

Intel® G35 Express Chipset

Datasheet

- For the 82G35 Graphics and Memory Controller Hub (GMCH)

August 2007

Document Number: 317607-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel 82G35 GMCH may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/info/hyperthreading/ for more information including details on which processors support HT Technology.

 I^2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I^2C bus/protocol and was developed by Intel. Implementations of the I^2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel, Pentium, Intel Core, Intel Inside, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright[©] 2007, Intel Corporation

Contents

1.1 Terminology1.2 Reference Documents	
1.2 Reference Documents	
1.3 GMCH Overview	
1.3.1 Host Interface	
1.3.2 System Memory Interface	
1.3.3 Direct Media Interface (DMI)	
1.3.4 PCI Express* Interface	
1.3.5 Graphics Features	
1.3.6 SDVO and Analog Display Features	
1.3.7 GMCH Clocking	
1.3.8 Power Management	
1.3.9 Thermal Sensor	28
2 Signal Description	30
2.1 Host Interface Signals	31
2.2 DDR2 DRAM Channel A Interface	34
2.3 DDR2 DRAM Channel B Interface	35
2.4 DDR2 DRAM Reference and Compensation	
2.5 PCI Express* Interface Signals	
2.6 Analog Display Signals	
2.8 Direct Media Interface (DMI)	
2.9 Controller Link (CL)	
2.10 Intel® Serial DVO (SDVO) Interface	
2.10.1 SDVO/PCI Express* Signal Mapping	
2.11 Power, Ground	42
3 System Address Map	44
3.1 Legacy Address Range	46
3.1.1 DOS Range (0h – 9_FFFFh)	
3.1.2 Legacy Video Area (A_0000h-B_FFFFh)	
3.1.3 Expansion Area (C_0000h-D_FFFFh)	
3.1.4 Extended System BIOS Area (E_0000h-E_FFFFh)	
3.1.5 System BIOS Area (F_0000h – F_FFFFh)	
3.1.6 PAM Memory Area Details	
3.1.7 Legacy Interrupt Routing	
3.2 Main Memory Address Range (1MB – TOLUD)	
3.2.1 ISA Hole (15MB-16MB)	
3.2.2 TSEG	
3.3 PCI Memory Address Range (TOLUD – 4GB)	
3.3.1 APIC Configuration Space (FEC0_0000h_FECF_FFFFh)	
3.3.2 HSEG (FEDA_0000h_FEDB_FFFFh)	
3.3.3 FSB Interrupt Memory Space (FEE0_0000_FEEF_FFFFh) .	

		3.3.4	High BIOS Area	54
	3.4	Main Me	emory Address Space (4 GB to TOUUD)	55
		3.4.1	Memory Re-claim Background	
		3.4.2	Memory Reclaiming	
	3.5	PCI Exp	ress* Configuration Address Space	
	3.6		ress* Graphics Attach (PEG)	
	3.7		s Memory Address Ranges	
	3.8	•	Management Mode (SMM)	
	3.0	3,8,1	SMM Space Definition	
		3.8.1	SMM Space Restrictions	
		3.8.3	SMM Space Combinations	
		3.8.4	SMM Control Combinations	
		3.8.5	SMM Space Decode and Transaction Handling	
		3.8.6	Processor WB Transaction to an Enabled SMM Address Space	
		3.8.7	SMM Access Through GTT TLB	
	3.9		Shadowing	
	3.10	-	ress Space	
	3.10	3.10.1	PCI Express* I/O Address Mapping	
	3.11		code Rules and Cross-Bridge Address Mapping	
	3.11	3.11.1	Legacy VGA and I/O Range Decode Rules	
		3.11.1	Legacy VGA and 170 Range Decode Rules	64
4	GMCH	Register	Description	66
	4.1	Register	Terminology	67
	4.2	Configu	ration Process and Registers	68
		4.2.1	Platform Configuration Structure	68
	4.3	Configu	ration Mechanisms	69
		4.3.1	Standard PCI Configuration Mechanism	
		4.3.2	PCI Express* Enhanced Configuration Mechanism	70
	4.4	Routing	Configuration Accesses	
		4.4.1	Internal Device Configuration Accesses	
		4.4.2	Bridge Related Configuration Accesses	
	4.5	I/O Map	ped Registers	
		4.5.1	CONFIG_ADDRESS—Configuration Address Register	
		4.5.2	CONFIG_DATA—Configuration Data Register	
5	DΡΔΜ	Controlla	r Registers (D0:F0)	
5				
	5.1		ontroller (D0:F0)	
		5.1.1	VID—Vendor Identification	
		5.1.2	DID—Device Identification	
		5.1.3 5.1.4	PCISTS—PCI Status	
		5.1. 4 5.1.5	RID—Revision Identification	
		5.1.6	CC—Class Code	
		5.1.7	MLT—Master Latency Timer	
		5.1.8	HDR—Header Type	
		5.1.9	SVID—Subsystem Vendor Identification	
		5.1.10	SID—Subsystem Identification	
		5.1.11	CAPPTR—Capabilities Pointer	
		5.1.12	PXPEPBAR—PCI Express* Egress Port Base Address	
		5.1.13	MCHBAR—GMCH Memory Mapped Register Range Base	
		5.1.14	GGC—GMCH Graphics Control	
		5.1.15	DEVEN—Device Enable	
		5.1.16	PCIEXBAR—PCI Express* Register Range Base Address	90

	5.1.17	DMIBAR—Root Complex Register Range Base Address	
	5.1.18	PAMO—Programmable Attribute Map 0	93
	5.1.19	PAM1—Programmable Attribute Map 1	
	5.1.20	PAM2—Programmable Attribute Map 2	
	5.1.21	PAM3—Programmable Attribute Map 3	97
	5.1.22	PAM4—Programmable Attribute Map 4	98
	5.1.23	PAM5—Programmable Attribute Map 5	
	5.1.24	PAM6—Programmable Attribute Map 6	
	5.1.25	LAC—Legacy Access Control	
	5.1.26	REMAPBASE—Remap Base Address Register	
	5.1.27	REMAPLIMIT—Remap Limit Address Register	
	5.1.28	SMRAM—System Management RAM Control	
	5.1.29	ESMRAMC—Extended System Management RAM Control	
	5.1.30	TOM—Top of Memory	
	5.1.31	TOUUD—Top of Upper Usable Dram	
	5.1.32	GBSM—Graphics Base of Stolen Memory	
	5.1.33	TSEGMB—TSEG Memory Base	
	5.1.34	TOLUD—Top of Low Usable DRAM	
	5.1.35	ERRSTS—Error Status	
	5.1.36	ERRCMD—Error Command	
	5.1.37	SMICMD—SMI Command	
	5.1.38	SKPD—Scratchpad Data	
	5.1.39	CAPIDO—Capability Identifier	
5.2	MCHBAR		
	5.2.1	CHDECMISC—Channel Decode Miscellaneous	
	5.2.2	CODRBO—Channel O DRAM Rank Boundary Address O	
	5.2.3	CODRB1—Channel O DRAM Rank Boundary Address 1	
	5.2.4	CODRB2—Channel O DRAM Rank Boundary Address 2	
	5.2.5	CODRB3—Channel O DRAM Rank Boundary Address 3	
	5.2.6	CODRA01—Channel O DRAM Rank 0,1 Attribute	
	5.2.7	CODRA23—Channel O DRAM Rank 2,3 Attribute	
	5.2.8	COCYCTRKPCHG—Channel O CYCTRK PCHG	
	5.2.9	COCYCTRKACT—Channel 0 CYCTRK ACT	
	5.2.10	COCYCTRKWR—Channel 0 CYCTRK WR	
	5.2.11	COCYCTRKRD—Channel 0 CYCTRK READ	
	5.2.12	COCYCTRKREFR—Channel 0 CYCTRK REFR	
	5.2.13	COCKECTRL—Channel 0 CKE Control	
	5.2.14	COREFRCTRL—Channel O DRAM Refresh Control	
	5.2.15	COODTCTRL—Channel 0 ODT Control	
	5.2.16	C1DRB0—Channel 1 DRAM Rank Boundary Address 0	
	5.2.17	C1DRB1—Channel 1 DRAM Rank Boundary Address 1	
	5.2.18	C1DRB2—Channel 1 DRAM Rank Boundary Address 2	
	5.2.19	C1DRB3—Channel 1 DRAM Rank Boundary Address 3	
	5.2.20	C1DRA01—Channel 1 DRAM Rank 0,1 Attributes	
	5.2.21	C1DRA23—Channel 1 DRAM Rank 2,3 Attributes	
	5.2.22	C1CYCTRKPCHG—Channel 1 CYCTRK PCHG	
	5.2.23	C1CYCTRKACT—Channel 1 CYCTRK ACT	
	5.2.24	C1CYCTRKWR—Channel 1 CYCTRK WR	
	5.2.25	C1CYCTRKRD—Channel 1 CYCTRK READ	
	5.2.26	C1CKECTRL—Channel 1 CKE Control	
	5.2.27	C1REFRCTRL—Channel 1 DRAM Refresh Control	
	5.2.28	C10DTCTRL—Channel 1 ODT Control	
	5.2.29	EPCODRBO—ME Channel O DRAM Rank Boundary Address O	
	5.2.30	EPCODRB1—ME Channel 0 DRAM Rank Boundary Address 1	
	5.2.31	EPCODRB2— ME Channel O DRAM Rank Boundary Address 2	

		5.2.32	EPCODRB3— ME Channel O DRAM Rank Boundary Address 3	141
		5.2.33	EPCODRA01—ME Channel 0 DRAM Rank 0,1 Attribute	142
		5.2.34	EPCODRA23—ME Channel O DRAM Rank 2,3 Attribute	142
		5.2.35	EPDCYCTRKWRTPRE—EPD CYCTRK WRT PRE	
		5.2.36	EPDCYCTRKWRTACT—EPD CYCTRK WRT ACT	143
		5.2.37	EPDCYCTRKWRTWR—EPD CYCTRK WRT WR	
		5.2.38	EPDCYCTRKWRTRD—EPD CYCTRK WRT READ	
		5.2.39	EPDCKECONFIGREG—EPD CKE Related Configuration Register	
		5.2.40	MEMEMSPACE—ME Memory Space Configuration	
		5.2.41	EPDREFCONFIG—EP DRAM Refresh Configuration	
		5.2.42	TSC1—Thermal Sensor Control 1	
		5.2.43	TSC2—Thermal Sensor Control 2	
		5.2.44	TSS—Thermal Sensor Status	
		5.2.45	TSTTP—Thermal Sensor Temperature Trip Point	
		5.2.46	TCO—Thermal Calibration Offset	
		5.2.47	THERM1—Hardware Throttle Control	
		5.2.48	TIS—Thermal Interrupt Status	
		5.2.49	TSMICMD—Thermal SMI Command	
		5.2.50	PMSTS—Power Management Status	
	5.3	MPBAR	_	
	5.5	5.3.1		
		5.3.1	EPESD—EP Element Self Description	
			EPLE1D—Controller Link Entry 1 Description	
		5.3.3	EPLE1A— Controller Link Entry 1 Address	
		5.3.4	EPLE2D— Controller Link Entry 2 Description	
		5.3.5	EPLE2A—EP Link Entry 2 Address	161
6	PCI E	xpress* Re	egisters (D1:F0)	162
	6.1	PCI Expr	ress* Configuration Register Details (D1:F0)	165
	. .	6.1.1	VID1—Vendor Identification	
		6.1.2	DID1—Device Identification	
		6.1.3	PCICMD1—PCI Command	
		6.1.4	PCISTS1—PCI Status	
		6.1.5	RID1—Revision Identification	
		6.1.6	CC1—Class Code	
		6.1.7	CL1—Cache Line Size	
		6.1.8	HDR1—Header Type	
		6.1.9	PBUSN1—Primary Bus Number	
		6.1.10	SBUSN1—Secondary Bus Number	
		6.1.11	SUBUSN1—Subordinate Bus Number	
		6.1.12	IOBASE1—I/O Base Address	
		6.1.13	IOLIMIT1—I/O Limit Address	
		6.1.14	SSTS1—Secondary Status	
		6.1.15	MBASE1—Memory Base Address	
		6.1.16	MLIMIT1—Memory Limit Address	
		6.1.17	PMBASE1—Prefetchable Memory Base Address	
		6.1.17	g	
			PMLIMIT1—Prefetchable Memory Limit Address	
		6.1.19	PMBASEU1—Prefetchable Memory Base Address	
		6.1.20	PMLIMITU1—Prefetchable Memory Limit Address	
		6.1.21	CAPPTR1—Capabilities Pointer	
		6.1.22	INTRLINE1—Interrupt Line	
		6.1.23	INTRPIN1—Interrupt Pin	
		6.1.24	BCTRL1—Bridge Control	
		6.1.25	PM_CAPID1—Power Management Capabilities	
		6.1.26	PM_CS1—Power Management Control/Status	
		6.1.27	SS_CAPID—Subsystem ID and Vendor ID Capabilities	เชธ

		6.1.28	SS—Subsystem ID and Subsystem Vendor ID	185
		6.1.29	MSI_CAPID—Message Signaled Interrupts Capability ID	
		6.1.30	MC—Message Control	
		6.1.31	MA—Message Address	
		6.1.32	MD—Message Data	
		6.1.33	PEG_CAPL—PCI Express*-G Capability List	188
		6.1.34	PEG_CAP—PCI Express*-G Capabilities	
		6.1.35		
			DCAP—Device Capabilities	
		6.1.36	DCTL—Device Control	
		6.1.37	DSTS—Device Status	
		6.1.38	LCAP—Link Capabilities	
		6.1.39	LCTL—Link Control	
		6.1.40	LSTS—Link Status	
		6.1.41	SLOTCAP—Slot Capabilities	197
		6.1.42	SLOTCTL—Slot Control	198
		6.1.43	SLOTSTS—Slot Status	201
		6.1.44	RCTL—Root Control	202
		6.1.45	RSTS—Root Status	203
		6.1.46	PEGLC—PCI Express*-G Legacy Control	
		6.1.47	VCECH—Virtual Channel Enhanced Capability Header	
		6.1.48	PVCCAP1—Port VC Capability Register 1	205
		6.1.49	PVCCAP2—Port VC Capability Register 2	
		6.1.50	PVCCTL—Port VC Capability Register 2	
		6.1.51	VCORCAP—VCO Resource Capability	
		6.1.52	VCORCTL—VCO Resource Control	
		6.1.53	VCORSTS—VCO Resource Status	
		6.1.54	RCLDECH—Root Complex Link Declaration Enhanced	
		6.1.55	ESD—Element Self Description	
		6.1.56	LE1D—Link Entry 1 Description	
		6.1.57	LE1A—Link Entry 1 Address	211
		6.1.58	PEGSSTS—PCI Express*-G Sequence Status	212
7	Direct	Memory I	nterface (DMI) Registers	214
	7.1		emory Interface (DMI) Configuration Register Details	
	7.1	7.1.1	DMIVCECH—DMI Virtual Channel Enhanced Capability	
		7.1.2	DMIPVCCAP1—DMI Port VC Capability Register 1	
		7.1.3	DMIPVCCAP2—DMI Port VC Capability Register 2	
		7.1.4	DMIPVCCTL—DMI Port VC Control	
		7.1.5	DMIVCORCAP—DMI VCO Resource Capability	
		7.1.6	DMIVCORCTLO—DMI VCO Resource Control	
		7.1.7	DMIVCORSTS—DMI VCO Resource Status	
		7.1.8	DMIVC1RCAP—DMI VC1 Resource Capability	
		7.1.9	DMIVC1RCTL1—DMI VC1 Resource Control	220
		7.1.10	DMIVC1RSTS—DMI VC1 Resource Status	221
		7.1.11	DMILCAP—DMI Link Capabilities	221
		7.1.12	DMILCTL—DMI Link Control	222
		7.1.13	DMILSTS—DMI Link Status	
8	Integr		hics Device Registers (D2:F0,F1)	
	8.1	-	ed Graphics Register Details (D2:F0)	
	U. I	_	VID2—Vendor Identification	
		8.1.1		
		8.1.2	DID—Device Identification	
		8.1.3	PCICMD2—PCI Command	
		8.1.4	PCISTS2—PCI Status	
		8.1.5	RID2—Revision Identification	229

	8.1.6	CC—Class Code	. 229
	8.1.7	CLS—Cache Line Size	. 230
	8.1.8	MLT2—Master Latency Timer	. 230
	8.1.9	HDR2—Header Type	. 231
	8.1.10	GMADR—Graphics Memory Range Address	. 231
	8.1.11	IOBAR—I/O Base Address	. 232
	8.1.12	SVID2—Subsystem Vendor Identification	. 232
	8.1.13	SID2—Subsystem Identification	. 233
	8.1.14	ROMADR—Video BIOS ROM Base Address	. 233
	8.1.15	CAPPOINT—Capabilities Pointer	. 234
	8.1.16	INTRLINE—Interrupt Line	. 234
	8.1.17	INTRPIN—Interrupt Pin	. 234
	8.1.18	MINGNT—Minimum Grant	. 235
	8.1.19	MAXLAT—Maximum Latency	. 235
	8.1.20	MCAPPTR—Mirror of Dev 0 Capabilities Pointer	. 236
	8.1.21	CAPIDO—Mirror of DevO Capability Identifier	
	8.1.22	MGGC— Mirror of Dev0 GMCH Graphics Control Register	
	8.1.23	DEVEN—Mirror of Dev0 Device Enable	
	8.1.24	SSRW—Software Scratch Read Write	
	8.1.25	BSM—Base of Stolen Memory	
	8.1.26	HSRW—Hardware Scratch Read Write	
	8.1.27	MSI_CAPID— Message Signaled Interrupts Capability ID	. 240
	8.1.28	MC—Message Control	
	8.1.29	MA—Message Address	
	8.1.30	MD—Message Data	
	8.1.31	GDRST—Graphics Debug Reset	
	8.1.32	PMCAPID—Power Management Capabilities ID	
	8.1.33	PMCAP—Power Management Capabilities	
	8.1.34	PMCS—Power Management Control/Status	
	8.1.35	SWSMI—Software SMI	
8.2	IGD Con	figuration Register Details (D2:F1)	
	8.2.1	VID2—Vendor Identification	
	8.2.2	DID2—Device Identification	
	8.2.3	PCICMD2—PCI Command	
	8.2.4	PCISTS2—PCI Status	
	8.2.5	RID2—Revision Identification	
	8.2.6	CC—Class Code Register	
	8.2.7	CLS—Cache Line Size	
	8.2.8	MLT2—Master Latency Timer	
	8.2.9	HDR2—Header Type	
	8.2.10	MMADR—Memory Mapped Range Address	
	8.2.11		
	8.2.12	SID2—Subsystem Identification	
	8.2.13	ROMADR—Video BIOS ROM Base Address	
	8.2.14	CAPPOINT—Capabilities Pointer	
	8.2.15	MINGNT—Minimum Grant	
	8.2.16	MAXLAT—Maximum Latency	
	8.2.17	MCAPPTR—Mirror of Dev 0 Capabilities Pointer	
	8.2.18	CAPIDO—Capability Identifier	
	8.2.19	MGGC—Mirror of Dev 0 GMCH Graphics Control Register	
	8.2.20	DEVEN—Device Enable	
	8.2.21	SSRW—Mirror of Func0 Software Scratch Read Write	
	8.2.22	BSM—Mirror of Func0 Base of Stolen Memory	
	8.2.23	HSRW—Mirror of Dev2 Func0 Hardware Scratch Read Write	
	8.2.24	GDRST—Mirror of Dev2 Func0 Graphics Reset	
	- · - · - ·		

		8.2.25	PMCAPID—Mirror of Fun 0 Power Management Capabilities ID	263
		8.2.26	PMCAP—Mirror of Fun 0 Power Management Capabilities	264
		8.2.27	PMCS—Power Management Control/Status	265
		8.2.28	SWSMI—Mirror of Func0 Software SMI	266
9	Manag	geability E	ngine (ME) Registers (D3:F0)	268
	9.1		bedded Controller Interface (HECI1) Configuration	
			Details (D3:F0)	268
		9.1.1	ID—Identifiers	
		9.1.2	CMD—Command	
		9.1.3	STS—Device Status	
		9.1.4	RID—Revision ID	
		9.1.5	CC—Class Code	
		9.1.6	CLS—Cache Line Size	
		9.1.7	MLT—Master Latency Timer	
		9.1.8	HTYPE—Header Type	
		9.1.9	HECI_MBAR—HECI MMIO Base Address	
		9.1.10	SS—Sub System Identifiers	274
		9.1.11	CAP—Capabilities Pointer	
		9.1.12	INTR—Interrupt Information	
		9.1.13	MGNT—Minimum Grant	275
		9.1.14	MLAT—Maximum Latency	276
		9.1.15	HFS—Host Firmware Status	276
		9.1.16	PID—PCI Power Management Capability ID	276
		9.1.17	PC—PCI Power Management Capabilities	
		9.1.18	PMCS—PCI Power Management Control And Status	
		9.1.19	MID—Message Signaled Interrupt Identifiers	
		9.1.20	MC—Message Signaled Interrupt Message Control	279
		9.1.21	MA—Message Signaled Interrupt Message Address	
		9.1.22	MD—Message Signaled Interrupt Message Data	
		9.1.23	HIDM—HECI Interrupt Delivery Mode	
10	Functi	onal Desc	ription	282
	10.1	Host Int	erface	282
		10.1.1	FSB IOQ Depth	282
		10.1.2	FSB OOQ Depth	282
		10.1.3	FSB GTL+ Termination	282
		10.1.4	FSB Dynamic Bus Inversion	283
		10.1.5	APIC Cluster Mode Support	283
	10.2	System	Memory Controller	284
		10.2.1	Memory Organization Modes	284
		10.2.2	DRAM Technologies and Organization	286
		10.2.3	Main Memory DRAM Address Translation and Decoding	288
		10.2.4	DRAM Clock Generation	
		10.2.5	Suspend to RAM and Resume	
		10.2.6	DDR2 On-Die Termination	291
	10.3	PCI Expi	ress*	291
		10.3.1	PCI Express* Architecture	291
		10.3.2	Intel® Serial Digital Video Output (SDVO)	292
	10.4	Integrat	ed Graphics Controller	296
		10.4.1	Integrated Graphics Device Overview	
	10.5	Display	Interfaces	
		10.5.1	Analog Display Port Characteristics	
		10.5.2	Digital Display Interface	
			- · · · · · · · · · · · · · · · · · · ·	

		10.5.3 Multiple Display Configurations	303
	10.6	Power Management	303
	10.7	Thermal Sensor	304
		10.7.1 PCI Device 0, Function 0	
		10.7.2 MCHBAR Thermal Sensor Registers	
		10.7.3 Programming Sequence	
		10.7.4 Trip Point Temperature Programming	
	10.8	Clocking	307
11	Electri	ical Characteristics	310
	11.1	Absolute Minimum and Maximum Ratings	310
		11.1.1 Current Consumption	311
	11.2	Signal Groups	313
	11.3	Buffer Supply and DC Characteristics	316
		11.3.1 I/O Buffer Supply Voltages	316
		11.3.2 General DC Characteristics	317
		11.3.3 R, G, B / CRT DAC Display DC Characteristics	321
12	Ballou	ıt and Package Information	322
	12.1	Ballout	322
	12.2	Package	337
13	Testak	bility	339
	13.1	XOR Test Mode Initialization	340
	13.2	XOR Chain Definition	342
	13.3	XOR Chains	343
	13.4	PADs Excluded from XOR Mode(s)	

Figures

Figure 1-1. Intel [®] G35 Express Chipset System Block Diagram Example	19
Figure 3-1. System Address Ranges	46
Figure 3-2. DOS Legacy Address Range	
Figure 3-3. Main Memory Address Range	
Figure 3-4. PCI Memory Address Range	53
Figure 4-1. Conceptual G Platform PCI Configuration Diagram	68
Figure 4-2. Memory Map to PCI Express* Device Configuration Space	70
Figure 4-3. GMCH Configuration Cycle Flow Chart	72
Figure 9-1. System Memory Styles	285
Figure 9-2. SDVO Conceptual Block Diagram	293
Figure 9-3. Concurrent sDVO / PCI Express* Non-Reversed Configurations	295
Figure 9-4. Concurrent sDVO / PCI Express* Reversed Configurations	295
Figure 9-5. Intel® G35 Express Chipset System Clock Diagram	308
Figure 11-1. GMCH Ballout Diagram (Top View Left – Columns 43–30)	323
Figure 11-2. GMCH Ballout Diagram (Top View Middle- Columns 29-15)	324
Figure 11-3. GMCH Ballout Diagram (Top View Right – Columns 14–0)	325
Figure 11-4. GMCH Package Drawing	338
Figure 12-1. XOR Test Mode Initialization Cycles	340

Tables

Table 3-1. Expansion Area Memory Segments	49
Table 3-2. Extended System BIOS Area Memory Segments	49
Table 3-3. System BIOS Area Memory Segments	49
Table 3-4. Specifics of Legacy Interrupt Routing	50
Table 3-5. Pre-allocated Memory Example for 64 MB DRAM, 1-MB VGA and	
1-MB TSEG	52
Table 3-6. Pre-Allocated Memory Example for 64-MB DRAM, 1-MB VGA and	
1-MB TSEG	59
Table 3-7. SMM Space Table	60
Table 3-8. SMM Control	60
Table 5-1. DRAM Controller Register Address Map (D0:F0)	78
Table 5-2. MCHBAR Register Address Map	
Table 5-3. DRAM Rank Attribute Register Programming	120
Table 5-4. EPBAR Register Address Map	158
Table 6-1. PCI Express* Register Address Map (D1:F0)	162
Table 7-1. DMI Register Address Map	214
Table 8-1. Integrated Graphics Device Register Address Map (D2:F0)	224
Table 8-2. Integrated Graphics Device Register Address Map (D2:F1)	247
Table 9-1. HECI1 Register Address Map (D3:F0)	268
Table 9-1. Sample System Memory Organization with Interleaved Channels	284
Table 9-2. Sample System Memory Organization with Asymmetric Channels	284
Table 9-3. DDR2 DIMM Supported Configurations	288
Table 9-4. DRAM Address Translation (Single Channel/Dual Asymmetric Mode)	289
Table 9-5. DRAM Address Translation (Dual Channel Symmetric Mode)	290
Table 9-6. Concurrent sDVO / PCI Express* Configuration Strap Controls	294

Table 9-7. Display Port Characteristics	. 298
Table 9-8. Analog Port Characteristics	. 299
Table 10-1. Absolute Minimum and Maximum Ratings	. 310
Table 10-2. Current Consumption in S0	. 312
Table 10-3. Signal Groups	
Table 10-4. I/O Buffer Supply Voltage	. 316
Table 10-5. DC Characteristics	. 317
Table 10-6. R, G, B / CRT DAC Display DC Characteristics: Functional Operating	
Range (VCCA_DAC = $3.3 \text{ V} \pm 5\%$)	
Table 11-1. GMCH Ballout Sorted by Signal Name	
Table 12-1. XOR Chain Outputs	. 342
Table 12-2. XOR Chain 0	
Table 12-3. XOR Chain 1	
Table 12-4. XOR Chain 2	
Table 12-5. XOR Chain 3	
Table 12-6. XOR Chain 4	
Table 12-7. XOR Chain 5	. 345
Table 12-8. XOR Chain 6	
Table 12-9. XOR Chain 7	
Table 12-10. XOR Chain 8	
Table 12-11. XOR Chain 9	
Table 12-12. XOR Chain 10	
Table 12-13. XOR Chain 11	
Table 12-14. XOR Chain 12	
Table 12-15. XOR Chain 13	
Table 12-16. XOR Chain 14	. 349
Table 12-17. XOR Pad Exclusion List	. 351

Revision History

Revision Number	Description	Date
-001	Initial release.	August 2007

Intel® 82G35 GMCH Features

- Processor/Host Interface (FSB)
 Supports Intel® Core™2 Duo desktop processor
 Supports Intel® Core™2 Quad desktop processor
 1.
 - 800/1067 MT/s (200/266 MHz) FSB
 - Hyper-Threading Technology (HT Technology)
 - FSB Dynamic Bus Inversion (DBI)
 - 36-bit host bus addressing
 - 12-deep In-Order Queue
 - 1-deep Defer Queue
- GTL+ bus driver with integrated GTL termination resistors
- Supports cache Line Size of 64 bytes
- System Memory Interface
- One or two channels (each channel consisting of 64 data lines)
 - Single or Dual Channel memory organization
 - DDR2-800/667 frequencies
 - Unbuffered, non-ECC DIMMs only
- Supports 1-Gb, 512-Mb DDR2 technologies for x8 and x16 devices
 - 4 GB maximum memory
- Direct Media Interface (DMI)
 - Chip-to-chip connection interface to Intel ICH7
- 100 MHz reference clock (shared with PCI Express graphics attach)
 - 32-bit downstream addressing
 - Messaging and Error Handling
- PCI Express* Interface
 - One x16 PCI Express port
- Compatible with the PCI Express Base Specification, Revision 1.1
- Raw bit rate on data pins of 2.5 Gb/s resulting in a real bandwidth per pair of 250 MB/s

- · Integrated Graphics Device
 - Core frequency of 400 MHz
 - 1.6 GP/s pixel rate
 - High-Quality 3D Setup and Render

Engine

- High-Quality Texture Engine
- 3D Graphics Rendering Enhancements
- 2D Graphics
 - Video Overlay
- Multiple Overlay Functionality
- · Analog Display
 - 350 MHz Integrated 24-bit RAMDAC
 - Up to 2048x1536 @ 75 Hz refresh
 - Hardware Color Cursor Support
 - DDC2B Compliant Interface
- · Digital Display
- SDVO ports in single mode supported
- 225 MHz dot clock on each 12-bit

interface

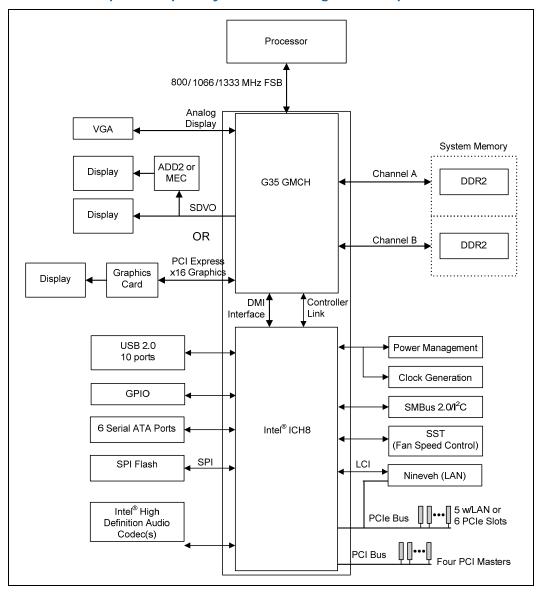
- Flat panels up to 2048x1536 @ 60 Hz or digital CRT/HDTV at 1400x1050 @ 85Hz
- Dual independent display options with digital display
- Multiplexed digital display channels (supported with ADD2 Card).
- Supports TMDS transmitters or TV-Out encoders
- ADD2/MEC card uses PCI Express graphics x16 connector
- Two channels multiplexed with PCI Express* Graphics port
 - Supports Hot-Plug and Display
- · Thermal Sensor
 - Catastrophic Trip Point support
 - Hot Trip Point support for SMI generation
- Power Management
- PC99 suspend to DRAM support ("STR", mapped to ACPI state S3)
- ACPI Revision 2.0 compatible power management
 - Supports processor states: C0, C1, C2
- Supports System states: S0, S1, S3, and
 - Supports processor Thermal Management

• Package

-- FC-BGA. 34 mm \times 34 mm. The 1226 balls are located in a non-grid pattern

§

1 Introduction


The Intel® G35 Express Chipset is designed for use with the Intel® Core™2 Duo desktop processor / Intel® Core™2 Quad desktop processor based platforms. The chipset contains two components: 82G35 GMCH for the host bridge and I/O Controller Hub 8 (ICH8) for the I/O subsystem. The 82G35 GMCH is part of the Intel® G35 Express Chipset. The ICH8 is the eight generation I/O Controller Hub and provides a multitude of I/O related functions. Figure 1-1 shows an example system block diagram for the Intel® G35 Express Chipset.

This document is the datasheet for the Intel[®] 82G35 Graphics and Memory Controller Hub (GMCH). Topics covered include; signal description, system memory map, PCI register description, a description of the GMCH interfaces and major functional units, electrical characteristics, ballout definitions, and package characteristics.

Note: Unless otherwise specified, ICH8 refers to the Intel[®] 82801HB ICH8, 82801HR ICH8R, 82801HDH ICH8DH, 82801HDO ICH8DO, 82801HBM ICH8M, and 82801HEM ICH8M-E I/O Controller Hub components.

Figure 1-1. Intel® G35 Express Chipset System Block Diagram Example

1.1 Terminology

Term	Description
ADD Card	Advanced Digital Display Card. Provides digital display options for an Intel Graphics Controller that supports ADD cards (have DVOs multiplexed with AGP interface). Keyed like an AGP 4x card and plugs into an AGP connector. Will not work with an Intel Graphics Controller that implements Intel® SDVO.
ADD2 Card	Advanced Digital Display Card – 2 nd Generation. Provides digital display options for an Intel graphics controller that supports ADD2 cards. Plugs into an x16 PCI Express* connector but utilizes the multiplexed SDVO interface. Will not work with an Intel Graphics Controller that supports Intel [®] DVO and ADD cards.
Media Expansion Card (MEC)	Media Expansion Card –. Provides digital display options for an Intel Graphics Controller that supports MEC cards. Plugs into an x16 PCI Express connector but utilizes the multiplexed SDVO interface. Adds Video In capabilities to platform. Will not work with an Intel Graphics Controller that supports DVO and ADD cards. Will function as an ADD2 card in an ADD2 supported system, but Video In capabilities will not work.
Core	The internal base logic in the GMCH
Processor	Refers to the Intel Core [™] 2 Duo processors and Intel Core [™] 2 Quad processors
CRT	Cathode Ray Tube
DBI	Dynamic Bus Inversion
DDR2	A second generation Double Data Rate SDRAM memory technology
DMI	GMCH-Intel® ICH8 Direct Media Interface
DVI	Digital Video Interface. Specification that defines the connector and interface for digital displays.
FSB	Front Side Bus, synonymous with Host or processor bus
Full Reset	Full reset is when PWROK is de-asserted. Warm reset is when both RSTIN# and PWROK are asserted.
GMCH	Graphics Memory Controller Hub component that contains the processor interface, DRAM controller, and x16 PCI Express port (typically the external graphics interface). It communicates with the I/O controller hub (Intel® ICH8*) over the DMI interconnect. Throughout this document, GMCH refers to the G35 GMCH, unless otherwise specified.
HDMI	High Definition Multimedia Interface – HDMI supports standard, enhanced, or high-definition video, plus multi-channel digital audio on a single cable. It transmits all ATSC HDTV standards and supports 8-channel digital audio, with bandwidth to spare for future requirements and enhancements (additional details available through http://www.hdmi.org/)
Host	This term is used synonymously with processor
INTx	An interrupt request signal where X stands for interrupts A, B, C and D
100	In Order Queue

Term	Description
Intel® ICH8	Eighth generation I/O Controller Hub component that contains additional functionality compared to previous Intel® ICHs, The Intel® I/O Controller Hub component contains the primary PCI interface, LPC interface, USB2, SATA, and other I/O functions. It communicates with the GMCH over a proprietary interconnect called DMI. For this GMCH, the term Intel® ICH refers to Intel® ICH8.
IGD	Internal Graphics Device
LCD	Liquid Crystal Display
LVDS	Low Voltage Differential Signaling. A high speed, low power data transmission standard used for display connections to LCD panels.
000	Out of Order Queuing:
MSI	Message Signaled Interrupt. A transaction initiated outside the host, conveying interrupt information to the receiving agent through the same path that normally carries read and write commands.
PCI Express*	Third Generation Input Output (PCI Express) Graphics Attach called PCI Express Graphics. A high-speed serial interface whose configuration is software compatible with the existing PCI specifications. The specific PCI Express implementation intended for connecting the GMCH to an external Graphics Controller is an x16 link and replaces AGP.
Primary PCI	The physical PCI bus that is driven directly by the Intel® ICH8 component. Communication between Primary PCI and the GMCH occurs over DMI. Note that the Primary PCI bus is not PCI Bus 0 from a configuration standpoint.
SCI	System Control Interrupt. Used in ACPI protocol.
SDVO	Serial Digital Video Out (SDVO). Digital display channel that serially transmits digital display data to an external SDVO device. The SDVO device accepts this serialized format and then translates the data into the appropriate display format (i.e. TMDS, LVDS, and TV-Out). This interface is not electrically compatible with the previous digital display channel - DVO. For G35, it will be multiplexed on a portion of the x16 graphics PCI Express interface.
SDVO Device	Third party codec that utilizes SDVO as an input. May have a variety of output formats, including DVI, LVDS, HDMI, TV-out, etc.
SERR	An indication that an unrecoverable error has occurred on an I/O bus.
SMI	System Management Interrupt. Used to indicate any of several system conditions such as thermal sensor events, throttling activated, access to System Management RAM, chassis open, or other system state related activity.
Rank	A unit of DRAM corresponding to eight x8 SDRAM devices in parallel or four x16 SDRAM devices in parallel, ignoring ECC. These devices are usually, but not always, mounted on a single side of a DIMM.
TMDS	Transition Minimized Differential Signaling. Signaling interface from Silicon Image that is used in DVI and HDMI.
VCO	Voltage Controlled Oscillator
UMA	Unified Memory Architecture. Describes an IGD using system memory for its frame buffers.

1.2 Reference Documents

Document Name	Location
Intel [®] G35 Express Chipset Specification Update	http://www.intel.com /design/chipsets/specupdt/ 317608.htm
Intel® G35 Express Chipset Family Thermal and Mechanical Design Guide.	http://www.intel.com /design/chipsets/designex/ 317609.htm
Intel [®] Core [™] 2 Duo Desktop Processor, Intel [®] Pentium [®] Dual Core Processor, and Intel [®] Pentium [®] 4 Processor 6x1 [△] Sequence Thermal and Mechanical Design Guide	http://www.intel.com/desig n/ processor/designex/ 313685.htm
Intel [®] I/O Controller Hub 8 (ICH8) Family Datasheet	http://www.intel.com/desig n/chipsets/datashts/31305 6.htm
Designing for Energy Efficiency White Paper	http://www.intel.com/desig n/chipsets/applnots/316970 .htm
Intel® P35/G33 Express Chipset Memory Technology and Configuration Guide White Paper	http://www.intel.com/desig n/chipsets/applnots/316971 .htm
Advanced Configuration and Power Interface Specification, Version 2.0	http://www.acpi.info/
Advanced Configuration and Power Interface Specification, Version 1.0b	http://www.acpi.info/
The PCI Local Bus Specification, Version 2.3	http://www.pcisig.com/spe cifications
PCI Express* Specification, Version 1.1	http://www.pcisig.com/spe cifications

1.3 GMCH Overview

The 82G35 Graphics and Memory Controller Hub (GMCH) is designed for use with the Intel® CoreTM2 Duo processors and Intel® CoreTM2 Quad processors in desktop platforms. The role of a GMCH in a system is to manage the flow of information between its four interfaces: the processor interface (FSB), the System Memory interface (DRAM controller), the External Graphics interface, and the I/O Controller through DMI interface. This includes arbitrating between the four interfaces when each initiates transactions. The GMCH is optimized for the Intel® CoreTM2 Duo processor and Intel® CoreTM2 Quad processor in an LGA775 socket. It supports one or two channels of DDR2 SDRAM. It also supports the PCI Express* based external graphics attach. The G35 chipset platform supports the eighth generation I/O Controller Hub (Intel ICH8) to provide a multitude of I/O related features.

1.3.1 Host Interface

The GMCH can use a single LGA775 socket processor. The GMCH supports a FSB frequencies of 800/1066/1333 MHz using a scalable FSB Vcc_CPU. It supports 36-bit host addressing, decoding up to 8 GB of the processor's memory address space. Host-initiated I/O cycles are decoded to PCI Express, DMI, or the GMCH configuration space. Host-initiated memory cycles are decoded to PCI Express, DMI or system DDR. PCI Express device accesses to non-cacheable system memory are not snooped on the host bus. Memory accesses initiated from PCI Express using PCI semantics and from DMI to system SDRAM will be snooped on the host bus.

Processor/Host Interface (FSB) Details

- Supports a single Intel[®] CoreTM2 Duo processors and Intel[®] CoreTM2 Quad processors
- Supports Front Side Bus (FSB) at 800/1066/1333 MT/s (200/266/333 MHz)
- Supports FSB Dynamic Bus Inversion (DBI)
- Supports 36-bit host bus addressing, allowing the processor to access the entire 64 GB of the host address space.
- Has a 12-deep In-Order Queue to support up to twelve outstanding pipelined address requests on the host bus
- Has a 1-deep Defer Queue
- Uses GTL+ bus driver with integrated GTL termination resistors
- Supports a Cache Line Size of 64 bytes

1.3.2 System Memory Interface

The GMCH integrates a system memory DDR2 controller with two, 64-bit wide interfaces. Only Double Data Rate (DDR2) memory is supported; consequently, the buffers support only SSTL_1.8 V signal interfaces. The memory controller interface is fully configurable through a set of control registers.

System Memory Interface Details

- The GMCH System Memory Controller directly supports one or two channels of memory (each channel consisting of 64 data lines)
- The memory channels are asymmetric: "Flex Memory" channels are assigned addresses serially. Channel B addresses are assigned after all Channel A addresses
- The memory channels are interleaved: Addresses are ping-ponged between the channels after each cache line (64-B boundary)
- Supports DDR2 memory DIMM frequencies of 533, 667 and 800 MHz. The speed used in all channels is the speed of the slowest DIMM in the system
- I/O Voltage of 1.8 V for DDR2
- Supports only unbuffered DIMMs
- Supports maximum memory bandwidth of 6.4 GB/s in single-channel or dualchannel asymmetric mode, or 12.8 GB/s in dual-channel interleaved mode assuming DDR2 800MHz
- Supports 256-Mb, 512-Mb, and 1-Gb technologies for x8 and x16 devices
- Supports four banks for all DDR2 devices up to 512-Mbit density. Supports eight banks for 1-Gbit DDR2 devices
- Using 256 Mb technologies, the smallest memory capacity possible is 128 MB, assuming Single-Channel Mode. (8 K rows * 512 columns * 1 cell/(row * column) * 16 b/cell * 4 banks/devices * 4 devices/DIMM-side * 1 DIMM-side/channel * 1 channel * 1 B/8 b * 1 M/1024 K = 128 MB)
- By using 1 Gb technology in Dual Channel Interleaved Mode, the largest memory capacity possible is 8 GB. (16 K rows * 1 K columns * 1 cell/(row * column) * 8 b/cell * 8 banks/device * 8 devices/DIMM-side * 4 DIMM-sides/channel * 2 channels * 1 B/8 b * 1 G/1024 M * 1 M/(K*K) = 8 GB)
- Maximum DRAM address decode space is 8 GB (assuming 36-bit addressing)
- Supports up to 32 simultaneous open pages per channel (assuming 4 ranks of 8 bank devices)
- Supports opportunistic refresh scheme
- Supports Partial Writes to memory using Data Mask (DM) signals
- Supports page sizes of 4 KB, 8 KB, and 16 KB
- Supports a burst length of 8 for single-channel and dual-channel interleaved and asymmetric operating modes
- Improved flexible memory architecture

1.3.3 Direct Media Interface (DMI)

Direct Media Interface (DMI) is the chip-to-chip connection between the GMCH and ICH8. This high-speed interface integrates advanced priority-based servicing allowing for concurrent traffic and true isochronous transfer capabilities. Base functionality is completely software transparent permitting current and legacy software to operate normally.

To provide for true isochronous transfers and configurable Quality of Service (QoS) transactions, the ICH8 supports two virtual channels on DMI: VCO and VC1. These two channels provide a fixed arbitration scheme where VC1 is always the highest priority. VCO is the default conduit of traffic for DMI and is always enabled. VC1 must be specifically enabled and configured at both ends of the DMI link (i.e., the ICH8 and GMCH).

- A chip-to-chip connection interface to Intel ICH8
- 2 GB/s point-to-point DMI to ICH8 (1 GB/s each direction)
- 100 MHz reference clock (shared with PCI Express* Graphics Attach)
- 32-bit downstream addressing
- APIC and MSI interrupt messaging support. Will send Intel-defined "End Of Interrupt" broadcast message when initiated by the processor.
- Message Signaled Interrupt (MSI) messages
- SMI, SCI and SERR error indication
- Legacy support for ISA regime protocol (PHOLD/PHOLDA) required for parallel port DMA, floppy drive, and LPC bus masters

1.3.4 PCI Express* Interface

The GMCH contains one 16-lane (x16) PCI Express port intended for an external PCI Express graphics card. The PCI Express port is compliant to the *PCI Express* Base Specification* revision 1.1. The x16 port operates at a frequency of 2.5 Gb/s on each lane while employing 8b/10b encoding, and supports a maximum theoretical bandwidth of 40 Gb/s in each direction.

- One, 16-lane PCI Express port intended for Graphics Attach, compatible to the PCI Express* Base Specification revision 1.1.
- PCI Express frequency of 1.25GHz resulting in 2.5 Gb/s each direction
- Raw bit-rate on the data pins of 2.5 Gb/s, resulting in a real bandwidth per pair of 250 MB/s given the 8b/10b encoding used to transmit data across this interface
- Maximum theoretical realized bandwidth on the interface of 4 GB/s in each direction simultaneously, for an aggregate of 8 GB/s when x16.
- PCI Express* Graphics Extended Configuration Space. The first 256 bytes of configuration space alias directly to the PCI Compatibility configuration space. The remaining portion of the fixed 4-KB block of memory-mapped space above that (starting at 100h) is known as extended configuration space.
- PCI Express Enhanced Addressing Mechanism. Accessing the device configuration space in a flat memory mapped fashion.

- Automatic discovery, negotiation, and training of link out of reset
- Supports traditional PCI style traffic (asynchronous snooped, PCI ordering)
- Supports traditional AGP style traffic (asynchronous non-snooped, PCI Express-relaxed ordering)
- Hierarchical PCI-compliant configuration mechanism for downstream devices (i.e., normal PCI 2.3 Configuration space as a PCI-to-PCI bridge)
- Supports "static" lane numbering reversal. This method of lane reversal is controlled by a Hardware Reset strap, and reverses both the receivers and transmitters for all lanes (e.g., TX[15]->TX[0], RX[15]->RX[0]). This method is transparent to all external devices and is different than lane reversal as defined in the PCI Express Specification. In particular, link initialization is not affected by static lane reversal.

1.3.5 Graphics Features

The GMCH provides an integrated graphics device (IGD) delivering cost competitive 3D, 2D and video capabilities. The GMCH contains an extensive set of instructions for 3D operations, 2D operations, motion compensation, overlay, and display control. The GMCH's video engines support video conferencing and other video applications. The GMCH uses a UMA configuration with up to 256MB of DVMT for graphics memory. The GMCH also has the capability to support external graphics accelerators via the PCI Express Graphics (PEG) port but cannot work concurrently with the integrated graphics device. High bandwidth access to data is provided through the system memory port.

1.3.6 SDVO and Analog Display Features

The GMCH provides interfaces to a progressive scan analog monitor and two SDVO ports. For the GMCH, the SDVO ports are multiplexed with PCI Express x16 graphics port signals. The GMCH supports two multiplexed SDVO ports that each drive pixel clocks up to 270 MHz. The SDVO ports can each support a single-channel SDVO device. If both ports are active in single-channel mode, they can have different display timing and data.

The digital display channels are capable of driving a variety of SDVO devices (e.g., TMDS, TV-Out). Note that SDVO only works with the Integrated Graphics Device (IGD). The GMCH is capable of driving an Advanced Digital Display (ADD2) card or Media Expansion Card. The Media Expansion Card adds video-in capabilities. The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant external device and connector, the GMCH has a high-speed interface to a digital display (e.g., flat panel or digital CRT).

The GMCH is compliant with HDMI specification 1.1. When combined with a HDMI compliant external device and connector, the external HDMI device can support standard, enhanced, or high-definition video, plus multi-channel digital audio on a single cable.

Capabilities of the SDVO and Analog Display interfaces include:

- SDVO Support
- SDVO ports in either single modes supported
- 3x3 Built In full panel scalar
- 180 degree Hardware screen rotation
- Multiplexed Digital Display Channels (Supported with ADD2/MEC)
- Two channels multiplexed with PCI Express* Graphics port
- 270 MHz dot clock on each 12-bit interface
- Supports flat panels up to 2048 x 1536 @ 60 Hz or digital CRT/HDTV at 1920 x1080 @ 85 Hz
- Supports Hot-Plug and Display
- Supports TMDS transmitters or TV-out encoders
- ADD2/Media Expansion card utilizes PCI Express Graphics x16 connector
- Analog Display Support
- 400 MHz Integrated 24-bit RAMDAC
- Up to 2048x1536 @ 75 Hz refresh
- Hardware Color Cursor Support
- DDC2B Compliant Interface
- Dual Independent Display options with digital display

1.3.7 GMCH Clocking

- Differential Host clock of 200/266/333 MHz (HCLKP/HCLKN). These frequencies Support transfer rates of 800/1066/1333 MT/s. The Host PLL generates 2x, 4x, and 8x versions of the host clock for internal optimizations.
- Chipset core clock synchronized to host clock
- Internal and External Memory clocks of 266, 333 and 400 MHz generated from one of two GMCH PLLs that use the Host clock as a reference. Includes 2x and 4x for internal optimizations.
- The PCI Express* PLL of 100 MHz Serial Reference Clock (GCLKP/GCLKN) generates the PCI Express core clock of 250 MHz
- Display timings are generated from display PLLs that use a 96 MHz differential non-spread spectrum clock as a reference. Display PLLs can also use the SDVO_TVCLKIN[+/-] from an SDVO device as a reference.
- All of the above clocks are capable of tolerating Spread Spectrum clocking as defined in the Clock Generator specification.
- Host, Memory, and PCI Express Graphics PLLs and all associated internal clocks are disabled until PWROK is asserted.

1.3.8 Power Management

GMCH Power Management support includes:

- PC99 suspend to DRAM support ("STR", mapped to ACPI state S3)
- SMRAM space remapping to A0000h (128 KB)
- Supports extended SMRAM space above 256 MB, additional 1-MB TSEG from the Base of graphics stolen memory (BSM) when enabled, and cacheable (cacheability controlled by processor)
- ACPI Rev 1.0 compatible power management
- Supports processor states: C0 and C1
- Supports System states: S0, S1D, S3, S4, and S5
- Supports processor Thermal Management 2 (TM2)

1.3.9 Thermal Sensor

GMCH Thermal Sensor support includes:

- \bullet Catastrophic Trip Point support for emergency clock gating for the GMCH at 115 $^{\circ}\mathrm{C}$
- Hot Trip Point support for SMI generation between 85 °C and 105 °C

§

Introduction

2 Signal Description

This section provides a detailed description of GMCH signals. The signals are arranged in functional groups according to their associated interface.

The following notations are used to describe the signal type.

PCI Express*	PCI-Express interface signals. These signals are compatible with PCI Express 1.1 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = (D+ - D-) * 2 = 1.2 Vmax. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.
DMI	Direct Media Interface signals. These signals are compatible with PCI Express 1.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+-D-) * 2 = 1.2 \text{ Vmax}$. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.
CMOS	CMOS buffers. 1.5 V tolerant.
COD	CMOS Open Drain buffers. 3.3 V tolerant.
HCSL	Host Clock Signal Level buffers. Current mode differential pair. Differential typical swing = $(D+ - D-) * 2 = 1.4V$. Single ended input tolerant from -0.35 V to 1.2 V. Typical crossing voltage 0.35 V.
HVCMOS	High Voltage CMOS buffers. 3.3 V tolerant.
HVIN	High Voltage CMOS input-only buffers. 3.3 V tolerant.
SSTL-1.8	Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V tolerant.
А	Analog reference or output. May be used as a threshold voltage or for buffer compensation.
GTL+	Gunning Transceiver Logic signaling technology. Implements a voltage level as defined by VTT of 1.2V.

2.1 Host Interface Signals

Note: Unless otherwise noted, the voltage level for all signals in this interface is tied to the termination voltage of the Host Bus (V_{TT}) .

Signal Name	Туре	Description
HADS#	I/O GTL+	Address Strobe: The processor bus owner asserts HADS# to indicate the first of two cycles of a request phase. The GMCH can assert this signal for snoop cycles and interrupt messages.
HBNR#	I/O GTL+	Block Next Request: Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.
HBPRI#	O GTL+	Priority Agent Bus Request: The GMCH is the only Priority Agent on the processor bus. It asserts this signal to obtain the ownership of the address bus. This signal has priority over symmetric bus requests and will cause the current symmetric owner to stop issuing new transactions unless the HLOCK# signal was asserted.
HBREQ0#	I/O GTL+	Bus Request 0: The GMCH pulls the processor's bus HBREQ0# signal low during HCPURST#. The processor samples this signal on the active-to-inactive transition of HCPURST#. The minimum setup time for this signal is 4 HCLKs. The minimum hold time is 2 clocks and the maximum hold time is 20 HCLKs. HBREQ0# should be tri-stated after the hold time requirement has been satisfied.
HCPURST#	O GTL+	CPU Reset: The HCPURST# pin is an output from the GMCH. The GMCH asserts HCPURST# while RSTIN# is asserted and for approximately 1 ms after RSTIN# is de-asserted. The HCPURST# allows the processors to begin execution in a known state. Note that the Intel® ICH8 must provide processor frequency
		select strap set-up and hold times around HCPURST#. This requires strict synchronization between GMCH HCPURST# deassertion and the Intel® ICH8 driving the straps.
HDBSY#	I/O GTL+	Data Bus Busy: Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
HDEFER#	O GTL+	Defer: Signals that the GMCH will terminate the transaction currently being snooped with either a deferred response or with a retry response.

Signal Name	Туре		Descrip	otion
HDINV[3:0]#	I/O GTL+	Dynamic Bus Inversion: Driven along with the HD[63:0]# signals. Indicates if the associated signals are inverted or not. HDINV[3:0]# are asserted such that the number of data bits driven electrically low (low voltage) within the corresponding 16 bit group never exceeds 8.		
		HDINV[x]# I	Data Bits	
		HDINV[3]#	HD[63:48]#	
		HDINV[2]# I	HD[47:32]#	
		HDINV[1]#	HD[31:16]#	
		HDINV[0]#	HD[15:0]#	
HA[35:3]#	I/O GTL+	Host Address Bus: HA[35:3]# connect to the processor address bus. During processor cycles, the HA[35:3]# are inputs. The GMCH drives HA[35:3]# during snoop cycles on behalf of DMI and PCI Express* Graphics initiators. HA[35:3]# are transferred at 2x rate.		
HADSTB[1:0]#	I/O GTL+	Host Address Strobe: The source synchronous strobes used to transfer HA[35:3]# and HREQ[4:0] at the 2x transfer rate.		
HD[63:0]#	1/0	Host Data: These signals are connected to the processor data		
	GTL+	bus. Data on HD[63:0] is transferred at 4x rate. Note that the data signals may be inverted on the processor bus, depending on the HDINV[3:0]# signals.		
HDSTBP[3:0]# HDSTBN[3:0]#	I/O GTL+	Differential Host Data Strobes: The differential source synchronous strobes used to transfer HD[63:0]# and HDINV[3:0]# at 4x transfer rate.		
		Named this way because they are not level sensitive. Data is captured on the falling edge of both strobes. Hence, they are pseudo-differential, and not true differential.		
		Strobes	Bits	Data
		HDSTBP3#, HDSTBN3#	HDINV3#	HD[63:48]#
		HDSTBP2#, HDSTBN2#	HDINV2#	HD[47:32]#
		HDSTBP1#, HDSTBN1#	HDINV1#	HD[31:16]#
		HDSTBP0#, HDSTBN0#	HDINVO#	HD[15:0]#
HHIT#	I/O GTL+	Hit: Indicates that a caching agent holds an unmodified version of the requested line. Also, driven in conjunction with HHITM# by the target to extend the snoop window.		
HHITM#	I/O GTL+	Hit Modified: Indicates that a caching agent holds a modified version of the requested line and that this agent assumes responsibility for providing the line. Also, driven in conjunction with HHIT# to extend the snoop window.		

Signal Name	Туре	Description		
HLOCK#	I/O GTL+	Host Lock: All processor bus cycles sampled with the assertion of HLOCK# and HADS#, until the negation of HLOCK#, must be atomic, i.e. no DMI or PCI Express* Graphics accesses to DRAM are allowed when HLOCK# is asserted by the processor.		
HREQ[4:0]#	I/O GTL+	Host Request Command: Defines the attributes of the request. HREQ[4:0]# are transferred at 2x rate. Asserted by the requesting agent during both halves of Request Phase. In the first half, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second half, the signals carry additional information to define the complete transaction type.		
HTRDY#	O GTL+	Host Target Ready: Indicates that the target of the processor transaction is able to enter the data transfer phase.		
HRS[2:0]#	O GTL+	Response Signals: These signals indicate the type of response according to the following table.		
		Encoding Response Type		
		000 Idle state		
		001 Retry response		
		010 Deferred response		
		011 Reserved(not driven by GMCH)		
		100 Hard Failure(not driven by GMCH)		
		101 No data response		
		110 Implicit Writeback		
		111 Normal data response		
BSEL[2:0]	I CMOS	Bus Speed Select: At the de-assertion of RSTIN#, the value sampled on these pins determines the expected frequency of the bus.		
HRCOMP	1/0	Host RCOMP: Used to calibrate the Host GTL+ I/O buffers.		
	CMOS	This signal is powered by the Host Interface termination rail (V_{TI}) .		
HSCOMP	I/O CMOS	Slew Rate Compensation: Compensation for the Host Interface.		
HSCOMP#	I/O A	Slew Rate Compensation: Compensation for the Host Interface for falling edges.		
HSWING	I A	Host Voltage Swing: This signal provides the reference voltage used by FSB RCOMP circuits. HSWING is used for the signals handled by HRCOMP.		
HDVREF	I A	Host Reference Voltage: Voltage input for the Data signals of the Host GTL interface.		
HACCVREF	I A	Host Reference Voltage: Voltage input for the Address signals of the Host GTL interface.		

2.2 DDR2 DRAM Channel A Interface

Signal Name	Туре	Description
SCLK_A[5:0]	O SSTL-1.8	SDRAM Differential Clock: (3 per DIMM), SCLK_A and its complement, SCLK_A# make a differential clock pair output. The crossing of the positive edge of SCLK_A and the negative edge of its complement SCLK_A# are used to sample the command and control signals on the SDRAM.
SCLK_A[5:0]#	O SSTL-1.8	SDRAM Complementary Differential Clock: (3 per DIMM) These are the complementary differential DDR2 Clock signals.
SCS_A[3:0]#	O SSTL-1.8	Chip Select: (1 per Rank) These signals select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank.
SMA_A[14:0]	O SSTL-1.8	Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM.
SBS_A[2:0]	O SSTL-1.8	Bank Select: These signals define which banks are selected within each SDRAM rank.
		DDR2: 1-Gb technology uses 8 banks.
SRAS_A#	O SSTL-1.8	Row Address Strobe: Used with SCAS_A# and SWE_A# (along with SCS_A#) to define the SDRAM commands.
SCAS_A#	O SSTL-1.8	Column Address Strobe: Used with SRAS_A# and SWE_A# (along with SCS_A#) to define the SDRAM commands.
SWE_A#	O SSTL-1.8	Write Enable: Used with SCAS_A# and SRAS_A# (along with SCS_A#) to define the SDRAM commands.
SDQ_A[63:0]	I/O SSTL-1.8	Data Lines: SDQ_A signals interface to the SDRAM data bus.
SDM_A[7:0]	O SSTL-1.8	Data Mask: When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SDM_A bit for every data byte lane.
SDQS_A[7:0]	I/O SSTL-1.8	Data Strobes: For DDR2, SDQS_A, and its complement SDQS_A# make up a differential strobe pair. The data is captured at the crossing point of SDQS_A and its complement SDQS_A# during read and write transactions.
SDQS_A[7:0]#	I/O SSTL-1.8	Data Strobe Complements: These are the complementary DDR2 strobe signals.
SCKE_A[3:0]	O SSTL-1.8	Clock Enable: (1 per Rank) SCKE_A is used to initialize the SDRAMs during power-up, to power-down SDRAM ranks, and to place all SDRAM ranks into and out of self-refresh during Suspend-to-RAM.
SODT_A[3:0]	O SSTL-1.8	On Die Termination: Active On-die Termination Control signals for DDR2 devices.

2.3 DDR2 DRAM Channel B Interface

Signal Name	Туре	Description
SCLK_B[5:0]	O SSTL-1.8	SDRAM Differential Clock: (3 per DIMM) SCLK_B and its complement, SCLK_B#, make a differential clock pair output. The crossing of the positive edge of SCLK_B and the negative edge of its complement SCLK_B# are used to sample the command and control signals on the SDRAM.
SCLK_B[5:0]#	O SSTL-1.8	SDRAM Complementary Differential Clock: (3 per DIMM) These are the complementary differential DDR2 Clock signals.
SCS_B[3:0]#	O SSTL-1.8	Chip Select: (1 per Rank) These signals select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank
SMA_B[14:0]	O SSTL-1.8	Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM.
SBS_B[2:0]	O SSTL-1.8	Bank Select: These signals define which banks are selected within each SDRAM rank
		DDR2: 1-Gb technology uses 8 banks.
SRAS_B#	O SSTL-1.8	Row Address Strobe: Used with SCAS_B# and SWE_B# (along with SCS_B#) to define the SDRAM commands
SCAS_B#	O SSTL-1.8	Column Address Strobe: Used with SRAS_B# and SWE_B# (along with SCS_B#) to define the SDRAM commands.
SWE_B#	O SSTL-1.8	Write Enable: Used with SCAS_B# and SRAS_B# (along with SCS_B#) to define the SDRAM commands.
SDQ_B[63:0]	I/O SSTL-1.8	Data Lines: SDQ_B signals interface to the SDRAM data bus.
SDM_B[7:0]	O SSTL-1.8	Data Mask: When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SBDM for every data byte lane.
SDQS_B[7:0]	I/O SSTL-1.8	Data Strobes: For DDR2, SDQS_B, and its complement ,SDQS_B#, make up a differential strobe pair. The data is captured at the crossing point of SDQS_B and its complement SDQS_B# during read and write transactions.
SDQS_B[7:0]#	I/O SSTL-1.8	Data Strobe Complements: These are the complementary DDR2 strobe signals.
SCKE_B[3:0]	O SSTL-1.8	Clock Enable: (1 per Rank) SCKE_B is used to initialize the SDRAMs during power-up, to power-down SDRAM ranks, and to place all SDRAM ranks into and out of self-refresh during Suspend-to-RAM.
SODT_B[3:0]	O SSTL-1.8	On Die Termination: Active On-die Termination Control signals for DDR2 devices.

2.4 DDR2 DRAM Reference and Compensation

Signal Name	Туре	Description
SRCOMP[3:0]	I	System Memory RCOMP
	Α	
SVREF	I	SDRAM Reference Voltage: Reference voltage input for DQ,
	Α	DQS, and DQS# input signals.
SMRCOMPVOL	I	System Memory RCOMP reference
	Α	
SMRCOMPVOH	I	System Memory RCOMP reference
	Α	

2.5 PCI Express* Interface Signals

Signal Name	Туре	Description
EXP_RXN[15:0]	I	PCI Express Receive Differential Pair (RX)
EXP_RXP[15:0]	PCI EXPRESS	
EXP_TXN[15:0]	0	PCI Express Graphics Transmit Differential Pair (TX)
EXP_TXP[15:0]	PCI EXPRESS	
EXP_COMPO	I	PCI Express Graphics Output Current Compensation
	А	
EXP_COMPI	I	PCI Express Graphics Input Current Compensation
	А	

2.6 Analog Display Signals

Signal Name	Туре	Description
RED	O A	RED Analog Video Output: This signal is a CRT Analog video output from the internal color palette DAC. The DAC is designed for a 37.5 ohm routing impedance, but the terminating resistor to ground will be 75 ohms (e.g., 75 ohm resistor on the board, in parallel with a 75 ohm CRT load).
RED#	O A	RED# Analog Output: This signal is an analog video output from the internal color palette DAC. It should be shorted to the ground plane.

Signal Name	Туре	Description	
GREEN	O A	GREEN Analog Video Output: This signal is a CRT Analog video output from the internal color palette DAC. The DAC is designed for a 37.5 ohm routing impedance, but the terminating resistor to ground will be 75 ohms (e.g., 75 ohm resistor on the board, in parallel with a 75 ohm CRT load).	
GREEN#	O A	GREEN# Analog Output: This signal is an analog video output from the internal color palette DAC. It should be shorted to the ground plane.	
BLUE	O A	BLUE Analog Video Output: This signal is a CRT Analog video output from the internal color palette DAC. The DAC is designed for a 37.5 ohm routing impedance, but the terminating resistor to ground will be 75 ohms (e.g., 75 ohm resistor on the board, in parallel with a 75 ohm CRT load).	
BLUE#	O A	BLUE# Analog Output: This signal is an analog video output from the internal color palette DAC. It should be shorted to the ground plane.	
REFSET	O A	Resistor Set: Set point resistor for the internal color palette DAC. A 255 ohm 1% resistor is required between REFSET and motherboard ground.	
HSYNC	O 3.3V CMOS	CRT Horizontal Synchronization: This signal is used as the horizontal sync (polarity is programmable) or "sync interval", 3.3 V output	
VSYNC	O 3.3V CMOS	CRT Vertical Synchronization: This signal is used as the vertical sync (polarity is programmable) 3.3V output.	
DDC_CLK	I/O 3.3V CMOS	Monitor Control Clock	
DDC_DATA	I/O 3.3V CMOS	Monitor Control Data	

2.7 Clocks, Reset, and Miscellaneous

Signal Name	Туре	Description	
HCLKP HCLKN	I HCSL	Differential Host Clock In: These pins receive a differential host clock from the external clock synthesizer. This clock is used by all of the GMCH logic that is in the Host clock domain. Memory domain clocks are also derived from this source.	
GCLKP GCLKN	I HCSL	Differential PCI Express* Graphics Clock In: These pins receive a differential 100 MHz Serial Reference clock from the external clock synthesizer. This clock is used to generate the clocks necessary for the support of PCI Express.	
DREFCLKN	Ţ	Display PLL Differential Clock In	
DREFCLKP	HCSL		

Signal Name	Туре	Description	
RSTIN#	I HVIN	Reset In: When asserted, this signal will asynchronously reset the GMCH logic. This signal is connected to the PCIRST# output of the Intel® ICH8. All PCI Express Graphics Attach output signals will also tri-state compliant to PCI Express* Specification Rev 1.1.	
		This input should have a Schmitt trigger to avoid spurious resets.	
		This signal is required to be 3.3V tolerant.	
PWROK	I	Power OK: When asserted, PWROK is an indication to the	
	HVIN	GMCH that core power has been stable for at least 10us.	
EXP_EN	I	PCI Express* SDVO Concurrent Select	
	CMOS	0 = Only SDVO or PCI Express Operational	
		1 = SDVO and PCI Express operating simultaneously via PCI Express* Graphics port	
EXP_SLR	I CMOS	PCI Express* Static Lane Reversal/Form Factor Selection: GMCH's PCI Express lane numbers are reversed to differentiate BTX or ATX form factors.	
		0 = GMCH's PCI Express lane numbers are reversed (BTX Platforms)	
		1 = Normal operation (ATX Platforms)	
ICH_SYNC#	0	ICH Sync: See Design Guide for Implementation.	
	HVCMO S		
TEST[2:0]	1/0	In Circuit Test: These pins should be connected to test points on the mother board. They are internally shorted to the package ground and can be used to determine if the corner balls on the GMCH are correctly soldered down to the motherboard. These pins should NOT connect to ground on the motherboard. If TEST[2:0] are not going to be used they should be left as no connects	

2.8 Direct Media Interface (DMI)

Signal Name	Туре	Description	
DMI_RXP[3:0]	I	Direct Media Interface: Receive differential pair (Rx)	
DMI_RXN[3:0]	DMI		
DMI_TXP[3:0]	0	Direct Media Interface: Transmit differential pair (Tx)	
DMI_TXN[3:0]	DMI		

2.9 Controller Link (CL)

Signal Name	Туре	Description
CL_DATA	1/0	Controller Link DATA
	CMOS	
CL_CLK	1/0	Controller Link Clock
	CMOS	
CL_VREF	I	Controller Link VREF
	CMOS	
CL_RST#	I	Controller Link RESET
	CMOS	
CL_PWROK	I	Controller Link Power OK
	CMOS	

2.10 Intel[®] Serial DVO (SDVO) Interface

All but the last two of the pins in this section are multiplexed with the lower 8 lanes of the PCI Express* interface.

Signal Name	Туре	Description
SDVOB_CLKN	0	Serial Digital Video Channel B Clock Complement
	PCI Express*	
SDVOB_CLKP	0	Serial Digital Video Channel B Clock
	PCI Express	
SDVOB_RED#	0	Serial Digital Video Channel C Red Complement
	PCI Express	
SDVOB_RED	0	Serial Digital Video Channel C Red
	PCI Express	
SDVOB_GREEN#	0	Serial Digital Video Channel B Green Complement
	PCI Express	
SDVOB_GREEN	0	Serial Digital Video Channel B Green
	PCI Express	
SDVOB_BLUE#	0	Serial Digital Video Channel B Blue Complement
	PCI Express	
SDVOB_BLUE	0	Serial Digital Video Channel B Blue
	PCI Express	

Signal Name	Туре	Description
SDVOC_RED#	0	Serial Digital Video Channel C Red Complement
	PCI Express	
SDVOC_RED	0	Serial Digital Video Channel C Red Channel B
	PCI Express	Alpha
SDVOC_GREEN#	0	Serial Digital Video Channel C Green Complement
	PCI Express	
SDVOC_GREEN	0	Serial Digital Video Channel C Green
	PCI Express	
SDVOC_BLUE#	0	Serial Digital Video Channel C Blue Complement
	PCI Express	
SDVOC_BLUE	0	Serial Digital Video Channel C Blue
	PCI Express	
SDVOC_CLKN	0	Serial Digital Video Channel C Clock Complement
	PCI Express	
SDVOC_CLKP	0	Serial Digital Video Channel C Clock
	PCI Express	
SDVO_TVCLKIN#	I	Serial Digital Video TVOUT Synchronization Clock
	PCI Express	Complement
SDVO_TVCLKIN	PCI Express	Serial Digital Video TVOUT Synchronization Clock
SDVOB_INT#	ı	Serial Digital Video Input Interrupt Complement
_	PCI Express	j
SDVOB_INT	PCI Funnas	Serial Digital Video Input Interrupt
CDVOC INT#	PCI Express	Carial Digital Video Lagrant Laterment Compilers and
SDVOC_INT#	PCI Express	Serial Digital Video Input Interrupt Complement
SDVOC_INT	I	Serial Digital Video Input Interrupt
	PCI Express	
SDVO_FLDSTALL#	I PCI Express	Serial Digital Video Field Stall Complement.
SDVO_FLDSTALL	I PCI Express	Serial Digital Video Field Stall
SDVO_CTRLCLK	I/O COD	Serial Digital Video Device Control Clock
SDVO_CTRLDATA	I/O COD	Serial Digital Video Device Control Data

2.10.1 SDVO/PCI Express* Signal Mapping

The following table shows the mapping of SDVO signals to the PCI Express* lanes in the various possible configurations as determined by the strapping configuration. Note that slot-reversed configurations do not apply to the Integrated-graphics only variants.

	Configuration-wise Mapping			
SDVO Signal	SDVO Only – Normal	SDVO Only – Reversed	Concurrent SDVO and PCI Express* – Normal	Concurrent SDVO and PCI Express* – Reversed
SDVOB_RED#	EXP_TXN0	EXP_TXN15	EXP_TXN15	EXP_TXN0
SDVOB_RED	EXP_TXP0	EXP_TXP15	EXP_TXP15	EXP_TXP0
SDVOB_GREEN#	EXP_TXN1	EXP_TXN14	EXP_TXN14	EXP_TXN1
SDVOB_GREEN	EXP_TXP1	EXP_TXP14	EXP_TXP14	EXP_TXP1
SDVOB_BLUE#	EXP_TXN2	EXP_TXN13	EXP_TXN13	EXP_TXN2
SDVOB_BLUE	EXP_TXP2	EXP_TXP13	EXP_TXP13	EXP_TXP2
SDVOB_CLKN	EXP_TXN3	EXP_TXN12	EXP_TXN12	EXP_TXN3
SDVOB_CLKP	EXP_TXP3	EXP_TXP12	EXP_TXP12	EXP_TXP3
SDVOC_RED#	EXP_TXN4	EXP_TXN11	EXP_TXN11	EXP_TXN4
SDVOC_RED	EXP_TXP4	EXP_TXP11	EXP_TXP11	EXP_TXP4
SDVOC_GREEN#	EXP_TXN5	EXP_TXN10	EXP_TXN10	EXP_TXN5
SDVOC_GREEN	EXP_TXP5	EXP_TXP10	EXP_TXP10	EXP_TXP5
SDVOC_BLUE#	EXP_TXN6	EXP_TXN9	EXP_TXN9	EXP_TXN6
SDVOC_BLUE	EXP_TXP6	EXP_TXP9	EXP_TXP9	EXP_TXP6
SDVOC_CLKN	EXP_TXN7	EXP_TXN8	EXP_TXN8	EXP_TXN7
SDVOC_CLKP	EXP_TXP7	EXP_TXP8	EXP_TXP8	EXP_TXP7
SDVO_TVCLKIN#	EXP_RXN0	EXP_RXN15	EXP_RXN15	EXP_RXN0
SDVO_TVCLKIN	EXP_RXP0	EXP_RXP15	EXP_RXP15	EXP_RXP0
SDVOB_INT#	EXP_RXN1	EXP_RXN14	EXP_RXN14	EXP_RXN1
SDVOB_INT	EXP_RXP1	EXP_RXP14	EXP_RXP14	EXP_RXP1
SDVOC_INT#	EXP_RXN5	EXP_RXN10	EXP_RXN10	EXP_RXN5
SDVOC_INT	EXP_RXP5	EXP_RXP10	EXP_RXP10	EXP_RXP5
SDVO_FLDSTALL#	EXP_RXN2	EXP_RXN13	EXP_RXN13	EXP_RXN2
SDVO_FLDSTALL	EXP_RXP2	EXP_RXP13	EXP_RXP13	EXP_RXP2

2.11 Power, Ground

Name	Voltage	Description
Name	voitage	Description
VCC	1.25 V	Core Power
VTT	1.05 V/1.2 V	Processor System Bus Power
VCC_EXP	1.25 V	PCI Express* and DMI Power
VCCSM	1.8 V	System Memory Power
VCC_SMCLK	1.8V	System Clock Memory Power
VCC3_3	3.3 V	3.3 V CMOS Power
VCCA_EXPPLL	1.25 V	PCI Express PLL Analog Power
VCCA_DPLLA	1.25 V	Display PLL A Analog Power
VCCA_DPLLB	1.25 V	Display PLL B Analog Power
VCCA_HPLL	1.25 V	Host PLL Analog Power
VCCA_MPLL	1.25 V	System Memory PLL Analog Power
VCCA_DAC	3.3 V	Display DAC Analog Power
VCCA_EXP	3.3 V	PCI Express Analog Power
VCCDQ_CRT	1.5/1.8 V	Display Digital Quiet Supply Power
VCCD_CRT	1.5/1.8 V	Display Digital Supply Power
VCC_CL	1.25 V	Controller Link Aux Power
VCC_CL_PLL	1.25V	Controller Link PLL Analog Power
VSS	0 V	Ground

§

3 System Address Map

The 82G35 GMCH supports 64GB or 4 GB of addressable memory space and 64 KB+3 of addressable I/O space. There is a programmable memory address space under the 1 MB region which is divided into regions which can be individually controlled with programmable attributes such as Disable, Read/Write, Write Only, or Read Only. Attribute programming is described in the Register Description section. This section focuses on how the memory space is partitioned and what the separate memory regions are used for. I/O address space has simpler mapping and is explained near the end of this section.

The HREQ[4:3] FSB pins are decoded to determine whether the access is 32 bit or 36 bit.

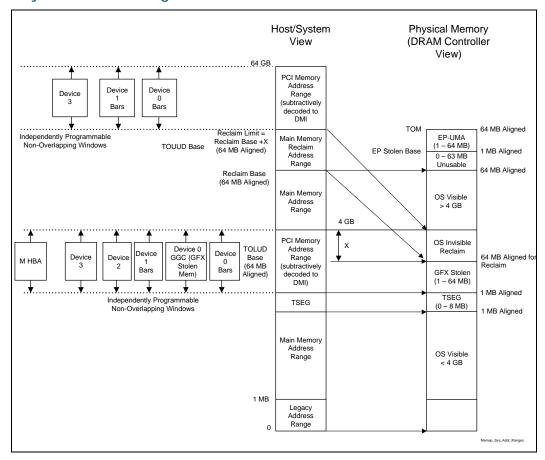
The G35 GMCH supports a maximum of 8GB of DRAM, no DRAM memory will be accessible above 8 GB. DRAM capacity is limited by the number of address pins available. There is no hardware lock to stop someone from inserting more memory than is addressable.

In the following sections, it is assumed that all of the compatibility memory ranges reside on the DMI Interface. The exception to this rule is VGA ranges, which may be mapped to PCI Express*, DMI, or to the internal graphics device (IGD). In the absence of more specific references, cycle descriptions referencing PCI should be interpreted as the DMI Interface/PCI, while cycle descriptions referencing PCI Express or IGD are related to the PCI Express bus or the internal graphics device respectively. The reclaim base/reclaim limit registers remap logical accesses bound for addresses above 4G onto physical addresses that fall within DRAM.

The Address Map includes a number of programmable ranges:

- Device 0
- PXPEPBAR Egress port registers. Necessary for setting up VC1 as an isochronous channel using time based weighted round robin arbitration. (4 KB window)
- MCHBAR Memory mapped range for internal GMCH registers. For example, memory buffer register controls. (16 KB window)
- PCIEXBAR Flat memory-mapped address spaced to access device configuration registers. This mechanism can be used to access PCI configuration space (0-FFh) and Extended configuration space (100h–FFFh) for PCI Express devices.
- DMIBAR –This window is used to access registers associated with the GMCH/ICH Serial Interconnect (DMI) register memory range. (4 KB window)
- GGC GMCH graphics control register. Used to select the amount of main memory that is pre-allocated to support the internal graphics device in VGA (nonlinear) and Native (linear) modes. (0–64 MB options).
- Device 1
- MBASE1/MLIMIT1 PCI Express port non-prefetchable memory access window.
- PMUBASE1/PMULIMIT1 PCI Express port prefetchable memory access window.
- IOBASE1/IOLIMIT1 PCI Express port IO access window.

- Device 2, Function 0
- MMADR IGD registers and internal graphics instruction port. (512 KB window)
- IOBAR IO access window for internal graphics. Though this window address/data register pair, using I/O semantics, the IGD and internal graphics instruction port registers can be accessed. Note, this allows accessing the same registers as MMADR. In addition, the IOBAR can be used to issue writes to the GTTADR table.
- GMADR Internal graphics translation window (128 MB, 256 MB or 512 MB window).
- GTTADR Internal graphics translation table location. (128 KB, 256 KB or 512 KB window).
- Device 2, Function 1
- MMADR Function 1 IGD registers and internal graphics instruction port.
 (512 KB window)
- Device 3, Function 0:
- MEHECIBAR Function 0 HECI memory mapped registers (16B window)


The rules for the above programmable ranges are:

- ALL of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or system designer's responsibility to limit memory population so that adequate PCI, PCI Express, High BIOS, PCI Express Memory Mapped space, and APIC memory space can be allocated.
- 2. In the case of overlapping ranges with memory, the memory decode will be given priority.
- 3. There are NO Hardware Interlocks to prevent problems in the case of overlapping ranges.
- 4. Accesses to overlapped ranges may produce indeterminate results.
- 5. The only peer-to-peer cycles allowed below the top of Low Usable memory (register TOLUD) are DMI Interface to PCI Express VGA range writes. Note that peer to peer cycles to the Internal Graphics VGA range are not supported.

Figure 3-1 represents system memory address map in a simplified form.

Figure 3-1. System Address Ranges

3.1 Legacy Address Range

This area is divided into the following address regions:

- 0 640 KB DOS Area
- 640 768 KB Legacy Video Buffer Area
- 768 896 KB in 16KB sections (total of 8 sections) Expansion Area
- 896 960 KB in 16KB sections (total of 4 sections) Extended System BIOS Area
- 960 KB 1 MB Memory System BIOS Area

Figure 3-2. DOS Legacy Address Range

		1MB
000F_FFFFh	System BIOS (Upper)	
000F_0000h	64KB	960KB
000E_FFFFh	Extended System BIOS (Lower)	
000E_0000h	64KB (16KBx4)	896KB
000D_FFFFh		
	Expansion Area	
	128KB (16KBx8)	
000C_0000h		768KB
000B_FFFFh	Lanana Vidaa Araa	7 OOKB
	Legacy Video Area (SMM Memory)	
	128KB	
000A_0000h		640KB
0009_FFFFh		OTONE
	DOS Area	
	DOS Alea	
0000_0000h		

3.1.1 DOS Range (0h – 9_FFFFh)

The DOS area is 640 KB (0000_0000h - 0009_FFFFh) in size and is always mapped to the main memory controlled by the GMCH.

3.1.2 Legacy Video Area (A_0000h-B_FFFFh)

The legacy 128 KB VGA memory range, frame buffer, (000A_0000h – 000B_FFFFh) can be mapped to IGD (Device 2), to PCI Express (Device 1), and/or to the DMI Interface. The appropriate mapping depends on which devices are enabled and the programming of the VGA steering bits. Based on the VGA steering bits, priority for VGA mapping is constant. The GMCH always decodes internally mapped devices first. Internal to the GMCH, decode precedence is always given to IGD. The GMCH always positively decodes internally mapped devices, namely the IGD and PCI-Express. Subsequent decoding of regions mapped to PCI Express or the DMI Interface depends on the Legacy VGA configuration bits (VGA Enable and MDAP). This region is also the default for SMM space.

Compatible SMRAM Address Range (A_0000h-B_FFFFh)

When compatible SMM space is enabled, SMM-mode processor accesses to this range are routed to physical system DRAM at 000A 0000h – 000B FFFFh. Non-SMM-mode processor accesses to this range are considered to be to the Video Buffer Area as described above. PCI Express and DMI originated cycles to enabled SMM space are not allowed and are considered to be to the Video Buffer Area if IGD is not enabled as the VGA device. PCI Express and DMI initiated cycles are attempted as Peer cycles, and will master abort on PCI if no external VGA device claims them.

Monochrome Adapter (MDA) Range (B_0000h-B_7FFFh)

Legacy support requires the ability to have a second graphics controller (monochrome) in the system. Accesses in the standard VGA range are forwarded to IGD, PCI-Express, or the DMI Interface (depending on configuration bits). Since the monochrome adapter may be mapped to anyone of these devices, the GMCH must decode cycles in the MDA range (000B_0000h - 000B_7FFFh) and forward either to IGD, PCI-Express, or the DMI Interface. This capability is controlled by a VGA steering bits and the legacy configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the GMCH decodes IO cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3BAh and 3BFh and forwards them to the either IGD, PCI-Express, and/or the DMI Interface.

3.1.3 Expansion Area (C_0000h-D_FFFFh)

This 128 KB ISA Expansion region (000C_0000h - 000D_FFFFh) is divided into eight 16 KB segments. Each segment can be assigned one of four Read/Write states: read-only, write-only, read/write, or disabled. Typically, these blocks are mapped through GMCH and are subtractive decoded to ISA space. Memory that is disabled is not remapped.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM. This complies with a Colusa DCN.

Table 3-1. Expansion Area Memory Segments

Memory Segments	Attributes	Comments
0C0000h - 0C3FFFh	WE RE	Add-on BIOS
0C4000h - 0C7FFFh	WE RE	Add-on BIOS
0C8000h - 0CBFFFh	WE RE	Add-on BIOS
OCCOOOh - OCFFFFh	WE RE	Add-on BIOS
0D0000h - 0D3FFFh	WE RE	Add-on BIOS
0D4000h - 0D7FFFh	WE RE	Add-on BIOS
0D8000h - 0DBFFFh	WE RE	Add-on BIOS
0DC000h - 0DFFFFh	WE RE	Add-on BIOS

3.1.4 Extended System BIOS Area (E_0000h-E_FFFFh)

This 64 KB area (000E_0000h - 000E_FFFFh) is divided into four 16 KB segments. Each segment can be assigned independent read and write attributes so it can be mapped either to main DRAM or to DMI Interface. Typically, this area is used for RAM or ROM. Memory segments that are disabled are not remapped elsewhere.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Table 3-2. Extended System BIOS Area Memory Segments

Memory Segments	Attributes	Comments
0E0000h - 0E3FFFh	WE RE	BIOS Extension
0E4000h - 0E7FFFh	WE RE	BIOS Extension
0E8000h - 0EBFFFh	WE RE	BIOS Extension
0EC000h - 0EFFFFh	WE RE	BIOS Extension

3.1.5 System BIOS Area (F_0000h - F_FFFFh)

This area is a single 64 KB segment (000F_0000h – 000F_FFFFh). This segment can be assigned read and write attributes. It is by default (after reset) Read/Write disabled and cycles are forwarded to DMI Interface. By manipulating the Read/Write attributes, the GMCH can "shadow" BIOS into the main DRAM. When disabled, this segment is not remapped.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM .

Table 3-3. System BIOS Area Memory Segments

Memory Segments	Attributes	Comments
0F0000h – 0FFFFFh	WE RE	BIOS Area

3.1.6 PAM Memory Area Details

The 13 sections from 768 KB to 1 MB comprise what is also known as the PAM Memory Area.

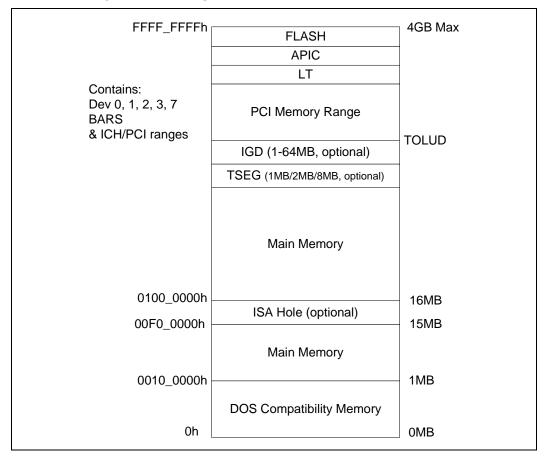
The GMCH does not handle IWB (Implicit Write-Back) cycles targeting DMI. Since all memory residing on DMI should be set as non-cacheable, there will normally not be IWB cycles targeting DMI.

However, DMI becomes the default target for processor and DMI originated accesses to disabled segments of the PAM region. If the MTRRs covering the PAM regions are set to WB or RD it is possible to get IWB cycles targeting DMI. This may occur for processor originated cycles (in a DP system) and for DMI originated cycles to disabled PAM regions.

For example, say that a particular PAM region is set for "Read Disabled" and the MTRR associated with this region is set to WB. A DMI master generates a memory read targeting the PAM region. A snoop is generated on the FSB and the result is an IWB. Since the PAM region is "Read Disabled" the default target for the Memory Read becomes DMI. The IWB associated with this cycle will cause the GMCH to hang.

3.1.7 Legacy Interrupt Routing

Table 3-4. Specifics of Legacy Interrupt Routing


Interrupt Source	Default Interrupt A/B/C/D
Internal Graphics D2 F0	А
PEG (External Graphics Device)	Function of what is defined in Interrupt Pin register of the PEG device
PEG (Internally generated Interrupt) D1 F0	А
ME (IDER) D3 F2	В
ME (HECI) D3 F0	С
ME (KT) D3 F3	А

3.2 Main Memory Address Range (1MB – TOLUD)

This address range extends from 1 MB to the top of Low Usable physical memory that is permitted to be accessible by the GMCH (as programmed in the TOLUD register). All accesses to addresses within this range will be forwarded by the GMCH to the DRAM unless it falls into the optional TSEG, optional ISA Hole, or optional IGD stolen VGA memory.

Figure 3-3. Main Memory Address Range

3.2.1 ISA Hole (15MB-16MB)

A hole can be created at 15 MB–16 MB as controlled by the fixed hole enable in Device 0 space. Accesses within this hole are forwarded to the DMI Interface. The range of physical DRAM memory disabled by opening the hole is not remapped to the top of the memory – that physical DRAM space is not accessible. This 15 MB – 16 MB hole is an optionally enabled ISA hole.

Video accelerators originally used this hole. It is also used by validation and customer SV teams for some of their test cards. That is why it is being supported. There is no inherent BIOS request for the 15~MB-16~MB window.

3.2.2 TSEG

TSEG is optionally 1 MB, 2 MB, or 8 MB in size. TSEG is below IGD stolen memory, which is at the top of Low Usable physical memory (TOLUD). SMM-mode processor accesses to enabled TSEG access the physical DRAM at the same address. Non-processor originated accesses are not allowed to SMM space. PCI-Express, DMI, and Internal Graphics originated cycle to enabled SMM space are handled as invalid cycle type with reads and writes to location 0 and byte enables turned off for writes. When

the extended SMRAM space is enabled, processor accesses to the TSEG range without SMM attribute or without WB attribute are also forwarded to memory as invalid accesses (see Table 3-5). Non-SMM-mode Write Back cycles that target TSEG space are completed to DRAM for cache coherency. When SMM is enabled the maximum amount of memory available to the system is equal to the amount of physical DRAM minus the value in the TSEG register which is fixed at 1 MB, 2 MB or 8 MB.

3.2.3 Pre-allocated Memory

Voids of physical addresses that are not accessible as general system memory and reside within system memory address range (< TOLUD) are created for SMM-mode and legacy VGA graphics compatibility. It is the responsibility of BIOS to properly initialize these regions. The following table details the location and attributes of the regions. Enabling/Disabling these ranges are described in the GMCH Control Register Device 0 (GCC).

Table 3-5. Pre-allocated Memory Example for 64 MB DRAM, 1-MB VGA and 1-MB TSEG

Memory Segments	Attributes	Comments
0000_0000h – 03DF_FFFFh	R/W	Available System Memory 62 MB
03E0_0000h – 03EF_FFFFh	SMM Mode Only - processor Reads	TSEG Address Range & Pre-allocated Memory
03F0_0000h – 03FF_FFFFh	R/W	Pre-allocated Graphics VGA memory. 1 MB (or 4/8/16/32/64 MB) when IGD is enabled.

3.3 PCI Memory Address Range (TOLUD – 4GB)

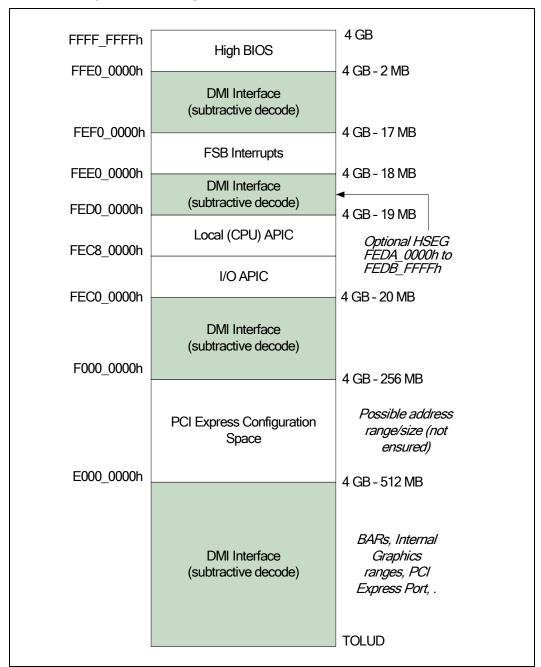
This address range, from the top of low usable DRAM (TOLUD) to 4 GB is normally mapped to the DMI Interface.

With PCI Express* port, there are two exceptions to this rule.

 Addresses decoded to the PCI Express Memory Window defined by the MBASE1, MLIMIT1, registers are mapped to PCI Express.

Note: AGP Aperture no longer exists with PCI Express.

In a Manageability Engine configuration, there are exceptions to this rule.


Addresses decoded to the ME Keyboard and Text MMIO range (EPKTBAR)

There are other MMIO Bars that may be mapped to this range or to the range above TOUUD.

There are sub-ranges within the PCI Memory address range defined as APIC Configuration Space, FSB Interrupt Space, and High BIOS Address Range. The exceptions listed above for internal graphics and the PCI Express ports *MUST NOT overlap with these ranges*.

Figure 3-4. PCI Memory Address Range

3.3.1 APIC Configuration Space (FECO_0000h_FECF_FFFFh)

This range is reserved for APIC configuration space. The I/O APIC(s) usually reside in the ICH portion of the chipset, but may also exist as stand-alone components like PXH.

The IOAPIC spaces are used to communicate with IOAPIC interrupt controllers that may be populated in the system. Since it is difficult to relocate an interrupt controller using plug-and-play software, fixed address decode regions have been allocated for them. Processor accesses to the default IOAPIC region (FECO_0000h to FEC7_FFFFh) are always forwarded to DMI.

The GMCH optionally supports additional I/O APICs behind the PCI Express "Graphics" port. When enabled via the PCI Express Configuration register (Device 1 Offset 200h), the PCI Express port will positively decode a subset of the APIC configuration space – specifically FEC8_0000h thru FECF_FFFFh. Memory request to this range would then be forwarded to the PCI Express port. This mode is intended for the entry Workstation/Server SKU of the GMCH, and would be disabled in typical Desktop systems. When disabled, any access within entire APIC Configuration space (FEC0_0000h to FECF_FFFFh) is forwarded to DMI.

3.3.2 HSEG (FEDA_0000h-FEDB_FFFFh)

This optional segment from FEDA_0000h to FEDB_FFFFh provides a remapping window to SMM Memory. It is sometimes called the High SMM memory space. SMM-mode processor accesses to the optionally enabled HSEG are remapped to 000A_0000h - 000B_FFFFh. Non-SMM-mode processor accesses to enabled HSEG are considered invalid and are terminated immediately on the FSB. The exceptions to this rule are Non-SMM-mode Write Back cycles which are remapped to SMM space to maintain cache coherency. PCI Express and DMI originated cycles to enabled SMM space are not allowed. Physical DRAM behind the HSEG transaction address is not remapped and is not accessible. All Cacheline writes with WB attribute or Implicit write backs to the HSEG range are completed to DRAM like an SMM cycle.

3.3.3 FSB Interrupt Memory Space (FEE0_0000-FEEF_FFFFh)

The FSB Interrupt space is the address used to deliver interrupts to the FSB. Any device on PCI Express or DMI may issue a Memory Write to 0FEEx_xxxxh. The GMCH will forward this Memory Write along with the data to the FSB as an Interrupt Message Transaction. The GMCH terminates the FSB transaction by providing the response and asserting HTRDY#. This Memory Write cycle does not go to DRAM.

3.3.4 High BIOS Area

The top 2 MB (FFE0_0000h -FFFF_FFFFh) of the PCI Memory Address Range is reserved for System BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system BIOS. The processor begins execution from the High BIOS after reset. This region is mapped to DMI Interface so that the upper subset of this region aliases to 16 MB-256 KB range. The actual address space required for the BIOS is less than 2 MB but the minimum processor MTRR range for this region is 2 MB so that full 2 MB must be considered.

3.4 Main Memory Address Space (4 GB to TOUUD)

The G35 GMCH will support 36 bit addressing.

The maximum main memory size supported is 16 GB total DRAM memory. A hole between TOLUD and 4 GB occurs when main memory size approaches 4 GB or larger. As a result, TOM, and TOUUD registers and RECLAIMBASE/RECLAIMLIMIT registers become relevant.

The new reclaim configuration registers exist to reclaim lost main memory space. The greater than 32 bit reclaim handling will be handled similar to other GMCHs.

Upstream read and write accesses above 36-bit addressing will be treated as invalid cycles by PEG and DMI.

Top of Memory

The "Top of Memory" (TOM) register reflects the total amount of populated physical memory. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped I/O above TOM). TOM is used to allocate the Manageability Engine's stolen memory. The Manageability Engine's (ME) stolen size register reflects the total amount of physical memory stolen by the Manageability Engine. The ME stolen memory is located at the top of physical memory. The ME stolen memory base is calculated by subtracting the amount of memory stolen by the Manageability Engine from TOM.

The Top of Upper Usable Dram (TOUUD) register reflects the total amount of addressable DRAM. If reclaim is disabled, TOUUD will reflect TOM minus Manageability Engine's stolen size. If reclaim is enabled, then it will reflect the reclaim limit. Also, the reclaim base will be the same as TOM minus ME stolen memory size to the nearest 64 MB alignment.

TOLUD register is restricted to 4 GB memory (A[31:20]), but G35 can support up to 16 GB, limited by DRAM pins. For physical memory greater than 4 GB, the TOUUD register helps identify the address range in between the 4 GB boundary and the top of physical memory. This identifies memory that can be directly accessed (including reclaim address calculation) which is useful for memory access indication, early path indication, and trusted read indication. When reclaim is enabled, TOLUD must be 64MB aligned, but when reclaim is disabled, TOLUD can be 1 MB aligned.

C1DRB3 cannot be used directly to determine the effective size of memory as the values programmed in the DRBs depend on the memory mode (Flex memory mode, interleaved). The Reclaim Base/Limit registers also can not be used because reclaim can be disabled. The C0DRB3 register is used for memory channel identification (channel 0 vs. channel 1) in the case of Flex memory mode operation.

3.4.1 Memory Re-claim Background

The following are examples of Memory Mapped IO devices are typically located below 4 GB:

- High BIOS
- HSEG
- TSEG
- GFXstolen
- XAPIC
- Local APIC
- FSB Interrupts
- Mbase/Mlimit
- Memory Mapped I/O space that supports only 32B addressing

The GMCH provides the capability to re-claim the physical memory overlapped by the Memory Mapped I/O logical address space. The GMCH re-maps physical memory from the Top of Low Memory (TOLUD) boundary up to the 4 GB boundary to an equivalent sized logical address range located just below the Manageability Engine's stolen memory.

3.4.2 Memory Reclaiming

An incoming address (referred to as a logical address) is checked to see if it falls in the memory re-map window. The bottom of the re-map window is defined by the value in the RECLAIMBASE register. The top of the re-map window is defined by the value in the RECLAIMLIMIT register. An address that falls within this window is reclaimed to the physical memory starting at the address defined by the TOLUD register. The TOLUD register must be 64M aligned when RECLAIM is enabled, but can be 1M aligned when reclaim is disabled.

3.5 PCI Express* Configuration Address Space

There is a device 0 register, PCIEXBAR, that defines the base address for the configuration space associated with all devices and functions that are potentially a part of the PCI Express root complex hierarchy. The size of this range is programmable for GMCH. BIOS must assign this address range such that it will not conflict with any other address ranges.

See the configuration portion of this document for more details.

3.6 PCI Express* Graphics Attach (PEG)

The GMCH can be programmed to direct memory accesses to the PCI Express interface when addresses are within either of two ranges specified via registers in GMCH's Device 1 configuration space.

- The first range is controlled via the Memory Base Register (MBASE) and Memory Limit Register (MLIMIT) registers.
- The second range is controlled via the Pre-fetchable Memory Base (PMBASE) and Pre-fetchable Memory Limit (PMLIMIT) registers.

Conceptually, address decoding for each range follows the same basic concept. The top 12 bits of the respective Memory Base and Memory Limit registers correspond to address bits A[31:20] of a memory address. For the purpose of address decoding, the GMCH assumes that address bits A[19:0] of the memory base are zero and that address bits A[19:0] of the memory limit address are FFFFFh. This forces each memory address range to be aligned to 1MB boundary and to have a size granularity of 1 MB.

The GMCH positively decodes memory accesses to PCI Express memory address space as defined by the following equations:

 $Memory_Base_Address \leq Address \leq Memory_Limit_Address$

Prefetchable_Memory_Base_Address ≤ Prefetchable_Memory_Limit_Address

The window size is programmed by the plug-and-play configuration software. The window size depends on the size of memory claimed by the PCI Express device. Normally these ranges will reside above the Top-of-Low Usable-DRAM and below High BIOS and APIC address ranges. They MUST reside above the top of low memory (TOLUD) if they reside below 4 GB and MUST reside above top of upper memory (TOUUD) if they reside above 4 GB or they will steal physical DRAM memory space.

It is essential to support a separate Pre-fetchable range in order to apply USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining.

Note that the GMCH Device 1 memory range registers described above are used to allocate memory address space for any PCI Express devices sitting on PCI Express that require such a window.

The PCICMD1 register can override the routing of memory accesses to PCI Express. In other words, the memory access enable bit must be set in the device 1 PCICMD1 register to enable the memory base/limit and pre-fetchable base/limit windows.

The upper PMUBASE1/PMULIMIT1 registers have been implemented for PCI Express Specification compliance. The GMCH 36 bit addressing locates MMIO space above 4 GB using these registers.

3.7 Graphics Memory Address Ranges

The GMCH can be programmed to direct memory accesses to IGD when addresses are within any of five ranges specified via registers in the GMCH's Device 2 configuration space.

- 1. The Memory Map Base Register (MMADR) is used to access graphics control registers.
- 2. The Graphics Memory Aperture Base Register (GMADR) is used to access graphics memory allocated via the graphics translation table.
- 3. The Graphics Translation Table Base Register (GTTADR) is used to access the translation table.
- 4. The LT Graphics Memory Aperture Base Register (TGABAR) is used to access protected graphics memory allocated via the graphics translation table.
- 5. The LT Graphics Translation Table Base Register (TGGTT) is used to access the protected translation table.

These ranges can reside above the Top-of-Low-DRAM and below High BIOS and APIC address ranges or above Top of upper DRAM (TOUUD). They MUST reside above the top of memory (TOLUD) and below 4 GB or above TOUUD so they do not steal any physical DRAM memory space.

GMADR is a Prefetchable range in order to apply USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining.

3.8 System Management Mode (SMM)

System Management Mode uses main memory for System Management RAM (SMM RAM). The GMCH supports: Compatible SMRAM (C_SMRAM), High Segment (HSEG), and Top of Memory Segment (TSEG). System Management RAM space provides a memory area that is available for the SMI handlers and code and data storage. This memory resource is normally hidden from the system OS so that the processor has immediate access to this memory space upon entry to SMM. GMCH provides three SMRAM options:

- Below 1 MB option that supports compatible SMI handlers.
- Above 1 MB option that allows new SMI handlers to execute with write-back cacheable SMRAM.
- Optional TSEG area of 1 MB, 2 MB, or 8 MB in size. The TSEG area lies below IGD stolen memory.

The above 1 MB solutions require changes to compatible SMRAM handlers code to properly execute above 1 MB.

Note: DMI Interface and PCI Express masters are not allowed to access the SMM space.

3.8.1 SMM Space Definition

SMM space is defined by its **addressed** SMM space and its DRAM SMM space. The addressed SMM space is defined as the range of bus addresses used by the processor to access SMM space. DRAM SMM space is defined as the range of physical DRAM memory locations containing the SMM code. SMM space can be accessed at one of three transaction address ranges: Compatible, High and TSEG. The Compatible and TSEG SMM space is not remapped and therefore the addressed and DRAM SMM space is the same address range. Since the High SMM space is remapped the addressed and DRAM SMM space is a different address range. Note that the High DRAM space is the same as the Compatible Transaction Address space. Table 3-6 describes three unique address ranges.

Table 3-6. Pre-Allocated Memory Example for 64-MB DRAM, 1-MB VGA and 1-MB TSEG

SMM Space Enabled	Transaction Address Space	DRAM Space (DRAM)
Compatible	000A_0000h to 000B_FFFFh	000A_0000h to 000B_FFFFh
High	FEDA_0000h to FEDB_FFFFh	000A_0000h to 000B_FFFFh
TSEG	(TOLUD-STOLEN-TSEG) to TOLUD-STOLEN	(TOLUD-STOLEN-TSEG) to TOLUD-STOLEN

3.8.2 SMM Space Restrictions

If any of the following conditions are violated the results of SMM accesses are unpredictable and may cause the system to hang:

- The Compatible SMM space **must not** be set-up as cacheable.
- High or TSEG SMM transaction address space must not overlap address space assigned to system DRAM, or to any "PCI" devices (including DMI Interface, PCI-Express, and graphics devices). This is a BIOS responsibility.
- Both D_OPEN and D_CLOSE **must not** be set to 1 at the same time.
- When TSEG SMM space is enabled, the TSEG space **must not** be reported to the OS as available DRAM. This is a BIOS responsibility.
- Any address translated through the GMADR TLB must not target DRAM from A_0000-F_FFFFh.

3.8.3 SMM Space Combinations

When High SMM is enabled (G_SMRAME=1 and H_SMRAM_EN=1) the Compatible SMM space is effectively disabled. Processor originated accesses to the Compatible SMM space are forwarded to PCI Express if VGAEN=1 (also depends on MDAP), otherwise they are forwarded to the DMI Interface. PCI Express and DMI Interface originated accesses are **never** allowed to access SMM space.

Table 3-7. SMM Space Table

Global Enable G_SMRAME	High Enable H_SMRAM_E N	TSEG Enable TSEG_EN	Compatible (C) Range	High (H) Range	TSEG (T) Range
0	X	X	Disable	Disable	Disable
1	0	0	Enable	Disable	Disable
1	0	1	Enable	Disable	Enable
1	1	0	Disabled	Enable	Disable
1	1	1	Disabled	Enable	Enable

3.8.4 SMM Control Combinations

The G_SMRAME bit provides a global enable for all SMM memory. The D_OPEN bit allows software to write to the SMM ranges without being in SMM mode. BIOS software can use this bit to initialize SMM code at power-up. The D_LCK bit limits the SMM range access to only SMM mode accesses. The D_CLS bit causes SMM data accesses to be forwarded to the DMI Interface or PCI Express. The SMM software can use this bit to write to video memory while running SMM code out of DRAM.

Table 3-8. SMM Control

G_SMRAME	D_LCK	D_CLS	D_OPEN	Processor in SMM Mode	SMM Code Access	SMM Data Access
0	х	Х	х	х	Disable	Disable
1	0	Х	0	0	Disable	Disable
1	0	0	0	1	Enable	Enable
1	0	0	1	х	Enable	Enable
1	0	1	0	1	Enable	Disable
1	0	1	1	х	Invalid	Invalid
1	1	Х	х	0	Disable	Disable
1	1	0	х	1	Enable	Enable
1	1	1	х	1	Enable	Disable

3.8.5 SMM Space Decode and Transaction Handling

Only the processor is allowed to access SMM space. PCI Express and DMI Interface originated transactions are not allowed to SMM space. The following tables indicate the action taken by the GMCH when the accesses to the various enabled SMM space occurs.

3.8.6 Processor WB Transaction to an Enabled SMM Address Space

Processor Writeback transactions (REQa[1]#=0) to enabled SMM Address Space must be written to the associated SMM DRAM even though D_OPEN=0 and the transaction is not performed in SMM mode. This ensures SMM space cache coherency when cacheable extended SMM space is used.

3.8.7 SMM Access Through GTT TLB

Accesses through GTT TLB address translation to enabled SMM DRAM space are not allowed. Writes will be routed to Memory address 000C_0000h with byte enables deasserted and reads will be routed to Memory address 000C_0000h. If a GTT TLB translated address hits enabled SMM DRAM space, an error is recorded.

PCI Express and DMI Interface originated accesses are **never** allowed to access SMM space directly or through the GTT TLB address translation. If a GTT TLB translated address hits enabled SMM DRAM space, an error is recorded.

PCI Express and DMI Interface write accesses through GMADR range will be snooped. Assesses to GMADR linear range (defined via fence registers) are supported. PCI Express and DMI Interface tileY and tileX writes to GMADR are not supported. If, when translated, the resulting physical address is to enabled SMM DRAM space, the request will be remapped to address 000C_0000h with de-asserted byte enables.

PCI Express and DMI Interface read accesses to the GMADR range are not supported, therefore will have no address translation concerns. PCI Express and DMI Interface reads to GMADR will be remapped to address 000C_0000h. The read will complete with UR (unsupported request) completion status.

GTT fetches are always decoded (at fetch time) to ensure not in SMM (actually, anything above base of TSEG or 640 KB - 1 MB). Thus, they will be invalid and go to address 000C_0000h, but that isn't specific to PCI Express or DMI; it applies to processor or internal graphics engines. Also, since the GMADR snoop would not be directly to the SMM space, there would not be a writeback to SMM. In fact, the writeback would also be invalid (because it uses the same translation) and go to address 000C_0000h.

3.9 Memory Shadowing

Any block of memory that can be designated as read-only or write-only can be "shadowed" into GMCH DRAM memory. Typically this is done to allow ROM code to execute more rapidly out of main DRAM. ROM is used as a read-only during the copy process while DRAM at the same time is designated write-only. After copying, the DRAM is designated read-only so that ROM is shadowed. Processor bus transactions are routed accordingly.

3.10 I/O Address Space

The GMCH does not support the existence of any other I/O devices beside itself on the processor bus. The GMCH generates either DMI Interface or PCI Express bus cycles for all processor I/O accesses that it does not claim. Within the host bridge, the GMCH contains two internal registers in the processor I/O space, Configuration Address Register (CONFIG_ADDRESS) and the Configuration Data Register (CONFIG_DATA). These locations are used to implement configuration space access mechanism.

The processor allows 64K+3 bytes to be addressed within the I/O space. The GMCH propagates the processor I/O address without any translation on to the destination bus and therefore provides addressability for 64K+3 byte locations. Note that the upper 3 locations can be accessed only during I/O address wrap-around when processor bus HA16# address signal is asserted. HA16# is asserted on the processor bus when an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. HA16# is also asserted when an I/O access is made to 2 bytes from address 0FFFFh.

A set of I/O accesses (other than ones used for configuration space access) are consumed by the internal graphics device if it is enabled. The mechanisms for internal graphics IO decode and the associated control is explained later.

The I/O accesses (other than ones used for configuration space access) are forwarded normally to the DMI Interface bus unless they fall within the PCI Express I/O address range as defined by the mechanisms explained below. I/O writes are NOT posted. Memory writes to the ICH or PCI Express are posted. The PCICMD1 register can disable the routing of I/O cycles to the PCI Express.

The GMCH responds to I/O cycles initiated on PCI Express or DMI with an UR status. Upstream I/O cycles and configuration cycles should never occur. If one does occur, the request will route as a read to Memory address 000C_0000h so a completion is naturally generated (whether the original request was a read or write). The transaction will complete with an UR completion status.

For Intel microprocessors, I/O reads that lie within 8-byte boundaries but cross 4-byte boundaries are issued from the processor as 1 transaction. The GMCH will break this into 2 separate transactions. I/O writes that lie within 8-byte boundaries but cross 4-byte boundaries are assumed to be split into 2 transactions by the processor.

3.10.1 PCI Express* I/O Address Mapping

The GMCH can be programmed to direct non-memory (I/O) accesses to the PCI Express bus interface when processor initiated I/O cycle addresses are within the PCI Express I/O address range. This range is controlled via the I/O Base Address (IOBASE) and I/O Limit Address (IOLIMIT) registers in GMCH Device 1 configuration space.

Address decoding for this range is based on the following concept. The top 4 bits of the respective I/O Base and I/O Limit registers correspond to address bits A[15:12] of an I/O address. For the purpose of address decoding, the GMCH assumes that lower 12 address bits A[11:0] of the I/O base are zero and that address bits A[11:0] of the I/O limit address are FFFh. This forces the I/O address range alignment to 4 KB boundary and produces a size granularity of 4 KB.

The GMCH positively decodes I/O accesses to PCI Express I/O address space as defined by the following equation:

I/O_Base_Address ≤ Processor I/O Cycle Address ≤ I/O_Limit_Address

The effective size of the range is programmed by the plug-and-play configuration software and it depends on the size of I/O space claimed by the PCI Express device.

The GMCH also forwards accesses to the Legacy VGA I/O ranges according to the settings in the Device 1 configuration registers BCTRL (VGA Enable) and PCICMD1 (IOAE1), unless a second adapter (monochrome) is present on the DMI Interface/PCI (or ISA). The presence of a second graphics adapter is determined by the MDAP configuration bit. When MDAP is set, the GMCH will decode legacy monochrome I/O ranges and forward them to the DMI Interface. The I/O ranges decoded for the monochrome adapter are 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, and 3BFh.

Note that the GMCH Device 1 I/O address range registers defined above are used for all I/O space allocation for any devices requiring such a window on PCI-Express.

The PCICMD1 register can disable the routing of I/O cycles to PCI-Express.

3.11 MCH Decode Rules and Cross-Bridge Address Mapping

VGAA = 000A_0000h - 000A_FFFFh MDA = 000B_0000h - 000B_7FFFh VGAB = 000B_8000h - 000B_FFFFh MAINMEM = 0100_0000h to TOLUD HIGHMEM = 4 GB to TOM RECLAIMMEM = RECLAIMBASE to RECLAIMLIMIT

3.11.1 Legacy VGA and I/O Range Decode Rules

The legacy 128 KB VGA memory range 000A_0000h-000B_FFFFh can be mapped to IGD (Device 2), to PCI Express (Device 1), and/or to the DMI Interface depending on the programming of the VGA steering bits. Priority for VGA mapping is constant in that the GMCH always decodes internally mapped devices first. Internal to the GMCH, decode precedence is always given to IGD. The GMCH always positively decodes internally mapped devices, namely the IGD and PCI-Express. Subsequent decoding of regions mapped to PCI Express or the DMI Interface depends on the Legacy VGA configurations bits (VGA Enable and MDAP).

§

Datasheet Datasheet

4 GMCH Register Description

The GMCH contains two sets of software accessible registers, accessed via the Host processor I/O address space: Control registers and internal configuration registers.

- Control registers are I/O mapped into the processor I/O space, which control
 access to PCI and PCI Express configuration space (see section entitled I/O
 Mapped Registers).
- Internal configuration registers residing within the GMCH are partitioned into three logical device register sets ("logical" since they reside within a single physical device). The first register set is dedicated to Host Bridge functionality (i.e., DRAM configuration, other chip-set operating parameters and optional features). The second register block is dedicated to Host-PCI Express Bridge functions (controls PCI Express interface configurations and operating parameters). The GMCH contains a third register block for the internal graphics functions. The GMCH also contains a fourth register block for the Manageability Engine.

The GMCH internal registers (I/O Mapped, Configuration and PCI Express Extended Configuration registers) are accessible by the Host processor. The registers that reside within the lower 256 bytes of each device can be accessed as Byte, Word (16-bit), or DWord (32-bit) quantities, with the exception of CONFIG_ADDRESS, which can only be accessed as a DWord. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field). Registers which reside in bytes 256 through 4095 of each device may only be accessed using memory mapped transactions in DWord (32-bit) quantities.

Some of the GMCH registers described in this section contain reserved bits. These bits are labeled "Reserved". Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note the software does not need to perform read, merge, and write operation for the configuration address register.

In addition to reserved bits within a register, the GMCH contains address locations in the configuration space of the Host Bridge entity that are marked either "Reserved" or "Intel Reserved". The GMCH responds to accesses to "Reserved" address locations by completing the host cycle. When a "Reserved" register location is read, a zero value is returned. ("Reserved" registers can be 8-, 16-, or 32-bits in size). Writes to "Reserved" registers have no effect on the GMCH. Registers that are marked as "Intel Reserved" must not be modified by system software. Writes to "Intel Reserved" registers may cause system failure. Reads from "Intel Reserved" registers may return a non-zero value.

Upon a Full Reset, the GMCH sets its entire set of internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionality feature set required to successfully bringing up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BIOS) to properly determine the DRAM configurations, operating parameters and optional system features that are applicable, and to program the GMCH registers accordingly.

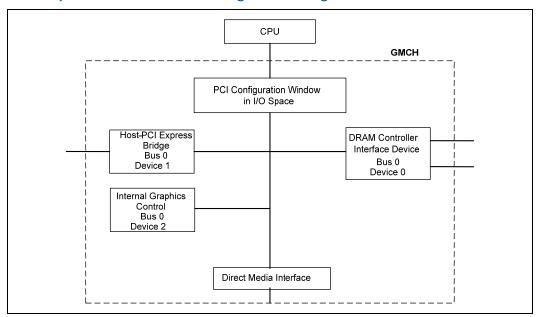
4.1 Register Terminology

The following table shows the register-related terminology that is used.

Item	Description
RO	Read Only bit(s). Writes to these bits have no effect.
RS/WC	Read Set / Write Clear bit(s). These bits are set to '1' when read and then will continue to remain set until written. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect.
R/W	Read / Write bit(s). These bits can be read and written.
R/WC	Read / Write Clear bit(s). These bits can be read. Internal events may set this bit. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect.
R/WC/S	Read / Write Clear / Sticky bit(s). These bits can be read. Internal events may set this bit. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express* related bits a cold reset is "Power Good Reset" as defined in the PCI Express* Specification).
R/W/K	Read / Write / Key bit(s). These bits can be read and written by software. Additionally this bit when set, prohibits some other bit field(s) from being writeable (bit fields become Read Only).
R/W/L	Read / Write / Lockable bit(s). These bits can be read and written. Additionally there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).
R/W/S	Read / Write / Sticky bit(s). These bits can be read and written. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a cold reset is "Power Good Reset" as defined in the PCI Express* Specification).
R/WSC	Read / Write Self Clear bit(s). These bits can be read and written. When the bit is '1', hardware may clear the bit to '0' based upon internal events, possibly sooner than any subsequent read could retrieve a '1'.
R/WSC/L	Read / Write Self Clear / Lockable bit(s). These bits can be read and written. When the bit is '1', hardware may clear the bit to '0' based upon internal events, possibly sooner than any subsequent read could retrieve a '1'. Additionally there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).
R/WO	Write Once bit(s). Once written, bits with this attribute become Read Only. These bits can only be cleared by a Reset.
W	Write Only. Whose bits may be written, but will always-return zeros when read. They are used for write side effects. Any data written to these registers cannot be retrieved.

4.2 Configuration Process and Registers

4.2.1 Platform Configuration Structure


The DMI physically connects the GMCH and the Intel ICH8; so, from a configuration standpoint, the DMI is logically PCI bus 0. As a result, all devices internal to the GMCH and the Intel ICH8 appear to be on PCI bus 0.

Note: The ICH8 internal LAN controller does not appear on bus 0 – it appears on the external PCI bus (whose number is configurable).

The system's primary PCI expansion bus is physically attached to the Intel ICH8 and, from a configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge and therefore has a programmable PCI Bus number. The PCI Express Graphics Attach appears to system software to be a real PCI bus behind a PCI-to-PCI bridge that is a device resident on PCI bus 0.

Note: A physical PCI bus 0 does not exist and that DMI and the internal devices in the GMCH and Intel ICH8 logically constitute PCI Bus 0 to configuration software. This is shown in the Figure 4-1.

Figure 4-1. Conceptual G Platform PCI Configuration Diagram

The GMCH contains three PCI devices within a single physical component. The configuration registers for the three devices are mapped as devices residing on PCI bus 0.

- Device 0: Host Bridge/DRAM Controller. Logically this appears as a PCI device residing on PCI bus 0. Device 0 contains the standard PCI header registers, PCI Express base address register, DRAM control, and configuration for the DMI and other GMCH specific registers.
- **Device 1: Host-PCI Express Bridge.** Logically this appears as a "virtual" PCI-to-PCI bridge residing on PCI bus 0 and is compliant with *PCI Express* Specification* Rev 1.1. Device 1 contains the standard PCI-to-PCI bridge registers and the standard PCI Express/PCI configuration registers (including the PCI Express memory address mapping). It also contains Isochronous and Virtual Channel controls in the PCI Express extended configuration space.
- **Device 2: Internal Graphics Control.** Logically, this appears as a PCI device residing on PCI bus 0. Physically, device 2 contains the configuration registers for 3D, 2D, and display functions.
- **Device 3: Manageability Engine Device.** Logically, this appears as a PCI device residing on PCI bus 0. Physically, device 3.

4.3 Configuration Mechanisms

The processor is the originator of configuration cycles so the FSB is the only interface in the platform where these mechanisms are used. Internal to the GMCH transactions received through both configuration mechanisms are translated to the same format.

4.3.1 Standard PCI Configuration Mechanism

The following is the mechanism for translating processor I/O bus cycles to configuration cycles.

The PCI specification defines a slot based "configuration space" that allows each device to contain up to 8 functions with each function containing up to 256 8-bit configuration registers. The PCI specification defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration Write. Memory and I/O spaces are supported directly by the processor. Configuration space is supported by a mapping mechanism implemented within the GMCH.

The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at I/O address OCF8h though OCF8h) and CONFIG_DATA Register (at I/O address OCFCh though OCFFh). To reference a configuration register a DW I/O write cycle is used to place a value into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the device and a specific configuration register of the device function being accessed. CONFIG_ADDRESS[31] must be 1 to enable a configuration cycle. CONFIG_DATA then becomes a window into the four bytes of configuration space specified by the contents of CONFIG_ADDRESS. Any read or write to CONFIG_DATA will result in the GMCH translating the CONFIG_ADDRESS into the appropriate configuration cycle.

The GMCH is responsible for translating and routing the processor's I/O accesses to the CONFIG_ADDRESS and CONFIG_DATA registers to internal GMCH configuration registers, DMI or PCI Express.

4.3.2 PCI Express* Enhanced Configuration Mechanism

PCI Express extends the configuration space to 4096 bytes per device/function as compared to 256 bytes allowed by PCI Specification Revision 2.3. PCI Express configuration space is divided into a PCI 2.3 compatible region, which consists of the first 256B of a logical device's configuration space and a PCI Express extended region which consists of the remaining configuration space.

The PCI compatible region can be accessed using either the Standard PCI Configuration Mechanism or using the PCI Express Enhanced Configuration Mechanism described in this section. The extended configuration registers may only be accessed using the PCI Express Enhanced Configuration Mechanism. To maintain compatibility with PCI configuration addressing mechanisms, system software must access the extended configuration space using 32-bit operations (32-bit aligned) only. These 32-bit operations include byte enables allowing only appropriate bytes within the DWord to be accessed. Locked transactions to the PCI Express memory mapped configuration address space are not supported. All changes made using either access mechanism are equivalent.

The PCI Express Enhanced Configuration Mechanism utilizes a flat memory-mapped address space to access device configuration registers. This address space is reported by the system firmware to the operating system. There is a register, PCI EXPRESS*XBAR, that defines the base address for the block of addresses below 4GB for the configuration space associated with busses, devices and functions that are potentially a part of the PCI Express root complex hierarchy. In the PCI EXPRESS*XBAR register there exists controls to limit the size of this reserved memory mapped space. 256MB is the amount of address space required to reserve space for every bus, device, and function that could possibly exist. Options for 128MB and 64MB exist in order to free up those addresses for other uses. In these cases the number of busses and all of their associated devices and functions are limited to 128 or 64 busses respectively.

The PCI Express Configuration Transaction Header includes an additional 4 bits (ExtendedRegisterAddress[3:0]) between the Function Number and Register Address fields to provide indexing into the 4 KB of configuration space allocated to each potential device. For PCI Compatible Configuration Requests, the Extended Register Address field must be all zeros.

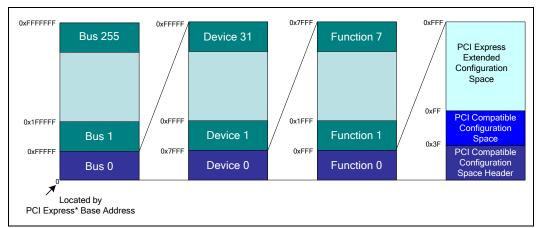


Figure 4-2. Memory Map to PCI Express* Device Configuration Space

70

Just the same as with PCI devices, each device is selected based on decoded address information that is provided as a part of the address portion of Configuration Request packets. A PCI Express device will decode all address information fields (bus, device, function and extended address numbers) to provide access to the correct register.

To access this space (steps 1, 2, 3 are done only once by BIOS),

- use the PCI compatible configuration mechanism to enable the PCI Express enhanced configuration mechanism by writing 1 to bit 0 of the PCI EXPRESS*XBAR register.
- use the PCI compatible configuration mechanism to write an appropriate PCI Express base address into the PCI EXPRESS*XBAR register
- calculate the host address of the register you wish to set using (PCI Express base + (bus number * 1 MB) + (device number * 32KB) + (function number * 4 KB) + (1 B * offset within the function) = host address)
- 4. use a memory write or memory read cycle to the calculated host address to write or read that register.

4.4 Routing Configuration Accesses

The GMCH supports two PCI related interfaces: DMI and PCI Express. The GMCH is responsible for routing PCI and PCI Express configuration cycles to the appropriate device that is an integrated part of the GMCH or to one of these two interfaces. Configuration cycles to the ICH8 internal devices and Primary PCI (including downstream devices) are routed to the ICH8 via DMI. Configuration cycles to both the PCI Express Graphics PCI compatibility configuration space and the PCI Express Graphics extended configuration space are routed to the PCI Express Graphics port device or associated link.

DW I/O Write to CONFIG_ADDRESS with bit 31 = 1 I/O Read/Write to CONFIG_DATA No GMCH Generates Type 1 Access to PCI Express Bus# > SEC BUS Device# = 0 & Function# = 0 GMCH Claims Bus#≤SUB BUS in GMCH Dev 1 No No Device# = 1 & Bus#= Dev # 1 Enabled & Function# = 0 **GMCH Claims** SECONDARYBUS in GMCH Dev 1 No No Device# = 2 & **GMCH Generates** (Function# = 0 & Dev# 2 Func# 0 Enabled) OR (Function# = 1 & Dev# 2 Funcs# 0 and 1 Enabled) DMI Type 1
Configuration Cycle GMCH Claims ¥No GMCH Generates DMI Type 0 Configuration Cycle GMCH Generates Type 0 Access to PCI Express Device# = 0 No MCH allows cycle to go to DMI resulting in Master Abort

Figure 4-3. GMCH Configuration Cycle Flow Chart

4.4.1 Internal Device Configuration Accesses

The GMCH decodes the Bus Number (bits 23:16) and the Device Number fields of the CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0, the configuration cycle is targeting a PCI Bus 0 device.

If the targeted PCI Bus #0 device exists in the GMCH and is not disabled, the configuration cycle is claimed by the appropriate device.

4.4.2 Bridge Related Configuration Accesses

Configuration accesses on PCI Express or DMI are PCI Express Configuration TLPs.

- Bus Number [7:0] is Header Byte 8 [7:0]
- Device Number [4:0] is Header Byte 9 [7:3]
- Function Number [2:0] is Header Byte 9 [2:0]

And special fields for this type of TLP:

- Extended Register Number [3:0] is Header Byte 10 [3:0]
- Register Number [5:0] is Header Byte 11 [7:2]

See the PCI Express specification for more information on both the PCI 2.3 compatible and PCI Express Enhanced Configuration Mechanism and transaction rules.

4.4.2.1 PCI Express* Configuration Accesses

When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express Enhanced Configuration access matches the Device 1 Secondary Bus Number a PCI Express Type 0 Configuration TLP is generated on the PCI Express link targeting the device directly on the opposite side of the link. This should be Device 0 on the bus number assigned to the PCI Express link (likely Bus 1).

The device on other side of link must be Device 0. The GMCH will Master Abort any Type 0 Configuration access to a non-zero Device number. If there is to be more than one device on that side of the link there must be a bridge implemented in the downstream device.

When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express Enhanced Configuration access is within the claimed range (between the upper bound of the bridge device's Subordinate Bus Number register and the lower bound of the bridge device's Secondary Bus Number register) but doesn't match the Device 1 Secondary Bus Number, a PCI Express Type 1 Configuration TLP is generated on the secondary side of the PCI Express link.

PCI Express Configuration Writes:

- Internally the host interface unit will translate writes to PCI Express extended configuration space to configuration writes on the backbone.
- Writes to extended space are posted on the FSB, but non-posted on the PCI Express or DMI (i.e., translated to configuration writes)

4.4.2.2 DMI Configuration Accesses

Accesses to disabled GMCH internal devices, bus numbers not claimed by the Host-PCI Express bridge, or PCI Bus #0 devices not part of the GMCH will subtractively decode to the ICH8 and consequently be forwarded over the DMI via a PCI Express configuration TLP.

If the Bus Number is zero, the GMCH will generate a Type 0 Configuration Cycle TLP on DMI. If the Bus Number is non-zero, and falls outside the range claimed by the

Host-PCI Express bridge, the GMCH will generate a Type 1 Configuration Cycle TLP on DMI.

The ICH8 routes configurations accesses in a manner similar to the GMCH. The ICH8 decodes the configuration TLP and generates a corresponding configuration access. Accesses targeting a device on PCI Bus 0 may be claimed by an internal device. The ICH7 compares the non-zero Bus Number with the Secondary Bus Number and Subordinate Bus Number registers of its P2P bridges to determine if the configuration access is meant for Primary PCI, or some other downstream PCI bus or PCI Express link.

Configuration accesses that are forwarded to the ICH8, but remain unclaimed by any device or bridge will result in a master abort.

4.5 I/O Mapped Registers

The GMCH contains two registers that reside in the processor I/O address space – the Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data (CONFIG_DATA) Register. The Configuration Address Register enables/disables the configuration space and determines what portion of configuration space is visible through the Configuration Data window.

4.5.1 CONFIG_ADDRESS—Configuration Address Register

I/O Address: OCF8h Accessed as a DW

Default Value: 00000000h
Access: R/W
Size: 32 bits

CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DW. A Byte or Word reference will "pass through" the Configuration Address Register and DMI onto the Primary PCI bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent configuration access is intended.

Bit	Access & Default	Description
31	R/W	Configuration Enable (CFGE):
	0b	0 = Disable
		1 = Enable
30:24		Reserved

Bit	Access & Default	Description
23:16	R/W 00h	Bus Number: If the Bus Number is programmed to 00h the target of the Configuration Cycle is a PCI Bus #0 agent. If this is the case and the GMCH is not the target (i.e. the device number is >= 2), then a DMI Type 0 Configuration Cycle is generated.
		If the Bus Number is non-zero, and does not fall within the ranges enumerated by device 1's Secondary Bus Number or Subordinate Bus Number Register, then a DMI Type 1 Configuration Cycle is generated.
		If the Bus Number is non-zero and matches the value programmed into the Secondary Bus Number Register of device 1, a Type 0 PCI configuration cycle will be generated on PCI Express.
		If the Bus Number is non-zero, greater than the value in the Secondary Bus Number register of device 1 and less than or equal to the value programmed into the Subordinate Bus Number Register of device 1 a Type 1 PCI configuration cycle will be generated on PCI Express.
		This field is mapped to byte 8 [7:0] of the request header format during PCI Express Configuration cycles and A[23:16] during the DMI Type 1 configuration cycles.
15:11	R/W 00h	Device Number: This field selects one agent on the PCI bus selected by the Bus Number. When the Bus Number field is "00" the GMCH decodes the Device Number field. The GMCH is always Device Number 0 for the Host bridge entity, Device Number 1 for the Host-PCI Express entity. Therefore, when the Bus Number =0 and the Device Number equals 0, 1, or 2 the internal GMCH devices are selected.
		This field is mapped to byte 6 [7:3] of the request header format during PCI Express Configuration cycles and A [15:11] during the DMI configuration cycles.
10:8	R/W 000b	Function Number: This field allows the configuration registers of a particular function in a multi-function device to be accessed. The GMCH ignores configuration cycles to its internal devices if the function number is not equal to 0 or 1.
		This field is mapped to byte 6 [2:0] of the request header format during PCI Express Configuration cycles and A[10:8] during the DMI configuration cycles.
7:2	R/W 00h	Register Number: This field selects one register within a particular Bus, Device, and Function as specified by the other fields in the Configuration Address Register.
		This field is mapped to byte 7 [7:2] of the request header format during PCI Express Configuration cycles and A[7:2] during the DMI Configuration cycles.
1:0		Reserved

4.5.2 CONFIG_DATA—Configuration Data Register

I/O Address:OCFChDefault Value:00000000hAccess:R/WSize:32 bits

CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of configuration space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS.

Bit	Access & Default	Description
31:0	R/W 00000000h	Configuration Data Window (CDW): If bit 31 of CONFIG_ADDRESS is 1, any I/O access to the CONFIG_DATA register will produce a configuration transaction using the contents of CONFIG_ADDRESS to determine the bus, device, function, and offset of the register to be accessed.

§

GMCH Register Description

5 DRAM Controller Registers (D0:F0)

5.1 DRAM Controller (D0:F0)

The DRAM Controller registers are in Device 0 (D0), Function 0 (F0).

Warning: Address locations that are not listed are considered Intel Reserved registers locations. Reads to Reserved registers may return non-zero values. Writes to reserved locations may cause system failures.

All registers that are defined in the PCI 2.3 specification, but are not necessary or implemented in this component are simply not included in this document. The reserved/unimplemented space in the PCI configuration header space is not documented as such in this summary.

Table 5-1. DRAM Controller Register Address Map (D0:F0)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	29C0h	RO
04–05h	PCICMD	PCI Command	0006h	RO, RW
06–07h	PCISTS	PCI Status	0090h	RWC, RO
08h	RID	Revision Identification	00h	RO
09–0Bh	CC	Class Code	060000h	RO
0Dh	MLT	Master Latency Timer	00h	RO
0Eh	HDR	Header Type	00h	RO
2C-2Dh	SVID	Subsystem Vendor Identification	0000h	RWO
2E–2Fh	SID	Subsystem Identification	0000h	RWO
34h	CAPPTR	Capabilities Pointer	E0h	RO
40–47h	PXPEPBAR	PCI Express Port Base Address	000000000 000000h	RW, RO
48–4Fh	MCHBAR	GMCH Memory Mapped Register Range Base	000000000 000000h	RW, RO
52–53h	GGC	GMCH Graphics Control Register	0030h	RO, RW/L
54–57h	DEVEN	Device Enable	000003DBh	RO, RW/L

		Γ		
Address Offset	Register Symbol	Register Name	Default Value	Access
60–67h	PCIEXBAR	PCI Express Register Range Base Address	00000000E0 000000h	RO, RW, RW/L, RW/K
68–6Fh	DMIBAR	Root Complex Register Range Base Address	0000000000 000000h	RO, RW
90h	PAMO	Programmable Attribute Map 0	00h	RO, RW
91h	PAM1	Programmable Attribute Map 1	00h	RO, RW
92h	PAM2	Programmable Attribute Map 2	00h	RO, RW
93h	PAM3	Programmable Attribute Map 3	00h	RO, RW
94h	PAM4	Programmable Attribute Map 4	00h	RO, RW
95h	PAM5	Programmable Attribute Map 5	00h	RO, RW
96h	PAM6	Programmable Attribute Map 6	00h	RO, RW
97h	LAC	Legacy Access Control	00h	RO, RW
98–99h	REMAPBASE	Remap Base Address Register	03FFh	RO, RW
9A–9Bh	REMAPLIMI T	Remap Limit Address Register	0000h	RO, RW
9Dh	SMRAM	System Management RAM Control	02h	RO, RW/L, RW, RW/L/K
9Eh	ESMRAMC	Extended System Management RAM Control	38h	RW/L, RWC, RO
A0-A1h	TOM	Top of Memory	0001h	RO, RW/L
A2–A3h	TOUUD	Top of Upper Usable Dram	0000h	RW/L
A4-A7h	GBSM	Graphics Base of Stolen Memory	00000000h	RW/L ,RO
AC-AFh	TSEGMB	TSEG Memory Base	00000000h	RW/L, RO
B0-B1h	TOLUD	Top of Low Usable DRAM	0010h	RW/L RO
C8–C9h	ERRSTS	Error Status	0000h	RO, RWC/S
CA-CBh	ERRCMD	Error Command	0000h	RO, RW
CC-CDh	SMICMD	SMI Command	0000h	RO, RW
DC-DFh	SKPD	Scratchpad Data	00000000h	RW
E0–E9h	CAPIDO	Capability Identifier	000000000 0001090009 h	RO

5.1.1 VID—Vendor Identification

B/D/F/Type: 0/0/0/PCI
Address Offset: 0–1h
Default Value: 8086h
Access: RO
Size: 16 bits

This register combined with the Device Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 8086h	Vendor Identification Number (VID): PCI standard identification for Intel.

5.1.2 DID—Device Identification

B/D/F/Type: 0/0/0/PCI Address Offset: 02–03h

Default Value: See table below

Access: RO Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO	Device Identification Number (DID):
	29C0h	29C0h = Intel [®] 82G35 GMCH

5.1.3 PCICMD—PCI Command

B/D/F/Type: 0/0/0/PCI
Address Offset: 4–5h
Default Value: 0006h
Access: RO, RW
Size: 16 bits

Since GMCH Device 0 does not physically reside on PCI_A many of the bits are not implemented.

Bit	Access & Default	Description
15:10	RO 00h	Reserved
9	RO Ob	Fast Back-to-Back Enable (FB2B): This bit controls whether or not the master can do fast back-to-back write. Since device 0 is strictly a target, this bit is not implemented and is hardwired to 0.
8	RW Ob	SERR Enable (SERRE): This bit is a global enable bit for Device 0 SERR messaging. The GMCH does not have an SERR signal. The GMCH communicates the SERR condition by sending an SERR message over DMI to the ICH.
		1= The GMCH is enabled to generate SERR messages over DMI for specific Device 0 error conditions that are individually enabled in the ERRCMD and DMIUEMSK registers. The error status is reported in the ERRSTS, PCISTS, and DMIUEST registers.
		0 = The SERR message is not generated by the GMCH for Device 0.
		Note that this bit only controls SERR messaging for the Device 0. Device 1 has its own SERRE bits to control error reporting for error conditions occurring in that device. The control bits are used in a logical OR manner to enable the SERR DMI message mechanism.
7	RO Ob	Address/Data Stepping Enable (ADSTEP): Address/data stepping is not implemented in the GMCH, and this bit is hardwired to 0.
6	RW Ob	Parity Error Enable (PERRE): This bit controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set.
		0= Master Data Parity Error bit in PCI Status register can NOT be set.
		1 = Master Data Parity Error bit in PCI Status register CAN be set.
5	RO Ob	VGA Palette Snoop Enable (VGASNOOP): The GMCH does not implement this bit and it is hardwired to a 0.
4	RO Ob	Memory Write and Invalidate Enable (MWIE): The GMCH will never issue memory write and invalidate commands. This bit is therefore hardwired to 0.
3	RO Ob	Reserved
2	RO 1b	Bus Master Enable (BME): The GMCH is always enabled as a master on the backbone. This bit is hardwired to a 1.
1	RO 1b	Memory Access Enable (MAE): The GMCH always allows access to main memory. This bit is not implemented and is hardwired to 1.
0	RO Ob	I/O Access Enable (IOAE): This bit is not implemented in the GMCH and is hardwired to a 0.

5.1.4 PCISTS—PCI Status

B/D/F/Type: 0/0/0/PCI
Address Offset: 6–7h
Default Value: 0090h
Access: RWC, RO
Size: 16 bits

This status register reports the occurrence of error events on Device 0's PCI interface. Since the GMCH Device 0 does not physically reside on PCI_A many of the bits are not implemented.

Bit	Access & Default	Description
15	15 RWC	Detected Parity Error (DPE):
	0b	1= Device received a Poisoned TLP.
14	RWC Ob	Signaled System Error (SSE): Software clears this bit by writing a 1 to it.
		1= The GMCH Device 0 generated a SERR message over DMI for any enabled Device 0 error condition. Device 0 error conditions are enabled in the PCICMD, ERRCMD, and DMIUEMSK registers. Device 0 error flags are read/reset from the PCISTS, ERRSTS, or DMIUEST registers.
13	RWC 0b	Received Master Abort Status (RMAS): Software clears this bit by writing a 1 to it.
		1 = GMCH generated a DMI request that receives an Unsupported Request completion packet.
12	RWC 0b	Received Target Abort Status (RTAS): Software clears this bit by writing a 1 to it.
		1 = GMCH generated a DMI request that receives a Completer Abort completion packet.
11	RO Ob	Signaled Target Abort Status (STAS): The GMCH will not generate a Target Abort DMI completion packet or Special Cycle. This bit is not implemented in the GMCH and is hardwired to a 0.
10:9	RO 00b	DEVSEL Timing (DEVT): These bits are hardwired to "00". Writes to these bit positions have no affect. Device 0 does not physically connect to PCI_A. These bits are set to "00" (fast decode) so that optimum DEVSEL timing for PCI_A is not limited by the GMCH.
8	RWC	Master Data Parity Error Detected (DPD):
	Ob	1 = This bit is set when DMI received a Poisoned completion from the ICH.
		NOTE: This bit can only be set when the Parity Error Enable bit in the PCI Command register is set.
7	RO 1b	Fast Back-to-Back (FB2B): This bit is hardwired to 1. Device 0 does not physically connect to PCI_A. This bit is set to 1 (indicating fast back-to-back capability) so that the optimum setting for PCI_A is not limited by the GMCH.

Bit	Access & Default	Description
6	RO 0b	Reserved
5	RO 0b	66 MHz Capable: Does not apply to PCI Express. Hardwired to 0.
4	RO 1b	Capability List (CLIST): This bit is hardwired to 1 to indicate to the configuration software that this device/function implements a list of new capabilities. A list of new capabilities is accessed via register CAPPTR at configuration address offset 34h. Register CAPPTR contains an offset pointing to the start address within configuration space of this device where the Capability Identification register resides.
3:0	RO 0h	Reserved

5.1.5 RID—Revision Identification

B/D/F/Type: 0/0/0/PCI Address Offset: 8h Default Value: 00h

Access: RO Size: 8 bits

This register contains the revision number of the GMCH Device 0. These bits are read only and writes to this register have no effect.

Bit	Access & Default	Description
7:0	RO 00h	Revision I dentification Number (RID): This is an 8-bit value that indicates the revision identification number for the GMCH Device 0. Refer to the <i>Intel® G35 Express Chipset Specification Update</i> for the value of the Revision ID register.

5.1.6 CC—Class Code

B/D/F/Type: 0/0/0/PCI
Address Offset: 09–0Bh
Default Value: 060000h
Access: RO
Size: 24 bits

This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface.

Bit	Access & Default	Description
23:16	RO 06h	Base Class Code (BCC): This is an 8-bit value that indicates the base class code for the GMCH. 06h = Bridge device.
15:8	RO 00h	Sub-Class Code (SUBCC): This is an 8-bit value that indicates the category of Bridge into which the GMCH falls. OOh = Host Bridge.
7:0	RO 00h	Programming Interface (PI): This is an 8-bit value that indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

5.1.7 MLT—Master Latency Timer

B/D/F/Type: 0/0/0/PCI
Address Offset: 0Dh
Default Value: 00h
Access: RO
Size: 8 bits

Device 0 in the GMCH is not a PCI master. Therefore this register is not implemented.

Bit	Access & Default	Description
7:0	RO 00h	Reserved

5.1.8 HDR—Header Type

B/D/F/Type: 0/0/0/PCI
Address Offset: Eh
Default Value: 00h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access & Default	Description
7:0	RO 00h	PCI Header (HDR): This field always returns 0 to indicate that the GMCH is a single function device with standard header layout. Reads and writes to this location have no effect.

5.1.9 SVID—Subsystem Vendor Identification

B/D/F/Type: 0/0/0/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: RWO
Size: 16 bits

This value is used to identify the vendor of the subsystem.

Bit	Access & Default	Description
15:0	RWO 0000h	Subsystem Vendor ID (SUBVID): This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

5.1.10 SID—Subsystem Identification

B/D/F/Type: 0/0/0/PCI
Address Offset: 2E-2Fh
Default Value: 0000h
Access: RWO
Size: 16 bits

This value is used to identify a particular subsystem.

Bit	Access & Default	Description
15:0	RWO 0000h	Subsystem ID (SUBID): This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

5.1.11 CAPPTR—Capabilities Pointer

B/D/F/Type: 0/0/0/PCI
Address Offset: 34h
Default Value: E0h
Access: RO
Size: 8 bits

The CAPPTR provides the offset that is the pointer to the location of the first device capability in the capability list.

Bit	Access & Default	Description
7:0	RO E0h	Capabilities Pointer (CAPPTR): Pointer to the offset of the first capability ID register block. In this case the first capability is the product-specific Capability Identifier (CAPIDO).

5.1.12 PXPEPBAR—PCI Express* Egress Port Base Address

B/D/F/Type: 0/0/0/PCI Address Offset: 40–47h

Access: RW, RO Size: 64 bits

This is the base address for the PCI Express Egress Port MMIO Configuration space. There is no physical memory within this 4KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the Egress port MMIO configuration space is disabled and must be enabled by writing a 1 to PXPEPBAREN [Dev 0, offset 40h, bit 0].

Bit	Access & Default	Description
63:36	RO 0000000h	Reserved
35:12	RW 000000h	PCI Express Egress Port MMIO Base Address (PXPEPBAR): This field corresponds to bits 35:12 of the base address PCI Express Egress Port MMIO configuration space. BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4 KB space is allocated within the first 64 GB of addressable memory space. System Software uses this base address to program the GMCH MMIO register set.
11:1	RO 000h	Reserved
0	RW	PXPEPBAR Enable (PXPEPBAREN):
	0b	0 = PXPEPBAR is disabled and does not claim any memory
		1 = PXPEPBAR memory mapped accesses are claimed and decoded appropriately

5.1.13 MCHBAR—GMCH Memory Mapped Register Range Base

B/D/F/Type: 0/0/0/PCI Address Offset: 48–4Fh

Default Value: 0000000000000000h

Access: RW/L, RO Size: 64 bits

This is the base address for the GMCH Memory Mapped Configuration space. There is no physical memory within this 16 KB window that can be addressed. The 16 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the GMCH MMIO Memory Mapped Configuration space is disabled and must be enabled by writing a 1 to MCHBAREN [Dev 0, offset48h, bit 0].

Bit	Access & Default	Description
63:36	RO 0000000h	Reserved
35:14	RW 000000h	GMCH Memory Mapped Base Address (MCHBAR): This field corresponds to bits 35:14 of the base address GMCH Memory Mapped configuration space. BIOS will program this register resulting in a base address for a 16 KB block of contiguous memory address space. This register ensures that a naturally aligned 16 KB space is allocated. System Software uses this base address to program the GMCH Memory Mapped register set.
13:1	RO 0000h	Reserved
0	RW Ob	MCHBAR Enable (MCHBAREN): 0= MCHBAR is disabled and does not claim any memory 1 = MCHBAR memory mapped accesses are claimed and decoded appropriately

5.1.14 GGC—GMCH Graphics Control

B/D/F/Type: 0/0/0/PCI
Address Offset: 52–53h
Default Value: 0030h
Access: RO, RW/L
Size: 16 bits

	 	
Bit	Access & Default	Description
15:7	RO 00h	Reserved
6:4	RW/L 011b	Graphics Mode Select (GMS): This field is used to select the amount of Main Memory that is pre-allocated to support the Internal Graphics device in VGA (non-linear) and Native (linear) modes. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled.
		000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and the Sub-Class Code field within Device 2, function 0, Class Code register is 80h.
		OO1 = DVMT (UMA) mode, 1 MB of memory pre-allocated for frame buffer.
		010 = Reserved
		O11 = DVMT (UMA) mode, 8 MB of memory pre-allocated for frame buffer.
		100 = Reserved
		101 = Reserved
		110 = Reserved
		111 = Reserved
		Note: This register is locked and becomes Read Only when the D_LCK bit in the SMRAM register is set.
		BIOS Requirement: BIOS must not set this field to 000 if IVD (bit 1 of this register) is 0.
3:2	RO 00b	Reserved
1	RW/L	IGD VGA Disable (IVD):
	Ob	0 = Enable. Device 2 (IGD) claims VGA memory and I/O cycles, the Sub-Class Code within Device 2 Class Code register is 00h.
		1 = Disable. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and the Sub-Class Code field within Device 2, function 0 Class Code register is 80h.
0	RO Ob	Reserved

5.1.15 **DEVEN—Device Enable**

B/D/F/Type: 0/0/0/PCI
Address Offset: 54–57h
Default Value: 000003DBh
Access: RO, RW/L
Size: 32 bits

This register allows for enabling/disabling of PCI devices and functions that are within the GMCH.

Bit	Access & Default	Description
31:10	RO 00000h	Reserved
9	RW/L	ME Function 3 (D3F3EN):
	1b	0 = Bus 0 Device 3 Function 3 is disabled and hidden
		1 = Bus 0 Device 3 Function 3 is enabled and visible
		If Device 3, Function 0 is disabled and hidden, then Device 3, Function 3 is also disabled and hidden independent of the state of this bit.
8	RW/L	ME Function 2 (D3F2EN):
	1b	0 = Bus 0 Device 3 Function 2 is disabled and hidden
		1 = Bus 0 Device 3 Function 2 is enabled and visible
		If Device 3, Function 0 is disabled and hidden, then Device 3, Function 2 is also disabled and hidden independent of the state of this bit.
7	RO 1b	Reserved
6	RW/L	ME Function 0 (D3F0EN):
	1b	0 = Bus 0, Device 3, Function 0 is disabled and hidden
		1 = Bus 0, Device 3, Function 0 is enabled and visible.
		If this GMCH does not have ME capability (CAPID0[57] = 1), then Device 3, Function 0 is disabled and hidden independent of the state of this bit.
5	RO Ob	Device 3, Function 0 is disabled and hidden independent of the state of
5 4	0b RW/L	Device 3, Function 0 is disabled and hidden independent of the state of this bit.
	0b	Device 3, Function 0 is disabled and hidden independent of the state of this bit. Reserved
	0b RW/L	Device 3, Function 0 is disabled and hidden independent of the state of this bit. Reserved Internal Graphics Engine Function 1 (D2F1EN):
	0b RW/L	Device 3, Function 0 is disabled and hidden independent of the state of this bit. Reserved Internal Graphics Engine Function 1 (D2F1EN): 0 = Bus 0, Device 2, Function 1 is disabled and hidden
	Ob RW/L 1b	Device 3, Function 0 is disabled and hidden independent of the state of this bit. Reserved Internal Graphics Engine Function 1 (D2F1EN): 0 = Bus 0, Device 2, Function 1 is disabled and hidden 1 = Bus 0, Device 2, Function 1 is enabled and visible If Device 2, Function 0 is disabled and hidden, then Device 2, Function
4	Ob RW/L 1b	Device 3, Function 0 is disabled and hidden independent of the state of this bit. Reserved Internal Graphics Engine Function 1 (D2F1EN): 0 = Bus 0, Device 2, Function 1 is disabled and hidden 1 = Bus 0, Device 2, Function 1 is enabled and visible If Device 2, Function 0 is disabled and hidden, then Device 2, Function 1 is also disabled and hidden independent of the state of this bit.

Bit	Access & Default	Description
2	RO 0b	Reserved
1	RW/L 1b	PCI Express Port (D1EN): 0 = Bus 0, Device 1, Function 0 is disabled and hidden. 1 = Bus 0, Device 1, Function 0 is enabled and visible.
0	RO 1b	Host Bridge (D0EN): Bus 0, Device 0, Function 0 may not be disabled and is therefore hardwired to 1.

5.1.16 PCIEXBAR—PCI Express* Register Range Base Address

B/D/F/Type: 0/0/0/PCI Address Offset: 60–67h

Default Value: 0000000E0000000h Access: RO, RW/L, RW/L/K

Size: 64 bits

This is the base address for the PCI Express configuration space. This window of addresses contains the 4 KB of configuration space for each PCI Express device that can potentially be part of the PCI Express Hierarchy associated with the GMCH. There is not actual physical memory within this window of up to 256 MB that can be addressed. The actual length is determined by a field in this register. Each PCI Express Hierarchy requires a PCI Express BASE register. The GMCH supports one PCI Express hierarchy. The region reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. For example, MCHBAR reserves a 16 KB space and CHAPADR reserves a 4 KB space both outside of PCIEXBAR space. They cannot be overlayed on the space reserved by PCIEXBAR for devices 0.

On reset, this register is disabled and must be enabled by writing a 1 to the enable field in this register. This base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register), above TOLUD and still within 64 bit addressable memory space. All other bits not decoded are read only 0. The PCI Express Base Address cannot be less than the maximum address written to the Top of physical memory register (TOLUD). Software must ensure that these ranges do not overlap with known ranges located above TOLUD. Software must ensure that the sum of Length of enhanced configuration region + TOLUD + (other known ranges reserved above TOLUD) is not greater than the 36-bit addressable limit of 64 GB. In general system implementation and number of PCI/PCI Express/PCI-X buses supported in the hierarchy will dictate the length of the region.

Bit	Access & Default	Description
63:36	RO 0000000h	Reserved

Dit	A a c c c c c	Description
Bit	Access & Default	Description
35:28	RW/L 0Eh	PCI Express Base Address (PCIEXBAR): This field corresponds to bits 35:28 of the base address for PCI Express enhanced configuration space. BIOS will program this register resulting in a base address for a contiguous memory address space; size is defined by bits 2:1 of this register.
		This Base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register) above TOLUD and still within 64-bit addressable memory space. The address bits decoded depend on the length of the region defined by this register.
		The address used to access the PCI Express configuration space for a specific device can be determined as follows:
		PCI Express Base Address + Bus Number * 1 MB + Device Number * 32 KB + Function Number * 4 KB
		The address used to access the PCI Express configuration space for Device 1 in this component would be PCI Express Base Address + 0 * 1 MB + 1 * 32 KB + 0 * 4 KB = PCI Express Base Address + 32 KB. Remember that this address is the beginning of the 4 KB space that contains both the PCI compatible configuration space and the PCI Express extended configuration space.
27	RW/L Ob	128 MB Base Address Mask (128ADMSK): This bit is either part of the PCI Express Base Address (R/W) or part of the Address Mask (RO, read 0b), depending on the value of bits 2:1 in this register.
26	RW/L Ob	64 MB Base Address Mask (64ADMSK): This bit is either part of the PCI Express Base Address (R/W) or part of the Address Mask (RO, read 0b), depending on the value of bits 2:1 in this register.
25:3	RO 000000h	Reserved
2:1	RW/K 00b	Length (LENGTH): This Field describes the length of this region.
		Enhanced Configuration Space Region/Buses Decoded
		00 = 256 MB (buses 0–255). Bits 31:28 are decoded in the PCI Express Base Address Field
		01 = 128 MB (Buses 0–127). Bits 31:27 are decoded in the PCI Express Base Address Field.
		10 = 64 MB (Buses 0–63). Bits 31:26 are decoded in the PCI Express Base Address Field.
		11 = Reserved
0	RW	PCIEXBAR Enable (PCIEXBAREN):
	Ob	0 = The PCIEXBAR register is disabled. Memory read and write transactions proceed as if there were no PCIEXBAR register. PCIEXBAR bits 35:26 are R/W with no functionality behind them.
		1 = The PCIEXBAR register is enabled. Memory read and write transactions whose address bits 31:26 match PCIEXBAR will be translated to configuration reads and writes within the GMCH.

5.1.17 DMIBAR—Root Complex Register Range Base Address

B/D/F/Type: 0/0/0/PCI Address Offset: 68–6Fh

Access: RO, RW Size: 64 bits

This is the base address for the Root Complex configuration space. This window of addresses contains the Root Complex Register set for the PCI Express Hierarchy associated with the GMCH. There is no physical memory within this 4 KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the Root Complex configuration space is disabled and must be enabled by writing a 1 to DMIBAREN [Dev 0, offset 68h, bit 0].

Bit	Access	Description
63:36	RO 0000000h	Reserved
35:12	RW 000000h	DMI Base Address (DMIBAR): This field corresponds to bits 35:12 of the base address DMI configuration space. BIOS will program this register resulting in a base address for a 4KB block of contiguous memory address space. This register ensures that a naturally aligned 4 KB space is allocated within the first 64 GB of addressable memory space. System Software uses this base address to program the DMI register set.
11:1	RO 000h	Reserved
0	RW Ob	DMIBAR Enable (DMIBAREN):
	OD	0 = DMIBAR is disabled and does not claim any memory
		1 = DMIBAR memory mapped accesses are claimed and decoded appropriately

5.1.18 PAMO—Programmable Attribute Map 0

B/D/F/Type: 0/0/0/PCI
Address Offset: 90h
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS area from 0F0000h–0FFFFh. The GMCH allows programmable memory attributes on 13 Legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) Registers are used to support these features. Cacheability of these areas is controlled via the MTRR registers in the P6 processor. Two bits are used to specify memory attributes for each memory segment. These bits apply to both host accesses and PCI initiator accesses to the PAM areas. These attributes are:

RE - Read Enable. When RE = 1, the processor read accesses to the

corresponding memory segment are claimed by the GMCH and directed to main memory. Conversely, when RE = 0, the host

read accesses are directed to PCI_A.

WE – Write Enable. When WE = 1, the host write accesses to the corresponding

memory segment are claimed by the GMCH and directed to main memory. Conversely, when WE = 0, the host write

accesses are directed to PCI_A.

The RE and WE attributes permit a memory segment to be Read Only, Write Only, Read/Write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is Read Only. Each PAM Register controls two regions, typically 16 KB in size.

Note that the GMCH may hang if a PCI Express Graphics Attach or DMI originated access to Read Disabled or Write Disabled PAM segments occur (due to a possible IWB to non-DRAM).

For these reasons the following critical restriction is placed on the programming of the PAM regions: At the time that a DMI or PCI Express Graphics Attach accesses to the PAM region may occur, the targeted PAM segment must be programmed to be both readable and writeable.

Bit	Access & Default	Description
7:6	RO 00b	Reserved
5:4	RW 00b	OFOOOOh—OFFFFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0F0000h to 0FFFFFh.
		00 = DRAM Disabled: All accesses are directed to DMI.
		01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI.
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:0	RO 0h	Reserved

5.1.19 PAM1—Programmable Attribute Map 1

B/D/F/Type: 0/0/0/PCI
Address Offset: 91h
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C0000h-0C7FFFh.

Bit	Access & Default	Description	
7:6	RO 00b	Reserved	
5:4	RW 00b	OC4000h–OC7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from OC4000 to OC7FFF.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	
3:2	RO 00b	Reserved	
1:0	RW 00b	OCOOOOh—OC3FFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from OCOOOOh to OC3FFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	

5.1.20 PAM2—Programmable Attribute Map 2

B/D/F/Type: 0/0/0/PCI
Address Offset: 92h
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C8000h-0CFFFFh.

Bit	Access & Default	Description	
7:6	RO 00b	Reserved	
5:4	RW 00b	 OCCOOOh—OCFFFFh Attribute (HIENABLE): 00 = DRAM Disabled: Accesses are directed to DMI. 01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. 	
3:2	RO 00b	Reserved	
1:0	RW 00b	 OC8000h–OCBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from OC8000h to OCBFFFh. O0 = DRAM Disabled: Accesses are directed to DMI. O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. 	

96

5.1.21 PAM3—Programmable Attribute Map 3

B/D/F/Type: 0/0/0/PCI
Address Offset: 93h
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D0000h-0D7FFFh.

Bit	Access & Default	Description	
7:6	RO 00b	Reserved	
5:4	RW 00b	OD4000h–OD7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from OD4000h to 0D7FFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	
3:2	RO 00b	Reserved	
1:0	RW 00b	OD0000–OD3FFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from OD0000h to OD3FFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	

5.1.22 PAM4—Programmable Attribute Map 4

B/D/F/Type: 0/0/0/PCI
Address Offset: 94h
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D8000h-0DFFFFh.

Bit	Access & Default	Description	
7:6	RO 00b	Reserved	
5:4	RW 00b	ODCOOOh—ODFFFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from ODCOOOh to ODFFFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	
3:2	RO 00b	Reserved	
1:0	RW 00b	OD8000h–ODBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from OD8000h to ODBFFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	

98

5.1.23 PAM5—Programmable Attribute Map 5

B/D/F/Type: 0/0/0/PCI
Address Offset: 95h
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E0000h-0E7FFFh.

Bit	Access & Default	Description	
7:6	RO 00b	Reserved	
5:4	RW 00b	OE4000h–OE7FFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000h to 0E7FFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	
3:2	RO 00b	Reserved	
1:0	RW 00b	OEOOOOh—OE3FFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from OEOOOOh to OE3FFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	

5.1.24 PAM6—Programmable Attribute Map 6

B/D/F/Type: 0/0/0/PCI
Address Offset: 96h
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E8000h-0EFFFFh.

Bit	Access & Default	Description	
7:6	RO 00b	Reserved	
5:4	RW 00b	OECOOOh—OEFFFFh Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000h to 0E7FFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	
3:2	RO 00b	Reserved	
1:0	RW 00b	0E8000h–0EBFFFh Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000h to 0E3FFFh.	
		00 = DRAM Disabled: Accesses are directed to DMI.	
		O1 = Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.	
		10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.	
		11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.	

100

5.1.25 LAC—Legacy Access Control

B/D/F/Type: 0/0/0/PCI Address Offset: 97h Default Value: 00h

Access: RW, RO, RW

Size: 8 bits

This 8-bit register controls a fixed DRAM hole from 15–16 MB.

Bit	Access & Default	Description		
7	RW/L 0b		-	N): This field enables a memory hole in DRAM space. s "behind" this space is not remapped.
		0 = No m	nemory h	ole.
		1 = Mem	ory hole	from 15 MB to 16 MB.
6:1	RO 00000b	Reserved		
0	RW 0b	BCTRL re transaction This bit s If device	gister of ons targe hould not 1's VGA	DAP): This bit works with the VGA Enable bits in the Device 1 to control the routing of processor initiated ting MDA compatible I/O and memory address ranges. It be set if device 1's VGA Enable bit is not set.
		If the VG.	A enable ange x3E s within t	Fh are forwarded to DMI. bit is set and MDA is not present, then accesses to IO BCh-x3BFh are forwarded to PCI Express if the he corresponding IOBASE and IOLIMIT, otherwise d to DMI.
		MDA resc	ources are	e defined as the following:
		Memory:	OB	0000h – 0B7FFFh
		I/O:		4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh, (including ISA ddress aliases, A[15:10] are not used in decode)
		2	vill be for	that includes the I/O locations listed above, or their warded to the DMI even if the reference includes I/O d above.
		The follow	wing table	e shows the behavior for all combinations of MDA and
		VGAEN	MDAP	Description
		0	0	All References to MDA and VGA space are routed to DMI
		0	1	Invalid combination
		1	0	All VGA and MDA references are routed to PCI Express Graphics Attach.
		1	1	All VGA references are routed to PCI Express Graphics Attach. MDA references are routed to DMI.
		MAE (PCI	CMD1[1]	mory cycles can only be routed across the PEG when) is set. VGA and MDA I/O cycles can only be routed OAE (PCICMD1[0]) is set.

5.1.26 REMAPBASE—Remap Base Address Register

B/D/F/Type: 0/0/0/PCI
Address Offset: 98–99h
Default Value: 03FFh
Access: RO, RW
Size: 16 bits

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	RW/L 3FFh	Remap Base Address [35:26] (REMAPBASE): The value in this register defines the lower boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the Remap Base Address are assumed to be 0s. Thus, the bottom of the defined memory range will be aligned to a 64 MB boundary. When the value in this register is greater than the value programmed into the Remap Limit register, the Remap window is disabled. Note: Bit 0 (Address Bit 26) must be a 0.

5.1.27 REMAPLIMIT—Remap Limit Address Register

B/D/F/Type: 0/0/0/PCI
Address Offset: 9A–9Bh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	RW/L 000h	Remap Limit Address [35:26] (REMAPLMT): The value in this register defines the upper boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the remap limit address are assumed to be Fhs. Thus the top of the defined range will be one less than a 64 MB boundary. When the value in this register is less than the value programmed into the Remap Base register, the Remap window is disabled.
		Note: Bit 0 (Address Bit 26) must be a 0.

5.1.28 SMRAM—System Management RAM Control

B/D/F/Type: 0/0/0/PCI Address Offset: 9Dh Default Value: 02h

Access: RO, RW/L, RW, RW/L/K

Size: 8 bits

The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are treated. The Open, Close, and Lock bits function only when G_SMRAME bit is set to a 1. Also, the OPEN bit must be reset before the LOCK bit is set.

Bit	Access & Default	Description
7	RO Ob	Reserved
6	RW/L Ob	SMM Space Open (D_OPEN): When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.
5	RW Ob	SMM Space Closed (D_CLS): When D_CLS = 1 SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This will allow SMM software to reference through SMM space to update the display even when SMM is mapped over the VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.
4	RW/L/K Ob	SMM Space Locked (D_LCK): When D_LCK is set to 1 then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function.
3	RW/L Ob	Global SMRAM Enable (G_SMRAME): If set to a 1, then Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADSB with SMM decode). To enable Extended SMRAM function this bit has be set to 1. Refer to the section on SMM for more details. Once D_LCK is set, this bit becomes read only.
2:0	RO Ob	Compatible SMM Space Base Segment (C_BASE_SEG): This field indicates the location of SMM space. SMM DRAM is not remapped. It is simply made visible if the conditions are right to access SMM space, otherwise the access is forwarded to DMI. Since the GMCH supports only the SMM space between A0000 and BFFFF, this field is hardwired to 010.

5.1.29 ESMRAMC—Extended System Management RAM Control

B/D/F/Type: 0/0/0/PCI

Address Offset: 9Eh Default Value: 38h

Access: RW/L, RWC, RO

Size: 8 bits

The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MB.

Bit	Access & Default	Description
7	RW/L Ob	Enable High SMRAM (H_SMRAME): This bit controls the SMM memory space location (i.e., above 1 MB or below 1 MB) When G_SMRAME is 1 and H_SMRAME is set to 1, the high SMRAM memory space is enabled. SMRAM accesses within the range OFEDA0000h to OFEDBFFFFh are remapped to DRAM addresses within the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read only.
6	RWC Ob	Invalid SMRAM Access (E_SMERR): This bit is set when processor has accessed the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with the D-OPEN bit = 0. It is software's responsibility to clear this bit. The software must write a 1 to this bit to clear it.
5	RO 1b	SMRAM Cacheable (SM_CACHE): This bit is forced to 1 by the GMCH.
4	RO 1b	L1 Cache Enable for SMRAM (SM_L1): This bit is forced to 1 by the GMCH.
3	RO 1b	L2 Cache Enable for SMRAM (SM_L2): This bit is forced to 1 by the GMCH.
2:1	RW/L 00b	TSEG Size (TSEG_SZ): Selects the size of the TSEG memory block if enabled. Memory from the top of DRAM space is partitioned away so that it may only be accessed by the processor interface and only then when the SMM bit is set in the request packet. Non-SMM accesses to this memory region are sent to DMI when the TSEG memory block is enabled.
		If Graphics stolen memory is placed above 4 GB, TSEG base is determined as if graphics stoles memory size is 0.
		00 = 1 MB TSEG. (TOLUD – GTT Graphics Memory Size – Graphics Stolen Memory Size – 1 MB) to (TOLUD – GTT Graphics Memory Size – Graphics Stolen Memory Size).
		01 = 2 MB TSEG. (TOLUD – GTT Graphics Memory Size – Graphics Stolen Memory Size – 2 MB) to (TOLUD – GTT Graphics Memory Size – Graphics Stolen Memory Size).
		10 = 8 MB TSEG. (TOLUD – GTT Graphics Memory Size – Graphics Stolen Memory Size – 8 MB) to (TOLUD – GTT Graphics Memory Size – Graphics Stolen Memory Size).
		11 = Reserved.
		Once D_LCK has been set, these bits becomes read only.

Bit	Access & Default	Description
0	RW/L 0b	TSEG Enable (T_EN): Enabling of SMRAM memory for Extended SMRAM space only. When G_SMRAME = 1 and TSEG_EN = 1, the TSEG is enabled to appear in the appropriate physical address space. Note that once D_LCK is set, this bit becomes read only.

5.1.30 TOM—Top of Memory

B/D/F/Type: 0/0/0/PCI
Address Offset: A0-A1h
Default Value: 0001h
Access: RO, RW/L
Size: 16 bits

This Register contains the size of physical memory. BIOS determines the memory size reported to the OS using this Register.

Bit	Access & Default	Description
15:10	RO 00h	Reserved
9:0	RW/L 001h	Top of Memory (TOM): This register reflects the total amount of populated physical memory. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped I/O). These bits correspond to address bits 35:26 (64 MB granularity). Bits 25:0 are assumed to be 0.

5.1.31 TOUUD—Top of Upper Usable Dram

B/D/F/Type: 0/0/0/PCI
Address Offset: A2-A3h
Default Value: 0000h
Access: RW/L
Size: 16 bits

This 16 bit register defines the Top of Upper Usable DRAM.

Configuration software must set this value to TOM minus all EP stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to (reclaim limit + 1 byte) 64 MB aligned since reclaim limit is 64 MB aligned. Address bits 19:0 are assumed to be 000_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register and greater than or equal to 4 GB.

Bit	Access & Default	Description
15:0	RW/L 0000h	TOUUD (TOUUD): This register contains bits 35 to 20 of an address one byte above the maximum DRAM memory above 4 GB that is usable by the operating system. Configuration software must set this value to TOM minus all EP stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to (reclaim limit + 1 byte) 64 MB aligned since reclaim limit is 64 MB aligned. Address bits 19:0 are assumed to be 000_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register and greater than 4 GB.

5.1.32 GBSM—Graphics Base of Stolen Memory

B/D/F/Type: 0/0/0/PCI Address Offset: A4–ABh

Access: RW/L, RO Size: 64 bits

This register contains the base address of graphics data stolen DRAM memory. BIOS determines the base of graphics data stolen memory by subtracting the graphics data stolen memory size (PCI Device 0, offset 52, bits 6:4) from TOLUD (PCI Device 0, offset B0h, bits 15:4).

Note: This register is locked and becomes Read Only when the D_LCK bit in the SMRAM register is set.

Bit	Access & Default	Description
63:32	RO 00000000h	Reserved
31:20	RW/L 000h	Graphics Base of Stolen Memory (GBSM): This register contains bits 31:20 of the base address of stolen DRAM memory. BIOS determines the base of graphics stolen memory by subtracting the graphics stolen memory size (PCI Device 0, offset 52h, bits 6:4) from TOLUD (PCI Device 0, offset B0h, bits 15:4). Note: This register is locked and becomes Read Only when the D_LCK bit in the SMRAM register is set.
19:0	RO 00000h	Reserved

5.1.33 TSEGMB—TSEG Memory Base

B/D/F/Type: 0/0/0/PCI
Address Offset: AC-AFh
Default Value: 00000000h
Access: RW/L, RO
Size: 32 bits

This register contains the base address of TSEG DRAM memory. BIOS determines the base of TSEG memory by subtracting the TSEG size (PCI Device 0, offset 9Eh, bits 2:1) from graphics GTT stolen base (PCI Device 0, offset A8h, bits 31:20).

Once D_LCK has been set, these bits becomes read only.

Bit	Access & Default	Description
31:20	RW/L 000h	TESG Memory base (TSEGMB): This register contains bits 31:20 of the base address of TSEG DRAM memory. BIOS determines the base of TSEG memory by subtracting the TSEG size (PCI Device 0, offset 9Eh, bits 2:1) and the graphics stolen memory size (PCI Device 0 offset 52 bits 6:4) from TOLUD (PCI Device 0 offset 9C bits 07:02). Once D_LCK has been set, these bits becomes read only.
19:0	RO 00000h	Reserved

5.1.34 TOLUD—Top of Low Usable DRAM

B/D/F/Type: 0/0/0/PCI
Address Offset: B0-B1h
Default Value: 0010h
Access: RW/L, RO
Size: 16 bits

This 16 bit register defines the Top of Low Usable DRAM. TSEG and Graphics Stolen Memory (if below 4GB) are within the DRAM space defined. From the top, GMCH optionally claims 1 to 64MBs of DRAM for internal graphics if enabled and 1 MB, 2 MB, or 8 MB of DRAM for TSEG if enabled.

Programming Example:

C1DRB3 is set to 4 GB

TSEG is enabled and TSEG size is set to 1 MB

Internal Graphics is enabled and Graphics Mode Select set to 32 MB

BIOS knows the OS requires 1 GB of PCI space.

BIOS also knows the range from FECO_0000h to FFFF_FFFFh is not usable by the system. This 20 MB range at the very top of addressable memory space is lost to APIC.

According to the above equation, TOLUD is originally calculated to: $4\ GB = 1_0000_0000h$

The system memory requirements are: 4 GB (max addressable space) - 1 GB (PCI space) - 20 MB (lost memory) = 3 GB - 128 MB (minimum granularity) = B800_000h

Since B800_0000h (PCI and other system requirements) is less than 1_0000_0000h, TOLUD should be programmed to B80h.

Bit	Access & Default	Description
15:4	RW/L 001h	Top of Low Usable DRAM (TOLUD): This register contains bits 31:20 of an address one byte above the maximum DRAM memory below 4 GB that is usable by the operating system. Address bits 31:20 programmed to 01h implies a minimum memory size of 1 MB. Configuration software must set this value to the smaller of the following 2 choices: maximum amount memory in the system minus ME stolen memory plus one byte or the minimum address allocated for PCI memory. Address bits 19:0 are assumed to be 0_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register. This register must be 64 MB aligned when reclaim is enabled.
3:0	RO 0000b	Reserved

5.1.35 ERRSTS—Error Status

B/D/F/Type: 0/0/0/PCI
Address Offset: C8–C9h
Default Value: 0000h
Access: RO, RWC/S
Size: 16 bits

This register is used to report various error conditions via the SERR DMI messaging mechanism. An SERR DMI message is generated on a zero to one transition of any of these flags (if enabled by the ERRCMD and PCICMD registers).

These bits are set regardless of whether or not the SERR is enabled and generated. After the error processing is complete, the error logging mechanism can be unlocked by clearing the appropriate status bit by software writing a 1 to it.

Bit	Access & Default	Description
15:13	RO Ob	Reserved
12	RWC/S 0b	GMCH Software Generated Event for SMI (GSGESMI): This indicates the source of the SMI was a Device 2 Software Event.
11	RWC/S Ob	GMCH Thermal Sensor Event for SMI/SCI/SERR (GTSE): This bit indicates that a GMCH Thermal Sensor trip has occurred and an SMI, SCI or SERR has been generated. The status bit is set only if a message is sent based on Thermal event enables in Error command, SMI command and SCI command registers. A trip point can generate one of SMI, SCI, or SERR interrupts (two or more per event is invalid). Multiple trip points can generate the same interrupt, if software chooses this mode, subsequent trips may be lost. If this bit is already set, then an interrupt message will not be sent on a new thermal sensor event.
10	RO 0b	Reserved
9	RWC/S Ob	LOCK to non-DRAM Memory Flag (LCKF): 1 = GMCH has detected a lock operation to memory space that did not map into DRAM.
8	RO Ob	Reserved
7	RWC/S 0b	DRAM Throttle Flag (DTF): 1 = DRAM Throttling condition occurred. 0 = Software has cleared this flag since the most recent throttling event.
6:0	RO Os	Reserved

5.1.36 ERRCMD—Error Command

B/D/F/Type: 0/0/0/PCI
Address Offset: CA-CBh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register controls the GMCH responses to various system errors. Since the GMCH does not have an SERR# signal, SERR messages are passed from the GMCH to the ICH over DMI.

When a bit in this register is set, a SERR message will be generated on DMI whenever the corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device 0 via the PCI Command register.

Bit	Access & Default	Description
15:13	RO 000b	Reserved
12	RWC/S 0b	GMCH Software Generated Event for SMI (GSGESMI): This indicates the source of the SMI was a Device 2 Software Event.
11	RW Ob	SERR on GMCH Thermal Sensor Event (TSESERR): 1 = The GMCH generates a DMI SERR special cycle when bit 11 of the ERRSTS is set. The SERR must not be enabled at the same time as the SMI for the same thermal sensor event. 0 = Reporting of this condition via SERR messaging is disabled.
10	RO 0b	Reserved
9	RW Ob	SERR on LOCK to non-DRAM Memory (LCKERR): 1 = The GMCH will generate a DMI SERR special cycle whenever a processor lock cycle is detected that does not hit DRAM. 0 = Reporting of this condition via SERR messaging is disabled.
8:0	RW Os	Reserved

5.1.37 SMICMD—SMI Command

B/D/F/Type: 0/0/0/PCI
Address Offset: CC-CDh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register enables various errors to generate an SMI DMI special cycle. When an error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively. Note that one and only one message type can be enabled.

Bit	Access & Default	Description
15:12	RO 0h	Reserved
11	RW Ob	 SMI on GMCH Thermal Sensor Trip (TSTSMI): 1 = A SMI DMI special cycle is generated by GMCH when the thermal sensor trip requires an SMI. A thermal sensor trip point cannot generate more than one special cycle. 0 = Reporting of this condition via SMI messaging is disabled.
10:0	RO Os	Reserved

5.1.38 SKPD—Scratchpad Data

B/D/F/Type: 0/0/0/PCI
Address Offset: DC-DFh
Default Value: 00000000h

Access: RW Size: 32 bits

This register holds 32 writable bits with no functionality behind them. It is for the convenience of BIOS and graphics drivers.

Bit	Access & Default	Description
31:0	RW 00000000h	Scratchpad Data (SKPD): 1 DWord of data storage.

5.1.39 CAPIDO—Capability Identifier

B/D/F/Type: 0/0/0/PCI Address Offset: E0–E9h

Default Value: 0000000000001090009h

Access: RO Size: 80 bits

Bit	Access & Default	Description
79:26	RO Os	Reserved
27:24	RO 1h	CAPID Version (CAPIDV): This field has the value 0001b to identify the first revision of the CAPID register definition.
23:16	RO 09h	CAPID Length (CAPIDL): This field has the value 09h to indicate the structure length (9 bytes).
15:8	RO 00h	Next Capability Pointer (NCP): This field is hardwired to 00h indicating the end of the capabilities linked list.
7:0	RO 09h	Capability Identifier (CAP_ID): This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers.

5.2 MCHBAR

The MCHBAR registers are offset from the MCHBAR base address. Table 5-2 provides an address map of the registers listed by address offset in ascending order. Detailed register bit descriptions follow the table.

Table 5-2. MCHBAR Register Address Map

Address Offset	Symbol	Register Name	Default Value	Access
111h	CHDECMISC	Channel Decode Miscellaneous	00h	RW
200–01h	CODRB0	Channel 0 DRAM Rank Boundary Address 0	0000h	RO, RW
202–203h	CODRB1	Channel 0 DRAM Rank Boundary Address 1	0000h	RW, RO
204–205h	CODRB2	Channel 0 DRAM Rank Boundary Address 2	0000h	RW, RO
206–207h	CODRB3	Channel 0 DRAM Rank Boundary Address 3	0000h	RW, RO
208–209h	CODRA01	Channel 0 DRAM Rank 0,1 Attribute	0000h	RW
20A-20Bh	CODRA23	Channel 0 DRAM Rank 2,3 Attribute	0000h	RW
250–251h	COCYCTRKPCHG	Channel O CYCTRK PCHG	0000h	RW, RO
252–255h	COCYCTRKACT	Channel O CYCTRK ACT	00000000h	RW, RO
256–257h	COCYCTRKWR	Channel 0 CYCTRK WR	0000h	RW
258–25Ah	COCYCTRKRD	Channel O CYCTRK READ	000000h	RW, RO
25B-25Ch	COCYCTRKREFR	Channel O CYCTRK REFR	0000h	RO, RW
260–263h	COCKECTRL	Channel 0 CKE Control	00000800h	RO, RW, RW
269–26Eh	COREFRCTRL	Channel 0 DRAM Refresh Control	021830000 C30h	RW, RO
29C-29Fh	COODTCTRL	Channel 0 ODT Control	00100000h	RO, RW
600–601h	C1DRB0	Channel 1 DRAM Rank Boundary Address 0	0000h	RW, RO
602–603h	C1DRB1	Channel 1 DRAM Rank Boundary Address 1	0000h	RW, RO
604–605h	C1DRB2	Channel 1 DRAM Rank Boundary Address 2	0000h	RW, RO
606–607h	C1DRB3	Channel 1 DRAM Rank Boundary Address 3	0000h	RW, RO

Address Offset	Symbol	Register Name	Default Value	Access
608–609h	C1DRA01	Channel 1 DRAM Rank 0,1 Attributes	0000h	RW,
60A-60Bh	C1DRA23	Channel 1 DRAM Rank 2,3 Attributes	0000h	RW
650–651h	C1CYCTRKPCHG	Channel 1 CYCTRK PCHG	0000h	RO, RW
652–655h	C1CYCTRKACT	Channel 1 CYCTRK ACT	00000000h	RO, RW
656–657h	C1CYCTRKWR	Channel 1 CYCTRK WR	0000h	RW,
658–65Ah	C1CYCTRKRD	Channel 1 CYCTRK READ	000000h	RO, RW
660–663h	C1CKECTRL	Channel 1 CKE Control	00000800h	RW, RW, RO
669–66Eh	C1REFRCTRL	Channel 1 DRAM Refresh Control	021830000 C30h	RW, RO
69C-69Fh	C1ODTCTRL	Channel 1 ODT Control	00100000h	RO, RW
A00– A01h	EPCODRB0	EP Channel 0 DRAM Rank Boundary Address 0	0000h	RW, RO
A02– A03h	EPCODRB1	EP Channel O DRAM Rank Boundary Address 1	0000h	RO, RW
A04– A05h	EPCODRB2	EP Channel 0 DRAM Rank Boundary Address 2	0000h	RO, RW
A06– A07h	EPCODRB3	EP Channel 0 DRAM Rank Boundary Address 3	0000h	RW, RO
A08– A09h	EPCODRA01	EP Channel 0 DRAM Rank 0,1 Attribute	0000h	RW
AOA- AOBh	EPCODRA23	EP Channel 0 DRAM Rank 2,3 Attribute	0000h	RW
A19– A1Ah	EPDCYCTRKWRT PRE	EPD CYCTRK WRT PRE	0000h	RW, RO
A1C- A1Fh	EPDCYCTRKWRT ACT	EPD CYCTRK WRT ACT	00000000h	RO, RW
A20– A21h	EPDCYCTRKWRT WR	EPD CYCTRK WRT WR	0000h	RW, RO
A22– A23h	EPDCYCTRKWRT REF	EPD CYCTRK WRT REF	0000h	RO, RW
A24– A26h	EPDCYCTRKWRT RD	EPD CYCTRK WRT READ	000000h	RW
A28– A33h	EPDCKECONFIG REG	EPD CKE related configuration registers	00E000000 0h	RW
A2Eh	MEMEMSPACE	ME Memory Space Configuration	00h	RW, RO
A30–A33h	EPDREFCONFIG	EP DRAM Refresh Configuration	40000C30h	RO, RW

Address Offset	Symbol	Register Name	Default Value	Access
CD8h	TSC1	Thermal Sensor Control 1	00h	RW/L, RW, RS/WC
CD9h	TSC2	Thermal Sensor Control 2	00h	RW/L, RO
CDAh	TSS	Thermal Sensor Status	00h	RO
CDC-CDFh	TSTTP	Thermal Sensor Temperature Trip Point	00000000h	RO, RW, RW/L
CE2h	TCO	Thermal Calibration Offset	00h	RW/L/K, RW/L
CE4h	THERM1	Hardware Throttle Control	00h	RW/L, RO, RW/L/K
CEA-CEBh	TIS	Thermal Interrupt Status	0000h	RO, RWC
CF1h	TSMICMD	Thermal SMI Command	00h	RO, RW
F14–F17h	PMSTS	Power Management Status	00000000h	RWC/S, RO

5.2.1 **CHDECMISC—Channel Decode Miscellaneous**

0/0/0/MCHBAR

B/D/F/Type: Address Offset: 111h Default Value: 00h Access: RW/L Size: 8 bits

This register has Miscellaneous CHDEC/MAGEN configuration bits.

Bit	Access & Default	Description
7	RW/L 0b	Reserved
6:5	RW/L	Enhanced Mode Select (ENHMODESEL):
	00b	00 = Swap Enabled for Bank Selects and Rank Selects
		01 = XOR Enabled for Bank Selects and Rank Selects
		10 = Swap Enabled for Bank Selects only
		11 = Reserved
4	RO 0b	Reserved
3	RW 0b	Ch1 Enhanced Mode (CH1_ENHMODE): This bit enables Enhanced addressing mode of operation is enabled for Ch 1.
		0 = Disable
		1 = Enable
2	RW/L 0b	ChO Enhanced Mode (CHO_ENHMODE): This bit enables Enhanced addressing mode of operation is enabled for Ch 0.
		0 = Disable
		1 = Enable
1	RW Ob	Flex Memory (FLXMEM): This bit disables the Flex mode memory configuration.
		0 = Enable
		1 = Disable
0	RW Ob	ME Present (EPPRSNT): This bit indicates whether ME UMA is present in the system or not.
		0 = Not Present
		1 = Present

5.2.2 CODRBO—Channel O DRAM Rank Boundary Address O

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 200–201h
Default Value: 0000h
Access: R/W, RO
Size: 16 bits

The DRAM Rank Boundary Registers define the upper boundary address of each DRAM rank with a granularity of 64 MB. Each rank has its own single-word DRB register. These registers are used to determine which chip select will be active for a given address. Channel and rank map:

```
Ch 0, Rank 0 = 200h
Ch 0, Rank 1 = 202h
Ch 0, Rank 2 = 204h
Ch 0, Rank 3 = 206h
Ch 1, Rank 0 = 600h
Ch 1, Rank 1 = 602h
Ch 1, Rank 2 = 604h
Ch 1, Rank 3 = 606h
```

Programming Guide

If Channel 0 is empty, all of the CODRBs are programmed with 00h.

```
CODRB0 = Total memory in Ch 0, Rank 0 (in 64 MB increments)
CODRB1 = Total memory in Ch 0, Rank 0 + Ch 0, Rank 1 (in 64 MB increments)
...

If Channel 1 is empty, all of the C1DRBs are programmed with 00h
C1DRB0 = Total memory in Ch 1, Rank 0 (in 64 MB increments)
C1DRB1 = Total memory in Ch 1, Rank 0 + Ch 1, Rank 1 (in 64 MB increments)
```

For Flex Memory Mode

C1DRB0, C1DRB1, and C1DRB2:

They are also programmed similar to non-Flex mode. Only exception is, the DRBs corresponding to the top most populated rank and higher ranks in Channel 1 must be programmed with the value of the total Channel 1 population plus the value of total Channel 0 population (C0DRB3).

Example: If only Ranks 0 and 1 are populated in Ch1 in Flex mode, then:

```
C1DRB0 = Total memory in Ch 1, Rank 0 (in 64MB increments)

C1DRB1 = C0DRB3 + Total memory in Ch 1, Rank 0 + Ch 1, Rank 1 (in 64 MB increments) (Rank 1 is the topmost populated rank)

C1DRB2 = C1DRB1

C1DRB3 = C1DRB1

C1DRB3:

C1DRB3 = C0DRB3 + Total memory in Channel 1.
```


Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	R/W 000h	Channel O Dram Rank Boundary Address O (CODRBAO): This register defines the DRAM rank boundary for rankO of Channel O (64 MB granularity) = RO
		R0 = Total Rank 0 memory size is 64 MB R1 = Total Rank 1 memory size is 64 MB
		R2 = Total Rank 2 memory size is 64 MB R3 = Total Rank 3 memory size is 64 MB

5.2.3 CODRB1—Channel O DRAM Rank Boundary Address 1

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 202–203h
Default Value: 0000h
Access: R/W, RO
Size: 16 bits

See CODRBO register for programming information.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	R/W 000h	Channel O Dram Rank Boundary Address 1 (CODRBA1): This register defines the DRAM rank boundary for rank1 of Channel 0 (64 MB granularity)
		= (R1 + R0)
		R0 = Total Rank 0 memory size is 64 MB
		R1 = Total Rank 1 memory size is 64 MB
		R2 = Total Rank 2 memory size is 64 MB
		R3 = Total Rank 3 memory size is 64 MB

5.2.4 CODRB2—Channel O DRAM Rank Boundary Address 2

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 204–205h
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

See CODRBO register for programming information.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	R/W 000h	Channel O DRAM Rank Boundary Address 2 (CODRBA2): This register defines the DRAM rank boundary for rank2 of Channel 0 (64 MB granularity)
		= (R2 + R1 + R0)
		R0 = Total Rank 0 memory size is 64 MB
		R1 = Total Rank 1 memory size is 64 MB
		R2 = Total Rank 2 memory size is 64 MB
		R3 = Total Rank 3 memory size is 64 MB

5.2.5 CODRB3—Channel O DRAM Rank Boundary Address 3

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 206–207h
Default Value: 0000h
Access: R/W, RO
Size: 16 bits

See CODRBO register for programming information.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	R/W 000h	Channel O DRAM Rank Boundary Address 3 (CODRBA3): This register defines the DRAM rank boundary for rank3 of Channel 0 (64 MB granularity)
		= (R3 + R2 + R1 + R0)
		R0 = Total Rank 0 memory size is 64 MB
		R1 = Total Rank 1 memory size is 64 MB
		R2 = Total Rank 2 memory size is 64 MB
		R3 = Total Rank 3 memory size is 64 MB

5.2.6 CODRA01—Channel O DRAM Rank 0,1 Attribute

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 208–209h
Default Value: 0000h
Access: R/W
Size: 16 bits

The DRAM Rank Attribute Registers define the page sizes/number of banks to be used when accessing different ranks. These registers should be left with their default value (all zeros) for any rank that is unpopulated, as determined by the corresponding CxDRB registers. Each byte of information in the CxDRA registers describes the page size of a pair of ranks. Channel and rank map:

Ch 0, Rank 0, 1= 208h-209h Ch 0, Rank 2, 3 = 20Ah-20Bh Ch 1, Rank 0, 1= 608h-609h Ch 1, Rank 2, 3= 60Ah-60Bh

DRA[7:0] = "00" means Cfg 0 , DRA[7:0] = "01" means Cfg 1 DRA[7:0] = "09" means Cfg 9 and so on.

Table 5-3. DRAM Rank Attribute Register Programming

Cfg	Tech	DDRx	Depth	Width	Row	Col	Bank	Row Size	Page Size
0	256Mb	2	32M	8	13	10	2	256 MB	8k
1	256Mb	2	16M	16	13	9	2	128 MB	4k
2	512Mb	2	64M	8	14	10	2	512 MB	8k
3	512Mb	2	32M	16	13	10	2	256 MB	8k
4	512Mb	3	64M	8	13	10	3	512 MB	8k
5	512Mb	3	32M	16	12	10	3	256 MB	8k
6	1 Gb	2,3	128M	8	14	10	3	1 GB	8k
7	1 Gb	2,3	64M	16	13	10	3	512 MB	8k

Bit	Access & Default	Description
15:8	R/W 00h	Channel O DRAM Rank-1 Attributes (CODRA1): This field defines DRAM pagesize/number-of-banks for rank1 for given channel. See Table 5-3 for programming.
7:0	R/W 00h	Channel O DRAM Rank-O Attributes (CODRAO): This field defines DRAM page size/number-of-banks for rankO for given channel. See Table 5-3 for programming.

5.2.7 CODRA23—Channel O DRAM Rank 2,3 Attribute

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 20A-20Bh
Default Value: 0000h
Access: R/W
Size: 16 bits

See CODRA01 register for programming information.

Bit	Access & Default	Description
15:8	R/W 00h	Channel O DRAM Rank-3 Attributes (CODRA3): This register defines DRAM pagesize/number-of-banks for rank3 for given channel. See Table 5-3 for programming.
7:0	R/W 00h	Channel O DRAM Rank-2 Attributes (CODRA2): This register defines DRAM pagesize/number-of-banks for rank2 for given channel. See Table 5-3 for programming.

5.2.8 COCYCTRKPCHG—Channel 0 CYCTRK PCHG

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 250–251h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

This register provides Channel 0 CYCTRK Precharge.

Bit	Access & Default	Description
15:11	RW 00000b	ACT To PRE Delayed (COsd_cr_act_pchg): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the ACT and PRE commands to the same rank-bank. This field corresponds to t_{RAS} in the DDR Specification.
10:6	RW 00000b	Write To PRE Delayed (COsd_cr_wr_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the same rank-bank. This field corresponds to t_{WR} in the DDR Specification.
5:2	RW 0000b	READ To PRE Delayed (COsd_cr_rd_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and PRE commands to the same rank-bank.
1:0	RW 00b	PRE To PRE Delayed (COsd_cr_pchg_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between two PRE commands to the same rank.

5.2.9 COCYCTRKACT—Channel O CYCTRK ACT

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 252–255h
Default Value: 00000000h
Access: RW, RO
Size: 32 bits

This register provides Channel 0 CYCTRK Activate.

Bit	Access & Default	Description
31:28	RO 0h	Reserved
27:22	RW 000000b	ACT Window Count (COsd_cr_act_windowcnt): This field indicates the window duration (in DRAM clocks) during which the controller counts the # of activate commands which are launched to a particular rank. If the number of activate commands launched within this window is greater than 4, then a check is implemented to block launch of further activates to this rank for the rest of the duration of this window.
21	RW Ob	Max ACT Check Disable (C0sd_cr_maxact_dischk): This field disenables the check which ensures that there are no more than four activates to a particular rank in a given window.
20:17	RW 0000b	ACT to ACT Delayed (C0sd_cr_act_act[): This field indicates the minimum allowed spacing (in DRAM clocks) between two ACT commands to the same rank. This field corresponds to t_{RRD} in the DDR Specification.
16:13	RW 0000b	PRE to ACT Delayed (COsd_cr_pre_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE and ACT commands to the same rank-bank. This field corresponds to t_{RP} in the DDR Specification.
12:9	RW Oh	ALLPRE to ACT Delay (C0sd0_cr_preall_act): From the launch of a prechargeall command wait for these many $\#$ of memory clocks before launching a activate command. This field corresponds to t_{PALL_RP} .
8:0	RW 00000000 0b	REF to ACT Delayed (COsd_cr_rfsh_act): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT commands to the same rank. This field corresponds to t_{RFC} in the DDR Specification.

5.2.10 COCYCTRKWR—Channel 0 CYCTRK WR

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 256–257h
Default Value: 0000h
Access: RW
Size: 16 bits

This register provides Channel 0 CYCTRK WR.

Bit	Access & Default	Description
15:12	RW 0h	ACT To Write Delay (COsd_cr_act_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the same rank-bank. This field corresponds to $t_{\text{RCD_wr}}$ in the DDR Specification.
11:8	RW Oh	Same Rank Write To Write Delay (COsd_cr_wrsr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to the same rank.
7:4	RW 0h	Different Rank Write to Write Delay (COsd_cr_wrdr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to different ranks. This field corresponds to twR_WR in the DDR Specification.
3:0	RW Oh	READ To WRTE Delay (COsd_cr_rd_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and WRITE commands. This field corresponds to t_{RD_WR} .

5.2.11 COCYCTRKRD—Channel O CYCTRK READ

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 258–25Ah
Default Value: 000000h
Access: RW, RO
Size: 24 bits

This register provides Channel 0 CYCTRK RD.

Bit	Access & Default	Description
23:21	RO 000b	Reserved
20:17	RW Oh	Min ACT To READ Delay (COsd_cr_act_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and READ commands to the same rank-bank. This field corresponds to t_{RCD_rd} in the DDR Specification.
16:12	RW 00000b	Same Rank Write To READ Delay (COsd_cr_wrsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to the same rank. This field corresponds to t _{WTR} in the DDR Specification.
11:8	RW 0000b	Different Ranks Write To READ Delay (COsd_cr_wrdr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to different ranks. This field corresponds to twR_RD in the DDR Specification.
7:4	RW 0000b	Same Rank Read To Read Delay (COsd_cr_rdsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to the same rank.
3:0	RW 0000b	Different Ranks Read To Read Delay (COsd_cr_rddr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to different ranks. This field corresponds to t_{RD_RD} .

5.2.12 COCYCTRKREFR—Channel 0 CYCTRK REFR

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 25B–25Ch
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register provides Channel 0 CYCTRK Refresh.

Bit	Access & Default	Description
15:13	RO 000b	Reserved
12:9	RW 0000b	Same Rank PALL to REF Delay (COsd_cr_pchgall_rfsh): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and REF commands to the same rank.
8:0	RW 000000000b	Same Rank REF to REF Delay (COsd_cr_rfsh_rfsh): This field indicates the minimum allowed spacing (in DRAM clocks) between two REF commands to same ranks.

5.2.13 COCKECTRL—Channel O CKE Control

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 260–263h
Default Value: 00000800h
Access: RO, RW
Size: 32 bits

This register provides CKE controls for Channel 0

Bit	Access & Default	Description
31:30	RW 00b	Number of clocks from internal ODT command start that ODT Read Safe will be asserted (sd0_cr_odt_rdsafe): Number of clocks from internal ODT command start that ODT Read Safe will be asserted
29:28	RW 00b	Number of clocks from internal ODT command start that ODT Write Safe will be asserted (sd0_cr_odt_wrsafe): Number of clocks from internal ODT command start that ODT Write Safe will be asserted
27	RW 0b	start the self-refresh exit sequence (sd0_cr_srcstart): This field indicates the request to start the self-refresh exit sequence.
26:24	RW 000b	CKE pulse width requirement in high phase (sd0_cr_cke_pw_hl_safe): This field indicates CKE pulse width requirement in high phase. This field corresponds to t _{CKE} (high) in the DDR Specification.
23	RW	Rank 3 Population (sd0_cr_rankpop3):
	0b	1 = Rank 3 populated
		0 = Rank 3 not populated
22	RW	Rank 2 Population (sd0_cr_rankpop2):
	0b	1 = Rank 2 populated
		0 = Rank 2 not populated
21	RW	Rank 1 Population (sd0_cr_rankpop1):
	0b	1 = Rank 1 populated
		0 = Rank 1 not populated
20	RW	Rank 0 Population (sd0_cr_rankpop0):
	0b	1 = Rank 0 populated
		0 = Rank 0 not populated
19:17	RW 000b	CKE pulse width requirement in low phase (sd0_cr_cke_pw_lh_safe): This field indicates CKE pulse width requirement in low phase. This field corresponds to t _{CKE} (low) in the DDR Specification.
16	RW Ob	Enable CKE toggle for PDN entry/exit (sd0_cr_pdn_enable): This bit indicates that the toggling of CKEs (for PDN entry/exit) is enabled.

Bit	Access & Default	Description
15	RW Ob	Read ODT Not Always Safe (sd0_cr_rdodtnas): Internal Read ODT to CS is not always safe. Setting this bit selects the delay (programmable) in the ODT Read Safe register field.
14	RW Ob	Write ODT Not Always Safe (sd0_cr_wrodtnas): Internal Write ODT to CS is not always safe. Setting this bit selects the delay (programmable) in the ODT Write Safe register field.
13:10	RW 0010b	Minimum Power-down exit to Non-Read command spacing (sd0_cr_txp): This field indicates the minimum number of clocks to wait following assertion of CKE before issuing a non-read command.
		0000-0001 = Reserved
		0010–1001 = 2–9clocks
		1010–1111 = Reserved
9:1	RW 00000000 0b	Self refresh exit count (sd0_cr_slfrfsh_exit_cnt): This field indicates the Self refresh exit count. (Program to 255). This field corresponds to txsnR/txsRD in the DDR Specification.
0	RW Ob	Indicates only 1 DIMM populated (sd0_cr_singledimmpop): This bit, when set, indicates that only 1 DIMM is populated.

5.2.14 COREFRCTRL—Channel O DRAM Refresh Control

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 269–26Eh
Default Value: 021830000C30h

Access: RW, RO Size: 48 bits

This register provides settings to configure the DRAM refresh controller.

Bit	Access & Default	Description
47:42	RO 00h	Reserved
41:37	RW 10000b	Direct Rcomp Quiet Window (DIRQUIET): This field indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.
36:32	RW 11000b	Indirect Rcomp Quiet Window (INDIRQUIET): This field indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.
31:27	RW 00110b	Rcomp Wait (RCOMPWAIT): This field indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.
26	RW Ob	Reserved

Bit	Access & Default		Description
25	RW Ob	the refresh counter to refresh, but refreshes	able (REFCNTEN): This bit is used to enable count during times that DRAM is not in selfare not enabled. Such a condition may occur ram DIMMs following DRAM controller switch.
		where Refresh is enab	when Refresh is enabled (i.e., there is no mode led but the counter does not run). Thus, in 3 REFEN, the modes are:
		REFEN:REFCNTEN	Description
		0:0	Normal refresh disable
		0:1	Refresh disabled, but counter is accumulating refreshes.
		1:X	Normal refresh enable
24	RW Ob	default) that all the ra	LLRKREF): This configuration bit enables (by nks are refreshed in a staggered/atomic aks are refreshed in an independent fashion.
23	RW	Refresh Enable (REF	FEN):
	0b	0 = Disabled	
		1 = Enabled	
22	RW Ob	DDR Initialization D initialization is comple	one (INITDONE): Indicates that DDR te.
		0 = Not Done	
		1 = Done	
21:20	RW 00b	Reserved	
19:18	RW 00b		c Watermark (REFPANICWM): When the this level, a refresh request is launched to the f_panic flag is set.
		00 = 5 01 = 6 10 = 7 11 = 8	
17:16	RW 00b		Watermark (REFHIGHWM): When the this level, a refresh request is launched to the f_high flag is set.
		00 = 3 01 = 4 10 = 5 11 = 6	

Bit	Access & Default	Description
15:14	RW 00b	DRAM Refresh Low Watermark (REFLOWWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_low flag is set.
		00 = 1 01 = 2 10 = 3 11 = 4
13:0	RW 001100001 10000b	Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a value that will provide 7.8 us at the memory clock frequency. At various memory clock frequencies this results in the following values:
		266 MHz -> 820h
		333 MHz -> A28h
		400 MHz -> C30h

5.2.15 COODTCTRL—Channel 0 ODT Control

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 29C-29Fh
Default Value: 00100000h
Access: RO, RW
Size: 32 bits

This register provides ODT controls.

Bit	Access & Default	Description
31:24	RO 00h	Reserved
23:20	RW 0001b	MCH ODT Latency (sd0_cr_modtl): Delay from CS# to GMCH ODT assertion.
		0000 = Reserved
		0001–1100 = 1–12 clocks
		1101–1111 = Reserved
19:17	RW 0000b	CAS latency (sd0_cr_casl): (for CAS Latency) This configuration register indicates the CAS latency of the memory population. Also, termed as SDRAM to CAS latency.
		000 = 3 memory clocks
		001 = 4 memory clocks
		111 = 10 memory clocks
16:0	RO 00h	Reserved

5.2.16 C1DRB0—Channel 1 DRAM Rank Boundary Address 0

B/D/F/Type: 0/0/0/MCHBAR

Address Offset: 600–601h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

The operation of this register is detailed in the description for register CODRBO.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	RW/L 000h	Channel 1 DRAM Rank Boundary Address 0 (C1DRBA0): See C0DRB0 register. In Flex mode this is the topmost populated rank in Channel 1, program this value to be cumulative of Ch0 DRB3.

5.2.17 C1DRB1—Channel 1 DRAM Rank Boundary Address 1

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 602–603h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

The operation of this register is detailed in the description for register CODRBO.

Bit	Access & Default	Description
15:1 0	RO 000000b	Reserved
9:0	RW/L 000h	Channel 1 DRAM Rank Boundary Address 1 (C1DRBA1): See C0DRB1 register. In Flex mode this is the topmost populated rank in Channel 1, program this value to be cumulative of Ch0 DRB3.

5.2.18 C1DRB2—Channel 1 DRAM Rank Boundary Address 2

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 604–605h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

The operation of this register is detailed in the description for register CODRBO.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	RW/L 000h	Channel 1 DRAM Rank Boundary Address 2 (C1DRBA2): See C0DRB2 register. In Flex mode this is the topmost populated rank in Channel 1, program this value to be cumulative of Ch0 DRB3.

5.2.19 C1DRB3—Channel 1 DRAM Rank Boundary Address 3

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 606–607h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

The operation of this register is detailed in the description for register CODRBO.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	RW/L 000h	Channel 1 DRAM Rank Boundary Address 3 (C1DRBA3): See C0DRB3 register. In Flex mode this is the topmost populated rank in Channel 1, program this value to be cumulative of Ch0 DRB3

5.2.20 C1DRA01—Channel 1 DRAM Rank 0,1 Attributes

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 608–609h
Default Value: 0000h
Access: RW
Size: 16 bits

The operation of this register is detailed in the description for register CODRA01.

Bit	Access & Default	Description
15:8	RW/L 00h	Channel 1 DRAM Rank-1 Attributes (C1DRA1): See C0DRA1 register.
7:0	RW/L 00h	Channel 1 DRAM Rank-0 Attributes (C1DRA0): See C0DRA0 register.

5.2.21 C1DRA23—Channel 1 DRAM Rank 2,3 Attributes

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 60A–60Bh
Default Value: 0000h
Access: RW
Size: 16 bits

The operation of this register is detailed in the description for register CODRA01.

Bit	Access & Default	Description
15:8	RW/L 00h	Channel 1 DRAM Rank-3 Attributes (C1DRA3): See C0DRA3 register.
7:0	RW/L 00h	Channel 1 DRAM Rank-2 Attributes (C1DRA2): See C0DRA2 register.

5.2.22 C1CYCTRKPCHG—Channel 1 CYCTRK PCHG

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 650–651h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register provides Channel 1 CYCTRK Precharge.

Bit	Access & Default	Description
15:11	RW 00000b	ACT To PRE Delayed (C1sd_cr_act_pchg): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the ACT and PRE commands to the same rank-bank.
10:6	RW 00000b	Write To PRE Delayed (C1sd_cr_wr_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the same rank-bank. This field corresponds to twR in the DDR Specification.
5:2	RW 0000b	READ To PRE Delayed (C1sd_cr_rd_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and PRE commands to the same rank-bank
1:0	RW 00b	PRE To PRE Delayed (C1sd_cr_pchg_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between two PRE commands to the same rank.

5.2.23 C1CYCTRKACT—Channel 1 CYCTRK ACT

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 652–655h
Default Value: 00000000h
Access: RO, RW
Size: 32 bits

This register provides Channel 1 CYCTRK ACT.

Bit	Access & Default	Description
31:28	RO 0h	Reserved
27:22	RW 000000b	ACT Window Count (C1sd_cr_act_windowcnt): This field indicates the window duration (in DRAM clocks) during which the controller counts the # of activate commands which are launched to a particular rank. If the number of activate commands launched within this window is greater than 4, then a check is implemented to block launch of further activates to this rank for the rest of the duration of this window.
21	RW Ob	Max ACT Check Disable (C1sd_cr_maxact_dischk): This field disenables the check which ensures that there are no more than four activates to a particular rank in a given window.
20:17	RW 0000b	ACT to ACT Delayed (C1sd_cr_act_act[): This field indicates the minimum allowed spacing (in DRAM clocks) between two ACT commands to the same rank. This field corresponds to t _{RRD} in the DDR Specification.
16:13	RW 0000b	PRE to ACT Delayed (C1sd_cr_pre_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE and ACT commands to the same rank-bank: 12:9R/W0000bPRE-ALL to ACT Delayed (C1sd_cr_preall_act): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and ACT commands to the same rank. This field corresponds to t _{RP} in the DDR Specification.
12:9	RW Oh	ALLPRE to ACT Delay (C1sd_cr_preall_act): From the launch of a Prechargeall command wait for these many # of memory clocks before launching a activate command. This field corresponds to t _{PALL_RP} .
8:0	RW 00000000 0b	REF to ACT Delayed (C1sd_cr_rfsh_act): This field indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT commands to the same rank. This field corresponds to t_{RFC} in the DDR Specification.

5.2.24 C1CYCTRKWR—Channel 1 CYCTRK WR

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 656–657h
Default Value: 0000h
Access: RW
Size: 16 bits

This register provides Channel 1 CYCTRK WR.

Bit	Access & Default	Description
15:12	RW Oh	ACT To Write Delay (C1sd_cr_act_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the same rank-bank. This field corresponds to t_{RCD_wr} in the DDR Specification.
11:8	RW Oh	Same Rank Write To Write Delayed (C1sd_cr_wrsr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to the same rank.
7:4	RW Oh	Different Rank Write to Write Delay (C1sd_cr_wrdr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to different ranks. This field corresponds to twR_wR in the DDR Specification.
3:0	RW Oh	READ To WRTE Delay (C1sd_cr_rd_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and WRITE commands. This field corresponds to t_{RD_WR} .

5.2.25 C1CYCTRKRD—Channel 1 CYCTRK READ

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 658–65Ah
Default Value: 000000h
Access: RO, RW
Size: 24 bits

This is the Channel 1 CYCTRK READ register.

Bit	Access & Default	Description
23:20	RO 0h	Reserved
19:16	RW Oh	Min ACT To READ Delayed (C1sd_cr_act_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and READ commands to the same rank-bank. This field corresponds to t_{RCD_rd} in the DDR Specification.
15:11	RW 00000b	Same Rank Write To READ Delayed (C1sd_cr_wrsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to the same rank. This field corresponds to twith in the DDR Specification.
10:8	RW 0000b	Different Ranks Write To READ Delayed (C1sd_cr_wrdr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to different ranks. This field corresponds to twR_RD in the DDR Specification.
7:4	RW 0000b	Same Rank Read To Read Delayed (C1sd_cr_rdsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to the same rank.
3:0	RW 0000b	Different Ranks Read To Read Delayed (C1sd_cr_rddr_rd): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to different ranks. This field corresponds to t_{RD_RD} .

5.2.26 C1CKECTRL—Channel 1 CKE Control

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 660–663h
Default Value: 00000800h
Access: RW/L, RW, RO

Size: 32 bits

This register provides Channel 1 CKE Controls.

Bit	Access & Default	Description
31:30	RW 00b	Number of clocks from internal ODT command start that ODT Read Safe will be asserted (sd1_cr_odt_rdsafe): Number of clocks from internal ODT command start that ODT Read Safe will be asserted
29:28	RW 00b	Number of clocks from internal ODT command start that ODT Read Safe will be asserted (sd1_cr_odt_wrsafe): Number of clocks from internal ODT command start that ODT Write Safe will be asserted
27	RW Ob	start the self-refresh exit sequence (sd1_cr_srcstart): This field indicates the request to start the self-refresh exit sequence.
26:24	RW 000b	CKE pulse width requirement in high phase (sd1_cr_cke_pw_hl_safe): This field indicates CKE pulse width requirement in high phase. This field corresponds to tcke (high) in the DDR Specification.
23	RW	Rank 3 Population (sd1_cr_rankpop3):
	0b	1 = Rank 3 populated
		0 = Rank 3 not populated.
22	RW	Rank 2 Population (sd1_cr_rankpop2):
	0b	1 = Rank 2 populated
		0 = Rank 2 not populated
21	RW	Rank 1 Population (sd1_cr_rankpop1):
	0b	1 = Rank 1 populated
		0 = Rank 1 not populated.
20	RW	Rank 0 Population (sd1_cr_rankpop0):
	0b	1 = Rank 0 populated
		0 = Rank 0 not populated
19:17	RW 000b	CKE pulse width requirement in low phase (sd1_cr_cke_pw_lh_safe): This configuration register indicates CKE pulse width requirement in low phase. This field corresponds to t _{CKE} (low) in the DDR Specification.
16	RW Ob	Enable CKE toggle for PDN entry/exit (sd1_cr_pdn_enable): This configuration bit indicates that the toggling of CKEs (for PDN entry/exit) is enabled.

Bit	Access & Default	Description
15	RW Ob	Read ODT Not Always Safe (sd1_cr_rdodtnas): Internal Read ODT to CS is not always safe. Setting this bit selects the delay (programmable) in the ODT Read Safe register field.
14	RW Ob	Write ODT Not Always Safe (sd1_cr_wrodtnas): Internal Write ODT to CS is not always safe. Setting this bit selects the delay (programmable) in the ODT Write Safe register field.
13:10	RW 0010b	Minimum Powerdown Exit to Non-Read command spacing (sd1_cr_txp): This configuration register indicates the minimum number of clocks to wait following assertion of CKE before issuing a non-read command. 1010-1111 = Reserved. 0010-1001 = 2-9 clocks 0000-0001 = Reserved.
9:1	RW 000000000b	Self refresh exit count (sd1_cr_slfrfsh_exit_cnt): This configuration register indicates the Self refresh exit count. (Program to 255). This field corresponds to t_{XSNR}/t_{XSRD} in the DDR Specification.
0	RW Ob	indicates only 1 DIMM populated (sd1_cr_singledimmpop): This bit, when set, indicates that only 1 DIMM is populated.

5.2.27 C1REFRCTRL—Channel 1 DRAM Refresh Control

B/D/F/Type: 0/0/0/MCHBAR Address Offset: 669–66Eh Default Value: 021830000C30h

Access: RW, RO Size: 48 bits

This register provides settings to configure the DRAM refresh controller.

Bit	Access & Default	Description
47:42	RO 00h	Reserved
41:37	RW 10000b	Direct Rcomp Quiet Window (DIRQUIET): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.
36:32	RW 11000b	Indirect Rcomp Quiet Window (INDIRQUIET): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.
31:27	RW 00110b	Rcomp Wait (RCOMPWAIT): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh.

Bit	Access & Default	Description
26	RO 0b	Reserved
25	RW Ob	Refresh Counter Enable (REFCNTEN): This bit is used to enable the refresh counter to count during times that DRAM is not in self-refresh, but refreshes are not enabled. Such a condition may occur due to need to reprogram DIMMs following DRAM controller switch.
		This bit has no effect when Refresh is enabled (i.e., there is no mode where Refresh is enabled but the counter does not run). Thus, in conjunction with bit 23 REFEN, the modes are:
		REFEN:REFCNTEN Description
		0:0 Normal refresh disable
		0:1 Refresh disabled, but counter is accumulating refreshes.
		1:X Normal refresh enable
24	RW Ob	All Rank Refresh (ALLRKREF): This configuration bit enables (by default) that all the ranks are refreshed in a staggered/atomic fashion. If set, the ranks are refreshed in an independent fashion.
23	RW Ob	Refresh Enable (REFEN): Refresh is enabled.
		0 = Disabled
		1 = Enabled
22	RW 0b	DDR Initialization Done (INITDONE): Indicates that DDR initialization is complete.
		0 = Not Done
		1 = Done
21:20	RO 00b	Reserved
19:18	RW 00b	DRAM Refresh Panic Watermark (REFPANICWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_panic flag is set.
		00 = 5 01 = 6 10 = 7 11 = 8
17:16	RW 00b	DRAM Refresh High Watermark (REFHIGHWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_high flag is set.
		00 = 3 01 = 4 10 = 5 11 = 6

Bit	Access & Default	Description
15:14	RW 00b	DRAM Refresh Low Watermark (REFLOWWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_low flag is set.
		00 = 1 01 = 2 10 = 3 11 = 4
13:0	RW 00110000 110000b	Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a value that will provide 7.8 us at the memory clock frequency. At various memory clock frequencies this results in the following values:
		266 MHz -> 820h
		333 MHz -> A28h
		400 MHz -> C30h

5.2.28 C1ODTCTRL—Channel 1 ODT Control

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: 69C–69Fh
Default Value: 00000000h
Access: RO, RW
Size: 32 bits

This register provides ODT controls.

Bit	Access & Default	Description
31:24	RO 00000h	Reserved
23:20	RW 0001b	MCH ODT Latency (sd1_cr_modtl): Delay from CS# to GMCH ODT assertion.
		0000 = Reserved
		0001–1100 = 1–12 clocks
		1101–1111 = Reserved
19:17	RW 000b	CAS latency (sd1_cr_casl): (for CAS Latency) This configuration register indicates the CAS latency of the memory population. Also, termed as SDRAM to CAS latency.
		000 = 3 memory clocks
		001 = 4 memory clocks
		111 = 10 memory clocks
16:0	RW 00000000h	Reserved

5.2.29 EPC0DRB0—ME Channel 0 DRAM Rank Boundary Address 0

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A00–A01h
Default Value: 0000h
Access: R/W, RO
Size: 16 bits

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	R/W 000h	Channel 0 Dram Rank Boundary Address 0 (C0DRBA0):

5.2.30 EPC0DRB1—ME Channel 0 DRAM Rank Boundary Address

1

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A02–A03h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

See CODRBO register.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	RW 000h	Channel 0 Dram Rank Boundary Address 1 (C0DRBA1):

5.2.31 EPCODRB2— ME Channel O DRAM Rank Boundary Address 2

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A04–A05h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

See CODRBO register.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	RW 000h	Channel 0 DRAM Rank Boundary Address 2 (C0DRBA2):

5.2.32 EPC0DRB3— ME Channel 0 DRAM Rank Boundary Address 3

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A06–A07h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

See CODRBO register.

Bit	Access & Default	Description
15:10	RO 000000b	Reserved
9:0	RW 000h	Channel 0 DRAM Rank Boundary Address 3 (C0DRBA3):

5.2.33 EPCODRA01—ME Channel O DRAM Rank 0,1 Attribute

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A08–A09h
Default Value: 0000h
Access: RW
Size: 16 bits

The DRAM Rank Attribute Registers define the page sizes/number of banks to be used when accessing different ranks. These registers should be left with their default value (all zeros) for any rank that is unpopulated, as determined by the corresponding CxDRB registers. Each byte of information in the CxDRA registers describes the page size of a pair of ranks. Channel and rank map:

Ch0 Rank0, 1: 108h - 109h Ch0 Rank2, 3: 10Ah - 10Bh Ch1 Rank0, 1: 188h - 189h Ch1 Rank2, 3: 18Ah - 18Bh

Bit	Access & Default	Description
15:8	RW 00h	Channel O DRAM Rank-1 Attributes (CODRA1): This field defines DRAM pagesize/number-of-banks for rank1 for given channel.
7:0	RW 00h	Channel O DRAM Rank-O Attributes (CODRAO): This field defines DRAM pagesize/number-of-banks for rankO for given channel.

5.2.34 EPCODRA23—ME Channel O DRAM Rank 2,3 Attribute

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A0A-A0Bh
Default Value: 0000h
Access: RW
Size: 16 bits

See CODRA01 register.

Bit	Access & Default	Description
15:8	RW 00h	Channel O DRAM Rank-3 Attributes (CODRA3): This field defines DRAM pagesize/number-of-banks for rank3 for given channel.
7:0	RW 00h	Channel O DRAM Rank-2 Attributes (CODRA2): This field defines DRAM pagesize/number-of-banks for rank2 for given channel.

5.2.35 EPDCYCTRKWRTPRE—EPD CYCTRK WRT PRE

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A19-A1Ah
Default Value: 0000h
Access: RW, RO
Size: 16 bits

This register provides EPD CYCTRK WRT PRE Status.

Bit	Access & Default	Description
15:11	RW 00000b	ACT to PRE Delayed (COsd_cr_act_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and PRE commands to the same rank-bank
10:6	RW 00000b	Write to PRE Delayed (COsd_cr_wr_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the same rank-bank
5:2	RW 0000b	READ to PRE Delayed (COsd_cr_rd_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and PRE commands to the same rank-bank
1:0	RO 00b	Reserved

5.2.36 EPDCYCTRKWRTACT—EPD CYCTRK WRT ACT

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A1C-A1Fh
Default Value: 00000000h
Access: RO, RW
Size: 32 bits

This register provides EPD CYCTRK WRT ACT Status.

Bit	Access & Default	Description
31:21	RO 000h	Reserved
20:17	RW 0000b	ACT to ACT Delayed (COsd_cr_act_act[): This field indicates the minimum allowed spacing (in DRAM clocks) between two ACT commands to the same rank.
16:13	RW 0000b	PRE to ACT Delayed (COsd_cr_pre_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE and ACT commands to the same rank-bank: 12:9R/W0000bPRE-ALL to ACT Delayed (COsd_cr_preall_act):
		This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and ACT commands to the same rank.
12:9	RO Oh	Reserved
8:0	RW 00000000 0b	REF to ACT Delayed (COsd_cr_rfsh_act): This field indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT commands to the same rank.

5.2.37 EPDCYCTRKWRTWR—EPD CYCTRK WRT WR

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A20-A21h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

This register provides EPD CYCTRK WRT WR Status.

Bit	Access & Default	Description
15:12	RW Oh	ACT To Write Delay (COsd_cr_act_wr): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the same rank-bank.
11:8	RW Oh	Same Rank Write To Write Delayed (C0sd_cr_wrsr_wr): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to the same rank.
7:4	RO 0h	Reserved
3:0	RW Oh	Same Rank WRITE to READ Delay (COsd_cr_rd_wr): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to the same rank

5.2.38 EPDCYCTRKWRTRD—EPD CYCTRK WRT READ

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A24–A26h
Default Value: 000000h
Access: RW
Size: 24 bits
BIOS Optimal Default 000h

This register provides EPD CYCTRK WRT RD Status.

Bit	Access & Default	Description
23:23	RO 0h	Reserved
22:20	RW 000b	EPDunit DQS Slave DLL Enable to Read Safe (EPDSDLL2RD): This field provides the setting for Read command safe from the point of enabling the slave DLLs.
19:18	RO 0h	Reserved
17:14	RW Oh	Min ACT To READ Delayed (COsd_cr_act_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and READ commands to the same rank-bank.

Bit	Access & Default	Description
13:9	RW 00000b	Same Rank READ to WRITE Delayed (COsd_cr_wrsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and WRITE commands.
8:6	RO 0h	Reserved
5:3	RW 000b	Same Rank Read To Read Delayed (COsd_cr_rdsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to the same rank.
2:0	RO 0h	Reserved

5.2.39 EPDCKECONFIGREG—EPD CKE Related Configuration Register

B/D/F/Type: 0/0/0/MCHBAR Address Offset: A28–A2Ch Default Value: 00E0000000h

Access: RW
Size: 40 bits
BIOS Optimal Default 0h

This register provides CKE related configuration for EPD.

Bit	Access & Default	Description
39:35	RW 00000b	EPDunit TXPDLL Count (EPDTXPDLL): This field specifies the delay from precharge power down exit to a command that requires the DRAM DLL to be operational. The commands are read/write.
34:32	RW 000b	EPDunit TXP count (EPDCKETXP): This field specifies the timing requirement for Active power down exit or fast exit pre-charge power down exit to any command or slow exit pre-charge power down to Non-DLL (rd/wr/odt) command.
31:29	RW 111b	Mode Select (sd0_cr_sms): This field indicates the mode in which the controller is operating in.
		111 = indicates normal mode of operation, else special mode of operation.
28:27	RW 00b	EPDunit EMRS command select. (EPDEMRSSEL): EMRS mode to select BANK address.
		01 = EMRS
		10 = EMRS2
		11 = EMRS3
26:24	RW 000b	CKE pulse width requirement in high phase (sd0_cr_cke_pw_hl_safe): This field indicates CKE pulse width requirement in high phase.

Bit	Access & Default	Description
23:20	RW Oh	one-hot active rank population (ep_scr_actrank): This field indicates the active rank in a one hot manner
19:17	RW 000b	CKE pulse width requirement in low phase (sd0_cr_cke_pw_lh_safe): This field indicates CKE pulse width requirement in low phase.
16:15	RO 0h	Reserved
14	RW Ob	EPDunit MPR mode (EPDMPR): MPR Read Mode 1 = MPR mode 0 = Normal mode
13	RW Ob	EPDunit Power Down enable for ODT Rank (EPDOAPDEN): Configuration to enable the ODT ranks to dynamically enter power down. 1 = Enable active power down. 0 = Disable active power down.
12	RW Ob	EPDunit Power Down enable for Active Rank (EPDAAPDEN): Configuration to enable the active rank to dynamically enter power down. 1 = Enable active power down. 0 = Disable active power down.
11:10	RO 0h	Reserved
9:1	RW 00000000 0b	Self refresh exit count (sd0_cr_slfrfsh_exit_cnt): This field indicates the Self refresh exit count. (Program to 255)
0	RW Ob	indicates only 1 rank enabled (sd0_cr_singledimmpop): This field indicates that only 1 rank is enabled.

5.2.40 MEMEMSPACE—ME Memory Space Configuration

B/D/F/Type: 0/0/0/MCHBAR

Address Offset: A2Eh
Default Value: 00h
Access: R/W, RO
Size: 8 bits

This register provides settings to enable the ME memory space and define the size of EP memory if enabled.

Bit	Access & Default	Description
7:5	RO 000b	Reserved
4:0	R/W 00000b	ME-UMA(Sx) Region Size (EXRS): These bits are written by firmware to indicate the desired size of ME-UMA(Sx) memory region. This is done prior to bring up core power and allowing BIOS to initialize memory. Within channel 0 DDR, the physical base address for MEUMA(Sx) will be determined by: ME-UMA(Sx)BASE = CODRB3 - EXRS This forces the ME-UMA(Sx) region to always be positioned at the top of the memory populated in channel 0. The approved sizes for ME-UMA(Sx) are values between 0000b (0MB, no ME-UMA(Sx) region) and 10000b (16 MB ME - UMA(Sx) region)

5.2.41 EPDREFCONFIG—EP DRAM Refresh Configuration

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: A30–A33h
Default Value: 40000C30h
Access: RO, RW
Size: 32 bits

This register provides settings to configure the EPD refresh controller.

Bit	Access & Default		Description
31	RO Ob	Reserved	
30:29	RW 10b	(EPDREF4SR): Confi	unt addition for self refresh exit. guration indicating the number of additional to be added to the refresh request count after
		Typical value is to add	d 2 refreshes.
		00 = Add 0 Refreshes	
		01 = Add 1 Refreshes	
		10 = Add 2 Refreshes	
		11 = Add 3 Refreshes	
28	RW Ob	the refresh counter to refresh, but refreshes	able (REFCNTEN): This bit is used to enable count during times that DRAM is not in selfare not enabled. Such a condition may occur aram DIMMs following DRAM controller switch.
		where Refresh is enak	when Refresh is enabled (i.e. there is no mode bled but the counter does not run). Thus, in 3 REFEN, the modes are:
		REFEN:REFCNTEN	Description
		0:0	Normal refresh disable
		0:1	Refresh disabled, but counter is accumulating refreshes.
		1:X	Normal refresh enable
27	RW	Refresh Enable (RE	FEN):
	0b	0 = Disabled	
		1 = Enabled	
26	RW Ob	DDR Initialization D initialization is comple	Done (INITDONE): Indicates that DDR ste.
		0 = Not Done	
		1 = Done	

Bit	Access & Default	Description
25:22	RO 0000b	Reserved
21:18	RW 0000b	DRAM Refresh High Watermark (REFHIGHWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_high flag is set.
		0000 = 0
		0001 = 1
		1000 = 8
17:14	RW 0000b	DRAM Refresh Low Watermark (REFLOWWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_low flag is set.
		0000 = 0
		0001 = 1
		1000 = 8
13:0	RW 00110000 110000b	Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a value that will provide 7.8 us at the memory clock frequency. At various memory clock frequencies this results in the following values:
		266 MHz -> 820h
		333 MHz -> A28h
		400 MHz -> C30h

5.2.42 TSC1—Thermal Sensor Control 1

B/D/F/Type: 0/0/0/MCHBAR

Address Offset: CD8h Default Value: 00h

Access: RW/L, RW, RS/WC

Size: 8 bits

This register controls the operation of the thermal sensor. Bits 7:1 of this register are reset to their defaults by CL_PWROK. Bit 0 is reset to its default by PLTRST#.

Bit	Access & Default	Description
7	RW/L Ob	Thermal Sensor Enable (TSE): This bit enables power to the thermal sensor. Lockable via TCO bit 7.
		0 = Disabled
		1 = Enabled
6	RO 0b	Reserved
5:2	RW 0000b	Digital Hysteresis Amount (DHA): This bit determines whether no offset, 1 LSB, 2 15 is used for hysteresis for the trip points.
		0000 = digital hysteresis disabled, no offset added to trip temperature
		0001 = offset is 1 LSB added to each trip temperature when tripped
		Oddo 20°C (Decompressed ad actions)
		0110 = ~3.0 °C (Recommended setting)
		1110 = added to each trip temperature when tripped
		1111 = added to each trip temperature when tripped
1	RO Ob	Reserved
0	RS/WC	In Use (IU): Software semaphore bit.
	0b	After a full GMCH RESET, a read to this bit returns a 0.
		After the first read, subsequent reads will return a 1.
		A write of a 1 to this bit will reset the next read value to 0.
		Writing a 0 to this bit has no effect.
		Software can poll this bit until it reads a 0, and will then own the usage of the thermal sensor.
		This bit has no other effect on the hardware, and is only used as a semaphore among various independent software threads that may need to use the thermal sensor.
		Software that reads this register but does not intend to claim exclusive access of the thermal sensor must write a one to this bit if it reads a 0, in order to allow other software threads to claim it.

5.2.43 TSC2—Thermal Sensor Control 2

B/D/F/Type: 0/0/0/MCHBAR

Address Offset: CD9h
Default Value: 00h
Access: RW/L, RO
Size: 8 bits

This register controls the operation of the thermal sensor. All bits in this register are reset to their defaults by CL_PWROK .

Bit	Access & Default	Description
7:4	RO 0h	Reserved
3:0	RW/L Oh	Thermometer Mode Enable and Rate (TE): These bits enable the thermometer mode functions and set the Thermometer controller rate.
		The trip points (Catastrophic and Hot) will all operate using the programmed trip points and Thermometer mode rate.
		Note: During boot, all other thermometer mode registers (except lock bits) should be programmed appropriately before enabling the Thermometer Mode.
		Lockable via TCO bit 7.
		0000 = Thermometer mode disabled
		0100 = enabled, 2048 clock mode (normal Thermometer mode operation)
		 provides ~7.68uS settling time @ 266MHz provides ~6.14us settling time @ 333MHz provides ~5.12us settling time @ 400MHz
		0101 = enabled, 3072 clock mode
		0110 = enabled, 4096 clock mode
		0111 = enabled, 6144 clock mode
		- provides ~23.1uS settling time @ 266MHz - provides ~18.5us settling time @ 333MHz - provides ~15.4uS settling time @ 400MHz
		all other bit encodings are reserved
		NOTE: The settling time for DAC and Thermal Diode is between 2 and 5 micro-seconds. To meet this requirement the SE value must be programmed to be 5 micro-seconds or more. Recommendation is to use 0100 setting.

5.2.44 TSS—Thermal Sensor Status

B/D/F/Type: 0/0/0/MCHBAR

Address Offset: CDAh
Default Value: 00h
Access: RO
Size: 8 bits

This read only register provides trip point and other status of the thermal sensor. All bits in this register are reset to their defaults by CL_PWROK.

Bit	Access & Default	Description
7	RO Ob	Catastrophic Trip Indicator (CTI): 1 = Internal thermal sensor temperature is above the catastrophic setting.
6	RO Ob	Hot Trip Indicator (HTI): 1 = Internal thermal sensor temperature is above the Hot setting.
5:0	RO Os	Reserved

5.2.45 TSTTP—Thermal Sensor Temperature Trip Point

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: CDC-CDFh
Default Value: 00000000h
Access: RO, RW, RW/L

Size: 32 bits

This register sets the target values for the trip points.

All bits in this register are reset to their defaults by CL_PWROK.

Bit	Access & Default	Description
31:16	RO 0000h	Reserved
15:8	RW/L 00h	Hot Trip Point Setting (HTPS): Sets the target value for the Hot trip point. Lockable via TCO bit 7.
7:0	RW/L 00h	Catastrophic Trip Point Setting (CTPS): Sets the target for the Catastrophic trip point. See also TST[Direct DAC Connect Test Enable]. Lockable via TCO bit 7.

5.2.46 TCO—Thermal Calibration Offset

B/D/F/Type: 0/0/0/MCHBAR

Address Offset: CE2h Default Value: 00h

Access: RW/L/K, RW/L

Size: 8 bits

Bit 7 is reset to its default by PLTRST#. Bits 6:0 are reset to their defaults by CL_PWROK .

Bit	Access & Default	Description
7	RW/L/K 0b	Lock Bit for Catastrophic (LBC): This bit, when written to a 1, locks the Catastrophic programming interface, including bits 7:0 of this register and bits 15:0 of TSTTP, bits 1,7 of TSC 1, bits 3:0 of TSC 2, bits 4:0 of TSC 3, and bits 0,7 of TST. This bit may only be set to a 0 by a hardware reset (PLTRST#). Writing a 0 to this bit has no effect.
6:0	RW/L 00h	Calibration Offset (CO): This field contains the current calibration offset for the Thermal Sensor DAC inputs. The calibration offset is a twos complement signed number which is added to the temperature counter value to help generate the final value going to the thermal sensor DAC. This register is loaded by the hardware from fuses that are blown during test.
		This field is Read/Write, but should be kept at its default value as programmed by the fuses in the part.
		Note for TCO operation: While this is a seven-bit field, the 7th bit is sign extended to 9 bits for TCO operation. The range of 00h to 3Fh corresponds to 0 0000 0000 to 0 0011 1111. The range of 41h to 7fh corresponds to 1 1100 001 (i.e., negative 3fh) to 1 1111 1111 (i.e., negative 1), respectively.

5.2.47 THERM1—Hardware Throttle Control

B/D/F/Type: 0/0/0/MCHBAR

Address Offset: CE4h Default Value: 00h

Access: RW/L, RO, RW/L/K

Size: 8 bits

All bits in this register are reset to their defaults by PLTRST#.

Bit	Access & Default	Description
7:4	RO 00h	Reserved
3	RW/L	Halt on Catastrophic (HOC):
	00h	0 = Continue to toggle clocks when the catastrophic sensor trips.
		1 = All clocks are disabled when the catastrophic sensor trips. A system reset is required to bring the system out of a halt from the thermal sensor.
2:1	RO 00b	Reserved
0	RW/L/K 00h	Hardware Throttling Lock Bit (HTL): This bit locks bits 7:0 of this register.
		0 = The register bits are unlocked.
		1 = The register bits are locked. It may only be set to a 0 by a hardware reset.
		Writing a 0 to this bit has no effect.

5.2.48 TIS—Thermal Interrupt Status

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: CEA-CEBh
Default Value: 0000h
Access: RO, RWC
Size: 16 bits

This register is used to report if the temperature is rising or falling past the Hot Trip Point. After an SMI# is asserted by the Hot Trip Point, SW can examine the current state of the thermal zones by examining the TSS.

Software must write a 1 to clear the status bits in this register.

Following scenario is possible. An interrupt is initiated on a rising temperature trip, the appropriate DMI cycles are generated, and eventually the software services the interrupt and sees a rising temperature trip as the cause in the status bits for the interrupts. Assume that the software then goes and clears the local interrupt status bit in the TIS register for that trip event. It is possible at this point that a falling temperature trip event occurs before the software has had the time to clear the global interrupts status bit. But since software has already looked at the status register before this event happened, software may not clear the local status flag for this event.

Therefore, after the global interrupt is cleared by software, software must look at the instantaneous status in the TSS register.

All bits in this register are reset to their defaults by PLTRST#.

Bit	Access & Default	Description	
15:10	RO 00h	Reserved	
9	RWC	Was Catastrophic Thermal Sensor Interrupt Event (WCTSIE):	
	Ob	1 = Indicates that a Catastrophic Thermal Sensor trip based on a higher to lower temperature transition thru the trip point	
		0 = No trip for this event	
8	RWC	Was Hot Thermal Sensor Interrupt Event (WHTSIE):	
	Ob	1 = Indicates that a Hot Thermal Sensor trip based on a higher to lower temperature transition thru the trip point	
		0 = No trip for this event	
7:5	RO 00b	Reserved	
4	RWC	Catastrophic Thermal Sensor Interrupt Event (CTSIE):	
	Ob	Indicates that a Catastrophic Thermal Sensor trip event occurred based on a lower to higher temperature transition thru the trip point.	
		0 = No trip for this event Software must write a 1 to clear this status bit.	
3	RWC	Hot Thermal Sensor Interrupt Event (HTSIE):	
	0b	1 = Indicates that a Hot Thermal Sensor trip event occurred based on a lower to higher temperature transition thru the trip point.	
		0 = No trip for this event Software must write a 1 to clear this status bit.	
2:0	RO 00b	Reserved	

5.2.49 TSMICMD—Thermal SMI Command

B/D/F/Type: 0/0/0/MCHBAR

Address Offset: CF1h
Default Value: 00h
Access: RO, RW
Size: 8 bits

This register selects specific errors to generate a SMI DMI special cycle, as enabled by the Device 0 SMI Error Command Register [SMI on GMCH Thermal Sensor Trip].

All bits in this register are reset to their defaults by PLTRST#.

Bit	Access & Default	Description
7:2	RO 00h	Reserved
1	RW Ob	 SMI on GMCH Hot Thermal Sensor Trip (SMGHTST): 1 = Does not mask the generation of an SMI DMI special cycle on a Hot thermal sensor trip. 0 = Disable reporting of this condition via SMI messaging.
0	RO Ob	Reserved

5.2.50 PMSTS—Power Management Status

B/D/F/Type: 0/0/0/MCHBAR
Address Offset: F14–F17h
Default Value: 00000000h
Access: RWC/S, RO
Size: 32 bits

This register is Reset by PWROK only.

Bit	Access & Default	Description		
31:9	RO 000000h	Reserved		
8	RWC/S 0b	Warm Reset Occurred (WRO): Set by the PMunit whenever a Warm Reset is received, and cleared by PWROK=0.		
		0 = No Warm Reset occurred.		
		1 = Warm Reset occurred.		
		BIOS Requirement: BIOS can check and clear this bit whenever executing POST code. This way BIOS knows that if the bit is set, then the PMSTS bits [1:0] must also be set, and if not BIOS needs to power-cycle the platform.		
7:2	RO 00h	Reserved		
1	RWC/S Ob	Channel 1 in Self-Refresh (C1SR): Set by power management hardware after Channel 1 is placed in self refresh as a result of a Power State or a Reset Warn sequence.		
		Cleared by Power management hardware before starting Channel 1 self refresh exit sequence initiated by a power management exit.		
		Cleared by the BIOS by writing a 1 in a warm reset (Reset# asserted while PWROK is asserted) exit sequence.		
		0 = Channel 1 not ensured to be in self refresh.		
		1 = Channel 1 in Self Refresh.		
0	RWC/S 0b	Channel 0 in Self-Refresh (COSR): Set by power management hardware after Channel 0 is placed in self refresh as a result of a Power State or a Reset Warn sequence.		
		Cleared by Power management hardware before starting Channel 0 self refresh exit sequence initiated by a power management exit.		
		Cleared by the BIOS by writing a 1 in a warm reset (Reset# asserted while PWROK is asserted) exit sequence.		
		0 = Channel 0 not ensured to be in self refresh.		
		1 = Channel 0 in Self Refresh.		

5.3 MPBAR

Table 5-4. EPBAR Register Address Map

Address Offset	Symbol	Register Name	Default Value	Access
44–47h	EPESD	ME Element Self Description	00000201h	RO, RWO
50–53h	EPLE1D	Controller Link Entry 1 Description	01000000h	RO, RWO
58–5Fh	EPLE1A	Controller Link Entry 1 Address	000000000 000000h	RO, RWO
60–63h	EPLE2D	Controller Link Entry 2 Description	02000002h	RO, RWO
68–6Fh	EPLE2A	Controller Link Entry 2 Address	000000000 008000h	RO

5.3.1 EPESD—EP Element Self Description

B/D/F/Type: 0/0/0/PXPEPBAR

Address Offset: 44–47h
Default Value: 00000201h
Access: RO, RWO
Size: 32 bits

This register provides information about the root complex element containing this Link Declaration Capability.

Bit	Access & Default	Description	
31:24	RO 00h	Port Number (PN): This field specifies the port number associated with this element with respect to the component that contains this element. A value of 00h indicates to configuration software that this is the default Express port.	
23:16	RWO 00h	Component ID (CID): This field indicates identifies the physical component that contains this Root Complex Element.	
15:8	RO Osh	Number of Link Entries (NLE): This field indicates the number of link entries following the Element Self Description. This field reports 2 (one each for PEG and DMI).	
7:4	RO 0h	Reserved	
3:0	RO 1h	Element Type (ET): This field indicates the type of the Root Complex Element. Value of 1h represents a port to system memory.	

5.3.2 EPLE1D—Controller Link Entry 1 Description

B/D/F/Type: 0/0/0/PXPEPBAR

Address Offset: 50–53h
Default Value: 01000000h
Access: RO, RWO
Size: 32 bits

This register provides the first part of a Link Entry which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description		
31:24	RO 01h	Target Port Number (TPN): Specifies the port number associated with the element targeted by this link entry (DMI). The target port number is with respect to the component that contains this element as specified by the target component ID.		
23:16	RWO 00h	Target Component ID (TCID): This field indicates the physical or logical component that is targeted by this link entry.		
15:2	RO 0000h	Reserved		
1	RO 0b	Link Type (LTYP): This field indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.		
0 RWO Link Valid (LV):		Link Valid (LV):		
	Ob	0 = Link Entry is not valid and will be ignored.		
		1 = Link Entry specifies a valid link.		

5.3.3 EPLE1A— Controller Link Entry 1 Address

B/D/F/Type: 0/0/0/PXPEPBAR

Address Offset: 58–5Fh

Access: RO, RWO Size: 64 bits

This register provides the second part of a Link Entry which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:32	RO Os	Reserved
31:12	RWO Os	Link Address (LA): This field contains the memory mapped base address of the RCRB that is the target element (DMI) for this link entry.
11:0	RO Os	Reserved

5.3.4 EPLE2D— Controller Link Entry 2 Description

B/D/F/Type: 0/0/0/PXPEPBAR

Address Offset: 60–63h
Default Value: 02000002h
Access: RO, RWO
Size: 32 bits

This register provides the first part of a Link Entry which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description	
31:24	RO 02h	Target Port Number (TPN): This field specifies the port number associated with the element targeted by this link entry (PEG). The target port number is with respect to the component that contains this element as specified by the target component ID.	
23:16	RWO 00h	Target Component ID (TCID): This field indicates the physical or logical component that is targeted by this link entry. A value of 0 is reserved. Component IDs start at 1. This value is a mirror of the value in the Component ID field of all elements in this component.	
15:2	RO Os	Reserved	
1	RO 1b	Link Type (LTYP): This field indicates that the link points to configuration space of the integrated device which controls the x16 root port.	
		The link address specifies the configuration address (segment, bus, device, function) of the target root port.	
0	RWO	Link Valid (LV):	
	0b	0 = Link Entry is not valid and will be ignored.	
		1 = Link Entry specifies a valid link.	

EPLE2A—EP Link Entry 2 Address 5.3.5

B/D/F/Type: Address Offset: 0/0/0/PXPEPBAR

68-6Fh

Default Value: 000000000008000h

Access: RO Size: 64 bits

This register provides the second part of a Link Entry which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:28	RO Os	Reserved
27:20	RO Os	Bus Number (BUSN):
19:15	RO 00001b	Device Number (DEVN): Target for this link is PCI Express x16 port (Device 1).
14:12	RO 000b	Function Number (FUNN):
11:0	RO Os	Reserved

6 PCI Express* Registers (D1:F0)

Device 1 (D1), Function 0 (F0) contains the controls associated with the PCI Express x16 root port that is the intended to attach as the point for external graphics. It also functions as the virtual PCI-to-PCI bridge.

Warning: When reading the PCI Express "conceptual" registers such as this, you may not get a valid value unless the register value is stable.

The PCI Express* Specification defines two types of reserved bits.

Reserved and Preserved:

- 1. Reserved for future RW implementations; software must preserve value read for writes to bits.
- 2. Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for writes to bits.

Unless explicitly documented as Reserved and Zero, all bits marked as reserved are part of the Reserved and Preserved type, which have historically been the typical definition for Reserved.

Note: Most (if not all) control bits in this device cannot be modified unless the link is down. Software is required to first Disable the link, then program the registers, and then reenable the link (which will cause a full-retrain with the new settings).

Table 6-1. PCI Express* Register Address Map (D1:F0)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID1	Vendor Identification	8086h	RO
02–03h	DID1	Device Identification	29C1h	RO
04–05h	PCICMD1	PCI Command	0000h	RO, RW
06–07h	PCISTS1	PCI Status	0010h	RO, RWC
08h	RID1	Revision Identification	00h	RO
09–0Bh	CC1	Class Code	060400h	RO
0Ch	CL1	Cache Line Size	00h	RW
0Eh	HDR1	Header Type	01h	RO
18h	PBUSN1	Primary Bus Number	00h	RO
19h	SBUSN1	Secondary Bus Number	00h	RW
1Ah	SUBUSN1	Subordinate Bus Number	00h	RW
1Ch	IOBASE1	I/O Base Address	F0h	RW, RO

1D	Address Offset	Register Symbol	Register Name	Default Value	Access
1E-1Fh SSTS1 Secondary Status 0000h RWC, RO 20-21h MBASE1 Memory Base Address FFF0h RW, RO 22-23h MLIMIT1 Memory Limit Address 0000h RW, RO 24-25h PMBASE1 Prefetchable Memory Base Address FFF1h RW, RO 26-27h PMLIMIT1 Prefetchable Memory Limit Address 00001h RW, RO 28-28h PMBASEU1 Prefetchable Memory Limit Address 00000000h RW 26-27h PMLIMITU1 Prefetchable Memory Limit Address 00000000h RW 28-28h PMBASEU1 Prefetchable Memory Limit Address 00000000h RW 34h CAPPTR1 Capabilities 0000 RW 34h CAPPTR1 Capabilities 00h RW 3Dh INTRLINE1 Interrupt Line 00h RW 3Ch INTRLINE1 Bridge Control 0000h RO 88-83h PM_CAPID1 Power Management Capabilities C8039001h RO 80-83h			I/O Limit Address		RW RO
20-21h MBASE1 Memory Base Address FFF0h RW, RO 22-23h MLIMIT1 Memory Limit Address 0000h RW, RO 24-25h PMBASE1 Prefetchable Memory Base Address FFF1h RW, RO 26-27h PMLIMIT1 Prefetchable Memory Limit Address 00001h RW, RO 28-28h PMBASEU1 Prefetchable Memory Limit Address 00000000h RW 26-27h PMLIMITU1 Prefetchable Memory Limit Address 00000000h RW 28-28h PMBASEU1 Prefetchable Memory Limit Address 00000000h RW 34h CAPPTR1 Capabilities 0000 RW 34h CAPPTR1 Capabilities 000 RW 3Dh INTRLINE1 Interrupt Line 00h RW 3Dh INTRLINE1 Interrupt Line 00h RW 3Dh INTRLINE1 Interrupt Line 00h RW 80-83h PM_CAPID1 Power Management Capabilities C8039001h RO 84-87h PM_					-
22–23h MLIMIT1 Memory Limit Address 0000h RW, RO 24–25h PMBASE1 Prefetchable Memory Base Address FFF1h RW, RO 26–27h PMLIMIT1 Prefetchable Memory Limit Address 00000000h RW, RO 28–28h PMBASEU1 Prefetchable Memory Limit Address 00000000h RW 2C–2Fh PMLIMITU1 Prefetchable Memory Limit Address 00000000h RW 34h CAPPTR1 Capabilities Pointer 88h RO 3Ch INTRLINE1 Interrupt Line 00h RW 3Dh INTRPIN1 Interrupt Pin 01h RO 3B-3Fh BCTRL1 Bridge Control 0000h RO, RW 80–83h PM_CAPID1 Power Management Control/Status 00000000h RO 84–87h PM_CS1 Subsystem ID and Vendor ID 00008000h RO 88–88h SS_CAPID Subsystem ID and Subsystem 00008000h RO 90–91h MSI_CAPID Message Signaled Interrupts A005h RO					•
24–25h PMBASE1 Prefetchable Memory Base Address FFF1h RW, RO 26–27h PMLIMIT1 Prefetchable Memory Limit Address 0001h RW, RO 28–2Bh PMBASEU1 Prefetchable Memory Limit Address 00000000h RW 28–2Bh PMBASEU1 Prefetchable Memory Limit Address 00000000h RW 34h CAPPTR1 Capabilities 00000000h RW 34h CAPPTR1 Capabilities 000 RW 3Ch INTRLINE1 Interrupt Line 00h RW 3Dh INTRPIN1 Interrupt Pin 01h RO 3B-3Fh BCTRL1 Bridge Control 0000h RO RW 80–83h PM_CAPID1 Power Management Control/Status 00000000h RO RW/S, RW 88–8Bh SS_CAPID Subsystem ID and Vendor ID 00008000h RO 86–8Fh SS Subsystem ID and Subsystem 00008000h RO 90–91h MSI_CAPID Message Signaled Interrupts A005h RO </td <td></td> <td></td> <td></td> <td></td> <td></td>					
26–27h PMLIMIT1 Prefetchable Memory Limit Address 0001h RW, RO 28–28h PMBASEU1 Prefetchable Memory Base Address 000000000h RW, 2C–2Fh PMLIMITU1 Prefetchable Memory Limit Address 000000000h RW 34h CAPPTR1 Capabilities Pointer 88h RO 3Ch INTRLINE1 Interrupt Line 00h RW 3Dh INTRPIN1 Interrupt Pin 01h RO 3E–3Fh BCTRL1 Bridge Control 0000h RO 80–83h PM_CAPID1 Power Management Capabilities C8039001h RO 84–87h PM_CS1 Power Management Control/Status 00000000h RO, RW/S, RW 88–88h SS_CAPID Subsystem ID and Vendor ID 00008000h RO 86–87h SS Subsystem ID and Subsystem 00008006h RWO 90–91h MSI_CAPID Message Signaled Interrupts A005h RO Capability ID PO-91 Message Address 00000h RW					
28–2Bh PMBASEU1 Prefetchable Memory Base Address 00000000h RW, 2C–2Fh PMLIMITU1 Prefetchable Memory Limit Address 00000000h RW 34h CAPPTR1 Capabilities Pointer 88h RO 3Ch INTRLINE1 Interrupt Line 00h RW 3Dh INTRPIN1 Interrupt Pin 01h RO 3E–3Fh BCTRL1 Bridge Control 0000h RO, RW 80–83h PM_CAPID1 Power Management Capabilities C8039001h RO 84–87h PM_CS1 Power Management Control/Status 00000000h RO, RW/S, RW 88–88h SS_CAPID Subsystem ID and Vendor ID 0000800Dh RO 8C–8Fh SS Subsystem ID and Subsystem Vendor ID 0000800Dh RO 90–91h MSI_CAPID Message Signaled Interrupts A005h RO 292–93h MC Message Control 0000h RW, RO 94–97h MA Message Address 00000000h RW A0–A1h			5		
2C-2Fh PMLIMITU1 Prefetchable Memory Limit Address 00000000h RW 34h CAPPTR1 Capabilities Pointer 88h RO 3Ch INTRLINE1 Interrupt Line 00h RW 3Dh INTRPIN1 Interrupt Pin 01h RO 3E-3Fh BCTRL1 Bridge Control 0000h RO, RW 80-83h PM_CS1D Power Management Capabilities C8039001h RO 84-87h PM_CS1 Power Management Control/Status 000000000h RO, RW/S, RW 88-8Bh SS_CAPID Subsystem ID and Vendor ID 00008000h RO 8C-8Fh SS Subsystem ID and Subsystem Vendor ID 00008000h RW 90-91h MSI_CAPID Message Signaled Interrupts A005h RO 92-93h MC Message Solution 00000 RW, RO 94-97h MA Message Address 00000000h RW, RO 98-99h MD Message Data 0000h RW A0-A1h PEG_CAP			-		-
34h CAPPTR1 Capabilities Pointer 88h RO 3Ch INTRLINE1 Interrupt Line 00h RW 3Dh INTRPIN1 Interrupt Pin 01h RO 3E-3Fh BCTRL1 Bridge Control 0000h RO, RW 80-83h PM_CAPID1 Power Management Capabilities C8039001h RO 84-87h PM_CS1 Power Management Control/Status 000000000h RO, RW/S, RW 88-8Bh SS_CAPID Subsystem ID and Vendor ID 00008000h RO 8C-8Fh SS Subsystem ID and Subsystem Vendor ID 00008086h RWO 90-91h MSI_CAPID Message Signaled Interrupts A005h RO 92-93h MC Message Control 0000h RW, RO 94-97h MA Message Address 00000000h RW, RO 98-99h MD Message Data 0000h RW A0-A1h PEG_CAPL PCI Express-G Capabilities 0141h RO, RWO A4-A3h DEG De					
3Ch INTRLINE1 Interrupt Line 00h RW 3Dh INTRPIN1 Interrupt Pin 01h RO 3E-3Fh BCTRL1 Bridge Control 0000h RO, RW 80-83h PM_CAPID1 Power Management Capabilities C8039001h RO 84-87h PM_CS1 Power Management Control/Status 000000000h RO, RW/S, RW 88-8Bh SS_CAPID Subsystem ID and Vendor ID 00008000h RO 8C-8Fh SS Subsystem ID and Subsystem Vendor ID 00008086h RWO 90-91h MSI_CAPID Message Signaled Interrupts Capability ID A005h RO 92-93h MC Message Control 0000h RW, RO 94-97h MA Message Address 00000000h RW, RO 98-99h MD Message Data 0000h RW A0-A1h PEG_CAPL PCI Express-G Capabilities 0141h RO, RWO A4-A3h PEG_CAP Device Capabilities 0000h RO A4-A9h DCTL<	2C-2Fh	PMLIMITU1	Prefetchable Memory Limit Address	00000000h	RW
3Dh INTRPIN1 Interrupt Pin 01h RO 3E-3Fh BCTRL1 Bridge Control 0000h RO, RW 80-83h PM_CAPID1 Power Management Capabilities C8039001h RO 84-87h PM_CS1 Power Management Control/Status 00000000h RO, RW/S, RW 88-8Bh SS_CAPID Subsystem ID and Vendor ID Capabilities 00008000h RO 8C-8Fh SS Subsystem ID and Subsystem Vendor ID Capabilities 00008086h RWO 90-91h MSI_CAPID Message Signaled Interrupts Capability ID Capability ID A005h RO 92-93h MC Message Control O000h RW, RO 94-97h MA Message Address O000000h RW, RO 98-99h MD Message Data O000h RW A0-A1h PEG_CAPL PCI Express-G Capability List O10h RO A2-A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4-A7h DCAP Device Capabilities 0000h RO, RW AA-A8h DSTS Device Status 0000h RO, RWO	34h	CAPPTR1	Capabilities Pointer	88h	RO
3E-3Fh BCTRL1 Bridge Control 0000h RO, RW 80-83h PM_CAPID1 Power Management Capabilities C8039001h RO 84-87h PM_CS1 Power Management Control/Status 00000000h RO, RW/S, RW/S, RW/S, RW 88-8Bh SS_CAPID Subsystem ID and Vendor ID Capabilities 0000800Dh RO 8C-8Fh SS Subsystem ID and Subsystem Vendor ID 00008086h RWO 90-91h MSI_CAPID Message Signaled Interrupts Capability ID A005h RO 92-93h MC Message Control 0000h RW, RO 94-97h MA Message Address 00000000h RW, RO 98-99h MD Message Data 0000h RW A0-A1h PEG_CAPL PCI Express-G Capability List 0010h RO A2-A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4-A7h DCAP Device Capabilities 00008000h RO A8-A9h DCTL Device Control 0000h RO, RWC	3Ch	INTRLINE1	Interrupt Line	00h	RW
80-83h PM_CAPID1 Power Management Capabilities C8039001h RO 84-87h PM_CS1 Power Management Control/Status 00000000h RO, RW/S, RW/	3Dh	INTRPIN1	Interrupt Pin	01h	RO
84–87h PM_CS1 Power Management Control/Status 00000000h RO, RW/S, RW 88–8Bh SS_CAPID Subsystem ID and Vendor ID Capabilities 0000800Dh RO 8C–8Fh SS Subsystem ID and Subsystem Vendor ID 00008086h RWO 90–91h MSI_CAPID Message Signaled Interrupts Capability ID A005h RO 92–93h MC Message Control 0000h RW, RO 94–97h MA Message Address 00000000h RW, RO 98–99h MD Message Data 0000h RW A0–A1h PEG_CAPL PCI Express-G Capability List 0010h RO A2–A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4–A7h DCAP Device Capabilities 00008000h RO A8–A9h DCTL Device Status 0000h RO, RW AA–ABh DSTS Device Status 02014D01h RO, RWO BO–B1h LCTL Link Control 0000h RO, RW, RW/SC	3E–3Fh	BCTRL1	Bridge Control	0000h	RO, RW
88–8Bh SS_CAPID Subsystem ID and Vendor ID Capabilities 0000800Dh RO 8C–8Fh SS Subsystem ID and Subsystem Vendor ID 00008086h RWO 90–91h MSI_CAPID Message Signaled Interrupts Capability ID A005h RO 92–93h MC Message Control 0000h RW, RO 94–97h MA Message Address 00000000h RW, RO 98–99h MD Message Data 0000h RW A0–A1h PEG_CAPL PCI Express-G Capability List 0010h RO A2–A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4–A7h DCAP Device Capabilities 00008000h RO A8–A9h DCTL Device Control 0000h RO, RW AA–ABh DSTS Device Status 0000h RO, RWC AC–AFh LCAP Link Capabilities 02014D01h RO, RWO BO–B1h LCTL Link Control 0000h RO, RW, RW/SC	80–83h	PM_CAPID1	Power Management Capabilities	C8039001h	RO
Capabilities8C-8FhSSSubsystem ID and Subsystem Vendor ID00008086hRWO90-91hMSI_CAPIDMessage Signaled Interrupts Capability IDA005hRO92-93hMCMessage Control0000hRW, RO94-97hMAMessage Address00000000hRW, RO98-99hMDMessage Data0000hRWA0-A1hPEG_CAPLPCI Express-G Capability List0010hROA2-A3hPEG_CAPPCI Express-G Capabilities0141hRO, RWOA4-A7hDCAPDevice Capabilities00008000hROA8-A9hDCTLDevice Control0000hRO, RWAA-ABhDSTSDevice Status0000hRO, RWCAC-AFhLCAPLink Capabilities02014D01hRO, RWOBO-B1hLCTLLink Control0000hRO, RW, RW/SC	84–87h	PM_CS1	Power Management Control/Status	00000000h	RW/S,
Vendor ID Vendor ID 90–91h MSI_CAPID Message Signaled Interrupts Capability ID A005h RO 92–93h MC Message Control 0000h RW, RO 94–97h MA Message Address 00000000h RW, RO 98–99h MD Message Data 0000h RW A0–A1h PEG_CAPL PCI Express-G Capability List 0010h RO A2–A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4–A7h DCAP Device Capabilities 00008000h RO A8–A9h DCTL Device Control 0000h RO, RW AA–ABh DSTS Device Status 0000h RO, RWC AC–AFh LCAP Link Capabilities 02014D01h RO, RWO BO–B1h LCTL Link Control 0000h RO, RW, RW/SC	88–8Bh	SS_CAPID		0000800Dh	RO
Capability ID 92–93h MC Message Control 0000h RW, RO 94–97h MA Message Address 00000000h RW, RO 98–99h MD Message Data 0000h RW A0–A1h PEG_CAPL PCI Express-G Capability List 0010h RO A2–A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4–A7h DCAP Device Capabilities 00008000h RO A8–A9h DCTL Device Control 0000h RO, RW AA–ABh DSTS Device Status 0000h RO, RWC AC–AFh LCAP Link Capabilities 02014D01h RO, RWO B0–B1h LCTL Link Control 0000h RO, RW, RW/SC	8C-8Fh	SS		00008086h	RWO
94–97h MA Message Address 00000000h RW, RO 98–99h MD Message Data 0000h RW A0–A1h PEG_CAPL PCI Express-G Capability List 0010h RO A2–A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4–A7h DCAP Device Capabilities 00008000h RO A8–A9h DCTL Device Control 0000h RO, RW AA–ABh DSTS Device Status 0000h RO, RWC AC–AFh LCAP Link Capabilities 02014D01h RO, RWO B0–B1h LCTL Link Control 0000h RO, RW, RW/SC	90–91h	MSI_CAPID		A005h	RO
98–99h MD Message Data 0000h RW A0–A1h PEG_CAPL PCI Express-G Capability List 0010h RO A2–A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4–A7h DCAP Device Capabilities 00008000h RO A8–A9h DCTL Device Control 0000h RO, RW AA–ABh DSTS Device Status 0000h RO, RWC AC–AFh LCAP Link Capabilities 02014D01h RO, RWO B0–B1h LCTL Link Control 0000h RO, RW, RW/SC	92–93h	MC	Message Control	0000h	RW, RO
A0-A1h PEG_CAPL PCI Express-G Capability List 0010h RO A2-A3h PEG_CAP PCI Express-G Capabilities 0141h RO, RWO A4-A7h DCAP Device Capabilities 00008000h RO A8-A9h DCTL Device Control 0000h RO, RW AA-ABh DSTS Device Status 0000h RO, RWC AC-AFh LCAP Link Capabilities 02014D01h RO, RWO B0-B1h LCTL Link Control 0000h RO, RW, RW/SC	94–97h	MA	Message Address	00000000h	RW, RO
A2-A3hPEG_CAPPCI Express-G Capabilities0141hRO, RWOA4-A7hDCAPDevice Capabilities00008000hROA8-A9hDCTLDevice Control0000hRO, RWAA-ABhDSTSDevice Status0000hRO, RWCAC-AFhLCAPLink Capabilities02014D01hRO, RWOB0-B1hLCTLLink Control0000hRO, RW, RW/SC	98–99h	MD	Message Data	0000h	RW
A4-A7h DCAP Device Capabilities 00008000h RO A8-A9h DCTL Device Control 0000h RO, RW AA-ABh DSTS Device Status 0000h RO, RWC AC-AFh LCAP Link Capabilities 02014D01h RO, RWO B0-B1h LCTL Link Control 0000h RO, RW, RW/SC	A0–A1h	PEG_CAPL	PCI Express-G Capability List	0010h	RO
A8-A9h DCTL Device Control 0000h RO, RW AA-ABh DSTS Device Status 0000h RO, RWC AC-AFh LCAP Link Capabilities 02014D01h RO, RWO B0-B1h LCTL Link Control 0000h RO, RW, RW/SC	A2–A3h	PEG_CAP	PCI Express-G Capabilities	0141h	
AA-ABh DSTS Device Status 0000h RO, RWC AC-AFh LCAP Link Capabilities 02014D01h RO, RWO BO-B1h LCTL Link Control 0000h RO, RW, RW/SC	A4–A7h	DCAP	Device Capabilities	00008000h	RO
AC-AFh LCAP Link Capabilities 02014D01h RO, RWO B0-B1h LCTL Link Control 0000h RO, RW, RW/SC	A8–A9h	DCTL	Device Control	0000h	RO, RW
B0-B1h LCTL Link Control 0000h RO, RW/SC	AA–ABh	DSTS	Device Status	0000h	RO, RWC
RW/SC	AC-AFh	LCAP	Link Capabilities	02014D01h	
B2-B3h LSTS Link Status 1001h RO	B0-B1h	LCTL	Link Control	0000h	
	B2–B3h	LSTS	Link Status	1001h	RO

		<u> </u>		1
Address Offset	Register Symbol	Register Name	Default Value	Access
B4–B7h	SLOTCAP	Slot Capabilities	00040000h	RWO, RO
B8-B9h	SLOTCTL	Slot Control	01C0h	RO, RW
BA-BBh	SLOTSTS	Slot Status	0000h	RO, RWC
BC-BDh	RCTL	Root Control	0000h	RO, RW
C0- C3h	RSTS	Root Status	00000000h	RO, RWC
EC- EFh	PEGLC	PCI Express-G Legacy Control	00000000h	RW, RO
100–103h	VCECH	Virtual Channel Enhanced Capability Header	14010002h	RO
104–107h	PVCCAP1	Port VC Capability Register 1	00000000h	RO
108–10Bh	PVCCAP2	Port VC Capability Register 2	00000000h	RO
10C-10Dh	PVCCTL	Port VC Control	0000h	RO, RW
110–113h	VCORCAP	VC0 Resource Capability	00000000h	RO
114–117h	VCORCTL	VC0 Resource Control	800000FFh	RO, RW
11A-11Bh	VCORSTS	VC0 Resource Status	0002h	RO
140–143h	RCLDECH	Root Complex Link Declaration Enhanced	00010005h	RO
144–147h	ESD	Element Self Description	02000100h	RO, RWO
150–153h	LE1D	Link Entry 1 Description	00000000h	RO, RWO
158–15Fh	LE1A	Link Entry 1 Address	00000000 0000000h	RO, RWO
218–21Fh	PEGSSTS	PCI Express-G Sequence Status	00000000 0000FFFh	RO

6.1 PCI Express* Configuration Register Details (D1:F0)

6.1.1 VID1—Vendor Identification

B/D/F/Type: 0/1/0/PCI
Address Offset: 00–01h
Default Value: 8086h
Access: RO
Size: 16 bits

This register, combined with the Device Identification register, uniquely identify any PCI device.

Bit	Access & Default	Description
15:0	RO 8086h	Vendor Identification (VID1): PCI standard identification for Intel.

6.1.2 DID1—Device Identification

B/D/F/Type: 0/1/0/PCI
Address Offset: 02–03h
Default Value: 29C1h
Access: RO
Size: 16 bits

This register, combined with the Vendor Identification register, uniquely identifies any PCI device.

Bit	Access & Default	Description
15:8	RO 29h	Device Identification Number (DID1(UB)): Identifier assigned to the GMCH device 1 (virtual PCI-to-PCI bridge, PCI Express Graphics port).
7:4	RO 8h	Device Identification Number (DID1(HW)): Identifier assigned to the GMCH device 1 (virtual PCI-to-PCI bridge, PCI Express Graphics port)
3:0	RO 1h	Device Identification Number (DID1(LB)): Identifier assigned to the GMCH device 1 (virtual PCI-to-PCI bridge, PCI Express Graphics port).

6.1.3 PCICMD1—PCI Command

B/D/F/Type: 0/1/0/PCI
Address Offset: 04–05h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

Bit	Access & Default	Description
15:11	RO 00h	Reserved
10	RW Ob	INTA Assertion Disable (INTAAD): This bit Only affects interrupts generated by the device (PCI INTA from a PME or Hot Plug event) controlled by this command register. It does not affect upstream MSIs, upstream PCI INTA–INTD assert and de-assert messages.
		0 = This device is permitted to generate INTA interrupt messages.
		1 = This device is prevented from generating interrupt messages. Any INTA emulation interrupts already asserted must be de-asserted when this bit is set.
9	RO 0b	Fast Back-to-Back Enable (FB2B): Not Applicable or Implemented. Hardwired to 0.
8	RW Ob	SERR# Message Enable (SERRE1): Controls Device 1 SERR# messaging. The GMCH communicates the SERR# condition by sending an SERR message to the ICH. This bit, when set, enables reporting of non-fatal and fatal errors detected by the device to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI Express specific bits in the Device Control Register.
		0 = The SERR message is generated by the GMCH for Device 1 only under conditions enabled individually through the Device Control Register.
		The GMCH is enabled to generate SERR messages which will be sent to the ICH for specific Device 1 error conditions generated/detected on the primary side of the virtual PCI to PCI bridge (not those received by the secondary side). The status of SERRs generated is reported in the PCISTS1 register.
7	RO Ob	Reserved: Not Applicable or Implemented. Hardwired to 0.
6	RW Ob	Parity Error Response Enable (PERRE): This bit controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set.
		0 = Master Data Parity Error bit in PCI Status register can NOT be set.
		1 = Master Data Parity Error bit in PCI Status register CAN be set.
5	RO Ob	VGA Palette Snoop (VGAPS): Not Applicable or Implemented. Hardwired to 0.
4	RO Ob	Memory Write and Invalidate Enable (MWIE): Not Applicable or Implemented. Hardwired to 0.

Bit	Access & Default	Description
3	RO 0b	Special Cycle Enable (SCE): Not Applicable or Implemented. Hardwired to 0.
2	RW Ob	Bus Master Enable (BME): This bit controls the ability of the PEG port to forward Memory and IO Read/Write Requests in the upstream direction. This bit does not affect forwarding of Completions from the primary interface to the secondary interface.
		0 = This device is prevented from making memory or IO requests to its primary bus. Note that according to PCI Specification, as MSI interrupt messages are in-band memory writes, disabling the bus master enable bit prevents this device from generating MSI interrupt messages or passing them from its secondary bus to its primary bus. Upstream memory writes/reads, I/O writes/reads, peer writes/reads, and MSIs will all be treated as invalid cycles. Writes are forwarded to memory address 000C_0000h with byte enables de-asserted. Reads will be forwarded to memory address 000C_0000h and will return Unsupported Request status (or Master abort) in its completion packet.
		This device is allowed to issue requests to its primary bus. Completions for previously issued memory read requests on the primary bus will be issued when the data is available.
1	RW	Memory Access Enable (MAE):
	Ob	0 = All of device 1's memory space is disabled.
		1 = Enable the Memory and Pre-fetchable memory address ranges defined in the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.
0	RW	IO Access Enable (IOAE):
	Ob	0 = All of device 1's I/O space is disabled.
		1 = Enable the I/O address range defined in the IOBASE1, and IOLIMIT1 registers.

6.1.4 PCISTS1—PCI Status

B/D/F/Type: 0/1/0/PCI
Address Offset: 06–07h
Default Value: 0010h
Access: RO, RWC
Size: 16 bits

This register reports the occurrence of error conditions associated with primary side of the "virtual" Host-PCI Express bridge embedded within the GMCH.

	ı	1
Bit	Access & Default	Description
15	RO Ob	Detected Parity Error (DPE): Not Applicable or Implemented. Hardwired to 0. Parity (generating poisoned TLPs) is not supported on the primary side of this device (error forwarding is not performed).
14	RWC Ob	Signaled System Error (SSE): This bit is set when this Device sends an SERR due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the Command register is 1. Both received (if enabled by BCTRL1[1]) and internally detected error messages affect this field.
13	RO Ob	Received Master Abort Status (RMAS): Not Applicable or Implemented. Hardwired to 0. The concept of a master abort does not exist on primary side of this device.
12	RO Ob	Received Target Abort Status (RTAS): Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
11	RO Ob	Signaled Target Abort Status (STAS): Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
10:9	RO	DEVSELB Timing (DEVT): This device is not the subtractively decoded device on bus 0. This bit field is therefore hardwired to 00 to indicate that the device uses the fastest possible decode.
8	RO Ob	Master Data Parity Error (PMDPE): Because the primary side of the PEG's virtual PCI-to-PCI bridge is integrated with the GMCH functionality there is no scenario where this bit will get set. Because hardware will never set this bit, it is impossible for software to have an opportunity to clear this bit or otherwise test that it is implemented. The PCI specification defines it as a RWC, but for this implementation an RO definition behaves the same way and will meet all Microsoft testing requirements.
		This bit can only be set when the Parity Error Enable bit in the PCI Command register is set.
7	RO 0b	Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.
6	RO 0b	Reserved
5	RO Ob	66/60MHz capability (CAP66): Not Applicable or Implemented. Hardwired to 0.

Bit	Access & Default	Description
4	RO 1b	Capabilities List (CAPL): Indicates that a capabilities list is present. Hardwired to 1.
3	RO Ob	INTA Status (INTAS): Indicates that an interrupt message is pending internally to the device. Only PME and Hot Plug sources feed into this status bit (not PCI INTA-INTD assert and de-assert messages). The INTA Assertion Disable bit, PCICMD1[10], has no effect on this bit.
2:0	RO 000b	Reserved

6.1.5 RID1—Revision Identification

B/D/F/Type: 0/1/0/PCI
Address Offset: 08h
Default Value: 00h
Access: RO
Size: 8 bits

This register contains the revision number of the GMCH device 1. These bits are read only and writes to this register have no effect.

Bit	Access & Default	Description
7:0	RO 00h	Revision Identification Number (RID1): This is an 8-bit value that indicates the revision identification number for the GMCH Device 1. Refer to the <i>Intel® G35 Express Chipset Specification Update</i> for the value of the Revision ID register.

6.1.6 CC1—Class Code

B/D/F/Type: 0/1/0/PCI
Address Offset: 09–0Bh
Default Value: 060400h
Access: RO
Size: 24 bits

This register identifies the basic function of the device, a more specific sub-class, and a register- specific programming interface.

Bit	Access & Default	Description
23:16	RO 06h	Base Class Code (BCC): This field indicates the base class code for this device. This code has the value 06h, indicating a Bridge device.
15:8	RO 04h	Sub-Class Code (SUBCC): This field indicates the sub-class code for this device. The code is 04h indicating a PCI to PCI Bridge.
7:0	RO 00h	Programming Interface (PI): This field indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

6.1.7 CL1—Cache Line Size

B/D/F/Type: O/1/0/PCI
Address Offset: OCh
Default Value: O0h
Access: RW
Size: 8 bits

Bit	Access & Default	Description
7:0	RW 00h	Cache Line Size (Scratch pad): Implemented by PCI Express devices as a read-write field for legacy compatibility purposes but has no impact on any PCI Express device functionality.

6.1.8 HDR1—Header Type

B/D/F/Type: O/1/0/PCI
Address Offset: OEh
Default Value: 01h
Access: RO
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access & Default	Description
7:0	RO 01h	Header Type Register (HDR): Returns 01 to indicate that this is a single function device with bridge header layout.

6.1.9 PBUSN1—Primary Bus Number

B/D/F/Type: 0/1/0/PCI
Address Offset: 18h
Default Value: 00h
Access: RO
Size: 8 bits

This register identifies that this "virtual" Host-PCI Express bridge is connected to PCI bus #0.

Bit	Access & Default	Description
7:0	RO 00h	Primary Bus Number (BUSN): Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since device 1 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.

6.1.10 SBUSN1—Secondary Bus Number

B/D/F/Type: O/1/0/PCI
Address Offset: 19h
Default Value: 00h
Access: RW
Size: 8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" bridge (i.e., to PCI Express-G). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express-G.

Bit	Access & Default	Description
7:0	RW 00h	Secondary Bus Number (BUSN): This field is programmed by configuration software with the bus number assigned to PCI Express.

6.1.11 SUBUSN1—Subordinate Bus Number

B/D/F/Type: 0/1/0/PCI
Address Offset: 1Ah
Default Value: 00h
Access: RW
Size: 8 bits

This register identifies the subordinate bus (if any) that resides at the level below PCI Express-G. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express-G.

Bit	Access & Default	Description
7:0	RW 00h	Subordinate Bus Number (BUSN): This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the Device 1 bridge. When only a single PCI device resides on the PCI Express segment, this register will contain the same value as the SBUSN1 register.

6.1.12 IOBASE1—I/O Base Address

B/D/F/Type: O/1/O/PCI
Address Offset: 1Ch
Default Value: F0h
Access: RW, RO
Size: 8 bits

This register controls the processor to PCI Express-G I/O access routing based on the following formula:

IO_BASE ≤ address ≤ IO_LIMIT

Only the upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are treated as 0. Thus the bottom of the defined I/O address range will be aligned to a 4 KB boundary.

Bit	Access & Default	Description
7:4	RW Fh	I/O Address Base (IOBASE): This field corresponds to A[15:12] of the I/O addresses passed by bridge 1 to PCI Express.
3:0	RO Oh	Reserved

6.1.13 IOLIMIT1—I/O Limit Address

B/D/F/Type: 0/1/0/PCI
Address Offset: 1Dh
Default Value: 00h
Access: RW, RO
Size: 8 bits

This register controls the processor to PCI Express-G I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only the upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4 KB aligned address block.

Bit	Access & Default	Description
7:4	RW Oh	I/O Address Limit (IOLIMIT): This field corresponds to A[15:12] of the I/O address limit of device 1. Devices between this upper limit and IOBASE1 will be passed to the PCI Express hierarchy associated with this device.
3:0	RO 0h	Reserved

6.1.14 SSTS1—Secondary Status

B/D/F/Type: 0/1/0/PCI
Address Offset: 1E-1Fh
Default Value: 0000h
Access: RWC, RO
Size: 16 bits

SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (i.e., PCI Express side) of the "virtual" PCI-PCI bridge embedded within GMCH.

Bit	Access & Default	Description
15	RWC Ob	Detected Parity Error (DPE): This bit is set by the Secondary Side for a Type 1 Configuration Space header device whenever it receives a Poisoned TLP, regardless of the state of the Parity Error Response Enable bit in the Bridge Control Register.
14	RWC Ob	Received System Error (RSE): This bit is set when the Secondary Side for a Type 1 configuration space header device receives an ERR_FATAL or ERR_NONFATAL.
13	RWC Ob	Received Master Abort (RMA): This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Unsupported Request Completion Status.
12	RWC Ob	Received Target Abort (RTA): This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Completer Abort Completion Status.
11	RO 0b	Signaled Target Abort (STA): Not Applicable or Implemented. Hardwired to 0. The GMCH does not generate Target Aborts (the GMCH will never complete a request using the Completer Abort Completion status).
10:9	RO 00b	DEVSEL# Timing (DEVT): Not Applicable or Implemented. Hardwired to 0.
8	RWC Ob	Master Data Parity Error (SMDPE): When set, this bit indicates that the GMCH received across the link (upstream) a Read Data Completion Poisoned TLP (EP=1). This bit can only be set when the Parity Error Enable bit in the Bridge Control register is set.
7	RO Ob	Fast Back-to-Back (FB2B): Not Applicable or Implemented. Hardwired to 0.
6	RO 0b	Reserved
5	RO 0b	66/60 MHz capability (CAP66): Not Applicable or Implemented. Hardwired to 0.
4:0	RO 00h	Reserved

6.1.15 MBASE1—Memory Base Address

B/D/F/Type: 0/1/0/PCI
Address Offset: 20–21h
Default Value: FFF0h
Access: RW, RO
Size: 16 bits

This register controls the processor-to-PCI Express non-prefetchable memory access routing based on the following formula:

MEMORY_BASE ≤ address ≤ MEMORY_LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access & Default	Description
15:4	RW FFFh	Memory Address Base (MBASE): This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express.
3:0	RO 0h	Reserved

6.1.16 MLIMIT1—Memory Limit Address

B/D/F/Type: 0/1/0/PCI
Address Offset: 22–23h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

This register controls the processor to PCI Express-G non-prefetchable memory access routing based on the following formula:

MEMORY_BASE ≤ address ≤ MEMORY_LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1MB aligned memory block. NOTE: Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable PCI Express address ranges (typically where control/status memory-mapped I/O data structures of the graphics controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved processor - PCI Express memory access performance.

Note also that configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges i.e. prevent overlap with each other and/or with the ranges covered with the main memory. There is no provision in the GMCH hardware to enforce prevention of overlap and operations of the system in the case of overlap are not ensured.

Bit	Access & Default	Description
15:4	RW 000h	Memory Address Limit (MLIMIT): This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express.
3:0	RO Oh	Reserved

6.1.17 PMBASE1—Prefetchable Memory Base Address

B/D/F/Type: 0/1/0/PCI
Address Offset: 24–25h
Default Value: FFF1h
Access: RW, RO
Size: 16 bits

This register in conjunction with the corresponding Upper Base Address register controls the processor-to-PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access & Default	Description
15:4	RW FFFh	Prefetchable Memory Base Address (MBASE): This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express.
3:0	RO 1h	64-bit Address Support: This field indicates that the upper 32 bits of the prefetchable memory region base address are contained in the Prefetchable Memory base Upper Address register at 28h.

6.1.18 PMLIMIT1—Prefetchable Memory Limit Address

B/D/F/Type: 0/1/0/PCI
Address Offset: 26–27h
Default Value: 0001h
Access: RW, RO
Size: 16 bits

This register in conjunction with the corresponding Upper Limit Address register controls the processor-to-PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1MB aligned memory block. Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e. prefetchable) from the processor perspective.

Bit	Access & Default	Description
15:4	RW 000h	Prefetchable Memory Address Limit (PMLIMIT): This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express.
3:0	RO 1h	64-bit Address Support: This field indicates that the upper 32 bits of the prefetchable memory region limit address are contained in the Prefetchable Memory Base Limit Address register at 2Ch

6.1.19 PMBASEU1—Prefetchable Memory Base Address

B/D/F/Type: 0/1/0/PCI Address Offset: 28–2Bh Default Value: 00000000h

Access: RW Size: 32 bits

The functionality associated with this register is present in the PEG design implementation.

This register in conjunction with the corresponding Upper Base Address register controls the processor-to-PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access & Default	Description
31:0	RW 00000000h	Prefetchable Memory Base Address (MBASEU): This field corresponds to A[63:32] of the lower limit of the prefetchable memory range that will be passed to PCI Express.

6.1.20 PMLIMITU1—Prefetchable Memory Limit Address

B/D/F/Type: 0/1/0/PCI
Address Offset: 2C-2Fh
Default Value: 00000000h
Access: RW
Size: 32 bits

The functionality associated with this register is present in the PEG design implementation.

This register in conjunction with the corresponding Upper Limit Address register controls the processor-to-PCI Express prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40- bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1MB aligned memory block.

Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

Bit	Access & Default	Description
31:0	RW 00000000h	Prefetchable Memory Address Limit (MLIMITU): This field corresponds to A[63:32] of the upper limit of the prefetchable Memory range that will be passed to PCI Express.

6.1.21 CAPPTR1—Capabilities Pointer

B/D/F/Type: O/1/0/PCI
Address Offset: 34h
Default Value: 88h
Access: RO
Size: 8 bits

The capabilities pointer provides the address offset to the location of the first entry in this device's linked list of capabilities.

Bit	Access & Default	Description
7:0	RO 88h	First Capability (CAPPTR1): The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability.

6.1.22 INTRLINE1—Interrupt Line

B/D/F/Type: 0/1/0/PCI
Address Offset: 3Ch
Default Value: 00h
Access: RW
Size: 8 bits

This register contains interrupt line routing information. The device itself does not use this value, rather it is used by device drivers and operating systems to determine priority and vector information.

Bit	Access & Default	Description
7:0	RW 00h	Interrupt Connection (INTCON): Used to communicate interrupt line routing information.

6.1.23 INTRPIN1—Interrupt Pin

B/D/F/Type: 0/1/0/PCI
Address Offset: 3Dh
Default Value: 01h
Access: RO
Size: 8 bits

This register specifies which interrupt pin this device uses.

Bit	Access & Default	Description
7:0	RO 01h	Interrupt Pin (INTPIN): As a single function device, the PCI Express device specifies INTA as its interrupt pin. 01h=INTA.

6.1.24 BCTRL1—Bridge Control

B/D/F/Type: 0/1/0/PCI
Address Offset: 3E-3Fh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register provides extensions to the PCICMD1 register that are specific to PCI-to-PCI bridges. The BCTRL provides additional control for the secondary interface (i.e., PCI Express) as well as some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge in the GMCH (e.g., VGA compatible address ranges mapping).

Bit	Access & Default	Description
15:12	RO 0h	Reserved
11	RO Ob	Discard Timer SERR# Enable (DTSERRE): Not Applicable or Implemented. Hardwired to 0.
10	RO Ob	Discard Timer Status (DTSTS): Not Applicable or Implemented. Hardwired to 0.
9	RO Ob	Secondary Discard Timer (SDT): Not Applicable or Implemented. Hardwired to 0.
8	RO 0b	Primary Discard Timer (PDT): Not Applicable or Implemented. Hardwired to 0.
7	RO 0b	Fast Back-to-Back Enable (FB2BEN): Not Applicable or Implemented. Hardwired to 0.
6	RW Ob	Secondary Bus Reset (SRESET): Setting this bit triggers a hot reset on the corresponding PCI Express Port. This will force the LTSSM to transition to the Hot Reset state (via Recovery) from L0, L0s, or L1 states.
5	RO 0b	Master Abort Mode (MAMODE): Does not apply to PCI Express. Hardwired to 0.
4	RW Ob	VGA 16-bit Decode (VGA16D): This bit enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address precluding the decoding of alias addresses every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also set to 1, enabling VGA I/O decoding and forwarding by the bridge.
		0 = Execute 10-bit address decodes on VGA I/O accesses.
3	DW	1 = Execute 16-bit address decodes on VGA I/O accesses.
3	RW Ob	VGA Enable (VGAEN): This bit controls the routing of processor initiated transactions targeting VGA compatible I/O and memory address ranges.

Bit	Access & Default	Description
2	RW Ob	ISA Enable (ISAEN): Needed to exclude legacy resource decode to route ISA resources to legacy decode path. This bit modifies the response by the GMCH to an I/O access issued by the processor that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.
		0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to PCI Express.
		1 = GMCH will not forward to PCI Express any I/O transactions addressing the last 768 bytes in each 1 KB block even if the addresses are within the range defined by the IOBASE and IOLIMIT registers.
1	RW	SERR Enable (SERREN):
	0b	0 = No forwarding of error messages from secondary side to primary side that could result in an SERR.
		1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR message when individually enabled by the Root Control register.
0	RW Ob	Parity Error Response Enable (PEREN): This bit controls whether or not the Master Data Parity Error bit in the Secondary Status register is set when the GMCH receives across the link (upstream) a Read Data Completion Poisoned TLP.
		0 = Master Data Parity Error bit in Secondary Status register can NOT be set.
		1 = Master Data Parity Error bit in Secondary Status register CAN be set.

6.1.25 PM_CAPID1—Power Management Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: 80–83h Default Value: C8039001h

Access: RO Size: 32 bits

Bit	Access & Default	Description
31:27	RO 19h	PME Support (PMES): This field indicates the power states in which this device may indicate PME wake via PCI Express messaging. D0, D3hot & D3cold. This device is not required to do anything to support D3hot & D3cold, it simply must report that those states are supported. Refer to the PCI Power Management 1.1 specification for encoding explanation and other power management details.
26	RO Ob	D2 Power State Support (D2PSS): Hardwired to 0 to indicate that the D2 power management state is NOT supported.
25	RO 0b	D1 Power State Support (D1PSS): Hardwired to 0 to indicate that the D1 power management state is NOT supported.
24:22	RO 000b	Auxiliary Current (AUXC): Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary current requirements.
21	RO 0b	Device Specific Initialization (DSI): Hardwired to 0 to indicate that special initialization of this device is NOT required before generic class device driver is to use it.
20	RO 0b	Auxiliary Power Source (APS): Hardwired to 0.
19	RO 0b	PME Clock (PMECLK): Hardwired to 0 to indicate this device does NOT support PME# generation.
18:16	RO 011b	PCI PM CAP Version (PCIPMCV): A value of 011b indicates that this function complies with revision 1.2 of the PCI Power Management Interface Specification.
15:8	RO 90h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled Interrupts (MSI) capability at 90h.
7:0	RO 01h	Capability ID (CID): Value of 01h identifies this linked list item (capability structure) as being for PCI Power Management registers.

6.1.26 PM_CS1—Power Management Control/Status

B/D/F/Type: 0/1/0/PCI
Address Offset: 84–87h
Default Value: 00000000h
Access: RO, RW/S, RW

Size: 32 bits

Bit	Access & Default	Description
31:16	RO 0000h	Reserved: Not Applicable or Implemented. Hardwired to 0.
15	RO Ob	PME Status (PMESTS): Indicates that this device does not support PME# generation from D3cold.
14:13	RO 00b	Data Scale (DSCALE): Indicates that this device does not support the power management data register.
12:9	RO 0h	Data Select (DSEL): Indicates that this device does not support the power management data register.
8	RW/S 0b	PME Enable (PMEE): Indicates that this device does not generate PMEB assertion from any D-state.
		0 = PME# generation not possible from any D State
		1 = PME# generation enabled from any D State
		The setting of this bit has no effect on hardware.
		See PM_CAP[15:11]
7:2	RO 00h	Reserved
1:0	RW 00b	Power State (PS): This field indicates the current power state of this device and can be used to set the device into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs.
		00 = D0 01 = D1 (Not supported in this device. 10 = D2 (Not supported in this device.) 11 = D3
		Support of D3cold does not require any special action.
		While in the D3hot state, this device can only act as the target of PCI configuration transactions (for power management control). This device also cannot generate interrupts or respond to MMR cycles in the D3 state. The device must return to the D0 state to be fully-functional.
		When the Power State is other than D0, the bridge will Master Abort (i.e., not claim) any downstream cycles (with exception of type 0 configuration cycles). Consequently, these unclaimed cycles will go down DMI and come back up as Unsupported Requests, which the GMCH logs as Master Aborts in Device 0 PCISTS[13].
		There is no additional hardware functionality required to support these Power States.

184

6.1.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: 88–8Bh Default Value: 0000800Dh

Access: RO Size: 32 bits

This capability is used to uniquely identify the subsystem where the PCI device resides. Because this device is an integrated part of the system and not an add-in device, it is anticipated that this capability will never be used. However, it is necessary because Microsoft will test for its presence.

Bit	Access & Default	Description
31:16	RO 0000h	Reserved
15:8	RO 80h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list which is the PCI Power Management capability.
7:0	RO 0Dh	Capability ID (CID): Value of 0Dh identifies this linked list item (capability structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge.

6.1.28 SS—Subsystem ID and Subsystem Vendor ID

B/D/F/Type: 0/1/0/PCI
Address Offset: 8C-8Fh
Default Value: 00008086h
Access: RWO
Size: 32 bits

System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be preserved through power management transitions and a hardware reset.

Bit	Access & Default	Description
31:16	RWO 0000h	Subsystem ID (SSID): Identifies the particular subsystem and is assigned by the vendor.
15:0	RWO 8086h	Subsystem Vendor ID (SSVID): Identifies the manufacturer of the subsystem and is the same as the vendor ID which is assigned by the PCI Special Interest Group.

6.1.29 MSI_CAPID—Message Signaled Interrupts Capability ID

B/D/F/Type: 0/1/0/PCI
Address Offset: 90–91h
Default Value: A005h
Access: RO
Size: 16 bits

When a device supports MSI it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address.

Bit	Access & Default	Description
15:8	RO A0h	Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list which is the PCI Express capability.
7:0	RO 05h	Capability ID (CID): Value of 05h identifies this linked list item (capability structure) as being for MSI registers.

6.1.30 MC—Message Control

B/D/F/Type: 0/1/0/PCI
Address Offset: 92–93h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

System software can modify bits in this register, but the device is prohibited from doing so.

If the device writes the same message multiple times, only one of those messages is ensured to be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one.

Bit	Access & Default	Description
15:8	RO 00h	Reserved
7	RO Ob	64-bit Address Capable (64AC): Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address.
6:4	RW 000b	Multiple Message Enable (MME): System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested.
		The encoding is the same as for the MMC field below.
3:1	RO 000b	Multiple Message Capable (MMC): System software reads this field to determine the number of messages being requested by this device.
		000 = 1 message requested
		All others are reserved.

Bit	Access & Default	Description
0	RW 0b	MSI Enable (MSIEN): This bit controls the ability of this device to generate MSIs.
		0 = MSI will not be generated.
		1 = MSI will be generated when we receive PME or HotPlug messages. INTA will not be generated and INTA Status (PCISTS1[3]) will not be set.

6.1.31 MA—Message Address

B/D/F/Type: 0/1/0/PCI
Address Offset: 94–97h
Default Value: 00000000h
Access: RW, RO
Size: 32 bits

Bit	Access & Default	Description
31:2	RW 00000000h	Message Address (MA): Used by system software to assign an MSI address to the device. The device handles an MSI by writing the padded contents of the MD register to this address.
1:0	RO 00b	Force DWord Align (FDWA): Hardwired to 0 so that addresses assigned by system software are always aligned on a DWord address boundary.

6.1.32 MD—Message Data

B/D/F/Type: 0/1/0/PCI
Address Offset: 98–99h
Default Value: 0000h
Access: RW
Size: 16 bits

Bit	Access & Default	Description
15:0	RW 0000h	Message Data (MD): Base message data pattern assigned by system software and used to handle an MSI from the device. When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA register. The upper 16 bits are always set to 0. The lower 16 bits are supplied by this
		value to the memory address specified in the MA register. The upper

6.1.33 PEG_CAPL—PCI Express*-G Capability List

B/D/F/Type: 0/1/0/PCI
Address Offset: A0-A1h
Default Value: 0010h
Access: RO
Size: 16 bits

This register enumerates the PCI Express capability structure.

Bit	Access & Default	Description
15:8	RO 00h	Pointer to Next Capability (PNC): This value terminates the capabilities list. The Virtual Channel capability and any other PCI Express specific capabilities that are reported via this mechanism are in a separate capabilities list located entirely within PCI Express Extended Configuration Space.
7:0	RO 10h	Capability ID (CID): Identifies this linked list item (capability structure) as being for PCI Express registers.

6.1.34 PEG_CAP—PCI Express*-G Capabilities

B/D/F/Type: 0/1/0/PCI
Address Offset: A2-A3h
Default Value: 0141h
Access: RO, RWO
Size: 16 bits

This register indicates PCI Express device capabilities.

Bit	Access & Default	Description
15:14	RO 00b	Reserved
13:9	RO 00h	Interrupt Message Number (IMN): Not Applicable or Implemented. Hardwired to 0.
8	RWO 1b	Slot Implemented (SI): 0 = The PCI Express Link associated with this port is connected to an integrated component or is disabled. 1 = The PCI Express Link associated with this port is connected to a slot.
7:4	RO 4h	Device/Port Type (DPT): Hardwired to 4h to indicate root port of PCI Express Root Complex.
3:0	RO 1h	PCI Express Capability Version (PCI EXPRESS*CV): Hardwired to 1 as it is the first version.

6.1.35 DCAP—Device Capabilities

B/D/F/Type: 0/1/0/PCI Address Offset: A4-A7h Default Value: 00008000h

Access: RO Size: 32 bits

This register indicates PCI Express device capabilities.

Bit	Access & Default	Description
31:16	RO 0000h	Reserved: Not Applicable or Implemented. Hardwired to 0.
15	RO 1b	Role Based Error Reporting (RBER): This bit indicates that this device implements the functionality defined in the Error Reporting ECN as required by the PCI Express 1.1 specification.
14:6	RO 000h	Reserved: Not Applicable or Implemented. Hardwired to 0.
5	RO 0b	Extended Tag Field Supported (ETFS): Hardwired to indicate support for 5-bit Tags as a Requestor.
4:3	RO 00b	Phantom Functions Supported (PFS): Not Applicable or Implemented. Hardwired to 0.
2:0	RO 000b	Max Payload Size (MPS): Hardwired to indicate 128B max supported payload for Transaction Layer Packets (TLP).

6.1.36 DCTL—Device Control

B/D/F/Type: 0/1/0/PCI
Address Offset: A8–A9h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register provides control for PCI Express device specific capabilities.

The error reporting enable bits are in reference to errors detected by this device, not error messages received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root Port Command Register.

Bit	Access & Default	Description
15:8	RO 000h	Reserved
7:5	RW 000b	Max Payload Size (MPS): 000 = 128B max supported payload for Transaction Layer Packets (TLP). As a receiver, the Device must handle TLPs as large as the set value; as transmitter, the Device must not generate TLPs exceeding the set value. All other encodings are reserved. Hardware will actually ignore this field. It is writeable only to support
4	RO	compliance testing. Reserved: For Enable Relaxed Ordering
	0b	
3	RW Ob	Unsupported Request Reporting Enable (URRE): When set, allows signaling ERR_NONFATAL, ERR_FATAL, or ERR_CORR to the Root Control register when detecting an unmasked Unsupported Request (UR). An ERR_CORR is signaled when an unmasked Advisory Non-Fatal UR is received. An ERR_FATAL or ERR_NONFATAL is sent to the Root Control register when an uncorrectable non-Advisory UR is received with the severity bit set in the Uncorrectable Error Severity register.
2	RW Ob	Fatal Error Reporting Enable (FERE): When set, enables signaling of ERR_FATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
1	RW Ob	Non-Fatal Error Reporting Enable (NERE): When set, enables signaling of ERR_NONFATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
0	RW Ob	Correctable Error Reporting Enable (CERE): When set, enables signaling of ERR_CORR to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.

6.1.37 DSTS—Device Status

B/D/F/Type: 0/1/0/PCI
Address Offset: AA-ABh
Default Value: 0000h
Access: RO, RWC
Size: 16 bits

This register reflects status corresponding to controls in the Device Control register. The error reporting bits are in reference to errors detected by this device, not errors messages received across the link.

Bit	Access & Default	Description
15:6	RO 000h	Reserved and Zero: For future R/WC/S implementations; software must use 0 for writes to bits.
5	RO	Transactions Pending (TP):
	Ob	 0 = All pending transactions (including completions for any outstanding non-posted requests on any used virtual channel) have been completed.
		1 = Device has transaction(s) pending (including completions for any outstanding non-posted requests for all used Traffic Classes).
4	RO 0b	Reserved
3	RWC Ob	Unsupported Request Detected (URD):
		0 = Unsupported request Not detected.
		1 = Device received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register.
		Additionally, the Non-Fatal Error Detected bit or the Fatal Error Detected bit is set according to the setting of the Unsupported Request Error Severity bit. In production systems setting the Fatal Error Detected bit is not an option as support for AER will not be reported.
2	RWC	Fatal Error Detected (FED):
	Ob	0 = Fatal error Not detected.
		1 = Fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.
		When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the uncorrectable error mask register.

Bit	Access & Default	Description
1	RWC	Non-Fatal Error Detected (NFED):
	0b	0 = Non-Fatal error Not detected.
		1 = Non-fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.
		When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the uncorrectable error mask register.
0	RWC	Correctable Error Detected (CED):
	0b	0 = Correctable error Not detected.
		 1 = Correctable error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.
		When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the correctable error mask register.

6.1.38 LCAP—Link Capabilities

B/D/F/Type: 0/1/0/PCI
Address Offset: AC-AFh
Default Value: 02014D01h
Access: RO, RWO
Size: 32 bits

This register indicates PCI Express device specific capabilities.

Bit	Access & Default	Description
31:24	RO 02h	Port Number (PN): This field indicates the PCI Express port number for the given PCI Express link. Matches the value in Element Self Description[31:24].
23:21	RO 000b	Reserved
20	RO 0b	Data Link Layer Link Active Reporting Capable (DLLLARC): For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of reporting the DL_Active state of the Data Link Control and Management State Machine. For a hot-plug capable Downstream Port (as indicated by the Hot-Plug Capable field of the Slot Capabilities register), this bit must be set to 1b. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.
19	RO Ob	Surprise Down Error Reporting Capable (SDERC): For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of detecting and reporting a Surprise Down error condition. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.

Bit	Access & Default	Description
18	RO Ob	Clock Power Management (CPM): A value of 1b in this bit indicates that the component tolerates the removal of any reference clock(s) when the link is in the L1 and L2/3 Ready link states. A value of 0b indicates the component does not have this capability and that reference clock(s) must not be removed in these link states.
		This capability is applicable only in form factors that support "clock request" (CLKREQ#) capability.
		For a multi-function device, each function indicates its capability independently. Power Management configuration software must only permit reference clock removal if all functions of the multifunction device indicate a 1b in this bit.
17:15	RWO 010b	L1 Exit Latency (L1ELAT): This field indicates the length of time this Port requires to complete the transition from L1 to L0. The value 010 b indicates the range of 2 us to less than 4 us.
		Both bytes of this register that contain a portion of this field must be written simultaneously in order to prevent an intermediate (and undesired) value from ever existing.
14:12	RO 100b	LOs Exit Latency (LOSELAT): Indicates the length of time this Port requires to complete the transition from LOs to LO.
		000 = Less than 64 ns 001 = 64ns to less than 128ns 010 = 128ns to less than 256 ns 011 = 256ns to less than 512 ns 100 = 512ns to less than 1 us 101 = 1 us to less than 2 us 110 = 2 us - 4 us 111 = More than 4 us
		The actual value of this field depends on the common Clock Configuration bit (LCTL[6]) and the Common and Non-Common clock LOs Exit Latency values in PEGLOSLAT (Offset 22Ch)
11:10	RWO	Active State Link PM Support (ASLPMS):
	11b	BIOS Requirement: Desktop chipsets do not support ASPM L1, so BIOS should program this field to 01.
9:4	RO 10h	Max Link Width (MLW): This field indicates the maximum number of lanes supported for this link.
3:0	RO 1h	Max Link Speed (MLS): Hardwired to indicate 2.5 Gb/s.

6.1.39 LCTL—Link Control

B/D/F/Type: 0/1/0/PCI Address Offset: B0-B1h Default Value: 0000h

Access: RO, RW, RW/SC

Size: 16 bits BIOS Optimal Default 0h

This register allows control of PCI Express link.

Bit	Access & Default	Description
15:9	RO 0000000b	Reserved
8	RO Ob	Enable Clock Power Management (ECPM): Applicable only for form factors that support a "Clock Request" (CLKREQ#) mechanism, this enable functions as follows
		0 = Disable. Clock power management is disabled and device must hold CLKREQ# signal low (Default)
		 1 = Enable. Device is permitted to use CLKREQ# signal to power manage link clock according to protocol defined in appropriate form factor specification.
		Components that do not support Clock Power Management (as indicated by a 0b value in the Clock Power Management bit of the Link Capabilities Register) must hardwire this bit to 0b.
7	RW	Extended Synch (ES):
	0b	0 = Standard Fast Training Sequence (FTS).
		1 = Forces the transmission of additional ordered sets when exiting the LOs state and when in the Recovery state.
		This mode provides external devices (e.g., logic analyzers) monitoring the Link time to achieve bit and symbol lock before the link enters LO and resumes communication.
		This is a test mode only and may cause other undesired side effects such as buffer overflows or underruns.
6	RW Ob	Common Clock Configuration (CCC): The state of this bit affects the LOs Exit Latency reported in LCAP[14:12] and the N_FTS value advertised during link training. See PEGLOSLAT at offset 22Ch.
		0 = This component and the component at the opposite end of this Link are operating with asynchronous reference clock.
		1 = This component and the component at the opposite end of this Link are operating with a distributed common reference clock.
5	RW/SC 0b	Retrain Link (RL): This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0).
		0 = Normal operation.
		1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from L0, L0s, or L1 states to the Recovery state.

Bit	Access & Default	Description
4	RW Ob	Link Disable (LD): Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state.
		0 = Normal operation
		1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (via Recovery) from L0, L0s, or L1 states. Link retraining happens automatically on 0 to 1 transition, just like when coming out of reset.
3	RO Ob	Read Completion Boundary (RCB): Hardwired to 0 to indicate 64 byte.
2	RW 0b	Far-End Digital Loopback (FEDLB):
1:0	RW 00b	Active State PM (ASPM): This field controls the level of active state power management supported on the given link.
		00 = Disabled
		01 = L0s Entry Supported
		10 = Reserved
		11 = L0s and L1 Entry Supported

6.1.40 LSTS—Link Status

B/D/F/Type: 0/1/0/PCI
Address Offset: B2-B3h
Default Value: 1001h
Access: RO
Size: 16 bits

This register indicates PCI Express link status.

11

Bit	Access & Default	Description
15:14	RO 00b	Reserved and Zero: For future R/WC/S implementations; software must use 0 for writes to bits.
13	RO Ob	Data Link Layer Link Active (Optional) (DLLLA): This bit indicates the status of the Data Link Control and Management State Machine. It returns a 1b to indicate the DL_Active state, 0b otherwise.
		This bit must be implemented if the corresponding Data Link Layer Active Capability bit is implemented. Otherwise, this bit must be hardwired to 0b.
12	RO	Slot Clock Configuration (SCC):
	1b	0 = The device uses an independent clock irrespective of the presence of a reference on the connector.
		1 = The device uses the same physical reference clock that the platform provides on the connector.
11	RO Ob	Link Training (LTRN): This bit indicates that the Physical Layer LTSSM is in the Configuration or Recovery state, or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit when the LTSSM exits the Configuration/Recovery state once Link training is complete.
10	RO 0b	Undefined: The value read from this bit is undefined. In previous versions of this specification, this bit was used to indicate a Link Training Error. System software must ignore the value read from this bit. System software is permitted to write any value to this bit.
9:4	RO 00h	Negotiated Width (NW): Indicates negotiated link width. This field is valid only when the link is in the L0, L0s, or L1 states (after link width negotiation is successfully completed).
		00h = Reserved 01h = X1 02h = Reserved 04h = Reserved 08h = Reserved 10h = X16
		All other encodings are reserved.
3:0	RO	Negotiated Speed (NS): Indicates negotiated link speed.
	1h	1h = 2.5 Gb/s
		All other encodings are reserved.

6.1.41 SLOTCAP—Slot Capabilities

B/D/F/Type: O/1/0/PCI
Address Offset: B4-B7h
Default Value: 00040000h
Access: RWO, RO
Size: 32 bits

PCI Express Slot related registers allow for the support of Hot Plug.

Bit	Access & Default	Description
31:19	RWO 0000h	Physical Slot Number (PSN): Indicates the physical slot number attached to this Port.
18	RWO	No Command Completed Support (NCCS):
	1b	1 = This slot does not generate software notification when an issued command is completed by the Hot-Plug Controller. This bit is only permitted to be set to 1b if the hotplug capable port is able to accept writes to all fields of the Slot Control register without delay between successive writes.
17	RO 0b	Reserved for Electromechanical Interlock Present (EIP):
16:15	RWO 00b	Slot Power Limit Scale (SPLS): This field specifies the scale used for the Slot Power Limit Value.
		00 = 1.0x
		01 = 0.1x
		10 = 0.01x
		11 = 0.001x
		If this field is written, the link sends a Set_Slot_Power_Limit message.
14:7	RWO 00h	Slot Power Limit Value (SPLV): In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. Power limit (in Watts) is calculated by multiplying the value in this field by the value in the Slot Power Limit Scale field.
		If this field is written, the link sends a Set_Slot_Power_Limit message.
6	RO	Hot-plug Capable (HPC):
	0b	0 = Not Hot-plug capable
		1 = Slot is capable of supporting hot-lug operations.
5	RO	Hot-plug Surprise (HPS):
	Ob	0 = No Hot-plug surprise
		1 = An adapter present in this slot might be removed from the system without any prior notification. This is a form factor specific capability. This bit is an indication to the operating system to allow for such removal without impacting continued software operation.

Bit	Access & Default	Description
4	RO	Power Indicator Present (PIP):
	0b	0 = No power indicator
		1 = A Power Indicator is electrically controlled by the chassis for this slot.
3	RO	Attention Indicator Present (AIP):
	0b	0 = No Attention indicator
		1 = An Attention Indicator is electrically controlled by the chassis.
2	2 RO Ob	MRL Sensor Present (MSP):
		0 = No MRL sensor
		1 = MRL Sensor is implemented on the chassis for this slot.
1	RO	Power Controller Present (PCP):
	0b	0 = No power controller
		1 = A software programmable Power Controller is implemented for this slot/adapter (depending on form factor).
0	RO	Attention Button Present (ABP):
	0b	0 = No attention button
		1 = An Attention Button for this slot is electrically controlled by the chassis.

6.1.42 SLOTCTL—Slot Control

B/D/F/Type: 0/1/0/PCI
Address Offset: B8-B9h
Default Value: 01C0h
Access: RO, RW
Size: 16 bits

PCI Express Slot related registers allow for the support of Hot Plug.

Bit	Access & Default	Description
15:13	RO 000b	Reserved
12	RO 0b	Data Link Layer State Changed Enable (DLLSCE): If the Data Link Layer Link Active capability is implemented, when set to 1b, this field enables software notification when Data Link Layer Link Active field is changed.
11	RO 0b	Electromechanical Interlock Control (EIC): If an Electromechanical Interlock is implemented, a write of 1b to this field causes the state of the interlock to toggle. A write of 0b to this field has no effect. A read to this register always returns a 0.

Bit	Access & Default	Description
10	RO Ob	Power Controller Control (PCC): If a Power Controller is implemented, this field when written sets the power state of the slot per the defined encodings. Reads of this field must reflect the value from the latest write, even if the corresponding hotplug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined.
		Depending on the form factor, the power is turned on/off either to the slot or within the adapter. Note that in some cases the power controller may autonomously remove slot power or not respond to a power-up request based on a detected fault condition, independent of the Power Controller Control setting.
		The defined encodings are:
		0 = Power On
		1 = Power Off
		If the Power Controller Implemented field in the Slot Capabilities register is set to 0b, then writes to this field have no effect and the read value of this field is undefined.
9:8	RO 01b	Power Indicator Control (PIC): If a Power Indicator is implemented, writes to this field set the Power Indicator to the written state. Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined.
		00 = Reserved
		01 = On
		10 = Blink
		11 = Off
7:6	RO 11b	Attention Indicator Control (AIC): If an Attention Indicator is implemented, writes to this field set the Attention Indicator to the written state.
		Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. If the indicator is electrically controlled by chassis, the indicator is controlled directly by the downstream port through implementation specific mechanisms.
		00 = Reserved
		01 = On
		10 = Blink
		11 = Off

Bit	Access &	Description
	Default	Besoription
5	RO	Hot-plug Interrupt Enable (HPIE):
	0b	0 = Disable
		1 = Enables generation of an interrupt on enabled hot-plug events Default value of this field is 0b. If the Hot Plug Capable field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b.
4	RO Ob	Command Completed Interrupt Enable (CCI): If Command Completed notification is supported (as indicated by No Command Completed Support field of Slot Capabilities Register), when set to 1b, this bit enables software notification when a hot-plug command is completed by the Hot-Plug Controller.
		If Command Completed notification is not supported, this bit must be hardwired to 0b.
3	RW	Presence Detect Changed Enable (PDCE):
	Ob	0 = Disable
		1 = Enables software notification on a presence detect changed event.
2	RO 0b	MRL Sensor Changed Enable (MSCE): If the MRL Sensor Present field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b.
		0 = Disable (default)
		1 = Enables software notification on a MRL sensor changed event.
1	RO Ob	Power Fault Detected Enable (PFDE): If Power Fault detection is not supported, this bit is permitted to be read-only with a value of 0b.
		0 = Disable (default)
		1 = Enables software notification on a power fault event.
0	RO Ob	Attention Button Pressed Enable (ABPE):
		0 = Disable (default)
		1 = Enables software notification on an attention button pressed event.

6.1.43 SLOTSTS—Slot Status

B/D/F/Type: 0/1/0/PCI
Address Offset: BA-BBh
Default Value: 0000h
Access: RO, RWC
Size: 16 bits

PCI Express Slot related registers allow for the support of Hot Plug.

Bit	Access & Default	Description
15:7	RO 0000000b	Reserved and Zero: For future R/WC/S implementations; software must use 0 for writes to bits.
6	RO Ob	Presence Detect State (PDS): This bit indicates the presence of an adapter in the slot, reflected by the logical "OR" of the Physical Layer in-band presence detect mechanism and, if present, any out-of-band presence detect mechanism defined for the slot's corresponding form factor. Note that the in-band presence detect mechanism requires that power be applied to an adapter for its presence to be detected. Consequently, form factors that require a power controller for hotplug must implement a physical pin presence detect mechanism.
		0 = Slot Empty
		1 = Card Present in slot
		This register must be implemented on all Downstream Ports that implement slots. For Downstream Ports not connected to slots (where the Slot Implemented bit of the PCI Express Capabilities Register is Ob), this bit must return 1b.
5	RO Ob	Reserved
4	RO Ob	Command Completed (CC): If Command Completed notification is supported (as indicated by No Command Completed Support field of Slot Capabilities Register), this bit is set when a hot-plug command has completed and the Hot-Plug Controller is ready to accept a subsequent command. The Command Completed status bit is set as an indication to host software that the Hot-Plug Controller has processed the previous command and is ready to receive the next command; it provides no assurance that the action corresponding to the command is complete. If Command Completed notification is not supported, this bit must be hardwired to Ob.
3	RWC	Detect Changed (PDC): This bit is set when the value reported in
	0b	Presence Detect State is changed.
2	RO Ob	MRL Sensor Changed (MSC): If an MRL sensor is implemented, this bit is set when a MRL Sensor state change is detected. If an MRL sensor is not implemented, this bit must not be set.

Bit	Access & Default	Description
1	RO Ob	Power Fault Detected (PFD): If a Power Controller that supports power fault detection is implemented, this bit is set when the Power Controller detects a power fault at this slot. Note that, depending on hardware capability, it is possible that a power fault can be detected at any time, independent of the Power Controller Control setting or the occupancy of the slot. If power fault detection is not supported, this bit must not be set.
0	RO Ob	Attention Button Pressed (ABP): If an Attention Button is implemented, this bit is set when the attention button is pressed. If an Attention Button is not supported, this bit must not be set.

6.1.44 RCTL—Root Control

B/D/F/Type: 0/1/0/PCI
Address Offset: BC-BDh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This register allows control of PCI Express Root Complex specific parameters. The system error control bits in this register determine if corresponding SERRs are generated when our device detects an error (reported in this device's Device Status register) or when an error message is received across the link. Reporting of SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command Register.

Bit	Access & Default	Description
15:4	RO 000h	Reserved
3	RW Ob	PME Interrupt Enable (PMEIE): 0 = No interrupts are generated as a result of receiving PME messages. 1 = Enables interrupt generation upon receipt of a PME message as reflected in the PME Status bit of the Root Status Register. A PME interrupt is also generated if the PME Status bit of the Root Status Register is set when this bit is set from a cleared state.
2	RW Ob	System Error on Fatal Error Enable (SEFEE): This bit controls the Root Complex's response to fatal errors. O = No SERR generated on receipt of fatal error. 1 = SERR should be generated if a fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.

Bit	Access & Default	Description
1	RW Ob	System Error on Non-Fatal Uncorrectable Error Enable (SENFUEE): This bit controls the Root Complex's response to non-fatal errors.
		0 = No SERR generated on receipt of non-fatal error.
		1 = SERR should be generated if a non-fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
0	RW Ob	System Error on Correctable Error Enable (SECEE): This bit controls the Root Complex's response to correctable errors.
		0 = No SERR generated on receipt of correctable error.
		1 = SERR should be generated if a correctable error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.

6.1.45 RSTS—Root Status

B/D/F/Type: 0/1/0/PCI
Address Offset: C0-C3h
Default Value: 00000000h
Access: RO, RWC
Size: 32 bits

This register provides information about PCI Express Root Complex specific parameters.

Bit	Access & Default	Description
31:18	RO 0000h	Reserved
17	RO Ob	PME Pending (PMEP): 1 = Another PME is pending when the PME Status bit is set. When the PME Status bit is cleared by software; the PME is delivered by hardware by setting the PME Status bit again and updating the Requestor ID appropriately. The PME pending bit is cleared by hardware if no more PMEs are pending.
16	RWC Ob	PME Status (PMES): 1 = PME was asserted by the requestor ID indicated in the PME Requestor ID field. Subsequent PMEs are kept pending until the status register is cleared by writing a 1 to this field.
15:0	RO 0000h	PME Requestor ID (PMERID): This field indicates the PCI requestor ID of the last PME requestor.

6.1.46 PEGLC—PCI Express*-G Legacy Control

B/D/F/Type: 0/1/0/PCI
Address Offset: EC-EFh
Default Value: 00000000h
Access: RW, RO
Size: 32 bits

This register controls functionality that is needed by Legacy (non-PCI Express aware) operating systems during run time.

Bit	Access & Default	Description
31:3	RO 00000000 h	Reserved
2	RW Ob	PME GPE Enable (PMEGPE): 0 = Do not generate GPE PME message when PME is received. 1 = Generate a GPE PME message when PME is received (Assert_PMEGPE and Deassert_PMEGPE messages on DMI). This enables the GMCH to support PMEs on the PEG port under legacy
1	RW Ob	operating systems. Hot-Plug GPE Enable (HPGPE): 0 = Do not generate GPE Hot-Plug message when Hot-Plug event is received. 1 = Generate a GPE Hot-Plug message when Hot-Plug Event is received (Assert_HPGPE and Deassert_HPGPE messages on DMI). This enables the GMCH to support Hot-Plug on the PEG port under legacy operating systems.
0	RW Ob	General Message GPE Enable (GENGPE): 0 = Do not forward received GPE assert/de-assert messages. 1 = Forward received GPE assert/de-assert messages. These general GPE message can be received via the PEG port from an external Intel device (i.e., PxH) and will be subsequently forwarded to the ICH (via Assert_GPE and Deassert_GPE messages on DMI). For example, PxH might send this message if a PCI Express device is hot plugged into a PxH downstream port.

6.1.47 VCECH—Virtual Channel Enhanced Capability Header

B/D/F/Type: 0/1/0/MMR Address Offset: 100–103h Default Value: 14010002h Access: RO

Access: RO Size: 32 bits

This register indicates PCI Express device Virtual Channel capabilities. Extended capability structures for PCI Express devices are located in PCI Express extended configuration space and have different field definitions than standard PCI capability structures.

Bit	Access & Default	Description
31:20	RO 140h	Pointer to Next Capability (PNC): The Link Declaration Capability is the next in the PCI Express extended capabilities list.
19:16	RO 1h	PCI Express Virtual Channel Capability Version (PCI EXPRESS*VCCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification.
15:0	RO 0002h	Extended Capability ID (ECID): Value of 0002 h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers.

6.1.48 PVCCAP1—Port VC Capability Register 1

B/D/F/Type: 0/1/0/MMR Address Offset: 104–107h Default Value: 00000000h

Access: RO Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access & Default	Description
31:7	RO 0000000h	Reserved
6:4	RO 000b	Low Priority Extended VC Count (LPEVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.
3	RO 0b	Reserved
2:0	RO 000b	Extended VC Count (EVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device.

6.1.49 PVCCAP2—Port VC Capability Register 2

B/D/F/Type: 0/1/0/MMR Address Offset: 108–10Bh Default Value: 00000000h

Access: RO Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access & Default	Description
31:24	RO 00h	VC Arbitration Table Offset (VCATO): This field indicates the location of the VC Arbitration Table. This field contains the zero-based offset of the table in DQWORDS (16 bytes) from the base address of the Virtual Channel Capability Structure. A value of 0 indicates that the table is not present (due to fixed VC priority).
23:0	RO Os	Reserved

6.1.50 PVCCTL—Port VC Control

B/D/F/Type: 0/1/0/MMR
Address Offset: 10C-10Dh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

Bit	Access & Default	Description
15:4	RO 000h	Reserved
3:1	RW 000b	VC Arbitration Select (VCAS): This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. Since there is no other VC supported than the default, this field is reserved.
0	RO 0b	Reserved

6.1.51 VCORCAP—VCO Resource Capability

B/D/F/Type: 0/1/0/MMR Address Offset: 110-113h Default Value: 00000000h

Access: RO Size: 32 bits

Bit	Access & Default	Description
31:16	RO 0000h	Reserved
15	RO Ob	Reject Snoop Transactions (RSNPT): 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request.
14:0	RO 0000h	Reserved

6.1.52 VCORCTL—VCO Resource Control

B/D/F/Type: 0/1/0/MMR
Address Offset: 114–117h
Default Value: 800000FFh
Access: RO, RW
Size: 32 bits

This register controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access & Default	Description	
31	RO 1b	VCO Enable (VCOE): For VCO, this is hardwired to 1 and read only as VCO can never be disabled.	
30:27	RO Oh	Reserved	
26:24	RO 000b	VCO ID (VCOID): Assigns a VC ID to the VC resource. For VCO, this is hardwired to 0 and read only.	
23:8	RO 0000h	Reserved	
7:1	RW 7Fh	TC/VCO Map (TCVCOM): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. To remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.	
0	RO 1b	TCO/VCO Map (TCOVCOM): Traffic Class 0 is always routed to VCO.	

208

6.1.53 VCORSTS—VCO Resource Status

B/D/F/Type: 0/1/0/MMR
Address Offset: 11A–11Bh
Default Value: 0002h
Access: RO
Size: 16 bits

This register reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2	RO 0000h	Reserved
1	RO 1b	 VCO Negotiation Pending (VCONP): 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO Ob	Reserved

6.1.54 RCLDECH—Root Complex Link Declaration Enhanced

B/D/F/Type: 0/1/0/MMR
Address Offset: 140–143h
Default Value: 00010005h
Access: RO
Size: 32 bits

This capability declares links from this element (PEG) to other elements of the root complex component to which it belongs. See PCI Express specification for link/topology declaration requirements.

Bit	Access & Default	Description
31:20	RO 000h	Pointer to Next Capability (PNC): This is the last capability in the PCI Express extended capabilities list
19:16	RO 1h	Link Declaration Capability Version (LDCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification.
15:0	RO 0005h	Extended Capability ID (ECID): Value of 0005h identifies this linked list item (capability structure) as being for PCI Express Link Declaration Capability.

6.1.55 ESD—Element Self Description

B/D/F/Type: 0/1/0/MMR
Address Offset: 144–147h
Default Value: 02000100h
Access: RO, RWO
Size: 32 bits

This register provides information about the root complex element containing this Link Declaration Capability.

Bit	Access & Default	Description	
31:24	RO 02h	Port Number (PN): This field specifies the port number associated with this element with respect to the component that contains this element. This port number value is utilized by the Express port of the component to provide arbitration to this Root Complex Element.	
23:16	RWO 00h	Component ID (CID): This field identifies the physical component that contains this Root Complex Element.	
15:8	RO 01h	Number of Link Entries (NLE): This field indicates the number of link entries following the Element Self Description. This field reports 1 (to Express port only as we don't report any peer-to-peer capabilities in our topology).	
7:4	RO 0h	Reserved	
3:0	RO 0h	Element Type (ET): This field indicates the type of the Root Complex Element. Value of 0h represents a root port.	

6.1.56 LE1D—Link Entry 1 Description

B/D/F/Type: 0/1/0/MMR
Address Offset: 150–153h
Default Value: 00000000h
Access: RO, RWO
Size: 32 bits

This register provides the first part of a Link Entry which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description	
31:24	RO 00h	Target Port Number (TPN): This field specifies the port number associated with the element targeted by this link entry (Express Port). The target port number is with respect to the component that contains this element as specified by the target component ID.	
23:16	RWO 00h	Target Component ID (TCID): This field identifies the physical or logical component that is targeted by this link entry.	
15:2	RO 0000h	Reserved	
1	RO Ob	Link Type (LTYP): This field indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.	
0	RWO	Link Valid (LV):	
	Ob	0 = Link Entry is not valid and will be ignored.	
		1 = Link Entry specifies a valid link.	

6.1.57 LE1A—Link Entry 1 Address

B/D/F/Type: 0/1/0/MMR Address Offset: 158–15Fh

Access: RO, RWO Size: 64 bits

This register provides the second part of a Link Entry which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:32	RO 00000000 h	Reserved
31:12	RWO 00000h	Link Address (LA): This field contains the memory-mapped base address of the RCRB that is the target element (Express Port) for this link entry.
11:0	RO 000h	Reserved

6.1.58 PEGSSTS—PCI Express*-G Sequence Status

B/D/F/Type: 0/1/0/MMR Address Offset: 218–21Fh

Default Value: 00000000000FFFh

Access: RO Size: 64 bits

This register provides PCI Express status reporting that is required by the PCI Express specification.

Bit	Access & Default	Description	
63:60	RO 0h	Reserved	
59:48	RO 000h	Next Transmit Sequence Number (NTSN): This field indicates the value of the NXT_TRANS_SEQ counter. This counter represents the transmit Sequence number to be applied to the next TLP to be transmitted onto the Link for the first time.	
47:44	RO Oh	Reserved	
43:32	RO 000h	Next Packet Sequence Number (NPSN): This field indicates the packet sequence number to be applied to the next TLP to be transmitted or re-transmitted onto the Link.	
31:28	RO Oh	Reserved	
27:16	RO 000h	Next Receive Sequence Number (NRSN): This field is the sequence number associated with the TLP that is expected to be received next.	
15:12	RO 0h	Reserved	
11:0	RO FFFh	Last Acknowledged Sequence Number (LASN): This field is the sequence number associated with the last acknowledged TLP.	

PCI Express* Registers (D1:F0)

7 Direct Memory Interface (DMI) Registers

This Root Complex Register Block (RCRB) controls the GMCH-ICH9 serial interconnect. The base address of this space is programmed in DMIBAR in D0:F0 configuration space. Table 7-1 provides an address map of the DMI registers listed by address offset in ascending order. Section 7.1 provides register bit descriptions.

Table 7-1. DMI Register Address Map

Address Offset	Register Symbol	Register Name	Default Value	Access
00–03h	DMIVCECH	DMI Virtual Channel Enhanced Capability	04010002h	RO
04–07h	DMIPVCCAP1	DMI Port VC Capability Register 1	00000001h	RWO, RO
08–0Bh	DMIPVCCAP2	DMI Port VC Capability Register 2	00000000h	RO
0C-0Dh	DMIPVCCTL	DMI Port VC Control	0000h	RO, RW
10–13h	DMIVCORCAP	DMI VCO Resource Capability	00000001h	RO
14–17h	DMIVCORCTLO	DMI VC0 Resource Control	800000FFh	RO, RW
1A-1Bh	DMIVCORSTS	DMI VCO Resource Status	0002h	RO
1C-1Fh	DMIVC1RCAP	DMI VC1 Resource Capability	00008001h	RO
20–23h	DMIVC1RCTL1	DMI VC1 Resource Control	01000000h	RW, RO
26–27h	DMIVC1RSTS	DMI VC1 Resource Status	0002h	RO
84–87h	DMILCAP	DMI Link Capabilities	00012C41h	RO, RWO
88–89h	DMILCTL	DMI Link Control	0000h	RW, RO
8A-8Bh	DMILSTS	DMI Link Status	0001h	RO

7.1 Direct Memory Interface (DMI) Configuration Register Details

7.1.1 DMI VCECH—DMI Virtual Channel Enhanced Capability

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 00–03h Default Value: 04010002h

Access: RO Size: 32 bits

This register indicates DMI Virtual Channel capabilities.

Bit	Access & Default	Description	
31:20	RO 040h	Pointer to Next Capability (PNC): This field contains the offset to the next PCI Express capability structure in the linked list of capabilities (Link Declaration Capability).	
19:16	RO 1h	PCI Express* Virtual Channel Capability Version (PCI EXPRESS*VCCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification.	
15:0	RO 0002h	Extended Capability ID (ECID): Value of 0002h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers.	

7.1.2 DMI PVCCAP1—DMI Port VC Capability Register 1

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 04–07h
Default Value: 00000001h
Access: RWO, RO
Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access & Default	Description
31:7	RO 0000000h	Reserved
6:4	RO 000b	Low Priority Extended VC Count (LPEVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.
3	RO 0b	Reserved
2:0	RWO 001b	Extended VC Count (EVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device. The Private Virtual Channel is not included in this count.

7.1.3 DMIPVCCAP2—DMI Port VC Capability Register 2

B/D/F/Type: 0/0/0/DMIBAR Address Offset: 08–0Bh Default Value: 00000000h

Access: RO Size: 32 bits

This register describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access & Default	Description
31:0	RO 00000000h	Reserved

7.1.4 DMI PVCCTL—DMI Port VC Control

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 0C-0Dh
Default Value: 0000h
Access: RO, RW
Size: 16 bits

Bit	Access & Default	Description	
15:4	RO 000h	Reserved	
3:1	RW 000b	VC Arbitration Select (VCAS): This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. See the PCI express specification for more details.	
0	RO 0b	Reserved	

7.1.5 DMI VCORCAP—DMI VCO Resource Capability

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 10–13h
Default Value: 00000001h

Access: RO Size: 32 bits

Bit	Access & Default	Description	
31:16	RO 00000h	Reserved	
15	RO Ob	Reject Snoop Transactions (REJSNPT): 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request.	
14:8	RO 00h	Reserved	
7:0	RO 01h	Port Arbitration Capability (PAC): Having only bit 0 set indicates that the only supported arbitration scheme for this VC is non-configurable hardware-fixed.	

7.1.6 **DMIVCORCTLO—DMI VCO Resource Control**

0/0/0/DMIBAR

B/D/F/Type: Address Offset: 14-17h 800000FFh Default Value: Access: RO, RW Size: 32 bits

This register controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access & Default	Description	
31	RO 1b	Virtual Channel O Enable (VCOE): For VCO, this is hardwired to 1 and read only as VCO can never be disabled.	
30:27	RO Oh	Reserved	
26:24	RO 000b	Virtual Channel 0 ID (VC0ID): Assigns a VC ID to the VC resource. For VC0, this is hardwired to 0 and read only.	
23:20	RO Oh	Reserved	
19:17	RW 000b	Port Arbitration Select (PAS): This field configures the VC resource to provide a particular Port Arbitration service. Valid value for this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource. Because only bit 0 of that field is asserted.	
		This field will always be programmed to '1'.	
16:8	RO 000h	Reserved	
7:1	RW 7Fh	Traffic Class / Virtual Channel 0 Map (TCVCOM): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values.	
		For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.	
0	RO 1b	Traffic Class 0 / Virtual Channel 0 Map (TCOVCOM): Traffic Class 0 is always routed to VCO.	

7.1.7 DMI VCORSTS—DMI VCO Resource Status

B/D/F/Type: 0/0/0/DMIBAR
Address Offset: 1A-1Bh
Default Value: 0002h
Access: RO

Access: RO Size: 16 bits

This register reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2	RO 0000h	Reserved.
1	RO 1b	Virtual Channel O Negotiation Pending (VCONP): This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). BIOS Requirement: Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO 0b	Reserved

7.1.8 DMIVC1RCAP—DMI VC1 Resource Capability

B/D/F/Type: 0/0/0/DMIBAR
Address Offset: 1C-1Fh
Default Value: 00008001h
Access: RO

Access: RO Size: 32 bits

Bit	Access & Default	Description	
31:16	RO 00000h	Reserved	
15	RO	Reject Snoop Transactions (REJSNPT):	
	1b	0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC.	
		1 = Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request.	
14:8	RO 00h	Reserved	
7:0	RO 01h	Port Arbitration Capability (PAC): Having only bit 0 set indicates that the only supported arbitration scheme for this VC is non-configurable hardware-fixed.	

7.1.9 DMIVC1RCTL1—DMI VC1 Resource Control

B/D/F/Type: O/O/O/DMIBAR
Address Offset: 20–23h
Default Value: 01000000h
Access: RW, RO
Size: 32 bits

This register controls the resources associated with PCI Express Virtual Channel 1.

Bit	Access & Default	Description	
31	RW	Virtual Channel 1 Enable (VC1E):	
	0b	0 = Virtual Channel is disabled.	
		1 = Virtual Channel is enabled.	
30:27	RO Oh	Reserved	
26:24	RW 001b	Virtual Channel 1 ID (VC1ID): This field assigns a VC ID to the VC resource. Assigned value must be non-zero. This field can not be modified when the VC is already enabled.	
23:20	RO 0h	Reserved	
19:17	RW 000b	Port Arbitration Select (PAS): This field configures the VC resource to provide a particular Port Arbitration service. Valid value for this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource.	
16:8	RO 000h	Reserved	
7:1	RW 00h	Traffic Class / Virtual Channel 1 Map (TCVC1M): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values.	
		For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.	
0	RO 0b	Traffic Class 0 / Virtual Channel 1 Map (TCOVC1M): Traffic Class 0 is always routed to VC0.	

7.1.10 DMI VC1RSTS—DMI VC1 Resource Status

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 26–27h
Default Value: 0002h
Access: RO
Size: 16 bits

This register reports the Virtual Channel specific status.

Bit	Access & Default	Description	
15:2	RO 0000h	Reserved	
1	RO 1b	Virtual Channel 1 Negotiation Pending (VC1NP): 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling).	
0	RO 0b	Reserved	

7.1.11 DMILCAP—DMI Link Capabilities

B/D/F/Type: 0/0/0/DMIBAR
Address Offset: 84–87h
Default Value: 00012C41h
Access: RO, RWO
Size: 32 bits

This register indicates DMI specific capabilities.

Bit	Access & Default	Description	
31:18	RO 0000h	Reserved	
17:15	RWO 010b	L1 Exit Latency (L1SELAT): This field indicates the length of time this Port requires to complete the transition from L1 to L0.	
		010b = 2 us to less than 4 us.	
14:12	RWO 010b	LOs Exit Latency (LOSELAT): This field indicates the length of time this Port requires to complete the transition from LOs to LO.	
		010 = 128 ns to less than 256 ns	
11:10	RO 11b	Active State Link PM Support (ASLPMS): LOs & L1 entry supported.	
9:4	RO 04h	Max Link Width (MLW): This field indicates the maximum number of lanes supported for this link.	
3:0	RO 1h	Max Link Speed (MLS): Hardwired to indicate 2.5 Gb/s.	

7.1.12 DMILCTL—DMI Link Control

B/D/F/Type: 0/0/0/DMIBAR

Address Offset: 88–89h
Default Value: 0000h
Access: RW, RO
Size: 16 bits

This register allows control of DMI.

Access & Default	Description	
RO 00h	Reserved	
RW Ob	Extended Synch (EXTSYNC): 0 = Standard Fast Training Sequence (FTS).	
	1 = Forces the transmission of additional ordered sets when exiting the LOs state and when in the Recovery state.	
RO 0h	Reserved	
RW 0b	Far-End Digital Loopback (FEDLB):	
RW 00b	Active State Power Management Support (ASPMS): This field controls the level of active state power management supported on the given link. 00 = Disabled 01 = L0s Entry Supported 10 = Reserved 11 = L0s and L1 Entry Supported	
	RO OOh RW Ob RW Ob RW	

7.1.13 **DMILSTS—DMI Link Status**

0/0/0/DMIBAR

B/D/F/Type: Address Offset: 8A-8Bh Default Value: 0001h Access: RO Size: 16 bits

This register indicates DMI status.

Bit	Access & Default	Description	
15:10	RO 00h	Reserved and Zero for future R/WC/S implementations. Software must use 0 for writes to these bits.	
9:4	RO 00h	Negotiated Width (NWID): This field indicates negotiated link width. This field is valid only when the link is in the LO, LOs, or L1 states (after link width negotiation is successfully completed). 04h = X4 All other encodings are reserved.	
3:0	RO 1h	Negotiated Speed (NSPD): This field indicates negotiated link speed. 1h = 2.5 Gb/s All other encodings are reserved.	

§

8 Integrated Graphics Device Registers (D2:F0,F1)

The Integrated Graphics Device (IGD) registers are located in Device 2 (D0), Function 0 (F0) and Function 1 (F1). This chapter provides the descriptions for these registers. Section 8.1 provides the register descriptions for Device 2, Function 0. Section 8.2 provides the register descriptions for Device 2, Function 1.

8.1 Integrated Graphics Register Details (D2:F0)

Device 2, Function 0 contains registers for the internal graphics functions. Table 8-1 lists the PCI configuration registers in order of ascending offset address.

Function 0 can be VGA compatible or not, this is selected through bit 1 of GGC register (Device 0, offset 52h).

Note: The following sections describe Device 2 PCI configuration registers only.

Table 8-1. Integrated Graphics Device Register Address Map (D2:F0)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID2	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	29C2h	RO
04–05h	PCICMD2	PCI Command	0000h	RO, RW
06–07h	PCISTS2	PCI Status	0090h	RO
08h	RID2	Revision Identification	00h	RO
09–0Bh	CC	Class Code	030000h	RO
0Ch	CLS	Cache Line Size	00h	RO
0Dh	MLT2	Master Latency Timer	00h	RO
0Eh	HDR2	Header Type	80h	RO
18–1Fh	GMADR	Graphics Memory Range Address	00000000 000000Ah	RW/L, RO, RW
20–23h	IOBAR	IO Base Address	00000001h	RO, RW
2C-2Dh	SVID2	Subsystem Vendor Identification	0000h	RWO
2E-2Fh	SID2	Subsystem Identification	0000h	RWO
30–33h	ROMADR	Video BIOS ROM Base Address	00000000h	RO

Address Offset	Register Symbol	Register Name	Default Value	Access
34h	CAPPOINT	Capabilities Pointer	90h	RO
3Eh	MINGNT	Minimum Grant	00h	RO
3Fh	MAXLAT	Maximum Latency	00h	RO
44h	MCAPPTR	Mirror of Dev 0 Capabilities Pointer	E0h	RO
48–51h	CAPID0	Mirror of DevO Capability Identifier	00000000 000010900 09h	RO
52–53h	MGGC	GMCH Graphics Control Register	0030h	RO
54–57h	DEVEN	Device Enable	000003DBh	RO
58–5Bh	SSRW	Software Scratch Read Write	00000000h	RW
5C-5Fh	BSM	Base of Stolen Memory	07800000h	RO
60–61h	HSRW	Hardware Scratch Read Write	0000h	RW
90–11h	MSI_CAPID	Message Signaled Interrupts Capability ID	D005h	R)
C0h	GDRST	Graphics Debug Reset	00h	RO, RW/L
D0-D1h	PMCAPID	Power Management Capabilities ID	0001h	RWO, RO
D2-D3h	PMCAP	Power Management Capabilities	0022h	RO
D4-D5h	PMCS	Power Management Control/Status	0000h	RO, RW
E0–E1h	SWSMI	Software SMI	0000h	RW
E4-E7h	ASLE	System Display Event Register	00000000h	RW
FC-FFh	ASLS	ASL Storage	00000000h	RW

8.1.1 VID2—Vendor Identification

B/D/F/Type: 0/2/0/PCI
Address Offset: 00-01h
Default Value: 8086h
Access: RO
Size: 16 bits

This register combined with the Device Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 8086h	Vendor I dentification Number (VID): PCI standard identification for Intel.

8.1.2 DID—Device Identification

B/D/F/Type: 0/2/0/PCI
Address Offset: 02–03h
Default Value: 2982h
Access: RO
Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 2982h	Device I dentification Number (DID): This is a 16 bit value assigned to the GMCH Graphic device.

8.1.3 PCICMD2—PCI Command

B/D/F/Type: 0/2/0/PCI
Address Offset: 04–05h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This 16-bit register provides basic control over the IGD's ability to respond to PCI cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.

Bit	Access & Default	Description
15:11	RO 00h	Reserved
10	RW 0b	Interrupt Disable (INTDIS): This bit disables the device from asserting INTx#.
		0 = Enable the assertion of this device's INTx# signal.
		1 = Disable the assertion of this device's INTx# signal. DO_INTx messages will not be sent to DMI.
9	RO 0b	Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.
8	RO 0b	SERR Enable (SERRE): Not Implemented. Hardwired to 0.
7	RO 0b	Address/Data Stepping Enable (ADSTEP): Not Implemented. Hardwired to 0.
6	RO 0b	Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since the IGD belongs to the category of devices that does not corrupt programs or data in system memory or hard drives, the IGD ignores any parity error that it detects and continues with normal operation.

Bit	Access & Default	Description
5	RO Ob	Video Palette Snooping (VPS): This bit is hardwired to 0 to disable snooping.
4	RO Ob	Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The IGD does not support memory write and invalidate commands.
3	RO Ob	Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores Special cycles.
2	RW Ob	Bus Master Enable (BME): This bit controls the IGD's response to bus master accesses.
		0 = Disable IGD bus mastering.
		1 = Enable the IGD to function as a PCI compliant master.
1	RW Ob	Memory Access Enable (MAE): This bit controls the IGD's response to memory space accesses.
		0 = Disable.
		1 = Enable.
0	RW Ob	I/O Access Enable (IOAE): This bit controls the IGD's response to I/O space accesses.
		0 = Disable.
		1 = Enable.

8.1.4 PCISTS2—PCI Status

B/D/F/Type: 0/2/0/PCI
Address Offset: 06–07h
Default Value: 0090h
Access: RO, RWC
Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and PCI compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the IGD.

Bit	Access & Default	Description
15	RO Ob	Detected Parity Error (DPE): Since the IGD does not detect parity, this bit is always hardwired to 0.
14	RO Ob	Signaled System Error (SSE): The IGD never asserts SERR#, therefore this bit is hardwired to 0.
13	RO Ob	Received Master Abort Status (RMAS): The IGD never gets a Master Abort, therefore this bit is hardwired to 0.
12	RO Ob	Received Target Abort Status (RTAS): The IGD never gets a Target Abort, therefore this bit is hardwired to 0.
11	RO Ob	Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does not use target abort semantics.
10:9	RO 00b	DEVSEL Timing (DEVT): N/A. These bits are hardwired to "00".
8	RO Ob	Master Data Parity Error Detected (DPD): Since Parity Error Response is hardwired to disabled (and the IGD does not do any parity detection), this bit is hardwired to 0.
7	RO 1b	Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-to-back when the transactions are not to the same agent.
6	RO Ob	User Defined Format (UDF): Hardwired to 0.
5	RO Ob	66 MHz PCI Capable (66C): N/A - Hardwired to 0.
4	RO 1b	Capability List (CLIST): This bit is set to 1 to indicate that the register at 34h provides an offset into the function's PCI Configuration Space containing a pointer to the location of the first item in the list.
3	RWC Ob	Interrupt Status (INTSTS): This bit reflects the state of the interrupt in the device. Only when the Interrupt Disable bit in the command register is a 0 and this Interrupt Status bit is a 1, will the devices INTx# signal be asserted.
		Setting the Interrupt Disable bit to a 1 has no effect on the state of this bit. This bit is set by Hardware, and Software must write a '1' to clear it.
2:0	RO 000b	Reserved

8.1.5 RID2—Revision Identification

B/D/F/Type: 0/2/0/PCI
Address Offset: 08h
Default Value: 00h
Access: RO
Size: 8 bits

This register contains the revision number for Device 2 Functions 0 and 1.

Bit	Access & Default	Description
7:0	RO 00h	Revision Identification Number (RID): This is an 8-bit value that indicates the revision identification number for the GMCH Device 2. Refer to the <i>Intel® G35 Express Chipset Specification Update</i> for the value of the Revision ID register.

8.1.6 CC—Class Code

B/D/F/Type: 0/2/0/PCI
Address Offset: 09–0Bh
Default Value: 030000h
Access: RO
Size: 24 bits

This register contains the device programming interface information related to the Sub-Class Code and Base Class Code definition for the IGD. This register also contains the Base Class Code and the function sub-class in relation to the Base Class Code.

Bit	Access & Default	Description
23:16	RO 03h	Base Class Code (BCC): This is an 8-bit value that indicates the base class code for the GMCH. This code has the value 03h, indicating a Display Controller.
15:8	RO 00h	Sub-Class Code (SUBCC): Value will be determined based on Device 0 GGC register, GMS and IVD fields.
		00h = VGA compatible
		80h = Non VGA (GMS = "0000" or IVD = "1")
7:0	RO	Programming Interface (PI):
	00h	00h = Hardwired as a Display controller.

8.1.7 CLS—Cache Line Size

B/D/F/Type: 0/2/0/PCI
Address Offset: 0Ch
Default Value: 00h
Access: RO
Size: 8 bits

The IGD does not support this register as a PCI slave.

Bit	Access & Default	Description
7:0	RO 00h	Cache Line Size (CLS): This field is hardwired to 0s. The IGD as a PCI compliant master does not use the Memory Write and Invalidate command and, in general, does not perform operations based on cache line size.

8.1.8 MLT2—Master Latency Timer

B/D/F/Type: 0/2/0/PCI
Address Offset: 0Dh
Default Value: 00h
Access: RO
Size: 8 bits

The IGD does not support the programmability of the master latency timer because it does not perform bursts.

Bit	Access & Default	Description
7:0	RO 00h	Master Latency Timer Count Value (MLTCV): Hardwired to 0s.

8.1.9 HDR2—Header Type

B/D/F/Type: 0/2/0/PCI
Address Offset: 0Eh
Default Value: 80h
Access: RO
Size: 8 bits

This register contains the Header Type of the IGD.

Bit	Access & Default	Description
7	RO 1b	Multi Function Status (MFUNC): Indicates if the device is a Multi-Function Device. The Value of this register is determined by Device 0, offset 54h, DEVEN[4]. If Device 0 DEVEN[4] is set, the MFUNC bit is also set.
6:0	RO 00h	Header Code (H): This is a 7-bit value that indicates the Header Code for the IGD. This code has the value 00h, indicating a type 0 configuration space format.

8.1.10 GMADR—Graphics Memory Range Address

B/D/F/Type: 0/2/0/PCI
Address Offset: 18–1Fh
Default Value: 00000008h
Access: RW, RO, RW/L

Size: 64 bits

IGD graphics memory base address is specified in this register.

Bit	Access & Default	Description
63:36	RO	Reserved
35:29	RW 000b	Memory Base Address (MBA): Set by the OS, these bits correspond to address signals 35:29.
28	RW/L Ob	512 MB Address Mask (512ADMSK): This Bit is either part of the Memory Base Address (R/W) or part of the Address Mask (RO), depending on the value of MSAC[1:0]. See MSAC (D2:F0, offset 62h) for details.
27	RW/L Ob	256 MB Address Mask (256ADMSK): This bit is either part of the Memory Base Address (R/W) or part of the Address Mask (RO), depending on the value of MSAC[1:0]. See MSAC (D2:F0, offset 62h) for details.
26:4	RO 000000h	Address Mask (ADM): Hardwired to 0s to indicate at least 128 MB address range.
3	RO 1b	Prefetchable Memory (PREFMEM): Hardwired to 1 to enable prefetching.
2:1	RO	Memory Type (MEMTYP):
	00b	0 = 32-bit address.
		1 = 64-bit address
0	RO Ob	Memory/IO Space (MIOS): Hardwired to 0 to indicate memory space.

8.1.11 IOBAR—I/O Base Address

B/D/F/Type: 0/2/0/PCI
Address Offset: 20–23h
Default Value: 00000001h
Access: RO, RW
Size: 32 bits

This register provides the Base offset of the I/O registers within Device 2. Bits 15:3 are programmable allowing the I/O Base to be located anywhere in 16 bit I/O Address Space. Bits 2:1 are fixed and return zero; bit 0 is hardwired to a one indicating that 8 bytes of I/O space are decoded. Access to the 8Bs of I/O space is allowed in PM state D0 when IO Enable (PCICMD bit 0) set. Access is disallowed in PM states D1–D3 or if I/O Enable is clear or if Device 2 is turned off or if Internal graphics is disabled thru the fuse or fuse override mechanisms.

Note that access to this IO BAR is independent of VGA functionality within Device 2. Also note that this mechanism is available only through function 0 of Device 2 and is not duplicated in function 1.

If accesses to this IO bar is allowed then the GMCH claims all 8, 16 or 32 bit I/O cycles from the processor that falls within the 8B claimed.

Bit	Access & Default	Description
31:16	RO 0000h	Reserved
15:3	RW 0000h	IO Base Address (IOBASE): Set by the OS, these bits correspond to address signals 15:3.
2:1	RO 00b	Memory Type (MEMTYPE): Hardwired to 0s to indicate 32-bit address.
0	RO 1b	Memory/IO Space (MIOS): Hardwired to 1 to indicate I/O space.

8.1.12 SVID2—Subsystem Vendor Identification

B/D/F/Type: 0/2/0/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: RWO
Size: 16 bits

Bit	Access & Default	Description
15:0	RWO 0000h	Subsystem Vendor ID (SUBVID): This value is used to identify the vendor of the subsystem. This register should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This register can only be cleared by a Reset.

8.1.13 SID2—Subsystem Identification

B/D/F/Type: 0/2/0/PCI
Address Offset: 2E-2Fh
Default Value: 0000h
Access: RWO
Size: 16 bits

Bit	Access & Default	Description
15:0	RWO 0000h	Subsystem Identification (SUBID): This value is used to identify a particular subsystem. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This register can only be cleared by a Reset.

8.1.14 ROMADR—Video BIOS ROM Base Address

B/D/F/Type: 0/2/0/PCI
Address Offset: 30–33h
Default Value: 00000000h
Access: RO
Size: 32 bits

The IGD does not use a separate BIOS ROM, therefore this register is hardwired to 0s.

Bit	Access & Default	Description
31:18	RO 0000h	ROM Base Address (RBA): Hardwired to 0s.
17:11	RO 00h	Address Mask (ADMSK): Hardwired to 0s to indicate 256 KB address range.
10:1	RO 000h	Reserved. Hardwired to 0s.
0	RO Ob	ROM BIOS Enable (RBE): 0 = ROM not accessible.

8.1.15 CAPPOINT—Capabilities Pointer

B/D/F/Type: 0/2/0/PCI
Address Offset: 34h
Default Value: 90h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 90h	Capabilities Pointer Value (CPV): This field contains an offset into the function's PCI Configuration Space for the first item in the New Capabilities Linked List, the MSI Capabilities ID registers at address 90h or the Power Management capability at D0h. This value is determined by the configuration in CAPL[0].

8.1.16 INTRLINE—Interrupt Line

B/D/F/Type: 0/2/0/PCI
Address Offset: 3Ch
Default Value: 00h
Access: RW
Size: 8 bits

Bit	Access & Default	Description
7:0	RW 00h	Interrupt Connection (INTCON): This field is used to communicate interrupt line routing information. POST software writes the routing information into this register as it initializes and configures the system. The value in this register indicates to which input of the system interrupt controller the device's interrupt pin is connected.

8.1.17 INTRPIN—Interrupt Pin

B/D/F/Type: 0/2/0/PCI
Address Offset: 3Dh
Default Value: 01h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 01h	Interrupt Pin (INTPIN): As a single function device, the IGD specifies INTA# as its interrupt pin.
		01h = INTA#.

8.1.18 MINGNT—Minimum Grant

B/D/F/Type: 0/2/0/PCI
Address Offset: 3Eh
Default Value: 00h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 00h	Minimum Grant Value (MGV): The IGD does not burst as a PCI compliant master.

8.1.19 MAXLAT—Maximum Latency

B/D/F/Type: 0/2/0/PCI
Address Offset: 3Fh
Default Value: 00h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 00h	Maximum Latency Value (MLV): The IGD has no specific requirements for how often it needs to access the PCI bus.

8.1.20 MCAPPTR—Mirror of Dev 0 Capabilities Pointer

B/D/F/Type: 0/2/0/PCI
Address Offset: 44h
Default Value: E0h
Access: RO
Size: 8 bits

The CAPPTR provides the offset that is the pointer to the location of the first device capability in the capability list.

Bit	Access & Default	Description
7:0	RO E0h	Mirror of CAPPTR (MCAPPTR): Pointer to the offset of the first capability ID register block. In this case the first capability is the product-specific Capability Identifier (CAPIDO).

8.1.21 CAPIDO—Mirror of Dev0 Capability Identifier

B/D/F/Type: 0/2/0/PCI Address Offset: 48–51h

Default Value: 0000000000001090009h

Access: RO Size: 80 bits

Bit	Access & Default	Description
79:26	RO 00000000 00000h	Reserved
27:24	RO 1h	CAPID Version (CAPIDV): This field has the value 0001b to identify the first revision of the CAPID register definition.
23:16	RO 09h	CAPID Length (CAPIDL): This field has the value 09h to indicate the structure length (9 bytes).
15:8	RO 00h	Next Capability Pointer (NCP): This field is hardwired to 00h indicating the end of the capabilities linked list.
7:0	RO 09h	Capability I dentifier (CAP_ID): This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers.

8.1.22 MGGC— Mirror of Dev0 GMCH Graphics Control Register

B/D/F/Type: 0/2/0/PCI
Address Offset: 52–53h
Default Value: 0030h
Access: RO
Size: 16 bits

Bit	Access & Default	Description
15:7	RO Os	Reserved
6:4	RO 011b	Graphics Mode Select (GMS): This field is used to select the amount of Main Memory that is pre-allocated to support the Internal Graphics device in VGA (non-linear) and Native (linear) modes. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled.
		000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA cycles (Mem and IO), and the Sub-Class Code field within Device 2 function 0 Class Code register is 80.
		001 = DVMT (UMA) mode, 1 MB of memory pre-allocated for frame buffer.
		010 = Reserved
		011 = DVMT (UMA) mode, 8 MB of memory pre-allocated for frame buffer.
		100 = Reserved
		101 = Reserved
		110 = Reserved
		111 = Reserved
		Note: This register is locked and becomes Read Only when the D_LCK bit in the
		SMRAM register is set.
3:2	RO 00b	Reserved
1	RO	IGD VGA Disable (IVD):
	0b	0 = Enable. Device 2 (IGD) claims VGA memory and I/O cycles, the Sub-Class Code within Device 2 Class Code register is 00.
		1 = Disable. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and the Sub- Class Code field within Device 2, Function 0 Class Code register is 80h.
0	RO 0b	Reserved

8.1.23 DEVEN—Mirror of Dev0 Device Enable

B/D/F/Type: 0/2/0/PCI
Address Offset: 54–57h
Default Value: 000003DBh

Access: RO Size: 32 bits

This register allows for enabling/disabling of PCI devices and functions that are within the GMCH. The table below the bit definitions describes the behavior of all combinations of transactions to devices controlled by this register.

Bit	Access & Default	Description
31:10	RO Os	Reserved
9	RO	ME Function 3 (D3F3EN):
	1b	0 = Bus 0, Device 3, Function 3 is disabled and hidden
		1 = Bus 0, Device 3, Function 3 is enabled and visible. If Device 3, Function 0 is disabled and hidden, then Device 3, Function 3 is also disabled and hidden independent of the state of this bit.
8	RO	ME Function 2 (D3F2EN):
	1b	0 = Bus 0, Device 3, Function 2 is disabled and hidden
		1 = Bus 0, Device 3, Function 2 is enabled and visible. If Device 3, Function 0 is disabled and hidden, then Device 3, Function 2 is also disabled and hidden independent of the state of this bit.
7	RO 1b	Reserved
6	RO	ME Function 0 (D3F0EN):
	1b	0 = Bus 0, Device 3, Function 0 is disabled and hidden
		1 = Bus 0, Device 3, Function 0 is enabled and visible. If this GMCH does not have ME capability, then Device 3, Function 0 is disabled and hidden independent of the state of this bit.
5	RO 0b	Reserved
4	RO	Internal Graphics Engine Function 1 (D2F1EN):
	1b	0 = Bus 0, Device 2, Function 1 is disabled and hidden
		1 = Bus 0, Device 2, Function 1 is enabled and visible
		If Device 2, Function 0 is disabled and hidden, then Device 2, Function 1 is also disabled and hidden independent of the state of this bit.
3	RO	Internal Graphics Engine Function 0 (D2F0EN):
	1b	0 = Bus 0, Device 2, Function 0 is disabled and hidden
		1 = Bus 0, Device 2, Function 0 is enabled and visible

Bit	Access & Default	Description
2	RO 0b	Reserved
1	RO 1b	PCI Express Port (D1EN): 0 = Bus 0, Device 1, Function 0 is disabled and hidden. 1 = Bus 0, Device 1, Function 0 is enabled and visible.
0	RO 1b	Host Bridge (DOEN): Bus 0, Device 0, Function 0 may not be disabled and is therefore hardwired to 1.

8.1.24 SSRW—Software Scratch Read Write

B/D/F/Type: 0/2/0/PCI
Address Offset: 58–5Bh
Default Value: 00000000h
Access: RW
Size: 32 bits

Bit	Access & Default	Description
31:0	RW 00000000h	Reserved

8.1.25 BSM—Base of Stolen Memory

B/D/F/Type: 0/2/0/PCI
Address Offset: 5C–5Fh
Default Value: 07800000h
Access: RO
Size: 32 bits

Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD. From the top of low used DRAM, GMCH claims 1 to 64 MBs of DRAM for internal graphics if enabled.

The base of stolen memory will always be below 4 GB. This is required to prevent aliasing between stolen range and the reclaim region.

Bit	Access & Default	Description
31:20	RO 078h	Base of Stolen Memory (BSM): This register contains bits 31:20 of the base address of stolen DRAM memory. The host interface determines the base of Graphics Stolen memory by subtracting the graphics stolen memory size from TOLUD. See Device 0 TOLUD for more explanation.
19:0	RO 00000h	Reserved

8.1.26 HSRW—Hardware Scratch Read Write

B/D/F/Type: 0/2/0/PCI
Address Offset: 60–61h
Default Value: 0000h
Access: RW
Size: 16 bits

Bit	Access & Default	Description
15:0	RW 0000h	Reserved

8.1.27 MSI_CAPID— Message Signaled Interrupts Capability ID

B/D/F/Type: 0/2/0/PCI
Address Offset: 90–91h
Default Value: D005h
Access: RO;
Size: 16 bits

When a device supports MSI, it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address. The reporting of the existence of this capability can be disabled by setting MSICH (CAPL[0] @ 7Fh). In that case walking this linked list will skip this capability and instead go directly to the PCI PM capability.

Bit	Access & Default	Description
15:8	RO D0h	Pointer to Next Capability (POINTNEXT): This contains a pointer to the next item in the capabilities list which is the Power Management capability.
7:0	RO 05h	Capability ID (CAPID): Value of 05h identifies this linked list item (capability structure) as being for MSI registers.

8.1.28 MC—Message Control

B/D/F/Type: 0/2/0/PCI
Address Offset: 92–93h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

System software can modify bits in this register, but the device is prohibited from doing so. If the device writes the same message multiple times, only one of those messages is ensured to be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one.

Bit	Access & Default	Description
15:8	RO 00h	Reserved
7	RO 0b	64 Bit Capable (64BCAP): Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message address register and is incapable of generating a 64-bit memory address.
		This may need to change in future implementations when addressable system memory exceeds the 32b / 4 GB limit.
6:4	RW 000b	Multiple Message Enable (MME): System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested.
		The encoding is the same as for the MMC field (Bits 3:1).
3:1	RO 000b	Multiple Message Capable (MMC): System Software reads this field to determine the number of messages being requested by this device.
		000 = 1
		All other encodings are reserved.
0	RW Ob	MSI Enable (MSIEN): This bit controls the ability of this device to generate MSIs.

8.1.29 MA—Message Address

B/D/F/Type: 0/2/0/PCI
Address Offset: 94–97h
Default Value: 00000000h
Access: RW, RO
Size: 32 bits

Bit	Access & Default	Description
31:2	RW 00000000	Message Address (MESSADD): Used by system software to assign an MSI address to the device.
	h	The device handles an MSI by writing the padded contents of the MD register to this address.
1:0	RO 00b	Force DWord Align (FDWORD): Hardwired to 0 so that addresses assigned by system software are always aligned on a DWord address boundary.

8.1.30 MD—Message Data

B/D/F/Type: 0/2/0/PCI
Address Offset: 98–99h
Default Value: 0000h
Access: RW
Size: 16 bits

Bit	Access & Default	Description
15:0	RW 0000h	Message Data (MESSDATA): Base message data pattern assigned by system software and used to handle an MSI from the device.
		When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA register. The upper 16 bits are always set to 0. The lower 16 bits are supplied by this register.

8.1.31 GDRST—Graphics Debug Reset

B/D/F/Type: 0/2/0/PCI
Address Offset: C0h
Default Value: 00h
Access: RO, RW
Size: 8 bits

Bit	Access & Default	Description
7:2	RO Oh	Reserved
1	RO Ob	Graphics Reset Status (GRS): 0 = Graphics subsystem not in Reset. 1 = Graphics Subsystem in Reset as a result of Graphics Reset.
		This bit gets is set to a 1 when Graphics debug reset bit is set to a 1 and the Graphics hardware has completed the debug reset sequence and all Graphics assets are in reset. This bit is cleared when Graphics Reset bit is set to a 0.
0	RW Ob	Graphics Reset Enable (GR): 1 = Assert display and render domain reset 0 = De-assert display and render domain reset Render and Display clock domain resets should be asserted for at least 20 us. Once this bit is set to a 1, all graphics core MMIO registers are returned to power on default state. All Ring buffer pointers are reset, command stream fetches are dropped and ongoing render pipeline processing is halted, state machines and State Variables returned to power on default state, Display and overlay engines are halted (garbage on screen). VGA memory is not available, Store DWORDs and interrupts are not ensured to be completed. Device 2 I/O registers are not available. Device 2 Configuration registers continue to be available while Graphics debug reset is asserted.

8.1.32 PMCAPID—Power Management Capabilities ID

B/D/F/Type: 0/2/0/PCI
Address Offset: D0-D1h
Default Value: 0001h
Access: RWO, RO
Size: 16 bits

Bit	Access & Default	Description
15:8	RWO 00h	Next Capability Pointer (NEXT_PTR): This contains a pointer to next item in capabilities list. This is the final capability in the list and must be set to 00h.
7:0	RO 01h	Capability I dentifier (CAP_ID): SIG defines this ID is 01h for power management.

8.1.33 PMCAP—Power Management Capabilities

B/D/F/Type: 0/2/0/PCI
Address Offset: D2-D3h
Default Value: 0022h
Access: RO
Size: 16 bits

This register is a Mirror of Function 0 with the same read/write attributes. The hardware implements a single physical register common to both functions 0 and 1.

Bit	Access & Default	Description
15:11	RO 00h	PME Support (PMES): This field indicates the power states in which the IGD may assert PME#. Hardwired to 0 to indicate that the IGD does not assert the PME# signal.
10	RO Ob	D2 Support (D2): The D2 power management state is not supported. This bit is hardwired to 0.
9	RO Ob	D1 Support (D1): Hardwired to 0 to indicate that the D1 power management state is not supported.
8:6	RO 000b	Reserved
5	RO 1b	Device Specific Initialization (DSI): Hardwired to 1 to indicate that special initialization of the IGD is required before generic class device driver is to use it.
4	RO Ob	Reserved
3	RO Ob	PME Clock (PMECLK): Hardwired to 0 to indicate IGD does not support PME# generation.
2:0	RO 010b	Version (VER): Hardwired to 010b to indicate that there are 4 bytes of power management registers implemented and that this device complies with revision 1.1 of the PCI Power Management Interface Specification.

8.1.34 PMCS—Power Management Control/Status

B/D/F/Type: 0/2/0/PCI
Address Offset: D4-D5h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

Bit	Access & Default	Description
15	RO 0b	PME Status (PMESTS): This bit is 0 to indicate that IGD does not support PME# generation from D3 (cold).
14:13	RO 00b	Data Scale (DSCALE): The IGD does not support data register. This bit always returns 00 when read, write operations have no effect.
12:9	RO 0h	Data Select (DSEL): The IGD does not support data register. This bit always returns 0h when read, write operations have no effect.
8	RO 0b	PME Enable (PME_EN): This bit is 0 to indicate that PME# assertion from D3 (cold) is disabled.
7:2	RO 00h	Reserved
1:0	RW 00b	Power State (PWRSTAT): This field indicates the current power state of the IGD and can be used to set the IGD into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs. On a transition from D3 to D0 the graphics controller is optionally reset to initial values.
		00 = D0 (Default)
		01 = D1 (Not Supported)
		10 = D2 (Not Supported)
		11 = D3

8.1.35 SWSMI—Software SMI

B/D/F/Type: 0/2/0/PCI
Address Offset: E0–E1h
Default Value: 0000h
Access: RW
Size: 16 bits

As long as there is the potential that DVO port legacy drivers exist which expect this register at this address, D2, F0 address E0h–E1h must be reserved for this register.

Bit	Access & Default	Description
15:8	RW 00h	Software Scratch Bits (SWSB):
7:1	RW 00h	Software Flag (SWF): Used to indicate caller and SMI function desired, as well as return result.
0	RW Ob	GMCH Software SMI Event (GSSMIE): When Set this bit will trigger an SMI. Software must write a "0" to clear this bit.

8.2 IGD Configuration Register Details (D2:F1)

The Integrated Graphics Device registers are located in Device 2 (D2), Function 0 (F0) and Function 1 (F1). This section provides the descriptions for the D2:F1 registers. Table 8-2 provides an address map of the D2:F1registers listed in ascending order by address offset. Detailed bit descriptions follow the table.

Table 8-2. Integrated Graphics Device Register Address Map (D2:F1)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID2	Vendor Identification	8086h	RO
02–03h	DID2	Device Identification	29C3h	RO
04–05h	PCICMD2	PCI Command	0000h	RO, RW
06–07h	PCISTS2	PCI Status	0090h	RO
08h	RID2	Revision Identification	00h	RO
09–0Bh	CC	Class Code Register	038000h	RO
0Ch	CLS	Cache Line Size	00h	RO
0Dh	MLT2	Master Latency Timer	00h	RO
0Eh	HDR2	Header Type	80h	RO
10–13h	MMADR	Memory Mapped Range Address	00000000h	RW, RO
2C-2Dh	SVID2	Subsystem Vendor Identification	0000h	RO
2E-2Fh	SID2	Subsystem Identification	0000h	RO
30–33h	ROMADR	Video BIOS ROM Base Address	00000000h	RO
34h	CAPPOINT	Capabilities Pointer	D0h	RO
3Eh	MINGNT	Minimum Grant	00h	RO
3Fh	MAXLAT	Maximum Latency	00h	RO
44h	MCAPPTR	Mirror of Dev 0 Capabilities Pointer	E0h	RO
48–51h	CAPID0	Capability Identifier	0000000000 001090009h	RO
52–53h	MGGC	Mirror of Dev 0 GMCH Graphics Control Register	0030h	RO
54–57h	DEVEN	Device Enable	000003DBh	RO
58–5Bh	SSRW	Mirror of Fun 0 Software Scratch Read Write	00000000h	RO
5C-5Fh	BSM	Mirror of FuncO Base of Stolen Memory	07800000h	RO
60–61h	HSRW	Mirror of Dev2 Func0 Hardware Scratch Read Write	0000h	RO

	1	1		1
Address Offset	Register Symbol	Register Name	Default Value	Access
62h	MSAC	Mirror of Dev2 Func0 Multi Size Aperture Control	02h	RO
C0h	GDRST	Mirror of Dev2 Func0 Graphics Reset	00h	RO
C1–C3h	MI_GFX_CG_ DIS	Mirror of Fun 0 MI GFX Unit Level Clock Ungating	000000h	RO
C4-C7h	RSVD	Reserved	00000000h	RO
C8h	RSVD	Reserved	00h	RO
CA-CBh	RSVD	Reserved	0000h	RO
CC-CDh	GCDGMBUS	Mirror of Dev2 Func0 Graphics Clock Frequency Register for GMBUS unit	0000h	RO
D0-D1h	PMCAPID	Mirror of Fun 0 Power Management Capabilities ID	0001h	RO
D2–D3h	PMCAP	Mirror of Fun O Power Management Capabilities	0022h	RO
D4-D5h	PMCS	Power Management Control/Status	0000h	RO, RW
D8-DBh	RSVD	Reserved	00000000h	RO
E0-E1h	SWSMI	Mirror of FuncO Software SMI	0000h	RO
E4–E7h	ASLE	Mirror of Dev2 Func0 System Display Event Register	00000000h	RO
F0–F3h	GCFGC	Mirror of Dev2 Func0 Graphics Clock Frequency and Gating Control	00000000h	RO/P, RO
F4–F7h	RSVD	Mirror of Fun 0 Reserved for LBB- Legacy Backlight Brightness	00000000h	RO
FC-FFh	ASLS	ASL Storage	00000000h	RW

8.2.1 VID2—Vendor Identification

B/D/F/Type: 0/2/1/PCI
Address Offset: 00-01h
Default Value: 8086h
Access: RO
Size: 16 bits

This register, combined with the Device Identification register, uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO 8086h	Vendor I dentification Number (VID): PCI standard identification for Intel.

8.2.2 DID2—Device Identification

B/D/F/Type: 0/2/1/PCI
Address Offset: 02–03h
Default Value: 29C3h
Access: RO
Size: 16 bits

This register is unique in Function 1 (the Function 0 DID is separate). This difference in Device ID is necessary for allowing distinct Plug and Play enumeration of function 1 when both function 0 and function 1 have the same class code.

Bit	Access & Default	Description
15:C	RO 2983h	Device Identification Number (DID): This is a 16 bit value assigned to the GMCH Graphic device Function 1.

8.2.3 PCICMD2—PCI Command

B/D/F/Type: 0/2/1/PCI
Address Offset: 04–05h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

This 16-bit register provides basic control over the IGD's ability to respond to PCI cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.

Bit	Access & Default	Description
15:10	RO Os	Reserved
9	RO Ob	Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.
8	RO Ob	SERR Enable (SERRE): Not Implemented. Hardwired to 0.
7	RO 0b	Address/Data Stepping Enable (ADSTEP): Not Implemented. Hardwired to 0.
6	RO 0b	Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since the IGD belongs to the category of devices that does not corrupt programs or data in system memory or hard drives, the IGD ignores any parity error that it detects and continues with normal operation.
5	RO Ob	VGA Palette Snoop Enable (VGASNOOP): This bit is hardwired to 0 to disable snooping.
4	RO 0b	Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The IGD does not support memory write and invalidate commands.
3	RO 0b	Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores Special cycles.
2	RW Ob	Bus Master Enable (BME): 0 = Disable IGD bus mastering. 1 = Enable the IGD to function as a PCI compliant master.
1	RW Ob	Memory Access Enable (MAE): This bit controls the IGD's response to memory space accesses. 0 = Disable.
		1 = Enable.
0	RW Ob	I/O Access Enable (IOAE): This bit controls the IGD's response to I/O space accesses.
		0 = Disable.
		1 = Enable.

8.2.4 PCISTS2—PCI Status

B/D/F/Type: 0/2/1/PCI
Address Offset: 06–07h
Default Value: 0090h
Access: RO
Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and PCI compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the IGD.

Bit	Access & Default	Description
15	RO 0b	Detected Parity Error (DPE): Since the IGD does not detect parity, this bit is always hardwired to 0.
14	RO 0b	Signaled System Error (SSE): The IGD never asserts SERR#, therefore this bit is hardwired to 0.
13	RO 0b	Received Master Abort Status (RMAS): The IGD never gets a Master Abort, therefore this bit is hardwired to 0.
12	RO 0b	Received Target Abort Status (RTAS): The IGD never gets a Target Abort, therefore this bit is hardwired to 0.
11	RO Ob	Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does not use target abort semantics.
10:9	RO 00b	DEVSEL Timing (DEVT): N/A. These bits are hardwired to 00.
8	RO Ob	Master Data Parity Error Detected (DPD): Since Parity Error Response is hardwired to disabled (and the IGD does not do any parity detection), this bit is hardwired to 0.
7	RO 1b	Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-to-back when the transactions are not to the same agent.
6	RO Ob	User Defined Format (UDF): Hardwired to 0.
5	RO Ob	66 MHz PCI Capable (66C): N/A - Hardwired to 0.
4	RO 1b	Capability List (CLIST): This bit is set to 1 to indicate that the register at 34h provides an offset into the function's PCI Configuration Space containing a pointer to the location of the first item in the list.
3	RO Ob	Interrupt Status (INTSTS): Hardwired to 0.
2:0	RO 000b	Reserved

8.2.5 RID2—Revision Identification

B/D/F/Type: 0/2/1/PCI
Address Offset: 08h
Default Value: 00h
Access: RO
Size: 8 bits

This register contains the revision number for Device 2, Functions 0 and 1.

Bit	Access & Default	Description
7:0	RO 00h	Revision I dentification Number (RID): This is an 8-bit value that indicates the revision identification number for the GMCH Device 2. Refer to the <i>Intel® G35 Express Chipset Specification Update</i> for the value of the Revision ID register.

8.2.6 CC—Class Code Register

B/D/F/Type: 0/2/1/PCI
Address Offset: 09–0Bh
Default Value: 038000h
Access: RO
Size: 24 bits

This register contains the device programming interface information related to the Sub-Class Code and Base Class Code definition for the IGD. This register also contains the Base Class Code and the function sub-class in relation to the Base Class Code.

Bit	Access & Default	Description
23:16	RO 03h	Base Class Code (BCC): This is an 8-bit value that indicates the base class code for the GMCH. This code has the value 03h, indicating a Display Controller.
15:8	RO 80h	Sub-Class Code (SUBCC): 80h = Non VGA
7:0	RO 00h	Programming Interface (PI): 00h = Hardwired as a Display controller.

8.2.7 CLS—Cache Line Size

B/D/F/Type: 0/2/1/PCI
Address Offset: 0Ch
Default Value: 00h
Access: RO
Size: 8 bits

The IGD does not support this register as a PCI slave.

Bit	Access & Default	Description
7:0	RO 00h	Cache Line Size (CLS): This field is hardwired to Os. The IGD as a PCI compliant master does not use the Memory Write and Invalidate command and, in general, does not perform operations based on cache line size.

8.2.8 MLT2—Master Latency Timer

B/D/F/Type: 0/2/1/PCI
Address Offset: Dh
Default Value: 00h
Access: RO
Size: 8 bits

The IGD does not support the programmability of the master latency timer because it does not perform bursts.

Bit	Access & Default	Description
7:0	RO 00h	Master Latency Timer Count Value (MLTCV): Hardwired to 0s.

8.2.9 HDR2—Header Type

B/D/F/Type: 0/2/1/PCI
Address Offset: 0Eh
Default Value: 80h
Access: RO
Size: 8 bits

This register contains the Header Type of the IGD.

Bit	Access & Default	Description
7	RO 1b	Multi Function Status (MFUNC): Indicates if the device is a Multi-Function Device. The Value of this register is determined by Device 0, offset 54h, DEVEN[4]. If Device 0 DEVEN[4] is set, the MFUNC bit is also set.
6:0	RO 00h	Header Code (H): This is a 7-bit value that indicates the Header Code for the IGD. This code has the value 00h, indicating a type 0 configuration space format.

8.2.10 MMADR—Memory Mapped Range Address

B/D/F/Type: 0/2/1/PCI
Address Offset: 10–13h
Default Value: 00000000h
Access: RW, RO
Size: 64 bits

This register requests allocation for the IGD registers and instruction ports. The allocation is for 512 KB and the base address is defined by bits 31:19.

Bit	Access & Default	Description
63:36	RO Os	
35:20	RW 0000h	Memory Base Address (MBA): Set by the OS, these bits correspond to address signals 35:19.
18:4	RO 0000h	Address Mask (ADMSK): Hardwired to 0s to indicate 512 KB address range.
3	RO 0b	Prefetchable Memory (PREFMEM): Hardwired to 0 to prevent prefetching.
2:1	RO 00b	Memory Type (MEMTYP): Hardwired to 0s to indicate 32-bit address.
0	RO Ob	Memory / IO Space (MIOS): Hardwired to 0 to indicate memory space.

8.2.11 SVID2—Subsystem Vendor Identification

B/D/F/Type: 0/2/1/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: RO
Size: 16 bits

Bit	Access & Default	Description
15:0	RO 0000h	Subsystem Vendor ID (SUBVID): This value is used to identify the vendor of the subsystem. This register should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This register can only be cleared by a Reset.

8.2.12 SID2—Subsystem Identification

B/D/F/Type: 0/2/1/PCI
Address Offset: 2E-2Fh
Default Value: 0000h
Access: RO
Size: 16 bits

Bit	Access & Default	Description
15:0	RO 0000h	Subsystem I dentification (SUBID): This value is used to identify a particular subsystem. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This register can only be cleared by a Reset.

8.2.13 ROMADR—Video BIOS ROM Base Address

B/D/F/Type: 0/2/1/PCI
Address Offset: 30–33h
Default Value: 00000000h
Access: RO
Size: 32 bits

The IGD does not use a separate BIOS ROM, therefore this register is hardwired to 0s.

Bit	Access & Default	Description
31:18	RO 0000h	ROM Base Address (RBA): Hardwired to 0s.
17:11	RO 00h	Address Mask (ADMSK): Hardwired to 0s to indicate 256 KB address range.
10:1	RO 000h	Reserved. Hardwired to 0s.
0	RO	ROM BIOS Enable (RBE):
	0b	0 = ROM not accessible.

8.2.14 CAPPOINT—Capabilities Pointer

B/D/F/Type: 0/2/1/PCI
Address Offset: 34h
Default Value: D0h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO DOh	Capabilities Pointer Value (CPV): This field contains an offset into the function's PCI Configuration Space for the first item in the New Capabilities Linked List, the MSI Capabilities ID registers at address 90h or the Power Management capability at D0h. This value is determined by the configuration in CAPL[0].

8.2.15 MINGNT—Minimum Grant

B/D/F/Type: 0/2/1/PCI
Address Offset: 3Eh
Default Value: 00h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 00h	Minimum Grant Value (MGV): The IGD does not burst as a PCI compliant master.

8.2.16 MAXLAT—Maximum Latency

B/D/F/Type: 0/2/1/PCI
Address Offset: 3Fh
Default Value: 00h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 00h	Maximum Latency Value (MLV): The IGD has no specific requirements for how often it needs to access the PCI bus.

8.2.17 MCAPPTR—Mirror of Dev 0 Capabilities Pointer

B/D/F/Type: 0/2/1/PCI
Address Offset: 44h
Default Value: E0h
Access: RO;
Size: 8 bits

The CAPPTR provides the offset that is the pointer to the location of the first device capability in the capability list.

Bit	Access & Default	Description
7:0	RO	Mirror of CAPPTR (MCAPPTR): Pointer to the offset of the first capability ID register block. In this case the first capability is the product-specific Capability Identifier (CAPIDO).

8.2.18 CAPIDO—Capability Identifier

B/D/F/Type: 0/2/1/PCI Address Offset: 48–51h

Default Value: 0000000000001090009h

Access: RO Size: 80 bits

Bit	Access & Default	Description
79:26	RO 00000000 00000h	Reserved
27:24	RO 1h	CAPID Version (CAPIDV): This field has the value 0001b to identify the first revision of the CAPID register definition.
23:16	RO 09h	CAPID Length (CAPIDL): This field has the value 09h to indicate the structure length (9 bytes).
15:8	RO 00h	Next Capability Pointer (NCP): This field is hardwired to 00h indicating the end of the capabilities linked list.
7:0	RO 09h	Capability Identifier (CAP_ID): This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers.

8.2.19 MGGC—Mirror of Dev 0 GMCH Graphics Control Register

B/D/F/Type: 0/2/1/PCI
Address Offset: 52–53h
Default Value: 0030h
Access: RO
Size: 16 bits

Bit	Access & Default	Description			
15:7	RO 00h	Reserved			
6:4	RO 011b	Graphics Mode Select (GMS). This field is used to select the amount of Main Memory that is pre-allocated to support the Internal Graphics device in VGA (non-linear) and Native (linear) modes. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled.			
		000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA cycles (Mem and IO), and the Sub-Class Code field within Device 2 function 0 Class Code register is 80.			
		001 = DVMT (UMA) mode, 1 MB of memory pre-allocated for frame buffer.			
		010 = Reserved			
		011 = DVMT (UMA) mode, 8 MB of memory pre-allocated for frame buffer.			
		100 = Reserved			
		101 = Reserved			
		110 = Reserved			
		111 = Reserved			
		Note: This register is locked and becomes Read Only when the D_LCK bit in the			
		SMRAM register is set.			
3:2	RO 00b	Reserved			
1	RO	IGD VGA Disable (IVD):			
	Ob	0 = Enable. Device 2 (IGD) claims VGA memory and I/O cycles, the Sub-Class Code within Device 2 Class Code register is 00.			
		1 = Disable. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and the Sub- Class Code field within Device 2, function 0 Class Code register is 80h.			
0	RO 0b	Reserved			

8.2.20 **DEVEN—Device Enable**

B/D/F/Type: 0/2/1/PCI
Address Offset: 54–57h
Default Value: 000003DBh
Access: RO

Size: 32 bits

This register allows for enabling/disabling of PCI devices and functions that are within the GMCH. The table below the bit definitions describes the behavior of all combinations of transactions to devices controlled by this register.

Bit	Access & Default	Description		
31:10	RO 00000h	Reserved		
9	RO	ME Function 3 (D3F3EN):		
	1b	0 = Bus 0, Device 3, Function 3 is disabled and hidden		
		1 = Bus 0, Device 3, Function 3 is enabled and visible If Device 3, Function 0 is disabled and hidden, then Device 3, Function 3 is also disabled and hidden independent of the state of this bit.		
8	RO	ME Function 2 (D3F2EN):		
	1b	0 = Bus0, Device 3, Function 2 is disabled and hidden		
		1 = Bus 0, Device 3, Function 2 is enabled and visible If Device 3, Function 0 is disabled and hidden, then Device 3, Function 2 is also disabled and hidden independent of the state of this bit.		
7	RO 1b	Reserved		
6	RO	ME Function 0 (D3F0EN):		
	1b	0 = Bus 0, Device 3, Function 0 is disabled and hidden		
		1 = Bus 0, Device 3, Function 0 is enabled and visible. If this GMCH does not have ME capability (CAPIDO[??] = 1), then Device 3, Function 0 is disabled and hidden independent of the state of this bit.		
5	RO Ob	Reserved		
4	RO	Internal Graphics Engine Function 1 (D2F1EN):		
	1b	0 = Bus 0, Device 2, Function 1 is disabled and hidden		
		1 = Bus 0, Device 2, Function 1 is enabled and visible		
		If Device 2, Function 0 is disabled and hidden, then Device 2, Function 1 is also disabled and hidden independent of the state of this bit.		

Bit	Access & Default	Description	
3	RO	Internal Graphics Engine Function 0 (D2F0EN):	
	1b	0 = Bus 0, Device 2, Function 0 is disabled and hidden	
		1 = Bus 0, Device 2, Function 0 is enabled and visible	
2	RO Ob	Reserved	
1	RO	PCI Express Port (D1EN):	
	1b	0 = Bus 0, Device 1, Function 0 is disabled and hidden.	
		1 = Bus 0, Device 1, Function 0 is enabled and visible.	
0	RO 1b	Host Bridge (DOEN): Bus 0 Device 0 Function 0 may not be disabled and is therefore hardwired to 1.	

8.2.21 SSRW—Mirror of Func0 Software Scratch Read Write

B/D/F/Type: 0/2/1/PCI
Address Offset: 58–5Bh
Default Value: 00000000h
Access: RO
Size: 32 bits

Bit	Access & Default	Description
31:0	RO 00000000h	Reserved

8.2.22 BSM—Mirror of Func0 Base of Stolen Memory

B/D/F/Type: 0/2/1/PCI
Address Offset: 5C–5Fh
Default Value: 07800000h
Access: RO

Access: RO Size: 32 bits

Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD. From the top of low used DRAM, GMCH claims 1 to 64 MBs of DRAM for internal graphics if enabled.

The base of stolen memory will always be below 4 GB. This is required to prevent aliasing between stolen range and the reclaim region.

Bit	Access & Default	Description	
31:20	RO 078h	Base of Stolen Memory (BSM): This register contains bits 31:20 of the base address of stolen DRAM memory. The host interface determines the base of Graphics Stolen memory by subtracting the graphics stolen memory size from TOLUD. See Device 0 TOLUD for more explanation.	
19:0	RO 00000h	Reserved	

8.2.23 HSRW—Mirror of Dev2 Func0 Hardware Scratch Read Write

B/D/F/Type: 0/2/1/PCI
Address Offset: 60–61h
Default Value: 0000h
Access: RO
Size: 16 bits

Bit	Access & Default	Description
15:0	RO 0000h	Reserved

8.2.24 GDRST—Mirror of Dev2 Func0 Graphics Reset

B/D/F/Type: 0/2/1/PCI
Address Offset: C0h
Default Value: 00h
Access: RO
Size: 8 bits

This register is a mirror of the Graphics Reset Register in Device 2.

Bit	Access & Default	Description			
7:2	RO 0h	Reserved			
1	RO	Graphics Reset Status (GRS):			
'	0b	0 = Graphics subsystem not in Reset.			
		1 = Graphics Subsystem in Reset as a result of Graphics Reset.			
0	RO	Graphics Reset (GDR):			
0	0b	0 = De-assert display and render domain reset			
		1 = Assert display and render domain reset			

8.2.25 PMCAPID—Mirror of Fun 0 Power Management Capabilities ID

B/D/F/Type: 0/2/1/PCI
Address Offset: D0-D1h
Default Value: 0001h
Access: RO
Size: 16 bits

This register is a mirror of function 0 with the same R/W attributes. The hardware implements a single physical register common to both functions 0 and 1.

Bit	Access & Default	Description	
15:8	RO 00h	Next Capability Pointer (NEXT_PTR): This contains a pointer to next item in capabilities list. This is the final capability in the list and must be set to 00h.	
7:0	RO 01h	Capability I dentifier (CAP_ID): SIG defines this ID is 01h for power management.	

8.2.26 PMCAP—Mirror of Fun 0 Power Management Capabilities

B/D/F/Type: 0/2/1/PCI
Address Offset: D2-D3h
Default Value: 0022h
Access: RO
Size: 16 bits

This register is a Mirror of Function 0 with the same read/write attributes. The hardware implements a single physical register common to both functions 0 and 1.

Bit	Access & Default	Description	
15:11	RO 00h	PME Support (PMES): This field indicates the power states in which the IGD may assert PME#. Hardwired to 0 to indicate that the IGD does not assert the PME# signal.	
10	RO 0b	D2 Support (D2): The D2 power management state is not supported. This bit is hardwired to 0.	
9	RO 0b	D1 Support (D1): Hardwired to 0 to indicate that the D1 power management state is not supported.	
8:6	RO 000b	Reserved	
5	RO 1b	Device Specific Initialization (DSI): Hardwired to 1 to indicate that special initialization of the IGD is required before generic class device driver is to use it.	
4	RO 0b	Reserved	
3	RO 0b	PME Clock (PMECLK): Hardwired to 0 to indicate IGD does not support PME# generation.	
2:0	RO 010b	Version (VER): Hardwired to 010b to indicate that there are 4 bytes of power management registers implemented and that this device complies with revision 1.1 of the PCI Power Management Interface Specification.	

8.2.27 PMCS—Power Management Control/Status

B/D/F/Type: 0/2/1/PCI
Address Offset: D4-D5h
Default Value: 0000h
Access: RO, RW
Size: 16 bits

Bit	Access & Default	Description	
15	RO 0b	PME Status (PMESTS): This bit is 0 to indicate that IGD does not support PME# generation from D3 (cold).	
14:13	RO 00b	Data Scale (DSCALE): The IGD does not support data register. This bit always returns 0 when read, write operations have no effect.	
12:9	RO 0h	Data Select (DATASEL): The IGD does not support data register. This bit always returns 0 when read, write operations have no effect.	
8	RO 0b	PME Enable (PME_EN): This bit is 0 to indicate that PME# assertion from D3 (cold) is disabled.	
7:2	RO 00h	Reserved	
1:0	RW 00b	Power State (PWRSTAT): This field indicates the current power state of the IGD and can be used to set the IGD into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs. On a transition from D3 to D0 the graphics controller is optionally reset to initial values.	
		00 = D0 (Default)	
		01 = D1 (Not Supported)	
		10 = D2 (Not Supported)	
		11 = D3	

8.2.28 SWSMI—Mirror of Func0 Software SMI

B/D/F/Type: 0/2/1/PCI
Address Offset: E0-E1h
Default Value: 0000h
Access: RO
Size: 16 bits

As long as there is the potential that DVO port legacy drivers exist which expect this register at this address, D2:F0 address E0h–E1h must be reserved for this register.

Bit	Access & Default	Description
15:8	RO 00h	Software Scratch Bits (SWSB):
7:1	RO 00h	Software Flag (SWF): This field is used to indicate caller and SMI function desired, as well as return result.
0	RO Ob	GMCH Software SMI Event (GSSMIE): When Set, this bit will trigger an SMI. Software must write a 0 to clear this bit.

§

9 Manageability Engine (ME) Registers (D3:F0)

This chapter contains the Manageability Engine registers for Device 3 (D3), Function 0 (0).

9.1 Host Embedded Controller Interface (HECI1) Configuration Register Details (D3:F0)

Table 9-1. HECI1 Register Address Map (D3:F0)

Address Offset	Symbol	Register Name	Default Value	Access
00–03h	ID	Identifiers	29848086h	RO
04–05h	CMD	Command	0000h	RO, R/W
06–07h	STS	Device Status	0010h	RO
08h	RID	Revision ID	See register description	RO
09–0Bh	CC	Class Code	000000h	RO
0Ch	CLS	Cache Line Size	00h	RO
0Dh	MLT	Master Latency Timer	00h	RO
0Eh	HTYPE	Header Type	80h	RO
10–17h	HECI_MBA R	HECI MMIO Base Address	000000000 000004h	RO, R/W
2C-2Fh	SS	Sub System Identifiers	00000000h	R/WO
34h	CAP	Capabilities Pointer	50h	RO
3C-3Dh	INTR	Interrupt Information	0100h	RO, R/W
3Eh	MGNT	Minimum Grant	00h	RO
3Fh	MLAT	Maximum Latency	00h	RO
40–43h	HFS	Host Firmware Status	00000000h	RO
50–51h	PID	PCI Power Management Capability ID	8C01h	RO
52–53h	PC	PCI Power Management Capabilities	C803h	RO
54–55h	PMCS	PCI Power Management Control And Status	0008h	R/WC, RO, R/W
8C-8Dh	MID	Message Signaled Interrupt Identifiers	0005h	RO
8E–8Fh	MC	Message Signaled Interrupt Message Control	0080h	RO, R/W

Address Offset	Symbol	Register Name	Default Value	Access
90–93h	MA	Message Signaled Interrupt Message Address	00000000h	R/W, RO
94–97h	MUA	Message Signaled Interrupt Upper Address (Optional)	00000000h	R/W
98–99h	MD	Message Signaled Interrupt Message Data	0000h	R/W
A0h	HIDM	HECI Interrupt Delivery Mode	00h	R/W

9.1.1 ID—Identifiers

B/D/F/Type: 0/3/0/PCI
Address Offset: 0–3h
Default Value: 29848086h
Access: RO
Size: 32 bits

Bit	Access & Default	Description
31:16	RO 2984h	Device ID (DID): This register indicates what device number assigned for the ME subsystem.
15:0	RO 8086h	Vendor ID (VID): This field indicates Intel is the vendor, assigned by the PCI SIG.

9.1.2 CMD—Command

B/D/F/Type: 0/3/0/PCI
Address Offset: 4–5h
Default Value: 0000h
Access: RO, R/W
Size: 16 bits

Bit	Access & Default	Description
15:11	RO 00000b	Reserved
10	R/W Ob	Interrupt Disable (ID): This bit disables this device from generating PCI line based interrupts. This bit does not have any effect on MSI operation. 0 = Enable 1 = Disable
9	RO 0b	Fast Back-to-Back Enable (FBE): Not implemented, hardwired to 0.
8	RO Ob	SERR# Enable (SEE): Not implemented, hardwired to 0.

Bit	Access & Default	Description
7	RO Ob	Wait Cycle Enable (WCC): Not implemented, hardwired to 0.
6	RO Ob	Parity Error Response Enable (PEE): Not implemented, hardwired to 0.
5	RO Ob	VGA Palette Snooping Enable (VGA): Not implemented, hardwired to 0.
4	RO Ob	Memory Write and Invalidate Enable (MWIE): Not implemented, hardwired to 0.
3	RO Ob	Special Cycle Enable (SCE): Not implemented, hardwired to 0.
2	R/W Ob	Bus Master Enable (BME): This bit controls the HECI host controller's ability to act as a system memory master for data transfers.
		0 = Disable. HECI is blocked from generating MSI to the host processor.
		1 = Enable
		When this bit is cleared, HECI bus master activity stops and any active DMA engines return to an idle condition. This bit is made visible to firmware through the H_PCI_CSR register, and changes to this bit may be configured by the H_PCI_CSR register to generate an ME MSI.
		Note that this bit does not block HECI accesses to ME-UMA (i.e., writes or reads to the host and ME circular buffers through the read window and write window registers still cause ME backbone transactions to ME-UMA).
1	R/W Ob	Memory Space Enable (MSE): This bit controls access to the HECI host controller's memory mapped register space.
		0 = Disable 1 = Enable
0	RO Ob	I/O Space Enable (IOSE): Not implemented, hardwired to 0.

9.1.3 STS—Device Status

B/D/F/Type: 0/3/0/PCI
Address Offset: 6–7h
Default Value: 0010h
Access: RO
Size: 16 bits

Bit	Access & Default	Description
15	RO 0b	Detected Parity Error (DPE): Not implemented, hardwired to 0.
14	RO 0b	Signaled System Error (SSE): Not implemented, hardwired to 0.
13	RO Ob	Received Master-Abort (RMA): Not implemented, hardwired to 0.
12	RO Ob	Received Target Abort (RTA): Not implemented, hardwired to 0.
11	RO Ob	Signaled Target-Abort (STA): Not implemented, hardwired to 0.
10:9	RO 00b	DEVSEL# Timing (DEVT): These bits are hardwired to 00.
8	RO 0b	Master Data Parity Error Detected (DPD): Not implemented, hardwired to 0.
7	RO 0b	Fast Back-to-Back Capable (FBC): Not implemented, hardwired to 0.
6	RO 0b	Reserved
5	RO Ob	66 MHz Capable (C66): Not implemented, hardwired to 0.
4	RO 1b	Capabilities List (CL): Indicates the presence of a capabilities list, hardwired to 1.
3	RO Ob	Interrupt Status (IS): Indicates the interrupt status of the device (1 = asserted).
2:0	RO 000b	Reserved

9.1.4 RID—Revision ID

B/D/F/Type: 0/3/0/PCI

Address Offset: 8h

Default Value: see description below

Access: RO Size: 8 bits

Bit	Access & Default	Description
7:0	RO see description	Revision ID (RID): This field indicates stepping of the HECI host controller. Refer to the <i>Intel® G35 Express Chipset Specification Update</i> for the value of the Revision ID register.

9.1.5 CC—Class Code

B/D/F/Type: 0/3/0/PCI
Address Offset: 9–Bh
Default Value: 000000h
Access: RO
Size: 24 bits

Bit	Access & Default	Description
23:16	RO 00h	Base Class Code (BCC): This field indicates the base class code of the HECI host controller device.
15:8	RO 00h	Sub Class Code (SCC): This field indicates the sub class code of the HECI host controller device.
7:0	RO 00h	Programming Interface (PI): This field indicates the programming interface of the HECI host controller device.

9.1.6 CLS—Cache Line Size

B/D/F/Type: 0/3/0/PCI
Address Offset: Ch
Default Value: 00h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 00h	Cache Line Size (CLS): Not implemented, hardwired to 0.

9.1.7 MLT—Master Latency Timer

B/D/F/Type: 0/3/0/PCI
Address Offset: Dh
Default Value: 00h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 00h	Master Latency Timer (MLT): Not implemented, hardwired to 0.

9.1.8 HTYPE—Header Type

B/D/F/Type: 0/3/0/PCI
Address Offset: Eh
Default Value: 80h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7	RO 1b	Multi-Function Device (MFD): This bit indicates the HECI host controller is part of a multi-function device.
6:0	RO 0000000b	Header Layout (HL): This field indicates that the HECI host controller uses a target device layout.

9.1.9 HECI_MBAR—HECI MMIO Base Address

B/D/F/Type: 0/3/0/PCI Address Offset: 10–17h

Default Value: 0000000000000004h

Access: RO, R/W Size: 64 bits

This register allocates space for the HECI memory-mapped registers defined in Section **Error! Reference source not found.**.

Bit	Access & Default	Description
63:4	R/W 00000000 0000000h	Base Address (BA): This field provides the base address of register memory space.
3	RO 0b	Prefetchable (PF): This bit indicates that this range is not prefetchable
2:1	RO 10b	Type (TP): This field indicates that this range can be mapped anywhere in 64-bit address space. Note that the (G)MCH only uses bits 35:4 of the base address field as the (G)MCH only decodes FSB address bits 35:4.
0	RO 0b	Resource Type Indicator (RTE): This bit indicates a request for register memory space.

9.1.10 SS—Sub System Identifiers

B/D/F/Type: 0/3/0/PCI
Address Offset: 2C-2Fh
Default Value: 00000000h
Access: R/WO
Size: 32 bits

Bit	Access & Default	Description
31:16	R/WO 0000h	Subsystem ID (SSID): This field indicates the sub-system identifier. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This field can only be cleared by PLTRST#.
15:0	R/WO 0000h	Subsystem Vendor ID (SSVID): This field indicates the subsystem vendor identifier. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This field can only be cleared by PLTRST#.

9.1.11 CAP—Capabilities Pointer

B/D/F/Type: 0/3/0/PCI
Address Offset: 34h
Default Value: 50h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 50h	Capability Pointer (CP): This field indicates the first capability pointer offset. It points to the PCI power management capability offset.

9.1.12 INTR—Interrupt Information

B/D/F/Type: 0/3/0/PCI
Address Offset: 3C-3Dh
Default Value: 0100h
Access: RO, R/W
Size: 16 bits

Bit	Access & Default	Description
15:8	RO 01h	Interrupt Pin (IPIN): This field indicates the interrupt pin the HECI host controller uses. The value of 01h selects INTA# interrupt pin. Note: As HECI is an internal device in the GMCH, the INTA# pin is implemented as an INTA# message to the ICH8.
7:0	R/W 00h	Interrupt Line (ILINE): Software written value to indicate which interrupt line (vector) the interrupt is connected to. No hardware action is taken on this register.

9.1.13 MGNT—Minimum Grant

B/D/F/Type: 0/3/0/PCI
Address Offset: 3Eh
Default Value: 00h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 00h	Grant (GNT): Not implemented, hardwired to 0.

9.1.14 MLAT—Maximum Latency

B/D/F/Type: 0/3/0/PCI
Address Offset: 3Fh
Default Value: 00h
Access: RO
Size: 8 bits

Bit	Access & Default	Description
7:0	RO 00h	Latency (LAT): Not implemented, hardwired to 0.

9.1.15 HFS—Host Firmware Status

B/D/F/Type: 0/3/0/PCI
Address Offset: 40–43h
Default Value: 00000000h
Access: RO
Size: 32 bits

Bit	Access & Default	Description
31:0	RO 00000000h	Firmware Status Host Access (FS_HA): This field indicates current status of the firmware for the HECI controller.

9.1.16 PID—PCI Power Management Capability ID

B/D/F/Type: 0/3/0/PCI
Address Offset: 50–51h
Default Value: 8C01h
Access: RO
Size: 16 bits

Bit	Access & Default	Description
15:8	RO 8Ch	Next Capability (NEXT): This field indicates the location of the next capability item in the list. This is the Message Signaled Interrupts capability.
7:0	RO 01h	Cap ID (CID): This field indicates that this pointer is a PCI power management.

9.1.17 PC—PCI Power Management Capabilities

B/D/F/Type: 0/3/0/PCI
Address Offset: 52–53h
Default Value: C803h
Access: RO
Size: 16 bits

Bit	Access & Default	Description
15:11	RO 11001b	PME_Support (PSUP): This field indicates the states that can generate PME#.
		HECI can assert PME# from any D-state except D1 or D2 which are not supported by HECI.
10	RO Ob	D2_Support (D2S): The D2 state is not supported for the HECI host controller.
9	RO Ob	D1_Support (D1S): The D1 state is not supported for the HECI host controller.
8:6	RO 000b	Aux_Current (AUXC): Reports the maximum Suspend well current required when in the D3COLD state.
5	RO Ob	Device Specific Initialization (DSI): This bit indicates whether device-specific initialization is required.
4	RO Ob	Reserved
3	RO 0b	PME Clock (PMEC): This bit indicates that PCI clock is not required to generate PME#.
2:0	RO 011b	Version (VS): This bit indicates support for Revision 1.2 of the PCI Power Management Specification.

9.1.18 PMCS—PCI Power Management Control And Status

B/D/F/Type: 0/3/0/PCI Address Offset: 54–55h Default Value: 0008h

Access: R/WC, RO, R/W

Size: 16 bits

Bit	Access & Default	Description
15	R/WC 0b	PME Status (PMES): The PME Status bit in HECI space can be set to 1 by FW performing a write into AUX register to set PMES.
		This bit is cleared by host processor writing a 1 to it.
		FW cannot clear this bit.
		Host processor writes with value 0 have no effect on this bit.
		This bit is reset to 0 by MRST#
14:9	RO 000000b	Reserved
8	R/W Ob	PME Enable (PMEE): This read/write bit is controlled by host SW. It does not directly have an effect on PME events. This bit is reset to 0 by MRST#.
		0 = Disable 1 = Enable
7:4	RO 0000b	Reserved
3	RO 1b	No_Soft_Reset (NSR): This bit indicates that when the HECI host controller is transitioning from D3hot to D0 due to power state command; it does not perform an internal reset.
		0 = No soft reset 1 = Soft reset
2	RO Ob	Reserved
1:0	R/W 00b	Power State (PS): This field is used both to determine the current power state of the HECI host controller and to set a new power state. The values are:
		00 = D0 state
		11 = D3HOT state

9.1.19 MID—Message Signaled Interrupt Identifiers

B/D/F/Type: 0/3/0/PCI
Address Offset: 8C-8Dh
Default Value: 0005h
Access: RO
Size: 16 bits

Bit	Access & Default	Description
15:8	RO 00h	Next Pointer (NEXT): This field indicates the next item in the list. This can be other capability pointers (such as PCI-Express) or it can be the last item in the list.
7:0	RO 05h	Capability ID (CID): Capabilities ID indicates MSI.

9.1.20 MC—Message Signaled Interrupt Message Control

B/D/F/Type: 0/3/0/PCI
Address Offset: 8E-8Fh
Default Value: 0080h
Access: RO, R/W
Size: 16 bits

Bit	Access & Default	Description
15:8	RO 00h	Reserved
7	RO 1b	64 Bit Address Capable (C64): This bit indicates whether capable of generating 64-bit messages.
6:4	RO 000b	Multiple Message Enable (MME): Not implemented, hardwired to 0.
3:1	RO 000b	Multiple Message Capable (MMC): Not implemented, hardwired to 0.
0	R/W Ob	MSI Enable (MSIE): If set, MSI is enabled and traditional interrupt pins are not used to generate interrupts. 0 = Disable 1 = Enable

9.1.21 MA—Message Signaled Interrupt Message Address

B/D/F/Type: 0/3/0/PCI
Address Offset: 90–93h
Default Value: 00000000h
Access: R/W, RO
Size: 32 bits

Bit	Access & Default	Description
31:2	R/W 00000000h	Address (ADDR): This field indicates the lower 32 bits of the system specified message address; always DW aligned.
1:0	RO 00b	Reserved

9.1.22 MD—Message Signaled Interrupt Message Data

B/D/F/Type: 0/3/0/PCI
Address Offset: 98–99h
Default Value: 0000h
Access: R/W
Size: 16 bits

Bit	Access & Default	Description
15:0	R/W 0000h	Data (Data): This 16-bit field is programmed by system software if MSI is enabled. Its content is driven onto the FSB during the data phase of the MSI memory write transaction.

9.1.23 HIDM—HECI Interrupt Delivery Mode

B/D/F/Type: 0/3/0/PCI
Address Offset: A0h
Default Value: 00h
Access: R/W
Size: 8 bits
BIOS Optimal Default 00h

This register is used to select interrupt delivery mechanism for HECI to Host processor interrupts.

Bit	Access & Default	Description	
7:2	RO 0h	Reserved	
1:0	R/W 00b	HECI Interrupt Delivery Mode (HIDM): These bits control what type of interrupt the HECI will send.: 00 = Generate Legacy or MSI interrupt 01 = Generate SCI	
		10 = Generate SCI 10 = Generate SMI 11 = Reserved	

Datasheet

10 Functional Description

This chapter provides a functional description of the major interfaces and capabilities of the GMCH.

10.1 Host Interface

The GMCH supports the Core® 2 Duo processor subset of the Enhanced Mode Scaleable Bus. The cache line size is 64 bytes. Source synchronous transfer is used for the address and data signals. The address signals are double pumped, and a new address can be generated every other bus clock. At 200/266/333MHz bus clock, the address signals run at 400/533/667 MT/s. The data is quad pumped, and an entire 64B cache line can be transferred in two bus clocks. At 200/266/333 MHz bus clock, the data signals run at 800/1066/1333 MT/s for a maximum bandwidth of 6.4/8.5/10.7 GB/s.

10.1.1 FSB IOQ Depth

The Scalable Bus supports up to 12 simultaneous outstanding transactions.

10.1.2 FSB OOQ Depth

The GMCH supports only one outstanding deferred transaction on the FSB.

10.1.3 FSB GTL+ Termination

The GMCH integrates GTL+ termination resistors on die. Also, approximately 2.8 pF(fast) – 3.3 pF(slow) per pad of on die capacitance will be implemented to provide better FSB electrical performance.

282

10.1.4 FSB Dynamic Bus Inversion

The GMCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data from the processor. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data phase. This decreases the worst-case power consumption of the GMCH. HDINV[3:0]# indicate if the corresponding 16 bits of data are inverted on the bus for each quad pumped data phase:

HDINV[3:0]#	Data Bits
HDINVO#	HD[15:0]#
HDINV1#	HD[31:16]#
HDINV2#	HD[47:32]#
HDINV3#	HD[63:48]#

Whenever the processor or the GMCH drives data, each 16-bit segment is analyzed. If more than 8 of the 16 signals would normally be driven low on the bus, the corresponding HDINV# signal will be asserted, and the data will be inverted prior to being driven on the bus. Whenever the processor or the GMCH receives data, it monitors HDINV[3:0]# to determine if the corresponding data segment should be inverted.

10.1.5 APIC Cluster Mode Support

APIC Cluster mode support is required for backwards compatibility with existing software, including various operating systems. As one example, beginning with Microsoft Windows 2000, there is a mode (boot.ini) that allows an end user to enable the use of cluster addressing support of the APIC.

- The GMCH supports three types of interrupt re-direction:
- Physical
- Flat-Logical
- Clustered-Logical

10.2 System Memory Controller

This section describes the GMCH memory controller interface.

10.2.1 Memory Organization Modes

The system memory controller supports two styles of memory organization (Interleaved and Asymmetric). Rules for populating DIMM slots are included in this section.

Table 10-1. Sample System Memory Organization with Interleaved Channels

	Channel A Cumulative top address in Channel A		Channel B population	Cumulative top address in Channel B	
Rank 3	O MB	2560 MB	O MB	2560 MB	
Rank 2	256 MB	2560 MB	256 MB	2560 MB	
Rank 1	512 MB	2048 MB	512 MB	2048 MB	
Rank 0	512 MB	1024 MB	512 MB	1024 MB	

Table 10-2. Sample System Memory Organization with Asymmetric Channels

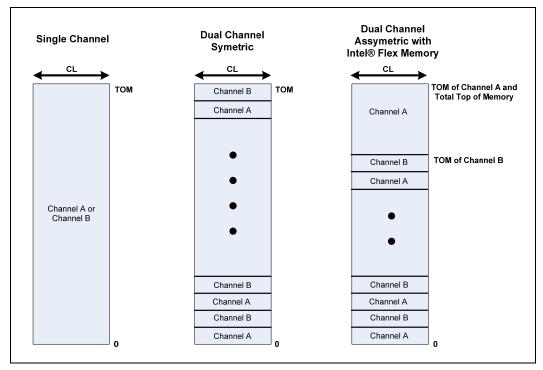
	Channel A cumulative top address in Channel A		Channel B population	Cumulative top address in Channel B	
Rank 3	O MB	1280 MB	0 МВ	2560 MB	
Rank 2	256 MB	1280 MB	256 MB	2560 MB	
Rank 1	512 MB	1024 MB	512 MB	2304 MB	
Rank 0	512 MB	512 MB	512 MB	1792 MB	

Interleaved Mode

This mode provides maximum performance on real applications. Addresses are ping-ponged between the channels, and the switch happens after each cache line (64 byte boundary). If two consecutive cache lines are requested, both may be retrieved simultaneously, since they are guaranteed to be on opposite channels. The drawbacks of Interleaved Mode are that the system designer must populate both channels of memory such that they have equal capacity, but the technology and device width may vary from one channel to the other.

Asymmetric Mode

This mode trades performance for system design flexibility. Unlike the previous mode, addresses start in channel A and stay there until the end of the highest rank in channel A, then addresses continue from the bottom of channel B to the top. Real world applications are unlikely to make requests that alternate between addresses that sit on opposite channels with this memory organization, so in most cases, bandwidth will be limited to that of a single channel. The system designer is free to



populate or not to populate any rank on either channel, including either degenerate single channel case.

Flex Mode

This mode provides the best performance flexibility. The lowest DRAM memory is mapped to two channel operation and the top most , if any, DRAM memory is mapped to single channel operation. The drawbacks of Flex mode are that the system designer must populate both channels of memory to get the benefits of flex mode, and there will be multiple zones of Dual/single channel operation across the entire of DRAM memory.

Figure 10-1. System Memory Styles

10.2.2 DRAM Technologies and Organization

"Single sided" below is a logical term referring to the number of Chip Selects attached to the DIMM. A physical DIMM may have the components on both sides of the substrate, but be logically indistinguishable from a single sided DIMM with all devices on one side if all components on the DIMM are attached to the same chip select signal.

- x8 means that each component has 8 data lines.
- x16 means that each component has 16 data lines.

All standard 256-Mb, 512-Mb, and 1-Gb technologies and addressing are supported for x16 and x8 devices.

```
For DDR2
   533 (PC2 4300)
       Non-ECC
           Version A = Single sided x8
           Version B = Double sided x8
           Version C = Single sided x16
   667 (PC2 5300)
       Non-ECC
           Version C = Single sided x16
           Version D = Single sided x8
           Version E = Double sided x8
   800 (PC2 6400)
       Non-ECC
       Version C = Single sided x16
       Version D = Single sided x8
       Version E = Double sided x8
```

No support for DIMMs with different technologies or capacities on opposite sides of the same DIMM. If one side of a DIMM is populated, the other side is either identical or empty.

Supported components include:

```
For DDR2 at 533 (PC2 4300) and 667 (PC2 5300)
   256-Mb technology
       32-M cells x8 data bits/cell
           1-K columns
           4 banks
           8-K rows
           Each component has a 1-KB page.
           One DIMM has 8 components resulting in an 8-KB page.
           The capacity of one rank is 256 MB.
       16-M cells x16 data bits/cell
           512 columns
           4 banks
           8-K rows
           Each component has a 1-KB page.
           One DIMM has 4 components resulting in a 4-KB page.
           The capacity of one rank is 128 MB.
```



```
512-Mb technology
   64-M cells x8 data bits/cell
       1K columns
       4 banks
       16K rows
       Each component has a 1-KB page.
       One DIMM has 8 components resulting in an 8-KB page.
       The capacity of one rank is 512 MB.
   32-M cells x16 data bits/cell
       1-K columns
       4 banks
       8-K rows
       Each component has a 2-KB page.
       One DIMM has 4 components resulting in an 8-KB page.
       The capacity of one rank is 256 MB.
1-Gb technology
   128-M cells x8 data bits/cell
       1-K columns
       8 banks
       16-K rows
       Each component has a 1-KB page.
       One DIMM has 8 components resulting in an 8-KB page.
       The capacity of one rank is 1 GB.
   64-M cells x16 data bits/cell
       1-K columns
       8 banks
       8-K rows
       Each component has a 2-KB page.
       One DIMM has 4 components resulting in an 8-KB page.
```

The capacity of one rank is 512MB.

The DRAM sub-system supports single or dual channels, 64b wide per channel. A maximum of 4 ranks can be populated (2 Double Sided DIMMs) per channel. Mixed mode DDR DS-DIMMs (x8 and x16 on the same DIMM) are not supported (not validated).

By using 1Gb technology, the largest memory capacity is 8 GB (16K rows * 1K columns * 1 cell/(row * column) * 8 b/cell * 8 banks/device * 8 devices/rank * 4 ranks/channel * 2 channel *1M/(K*K) * 1G/1024M * 1B/8b = 8 GB). Utilizing 8GB of memory is only possible in Interleaved mode with all ranks populated at maximum capacity.

By using 256Mb technology, the smallest memory capacity is 128 MB (8K rows * 512 columns * 1 cell/(row * column) * 16b/cell * 4 banks/device * 4 devices/rank * 1 rank * 1M/1024K * 1B/8b = 128 MB).

10.2.2.1 Rules for Populating DIMM Slots

- In all modes, the frequency of System Memory will be the lowest frequency of all of the DIMMs in the system, as determined through the SPD registers on the DIMMs.
- In Single Channel mode, any DIMM slot within the channel may be populated in any order. Either channel may be used. To save power, do not populate the unused channel.
- In Dual Channel Asymmetric mode, any DIMM slot may be populated in any order.
- In Dual Channel Interleaved mode, any DIMM slot may be populated in any order, but the total memory in each channel must be the same.
- In Flex memory mode, any DIMM slot may be populated in any order per channel, but each channel must have at least 1 DIMM. The matching amount of memory per channel will be run in Dual channel interleaved mode and the remaining unmatched memory will run in Asymmetric mode.

10.2.2.2 System Memory Supported Configurations

The GMCH supports the 256Mbit, 512Mbit, and 1Gbit technology-based DIMMs shown in Table 10-3.

Table 10-3. DDR2 DIMM Supported Configurations

Technology	Configuration	# of Row Address Bits	# of Column Address Bits	# of Bank Address Bits	Page Size	Rank Size
256Mbit	16M X 16	13	9	2	4K	128 MB
256Mbit	32M X 8	13	10	2	8K	256 MB
512Mbit	32M X 16	13	10	2	8K	256 MB
512Mbit	64M X 8	14	10	2	8K	512 MB
1Gbit	64M X 16	13	10	3	8K	512 MB
1Gbit	128M X 8	14	10	3	8K	1 GB

10.2.3 Main Memory DRAM Address Translation and Decoding

The following tables specify the host interface to memory interface address multiplex for the GMCH. Refer to the details of the various DIMM configurations as described in Table 10-3.

Table 10-4. DRAM Address Translation (Single Channel/Dual Asymmetric Mode)

			3			
Technology (Mb)	256	256	512	512	1024	1024
Row bits	13	13	14	13	14	13
Column bits	10	9	10	10	10	10
bank bits	2	2	2	2	3	3
width (b)	8	16	8	16	8	16
Rows	8192	8192	16384	8192	16384	8192
Columns	1024	512	1024	1024	1024	1024
Banks	4	4	4	4	8	8
Page Size (KB)	8 8	4	8 8	8	8 8	8
Devices per rank Rank Size (MB)	256	128	512	256	1024	512
Depth (M)	32	16	64	32	128	64
Addr bits [n:0]	27	26	28	27	29	28
available in DDR2	yes	yes	yes	yes	yes	yes
Host Address bit	J • •			ddress bit		<i>y</i>
32	-	-	-	-	-	-
31	-	-	-	-	-	-
30	-	-	-	-	-	-
29	-	_	-	-	r 13	-
28	-	-	r 13	-	r 11	r 11
27	r 12	-	r 12	r 12	r 12	r 12
26	r 10	r 10	r 10	r 10	r 10	r 10
25	r 9	r 9	r 9	r 9	r 9	r 9
24	r 8	r 8	r 8	r 8	r 8	r 8
23	r 7	r 7	r 7	r 7	r 7	r 7
22	r 6	r 6	r 6	r 6	r 6	r 6
21	r 5	r 5	r 5	r 5	r 5	r 5
20	r 4	r 4	r 4	r 4	r 4	r 4
19	r 3	r 3	r 3	r 3	r 3	r 3
18	r 2	r 2	r 2	r 2	r 2	r 2
17	r 1	r 1	r 1	r 1	r 1	r 1
16	r 0	r 0	r 0	r 0	r O	r O
15	r 11	r 11	r 11	r 11	b 0	b 0
14	b 1	r 12	b 1	b 1	b 1	b 1
13	b 0	b 0	b 0	b 0	b 2	b 2
12	с 9	b 1	с 9	с 9	с 9	с 9
11	c 8	c 8	c 8	c 8	c 8	c 8
10	c 7	c 7	c 7	c 7	c 7	c 7
9	с 6	с 6	с 6	с 6	с 6	с 6
8	c 5	c 5	c 5	c 5	c 5	c 5
7	c 4	c 4	c 4	c 4	c 4	c 4
6	с 3	с 3	с 3	с 3	c 3	c 3
5	c 2	c 2	c 2	c 2	c 2	c 2
4	c 1	c 1	c 1	c 1	c 1	c 1
3	c 0	c 0	c 0	c 0	c 0	c 0

Table 10-5. DRAM Address Translation (Dual Channel Symmetric Mode)

Technology (Mb)	5. DRAW Addres	ss rransi	ation (Di	uai Chan	nei Symr	netric ivid	ode)
Column bits 10 9 10 10 10 10 bank bits 2 2 2 2 3 3 width (b) 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 11 8<		256	256	512	512	1024	1024
bank bits 2 2 2 2 2 3 3 width (b) 8 16 8 16 8 16 Rows 8192 8192 16384 8192 16384 8192 1024 <td></td> <td></td> <td>13</td> <td>14</td> <td>13</td> <td>14</td> <td>13</td>			13	14	13	14	13
width (b) 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 192 8192 16384 8192 16384 8192 16384 8192 16384 8192 16384 8192 16384 8192 16384 8192 1024							
Rows 8192 8192 16384 8192 16384 8192 16384 8192 1024							
Columns 1024 512 1024 1024 1024 1024 Banks 4 4 4 4 8 8 8 Page Size (KB) 8 4 8 8 8 8 8 Devices per rank 8 4 8 4 8 4 8 4 Rank Size (MB) 256 128 512 256 1024 512 Depth (M) 32 16 64 32 128 64 Addr bits [n:0] 27 26 28 27 29 28 available in DDR2 yes yes yes yes yes yes Host Address bit Memory Address bit 32 - - - - - - - 30 - - - - - - - - - - - - - - - -							
Banks 4 4 4 4 4 8 4 4 8 4 4 8 4 4 8 4 8 4 8 4 8 4 8 4 8 4 4 8 4 4 8 4 8 4 8 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Page Size (KB) 8 4 8 8 4 8 6 6 6 6 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3							
Devices per rank 8 4 8 4 8 4 8 4 8 4 8 4 8 4 512 256 1024 512 Depth (M) 32 16 64 32 128 64 Addr bits [n:0] 32 16 64 32 128 64 Addr bits [n:0] 32 16 64 32 128 64 Addr bits [n:0] 32 16 64 32 128 64 Addr bits [n:0] 29 2 28 28 27 29 28 available in DDR2 yes ye							
Rank Size (MB) 256 128 512 256 1024 512 Depth (M) 32 16 64 32 128 64 Addr bits [n:0] 27 26 28 27 29 28 available in DDR2 yes yes yes yes yes yes Host Address bit Memory Address bit Memory Address bit Memory Address bit Memory Address bit Memory Address bit 30 -		_					
Depth (M) 32							
Addr bits [n:0] 27 26 28 27 29 28 available in DDR2 yes yes yes yes yes yes Host Address bit Memory Address bit 32 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Available in DDR2 yes yes ves yes yes yes yes yes yes yes yes yes yes							
Host Address bit							
31 -	Host Address bit	_		Memory A	•	t	
31 -	32	-	-	-	-	-	-
30 - - - r13 - r11 r10		_	-	_	_	-	_
29 - - r13 - r11 r11 28 r12 - r12 r10 r10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>r 13</td><td></td></t<>						r 13	
28 r 12 - r 12 r 10 r 11							
26 r9 r8 r6 r9 r2 r2<				r 12			r 12
25 r8 r7 r7<	27	r 10	r 10	r 10	r 10	r 10	r 10
24 r7 r6 r7 r5 r4 r4 <td< td=""><td>26</td><td>r 9</td><td>r 9</td><td>r 9</td><td>r 9</td><td>r 9</td><td>r 9</td></td<>	26	r 9	r 9	r 9	r 9	r 9	r 9
23 r6 r5 r7 r3 r1 r1 r1<	25	r 8	r 8	r 8	r 8	r 8	r 8
22 r5 r4 r4<	24	r 7	r 7	r 7	r 7	r 7	r 7
21 r4 r2 r2<	23	r 6	r 6	r 6	r 6	r 6	r 6
20 r3 r2 r2<	22	r 5	r 5	r 5	r 5	r 5	r 5
19 r2 r2<	21	r 4	r 4	r 4	r 4	r 4	r 4
18 r1 r0 r0<	20	r 3	r 3	r 3	r 3	r 3	r 3
17 r0 r0<	19	r 2	r 2	r 2	r 2	r 2	r 2
16 r 11 r 11 r 11 r 11 b 0 b 0 15 b 1 r 12 b 1 b 1 b 1 b 1 14 b 0 b 0 b 0 b 0 b 2 b 2 13 c 9 b 1 c 9 c 9 c 9 c 9 12 c 8 c 8 c 8 c 8 c 8 c 8 11 c 7 c 7 c 7 c 7 c 7 c 7 10 c 6 c 6 c 6 c 6 c 6 c 6 9 c 5 c 5 c 5 c 5 c 5 c 5 8 c 4 c 4 c 4 c 4 c 4 c 4 7 c 3 c 3 c 3 c 3 c 3 c 3 c 3 6 h h h h h h h h h 5 c 2 c 2 c 2 c 2 c 2 c 2	18	r 1	r 1	r 1	r 1	r 1	r 1
15 b1 r 12 b1 b1 b1 b1 14 b0 b0 b0 b0 b2 b2 13 c9 b1 c9 c9 c9 c9 12 c8 c8 c8 c8 c8 c8 11 c7 c7 c7 c7 c7 c7 10 c6 c6 c6 c6 c6 c6 c6 9 c5 c5 c5 c5 c5 c5 c5 8 c4 c4 c4 c4 c4 c4 c4 7 c3 c3 c3 c3 c3 c3 c3 6 h h h h h h h h 5 c2 c2 c2 c2 c2 c2 c2 4 c1 c1 c1 c1 c1 c1	17	r 0	r 0	r 0	r 0	r 0	r 0
14 b0 b0 b0 b0 b2 b2 13 c9 b1 c9 c9 c9 c9 12 c8 c8 c8 c8 c8 c8 11 c7 c7 c7 c7 c7 c7 10 c6 c6 c6 c6 c6 c6 c6 9 c5 c5 c5 c5 c5 c5 8 c4 c4 c4 c4 c4 c4 7 c3 c3 c3 c3 c3 c3 6 h h h h h h h 5 c2 c2 c2 c2 c2 c2 c2 4 c1 c1 c1 c1 c1 c1 c1	16	r 11	r 11	r 11	r 11	b 0	b 0
13 c9 b1 c9 c9 c9 c9 12 c8 c8 c8 c8 c8 c8 11 c7 c7 c7 c7 c7 c7 10 c6 c6 c6 c6 c6 c6 c6 9 c5 c5 c5 c5 c5 c5 8 c4 c4 c4 c4 c4 c4 7 c3 c3 c3 c3 c3 c3 6 h h h h h h h 5 c2 c2 c2 c2 c2 c2 c2 4 c1 c1 c1 c1 c1 c1 c1	15	b 1	r 12	b 1	b 1	b 1	b 1
12 c8 c8 c8 c8 c8 c8 11 c7 c7 c7 c7 c7 c7 10 c6 c6 c6 c6 c6 c6 c6 9 c5 c5 c5 c5 c5 c5 8 c4 c4 c4 c4 c4 c4 7 c3 c3 c3 c3 c3 c3 6 h h h h h h h 5 c2 c2 c2 c2 c2 c2 c2 4 c1 c1 c1 c1 c1 c1 c1	14	b 0	b 0	b 0	b 0	b 2	b 2
11 c7 c7 c7 c7 c7 10 c6 c6 c6 c6 c6 c6 9 c5 c5 c5 c5 c5 c5 8 c4 c4 c4 c4 c4 c4 7 c3 c3 c3 c3 c3 c3 6 h h h h h h 5 c2 c2 c2 c2 c2 c2 4 c1 c1 c1 c1 c1 c1	13	с 9	b 1	с 9	с 9	с 9	с 9
10 c6 c6 c6 c6 c6 c6 9 c5 c5 c5 c5 c5 c5 8 c4 c4 c4 c4 c4 c4 c4 7 c3 c3 c3 c3 c3 c3 c3 6 h h h h h h h 5 c2 c2 c2 c2 c2 c2 4 c1 c1 c1 c1 c1 c1	12		c 8			c 8	с 8
9 c 5 c 5 c 5 c 5 c 5 8 c 4 c 4 c 4 c 4 c 4 c 4 7 c 3 c 3 c 3 c 3 c 3 c 3 6 h h h h h h h 5 c 2 c 2 c 2 c 2 c 2 c 2 4 c 1 c 1 c 1 c 1 c 1 c 1	11	c 7	c 7	c 7	с 7	c 7	c 7
8 c 4 c 4 c 4 c 4 c 4 c 4 7 c 3 c 3 c 3 c 3 c 3 c 3 6 h h h h h h h 5 c 2 c 2 c 2 c 2 c 2 c 2 4 c 1 c 1 c 1 c 1 c 1 c 1		с 6	с 6	с 6		с 6	с 6
7 c3 c3 c3 c3 c3 6 h h h h h h 5 c2 c2 c2 c2 c2 c2 4 c1 c1 c1 c1 c1 c1	9	c 5		c 5	c 5	c 5	c 5
6 h h h h h h h 5 c2							
5	7	с 3	с 3	с 3		с 3	
4 c1 c1 c1 c1 c1							
3 c0 c0 c0 c0 c0 c0			c 1		c 1	c 1	
	3	c 0	c 0	c 0	c 0	c 0	c 0

10.2.4 DRAM Clock Generation

The GMCH generates three differential clock pairs for every supported DIMM. A total of 6 clock pairs are driven directly by the GMCH to 2 DIMMs per channel.

10.2.5 Suspend to RAM and Resume

When entering the Suspend to RAM (STR) state, the SDRAM controller will flush pending cycles and then enter all SDRAM rows into self refresh. In STR, the CKE signals remain LOW so the SDRAM devices will perform self-refresh.

10.2.6 DDR2 On-Die Termination

On-die termination (ODT) is a feature that allows a DRAM to turn on/off internal termination resistance for each DQ, DM, DQS, and DQS# signal for x8 and x16 configurations via the ODT control signals. The ODT feature is designed to improve signal integrity of the memory channel by allowing the termination resistance for the DQ, DM, DQS, and DQS# signals to be located inside the DRAM devices themselves instead of on the motherboard. The GMCH drives out the required ODT signals, based on memory configuration and which rank is being written to or read from, to the DRAM devices on a targeted DIMM rank to enable or disable their termination resistance.

10.3 PCI Express*

See the Section 1.3.4 for list of PCI Express features, and the PCI Express specification for further details.

This GMCH is part of a PCI Express root complex. This means it connects a host processor/memory subsystem to a PCI Express hierarchy. The control registers for this functionality are located in device 1 configuration space and two Root Complex Register Blocks (RCRBs). The DMI RCRB contains registers for control of the Intel ICH8 attach ports.

10.3.1 PCI Express* Architecture

The PCI Express architecture is specified in layers. Compatibility with the PCI addressing model (a load-store architecture with a flat address space) is maintained to ensure that all existing applications and drivers operate unchanged. The PCI Express configuration uses standard mechanisms as defined in the PCI Plug-and-Play specification. The initial speed of 1.25 GHz (250 MHz internally) results in 2.5 Gb/s/direction which provides a 250 MB/s communications channel in each direction (500 MB/s total) that is close to twice the data rate of classic PCI per lane.

Transaction Layer

The upper layer of the PCI Express architecture is the Transaction Layer. The Transaction Layer's primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as read and write, as well as certain types of events. The Transaction Layer also manages flow control of TLPs.

Data Link Layer

The middle layer in the PCI Express stack, the Data Link Layer, serves as an intermediate stage between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer include link management, error detection, and error correction.

Physical Layer

The Physical Layer includes all circuitry for interface operation, including driver and input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching circuitry.

10.3.2 Intel[®] Serial Digital Video Output (SDVO)

The SDVO description is located here because it is multiplexed onto the PCI Express x16 port pins. The Intel® SDVO Port is the second generation of digital video output from compliant Intel® GMCHs. The electrical interface is based on the PCI Express interface, though the protocol and timings are completely unique. Whereas PCI Express runs at a fixed frequency, the frequency of the SDVO interface is dependant upon the active display resolution and timing. The port can be dynamically configured in several modes to support display configurations.

Essentially, an SDVO port will transmit display data in a high-speed, serial format across differential AC coupled signals. An SDVO port consists of a sideband differential clock pair and a number of differential data pairs.

10.3.2.1 Intel® SDVO Capabilities

SDVO ports can support a variety of display types including LVDS, DVI, Analog CRT, TV-Out and external CE type devices. The GMCH utilizes an external SDVO device to translate from SDVO protocol and timings to the desired display format and timings.

The Internal Graphics Controller can have one or two SDVO ports multiplexed on the x16 PCI Express interface. When an external x16 PCI Express graphics accelerator is not in use, an ADD2 card may be plugged into the x16 connector or if a x16 slot is not present, the SDVO(s) may be located 'down' on the motherboard to access the multiplexed SDVO ports and provide a variety of digital display options.

The ADD2/Media Expansion card is designed to fit in a x16 PCI Express connector. The ADD2/Media Expansion card can support one or two devices. If a single channel SDVO device is utilized, it should be attached to the channel B SDVO pins. The ADD2 card can support two separate SDVO devices when the interface is in Dual Independent or Dual Simultaneous Standard modes. The Media Expansion card adds Video in capabilities.

The SDVO port defines a two-wire point-to-point communication path between the SDVO device and GMCH. The SDVO Control Clock and Data provide similar functionality to I²C. However unlike I2C, this interface is intended to be point-to-point (from the GMCH to the SDVO device) and will require the SDVO device to act as a switch and direct traffic from the SDVO Control bus to the appropriate receiver. Additionally, this Control bus will be able to run at faster speeds (up to 1 MHz) than a traditional I²C interface would.

Analog RGB Monitor Control Clock Control Data TV Clock In Stall Interrupt PCI Express x16 Port Pins 3rd Party Digital ClockC Internal SDVO Display Graphics RedC / AlphaB External Device(s) SDVO Port Device(s) or TV GreenC BlueC PCI Express' ClockB Logic В RedB GreenB BlueB **GMCH**

Figure 10-2. SDVO Conceptual Block Diagram

10.3.2.2 Intel® SDVO Modes

The port can be dynamically configured in several modes:

- Standard This mode provides baseline SDVO functionality. It supports Pixel Rates between 25 MP/s and 270 MP/s. It uses three data pairs to transfer RGB data.
- Extended Adds Alpha support to data stream. This mode supports Pixel Rates between 25 MP/s and 270 MP/s. The mode uses four data channels and is only supported on SDVOB. Leverages channel C (SDVOC) Red pair as the Alpha pair for channel B (SDVOB).
- **Dual Standard** This mode uses Standard data streams across both SDVOB and SDVOC. Both channels can only run in Standard mode (3 data pairs) and each channel supports Pixel Rates between 25 MP/s and 270 MP/s.
- Dual Independent Standard In Dual Independent Standard mode, each SDVO channel sees a different pixel stream. The data stream across SDVOB will not be the same as the data stream across SDVOC.
- Dual Simultaneous Standard In Dual Simultaneous Standard mode, both SDVO channels sees the same pixel stream. The data stream across SDVOB will be the same as the data stream across SDVOC. The display timings are identical, but the transfer timings may not be (i.e., SDVOB clocks and data may not be perfectly aligned with SDVOC clock and data as seen at the SDVO device(s)). Since this mode uses just a single data stream, it uses a single pixel pipeline within the GMCH.

10.3.2.3 PCI Express* and Internal Graphics Simultaneous Operation

10.3.2.3.1 Standard PCI Express* Cards and Internal Graphics

BIOS control of simultaneous operation is needed to ensure the PCI Express is configured appropriately.

10.3.2.3.2 MEDIA EXPANSION Cards (Concurrent SDVO and PCI Express*)

SDVO lane reversal is supported on the GMCH. This functionality allows current SDVO ADD2 cards to work in current ATX and BTX systems instead of requiring a separate card. The GMCH will allow SDVO and PCI Express to operate concurrently on the PCI Express Port. The card that plugs into the x16 connector in this case is called an Media Expansion card. It uses 4 or 8 lanes for SDVO and up to 8 lanes of standard PCI Express.

For the GMCH, the only supported PCI Express width when SDVO is present is x1.

This concurrency is supported in reversed and non-reversed configurations. Mirroring/Reversing is always about the axis.

Table 10-6. Concurrent sDVO / PCI Express* Configuration Strap Controls

Configuration #	Description	Slot Reversed Strap	sDVO Present Strap	sDVO/PCI Express* Concurrent Strap
1	PCI Express* not reversed	_	_	_
2	PCI Express* Reversed	Yes	_	_
3	sDVO (ADD2) not reversed	_	Yes	_
4	sDVO (ADD2) Reversed	Yes	Yes	
5	sDVO & PCI Express* (MEDIA EXPANSION) not reversed	_	Yes	Yes
6	sDVO & PCI Express* (MEDIA EXPANSION) Reversed	Yes	Yes	Yes

NOTES:

- 1. The Configuration #s refer to the following figures (no intentional relation to validation Configurations).
- 2. Configurations 4, 5, and 6 (required addition of sDVO/PCI Express* Concurrent Strap).

Figure 10-3. Concurrent sDVO / PCI Express* Non-Reversed Configurations

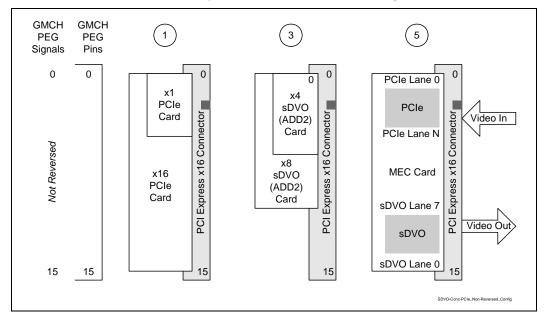
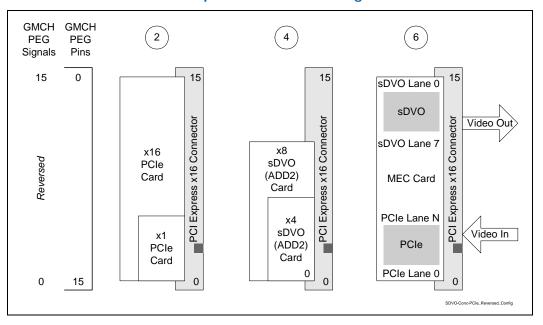



Figure 10-4. Concurrent sDVO / PCI Express* Reversed Configurations

10.4 Integrated Graphics Controller

The GMCH provides a highly integrated graphics accelerator and chipset which allows for a flexible Integrated System Graphics solution. High bandwidth access to data is provided through the graphics and system memory ports. The GMCH can access graphics data located in system memory at up to 12.6GB/s (depending on memory configuration). The GMCH can drive an integrated DAC, and/or two SDVO ports (multiplexed with PCI Express) capable of driving an ADD2/Media Expansion card. External SDVO devices are capable of driving a variety of TV-Out, TMDS, and LVDS transmitters.

10.4.1 Integrated Graphics Device Overview

With the evolution of PC graphics from fixed function parallelizable pipelines to generalized programmable parallel engines, the GMCH's Internal Graphics Device delivers a highly programmable graphics device capable of rendering 3D, 2D, and video content.

Graphics workloads like 3D, imaging, and video encode/decode are all good examples of parallel applications. The programmable graphics architecture in G35 allows for the ability for the driver to program the graphics device to operate on parallel workloads in a parallel manor.

10.4.1.1 3D Graphics

The GMCH's graphics engine supports acceleration for all DX9.0c/DX10 and OGL2.0 required features with additional features. Some of the key features supported are:

- Vertex Shader Model 4.0 (HW)
- Hardware Pixel Shader 4.0 (HW)
- 32-bit and 16-bit Full Precision Floating Point Operations
- Up to 8 Multiple Render Targets (MRTs)
- Occlusion Query
- 128-bit Floating Point Texture Formats
- Bilinear, Trilinear, and Anisotropic MipMap Filtering
- Shadow Maps and Double Sided Stencils

The 3D performance of any graphics device is affected by several key factors: memory bandwidth, and numbers of pixels per clock. The GMCH graphics addresses all of these potential bottlenecks by sharing the two channels of memory bandwidth that allows for up to 12.6 GB/s, and the ability to operate on 4 pixels per clock.

10.4.1.2 Video Playback

10.4.1.2.1 Deinterlacing Support

For display on a progressive computer monitor, interlaced data that has been formatted for display on interlaced monitors (TV) needs to be de-interlaced. The simple approaches to de-interlacing create unwanted display artifacts. More advanced de-interlacing techniques have been developed to provide a high-quality, effective solution. The Motion Adaptive Deinterlacing supported in the GMCH greatly reduces the feathering artifacts typical with Weave deinterlacing and the jaggies typically associated to Bob deinterlacing. Clear, sharp text is another benefit on Intel's Motion Adaptive Deinterlacing technique.

10.5 Display Interfaces

The GMCH has three display ports, one analog and two digital. Each port can transmit data according to one or more protocols. The digital ports are connected to an external device that converts one protocol to another. Examples of this are TV encoders, external DACs, LVDS transmitters, and TMDS transmitters. Each display port has control signals that may be used to control, configure and/or determine the capabilities of an external device.

The GMCH has one dedicated display port, the analog port. SDVO ports B and C are multiplexed with the PCI Express graphics interface and are not available if an external PCI Express graphics device is in use. When a system utilizes a PCI Express graphics connector, SDVO ports B and C can be utilized via an ADD2/Media Expansion (Advanced Digital Display 2) card. Ports B and C can also operate in dual-channel mode, where the data bus is connected to both display ports, allowing a single device to take data at twice the pixel rate.

- The GMCH's analog port uses an integrated 400 MHz RAMDAC that can directly drive a standard progressive scan analog monitor up to a resolution of 2048x1536 pixels with 32-bit color at 75 Hz.
- The GMCH's SDVO ports are each capable of driving a 270-MP pixel rate. Each port is capable of driving a digital display up to 1600x1200 @ 60 Hz. When in dual-channel mode, the GMCH can drive a flat panel up to 2048x1536 @ 75 Hz or dCRT/HDTV up to 1920x1080 @ 85 Hz.

The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant external device and connector, the GMCH has a high speed interface to a digital display (e.g., flat panel or digital CRT).

Table 10-7. Display Port Characteristics

		Analog	Digital Port B	Digital Port C	
	Interface Protocol	RGB DAC	DVO 1.0	DVO 1.0	
	HSYNC		Yes Enable/Polarity		
10	VSYNC Yes Enable/Polarity				
SIGNALS	BLANK	No	Yes ⁽¹⁾	Yes ⁽¹⁾	
1GN	STALL	No	Yes	Yes	
S	Field	No	Yes	Yes	
	Display_Enable	No	_	No	
	Image Aspect Ratio	Programmak	nable and typically 1.33:1 or 1.78:1		
	Pixel Aspect Ratio	Square ⁽¹⁾	_	_	
	Voltage	RGB 0.7 V p-p	PCI Express*	PCI Express	
	Clock	NA	Differ	ential	
	Max Rate	400 Mpixel	270 Mpixel	270 Mpixel	
	Format	Analog RGB	RGB 8:8:8	YUV 4:4:4	
	Control Bus	DDC1/DDC2B	DDG	C2B	
	External Device	No	TMDS/LVDS Transi	mitter /TV Encoder	
	Connector	VGA/DVI-I	DVI/CV Video/Compone		

NOTES:

1. Single signal software selectable between display enable and Blank#

10.5.1 Analog Display Port Characteristics

The analog display port provides a RGB signal output along with a HSYNC and VSYNC signal. There is an associated DDC signal pair that is implemented using GPIO pins dedicated to the analog port. The intended target device is for a CRT based monitor with a VGA connector. Display devices such as LCD panels with analog inputs may work satisfactory but no functionality has been added to the signals to enhance that capability.

Table 10-8. Analog Port Characteristics

Signal	Port Characteristic	Support
	Voltage Range	0.7 V p-p only
RGB	Monitor Sense	Analog Compare
KGD	Analog Copy Protection	No
	Sync on Green	No
	Voltage	2.5 V
	Enable/Disable	Port control
HSYNC	Polarity adjust	VGA or port control
VSYNC	Composite Sync Support	No
	Special Flat Panel Sync	No
	Stereo Sync	No
DDC	Voltage	Externally buffered to 5 V
DDC	Control	Through GPIO interface

10.5.1.1 Integrated RAMDAC

The display function contains a RAM-based Digital-to-Analog Converter (RAMDAC) that transforms the digital data from the graphics and video subsystems to analog data for the CRT monitor. GMCH's integrated 400 MHz RAMDAC supports resolutions up to 2048 x 1536 @ 75 Hz. Three 8-bit DACs provide the R, G, and B signals to the monitor.

10.5.1.2 Sync Signals

HSYNC and VSYNC signals are digital and conform to TTL signal levels at the connector. Since these levels cannot be generated internal to the device, external level shifting buffers are required. These signals can be polarity adjusted and individually disabled in one of the two possible states. The sync signals should power up disabled in the high state. No composite sync or special flat panel sync support will be included.

10.5.1.3 **VESA/VGA Mode**

VESA/VGA mode provides compatibility for pre-existing software that set the display mode using the VGA CRTC registers. Timings are generated based on the VGA register values and the timing generator registers are not used.

10.5.1.4 DDC (Display Data Channel)

DDC is a standard defined by VESA. Its purpose is to allow communication between the host system and display. Both configuration and control information can be exchanged allowing plug- and-play systems to be realized. Support for DDC 1 and 2 is implemented. The GMCH uses the DDC_CLK and DDC_DATA signals to communicate with the analog monitor. The GMCH generates these signals at 2.5 V. External pull-up resistors and level shifting circuitry should be implemented on the board.

The GMCH implements a hardware GMBus controller that can be used to control these signals allowing for transactions speeds up to 400 kHz.

10.5.2 Digital Display Interface

The GMCH has several options for driving digital displays. The GMCH contains two SDVO ports that are multiplexed on the PCI Express* Graphics interface. When an external PCI Express* Graphics accelerator is not present, the GMCH can use the multiplexed SDVO ports to provide extra digital display options. These additional digital display capabilities may be provided through an ADD2 card, which is designed to plug in to a PCI Express connector.

10.5.2.1 Multiplexed Digital Display Channels – Intel[®] SDVOB and Intel[®] SDVOC

The GMCH has the capability to support digital display devices through two SDVO ports multiplexed with the PCI Express* Graphics signals. When an external graphics accelerator is used via the PCI Express* Graphics port, these SDVO ports are not available.

The shared SDVO ports each support a pixel clock up to 270 MHz and can support a variety of transmission devices.

SDVOCTRLDATA is an open-drain signal that will act as a strap during reset to tell the GMCH whether the interface is a PCI Express interface or an SDVO interface. When implementing SDVO, either via ADD2 cards or with a down device, a pull-up is placed on this line to signal to the GMCH to run in SDVO mode and for proper GMBus operation.

10.5.2.1.1 ADD2/MEDIA EXPANSION Card

When an Intel G35 Express Chipset platform uses a PCI Express* graphics connector, the multiplexed SDVO ports may be used via an ADD2/Media Expansion card. The ADD2/Media Expansion card will be designed to fit a standard PCI Express (x16) connector. Refer to the latest ADD2/Media Expansion EDS and ADD2/Media Expansion card design kits for more details on ADD2/Media Expansion.

10.5.2.1.2 TMDS Capabilities

The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant external device and connector, the GMCH has a high speed interface to a digital display (e.g., flat panel or digital CRT). When combining the two multiplexed SDVO ports, the GMCH can drive a flat panel up to 2048x1536 or a dCRT/HDTV up to 1920x1080. Flat Panel is a fixed resolution display. The GMCH supports panel fitting in the transmitter, receiver or an external device, but has no native panel fitting capabilities. The GMCH will however, provide unscaled mode where the display is centered on the panel.

10.5.2.1.3 LVDS Capabilities

The GMCH may use the multiplexed SDVO ports to drive an LVDS transmitter. Flat Panel is a fixed resolution display. The GMCH supports panel fitting in the transmitter, receiver or an external device, as well as using a built in 3x3 panel scalar for a single SDVO port.

10.5.2.1.4 TV-Out Capabilities

Although traditional TVs are not digital displays, the GMCH uses a digital display channel to communicate with a TV-Out transmitter. For that reason, the GMCH considers a TV-Output to be a digital display. The GMCH supports NTSC/PAL/SECAM standard definition formats. The GMCH generates the proper timing for the external encoder. The external encoder is responsible for generation of the proper format signal. Since the multiplexed SDVO interface is a NTSC/PAL/SECAM display on the TV-out port can be configured to be the boot device. It is necessary to ensure that appropriate BIOS support is provided. If EasyLink is supported in the GMCH, then this mechanism could be used to interrogate the display device.

The TV-out interface on GMCH is addressable as a master device. This allows an external TV encoder device to drive a pixel clock signal on SDVO_TVClk[+/-] that the GMCH uses as a reference frequency. The frequency of this clock is dependent on the output resolution required.

Flicker Filter and Overscan Compensation

The overscan compensation scaling and the flicker filter is done in the external TV encoder chip. Care must be taken to allow for support of TV sets with high performance de-interlacers and progressive scan displays connected to by way of a non-interlaced signal. Timing will be generated with pixel granularity to allow more overscan ratios to be supported.

Direct YUV from Overlay

When source material is in the YUV format and is destined for a device that can take YUV format data in, it is desired to send the data without converting it to RGB. This avoids the truncation errors associated with multiple color conversion steps. The common situation will be that the overlay source data is in the YUV format and will bypass the conversion to RBG as it is sent to the TV port directly.

Sync Lock Support

Sync lock to the TV will be done using the external encoders PLL combined with the display phase detector mechanism. The availability of this feature will be determined which external encoder is in use.

Analog Content Protection

Analog content protection will be provided through the external encoder using Macrovision 7.01. DVD software must verify the presence of a Macrovision TV encoder before playback continues. Simple attempts to disable the Macrovision operation must be detected.

Connectors

Target TV connectors support includes the CVBS, S-Video, Component, and SCART connectors. The external TV encoder in use will determine the method of support.

10.5.2.1.5 Control Bus

Communication to SDVO registers and if used, ADD2 PROMs and monitor DDCs, are accomplished by using the SDVOCTRLDATA and SDVOCTRLCLK signals through the SDVO device. These signals run up to 1 MHz and connect directly to the SDVO device. The SDVO device is then responsible for routing the DDC and PROM data streams to the appropriate location. Consult SDVO device data sheets for level shifting requirements of these signals.

Intel® SDVO Modes

The port can be dynamically configured in several modes:

- **Standard** Baseline SDVO functionality. This mode supports Pixel Rates between 25 and 270 MP/s. The mode uses three data pairs to transfer RGB data.
- Extended Adds Alpha support to data stream. This mode supports Pixel Rates between 25 MP/s and 270 MP/s. The mode uses four data channels and is only supported on SDVOB. Leverages channel C (SDVOC) Red pair as the Alpha pair for channel B (SDVOB).
- **Dual Standard** This mode uses Standard data streams across both SDVOB and SDVOC. Both channels can only run in Standard mode (3 data pairs) and each channel supports Pixel Rates between 25 270 MP/s and 270 MP/s.
- Dual Independent Standard In Dual Independent Standard mode, each SDVO channel will see a different pixel stream. The data stream across SDVOB will not be the same as the data stream across SDVOC.
- Dual Simultaneous Standard In Dual Simultaneous Standard mode, both SDVO channels will see the same pixel stream. The data stream across SDVOB will be the same as the data stream across SDVOC. The display timings are identical, but the transfer timings may not be (i.e., SDVOB clocks and data may not be perfectly aligned with SDVOC clock and data as seen at the SDVO device(s)). Since this mode uses just a single data stream, it uses a single pixel pipeline within the GMCH.

10.5.3 Multiple Display Configurations

Microsoft Windows* 2000, Windows* XP, and Windows Vista* operating systems have enabled support for multi-monitor display. Since the GMCH has several display ports available for its two pipes, it can support up to two different images on different display devices. Timings and resolutions for these two images may be different. The GMCH supports Intel® Dual Display Clone, Intel® Dual Display Twin, Intel® Dual Display Zoom, and Extended Desktop.

Intel Dual Display Clone uses both display pipes to drive the same content, at the same resolution and color depth to two different displays. This configuration allows for different refresh rates on each display.

Intel Dual Display Twin utilizes one of the display pipes to drive the same content, at the same resolution, color depth, and refresh rates to two different displays.

Intel Dual Display Zoom uses both display pipes to drive different content, at potentially different resolutions, refresh rates, and color depths to two different displays. This configuration results in a portion of the primary display to be zoomed in on and displayed on the secondary display.

Extended Desktop uses both display pipes to drive different content, at potentially different resolutions, refresh rates, and color depths to two different displays. This configuration allows for a larger Windows Desktop by using both displays as a work surface.

Note: The GMCH is also incapable of operating in parallel with an external PCI Express graphics device. The GMCH can, however, work in conjunction with a PCI graphics adapter.

10.6 Power Management

Power Management Feature List:

- ACPI 1.0b support
- ACPI S0, S1D, S3 (both Cold and Chipset Hot), S4, S5, C0, and C1 states
- Enhanced power management state transitions for increasing time processor spends in low power states
- Internal Graphics Display Device Control D0, D1, D2, D3
- Graphics Adapter States: D0, D3
- PCI Express Link States: L0, L0s, L1, L2/L3 Ready, L3

10.7 Thermal Sensor

There are several registers that need to be configured to support the GMCH thermal sensor functionality and SMI# generation. Customers must enable the Catastrophic Trip Point at 115 °C as protection for the GMCH. If the Catastrophic Trip Point is crossed, then the GMCH will instantly turn off all clocks inside the device. Customers may optionally enable the Hot Trip Point between 85 °C and 105 °C to generate SMI#. Customers will be required to then write their own SMI# handler in BIOS that will speed up the GMCH (or system) fan to cool the part.

10.7.1 PCI Device 0, Function 0

The SMICMD register requires that a bit be set to generate an SMI# when the Hot trip point is crossed. The ERRSTS register can be inspected for the SMI alert.

Address Offset	Symbol	Register Name	Default Value	Access
C8–C9h	ERRSTS	Error Status	0000h	RO, RWC/S
CC-CDh	SMICMD	SMI Command	0000h	RO, RW

10.7.2 MCHBAR Thermal Sensor Registers

The Digital Thermometer Configuration Registers reside in the MCHBAR configuration space.

Address Offset	Symbol	Register Name	Default Value	Access
CD8h	TSC1	Thermal Sensor Control 1	00h	RW/L, RW, RS/WC
CD9h	TSC2	Thermal Sensor Control 2	00h	RW/L, RO
CDAh	TSS	Thermal Sensor Status	00h	RO
CDC-CDFh	TSTTP	Thermal Sensor Temperature Trip Point	00000000h	RO, RW, RW/L
CE2h	TCO	Thermal Calibration Offset	00h	RW/L/K, RW/L
CE4h	THERM1	Hardware Protection	00h	RW/L, RO, RW/L/K
CE6h	THERM3	TCO Fuses	00h	RS/WC, RO
CEA-CEBh	TIS	Thermal Interrupt Status	0000h	RO, RWC
CF1h	TSMICMD	Thermal SMI Command	00h	RO, RW

10.7.3 Programming Sequence

Note: The following sequence must be followed in BIOS to properly set up the Hot Trip Point and SMI# assertion.

- 1. In Thermal Sensor Control 1 Register (TSC1), set thermal sensor enable bit (TSE) and the hysteresis value (DHA) by writing 99h to MCHBAR CD8h.
- 2. Program the Hot Trip Point Register (TSTTP[HTPS]) by writing the appropriate value to MCHBAR CDCh bits [15:8].
- 3. Program the Catastrophic Trip Point Setting Register (TSTTP[CTPS]) by writing 2Ch to MCHBAR CDCh bits [7:0].
- 4. In Thermal Sensor Control 2 Register (TSC2), program the Thermometer Mode Enable and Rate (TE) by writing 04h to MCHBAR CD9h bits [3:0].
- 5. In the Hardware Protection Register (THERM1), program the Halt on Catastrophic bit (HOC) by writing 08h to MCHBAR CE4h bits [7:0].
- 6. Lock the Hardware Protection by writing a 1 to the Lock bit (HTL) at MCHBAR CE4h bit [0].
- 7. In Thermal SMI Command Register (TSMICMD), set the SMI# on Hot bit by writing a 02h to MCHBAR CF1h.
- 8. Program the SMI Command register (SMICMD[TSTSMI]) by writing a 1 to bit 11 to PCI CCh.
- 9. Program the TCO Register (TCO[TSLB]) to lock down the other register settings by writing a 1 to bit 7 of MCHBAR CE2h.

If the temperature rises above the Hot Trip point:

The TIS[Hot Thermal Sensor Interrupt Event] is set when SMI# interrupt is generated.

Clear this bit of the TIS register to allow subsequent interrupts of this type to get registered.

Clear the global thermal sensor event bit in the Error Status Register, bit 11.

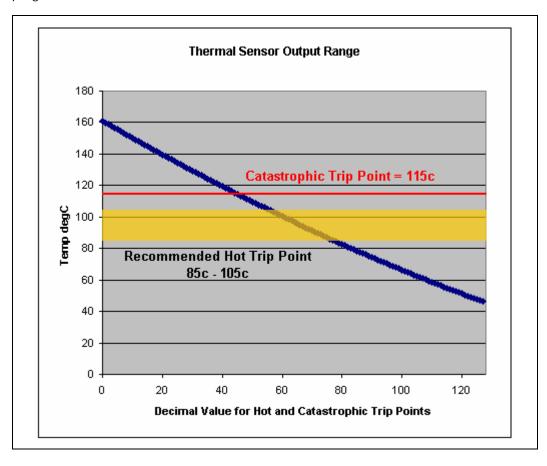
In thermal sensor status register (TSS), the Hot trip indicator (HTI) bit is set if this condition is still valid by the time the software gets to read the register.

10.7.4 Trip Point Temperature Programming

The Catastrophic and Hot trip points are programmed in the TSTTP - Thermal Sensor Temperature Trip Point Register. Bits 7:0 are for the Catastrophic trip point (CTPS), and bits 15:8 are for the Hot trip point (HTPS).

Note: Based on Intel silicon test and calculations, the Catastrophic trip point must be fixed at 115 °C. The Hot trip point is recommended to be between 85 °C and 105 °C. Programming the Hot Trip Point above this range is not recommended.

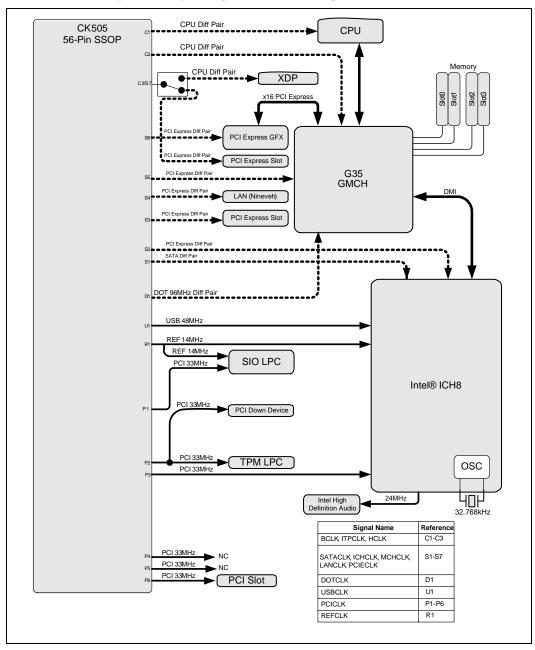
To program both trip point settings, the following polynomial equation should be used.


Programmed temp = $(0.0016*value^2)-(1.10707*value)+161.05$

In this case the "value" is a decimal number between 0 and 128. For the Catastrophic Trip Point, a decimal value of 44 (0x2C) should be used to hit 115 °C.

 $(0.0016*44^2)-(1.10707*44)+161.05 = 115.4 deg C$

The CTPS should then be programmed with 0x2C. The Hot Trip Point is also programmed in the same manner.


10.8 Clocking

The GMCH has a total of 5 PLLs providing many times that many internal clocks. The PLLs are:

- Host PLL Generates the main core clocks in the host clock domain. This PLL can
 also be used to generate memory and internal graphics core clocks. The PLL uses
 the Host clock (H_CLKIN) as a reference.
- Memory I/O PLL Optionally generates low jitter clocks for memory I/O interface, as opposed to from Host PLL. The PLL uses the Host FSB differential clock (HPL_CLKINP/HPL_CLKINN) as a reference. Low jitter clock source from Memory I/O PLL is required for DDR667 and higher frequencies.
- PCI Express PLL Generates all PCI Express related clocks, including the Direct Media, that connect to the ICH. This PLL uses the 100 MHz clock (G_CLKIN) as a reference.
- Display PLL A Generates the internal clocks for Display A. This PLL uses D_REFCLKIN as a reference.
- Display PLL B Generates the internal clocks for Display B. This PLL uses D_REFCLKIN as a reference.
- CK505 is the Clocking chip required for the Intel G35 Express Chipset platform

Figure 10-5. Intel® G35 Express Chipset System Clock Diagram

§

Functional Description

11 Electrical Characteristics

This chapter provides the DC characteristics of the GMCH.

11.1 Absolute Minimum and Maximum Ratings

Table 11-1 specifies the GMCH absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time its reliability will be severely degraded or not function when returned to conditions within the functional operating condition limits.

Although the MCH contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 11-1. Absolute Minimum and Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T _{storage}	Storage Temperature	-55	150	°C	1
MCH Core					
VCC	1.25 V Core Supply Voltage with respect to VSS	-0.3	1.375	٧	
Host Interface	(800/1066/1333 MHz)				
VTT	System Bus Input Voltage with respect to VSS	-0.3	1.32	V	
VCCA_HPLL	1.25 V Host PLL Analog Supply Voltage with respect to VSS	-0.3	1.375	٧	
System Memor	ry Interface (DDR2 667/800 MHz)				
VCCSM	1.8 V DDR2 System Memory Supply Voltage with respect to VSS	-0.3	4.0	٧	
VCC_SMCLK	1.8 V DDR2 Clock System Memory Supply Voltage with respect to VSS	-0.3	4.0	V	

	T	ı	ı	1	1			
Symbol	Parameter	Min	Max	Unit	Notes			
VCCA_MPLL	1.25 V System Memory PLL Analog Supply Voltage with respect to VSS	-0.3	1.375	V				
PCI Express*	PCI Express* / Intel® sDVO / DMI Interface							
VCC_EXP	1.25 V PCI Express* and DMI Supply Voltage with respect to VSS	-0.3	1.375	V				
VCCA_EXP	3.3 V PCI Express* Analog Supply Voltage with respect to VSS	-0.3	3.63	V				
VCCA_EXPPLL	1.25 V PCI Express* PLL Analog Supply Voltage with respect to VSS	-0.3	1.375	V				
R, G, B / CRT [DAC Display Interface (8 bit)							
VCCA_DAC	3.3 V Display DAC Analog Supply Voltage with respect to VSS	-0.3	3.63	V				
VCCD_CRT	1.5 V Display DAC Digital Supply Voltage with respect to VSS	-0.3	1.98	V				
VCCDQ_CRT	1.5 V Display DAC Quiet Digital Supply Voltage with respect to VSS	-0.3	1.98	V				
VCCA_DPLLA	1.25 V Display PLL A Analog Supply Voltage with respect to VSS	-0.3	1.375	V				
VCCA_DPLLB	1.25 V Display PLL B Analog Supply Voltage with respect to VSS	-0.3	1.375	V				
Controller Link	Interface							
VCC_CL	1.25 V Supply Voltage with respect to VSS	-0.3	1.375	V				
CMOS Interfac	CMOS Interface							
VCC3_3	3.3 V CMOS Supply Voltage with respect to VSS	-0.3	3.63	V				

NOTE:

1. Possible damage to the GMCH may occur if the GMCH temperature exceeds 150 °C. Intel does not ensure functionality for parts that have exceeded temperatures above 150 °C due to specification violation.

11.1.1 Current Consumption

Table 11-2 shows the current consumption for the MCH in the Advanced Configuration and Power Interface (ACPI) S0 state. Icc max values are determined on a perinterface basis, at the highest frequencies for each interface. Sustained current values or Max current values cannot occur simultaneously on all interfaces. Sustained Values are *measured* sustained RMS maximum current consumption and includes leakage estimates. The measurements are made with fast silicon at 96 °C Tcase temperature, at the Max voltage listed in Table 11-4. The Max values are maximum theoretical presilicon calculated values. In some cases, the Sustained measured values have exceeded the Max theoretical values.

Table 11-2. Current Consumption in S0

Symbol	Parameter	Signal Names	Sustained	Max	Unit	Notes
·	1.25 V Core Supply Current (Using Integrated Graphics)	VCC (int. graphics)	15.5	18.9	А	
I _{VCC}	1.25 V Core Supply Current (Using External Graphics)	VCC (ext. graphics)	7.20	9.30		1,2
I _{VCCSM}	DDR2 System Memory Interface (1.8 V) Supply Current	VCCSM	2.24	3.70	А	1 2 2
I _{VCC_SMCLK}	DDR2 System Memory Clock Interface (1.8 V) Supply Current	VCC_SMCLK	2.26	250	mA	1, 2, 3
I _{VCC_EXP}	1.25 V PCI Express* / Intel® SDVO and DMI Supply Current (Using Integrated Graphics)	VCC_EXP (int. graphics)	1.76	2.47	А	2
TVCC_EXP	1.25 V PCI Express* / Intel® SDVO and DMI Supply Current (Using External Graphics)	VCC_EXP (ext. graphics)	1.70			2
I _{VCC_CL}	1.25 V Controller Supply Current	VCC_CL	2.64	3.80	Α	2
I _{VTT}	System Bus Supply Current	VTT	0.95	0.98	Α	1
I _{VCCA_EXP}	3.3 V PCI Express* / Intel® SDVO and DMI Analog Supply Current	VCCA_EXP	0.36	0.36	mA	
I _{VCCA_DAC}	3.3 V Display DAC Analog Supply Current	VCCA_DAC	70	65.8	mA	
I _{VCC3_3}	3.3 V CMOS Supply Current	VCC3_3	21	15.8	mA	
I _{VCCD_CRT}	1.5 V Display Digital Supply Current	VCCD_CRT	100	30	mA	3
I _{VCCDQ_CRT}	1.5 V Display Quiet Digital Supply Current	VCCDQ_CRT	100	0.03	mA	. J
I _{VCCA_EXPPLL}	1.25 V PCI Express* / Intel® SDVO and DMI PLL Analog Supply Current	VCCA_EXPPLL	70	71.6	mA	
I _{VCCA_HPLL}	1.25 V Host PLL Supply Current	VCCA_HPLL	20	67.9	mA	
I _{VCCA_DPLLA}	1.25 V Display PLL A and PLL B Supply Current	VCCA_DPLLA	30	90.6	mA	
I _{VCCA_DPLLB}	1.25 V Display PLL A and PLL B Supply Current	VCCA_DPLLB	40	90.6	mA	
I _{VCCA_MPLL}	1.25 V System Memory PLL Analog Supply Current	VCCA_MPLL	90	225	mA	

NOTES:

- 1. Measurements are for current coming through chipset's supply pins.
- 2. Rail includes DLLs (and FSB sense amps on VCC).
- 3. Sustained Measurements are combined because one voltage regulator on the platform supplies both rails on the GMCH.

11.2 Signal Groups

The signal description includes the type of buffer used for the particular signal.

PCI Express* / Intel [®] sDVO	PCI Express interface signals. These signals are compatible with PCI Express 1.1 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+-D-) * 2 = 1.2 \text{ Vmax}$. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.
DMI	Direct Media Interface signals. These signals are compatible with PCI Express 1.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = (D+ - D-) * 2 = 1.2 Vmax. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V.
GTL+	Open Drain GTL+ interface signal. Refer to the GTL+ I/O Specification for complete details.
HCSL	Host Clock Signal Level buffers. Current mode differential pair. Differential typical swing = $(D+-D-) * 2 = 1.4 \text{ V}$. Single ended input tolerant from - 0.35V to 1.2V. Typical crossing voltage 0.35 V.
SSTL-1.8	Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V tolerant.
SSTL-1.5	Stub Series Termination Logic. These are 1.5 V output capable buffers. 1.5 V tolerant.
CMOS	CMOS buffers
Analog	Analog reference or output. May be used as a threshold voltage or for buffer compensation.

Table 11-3. Signal Groups

Signal Type	Signals	Notes
Host Interface Signal Groups		
GTL+ Input/Outputs	HADS#, HBNR#, HBREQO#, HDBSY#, HDRDY#, HDINV[3:0]#, HA[35:3]#, HADSTB[1:0]#, HD[63:0]#, HDSTBP[3:0]#, HDSTBN[3:0]#, HHIT#, HHITM#, HREQ[4:0]#, HLOCK#	
GTL+ Common Clock Outputs	HBPRI#, HCPURST#, HDEFER#, HTRDY#, HRS[2:0]#	
Analog Host I/F Ref and Comp. Signals	HDVREF, HACCVREF, HSWING, HRCOMP, HSCOMP#	
GTL+ Input	BSEL[2:0]	
PCI Express* Graphics and Intel	® sDVO Interface Signal Groups	
PCI Express* / Intel® sDVO Input	PCI Express* Interface: EXP_RXN[15:0], EXP_RXP[15:0],	1
	Intel® sDVO Interface: SDVO_TVCLKIN+, SDVO_TVCLKIN-, SDVOB_INT+, SDVOB_INT-, SDVO_STALL+, SDVO_STALL-, SDVOC_INT+, SDVOC_INT-	
PCI Express* / Intel® sDVO Output	PCI Express* Interface: EXP_TXN[15:0], EXP_TXP[15:0] Intel® sDVO Interface: SDVOB_RED+, SDVOB_RED-, SDVOB_GREEN+, SDVOB_GREEN-, SDVOB_BLUE+, SDVOB_BLUE-, SDVOB_CLK+, SDVOB_CLK-, SDVOC_RED+/SDVOB_ALPHA+, SDVOC_RED-/SDVOB_ALPHA-, SDVOC_GREEN+, SDVOC_GREEN-, SDVOC_BLUE+, SDVOC_BLUE-, SDVOC_CLK+, SDVOC_CLK-	1
CMOS I/O OD	SDVO_CTRLCLK, SDVO_CTRLDATA	
Analog PCI Express* / Intel [®] sDVO Interface Compensation Signals	EXP_COMPO, EXP_COMPI	
Direct Media Interface Signal Gro	oups	
DMI Input	DMI_RXN[3:0], DMI_RXP[3:0]	
DMI Output	DMI_TXN[3:0], DMI_TXP[3:0]	
System Memory Interface Signal	Groups	
SSTL-1.8 / SSTL-1.5 Input/Output	SDQ_A[63:0], SDQ_B[63:0], SDQS_A[7:0], SDQS_A[7:0]#, SDQS_B[7:0], SDQS_B[7:0]#	
SSTL-1.8 / SSTL-1.5 Output	SDM_A[7:0], SDM_B[7:0], SMA_A[14:0], SMA_B[14:0], SBS_A[2:0], SBS_B[2:0], SRAS_A#, SRAS_B#, SCAS_A#, SCAS_B#, SWE_A#, SWE_B#, SODT_A[3:0], SODT_B[3:0], SCKE_A[3:0], SCKE_B[3:0], SCS_A[3:0]#, SCS_B[3:0]#, SCLK_A[5:0], SCLK_A[5:0]#, SCLK_B[5:0], SCLK_B[5:0]#	
CMOS Input	N/A	
Reference and Comp. Voltages	SRCOMP[3:0], SMVREF, SRCOMP_VOL, SRCOMP_VOH	

Signal Type	Signals	Notes
Controller Link Signal Groups		1
CMOS I/O OD	CL_DATA, CL_CLK	
CMOS Input	CL_RST#, CL_PWROK	
Analog Controller Link Reference Voltage	CL_VREF	
R, G, B / CRT DAC Display Signal	Groups	
Analog Current Outputs	RED, RED#, GREEN, GREEN#, BLUE, BLUE#	
Analog/Ref DAC Miscellaneous	REFSET	2
CMOS I/O OD	DDC_CLK, DDC_DATA	
HVCMOS Output	HSYNC, VSYNC	
Clocks		
HCSL	HCLKN, HCLKP, DREFCLKP, DREFCLKN, GCLKP, GCLKN	
Reset, and Miscellaneous Signal	Groups	•
CMOS Input	EXP_EN, EXP_SLR, RSTIN#, PWROK	
CMOS Output	ICH_SYNC#	
Miscellaneous	TEST[2:0]	
I/O Buffer Supply Voltages		•
System Bus Input Supply Voltage	VTT	
1.25 V PCI Express* / Intel® sDVO Supply Voltages	VCC_EXP	
3.3 V PCI Express* / Intel® sDVO Analog Supply Voltage	VCCA_EXP	
1.8 V DDR2 Supply Voltage	VCCSM	
1.8 V DDR2 Clock Supply Voltage	VCC_SMCLK	
1.25 V GMCH Core Supply Voltage	vcc	
1.25 V Controller Supply Voltage	VCC_CL	
3.3 V CMOS Supply Voltage	VCC3_3	
3.3 V R, G, B / CRT DAC Display Analog Supply Voltage	VCCA_DAC	
1.5 V DAC Digital Supply Voltages	VCCD_CRT, VCCDQ_CRT	
PLL Analog Supply Voltages	VCCA_HPLL, VCCA_EXPPLL, VCCA_DPLLA, VCCA_DPLLB, VCCA_MPLL	

NOTES:

- See Section 2.10 for Intel[®] sDVO and PCI Express* Pin Mapping
 Current Mode Reference pin. DC Specification not required.

11.3 Buffer Supply and DC Characteristics

11.3.1 I/O Buffer Supply Voltages

The I/O buffer supply voltage is measured at the GMCH package pins. The tolerances shown in Table 11-4 are inclusive of all noise from DC up to 20 MHz. In the lab, the voltage rails should be measured with a bandwidth limited oscilloscope with a roll off of 3 dB/decade above 20 MHz under all operating conditions.

Table 11-4 indicates which supplies are connected directly to a voltage regulator or to a filtered voltage rail. For voltages that are connected to a filter, they should me measured at the *input* of the filter.

If the recommended platform decoupling guidelines cannot be met, the system designer will have to make tradeoffs between the voltage regulator output DC tolerance and the decoupling performance of the capacitor network to stay within the voltage tolerances listed in Table 11-4.

Table 11-4. I/O Buffer Supply Voltage

Symbol	Parameter	Min	Nom	Max	Unit	Notes
VCCSM	DDR2 I/O Supply Voltage	1.7	1.8	1.9	V	5
VCC_SMCLK	DDR2 Clock Supply Voltage	1.7	1.8	1.9	V	2
VCC_EXP	SDVO, PCI Express* Supply Voltage	1.188	1.25	1.313	V	
VCCA_EXP	SDVO, PCI Express* Analog Supply Voltage	3.135	3.3	3.465	V	2
	1.2 V System Bus Input Supply Voltage	1.14	1.2	1.26	V	
VTT	1.1 V System Bus Input Supply Voltage	1.045	1.1	1.155	V	4
VCC	MCH Core Supply Voltage	1.188	1.25	1.313	V	
VCC_CL	Controller Supply Voltage	1.188	1.25	1.313	V	
VCC3_3	CMOS Supply Voltage	3.135	3.3	3.465	V	
VCCA_DAC	Display DAC Analog Supply Voltage	3.135	3.3	3.465	V	3
VCCD_CRT	Display Digital Supply Voltage	1.425	1.5	1.575	V	1
VCCDQ_CRT	Display Quiet Digital Supply Voltage	1.425	1.5	1.575	V	1
VCCA_HPLL, VCCA_EXPPLL, VCCA_DPLLA, VCCA_DPLLB, VCCA_MPLL	Various PLLs' Analog Supply Voltages	1.188	1.25	1.313	V	2,7

NOTES

- 1. The VCCD_CRT and VCCDQ_CRT can also operate at a nominal 1.8 V $\pm 5\%$ input voltage. Only the 1.5 V nominal voltage setting will be validated internally.
- 2. These rails are filtered from other voltage rails on the platform and should be measured at the *input* of the filter.
- 3. VCCA_DAC voltage tolerance should only be measured when the DAC is turned ON and at a stable resolution setting. Any noise on the DAC during power on or display resolution changes do not impact the circuit.
- 4. GMCH supports both V_{TT} = 1.2 V nominal and V_{TT} = 1.1 V nominal depending on the identified processor.

11.3.2 General DC Characteristics

Platform Reference Voltages at the top of Table 11-5 are specified at DC only. V_{REF} measurements should be made with respect to the supply voltage.

Table 11-5. DC Characteristics

Symbol	Parameter	Min	Nom	Max	Unit	Notes
Reference Vol	tages					
FSB_DVREF FSB_ACCVREF	Host Data, Address, and Common Clock Signal Reference Voltages	0.666 x VTT_FSB -2%	0.666 x VTT_FSB	0.666 x VTT_FSB +2%	V	
FSB_SWING	Host Compensation Reference Voltage	0.25 x VTT_FSB -2%	0.25 x VTT_FSB	0.25 x VTT_FSB +2%	٧	
CL_VREF	Controller Link Reference Voltage	0.270 x VCC_CL	0.279 x VCC_CL	0.287 x VCC_CL	V	
SMVREF	DDR2 Reference Voltage	0.49 x VCC_DDR	0.50 x VCC_DDR	0.51 x VCC_DDR	V	
Host Interface	e					
V _{IL_H}	Host GTL+ Input Low Voltage	-0.10	0	(0.666 x VTT_FSB) - 0.1	V	
V _{IH_H}	Host GTL+ Input High Voltage	(0.666 x VTT_FSB) + 0.1	VTT_FSB	VTT_FSB + 0.1	V	
V _{OL_H}	Host GTL+ Output Low Voltage	_	_	(0.25 x VTT_FSB) + 0.1	٧	
V _{OH_H}	Host GTL+ Output High Voltage	VTT_FSB - 0.1	_	VTT_FSB	V	
I _{OL_H}	Host GTL+ Output Low Current	_	_	VTT_FSBmax * (1-0.25) / Rttmin	mA	Rtt _{min} = 47.5Ω
I _{LEAK_H}	Host GTL+ Input Leakage Current	_	_	45	μА	V _{OL} < Vpad< Vtt_FSB
C _{PAD}	Host GTL+ Input Capacitance	2.0	_	2.5	pF	
C _{PCKG}	Host GTL+ Input Capacitance (common clock)	0.90	1	2.5	pF	
DDR2 System	Memory Interface					
V _{IL(DC)}	DDR2 Input Low Voltage	_	_	SMVREF – 0.125	٧	
V _{IH(DC)}	DDR2 Input High Voltage	SMVREF + 0.125	_	_	V	
V _{IL(AC)}	DDR2 Input Low Voltage			SMVREF – 0.25	V	
V _{IH(AC)}	DDR2 Input High Voltage	SMVREF + 0.25		_	V	

Symbol	Parameter	Min	Nom	Max	Unit	Notes
V _{OL}	DDR2 Output Low Voltage	_	_	0.2 * VCCSM	V	1
V _{OH}	DDR2 Output High Voltage	0.8 * VCCSM	_	_	V	1
Leak	Input Leakage Current	_	_	±20	μΑ	4
Leak	Input Leakage Current	_	_	±550	μΑ	5
C _{I/O}	DQ/DQS/DQSB DDR2 Input/Output Pin Capacitance	1.0	_	4.0	pF	
1.25V PCI Ex	xpress* Interface 1.1 (includes	PCI Express* ar	nd Intel® sDV	(0)		
V _{TX-DIFF P-P}	Differential Peak to Peak Output Voltage	0.800	_	1.2	V	2
V _{TX_CM-ACp}	AC Peak Common Mode Output Voltage	_	_	20	mV	
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120	Ω	
V _{RX-DIFF p-p}	Differential Peak to Peak Input Voltage	0.175	_	1.2	V	3
V _{RX_CM-ACp}	AC Peak Common Mode Input Voltage	_	_	150	mV	
Input Clocks				<u>.</u>		
V _{IL}	Input Low Voltage	-0.150	0	_	V	
V _{IH}	Input High Voltage	0.660	0.710	0.850	V	
V _{CROSS(ABS)}	Absolute Crossing Voltage	0.300	_	0.550	V	6,7,8
$\Delta V_{\text{CROSS(REL)}}$	Range of Crossing Points	_	_	0.140	V	
C _{IN}	Input Capacitance	1	_	3	pF	
SDVO_CTRL	DATA, SDVO_CTRLCLK					
V _{IL}	Input Low Voltage	_	_	0.75	V	
V _{IH}	Input High Voltage	1.75	_		V	
I _{LEAK}	Input Leakage Current	_	_	± 10	μΑ	
C _{IN}	Input Capacitance	_	_	10.0	pF	
I _{OL}	Output Low Current (CMOS Outputs)	_	_	7.8	mA	@ 50% swing
I _{ОН}	Output High Current (CMOS Outputs)	-1	_	_	mA	@ 50% swing
V _{OL}	Output Low Voltage (CMOS Outputs)	_	_	0.4	V	
V _{OH}	Output High Voltage (CMOS Outputs)	2.25	_	_	V	

Symbol	Parameter	Min	Nom	Max	Unit	Notes
CRT_DDC_DA	ATA, CRT_DDC_CLK				<u> </u>	
V _{IL}	Input Low Voltage	_	_	0.9	V	
V _{IH}	Input High Voltage	2.1	_	_	V	
I _{LEAK}	Input Leakage Current	_	_	± 10	μА	
C _{IN}	Input Capacitance	_		10.0	pF	
I _{OL}	Output Low Current (CMOS Outputs)	_	_	27.0	mA	@ 50% swing
I _{ОН}	Output High Current (CMOS Outputs)	-1		ı	mA	@ 50% swing
V _{OL}	Output Low Voltage (CMOS Outputs)	_	_	0.4	V	
V _{OH}	Output High Voltage (CMOS Outputs)	2.7	_	_	V	
CL_DATA, CL	_CLK					
V _{IL}	Input Low Voltage	_	_	0.277	V	
V _{IH}	Input High Voltage	0.427	_		V	
I _{LEAK}	Input Leakage Current	_	_	± 20	μА	
C _{IN}	Input Capacitance	_	_	1.5	pF	
I _{OL}	Output Low Current (CMOS Outputs)	_	_	1.0	mA	@V _{OL_HI} max
I _{ОН}	Output High Current (CMOS Outputs)	6.0			mA	@V _{он_ні} min
V _{OL}	Output Low Voltage (CMOS Outputs)	_	_	0.06	V	
V _{OH}	Output High Voltage (CMOS Outputs)	0.6	_	_	V	
PWROK, CL_	PWROK, RSTIN#					
V _{IL}	Input Low Voltage	_	_	0.3	V	
V _{IH}	Input High Voltage	2.7	_	_	V	
I _{LEAK}	Input Leakage Current	_	_	±1	mA	
C _{IN}	Input Capacitance		_	6.0	pF	
CL_RST#						
V _{IL}	Input Low Voltage	_	_	0.13	V	
V _{IH}	Input High Voltage	1.17	_	_	V	
I _{LEAK}	Input Leakage Current	_	_	±20	μА	
C _{IN}	Input Capacitance	_	_	5.0	pF	

Symbol	Parameter	Min	Nom	Max	Unit	Notes
ICH_SYNCB			l		I	
I _{OL}	Output Low Current (CMOS Outputs)	_	_	2.0	mA	@V _{OL_HI}
I _{OH}	Output High Current (CMOS Outputs)	-2.0	_	_	mA	@V _{он_ні} min
V _{OL}	Output Low Voltage (CMOS Outputs)	_	_	0.33	V	
V _{OH}	Output High Voltage (CMOS Outputs)	2.97	_	_	V	
EXP_SLR, EX	P_EN					
V _{IL}	Input Low Voltage	-0.10	0	(0.63 x VTT) – 0.1	V	
V _{IH}	Input High Voltage	(0.63 x VTT)+0.1	VTT	VTT +0.1	V	
I _{LEAK}	Input Leakage Current	_	_	20	μА	V _{OL} < Vpad< Vtt
C _{IN}	Input Capacitance	2	_	2.5	pF	
HSYNC, VSYI	NC					
I _{OL}	Output Low Current (CMOS Outputs)	_	_	35.0	mA	@V _{OL_Н} max
I _{OH}	Output High Current (CMOS Outputs)	-1.0	_	_	mA	@V _{он_ні} min
V _{OL}	Output Low Voltage (CMOS Outputs)		_	0.5	V	
V _{OH}	Output High Voltage (CMOS Outputs)	2.4	_	_	V	

NOTES:

- 1. Determined with 2x GMCH Buffer Strength Settings into a 50 Ω to 0.5xVCC_DDR test load.
- 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Transmitter compliance eye diagram of PCI Express* specification and measured over any 250 consecutive TX UIs.
- 3. Specified at the measurement point over any 250 consecutive Uls. The test load shown in Receiver compliance eye diagram of PCI Express* spec should be used as the RX device when taking measurements.
- 4. Applies to pin to VCC or VSS leakage current for the DDR_A_DQ_63:0 and DDR_B_DQ_63:0
- 5. Applies to pin to pin leakage current between DDR_A_DQS_7:0, DDR_A_DQSB_7:0, DDR_B_DQS_7:0, and DDR_B_DQSB_7:0 signals.
- 6. Crossing voltage defined as instantaneous voltage when rising edge of BCLKO equals falling edge
- V_{Havg} is the statistical average of the V_{H} measured by the oscilloscope. The crossing point must meet the absolute and relative crossing point specifications simultaneously. Refer to the appropriate processor datasheet for further information.

R, G, B / CRT DAC Display DC Characteristics 11.3.3

Table 11-6. R, G, B / CRT DAC Display DC Characteristics: Functional Operating Range $(VCCA_DAC = 3.3 V \pm 5\%)$

Parameter	Min	Тур	Max	Units	Notes
DAC Resolution	8	_	_	Bits	1
Max Luminance (full- scale)	0.66 5	0.700	0.77	V	1, 2, 4 (white video level voltage)
Min Luminance	ı	0.000	ı	٧	1, 3, 4 (black video level voltage)
LSB Current	l	73.2		μΑ	4,5
Integral Linearity (INL)	-1.0	_	+1.0	LSB	1,6
Differential Linearity (DNL)	-1.0	_	+1.0	LSB	1,6
Video channel-channel voltage amplitude mismatch	_	_	6	%	7
Monotonicity		Ensured		_	

- 1. Measured at each R, G, B termination according to the VESA Test Procedure Evaluation of Analog Display Graphics Subsystems Proposal (Version 1, Draft 4, December 1, 2000).
- 2. Max steady-state amplitude
- 3. Min steady-state amplitude

- Defined for a double 75 Ω termination.
 Set by external reference resistor value.
 INL and DNL measured and calculated according to VESA Video Signal Standards.
 Max full-scale voltage difference among R, G, B outputs (percentage of steady-state full-scale) voltage).

12 Ballout and Package Information

This chapter contains the ballout and package information for the 82G35 GMCH.

12.1 Ballout

Figure 12-1, Figure 12-2, and Figure 12-3 show the ballout from a top view of the package. Table 12-1 provides a ballout list arranged alphabetically by ball number.

Note: Notes for Figure 12-1, Figure 12-2, and Figure 12-3, and Table 12-1.

- 1. Balls that are listed as RSVD are reserved.
- 2. Some balls marked as reserved (RSVD) are used in XOR testing. See Chapter 13 for details.
- 3. Balls that are listed as NC are No Connects.

Figure 12-1. GMCH Ballout Diagram (Top View Left – Columns 43–30)

	43	42	41	40	39	38	37	36	35	34	33	32	31	30	
вс	TEST0	NC	VSS		VCCSM		VSS			VCCSM		VSS		VCCSM	вс
вв	NC	VCC_ SMCLK	VCC_ SMCLK	SRCOMP2	VCCSM	SCS_A3#	VCCSM		SODT_A2	SWE_A#	SRAS_A#	VCCSM	SODT_B3	SCS_B1#	вв
ва	VCC_ SMCLK	VCC_ SMCLK		SRCOMP3	SODT_A3	SODT_A1			SCS_A1#	SCS_A2#	SBS_A0		SMA_A0	SODT_B1	ВА
AY	OMOLIN	VCC_ SMCLK	VSS	VSS		SMA_A13	SODT_A0		SCAS_A#		SMA_A10	VCCSM	SCS_B3#		AY
AW	VSS	RSVD	VSS		SDQS_B4		SDQ_B32		SCS_A0#		SCLK_A2#	SBS_A1	SCLK_B0#		AW
AV		SDQ_A32	SDQ_A37	SDQ_A36		SDQ_B33	VSS		VSS		SCLK_A2	SCLK_B2	SCLK_B0		AV
AU	SDM_A4	VSS		SDQ_A33	SDQS_B4#	VSS	SDM_B4		SDQ_B36		SCLK_A5#	VSS	SCLK_A0		AU
AT											SCLK_A5	SCLK_B2#	VSS		АТ
AR		SDQ_A38	SDQS_A4	SDQS_A4#	SDQ_B44	VSS	SDQ_B39		SDQ_B37		VSS	VSS	SCLK_A0#		AR
AP	VSS	SDQ_A34	SDQ_A39									SCLK_B5#	SCLK_A3#		AP
AN		SDQ_A45	SDQ_A40	SDQ_A44	SDQ_A35	VSS	SDQ_B35	SDQ_B34	SDQ_B38		SCLK_B5	RSVD	VSS		AN
AM	SDM_A5	VSS		VSS	SDQ_A41	SDQ_B41	SDM_B5	VSS	SDQ_B40	SDQ_B45	VSS		RSVD		AM
AL		SDQ_A46	SDQS_A5	SDQS_A5#	SDQ_A47	SDQ_B43	SDQ_B46	VSS	SDQS_B5	SDQS_B5#	VSS	SDQ_B47	RSVD		AL
AK	VSS	SDQ_A42	SDQ_A43											VCC_CL	AK
AJ		SDQ_A52	SDQ_A53	SDQ_A48	VSS	SDQ_B49	SDQ_B52	VSS	SDQ_B53	SDQ_B42	VSS	RSVD	VCC_CL	VCC_CL	AJ
АН	SDQ_A49	VSS													АН
AG		SDQS_A6	SDQS_A6#	SDM_A6	SDM_B6	SDQ_B48	VSS	SDQS_B6#	SDQS_B6	VSS	SDQ_B54	RSVD	VCC_CL	VCC_CL	AG
AF	VSS	SDQ_A55	SDQ_A54		SDQ_A50	SDQ_B61	VSS	VSS	SDQ_B50	SDQ_B55	SDQ_B51	RSVD	VCC_CL	VCC_CL	AF
AE		SDQ_A60	SDQ_A61	SDQ_A51											AE
AD	SDQ_A57	VSS		SDQ_A56	VSS	SDM_B7	VSS	SDQ_B56	VSS	SDQ_B60	VSS	VCC_CL	VCC_CL	VCC_CL	AD
AC		SDQS_A7	SDQS_A7#	SDM_A7	SDQ_A62	VSS	SDQS_B7#	SDQS_B7	VSS	SDQ_B62	SDQ_B57	VCC_CL	VCC_CL	VCC_CL	AC
АВ	VSS	SDQ_A63	SDQ_A58												АВ
AA		HBREQ0#	HRS1#	SDQ_A59	SM_ SLEWIN1	VSS	HA35#	SDQ_B59	VSS	SDQ_B58	SDQ_B63	VCC_CL	VCC_CL	VCC_CL	AA
Υ	HHITM#	VSS		HTRDY#	HA34#	HA33#	VSS	HA32#	VSS	HA29#	VSS	VCC_CL_ PLL	VCC_CL	VCC_CL	Υ
w		HBNR#	HDRDY#	HADS#											w
v	VSS	HA30#	HLOCK#		VSS	HA31#	VSS	HA22#	HA28#	VSS	HA27#	VSS	RSVD	VCC_CL	v
U		HHIT#	HRS0#	HDBSY#	HRS2#	VSS	HA17#	HA24#	VSS	HADSTB1#	HA25#	HCLKN	RSVD	RSVD	U
т	HDEFER#	VSS													т
R		HD4	HD2#	HD0#	HA21#	HA23#	HA19#	VSS	HA26#	HA14#	VSS	HCLKP	VSS	RSVD	R
P	VSS	HA20#	HD1#											VSS	Р
N		HD7	HD6#	HD3#	HA18#	HA16#	HA12#	VSS	HA15#	HA10#	VSS	HA9#	VSS		N
М	HDSTBN0#	VSS		HDINV0#	HD5#	HA11#	VSS	HA13#	VSS	HADSTB0#	VSS		HD34#		М
L		HD10#	HD8#	HDSTBP0#	HA4#	HREQ2#	HA6#	HA7#	HREQ1#		VSS	VSS	VSS		L
κ	VSS	HA8#	HD12#									HD29#	HD36#		κ
J		HA3#	HD11#	HA5#	HD9#	VSS	HREQ4#		VSS		HDINV1#	VSS	HD32#		J
н											HDSTBN1#	HD30#	VSS		н
G	HREQ3#	VSS		HD13#	HBPRI#	VSS	HD19#		HDSTBP1#		HD25#	VSS	HD37#		G
F		HD15#	HD14#	HREQ0#		HD18#	VSS		VSS		HD27#	HD33#	HD39#		F
E	VSS	HD20#	HD50#		HD21#		HD22#		HD28#		HDINV3#	VSS	HD35#		Е
D		HD52#	HD17#	VSS		HDSTBN3#	HD57#		HD54#		HD59#	HD63#	VSS		D
С	VSS	HD16#		HD53#	HD23#	HD56#			HD49#	HD60#	HD48#		HCPURST#	VTT	С
В	NC	NC	HD51#	HD55#	HD24#	HDSTBP3#	VSS		HD61#	HD31#	HD58#	VSS	VSS	VTT	В
Α	TEST2	NC	VSS		VSS		HD26#			VSS		HD62#		VTT	Α
	43	42	41	40	39	38	37	36	35	34	33	32	31	30	

Figure 12-2. GMCH Ballout Diagram (Top View Middle– Columns 29–15)

	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	
вс	27	VSS	27	VCCSM	23	VSS	23	VCCSM	21	SCKE_A0	17	VCCSM	17	SMA_B3	15	вс
ВВ	SODT_B2	VCCSM	SCS_B0#	VCCSM	SMA_A1	VCCSM	SMA_A8	SMA_A11	SBS_A2	VCCSM	RSVD	VCCSM	SMA_B0	VCCSM	SMA_B6	ВВ
ВА	SODT_B0		SWE_B#	SMA_A2	SMA_A3		SMA_A5	SMA_A9	SMA_A14		SCKE_A3	SBS_B1	SMA_B2		SMA_B5	ВА
AY	SMA_B13		SCS_B2#		SMA_A4	SMA_A6	SMA_A7		SCKE_A2	SCKE_A1	SBS_B0	010_0	SMA_B1		SMA_B8	AY
AW	SCAS_B#		SCLK_B4#	SRAS_B#		VCCSM	SDQ_B29		SMA_A12	VCCSM	000_00	SMA_B10	SDQ_B23		SMA_B4	AW
AV	SCLK_B4		VSS	VCCSM		SDQ_B24	VSS		VSS	SDQ_A31		VCCSM	VSS		SDQ_B22	AV
AU	SCLK_B3		SCLK_B1	SDQS_		VSS	SDQ_B28		SDQ_A26	VSS		SDQS_A3	SDQ_B18		SDQ_B16	AU
	VSS		SCLK_B1#	B3# SDQ_B26		SDQS_B3	SDQ_B25		SDQ_A27	SDQS_A3		# SDQ_A24	SDQ_B19		VSS	
AT	SCLK_B3#		VSS	VSS		SDQ_B30	VSS		VSS	VSS		SDQ_A25	VSS		SDQS_B2#	AT
AR	SCLK_A3		SCLK_A1	SDQ_B27		VSS	SDM_B3		SM_	SDQ_A30		VSS	SDQ_A28		SDQS_B2	AR
AP	VSS						VSS		SLEWINO				SDQ_A29		VSS	AP
AN			SCLK_A1#	SDQ_B31		VSS			RSVD	VSS		SDM_A3			CL_	AN
AM	VSS		SCLK_A4#	SCLK_A4		VSS	VSS		RSVD	VSS		RSTIN#	PWROK		PWROK	AM
AL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	AL
AK	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	AK
AJ	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	VCC_CL		VCC_CL	AJ
АН	1400 01		V00 01	1400 01	1/00	Moo	Maa	1400	1400	1400	1400	Moo	WOO		1/00	АН
AG	VCC_CL		VCC_CL	VCC_CL	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC		vcc	AG
AF	VCC_CL		VCC_CL	VCC	vcc	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		VCC	AF
AE	VCC_CL					VSS									VCC	AE
AD			VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		VCC	AD
AC	VCC_CL		VCC	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC		VCC	AC
AB	VCC CI		VCC	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC		VCC	AB
AA	VCC_CL		VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC		VCC	AA
Υ	VCC_CL		VCC	VCC	VCC	VSS	VCC	VSS	VCC	VSS	VCC	VCC	VCC		VCC	Υ
w	VCC_CL		VCC	VCC	vcc	VCC	VCC	VCC	vcc	VCC	vcc	VCC	VCC		VCC	w
v 	VCC_CL		VCC_CL	VCC	VCC	VCC	VCC	VCC	VCC	VCC	vcc	VCC	VCC		vcc	v
U T	VCC_CL		VCC_CL	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC		VCC	U
T R	RSVD		VTT	VTT		VTT	VTT		VSS	VCC		VCC	VCC		VCC	T R
R P	VTT		VTT	VTT		VTT	VTT		VSS	VCC		VSS	VSS		VCC	R P
N	VTT		VSS	VTT		VTT	VTT		VSS	NC		RSVD	RSVD		RSVD	N
м	VTT		VSS	HD47#		VTT	VTT		VSS	RSVD		RSVD	VSS		VSS	м
L	VSS		HD42#	HD45#		VTT	VTT		VSS	VSS		RSVD	RSVD		RSVD	L
к	HD38#		HD43#	VSS		VTT	VTT		VSS	ALLZTEST		VSS	RSVD		EXP_RXP1	к
J	HD40#		VSS	HD46#		VTT	VTT		VSS	BSEL1		BSEL2	EXP_EN		EXP_RXN1	J
н	VSS		HDSTBN2 #	HD44#		VTT	VTT		VSS	VSS		RSVD	VSS		VSS	н
G	HDINV2#		HDSTBP2#	VTT		VTT	VTT		VSS	BSELO		RSVD	SDVO_ CTRLDAT A		EXP_RXN0	G
F	HD41#		VSS	VTT		VTT	VTT		VSS	XORTEST		VSS	RSVD		EXP_RXP0	F
E	VTT		VTT	VTT		VSS	VTT		VSS	VSS		EXP_SLR	SDVO_ CTRLCLK		VSS	E
D	VTT	VTT	VTT		HSCOMP #	HDVREF	HRCOMP		VSS	BLUE#	GREEN#		VSS	VSS	VSYNC	D
С	VTT		VTT	VSS	# HSCOMP		VCCA_	VCCA_	VCCD_		GREEN	RED#	VCCA_		HSYNC	С
В	VTT	VTT	VTT	VSS	HSWING	HACCVREF	HPLL VSS	DPLLB VSS	VCCDQ_	BLUE	VSS	RED	DAC VCC3_3	VCCA_DA	VCCA_	В
A		VTT		VSS		VCCA_		VCCA_	CRT	REFSET		VSS		C VCCA_EX	EXPPLL	A
	29	28	27	26	25	MPLL 24	23	DPLLA 22	21	20	19	18	17	Р 16	15	-
													• •		. •	

Figure 12-3. GMCH Ballout Diagram (Top View Right – Columns 14–0)

BB SMA_B9 SMA_B11 VCCSM SCKE_B2 SDQ_A23 SDQ_A22 VSS SDQ_A20 SDQ_A16 SDQ_A15 SDQS_A1 RSVD BA SMA_B7 SMA_B12 SCKE_B3 SDQ_A22 SDQS_A2# SDQ_A11 SDQ_A14 SDQ_A14 <td< th=""><th>TEST1 NC VSS I VSS VSS VSS VSS VSS VSS</th></td<>	TEST1 NC VSS I VSS VSS VSS VSS VSS VSS
BA SMA_B7 SMA_B12 SCKE_B3 SDQ_A22 SDQS_A2# SDQ_A21 SDQ_A14 SDQS_A1# SDM_A1 AV AY SMA_B14 SCKE_B0 SDQ_A19 SDM_A2 SDQ_A16 SDQ_A11 VSS SDQ_A9 SDQ_A8 AV SDM_B2 SCKE_B1 SDQ_A18 SDM_B1 SDQ_B3 SDQ_B2 SDQ_A13 SDQ_A12 ADQ_A12 AV SDQ_B17 SDQ_B14 VSS VSS VSS SDQ_B0 SDQ_A7 SDQ_A2 SDQ_A3 AU SDQ_B20 SDQ_B15 SDQ_B9 SDQ_B13 SDQ_B7 VSS SDQ_B0# SDQ_A0 VSS SD AT VSS VSS SDQ_B8 SDQ_B7 VSS SDQ_A0 SDQ_A0 SDQ_A0 SDM_A0 AP SDQ_B11 SDQS_B1 SDQ_B12 VSS SDQ_B1 SDQ_B0 SDQ_B1 SDQ_B1 SDQ_A0 SDQ	VSS
AY	VSS
A W SDM_B2 SCKE_B1 SDQ_A18 SDM_B1 SDQ_B3 SDQ_B2 SDQ_A13 SDQ_A12 W SDQ_B17 SDQ_B14 VSS VSS VSS SDQS_B0 SDQ_A7 SDQ_A2 SDQ_A3 SDQ_A14 SDQ_B2 SDQ_B15 SDQ_B15 SDQ_B13 SDQ_B17 VSS SDQ_B2 SDQ_B0 SDQ_B0 SDQ_B0 SDQ_B0 SDQ_B1 SDQ_B18 SDQ_B11 SDQS_B1 SDQ_B12 VSS SDM_B0 VSS SDQ_A0 SDQ_A1 SDQS_A0# SDM_A0 SDQ_B11 SDQS_B1# SDQ_B10 SDQS_B1# SDQ_B1 VSS SRCOMP1 SRCOMP0 SDQ_B1 VSS SMRCOMPV VSS SMRCOMPV VSS SMRCOMPV VSS SVREF CL_VREF VSS VSS VSS VSS VSS VSS VSS VSS VSS VS	VSS SDO_A6 SSDO_A6 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
W SDM_B2 SCRE_B1 SDQ_A18 SDM_B1 SDQ_B3 SDQ_B2 SDQ_A13 SDQ_A12 AV AV SDQ_B17 SDQ_B14 VSS VSS VSS SDQ_B0 SDQ_A7 SDQ_A2 SDQ_A3 AU SDQ_B20 SDQ_B15 SDQ_B9 SDQ_B13 SDQ_B7 VSS SDQS_B0# SDQ_A2 SDQ_A3 AT VSS VSS SDQ_B8 VSS SDQ_B0# SDQ_A0 SDQ_A1 SDQ_A0# SDM_A0 AP SDQ_B11 SDQ_B12 VSS SDQ_B0 VSS SDQ_A0 SDQ_A1 SDQ_A0# SDM_A0 AN VSS VSS VSS SDQ_B0 SDQ_B0 SDQ_B0 SDQ_B4 VSS SRCOMP1 SRCOMP0 AM SDQ_B21 VSS SMRCOMPV VSS VSS SVREF CL_VREF VSS VSS VSS AL VCC_CL	VSS VSS VSS VSS VSS VCC_CL VCC
AU SDQ_B20 SDQ_B15 SDQ_B9 SDQ_B13 SDQ_B7 VSS SDQS_B0# SDQS_A0 VSS SDQ AT VSS VSS SDQ_B8 SDQ_B11 SDQS_B1 SDQ_B12 VSS SDM_B0 VSS SDQ_A0 SDQ_A1 SDQS_A0# SDM_A0 SDQ_B1 SDQS_B1# SDQ_B1 SDQS_B1# SDQ_B1 SD	VSS
AT	VSS
AR SDQ_B11 SDQS_B1 SDQ_B12 VSS SDM_B0 VSS SDQ_A0 SDQ_A1 SDQS_A0# SDM_A0 SDQ_B1 SDQ_B1 SDQS_B1# SDQ_B0 SDQ_B1 SDQ_B0 SDQ_B5 SDQ_B4 VSS SRCOMP1 SRCOMP0 SDQ_B1 SDQ_B21 VSS SMRCOMPV VSS SMRCOMPV VSS SMRCOMPV VSS SVREF CL_VREF VSS VSS VSS VSS VSS SDQ_B0 VSS SVREF CL_VREF VSS VSS VSS VSS VSS VSS SDQ_B0 VSS SVREF CL_VREF VSS VSS VSS VSS VSS VSS VSS VSS VSS VS	VSS , VSS , VSS , VSC_CL , VCC , VCC
AP SDQ_B10 SDQS_B1# SDQ_B6 SDQ_B1 SDQ_B0 SDQ_B5 SDQ_B4 VSS SRCOMP1 SRCOMP0 AM SDQ_B21 VSS SMRCOMPV VSS SMRCOMPV VOL VCC_CL VCC_	VSS // VSS // VCC_CL // VCC //
AN	VSS VCC_CL VCC VCC
AM SDQ_B21 VSS SMRCOMPV VSS SMRCOMPV VSS SVREF CL_VREF VSS VSS VSS VSS VCC_CL V	VSS , VCC_CL , VCC , VCC
AL VCC_CL	VCC_CL /
AL	VCC_CL ,
AJ VCC_CL VCC_CL VCC VCC VCC VCC VCC VCC VCC VCC VCC V	vcc
	VCC
190	
AH VCC VCC V	
AG VCC VCC VCC VCC VCC VCC VCC VCC VCC VC	
AF VCC VCC VCC VCC VSS VSS VSS VSS VSS VSS	VSS
AE VCC_EXP VCC_EXP VCC_EXP	
AD VCC CL_CLK CL_DATA VCC_EXP	VCC_EXP
AC VCC VCC EXP_ COMPI COMPO VSS DMI_TXN2 DMI_TXP2 VSS VCC VSS VCC_EXP VCC_EXP VCC_EXP	
AB DMI_RXP3 VSS V	VSS
AA VCC VCC CL_RST# RSVD RSVD RSVD VSS DMI_RXN2 VSS DMI_RXN3 VCC DMI_TXN3	
	VSS
w DMI_TXP1 VSS DMI_RXP0	,
V VCC VCC VCC VSS VCC VCC VSS DMI_TXPO DMI_TXNO VSS EXP_TXP15 VSS DMI	OMI_RXNO
U VCC VCC RSVD RSVD VCC VCC VSS VSS VCC VSS EXP_TXN15 VCC EXP_TXP14	
EXP_RXP1 EXP_TVM14	vss -
R VCC RSVD RSVD VSS EXP_RXN1 EXP_RXP13 VSS EXP_ RXN15	
P VCC EXP_TXP12 VSS EXP_	XP_TXN13
N VSS VCC VCC VSS VCC VCC VSS VCC VSS EXP_TXN12 VCC EXP_TXP11	
EVD DVD1 EVD EVD DVD1 EVD DVD1	VSS
L DDC_DATA VCC VSS EXP_RXP9 EXP_RXN9 VSS VCC VSS EXP_ TXP10	1
	XP_TXN10
J ICH_SYNC EXP_RXP3 EXP_RXP4 VSS VSS VCC VSS EXP_TXP9 VCC VCC	
H VSS EXP_RXN3 EXP_RXN4	1
	VSS
F RSVD EXP_RXP2 VCC VCC EXP_RXP5 EXP_RXN6 EXP_TXP8 VSS EXP_TXP7	
EVD	VSS
D DREFCLKN EXP_TXNO EXP_TXPO EXP_TXN2 EXP_TXP4 EXP_TXN4 VCC VSS EXP_RXN7	
	VSS
P VSS CCLVN CCLVD EVD TVD1 VSS EVD TVD2 EXP_TXN EVD TVD5 EVD TVD6 EVD TVD6 EVD TVD6 NC	
A RSVD VSS EXP_TXN1 VSS VSS VSS VSS	
14 13 12 11 10 9 8 7 6 5 4 3 2	1

Table 12-1. GMCH
Ballout Sorted by
Signal Name

Signal Warne	
Signal Name	Ball
ALLZTEST	K20
BLUE	B20
BLUE#	D20
BSEL0	G20
BSEL1	J20
BSEL2	J18
CL_CLK	AD13
CL_DATA	AD12
CL_PWROK	AM15
CL_RST#	AA12
CL_VREF	AM5
DDC_CLK	M13
DDC_DATA	L13
DMI_RXN0	V1
DMI_RXN1	Y9
DMI_RXN2	AA6
DMI_RXN3	AA4
DMI_RXP0	W2
DMI_RXP1	Y8
DMI_RXP2	AA7
DMI_RXP3	AB3
DMI_TXN0	V6
DMI_TXN1	Y4
DMI_TXN2	AC9
DMI_TXN3	AA2
DMI_TXP0	V7
DMI_TXP1	W4
DMI_TXP2	AC8
DMI_TXP3	Y2
DREFCLKN	D13
DREFCLKP	C14
EXP_COMPI	AC12
EXP_COMPO	AC11
EXP_EN	J17
EXP_RXN0	G15
EXP_RXN1	J15
EXP_RXN2	E12

Signal Name	
Signal Name	Ball
EXP_RXN3	H12
EXP_RXN4	H11
EXP_RXN5	E7
EXP_RXN6	F6
EXP_RXN7	D2
EXP_RXN8	G5
EXP_RXN9	L8
EXP_RXN10	M9
EXP_RXN11	L4
EXP_RXN12	M6
EXP_RXN13	R10
EXP_RXN14	R4
EXP_RXN15	R7
EXP_RXP0	F15
EXP_RXP1	K15
EXP_RXP2	F12
EXP_RXP3	J12
EXP_RXP4	J11
EXP_RXP5	F7
EXP_RXP6	E5
EXP_RXP7	C2
EXP_RXP8	G6
EXP_RXP9	L9
EXP_RXP10	M8
EXP_RXP11	M4
EXP_RXP12	M5
EXP_RXP13	R9
EXP_RXP14	T4
EXP_RXP15	R6
EXP_SLR	E18
EXP_TXN0	D12
EXP_TXN1	A10
EXP_TXN2	D9
EXP_TXN3	В7
EXP_TXN4	D6
EXP_TXN5	В6
EXP_TXN6	B4

Table 12-1. GMCH Ballout Sorted by Signal Name

Signal Name	y
Signal Name	Ball
EXP_TXN7	E2
EXP_TXN8	G4
EXP_TXN9	К3
EXP_TXN10	K1
EXP_TXN11	M2
EXP_TXN12	N4
EXP_TXN13	P1
EXP_TXN14	T2
EXP_TXN15	U4
EXP_TXP0	D11
EXP_TXP1	B11
EXP_TXP2	C10
EXP_TXP3	B9
EXP_TXP4	D7
EXP_TXP5	B5
EXP_TXP6	В3
EXP_TXP7	F2
EXP_TXP8	F4
EXP_TXP9	J4
EXP_TXP10	L2
EXP_TXP11	N2
EXP_TXP12	Р3
EXP_TXP13	R2
EXP_TXP14	U2
EXP_TXP15	V3
GCLKN	B13
GCLKP	B12
GREEN	C19
GREEN#	D19
HA3#	J42
HA4#	L39
HA5#	J40
HA6#	L37
HA7#	L36
HA8#	K42
HA9#	N32
HA10#	N34

Table 12-1. GMCH
Ballout Sorted by
Signal Name

Signal Name	
Signal Name	Ball
HA11#	M38
HA12#	N37
HA13#	M36
HA14#	R34
HA15#	N35
HA16#	N38
HA17#	U37
HA18#	N39
HA19#	R37
HA20#	P42
HA21#	R39
HA22#	V36
HA23#	R38
HA24#	U36
HA25#	U33
HA26#	R35
HA27#	V33
HA28#	V35
HA29#	Y34
HA30#	V42
HA31#	V38
HA32#	Y36
HA33#	Y38
HA34#	Y39
HA35#	AA37
HACCVREF	B24
HADS#	W40
HADSTB0#	M34
HADSTB1#	U34
HBNR#	W42
HBPRI#	G39
HBREQ0#	AA42
HCLKN	U32
HCLKP	R32
HCPURST#	C31
HD0#	R40
HD1#	P41
HD2#	R41

Signal Name	
Signal Name	Ball
HD3#	N40
HD4#	R42
HD5#	M39
HD6#	N41
HD7#	N42
HD8#	L41
HD9#	J39
HD10#	L42
HD11#	J41
HD12#	K41
HD13#	G40
HD14#	F41
HD15#	F42
HD16#	C42
HD17#	D41
HD18#	F38
HD19#	G37
HD20#	E42
HD21#	E39
HD22#	E37
HD23#	C39
HD24#	B39
HD25#	G33
HD26#	A37
HD27#	F33
HD28#	E35
HD29#	K32
HD30#	H32
HD31#	B34
HD32#	J31
HD33#	F32
HD34#	M31
HD35#	E31
HD36#	K31
HD37#	G31
HD38#	K29
HD39#	F31
HD40#	J29

Table 12-1. GMCH Ballout Sorted by Signal Name

Signal Name	
Signal Name	Ball
HD41#	F29
HD42#	L27
HD43#	K27
HD44#	H26
HD45#	L26
HD46#	J26
HD47#	M26
HD48#	C33
HD49#	C35
HD50#	E41
HD51#	B41
HD52#	D42
HD53#	C40
HD54#	D35
HD55#	B40
HD56#	C38
HD57#	D37
HD58#	B33
HD59#	D33
HD60#	C34
HD61#	B35
HD62#	A32
HD63#	D32
HDBSY#	U40
HDEFER#	T43
HDINV0#	M40
HDINV1#	J33
HDINV2#	G29
HDINV3#	E33
HDRDY#	W41
HDSTBN0#	M43
HDSTBN1#	H33
HDSTBN2#	H27
HDSTBN3#	D38
HDSTBP0#	L40
HDSTBP1#	G35
HDSTBP2#	G27
HDSTBP3#	B38

Table	12-1.	GN	ЛСН
Ballou	t Sor	ted	by
Signal	Nam	e	

Signal Name	Ball
HDVREF	D24
HHIT#	U42
HHITM#	Y43
HLOCK#	V41
HRCOMP	D23
HREQ0#	F40
HREQ1#	L35
HREQ2#	L38
HREQ3#	G43
HREQ4#	J37
HRS0#	U41
HRS1#	AA41
HRS2#	U39
HSCOMP	C25
HSCOMP#	D25
HSWING	B25
HSYNC	C15
HTRDY#	Y40
ICH_SYNC#	J13
NC	BC42
NC	BC2
NC	BB43
NC	BB1
NC	B43
NC	B42
NC	B2
NC	N20
NC	A42
PWROK	AM17
RED	B18
RED#	C18
REFSET	A20
RESERVED	AJ32
RESERVED	V31
RESERVED	AL31
RESERVED	A14
RESERVED	F13
RESERVED	F17

Signal Name	Ball
RESERVED	H18
RESERVED	K17
RESERVED	G18
RESERVED	M18
RESERVED	L18
RESERVED	L15
RESERVED	M20
RESERVED	N15
RESERVED	N18
RESERVED	N17
RESERVED	L17
RESERVED	Y12
RESERVED	AA9
RESERVED	AA10
RESERVED	AA11
RESERVED	R29
RESERVED	R30
RESERVED	U30
RESERVED	U31
RESERVED	R13
RESERVED	R12
RESERVED	U11
RESERVED	U12
RESERVED	AA39
RESERVED	AP21
RESERVED	AW4 2
RESERVED	BB2
RESERVED	AF32
RESERVED	AG32
RESERVED	BB19
RESERVED	AM21
RESERVED	AM31
RESERVED	AN32
RESERVED	AN21
RSTIN#	AM18
SBS_A0	BA33
l .	

Table 12-1. GMCH Ballout Sorted by Signal Name

Signal Name	Ball
SBS_A1	AW3
SBS_A2	BB21
SBS_B0	AY19
SBS_B1	BA18
SBS_B2	BC12
SCAS_A#	AY35
SCAS_B#	AW2 9
SCKE_A0	BC20
SCKE_A1	AY20
SCKE_A2	AY21
SCKE_A3	BA19
SCKE_B0	AY12
SCKE_B1	AW1 2
SCKE_B2	BB11
SCKE_B3	BA11
SCLK_A0	AU31
SCLK_AO#	AR31
SCLK_A1	AP27
SCLK_A1#	AN27
SCLK_A2	AV33
SCLK_A2#	AW3 3
SCLK_A3	AP29
SCLK_A3#	AP31
SCLK_A4	AM26
SCLK_A4#	AM27
SCLK_A5	AT33
SCLK_A5#	AU33
SCLK_B0	AV31
SCLK_B0#	AW3 1
SCLK_B1	AU27
SCLK_B1#	AT27
SCLK_B2	AV32
SCLK_B2#	AT32
SCLK_B3	AU29

Table 12-1. GMC Ballout Sorted b Signal Name	
Signal Name	Ball
SCLK_B3#	AR29
SCLK_B4	AV29
SCLK_B4#	AW2
SCLK_B5	AN33
SCLK_B5#	AP32
SCS_A0#	AW3 5
SCS_A1#	BA35
SCS_A2#	BA34
SCS_A3#	BB38
SCS_B0#	BB27
SCS_B1#	BB30
SCS_B2#	AY27
SCS_B3#	AY31

SDM_A0

SDM_A1 SDM_A2

SDM_A3

SDM_A4

SDM_A5

SDM_A6

SDM_A7 SDM_B0

SDM_B1

SDM_B2

SDM_B3 SDM_B4

SDM_B5

SDM_B6

SDM_B7

SDQ_A0

SDQ_A1

SDQ_A02 SDQ_A03

SDQ_A04 SDQ_A05

SDQ_A06

Ball	
AR29	
AV29	
AW2 7	
AN33	
AP32	
AW3 5	
BA35	
BA34	
BB38	
BB27	
BB30	
AY27	
AY31	
AR2	
BA2	
AY9	
AN18	
AU43	
AM43	
AG40	
AC40	
AR7	
AW9	
AW1 3	
AP23	
AU37	
AM37	
AG39	
AD38	
AR5	
AR4	
AV3	
AV2	
AP3	
AP2	
AU1	

Table 12-1. GMC Ballout Sorted b Signal Name	
Signal Name	Ball
SDQ_A07	AV4
SDQ_A08	AY2
SDQ_A09	AY3
SDQ_A10	BB5
SDQ_A11	AY6
SDQ_A12	AW2
SDQ_A13	AW3
SDQ_A14	BA5
SDQ_A15	BB4
SDQ_A16	AY7
SDQ_A17	BC7
SDQ_A18	AW1
SDQ_A19	AY11
SDQ_A20	BB6
SDQ_A21	BA6
SDQ_A22	BA10
SDQ_A23	BB10
SDQ_A24	AT18
SDQ_A25	AR18
SDQ_A26	AU21
SDQ_A27	AT21
SDQ_A28	AP17
SDQ_A29	AN17
SDQ_A30	AP20
SDQ_A31	AV20
SDQ_A32	AV42
SDQ_A33	AU40
SDQ_A34	AP42
SDQ_A35	AN39
SDQ_A36	AV40
SDQ_A37	AV41
SDQ_A38	AR42
SDQ_A39	AP41
SDQ_A40	AN41
SDQ_A41	AM39
SDQ_A42	AK42
SDQ_A43	AK41
•	

Table 12-1. GMCH Ballout Sorted by Signal Name	
Signal Name	Ball
SDQ_A44	AN40
SDQ_A45	AN42
SDQ_A46	AL42
SDQ_A47	AL39
SDQ_A48	AJ40
SDQ_A49	AH43
SDQ_A50	AF39
SDQ_A51	AE40
SDQ_A52	AJ42
SDQ_A53	AJ41
SDQ_A54	AF41
SDQ_A55	AF42
SDQ_A56	AD40
SDQ_A57	AD43
SDQ_A58	AB41
SDQ_A59	AA40
SDQ_A60	AE42
SDQ_A61	AE41
SDQ_A62	AC39
SDQ_A63	AB42
SDQ_B0	AN7
SDQ_B1	AN8
SDQ_B2	AW5
SDQ_B3	AW7
SDQ_B4	AN5
SDQ_B5	AN6
SDQ_B6	AN9
SDQ_B7	AU7
SDQ_B8	AT11
SDQ_B9	AU11
SDQ_B10	AP13
SDQ_B11	AR13
SDQ_B12	AR11
SDQ_B13	AU9
SDQ_B14	AV12
SDQ_B15	AU12
SDQ_B16	AU15
SDQ_B17	AV13

Table 12-1. GMCH Ballout Sorted by Signal Name	
Signal Name	Ball
SDQ_B18	AU17
SDQ_B19	AT17
SDQ_B20	AU13
SDQ_B21	AM13
SDQ_B22	AV15
SDQ_B23	AW1 7
SDQ_B24	AV24
SDQ_B25	AT23
SDQ_B26	AT26
SDQ_B27	AP26
SDQ_B28	AU23
SDQ_B29	AW2
SDQ_B30	AR24
SDQ_B31	AN26
SDQ_B32	AW3 7
SDQ_B33	AV38
SDQ_B34	AN36
SDQ_B35	AN37
SDQ_B36	AU35
SDQ_B37	AR35
SDQ_B38	AN35
SDQ_B39	AR37
SDQ_B40	AM35
SDQ_B41	AM38
SDQ_B42	AJ34
SDQ_B43	AL38
SDQ_B44	AR39
SDQ_B45	AM34
SDQ_B46	AL37
SDQ_B47	AL32
SDQ_B48	AG38
SDQ_B49	AJ38
SDQ_B50	AF35
SDQ_B51	AF33
SDQ_B52	AJ37

Table 12-1. GM0 Ballout Sorted b Signal Name	CH Dy
Signal Name	Ball
SDQ_B54	AG33
SDQ_B55	AF34
SDQ_B56	AD36
SDQ_B57	AC33
SDQ_B58	AA34
SDQ_B59	AA36
SDQ_B60	AD34
SDQ_B61	AF38
SDQ_B62	AC34
SDQ_B63	AA33
SDQS_A0	AU4
SDQS_A0#	AR3
SDQS_A1	BB3
SDQS_A1#	BA4
SDQS_A2	BB9
SDQS_A2#	BA9
SDQS_A3	AT20
SDQS_A3#	AU18
SDQS_A4	AR41
SDQS_A4#	AR40
SDQS_A5	AL41
SDQS_A5#	AL40
SDQS_A6	AG42
SDQS_A6#	AG41
SDQS_A7	AC42
SDQS_A7#	AC41
SDQS_B0	AV6
SDQS_B0#	AU5
SDQS_B1	AR12
SDQS_B1#	AP12
SDQS_B2	AP15
SDQS_B2#	AR15
SDQS_B3	AT24
SDQS_B3#	AU26
SDQS_B4	AW3 9
SDQS_B4#	AU39
SDQS_B5	AL35

Table 12-1. GMCH Ballout Sorted by Signal Name	
Signal Name	Ball
SDQS_B5#	AL34
SDQS_B6	AG35
SDQS_B6#	AG36
SDQS_B7	AC36
SDQS_B7#	AC37
SDVO_CTRLCLK	E17
SDVO_CTRLDAT A	G17
SMA_A0	BA31
SMA_A1	BB25
SMA_A2	BA26
SMA_A3	BA25
SMA_A4	AY25
SMA_A5	BA23
SMA_A6	AY24
SMA_A7	AY23
SMA_A8	BB23
SMA_A9	BA22
SMA_A10	AY33
SMA_A11	BB22
SMA_A12	AW2 1
SMA_A13	AY38
SMA_A14	BA21
SMA_B0	BB17
SMA_B1	AY17
SMA_B2	BA17
SMA_B3	BC16
SMA_B4	AW1 5
SMA_B5	BA15
SMA_B6	BB15
SMA_B7	BA14
SMA_B8	AY15
SMA_B9	BB14
SMA_B10	AW1 8
SMA_B11	BB13
SMA_B12	BA13

AJ35

SDQ_B53

Table 12-1. GMCH Ballout Sorted by Signal Name	
Signal Name	Ball
SMA_B13	AY29
SMA_B14	AY13
SMRCOMPVOH	AM10
SMRCOMPVOL	AM8
SODT_A0	AY37
SODT_A1	BA38
SODT_A2	BB35
SODT_A3	BA39
SODT_B0	BA29
SODT_B1	BA30
SODT_B2	BB29
SODT_B3	BB31
SRAS_A#	BB33
SRAS_B#	AW2
SRCOMP0	AN2
SRCOMP1	AN3
SRCOMP2	BB40
SRCOMP3	BA40
SVREF	AM6
SWE_A#	BB34
SWE_B#	BA27
TEST0	BC43
TEST1	BC1
TEST2	A43
VCC	P20
VCC	Y11
VCC	AG25
VCC	AG24
VCC	AG23
VCC	AG22
VCC	AG21
VCC	AG20
VCC	AG19
VCC	AG18
VCC	AG17
VCC	AG15

VCC

Table 12-1. GMC Ballout Sorted b Signal Name	
Signal Name	Ball
VCC	AF26
VCC	AF25
VCC	AF24
VCC	AF22
VCC	AF20
VCC	AF18
VCC	AF17
VCC	AF15
VCC	AF14
VCC	AE27
VCC	AE26
VCC	AE25
VCC	AE23
VCC	AE21
VCC	AE19
VCC	AE17
VCC	AD27
VCC	AD26
VCC	AD18
VCC	AD17
VCC	AD15
VCC	AD14
VCC	AC27
VCC	AC26
VCC	AC17
VCC	AC15
VCC	AC14
VCC	AB27
VCC	AB26
VCC	AB18
VCC	AB17
VCC	AA27
VCC	AA26
VCC	AA17
VCC	AA15
VCC	AA14
VCC	Y27
VCC	Y26

Table 12-1. GMCH Ballout Sorted by Signal Name	
Signal Name	Ball
VCC	Y18
VCC	Y17
VCC	Y15
VCC	Y14
VCC	W27
VCC	W26
VCC	W25
VCC	W23
VCC	W21
VCC	W19
VCC	W18
VCC	W17
VCC	V27
VCC	V26
VCC	V25
VCC	V24
VCC	V23
VCC	V22
VCC	V21
VCC	V20
VCC	V19
VCC	V18
VCC	V17
VCC	V15
VCC	V14
VCC	U26
VCC	U25
VCC	U24
VCC	U23
VCC	U22
VCC	U21
VCC	U20
VCC	U19
VCC	U18
VCC	U17
VCC	U15
VCC	U14
VCC	R20

Datasheet 331

AG14

Table 12-1. GMCH
Ballout Sorted by
Signal Name

Signal Name	
Signal Name	Ball
VCC	R18
VCC	R17
VCC	R15
VCC	R14
VCC	P15
VCC	P14
VCC	AJ12
VCC	AJ11
VCC	AJ10
VCC	AJ9
VCC	AJ8
VCC	AJ7
VCC	AJ6
VCC	AJ5
VCC	AJ4
VCC	AJ3
VCC	AJ2
VCC	AH4
VCC	AH2
VCC	AH1
VCC	AG13
VCC	AG12
VCC	AG11
VCC	AG10
VCC	AG9
VCC	AG8
VCC	AG7
VCC	AG6
VCC	AG5
VCC	AG4
VCC	AG3
VCC	AG2
VCC	AF13
VCC	AF12
VCC	AF11
VCC	AD24
VCC	AD22
VCC	AD20

Table 12-1. GMCH Ballout Sorted by Signal Name

Signal Name	
Signal Name	Ball
VCC	AC25
VCC	AC23
VCC	AC21
VCC	AC19
VCC	AC13
VCC	AC6
VCC	AB24
VCC	AB22
VCC	AB20
VCC	AA25
VCC	AA23
VCC	AA21
VCC	AA19
VCC	AA13
VCC	AA3
VCC	Y24
VCC	Y22
VCC	Y20
VCC	Y13
VCC	Y6
VCC	V13
VCC	V12
VCC	V10
VCC	V9
VCC	U13
VCC	U10
VCC	U9
VCC	U6
VCC	U3
VCC	N12
VCC	N11
VCC	N9
VCC	N8
VCC	N6
VCC	N3
VCC	L6
VCC	J6
VCC	J3

Signal Name	
Signal Name	Ball
VCC	J2
VCC	G2
VCC	F11
VCC	F9
VCC	D4
VCC	C13
VCC	С9
VCC	L12
VCC_CL	AJ26
VCC_CL	AJ24
VCC_CL	AJ23
VCC_CL	AJ21
VCC_CL	AJ20
VCC_CL	AJ18
VCC_CL	AJ17
VCC_CL	AJ15
VCC_CL	AJ14
VCC_CL	AA30
VCC_CL	AA29
VCC_CL	Y30
VCC_CL	Y29
VCC_CL	V30
VCC_CL	V29
VCC_CL	U29
VCC_CL	U27
VCC_CL	AL12
VCC_CL	AL11
VCC_CL	AL10
VCC_CL	AL9
VCC_CL	AL8
VCC_CL	AL7
VCC_CL	AL6
VCC_CL	AL5
VCC_CL	AL4
VCC_CL	AL3
VCC_CL	AL2
VCC_CL	AK26
VCC_CL	AK24

Table 12-1. GMC Ballout Sorted by Signal Name	
Signal Name	Ball
VCC_CL	AK23
VCC_CL	AK21
VCC_CL	AK20
VCC_CL	AK18
VCC_CL	AK17
VCC_CL	AK15
VCC_CL	AK3
VCC_CL	AK2
VCC_CL	AK1
VCC_CL	AJ13
VCC_CL	AD31
VCC_CL	AC31
VCC_CL	AA31
VCC_CL	Y31
VCC_CL	AJ30
VCC_CL	AJ29
VCC_CL	AJ27
VCC_CL	AG30
VCC_CL	AG29
VCC_CL	AG27
VCC_CL	AG26
VCC_CL	AF30
VCC_CL	AF29
VCC_CL	AF27
VCC_CL	AD30
VCC_CL	AD29
VCC_CL	AC30
VCC_CL	AC29
VCC_CL	AL26

VCC_CL

VCC_CL

VCC_CL

VCC_CL

VCC_CL

VCC_CL

VCC_CL

VCC_CL

VCC_CL

AL24

AL23

AL21

AL20

AL18

AL17

AL15

AK30

AK29

VCC_CL AJ31 VCC_CL AG31 VCC_CL AF31 VCC_CL AC32 VCC_CL AC32 VCC_CL AL27 VCC_CL AL27 VCC_CL AL3 VCC_CL AK14 VCC_CL AK14 VCC_CL AD10 VCC_EXP AD10 VCC_EXP AD10 VCC_EXP AD4 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD4 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE4 VCC_SMCLK BA42 VCC_SMCLK BA42 VCC_SMCLK AY42 <t< th=""><th colspan="2">Table 12-1. GMCH Ballout Sorted by Signal Name</th></t<>	Table 12-1. GMCH Ballout Sorted by Signal Name	
VCC_CL AJ31 VCC_CL AG31 VCC_CL AF31 VCC_CL AC32 VCC_CL AC32 VCC_CL AL27 VCC_CL AL27 VCC_CL AL3 VCC_CL AK14 VCC_CL AK14 VCC_CL AD10 VCC_EXP AD10 VCC_EXP AD10 VCC_EXP AD4 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD4 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE4 VCC_SMCLK BA42 VCC_SMCLK BA42 VCC_SMCLK AY42 <t< th=""><th>Signal Name</th><th>Ball</th></t<>	Signal Name	Ball
VCC_CL AG31 VCC_CL AF31 VCC_CL AC32 VCC_CL AC32 VCC_CL AL29 VCC_CL AL27 VCC_CL AL13 VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD11 VCC_EXP AD9 VCC_EXP AD6 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD4 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC2 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE4 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE4 VCC_SMCLK BA43 VCC_SMCLK BA43 VCC_SMCLK AY42 VCC_SMCLK AY42	VCC_CL	AK27
VCC_CL AF31 VCC_CL AD32 VCC_CL AC32 VCC_CL AL29 VCC_CL AL27 VCC_CL AL13 VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD10 VCC_EXP AD9 VCC_EXP AD6 VCC_EXP AD6 VCC_EXP AD4 VCC_EXP AD4 VCC_EXP AD4 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC2 VCC_EXP AC3 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE3 VCC_SMCLK BA43 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42	VCC_CL	AJ31
VCC_CL AD32 VCC_CL AC32 VCC_CL AA32 VCC_CL AL27 VCC_CL AL13 VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD10 VCC_EXP AD10 VCC_EXP AD9 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AD1 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AE3 VCC_EXP AE4 VCC_EXP AE3 VCC_SMCLK BA42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC_SMCLK AY42 <t< td=""><td>VCC_CL</td><td>AG31</td></t<>	VCC_CL	AG31
VCC_CL AC32 VCC_CL AA32 VCC_CL AL29 VCC_CL AL27 VCC_CL AK14 VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD10 VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD4 VCC_EXP AC4 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE4 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC C17 <	VCC_CL	AF31
VCC_CL AA32 VCC_CL AL29 VCC_CL AL27 VCC_CL AK14 VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD10 VCC_EXP AD10 VCC_EXP AD9 VCC_EXP AD6 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BB42 VCC_SMCLK BA42 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC C17 VCCA_DPLLA A22 <	VCC_CL	AD32
VCC_CL AL29 VCC_CL AL27 VCC_CL AL13 VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD11 VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD6 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DPLLA A22	VCC_CL	AC32
VCC_CL AL27 VCC_CL AL13 VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD10 VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD4 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_CL	AA32
VCC_CL AL13 VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD10 VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC2 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BB43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_CL	AL29
VCC_CL AK14 VCC_CL_PLL Y32 VCC_EXP AD10 VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_CL	AL27
VCC_CL_PLL Y32 VCC_EXP AD11 VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD7 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AC3 VCC_EXP AE3 VCC_EXP AE3 VCC_EXP AE2 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BB43 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_CL	AL13
VCC_EXP AD11 VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD6 VCC_EXP AD6 VCC_EXP AD4 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE3 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_CL	AK14
VCC_EXP AD10 VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD7 VCC_EXP AD6 VCC_EXP AD4 VCC_EXP AD2 VCC_EXP AC1 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_CL_PLL	Y32
VCC_EXP AD9 VCC_EXP AD8 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD2 VCC_EXP AD1 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE3 VCC_EXP AE3 VCC_EXP AE2 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BB43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD11
VCC_EXP AD8 VCC_EXP AD7 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD10
VCC_EXP AD7 VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE3 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD9
VCC_EXP AD6 VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE3 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BB43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD8
VCC_EXP AD5 VCC_EXP AD4 VCC_EXP AD2 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD7
VCC_EXP AD4 VCC_EXP AD2 VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD6
VCC_EXP AD2 VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BB43 VCC_SMCLK BB41 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD5
VCC_EXP AD1 VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD4
VCC_EXP AC4 VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD2
VCC_EXP AC3 VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AD1
VCC_EXP AC2 VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AC4
VCC_EXP AE4 VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AC3
VCC_EXP AE3 VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AC2
VCC_EXP AE2 VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AE4
VCC_SMCLK BB42 VCC_SMCLK BA43 VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AE3
VCC_SMCLK BA43 VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_EXP	AE2
VCC_SMCLK BB41 VCC_SMCLK BA42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_SMCLK	BB42
VCC_SMCLK BA42 VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_SMCLK	BA43
VCC_SMCLK AY42 VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_SMCLK	BB41
VCC3_3 B17 VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_SMCLK	BA42
VCCA_DAC C17 VCCA_DAC B16 VCCA_DPLLA A22	VCC_SMCLK	AY42
VCCA_DAC B16 VCCA_DPLLA A22	VCC3_3	B17
VCCA_DPLLA A22	VCCA_DAC	C17
_	VCCA_DAC	B16
	VCCA_DPLLA	A22
VCCA_DPLLB C22	VCCA_DPLLB	C22

Table 12-1. GMCH Ballout Sorted by Signal Name	
Signal Name	Ball
VCCA_EXP	A16
VCCA_EXPPLL	B15
VCCA_HPLL	C23
VCCA_MPLL	A24
VCCD_CRT	C21
VCCDQ_CRT	B21
VCCSM	BC39
VCCSM	BC34
VCCSM	BC30
VCCSM	BC26
VCCSM	BC22
VCCSM	BC18
VCCSM	BC14
VCCSM	BB39
VCCSM	BB37
VCCSM	BB32
VCCSM	BB28
VCCSM	BB26
VCCSM	BB24
VCCSM	BB20
VCCSM	BB18
VCCSM	BB16
VCCSM	BB12
VCCSM	AY32
VCCSM	AW2 4
VCCSM	AW2 0
VCCSM	AV26
VCCSM	AV18
VSS	D16
VSS	BC41
VSS	BC3
VSS	BA1
VSS	AY40
VSS	AF23
VSS	AF21
VSS	AF19

Table 12-1. GMCH
Ballout Sorted by
Signal Name

Signal Wallie	
Signal Name	Ball
VSS	AE24
VSS	AE22
VSS	AE20
VSS	AE18
VSS	AC18
VSS	AA18
VSS	W24
VSS	W22
VSS	W20
VSS	R21
VSS	E1
VSS	C43
VSS	C1
VSS	A41
VSS	A 5
VSS	A3
VSS	BC37
VSS	BC32
VSS	BC28
VSS	BC24
VSS	BC10
VSS	BC5
VSS	BB7
VSS	AY41
VSS	AY4
VSS	AW4 3
VSS	AW4 1
VSS	AW1
VSS	AV37
VSS	AV35
VSS	AV27
VSS	AV23
VSS	AV21
VSS	AV17
VSS	AV11
VSS	AV9

Table 12-1. GMCH Ballout Sorted by Signal Name

Signal Name	Ball
VSS	AV7
VSS	AU42
VSS	AU38
VSS	AU32
VSS	AU24
VSS	AU20
VSS	AU6
VSS	AU2
VSS	AT31
VSS	AT29
VSS	AT15
VSS	AT13
VSS	AT12
VSS	AR38
VSS	AR33
VSS	AR32
VSS	AR27
VSS	AR26
VSS	AR23
VSS	AR21
VSS	AR20
VSS	AR17
VSS	AR9
VSS	AR6
VSS	AP43
VSS	AP24
VSS	AP18
VSS	AP1
VSS	AN38
VSS	AN31
VSS	AN29
VSS	AN24
VSS	AN23
VSS	AN20
VSS	AN15
VSS	AN13
VSS	AN12
VSS	AN11
	•

Table 12-1. GMCH Ballout Sorted by

Signal Name	
Signal Name	Ball
VSS	AN4
VSS	AM42
VSS	AM40
VSS	AM36
VSS	AM33
VSS	AM29
VSS	AM24
VSS	AM23
VSS	AM20
VSS	AM11
VSS	AM9
VSS	AM7
VSS	AM4
VSS	AM2
VSS	AM1
VSS	AL36
VSS	AL33
VSS	AK43
VSS	AJ39
VSS	AJ36
VSS	AJ33
VSS	AH42
VSS	AG37
VSS	AG34
VSS	AF43
VSS	AF37
VSS	AF36
VSS	AF10
VSS	AF9
VSS	AF8
VSS	AF7
VSS	AF6
VSS	AF5
VSS	AF3
VSS	AF2
VSS	AF1
VSS	AD42
VSS	AD39

Table 12-1. GMCH Ballout Sorted by Signal Name	
Signal Name	Ball
VSS	AD37
VSS	AD35
VSS	AD33
VSS	AD25
VSS	AD23
VSS	AD21
VSS	AD19
VSS	AC38
VSS	AC35
VSS	AC24
VSS	AC22
VSS	AC20
VSS	AC10
VSS	AC7
VSS	AC5
VSS	AB43
VSS	AB25
VSS	AB23
VSS	AB21
VSS	AB19
VSS	AB2
VSS	AB1
VSS	AA38
VSS	AA35
VSS	AA24
VSS	AA22
VSS	AA20
VSS	AA8
VSS	AA5
VSS	Y42
VSS	Y37
VSS	Y35
VSS	Y33
VSS	Y25
VSS	Y23

VSS

VSS VSS Y21 Y19

Y10

Ballout Sorted b Signal Name	У
Signal Name	Ball
VSS	Y7
VSS	Y5
VSS	Y1
VSS	W3
VSS	V43
VSS	V39
VSS	V37
VSS	V34
VSS	V32
VSS	V11
VSS	V8
VSS	V5
VSS	V2
VSS	U38
VSS	U35
VSS	U8
VSS	U7
VSS	U5
VSS	T42
VSS	T1
VSS	R36
VSS	R33
VSS	R31
VSS	R11
VSS	R8
VSS	R5
VSS	R3
VSS	P43
VSS	P30
VSS	P21
VSS	P18
VSS	P17
VSS	P2
VSS	N36
VSS	N33
VSS	N31
VSS	N27
VSS	N21

Table 12-1. GMCH Ballout Sorted by Signal Name		
Signal Name	Ball	
VSS	N13	
VSS	N10	
VSS	N7	
VSS	N5	
VSS	M42	
VSS	M37	
VSS	M35	
VSS	M33	
VSS	M27	
VSS	M21	
VSS	M17	
VSS	M15	
VSS	M10	
VSS	M7	
VSS	M1	
VSS	L33	
VSS	L32	
VSS	L31	
VSS	L29	
VSS	L21	
VSS	L20	
VSS	L11	
VSS	L7	
VSS	L5	
VSS	L3	
VSS	K43	
VSS	K26	
VSS	K21	
VSS	K18	
VSS	K13	
VSS	K12	
VSS	K2	
VSS	J38	
VSS	J35	
VSS	J32	
VSS	J27	
VSS	J21	
VSS	J9	

Table 12-1. GMCH
Ballout Sorted by
Signal Name

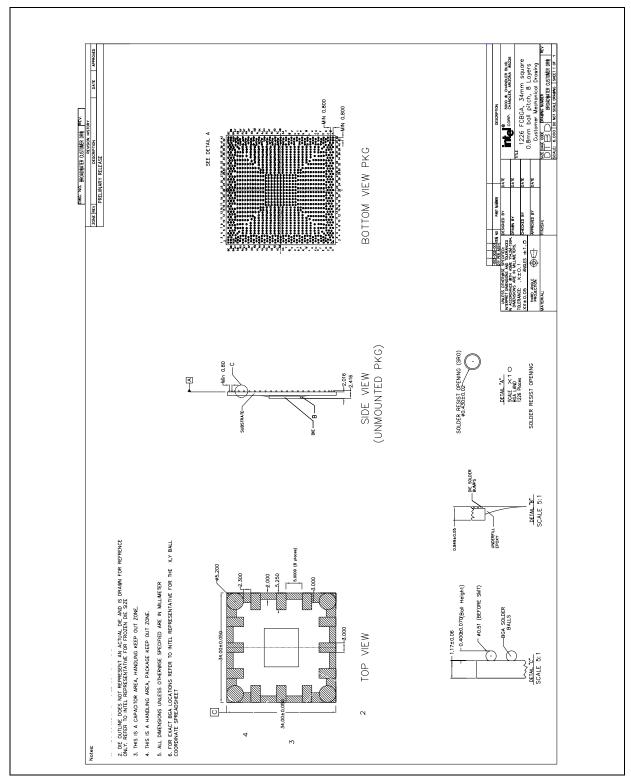
Signal Name	
Signal Name	Ball
VSS	J7
VSS	J5
VSS	H31
VSS	H29
VSS	H21
VSS	H20
VSS	H17
VSS	H15
VSS	H13
VSS	G42
VSS	G38
VSS	G32
VSS	G21
VSS	G13
VSS	G12
VSS	G11
VSS	G9
VSS	G7
VSS	G1
VSS	F37
VSS	F35
VSS	F27
VSS	F21
VSS	F18
VSS	F3
VSS	E43
VSS	E32
VSS	E24
VSS	E21
VSS	E20
VSS	E15
VSS	E13
VSS	E11
VSS	E9
VSS	E3
VSS	D40
VSS	D31

Table 12-1. GMCH Ballout Sorted by Signal Name

Signal Name	
Signal Name	Ball
VSS	D21
VSS	D17
VSS	D3
VSS	C26
VSS	C11
VSS	С6
VSS	C5
VSS	C4
VSS	B37
VSS	B32
VSS	B31
VSS	B26
VSS	B23
VSS	B22
VSS	B19
VSS	B14
VSS	B10
VSS	A39
VSS	A34
VSS	A26
VSS	A18
VSS	A12
VSS	A7
VSS	M11
VSYNC	D15
VTT	R27
VTT	R26
VTT	R24
VTT	R23
VTT	P29
VTT	P27
VTT	P26
VTT	P24
VTT	P23
VTT	N29
VTT	N26
VTT	N24

Table 12-1. GMCH Ballout Sorted by Signal Name

9	
Signal Name	Ball
VTT	N23
VTT	M29
VTT	M24
VTT	M23
VTT	L24
VTT	L23
VTT	K24
VTT	K23
VTT	J24
VTT	J23
VTT	H24
VTT	H23
VTT	G26
VTT	G24
VTT	G23
VTT	F26
VTT	F24
VTT	F23
VTT	E29
VTT	E27
VTT	E26
VTT	E23
VTT	D29
VTT	D28
VTT	D27
VTT	C30
VTT	C29
VTT	C27
VTT	B30
VTT	B29
VTT	B28
VTT	B27
VTT	A30
VTT	A28
XORTEST	F20


12.2 Package

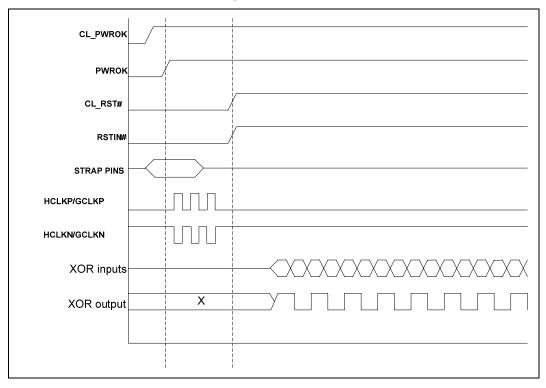
The GMCH package measures 34 mm \times 34 mm. The 1226 balls are located in a non-grid pattern. Figure 12-4 shows the GMCH package dimensions. Refer to the $Intel^{@}$ G35 Express Chipset Thermal and Mechanical Design Guidelines for further information.

Document Number: 317607-001

Figure 12-4. GMCH Package Drawing

13 Testability

In the GMCH, testability for Automated Test Equipment (ATE) board level testing has been implemented as an XOR chain. An XOR-tree is a chain of XOR gates each with one input pin connected to it which allows for pad to ball to trace connection testing.


The XOR testing methodology is to boot the part using straps to enter XOR mode (A description of the boot process follows). Once in XOR mode, all of the pins of an XOR chain are driven to logic 1. This action will force the output of that XOR chain to either a 1 if the number of the pins making up the chain is even and a 0 if the number of the pins making up the chain is odd.

Once a valid output is detected on the XOR chain output, a walking 0 pattern is moved from one end of the chain to the other. Every time the walking 0 is applied to a pin on the chain, the output will toggle. If the output does not toggle, there is a disconnect somewhere between die, package, and board and the system can be considered a failure.

13.1 XOR Test Mode Initialization

Figure 13-1. XOR Test Mode Initialization Cycles

The above figure shows the wave forms to be able to boot the part into XOR mode. The straps that need to be controlled during this boot process are BSEL[2:0], SDVO_CTRLDATA, EXP_EM, EXP_SLR, and XORTEST.

On G35 platforms, all strap values must be driven before PWROK asserts. BSEL0 must be a 1. BSEL[2:1] need to be defined values, but logic value in any order will do. XORTEST must be driven to 0.

If sDVO is present in the design, SDVO_CTRLDATA must be pulled to logic 1. Depending on if Static Lane Reversal is used and if the sDVO/PCIe Coexistence is selected, EXP_SLR and EXP_EN must be pulled in a valid manner.

Because of the different functionalities of the sDVO/PCIe interface, not all of the pins will be used in all implementations. Due to the need to minimize test points and unnecessary routing, the XOR Chain 14 is dynamic depending on the values of SDVO_CTRLDATA, EXP_SLR, and EXP_EN. Please see the below table for what parts of XOR Chain 14 become valid XOR inputs depending on the use of SDVO_CTRLDATA, EXP_SLR, and EXP_EN.

Table 137-1. XOR Chain 14 Functionality

SDVO_CTRLDATA	EXP_EN	EXP_SLR	XOR Chain 14
0	1	0	EXP_RXP[15:0] EXP_RXN[15:0] EXP_TXP[15:0] EXP_TXN[15:0]
0	1	1	EXP_RXP[15:0] EXP_RXN[15:0] EXP_TXP[15:0] EXP_TXN[15:0]
1	0	0	EXP_RXP[15:8] EXP_RXN[15:8] EXP_TXP[15:8] EXP_TXN[15:8]
1	0	1	EXP_RXP[7:0] EXP_RXN[7:0] EXP_TXP[7:0] EXP_TXN[7:0]
1	1	0	EXP_RXP[15:0] EXP_RXN[15:0] EXP_TXP[15:0] EXP_TXN[15:0]
1	1	1	EXP_RXP[15:0] EXP_RXN[15:0] EXP_TXP[15:0] EXP_TXN[15:0]

13.2 XOR Chain Definition

The GMCH chipset has 15 XOR chains. The XOR chain outputs are driven out on the following output pins. During fullwidth testing, XOR chain outputs will be visible on both pins.

Table 13-1. XOR Chain Outputs

XOR Chain	Output Pins	Coordinate Location
xor_out0	ALLZTEST	K20
xor_out1	XORTEST	F20
xor_out2	ICH_SYNC#	J13
xor_out3	RSV	F17
xor_out4	RSV	AA9
xor_out5	RSV	AA10
xor_out6	BSEL1	J20
xor_out7	BSEL2	J18
xor_out8	RSV	AA11
xor_out9	RSV	Y12
xor_out10	EXP_SLR	E18
xor_out11	EXP_EN	J17
xor_out12	MTYPE	G18
xor_out13	RSV	K17
xor_out14	BSEL0	G20

13.3 XOR Chains

Table 13-2 through Table Table 13-7 show the XOR chains. Section 0Table 13-17 has a pin exclusion list.

Table 13-2. XOR Chain 0

Table 13-2. AOR Chair o		
Pin Count	Ball #	Signal Name
1	C35	HD49
2	D42	HD52
3	B35	HD61
4	B33	HD58
5	D37	HD57
6	A32	HD62
7	C33	HD48
8	D32	HD63
9	B40	HD55
10	D35	HD54
11	C38	HD56
12	C34	HD60
13	B41	HD51
14	E41	HD50
15	D33	HD59
16	C40	HD53
17	B34	HD31
18	C42	HD16
19	E39	HD21
20	E35	HD28
21	D41	HD17
22	C39	HD23
23	F33	HD27
24	E37	HD22
25	G33	HD25
26	F38	HD18
27	B39	HD24
28	G37	HD19
29	K32	HD29
30	H32	HD30
31	E42	HD20
32	A37	HD26
33	L27	HD42

Table 13-2. XOR Chain 0

Pin Count	Ball #	Signal Name
34	F31	HD39
35	F29	HD41
36	J26	HD46
37	E31	HD35
38	H26	HD44
39	K27	HD43
40	J31	HD32
41	F32	HD33
42	L26	HD45
43	J29	HD40
44	K31	HD36
45	M31	HD34
46	K29	HD38
47	G31	HD37
48	M26	HD47
49	J41	HD11
50	F42	HD15
51	G40	HD13
52	L42	HD10
53	F41	HD14
54	N42	HD7
55	K41	HD12
56	N41	HD6
57	J39	HD9
58	M39	HD5
59	N40	HD3
60	L41	HD8
61	P41	HD1
62	R40	HD0
63	R41	HD2
64	R42	HD4

Table 13-3. XOR Chain 1

Pin Count	Ball #	Signal Name
1	G43	HREQ4#
2	F40	HREQ0#
3	J42	HA3#
4	L36	HA7#
5	L37	HA6#
6	L35	HREQ1#
7	N32	HA9#
8	N35	HA15#
9	M36	HA13#
10	J40	HA5#
11	M34	HADSTB0#
12	M38	HA11#
13	N37	HA12#
14	G43	HREQ3#
15	K42	HA8#
16	N38	HA16#
17	L39	HA4#
18	L38	HREQ2#
19	N34	HA10#
20	R34	HA14#
21	R39	HA21#
22	N39	HA18#
23	V38	HA31#
24	Y36	HA32#
25	R42	HA20#
26	V35	HA28#
27	R38	HA23#
28	U33	HA25#
29	R37	HA19#
30	R35	HA26#
31	U34	HADSTB1#
32	Y38	HA33#
33	V42	HA30#
34	U36	HA24#
35	V36	HA22#
36	U37	HA17#
37	AA37	HA35#

Table 13-3. XOR Chain 1

38	Y39	HA34#
39	V33	HA27#
40	Y34	HA29#

Table 13-4. XOR Chain 2

Pin Count	Ball #	Signal Name
1	H33	HDSTBN1#
2	G35	HDSTBP1#
3	AA41	HRS1#
4	U42	HHIT#
5	Y40	HTRDY#
6	Y43	HHITM#
7	H27	HDSTBN2#
8	G27	HDSTBP2#
9	M43	HDSTBN0#
10	L40	HDSTBP0#
11	W42	HBNR#
12	G39	HBPRI#
13	V41	HLOCK#
14	C31	HCPURST#

Table 13-5. XOR Chain 3

Pin Count	Ball #	Signal Name
1	D38	HDSTBN3#
2	B38	HDSTBP3#
3	E33	HDINV3#
4	J33	HDINV1#
5	T43	HDEFER#
6	U41	HRS0#
7	W41	HDRDY#
8	U40	HDBSY#
9	U39	HRS2#
10	G29	HDINV2#
11	M40	HDINV0#
12	W40	HADS#
13	F40	HBREQ0#

Table 13-6. XOR Chain 4

Pin Count	Ball #	Signal Name
1	BA38	SODT_A1
2	BA35	SCS_A1#
3	AY37	SODT_A0
4	AW35	SCS_A0#
5	BA31	SMA_A0
6	AY33	SMA_A10
7	AY25	SMA_A4
8	BB25	SMA_A1
9	BA26	SMA_A2
10	BA25	SMA_A3
11	AV33	SCLK_A2
12	AW33	SCLK_A2#
13	AU31	SCLK_A0
14	AR31	SCLK_A0#
15	AN27	SCLK_A1#
16	AP27	SCLK_A1
17	BA23	SMA_A5
18	BA22	SMA_A9
19	BB23	SMA_A8
20	AY24	SMA_A6
21	BC20	SCKE_A0
22	AY23	SMA_A7
23	AY20	SCKE_A1
24	AU18	SDQS_A3#
25	AN18	SDM_A3
26	BA9	SDQS_A2#
27	AY9	SDM_A2
28	BA4	SDQS_A1#
29	BA2	SDM_A1
30	AR3	SDQS_A0#
31	AR2	SDM_A0

Table 13-7. XOR Chain 5

Pin Count	Ball #	Signal Name
1	AC41	SDQS_A7#
2	AC40	SDM_A7
3	AG41	SDQS_A6#
4	AG40	SDM_A6
5	AL40	SDQS_A5#
6	AM43	SDM_A5
7	AR40	SDQS_A4#
8	AU43	SDM_A4
9	AY38	SMA_A13
10	AY35	SCAS_A#
11	BB33	SRAS_A#
12	BA33	SBS_A0
13	BB34	SWE_A#
14	AW32	SBS_A1
15	BB22	SMA_A11
16	BA21	SMA_A14
17	BB21	SBS_A2
18	AW21	SMA_A12
19	AD12	CL_DATA
20	AD13	CL_CLK

Table 13-8. XOR Chain 6

Pin Count	Ball #	Signal Name
1	AC42	SDQS_A7
2	AD43	SDQ_A57
3	AB42	SDQ_A63
4	AE41	SDQ_A61
5	AE42	SDQ_A60
6	AD40	SDQ_A56
7	AC39	SDQ_A62
8	AB41	SDQ_A58
9	AA40	SDQ_A59
10	AG42	SDQS_A6
11	AF41	SDQ_A54
12	AE40	SDQ_A51

Table 13-8. XOR Chain 6

Pin Count	Ball #	Signal Name
13	AJ42	SDQ_A52
14	AJ41	SDQ_A53
15	AF39	SDQ_A50
16	AJ40	SDQ_A48
17	AF42	SDQ_A55
18	AH43	SDQ_A49
19	AL41	SDQS_A5
20	AN40	SDQ_A44
21	AK41	SDQ_A43
22	AM39	SDQ_A41
23	AL39	SDQ_A47
24	AN41	SDQ_A40
25	AL42	SDQ_A46
26	AN42	SDQ_A45
27	AK42	SDQ_A42
28	AR41	SDQS_A4
29	AV42	SDQ_A32
30	AP42	SDQ_A34
31	AR42	SDQ_A38
32	AV41	SDQ_A37
33	AU40	SDQ_A33
34	AN39	SDQ_A35
35	AP41	SDQ_A39
36	AV40	SDQ_A36
37	AT20	SDQS_A3
38	AV20	SDQ_A31
39	AU21	SDQ_A26
40	AT18	SDQ_A24
41	AR18	SDQ_A25
42	AT21	SDQ_A27
43	AN17	SDQ_A29
44	AP20	SDQ_A30
45	AP17	SDQ_A28
46	BB9	SDQS_A2
47	AY11	SDQ_A19
48	BA10	SDQ_A22
49	BC7	SDQ_A17

Table 13-8. XOR Chain 6

Signal Name
-
SDQ_A23
SDQ_A18
SDQ_A21
SDQ_A20
SDQ_A16
SDQS_A1
SDQ_A14
SDQ_A12
SDQ_A10
SDQ_A15
SDQ_A11
SDQ_A9
SDQ_A8
SDQ_A13
SDQS_A0
SDQ_A7
SDQ_A5
SDQ_A4
SDQ_A1
SDQ_A0
SDQ_A6
SDQ_A3
SDQ_A2

Table 13-9. XOR Chain 7

Pin Count	Ball #	Signal Name
1	BA39	SODT_A3
2	BB38	SCS_A3#
3	BB35	SODT_A2
4	BA34	SCS_A2#
5	AP29	SCLK_A3
6	AP31	SCLK_A3#
7	AU33	SCLK_A5#
8	AT33	SCLK_A5
9	AM26	SCLK_A4
10	AM27	SCLK_A4#
11	AY21	SCKE_A2
12	BA19	SCKE_A3

Table 13-10. XOR Chain 8

Tubic 10	10. AC	
Pin Count	Ball #	Signal Name
1	BB30	SCS_B1#
2	BA30	SODT_B1
3	BA29	SODT_B0
4	BB27	SCS_B0#
5	AV32	SCLK_B2
6	AT32	SCLK_B2#
7	AV31	SCLK_B0
8	AW31	SCLK_B0#
9	AU27	SCLK_B1
10	AT27	SCLK_B1#
11	AW18	SMA_B10
12	BB17	SMA_B0
13	AU26	SDQS_B3#
14	AP23	SDM_B3
15	BC16	SMA_B3
16	BA15	SMA_B5
17	AY17	SMA_B1
18	BA17	SMA_B2
19	AW15	SMA_B4
20	BB14	SMA_B9

Table 13-10. XOR Chain 8

Pin Count	Ball #	Signal Name
21	AY15	SMA_B8
22	BB15	SMA_B6
23	BA14	SMA_B7
24	AW12	SCKE_B1
25	AY12	SCKE_B0
26	AR15	SDQS_B2#
27	AW13	SDM_B2
28	AP12	SDQS_B1#
29	AW9	SDM_B1
30	AU5	SDQS_B0#
31	AR7	SDM_B0

Table 13-11. XOR Chain 9

Pin Count	Ball #	Signal Name
1	AC37	SDQS_B7#
2	AD38	SDM_B7
3	AG36	SDQS_B6#
4	AG39	SDM_B6
5	AL34	SDQS_B5#
6	AM37	SDM_B5
7	AU39	SDQS_B4#
8	AU37	SDM_B4
9	AY29	SMA_B13
10	AW29	SCAS_B#
11	BA27	SWE_B#
12	AW26	SRAS_B#
13	BA18	SBS_B1
14	AY19	SBS_B0
15	BB13	SMA_B11
16	BC12	SBS_B2
17	BA13	SMA_B12
18	AY13	SMA_B14

Table 13-12. XOR Chain 10

Pin Count Ball # Signal Name AC36 SDQS_B7 1 AF38 SDQ_B61 2 AD36 3 SDQ_B56 AA36 4 SDQ_B59 AA33 SDQ_B63 5 AD34 6 SDQ_B60 AC34 7 SDQ_B62 AC33 SDQ_B57 8 AA34 9 SDQ_B58 AG35 SDQS_B6 10 AJ37 11 SDQ_B52 AJ38 SDQ_B49 12 AG38 13 SDQ_B48 AF34 14 SDQ_B55 AF33 15 SDQ_B51 AG33 16 SDQ_B54 AF35 17 SDQ_B50 AJ35 18 SDQ_B53 AL35 19 SDQS_B5 AL38 20 SDQ_B43 AL32 21 SDQ_B47 AR39 SDQ_B44 22 AJ34 23 SDQ_B42 AM38 24 SDQ_B41 AM35 25 SDQ_B40 AL37 26 SDQ_B46 AM34 27 SDQ_B45 AW39 28 SDQS_B4 AN37 29 SDQ_B35 AR37 30 SDQ_B39 AW37 31 SDQ_B32 AN36 32 SDQ_B34 AV38 SDQ_B33 33 AR35 34 SDQ_B37 AN35 35 SDQ_B38 AU35 36 SDQ_B36 37 AT24 SDQS_B3

Table 13-12. XOR Chain 10

Pin		
Count	Ball #	Signal Name
38	AP26	SDQ_B27
39	AW23	SDQ_B29
40	AR24	SDQ_B30
41	AV24	SDQ_B24
42	AT23	SDQ_B25
43	AT26	SDQ_B26
44	AN26	SDQ_B31
45	AU23	SDQ_B28
46	AP15	SDQS_B2
47	AU17	SDQ_B18
48	AW17	SDQ_B23
49	AV15	SDQ_B22
50	AT17	SDQ_B19
51	AU15	SDQ_B16
52	AM13	SDQ_B21
53	AV13	SDQ_B17
54	AU13	SDQ_B20
55	AR12	SDQS_B1
56	AP13	SDQ_B10
57	AU12	SDQ_B15
58	AV12	SDQ_B14
59	AR13	SDQ_B11
60	AU11	SDQ_B9
61	AT11	SDQ_B8
62	AU9	SDQ_B13
63	AR11	SDQ_B12
64	AV6	SDQS_B0
65	AN6	SDQ_B5
66	AN8	SDQ_B1
67	AU7	SDQ_B7
68	AN9	SDQ_B6
69	AN7	SDQ_B0
70	AW5	SDQ_B2
71	AW7	SDQ_B3
72	AN5	SDQ_B4

Table 13-13. XOR Chain 11

Pin Count	Ball #	Signal Name
1	AY31	SCS_B3#
2	BB31	SODT_B3
3	AY27	SCS_B2#
4	BB29	SODT_B2
5	AV29	SCLK_B4
6	AP32	SCLK_B5#
7	AN33	SCLK_B5
8	AW27	SCLK_B4#
9	AR29	SCLK_B3#
10	ZU29	SCLK_B3
11	BA11	SCKE_B3
12	BB11	SCKE_B2

Table 13-14. XOR Chain 12

Pin Count	Ball #	Signal Name	
1	G17	SDVO_CTRLDATA	
2	E17	SDVO_CTRLCLK	
3	L13	DDC_DATA	
4	M13	DDC_CLK	

Table 13-15. XOR Chain 13

Pin Count	Ball #	Signal Name	
1	AA2	DMI_TXN3	
2	Y2	DMI_TXP3	
3	AA4	DMI_RXN3	
4	AB3	DMI_RXP3	
5	AC9	DMI_TXN2	
6	AC8	DMI_TXP2	
7	AA6	DMI_RXN2	
8	AA7	DMI_RXP2	
9	Y4	DMI_TXN1	
10	W4	DMI_TXP1	
11	Y9	DMI_RXN1	
12	Y8	DMI_RXP1	

Table 13-15. XOR Chain 13

Pin Count	Ball #	Signal Name	
13	V6	DMI_TXN0	
14	V7	DMI_TXP0	
15	V1	DMI_RXN0	
16	W2	DMI_RXP0	

Table 13-16. XOR Chain 14

Pin Count	Ball #	Signal Name	
1	U4	EXP_TXN15	
2	V3	EXP_TXP15	
3	R7	EXP_RXN15	
4	R6	EXP_RXP15	
5	T2	EXP_TXN14	
6	U2	EXP_TXP14	
7	R4	EXP_RXN14	
8	T4	EXP_RXP14	
9	P1	EXP_TXN13	
10	R2	EXP_TXP13	
11	R10	EXP_RXN13	
12	R9	EXP_RXP13	
13	N4	EXP_TXN12	
14	P3	EXP_TXP12	
15	M6	EXP_RXN12	
16	M5	EXP_RXP12	
17	M2	EXP_TXN11	
18	N2	EXP_TXP11	
19	L4	EXP_RXN11	
20	M4	EXP_RXP11	
21	K1	EXP_TXN10	
22	L2	EXP_TXP10	
23	M9	EXP_RXN10	
24	M8	EXP_RXP10	
25	К3	EXP_TXN9	
26	J4	EXP_TXP9	
27	L8	EXP_RXN9	
28	L9	EXP_RXP9	

Table 13-16. XOR Chain 14

Pin Count	Ball #	Signal Name	
29	G4	EXP_TXN8	
30	F4	EXP_TXP8	
31	G5	EXP_RXN8	
32	G6	EXP_RXP8	
33	E2	EXP_TXN7	
34	F2	EXP_TXP7	
35	D2	EXP_RXN7	
36	C2	EXP_RXP7	
37	B4	EXP_TXN6	
38	В3	EXP_TXP6	
39	F6	EXP_RXN6	
40	E5	EXP_RXP6	
41	В6	EXP_TXN5	
42	B5	EXP_TXP5	
43	E7	EXP_RXN5	
44	F7	EXP_RXP5	
45	D6	EXP_TXN4	
46	D7	EXP_TXP4	

Table 13-16. XOR Chain 14

Pin Count	Ball #	Signal Name	
47	H11	EXP_RXN4	
48	J11	EXP_RXP4	
49	B7	EXP_TXN3	
50	В9	EXP_TXP3	
51	H12	EXP_RXN3	
52	J12	EXP_RXP3	
53	D9	EXP_TXN2	
54	C10	EXP_TXP2	
55	E12	EXP_RXN2	
56	F12	EXP_RXP2	
57	A10	EXP_TXN1	
58	B11	EXP_TXP1	
59	J15	EXP_RXN1	
60	K15	EXP_RXP1	
61	D12	EXP_TXN0	
62	D11	EXP_TXP0	
63	G15	EXP_RXN0	
64	F15	EXP_RXP0	

13.4 PADs Excluded from XOR Mode(s)

A large number of pads do not support XOR testing. The majority of the pads that fall into this category are analog related pins (see Table 13-17).

Table 13-17. XOR Pad Exclusion List

PCI Express*	FSB	SM	Miscellaneous
GCLKN	HCLKN	SRCOMP[3:0]	RED
GCLKP	HCLKP	SVREF	RED#
EXP_COMPO	HRCOMP	SMRCOMPVOL	GREEN
EXP_COMPI	HSCOMP	SMRCOMPVOH	GREEN#
	HSCOMP#		BLUE
	HSWING		BLUE#
	HDVREF		DREFCLKN
	HACCVREF		DREFCLKP
			REFSET
			HSYNC
			VSYNC
			DREFCLKN
			DREFCLKP
			TEST[2:0]
			CL_DATA
			CL_CLK
			CL_VREF

§