 = Reserved 01 = On 10 = Blink 11 = Off If the Attention Indicator Present bit in the Slot Capabilities register is 0b, this field is permitted to be read only with a value of 00b.
5:4	RO	00b	Reserved
3	RW	0b	Presence Detect Changed Enable (PDCE): When set to 1b, this bit enables software notification on a presence detect changed event.
2	RO	Ob	MRL Sensor Changed Enable (MSCE): When set to 1b, this bit enables software notification on a MRL sensor changed event. Default value of this field is 0b. If the MRL Sensor Present field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b.
1	RO	Ob	Power Fault Detected Enable (PFDE): When set to 1b, this bit enables software notification on a power fault event. Default value of this field is 0b. If Power Fault detection is not supported, this bit is permitted to be read-only with a value of 0b
0	RO	0b	Button Pressed Enable (ABPE): When set to 1b, this bit enables software notification on an attention button pressed event.

6.43 SLOTSTS—Slot Status

B/D/F/Type: 0/1/0/PCI Address Offset: BA-BBh Default Value: 0000h Access: RO, RWC Size: 16 bits

PCI Express Slot related registers.

Bit	Access	Default Value	Description
15:7	RO	0000000b	Reserved
6	RO	Ob	Presence Detect State (PDS): This bit indicates the presence of an adapter in the slot, reflected by the logical "OR" of the Physical Layer in-band presence detect mechanism and, if present, any out-of-band presence detect mechanism defined for the slot's corresponding form factor. Note that the in-band presence detect mechanism requires that power be applied to an adapter for its presence to be detected. 0 = Slot Empty 1 = Card Present in Slot This register must be implemented on all Downstream Ports that implement slots. For Downstream Ports not connected to slots (where the Slot Implemented bit of the PCI Express Capabilities Register is 0b), this bit must return 1b.
5:4	RO	00b	Reserved
3	RWC	Ob	Detect Changed (PDC): This bit is set when the value reported in Presence Detect State is changed.
2	RO	0b	MRL Sensor Changed (MSC): If an MRL sensor is implemented, this bit is set when a MRL Sensor state change is detected. If an MRL sensor is not implemented, this bit must not be set.
1	RO	Ob	Power Fault Detected (PFD): If a Power Controller that supports power fault detection is implemented, this bit is set when the Power Controller detects a power fault at this slot. Note that, depending on hardware capability, it is possible that a power fault can be detected at any time, independent of the Power Controller Control setting or the occupancy of the slot. If power fault detection is not supported, this bit must not be set.
0	RO	Ob	Attention Button Pressed (ABP): If an Attention Button is implemented, this bit is set when the attention button is pressed. If an Attention Button is not supported, this bit must not be set.

6.44 RCTL—Root Control

B/D/F/Type: 0/1/0/PCI Address Offset: BC-BDh Default Value: 0000h Access: RO, RW Size: 16 bits

This register allows control of PCI Express Root Complex specific parameters. The system error control bits in this register determine if corresponding SERRs are generated when our device detects an error (reported in this device's Device Status register) or when an error message is received across the link. Reporting of SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command Register.

Bit	Access	Default Value	Description
15:4	RO	000h	Reserved
3	RW	Ob	PME Interrupt Enable (PMEIE): 0 = No interrupts are generated as a result of receiving PME messages. 1 = Enables interrupt generation upon receipt of a PME message as reflected in the PME Status bit of the Root Status Register. A PME interrupt is also generated if the PME Status bit of the Root Status Register is set when this bit is set from a cleared state.
2	RW	Ob	System Error on Fatal Error Enable (SEFEE): Controls the Root Complex's response to fatal errors. 0 = No SERR generated on receipt of fatal error. 1 = Indicates that an SERR should be generated if a fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
1	RW	Ob	System Error on Non-Fatal Uncorrectable Error Enable (SENFUEE): Controls the Root Complex's response to non-fatal errors. 0 = No SERR generated on receipt of non-fatal error. 1 = Indicates that an SERR should be generated if a non-fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
0	RW	Ob	System Error on Correctable Error Enable (SECEE): Controls the Root Complex's response to correctable errors. 0 = No SERR generated on receipt of correctable error. 1 = Indicates that an SERR should be generated if a correctable error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.

6.45 RSTS—Root Status

B/D/F/Type: 0/1/0/PCI Address Offset: C0–C3h Default Value: 00000000h Access: RO, RWC Size: 32 bits

This register provides information about PCI Express Root Complex specific parameters.

Bit	Access	Default Value	Description
31:18	RO	0000h	Reserved
17	RO	Ob	PME Pending (PMEP): Indicates that another PME is pending when the PME Status bit is set. When the PME Status bit is cleared by software; the PME is delivered by hardware by setting the PME Status bit again and updating the Requestor ID appropriately. The PME pending bit is cleared by hardware if no more PMEs are pending.
16	RWC	Ob	PME Status (PMES): Indicates that PME was asserted by the requestor ID indicated in the PME Requestor ID field. Subsequent PMEs are kept pending until the status register is cleared by writing a 1 to this field.
15:0	RO	0000h	PME Requestor ID (PMERID): Indicates the PCI requestor ID of the last PME requestor.

6.46 PELC—PCI Express Legacy Control

B/D/F/Type: 0/1/0/PCI Address Offset: EC-EFh Default Value: 00000000h Access: RO, RW Size: 32 bits

This register controls functionality that is needed by Legacy (non-PCI Express aware) OSs during run time.

Bit	Access	Default Value	Description
31:3	RO	0000000 0h	Reserved
2	RW	Ob	PME GPE Enable (PMEGPE): 0 = Do not generate GPE PME message when PME is received. 1 = Generate a GPE PME message when PME is received (Assert_PMEGPE and Deassert_PMEGPE messages on DMI). This enables the MCH to support PMEs on the PCI Express port under legacy OSs.
1	RO	0b	Reserved
0	RW	Ob	General Message GPE Enable (GENGPE): 0 = Do not forward received GPE assert/de-assert messages. 1 = Forward received GPE assert/de-assert messages. These general GPE message can be received via the PCI Express port from an external Intel device and will be subsequently forwarded to the ICH (via Assert_GPE and Deassert_GPE messages on DMI).

6.47 VCECH—Virtual Channel Enhanced Capability Header

B/D/F/Type: 0/1/0/MMR Address Offset: 100–103h Default Value: 14010002h

Access: RO Size: 32 bits

This register indicates PCI Express device Virtual Channel capabilities. Extended capability structures for PCI Express devices are located in PCI Express extended configuration space and have different field definitions than standard PCI capability structures.

Bit	Access	Default Value	Description
31:20	RO	140h	Pointer to Next Capability (PNC): The Link Declaration Capability is the next in the PCI Express extended capabilities list.
19:16	RO	1h	PCI Express Virtual Channel Capability Version (PCIEVCCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. Note: This version does not change for 2.0 compliance.
15:0	RO	0002h	Extended Capability ID (ECID): Value of 0002 h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers.

6.48 PVCCAP1—Port VC Capability Register 1

B/D/F/Type: 0/1/0/MMR Address Offset: 104–107h Default Value: 00000000h

Access: RO Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access	Default Value	Description	
31:7	RO	00000h	Reserved	
6:4	RO	000b	Low Priority Extended VC Count (LPEVCC): Indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.	
3	RO	0b	Reserved	
2:0	RO	000b	Extended VC Count (EVCC): Indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device.	

6.49 PVCCAP2—Port VC Capability Register 2

B/D/F/Type: 0/1/0/MMR Address Offset: 108–10Bh Default Value: 00000000h

Access: RO Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access	Default Value	Description	
31:24	RO	00h	VC Arbitration Table Offset (VCATO): Indicates the location of the VC Arbitration Table. This field contains the zero-based offset of the table in DQWORDS (16 bytes) from the base address of the Virtual Channel Capability Structure. A value of 0 indicates that the table is not present (due to fixed VC priority).	
23:0	RO	0000h	Reserved	

6.50 PVCCTL—Port VC Control

B/D/F/Type: 0/1/0/MMR Address Offset: 10C-10Dh Default Value: 0000h Access: RO, RW Size: 16 bits

Bit	Access	Default Value	Description	
15:4	RO	000h	Reserved	
3:1	RW	000b	VC Arbitration Select (VCAS): This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. Since there is no other VC supported than the default, this field is reserved.	
0	RO	0b	Reserved	

6.51 VCORCAP—VCO Resource Capability

B/D/F/Type: 0/1/0/MMR Address Offset: 110–113h Default Value: 00000001h

Access: RO Size: 32 bits

Bit	Access	Default Value	Description		
31:16	RO	0000h	Reserved		
15	RO	Ob	Reject Snoop Transactions (RSNPT): 0 = Transactions with or without the No Snoop bit set within the Transaction Layer Packet header are allowed on this VC. 1 = When Set, any transaction for which the No Snoop attribute is applicable but is not Set within the TLP Header will be rejected as an Unsupported Request.		
14:8	RO	0000h	Reserved		
7:0	RO	01h	Port Arbitration Capability: Indicates types of Port Arbitration supported by the VC resource. This field is valid for all Switch Ports, Root Ports that support peer-to-peer traffic, and RCRBs, but not for PCI Express Endpoint devices or Root Ports that do not support peer to peer traffic. Each bit location within this field corresponds to a Port Arbitration Capability defined below. When more than one bit in this field is Set, it indicates that the VC resource can be configured to provide different arbitration services. Software selects among these capabilities by writing to the Port Arbitration Select field (see below). Defined bit positions are: Bit[0] = Default = 01b; Non-configurable hardware-fixed arbitration scheme, e.g., Round Robin (RR) Bit[1] = Weighted Round Robin (WRR) arbitration with 32 phases Bit[2] = WRR arbitration with 64 phases Bit[3] = WRR arbitration with 128 phases Bit[4] = Time-based WRR with 128 phases Bit[5] = WRR arbitration with 256 phases Bits[6:7] = Reserved MCH default indicates "Non-configurable hardware-fixed arbitration scheme".		

6.52 VCORCTL—VCO Resource Control

B/D/F/Type: 0/1/0/MMR Address Offset: 114–117h Default Value: 800000FFh Access: RO, RW Size: 32 bits

This register controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access	Default Value	Description	
31	RO	1b	VCO Enable (VCOE): For VCO, this is hardwired to 1 and read only as VCO can never be disabled.	
30:27	RO	0h	Reserved	
26:24	RO	000b	VCO ID (VCOID): Assigns a VC ID to the VC resource. For VCO, this is hardwired to 0 and read only.	
23:20	RO	0000h	Reserved	
19:17	RW	000b	Port Arbitration Select: This field configures the VC resource to provide a particular Port Arbitration service. This field is valid for RCRBs, Root Ports that support peer to peer traffic, and Switch Ports, but not for PCI Express Endpoint devices or Root Ports that do not support peer to peer traffic. The permissible value of this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource.	
16:8	RO	00h	Reserved	
7:1	RW	7Fh	TC/VCO Map (TCVCOM): Indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.	
0	RO	1b	TCO/VCO Map (TCOVCOM): Traffic Class 0 is always routed to VCO.	

6.53 VCORSTS—VCO Resource Status

B/D/F/Type: 0/1/0/MMR Address Offset: 11A-11Bh Default Value: 0002h Access: RO Size: 16 bits

This register reports the Virtual Channel specific status.

Bit	Access	Default Value	Description	
15:2	RO	0000h	Reserved	
1	RO	1b	VCO Negotiation Pending (VCONP): 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.	
0	RO	0b	Reserved	

6.54 RCLDECH—Root Complex Link Declaration Enhanced

B/D/F/Type: 0/1/0/MMR Address Offset: 140–143h Default Value: 00010005h

Access: RO Size: 32 bits

This capability declares links from this element (PCI Express) to other elements of the root complex component to which it belongs. See PCI Express specification for link/topology declaration requirements.

Bit	Access	Default Value	Description	
31:20	RO	000h	Pointer to Next Capability (PNC): This is the last capability in the PCI Express extended capabilities list.	
19:16	RO	1h	Link Declaration Capability Version (LDCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. Note: This version does not change for 2.0 compliance.	
15:0	RO	0005h	Extended Capability ID (ECID): Value of 0005h identifies this linked list item (capability structure) as being for PCI Express Link Declaration Capability.	

6.55 ESD—Element Self Description

B/D/F/Type: 0/1/0/MMR Address Offset: 144–147h Default Value: 02000100h Access: RO, RWO Size: 32 bits

This register provides information about the root complex element containing this Link Declaration Capability.

Bit	Access	Default Value	Description	
31:24	RO	02h	Port Number (PN): Specifies the port number associated with this element with respect to the component that contains this element. This port number value is utilized by the egress port of the component to provide arbitration to this Root Complex Element.	
23:16	RWO	00h	Component ID (CID): Identifies the physical component that contains this Root Complex Element.	
15:8	RO	01h	Number of Link Entries (NLE): Indicates the number of link entries following the Element Self Description. This field reports 1 (to Egress port only as we don't report any peer-to-peer capabilities in our topology).	
7:4	RO	0h	Reserved	
3:0	RO	0h	Element Type (ET): Indicates Configuration Space Element.	

6.56 LE1D—Link Entry 1 Description

B/D/F/Type: 0/1/0/MMR Address Offset: 150–153h Default Value: 00000000h Access: RO, RWO Size: 32 bits

This register provides the first part of a Link Entry which declares an internal link to another Root Complex Element.

Bit	Access	Default Value	Description	
31:24	RO	00h	Target Port Number (TPN): Specifies the port number associated with the element targeted by this link entry (Egress Port). The target port number is with respect to the component that contains this element as specified by the target component ID.	
23:16	RWO	00h	Farget Component ID (TCID): Identifies the physical or logical component that is targeted by this link entry.	
15:2	RO	0000h	Reserved	
1	RO	Ob	Link Type (LTYP): Indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.	
0	RWO	Ob	Link Valid (LV): 0 = Link Entry is not valid and will be ignored. 1 = Link Entry specifies a valid link.	

6.57 LE1A—Link Entry 1 Address

B/D/F/Type: 0/1/0/MMR Address Offset: 158-15Fh

Default Value: 000000000000000h

Access: RO, RWO Size: 64 bits

This register provides the second part of a Link Entry which declares an internal link to another Root Complex Element.

Bit	Access	Default Value	Description	
63:32	RO	0000000 0h	Reserved	
31:12	RWO	00000h	Link Address (LA): Memory mapped base address of the RCRB that is the target element (Egress Port) for this link entry.	
11:0	RO	000h	Reserved	

6.58 PESSTS—PCI Express* Sequence Status

B/D/F/Type: 0/1/0/MMR Address Offset: 218–21Fh

Default Value: 000000000000FFFh

Access: RO Size: 64 bits

PCI Express status reporting that is required by the PCI Express specification.

Bit	Access	Default Value	Description	
63:60	RO	0h	Reserved	
59:48	RO	000h	Next Transmit Sequence Number (NTSN): Value of the NXT_TRANS_SEQ counter. This counter represents the transmit Sequence number to be applied to the next Transaction Layer Packet to be transmitted onto the Link for the first time.	
47:44	RO	0h	Reserved	
43:32	RO	000h	Next Packet Sequence Number (NPSN): Packet sequence number to be applied to the next Transaction Layer Packet to be transmitted or re-transmitted onto the Link.	
31:28	RO	0h	Reserved	
27:16	RO	000h	Next Receive Sequence Number (NRSN): This is the sequence number associated with the Transaction Layer Packet that is expected to be received next.	
15:12	RO	0h	Reserved	
11:0	RO	FFFh	Last Acknowledged Sequence Number (LASN): This is the sequence number associated with the last acknowledged Transaction Layer Packet.	

7 Host-Secondary PCI Express* Bridge Registers (D6:F0)

Device 6 contains the controls associated with the PCI Express root port that is the intended attach point for external devices. In addition, it also functions as the virtual PCI-to-PCI bridge. The table below provides an address map of the D1:F0 registers listed by address offset in ascending order. This chapter provides a detailed bit description of the registers.

Warning:

When reading the PCI Express "conceptual" registers such as this, you may not get a valid value unless the register value is stable.

The PCI Express* Specification defines two types of reserved bits:

Reserved and Preserved:

- Reserved for future RW implementations; software must preserve value read for writes to bits.
- Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for writes to bits.

Unless explicitly documented as Reserved and Zero, all bits marked as reserved are part of the Reserved and Preserved type, which have historically been the typical definition for Reserved.

Note:

Most (if not all) control bits in this device cannot be modified unless the link is down. Software is required to first disable the link, then program the registers, and then reenable the link (which will cause a full-retrain with the new settings).

Table 13. Host-Secondary PCI Express* Bridge Register Address Map (D6:F0) (Sheet 1 of 3)

Address Offset	Register Symbol	Register Name	Default Value	Access
0–1h	VID1	Vendor Identification	8086h	RO
2–3h	DID1	Device Identification	29E9h	RO
4–5h	PCICMD1	PCI Command	0000h	RO, RW
6–7h	PCISTS1	PCI Status	0010h	RO, RWC
8h	RID1	Revision Identification	See register description	RO
9–Bh	CC1	Class Code	060400h	RO
Ch	CL1	Cache Line Size	00h	RW
Eh	HDR1	Header Type	01h	RO
18h	PBUSN1	Primary Bus Number	00h	RO
19h	SBUSN1	Secondary Bus Number	00h	RW
1Ah	SUBUSN1	Subordinate Bus Number	00h	RW
1Ch	IOBASE1	I/O Base Address	F0h	RO, RW
1Dh	IOLIMIT1	I/O Limit Address	00h	RW, RO

Table 13. Host-Secondary PCI Express* Bridge Register Address Map (D6:F0) (Sheet 2 of 3)

01 3)	ı	<u> </u>		
Address Offset	Register Symbol	Register Name	Default Value	Access
1E–1Fh	SSTS1	Secondary Status	0000h	RO, RWC
20–21h MBASE1		Memory Base Address	FFF0h	RW, RO
22–23h	MLIMIT1	Memory Limit Address	0000h	RW, RO
24–25h	PMBASE1	Prefetchable Memory Base Address	FFF1h	RW, RO
26–27h	PMLIMIT1	Prefetchable Memory Limit Address	0001h	RO, RW
28–2Bh	PMBASEU1	Prefetchable Memory Base Address Upper	00000000h	RW
2C-2Fh	PMLIMITU1	Prefetchable Memory Limit Address Upper	00000000h	RW
34h	CAPPTR1	Capabilities Pointer	88h	RO
3Ch	INTRLINE1	Interrupt Line	00h	RW
3Dh	INTRPIN1	Interrupt Pin	01h	RO
3E-3Fh	BCTRL1	Bridge Control	0000h	RO, RW
80–83h	PM_CAPID1	Power Management Capabilities	C8039001h	RO
84–87h	PM_CS1	Power Management Control/Status	00000008h	RO, RW, RW/P
88–8Bh	SS_CAPID	Subsystem ID and Vendor ID Capabilities	0000800Dh	RO
8C-8Fh	SS	Subsystem ID and Subsystem Vendor ID	00008086h	RWO
90–91h	MSI_CAPID	Message Signaled Interrupts Capability ID	A005h	RO
92–93h	MC	Message Control	0000h	RW, RO
94–97h	MA	Message Address	00000000h	RO, RW
98–99h	MD	Message Data	0000h	RW
A0–A1h	PE_CAPL	PCI Express Capability List	0010h	RO
A2–A3h	PE_CAP	PCI Express Capabilities	0142h	RO, RWO
A4–A7h	DCAP	Device Capabilities	00008000h	RO
A8–A9h	DCTL	Device Control	0000h	RW, RO
AA–ABh	DSTS	Device Status	0000h	RO, RWC
AC–AFh	LCAP	Link Capabilities	03214D02h	RO, RWO
B0-B1h	LCTL	Link Control	0000h	RO, RW, RW/SC
B2-hB3	LSTS	Link Status	1000h	RWC, RO
B4–B7h	SLOTCAP	Slot Capabilities	00040000h	RWO, RO
B8-B9h	SLOTCTL	Slot Control	0000h	RO, RW
BA-BBh	SLOTSTS	Slot Status	0000h	RO, RWC
BC-BDh	RCTL	Root Control	0000h	RO, RW
C0-C3h	RSTS	Root Status	00000000h	RO, RWC
EC-EFh	PELC	PCI Express Legacy Control	00000000h	RO, RW
100–103h	VCECH	Virtual Channel Enhanced Capability Header	14010002h	RO

Table 13. Host-Secondary PCI Express* Bridge Register Address Map (D6:F0) (Sheet 3 of 3)

Address Offset	Register Symbol	Register Name	Default Value	Access
104–107h	PVCCAP1	Port VC Capability Register 1	00000000h	RO
108–10Bh	PVCCAP2	Port VC Capability Register 2	00000000h	RO
10C-10Dh	PVCCTL	Port VC Control	0000h	RO, RW
110–113h	VCORCAP	VCO Resource Capability	00000000h	RO
114–117h	VCORCTL	VCO Resource Control	800000FFh	RO, RW
11A-11Bh	VCORSTS	VC0 Resource Status	0002h	RO
140–143h	RCLDECH	Root Complex Link Declaration Enhanced	00010005h	RO
144–147h	ESD	Element Self Description	03000100h	RO, RWO
150–153h	LE1D	Link Entry 1 Description	00000000h	RO, RWO
158–15Fh	LE1A	Link Entry 1 Address	000000000 000000h	RO, RWO

7.1 VID1—Vendor Identification

B/D/F/Type: 0/6/0/PCI Address Offset: 0-1h Default Value: 8086h Access: RO Size: 16 bits

This register combined with the Device Identification register uniquely identify any PCI device.

Bit	Access	Default Value	Description
15:0	RO	8086h	Vendor Identification (VID1): PCI standard identification for Intel.

7.2 DID1—Device Identification

B/D/F/Type: 0/6/0/PCI
Address Offset: 2–3h
Default Value: 29E9h
Access: RO
Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Access	Default Value	Description
15:8	RO	29h	Device Identification Number (DID1(UB)): Identifier assigned to the MCH device #6 (virtual PCI-to-PCI bridge, PCI Express port).
7:4	RO	Eh	Device Identification Number (DID1(HW)): Identifier assigned to the MCH device #6 (virtual PCI-to-PCI bridge, PCI Express port).
3:0	RO	9h	Device Identification Number (DID1(LB)): Identifier assigned to the MCH device #6 (virtual PCI-to-PCI bridge, PCI Express port).

7.3 PCICMD1—PCI Command

B/D/F/Type: 0/6/0/PCI Address Offset: 4–5h Default Value: 0000h Access: RO, RW Size: 16 bits

Bit	Access	Default Value	Description
15:11	RO	00h	Reserved
10	RW	Ob	INTA Assertion Disable (INTAAD): 0 = This device is permitted to generate INTA interrupt messages. 1 = This device is prevented from generating interrupt messages. Any INTA emulation interrupts already asserted must be de-asserted when this bit is set. This bit only affects interrupts generated by the device (PCI INTA from a PME event) controlled by this command register. It does not affect upstream MSIs, upstream PCI INTA-INTD assert and de-assert messages.
9	RO	Ob	Fast Back-to-Back Enable (FB2B): Not Applicable or Implemented. Hardwired to 0.

Bit	Access	Default Value	Description
8	RW	Ob	SERR# Message Enable (SERRE1): This bit controls Device 6 SERR# messaging. The MCH communicates the SERR# condition by sending a SERR message to the ICH. This bit, when set, enables reporting of non-fatal and fatal errors detected by the device to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI-Express specific bits in the Device Control Register. 0 = The SERR message is generated by the MCH for Device 6 only under conditions enabled individually through the Device Control Register. 1 = The MCH is enabled to generate SERR messages which will be sent to the ICH for specific Device 6 error conditions generated/detected on the primary side of the virtual PCI to PCI bridge (not those received by the secondary side). The status of SERRs generated is reported in the PCISTS1 register.
7	RO	0b	Reserved
6	RW	0b	Parity Error Response Enable (PERRE): Controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set. 0 = Master Data Parity Error bit in PCI Status register can NOT be set. 1 = Master Data Parity Error bit in PCI Status register CAN be set.
5:3	RO	0b	Reserved
2	RW	Ob	Bus Master Enable (BME): Controls the ability of the PCI Express port to forward Memory and I/O Read/Write Requests in the upstream direction. 0 = This device is prevented from making memory or IO requests to its primary bus. Note that according to PCI Specification, as MSI interrupt messages are in-band memory writes, disabling the bus master enable bit prevents this device from generating MSI interrupt messages or passing them from its secondary bus to its primary bus. Upstream memory writes/reads, IO writes/reads, peer writes/reads, and MSIs will all be treated as illegal cycles. Writes are forwarded to memory address C0000h with byte enables deasserted. Reads will be forwarded to memory address C0000h and will return Unsupported Request status (or Master abort) in its completion packet. 1 = This device is allowed to issue requests to its primary bus. Completions for previously issued memory read requests on the primary bus will be issued when the data is available. This bit does not affect forwarding of Completions from the primary interface to the secondary interface.
1	RW	Ob	Memory Access Enable (MAE): 0 = All of device #6's memory space is disabled. 1 = Enable the Memory and Pre-fetchable memory address ranges defined in the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.
0	RW	Ob	IO Access Enable (IOAE): 0 = All of device #6's I/O space is disabled. 1 = Enable the I/O address range defined in the IOBASE1, and IOLIMIT1 registers.

7.4 PCISTS1—PCI Status

B/D/F/Type: 0/6/0/PCI Address Offset: 6-7h Default Value: 0010h Access: RO, RWC Size: 16 bits

This register reports the occurrence of error conditions associated with primary side of the "virtual" Host-PCI Express bridge embedded within the MCH.

Bit	Access	Default Value	Description
15	RO	Ob	Detected Parity Error (DPE): Not Applicable or Implemented. Hardwired to 0. Parity (generating poisoned Transaction Layer Packets) is not supported on the primary side of this device.
14	RWC	Ob	Signaled System Error (SSE): This bit is set when this Device sends a SERR due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the Command register is 1. Both received (if enabled by BCTRL1[1]) and internally detected error messages do not affect this field).
13	RO	Ob	Received Master Abort Status (RMAS): Not Applicable or Implemented. Hardwired to 0. The concept of a master abort does not exist on primary side of this device.
12	RO	Ob	Received Target Abort Status (RTAS): Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
11	RO	Ob	Signaled Target Abort Status (STAS): Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
10:9	RO	00b	DEVSELB Timing (DEVT): This device is not the subtractively decoded device on bus 0. This bit field is therefore hardwired to 00 to indicate that the device uses the fastest possible decode.
8	RO	Ob	Master Data Parity Error (PMDPE): Because the primary side of the PCI Express's virtual peer-to-peer bridge is integrated with the MCH functionality, there is no scenario where this bit will get set. Because hardware will never set this bit, it is impossible for software to have an opportunity to clear this bit or otherwise test that it is implemented. The PCI specification defines it as a R/WC, but for our implementation an RO definition behaves the same way and will meet all Microsoft testing requirements. This bit can only be set when the Parity Error Enable bit in the PCI Command register is set.
7	RO	0b	Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.
6	RO	0b	Reserved
5	RO	Ob	66/60MHz capability (CAP66): Not Applicable or Implemented. Hardwired to 0.
4	RO	1b	Capabilities List (CAPL): Indicates that a capabilities list is present. Hardwired to 1.
3	RO	Ob	INTA Status (INTAS): Indicates that an interrupt message is pending internally to the device. Only PME sources feed into this status bit (not PCI INTA-INTD assert and de-assert messages). The INTA Assertion Disable bit, PCICMD1[10], has no effect on this bit.
2:0	RO	000b	Reserved

7.5 RID1—Revision Identification

B/D/F/Type: 0/6/0/PCI

Address Offset: 8h

Default Value: see table below

Access: RO Size: 8 bits

This register contains the revision number of the MCH device 6. These bits are read only and writes to this register have no effect.

Bit	Access	Default Value	Description
7:0	RO		Revision Identification Number (RID1): This is an 8-bit value that indicates the revision identification number for the MCH Device 0. Refer to the <i>Intel® X48 Express Chipset Specification Update</i> for the value of this register.

7.6 CC1—Class Code

B/D/F/Type: 0/6/0/PCI Address Offset: 9–Bh Default Value: 060400h Access: RO Size: 24 bits

This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface.

Bit	Access	Default Value	Description
23:16	RO	06h	Base Class Code (BCC): Indicates the base class code for this device. This code has the value 06h, indicating a Bridge device.
15:8	RO	04h	Sub-Class Code (SUBCC): Indicates the sub-class code for this device. The code is 04h indicating a PCI to PCI Bridge.
7:0	RO	00h	Programming Interface (PI): Indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

7.7 CL1—Cache Line Size

B/D/F/Type: 0/6/0/PCI

Address Offset: Ch
Default Value: 00h
Access: RW
Size: 8 bits

Bit	Access	Default Value	Description
7:0	RW		Cache Line Size (Scratch pad): Implemented by PCI Express devices as a read-write field for legacy compatibility purposes but has no impact on any PCI Express device functionality.

7.8 HDR1—Header Type

B/D/F/Type: 0/6/0/PCI

Address Öffset: Eh
Default Value: 01h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access	Default Value	Description
7:0	RO	01h	Header Type Register (HDR): Returns 01h to indicate that this is a single function device with bridge header layout.

7.9 PBUSN1—Primary Bus Number

B/D/F/Type: 0/6/0/PCI Address Offset: 18h Default Value: 00h Access: RO Size: 8 bits

This register identifies that this "virtual" Host-PCI Express bridge is connected to PCI bus #0.

Bit	Access	Default Value	Description
7:0	RO	00h	Primary Bus Number (BUSN): Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since device #6 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.

7.10 SBUSN1—Secondary Bus Number

B/D/F/Type: 0/6/0/PCI
Address Offset: 19h
Default Value: 00h
Access: RW
Size: 8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" bridge. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express.

Bit	Access	Default Value	Description
7:0	RW	00h	Secondary Bus Number (BUSN): This field is programmed by configuration software with the bus number assigned to PCI Express.

7.11 SUBUSN1—Subordinate Bus Number

B/D/F/Type: 0/6/0/PCI Address Offset: 1Ah Default Value: 00h Access: RW Size: 8 bits

This register identifies the subordinate bus (if any) that resides at the level below PCI Express. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express.

Bit	Access	Default Value	Description
7:0	RW	00h	Subordinate Bus Number (BUSN): This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the device #6 bridge. When only a single PCI device resides on the PCI Express segment, this register will contain the same value as the SBUSN1 register.

7.12 IOBASE1—I/O Base Address

B/D/F/Type: 0/6/0/PCI
Address Offset: 1Ch
Default Value: F0h
Access: RO, RW
Size: 8 bits

This register controls the processor to PCI Express I/O access routing based on the following formula:

IO_BASE ≤ address ≤ IO_LIMIT

Only upper 4 bits are programmable. For the purpose of address decode address bits A[11:0] are treated as 0. Thus the bottom of the defined I/O address range will be aligned to a 4 KB boundary.

Bit	Access	Default Value	Description
7:4	RW	Fh	I/O Address Base (IOBASE): This field corresponds to A[15:12] of the I/O addresses passed by bridge 1 to PCI Express.
3:0	RO	0h	Reserved

7.13 IOLIMIT1—I/O Limit Address

B/D/F/Type: 0/6/0/PCI Address Offset: 1Dh Default Value: 00h Access: RW, RO Size: 8 bits

This register controls the processor to PCI Express I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only upper 4 bits are programmable. For the purpose of address decode address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4 KB aligned address block.

Bit Access Default Value	Description		
7:4	RW	0h	I/O Address Limit (IOLIMIT): Corresponds to A[15:12] of the I/O address limit of device #6. Devices between this upper limit and IOBASE1 will be passed to the PCI Express hierarchy associated with this device.
3:0	RO	0h	Reserved

7.14 SSTS1—Secondary Status

B/D/F/Type: 0/6/0/PCI
Address Offset: 1E-1Fh
Default Value: 0000h
Access: RO, RWC
Size: 16 bits

SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side of the "virtual" PCI-PCI bridge embedded within MCH.

Bit	Access	Default Value	Description
15	RWC	Ob	Detected Parity Error (DPE): This bit is set by the Secondary Side for a Type 1 Configuration Space header device whenever it receives a Poisoned Transaction Layer Packet, regardless of the state of the Parity Error Response Enable bit in the Bridge Control Register.
14	RWC	Ob	Received System Error (RSE): This bit is set when the Secondary Side for a Type 1 configuration space header device receives an ERR_FATAL or ERR_NONFATAL.
13	RWC	Ob	Received Master Abort (RMA): This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Unsupported Request Completion Status.
12	RWC	Ob	Received Target Abort (RTA): This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Completer Abort Completion Status.
11	RO	Ob	Signaled Target Abort (STA): Not Applicable or Implemented. Hardwired to 0. The MCH does not generate Target Aborts (the MCH will never complete a request using the Completer Abort Completion status).
10:9	RO	00b	DEVSELB Timing (DEVT): Not Applicable or Implemented. Hardwired to 0.
8	RWC	Ob	Master Data Parity Error (SMDPE): When set, indicates that the MCH received across the link (upstream) a Read Data Completion Poisoned Transaction Layer Packet (EP=1). This bit can only be set when the Parity Error Enable bit in the Bridge Control register is set.
7	RO	0b	Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.
6	RO	0b	Reserved
5	RO	0b	66/60 MHz capability (CAP66): Not Applicable or Implemented. Hardwired to 0.
4:0	RO	00h	Reserved

7.15 MBASE1—Memory Base Address

B/D/F/Type: 0/6/0/PCI Address Offset: 20–21h Default Value: FFF0h Access: RW, RO Size: 16 bits

This register controls the processor to PCI Express non-prefetchable memory access routing based on the following formula:

MEMORY_BASE ≤ address ≤ MEMORY_LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access Default Value Description	Description	
15:4	RW		Memory Address Base (MBASE): Corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express.
3:0	RO	0h	Reserved

7.16 MLIMIT1—Memory Limit Address

B/D/F/Type: 0/6/0/PCI Address Offset: 22–23h Default Value: 0000h Access: RW, RO Size: 16 bits

This register controls the processor to PCI Express non-prefetchable memory access routing based on the following formula:

MEMORY BASE ≤ address ≤ MEMORY LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note:

Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable PCI Express address ranges (typically where control/status memory-mapped I/O data structures of the controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically device local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved processor- PCI Express memory access performance.

Note:

Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges (i.e., prevent overlap with each other and/or with the ranges covered with the main memory). There is no provision in the MCH hardware to enforce prevention of overlap and operations of the system in the case of overlap are not ensured.

Bit	Access	Default Value	Description
15:4	RW	000h	Memory Address Limit (MLIMIT): Corresponds to A[31:20] of the upper limit of the address range passed to PCI Express.
3:0	RO	0h	Reserved

7.17 PMBASE1—Prefetchable Memory Base Address Upper

B/D/F/Type: 0/6/0/PCI Address Offset: 24–25h Default Value: FFF1h Access: RW, RO Size: 16 bits

This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access	Default Value	Description
15:4	RW	FFFh	Prefetchable Memory Base Address (MBASE): Corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express.
3:0	RO	1h	64-bit Address Support: Indicates that the upper 32 bits of the prefetchable memory region base address are contained in the Prefetchable Memory base Upper Address register at 28h.

7.18 PMLIMIT1—Prefetchable Memory Limit Address

B/D/F/Type: 0/6/0/PCI Address Offset: 26–27h Default Value: 0001h Access: RO, RW Size: 16 bits

This register in conjunction with the corresponding Upper Limit Address register controls the processor to PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block. Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

Bit	Access	Default Value	Description	
15:4	RW	000h	Prefetchable Memory Address Limit (PMLIMIT): Corresponds to A[31:20] of the upper limit of the address range passed to PCI Express.	
3:0	RO	1h	64-bit Address Support: Indicates that the upper 32 bits of the prefetchable memory region limit address are contained in the Prefetchable Memory Base Limit Address register at 2Ch	

7.19 PMBASEU1—Prefetchable Memory Base Address Upper

B/D/F/Type: 0/6/0/PCI Address Offset: 28–2Bh Default Value: 00000000h

Access: RW Size: 32 bits

The functionality associated with this register is present in the PCI Express design implementation.

This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access	Default Value	Description
31:0	RW	0000000 Oh	Prefetchable Memory Base Address (MBASEU): Corresponds to A[63:32] of the lower limit of the prefetchable memory range that will be passed to PCI Express.

7.20 PMLIMITU1—Prefetchable Memory Limit Address Upper

B/D/F/Type: 0/6/0/PCI Address Offset: 2C-2Fh Default Value: 00000000h

Access: RW Size: 32 bits

The functionality associated with this register is present in the PCI Express design implementation.

This register in conjunction with the corresponding Upper Limit Address register controls the processor to PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40- bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1MB aligned memory block.

Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

Bit	Access	Default Value	Description
31:0	RW	0000000 0h	Prefetchable Memory Address Limit (MLIMITU): This field corresponds to A[63:32] of the upper limit of the prefetchable Memory range that will be passed to PCI Express.

7.21 CAPPTR1—Capabilities Pointer

B/D/F/Type: 0/6/0/PCI Address Offset: 34h Default Value: 88h Access: RO Size: 8 bits

The capabilities pointer provides the address offset to the location of the first entry in this device's linked list of capabilities.

Bit	Access	Default Value	Description
7:0	RO		First Capability (CAPPTR1): The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability.

7.22 INTRLINE1—Interrupt Line

B/D/F/Type: 0/6/0/PCI Address Offset: 3Ch Default Value: 00h Access: RW Size: 8 bits

This register contains interrupt line routing information. The device itself does not use this value, rather it is used by device drivers and operating systems to determine priority and vector information.

Bit	Access	Default Value	Description
7:0	RW	00h	Interrupt Connection (INTCON): Used to communicate interrupt line routing information.

7.23 INTRPIN1—Interrupt Pin

B/D/F/Type: 0/6/0/PCI Address Offset: 3Dh Default Value: 01h Access: RO Size: 8 bits

This register specifies which interrupt pin this device uses.

Bit	Access	Default Value	Description
7:0	RO	01h	Interrupt Pin (INTPIN): As a single function device, the PCI Express device specifies INTA as its interrupt pin. 01h=INTA.

7.24 BCTRL1—Bridge Control

B/D/F/Type: 0/6/0/PCI Address Offset: 3E-3Fh Default Value: 0000h Access: RO, RW Size: 16 bits

This register provides extensions to the PCICMD1 register that are specific to PCI-PCI bridges. The BCTRL provides additional control for the secondary interface as well as some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge embedded within MCH.

Bit	Access	Default Value	Description
15:12	RO	0h	Reserved
11	RO	Ob	Discard Timer SERR# Enable (DTSERRE): Not Applicable or Implemented. Hardwired to 0.
10	RO	Ob	Discard Timer Status (DTSTS): Not Applicable or Implemented. Hardwired to 0.
9	RO	0b	Secondary Discard Timer (SDT): Not Applicable or Implemented. Hardwired to 0.
8	RO	Ob	Primary Discard Timer (PDT): Not Applicable or Implemented. Hardwired to 0.
7	RO	Ob	Fast Back-to-Back Enable (FB2BEN): Not Applicable or Implemented. Hardwired to 0.
6	RW	Ob	Secondary Bus Reset (SRESET): Setting this bit triggers a hot reset on the corresponding PCI Express Port. This will force the LTSSM to transition to the Hot Reset state (via Recovery) from L0 or L1 states.
5	RO	Ob	Master Abort Mode (MAMODE): Does not apply to PCI Express. Hardwired to 0.
4	RW	Ob	VGA 16-bit Decode (VGA16D): Enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address precluding the decoding of alias addresses every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also set to 1, enabling VGA I/O decoding and forwarding by the bridge. 0 = Execute 10-bit address decodes on VGA I/O accesses. 1 = Execute 16-bit address decodes on VGA I/O accesses.
3	RW	Ob	VGA Enable (VGAEN): Controls the routing of processor initiated transactions targeting VGA compatible I/O and memory address ranges. See the VGAEN/MDAP table in device 0, offset 97h[0].
2	RW	Ob	ISA Enable (ISAEN): Needed to exclude legacy resource decode to route ISA resources to legacy decode path. Modifies the response by the MCH to an I/O access issued by the processor that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers. 0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to PCI Express. 1 = MCH will not forward to PCI Express any I/O transactions addressing the last 768 bytes in each 1 KB block even if the addresses are within the range defined by the IOBASE and IOLIMIT registers.

Bit	Access	Default Value	Description
1	RW	Ob	SERR Enable (SERREN): 0 = No forwarding of error messages from secondary side to primary side that could result in an SERR. 1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR message when individually enabled by the Root Control register.
0	RW	Ob	Parity Error Response Enable (PEREN): Controls whether or not the Master Data Parity Error bit in the Secondary Status register is set when the MCH receives across the link (upstream) a Read Data Completion Poisoned Transaction Layer Packet. 0 = Master Data Parity Error bit in Secondary Status register can NOT be set. 1 = Master Data Parity Error bit in Secondary Status register CAN be set.

7.25 PM_CAPID1—Power Management Capabilities

B/D/F/Type: 0/6/0/PCI Address Offset: 80–83h Default Value: C8039001h

Access: RO Size: 32 bits

Bit	Access	Default Value	Description
31:27	RO	19h	PME Support (PMES): This field indicates the power states in which this device may indicate PME wake via PCI Express messaging. D0, D3hot & D3cold. This device is not required to do anything to support D3hot and D3cold, it simply must report that those states are supported. Refer to the PCI Power Management 1.1 specification for encoding explanation and other power management details.
26	RO	Ob	D2 Power State Support (D2PSS): Hardwired to 0 to indicate that the D2 power management state is NOT supported.
25	RO	0b	D1 Power State Support (D1PSS): Hardwired to 0 to indicate that the D1 power management state is NOT supported.
24:22	RO	000b	Auxiliary Current (AUXC): Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary current requirements.
21	RO	Ob	Device Specific Initialization (DSI): Hardwired to 0 to indicate that special initialization of this device is NOT required before generic class device driver is to use it.
20	RO	0b	Auxiliary Power Source (APS): Hardwired to 0.
19	RO	Ob	PME Clock (PMECLK): Hardwired to 0 to indicate this device does NOT support PMEB generation.
18:16	RO	011b	PCI PM CAP Version (PCIPMCV): A value of 011b indicates that this function complies with revision 1.2 of the PCI Power Management Interface Specification.
15:8	RO	90h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled Interrupts (MSI) capability at 90h.
7:0	RO	01h	Capability ID (CID): Value of 01h identifies this linked list item (capability structure) as being for PCI Power Management registers.

7.26 PM_CS1—Power Management Control/Status

B/D/F/Type: 0/6/0/PCI Address Offset: 84–87h Default Value: 00000008h Access: RO, RW, RW/P

Size: 32 bits

Bit	Access	Default Value	Description
31:16	RO	0000h	Reserved
15	RO	Ob	PME Status (PMESTS): Indicates that this device does not support PMEB generation from D3cold.
14:13	RO	00b	Data Scale (DSCALE): Indicates that this device does not support the power management data register.
12:9	RO	0h	Data Select (DSEL): Indicates that this device does not support the power management data register.
8	RW/P	Ob	PME Enable (PMEE): Indicates that this device does not generate PMEB assertion from any D-state. 0 = PMEB generation not possible from any D State 1 = PMEB generation enabled from any D State The setting of this bit has no effect on hardware. See PM_CAP[15:11]
7:2	RO	0000b	Reserved
1:0	RW	00b	Power State (PS): Indicates the current power state of this device and can be used to set the device into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs. 00 = D0 01 = D1 (Not supported in this device.) 10 = D2 (Not supported in this device.) 11 = D3 Support of D3cold does not require any special action. While in the D3hot state, this device can only act as the target of PCI configuration transactions (for power management control). This device also cannot generate interrupts or respond to MMR cycles in the D3 state. The device must return to the D0 state in order to be fully-functional. When the Power State is other than D0, the bridge will Master Abort (i.e. not claim) any downstream cycles (with exception of type 0 config cycles). Consequently, these unclaimed cycles will go down DMI and come back up as Unsupported Requests, which the MCH logs as Master Aborts in Device 0 PCISTS[13] There is no additional hardware functionality required to support these Power States.

7.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities

B/D/F/Type: 0/6/0/PCI Address Offset: 88–8Bh Default Value: 0000800Dh

Access: RO Size: 32 bits

This capability is used to uniquely identify the subsystem where the PCI device resides. Because this device is an integrated part of the system and not an add-in device, it is anticipated that this capability will never be used. However, it is necessary because Microsoft will test for its presence.

Bit	Access	Default Value	Description
31:16	RO	0000h	Reserved
15:8	RO	80h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list which is the PCI Power Management capability.
7:0	RO	0Dh	Capability ID (CID): Value of 0Dh identifies this linked list item (capability structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge.

7.28 SS—Subsystem ID and Subsystem Vendor ID

B/D/F/Type: 0/6/0/PCI Address Offset: 8C-8Fh Default Value: 00008086h Access: RWO Size: 32 bits

System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be preserved through power management transitions and a hardware reset.

Bit	Access	Default Value	Description
31:16	RWO	0000h	Subsystem ID (SSID): Identifies the particular subsystem and is assigned by the vendor.
15:0	RWO	8086h	Subsystem Vendor ID (SSVID): Identifies the manufacturer of the subsystem and is the same as the vendor ID which is assigned by the PCI Special Interest Group.

7.29 MSI_CAPID—Message Signaled Interrupts Capability ID

B/D/F/Type: 0/6/0/PCI Address Offset: 90–91h Default Value: A005h Access: RO Size: 16 bits

When a device supports MSI, it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address.

Bit	Access	Default Value	Description
15:8	RO	A0h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list which is the PCI Express capability.
7:0	RO	05h	Capability ID (CID): Value of 05h identifies this linked list item (capability structure) as being for MSI registers.

7.30 MC—Message Control

B/D/F/Type: 0/6/0/PCI Address Offset: 92–93h Default Value: 0000h Access: RW, RO Size: 16 bits

System software can modify bits in this register, but the device is prohibited from doing so.

If the device writes the same message multiple times, only one of those messages is guaranteed to be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one.

Bit	Access	Default Value	Description
15:8	RO	00h	Reserved
7	RO	0b	64-bit Address Capable (64AC): Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address.
6:4	RW	000b	Multiple Message Enable (MME): System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested. The encoding is the same as for the MMC field below.
3:1	RO	000b	Multiple Message Capable (MMC): System software reads this field to determine the number of messages being requested by this device. The value of 000b equates to 1 message requested. 000 = 1 message requested All other encodings are reserved.
0	RW	Ob	MSI Enable (MSIEN): Controls the ability of this device to generate MSIs. 0 = MSI will not be generated. 1 = MSI will be generated when we receive PME messages. INTA will not be generated and INTA Status (PCISTS1[3]) will not be set.

7.31 MA—Message Address

B/D/F/Type: 0/6/0/PCI Address Offset: 94–97h Default Value: 00000000h Access: RO, RW Size: 32 bits

Bit	Access	Default Value	Description
31:2	RW	0000000 0h	Message Address (MA): Used by system software to assign an MSI address to the device. The device handles an MSI by writing the padded contents of the MD register to this address.
1:0	RO	00b	Force DWord Align (FDWA): Hardwired to 0 so that addresses assigned by system software are always aligned on a DWord address boundary.

7.32 MD—Message Data

B/D/F/Type: 0/6/0/PCI Address Offset: 98–99h Default Value: 0000h Access: RW Size: 16 bits

Bit	Access	Default Value	Description
15:0	RW	0000h	Message Data (MD): Base message data pattern assigned by system software and used to handle an MSI from the device. When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA register. The upper 16-bits are always set to 0. The lower 16-bits are supplied by this register.

7.33 PE_CAPL—PCI Express* Capability List

B/D/F/Type: 0/6/0/PCI Address Offset: A0-A1h Default Value: 0010h Access: RO Size: 16 bits

This register enumerates the PCI Express capability structure.

Bit	Access	Default Value	Description
15:8	RO	00h	Pointer to Next Capability (PNC): This value terminates the capabilities list. The Virtual Channel capability and any other PCI Express specific capabilities that are reported via this mechanism are in a separate capabilities list located entirely within PCI Express Extended Configuration Space.
7:0	RO	10h	Capability ID (CID): Identifies this linked list item (capability structure) as being for PCI Express registers.

7.34 PE_CAP—PCI Express* Capabilities

B/D/F/Type: 0/6/0/PCI Address Offset: A2-A3h Default Value: 0142h Access: RO, RWO Size: 16 bits

This register indicates PCI Express device capabilities.

Bit	Access	Default Value	Description
15:14	RO	00b	Reserved
13:9	RO	00h	Interrupt Message Number (IMN): Not Applicable or Implemented. Hardwired to 0.
8	RWO	1b	Slot Implemented (SI): 0 = The PCI Express Link associated with this port is connected to an integrated component or is disabled. 1 = The PCI Express Link associated with this port is connected to a slot.
7:4	RO	4h	Device/Port Type (DPT): Hardwired to 4h to indicate root port of PCI Express Root Complex.
3:0	RO	2h	PCI Express Capability Version (PCIECV): Hardwired to 2h to indicate compliance to the PCI Express Capabilities Register Expansion ECN.

7.35 DCAP—Device Capabilities

B/D/F/Type: 0/6/0/PCI Address Offset: A4-A7h Default Value: 00008000h

Access: RO Size: 32 bits

This register indicates PCI Express device capabilities.

Bit	Access	Default Value	Description
31:16	RO	0000h	Reserved
15	RO	1b	Role Based Error Reporting (RBER): This bit indicates that this device implements the functionality defined in the Error Reporting ECN as required by the PCI Express 1.1 specification.
14:6	RO	000h	Reserved
5	RO	0b	Extended Tag Field Supported (ETFS): Hardwired to indicate support for 5-bit Tags as a Requestor.
4:3	RO	00b	Phantom Functions Supported (PFS): Not Applicable or Implemented. Hardwired to 0.
2:0	RO	000b	Max Payload Size (MPS): Hardwired to indicate 128B max supported payload for Transaction Layer Packets (TLP).

7.36 DCTL—Device Control

B/D/F/Type: 0/6/0/PCI Address Offset: A8-A9h Default Value: 0000h Access: RW, RO Size: 16 bits

This register provides control for PCI Express device specific capabilities.

The error reporting enable bits are in reference to errors detected by this device, not error messages received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root Port Command Register.

Bit	Access	Default Value	Description
15:8	RO	0h	Reserved
7:5	RW	000Ь	Max Payload Size (MPS): 000 = 128B max supported payload for Transaction Layer Packets (TLP). As a receiver, the Device must handle TLPs as large as the set value; as transmitter, the Device must not generate TLPs exceeding the set value. All other encodings are reserved. Hardware will actually ignore this field. It is writeable only to support compliance testing.
4	RO	0b	Reserved
3	RW	Ob	Unsupported Request Reporting Enable (URRE): When set, this bit allows signaling ERR_NONFATAL, ERR_FATAL, or ERR_CORR to the Root Control register when detecting an unmasked Unsupported Request (UR). An ERR_CORR is signaled when an unmasked Advisory Non-Fatal UR is received. An ERR_FATAL or ERR_NONFATAL is sent to the Root Control register when an uncorrectable non-Advisory UR is received with the severity bit set in the Uncorrectable Error Severity register.
2	RW	Ob	Fatal Error Reporting Enable (FERE): When set, this bit enables signaling of ERR_FATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
1	RW	Ob	Non-Fatal Error Reporting Enable (NERE): When set, this bit enables signaling of ERR_NONFATAL to the Rool Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
0	RW	Ob	Correctable Error Reporting Enable (CERE): When set, this bit enables signaling of ERR_CORR to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.

7.37 DSTS—Device Status

B/D/F/Type: 0/6/0/PCI Address Offset: AA-ABh Default Value: 0000h Access: RO, RWC Size: 16 bits

This register reflects status corresponding to controls in the Device Control register. The error reporting bits are in reference to errors detected by this device, not errors messages received across the link.

Bit	Access	Default Value	Description
15:6	RO	000h	Reserved
5	RO	Ob	Transactions Pending (TP): 0 = All pending transactions (including completions for any outstanding non-posted requests on any used virtual channel) have been completed. 1 = Indicates that the device has transaction(s) pending (including completions for any outstanding non-posted requests for all used Traffic Classes).
4	RO	0b	Reserved
3	RWC	Ob	Unsupported Request Detected (URD): When set, this bit indicates that the Device received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register. Additionally, the Non-Fatal Error Detected bit or the Fatal Error Detected bit is set according to the setting of the Unsupported Request Error Severity bit. In production systems setting the Fatal Error Detected bit is not an option as support for AER will not be reported.
2	RWC	Ob	Fatal Error Detected (FED): When set, this bit indicates that fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the uncorrectable error mask register.
1	RWC	Ob	Non-Fatal Error Detected (NFED): When set, this bit indicates that non-fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the uncorrectable error mask register.
0	RWC	Ob	Correctable Error Detected (CED): When set, this bit indicates that correctable error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the correctable error mask register.

7.38 LCAP—Link Capabilities

B/D/F/Type: 0/6/0/PCI Address Offset: AC—AFh Default Value: 03214D02h Access: RO, RWO Size: 32 bits

This register indicates PCI Express device specific capabilities.

Bit	Access	Default Value	Description
31:24	RO	03h	Port Number (PN): This field indicates the PCI Express port number for the given PCI Express link. Matches the value in Element Self Description[31:24].
23:22	RO	000b	Reserved
21	RO	1b	Link Bandwidth Notification Capability: A value of 1b indicates support for the Link Bandwidth Notification status and interrupt mechanisms. This capability is required for all Root Ports and Switch downstream ports supporting Links wider than x1 and/or multiple Link speeds. This field is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches. Devices that do not implement the Link Bandwidth Notification capability must hardwire this bit to 0b.
20	RO	Ob	Data Link Layer Link Active Reporting Capable (DLLLARC): For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of reporting the DL_Active state of the Data Link Control and Management State Machine. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.
19	RO	Ob	Surprise Down Error Reporting Capable (SDERC): For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of detecting and reporting a Surprise Down error condition. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.
18	RO	Ob	Clock Power Management (CPM): A value of 1b in this bit indicates that the component tolerates the removal of any reference clock(s) when the link is in the L1 and L2/3 Ready link states. A value of 0b indicates the component does not have this capability and that reference clock(s) must not be removed in these link states. This capability is applicable only in form factors that support "clock request" (CLKREQ#) capability. For a multi-function device, each function indicates its capability independently. Power Management configuration software must only permit reference clock removal if all functions of the multifunction device indicate a 1b in this bit.
17:15	RWO	010b	L1 Exit Latency (L1ELAT): Indicates the length of time this Port requires to complete the transition from L1 to L0. The value 010 b indicates the range of 2 us to less than 4 us. Both bytes of this register that contain a portion of this field must be written simultaneously in order to prevent an intermediate (and undesired) value from ever existing.
14:12	RO	100b	Reserved
11:10	RWO	11b	Active State Link PM Support (ASLPMS):: The MCH supports ASPM L1.

Bit	Access	Default Value	Description
9:4	RO	10h	Max Link Width (MLW): Indicates the maximum number of lanes supported for this link. $10h = x16$
3:0	RO	2h	Max Link Speed (MLS): Supported Link Speed - This field indicates the supported Link speed(s) of the associated Port. 0001b = 2.5GT/s Link speed supported 0010b = 5.0GT/s and 2.5GT/s Link speeds supported All other encodings are reserved.

7.39 LCTL—Link Control

B/D/F/Type: 0/6/0/PCI Address Offset: B0-B1h Default Value: 0000h

Access: RO, RW, RW/SC

Size: 16 bits

This register allows control of PCI Express link.

Bit	Access	Default Value	Description
15:12	RO	0000000b	Reserved
11	RW	Ob	Link Autonomous Bandwidth Interrupt Enable: When Set, this bit enables the generation of an interrupt to indicate that the Link Autonomous Bandwidth Status bit has been set. This bit is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches.
			Devices that do not implement the Link Bandwidth Notification capability must hardwire this bit to 0b.
10	RW	0b	Link Bandwidth Management Interrupt Enable: When Set, this bit enables the generation of an interrupt to indicate that the Link Bandwidth Management Status bit has been set.
			This bit is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches.
9	RO	RO Ob	Hardware Autonomous Width Disable: When Set, this bit disables hardware from changing the Link width for reasons other than attempting to correct unreliable Link operation by reducing Link width. Devices that do not implement the ability autonomously to change Link width
			are permitted to hardwire this bit to 0b. The MCH does not support autonomous width change. So, this bit is "RO".
8	RO	Ob	Enable Clock Power Management (ECPM): Applicable only for form factors that support a "Clock Request" (CLKREQ#) mechanism, this enable functions as follows: 0 = Clock power management is disabled and device must hold CLKREQ# signal low 1 = The device is permitted to use CLKREQ# signal to power manage link clock according to protocol defined in appropriate form factor specification. Default value of this field is Ob. Components that do not support Clock Power Management (as indicated by a Ob value in the Clock Power Management bit of the Link Capabilities Register)
7	RW	Ob	must hardwire this bit to 0b. Extended Synch (ES): 0 = Standard Fast Training Sequence (FTS). 1 = Forces the transmission of additional ordered sets when exiting the LOs state and when in the Recovery state. This mode provides external devices (e.g., logic analyzers) monitoring the Link time to achieve bit and symbol lock before the link enters LO and resumes communication. This is a test mode only and may cause other undesired side effects such as buffer overflows or underruns. NOTE: The 82X48 MCH does not support LOs.

Bit	Access	Default Value	Description
6	RW	Ob	Common Clock Configuration (CCC): 0 = Indicates that this component and the component at the opposite end of this Link are operating with asynchronous reference clock. 1 = Indicates that this component and the component at the opposite end of this Link are operating with a distributed common reference clock.
5	RW/SC	Ob	Retrain Link (RL): 0 = Normal operation. 1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from L0 or L1 states to the Recovery state. This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0). It is permitted to write 1b to this bit while simultaneously writing modified values to other fields in this register. If the LTSSM is not already in Recovery or Configuration, the resulting Link training must use the modified values. If the LTSSM is already in Recovery or Configuration, the modified values are not required to affect the Link training that's already in progress.
4	RW	Ob	Link Disable (LD): 0 = Normal operation. 1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (via Recovery) from L0 or L1 states. Link retraining happens automatically on 0 to 1 transition, just like when coming out of reset. Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state.
3	RO	0b	Read Completion Boundary (RCB): Hardwired to 0 to indicate 64 byte.
2	RW	0b	Reserved
1:0	RW	00b	Active State PM (ASPM): Controls the level of active state power management supported on the given link. 00 = Disabled 01 = Reserved 10 = Reserved 11 = L1 Entry Supported

7.40 LSTS—Link Status

B/D/F/Type: 0/6/0/PCI Address Offset: B2-B3h Default Value: 1000h Access: RWC, RO Size: 16 bits

This register indicates PCI Express link status.

Bit	Access	Default Value	Description
15	RWC	0b	Link Autonomous Bandwidth Status (LABWS): This bit is set to 1b by hardware to indicate that hardware has autonomously changed link speed or width, without the port transitioning through DL_Down status, for reasons other than to attempt to correct unreliable link operation.
			This bit must be set if the Physical Layer reports a speed or width change was initiated by the downstream component that was indicated as an autonomous change.
			Link Bandwidth Management Status (LBWMS): This bit is set to 1b by hardware to indicate that either of the following has occurred without the port transitioning through DL_Down status:
			A link retraining initiated by a write of 1b to the Retrain Link bit has completed.
14	RWC	Ob	NOTE: This bit is Set following any write of 1b to the Retrain Link bit, including when the Link is in the process of retraining for some other reason.
			Hardware has autonomously changed link speed or width to attempt to correct unreliable link operation, either through an LTSSM timeout or a higher level process
			This bit must be set if the Physical Layer reports a speed or width change was initiated by the downstream component that was not indicated as an autonomous change.
13	RO	O Ob	Data Link Layer Link Active (Optional) (DLLLA): This bit indicates the status of the Data Link Control and Management State Machine. It returns a 1b to indicate the DL_Active state, 0b otherwise.
			This bit must be implemented if the corresponding Data Link Layer Active Capability bit is implemented. Otherwise, this bit must be hardwired to 0b.
			Slot Clock Configuration (SCC):
12	RO	1b	 0 = The device uses an independent clock irrespective of the presence of a reference on the connector. 1 = The device uses the same physical reference clock that the platform provides on the connector.
11	RO	Ob	Link Training (LTRN): This bit indicates that the Physical Layer LTSSM is in the Configuration or Recovery state, or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit when the LTSSM exits the Configuration/Recovery state once Link training is complete.
10	RO	Ob	Undefined: The value read from this bit is undefined. In previous versions of this specification, this bit was used to indicate a Link Training Error. System software must ignore the value read from this bit. System software is permitted to write any value to this bit.

Bit	Access	Default Value	Description
9:4	RO	00h	Negotiated Link Width (NLW): Indicates negotiated link width. This field is valid only when the link is in the LO or L1 states (after link width negotiation is successfully completed). 01h = x1 04h = 'x4 — This is not a supported PCIe Gen2.0 link width. Link width x4 is only valid when PCIe Gen1.1 I/O card is used in the secondary port. 08h = x8 — This is not a supported PCIe Gen2.0 link width. Link width x8 is only valid when PCIe Gen1.1 I/O card is used in the secondary port. 10h = x16 All other encodings are reserved.
3:0	RO	Oh	Current Link Speed (CLS): This field indicates the negotiated Link speed of the given PCI Express Link. Defined encodings are: 0001b = 5.0 GT/s PCI Express Link 0010b = 5 GT/s PCI Express Link All other encodings are reserved. The value in this field is undefined when the Link is not up.

7.41 SLOTCAP—Slot Capabilities

B/D/F/Type: 0/6/0/PCI Address Offset: B4-B7h Default Value: 00040000h Access: RWO, RO Size: 32 bits

PCI Express Slot related registers.

Bit	Access	Default Value	Description
31:19	RWO	0000h	Physical Slot Number (PSN): Indicates the physical slot number attached to this Port.
18	RO	1b	Reserved
17	RO	Ob	Electromechanical Interlock Present (EIP): When set to 1b, this bit indicates that an Electromechanical Interlock is implemented on the chassis for this slot.
16:15	RWO	00b	Slot Power Limit Scale (SPLS): Specifies the scale used for the Slot Power Limit Value. 00 = 1.0x 01 = 0.1x 10 = 0.01x 11 = 0.001x If this field is written, the link sends a Set_Slot_Power_Limit message.
14:7	RWO	00h	Slot Power Limit Value (SPLV): In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. Power limit (in Watts) is calculated by multiplying the value in this field by the value in the Slot Power Limit Scale field. If this field is written, the link sends a Set_Slot_Power_Limit message.

Bit	Access	Default Value	Description
6:5	RO	00b	Reserved
4	RO	0b	Power Indicator Present (PIP): When set to 1b, this bit indicates that a Power Indicator is electrically controlled by the chassis for this slot.
3	RO	0b	Attention Indicator Present (AIP): When set to 1b, this bit indicates that an Attention Indicator is electrically controlled by the chassis.
2	RO	0b	MRL Sensor Present (MSP): When set to 1b, this bit indicates that an MRL Sensor is implemented on the chassis for this slot.
1	RO	Ob	Power Controller Present (PCP): When set to 1b, this bit indicates that a software programmable Power Controller is implemented for this slot/adapter (depending on form factor).
0	RO	0b	Attention Button Present (ABP): When set to 1b, this bit indicates that an Attention Button for this slot is electrically controlled by the chassis.

7.42 SLOTCTL—Slot Control

B/D/F/Type: 0/6/0/PCI Address Offset: B8-B9h Default Value: 0000h Access: RO, RW Size: 16 bits

PCI Express Slot related registers.

Bit	Access	Default Value	Description
15:13	RO	000b	Reserved
12	RO	Ob	Data Link Layer State Changed Enable (DLLSCE): If the Data Link Layer Link Active capability is implemented, when set to 1b, this field enables software notification when Data Link Layer Link Active field is changed. If the Data Link Layer Link Active capability is not implemented, this bit is permitted to be read-only with a value of 0b.
11	RO	Ob	Electromechanical Interlock Control (EIC): If an Electromechanical Interlock is implemented, a write of 1b to this field causes the state of the interlock to toggle. A write of 0b to this field has no effect. A read to this register always returns a 0.
10	RO	Ob	Power Controller Control (PCC): If a Power Controller is implemented, this field when written sets the power state of the slot per the defined encodings. Reads of this field must reflect the value from the latest write, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. Depending on the form factor, the power is turned on/off either to the slot or within the adapter. Note that in some cases the power controller may autonomously remove slot power or not respond to a power-up request based on a detected fault condition, independent of the Power Controller Control setting. O = Power On 1 = Power Off If the Power Controller Implemented field in the Slot Capabilities register is set to 0b, then writes to this field have no effect and the read value of this field is undefined.

Bit	Access	Default Value	Description
9:8	RO	00b	Power Indicator Control (PIC): If a Power Indicator is implemented, writes to this field set the Power Indicator to the written state. Reads of this field must reflect the value from the latest write, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. O0 = Reserved O1 = On 10 = Blink 11 = Off If the Power Indicator Present bit in the Slot Capabilities register is 0b, this field is permitted to be read-only with a value of 00b.
7:6	RO	00b	Attention Indicator Control (AIC): If an Attention Indicator is implemented, writes to this field set the Attention Indicator to the written state. Reads of this field must reflect the value from the latest write, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. If the indicator is electrically controlled by chassis, the indicator is controlled directly by the downstream port through implementation specific mechanisms. 00 = Reserved 01 = On 10 = Blink 11 = Off If the Attention Indicator Present bit in the Slot Capabilities register is 0b, this field is permitted to be read only with a value of 00b.
5:4	RO	00b	Reserved
3	RW	0b	Presence Detect Changed Enable (PDCE): When set to 1b, this bit enables software notification on a presence detect changed event.
2	RO	Ob	MRL Sensor Changed Enable (MSCE): When set to 1b, this bit enables software notification on a MRL sensor changed event. Default value of this field is 0b. If the MRL Sensor Present field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b.
1	RO	Ob	Power Fault Detected Enable (PFDE): When set to 1b, this bit enables software notification on a power fault event. Default value of this field is 0b. If Power Fault detection is not supported, this bit is permitted to be read-only with a value of 0b
0	RO	Ob	Button Pressed Enable (ABPE): When set to 1b, this bit enables software notification on an attention button pressed event.

7.43 SLOTSTS—Slot Status

B/D/F/Type: 0/6/0/PCI Address Offset: BA-BBh Default Value: 0000h Access: RO, RWC Size: 16 bits

PCI Express Slot related registers.

Bit	Access	Default Value	Description
15:7	RO	000000b	Reserved
6	RO	Ob	Presence Detect State (PDS): This bit indicates the presence of an adapter in the slot, reflected by the logical "OR" of the Physical Layer in-band presence detect mechanism and, if present, any out-of-band presence detect mechanism defined for the slot's corresponding form factor. Note that the in-band presence detect mechanism requires that power be applied to an adapter for its presence to be detected. 0 = Slot Empty 1 = Card Present in Slot This register must be implemented on all Downstream Ports that implement slots. For Downstream Ports not connected to slots (where the Slot Implemented bit of the PCI Express Capabilities Register is 0b), this bit must return 1b.
5:4	RO	00b	Reserved
3	RWC	0b	Detect Changed (PDC): This bit is set when the value reported in Presence Detect State is changed.
2	RO	0b	MRL Sensor Changed (MSC): If an MRL sensor is implemented, this bit is set when a MRL Sensor state change is detected. If an MRL sensor is not implemented, this bit must not be set.
1	RO	Ob	Power Fault Detected (PFD): If a Power Controller that supports power fault detection is implemented, this bit is set when the Power Controller detects a power fault at this slot. Note that, depending on hardware capability, it is possible that a power fault can be detected at any time, independent of the Power Controller Control setting or the occupancy of the slot. If power fault detection is not supported, this bit must not be set.
0	RO	Ob	Attention Button Pressed (ABP): If an Attention Button is implemented, this bit is set when the attention button is pressed. If an Attention Button is not supported, this bit must not be set.

7.44 RCTL—Root Control

B/D/F/Type: 0/6/0/PCI
Address Offset: BC-BDh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register allows control of PCI Express Root Complex specific parameters. The system error control bits in this register determine if corresponding SERRs are generated when our device detects an error (reported in this device's Device Status register) or when an error message is received across the link. Reporting of SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command Register.

Bit	Access	Default Value	Description
15:4	RO	000h	Reserved
3	RW	Ob	PME Interrupt Enable (PMEIE): 0 = No interrupts are generated as a result of receiving PME messages. 1 = Enables interrupt generation upon receipt of a PME message as reflected in the PME Status bit of the Root Status Register. A PME interrupt is also generated if the PME Status bit of the Root Status Register is set when this bit is set from a cleared state.
2	RW	Ob	System Error on Fatal Error Enable (SEFEE): Controls the Root Complex's response to fatal errors. 0 = No SERR generated on receipt of fatal error. 1 = Indicates that an SERR should be generated if a fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
1	RW	Ob	System Error on Non-Fatal Uncorrectable Error Enable (SENFUEE): Controls the Root Complex's response to non-fatal errors. 0 = No SERR generated on receipt of non-fatal error. 1 = Indicates that an SERR should be generated if a non-fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
0	RW	Ob	System Error on Correctable Error Enable (SECEE): Controls the Root Complex's response to correctable errors. 0 = No SERR generated on receipt of correctable error. 1 = Indicates that an SERR should be generated if a correctable error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.

7.45 RSTS—Root Status

B/D/F/Type: 0/6/0/PCI Address Offset: C0–C3h Default Value: 00000000h Access: RO, RWC Size: 32 bits

This register provides information about PCI Express Root Complex specific parameters.

Bit	Access	Default Value	Description
31:18	RO	0000h	Reserved
17	RO	Ob	PME Pending (PMEP): Indicates that another PME is pending when the PME Status bit is set. When the PME Status bit is cleared by software; the PME is delivered by hardware by setting the PME Status bit again and updating the Requestor ID appropriately. The PME pending bit is cleared by hardware if no more PMEs are pending.
16	RWC	Ob	PME Status (PMES): Indicates that PME was asserted by the requestor ID indicated in the PME Requestor ID field. Subsequent PMEs are kept pending until the status register is cleared by writing a 1 to this field.
15:0	RO	0000h	PME Requestor ID (PMERID): Indicates the PCI requestor ID of the last PME requestor.

7.46 PELC—PCI Express Legacy Control

B/D/F/Type: 0/6/0/PCI Address Offset: EC-EFh Default Value: 00000000h Access: RO, RW Size: 32 bits

This register controls functionality that is needed by Legacy (non-PCI Express aware) OSs during run time.

Bit	Access	Default Value	Description
31:3	RO	0000000 0h	Reserved
2	RW	Ob	PME GPE Enable (PMEGPE): 0 = Do not generate GPE PME message when PME is received. 1 = Generate a GPE PME message when PME is received (Assert_PMEGPE and Deassert_PMEGPE messages on DMI). This enables the MCH to support PMEs on the PCI Express port under legacy OSs.
1	RO	0b	Reserved
0	RW	Ob	General Message GPE Enable (GENGPE): 0 = Do not forward received GPE assert/de-assert messages. 1 = Forward received GPE assert/de-assert messages. These general GPE message can be received via the PCI Express port from an external Intel device and will be subsequently forwarded to the ICH (via Assert_GPE and Deassert_GPE messages on DMI).

7.47 VCECH—Virtual Channel Enhanced Capability Header

B/D/F/Type: 0/6/0/MMR Address Offset: 100–103h Default Value: 14010002h

Access: RO Size: 32 bits

This register indicates PCI Express device Virtual Channel capabilities. Extended capability structures for PCI Express devices are located in PCI Express extended configuration space and have different field definitions than standard PCI capability structures.

Bit	Access	Default Value	Description
31:20	RO	140h	Pointer to Next Capability (PNC): The Link Declaration Capability is the next in the PCI Express extended capabilities list.
19:16	RO	1h	PCI Express Virtual Channel Capability Version (PCIEVCCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. Note: This version does not change for 2.0 compliance.
15:0	RO	0002h	Extended Capability ID (ECID): Value of 0002h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers.

7.48 PVCCAP1—Port VC Capability Register 1

B/D/F/Type: 0/6/0/MMR Address Offset: 104–107h Default Value: 00000000h

Access: RO Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access	Default Value	Description
31:7	RO	00000h	Reserved
6:4	RO	000b	Low Priority Extended VC Count (LPEVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.
3	RO	0b	Reserved
2:0	RO	000b	Extended VC Count (EVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device.

7.49 PVCCAP2—Port VC Capability Register 2

B/D/F/Type: 0/6/0/MMR Address Offset: 108–10Bh Default Value: 00000000h

Access: RO Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access	Default Value	Description
31:24	RO	00h	VC Arbitration Table Offset (VCATO): This field indicates the location of the VC Arbitration Table. This field contains the zero-based offset of the table in DQWORDS (16 bytes) from the base address of the Virtual Channel Capability Structure. A value of 0 indicates that the table is not present (due to fixed VC priority).
23:0	RO	0000h	Reserved

7.50 PVCCTL—Port VC Control

B/D/F/Type: 0/6/0/MMR Address Offset: 10C-10Dh Default Value: 0000h Access: RO, RW Size: 16 bits

Bit	Access	Default Value	Description
15:4	RO	000h	Reserved
3:1	RW	000b	VC Arbitration Select (VCAS): This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. Since there is no other VC supported than the default, this field is reserved.
0	RO	0b	Reserved

7.51 VCORCAP—VCO Resource Capability

B/D/F/Type: 0/6/0/MMR Address Offset: 110–113h Default Value: 00000001h

Access: RO Size: 32 bits

Bit	Access	Default Value	Description
31:16	RO	0000h	Reserved
15	RO	Ob	Reject Snoop Transactions (RSNPT): 0 = Transactions with or without the No Snoop bit set within the Transaction Layer Packet header are allowed on this VC. 1 = When Set, any transaction for which the No Snoop attribute is applicable but is not Set within the TLP Header will be rejected as an Unsupported Request.
14:8	RO	0000h	Reserved
7:0	RO	01h	Port Arbitration Capability: Indicates types of Port Arbitration supported by the VC resource. This field is valid for all Switch Ports, Root Ports that support peer-to-peer traffic, and RCRBs, but not for PCI Express Endpoint devices or Root Ports that do not support peer to peer traffic. Each bit location within this field corresponds to a Port Arbitration Capability defined below. When more than one bit in this field is Set, it indicates that the VC resource can be configured to provide different arbitration services. Software selects among these capabilities by writing to the Port Arbitration Select field (see below). Bit[0] = Default = 01b; Non-configurable hardware-fixed arbitration scheme, e.g., Round Robin (RR) Bit[1] = Weighted Round Robin (WRR) arbitration with 32 phases Bit[2] = WRR arbitration with 64 phases Bit[3] = WRR arbitration with 128 phases Bit[4] = Time-based WRR with 128 phases Bit[5] = WRR arbitration with 256 phases Bits[6:7] = Reserved MCH default indicates "Non-configurable hardware-fixed arbitration scheme".

7.52 VCORCTL—VCO Resource Control

B/D/F/Type: 0/6/0/MMR Address Offset: 114–117h Default Value: 800000FFh Access: RO, RW Size: 32 bits

This register controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access	Default Value	Description
31	RO	1b	VCO Enable (VCOE): For VCO, this is hardwired to 1 and read only as VCO can never be disabled.
30:27	RO	0h	Reserved
26:24	RO	000b	VC0 ID (VC0ID): This field assigns a VC ID to the VC resource. For VC0 this is hardwired to 0 and read only.
23:20	RO	0000h	Reserved
19:17	RW	000b	Port Arbitration Select: This field configures the VC resource to provide a particular Port Arbitration service. This field is valid for RCRBs, Root Ports that support peer to peer traffic, and Switch Ports, but not for PCI Express Endpoint devices or Root Ports that do not support peer to peer traffic. The permissible value of this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource.
16:8	RO	00h	Reserved
7:1	RW	7Fh	TC/VCO Map (TCVCOM): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. To remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO	1b	TCO/VCO Map (TCOVCOM): Traffic Class 0 is always routed to VCO.

7.53 VCORSTS—VCO Resource Status

B/D/F/Type: 0/6/0/MMR Address Offset: 11A–11Bh Default Value: 0002h Access: RO Size: 16 bits

This register reports the Virtual Channel specific status.

Bit	Access	Default Value	Description
15:2	RO	0000h	Reserved
1	RO	1b	VCO Negotiation Pending (VCONP): 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO	0b	Reserved

7.54 RCLDECH—Root Complex Link Declaration Enhanced

B/D/F/Type: 0/6/0/MMR Address Offset: 140–143h Default Value: 00010005h

Access: RO Size: 32 bits

This capability declares links from this element (PCI Express) to other elements of the root complex component to which it belongs. See PCI Express specification for link/topology declaration requirements.

Bit	Access	Default Value	Description
31:20	RO	000h	Pointer to Next Capability (PNC): This is the last capability in the PCI Express extended capabilities list.
19:16	RO	1h	Link Declaration Capability Version (LDCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. Note: This version does not change for 2.0 compliance.
15:0	RO	0005h	Extended Capability ID (ECID): Value of 0005h identifies this linked list item (capability structure) as being for PCI Express Link Declaration Capability.

7.55 ESD—Element Self Description

B/D/F/Type: 0/6/0/MMR Address Offset: 144–147h Default Value: 03000100h Access: RO, RWO Size: 32 bits

This register provides information about the root complex element containing this Link Declaration Capability.

Bit	Access	Default Value	Description
31:24	RO	03h	Port Number (PN): This field specifies the port number associated with this element with respect to the component that contains this element. This port number value is used by the egress port of the component to provide arbitration to this Root Complex Element.
23:16	RWO	00h	Component ID (CID): This field indicates the physical component that contains this Root Complex Element.
15:8	RO	01h	Number of Link Entries (NLE): This field indicates the number of link entries following the Element Self Description. This field reports 1 (to Egress port only as we don't report any peer-to-peer capabilities in our topology).
7:4	RO	0h	Reserved
3:0	RO	0h	Element Type (ET): This field indicates Configuration Space Element.

7.56 LE1D—Link Entry 1 Description

B/D/F/Type: 0/6/0/MMR Address Offset: 150–153h Default Value: 00000000h Access: RO, RWO Size: 32 bits

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access	Default Value	Description
31:24	RO	00h	Target Port Number (TPN): This field specifies the port number associated with the element targeted by this link entry (Egress Port). The target port number is with respect to the component that contains this element as specified by the target component ID.
23:16	RWO	00h	Target Component ID (TCID): This field identifies the physical or logical component that is targeted by this link entry.
15:2	RO	0000h	Reserved
1	RO	Ob	Link Type (LTYP): This bit indicates that the link points to memory–mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.
0	RWO	Ob	Link Valid (LV): 0 = Link Entry is not valid and will be ignored. 1 = Link Entry specifies a valid link.

7.57 LE1A—Link Entry 1 Address

B/D/F/Type: 0/6/0/MMR Address Offset: 158–15Fh

Default Value: 0000000000000000h

Access: RO, RWO Size: 64 bits

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

Bit	Access	Default Value	Description
63:32	RO	0000000 0h	Reserved
31:12	RWO	00000h	Link Address (LA): This field provides the memory mapped base address of the RCRB that is the target element (Egress Port) for this link entry.
11:0	RO	000h	Reserved

8 Direct Media Interface (DMI) RCRB

This Root Complex Register Block (RCRB) controls the MCH-ICH9 serial interconnect. The base address of this space is programmed in DMIBAR in D0:F0 configuration space. Table 14 provides an address map of the DMI registers listed by address offset in ascending order.

Note: IMPORTANT: All RCRB register space needs to remain organized as shown here.

Table 14. Direct Media Interface Register Address Map

Address Offset	Register Symbol	Register Name	Default Value	Access
0–3h	DMIVCECH	DMI Virtual Channel Enhanced Capability	04010002h	RO
4–7h	DMIPVCCAP1	DMI Port VC Capability Register 1	0000001h	RWO, RO
C–Dh	DMIPVCCTL	DMI Port VC Control	0000h	RO, RW
10–13h	DMIVCORCAP	DMI VC0 Resource Capability	0000001h	RO
14–17h	DMIVCORCTLO	DMI VC0 Resource Control	800000FFh	RO, RW
1A–1Bh	DMIVCORSTS	DMI VC0 Resource Status	0002h	RO
1C-1Fh	DMIVC1RCAP	DMI VC1 Resource Capability	00008001h	RO
20–23h	DMIVC1RCTL1	DMI VC1 Resource Control	01000000h	RW, RO
26–27h	DMIVC1RSTS	DMI VC1 Resource Status	0002h	RO
84–87h	DMILCAP	DMI Link Capabilities	00012C41h	RO, RWO
88–89h	DMILCTL	DMI Link Control	0000h	RW, RO
8A-8Bh	DMILSTS	DMI Link Status	0001h	RO

8.1 DMIVCECH—DMI Virtual Channel Enhanced Capability

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 0-3h Default Value: 04010002h

Access: RO Size: 32 bits

This register indicates DMI Virtual Channel capabilities.

Bit	Access	Default Value	Description
31:20	RO	040h	Pointer to Next Capability (PNC): This field contains the offset to the next PCI Express capability structure in the linked list of capabilities (Link Declaration Capability).
19:16	RO	1h	PCI Express Virtual Channel Capability Version (PCIEVCCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. Note: This version does not change for 2.0 compliance.
15:0	RO	0002h	Extended Capability ID (ECID): Value of 0002 h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers.

8.2 DMIPVCCAP1—DMI Port VC Capability Register 1

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 4-7h
Default Value: 00000001h
Access: RWO, RO
Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access	Default Value	Description
31:7	RO	0000000h	Reserved
6:4	RO	000b	Low Priority Extended VC Count (LPEVCC): Indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.
3	RO	0b	Reserved
2:0	RWO	001b	Extended VC Count (EVCC): Indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device. The Private Virtual Channel is not included in this count.

8.3 DMIPVCCTL—DMI Port VC Control

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: C-Dh Default Value: 0000h Access: RO, RW Size: 16 bits

Bit	Access	Default Value	Description
15:4	RO	000h	Reserved
3:1	RW	000b	VC Arbitration Select (VCAS): This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. See the PCI express specification for more details
0	RO	0b	Reserved

8.4 DMIVCORCAP—DMI VCO Resource Capability

B/D/F/Type: 0/0/0/DMIBAR Address Offset: 10–13h Default Value: 00000001h

Access: RO Size: 32 bits

Bit	Access	Default Value	Description
31:16	RO	0s	Reserved
15	RO	Ob	Reject Snoop Transactions (REJSNPT): 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = When Set, any transaction for which the No Snoop attribute is applicable but is not Set within the TLP Header will be rejected as an Unsupported Request.
14:8	RO	00h	Reserved
7:0	RO	01h	Port Arbitration Capability (PAC): Having only bit 0 set indicates that the only supported arbitration scheme for this VC is non-configurable hardware-fixed.

8.5 DMI VCORCTLO—DMI VCO Resource Control

B/D/F/Type: 0/0/0/DMIBAR Address Offset: 14–17h Default Value: 800000FFh Access: RO, RW Size: 32 bits

This register controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access	Default Value	Description
31	RO	1b	Virtual Channel O Enable (VCOE): For VCO, this is hardwired to 1 and read only as VCO can never be disabled.
30:27	RO	0h	Reserved
26:24	RO	000b	Virtual Channel O ID (VCOID): Assigns a VC ID to the VC resource. For VCO this is hardwired to 0 and read only.
23:20	RO	0h	Reserved
19:17	RW	000b	Port Arbitration Select (PAS): This field configures the VC resource to provide a particular Port Arbitration service. Valid value for this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource. Because only bit 0 of that field is asserted. This field will always be programmed to 1.
16:8	RO	000h	Reserved
7:1	RW	7Fh	Traffic Class / Virtual Channel O Map (TCVCOM): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO	1b	Traffic Class 0 / Virtual Channel 0 Map (TCOVCOM): Traffic Class 0 is always routed to VCO.

8.6 DMI VCORSTS—DMI VCO Resource Status

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 1A–1Bh Default Value: 0002h Access: RO Size: 16 bits

This register reports the Virtual Channel specific status.

Bit	Access	Default Value	Description
15:2	RO	0000h	Reserved
1	RO	1b	Virtual Channel O Negotiation Pending (VCONP): 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. BIOS Requirement: Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO	0b	Reserved

8.7 DMIVC1RCAP—DMI VC1 Resource Capability

B/D/F/Type: 0/0/0/DMIBAR Address Offset: 1C-1Fh Default Value: 00008001h

Access: RO Size: 32 bits

Bit	Access	Default Value	Description
31:16	RO	00h	Reserved
15	RO	1b	Reject Snoop Transactions (REJSNPT): 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = When Set, any transaction for which the No Snoop attribute is applicable but is not Set within the TLP Header will be rejected as an Unsupported Request.
14:8	RO	00h	Reserved
7:0	RO	01h	Port Arbitration Capability (PAC): Having only bit 0 set indicates that the only supported arbitration scheme for this VC is non-configurable hardware-fixed.

8.8 DMI VC1RCTL1—DMI VC1 Resource Control

B/D/F/Type: 0/0/0/DMIBAR Address Offset: 20–23h Default Value: 01000000h Access: RW, RO Size: 32 bits

This register controls the resources associated with PCI Express Virtual Channel 1.

Bit	Access	Default Value	Description
31	RW	Ob	Virtual Channel 1 Enable (VC1E): 0 = Virtual Channel is disabled. 1 = Virtual Channel is enabled.
30:27	RO	0h	Reserved
26:24	RW	001b	Virtual Channel 1 ID (VC1ID): This field assigns a VC ID to the VC resource. Assigned value must be non-zero. This field can not be modified when the VC is already enabled.
23:20	RO	0h	Reserved
19:17	RW	000b	Port Arbitration Select (PAS): This field configures the VC resource to provide a particular Port Arbitration service. Valid value for this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource.
16:8	RO	000h	Reserved
7:1	RW	00h	Traffic Class / Virtual Channel 1 Map (TCVC1M): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. To remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO	0b	Traffic Class 0 / Virtual Channel 1 Map (TCOVC1M): Traffic Class 0 is always routed to VC0.

8.9 DMIVC1RSTS—DMI VC1 Resource Status

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 26–27h
Default Value: 0002h
Access: RO
Size: 16 bits

This register reports the Virtual Channel specific status.

Bit	Access	Default Value	Description
15:2	RO	0000h	Reserved
1	RO	1b	Virtual Channel 1 Negotiation Pending (VC1NP): 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling).
0	RO	0b	Reserved

8.10 DMILCAP—DMI Link Capabilities

B/D/F/Type: 0/0/0/DMIBAR Address Offset: 84–87h Default Value: 00012C41h Access: RO, RWO

Size: 32 bits

This register indicates DMI specific capabilities.

Bit	Access	Default Value	Description
31:18	RO	0000h	Reserved
17:15	RWO	010b	L1 Exit Latency (L1SELAT): This field indicates the length of time this Port requires to complete the transition from L1 to L0. $010 = 2 \mu s$ to less than 4 μs All other encodings are reserved.
14:12	RWO	010b	Reserved
11:10	RO	11b	Active State Link PM Support (ASLPMS): L1 entry supported.
9:4	RO	04h	Max Link Width (MLW): This field indicates the maximum number of lanes supported for this link. 04h = x4 All other encodings are reserved.
3:0	RO	1h	Max Link Speed (MLS): Hardwired to indicate 2.5 Gb/s.

8.11 DMILCTL—DMI Link Control

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 88–89h Default Value: 0000h Access: RW, RO Size: 16 bits

This register allows control of DMI.

Bit	Access	Default Value	Description	
15:8	RO	00h	Reserved	
7	RW	Ob	Extended Synch (EXTSYNC): 0 = Standard Fast Training Sequence (FTS). 1 = Forces the transmission of additional ordered sets when exiting the LOs state and when in the Recovery state.	
6:3	RO	0h	Reserved	
2	RW	0b	Far-End Digital Loopback (FEDLB):	
1:0	RW	00b	Active State Power Management Support (ASPMS): This field controls the level of active state power management supported on the given link. 00 = Disabled 01 = Reserved 10 = Reserved 11 = L1 Entry Supported	

8.12 DMILSTS—DMI Link Status

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 8A–8Bh Default Value: 0001h Access: RO Size: 16 bits

This register indicates DMI status.

Bit	Access	Default Value	Description	
15:4	RO	0s	Reserved	
3:0	RO	1h	Negotiated Speed (NSPD): This field indicates negotiated link speed. 1h = 2.5 Gb/s All other encodings are reserved.	

§ §

9 Functional Description

9.1 Host Interface

The MCH supports the Intel[®] CoreTM2 Duo processors, Intel[®] CoreTM2 Quad processors, Intel[®] CoreTM2 Extreme processors, and Intel[®] CoreTM2 Extreme processor QX9770 at 1600 FSB. The cache line size is 64 bytes. Source synchronous transfer is used for the address and data signals. The address signals are double pumped and a new address can be generated every other bus clock. At 200/267/333/400 MHz bus clock the address signals run at 800MT/s. The data is quad pumped and an entire 64B cache line can be transferred in two bus clocks. At 200/266/333/400 MHz bus clock, the data signals run at 800/1066/1333/1600 MT/s for a maximum bandwidth of 6.4/8.5/10.6/12.8 GB/s.

9.1.1 FSB IOQ Depth

The Scalable Bus supports up to 12 simultaneous outstanding transactions.

9.1.2 FSB OOQ Depth

The MCH supports only one outstanding deferred transaction on the FSB.

9.1.3 FSB GTL+ Termination

The MCH integrates GTL+ termination resistors on die.

9.1.4 FSB Dynamic Bus Inversion

The MCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data from the processor. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data phase. This decreases the worst-case power consumption of the MCH. HDINV[3:0]# indicate if the corresponding 16 bits of data are inverted on the bus for each quad pumped data phase:

HDINV[3:0]#	Data Bits
HDINV0#	HD[15:0]#
HDINV1#	HD[31:16]#
HDINV2#	HD[47:32]#
HDINV3#	HD[63:48]#

Whenever the processor or the MCH drives data, each 16-bit segment is analyzed. If more than 8 of the 16 signals would normally be driven low on the bus, the corresponding HDINV# signal will be asserted, and the data will be inverted prior to being driven on the bus. Whenever the processor or the MCH receives data, it monitors HDINV#[3:0] to determine if the corresponding data segment should be inverted.

Table 15. Host Interface 4X, 2X, and 1X Signal Groups

Signals	Associated Clock or Strobe	Signal Group	
ADS#, BNR#, BPRI#, DEFER#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, RS[2:0]#, TRDY#, RESET, BRO#	BCLK	1X	
HA[16:3]#, REQ[4:0]#	ADSTB[0]#	2X	
HA[35:17]#	ADSTB[1]#		
D[15:0]#, DBI0#	DSTBPO#, DSTBNO#		
D[31:16]#, DBI1#	DSTBP1#, DSTBN1#	4.	
D[47:32]#, DBI2#	DSTBP2#, DSTBN2#	4X	
D[63:48]#, DBI3#	DSTBP3#, DSTBN3#		

9.1.5 APIC Cluster Mode Support

APIC Cluster mode support is required for backwards compatibility with existing software, including various OSes.

The MCH supports three types of interrupt re-direction:

- Physical
- Flat-Logical
- · Clustered-Logical

9.2 System Memory Controller

The system memory controller supports DDR3 protocols with two independent 64 bit wide channels each accessing one or two DIMMs. It supports a maximum of two unbuffered non-ECC DDR3 DIMMs per channel; thus, allowing up to four device ranks per channel.

9.2.1 System Memory Organization Modes

The system memory controller supports two memory organization modes: Single Channel and Dual Channel.

9.2.1.1 Single Channel Mode

In this mode, all memory cycles are directed to a single channel.

Single channel mode is used when either Channel A or Channel B DIMMs are populated in any order, but not both.

9.2.1.2 Dual Channel Modes

9.2.1.2.1 Dual Channel Symmetric Mode

This mode provides maximum performance on real applications. Addresses are ping-ponged between the channels after each cache line (64 byte boundary). If there are two requests, and the second request is to an address on the opposite channel from the first, that request can be sent before data from the first request has returned. If two consecutive cache lines are requested, both may be retrieved simultaneously, since they are guaranteed to be on opposite channels.

Dual channel symmetric mode is used when both Channel A and Channel B DIMMs are populated in any order with the total amount of memory in each channel being the same, but the DRAM device technology and width may vary from one channel to the other.

Table 16 is a sample dual channel symmetric memory configuration showing the rank organization.

Table 16. Sample System Memory Dual Channel Symmetric Organization Mode

Rank	Channel 0 Population	Cumulative Top Address in Channel 0	Channel 1 Population	Cumulative Top Address in Channel 1
Rank 3	0 MB	2560 MB	0 MB	2560 MB
Rank 2	256 MB	2560 MB	256 MB	2560 MB
Rank 1	512 MB	2048 MB	512 MB	2048 MB
Rank 0	512 MB	1024 MB	512 MB	1024 MB

9.2.1.2.2 Dual Channel Asymmetric Mode with Intel® Flex Memory Mode Enabled

In this addressing mode the lowest DRAM memory is mapped to dual channel operation and the top most DRAM memory is mapped to single channel operation. In this mode the system can run at one zone of dual channel mode and one zone of single channel mode simultaneously across the whole memory array.

This mode is used when Intel[®] Flex Memory Mode is enabled and both Channel A and Channel B DIMMs are populated in any order with the total amount of memory in each channel being different.

Table 17 is a sample dual channel asymmetric memory configuration showing the rank organization with Intel® Flex Memory Mode Enabled:

Table 17. Sample System Memory Dual Channel Asymmetric Organization Mode with Intel® Flex Memory Mode Enabled

Rank	Channel 0 Population	Cumulative Top Address in Channel 0	Channel 1 Population	Cumulative Top Address in Channel 1
Rank 3	0 MB	2048 MB	0 MB	2304 MB
Rank 2	0 MB	2048 MB	256 MB	2304 MB
Rank 1	512 MB	2048 MB	512 MB	2048 MB
Rank 0	512 MB	1024 MB	512 MB	1024 MB

9.2.1.2.3 Dual Channel Asymmetric Mode with Intel® Flex Memory Mode Disabled

In this addressing mode addresses start in channel 0 and stay there until the end of the highest rank in channel 0, and then addresses continue from the bottom of channel 1 to the top.

This mode is used when Intel[®] Flex Memory Mode is disabled and both Channel A and Channel B DIMMs are populated in any order with the total amount of memory in each channel being different.

Table 18 is a sample dual channel asymmetric memory configuration showing the rank organization with Intel® Flex Memory Mode Disabled:

Table 18. Sample System Memory Dual Channel Asymmetric Organization Mode with Intel[®] Flex Memory Mode Disabled

Rank	Channel 0 Population	Cumulative Top Address in Channel 0	Channel 1 Population	Cumulative Top Address in Channel 1
Rank 3	0 MB	1280 MB	0 MB	2304 MB
Rank 2	256 MB	1280 MB	0 MB	2304 MB
Rank 1	512 MB	1024 MB	512 MB	2304 MB
Rank 0	512 MB	512 MB	512 MB	1792 MB

9.2.2 System Memory Technology Supported

The MCH supports the following DDR3 Data Transfer Rates, DIMM Modules, and DRAM Device Technologies:

- DDR3 Data Transfer Rates: 800 (PC3-6400), 1066 (PC3-8500), and 1333 (PC3-10600), and 1600 (PC3-12800)
- DDR3 DIMM Modules:
 - Raw Card A Single Sided x8 un-buffered non-ECC
 - Raw Card B Double Sided x8 un-buffered non-ECC
 - Raw Card C Single Sided x16 un-buffered non-ECC
 - Raw Card F Double Sided x16 un-buffered non-ECC
- DDR3 DRAM Device Technology: 512-Mb and 1-Gb

Table 19. Supported DIMM Module Configurations

Memory Type	Raw Card Version	DIMM Capacity	DRAM Device Technology	DRAM Organization	# of DRAM Devices	# of Physical Device Ranks	# of Row/Col Address Bits	# of Banks Inside DRAM	Page Size
	А	512 MB	512Mb	64M X 8	8	1	13/10	8	8K
	A	1 GB	1Gb	128M X 8	8	1	14/10	8	8K
DDR3	В	1 GB	512Mb	64M X 8	16	2	13/10	8	8K
800, 1066,	Ь	2 GB	1Gb	128M X 8	16	2	14/10	8	8K
1333,	С	256 MB	512Mb	32M X 16	4	1	12/10	8	8K
and 1600 ^(1,2)	C	512 MB	1Gb	64M X 16	4	1	13/10	8	8K
	F	512 MB	512Mb	32M X 16	8	2	12/10	8	8K
	ľ	1 GB	1Gb	64M X 16	8	2	13/10	8	8K

NOTES:

- 1. The MCH requires Intel® XMP DDR3-1600 DIMM for 1600 MHz DDR3 speeds.
- 2. The MCH using Intel[®] XMP DDR3-1600 DIMMs support only single DIMM single rank memory configurations where DIMM1 is populated and DIMM0 is not populated.

9.2.3 Intel® Extreme Memory Profile (XMP) Support

The Intel® Extreme Memory Profile (XMP) provides a simple and robust high performance DDR3 memory solution for Intel based platforms using the Intel® X48 Express Chipset. Intel co-developed the Extreme Memory Profile (XMP) specification with its memory partners to enable performance tuning of DDR3 memory to beyond standard JEDEC SPD specifications. This benefits the user by enabling both the novice (using built-in profiles) and the advanced users (by allowing manual timing parameter adjustments) to tune the performance of their Intel platforms. This profile based solution enables the Intel® X48 Express Chipset to support non-JEDEC defined solutions (e.g., DDR3-1600 and beyond).

The Intel[®] X48 Express Chipset with Intel[®] Extreme Memory Profile (XMP) DIMMs enable new extreme levels of memory performance.

9.3 PCI Express*

See Section 1.3 for a list of PCI Express features, and the PCI Express specification for further details.

This MCH is part of a PCI Express root complex. This means it connects a host processor/memory subsystem to a PCI Express hierarchy. The control registers for this functionality are located in Device 1 and Device 6 configuration space and three Root Complex Register Blocks (RCRBs). The DMI RCRB contains registers for control of the Intel ICH9 attach ports.

9.3.1 PCI Express* Architecture

The PCI Express architecture is specified in layers. Compatibility with the PCI addressing model (a load-store architecture with a flat address space) is maintained to ensure that all existing applications and drivers operate unchanged. The PCI Express configuration uses standard mechanisms as defined in the PCI Plug-and-Play specification. The initial speed of 2.5 GHz results in 5 Gb/s each direction which provides a 500 MB/s communications channel in each direction (1000 MB/s total).

9.3.1.1 Transaction Layer

The upper layer of the PCI Express architecture is the Transaction Layer. The Transaction Layer's primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as read and write, as well as certain types of events. The Transaction Layer also manages flow control of TLPs.

9.3.1.2 Data Link Layer

The middle layer in the PCI Express stack, the Data Link Layer, serves as an intermediate stage between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer include link management, error detection, and error correction.

9.3.1.3 Physical Layer

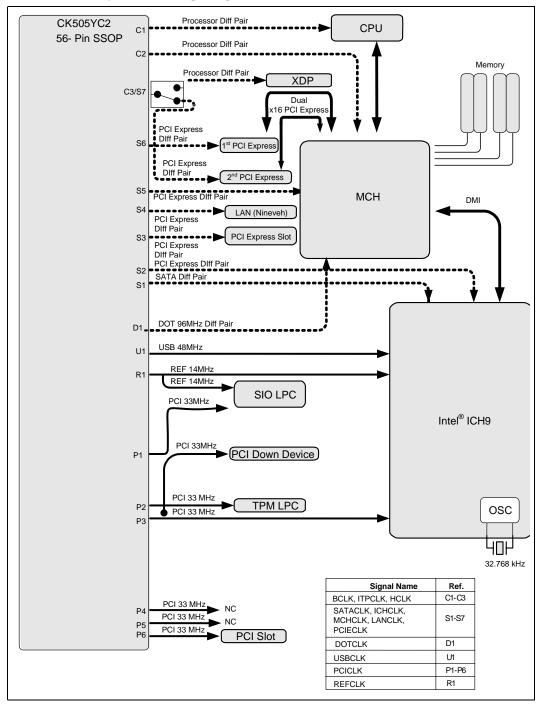
The Physical Layer includes all circuitry for interface operation, including driver and input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching circuitry.

9.4 Power Management

Power Management Feature List:

- ACPI 1.0b support
- ACPI S0, S1, S3 (Cold), S5, C0, and C1 states
- Enhanced power management state transitions for increasing time processor spends in low power states
- PCI Express Link States: L0, L2/L3 Ready, L3

9.5 Clocking


The MCH has a total of 3 PLLs providing many times that many internal clocks. The PLLs are:

- Host PLL Generates the main core clocks in the host clock domain. Can also be used to generate memory core clocks. Uses the Host clock (H_CLKIN) as a reference.
- Memory I/O PLL Optionally generates low jitter clocks for memory I/O interface, as opposed to from Host PLL. Uses the Host FSB differential clock (HPL_CLKINP/ HPL_CLKINN) as a reference. Low jitter clock source from memory I/O PLL is required for DDR667 and higher frequencies.
- PCI Express PLL Generates all PCI Express related clocks, including the Direct Media that connect to the ICH. This PLL uses the 100 MHz clock (EXP_CLKNP/ EXP2_CLKNP) as a reference.

CK505YC2 is the clocking chip required for the platform.

Figure 9. Intel® X48 Chipset Clocking Diagram

§ §

10 Electrical Characteristics

This chapter contains the DC for the Intel® X48 Express Chipset MCH.

10.1 Absolute Minimum and Maximum Ratings

Table 20 specifies the MCH absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time its reliability will be severely degraded or not function when returned to conditions within the functional operating condition limits.

Although the MCH contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 20. Absolute Minimum and Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes		
MCH Core							
VCC	1.25 V Core Supply Voltage with respect to VSS	-0.3	1.375	V			
Host Interface	Host Interface (800/1066/1333/1600 MHz)						
VTT_FSB	System Bus Input Voltage with respect to VSS	-0.3	1.32	V			
VCCA_HPLL	1.25 V Host PLL Analog Supply Voltage with respect to VSS	-0.3	1.375	V			
System Memor	y Interface (DDR3 800/1066/1333/1600	MHz)					
VCC_DDR	1.5 V / 1.9 V DDR3 System Memory Supply Voltage with respect to VSS	-0.3	4.0	V	1		
VCC_CKDDR	1.5 V / 1.9 V DDR3 Clock System Memory Supply Voltage with respect to VSS	-0.3	4.0	V	1		
VCCA_MPLL	1.25 V System Memory PLL Analog Supply Voltage with respect to VSS	-0.3	1.375	V			

Table 20. Absolute Minimum and Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes			
PCI Express* /	PCI Express* / DMI Interface							
VCC_EXP	1.25 V PCI Express* and DMI Supply Voltage with respect to VSS	-0.3	1.375	V				
VCCA_EXP	3.3 V PCI Express* Analog Supply Voltage with respect to VSS	-0.3	3.63	V				
VCCAPLL_EXP	1.25 V Primary PCI Express* PLL Analog Supply Voltage with respect to VSS	-0.3	1.375	V				
VCCAPLL_EXP2	1.25 V Secondary PCI Express* PLL Analog Supply Voltage with respect to VSS	-0.3	1.375	V				
CMOS Interface								
VCC3_3	3.3 V CMOS Supply Voltage with respect to VSS	-0.3	3.63	V				

NOTES:

10.2 Current Consumption

Table 21 shows the current consumption for the MCH in the Advanced Configuration and Power Interface (ACPI) S0 state. I_{CC} max values are determined on a per-interface basis, at the highest frequencies for each interface. Sustained current values or Max current values can not occur simultaneously on all interfaces. Sustained Values are measured sustained RMS maximum current consumption and includes leakage estimates. The measurements are made with fast silicon at 96 °C T_{CASE} temperature, at the Max voltage listed in Table 23. The Max values are maximum theoretical presilicon calculated values. In some cases, the Sustained measured values have exceeded the Max theoretical values.

Table 21. Current Consumption in S0

Symbol	Parameter	Signal Names	Sustained	Max	Unit	Notes
I _{VCC}	1.25 V Core Supply Current (Discrete Graphics)	VCC	7.49	8.99	А	1,2
I _{VCC_DDR_1.5}	DDR3 System Memory Interface (1.5 V) Supply Current	VCC_DDR	1.53	1.61	А	1, 2, 3
I _{VCC_CKDDR_1.5}	DDR3 System Memory Clock Interface (1.5 V) Supply Current	VCC_CKDDR	334	367	mA	
I _{VCC_DDR_1.9}	DDR3 System Memory Interface (1.9 V) Supply Current	VCC_DDR	2.181	2.285	А	1, 2, 3
I _{VCC_CKDDR_1.9}	DDR3 System Memory Clock Interface (1.9 V) Supply Current	VCC_CKDDR	506.793	557.473	mA	
I _{VCC_EXP}	1.25 V PCI Express* and DMI Supply Current	VCC_EXP	5.12	6.65	А	2
I _{VTT_FSB}	System Bus Supply Current	VTT_FSB	464	696	mA	1
I _{VCCA_EXP}	3.3 V PCI Express* and DMI Analog Supply Current	VCCA_EXP	167	175	mA	

The 1.9 V System Memory Voltage is only for DDR3-1600 XMP support. For DDR3-800/ 1066/1333 support, the System Memory Voltage must be 1.5 V.

Table 21. Current Consumption in S0

Symbol	Parameter	Signal Names	Sustained	Max	Unit	Notes
IVCC3_3	3.3 V CMOS Supply Current	VCC3_3	0.5	16	mA	
I _{VCCAPLL_EXP}	1.25 V PCI Express* and DMI PLL Analog Supply Current	VCCAPLL_EXP	48	53	mA	
I _{VCCA_HPLL}	1.25 V Host PLL Supply Current	VCCA_HPLL	21	32	mA	
I _{VCCA_MPLL}	1.25 V System Memory PLL Analog Supply Current	VCCA_MPLL	117	175	mA	

NOTES:

- 1. Measurements are for current coming through chipset's supply pins.
- 2. Rail includes DLLs (and FSB sense amps on V_{CC}).
- 3. Sustained Measurements are combined because one voltage regulator on the platform supplies both rails on the MCH.

10.3 Signal Groups

The signal description includes the type of buffer used for the particular signal:

Туре	Description
PCI Express*	PCI Express interface signals. These signals are compatible with PCI Express 2.0 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = (D+ - D-) * 2 = 1.2 Vmax. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.
DMI	Direct Media Interface signals. These signals are compatible with PCI Express 1.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = (D+ - D-) * 2 = 1.2 Vmax. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.
GTL+	Open Drain GTL+ interface signal. Refer to the GTL+ I/O Specification for complete details.
HCSL	Host Clock Signal Level buffers. Current mode differential pair. Differential typical swing = $(D+ -D-) * 2 = 1.4 \text{ V}$. Single ended input tolerant from -0.35V to 1.2 V. Typical crossing voltage 0.35 V.
SSTL-1.5	Stub Series Termination Logic. These are 1.5 V output capable buffers. 1.5 V tolerant.
CMOS	CMOS buffers
Analog	Analog reference or output. May be used as a threshold voltage or for buffer compensation.

Table 22. Signal Groups (Sheet 1 of 2)

Signal Type	Signals
Host Interface Sign	al Groups
GTL+ Input/Outputs	FSB_ADSB, FSB_BNRB, FSB_DBSYB, FSB_DINVB_3:0, FSB_DRDYB, FSB_AB_35:3, FSB_ADSTBB_1:0, FSB_DB_63:0, FSB_DSTBPB_3:0, FSB_DSTBNB_3:0, FSB_HITB, FSB_HITMB, FSB_REQB_4:0
GTL+ Common Clock Outputs	FSB_BPRIB, FSB_BREQOB, FSB_CPURSTB, FSB_DEFERB, FSB_TRDYB, FSB_RSB_2:0
Analog Host I/F Ref & Comp. Signals	FSB_RCOMP, FSB_SCOMPB, FSB_SWING, FSB_DVREF, FSB_ACCVREF
GTL+ Input	FSB_LOCKB, BSEL2:0
PCI Express* Graph	nics Interface Signal Groups
PCI Express* Input	PCI Express* Interface: PEG_RXN_15:0, PEG_RXP_15:0
PCI Express* Output	PCI Express* Interface: PEG_TXN_15:0, PEG_TXP_15:0
Analog PCI Express* Compensation Signals	EXP_COMPO, EXP_COMPI
Direct Media Interfa	ace Signal Groups
DMI Input	DMI_RXP_3:0, DMI_RXN_3:0
DMI Output	DMI_TXP_3:0, DMI_TXN_3:0
System Memory Int	terface Signal Groups
SSTL-1.5 Input/ Output	DDR_A_DQ_63:0, DDR_A_DQS_7:0, DDR_A_DQSB_7:0 DDR_B_DQ_63:0, DDR_B_DQS_7:0, DDR_B_DQSB_7:0
SSTL-1.5 Output	DDR_A_CK_5:0, DDR_A_CKB_5:0, DDR_A_CSB_3:2, DDR3_A_CSB_1, DDR_A_CSB_0, DDR_A_CKE_3:0, DDR_A_ODT_3:0, DDR_A_MA_14:1, DDR3_A_MA_0, DDR_A_BS_2:0, DDR_A_RASB, DDR_A_CASB, DDR3_A_WEB, DDR_A_DM_7:0 DDR_B_CK_5:0, DDR_B_CKB_5:0, DDR_B_CSB_3:0, DDR_B_CKE_3:0,
	DDR_B_ODT_2:0, DDR3_B_ODT_3, DDR_B_MA_14:0, DDR_B_BS_2:0, DDR_B_RASB, DDR_B_CASB, DDR_B_WEB, DDR_B_DM_7:0 DDR3_DRAMRST
CMOS Input	DDR3_DRAM_PWROK
Reference and Comp. Voltages	DDR_RCOMPXPD, DDR_RCOMPXPU, DDR_RCOMPYPD, DDR_RCOMPYPU, DDR_VREF
Clocks	
HCSL	HPL_CLKINP, HPL_CLKINN, EXP_CLKINP, EXP_CLKINN, DPL_REFCLKINN, DPL_REFCLKINP
Reset, and Miscella	neous Signal Groups
CMOS Input	EXP_SLR, PWROK, RSTINB
CMOS Output	ICH_SYNCB

Table 22. Signal Groups (Sheet 2 of 2)

Signal Type	Signals				
I/O Buffer Supply V	I/O Buffer Supply Voltages				
System Bus Input Supply Voltage	VTT_FSB				
1.25 V PCI Express* Supply Voltages	VCC_EXP				
3.3 V PCI Express* Analog Supply Voltage	VCCA_EXP				
1.5 V / 1.9 V DDR3 System Memory Supply Voltage	VCC_DDR				
1.5 V / 1.9 V DDR3 System Memory Clock Supply Voltage	VCC_CKDDR				
1.25 V MCH Core Supply Voltage	VCC				
3.3 V CMOS Supply Voltage	VCC3_3				
PLL Analog Supply Voltages	VCCA_HPLL, VCCAPLL_EXP, VCCA_MPLL				

10.4 Buffer Supply and DC Characteristics

10.4.1 I/O Buffer Supply Voltages

The I/O buffer supply voltage is measured at the MCH package pins. The tolerances shown in Table 23 are inclusive of all noise from DC up to 20 MHz. In the lab, the voltage rails should be measured with a bandwidth limited oscilloscope with a roll off of 3 dB/decade above 20 MHz under all operating conditions.

Table 23 indicates which supplies are connected directly to a voltage regulator or to a filtered voltage rail. For voltages that are connected to a filter, they should be measured at the *input* of the filter.

If the recommended platform decoupling guidelines cannot be met, the system designer will have to make tradeoffs between the voltage regulator output DC tolerance and the decoupling performance of the capacitor network to stay within the voltage tolerances listed in Table 23.

Table 23. I/O Buffer Supply Voltage

Symbol	Parameter	Min	Nom	Max	Unit	Notes	
VCC_DDR	DDR3 1.9 V I/O Supply Voltage	1.825	1.9	1.975	V		
VCC_DDR	DDR3 1.5 V I/O Supply Voltage	1.425	1.5	1.575	V		
VCC_CKDDR	DDR3 1.9 V Clock Supply Voltage	1.825	1.9	1.975	V	1	
VCC_CKDDR	DDR3 1.5 V Clock Supply Voltage	1.425	1.5	1.575	V	1	
VCC_EXP	PCI-Express* Supply Voltage	1.188	1.25	1.313	V		
VCCA_EXP	PCI-Express* Analog Supply Voltage	3.135	3.3	3.465	V	1	
VTT FSB	1.2 V System Bus Input Supply Voltage	1.14	1.2	1.26	V	2	
V11_13B	1.1 V System Bus Input Supply Voltage	1.045	1.1	1.155	V	_	
VCC	MCH Core Supply Voltage	1.188	1.25	1.313	V		
VCC3_3	CMOS Supply Voltage	3.135	3.3	3.465	V		
VCCA_HPLL, VCCAPLL_EXP, VCCA_MPLL	Various PLL Analog Supply Voltages	1.188	1.25	1.313	V	1	

NOTES:

- 1. These rails are filtered from other voltage rails on the platform and should be measured at the input of the filter.
- 2. MCH supports both V_{TT} = 1.2 V nominal and V_{TT} = 1.1 V nominal depending on the identified processor.

10.4.2 General DC Characteristics

Platform Reference Voltages at the top of Table 24 are specified at DC only. V_{REF} measurements should be made with respect to the supply voltage.

Table 24. DC Characteristics (Sheet 1 of 3)

Symbol	Parameter	Min	Nom	Max	Unit	Notes
Reference Vol	tages					
FSB_DVREF FSB_ACCVREF	Host Data, Address, and Common Clock Signal Reference Voltages	0.666 x VTT_FSB -2%	0.666 x VTT_FSB	0.666 x VTT_FSB +2%	V	
FSB_SWING	Host Compensation Reference Voltage	0.25 x VTT_FSB -2%	0.25 x VTT_FSB	0.25 x VTT_FSB +2%	V	
DDR_VREF	DDR3 Reference Voltage	0.49 x VCC_DDR	0.50 x VCC_DDR	0.51 x VCC_DDR	V	
Host Interface	e					
V _{IL_H}	Host GTL+ Input Low Voltage	-0.10	0	(0.666 x VTT_FSB) - 0.1	V	
V _{IH_H}	Host GTL+ Input High Voltage	(0.666 x VTT_FSB) + 0.1	VTT_FSB	VTT_FSB + 0.1	V	
V _{OL_H}	Host GTL+ Output Low Voltage	_	_	(0.25 x VTT_FSB) + 0.1	V	
V _{OH_H}	Host GTL+ Output High Voltage	VTT_FSB – 0.1	_	VTT_FSB	V	
I _{OL_H}	Host GTL+ Output Low Current	_	_	VTT_FSBmax * (1–0.25) / Rttmin	mA	$Rtt_{min} = 47.5 \Omega$
I _{LEAK_H}	Host GTL+ Input Leakage Current	_	_	45	μА	V _{OL} < Vpad< Vtt_FSB
C _{PAD}	Host GTL+ Input Capacitance	2.0	_	2.5	pF	
C _{PCKG}	Host GTL+ Input Capacitance (common clock)	0.90	_	2.5	рF	
DDR3 System	Memory Interface				•	
V _{IL(DC)}	DDR3 Input Low Voltage	_	_	DDR_VREF - 0.100	V	
V _{IH(DC)}	DDR3 Input High Voltage	DDR_VREF + 0.100	_	_	٧	
V _{IL(AC)}	DDR3 Input Low Voltage	_	_	DDR_VREF - 0.175	٧	
V _{IH(AC)}	DDR3 Input High Voltage	DDR_VREF + 0.175	_	_	٧	
V _{OL}	DDR3 Output Low Voltage	_	_	0.2 * VCC_DDR	٧	1
	I .	1		I.	L	l

Table 24. DC Characteristics (Sheet 2 of 3)

Symbol	Parameter	Min	Nom	Max	Unit	Notes
V _{OH}	DDR3 Output High Voltage	0.8 * VCC_DDR	_	_	V	1
I _{Leak}	Input Leakage Current	_	_	±20	μΑ	4
I _{Leak}	Input Leakage Current	_	_	±550	μΑ	5
C _{I/O}	DQ/DQS/DQSB DDR3 Input/Output Pin Capacitance	1.0	_	4.0	pF	
1.25 V PCI Ex	cpress* Interface 2.0					
V _{TX-DIFF P-P}	Differential Peak to Peak Output Voltage	0.800	_	1.2	٧	2
V _{TX_CM-ACp}	AC Peak Common Mode Output Voltage	_	_	20	mV	
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120		
V _{RX-DIFF p-p}	Differential Peak to Peak Input Voltage	0.175	_	1.2	V	3
V _{RX_CM-ACp}	AC Peak Common Mode Input Voltage	_	_	150	mV	
Input Clocks						
V _{IL}	Input Low Voltage	-0.150	0	N/A	V	
V _{IH}	Input High Voltage	0.660	0.710	0.850	V	
V _{CROSS(ABS)}	Absolute Crossing Voltage	0.300	N/A	0.550	٧	6,7,8
V _{CROSS(REL)}	Range of Crossing Points	N/A	N/A	0.140	V	
C _{IN}	Input Capacitance	1	_	3	pF	
PWROK, RST	IN#					
V _{IL}	Input Low Voltage	_	_	0.3	V	
V _{IH}	Input High Voltage	2.7	_	_	V	
I _{LEAK}	Input Leakage Current	_	_	±1	mA	
C _{IN}	Input Capacitance	_	_	6.0	рF	
ICH_SYNCB						
I _{OL}	Output Low Current (CMOS Outputs)	_	_	2.0	mA	@V _{OL_HI} max
I _{OH}	Output High Current (CMOS Outputs)	-2.0	_	_	mA	@V _{OH_HI} min
V _{OL}	Output Low Voltage (CMOS Outputs)	_	_	0.33	٧	
1	•			1		

Table 24. DC Characteristics (Sheet 3 of 3)

Symbol	Parameter	Min	Nom	Max	Unit	Notes			
V _{OH}	Output High Voltage (CMOS Outputs)	2.97 —		_	V				
EXP_SLR, EXP_EN									
V _{IL}	Input Low Voltage	-0.10	0	(0.63 x VTT) - 0.1	V				
V _{IH}	Input High Voltage	(0.63 x VTT)+0.1	VTT	VTT +0.1	V				
I _{LEAK}	Input Leakage Current	_	_	20	μА	V _{OL} < Vpad< V _{TT}			
C _{IN}	Input Capacitance	2	_	2.5	pF				

NOTES:

- 1. Determined with 2x MCH Buffer Strength Settings into a 50 Ω to 0.5xVCC_DDR test load.
- Specified at the measurement point into a timing and voltage compliance test load as shown in Transmitter compliance eye diagram of PCI Express* specification and measured over any 250 consecutive TX UIs.
- Specified at the measurement point over any 250 consecutive Uls. The test load shown in Receiver compliance eye diagram of PCI Express* spec should be used as the RX device when taking measurements.
- Applies to pin to VCC or VSS leakage current for the DDR_A_DQ_63:0 and DDR_B_DQ_63:0 signals.
- 5. Applies to pin to pin leakage current between DDR_A_DQS_7:0, DDR_A_DQSB_7:0, DDR_B_DQS_7:0, and DDR_B_DQSB_7:0 signals.
- Crossing voltage defined as instantaneous voltage when rising edge of BCLK0 equals falling edge of BCLK1.
- 7. V_{Havg} is the statistical average of the V_{H} measured by the oscilloscope.
- 8. The crossing point must meet the absolute and relative crossing point specifications simultaneously. Refer to the appropriate processor datasheet for further information.

§ §

11 Ballout and Package Information

This chapter provides the ballout and package dimensions for the MCH.

11.1 Ballout

Figure 10, Figure 11, and Figure 12 provide the MCH ballout as viewed from the top side of the package. Table 25 provides a ballout list arranged alphabetically by signal name. Table 26 provides a ballout list arranged numerically by ball number.

Note: Notes for Figure 10, Figure 11, Figure 12, Table 25 and Table 26.

- 1. Balls that are listed as RSVD are reserved.
- Some balls marked as reserved (RSVD) are used in XOR testing. See Chapter 12 for details.
- 3. Balls that are listed as NC are No Connects.

Figure 10. MCH Ballout Diagram (Top View Left – Columns 45–31)

	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	
BE	TEST0	VCC_CKDDR	VCC_CKDDR	DDR_A_CSB		VCC_DDR		VSS	DDR_A_MA_	VCC_DDR	DDR3_A_MA	VSS	DDR_B_ODT	VCC_DDR	DDR_B_RAS	BE
BD	NC	VCC_CKDDR	VCC_CKDDR	_1 DDR_RCOMP		DDR3_A_WE	DDR_A_WEB		10 DDR_A_BS_	DDR_A_MA_	0		_0	DDR_B_CSB	В	BC
BC	VCC_CKDDR	VCC_CKDDR DDR3_A_CS	VSS DDR_A_ODT	YPD DDR_RCOMP	DDR_A_CAS	В	DDR_A_CSB	VCC_DDR DDR_A_RAS	0	0 DDR_A_BS_	DDR_B_CSB	VCC_DDR DDR_B_ODT	DDR_B_ODT	_2 DDR_B_CAS	DDR_A_MA_	BC
BB		B1	_0	YPU DDR_A_MA_	B DDR_A_ODT	DDR_A_CSB	_2	В	DDR3_B_OD	1	_1 DDR_B_CSB	_1	_2 DDR_B_MA_	В	1 DDR_B_CSB	BB
BA			DDR_A_CSB	13	_2 DDR_A_ODT	_0 DDR_B_DM_	000 0 00	DDR_B_DQ_	T3		_3	DDR_B_CKB	13		_0	BA
AY	VCC_DDR	DDD A ODT	_3	000 4 00	_1	4	DDR_B_DQ_ 32	36		VSS	DDR_B_ODT	_5	VSS		DDR_B_WEB	AY
AW		DDR_A_ODT _3		DDR_A_DQ_ 36		VSS	DDR_B_DQS _4	DDR_B_DQ_ 33		DDR_B_DQ_ 37	VSS	DDR_B_CK_ 5	DDR_B_CKB _2		VSS	AW
AV	VSS		VSS	DDR_A_DQ_ 32		DDR_B_DQ_ 39	DDR_B_DQ_ 38	DDR_B_DQS B_4		DDR_B_DQ_ 44	DDR_A_CKB _2	VSS	DDR_B_CK_ 2		DDR_A_CK_ 3	AV
AU		DDR_A_DM_ 4	DDR_A_DQ_ 33		DDR_A_DQ_ 37											AU
AT	VSS		DDR_A_DQS _4	DDR_A_DQS B_4		DDR_B_DQ_ 35	VSS	DDR_B_DQ_ 34		DDR_A_CKB _5	DDR_A_CK_ 5	DDR_A_CK_ 2	DDR_A_CK_ 0		DDR_A_CKB _3	AT
AR		DDR_A_DQ_ 34		DDR_A_DQ_ 35	DDR_A_DQ_ 38	DDR_A_DQ_ 39	VSS	VSS		DDR_B_DQ_ 40	VSS	DDR_B_DQ_ 45	DDR_A_CKB _0		DDR_B_CK_ 3	AR
AP	DDR_A_DQ_ 45		VSS	DDR_A_DQ_ 44		DDR_B_DQS B_5	DDR_B_DQS _5	VSS		DDR_B_DQ_ 41	DDR_B_DQ_ 42	RSVD	VSS		DDR_B_CKB _3	AP
AN		DDR_A_DM_ 5		DDR_A_DQ_ 41	DDR_A_DQ_ 40	DDR_B_DQ_ 47	DDR_B_DQ_ 46	VSS		DDR_B_DM_ 5	DDR_A_CB_ 1	VSS	DDR_B_DQ_ 43		RSVD	ΑN
AM	vss		DDR_A_DQS _5	DDR_A_DQS B_5										RSVD		ΑN
AL		DDR_A_DQ_ 42		DDR_A_DQ_ 43	DDR_A_DQ_ 47	DDR_A_DQ_ 46	VSS	DDR_A_DQS _8		DDR_A_DQS B_8	vss	DDR_A_CB_ 5	DDR_A_CB_ 0			AL
AK	DDR_B_CB_ 0		VSS	DDR_B_CB_ 5		VSS	DDR_A_CB_ 7	DDR_A_CB_ 2		VSS	DDR_A_CB_ 3	DDR_A_CB_ 6	DDR_A_CB_ 4	VSS	VCC_CL	AK
AJ		DDR_B_CB_ 1		DDR_B_CB_ 4	VSS											AJ
АН	VSS		DDR_B_DQS _8	DDR_B_DQS B_8		VSS	VSS	VSS		DDR_B_DQ_ 53	VSS	DDR_B_DQ_ 48	DDR_B_DQ_ 52	VSS	VCC_CL	АН
AG		DDR_B_CB_ 7		DDR_B_CB_	DDR_B_CB_	DDR_B_CB_	DDR_B_DQS _6	DDR_B_DQS B_6		VSS	DDR_B_DM_ 6	VSS	DDR_B_DQ_ 49	RSVD	VCC_CL	AG
AF	DDR_A_DQ_ 53		VSS	DDR_A_DQ_ 52												AF
AE		DDR_A_DM_		DDR_A_DQ_ 49	DDR_A_DQ_ 48	DDR_B_DQ_ 54	DDR_B_DQ_ 50	DDR_B_DQ_ 51		VSS	DDR_B_DQ_ 60	DDR_B_DQ_ 61	DDR_B_DQ_ 55	VSS	VCC_CL	AE
AD	VSS	0	DDR_A_DQS _6	DDR_A_DQS B_6	40	DDR_A_DQ_ 54	DDR_B_DQ_ 56	vss		DDR_B_DQ_ 57	DDR_B_DM_ 7	vss	DDR_B_DQS B_7	RSVD	VCC_CL	AD
AC	DDR_A_DQ_ 51		_6 VSS	DDR_A_DQ_ 50		DDR_A_DQ_ 60	DDR_A_DQ_ 55	VSS		DDR_B_DQ_ 62	vss	DDR_B_DQ_ 63	DDR_B_DQS	VSS	VCC_CL	AC
AB	vss		DDR_A_DQ_ 57	DDR_A_DQ_ 56		DDR_A_DM_	DDR_A_DQ_	DDR_B_DQ_		VSS	FSB_AB_34	FSB_AB_29	_7 vss	DDR_B_DQ_ 58	VCC_CL	AB
AA		DDR_A_DQS	57	DDR_A_DQS	DDR_A_DQ_	7 FSB_AB_33	61 VSS	59 FSB_AB_35		VSS	FSB_AB_32	VSS	FSB_AB_31	VSS	VCC_CL	AA
Υ	DDR_A_DQ_	B_7	VSS	_7 DDR_A_DQ_	62										_	Y
w	63	FSB_BREQ0		DDR_A_DQ_	FSB_RSB_1	FSB_TRDYB	VSS	FSB_AB_22		FSB_AB_30	VSS	FSB_AB_25	FSB_AB_27	RSVD	VSS_W31	w
v	VSS	В	FSB_AB_28	59 FSB_HITMB		VSS	FSB_AB_24	FSB_AB_23		vss	FSB_AB_26	FSB_ADSTB	VSS	RSVD	VCC_CL	v
U		FSB_ADSB		FSB_BNRB	FSB_DRDYB							B_1				U
Т	FSB_LOCKB	FCD DCD A	VSS	FSB_DBSYB	ren nen a	FSB_AB_17	FSB_DEFERB	FSB_AB_20		FSB_AB_18	VSS	FSB_AB_19	RSVD	VSS	VCCAUX	T
R P	VSS	FSB_RSB_0	FSB_AB_21	FSB_HITB FSB_DB_0	FSB_RSB_2	VSS	FSB_AB_14	VSS		FSB_AB_10	FSB_AB_16	VSS	RSVD	VSS		R P
N		FSB_DB_2		FSB_DB_4	FSB_DB_1	FSB_AB_9 FSB_ADSTB	FSB_AB_11	FSB_AB_13		FSB_AB_8	VSS	FSB_AB_12	FSB_DB_28		FSB_DB_30	N
M	FSB_DB_5		VSS	FSB_DB_3	FSB_DINVB_	B_0	VSS	FSB_AB_4		FSB_AB_5	VSS	VSS	VSS		FSB_DB_31	М
L		FSB_DB_6	FSB_DSTBN	FSB_DB_7	0	FSB_AB_7	FSB_REQB_2	VSS		FSB_DB_19	VSS	FSB_DB_27	FSB_DB_29		VSS	L
K	VSS	ECD DOTTOR	B_0	FSB_AB_15		VSS	VSS	FSB_AB_6		FSB_REQB_3	FSB_DB_21	FSB_DB_24	VSS		FSB_DB_33	K
J		FSB_DSTBPB _0	FSB_DB_8		FSB_DB_10							FOR POTEST				J
Н	FSB_DB_12		VSS	FSB_DB_9		VSS	FSB_REQB_4	FSB_BPRIB		VSS	VSS	FSB_DSTBPB _1	FSB_DB_25		FSB_DB_34	Н
G		FSB_DB_13		FSB_DB_11		FSB_REQB_1	VSS	FSB_DB_20		FSB_DB_22	FSB_DB_23	FSB_DSTBN B_1	VSS		VSS	G
F E	VSS		FSB_AB_3	ECD 20 45	FSB_DB_14	VSS FSB_DINVB_	FSB_DB_17	FSB_DB_16	ECD DD /1	VSS	FSB_DB_48	VSS	FSB_DB_26		FSB_DB_32	F
		ECD P	ECD P.2 #:	FSB_DB_15	FSB_DB_50 FSB_DSTBN	1	FCD CO #-	FCD C2 5	FSB_DB_61	FOD CO #-	FSB_DB_63 FSB_CPURST	1/00	VTT_FSB	WIT 500	VTT_FSB	E
D		FSB_DB_52	FSB_DB_53	VSS	B_3	FSB_DSTBPB	FSB_DB_57	FSB_DB_54		FSB_DB_59	B	VSS	VTT_FSB	VTT_FSB	VTT_FSB	D
С	VSS	FSB_REQB_0	VSS	FSB_DB_51		_3		VSS	FSB_DB_60 FSB_DINVB_	FSB_DB_58		VSS		VTT_FSB		С
В	NC TECTS	VSS	FSB_DB_18	FSB_DB_55		1/00	FSB_DB_56	FOR CO. C.	3 L2R DIMAR	1/00	FSB_DB_62	1/00	VTT_FSB	VIII 500	VTT_FSB	В
Α	TEST3 45	NC 44	VSS 43	42	41	VSS 40	39	FSB_DB_49 38	37	VSS 36	35	VSS 34	33	VTT_FSB 32	31	А

Figure 11. MCH Ballout Diagram (Top View Left – Columns 30–16)

_					3	•	•				•	•				
	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	ii.
BE	VSS		VCC_DDR		VSS		VCC_DDR	VSS	VCC_DDR		DDR_B_MA_ 8		VSS		DDR_A_DQ_ 19	BE
BD		DDR_A_MA_ 6		DDR_A_MA_ 11		DDR_A_CKE _0				DDR_B_MA_ 4		DDR_B_CKE _1		DDR_B_CKE _0		BD
BC	VCC_DDR		DDR_A_MA_ 8		VCC_DDR		DDR_A_CKE _3	VCC_DDR	DDR_B_MA_ 1		VCC_DDR		DDR_B_MA_ 14		VSS	ВС
ВВ	DDR_A_MA_ 2	DDR_A_MA_ 3	DDR_A_MA_ 5	DDR_A_MA_ 12	DDR_A_BS_ 2	DDR_A_CKE _2	DDR_B_BS_ 0	DDR3_DRAM RSTB	DDR_B_MA_ 2	DDR_B_MA_ 5	DDR_B_MA_ 6	DDR_B_MA_ 9	DDR_B_BS_ 2	DDR_B_CKE _2	DDR_A_DQ_ 18	ВВ
BA		DDR_A_MA_ 4		DDR_A_MA_ 9		DDR_A_MA_ 14				DDR_B_MA_ 3		DDR_B_MA_ 11		DDR_B_CKE _3		ВА
AY	DDR_B_CK_ 4		DDR_B_CKB _4	DDR_A_MA_ 7		DDR_B_DM_ 3	DDR_A_CKE _1	VCC_DDR	DDR_B_MA_ 0	DDR_A_DQ_ 25		DDR_B_MA_ 7	DDR_B_MA_ 12		DDR_B_DQ_ 16	AY
AW	DDR_B_CK_ 0		VSS	VSS		DDR_B_DQ_ 24	DDR_B_MA_ 10	DDR_B_BS_ 1	DDR_A_DQ_ 31	VSS		DDR_A_DQ_ 29	VSS		DDR_B_DM_ 2	AW
AV	DDR_B_CKB _0		VSS	DDR_B_DQ_ 27		DDR_B_DQ_ 25	VSS	VSS	VSS	DDR_A_DQS B_3		DDR_A_DQ_ 28	VSS		DDR_B_DQ_ 17	AV
AU																AU
AT	VSS		VSS	DDR_B_DQ_ 26		DDR_B_DQ_ 30	VSS	VSS	DDR_A_DQ_ 27	DDR_A_DQS		DDR_B_DQ_ 19	DDR_B_DQ_ 22		VSS	AT
AR	VSS		DDR_B_CK_ 1	VSS		DDR_B_DQS _3	DDR_B_DQS B_3	VSS	VSS	VSS		VSS	DDR_B_DQ_ 23		DDR_B_DQ_ 21	AR
AP	VSS		DDR_B_CKB _1	DDR_B_DQ_ 31		VSS	DDR_B_DQ_ 29	VSS	VSS	DDR_A_DM_ 3		DDR_B_DQ_ 18	VSS		DDR_B_DQS B_2	AP
AN	RSVD		DDR_A_CK_ 1	DDR_A_CK_ 4		RSVD	DDR_B_DQ_ 28	VSS	DDR_A_DQ_ 26	DDR_A_DQ_ 30		DDR_A_DQ_ 24	DDR_B_DQS _2		DDR_B_DQ_ 20	AN
AM	VCC_CL		DDR_A_CKB _1	DDR_A_CKB _4		RSVD	VSS	VCC_CL	VCC_CL	VSS		PWROK	RSTINB		VSS	AM
AL	VCC_CL		RSVD	VCC_CL		VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	AL
AK																AK
AJ		VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL	VCC_CL		AJ
АН		VCC_CL	RSVD	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC	VCC		АН
AG		VCC_CL	RSVD	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC		AG
AF		VCC_CL	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		AF
AE		VCC_CL	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC		AE
AD		VCC_CL	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		AD
AC		VCC_CL	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC		AC
AB		VCC_CL	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		AB
AA		VCC_CL	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC		AA
Υ		VCC_CL	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		Υ
W		VCC_CL	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC		w
٧		VCC_CL	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		V
U		VCCAUX	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC		U
Т																Т
R	VCCAUX		VCCAUX	VCCAUX		VCCAUX	VCCAUX	VCCAUX	RSVD	VSS		RSVD	VCC		VCC	R
Р	HPL_CLKINN		HPL_CLKINP	VSS		VSS	VSS	VSS	VSS	RSVD		RSVD_P19	VSS		ICH_SYNCB	Р
N	FSB_DB_37		FSB_DINVB_ 2	VSS		FSB_DSTBPB _2	FSB_DB_42	VSS	VSS	RSVD		VSS	RSVD		VSS	N
М	FSB_DB_35		vss	VTT_FSB		FSB_DSTBN B_2	VSS	VSS	BSELO	ALLZTEST		RSVD_M19	VSS		RSVD	М
L	FSB_DB_36		FSB_DB_41	VTT_FSB		FSB_DB_43	FSB_DB_44	VSS	XORTEST	VSS		RSVD	EXP_EN		VCC3_3_L16	L
K	VSS		FSB_DB_40	VTT_FSB		VTT_FSB	FSB_DB_46	VSS	RSVD	RSVD		EXP_SLR	VSS		RSVD_K16	K
J																J
Н	FSB_DB_39		VTT_FSB	VTT_FSB		VTT_FSB	FSB_DB_45	VSS	VSS	RSVD		VSS	VSS		RSVD_H16	Н
G	FSB_DB_38		VTT_FSB	VTT_FSB		VTT_FSB	FSB_DB_47	VSS	RSVD	TCEN		MTYPE	VSS		VCC3_3_G16	G
F	VTT_FSB		VTT_FSB	VTT_FSB		VTT_FSB	VSS	VSS	VSS_F22	BSEL1		RSVD	BSEL2		VSS	F
Е		VTT_FSB		FSB_DVREF		VCC_E25				VSS		VSS		PEG_TXN_0		Ε
D	VTT_FSB	VSS	FSB_SCOMP	FSB_ACCVRE F	VCCA_HPL	VCCA_HPL	VSS_D24	VSS	VSS_D22	VSS_D21	VCCA_EXP	EXP_CLKINP	EXP_CLKINN	VSS	PEG_TXP_0	D
С	VSS		FSB_SCOMP B		FSB_RCOMP		VSS_C24	VSS_C23	VSS		VSS		VCC_C18		VCCR_EXP	С
В		VSS		VCCA_MPL		VCC_B25				VSS_B21		RSVD		VSS_B17		В
Α	VTT_FSB		FSB_SWING		VSS		VSS_A24	VCC3_3	VSS		VCCAPLL_EX P		VSS		PEG_RXP_0	А
	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	

Figure 12. MCH Ballout Diagram (Top View Left – Columns 15–1)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
ВE		VSS		DDR_A_DQ_ 11		VSS		DDR_A_DQ_		VSS			VSS	NC	TEST1
0	DDR_A_DQ_ 22		DDR_A_DQ_ 16		DDR_A_DQ_ 14		DDR_A_DQ_		DDR_A_DQ_			DDR_A_DQ_	DDR_A_DQ_	VSS	NC
		DDR_A_DM_		VSS		DDR_A_DM_	DDR_A_DQ_ 13	VSS		DDR_A_DQS B_0		DDR_A_DQ_	VSS	RSVD	VSS
3	DDR_A_DQ_	DDR_A_DQ_ 17	DDR_A_DQ_ 21	DDR_A_DQ_ 10	DDR_A_DQ_ 15	DDR_A_DQ_		DDR_A_DQ_	DDR_A_DQ_		DDR_A_DM_	DDR_A_DQ_	VSS_BB3	VSS	
4	DDR_A_DQS	.,	DDR_A_DQ_		DDR_A_DQS	,	DDR_A_DQ_ 12	-	,	DDR_A_DQS	VSS_BA5	VSS_BA4			
,	DDR_A_DQS B_2		DDR_B_DQ_	DDR_B_DQ_	_1 DDR_A_DQS B_1	VSS	12	DDR_B_DM_ 0	DDR_B_DQ_	DDR_RCOMP XPD	DDR_RCOMP XPU		VSS_AY3		VSS_AY1
v	B_2 VSS		DDR_B_DQ_	B DDR_B_DQ_	B_1 DDR_B_DQ_ 7	DDR_B_DQS		DDR_B_DQ_	VSS	DDR_B_DQ_	XPU	VSS	V00_7110	VSS_AW2	***************************************
			13	12		_0		DDR_B_DQ_						V33_AW2	
,	DDR_B_DQ_ 11		VSS	VSS	VSS	VSS		4	DDR_VREF	VSS		VSS	VSS	DEC2 TVD 1	VSS
											VCCA_EXP2		VSS	PEG2_TXP_1	
	DDR_B_DQ_ 10		DDR_B_DM_ 1	DDR_B_DQ_	DDR_B_DQ_ 2	DDR_B_DQS B_0		VSS	DDR_RCOMP VOL	DDR_RCOMP VOH		PEG2_TXP_1 3	PEG2_TXN_1 4		VSS
2	VSS		DDR_B_DQS _1	DDR_B_DQS B_1	DDR_B_DQ_ 6	VCCAPLL_EX P2		VSS	VSS	VSS	PEG2_TXN_1 3	VSS		PEG2_TXP_1 2	
•	DDR_B_DQ_ 15		VSS	RSVD	PEG2_RXN_ 15	PEG2_RXP_1 5		VSS	PEG2_TXP_1 5	PEG2_TXN_1 5		PEG2_TXP_1 1	VCCR_EXP		PEG2_TXN_ 2
ı	DDR_B_DQ_ 14		RSVD	RSVD	DDR3_DRAM _PWROK	EXP2_COMPI		EXP2_COMP	VSS	VSS	PEG2_TXN_1	VSS		PEG2_TXP_1	
Л		RSVD										PEG2_TXP_9	PEG2_TXN_1		VSS
			CL_PWROK	VSS	PEG2_RXP_1	PEG2_RXN_ 13		VSS	PEG2_RXN_ 14	PEG2_RXP_1	PEG2_TXN_9	VSS		PEG2_TXP_8	
	CL_DATA	CL_CLK	PEG2_RXN_ 12	PEG2_RXP_1	VSS	VSS		VSS	VSS	VSS		PEG2_TXP_	VCCR_EXP		PEG2_TXN
ı			12	2	.55			.55	.55	.55	PEG2_TXN_7	7 VSS		PEG2_TXP_6	
4	VCC_CL	VCC_CL	PEG2_RXN_	VSS	PEG2_RXP_1	PEG2_RXN_ 10		VSS	PEG2_RXP_1	PEG2_RXN_ 11		PEG2_TXP_5	PEG2_TXN_6		VSS
à	VCC	CL_VREF	VSS	PEG2_RXP_9	CL_RSTB	VSS		VSS	VSS	VSS	PEG2_TXN_5	VSS		PEG2_TXP_4	
-												PEG2_TXP_3	VCCR_EXP		PEG2_TXN
=	VCCR_EXP	EXP2_CLKIN P	PEG2_RXP_6	VSS	PEG2_RXN_ 7	PEG2_RXP_7		VSS	PEG2_RXP_8	PEG2_RXN_ 8	PEG2_TXN_3	VSS		PEG2_TXP_2	
)	VCCR_EXP	EXP2_CLKIN N	VSS	PEG2_RXN_ 6	VCC_EXP	VCC_EXP		VCC_EXP	VCC_EXP	VSS		PEG2_TXP_1	PEG2_TXN_2		VSS
:	VCCR_EXP	VSS	PEG2_RXP_3	VSS	PEG2_RXP_4	PEG2_RXN_		VSS	PEG2_RXN_	PEG2_RXP_5		PEG2_TXN_1	VCCR_EXP		VSS
3	vcc	VCCR_EXP	VCC_EXT_PL	PEG2_RXN_	VCC_EXP	VCC_EXP		VCC_EXP	VCC_EXP	VCC_EXP		VCC_EXP	PEG2_TXP_0		PEG2_TXN_
4	VCCR_EXP	VCCR_EXP	PEG2_RXN_	vss	PEG2_RXN_	PEG2_RXP_1		VSS	PEG2_RXN_	PEG2_RXP_2	VCC_EXP	VCC_EXP		VCC_EXP	
	VOOR_EXI	VOOK_EX	0	*35	1	TEGE_KKK		*55	2	1 202_1011 _2	V00_EXI	VCC_EXP	VCC_EXP	V00_EX	VCC_EXP
	VCCR_EXP	VSS	VSS	PEG2_RXP_0	VCC_EXP	VCC_EXP		VCC_EXP	VCC_EXP	VSS	VCC_EXP	VCC_EXP		VCC_EXP	
	VCCR_EXP	VCCR_EXP	VSS	RSVD	DMI_TXN_3	DMI_TXP_3		VSS	DMI_RXP_3	DMI_RXN_3		VCC_EXP	VCC_EXP		VCC_EXP
											VCC_EXP	VCC_EXP		VCC_EXP	
	VCCR_EXP	VCCR_EXP	VSS	RSVD	VSS	EXP_COMPO		DMI_RXN_1	DMI_RXP_1	VSS		VCC_EXP	VCC_EXP		DMI_TXN_
			VSS	VSS	VSS	EXP_COMPI		VSS	DMI_TXP_0	DMI_TXN_0	DMI_RXN_2	VSS		DMI_TXP_2	
		VSS				DEC DVN 1						DMI_RXP_2	DMI_TXN_1		VSS
	VCC_N15		PEG_RXP_4	RSVD	RSVD	PEG_RXN_1		PEG_RXP_15	VSS	VSS	DMI_RXP_0	VSS		DMI_TXP_1	
	VSS_M15		PEG_RXN_4	VSS	PEG_RXP_12	VSS		PEG_RXN_1	PEG_RXP_13	VSS		DMI_RXN_0	VCCR_EXP		PEG_TXP_1
-	VSS		PEG_RXP_3	PEG_RXN_6	VSS	PEG_RXN_1		VSS	VSS	VSS	PEG_TXP_14	VSS		PEG_TXN_15	
	VSS		PEG_RXN_3	VSS	PEG_RXP_6	VSS		PEG_RXN_1	PEG_RXP_11	VSS		PEG_TXN_14	PEG_RXP_14		VSS
											PEG_TXP_13		VSS	PEG_RXN_1	
	RSVD_H15		PEG_RXP_2	PEG_RXP_5	VSS	PEG_RXN_7		VSS	VSS	VSS		PEG_TXN_13	VCCR_EXP		PEG_TXP_1
	RSVD_G15		PEG_RXN_2	PEG_RXN_5	VSS	PEG_RXP_7		VSS	VSS	PEG_RXN_9		VSS		PEG_TXN_12	
	VSS		VSS	VSS	VSS	VSS		VSS	PEG_RXP_9	VSS	PEG_TXP_11		PEG_TXP_10		VSS
	PEG_TXP_1		PEG_TXP_2		PEG_TXN_4		PEG_TXN_6			PEG_RXP_8	VSS	PEG_TXN_11			
	VSS	PEG_TXN_1	VSS	PEG_TXN_2	VSS	PEG_TXP_4		PEG_TXP_6	VSS		PEG_RXN_8	VSS	PEG_TXN_10	PEG_RXP_10	
		PEG_RXN_1		VCCR_EXP		PEG_TXN_5	VSS	VCCR_EXP		PEG_TXP_8		PEG_TXN_8	VSS	PEG_RXN_1	VSS
3	PEG_RXN_0		PEG_RXP_1		PEG_TXP_3		PEG_TXP_5		PEG_TXP_7			PEG_TXN_9	PEG_TXP_9	vss	NC
Α.		VSS		PEG_TXN_3		VSS		PEG_TXN_7		VSS		_ =	VSS	TEST2	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Table 25. MCH Ballout Sorted By Signal Name

Signal Name Ball # **ALLZTEST** M21 **BSELO** M22 BSEL1 F21 BSEL2 F18 CL_CLK AK14 AK15 CL_DATA CL_PWROK AL13 CL_RSTB AG11 CL_VREF AG14 DDR_A_BS_0 BC37 DDR_A_BS_1 **BB36** DDR_A_BS_2 BB26 DDR_A_CASB BB41 DDR_A_CB_0 AL33 DDR_A_CB_1 AN35 DDR_A_CB_2 AK38 DDR_A_CB_3 AK35 DDR_A_CB_4 AK33 DDR_A_CB_5 AL34 DDR_A_CB_6 AK34 DDR_A_CB_7 **AK39** DDR_A_CK_0 AT33 DDR_A_CK_1 AN28 DDR_A_CK_2 AT34 DDR_A_CK_3 AV31 AN27 DDR_A_CK_4 DDR_A_CK_5 AT35 DDR_A_CKB_0 AR33 DDR_A_CKB_1 AM28 AV35 DDR_A_CKB_2

DDR_A_CKB_3

DDR_A_CKB_4

DDR_A_CKB_5

DDR_A_CKE_0

DDR_A_CKE_1

DDR_A_CKE_2

DDR_A_CKE_3

DDR_A_CSB_0

DDR_A_CSB_1

DDR_A_CSB_2

AT31

AM27

AT36

BD25

AY24

BB25

BC24

BA40 BD42

BB39

Table 25. MCH Ballout Sorted By Signal Name

Signal Name	Ball #
DDR_A_CSB_3	AY43
DDR_A_DM_0	BB5
DDR_A_DM_1	BC10
DDR_A_DM_2	BC14
DDR_A_DM_3	AP21
DDR_A_DM_4	AU44
DDR_A_DM_5	AN44
DDR_A_DM_6	AE44
DDR_A_DM_7	AB40
DDR_A_DQ_0	BC4
DDR_A_DQ_1	BD4
DDR_A_DQ_10	BB12
DDR_A_DQ_11	BE12
DDR_A_DQ_12	BA9
DDR_A_DQ_13	BC9
DDR_A_DQ_14	BD11
DDR_A_DQ_15	BB11
DDR_A_DQ_16	BD13
DDR_A_DQ_17	BB14
DDR_A_DQ_18	BB16
DDR_A_DQ_19	BE16
DDR_A_DQ_2	BB8
DDR_A_DQ_20	BA13
DDR_A_DQ_21	BB13
DDR_A_DQ_22	BD15
DDR_A_DQ_23	BB15
DDR_A_DQ_24	AN19
DDR_A_DQ_25	AY21
DDR_A_DQ_26	AN22
DDR_A_DQ_27	AT22
DDR_A_DQ_28	AV19
DDR_A_DQ_29	AW19
DDR_A_DQ_3	BE8
DDR_A_DQ_30	AN21
DDR_A_DQ_31	AW22
DDR_A_DQ_32	AV42
DDR_A_DQ_33	AU43
DDR_A_DQ_34	AR44
DDR_A_DQ_35	AR42
DDR_A_DQ_36	AW42

Table 25. MCH Ballout Sorted By Signal Name

Signal Name	Ball #
DDR_A_DQ_37	AU41
DDR_A_DQ_38	AR41
DDR_A_DQ_39	AR40
DDR_A_DQ_4	BD3
DDR_A_DQ_40	AN41
DDR_A_DQ_41	AN42
DDR_A_DQ_42	AL44
DDR_A_DQ_43	AL42
DDR_A_DQ_44	AP42
DDR_A_DQ_45	AP45
DDR_A_DQ_46	AL40
DDR_A_DQ_47	AL41
DDR_A_DQ_48	AE41
DDR_A_DQ_49	AE42
DDR_A_DQ_5	BB4
DDR_A_DQ_50	AC42
DDR_A_DQ_51	AC45
DDR_A_DQ_52	AF42
DDR_A_DQ_53	AF45
DDR_A_DQ_54	AD40
DDR_A_DQ_55	AC39
DDR_A_DQ_56	AB42
DDR_A_DQ_57	AB43
DDR_A_DQ_58	Y42
DDR_A_DQ_59	W42
DDR_A_DQ_6	BD7
DDR_A_DQ_60	AC40
DDR_A_DQ_61	AB39
DDR_A_DQ_62	AA41
DDR_A_DQ_63	Y45
DDR_A_DQ_7	BB7
DDR_A_DQ_8	BD9
DDR_A_DQ_9	BB10
DDR_A_DQS_0	BA6
DDR_A_DQS_1	BA11
DDR_A_DQS_2	BA15
DDR_A_DQS_3	AT21
DDR_A_DQS_4	AT43
DDR_A_DQS_5	AM43
DDR_A_DQS_6	AD43

Table 25. MCH Ballout

Sorted By Signal Name Signal Name Ball # DDR_A_DQS_7 AA42 AL38 DDR_A_DQS_8 BC6 DDR_A_DQSB_0 DDR_A_DQSB_1 AY11 DDR_A_DQSB_2 AY15 DDR_A_DQSB_3 AV21 DDR_A_DQSB_4 AT42 DDR_A_DQSB_5 AM42 DDR_A_DQSB_6 AD42 DDR_A_DQSB_7 AA44 DDR_A_DQSB_8 AL36 DDR_A_MA_0 BC36 DDR_A_MA_1 BB31 DDR_A_MA_10 BD37 DDR_A_MA_11 BD27 DDR_A_MA_12 **BB27** DDR_A_MA_13 **BA42** DDR_A_MA_14 BA25 DDR_A_MA_2 **BB30** DDR_A_MA_3 **BB29** DDR_A_MA_4 BA29 DDR_A_MA_5 **BB28** DDR_A_MA_6 BD29 DDR_A_MA_7 AY27 DDR_A_MA_8 BC28 BA27 DDR_A_MA_9 DDR_A_ODT_0 BB43 DDR_A_ODT_1 AY41 DDR_A_ODT_2 BA41 DDR_A_ODT_3 AW44 DDR_A_RASB **BB38** DDR_A_WEB BD39 DDR_B_BS_0 BB24 DDR_B_BS_1 AW23 DDR_B_BS_2 **BB18** DDR_B_CASB BB32 DDR_B_CB_0 AK45 DDR_B_CB_1 AJ44 DDR_B_CB_2 AG42

DDR_B_CB_3

AG40

Table 25. MCH Ballout **Sorted By Signal Name**

Signal Name	Ball #
DDR_B_CB_4	AJ42
DDR_B_CB_5	AK42
DDR_B_CB_6	AG41
DDR_B_CB_7	AG44
DDR_B_CK_0	AW30
DDR_B_CK_1	AR28
DDR_B_CK_2	AV33
DDR_B_CK_3	AR31
DDR_B_CK_4	AY30
DDR_B_CK_5	AW34
DDR_B_CKB_0	AV30
DDR_B_CKB_1	AP28
DDR_B_CKB_2	AW33
DDR_B_CKB_3	AP31
DDR_B_CKB_4	AY28
DDR_B_CKB_5	AY34
DDR_B_CKE_0	BD17
DDR_B_CKE_1	BD19
DDR_B_CKE_2	BB17
DDR_B_CKE_3	BA17
DDR_B_CSB_0	BA31
DDR_B_CSB_1	BB35
DDR_B_CSB_2	BC32
DDR_B_CSB_3	BA35
DDR_B_DM_0	AY8
DDR_B_DM_1	AT13
DDR_B_DM_2	AW16
DDR_B_DM_3	AY25
DDR_B_DM_4	AY40
DDR_B_DM_5	AN36
DDR_B_DM_6	AG35
DDR_B_DM_7	AD35
DDR_B_DQ_0	AW8
DDR_B_DQ_1	AY7
DDR_B_DQ_10	AT15
DDR_B_DQ_11	AV15
DDR_B_DQ_12	AW12
DDR_B_DQ_13	AW13
DDR_B_DQ_14	AN15
DDR_B_DQ_15	AP15

Table 25. MCH Ballout **Sorted By Signal Name**

Signal Name	Ball #
DDR_B_DQ_16	AY16
DDR_B_DQ_17	AV16
DDR_B_DQ_18	AP19
DDR_B_DQ_19	AT19
DDR_B_DQ_2	AT11
DDR_B_DQ_20	AN16
DDR_B_DQ_21	AR16
DDR_B_DQ_22	AT18
DDR_B_DQ_23	AR18
DDR_B_DQ_24	AW25
DDR_B_DQ_25	AV25
DDR_B_DQ_26	AT27
DDR_B_DQ_27	AV27
DDR_B_DQ_28	AN24
DDR_B_DQ_29	AP24
DDR_B_DQ_3	AT12
DDR_B_DQ_30	AT25
DDR_B_DQ_31	AP27
DDR_B_DQ_32	AY39
DDR_B_DQ_33	AW38
DDR_B_DQ_34	AT38
DDR_B_DQ_35	AT40
DDR_B_DQ_36	AY38
DDR_B_DQ_37	AW36
DDR_B_DQ_38	AV39
DDR_B_DQ_39	AV40
DDR_B_DQ_4	AV8
DDR_B_DQ_40	AR36
DDR_B_DQ_41	AP36
DDR_B_DQ_42	AP35
DDR_B_DQ_43	AN33
DDR_B_DQ_44	AV36
DDR_B_DQ_45	AR34
DDR_B_DQ_46	AN39
DDR_B_DQ_47	AN40
DDR_B_DQ_48	AH34
DDR_B_DQ_49	AG33
DDR_B_DQ_5	AW6
DDR_B_DQ_50	AE39
DDR_B_DQ_51	AE38

Table 25. MCH Ballout Sorted By Signal Name

Signal Name Ball # DDR_B_DQ_52 **AH33** DDR_B_DQ_53 AH36 DDR_B_DQ_54 AE40 DDR_B_DQ_55 AE33 DDR_B_DQ_56 AD39 DDR_B_DQ_57 AD36 DDR_B_DQ_58 AB32 DDR_B_DQ_59 AB38 AR11 DDR_B_DQ_6 DDR_B_DQ_60 AE35 DDR_B_DQ_61 AE34 DDR_B_DQ_62 AC36 DDR_B_DQ_63 AC34 DDR_B_DQ_7 AW11 DDR_B_DQ_8 AY12 DDR_B_DQ_9 AY13 AW10 DDR_B_DQS_0 DDR_B_DQS_1 AR13 DDR_B_DQS_2 AN18 DDR_B_DQS_3 AR25 DDR_B_DQS_4 AW39 DDR_B_DQS_5 AP39 DDR_B_DQS_6 AG39 DDR_B_DQS_7 AC33 DDR B DQS 8 **AH43** DDR_B_DQSB_0 AT10 DDR_B_DQSB_1 AR12 DDR_B_DQSB_2 AP16 DDR_B_DQSB_3 AR24 AV38 DDR_B_DQSB_4 AP40 DDR_B_DQSB_5 DDR_B_DQSB_6 AG38 DDR_B_DQSB_7 AD33 DDR_B_DQSB_8 AH42 DDR_B_MA_0 AY22 DDR_B_MA_1 BC22 DDR_B_MA_10 AW24 DDR_B_MA_11 **BA19** AY18 DDR_B_MA_12 **BA33** DDR_B_MA_13

Table 25. MCH Ballout Sorted By Signal Name

Signal Name	Ball #
DDR_B_MA_14	BC18
DDR_B_MA_2	BB22
DDR_B_MA_3	BA21
DDR_B_MA_4	BD21
DDR_B_MA_5	BB21
DDR_B_MA_6	BB20
DDR_B_MA_7	AY19
DDR_B_MA_8	BE20
DDR_B_MA_9	BB19
DDR_B_ODT_0	BD33
DDR_B_ODT_1	BB34
DDR_B_ODT_2	BB33
DDR_B_ODT_3	AY35
DDR_B_RASB	BD31
DDR_B_WEB	AY31
DDR_RCOMPVOH	AT6
DDR_RCOMPVOL	AT7
DDR_RCOMPXPD	AY6
DDR_RCOMPXPU	AY5
DDR_RCOMPYPD	BC42
DDR_RCOMPYPU	BB42
DDR_VREF	AV7
DDR3_A_CSB1	BB44
DDR3_A_MA0	BD35
DDR3_A_WEB	BC40
DDR3_B_ODT3	BA37
DDR3_DRAM_PWR OK	AN11
DDR3_DRAMRSTB	BB23
DMI_RXN_0	M4
DMI_RXN_1	T8
DMI_RXN_2	R5
DMI_RXN_3	V6
DMI_RXP_0	N5
DMI_RXP_1	T7
DMI_RXP_2	P4
DMI_RXP_3	V7
DMI_TXN_0	R6
DMI_TXN_1	P3
DMI_TXN_2	T1

Table 25. MCH Ballout Sorted By Signal Name

Signal Name	Ball #
DMI_TXN_3	V11
DMI_TXP_0	R7
DMI_TXP_1	N2
DMI_TXP_2	R2
DMI_TXP_3	V10
EXP_CLKINN	D18
EXP_CLKINP	D19
EXP_COMPI	R10
EXP_COMPO	T10
RSVD	L18
EXP_SLR	K19
EXP2_CLKINN	AD14
EXP2_CLKINP	AE14
EXP2_COMPI	AN10
EXP2_COMPO	AN8
FSB_AB_10	R36
FSB_AB_11	N39
FSB_AB_12	N34
FSB_AB_13	N38
FSB_AB_14	R39
FSB_AB_15	K42
FSB_AB_16	R35
FSB_AB_17	T40
FSB_AB_18	T36
FSB_AB_19	T34
FSB_AB_20	T38
FSB_AB_21	P43
FSB_AB_22	W38
FSB_AB_23	V38
FSB_AB_24	V39
FSB_AB_25	W34
FSB_AB_26	V35
FSB_AB_27	W33
FSB_AB_28	V43
FSB_AB_29	AB34
FSB_AB_3	F43
FSB_AB_30	W36
FSB_AB_31	AA33
FSB_AB_32	AA35
FSB_AB_33	AA40

Table 25. MCH Ballout **Sorted By Signal Name**

K38

L40

N36

N40

D27

U44

V34

U42

H38

W44

D35

P42

N41

J41

G42

H45

G44

F41

E42

F38

F39

B43

L36

N44

G38

K35

G36

G35

K34

H33

F33

L34

N33

L33

M42

Signal Name

FSB_AB_34

FSB_AB_35

FSB_AB_4

FSB_AB_5

FSB_AB_6

FSB_AB_7

FSB_AB_8

FSB AB 9

FSB_ADSB

FSB_BNRB

FSB_BPRIB

FSB_DB_0

FSB_DB_1

FSB_DB_10

FSB_DB_11

FSB_DB_12

FSB_DB_13

FSB_DB_14

FSB_DB_15

FSB_DB_16

FSB_DB_17

FSB_DB_18

FSB_DB_19

FSB_DB_2 FSB_DB_20

FSB_DB_21

FSB_DB_22

FSB_DB_23

FSB_DB_24

FSB_DB_25

FSB_DB_26

FSB_DB_27

FSB_DB_28

FSB_DB_29

FSB_DB_3

FSB BREQOB

FSB_CPURSTB

FSB_ACCVREF

FSB ADSTBB 0

FSB_ADSTBB_1

Table 25. MCH Ballout **Sorted By Signal Name** Signal Name Ball # AB35 FSB_DB_30 N31 AA38 FSB_DB_31 M31 M38 FSB_DB_32 F31 M36 FSB_DB_33 K31 FSB_DB_34 H31 FSB_DB_35 M30 FSB_DB_36 L30 FSB_DB_37 N30 FSB_DB_38 G30 FSB_DB_39 H30 M40 FSB DB 4 N42 FSB_DB_40 K28

FSB_DB_41

FSB_DB_42

FSB_DB_43

FSB_DB_44 L24 FSB_DB_45 H24 FSB_DB_46 K24 FSB_DB_47 G24 FSB_DB_48 F35 FSB_DB_49 A38 FSB_DB_5 M45 E41 FSB_DB_50 FSB_DB_51 C42 FSB_DB_52 D44 FSB_DB_53 D43 FSB_DB_54 D38 FSB_DB_55 B42 FSB_DB_56 B39 FSB_DB_57 D39 FSB_DB_58 C36 FSB_DB_59 D36

L28

N24

L25

L44

C37

E37

B35

E35

L42

J43

H42

Table 25. MCH Ballout **Sorted By Signal Name**

Signal Name	Ball #
FSB_DBSYB	T42
FSB_DEFERB	T39
FSB_DINVB_0	L41
FSB_DINVB_1	E40
FSB_DINVB_2	N28
FSB_DINVB_3	B37
FSB_DRDYB	U41
FSB_DSTBNB_0	K43
FSB_DSTBNB_1	G34
FSB_DSTBNB_2	M25
FSB_DSTBNB_3	D41
FSB_DSTBPB_0	J44
FSB_DSTBPB_1	H34
FSB_DSTBPB_2	N25
FSB_DSTBPB_3	C40
FSB_DVREF	E27
FSB_HITB	R42
FSB_HITMB	V42
FSB_LOCKB	T45
FSB_RCOMP	C26
FSB_REQB_0	C44
FSB_REQB_1	G40
FSB_REQB_2	L39
FSB_REQB_3	K36
FSB_REQB_4	H39
FSB_RSB_0	R44
FSB_RSB_1	W41
FSB_RSB_2	R41
FSB_SCOMP	D28
FSB_SCOMPB	C28
FSB_SWING	A28
FSB_TRDYB	W40
HPL_CLKINN	P30
HPL_CLKINP	P28
ICH_SYNCB	P16
MTYPE	G19
NC	BE2
NC	BD45
NC	BD1
NC	B45

240 Datasheet

FSB_DB_6

FSB_DB_60

FSB_DB_61

FSB_DB_62

FSB_DB_63

FSB_DB_7

FSB_DB_8

FSB_DB_9

Table 25. MCH Ballout Sorted By Signal Name

Signal Name Ball # NC В1 NC A44 PEG_RXN_0 B15 PEG_RXN_1 C14 PEG_RXN_10 C2 К8 PEG_RXN_11 PEG_RXN_12 L10 PEG_RXN_13 M8 PEG_RXN_14 J2 PEG_RXN_15 N10 PEG_RXN_2 G13 PEG_RXN_3 K13 PEG_RXN_4 M13 PEG_RXN_5 G12 PEG_RXN_6 L12 PEG_RXN_7 H10 PEG_RXN_8 D5 PEG_RXN_9 G6 PEG_RXP_0 A16 PEG_RXP_1 B13 PEG_RXP_10 D2 PEG_RXP_11 K7 PEG_RXP_12 M11 PEG_RXP_13 M7 PEG_RXP_14 К3 PEG_RXP_15 N8 H13 PEG_RXP_2 PEG_RXP_3 L13 PEG_RXP_4 N13 PEG_RXP_5 H12 PEG_RXP_6 K11 PEG_RXP_7 G10 PEG_RXP_8 E6 PEG_RXP_9 F7 PEG_TXN_0 E17 PEG_TXN_1 D14

PEG_TXN_10

PEG_TXN_11

PEG_TXN_12

PEG_TXN_13

D3

E4

G2 H4

Table 25. MCH Ballout Sorted By Signal Name

Signal Name	Ball #
PEG_TXN_14	K4
PEG_TXN_15	L2
PEG_TXN_2	D12
PEG_TXN_3	A12
PEG_TXN_4	E11
PEG_TXN_5	C10
PEG_TXN_6	E9
PEG_TXN_7	A8
PEG_TXN_8	C4
PEG_TXN_9	B4
PEG_TXP_0	D16
PEG_TXP_1	E15
PEG_TXP_10	F3
PEG_TXP_11	F5
PEG_TXP_12	H1
PEG_TXP_13	J5
PEG_TXP_14	L5
PEG_TXP_15	M1
PEG_TXP_2	E13
PEG_TXP_3	B11
PEG_TXP_4	D10
PEG_TXP_5	В9
PEG_TXP_6	D8
PEG_TXP_7	В7
PEG_TXP_8	C6
PEG_TXP_9	В3
PEG2_RXN_0	AA13
PEG2_RXN_1	AA11
PEG2_RXN_10	AH10
PEG2_RXN_11	AH6
PEG2_RXN_12	AK13
PEG2_RXN_13	AL10
PEG2_RXN_14	AL7
PEG2_RXN_15	AP11
PEG2_RXN_2	AA7
PEG2_RXN_3	AB12
PEG2_RXN_4	AC10
PEG2_RXN_5	AC7
PEG2_RXN_6	AD12
PEG2_RXN_7	AE11

Table 25. MCH Ballout Sorted By Signal Name

PEG2_RXN_8 AE6 PEG2_RXN_9 AH13 PEG2_RXP_0 W12 PEG2_RXP_1 AA10 PEG2_RXP_1 AA11 PEG2_RXP_11 AH7 PEG2_RXP_12 AK12 PEG2_RXP_13 AL11 PEG2_RXP_14 AL6 PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_RXP_9 AG12 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_1 AP1 PEG2_TXN_1 AP1 PEG2_TXN_1 AP5 PEG2_TXN_1 AP6 PEG2_TXN_1 AP6 PEG2_TXN_1 AP6 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 <th>Signal Name</th> <th>Ball #</th>	Signal Name	Ball #
PEG2_RXP_0 W12 PEG2_RXP_1 AA10 PEG2_RXP_10 AH11 PEG2_RXP_11 AH7 PEG2_RXP_12 AK12 PEG2_RXP_13 AL11 PEG2_RXP_14 AL6 PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_9 AG12 PEG2_RXP_9 AG12 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_1 AR5 PEG2_TXN_1 AR5 PEG2_TXN_1 AR6 PEG2_TXN_1 AR6 PEG2_TXN_1 AR6 PEG2_TXN_1 AR6 PEG2_TXN_1 AR5 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 <td>PEG2_RXN_8</td> <td>AE6</td>	PEG2_RXN_8	AE6
PEG2_RXP_1 AA10 PEG2_RXP_10 AH11 PEG2_RXP_11 AH7 PEG2_RXP_12 AK12 PEG2_RXP_13 AL11 PEG2_RXP_14 AL6 PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_1 AD	PEG2_RXN_9	AH13
PEG2_RXP_10 AH11 PEG2_RXP_11 AH7 PEG2_RXP_12 AK12 PEG2_RXP_13 AL11 PEG2_RXP_14 AL6 PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_RXP_9 AG12 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_15 AG5 PEG2_TXN_16 AH3 PEG2_TXN_18 AK1 PEG2_TXN_9 AL5 PEG2_TXP_1	PEG2_RXP_0	W12
PEG2_RXP_11 AH7 PEG2_RXP_12 AK12 PEG2_RXP_13 AL11 PEG2_RXP_14 AL6 PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_9 AG12 PEG2_RXP_9 AG12 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AR5 PEG2_TXN_1 AP1 PEG2_TXN_1 AP3 PEG2_TXN_1 AP6 PEG2_TXN_1 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1	PEG2_RXP_1	AA10
PEG2_RXP_12 AK12 PEG2_RXP_13 AL11 PEG2_RXP_14 AL6 PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AR5 PEG2_TXN_1 AR1	PEG2_RXP_10	AH11
PEG2_RXP_13 AL11 PEG2_RXP_14 AL6 PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AR5 PEG2_TXN_1 AR5 PEG2_TXN_1 AR5 PEG2_TXN_1 AP6 PEG2_TXN_1 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_1 AD4	PEG2_RXP_11	AH7
PEG2_RXP_14 AL6 PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AR5 PEG2_TXN_1 AR1	PEG2_RXP_12	AK12
PEG2_RXP_15 AP10 PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_13	AL11
PEG2_RXP_2 AA6 PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AN5 PEG2_TXN_1 AP1 PEG2_TXN_1 AP5 PEG2_TXN_1 AP6 PEG2_TXN_1 AP6 PEG2_TXN_1 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2 </td <td>PEG2_RXP_14</td> <td>AL6</td>	PEG2_RXP_14	AL6
PEG2_RXP_3 AC13 PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_15	AP10
PEG2_RXP_4 AC11 PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_2	AA6
PEG2_RXP_5 AC6 PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_1 AN5 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AP4 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_3	AC13
PEG2_RXP_6 AE13 PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_10 AM3 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_4	AC11
PEG2_RXP_7 AE10 PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_11 AN5 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AD4 PEG2_TXP_1 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_5	AC6
PEG2_RXP_8 AE7 PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_10 AM3 PEG2_TXN_11 AN5 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_6	AE13
PEG2_RXP_9 AG12 PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_10 AM3 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_7	AE10
PEG2_TXN_0 AB1 PEG2_TXN_1 AC4 PEG2_TXN_10 AM3 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_8	AE7
PEG2_TXN_1 AC4 PEG2_TXN_10 AM3 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AD4 PEG2_TXP_1 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_RXP_9	AG12
PEG2_TXN_10 AM3 PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AD4 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_0	AB1
PEG2_TXN_11 AN5 PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_1	AC4
PEG2_TXN_12 AP1 PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AN2 PEG2_TXP_1 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_10	AM3
PEG2_TXN_13 AR5 PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_11	AN5
PEG2_TXN_14 AT3 PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_12	AP1
PEG2_TXN_15 AP6 PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AN2 PEG2_TXP_1 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_13	AR5
PEG2_TXN_2 AD3 PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_14	AT3
PEG2_TXN_3 AE5 PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_15	AP6
PEG2_TXN_4 AF1 PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_1 AN2 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_2	AD3
PEG2_TXN_5 AG5 PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_3	AE5
PEG2_TXN_6 AH3 PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_4	AF1
PEG2_TXN_7 AJ5 PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_5	AG5
PEG2_TXN_8 AK1 PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_6	AH3
PEG2_TXN_9 AL5 PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_7	AJ5
PEG2_TXP_0 AB3 PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_8	AK1
PEG2_TXP_1 AD4 PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXN_9	AL5
PEG2_TXP_10 AN2 PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXP_0	AB3
PEG2_TXP_11 AP4 PEG2_TXP_12 AR2	PEG2_TXP_1	AD4
PEG2_TXP_12 AR2	PEG2_TXP_10	AN2
	PEG2_TXP_11	AP4
PEG2_TXP_13 AT4	PEG2_TXP_12	AR2
	PEG2_TXP_13	AT4

Table 25. MCH Ballout Sorted By Signal Name

Table 25. MCH Ballout Sorted By Signal Name

Signal Name Ball #

RSVD N11

RSVD M16

Table 25. MCH Ballout Sorted By Signal Name

Sorted By Signal	Name
Signal Name	Ball #
PEG2_TXP_14	AU2
PEG2_TXP_15	AP7
PEG2_TXP_2	AE2
PEG2_TXP_3	AF4
PEG2_TXP_4	AG2
PEG2_TXP_5	AH4
PEG2_TXP_6	AJ2
PEG2_TXP_7	AK4
PEG2_TXP_8	AL2
PEG2_TXP_9	AM4
PWROK	AM19
RSTINB	AM18
RSVD	BC2
RSVD	AP34
RSVD	AP12
RSVD	AN31
RSVD	AN30
RSVD	AN25
RSVD	AN13
RSVD	AN12
RSVD	AM32
RSVD	AM25
RSVD	AM14
RSVD	AL28
RSVD	AH28
RSVD	AG32
RSVD	AG28
RSVD	AD32
RSVD	W32
RSVD	V32
RSVD	V12
RSVD	T33
RSVD	T12
RSVD	R33
RSVD	R22
RSVD	R19
RSVD	P21
RSVD	N21
RSVD	N18
RSVD	N12

Signal Name	Ball #
RSVD	N11
RSVD	M16
RSVD	L19
RSVD	K22
RSVD	K21
RSVD	H21
RSVD	G22
RSVD	F19
RSVD	B19
RSVD_G15	G15
RSVD_H15	H15
RSVD_M19	M19
RSVD_P19	P19
TCEN	G21
TEST0	BE45
TEST1	BE1
TEST2	A2
TEST3	A45
VCC	AH26
VCC	AH24
VCC	AH22
VCC	AH20
VCC	AH19
VCC	AH18
VCC	AH17
VCC	AG27
VCC	AG25
VCC	AG23
VCC	AG21
VCC	AG19
VCC	AG18
VCC	AG17
VCC	AG15
VCC	AF28
VCC	AF26
VCC	AF24
VCC	AF22
VCC	AF20
VCC	AF18
VCC	AF17

Signal Name	Ball #
VCC	AE28
VCC	AE27
VCC	AE25
VCC	AE23
VCC	AE21
VCC	AE19
VCC	AE18
VCC	AE17
VCC	AD28
VCC	AD26
VCC	AD24
VCC	AD22
VCC	AD20
VCC	AD18
VCC	AD17
VCC	AC28
VCC	AC27
VCC	AC25
VCC	AC23
VCC	AC21
VCC	AC19
VCC	AC18
VCC	AC17
VCC	AB28
VCC	AB26
VCC	AB24
VCC	AB22
VCC	AB20
VCC	AB18
VCC	AB17
VCC	AB15
VCC	AA28
VCC	AA27
VCC	AA25
VCC	AA23
VCC	AA21
VCC	AA19
VCC	AA18
VCC	AA17
VCC	Y28

Table 25. MCH Ballout Sorted By Signal Name

Signal Name Ball # VCC Y26 VCC Y24 VCC Y22 VCC Y20 VCC Y18 VCC Y17 VCC W28 VCC W27 VCC W25 VCC W23 VCC W21 VCC W19 VCC W18 VCC W17 VCC V28 VCC V26 VCC V24 VCC V22 VCC V20 VCC V18 VCC V17 VCC U28 VCC U27 VCC U26 VCC U25 VCC U24 VCC U23 VCC U22 VCC U21 VCC U20 VCC U19 VCC U18

U17

R18

R16

B25

C18

BE44

BE43

BD44

VCC

VCC

VCC

VCC_B25

VCC_C18

VCC_CKDDR

VCC_CKDDR

VCC_CKDDR

Table 25. MCH Ballout Sorted By Signal Name

Joi tea by Signa	i ivallie
Signal Name	Ball #
VCC_CKDDR	BD43
VCC_CKDDR	BC45
VCC_CKDDR	BC44
VCC_CL	V31
VCC_CL	AM30
VCC_CL	AM23
VCC_CL	AM22
VCC_CL	AL30
VCC_CL	AL27
VCC_CL	AL25
VCC_CL	AL24
VCC_CL	AL23
VCC_CL	AL22
VCC_CL	AL21
VCC_CL	AL19
VCC_CL	AL18
VCC_CL	AL16
VCC_CL	AK31
VCC_CL	AJ29
VCC_CL	AJ28
VCC_CL	AJ27
VCC_CL	AJ26
VCC_CL	AJ25
VCC_CL	AJ24
VCC_CL	AJ23
VCC_CL	AJ22
VCC_CL	AJ21
VCC_CL	AJ20
VCC_CL	AJ19
VCC_CL	AJ18
VCC_CL	AJ17
VCC_CL	AH31
VCC_CL	AH29
VCC_CL	AH15
VCC_CL	AH14
VCC_CL	AG31
VCC_CL	AG29
VCC_CL	AF29
VCC_CL	AE31
VCC_CL	AE29

Table 25. MCH Ballout Sorted By Signal Name

VCC_CL AD31 VCC_CL AD29 VCC_CL AC31 VCC_CL AC29 VCC_CL AB31 VCC_CL AB29 VCC_CL AA31 VCC_CL Y29 VCC_CL Y29 VCC_CL V29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_EZ5 E25 VCC_EXP AD10
VCC_CL AC31 VCC_CL AC29 VCC_CL AB31 VCC_CL AB29 VCC_CL AA31 VCC_CL AA29 VCC_CL Y29 VCC_CL W29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_EZ5 E25 VCC_EXP AD11
VCC_CL AC29 VCC_CL AB31 VCC_CL AB29 VCC_CL AA31 VCC_CL AA29 VCC_CL Y29 VCC_CL W29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_CL AB31 VCC_CL AB29 VCC_CL AA31 VCC_CL AA29 VCC_CL Y29 VCC_CL W29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_EZF E25 VCC_EXP AD11
VCC_CL AB29 VCC_CL AA31 VCC_CL AA29 VCC_CL Y29 VCC_CL W29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_EZ5 E25 VCC_EXP AD11
VCC_CL AA31 VCC_CL AA29 VCC_CL Y29 VCC_CL W29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_EZ5 E25 VCC_EXP AD11
VCC_CL AA29 VCC_CL Y29 VCC_CL W29 VCC_CL W29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC30 VCC_DDR BC30 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_EZ5 E25 VCC_EXP AD11
VCC_CL Y29 VCC_CL W29 VCC_CL W29 VCC_CL V29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BE22 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC30 VCC_DDR BC30 VCC_DDR BC30 VCC_DDR BC30 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR BC20 VCC_DDR BC20 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_CL W29 VCC_CL V29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC30 VCC_DDR BC20 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_CL V29 VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BC38 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BE40 VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BE22 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC23 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BE36 VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BE22 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BE32 VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BE22 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BE28 VCC_DDR BE24 VCC_DDR BE22 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BE24 VCC_DDR BE22 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BE22 VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BC38 VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BC34 VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BC30 VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BC26 VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BC23 VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR BC20 VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR AY45 VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_DDR AY23 VCC_E25 E25 VCC_EXP AD11
VCC_E25 E25 VCC_EXP AD11
VCC_EXP AD11
VCC_EXP AD10
VCC_EXP AD8
VCC_EXP AD7
VCC_EXP AB11
VCC_EXP AB10
VCC_EXP AB8
VCC_EXP AB7
VCC_EXP AB6
VCC_EXP AB4
VCC_EXP AA5
VCC_EXP AA4
VCC_EXP AA2
VCC_EXP Y4

Table 25. MCH Ballout Sorted By Signal Name

Signal Name Ball # VCC_EXP VCC_EXP Y1 VCC_EXP W11 VCC_EXP W10 VCC_EXP W8 W7 VCC_EXP VCC_EXP W5 VCC_EXP W4 VCC_EXP W2 VCC_EXP V4 V3 VCC_EXP VCC_EXP V1 U5 VCC_EXP U4 VCC_EXP VCC_EXP U2 VCC_EXP T4 VCC_EXP Т3 VCC_EXT_PLL AB13 VCC_N15 N15 VCC3_3 A23 VCC3_3_G16 G16 VCC3_3_L16 L16 D20 VCCA_EXP VCCA_EXP2 AU5 VCCA_HPL D26 D25 VCCA_HPL VCCA_MPL B27 VCCAPLL_EXP A20 VCCAPLL_EXP2 AR10 VCCAUX U29 **VCCAUX** T31 VCCAUX R30 VCCAUX R28 **VCCAUX** R27 VCCAUX R25

VCCAUX

VCCAUX

VCCR_EXP

VCCR_EXP

VCCR_EXP

R24

R23

AP3 AK3

AF3

Table 25. MCH Ballout Sorted By Signal Name

Signal Name	Ball #
VCCR_EXP	AE15
VCCR_EXP	AD15
VCCR_EXP	AC15
VCCR_EXP	AC3
VCCR_EXP	AB14
VCCR_EXP	AA15
VCCR_EXP	AA14
VCCR_EXP	W15
VCCR_EXP	V15
VCCR_EXP	V14
VCCR_EXP	T15
VCCR_EXP	T14
VCCR_EXP	М3
VCCR_EXP	Н3
VCCR_EXP	C16
VCCR_EXP	C12
VCCR_EXP	C8
VSS	B2
VSS	BE38
VSS	BE34
VSS	BE30
VSS	BE26
VSS	BE23
VSS	BE18
VSS	BE14
VSS	BE10
VSS	BE6
VSS	BE3
VSS	BD2
VSS	BC43
VSS	BC16
VSS	BC12
VSS	BC8
VSS	BC3
VSS	BC1
VSS	BB2
VSS	AY36
VSS	AY33
VSS	AY10
VSS	AW40

Table 25. MCH Ballout Sorted By Signal Name

Solited by Signa	i ivame
Signal Name	Ball #
VSS	AW35
VSS	AW31
VSS	AW28
VSS	AW27
VSS	AW21
VSS	AW18
VSS	AW15
VSS	AW7
VSS	AW4
VSS	AV45
VSS	AV43
VSS	AV34
VSS	AV28
VSS	AV24
VSS	AV23
VSS	AV22
VSS	AV18
VSS	AV13
VSS	AV12
VSS	AV11
VSS	AV10
VSS	AV6
VSS	AV4
VSS	AV3
VSS	AV1
VSS	AU3
VSS	AT45
VSS	AT39
VSS	AT30
VSS	AT28
VSS	AT24
VSS	AT23
VSS	AT16
VSS	AT8
VSS	AT1
VSS	AR39
VSS	AR38
VSS	AR35
VSS	AR30
VSS	AR27

Table 25. MCH Ballout Sorted By Signal Name

Table 25. MCH Ballout Sorted By Signal Name

Table 25. MCH Ballout Sorted By Signal Name

Signal Name	Ball #
VSS	AR23
VSS	AR22
VSS	AR21
VSS	AR19
VSS	AR15
VSS	AR8
VSS	AR7
VSS	AR6
VSS	AR4
VSS	AP43
VSS	AP38
VSS	AP33
VSS	AP30
VSS	AP25
VSS	AP23
VSS	AP22
VSS	AP18
VSS	AP13
VSS	AP8
VSS	AN38
VSS	AN34
VSS	AN23
VSS	AN7
VSS	AN6
VSS	AN4
VSS	AM45
VSS	AM24
VSS	AM21
VSS	AM16
VSS	AM1
VSS	AL39
VSS	AL35
VSS	AL12
VSS	AL8
VSS	AL4
VSS	AK43
VSS	AK40
VSS	AK36
VSS	AK32
VSS	AK11

Sorted By Signa	Sorted By Signal Name	
Signal Name	Ball #	
VSS	AK10	
VSS	AK8	
VSS	AK7	
VSS	AK6	
VSS	AJ41	
VSS	AJ4	
VSS	AH45	
VSS	AH40	
VSS	AH39	
VSS	AH38	
VSS	AH35	
VSS	AH32	
VSS	AH27	
VSS	AH25	
VSS	AH23	
VSS	AH21	
VSS	AH12	
VSS	AH8	
VSS	AH1	
VSS	AG36	
VSS	AG34	
VSS	AG26	
VSS	AG24	
VSS	AG22	
VSS	AG20	
VSS	AG13	
VSS	AG10	
VSS	AG8	
VSS	AG7	
VSS	AG6	
VSS	AG4	
VSS	AF43	
VSS	AF27	
VSS	AF25	
VSS	AF23	
VSS	AF21	
VSS	AF19	
VSS	AE36	
VSS	AE32	
VSS	AE26	

Sorted By Signa	i wame
Signal Name	Ball #
VSS	AE24
VSS	AE22
VSS	AE20
VSS	AE12
VSS	AE8
VSS	AE4
VSS	AD45
VSS	AD38
VSS	AD34
VSS	AD27
VSS	AD25
VSS	AD23
VSS	AD21
VSS	AD19
VSS	AD13
VSS	AD6
VSS	AD1
VSS	AC43
VSS	AC38
VSS	AC35
VSS	AC32
VSS	AC26
VSS	AC24
VSS	AC22
VSS	AC20
VSS	AC14
VSS	AC12
VSS	AC8
VSS	AC1
VSS	AB45
VSS	AB36
VSS	AB33
VSS	AB27
VSS	AB25
VSS	AB23
VSS	AB21
VSS	AB19
VSS	AA39
VSS	AA36
VSS	AA34

Table 25. MCH Ballout

Table 25. MCH Ballout Sorted By Signal Name Sorted By Signal Name

Table 25. MCH Ballout **Sorted By Signal Name**

Sorted By Signal	l Name
Signal Name	Ball #
VSS	AA32
VSS	AA26
VSS	AA24
VSS	AA22
VSS	AA20
VSS	AA12
VSS	AA8
VSS	Y43
VSS	Y27
VSS	Y25
VSS	Y23
VSS	Y21
VSS	Y19
VSS	W39
VSS	W35
VSS	W26
VSS	W24
VSS	W22
VSS	W20
VSS	W14
VSS	W13
VSS	W6
VSS	V45
VSS	V40
VSS	V36
VSS	V33
VSS	V27
VSS	V25
VSS	V23
VSS	V21
VSS	V19
VSS	V13
VSS	V8
VSS	T43
VSS	T35
VSS	T32
VSS	T13
VSS	T11
VSS	T6
VSS	R40

Signal Name	Ball #
VSS	R38
VSS	R34
VSS	R21
VSS	R13
VSS	R12
VSS	R11
VSS	R8
VSS	R4
VSS	P45
VSS	P32
VSS	P27
VSS	P25
VSS	P24
VSS	P23
VSS	P22
VSS	P18
VSS	P14
VSS	P1
VSS	N35
VSS	N27
VSS	N23
VSS	N22
VSS	N19
VSS	N16
VSS	N7
VSS	N6
VSS	N4
VSS	M43
VSS	M39
VSS	M35
VSS	M34
VSS	M33
VSS	M28
VSS	M24
VSS	M23
VSS	M18
VSS	M12
VSS	M10
VSS	M6
VSS	L38

Signal Name	Dall #
Signal Name	Ball #
VSS	L35
VSS	L31
VSS	L23
VSS	L21
VSS	L15
VSS	L11
VSS	L8
VSS	L7
VSS	L6
VSS	L4
VSS	K45
VSS	K40
VSS	K39
VSS	K33
VSS	K30
VSS	K23
VSS	K18
VSS	K15
VSS	K12
VSS	K10
VSS	K6
VSS	K1
VSS	J3
VSS	H43
VSS	H40
VSS	H36
VSS	H35
VSS	H23
VSS	H22
VSS	H19
VSS	H18
VSS	H11
VSS	Н8
VSS	H7
VSS	H6
VSS	G39
VSS	G33
VSS	G31
VSS	G23
VSS	G18

Table 25. MCH Ballout Sorted By Signal Name

Signal Name Ball # VSS G11 VSS G8 VSS G7 VSS G4 VSS F45 VSS F40 VSS F36 VSS F34 VSS F24 VSS F23 VSS F16 VSS F15 VSS F13 VSS F12 VSS F11 VSS F10 VSS F8 VSS F6 VSS F1 VSS E21 VSS E19 VSS E5 VSS D42 VSS D34 VSS D29 VSS D23 VSS D17 VSS D15 VSS D13 VSS D11 VSS D7 VSS D4 VSS C45 VSS C43 VSS C38 VSS C34 VSS C30 VSS C22 VSS C20 VSS С9

Table 25. MCH Ballout Sorted By Signal Name

Signal Name Ball # VSS C3 VSS C1 VSS B44 VSS A43 VSS A40 VSS A36 VSS A34 VSS A26 VSS A26 VSS A18 VSS A10 VSS A6 VSS A6 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B21 B21 VSS_B34 BA4 VSS_B45 BA5 VSS_B45 BA5 VSS_B45 BA5 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	o: Lu	5 !! "
VSS C1 VSS B44 VSS B29 VSS A43 VSS A40 VSS A36 VSS A34 VSS A26 VSS A26 VSS A18 VSS A10 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_B3 BA3 VSS_B4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D24 D24 VSS_F22 F22 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB K25	Signal Name	Ball #
VSS B44 VSS B29 VSS A43 VSS A36 VSS A36 VSS A34 VSS A26 VSS A22 VSS A18 VSS A10 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_B3 B83 VSS_B4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB K25	VSS	
VSS B29 VSS A43 VSS A36 VSS A36 VSS A34 VSS A26 VSS A26 VSS A22 VSS A18 VSS A10 VSS A6 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_B21 B21 VSS_B3 B83 VSS_B3 B83 VSS_B3 B83 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB K25	VSS	C1
VSS A40 VSS A40 VSS A36 VSS A34 VSS A26 VSS A22 VSS A18 VSS A14 VSS A10 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_B3 BA3 VSS_B4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_K16 K16 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB K25 VTT_FSB H28	VSS	B44
VSS A36 VSS A36 VSS A34 VSS A26 VSS A22 VSS A18 VSS A10 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28		B29
VSS A36 VSS A34 VSS A26 VSS A22 VSS A18 VSS A10 VSS A6 VSS A6 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_B3 B83 VSS_B4 BA4 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A43
VSS A34 VSS A26 VSS A22 VSS A18 VSS A14 VSS A10 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 K16 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A40
VSS A26 VSS A22 VSS A18 VSS A10 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A36
VSS A22 VSS A18 VSS A10 VSS A6 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 K16 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB K25 VTT_FSB H28	VSS	A34
VSS A18 VSS A14 VSS A10 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_W31 W31 VTT_FSB K27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A26
VSS A14 VSS A10 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A22
VSS A6 VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A18
VSS A6 VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A14
VSS A3 VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A10
VSS_A24 A24 VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	A6
VSS_AW2 AW2 VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS	А3
VSS_AY1 AY1 VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_A24	A24
VSS_AY3 AY3 VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB K27 VTT_FSB K25 VTT_FSB K25 VTT_FSB H28	VSS_AW2	AW2
VSS_B17 B17 VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB K27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_AY1	AY1
VSS_B21 B21 VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB K27 VTT_FSB K25 VTT_FSB K25 VTT_FSB H28	VSS_AY3	AY3
VSS_BA4 BA4 VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	_	B17
VSS_BA5 BA5 VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_B21	B21
VSS_BB3 BB3 VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB K27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_BA4	BA4
VSS_C23 C23 VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_BA5	BA5
VSS_C24 C24 VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_BB3	BB3
VSS_D21 D21 VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_C23	C23
VSS_D22 D22 VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_C24	C24
VSS_D24 D24 VSS_F22 F22 VSS_H16 H16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_D21	D21
VSS_F22 F22 VSS_H16 H16 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_D22	D22
VSS_H16 H16 VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_D24	D24
VSS_K16 K16 VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_F22	F22
VSS_M15 M15 VSS_W31 W31 VTT_FSB M27 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_H16	H16
VSS_W31 W31 VTT_FSB M27 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_K16	K16
VTT_FSB M27 VTT_FSB L27 VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VSS_M15	M15
VTT_FSB	VSS_W31	W31
VTT_FSB K27 VTT_FSB K25 VTT_FSB H28	VTT_FSB	M27
VTT_FSB K25 VTT_FSB H28	VTT_FSB	L27
VTT_FSB H28	VTT_FSB	K27
	VTT_FSB	K25
VTT_FSB H27	VTT_FSB	H28
	VTT_FSB	H27

Table 25. MCH Ballout Sorted By Signal Name

Signal Name	Ball #
VTT_FSB	H25
VTT_FSB	G28
VTT_FSB	G27
VTT_FSB	G25
VTT_FSB	F30
VTT_FSB	F28
VTT_FSB	F27
VTT_FSB	F25
VTT_FSB	E33
VTT_FSB	E31
VTT_FSB	E29
VTT_FSB	D33
VTT_FSB	D32
VTT_FSB	D31
VTT_FSB	D30
VTT_FSB	C32
VTT_FSB	B33
VTT_FSB	B31
VTT_FSB	A32
VTT_FSB	A30
XORTEST	L22

NOTE: See list of notes at beginning of chapter.

Ball #	Signal Name
BE45	TEST0
BE44	VCC_CKDDR
BE43	VCC_CKDDR
BE40	VCC_DDR
BE38	VSS
BE36	VCC_DDR
BE34	VSS
BE32	VCC_DDR
BE30	VSS
BE28	VCC_DDR
BE26	VSS
BE24	VCC_DDR
BE23	VSS
BE22	VCC_DDR
BE20	DDR_B_MA_8
BE18	VSS
BE16	DDR_A_DQ_19
BE14	VSS
BE12	DDR_A_DQ_11
BE10	VSS
BE8	DDR_A_DQ_3
BE6	VSS
BE3	VSS
BE2	NC
BE1	TEST1
BD45	NC
BD44	VCC_CKDDR
BD43	VCC_CKDDR
BD42	DDR_A_CSB_1
BD39	DDR_A_WEB
BD37	DDR_A_MA_10
BD35	DDR3_A_MA0
BD33	DDR_B_ODT_0
BD31	DDR_B_RASB
BD29	DDR_A_MA_6
BD27	DDR_A_MA_11
BD25	DDR_A_CKE_0
BD21	DDR_B_MA_4
BD19	DDR_B_CKE_1
BD17	DDR_B_CKE_0

Table 26. MCH Ballout Table 26. MCH Ballout Sorted By Ball Number Sorted By Ball Number

Ball #	Signal Name
BD15	DDR_A_DQ_22
BD13	DDR_A_DQ_16
BD11	DDR_A_DQ_14
BD9	DDR_A_DQ_8
BD7	DDR_A_DQ_6
BD4	DDR_A_DQ_1
BD3	DDR_A_DQ_4
BD2	VSS
BD1	NC
BC45	VCC_CKDDR
BC44	VCC_CKDDR
BC43	VSS
BC42	DDR_RCOMPYPD
BC40	DDR3_A_WEB
BC38	VCC_DDR
BC37	DDR_A_BS_0
BC36	DDR_A_MA_0
BC34	VCC_DDR
BC32	DDR_B_CSB_2
BC30	VCC_DDR
BC28	DDR_A_MA_8
BC26	VCC_DDR
BC24	DDR_A_CKE_3
BC23	VCC_DDR
BC22	DDR_B_MA_1
BC20	VCC_DDR
BC18	DDR_B_MA_14
BC16	VSS
BC14	DDR_A_DM_2
BC12	VSS
BC10	DDR_A_DM_1
BC9	DDR_A_DQ_13
BC8	VSS
BC6	DDR_A_DQSB_0
BC4	DDR_A_DQ_0
BC3	VSS
BC2	RSVD
BC1	VSS
BB44	DDR3_A_CSB1
BB43	DDR_A_ODT_0

Table 26. MCH Ballout **Sorted By Ball Number**

Joi tea B	y Dan Hamber
Ball #	Signal Name
BB42	DDR_RCOMPYPU
BB41	DDR_A_CASB
BB39	DDR_A_CSB_2
BB38	DDR_A_RASB
BB36	DDR_A_BS_1
BB35	DDR_B_CSB_1
BB34	DDR_B_ODT_1
BB33	DDR_B_ODT_2
BB32	DDR_B_CASB
BB31	DDR_A_MA_1
BB30	DDR_A_MA_2
BB29	DDR_A_MA_3
BB28	DDR_A_MA_5
BB27	DDR_A_MA_12
BB26	DDR_A_BS_2
BB25	DDR_A_CKE_2
BB24	DDR_B_BS_0
BB23	DDR3_DRAMRST B
BB22	DDR_B_MA_2
BB21	DDR_B_MA_5
BB20	DDR_B_MA_6
BB19	DDR_B_MA_9
BB18	DDR_B_BS_2
BB17	DDR_B_CKE_2
BB16	DDR_A_DQ_18
BB15	DDR_A_DQ_23
BB14	DDR_A_DQ_17
BB13	DDR_A_DQ_21
BB12	DDR_A_DQ_10
BB11	DDR_A_DQ_15
BB10	DDR_A_DQ_9
BB8	DDR_A_DQ_2
BB7	DDR_A_DQ_7
BB5	DDR_A_DM_0
BB4	DDR_A_DQ_5
BB3	VSS_BB3
BB2	VSS
BA42	DDR_A_MA_13
BA41	DDR_A_ODT_2

Table 26. MCH Ballout Sorted By Ball Number

Ball # Signal Name **BA40** DDR_A_CSB_0 BA37 DDR3_B_ODT3 **BA35** DDR_B_CSB_3 **BA33** DDR_B_MA_13 BA31 DDR_B_CSB_0 BA29 DDR_A_MA_4 **BA27** DDR_A_MA_9 **BA25** DDR_A_MA_14 BA21 DDR_B_MA_3 BA19 DDR_B_MA_11 BA17 DDR_B_CKE_3 **BA15** DDR_A_DQS_2 BA13 DDR_A_DQ_20 BA11 DDR_A_DQS_1 BA9 DDR_A_DQ_12 BA₆ DDR_A_DQS_0 BA5 VSS_BA5 BA4 VSS_BA4 AY45 VCC_DDR AY43 DDR_A_CSB_3 AY41 DDR_A_ODT_1 AY40 DDR_B_DM_4 AY39 DDR_B_DQ_32 AY38 DDR_B_DQ_36 AY36 **VSS** AY35 DDR_B_ODT_3 AY34 DDR_B_CKB_5 AY33 VSS AY31 DDR_B_WEB AY30 DDR_B_CK_4 AY28 DDR_B_CKB_4 AY27 DDR_A_MA_7 AY25 DDR_B_DM_3 AY24 DDR_A_CKE_1 AY23 VCC_DDR AY22 DDR_B_MA_0 AY21 DDR_A_DQ_25 AY19 DDR_B_MA_7 AY18 DDR_B_MA_12 AY16 DDR_B_DQ_16

Table 26. MCH Ballout Sorted By Ball Number

Ball #	Signal Name
AY15	DDR_A_DQSB_2
AY13	DDR_B_DQ_9
AY12	DDR_B_DQ_8
AY11	DDR_A_DQSB_1
AY10	VSS
AY8	DDR_B_DM_0
AY7	DDR_B_DQ_1
AY6	DDR_RCOMPXPD
AY5	DDR_RCOMPXPU
AY3	VSS_AY3
AY1	VSS_AY1
AW44	DDR_A_ODT_3
AW42	DDR_A_DQ_36
AW40	VSS
AW39	DDR_B_DQS_4
AW38	DDR_B_DQ_33
AW36	DDR_B_DQ_37
AW35	VSS
AW34	DDR_B_CK_5
AW33	DDR_B_CKB_2
AW31	VSS
AW30	DDR_B_CK_0
AW28	VSS
AW27	VSS
AW25	DDR_B_DQ_24
AW24	DDR_B_MA_10
AW23	DDR_B_BS_1
AW22	DDR_A_DQ_31
AW21	VSS
AW19	DDR_A_DQ_29
AW18	VSS
AW16	DDR_B_DM_2
AW15	VSS
AW13	DDR_B_DQ_13
AW12	DDR_B_DQ_12
AW11	DDR_B_DQ_7
AW10	DDR_B_DQS_0
AW8	DDR_B_DQ_0
AW7	VSS
AW6	DDR_B_DQ_5

Table 26. MCH Ballout Sorted By Ball Number

Ball #	Signal Name
AW4	VSS
AW2	VSS_AW2
AV45	VSS
AV43	VSS
AV42	DDR_A_DQ_32
AV40	DDR_B_DQ_39
AV39	DDR_B_DQ_38
AV38	DDR_B_DQSB_4
AV36	DDR_B_DQ_44
AV35	DDR_A_CKB_2
AV34	VSS
AV33	DDR_B_CK_2
AV31	DDR_A_CK_3
AV30	DDR_B_CKB_0
AV28	VSS
AV27	DDR_B_DQ_27
AV25	DDR_B_DQ_25
AV24	VSS
AV23	VSS
AV22	VSS
AV21	DDR_A_DQSB_3
AV19	DDR_A_DQ_28
AV18	VSS
AV16	DDR_B_DQ_17
AV15	DDR_B_DQ_11
AV13	VSS
AV12	VSS
AV11	VSS
AV10	VSS
AV8	DDR_B_DQ_4
AV7	DDR_VREF
AV6	VSS
AV4	VSS
AV3	VSS
AV1	VSS
AU44	DDR_A_DM_4
AU43	DDR_A_DQ_33
AU41	DDR_A_DQ_37
AU5	VCCA_EXP2
AU3	VSS

Table 26. MCH Ballout Sorted By Ball Number

Ball # Signal Name AU2 PEG2_TXP_14 AT45 VSS AT43 DDR_A_DQS_4 AT42 DDR_A_DQSB_4 AT40 DDR_B_DQ_35 AT39 VSS **AT38** DDR_B_DQ_34 AT36 DDR_A_CKB_5 AT35 DDR_A_CK_5 AT34 DDR_A_CK_2 AT33 DDR_A_CK_0 AT31 DDR_A_CKB_3 AT30 **VSS** AT28 VSS AT27 DDR_B_DQ_26 AT25 DDR_B_DQ_30 AT24 VSS AT23 VSS AT22 DDR_A_DQ_27 AT21 DDR_A_DQS_3 AT19 DDR_B_DQ_19 AT18 DDR_B_DQ_22 VSS AT16 AT15 DDR_B_DQ_10 AT13 DDR_B_DM_1 AT12 DDR_B_DQ_3 AT11 DDR_B_DQ_2 AT10 DDR_B_DQSB_0 AT8 VSS DDR_RCOMPVOL AT7 AT6 DDR_RCOMPVOH AT4 PEG2_TXP_13 AT3 PEG2_TXN_14 AT1 VSS AR44 DDR_A_DQ_34 AR42 DDR_A_DQ_35 AR41 DDR_A_DQ_38 AR40 DDR_A_DQ_39 VSS AR39 AR38 VSS

Table 26. MCH Ballout Sorted By Ball Number

	,
Ball #	Signal Name
AR36	DDR_B_DQ_40
AR35	VSS
AR34	DDR_B_DQ_45
AR33	DDR_A_CKB_0
AR31	DDR_B_CK_3
AR30	VSS
AR28	DDR_B_CK_1
AR27	VSS
AR25	DDR_B_DQS_3
AR24	DDR_B_DQSB_3
AR23	VSS
AR22	VSS
AR21	VSS
AR19	VSS
AR18	DDR_B_DQ_23
AR16	DDR_B_DQ_21
AR15	VSS
AR13	DDR_B_DQS_1
AR12	DDR_B_DQSB_1
AR11	DDR_B_DQ_6
AR10	VCCAPLL_EXP2
AR8	VSS
AR7	VSS
AR6	VSS
AR5	PEG2_TXN_13
AR4	VSS
AR2	PEG2_TXP_12
AP45	DDR_A_DQ_45
AP43	VSS
AP42	DDR_A_DQ_44
AP40	DDR_B_DQSB_5
AP39	DDR_B_DQS_5
AP38	VSS
AP36	DDR_B_DQ_41
AP35	DDR_B_DQ_42
AP34	RSVD
AP33	VSS
AP31	DDR_B_CKB_3
AP30	VSS
AP28	DDR_B_CKB_1

Table 26. MCH Ballout Sorted By Ball Number

,
Signal Name
DDR_B_DQ_31
VSS
DDR_B_DQ_29
VSS
VSS
DDR_A_DM_3
DDR_B_DQ_18
VSS
DDR_B_DQSB_2
DDR_B_DQ_15
VSS
RSVD
PEG2_RXN_15
PEG2_RXP_15
VSS
PEG2_TXP_15
PEG2_TXN_15
PEG2_TXP_11
VCCR_EXP
PEG2_TXN_12
DDR_A_DM_5
DDR_A_DQ_41
DDR_A_DQ_40
DDR_B_DQ_47
DDR_B_DQ_46
VSS
DDR_B_DM_5
DDR_A_CB_1
VSS
DDR_B_DQ_43
RSVD
RSVD
DDR_A_CK_1
DDR_A_CK_4
RSVD
DDR_B_DQ_28
VSS
DDR_A_DQ_26
DDR_A_DQ_30
DDR_A_DQ_24

Table 26. MCH Ballout Sorted By Ball Number

Ball # Signal Name AN18 DDR_B_DQS_2 AN16 DDR_B_DQ_20 AN15 DDR_B_DQ_14 AN13 **RSVD** AN12 RSVD DDR3_DRAM_PW AN11 **ROK** AN10 EXP2_COMPI AN8 EXP2_COMPO AN7 VSS AN6 VSS AN5 PEG2_TXN_11 VSS AN4 AN2 PEG2_TXP_10 AM45 VSS DDR_A_DQS_5 AM43 AM42 DDR_A_DQSB_5 AM32 RSVD AM30 VCC_CL AM28 DDR_A_CKB_1 AM27 DDR_A_CKB_4 AM25 RSVD AM24 VSS AM23 VCC_CL AM22 VCC_CL AM21 VSS AM19 **PWROK** AM18 RSTINB AM16 VSS AM14 **RSVD** AM4 PEG2_TXP_9 AM3 PEG2_TXN_10 AM1 VSS AL44 DDR_A_DQ_42 AL42 DDR_A_DQ_43 AL41 DDR_A_DQ_47 AL40 DDR_A_DQ_46 AL39 VSS AL38 DDR_A_DQS_8 AL36 DDR_A_DQSB_8

Table 26. MCH Ballout Sorted By Ball Number

	,
Ball #	Signal Name
AL35	VSS
AL34	DDR_A_CB_5
AL33	DDR_A_CB_0
AL30	VCC_CL
AL28	RSVD
AL27	VCC_CL
AL25	VCC_CL
AL24	VCC_CL
AL23	VCC_CL
AL22	VCC_CL
AL21	VCC_CL
AL19	VCC_CL
AL18	VCC_CL
AL16	VCC_CL
AL13	CL_PWROK
AL12	VSS
AL11	PEG2_RXP_13
AL10	PEG2_RXN_13
AL8	VSS
AL7	PEG2_RXN_14
AL6	PEG2_RXP_14
AL5	PEG2_TXN_9
AL4	VSS
AL2	PEG2_TXP_8
AK45	DDR_B_CB_0
AK43	VSS
AK42	DDR_B_CB_5
AK40	VSS
AK39	DDR_A_CB_7
AK38	DDR_A_CB_2
AK36	VSS
AK35	DDR_A_CB_3
AK34	DDR_A_CB_6
AK33	DDR_A_CB_4
AK32	VSS
AK31	VCC_CL
AK15	CL_DATA
AK14	CL_CLK
AK13	PEG2_RXN_12
AK12	PEG2_RXP_12

Table 26. MCH Ballout Sorted By Ball Number

Ball #	Signal Name
AK11	VSS
AK10	VSS
AK8	VSS
AK7	VSS
AK6	VSS
AK4	PEG2_TXP_7
AK3	VCCR_EXP
AK1	PEG2_TXN_8
AJ44	DDR_B_CB_1
AJ42	DDR_B_CB_4
AJ41	VSS
AJ29	VCC_CL
AJ28	VCC_CL
AJ27	VCC_CL
AJ26	VCC_CL
AJ25	VCC_CL
AJ24	VCC_CL
AJ23	VCC_CL
AJ22	VCC_CL
AJ21	VCC_CL
AJ20	VCC_CL
AJ19	VCC_CL
AJ18	VCC_CL
AJ17	VCC_CL
AJ5	PEG2_TXN_7
AJ4	VSS
AJ2	PEG2_TXP_6
AH45	VSS
AH43	DDR_B_DQS_8
AH42	DDR_B_DQSB_8
AH40	VSS
AH39	VSS
AH38	VSS
AH36	DDR_B_DQ_53
AH35	VSS
AH34	DDR_B_DQ_48
AH33	DDR_B_DQ_52
AH32	VSS
AH31	VCC_CL
AH29	VCC_CL

Table 26. MCH Ballout Sorted By Ball Number

Ball # Signal Name AH28 **RSVD** AH27 VSS AH26 VCC AH25 VSS AH24 VCC AH23 VSS VCC AH22 AH21 **VSS** AH20 VCC AH19 VCC AH18 VCC AH17 VCC AH15 VCC_CL AH14 VCC_CL AH13 PEG2_RXN_9 AH12 VSS AH11 PEG2_RXP_10 AH10 PEG2_RXN_10 AH8 VSS AH7 PEG2_RXP_11 AH6 PEG2_RXN_11 AH4 PEG2_TXP_5 AH3 PEG2_TXN_6 AH1 VSS AG44 DDR_B_CB_7 AG42 DDR_B_CB_2 AG41 DDR_B_CB_6 AG40 DDR_B_CB_3 AG39 DDR_B_DQS_6 DDR_B_DQSB_6 AG38 AG36 VSS AG35 DDR_B_DM_6 AG34 VSS AG33 DDR_B_DQ_49 AG32 RSVD AG31 VCC_CL AG29 VCC_CL AG28 RSVD VCC AG27 VSS AG26

Table 26. MCH Ballout Sorted By Ball Number

3
Signal Name
VCC
VSS
VCC
VSS
VCC
VSS
VCC
VCC
VCC
VCC
CL_VREF
VSS
PEG2_RXP_9
CL_RSTB
VSS
VSS
VSS
VSS
PEG2_TXN_5
VSS
PEG2_TXP_4
DDR_A_DQ_53
VSS
DDR_A_DQ_52
VCC_CL
VCC
VSS
VCC
VCC
PEG2_TXP_3
VCCR_EXP
PEG2_TXN_4

Table 26. MCH Ballout Sorted By Ball Number

	,
Ball #	Signal Name
AE44	DDR_A_DM_6
AE42	DDR_A_DQ_49
AE41	DDR_A_DQ_48
AE40	DDR_B_DQ_54
AE39	DDR_B_DQ_50
AE38	DDR_B_DQ_51
AE36	VSS
AE35	DDR_B_DQ_60
AE34	DDR_B_DQ_61
AE33	DDR_B_DQ_55
AE32	VSS
AE31	VCC_CL
AE29	VCC_CL
AE28	VCC
AE27	VCC
AE26	VSS
AE25	VCC
AE24	VSS
AE23	VCC
AE22	VSS
AE21	VCC
AE20	VSS
AE19	VCC
AE18	VCC
AE17	VCC
AE15	VCCR_EXP
AE14	EXP2_CLKINP
AE13	PEG2_RXP_6
AE12	VSS
AE11	PEG2_RXN_7
AE10	PEG2_RXP_7
AE8	VSS
AE7	PEG2_RXP_8
AE6	PEG2_RXN_8
AE5	PEG2_TXN_3
AE4	VSS
AE2	PEG2_TXP_2
AD45	VSS
AD43	DDR_A_DQS_6
AD42	DDR_A_DQSB_6

Table 26. MCH Ballout Sorted By Ball Number

Ball # Signal Name AD40 DDR_A_DQ_54 AD39 DDR_B_DQ_56 AD38 VSS AD36 DDR_B_DQ_57 AD35 DDR_B_DM_7 AD34 VSS AD33 DDR_B_DQSB_7 AD32 RSVD AD31 VCC_CL AD29 VCC_CL AD28 VCC AD27 VSS AD26 VCC AD25 VSS AD24 VCC AD23 VSS AD22 VCC AD21 VSS AD20 VCC AD19 VSS AD18 VCC AD17 VCC AD15 VCCR_EXP AD14 EXP2_CLKINN AD13 VSS AD12 PEG2_RXN_6 AD11 VCC_EXP AD10 VCC_EXP AD8 VCC_EXP AD7 VCC_EXP VSS AD6 AD4 PEG2_TXP_1 AD3 PEG2_TXN_2 AD1 VSS AC45 DDR_A_DQ_51 AC43 VSS AC42 DDR_A_DQ_50 AC40 DDR_A_DQ_60 AC39 DDR_A_DQ_55

AC38

VSS

Table 26. MCH Ballout Sorted By Ball Number

Sorted By Ball Nulliber		
Ball #	Signal Name	
AC36	DDR_B_DQ_62	
AC35	VSS	
AC34	DDR_B_DQ_63	
AC33	DDR_B_DQS_7	
AC32	VSS	
AC31	VCC_CL	
AC29	VCC_CL	
AC28	VCC	
AC27	VCC	
AC26	VSS	
AC25	VCC	
AC24	VSS	
AC23	VCC	
AC22	VSS	
AC21	VCC	
AC20	VSS	
AC19	VCC	
AC18	VCC	
AC17	VCC	
AC15	VCCR_EXP	
AC14	VSS	
AC13	PEG2_RXP_3	
AC12	VSS	
AC11	PEG2_RXP_4	
AC10	PEG2_RXN_4	
AC8	VSS	
AC7	PEG2_RXN_5	
AC6	PEG2_RXP_5	
AC4	PEG2_TXN_1	
AC3	VCCR_EXP	
AC1	VSS	
AB45	VSS	
AB43	DDR_A_DQ_57	
AB42	DDR_A_DQ_56	
AB40	DDR_A_DM_7	
AB39	DDR_A_DQ_61	
AB38	DDR_B_DQ_59	
AB36	VSS	
AB35	FSB_AB_34	
AB34	FSB_AB_29	

Table 26. MCH Ballout Sorted By Ball Number

Ball #	Signal Name
AB33	VSS
AB32	DDR_B_DQ_58
AB31	VCC_CL
AB29	VCC_CL
AB28	VCC
AB27	VSS
AB26	VCC
AB25	VSS
AB24	VCC
AB23	VSS
AB22	VCC
AB21	VSS
AB20	VCC
AB19	VSS
AB18	VCC
AB17	VCC
AB15	VCC
AB14	VCCR_EXP
AB13	VCC_EXT_PLL
AB12	PEG2_RXN_3
AB11	VCC_EXP
AB10	VCC_EXP
AB8	VCC_EXP
AB7	VCC_EXP
AB6	VCC_EXP
AB4	VCC_EXP
AB3	PEG2_TXP_0
AB1	PEG2_TXN_0
AA44	DDR_A_DQSB_7
AA42	DDR_A_DQS_7
AA41	DDR_A_DQ_62
AA40	FSB_AB_33
AA39	VSS
AA38	FSB_AB_35
AA36	VSS
AA35	FSB_AB_32
AA34	VSS
AA33	FSB_AB_31
AA32	VSS
AA31	VCC_CL

Table 26. MCH Ballout Sorted By Ball Number

Ball #	Signal Name
AA29	VCC_CL
AA28	VCC
AA27	VCC
AA26	VSS
AA25	VCC
AA24	VSS
AA23	VCC
AA22	VSS
AA21	VCC
AA20	VSS
AA19	VCC
AA18	VCC
AA17	VCC
AA15	VCCR_EXP
AA14	VCCR_EXP
AA13	PEG2_RXN_0
AA12	VSS
AA11	PEG2_RXN_1
AA10	PEG2_RXP_1
AA8	VSS
AA7	PEG2_RXN_2
AA6	PEG2_RXP_2
AA5	VCC_EXP
AA4	VCC_EXP
AA2	VCC_EXP
Y45	DDR_A_DQ_63
Y43	VSS
Y42	DDR_A_DQ_58
Y29	VCC_CL
Y28	VCC
Y27	VSS
Y26	VCC
Y25	VSS
Y24	VCC
Y23	VSS
Y22	VCC
Y21	VSS
Y20	VCC
Y19	VSS
Y18	VCC

Table 26. MCH Ballout Sorted By Ball Number

	_
Ball #	Signal Name
Y17	VCC
Y4	VCC_EXP
Y3	VCC_EXP
Y1	VCC_EXP
W44	FSB_BREQ0B
W42	DDR_A_DQ_59
W41	FSB_RSB_1
W40	FSB_TRDYB
W39	VSS
W38	FSB_AB_22
W36	FSB_AB_30
W35	VSS
W34	FSB_AB_25
W33	FSB_AB_27
W32	RSVD
W31	VSS_W31
W29	VCC_CL
W28	VCC
W27	VCC
W26	VSS
W25	VCC
W24	VSS
W23	VCC
W22	VSS
W21	VCC
W20	VSS
W19	VCC
W18	VCC
W17	VCC
W15	VCCR_EXP
W14	VSS
W13	VSS
W12	PEG2_RXP_0
W11	VCC_EXP
W10	VCC_EXP
W8	VCC_EXP
W7	VCC_EXP
W6	VSS
W5	VCC_EXP
W4	VCC_EXP

Table 26. MCH Ballout Sorted By Ball Number

Sorted B	y Ball Number
Ball #	Signal Name
W2	VCC_EXP
V45	VSS
V43	FSB_AB_28
V42	FSB_HITMB
V40	VSS
V39	FSB_AB_24
V38	FSB_AB_23
V36	VSS
V35	FSB_AB_26
V34	FSB_ADSTBB_1
V33	VSS
V32	RSVD
V31	VCC_CL
V29	VCC_CL
V28	VCC
V27	VSS
V26	VCC
V25	VSS
V24	VCC
V23	VSS
V22	VCC
V21	VSS
V20	VCC
V19	VSS
V18	VCC
V17	VCC
V15	VCCR_EXP
V14	VCCR_EXP
V13	VSS
V12	RSVD
V11	DMI_TXN_3
V10	DMI_TXP_3
V8	VSS
V7	DMI_RXP_3
V6	DMI_RXN_3
V4	VCC_EXP
V3	VCC_EXP
V1	VCC_EXP
U44	FSB_ADSB
U42	FSB_BNRB

Table 26. MCH Ballout Sorted By Ball Number

Ball # Signal Name U41 FSB_DRDYB U29 **VCCAUX** U28 VCC U27 VCC VCC U26 U25 VCC U24 VCC VCC U23 U22 VCC U21 VCC VCC U20 U19 VCC U18 VCC U17 VCC U5 VCC_EXP U4 VCC_EXP U2 VCC_EXP T45 FSB_LOCKB T43 VSS T42 FSB_DBSYB T40 FSB_AB_17 T39 FSB_DEFERB T38 FSB_AB_20 T36 FSB_AB_18 T35 **VSS** T34 FSB_AB_19 RSVD T33 T32 VSS T31 VCCAUX VCCR_EXP T15 T14 VCCR_EXP T13 VSS RSVD T12 T11 VSS T10 EXP_COMPO T8 DMI_RXN_1 T7 DMI_RXP_1 T6 VSS

T4

Т3

VCC_EXP

Table 26. MCH Ballout Sorted By Ball Number

Ball #	Signal Name
T1	DMI_TXN_2
R44	FSB_RSB_0
R42	FSB_HITB
R41	FSB_RSB_2
R40	VSS
R39	FSB_AB_14
R38	VSS
R36	FSB_AB_10
R35	FSB_AB_16
R34	VSS
R33	RSVD
R30	VCCAUX
R28	VCCAUX
R27	VCCAUX
R25	VCCAUX
R24	VCCAUX
R23	VCCAUX
R22	RSVD
R21	VSS
R19	RSVD
R18	VCC
R16	VCC
R13	VSS
R12	VSS
R11	VSS
R10	EXP_COMPI
R8	VSS
R7	DMI_TXP_0
R6	DMI_TXN_0
R5	DMI_RXN_2
R4	VSS
R2	DMI_TXP_2
P45	VSS
P43	FSB_AB_21
P42	FSB_DB_0
P32	VSS
P30	HPL_CLKINN
P28	HPL_CLKINP
P27	VSS
P25	VSS

Table 26. MCH Ballout Sorted By Ball Number

P24 VSS P23 VSS P21 RSVD P19 RSVD_P19 P18 VSS P16 ICH_SYNCB P14 VSS P4 DMI_RXP_2 P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_1 N40 FSB_AB_1 N39 FSB_AB_1 N30 FSB_AB_1 N31 FSB_AB_1 N33 FSB_AB_1 N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DSTBPB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N24 FSB_DB_42 N23 VSS N21 RSVD N16 VSS N17	Ball #	Signal Name
P22 VSS P21 RSVD P19 RSVD_P19 P18 VSS P16 ICH_SYNCB P14 VSS P4 DMI_RXP_2 P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13	P24	VSS
P21 RSVD P19 RSVD_P19 P18 VSS P16 ICH_SYNCB P14 VSS P4 DMI_RXP_2 P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_1 N36 FSB_AB_13 N36 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_42 N27 VSS N22 VSS N23 VSS N24 FSB_DB_42 N23 VSS N24 FSB_DB_42 N23 VSS N24	P23	VSS
P19 RSVD_P19 P18 VSS P16 ICH_SYNCB P14 VSS P4 DMI_RXP_2 P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DSTBPB_2 N27 VSS N28 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N24 FSB_DB_42 N23 VSS N21 RSVD N19 VSS N18 RSVD N11 <td>P22</td> <td>VSS</td>	P22	VSS
P18 VSS P16 ICH_SYNCB P14 VSS P4 DMI_RXP_2 P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N28 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N24 FSB_DB_42 N23 VSS N24 FSB_DB_42 N25 FSB_DB_42 N26 VSS N17 VSS N18 RSVD N11	P21	RSVD
P16 ICH_SYNCB P14 VSS P4 DMI_RXP_2 P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DSTBPB_2 N27 VSS N28 FSB_DSTBPB_2 N29 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N10 PEG_RXP_15	P19	RSVD_P19
P14 VSS P4 DMI_RXP_2 P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DSTBPB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N10 PEG_RXN_15 N8 PEG_RXP_15	P18	VSS
P4 DMI_RXP_2 P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N10 PEG_RXN_15 N8 PEG_RXP_15	P16	ICH_SYNCB
P3 DMI_TXN_1 P1 VSS N44 FSB_DB_2 N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N29 FSB_DB_37 N20 FSB_DB_37 N21 FSB_DSTBPB_2 N22 VSS N23 VSS N24 FSB_DB_42 N23 VSS N21 RSVD N19 VSS N19 VSS N18 RSVD N11 RSVD N11 RSVD N11 RSVD N10 PEG_RXN_15 N8	P14	VSS
P1 VSS N44 FSB_DB_2 N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N29 VSS N21 FSB_DSTBPB_2 N24 FSB_DSTBPB_2 N25 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N10 PEG_RXN_15 N8 PEG_RXP_15	P4	DMI_RXP_2
N44 FSB_DB_2 N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N25 FSB_DSTBPB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	P3	DMI_TXN_1
N42 FSB_DB_4 N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N29 FSB_DB_37 N20 FSB_DB_37 N21 FSB_DSTBPB_2 N22 VSS N23 VSS N24 FSB_DSTBPB_2 N25 FSB_DB_42 N23 VSS N24 FSB_DB_42 N25 NS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N10 PEG_RXN_15 N8 PEG_RXP_15	P1	VSS
N41 FSB_DB_1 N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_B_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N44	FSB_DB_2
N40 FSB_AB_9 N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N42	FSB_DB_4
N39 FSB_AB_11 N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N29 FSB_DB_37 N20 FSB_DB_37 N21 FSB_DSTBPB_2 N24 FSB_DSTBPB_2 N25 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N41	FSB_DB_1
N38 FSB_AB_13 N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N40	FSB_AB_9
N36 FSB_AB_8 N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N39	FSB_AB_11
N35 VSS N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N28 FSB_DB_37 N29 VSS N21 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N38	FSB_AB_13
N34 FSB_AB_12 N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXP_15	N36	FSB_AB_8
N33 FSB_DB_28 N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N35	VSS
N31 FSB_DB_30 N30 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N15 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N34	FSB_AB_12
N30 FSB_DB_37 N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N17 VCC_N15 N13 PEG_RXP_4 N11 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N33	FSB_DB_28
N28 FSB_DINVB_2 N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N31	FSB_DB_30
N27 VSS N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N30	FSB_DB_37
N25 FSB_DSTBPB_2 N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N28	FSB_DINVB_2
N24 FSB_DB_42 N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N27	VSS
N23 VSS N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N25	FSB_DSTBPB_2
N22 VSS N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N24	FSB_DB_42
N21 RSVD N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N23	VSS
N19 VSS N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N22	VSS
N18 RSVD N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N21	RSVD
N16 VSS N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N19	VSS
N15 VCC_N15 N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N18	RSVD
N13 PEG_RXP_4 N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N16	VSS
N12 RSVD N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N15	VCC_N15
N11 RSVD N10 PEG_RXN_15 N8 PEG_RXP_15	N13	PEG_RXP_4
N10 PEG_RXN_15 N8 PEG_RXP_15	N12	RSVD
N8 PEG_RXP_15	N11	RSVD
	N10	PEG_RXN_15
N7 VSS	N8	PEG_RXP_15
	N7	VSS

Table 26. MCH Ballout Table 26. MCH Ballout

Ball #	Signal Name
N6	VSS
N5	DMI_RXP_0
N4	VSS
N2	DMI_TXP_1
M45	FSB_DB_5
M43	VSS
M42	FSB_DB_3
M40	FSB_ADSTBB_0
M39	VSS
M38	FSB_AB_4
M36	FSB_AB_5
M35	VSS
M34	VSS
M33	VSS
M31	FSB_DB_31
M30	FSB_DB_35
M28	VSS
M27	VTT_FSB
M25	FSB_DSTBNB_2
M24	VSS
M23	VSS
M22	BSEL0
M21	ALLZTEST
M19	RSVD_M19
M18	VSS
M16	RSVD
M15	VSS_M15
M13	PEG_RXN_4
M12	VSS
M11	PEG_RXP_12
M10	VSS
M8	PEG_RXN_13
M7	PEG_RXP_13
M6	VSS
M4	DMI_RXN_0
M3	VCCR_EXP
M1	PEG_TXP_15
L44	FSB_DB_6
L42	FSB_DB_7
L41	FSB_DINVB_0

Sorted By Ball Number Sorted By Ball Number

5 = ==================================
Signal Name
FSB_AB_7
FSB_REQB_2
VSS
FSB_DB_19
VSS
FSB_DB_27
FSB_DB_29
VSS
FSB_DB_36
FSB_DB_41
VTT_FSB
FSB_DB_43
FSB_DB_44
VSS
XORTEST
VSS
RSVD
RSVD
VCC3_3_L16
VSS
PEG_RXP_3
PEG_RXN_6
VSS
PEG_RXN_12
VSS
VSS
VSS
PEG_TXP_14
VSS
PEG_TXN_15
VSS
FSB_DSTBNB_0
FSB_AB_15
VSS
VSS
FSB_AB_6
FSB_REQB_3
FSB_DB_21
FSB_DB_24
VSS

Table 26. MCH Ballout **Sorted By Ball Number**

	5 = ==================================
Ball #	Signal Name
K31	FSB_DB_33
K30	VSS
K28	FSB_DB_40
K27	VTT_FSB
K25	VTT_FSB
K24	FSB_DB_46
K23	VSS
K22	RSVD
K21	RSVD
K19	EXP_SLR
K18	VSS
K16	VSS_K16
K15	VSS
K13	PEG_RXN_3
K12	VSS
K11	PEG_RXP_6
K10	VSS
K8	PEG_RXN_11
K7	PEG_RXP_11
K6	VSS
K4	PEG_TXN_14
К3	PEG_RXP_14
K1	VSS
J44	FSB_DSTBPB_0
J43	FSB_DB_8
J41	FSB_DB_10
J5	PEG_TXP_13
J3	VSS
J2	PEG_RXN_14
H45	FSB_DB_12
H43	VSS
H42	FSB_DB_9
H40	VSS
H39	FSB_REQB_4
H38	FSB_BPRIB
H36	VSS
H35	VSS
H34	FSB_DSTBPB_1
H33	FSB_DB_25
H31	FSB_DB_34

Table 26. MCH Ballout Sorted By Ball Number

Ball # Signal Name H30 FSB_DB_39 H28 VTT_FSB H27 VTT_FSB H25 VTT_FSB H24 FSB_DB_45 H23 VSS H22 VSS RSVD H21 H19 VSS H18 VSS H16 VSS_H16 H15 RSVD_H15 H13 PEG_RXP_2 H12 PEG_RXP_5 H11 VSS H10 PEG_RXN_7 Н8 VSS Н7 VSS Н6 VSS H4 PEG_TXN_13 НЗ VCCR_EXP H1 PEG_TXP_12 G44 FSB_DB_13 G42 FSB_DB_11 G40 FSB_REQB_1 G39 VSS G38 FSB_DB_20 G36 FSB_DB_22 G35 FSB_DB_23 G34 FSB_DSTBNB_1 G33 VSS G31 VSS G30 FSB_DB_38 G28 VTT_FSB G27 VTT_FSB G25 VTT_FSB G24 FSB_DB_47 G23 VSS G22 RSVD G21 **TCEN**

Table 26. MCH Ballout Sorted By Ball Number

Ball #	Signal Name
G19	MTYPE
G18	VSS
G16	VCC3_3_G16
G15	RSVD_G15
G13	PEG_RXN_2
G12	PEG_RXN_5
G11	VSS
G10	PEG_RXP_7
G8	VSS
G7	VSS
G6	PEG_RXN_9
G4	VSS
G2	PEG_TXN_12
F45	VSS
F43	FSB_AB_3
F41	FSB_DB_14
F40	VSS
F39	FSB_DB_17
F38	FSB_DB_16
F36	VSS
F35	FSB_DB_48
F34	VSS
F33	FSB_DB_26
F31	FSB_DB_32
F30	VTT_FSB
F28	VTT_FSB
F27	VTT_FSB
F25	VTT_FSB
F24	VSS
F23	VSS
F22	VSS_F22
F21	BSEL1
F19	RSVD
F18	BSEL2
F16	VSS
F15	VSS
F13	VSS
F12	VSS
F11	VSS
F10	VSS

Table 26. MCH Ballout Sorted By Ball Number

Ball #	Signal Name
F8	VSS
F7	PEG_RXP_9
F6	VSS
F5	PEG_TXP_11
F3	PEG_TXP_10
F1	VSS
E42	FSB_DB_15
E41	FSB_DB_50
E40	FSB_DINVB_1
E37	FSB_DB_61
E35	FSB_DB_63
E33	VTT_FSB
E31	VTT_FSB
E29	VTT_FSB
E27	FSB_DVREF
E25	VCC_E25
E21	VSS
E19	VSS
E17	PEG_TXN_0
E15	PEG_TXP_1
E13	PEG_TXP_2
E11	PEG_TXN_4
E9	PEG_TXN_6
E6	PEG_RXP_8
E5	VSS
E4	PEG_TXN_11
D44	FSB_DB_52
D43	FSB_DB_53
D42	VSS
D41	FSB_DSTBNB_3
D39	FSB_DB_57
D38	FSB_DB_54
D36	FSB_DB_59
D35	FSB_CPURSTB
D34	VSS
D33	VTT_FSB
D32	VTT_FSB
D31	VTT_FSB
D30	VTT_FSB
D29	VSS

Table 26. MCH Ballout Sorted By Ball Number

D28 D27	Signal Name FSB SCOMP	
	FSB SCOMP	
D27	_	
	FSB_ACCVREF	
D26	VCCA_HPL	
D25	VCCA_HPL	
D24	VSS_D24	
D23	VSS	
D22	VSS_D22	
D21	VSS_D21	
D20	VCCA_EXP	
D19	EXP_CLKINP	
D18	EXP_CLKINN	
D17	VSS	
D16	PEG_TXP_0	
D15	VSS	
D14	PEG_TXN_1	
D13	VSS	
D12	PEG_TXN_2	
D11	VSS	
D10	PEG_TXP_4	
D8	PEG_TXP_6	
D7	VSS	
D5	PEG_RXN_8	
D4	VSS	
D3	PEG_TXN_10	
D2	PEG_RXP_10	
C45	VSS	
C44	FSB_REQB_0	
C43	VSS	
C42	FSB_DB_51	
C40	FSB_DSTBPB_3	
C38	VSS	
C37	FSB_DB_60	
C36	FSB_DB_58	
C34	VSS	
C32	VTT_FSB	
C30	VSS	
C28	FSB_SCOMPB	
C26	FSB_RCOMP	
C24	VSS_C24	
C23	VSS_C23	

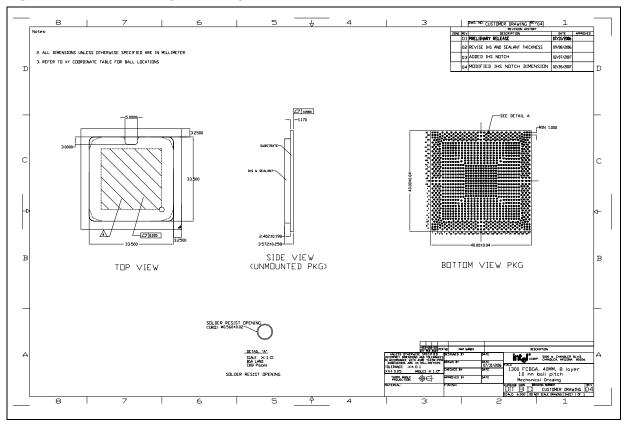
Table 26. MCH Ballout Sorted By Ball Number

	,
Ball #	Signal Name
C22	VSS
C20	VSS
C18	VCC_C18
C16	VCCR_EXP
C14	PEG_RXN_1
C12	VCCR_EXP
C10	PEG_TXN_5
C9	VSS
C8	VCCR_EXP
C6	PEG_TXP_8
C4	PEG_TXN_8
C3	VSS
C2	PEG_RXN_10
C1	VSS
B45	NC
B44	VSS
B43	FSB_DB_18
B42	FSB_DB_55
B39	FSB_DB_56
B37	FSB_DINVB_3
B35	FSB_DB_62
B33	VTT_FSB
B31	VTT_FSB
B29	VSS
B27	VCCA_MPL
B25	VCC_B25
B21	VSS_B21
B19	RSVD
B17	VSS_B17
B15	PEG_RXN_0
B13	PEG_RXP_1
B11	PEG_TXP_3
B9	PEG_TXP_5
B7	PEG_TXP_7
B4	PEG_TXN_9
В3	PEG_TXP_9
B2	VSS
B1	NC
A45	TEST3
A44	NC

Table 26. MCH Ballout Sorted By Ball Number

A43 VSS A40 VSS A38 FSB_DB_49 A36 VSS A34 VSS A32 VTT_FSB A30 VTT_FSB A28 FSB_SWING A26 VSS A24 VSS_A24 A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_O A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS A2 TEST2	Ball #	Signal Name
A38 FSB_DB_49 A36 VSS A34 VSS A32 VTT_FSB A30 VTT_FSB A28 FSB_SWING A26 VSS A24 VSS_A24 A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A43	VSS
A36 VSS A34 VSS A32 VTT_FSB A30 VTT_FSB A28 FSB_SWING A26 VSS A24 VSS_A24 A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A40	VSS
A34 VSS A32 VTT_FSB A30 VTT_FSB A28 FSB_SWING A26 VSS A24 VSS_A24 A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A38	FSB_DB_49
A32 VTT_FSB A30 VTT_FSB A28 FSB_SWING A26 VSS A24 VSS_A24 A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A36	VSS
A30 VTT_FSB A28 FSB_SWING A26 VSS A24 VSS_A24 A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A34	VSS
A28 FSB_SWING A26 VSS A24 VSS_A24 A23 VCC3_3 A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_O A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A32	VTT_FSB
A26 VSS A24 VSS_A24 A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A30	VTT_FSB
A24 VSS_A24 A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A28	FSB_SWING
A23 VCC3_3 A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A26	VSS
A22 VSS A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A24	VSS_A24
A20 VCCAPLL_EXP A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A23	VCC3_3
A18 VSS A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A22	VSS
A16 PEG_RXP_0 A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A20	VCCAPLL_EXP
A14 VSS A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A18	VSS
A12 PEG_TXN_3 A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A16	PEG_RXP_0
A10 VSS A8 PEG_TXN_7 A6 VSS A3 VSS	A14	VSS
A8 PEG_TXN_7 A6 VSS A3 VSS	A12	PEG_TXN_3
A6 VSS A3 VSS	A10	VSS
A3 VSS	A8	PEG_TXN_7
	A6	VSS
A2 TEST2	A3	VSS
	A2	TEST2

NOTE: See list of notes at beginning of chapter.

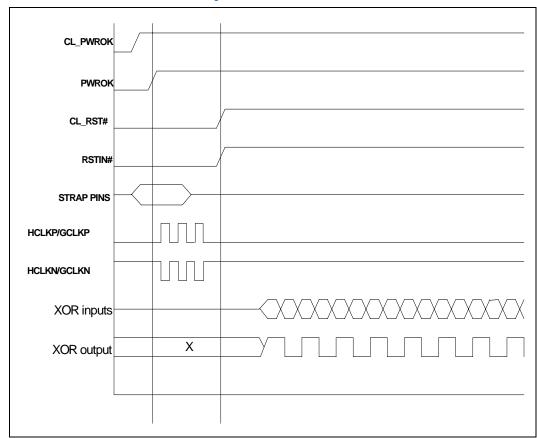

§ §

11.2 Package Information

The MCH is available in a 40 mm [1.57 in] x 40 mm [1.57 in] Flip Chip Ball Grid Array (FC-BGA) package with an integrated heat spreader (IHS) and 1300 solder balls. Figure 13 shows the package drawing.

Figure 13. MCH Package Drawing

12 Testability


In the MCH, testability for Automated Test Equipment (ATE) board level testing has been implemented as an XOR chain. An XOR-tree is a chain of XOR gates each with one input pin connected to it which allows for pad to ball to trace connection testing.

The XOR testing methodology is to boot the part using straps to enter XOR mode (A description of the boot process follows). Once in XOR mode, all of the pins of an XOR chain are driven to logic 1. This action will force the output of that XOR chain to either a 1 if the number of the pins making up the chain is even or a 0 if the number of the pins making up the chain is odd.

Once a valid output is detected on the XOR chain output, a walking 0 pattern is moved from one end of the chain to the other. Every time the walking 0 is applied to a pin on the chain, the output will toggle. If the output does not toggle, there is a disconnect somewhere between die, package, and board and the system can be considered a failure.

12.1 XOR Test Mode Initialization

Figure 14. XOR Test Mode Initialization Cycles

The above figure shows the wave forms to be able to boot the part into XOR mode. The straps that need to be controlled during this boot process are BSEL[2:0], RSVD (Pin L18), EXP_SLR, and XORTEST.

On X48 Express Chipset platforms, all strap values must be driven before PWROK asserts. BSEL0 must be a "1". BSEL[2:1] need to be defined values, but logic value in any order will do. XORTEST must be driven to "0".

Not all of the pins will be used in all implementations. Due to the need to minimize test points and unnecessary routing, the XOR Chain 14 is dynamic depending on the values of EXP_SLR, and RSVD (Pin L18). See Figure 27 for what parts of XOR Chain 14 become valid XOR inputs depending on the use of EXP_SLR, and RSVD (Pin L18).

12.1.1 XOR Chain Definition

The MCH has 15 XOR chains. The XOR chain outputs are driven out on the following output pins. During full-width testing, XOR chain outputs will be visible on both pins.

Table 27. XOR Chain 14 Functionality

RSVD (Pin L18)	EXP_SLR	XOR Chain 14
		EXP_RXP[15:0]
1	0	EXP_RXN[15:0]
· ·		EXP_TXP[15:0]
		EXP_TXN[15:0]
		EXP_RXP[15:0]
1	1	EXP_RXN[15:0]
·		EXP_TXP[15:0]
		EXP_TXN[15:0]
		EXP_RXP[15:8]
0	0	EXP_RXN[15:8]
		EXP_TXP[15:8]
		EXP_TXN[15:8]
		EXP_RXP[7:0]
0	1	EXP_RXN[7:0]
0		EXP_TXP[7:0]
		EXP_TXN[7:0]
		EXP_RXP[15:0]
1	0	EXP_RXN[15:0]
'		EXP_TXP[15:0]
		EXP_TXN[15:0]
1		EXP_RXP[15:0]
	1	EXP_RXN[15:0]
	'	EXP_TXP[15:0]
		EXP_TXN[15:0]

 Table 28.
 XOR Chain Outputs

XOR Chain	Output Pins	Coordinate Location
xor_out0	ALLZTEST	M21
xor_out1	XORTEST	L22
xor_out2	ICH_SYNCB	P16
xor_out3	RSVD	N18
xor_out4	RSVD	AN12
xor_out5	RSVD	AM14
xor_out6	BSEL1	F21
xor_out7	BSEL2	F18
xor_out8	RSVD	AN13
xor_out9	RSVD	AP12
xor_out10	EXP_SLR	K19
xor_out11	RSVD (Pin L18)	L18
xor_out12	BSEL0	M22
xor_out13	RSVD	H21
xor_out14	RSVD	G22

12.1.2 XOR Chains

This section provides the XOR chains.

Pin Count	Ball #	Signal Name
	M21	ALLZTEST
1	B39	FSB_DB_56
2	D44	FSB_DB_52
3	B42	FSB_DB_55
4	D39	FSB_DB_57
5	C42	FSB_DB_51
6	C36	FSB_DB_58
7	A38	FSB_DB_49
8	B35	FSB_DB_62
9	D38	FSB_DB_54
10	E41	FSB_DB_50
11	D43	FSB_DB_53
12	D36	FSB_DB_59
13	E35	FSB_DB_63
14	E37	FSB_DB_61
15	F35	FSB_DB_48
16	C37	FSB_DB_60
17	F33	FSB_DB_26
18	B43	FSB_DB_18
19	F39	FSB_DB_17
20	F38	FSB_DB_16
21	H33	FSB_DB_25
22	G36	FSB_DB_22
23	G38	FSB_DB_20
24	G35	FSB_DB_23
25	L36	FSB_DB_19
26	L33	FSB_DB_29
27	L34	FSB_DB_27
28	N33	FSB_DB_28
29	N31	FSB_DB_30
30	K34	FSB_DB_24
31	M31	FSB_DB_31
32	K35	FSB_DB_21
33	L24	FSB_DB_44
34	H24	FSB_DB_45
35	G24	FSB_DB_47
36	K28	FSB_DB_40
37	K24	FSB_DB_46
38	F31	FSB_DB_32
	1	<u> </u>

Table 29. XOR Chain 0 (DDR3) Table 29. XOR Chain 0 (DDR3)

Pin Count	Ball #	Signal Name
39	L30	FSB_DB_36
40	G30	FSB_DB_38
41	N24	FSB_DB_42
42	H31	FSB_DB_34
43	H30	FSB_DB_39
44	L28	FSB_DB_41
45	M30	FSB_DB_35
46	N30	FSB_DB_37
47	K31	FSB_DB_33
48	L25	FSB_DB_43
49	E42	FSB_DB_15
50	F41	FSB_DB_14
51	G42	FSB_DB_11
52	G44	FSB_DB_13
53	H42	FSB_DB_9
54	J43	FSB_DB_8
55	H45	FSB_DB_12
56	L42	FSB_DB_7
57	M45	FSB_DB_5
58	M42	FSB_DB_3
59	L44	FSB_DB_6
60	J41	FSB_DB_10
61	P42	FSB_DB_0
62	N41	FSB_DB_1
63	N42	FSB_DB_4
64	N44	FSB_DB_2

Table 30. XOR Chain 1 (DDR3)

Pin Count	Ball #	Signal Name
	L22	XORTEST
1	H39	FSB_REQB_4
2	K42	FSB_AB_15
3	G40	FSB_REQB_1
4	K36	FSB_REQB_3
5	F43	FSB_AB_3
6	M36	FSB_AB_5
7	K38	FSB_AB_6
8	M38	FSB_AB_4

Table 30. XOR Chain 1 (DDR3)

Pin Count	Ball #	Signal Name
9	L40	FSB_AB_7
10	C44	FSB_REQB_0
11	M40	FSB_ADSTBB_0
12	N40	FSB_AB_9
13	L39	FSB_REQB_2
14	N36	FSB_AB_8
15	N39	FSB_AB_11
16	N38	FSB_AB_13
17	R35	FSB_AB_16
18	N34	FSB_AB_12
19	R39	FSB_AB_14
20	R36	FSB_AB_10
21	T34	FSB_AB_19
22	P43	FSB_AB_21
23	T40	FSB_AB_17
24	W34	FSB_AB_25
25	W36	FSB_AB_30
26	T38	FSB_AB_20
27	V35	FSB_AB_26
28	W33	FSB_AB_27
29	W38	FSB_AB_22
30	V34	FSB_ADSTBB_1
31	AA33	FSB_AB_31
32	T36	FSB_AB_18
33	AB35	FSB_AB_34
34	AA35	FSB_AB_32
35	V38	FSB_AB_23
36	AB34	FSB_AB_29
37	V39	FSB_AB_24
38	AA40	FSB_AB_33
39	V43	FSB_AB_28
40	AA38	FSB_AB_35

Table 31. XOR Chain 2 (DDR3)

Pin Count	Ball #	Signal Name
	P16	ICH_SYNCB
1	G34	FSB_DSTBNB_1

Table 31. XOR Chain 2 (DDR3)

Pin Count	Ball #	Signal Name
2	H34	FSB_DSTBPB_1
3	W41	FSB_RSB_1
4	R42	FSB_HITB
5	W40	FSB_TRDYB
6	V42	FSB_HITMB
7	M25	FSB_DSTBNB_2
8	N25	FSB_DSTBPB_2
9	K43	FSB_DSTBNB_0
10	J44	FSB_DSTBPB_0
11	T45	FSB_LOCKB
12	U42	FSB_BNRB
13	H38	FSB_BPRIB
14	D35	FSB_CPURSTB

Table 32. XOR Chain 3 (DDR3)

Pin Count	Ball #	Signal Name
	N18	RSVD
1	D41	FSB_DSTBNB_3
2	C40	FSB_DSTBPB_3
3	B37	FSB_DINVB_3
4	E40	FSB_DINVB_1
5	T39	FSB_DEFERB
6	R44	FSB_RSB_0
7	U41	FSB_DRDYB
8	T42	FSB_DBSYB
9	R41	FSB_RSB_2
10	N28	FSB_DINVB_2
11	L41	FSB_DINVB_0
12	W44	FSB_BREQ0B
13	U44	FSB_ADSB

Table 33. XOR Chain 4 (DDR3)

Pin Count	Ball #	Signal Name
	AN12	RSVD
1	AY41	DDR_A_ODT_1

Table 33. XOR Chain 4 (DDR3)

Table co.	7.01.	onam i (DDRo)
Pin Count	Ball #	Signal Name
2	BB39	DDR_A_CSB_1
3	BD42	DDR_A_CSB_0
4	BB44	DDR3_A_CSB1
5	BD37	DDR_A_MA_10
6	BB43	DDR_A_ODT_0
7	BD35	DDR3_A_MA0
8	BC36	DDR_A_MA_0
9	BA27	DDR_A_MA_9
10	BB30	DDR_A_MA_2
11	BB29	DDR_A_MA_3
12	BA29	DDR_A_MA_4
13	AV35	DDR_A_CKB_2
14	AT34	DDR_A_CK_2
15	AT33	DDR_A_CK_0
16	AN28	DDR_A_CK_1
17	AR33	DDR_A_CKB_0
18	AM28	DDR_A_CKB_1
19	BD29	DDR_A_MA_6
20	BB31	DDR_A_MA_1
21	BB28	DDR_A_MA_5
22	BC28	DDR_A_MA_8
23	AY27	DDR_A_MA_7
24	AY24	DDR_A_CKE_0
25	BB25	DDR_A_CKE_1
26	AV21	DDR_A_DQSB_3
27	AP21	DDR_A_DM_3
28	AY15	DDR_A_DQSB_2
29	BC14	DDR_A_DM_2
30	AY11	DDR_A_DQSB_1
31	BC10	DDR_A_DM_1
32	BC6	DDR_A_DQSB_0
33	BB5	DDR_A_DM_0

Table 34. XOR Chain 5 (DDR3)

Pin Count	Ball #	Signal Name
	AM14	RSVD
1	AA44	DDR_A_DQSB_7
2	AB40	DDR_A_DM_7
3	AD42	DDR_A_DQSB_6
4	AE44	DDR_A_DM_6
5	AM42	DDR_A_DQSB_5

Table 34. XOR Chain 5 (DDR3)

Pin Count	Ball #	Signal Name
6	AN44	DDR_A_DM_5
7	AT42	DDR_A_DQSB_4
8	AU44	DDR_A_DM_4
9	BA42	DDR_A_MA_13
10	BB41	DDR_A_CASB
11	BD39	DDR_A_WEB
12	BB36	DDR_A_BS_1
13	BC40	DDR3_A_WEB
14	BB38	DDR_A_RASB
15	BC37	DDR_A_BS_0
16	BA25	DDR_A_MA_14
17	BD27	DDR_A_MA_11
18	BB26	DDR_A_BS_2
19	BB27	DDR_A_MA_12
20	AK15	CL_DATA
21	AK14	CL_CLK

Table 35. XOR Chain 6 (DDR3)

Pin Count	Ball #	Signal Name
	F21	BSEL1
1	AA42	DDR_A_DQS_7
2	Y42	DDR_A_DQ_58
3	AA41	DDR_A_DQ_62
4	AB42	DDR_A_DQ_56
5	AB43	DDR_A_DQ_57
6	W42	DDR_A_DQ_59
7	AC40	DDR_A_DQ_60
8	Y45	DDR_A_DQ_63
9	AB39	DDR_A_DQ_61
10	AD43	DDR_A_DQS_6
11	AC42	DDR_A_DQ_50
12	AC39	DDR_A_DQ_55
13	AE41	DDR_A_DQ_48
14	AD40	DDR_A_DQ_54
15	AC45	DDR_A_DQ_51
16	AF42	DDR_A_DQ_52
17	AF45	DDR_A_DQ_53
18	AE42	DDR_A_DQ_49
19	AM43	DDR_A_DQS_5

Table 35. XOR Chain 6 (DDR3)

Ball #	Signal Name
AL40	DDR_A_DQ_46
AN41	DDR_A_DQ_40
AN42	DDR_A_DQ_41
AP42	DDR_A_DQ_44
AL41	DDR_A_DQ_47
AP45	DDR_A_DQ_45
AL42	DDR_A_DQ_43
AL44	DDR_A_DQ_42
AT43	DDR_A_DQS_4
AU43	DDR_A_DQ_33
AU41	DDR_A_DQ_37
AV42	DDR_A_DQ_32
AR41	DDR_A_DQ_38
AR40	DDR_A_DQ_39
AR44	DDR_A_DQ_34
AW42	DDR_A_DQ_36
AR42	DDR_A_DQ_35
AT21	DDR_A_DQS_3
AY21	DDR_A_DQ_25
AW19	DDR_A_DQ_29
AN21	DDR_A_DQ_30
AW22	DDR_A_DQ_31
AT22	DDR_A_DQ_27
AN22	DDR_A_DQ_26
AN19	DDR_A_DQ_24
AV19	DDR_A_DQ_28
BA15	DDR_A_DQS_2
BB16	DDR_A_DQ_18
BD15	DDR_A_DQ_22
BE16	DDR_A_DQ_19
BB14	DDR_A_DQ_17
BB15	DDR_A_DQ_23
BA13	DDR_A_DQ_20
BD13	DDR_A_DQ_16
BB13	DDR_A_DQ_21
BA11	DDR_A_DQS_1
BC9	DDR_A_DQ_13
BD11	DDR_A_DQ_14
BB11	DDR_A_DQ_15
BE12	DDR_A_DQ_11
	AL40 AN41 AN42 AP42 AL41 AP45 AL42 AL44 AT43 AU43 AU41 AV42 AR41 AR40 AR44 AW42 AR41 AY21 AY21 AW22 AN21 AW22 AN21 AW22 AN21 BB15 BB16 BB14 BB15 BB16 BB14 BB15 BB13 BB13 BB13 BB11 BC9 BD11 BB11

Table 35. XOR Chain 6 (DDR3)

Pin Count	Ball #	Signal Name
60	BD9	DDR_A_DQ_8
61	BA9	DDR_A_DQ_12
62	BB12	DDR_A_DQ_10
63	BB10	DDR_A_DQ_9
64	BA6	DDR_A_DQS_0
65	BB7	DDR_A_DQ_7
66	BB8	DDR_A_DQ_2
67	BE8	DDR_A_DQ_3
68	BD7	DDR_A_DQ_6
69	BD4	DDR_A_DQ_1
70	BC4	DDR_A_DQ_0
71	BB4	DDR_A_DQ_5
72	BD3	DDR_A_DQ_4

Table 36. XOR Chain 7 (DDR3)

Pin Count	Ball #	Signal Name
	F18	BSEL2
1	AW44	DDR_A_ODT_3
2	AY43	DDR_A_CSB_3
3	BA41	DDR_A_ODT_2
4	BB39	DDR_A_CSB_2
5	AV31	DDR_A_CK_3
6	AT31	DDR_A_CKB_3
7	AT36	DDR_A_CKB_5
8	AT35	DDR_A_CK_5
9	AN27	DDR_A_CK_4
10	AM27	DDR_A_CKB_4
11	BC24	DDR_A_CKE_3
12	BB25	DDR_A_CKE_2
13	BB23	DDR3_DRAMRSTB

Table 37. XOR Chain 8 (DDR3)

Pin Count	Ball #	Signal Name
	AN13	RSVD
1	BB34	DDR_B_ODT_1

Table 37. XOR Chain 8 (DDR3) Table 38.

Pin Count	Ball #	Signal Name
2	BD33	DDR_B_ODT_0
3	BB35	DDR_B_CSB_1
4	BA31	DDR_B_CSB_0
5	AV30	DDR_B_CKB_0
6	AW30	DDR_B_CK_0
7	AW33	DDR_B_CKB_2
8	AR28	DDR_B_CK_1
9	AP28	DDR_B_CKB_1
10	AV33	DDR_B_CK_2
11	BB21	DDR_B_MA_5
12	BB22	DDR_B_MA_2
13	BD21	DDR_B_MA_4
14	BC22	DDR_B_MA_1
15	AW24	DDR_B_MA_10
16	BB20	DDR_B_MA_6
17	BB19	DDR_B_MA_9
18	BE20	DDR_B_MA_8
19	BA21	DDR_B_MA_3
20	AY19	DDR_B_MA_7
21	BD17	DDR_B_CKE_0
22	AY22	DDR_B_MA_0
23	BD19	DDR_B_CKE_1
24	AR24	DDR_B_DQSB_3
25	AY25	DDR_B_DM_3
26	AP16	DDR_B_DQSB_2
27	AW16	DDR_B_DM_2
28	AR12	DDR_B_DQSB_1
29	AT13	DDR_B_DM_1
30	AT10	DDR_B_DQSB_0
31	AY8	DDR_B_DM_0

Table 38. XOR Chain 9 (DDR3)

Pin Count	Ball #	Signal Name
	AP12	RSVD
1	AD33	DDR_B_DQSB_7
2	AD35	DDR_B_DM_7
3	AG38	DDR_B_DQSB_6
4	AG35	DDR_B_DM_6

Table 38. XOR Chain 9 (DDR3)

Pin Count	Ball #	Signal Name
5	AP40	DDR_B_DQSB_5
6	AN36	DDR_B_DM_5
7	AV38	DDR_B_DQSB_4
8	AY40	DDR_B_DM_4
9	BA33	DDR_B_MA_13
10	BD31	DDR_B_RASB
11	BB32	DDR_B_CASB
12	AY31	DDR_B_WEB
13	AY18	DDR_B_MA_12
14	BA19	DDR_B_MA_11
15	BC18	DDR_B_MA_14
16	BB18	DDR_B_BS_2
17	BB24	DDR_B_BS_0
18	AW23	DDR_B_BS_1

Table 39. XOR Chain 10 (DDR3)

Pin Count	Ball #	Signal Name
	K19	EXP_SLR
1	AC33	DDR_B_DQS_7
2	AC36	DDR_B_DQ_62
3	AB32	DDR_B_DQ_58
4	AB38	DDR_B_DQ_59
5	AE34	DDR_B_DQ_61
6	AD36	DDR_B_DQ_57
7	AE35	DDR_B_DQ_60
8	AD39	DDR_B_DQ_56
9	AC34	DDR_B_DQ_63
10	AG39	DDR_B_DQS_6
11	AE38	DDR_B_DQ_51
12	AE33	DDR_B_DQ_55
13	AE39	DDR_B_DQ_50
14	AH33	DDR_B_DQ_52
15	AH34	DDR_B_DQ_48
16	AH36	DDR_B_DQ_53
17	AG33	DDR_B_DQ_49
18	AE40	DDR_B_DQ_54
19	AP39	DDR_B_DQS_5
20	AP35	DDR_B_DQ_42

Table 39. XOR Chain 10 (DDR3) Table 39.

Pin Count	Ball #	Signal Name
21	AN39	DDR_B_DQ_46
22	AP36	DDR_B_DQ_41
23	AV36	DDR_B_DQ_44
24	AR34	DDR_B_DQ_45
25	AN40	DDR_B_DQ_47
26	AR36	DDR_B_DQ_40
27	AN33	DDR_B_DQ_43
28	AW39	DDR_B_DQS_4
29	AV39	DDR_B_DQ_38
30	AT40	DDR_B_DQ_35
31	AT38	DDR_B_DQ_34
32	AV40	DDR_B_DQ_39
33	AY39	DDR_B_DQ_32
34	AW38	DDR_B_DQ_33
35	AW36	DDR_B_DQ_37
36	AY38	DDR_B_DQ_36
37	AR25	DDR_B_DQS_3
38	AV27	DDR_B_DQ_27
39	AP27	DDR_B_DQ_31
40	AT25	DDR_B_DQ_30
41	AT27	DDR_B_DQ_26
42	AW25	DDR_B_DQ_24
43	AP24	DDR_B_DQ_29
44	AN24	DDR_B_DQ_28
45	AV25	DDR_B_DQ_25
46	AN18	DDR_B_DQS_2
47	AT19	DDR_B_DQ_19
48	AP19	DDR_B_DQ_18
49	AN16	DDR_B_DQ_20
50	AT18	DDR_B_DQ_22
51	AR18	DDR_B_DQ_23
52	AV16	DDR_B_DQ_17
53	AR16	DDR_B_DQ_21
54	AY16	DDR_B_DQ_16
55	AR13	DDR_B_DQS_1
56	AV15	DDR_B_DQ_11
57	AT15	DDR_B_DQ_10
58	AW13	DDR_B_DQ_13
59	AN15	DDR_B_DQ_14
60	AY13	DDR_B_DQ_9

Table 39. XOR Chain 10 (DDR3)

Pin Count	Ball #	Signal Name
61	AW12	DDR_B_DQ_12
62	AP15	DDR_B_DQ_15
63	AY12	DDR_B_DQ_8
64	AW10	DDR_B_DQS_0
65	AW8	DDR_B_DQ_0
66	AT11	DDR_B_DQ_2
67	AW11	DDR_B_DQ_7
68	AY7	DDR_B_DQ_1
69	AW6	DDR_B_DQ_5
70	AR11	DDR_B_DQ_6
71	AT12	DDR_B_DQ_3
72	AV8	DDR_B_DQ_4

Table 40. XOR Chain 11 (DDR3)

Pin Count	Ball #	Signal Name
	L18	RSVD
1	AY35	DDR_B_ODT_3
2	BA35	DDR_B_CSB_3
3	BB33	DDR_B_ODT_2
4	BA37	DDR3_B_ODT3
5	BC32	DDR_B_CSB_2
6	AY34	DDR_B_CKB_5
7	AW34	DDR_B_CK_5
8	AY28	DDR_B_CKB_4
9	AY30	DDR_B_CK_4
10	AP31	DDR_B_CKB_3
11	AR31	DDR_B_CK_3
12	BA17	DDR_B_CKE_3
13	BB17	DDR_B_CKE_2

Table 41. XOR Chain 12 (DDR3)

Pin Count	Ball #	Signal Name
	M22	BSEL0
1	V10	DMI_TXP_3
2	V11	DMI_TXN_3

Table 41. XOR Chain 12 (DDR3)

Pin Count	Ball #	Signal Name
3	V7	DMI_RXP_3
4	V6	DMI_RXN_3
5	R2	DMI_TXP_2
6	T1	DMI_TXN_2
7	P4	DMI_RXP_2
8	R5	DMI_RXN_2
9	N2	DMI_TXP_1
10	P3	DMI_TXN_1
11	T7	DMI_RXP_1
12	T8	DMI_RXN_1
13	R7	DMI_TXP_0
14	R6	DMI_TXN_0
15	N5	DMI_RXP_0
16	M4	DMI_RXN_0

Table 42. XOR Chain 13 (DDR3)

Pin Count	Ball #	Signal Name
	H21	RSVD
1	A8	PEG_TXN_7
2	B7	PEG_TXP_7
3	H10	PEG_RXN_7
4	G10	PEG_RXP_7
5	E9	PEG_TXN_6
6	D8	PEG_TXP_6
7	L12	PEG_RXN_6
8	K11	PEG_RXP_6
9	C10	PEG_TXN_5
10	В9	PEG_TXP_5
11	G12	PEG_RXN_5
12	H12	PEG_RXP_5
13	E11	PEG_TXN_4
14	D10	PEG_TXP_4
15	M13	PEG_RXN_4
16	N13	PEG_RXP_4
17	A12	PEG_TXN_3
18	B11	PEG_TXP_3
19	K13	PEG_RXN_3
20	L13	PEG_RXP_3

Table 42. XOR Chain 13 (DDR3)

Pin Count	Ball #	Signal Name
21	D12	PEG_TXN_2
22	E13	PEG_TXP_2
23	G13	PEG_RXN_2
24	H13	PEG_RXP_2
25	D14	PEG_TXN_1
26	E15	PEG_TXP_1
27	C14	PEG_RXN_1
28	B13	PEG_RXP_1
29	E17	PEG_TXN_0
30	D16	PEG_TXP_0
31	B15	PEG_RXN_0
32	A16	PEG_RXP_0
33	L2	PEG_TXN_15
34	M1	PEG_TXP_15
35	N10	PEG_RXN_15
36	N8	PEG_RXP_15
37	K4	PEG_TXN_14
38	L5	PEG_TXP_14
39	J2	PEG_RXN_14
40	К3	PEG_RXP_14
41	H4	PEG_TXN_13
42	J5	PEG_TXP_13
43	M8	PEG_RXN_13
44	M7	PEG_RXP_13
45	G2	PEG_TXN_12
46	H1	PEG_TXP_12
47	L10	PEG_RXN_12
48	M11	PEG_RXP_12
49	E4	PEG_TXN_11
50	F5	PEG_TXP_11
51	К8	PEG_RXN_11
52	K7	PEG_RXP_11
53	D3	PEG_TXN_10
54	F3	PEG_TXP_10
55	C2	PEG_RXN_10
56	D2	PEG_RXP_10
57	B4	PEG_TXN_9
58	В3	PEG_TXP_9
59	G6	PEG_RXN_9
60	F7	PEG_RXP_9

Table 42. XOR Chain 13 (DDR3)

Pin Count	Ball #	Signal Name
61	C4	PEG_TXN_8
62	C6	PEG_TXP_8
63	D5	PEG_RXN_8
64	E6	PEG_RXP_8

Table 43. XOR Chain 14 (DDR3)

Pin Count	Ball #	Signal Name
	G22	RSVD
1	AJ5	PEG2_TXN_7
2	AK4	PEG2_TXP_7
3	AE11	PEG2_RXN_7
4	AE10	PEG2_RXP_7
5	AH3	PEG2_TXN_6
6	AJ2	PEG2_TXP_6
7	AD12	PEG2_RXN_6
8	AE13	PEG2_RXP_6
9	AG5	PEG2_TXN_5
10	AH4	PEG2_TXP_5
11	AC7	PEG2_RXN_5
12	AC6	PEG2_RXP_5
13	AF1	PEG2_TXN_4
14	AG2	PEG2_TXP_4
15	AC10	PEG2_RXN_4
16	AC11	PEG2_RXP_4
17	AE5	PEG2_TXN_3
18	AF4	PEG2_TXP_3
19	AB12	PEG2_RXN_3
20	AC13	PEG2_RXP_3
21	AD3	PEG2_TXN_2
22	AE2	PEG2_TXP_2
23	AA7	PEG2_RXN_2
24	AA6	PEG2_RXP_2
25	AC4	PEG2_TXN_1
26	AD4	PEG2_TXP_1
27	AA11	PEG2_RXN_1
28	AA10	PEG2_RXP_1
29	AB1	PEG2_TXN_0

Table 43. XOR Chain 14 (DDR3)

Table 45.	XOK 0	Halli 14 (DDR3)
Pin Count	Ball #	Signal Name
30	AB3	PEG2_TXP_0
31	AA13	PEG2_RXN_0
32	W12	PEG2_RXP_0
33	AP6	PEG2_TXN_15
34	AP7	PEG2_TXP_15
35	AP11	PEG2_RXN_15
36	AP10	PEG2_RXP_15
37	AT3	PEG2_TXN_14
38	AU2	PEG2_TXP_14
39	AL7	PEG2_RXN_14
40	AL6	PEG2_RXP_14
41	AR5	PEG2_TXN_13
42	AT4	PEG2_TXP_13
43	AL10	PEG2_RXN_13
44	AL11	PEG2_RXP_13
45	AP1	PEG2_TXN_12
46	AR2	PEG2_TXP_12
47	AK13	PEG2_RXN_12
48	AK12	PEG2_RXP_12
49	AN5	PEG2_TXN_11
50	AP4	PEG2_TXP_11
51	AH6	PEG2_RXN_11
52	AH7	PEG2_RXP_11
53	AM3	PEG2_TXN_10
54	AN2	PEG2_TXP_10
55	AH10	PEG2_RXN_10
56	AH11	PEG2_RXP_10
57	AL5	PEG2_TXN_9
58	AM4	PEG2_TXP_9
59	AH13	PEG2_RXN_9
60	AG12	PEG2_RXP_9
61	AK1	PEG2_TXN_8
62	AL2	PEG2_TXP_8
63	AE6	PEG2_RXN_8
64	AE7	PEG2_RXP_8

§§

