World Record Benchmark Performance

The powerful new Intel® Xeon® processor E5-2600 v4 product family offers unparalleled versatility across diverse data center workloads. These processors are designed for architecting next-generation data centers running on software-defined infrastructure and supercharged for efficiency, performance, and agility across cloud-native and traditional applications.

Optimal Workload Performance Meets Intelligent Orchestration for Your Modern Data Center

The Intel® Xeon® processor E5-2600 v4 product family is the right architectural foundation for software-defined enterprise data centers optimized for cloud deployments that require increased scalability, automation, and orchestration capabilities across compute, storage, and network workloads. Built-in features provide preferential allocation of resources based on priority workloads for better utilization overall and enable greater performance across cloud-native and traditional applications while maintaining service level agreements (SLAs). The digital services of tomorrow will require modern, programmable data centers optimized for agility, operational efficiency, and scale on demand. Architect that next-generation foundation today with software-defined infrastructure solutions built on the Intel Xeon processor E5-2600 v4 product family. 

  • Up to 47% higher generational performance on a financial services option pricing workload 1
  • Up to 28% average performance improvement across a variety of key industry-standard workloads and applications 2
  • Up to 50% average energy efficiency (performance per watt) improvement across a variety of key industry-standard workloads and applications using improved components and newer, higher capacity SSDs 
  • Support up to 2.4x more VMs/server reducing operational expenses and cost per VM by up to 58% maximizing CSP profitability versus two-generations-old servers (E5 v2) 3

Platform Performance Highlights

Over 35 new world record performance benchmark results with the best Intel® Xeon® processor E5-2600 v4 product family-based platforms (as of November 10, 2016).

Partner

Platform

Segment - Benchmark

Importance

Cisco UCS* C220 M4 General Server Speed Computing:
SPECint*_base2006
2-socket world record

Partner

Platform

Segment - Benchmark

Importance

Dell PowerEdge* R730 Business Processing - Enterprise Resource Planning (ERP):
Two-tier SAP Sales and Distribution*
2-socket world record (Linux)

Partner

Platform

Segment - Benchmark

Importance

Fujitsu PRIMERGY* RX2540 M2 Business processing ERP/Energy Efficiency:
SAP Server Power (2-tier)*
World Record
Fujitsu PRIMERGY* RX2540 M2 Infrastructure/Virtualization:
VMmark* 2.5.2 Performance (matched pair)
2-socket world record
Fujitsu PRIMERGY* RX2540 M2 Infrastructure/Virtualization:
VMmark* 2.5.2 Performance with Server Power
World record

Partner Platform Segment - Benchmark Importance
HPE ProLiant* ML350 Gen9 Technical Speed Computing:
SPECfp*_base2006
2-socket x86 world record
HPE ProLiant* DL380 Gen9 Big Data Analytics:
TPC Benchmark* H @ 1TB non-clustered
World record
HPE ProLiant* DL380 Gen9 Big Data Analytics:
TPC Benchmark* Express Big Bench @ 3000
World record
HPE ProLiant* DL360 Gen9
HPE ProLiant* DL380 Gen9
HPE ProLiant* ML350 Gen9
Server-side Java*:
SPECjbb*2015 Distributed Max-jOPS
World record
HPE Synergy* 480 Gen9 Server-side Java:
SPECjbb*2015 Distributed Critical-jOPS
World record
HPE Synergy* 480 Gen9 Server-side Java:
SPECjbb*2015 Composite Max-jOPS
World record
HPE Synergy* 480 Gen9 Server-side Java:
SPECjbb*2015 Composite Critical-jOPS
World record
HPE ProLiant* DL360 Gen9
HPE ProLiant* DL380 Gen9

Server-side Java:
SPECjbb*2015 Multi-JVM Max-jOPS
2-socket world records 
  HPE ProLiant* DL360 Gen9 Server-side Java:
SPECjbb*2015 Multi-JVM Critical-jOPS
2-socket world record

Partner Platform Segment - Benchmark Importance
Fusion Server* RH2288H V3 General Server Energy Efficiency:
SPECpower_ssj*2008
World record

Partner Platform Segment - Benchmark Importance
Lenovo* System x3650 M5 Infrastructure/Virtualization:
SPECvirt_sc*2013
2-socket world record
Lenovo* System x3650 M5 Infrastructure/Virtualization:
SPECvirt_sc*2013_ServerPPW
2-socket world record
Lenovo* System x3650 M5 Infrastructure/Virtualization:
SPECvirt_sc*2013_PPW
2-socket world record
Lenovo* System x3650 M5 Business Processing:
TPC Benchmark* E
2-socket world record

Partner Platform Segment - Benchmark Importance
Oracle Server* X6-2 Business Processing:
SPECjEnterprise*2010
2-socket world record

Partner Platform Segment - Benchmark Importance
SGI ICE XA* IP-125 Technical Computing:
SPECmpiM*2007   
8-,16-,32-, and 40-node 2-socket world records
SGI Rackable* C2112-4GP3 Technical Computing:
SPECmpiM*2007
1-, 2-, and 4-node 2-socket world records
SGI ICE XA* IP-125 Technical Computing:
SPECmpiL*2007
32-, 64- and 128-node 2-socket world records
SGI Rackable* C2112-4GP3 Technical Computing:
SPECmpiL*2007
2-, 4-, 8-, and 16-node 2-socket world records

World Record Configurations

Results and configurations as of November 10, 2016

Cisco:
Claim based on best published two-socket SPECint*_base2006 result submitted to/published at https://www.spec.org/cpu2006/results/ as of 10 November 2016. New configuration: Cisco UCS* C220 M4 platform with two Intel® Xeon® processor E5-2699 v4 (22 cores, 44 threads), Red Hat* Enterprise Linux* 7.2, Intel Compiler 16.0, Score: 73.1, source: http://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/specint-benchmark-disclosure.pdf.
 
Dell:
Claim based on best published two-socket Two-tier SAP SD* (Linux) with enhancement package 5 for SAP ERP 6.0 benchmark result submitted to/published at http://global.sap.com/solutions/benchmark/sd2tier.epx as of 10 November 2016. New configuration: Dell PowerEdge* R730 with 2x Intel® Xeon® processor E5-2699A v4 on Red Hat* Enterprise Linux* Server 7.2 using SAP ASE* 16 scoring 22,222 SD benchmark users. Source: The SAP certification number is 2016050, http://download.sap.com/download.epd?context=40E2D9D5E00EEF7CC6FD292ABC44C5639F15B34E8F3FF2A0D31369DC5D7517E8.

Fujitsu:
Claim based on best published two-socket VMmark* 2.5.x performance (matched pair) result submitted to/published at https://www.vmware.com/a/vmmark/1/pair/1/ as of 10 November 2016. New configuration: Fujitsu PRIMERGY* RX2530 M2 platform with 2x Intel® Xeon® processor E5-2699 v4 (22 cores, 44 threads), 512 GB memory, running VMware* ESXi 6.0.0 U2 Build 3620759 and vCenter Server 6.0.0 Build 3018524; Fibre Channel SAN storage. Score: 34.93 @ 28 Tiles, source: http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2016-07-08-Fujitsu-RX2530M2.pdf.

Claim based on best published two-socket VMmark* 2.5.x performance with server power result submitted to/published at http://www.vmware.com/a/vmmark/2/ as of 10 November 2016. New configuration: Fujitsu PRIMERGY* RX2540 M2 platform with 2x Intel® Xeon® processor E5-2699 v4 (22 cores, 44 threads), 512 GB memory, running VMware* ESXi 6.0.0 U1b Build 3380124 and vCenter Server 6.0.0 Build 3018524; Fibre Channel SAN storage. Score: PPKW Score: 38.3065 @ 28 Tiles, source: http://www.vmware.com/a/assets/vmmark/pdf/2016-03-31-Fujitsu-RX2540M2-serverPPKW.pdf.

Claim based on best published two-socket SAP* Server Power 2-tier result published at  http://global.sap.com/solutions/benchmark/Power_Benchmark_results.htm as of 10 November 2016. New configuration: Fujitsu Server PRIMERGY RX2540 M2 with 2x Intel® Xeon® processor E5-2699 v4 (2.2GHz, 22 cores), 512 GB memory, running Windows Server* 2012 R2 Standard Edition, SQL Server* 2012, SAP* enhancement package 5 for SAP ERP 6.0. Score: 4.27 watts/kSAPS. Source: The SAP certification number is 2016005, http://global.sap.com/solutions/benchmark/pdf/Cert2016005.pdf.

HPE:
Claim based on best published two-socket SPECfp*_base2006 result submitted to/published at https://www.spec.org/cpu2006/results as of 10 November 2016. New configuration: HPE ProLiant* ML350 Gen9 with 2x Intel® Xeon® processor E5-2667 v4 (3.2 GHz, 8 cores), with 256 GB (16 x 16 GB 2Rx4 PC4-2400T-R) Total Memory on SUSE Linux Enterprise Server 12 (x86_64), SP1, Kernel 3.12.49-11-default using C/C++: Version 16.0.0.101 of Intel C++ Studio XE, for Linux;, Fortran: Version 16.0.0.101 of Intel Fortran, Studio XE for Linux, Scoring 126. Data Source: http://www.spec.org/cpu2006/results/res2016q2/cpu2006-20160531-41726.html, Benchmark: SPECfp*_base2006.

Claim based on best published non-clustered TPC Benchmark* H @ 1TB result submitted to/published at www.tpc.org as of 10 November 2016. New configuration: HPE ProLiant* DL380 Gen9 with 2x Intel® Xeon® processor E5-2699 v4 on Microsoft* Windows Server* 2012 R2 Standard Edition using Microsoft SQL Server* 2016 Enterprise Edition scoring 678,492 QphH @ 1TB @ $0.64/QphH @ 1TB available 7/31/16, source: submitted to www.tpc.org/3320.

Claim based on best published TPC Benchmark* Express-BigBench @ 3000 result published at www.tpc.org as of 10 November. New configuration: 9x HPE ProLiant* DL380 Gen9 & 3x DL360 Gen9 servers with 2x Intel® Xeon® processor E5-2697A v4 for worker nodes on Red Hat* Enterprise Linux 6.7 using Cloudera* Enterprise 5.6 scoring 337  BBQpm@3000 @ $1102.94/BBQpm@3000 available 3/31/16, source: submitted to www.tpc.org/3502.

Claim based on best published SPECjbb*2015-Distributed result submitted to/published at www.spec.org as of 10 November 2016. New configuration: HPE ProLiant* DL360 Gen9 with 2x Intel® Xeon® processor E5-2699 v4 (2.20GHz, 22 cores/44 threads, 55MB cache), 16x 16GB 2Rx4 PC4-2400T-R, on Red Hat* Enterprise Linux 7.2 scoring 120674 SPECjbb*2015-Distributed max-jOPS, 39513 SPECjbb2015-Distributed critical-jOPS. Source: http://www.spec.org/jbb2015/results/res2016q1/jbb2015-20160315-00054.html.

Claim based on best published SPECjbb*2015-Distributed result submitted to/published at www.spec.org as of 10 November 2016. New configuration: HPE ProLiant* DL380 Gen9 with 2x Intel® Xeon® processor E5-2699 v4 (2.20GHz, 22 cores/44 threads, 55MB cache), 16x 16GB 2Rx4 PC4-2400T-R, on Red Hat* Enterprise Linux 7.2 scoring 120674 SPECjbb*2015-Distributed max-jOPS, 39615 SPECjbb2015-Distributed critical-jOPS. Source: https://www.spec.org/jbb2015/results/res2016q1/jbb2015-20160315-00055.html.

Claim based on best published SPECjbb*2015-Distributed result submitted to/published at www.spec.org as of 10 November 2016. New configuration: HPE ProLiant* ML350 Gen9 with 2x Intel® Xeon® processor E5-2699 v4 (2.20GHz, 22 cores/44 threads, 55MB cache), 16x 16GB 2Rx4 PC4-2400T-R, on Red Hat* Enterprise Linux 7.2 scoring 120674 SPECjbb*2015-Distributed max-jOPS, 38570 SPECjbb2015-Distributed critical-jOPS. Source: http://www.spec.org/jbb2015/results/res2016q1/jbb2015-20160315-00056.html.

Claim based on best published SPECjbb*2015-Distributed result submitted to/published at www.spec.org as of 10 November 2016. New configuration: HPE Synergy 480 Gen9 with 2x Intel® Xeon® processor E5-2699 v4 (2.20GHz, 22 cores/44 threads, 55MB cache), 16x 64 GB 4Rx4 PC4-2400T-LD, on Red Hat* Enterprise Linux 7.2 scoring 67214 SPECjbb*2015-Distributed critical-jOPS, 94667 SPECjbb*2015-Distributed max-jOPS. Source: http://www.spec.org/jbb2015/results/res2016q4/jbb2015-20161025-00116.html.

Claim based on best published SPECjbb*2015-Composite result submitted to/published at http://www.spec.org/jbb2015/results/res2016q4/jbb2015-20161025-00116.html as of 10 November 2016. New configuration: HPE Synergy 480 Gen9 with 2x Intel® Xeon® processor E5-2699 v4 (2.20GHz, 22 cores/44 threads, 55MB cache), 16x 32 GB 2Rx4 PC4-2400T-R, on Red Hat* Enterprise Linux 7.2 scoring 106645 SPECjbb*2015-Composite max-jOPS, 59340 SPECjbb*2015-Composite critical-jOPS. Source: http://www.spec.org/jbb2015/results/res2016q4/jbb2015-20161025-00124.html.

Claim based on best published SPECjbb*2015-Composite result submitted to/published at www.spec.org as of 10 November 2016. New configuration: HPE Synergy 480 Gen9 with 2x Intel® Xeon® processor E5-2699 v4 (2.20GHz, 22 cores/44 threads, 55MB cache), 16x 32 GB 2Rx4 PC4-2400T-R, on SUSE Linux Enterprise Server 12 SP1 scoring 64452 SPECjbb*2015-Composite critical-jOPS, 104194 SPECjbb*2015-Composite max-jOPS. Source: http://www.spec.org/jbb2015/results/res2016q4/jbb2015-20161025-00122.html.

Claim based on best published SPECjbb*2015-Multi-JVM result submitted to/published at www.spec.org as of 10 November 2016. New configuration: HPE ProLiant* DL360 Gen9 with 2x Intel® Xeon® processor E5-2699A v4 (2.40GHz, 22 cores/44 threads, 55MB cache), 16x 16 GB 2Rx4 PC4-2400T-R, on SUSE Linux Enterprise Server 12 SP1 scoring 122045 SPECjbb*2015 Multi-JVM Max-jOPS, 29701 SPECjbb*2015-Multi-JVM Critical-jOPS. Source: http://www.spec.org/jbb2015/results/res2016q4/jbb2015-20161025-00119.html.

Claim based on best published SPECjbb*2015-Multi-JVM result submitted to/published at www.spec.org as of 10 November 2016. New configuration: HPE ProLiant* DL380 Gen9 with 2x Intel® Xeon® processor E5-2699A v4 (2.40GHz, 22 cores/44 threads, 55MB cache), 16x 16 GB 2Rx4 PC4-2400T-R, on SUSE Linux Enterprise Server 12 SP1 scoring 122045 SPECjbb*2015 Multi-JVM Max-jOPS, 30318 SPECjbb*2015-Multi-JVM Critical-jOPS. Source: http://www.spec.org/jbb2015/results/res2016q4/jbb2015-20161025-00123.html.

Claim based on best published SPECjbb*2015-Multi-JVM result submitted to/published at www.spec.org as of 10 November 2016. New configuration: HPE ProLiant* DL360 Gen9 with 2x Intel® Xeon® processor E5-2699A v4 (2.40GHz, 22 cores/44 threads, 55MB cache), 16x 64 GB 4Rx4 PC4-2400T-L, on Red Hat* Enterprise Linux 7.2 scoring 74929 SPECjbb*2015 Multi-JVM Critical-jOPS, 97034 SPECjbb*2015-Multi-JVM Max-jOPS. Source: http://www.spec.org/jbb2015/results/res2016q4/jbb2015-20161025-00125.html.

Huawei:
Claim based on best published one-node SPECpower*_ssj2008 results, published at https://www.spec.org/power_ssj2008/results as of 10 November 2016. New configuration: Huawei Technologies Fusion Server RH2288H V3 with 2x Intel® Xeon® processor E5-2698 v4, 64 GB memory, running Microsoft* Windows Server* 2012 R2 Datacenter, JVM version: Oracle Java HotSpot* 64-Bit Server VM (build 24.80-b11, mixed mode), version 1.7.0_80, Score: 12,212 overall ssj_ops/watt, source: http://www.spec.org/jbb2015/results/res2016q4/jbb2015-20161025-00125.html.

Lenovo:
Claim based on best-published two-socket SPECvirt_sc*2013 results published at https://www.spec.org/virt_sc2013/results/ as of 10 November 2016. New configuration: 1-Node, 2x Intel® Xeon® processor E5-2699 v4 on Lenovo* System x3650 M5 with 512 GB total memory on Red Hat Enterprise Linux* 7.2-kernel 3.10.0-327. Source: http://www.spec.org/virt_sc2013/results/res2016q3/virt_sc2013-20160823-00060-perf.html, Score: 2360 @ 137 VMs.

Claim based on best-published two-socket SPECvirt_sc*2013_ServerPPW results published at https://www.spec.org/virt_sc2013/results/ as of 10 November 2016. New configuration: 1-Node, 2x Intel® Xeon® processor E5-2699 v4 on Lenovo* System x3650 M5 with 512 GB total memory on Red Hat Enterprise Linux* 7.2-kernel 3.10.0-327, using Yokogawa, Ltd WT310 power analyzer. Source: http://www.spec.org/virt_sc2013/results/res2016q2/virt_sc2013-20160419-00049-ppws.html, Score: 4.196 @ 132 VMs.

Claim based on best-published two-socket SPECvirt_sc*2013_PPW results published at https://www.spec.org/virt_sc2013/results/ as of 10 November 2016. New configuration: 1-Node, 2x Intel® Xeon® processor E5-2699 v4 on Lenovo* System x3650 M5 with 512 GB total memory on Red Hat Enterprise Linux* 7.2-kernel 3.10.0-327, using Yokogawa, Ltd WT310 power analyzer. Source: http://www.spec.org/virt_sc2013/results/res2016q2/virt_sc2013-20160419-00049-ppw.html, Score: 4.196 @ 132 VMs.

Claim based on non-clustered best published two-socket TPC benchmark* E result submitted to/published at https://www.tpc.org as of 10 November 2016. New configuration: Lenovo* System x*3650 M5 with 2x Intel® Xeon® processor E5-2699 v4 2.2GHz, (2 processor, 44 cores, 88 threads), 512GB DDR4, running Windows Server* 2012 SE, SQL Server* 2016 Enterprise Edition, 2x 900GB SAS (RAID-1), 4x 800GB SAS SSD (RAID-10), 53x 800GB SAS SSD. Availability: July 31, 2016. Source: www.tpc.org/4076. Score: 4,938.14 tpsE, at a price of $117.91 USD/tpsE.

Oracle:
Claim based on best published two-socket SPECjEnterprise*2010 result submitted to/published at https://www.spec.org/jEnterprise2010/results/jEnterprise2010.html as of 10 November 2016. New configuration: Oracle WebLogic Server Standard Edition Release 12.2.1 on Oracle Server* X6-2 with 2x Intel® Xeon® processor E5-2699 v4 on Oracle* Linux 6 Update 7 x86_64 using Oracle Java HotSpot* 64-Bit Server VM, version 1.8.0_91 scoring 27,803 EjOPS, source: https://www.spec.org/jEnterprise2010/results/res2016q1/jEnterprise2010-20160622-00061.html.

SGI:
Claim based on best 2-, 4-, 8-, 16-, 32-, 64-, and 128-node two-socket SPECmpiL*2007 benchmark results submitted to/published at https://www.spec.org/mpi2007/results as of 10 November 2016. New configurations: SGI Rackable C2112-4GP3 with 2-, 4-, 8-, and 16-node or SGI ICE XA servers with 32-, 64-, and 128-node 2x Intel® Xeon® processor E5-269x v4 using Intel Compiler 16, source: http://www.spec.org/mpi2007/results/.

Claim based on best 1, 2, 4, 8, 16-, 32-, and 40-node two-socket SPECmpiM*2007 benchmark results submitted to/published at https://www.spec.org/mpi2007/results as of 10 November 2016. New configurations: SGI Rackable C2112-4GP3 server with 1-, 2-, and 4-node 2x Intel® Xeon® processor E5-2699 v4 or SGI ICE XA server with 8-, 16-, 32-, and 40-node 2x Intel® Xeon® processor E5-2690 v4 using Intel® Compiler 16, source: http://www.spec.org/mpi2007/results/

Additional information: 4 5 6 7 8 9 10 11 12 13

Product and Performance Information

1

(E5 v4 up to 47% vs. previous-generation E5 v3 performance based on binomialcpu v3.0_AVX2 financial services workload results as of 16 March 2016) comparing 1-Node, 2 x Intel® Xeon® Processor E5-2699 v3 on Grantley-EP (Wellsburg) with 128 GB Total Memory on Red Hat Enterprise Linux* 6.4 kernel 2.6.32-358, Options per second Score: 106025 vs. 2 x Intel® Xeon® Processor E5-2699 v4 on Grantley-EP (Wellsburg) with 128 GB Total Memory on Red Hat Enterprise Linux* 6.4 kernel 2.6.32-358, Options per second Score: 156141 Higher is better. Data Source: Request Number: 1871

2

(E5 v4 up to 28% vs. previous-generation E5 v3 average performance based on key industry-standard benchmarks calculations submitted by OEMs as of 10 November 2016) comparing 2-socket Intel® Xeon® processor E5 v3 to v4 family.  Key industry benchmarks include: SPECint*_rate_base2006, SPECint*_base 2006 (Speed), SPECfp*_rate_base 2006, SPECfp*_base2006 (Speed), SPECmpiL*_base2007, SPECmpiM*_base2007, SPECompG*_base2012, SPECvirt_sc*2013, VMmark* 2.5 performance (matched pairs), TPC-E*, SPECjEnterprise*2010, Two-tier SAP SD* Windows*/Linux, 1-Node TPC-H* 1TB, TPCx-BB* and SPECjbb*2015 MultiJVM. See http://www.intel.com/performance/datacenter for full configuration details.

3

(E5 v4 up to 2.4x more VMs/server vs. E5 v2 performance at 58% lower cost per VM based on SPECvirt_sc*2013 virtualization infrastructure consolidation workload submitted/published at https://www.spec.org/virt_sc2013/results/ as of 16 March 2016) comparing 1-Node, 2 x Intel® Xeon® Processor E5-2697 v2 on IBM System x*3650 M4* with 512 GB Total Memory on Red Hat Enterprise Linux* 6.4. Data Source: https://www.spec.org/virt_sc2013/results/res2013q3/virt_sc2013-20130820-00004-perf.html, Score: 947 @ 53 VMs vs. 1-Node, 2 x Intel® Xeon® Processor E5-2699 v4 on Lenovo System x*3650 M5* with 512 GB Total Memory on Red Hat Enterprise Linux* 7. Data Source: submitted to www.spec.org, Score: 2325 @ 132 VMs Higher is better.  Four year TCO analysis for 58% lower cost per VM at ~same total performance/VM level details:

a. New 10x 2-socket Intel® Xeon® processor E5-2699 v4 estimates (total 4-year cost of $124,597 supporting 1320 VMs @ $94.39/VM)

i. Server maintenance ($2399/server) = $95,960
ii. Power and cooling ($0.10/KwH @ 60% CPU utilization) = $21,837
iii. Rack/Floor space ($155/server) = $6,200
iv. Networking ($15/server) = $600

b. Existing 25x 2-socket Intel® Xeon® processor E5-2697 v2 estimates (total 4-year cost of $298,247 supporting 1325 VMs @ $225.09/VM)

i. Server maintenance ($2399/server) = $239,900
ii. Power and cooling ($0.10/KwH @ 60% CPU utilization) = $41,347
iii. Rack/Floor space ($155/server) = $15,500
iv. Networking ($15/server) = $1,500

4

Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information, go to www.intel.com/benchmarks.

5

Intel does not control or audit the design or implementation of third party benchmarks or websites referenced in this document. Intel encourages all of its customers to visit the referenced websites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of systems available for purchase.

6

Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actual benchmark result for the baseline platform into each of the specific benchmark results of each of the other platforms, and assigning them a relative performance number that correlates with the performance improvements reported.

7

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel® microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® SSE3, and Supplemental Streaming SIMD Extensions 3 (SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel® microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

8

Intel® technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your software vendor, system manufacturer, or retailer, or learn more at http://www.intel.com/software/tsx.

9

SPEC* and the benchmark names SPECint*, SPECfp*, SPECjbb*, SPECjEnterprise*, SPECvirt_sc*, SPECpower_ssj*, SPECompG*, and SPECmpi* are registered trademarks of the Standard Performance Evaluation Corporation.

10

TPC Benchmark, TPCx-BB, TPC-C, tpmC, TPC-H, QphH, TPC-E, and tpsE are trademarks of the Transaction Processing Council. See www.tpc.org for more information.

11

SAP and SAP NetWeaver are the registered trademarks of SAP AG in Germany and in several other countries. See www.sap.com/benchmark for more information.

12

VMware* is a registered trademark and VMmark* is a trademark of VMware*, Inc.

13

Intel® processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.