AHCI 1.0 Erratum 006

AHCI 1_0 Erratum_006.doc

AHCI 1.0

Erratum 006

SERIAL
e

AHCI 1 0 Erratum_006.doc

Please send comments to Amber Huffman
amber.huffman@intel.com

AHCI 1_0 Erratum_006.doc AHCI 1.0 Erratum 006

Table of Contents

1 AGGRESSIVE POWER MANAGEMENT CLARIFICATIONS .. .uuuttittttt et aaeaaeaeeaeeaneeeeeneaneanenenes 1
1.1 Description of TECHNICAI ISSUE.......ccoiiiiiiiiiiiie e e 1
1.2 Description of Correction t0 SPeCIfiCAtiONocuuiiiiiiiiii e 1

2 PXSERR.ERR.E BIT DEFINITION IS INCORRECT 1t utuututatttteteteteeaaeaaeaaeateaeaaeeaeaaeaneanaanns 2
2.1 Description of TECHNICAI ISSUE........uuuiiiiii e e e e e e s e e e e e e s e aanes 2
2.2 Description of Correction to SPECIfICALIONccviieiii i e e e e s e e e e e e 2

3 M S CORRECTIONS . ..ttt ettt et ettt e e ettt ettt et e a e a e et et e et ea e ea e an e e eaneneeeneaneaneanans 3
3.1 Description Of TEChNICAI ISSUE.........uiiiiiiiiie e seneee s 3
3.2 Description of Correction to SPECIfiCALIONccoiiuiiiiiiiiiiie e 3

4 COMMAND COMPLETION PROCESSING CLARIFICATIONS ...ttt attneeaneeaeeneeaeeneeaeeneeenns 4
4.1 Description Of TECHNICAI ISSUE...........uiiiiiiiie e e e a e 4
4.2 Description of Correction t0 SPeCIfiCationc.eeviiiiiiiiiic e e 4

543 Processing Completed COMMEANTGSuuiiiiea ittt e e e ettt e e e e e e e s bbeeeeeaeesaabaeeeeeaeesaannnseeeeaann 4

5 UPDATES TO COMMAND HEADER STRUGCTUREtuutittieeaeae ettt et et et aaeae e aa e e eaeeaeaaeaneanennns 5
5.1 Description of TECHNICAI ISSUE........uuiiiiiieii i e e e e e e e e s e srn e eeeeeananes 5
5.2 Description of Correction to SPECIfiCAtIONceveeiii i 5

422 COMMANG LIST STIUCTUI ...ttt e e e ettt e e e e e e st e e e e e e e enebe e e e e s aatneneeeeas 5

6 HOT PLUG CAPABLE PORT DEFINITION ...uuutututttte et aaeaaeeeaeeeeeeaeaneaneaneaneanaeeneaneaneanenes 6
6.1 Description Of TECHNICAI ISSUE........coiiiiiiiiiiiiiie et e b e e e abee e e 6
6.2 Description of Correction to SPeCIfiCALIONocuuiiiiiiiiii e 6

AHCI 1.0 Erratum 006 AHCI 1_0 Erratum_006.doc

1 Aggressive Power Management Clarifications
1.1 Description of Technical Issue

The specification is not clear on software requirements regarding aggressive power management when
the CAP.SALP bit is cleared to ‘0. The errata clarifies that software shall only utilize the aggressive
power management register bits if CAP.SALP is set to ‘1.

1.2 Description of Correction to Specification

Modify the definition of the “Supports Aggressive Link Power Management” bit in the CAP
register in section 3.1.1 as follows:

Supports Aggressive Link Power Management (SALP): When set to ‘1, indicates
26 RO Impl. [that the HBA can support auto-generating link requests to the Partial or Slumber states
Spec | when there are no commands to process. When cleared to ‘0’, software shall treat the
PxXCMD.ALPE and PxCMD.ASP bits as reserved. Refer to section 8.3.1.3.

Modify the definition of the “Aggressive Link Power Management Enable” bit in the PxCMD
register in section 3.3.7 as follows:

Aggressive Link Power Management Enable (ALPE): When set to ‘1’, the HBA shall
RW/ aggressively enter a lower link power state (P_artigl or Slur_nber) based upon the setting
26 RO 0 of the ASP bit. Software shall only set this bit to ‘1" if CAP.SALP is set to ‘1’; if
CAP.SALP is cleared to ‘0’ software shall treat this bit as reserved. See section 8.3.1.3
for details.

Modify the definition of the “Aggressive Slumber / Partial” bit in the PxCMD register in section
3.3.7 as follows:

Aggressive Slumber / Partial (ASP): When set, and ALPE is set, the HBA shall
aggressively enter the Slumber state when it clears the PxCI register and the PXSACT
RW/ register is cleared or when it clears the PXSACT register and PxCl is cleared. When
27 RO 0 cleared, and ALPE is set, the HBA shall aggressively enter the Partial state when it

clears the PxCI register and the PxSACT register is cleared or when it clears the
PxSACT register and PxCl is cleared. If CAP.SALP is cleared to ‘0’ software shall treat
this bit as reserved. See section 8.3.1.3 for details.

AHCI 1_0 Erratum_006.doc AHCI 1.0 Erratum 006

2 PxSERR.ERR.E bit definition is incorrect

2.1 Description of Technical Issue

The PXxSERR.ERR.E bit definition in AHCI is much narrower in scope than the Serial ATA 1.0a definition
of this bit. This erratum broadens the definition to cover all internal errors as in the Serial ATA 1.0a
definition.

2.2 Description of Correction to Specification
Modify the definition of the PXxSERR.ERR.E bit in section 3.3.12 as follows:

Internal Error (E): Fhe-SATA-controllerfailed-due-to-amasteror-target
abeort-when-attempting-to-access-system-memeory—The host bus adapter

experienced an internal error that caused the operation to fail and may
have put the host bus adapter into an error state. The internal error may
include a master or target abort when attempting to access system
memory, an elasticity buffer overflow, a primitive mis-alignment, a
synchronization FIFO overflow, and other internal error conditions.
Typically when an internal error occurs, a non-fatal or fatal status bit in
the PxIS register will also be set to give software guidance on the
recovery mechanism required.

11

AHCI 1.0 Erratum 006 AHCI 1_0 Erratum_006.doc

3 MSI corrections
3.1 Description of Technical Issue

The message signaled interrupt (MSI) sections require several clarifications. The PCI specification
(where MSI is defined) does not require the device to handle software incorrectly setting the Multiple
Message Enable field. This errata updates AHCI to allow incorrect software settings of this field to result
in indeterminate behavior. This errata also add clarifications for when single MSI versus multiple MSl is in
use.

3.2 Description of Correction to Specification

Modify the “Multiple Message Enable” field in section 2.3.2 as follows:

Multiple Message Enable (MME): Indicates the humber of messages the HBA should
06:04 RW 000 | assert. See section 0. If the value programmed into this field exceeds the MMC field in
this register, only-a-single-message-shall-be-generated the results are indeterminate.

Modify the first paragraph in section 10.6.2.1 as follows:

10.6.2.1 Pin Based and Single MSI Message Based Behavior

This is the mode of interrupt operation if any of the following conditions are met:
e Pin based interrupts are being used — MSI is disabled (MSICAP.MC.MSIE="0")
e Single MSI is being used — MSI is enabled (MSICAP.MC.MSIE="1") and MSICAP.MC.MME=0h

Modify the first paragraph in section 10.6.2.2 as follows:

10.6.2.2 Multiple MSI Based Messages

An HBA may optionally support multiple MSI messages for better performance. In this mode, multiple
interrupt messages are allocated for the controller; each port may have has its own interrupt message.
To support this mode, the MSICAP.MC.MMC field represents a power-of-2 wrapper on the number of
implemented ports in the global memory space PI register. For example, if 3 ports are implemented, then
the MSICAP.MC.MMC field must be ‘010’ (4 interrupts).

Modify the paragraph that follows Table 3 in section 10.6.2.2 as follows:

When generating an MSI message, a port looks at its PxIS register, and uses the following rules to
generate a message:
o Ifanew bitis setin PxIS, and the corresponding bit in PxIE is set, send a message
e |If hits are cleared in PxIS, and other bits remain set, if their corresponding bits in PxIE are set,
send a message.
e |f a PxIE bit transitions from ‘0’ to ‘1’ and the corresponding bit in PxIS is set, send a message.

AHCI 1_0 Erratum_006.doc AHCI 1.0 Erratum 006

4 Command Completion Processing Clarifications
4.1 Description of Technical Issue

In order to determine what commands have completed, software must compare the PxCl or PXxSACT
register values to a stored list of outstanding commands that it has previously issued. The current
language in section 5.4.3 incorrectly says that software should compare a previous value of
PxCI/PxSACT against the current value to determine those commands that have been completed.

4.2 Description of Correction to Specification

Modify section 5.4.3 as shown:

5.4.3 Processing Completed Commands

Software processes the interrupt generated by the device for command completion. In the interrupt
service routine, software checks IS.IPS to determine which ports have an interrupt pending.

For each port that has an interrupt pending:

1. Software determines the cause of the interrupt by reading the PxIS register. It is
possible for multiple bits to be set

2. Software clears appropriate bits in the PxIS register corresponding to the cause of
the interrupt.

3. Software clears the interrupt bit in IS.IPS corresponding to the port.

4. If executing non-queued commands, software reads the PxCI register, and compares
the current value to the list of commands previously issued by software that are still
outstanding-a-previeuslyread-valde. If executing native queued commands, software
reads the PxSACT register and compares the current value to the list of commands
previously issued by software-a—previouslhyread-value. Softwarelt completes with
success any outstanding commands whose corresponding bit has been cleared in
the respective register-since-the-last-value-wasread. PxCl and PxSACT are volatile
registers; software should only use their values to determine commands that have
completed, not to determine which commands have previously been issued.

5. If there were errors, noted either in the PxIS register or PXTFD.STS.ERR, software
performs error recovery actions (see section 6.2.2).

AHCI 1.0 Erratum 006 AHCI 1_0 Erratum_006.doc

5 Updates to Command Header structure
5.1 Description of Technical Issue

There are four bytes of reserved space that follow each command header. This reserved space is often
overlooked leading to confusion. This errata includes the reserved space as part of the command header
definition itself to avoid this issue.

5.2 Description of Correction to Specification

Replace Figure 7 with the figure shown and modify the text in section 4.2.2 as shown:

4.2.2 Command List Structure

Figure 7 shows the command list structure. Each entry contains a command header, which is a 3216-
byte structure that details the direction, type, and scatter/gather pointer of the command. Further details
of each field are listed below.

Figure 7: Command List Structure

31 |23 15 7 0
" owo PRDTL PMP [RCBRPWA CFL
.
e DwW1 PRDBC: PRD Byte Count
Command 00h DW2 | CTBAO: Command Table Base Address ‘ Reserved
Header 0 DW3 | CTBA_UO: Command Table Base Adr Upper 32-bits
Command 20h AN Dw4 Reserved
Header 1 AN DWS5 Reserved
Command 40h \\\ DWE6 Reserved
Header 2 N pwz Reserved
60h
-
Each command header has the
Command 3Coh same format as command header 0
Header 30
Command 3EOh
Header 31
400h

Include a new figure following Figure 11 to describe Dwords 4-7 in the Command Header:

Figure 11a: DW 4-7 — Reserved

Dword Description
4 Reserved
5 Reserved
6 Reserved
7 Reserved

AHCI 1_0 Erratum_006.doc AHCI 1.0 Erratum 006

6 Hot Plug Capable Port definition

6.1 Description of Technical Issue

The definition of hot plug capable port is not as precise as it could be and leads to misinterpretations.
With external SATA starting to become available, the confusion around this bit becomes greater. This
errata clarifies that this bit is only used for traditional hot plug that includes the power connector as part of
the hot plug. A future revision of AHCI is planned to capture showing external SATA capability (where the

signal cable only is included in the hot plug operation).

6.2

Description of Correction to Specification

Modify the “Hot Plug Capable Port” field in section 3.3.7 as follows:

18

RO

Hwinit

Hot Plug Capable Port (HPCP) #%e&%%ﬂa#e%#m&mse&&uw%@%e

%mmmw%ﬂmw&a%wmn set to

‘1", indicates that this port's signal and power connectors are externally accessible via a
joint signal and power connector for blindmate device hot plug. When cleared to ‘0’,
indicates that this port’s signal and power connectors are not externally accessible via a
joint signal and power connector.

