Technology Insight:
Intel® Next Generation Microarchitecture
Codename Ivy Bridge

Varghese George, Senior Principal Engineer
Tom Piazza, Senior Fellow
Hong Jiang, Senior Principal Engineer

SPCS005
Agenda

• Introduction to: Intel® Next Generation Microarchitecture Codename Ivy Bridge
• Innovation in the Processor Core
• Innovation in Processor Graphics

The PDF for this Session presentation is available from our Technical Session Catalog at the end of the day at: intel.com/go/idfsessions

URL is on top of Session Agenda Pages in Pocket Guide
Intel® Next Generation Microarchitecture
Codename Ivy Bridge

Introduction
Innovation in the Processor Core

Varghese George, Sr. Principal Engineer
Ivy Bridge – What is the Same...

- Continue the 2-chip platform partition (CPU + PCH)
- Fully integrated on silicon:
 - IA Cores, Processor Graphics
 - Media, Display engine
 - Memory Controller, PCI Express* controller
 - Modular on-die Ring Interconnect
 - Shared LLC
- Supports similar product offerings
- Backwards compatible socket (with 2nd Generation Intel® Core processor codename Sandy Bridge)
Ivy Bridge – What is New...

Entire chip moves to 22nm
- Higher performance/Lower power

Graphics/Media
- Higher 3D performance with next generation microarchitecture and support for Microsoft* DirectX*11
- Significant improvements in media features and performance

IA Core/ISA
- IPC improvements in Core, LLC, Memory controller
- Enhancements to ISA for SSE, strings performance
Ivy Bridge – What is New...

Security
- Digital Random Number Generator
- Supervisory Mode Execution Protection

Power Management
- Features for improved battery life
- Scalability features: Configurable TDP, Low Power Mode

Memory/Display
- DDR3L support, improved overclocking
- 3 independent displays
Key ISA Visible Changes

- Digital Random Number Generator instruction
- Supervisor Mode Execution Protection (SMEP)
- REP MOVSB/STOSB performance improvements
 - More consistent performance across string lengths
- Fast access of FS & GS base registers
 - Useful for user level thread storage by providing 4 new instructions for ring-3 access of FS & GS base registers
- Float16 format conversion instructions
 - Conversion between a 16-bit (compressed) floating point memory format and 32-bit single precision (256-bit AVX and 128-bit SSE versions)
Ivy Bridge introduces a high quality/high performance DRNG

The DRNG is designed to be Standards compliant
- ANSI X9.82, NIST SP 800-90 and NIST FIPS 140-2/3 Level 2 certifiable entropy source

New instruction: RDRAND - Available at all privilege levels/operating modes
- Instruction will return a random number (16, 32 or 64-bit) to the destination register

RDRAND is enumerated via CPUID.1.ECX[30]
Supervisory Mode Execute Protection (SMEP)

- Ivy Bridge introduces SMEP to help prevent Escalation of Privilege (EoP) security attacks
 - Prevents execution out of untrusted application memory while operating at a more privileged level
 - If CR4.SMEP set to 1 and in supervisor mode (CPL<3), instructions may not be executed from a linear address for which the user mode flag is 1
 - Available in both 32- and 64-bit operating modes
 - SMEP is enumerated via CPUID.7.0.EBX[7]
Power Management Improvements

- **DDR I/O embedded power gating**
 - Power off DDR I/O when in deep C states (idle)

- **Configurable TDP / Low power mode**

- **Design optimizations to reduce S3 power**

- **Lower choices for System Agent operating voltages**
 - Allows power optimize low power SKUs further

- **Power Aware Interrupt Routing (PAIR)**
 - Chooses ‘best core’ to service interrupts based on optimization mode (power vs. performance)

- **Optimized voltage choice for all operating frequency points**
 - Best power efficiency across full range of operation
Configurable TDP/Low Power Mode

- Configurable TDP allows multiple TDP levels within the same part
 - Greater dynamic range of power/performance
 - Dynamically transition based on runtime triggers
- Low power mode defines lowest active operating point for the part
 - Further optimizations for lower power
- Intel offers software driver implementing both features
- Allow OEMs more flexibility to build more scalable systems
Memory and Overclocking Features

• **DDR3L support**
 – Low voltage DDR3 (DDR3L) support in mobile SKUs

• **Power optimizations**
 – DRAM ODT optimization in mobile to reduce active power

• **CPU / Graphics Overclocking**
 – Increased max ratio support (ratio 57 => 63)
 – Dynamic overclocking: Allows ratio change without a reboot

• **DDR Overclocking:**
 – Support for up to 2800 MT/s (up from 2133)
 – Finer grain steps in adjusting frequency – Added 200 MHz
Intel® Next Generation Microarchitecture Codename Ivy Bridge

Innovation in Processor Graphics

Tom Piazza, Intel Fellow
Hong Jiang, Senior Principal Engineer
Ivy Bridge represents a Significant Graphics and Media (”tick+”) evolution for Intel® HD Graphics with key changes focused on:

- Architectural features
- μArchitectural improvements
- Power
Ivy Bridge Graphics and Media Microarchitecture Overview

- **Next generation Intel® Core™ microprocessor on the latest 22-nm process**
- **Improved Game Playability**
 - More 3D performance
 - Microsoft® DirectX®11 Support
- **Significant Media Performance**
 - Higher performing Intel® Quick Sync Video
- **Three Native Display Support**
Ivy Bridge HD Graphics: µArchitecture

µArchitecture Changes

Scalable Architecture partitioned into 5 domains:
1. Global Assets: Includes Geometry Front-end up to Setup
2. Slice Common: Includes Rasterizer, L3$ and Pixel Back-end
3. Slice: Shaders (EUs), IC$, Samplers, Addr$ Gen
4. CODEX and media
5. Displays

Sets the stage for further scale-up opportunities
Ivy Bridge HD Graphics: Architecture

Addrs Significant 3D Enhancements

Microsoft* DirectX* 11

Hardware Tessellation
• Adds two programmable stages (HS and DS) and one fixed function Tessellator

New Compressed Texture Format Support (BC6H/7)
Ivy Bridge HD Graphics: Architecture

More Key Changes

Compute Shader Support

- Data Parallelism
- UAVs, Atomics, Barriers, etc for compute shader ops
- Shared Local Memory aka Thread Group Local Memory for Direct Compute* Shaders
- Scatter gather

Shader Array adds support for Shader Model 5.0 (New DX11 Instructions)
Ivy Bridge HD Graphics: µArchitecture

µArchitecture Changes

Improved Geometry Performance
- Faster GS and H/w Stream-out
- Faster Clip/Setup

Fast Clear of Render Target
Increase in Hi-Z Performance

Sampler throughput
- Improved Anisotropic Quality

Increased compute throughput (peak GFLOPs)
- Increased # of threads/registers to cover latency and support complex shaders
- “Enhanced” coissue

L3$ lowers BW need from Ring Architecture

Media Applications benefit from infrastructure changes in EU/L3$ / etc
Ivy Bridge HD Graphics: µArchitecture

Significant Media Performance
- Higher performing Intel® Quick Sync Video

µArchitecture Changes
- Enhanced Performance for Multi-Format CODEC
- Increased Media Sampler Throughput and performance for scaling and other filters
- Pixel Back end has Image Color and Contrast Enhancement capabilities
Power Optimizations

• **µArchitecture plus 22nm offers:**
 – Up to ~½ power at same performance
 • ~Double the performance / watt

• **Co-issue:**
 – Extended Co-issue on EU to many more operations
 – More IPC per unit area – therefore less power to leakage

• **L3$:**
 – Less BW need from LL$ = Less Energy spent
Summary

• Intel® Next Generation Microarchitecture, Codename Ivy Bridge, is the 1st product on 22 nm process technology

• Another big leap in Performance/Power efficiency in both IA core and Graphics/Media

• Features for improved Security, better Battery life, new Memory technology (DDR3L), better Overclocking support

• Next generation Graphics microarchitecture is a Significant Graphics and Media ("tick+") evolution for Intel® HD Graphics

It’s Just The Beginning
Additional Sources of Information on This Topic:

More web based info on Tri-Gate:

www.intel.com/technology/architecture-silicon/22nm/

Other Session:

SPCS002 - 22 nm Tri-Gate Transistors for Industry-Leading Low Power Capabilities

Download the video recording next week – check out intel.com/idf for links
Legal Disclaimer

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

- UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

- Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

- The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

- Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

- Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm.

- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

- Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number.

- Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's current plan of record product roadmaps.

- Ivy Bridge, Sandy Bridge and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

- Intel, Core, Sponsors of Tomorrow and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

- *Other names and brands may be claimed as the property of others.

- Copyright ©2011 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should,” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including supply constraints and other disruptions affecting customers; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Potential disruptions in the high technology supply chain resulting from the recent disaster in Japan could cause customer demand to be different from Intel’s expectations. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; product mix and pricing; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. The majority of Intel's non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management's plans with respect to Intel's investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, precluding particular business practices, impacting Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel's SEC filings, including the report on Form 10-Q for the quarter ended April 2, 2011.

Rev. 5/9/11