

Intel Developer CORUM

Intel[®] Core[™] Microarchitecture

Steve Pawlowski

Intel Senior Fellow CTO, GM Architecture & Planning Digital Enterprise Group

Ofri Wechsler

Intel Fellow Director, CPU Architecture Mobility Group

Intel Developer FORUM

Continuing From Last Fall's IDF...

Let's Take A Look Inside

Intel[®] Core[™] Microarchitecture The Energy Efficient Performance Leader

Source: Intel®

History

XEON® 2004

PENTIUM® M 2003

EM64T

XEONTM 2002

Power Management

Micro Fusion

POWEREFFICIENT

PENTIUM® III

1999

PENTIUM® 4 2000

EPIC

PANTUM®

2001

i486™ 1989

Integrated FPU

PENTIUM® 1993

Microarchitecture

and

Architecture

Branch Prediction Superscalar

PENTIUM® Pro

1995

Out Of Order Register Renaming

NetBurst™ SSE 2

SSE

PERFORMANCE

Historical Driving Forces

Increased Performance via Increased Frequency

Shrinking Geometry

1946 20 Numbers in Main Memory

1971 14004 Processor 2300 Transistors

2005 65nm 1B+ Transistors

The Challenges

Diminishing Voltage Scaling

Power = Capacitance x Voltage² x Frequency also
Power ~ Voltage³

Energy Efficient Performance – High End

DATACENTER
"ENERGY LABEL"

NASA Columbia

2 MWatt 60 TFlops goal 10,240 cpus – Itanium II **\$50M**

Source: NASA

30,720 Flops/Watt 1,288 Flops/Dollar

Computational Efficiency

17,066 Flops/Watt 467 Flops/Dollar

ASC Purple

6 MWatt 100 TFlops goal 12K+ cpus – Power5

\$230M

Source: LLNL

A New Era...

THE NEW

THE OLD

Performance Equals Frequency

Unconstrained Power

Voltage Scaling

Performance Equals IPC Multi-Core

> Power Efficienc Microarchitecture Advancements

Intel[®] Core™ Microarchitecture

Low Power High Performance Scalable Woodcrest Intel® Wide **Dynamic** Server Execution **Optimized** Intel[®] Intelligent Power Conroe Capability Intel[®] Desktop Advanced **Optimized** 65nm **Smart Cache** Intel[®] Smart Memory Access Merom Intel[®] Mobile **Advanced Optimized Digital Media Boost**

Intel® Wide Dynamic Execution

EACH CORE

EFFICIENT 14 STAGE PIPELINE

DEEPER BUFFERS

> 4 WIDE -DECODE TO EXECUTE

4 WIDE -MICRO-OP EXECUTE

> MICRO and MACRO FUSION

ENHANCED ALUs CORE 1 CORE 2

ADVANTAGE

- 33% Wider Execution over Previous Gen
- Comprehensive Advancements
- Enabled In Each Core

Intel® Wide Dynamic Execution

Micro and Macro Fusion

MACRO FUSION EXAMPLE

CMP+JMP IN 1 CLOCK

WITH MACRO FUSION

INSTRUCTION 3

INSTRUCTION 2

INSTRUCTION 1

DECODE

COMBINED INST 2 & 3

INTERNAL INST 1

EXECUTE

COMPLETED INST 3

COMPLETED INST 2

COMPLETED INST 1

WITHOUT MACRO FUSION

INSTRUCTION 3

INSTRUCTION 2

INSTRUCTION 1

DECODE

INTERNAL INST 3

INTERNAL INST 2

INTERNAL INST 1

EXECUTE

COMPLETED INST 3

COMPLETED INST 2

COMPLETED INST 1

Perf Energy

Intel Developer

ADVANTAGE

- Instruction Load Reduced ~ 15%**
- Micro-Ops Reduced ~ 10%**

Intel® Intelligent Power Capability

- 65nm
- Strained Silicon
- Low-K Dielectric
- More Metal Layers
- Aggressive
 Clock Gating
- EnhancedSpeed-Step

- Low VCC Arrays
- Blocks Controlled Via Sleep Transistors
- Low Leakage Transistors
 - SleepTransistors

ADVANTAGE

- Mobile-Level Power Management
- Energy Efficient Performance

Intel® Advanced Smart Cache

Dynamic L2 Cache Usage

Core[™] Microarchitecture **Shared L2** Decreased Traffic Dynamically, Bi-Directionally Available **CACHE** CACHE CORE 1 CORE 2

Independent L2

Intel® Smart Memory Access **Hardware-based Memory Disambiguation**

Core™ Microarchitecture Other INST 2 "LOAD [Y]" INST 2 "LOAD [Y]" IN **ORDER** INST 1 "STORE [X]" INST 1 "STORE [X]" **DECODE/SCHEDULE** DECODE/SCHEDULE INST 2 "LOAD [Y]" INST 2 "LOAD [Y]" INST 1 "STORE [X]" INST 1 "STORE [X]" OUT OF **HARDWARE ORDER** Mem. Dis. INST 2 "LOAD [Y]" Predictor **EXECUTE STALL** Inst. 2 Must INST 1 "STORE [X]" Wait For Inst. 1 "Store"

Inst. 2 "Load" Can Occur Before

Inst. 1 "Store"

• Higher Utilization of Pipeline

INST 1 "STORE [X]"

- Masks latency to data access
- Higher Performance

To Complete

Intel® Advanced Digital Media Boost Single Cycle SSE

- Increased Performance
- 128 bit Single Cycle in each core
- Improved Energy Efficiency

Next Generation Platforms

Energy Efficient Performance

Intel® Core™ Microarchitecture

Intel[®] Wide Dynamic Execution

Intel[®] Intelligent Power Capability

Intel[®] Advanced Smart Cache

Intel[®] Smart Memory Access

Intel[®]
Advanced
Digital Media
Boost

Server Optimized

Desktop Optimized

Mobile Optimized

- 80W Target TDP
- 40W LV Target TDP
- 2 Execution Cores
- 4MB L2 Cache
- Server Platform *Ts
- DP Configurations

- 65W Mainstream TDP
- 2 Execution Cores
- 2MB & 4MB L2 Cache
- Desktop Platform *Ts

- Mobile TDP
- 2 Execution Cores
- 2MB & 4MB L2 Cache
- Mobile Power Optimizations
- Mobile Platform *Ts

Comprehensive Platform Architecture

Memory Controller Considerations

Comprehensive Platform Architecture

MEMORY CONTROLLER CONSIDERATIONS

Memory Controller in Chipset

Extended RAS for Servers

Memory Closer to Integrated GFX, Smart Cache and Smart Memory Access

Centralized Coherency Control

CPU Power States w/ Memory Alive

MC vs Processor Device Scaling

IO Acceleration Technology

Technical

RELIABILITY

PERFORMANCE

MEMORY ACCESS REDUCTION

COHERENCY LATENCY REDUCTION

POWER MANAGEMENT

PROCESS SCALING RATES

PLATFORM-LEVEL ENHANCEMENTS

DP Server Architecture

FSB Scaling 800MHz 1067MHz 1333MHz

Large Shared Caches

Central Coherency Resolution

Local and Remote Memory Latencies Consistent

Platform
Performance:
It's all about
Bandwidth &
Latency

Point to Point Interconnect

Easy Capacity
Expansion

Sustained & Balanced Throughput

CONSTANTLY ANALYZING THE REQUIREMENTS, THE TECHNOLOGIES, AND THE TRADEOFFS

Core™ Microarchitecture Advances With Quad Core

Energy Efficient Performance

Quad Core

Source: Intel®

Developing for the Intel® Core™ Microarchitecture

Further Insight Into Intel® CoreTM Microarchitecture

- Core[™] Microarchitecture White Paper at rear of auditorium
- Intel®'s Core[™] Microarchitecture (Session, MATS001)
- Intel[®] Multi-Core Architecture and Implementations (Session, MATS002)
- Multi-Core and Core[™] Microarchitecture (Chalk Talk, MATC005)
- Shop Talk with Intel® Fellows tomorrow morning 8-9
- Technology Showcase
- Check out www.intel.com/multi-core

