Intel Labs ISSCC 2014 Highlights
Energy Efficiency Research

Wen-Hann Wang
Vivek De
Wen-Hann Wang, VP and Managing Director, Intel Labs

• Led hardware and software research and product development groups in 22-years at Intel.

• Prior to becoming Director of the Labs, I led the Circuits and Systems Research Lab.

• Intel Labs continues to deliver innovative technologies that significantly impact Intel’s products including Intel® Quark processor and Intel® Edison processor.
INTEL LABS
Deliver breakthrough innovations to fuel Intel’s growth and technology leadership

COLLABORATE FOR RESULTS
- UNIVERSITIES
- GOVERNMENTS
- INDUSTRY

KEY RESEARCH FOCUS AREAS
- USER EXPERIENCE
- ARCHITECTURE AND DESIGN
- SYSTEMS AND SOFTWARE
- SECURITY AND PRIVACY
- INTEGRATED COMPUTING

ADDITIONAL ORGANIZATIONS
- INTEL LABS EUROPE Sustainable Intelligent Systems
- INTEL LABS CHINA China Tech Ecosystem
- STRATEGY, PLANNING and COLLABORATION
Energy Efficiency Research

• Intel Research helps contribute fundamental new technologies to improve platform efficiency and overall battery life

• 20x idle power reduction in Haswell\(^1\)

• More than 10 hours of battery life and three weeks of standby in Bay Trail SoC\(^2\)

• Research introduced at ISSCC serves as the foundation

• Next generation of efficiency gains will come from innovative circuits, architecture, and I/O that operate at lower voltage and adaptively scale performance

\(^1\) Intel Developer forum 2011 Keynote presentation

\(^2\) Intel BayTrail SoC factsheet
Low Power Circuit Innovations
- NTV operation and Vmin reduction
- Guardband reduction through resilient and adaptive circuit solutions
- Reducing leakage energy

Platform Power Management
- Shift from OS to hardware management of platform
- Collect and align system and device activity, low power device states
- Highly efficient new system states

Efficient I/O and Memory
- eDRAM and memory interface circuits
- Energy efficient interconnects
- Circuit and system for low cost I/O

Technologies for the efficient future
1. **Efficient Computing Research:** Boost GFLOPS/Watt of 3D graphics execution core via adaptive circuits & power management techniques

2. **Security Circuits Research:** Physically Unclonable Function (PUF) SoC building block for advanced hardware security features

3. **Many-Core Interconnect Circuits Research:** Efficient network-on-chip circuits scalable to 100’s of compute nodes

4. **Platform Interconnect Circuits Research:** Efficient serial link and memory interface for scalable platform performance
Energy-Efficient Graphics Execution Core
(5.7) A Graphics Execution Core in 22nm CMOS Featuring Adaptive Clocking, Selective Boosting and State-Retentive Sleep

- Adaptive clocking mitigates impact of fast voltage droops
- Selective boosting allows low-voltage operation of embedded register file and ROM arrays
- State-retention capability shows 10X leakage savings\(^1\)
- Near-Threshold Voltage (NTV) operation boosts GFLOPS/Watt by 2.7X compared to nominal voltage\(^1\)
- 1.4X higher peak GFLOPS/Watt\(^1\)

Invited by ISSCC for demo

This research was, in part, funded by the U.S. Government. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

\(^1\) All measurements from research testchip published in paper 5.7 at International Solid-State Circuits Conference 2014.
Physically Unclonable Function (PUF)

(16.2) A 0.19pJ/bit PVT Variation-tolerant Hybrid Physically Unclonable Function Circuit for 100% Stable Secure Key Generation in 22nm CMOS

- Demonstrates high performance PUF circuits for more stable and more secure unique key generation
- Resistant to tampering/probing attacks -- repeatable, externally-invisible key without fuses
- Leverages process variations to generate key at power-up
- 27X higher throughput vs. best previous reported
- Industry-leading 0.19pJ/bit energy efficiency
- High-density 4.6mm² bit-cell in 22nm tri-gate CMOS

1 All measurements from research testchip published in paper 16.2 at International Solid-State Circuits Conference 2014.
256-Node Efficient Network-on-Chip (16.1) A 340mV-to-0.9V 20.2Tb/s Source-Synchronous Hybrid Packet/Circuit-Switched 16×16 Network-on-Chip in 22nm Tri-Gate CMOS

Invited by ISSCC for demo

- Targeted for on-chip interconnect fabric of future many-core processors
- Demonstrates industry-leading 20.2Tb/s inter-core communication bandwidth\(^1\)
- 18.3Tbps/Watt energy efficiency at 430mV NTV\(^1\)
- Low voltage operation at 340mV – 9X lower power than nominal voltage\(^1\)
- Source-synchronous operation for PVT variation tolerance and scalable, modular design

This research was, in part, funded by the U.S. Government. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

\(^1\) All measurements from research testchip published in paper 16.1 at International Solid-State Circuits Conference 2014.
Scalable & Wide-Range Platform IO

(26.2) A 205mW 32Gb/s 3-Tap FFE/6-Tap DFE Bidirectional Serial Link in 22nm CMOS

Invited by ISSCC for demo

- Lowest power link in its class (25-32Gb/s)1
- Demonstrates scalable efficiency down to 1pJ/b for lightly loaded conditions (4Gb/s)1
- Bidirectional capability to maximize performance for asymmetric applications such as displays and storage
- Cooperative clock recovery enables low power
- Circuit and system optimized for low cost applications

1All measurements from research testchip published in paper 26.2 at International Solid-State Circuits Conference 2014.
Scalable & Configurable Memory Interface

(26.4) A 25.6Gb/s Differential and DDR4/GDDR5 Dual-Mode Transmitter with Digital Clock Calibration in 22nm CMOS

- Enables high speed memory link with backward compatibility to legacy standards
- Dual-mode differential/single-ended transceiver
- Up to 25.6Gb/s differential data rate over -24dB loss channel
- All-active DDR driver and configurable circuits minimize area overhead

1 All measurements from research testchip published in paper 26.4 at International Solid-State Circuits Conference 2014.
1. **Efficient Computing Research:** Boost GFLOPS/Watt of 3D graphics execution core via adaptive circuits & power management techniques

2. **Security Circuits Research:** Physically Unclonable Function (PUF) SoC building block for advanced hardware security features

3. **Many-Core Interconnect Circuits Research:** Efficient network-on-chip circuits scalable to 100’s of compute nodes

4. **Platform Interconnect Circuits Research:** Efficient serial link and memory interface for scalable platform performance
Q&A
The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "plans," "believes," "seeks," "estimates," "may," "will," "should" and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company's expectations.

Demand could be different from Intel's expectations due to factors including changes in business and economic conditions; customer acceptance of Intel's and competitors' products; supply constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers.

Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel's ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Form 10-Q, Form 10-K and earnings release.