
Improving Real-Time
Performance by Utilizing Cache
Allocation Technology
Enhancing Performance via Allocation of the Processor’s Cache

White Paper

April 2015

Document Number: 331843-001US

Legal Disclaimer

Legal Disclaimer

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked “reserved” or “undefined.” Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no
license, express or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.

This document contains information on products in the design phase of development.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across
different processor families. Go to: http://www.intel.com/products/processor_number/

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have
not been made commercially available to the public, i.e., announced, launched or shipped.

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel®
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to: http://www.Intel.com/performance.

Intel, Intel Xeon, Intel SpeedStep, Intel Hyper-Threading, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other
countries.

*Other names and brands may be claimed as the property of others.

© 2015 Intel Corporation

Improving Performance by Utilizing Cache Allocation White
Paper April 2015
2 Document Number: 331843-001US

http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor_number/
http://www.intel.com/performance

Contents

Contents
1 Summary ... 5

2 Background ... 6

3 Introduction .. 7
3.1 Acronyms and Terminology ... 7
3.2 Overview of the Intel® Architecture .. 7
3.3 Cache Hierarchy ... 8
3.4 Intel Cache Policies... 8
3.5 Problem .. 9
3.6 Cache Allocation Technology .. 9

4 Measurement and Analysis .. 11
4.1 Performance Measurement Environment and Test Cases 11

4.1.1 Test Case 1: MSI Latency ... 11
4.1.1.1 System Configuration ... 12

4.1.2 Test Case 2: A Real-Time Cycle ... 12
4.1.2.1 System Configuration ... 13

4.2 Test Environment Configuration .. 13
4.3 Measurement Results ... 14

4.3.1 Test Case 1: MSI Latency .. 14
4.3.2 Test Case 2: A Real-Time Cycle ... 15

5 Conclusion ... 16

Figures

Figure 1. Cache Hierarchy .. 8
Figure 2. A Real-Time Cycle ... 12

Tables

Table 1. Fourth Generation Intel® Xeon® Processor which Support CAT................................. 6
Table 1. Acronyms and Terminology ... 7
Table 2. Test Environment ... 13
Table 3. MSI Latency ... 14
Table 4. Aggregate Bandwidth .. 15
Table 5. Maximum Recorded PCIe* Latency after 1 Hour ... 15
Table 6. Aggregate Bandwidth from Extra CPU-to-Memory Workloads 15

April 2015
 Improving Performance by Utilizing Cache Allocation

White Paper
Document Number: 331843-001US 3

Revision History

Revision History

Date Revision Description

April 2015 001US Initial release.

§

Improving Performance by Utilizing Cache Allocation White
Paper April 2015
4 Document Number: 331843-001US

Summary

1 Summary
Intel continues to add additional cores to its processors, enabling the processor to run
additional workloads simultaneously. As additional threads are being processed
concurrently, data in the system’s caches can become invalidated and evicted quickly.

For latency sensitive workloads, the added delay to fetch the data from system
memory can negatively impact the performance. To help prevent this situation from
occurring, Intel has developed Cache Allocation Technology (CAT) to enable more
control over the LLC cache and how cores allocate into it.

Using CAT, the system administrator can reserve portions of the cache for individual
cores so that only these cores can allocate into them. As a result, other applications
may not evict cache lines from these reserved portions of the cache via general use of
the caches. This paper describes the Intel cache hierarchy, how to configure CAT, and
scenarios in which CAT can improve performance for latency sensitive applications.

April 2015
 Improving Performance by Utilizing Cache Allocation

White Paper
Document Number: 331843-001US 5

Background

2 Background
Generation after generation, Intel’s Xeon® server processors continue to house more
cores. With Intel® Hyper-Threading Technology, each of these cores is capable of
executing two threads simultaneously. This provides customers with a great deal of
computational power and the ability to execute many different tasks in parallel. The
cache is one of the many mechanisms used to increase the overall performance of the
processor and aid in the swift execution of instructions by providing high bandwidth
low latency data to the cores.

With the additional cores, the processor is capable of executing more threads
simultaneously. Depending on the workloads and the resources required by each of
the threads, the various processes can interfere with the execution time of others.
One such example is the invalidation and eviction of data from the cache. While this is
a normal and important operation which occurs within the processor, it may introduce
additional delays for some applications. Using CAT, system administrators can reserve
portions of the cache for latency-sensitive applications so that its critical data is not
evicted by other lower-priority processes.

Table 1. Fourth Generation Intel® Xeon® Processor which Support CAT

Processor L3Cache Brand String

Intel® Xeon® E5-2658 v3 Processor
(12 Core, 2.20 GHz 105 W TDP)
FC-LGA12A

30 MB
20 W

Intel® Xeon® CPU E5-2658 v3 @ 2.20
GHz

Intel® Xeon® E5-2648L v3 Processor
(12 Core, 1.80 GHz 75 W TDP)
FC-LGA12A

30 MB
20 W

Intel® Xeon® CPU E5-2648L v3 @
1.80 GHz

Intel® Xeon® E5-2628L v3 Processor
(10 Core, 2.00 GHz 75 W TDP)
FC-LGA12A

25 MB
20 W

Intel® Xeon® CPU E5-2628L v3 @
2.00 GHz

Intel® Xeon® E5-2618L v3 Processor
(8 Core, 2.30 GHz 105 W TDP)
FC-LGA12A

20 MB
20 W

Intel® Xeon® CPU E5-2618L v3 @
2.30 GHz

Intel® Xeon® E5-2608L v3 Processor
(6 Core, 2.00 GHz 105 W TDP)
FC-LGA12A

15 MB
20 W

Intel® Xeon® CPU E5-2608L v3 @
2.00 GHz

Improving Performance by Utilizing Cache Allocation White
Paper April 2015
6 Document Number: 331843-001US

Introduction

3 Introduction
This section introduces the Intel® Architecture, provides a summary of Intel cache
policies, delineates the technical problem at hand and describes Cache Allocation
Technology.

3.1 Acronyms and Terminology
Table 1 provides definitions for the acronyms and terminology utilized in this
document.

Table 2. Acronyms and Terminology

Term/Acronym Definition

CAT Cache Allocation Technology

CPU Central Processing Unit

FPGA Field Programmable Gate Arrays

Intel® DDIO Intel® Data Direct Input/Output (I/O) Technology

LLC Last Level Cache

LRU Least Recently Used

MS Millisecond

MLC Mid-Level Cache

MSI Message Signaled Interrupt

PCIe* Peripheral Component Interconnect Express

µs Microseconds

3.2 Overview of the Intel® Architecture
Intel® server processors are designed for heavy computational loads and include a
large variety of features and technologies to improve general performance and
accelerate particular tasks. Examples of these technologies include the processor’s
data and instruction caches, multiple cores, and Intel® Hyper-Threading technology.
As the processor becomes capable of computing a growing number of tasks in parallel,
there is a growing need for the ability to customize how resources are utilized within
the processor. This customization can be very beneficial in use cases where certain
tasks are utilizing resources, such as the cache, but not taking advantage of the
possible performance gains provided by the resource.

April 2015
 Improving Performance by Utilizing Cache Allocation

White Paper
Document Number: 331843-001US 7

Introduction

3.3 Cache Hierarchy
Intel’s Xeon® processors include three levels of cache: the L1, L2, and L3 caches. The
L1 cache is the smallest, but fastest, cache and is located nearest to the core. The L2
cache, or mid-level cache (MLC), is many times larger than the L1 cache, but is not
capable of the same bandwidth and low latency as the L1 cache. Similarly, the L3
cache, also known as the last level cache (LLC), is the largest and slowest cache on
Intel Xeon processors and can be orders of magnitude larger than the MLC.

Figure 1 shows the cache hierarchy.

Figure 1. Cache Hierarchy

3.4 Intel Cache Policies
Each physical core contains its own private L1 and MLC caches. However, the LLC is
shared and can be fully accessed and utilized by all cores in the system. On Intel Xeon
v3 processors, the LLC is an inclusive cache. An inclusive cache includes all of the data
that is stored in the lower level caches. If a request for data misses a core's L1 and
MLC, the request then continues to the LLC to be serviced. If this results in an LLC hit,
then snooping may be required to maintain coherency with another core which may
have the data. Otherwise, in the case of an LLC miss, the request is serviced in
memory.

In almost every case, as cores request data from memory a copy is placed in each of
the caches as well. As a result, when a request misses the L1, it may hit in the MLC or
LLC. However, as an LLC cache line is evicted the cache line must also be invalidated

Improving Performance by Utilizing Cache Allocation White
Paper April 2015
8 Document Number: 331843-001US

Introduction

in the L1 and MLC if they exist. This can happen, for example, when a core has data in
its L1 which it has not used for a time. As other cores utilize the LLC the least recently
used (LRU) algorithm may eventually evict cache lines from the LLC. As a result, the
cache line in the L1 and L2 cache of the core which had previously been used will
become invalidated.

3.5 Problem
Xeon® processors are capable of running many threads in parallel. As a result, the
contents of the shared LLC can quickly become overwritten with new data as it is
requested from memory by the cores. However, this situation highly depends on the
number of simultaneous threads and their memory workloads and patterns. With the
right workloads and conditions, a large portion of the LLC can be quickly overwritten
with new data causing significant portions of some L1 and L2 caches to be evicted and
reduce the performance of the corresponding cores.

For example, assume an Intel® Xeon® powered server is running several processes
and workloads. The server is also programmed with an interrupt service routine (ISR)
to handle a high-priority interrupt which is very sensitive to latency. The other
workloads on the server are low priority and generate a large amount of memory
traffic.

During the time between interrupts, the low-priority processes generate memory
traffic which may overwrite the entire LLC with new data and therefore invalidate
everything in all other cores’ L1 caches. In this situation, the next high-priority
interrupt received will see a higher latency. This is because the code and data
necessary to service the instruction are no longer in the cache and must be fetched
from memory.

3.6 Cache Allocation Technology
The situation described above can be alleviated using a new feature in some new Intel
processors called Cache Allocation Technology (CAT). CAT does not require any
modifications to the operating system or kernel to take advantage of it. By means of
defining and assigning a class of service to each core, the user can assign portions of
the LLC to particular cores by limiting the amount of the LLC into which each core is
able to allocate cache lines. Because the core is only able to allocate cache lines into
its assigned portion of the cache, it is no longer possible for the core to evict cache
lines outside of this region.

The cache is divided into ways and these ways can be divided or shared among the
cores with CAT. Though a core may be limited to allocating, and therefore evicting,
cache lines to a subset of the LLC, a read or write from a core may still result in a
cache hit if the cache line exists anywhere in the LLC. For example, kernel code,
shared data allocated by threads on other cores, data in the LLC written via Intel®
Data Direct Input/Output (Intel® DDIO), may be found in the LLC outside of a core’s
limited region of the LLC and result in a cache hit.

CAT is particularly useful in scenarios where an offending application is requesting a
large amount of data, putting pressure on other applications, but never reusing the
data that is cached in the LLC. File hosting and video streaming programs are
examples of these types of applications. On an otherwise idle system, these

April 2015
 Improving Performance by Utilizing Cache Allocation

White Paper
Document Number: 331843-001US 9

Introduction

applications can consume the entire LLC, but never take advantage of the LLC
because this offending application is not reusing most of the data that it requests. The
core on which an offending application is running can be restricted to a small region of
the cache. As a result, other applications have a better opportunity to benefit from
the LLC but, at the same time, there is a potential for decreasing the offending
application’s performance. The performance impact on the offending application
depends on its workload, the size of its working set, and other factors.

Assume an application is processing data linearly on an otherwise idle system. The
application has a 40MB working set and the LLC is 20MB in size. As the program
processes the first 20MB of its working set, the data misses the LLC and becomes
cached in the LLC after being fetched from memory. However, as the program makes
requests for the next 20MB, the requests will again miss the LLC and must be serviced
by memory. To make room for the next 20MB of data, the least recently used data is
evicted as the following 20MB of the working set are requested. As the program
continues, it thrashes the LLC as it requests new data and evicts old data in a
continuous manner without hitting any of the data in the LLC.

In scenarios such as these, a user can configure the system such that the offending
application is bound to a particular core(s). Additionally, the user can configure these
same cores to only use, for example, ten percent of the LLC. Now the application can
only thrash this ten percent of the cache, leaving the remaining ninety percent
untouched. (Intel's Cache Monitoring Technology (CMT) can be used to track each
core's LLC cache occupancy. For more information on CMT please see
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-
allocation-technologies.html or chapter 17.14 of the Intel Software Developer's
Manual.)

Furthermore, in this hypothetical scenario, with the program linearly processing 40MB
of data, because the application never reused the data before being thrashed in the
LLC, the application’s performance is unhindered despite the reduction in the amount
of the LLC into which it can allocate. This is because the performance bottleneck is still
found in the memory bandwidth and latency. By limiting the cache, which the core
always misses and never hits, the performance is not reduced. The cache will still miss
and the memory will continue to fulfill the requests for data. However, in other
scenarios where the application is more dependent on a data set which is found in the
LLC (rather than RAM), utilizing CAT in this way may result in decreased performance
for the application. Refer to Intel Software Developer's Manual chapters 17.15 for
more information on CAT.

Improving Performance by Utilizing Cache Allocation White
Paper April 2015
10 Document Number: 331843-001US

http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html

Measurement and Analysis

4 Measurement and Analysis
This section provides comprehensive measurement and data analysis.

4.1 Performance Measurement Environment and Test
Cases
The following test cases compare the performance of multiple programs when run with
and without CAT enabled and configured to prioritize the LLC for sensitive applications.
Various workloads will be used to highlight the effects of CAT in different use cases.

4.1.1 Test Case 1: MSI Latency

CAT can reduce MSI latency and jitter and as a result benefit applications that are
sensitive to the performance of MSIs. As other workloads are run on the system
between executions of the MSI handler, the system may evict the MSI handler code
from cache. If this occurs, the next MSI received will result in the fetching of the
handler from memory before the MSI can be serviced. This results in increased
latency and jitter as the handler is required to be fetched from memory before
processing the MSI. With CAT the user can prevent other cores, as they execute their
workloads, from evicting the interrupt handler code from cache.

To demonstrate this, a system is configured with an external PCIe device which
generates an MSI every 1ms. An interrupt handler is registered on the DUT to service
interrupts and send PCIe writes back to the device. The card calculates the time
between when the MSI was generated and when the PCIe write was received to
determine how quickly the interrupt was handled. Simultaneously, other cores will be
used to generate memory traffic to simulate a real-world scenario where other
programs will be running and utilizing the cache and RAM. These applications read
linearly from memory in a span much larger than the size of the LLC. To compare the
effects of CAT, two tests will be run: one with CAT disabled and the other with CAT
enabled.

April 2015
 Improving Performance by Utilizing Cache Allocation

White Paper
Document Number: 331843-001US 11

Measurement and Analysis

4.1.1.1 System Configuration
• Limit cores to a reduced set of the cache via CAT (the example below assumes a

single core (core 1) as the core which will be generating CPU-to-MMIO traffic).

− Set the default way mask to not include the last four cache ways

• wrmsr 0xc90 0xFFFF0

− Set a second way mask to only include the last four cache ways

• wrmsr 0xc91 0xF

− Set core 1 to use the second way mask

• wrmsr –p 1 0xc8f 0x100000000

4.1.2 Test Case 2: A Real-Time Cycle

To simulate a real-time use case, the following cycle is the basis for these
experiments. Several different utilities are executed simultaneously to simulate
different portions of the cycle. Figure 2 illustrates the real-time cycle.

Figure 2. A Real-Time Cycle

An external PCIe* device writes current sensor, motor position, status values, etc.,
upstream to the system. After completing the writes, an MSI is used to notify the CPU
that the data is available and complete. Upon receiving the interrupt, the CPU reads

PCIe Write
Raw Data

MSI

CPU Read
Data

Compute CPU Write
Data

CPU-to-
MMIO Write

PCIe Read
Results

Improving Performance by Utilizing Cache Allocation White
Paper April 2015
12 Document Number: 331843-001US

Measurement and Analysis

the data, computes new values based on the input, and then writes this data to
cache/memory. The CPU sends a PCIe* write to the PCIe* device once these steps
have been completed to notify of it of the updated data. After receiving the MMIO
write from the CPU, the PCIe* device reads the results.

In this workflow, there are many situations where CAT can be utilized to improve
performance. As seen from the previous tests, CAT can be used to improve
performance when handling interrupts. In this test, other workloads can also benefit
from CAT.

CAT can be used to preserve the cache lines utilized for sending/receiving data
to/from the PCIe* device. In this case, CAT can be used to improve the performance
of the "PCIe Read Results" step in Figure 2. This can be achieved by locking cache
lines into a small portion of the cache that cannot be allocated by cores or
Intel® DDIO. By ensuring these cache lines remain in cache they will always be
available for immediate use in the LLC for Intel® DDIO instead of waiting for the cache
lines to be fetched from main memory.

To add additional strain on the system, additional programs were executed in parallel
to generate CPU to memory traffic; these applications read data linearly from memory
in a span much larger than the size of the LLC.

4.1.2.1 System Configuration
• Lock target cache lines into the cache via CAT

− Set the default way mask to not include the last two cache ways

• wrmsr 0xc90 0xFFFFC

− Set a second way mask to only include the last two cache ways

• wrmsr 0xc91 0x3

− Set core 1 to use the second way mask

• wrmsr –p 1 0xc8f 0x100000000

− Use core 1 to touch all of the memory locations one wishes to lock
permanently into the cache

− Set core 1 to use the default (first) way mask

• wrmsr –p 1 0xc8f 0x000000000

4.2 Test Environment Configuration
The test environment for the data presented is described in Table 2.

Table 3. Test Environment

Platform Grantley

Processor Intel® Xeon® Processor E5-2658v3

CPU Frequency 2.20GHz

April 2015
 Improving Performance by Utilizing Cache Allocation

White Paper
Document Number: 331843-001US 13

Measurement and Analysis

Intel® HT Technology Disabled

C/P/T States Disabled

Intel SpeedStep® Technology Disabled

Memory 16GB (2x8GB) DDR4 Registered ECC 2133 MHz

Operating System Red Hat* Enterprise Linux Server 6.3 (Kernel
3.7.10)

PCIe* Exerciser card 2 PCIe* Gen3 x4 cards

Note: The PCIe* exerciser card is an in-house hardware tool.

4.3 Measurement Results
The measurement results are detailed in this section.

4.3.1 Test Case 1: MSI Latency

For this test an external PCIe* device generates an interrupt every 1ms and the time
taken to handle the interrupt is recorded. In the tables below, two test cases are
shown. MSI latency when the system is loaded with concurrent CPU-to-Memory
traffic, and loaded with concurrent CPU-to-Memory traffic with CAT configured. When
the system is running concurrent CPU-to-Memory traffic with CAT configured, the
average MSI latency is ~2.9 µs lower (~64% decrease). Minimum latency (decreased
by ~27%) and maximum latency (decreased by ~32%) also saw improvements in
their latency by utilizing CAT to optimize cache utilization.

Table 3 shows the MSI Latency.

Table 4. MSI Latency

MSI Latency Minimum Latency Maximum Latency Average Latency

Loaded without CAT 1.66 µs 30.91 µs 4.53 µs

Loaded with CAT 1.22 µs 20.98 µs 1.62 µs

The aggregate bandwidth from the programs generating CPU-to-Memory traffic was
also recorded with and without CAT. The results show that these workloads were
unaffected by the reduced size of the cache into which they can allocate cache lines.

Improving Performance by Utilizing Cache Allocation White
Paper April 2015
14 Document Number: 331843-001US

Measurement and Analysis

Table 4 shows the aggregate bandwidth.

Table 5. Aggregate Bandwidth

Loaded CPU-to-Memory Traffic Aggregate Bandwidth

Without CAT 32.5 GB/s

With CAT 32.5 GB/s

4.3.2 Test Case 2: A Real-Time Cycle

In the second test case, several workloads which are commonly included in a real-time
cycle are running concurrently. The maximum PCIe* read latency is recorded after
running the workload for an hour.

Table 5 shows the maximum recorded PCIe* latency after 1 hour.

Table 6. Maximum Recorded PCIe* Latency after 1 Hour

Loaded CPU-to-Memory Traffic Maximum Recorded PCIe Read Latency After 1
hour

Without CAT 1.360 µs

With CAT 1.200 µs

As with test case 1, the aggregate bandwidth from the additional programs generating
CPU-to-Memory traffic was also recorded with and without CAT. The results show that
these workloads were unaffected by utilizing CAT in this manner.

Table 6 shows the aggregate bandwidth from extra CPU-to-memory workloads.

Table 7. Aggregate Bandwidth from Extra CPU-to-Memory Workloads

Loaded CPU-to-Memory Traffic Aggregate Bandwidth from Extra CPU-to-Memory
Workloads

Without CAT 18.5 GB/s

With CAT 18.5 GB/s

April 2015
 Improving Performance by Utilizing Cache Allocation

White Paper
Document Number: 331843-001US 15

Conclusion

5 Conclusion
In some scenarios, offending applications hinder the performance of other processes
on a system by generating a large amount of CPU-to-Memory traffic and quickly
allocating new cache lines into the LLC. This white paper describes Intel’s Cache
Allocation Technology, how to use it, and shows its effectiveness in test cases without
modifying the operating system or kernel. The test cases described show the
performance gain possible in these scenarios by the use and proper configuration of
CAT.

In the first test case, MSI latency was decreased by utilizing CAT to limit the offending
applications which are simultaneously generating CPU-to-Memory traffic. The
minimum, average, and maximum MSI latencies saw a significant performance gain
by utilizing CAT. In particular, the average MSI latency was decreased by ~64%.
Additionally, this performance was achieved without degrading the CPU-to-Memory
performance of the other applications used in this test case.

The second case was run in a much more involved use case with many applications
running in parallel to simulate a real-time use case. In this scenario, without CAT the
maximum PCIe* read latency measured in an hour was 1.36µs. By configuring CAT to
preserve the cache lines containing the high-priority data, the maximum PCIe* read
latency measured in an hour was reduced by ~12% to 1.2µs.

On systems with multiple workloads running simultaneously, which heavily utilize the
cache; system administrators can utilize CAT to improve performance. CAT can be
used to better utilize the caches and as a result some applications are more likely to
hit the cache which results in fewer accesses to system memory. This results in lower
latency and greater performance.

 §

Improving Performance by Utilizing Cache Allocation White
Paper April 2015
16 Document Number: 331843-001US

	Improving Real-Time Performance by Utilizing Intel’s Cache Allocation Technology
Enhancing Performance via Allocation of the Processor’s Cache
	Contents
	1 Summary
	2 Background
	3 Introduction
	3.1 Acronyms and Terminology
	3.2 Overview of the Intel® Architecture
	3.3 Cache Hierarchy
	3.4 Intel Cache Policies
	3.5 Problem
	3.6 Cache Allocation Technology

	4 Measurement and Analysis
	4.1 Performance Measurement Environment and Test Cases
	4.1.1 Test Case 1: MSI Latency
	4.1.1.1 System Configuration

	4.1.2 Test Case 2: A Real-Time Cycle
	4.1.2.1 System Configuration

	4.2 Test Environment Configuration
	4.3 Measurement Results
	4.3.1 Test Case 1: MSI Latency
	4.3.2 Test Case 2: A Real-Time Cycle

	5 Conclusion

