Intel® Core™ Microarchitecture

Steve Pawlowski
Intel Senior Fellow
CTO, GM Architecture & Planning
Digital Enterprise Group

Ofri Wechsler
Intel Fellow
Director, CPU Architecture
Mobility Group
Continuing From Last Fall’s IDF...

Let’s Take A Look Inside
Intel® Core™ Microarchitecture
The Energy Efficient Performance Leader

Core™ Microarchitecture: Higher Performance AND Lower Power

Platform Capabilities

Performance
Energy Consumption

Perf ↑
Energy ↓

Platform – Level
Energy Efficient
Performance

DP Performance Per Watt
Comparison with SPECint_rate
at the Platform Level

Woodcrest H2 ‘06
Dempsey MV H1 ‘06
Paxville DP H2 ‘05
Irwindale H1 ‘05

Source: Intel®
History

Microarchitecture and Architecture

- i486™ 1989
- Integrated FPU
- Pipelining
- Branch Prediction
- Superscalar
- Pentium® Pro 1995
- Out Of Order
- Register Renaming
- Speculative Execution
- Pentium® III 1999
- NetBurst™
- SSE
- SSE 2
- Pentium® 4 2000
- Hyper Threading
- Pentium® M 2003
- Xeon™ 2002
- Xeon® 2004
- Itanium® 2001
- Epic
- Power Management
- Micro Fusion

*Graphics not representative of actual die photo or relative size
Historical Driving Forces

- **Increased Performance via Increased Frequency**
 - Frequency (MHz)
 - Graph showing growth from 1970 to 2020

- **Shrinking Geometry**
 - Feature Size (μm)
 - Graph showing decrease from 1970 to 2020

- **1946**
 - 20 Numbers in Main Memory

- **1971**
 - I4004 Processor
 - 2300 Transistors

- **2005**
 - 65nm
 - 1B+ Transistors
The Challenges

Power Limitations

Supply Voltage (V)

Diminishing Voltage Scaling

Power = Capacitance x Voltage^2 x Frequency
also
Power ~ Voltage^3
Energy Efficient Performance – High End

NASA Columbia
- 2 MWatt
- 60 TFlops goal
- 10,240 cpus – Itanium II
- $50M
- 30,720 Flops/Watt
- 1,288 Flops/Dollar

ASC Purple
- 6 MWatt
- 100 TFlops goal
- 12K+ cpus – Power5
- $230M
- 17,066 Flops/Watt
- 467 Flops/Dollar

Source: NASA
Source: LLNL
A New Era...

THE OLD
- Performance Equals Frequency
- Unconstrained Power
- Voltage Scaling

THE NEW
- Performance Equals IPC
- Multi-Core
- Power Efficiency
- Microarchitecture Advancements
Intel® Core™ Microarchitecture

Low Power

- Intel® Wide Dynamic Execution
- Intel® Intelligent Power Capability
- Intel® Advanced Smart Cache
- Intel® Smart Memory Access
- Intel® Advanced Digital Media Boost

High Performance

- Server Optimized
- Desktop Optimized
- Mobile Optimized

Scalable

- Woodcrest
- Conroe
- Merom

65nm

*Graphics not representative of actual die photo or relative size
Intel® Wide Dynamic Execution

EACH CORE

- **Efficient**
 - 14 Stage Pipeline
- **Deeper Buffers**
- **4 Wide - Decode to Execute**
- **4 Wide - Micro-op Execute**
- Micro and Macro Fusion
- **Enhanced ALUs**

CORE 1

1. Instruction Fetch and Pre-decode
2. Instruction Queue
3. Decode
4. Rename / Alloc
5. Retirement Unit (Reorder Buffer)
6. Schedulers
7. Execute

CORE 2

1. Instruction Fetch and Pre-decode
2. Instruction Queue
3. Decode
4. Rename / Alloc
5. Retirement Unit (Reorder Buffer)
6. Schedulers
7. Execute

ADVANTAGE

- 33% Wider Execution over Previous Gen
- Comprehensive Advancements
- Enabled In Each Core
Intel® Wide Dynamic Execution
Micro and Macro Fusion

MACRO FUSION EXAMPLE
CMP+JMP IN 1 CLOCK

WITH MACRO FUSION
- INSTRUCTION 3
- INSTRUCTION 2
- INSTRUCTION 1
- DECODE
- COMBINED INST 2 & 3
- INTERNAL INST 1
- EXECUTE
- COMPLETED INST 3
- COMPLETED INST 2
- COMPLETED INST 1

WITHOUT MACRO FUSION
- INSTRUCTION 3
- INSTRUCTION 2
- INSTRUCTION 1
- DECODE
- INTERNAL INST 3
- INTERNAL INST 2
- INTERNAL INST 1
- EXECUTE
- COMPLETED INST 3
- COMPLETED INST 2
- COMPLETED INST 1

ADVANTAGE
- Instruction Load Reduced ~ 15%**
- Micro-Ops Reduced ~ 10%**

*Graphics not representative of actual die photo or relative size
** Workload dependant
Intel® Intelligent Power Capability

- **Process**
 - 65nm
 - Strained Silicon
 - Low-K Dielectric
 - More Metal Layers

- **Coarse Grained**
 - Aggressive Clock Gating
 - Enhanced Speed-Step

- **Ultra Fine Grained**
 - Low VCC Arrays
 - Blocks Controlled Via Sleep Transistors

- **Transistor**
 - Low Leakage Transistors
 - Sleep Transistors

ADVANTAGE
- Mobile-Level Power Management
- Energy Efficient Performance

Graphics not representative of actual die photo or relative size
Intel® Advanced Smart Cache
Dynamic L2 Cache Usage

- Higher Cache Hit Rate
- Reduced BUS Traffic
- Lower Latency to Data

*Graphics not representative of actual die photo or relative size
Intel® Smart Memory Access
Hardware-based Memory Disambiguation

Core™ Microarchitecture

- INST 2 "LOAD [Y]"
- INST 1 "STORE [X]"
- INST 2 "LOAD [Y]"
- INST 1 "STORE [X]"

DECODE/SCHEDULE

- INST 2 "LOAD [Y]"
- INST 1 "STORE [X]"

EXECUTE

- INST 2 "LOAD [Y]"
- INST 1 "STORE [X]"

OUT OF ORDER

- INST 2 "LOAD [Y]"
- INST 1 "STORE [X]"

INST 2 MUSST

Wait For

Inst. 1 "STORE [X]"

OUT

IN ORDER

- INST 2 "LOAD [Y]"
- INST 1 "STORE [X]"

DECODE/SCHEDULE

- INST 2 "LOAD [Y]"
- INST 1 "STORE [X]"

STALL

Inst. 2 Must Wait For Inst. 1 "Store" To Complete

HARDWARE Mem. Dis. Predictor

Inst. 2 “Load” Can Occur Before Inst. 1 “Store”

ADVANTAGE

- Higher Utilization of Pipeline
- Masks latency to data access
- Higher Performance

Perf

Energy

Higher Performance

• Higher Utilization of Pipeline
• Masks latency to data access
• Higher Performance
Intel® Advanced Digital Media Boost

Single Cycle SSE

In Each Core
- Fusion Support
- Single Cycle SSE
- DECODE
- EXECUTE

SSE Operation
(SSE/SSE2/SSE3)
- SOURCE
- SSE/2/3 OP
- DEST
- X4 X3 X2 X1
- Y4 Y3 Y2 Y1

Core™ µarch
- CLOCK CYCLE 1
 - X4opY4 X3opY3 X2opY2 X1opY1

Previous
- CLOCK CYCLE 1
 - X2opY2 X1opY1
- CLOCK CYCLE 2
 - X4opY4 X3opY3

ADVANTAGE
- Increased Performance
- 128 bit Single Cycle in each core
- Improved Energy Efficiency

Graphics not representative of actual die photo or relative size
Next Generation Platforms

Energy Efficient Performance

Intel® Core™ Microarchitecture

- Intel® Wide Dynamic Execution
- Intel® Intelligent Power Capability
- Intel® Advanced Smart Cache
- Intel® Smart Memory Access
- Intel® Advanced Digital Media Boost

Server Optimized

- 80W Target TDP
- 40W LV Target TDP
- 2 Execution Cores
- 4MB L2 Cache
- Server Platform *Ts
- DP Configurations

Bensley

Desktop Optimized

- 65W Mainstream TDP
- 2 Execution Cores
- 2MB & 4MB L2 Cache
- Desktop Platform *Ts

Averill Bridge Creek

Mobile Optimized

- Mobile TDP
- 2 Execution Cores
- 2MB & 4MB L2 Cache
- Mobile Power Optimizations
- Mobile Platform *Ts

Napa refresh

Intel Developer FORUM
Comprehensive Platform Architecture

Memory Controller Considerations

Rapid Adoption Of Technology Transitions

Market Segments Require Different Technologies

MOBILE DESKTOP SERVER

Business + Technical

- RELIABILITY
- PERFORMANCE
- POWER MANAGEMENT
- COHERENCY LATENCY REDUCTION
- MEMORY ACCESS REDUCTION
- PROCESS SCALING RATES
- PLATFORM-LEVEL ENHANCEMENTS
Comprehensive Platform Architecture

MEMORY CONTROLLER CONSIDERATIONS

Memory Controller in Chipset

- Extended RAS for Servers
- Memory Closer to Integrated GFX, Smart Cache and Smart Memory Access
- Centralized Coherency Control
- CPU Power States w/ Memory Alive
- MC vs Processor Device Scaling
- IO Acceleration Technology

Technical

- RELIABILITY
- PERFORMANCE
- MEMORY ACCESS REDUCTION
- COHERENCY LATENCY REDUCTION
- POWER MANAGEMENT
- PROCESS SCALING RATES
- PLATFORM-LEVEL ENHANCEMENTS
DP Server Architecture

- FSB Scaling
 - 800MHz
 - 1067MHz
 - 1333MHz
- Large Shared Caches
- Central Coherency Resolution
- Local and Remote Memory Latencies Consistent
- Platform Performance: It’s all about Bandwidth & Latency
- Point to Point Interconnect
- Easy Capacity Expansion
- Sustained & Balanced Throughput
- Blackford
- Bensley Platform
- 64 GB
- 17 GB/s

Consistently analyzing the requirements, the technologies, and the tradeoffs.

Graphics not representative of actual die photo or relative size
Developing for the Intel® Core™ Microarchitecture

- Program for Multicore
- Utilize SSE Enhancements
- Exploit Energy Efficient Performance
- Benefit from Power Efficiency
Further Insight Into Intel® Core™ Microarchitecture

- Core™ Microarchitecture White Paper at rear of auditorium
- Intel®'s Core™ Microarchitecture
 (Session, MATS001)
- Intel® Multi-Core Architecture and Implementations
 (Session, MATS002)
- Multi-Core and Core™ Microarchitecture
 (Chalk Talk, MATC005)
- Shop Talk with Intel® Fellows tomorrow morning 8-9
- Technology Showcase
- Check out www.intel.com/multi-core