• <More on Intel.com

Hybrid Silicon Laser Announcement

We are sorry, This PDF is available in download format only

Research Breakthrough: Hybrid Silicon Laser

Intel and the University of California Santa Barbara (UCSB) announced the demonstration of the world's first electrically driven Hybrid Silicon Laser. This device successfully integrates the light-emitting capabilities of Indium Phosphide with the light-routing and low cost advantages of silicon. The researchers believe that with this development, silicon photonic chips containing dozens or even hundreds of hybrid silicon lasers could someday be built using standard high-volume, low-cost silicon manufacturing techniques. This development addresses one of the last hurdles to producing low-cost, highly integrated silicon photonic chips for use inside and around PCs, Servers, and data centers.

The hybrid silicon laser is a key enabler for silicon photonics, and will be integrated into silicon photonic chips that could enable the creation of optical “data pipes” carrying terabits of information. These terabit optical connections will be needed to meet the bandwidth and distance requirements of future servers and data centers powered by hundreds of processors.

The Breakthrough
The demonstration of the first electrically pumped hybrid silicon laser overcomes one of the last remaining obstacles of integrated silicon photonics; namely, developing a low-cost light source on silicon. Previously, getting laser light from a silicon photonic chip was done using one of two approaches: attach and align individual pre-fabricated lasers directly to a silicon waveguide or have a high-powered external laser source off the chip and then route the light into the silicon chip using an optical fiber. Both approaches are expensive and not practical for high-volume production. This new laser is termed “hybrid” because it combines two materials: Silicon and an Indium Phosphide based material The Indium Phosphide based material is a compound semiconductor that is widely used today to produce commercial communication lasers.

Read the full Hybrid Silicon Laser Announcement.