
Reference Number: 251141-063

Intel® Itanium® Processor
Specification Update

April 2014

Notice: The Intel® Itanium® processor may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are documented in
this specification update.

2 Intel® Itanium® Processor
April 2014 Specification Update

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU
SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH
ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm
Intel, Intel Hyper-Threading Technology, Intel Cache Safe Technology, Intel Virtualization Technology, MMX, and Itanium are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Copyright © 2009-2014, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Itanium® Processor 3
Specification Update April 2014

1 Revision History... 5

2 Preface .. 8

3 Summary Table of Changes.. 9

4 Identification Information ... 35

5 Limited Support for Mixed Steppings ... 40

6 Errata (Processor and PAL).. 41

7 Specification Clarifications... 93

8 Documentation Changes .. 94

9 Errata (IA-32 Execution Layer) .. 95

10 IA-32 Execution Layer Specification Clarifications ... 115

4 Intel® Itanium® Processor
April 2014 Specification Update

Intel® Itanium® Processor Specification Update 5
Specification Update April 2014

Revision History

1 Revision History

Version Description Date

-063 Added new errata 237 Intel® Itanium® processor. April 2014

-062 Removed “Dual-Core” throughout the document. Added new errata 234 -
236 for the Intel® Itanium® 9000 Sequence processors. April 2009

-061 Added new errata 231 through 233 Intel® Itanium® processor. May 2008

-060
Updated the “Summary Table of Changes” for issues resolved in the release
of PAL 1.14 for the Intel® Itanium® 9100 Series processor. Added new
errata 228 through 230.

April 2008

-059 Added new errata 224 through 227. January 2008

-058 Updated the “Summary Table of Changes” for issues resolved in the release
of PAL 9.68 for the Intel® Itanium® 9000 Series processor. December 2007

-057
Added coverage for the Intel® Itanium® 9100 Series processor, including
new errata 205, 210, 215, 217, 219, 219, 221, 222, and 223. Removed the
“2” from the product name.

November 2007

-056
Added new errata 213, 214, 216, and 220. Updated IA-32 Execution Layer
Table 3.7 for errata fixed in release 6.6. Added the missing “S” in the S-spec
numbers in the Processor Marking and Package Information Table 4.3.

October 2007

-055 Updated the “Summary Table of Changes” for issues resolved in PAL 9.20.
Added new errata 208 - 212 for the Intel® Itanium® 9000 Series processor. September 2007

-054 Added errata 203 - 207 for the Intel® Itanium® 9000 Series processor July 2007

-053
Removed erratum 203 (not a bug). Updated PAL version table with PAL
releases 2.24, 2.25, and 9.08. Changed errata 190 and 201 from “Plan Fix”
to “No Fix”.

June 2007

-052
Updated the “Summary Table of Changes” for issues resolved in the new
releases of PAL 9.08 and PAL 2.25. Added new errata 195 - 203 for the
Intel® Itanium® 9000 Series processor. Updated cache nomenclature in
erratum 177.

May 2007

-051 Added errata 191 - 194 for the Intel® Itanium® 9000 Series processor April 2007

-050 Added errata 187 - 190 for the Intel® Itanium® 9000 Series processor March 2007

-049 Added errata 185 and 186 for the Intel® Itanium® 9000 Series processor February 2007

-048 Added erratum E184, SDM Volume 2.2 documentation changes and a
specification clarification January 2007

-047

Added errata 177 through 183. Added IA-32 Execution Layer Errata 61
through 85. Added Itanium® documentation change and specification
clarification. Updated Fixed status for E124 - E165 in “Summary Table of
Changes” for PAL 8.30 release for the Intel® Itanium® 9000 Series
processor

December 2006

-046
Added errata 167 - 176 and updates to the Summary Table of Changes for
errata fixed in the PAL 8.30 release for the Intel® Itanium® 9000 Series
processor

November 2006

-045 Added errata 160 – 166 and added specification changes 3 – 5 for the Intel®
Itanium® Processor 9000 Series processor October 2006

-044 Added errata 159 September 2006

-043
Added errata 155-158, updated errata 110, 153 and 154, updated the Intel®
Itanium® processor 9000 series sku table, added PAL revision table 2.20 for
Intel® Itanium® Processor with up to 9 MB L3 Cache

August 2006

-042 Added Intel® Itanium® processor 9000 series errata table and errata write
ups, and identification information July 2006

-041 Updated erratum 100. Added errata 110-111. Added IA-32 execution layer
errata 45-60 June 2006

-040 Added IA-32 execution layer version 6.5; added IA-32 execution layer errata
41-44; updated IA-32 execution layer summary table January 2006

Revision History

6 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

-039 Updated status for IA-32 execution layer errata 24-36 December 2005

-038 Added IA-32 execution layer errata 38-40 November 2005

-037 Added IA-32 execution layer errata 24-37 October 2005

-036 Add PAL version 2.15, 5.73 and 7.79 August 2005

-035
Added errata 108-109; added Intel® Itanium® Processor with 1.66 GHz with
up to 9 MB L3 Cache; added PAL version 2.14; added S-Spec numbers SL8JK
and SL8JJ

July 2005

-034 Updated IA-32 execution layer erratum 1; added IA-32 execution layer
errata 20-23 June 2005

-033
Added erratum 107; added Intel® Itanium® Processor (up to 9 MB L3 cache)
A2 stepping and mixed stepping statement; added PAL versions 5.72 and
7.78; added IA-32 Execution Layer Specification Clarification 14; updated IA-
32 Execution Layer Specification Clarification 2

May 2005

-032 Added erratum #106; updated erratum 103; added PAL version 2.10 April 2005

-031 Added errata 104-105; added Specification Clarification 7 March 2005

-030 Updated IA-32 Execution Layer erratum 1; added IA-32 Execution Layer
errata 18-19; added IA-32 Execution Layer Specification Clarifications 12-13. February 2005

-029 Added errata 102-103; added IA-32 Execution Layer version 5.3; added
Specification Changes 1-5; added Specification Clarifications 3-6 January 2005

-028

Added Intel® Itanium® Processor with 1.60 GHz with up to 9 MB L3 Cache,
Low Voltage Intel® Itanium® Processor with 1.30 GHz with 3 MB L3 Cache
and Intel® Itanium® Processor with 1.50 GHz with 4 MB L3 Cache to
Table 3-1; added S-Spec numbers: SL87H, SL7EB, SL7EC, SL7ED, SL7EF and
SL7SD; added PAL version 1.27; added errata 98-101; added Intel®
Itanium® Processor (up to 3 MB/6 MB L3 cache) Specification Clarification 2

November 2004

-027 Added IA-32 Execution Layer version 4.4 September 2004

-026
Added Intel® Itanium® Processor (up to 3 MB L3 cache) Specification
Clarification 2 and Document Change 1; added Intel® Itanium® Processor
(up to 6 MB L3 cache) Specification Clarification 2 and Document Change 1

August 2004

-025 Added PAL versions 7.77 and 5.69; updated workaround for erratum 61 July 2004

-024 Updated workaround for erratum 61. June 2004

-023 Added errata 94-97; added Intel® Itanium® Processor with 1.60 GHz with
3 MB L3 Cache to Table 1-1; added S-spec number SL7FQ. May 2004

-022
Added errata 92-93; added IA-32 execution layer erratum 17: Added Intel®
Itanium® Processor with 1.40 GHz with 3 MB L3 Cache to Table 1-1; added
S-spec number SL7FP.

April 2004

-021

Added errata 88-91; added Intel® Itanium® Processor (up to 3 MB L3 cache)
PAL version 7.73 and Intel® Itanium® Processor (up to 6 MB L3 cache) PAL
version 5.65; added Intel® Itanium® Processor (up to 3 MB L3 cache)
Specification Clarification 1 and Intel® Itanium® Processor (up to 6 MB
L3 cache) Specification Clarification 1.

March 2004

-020

Added errata 83-87; added Intel® Itanium® Processor (up to 3 MB L3 cache)
PAL version 7.71 and Intel® Itanium® Processor (up to 6 MB L3 cache) PAL
version 5.61; updated workaround for erratum 61.
Updated problem and implication for IA-32 Execution Layer erratum 1;
added IA-32 Execution Layer errata 2-16; added IA-32 Execution Layer
Specification Clarifications 1-11.

January 2004

-019 Added errata 80-82. December 2003

-018 Added errata 75-79. November 2003

-017 Added errata 71-74. October 2003

-016

Added errata 68-70; added Low Voltage Intel® Itanium® Processor with
1.0 GHz with 1.5 MB L3 Cache and Intel® Itanium® Processor with 1.40 GHz
with 1.5 MB L3 Cache to Table 3-1; added S-Spec numbers SL76K and
SL754; added DP Optimized Intel® Itanium® Processor Datasheet to the list
of Affected/Related Documents.

September 2003

-015
Added errata 65-67; updated the Intel® Itanium® Architecture Software
Developer’s Manual Specification Update document number in the list of
Affected/Related Documents.

August 2003

-014 Added errata 61-62. July 2003

Version Description Date

Intel® Itanium® Processor Specification Update 7
Specification Update April 2014

Revision History

-013
Added Intel® Itanium® processor with 6 MB L3 cache information; added
new errata summary tables and Table 3-1; removed Specification
Clarification 1; removed Documentation Changes 1-2; added errata 59, 63-
64.

June 2003

-012 Updated Implication for erratum 60. June 2003

-011 Added erratum 60; removed erratum 59. June 2003

-010 Added errata 55-59. May 2003

-009 Added errata 53-54; added PAL version 7.40. March 2003

-008 Updated workaround for erratum 48; added erratum 52; added PAL
version 7.37. February 2003

-007 Added errata 49-51; added Documentation Change 2. January 2003

-006 Added errata 47-48. December 2002

-005 Added errata 43-46; added PAL version 7.36. November 2002

-004 Added errata 38-42. October 2002

-003 Added errata 30-37; added PAL version 7.31; added Documentation
Change 1; added Specification Clarification 1. September 2002

-002 Added errata 20-29. August 2002

-001 Initial release of this document. July 2002

Version Description Date

Preface

8 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

2 Preface
This document is an update to the specifications contained in the Affected/Related
Documents table below. This document is a compilation of device and documentation
errata, specification clarifications, and changes. It is intended for hardware system
manufacturers and software developers of applications, operating systems, or tools.

This document may also contain information that was not previously published.

2.1 Affected/Related Documents

2.2 Nomenclature
S-Spec Number is used to identify products. Products are differentiated by their
unique characteristics, for example, core speed, L3 cache size, package types, and so
forth. Care should be taken to read all notes associated with each S-Spec number.

Errata are design defects or errors. These may cause the Intel® Itanium® processor’s
behavior to deviate from published specifications. Hardware and software designed to
be used with any given stepping must assume that all errata documented for that
stepping are present on all devices.

Specification Changes are modifications to the current published specifications.
These changes will be incorporated in the next release of the specifications.

Specification Clarifications describe a specification in greater detail or further
highlight a specification’s impact to a complex design situation. These clarifications will
be incorporated in the next release of the specification.

Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes are incorporated in the next release of the
specifications.

Note: Errata remain in the specification update throughout the product’s life cycle or until a
particular stepping is no longer commercially available. Under these circumstances,
errata removed are archived and available upon request. Specification changes,
specification clarifications, and documentation changes are removed when the
appropriate changes are made to the appropriate product specification or user
documentation (datasheets, manuals, and so forth).

Title Document #

Intel® Itanium® Processor Hardware Developer’s Manual 251109

Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture 245317-005

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture 245318-005

Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference 245319-005

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 248699

Intel® Itanium® Processor Reference Manual for Software Development and Optimization 251110

Intel® Itanium® Processor Family System Abstraction Layer Specification 245359

 Intel® Itanium® Processor 9000 and 9100 Series Datasheet 314054-002

Intel® Itanium® Processor Specification Update 9
Specification Update April 2014

Summary Table of Changes

3 Summary Table of Changes

The following table indicates the errata, specification changes, specification
clarifications, or documentation changes which apply to the Intel Itanium processors.
Intel may fix some of the errata in a future stepping of the component or in a future
release of the Processor Abstraction Layer (PAL), and account for the other outstanding
issues through documentation or specification changes as noted. This table uses the
notations indicated below.

3.1 Codes Used in Summary Table

3.1.1 Stepping/Version
X: Errata exists in the indicated stepping, PAL version, or software

extension. Documentation Change, Specification Change or
Clarification that applies to this stepping.

(No mark or Blank box): This erratum is fixed in listed stepping or specification change
does not apply to listed stepping or PAL version.

3.1.2 Page
(Page): Page location of item in this document.

3.1.3 Status
Doc: Document change or update will be implemented.

Plan Fix: This erratum may be fixed in a future stepping of the
component, or in a future release of PAL.

Fixed: This erratum has been previously fixed.

No Fix: There are no plans to fix this erratum.

3.1.4 Row
Change bar to left of table row indicates this erratum is either
new or modified from the previous version of this document.

Summary Table of Changes

10 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Table 3-1. Definition Table

Processor Abbreviation

Intel® Itanium® Processor 900 MHz with 1.5 MB L3 Cache
Itanium Processor (up to 3 MB L3 cache)

Intel® Itanium® Processor 1.0 GHz with 3 MB L3 Cache

Low Voltage Intel® Itanium® Processor 1.0 GHz with 1.5 MB L3 Cache

Itanium Processor (up to 6 MB L3 cache)

Intel® Itanium® Processor 1.40 GHz with 1.5 MB L3 Cache

Intel® Itanium® Processor 1.30 GHz with 3 MB L3 Cache

Intel® Itanium® Processor 1.40 GHz with 3 MB L3 Cache

Intel® Itanium® Processor 1.60 GHz with 3 MB L3 Cache

Intel® Itanium® Processor 1.40 GHz with 4 MB L3 Cache

Intel® Itanium® Processor 1.50 GHz with 6 MB L3 Cache

Intel® Itanium® Processor 1.50 GHz with 4 MB L3 Cache

Itanium Processor (up to 9 MB L3 cache)

Intel® Itanium® Processor 1.60 GHz with 6 MB L3 Cache

Intel® Itanium® Processor 1.60 GHz with 9 MB L3 Cache

Intel® Itanium® Processor 1.66 GHz with 6 MB L3 Cache

Intel® Itanium® Processor 1.66 GHz with 9 MB L3 Cache

Low Voltage Intel® Itanium® Processor 1.30 GHz with 3 MB L3 Cache

Intel® Itanium® Processor 1.60 GHz with 3 MB L3 Cache at 400 and 533 MHz
System Bus (DP Optimized)

 Intel® Itanium® Processor 1.6 GHz with 24 MB L3 Cache

 Intel® Itanium® Processor 9000 Series

 Intel® Itanium® Processor 1.6 GHz with 18 MB L3 Cache

 Intel® Itanium® Processor 1.6 GHz with 8 MB L3 Cache

 Intel® Itanium® Processor 1.42 GHz with 12 MB L3 Cache

 Intel® Itanium® Processor 1.4 GHz with 12 MB L3 Cache

Intel® Itanium® Processor 1.6 GHz with 6 MB L3 Cache

 Intel® Itanium® Processor 1.66 GHz with 24 MB L3 Cache

 Intel® Itanium® Processor 9100 Series

 Intel® Itanium® Processor 1.66 GHz with 18 MB L3 Cache

 Intel® Itanium® Processor 1.6 GHz with 24 MB L3 Cache

 Intel® Itanium® Processor 1.6 GHz with 18 MB L3 Cache

 Intel® Itanium® Processor 1.66 GHz with 8 MB L3 Cache

Intel® Itanium® Processor 1.6 GHz with 12 MB L3 Cache

 Intel® Itanium® Processor 1.42 GHz with 12 MB L3 Cache

Intel® Itanium® Processor Specification Update 11
Specification Update April 2014

Summary Table of Changes

3.2 Itanium® Processor (up to 3 MB L3 Cache) Errata
(Sheet 1 of 7)

No.

Processor
Stepping

PAL
Version

Pg Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

1 X 41 No Fix

IA64_INST_RETIRED
and
IA64_TAGGED_INST_RE
TIRED does not count
predicated off
instructions

2 X 41 No Fix

Performance Monitor
Interrupt raised when
freeze bit is written to
Performance Monitoring
Counter register

3 X 41 No Fix
Priority agent requests
with unit mask of I/O not
counted

4 X 41 No Fix
Incorrect fault reporting
on move to/from the
RNAT or BSPSTORE
application registers

5 X 42 No Fix
Power good deassertion
affects boundary scan
testing

6 X 42 No Fix
IA-32: CPUID instruction
returns incorrect L3
cache size

7 X 42 No Fix

Performance Monitoring
Event counters may be
incorrect when using
Instruction Address
Range checking in fine
mode

8 X 42 No Fix
Possible deadlock
condition after ptc.g is
issued on two-way
system

9 X 43 No Fix
EPC, mov ar.pfs and
br.ret instructions may
combine to yield
incorrect privilege level

10 X 43 No Fix
Removal of WAW hazard
may lead to undefined
result

11 X 44 No Fix
Unexpected data debug,
data access or dirty bit
fault taken after rfi
instruction

12 X 44 No Fix

Incorrect privilege level
may be granted if a
failed speculation check
precedes a privilege
level change

13 X 44 No Fix

Floating-point
instructions take a
floating-point trap
before Unimplemented
Instruction Address trap

14 X 45 Fixed

PAL_MC_ERROR_INFO
does not return an
address for certain
double bit ECC memory
errors

Summary Table of Changes

12 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

15 X 45 Fixed
PAL_CACHE_READ and
PAL_CACHE_WRITE
return incorrect status
for L1I cache access

16 X 45 Fixed
Unpredictable behavior if
the system is awakened
from low power mode by
an MCA

17 X 45 Fixed
The system may lose an
interrupt when
SAL_CHECK reads the
IVR

18 X 46 Fixed

A bus MCA nested within
a recoverable or
firmware-corrected bus
MCA may not be handled
correctly

19 X 46 Fixed

PAL reset sequence
performed after a
recovery check may
result in incorrect
system behavior

20 X 46 Fixed
PAL_HALT_LIGHT_SPECI
AL provides PAL_HALT
functionality

21 X 46 Fixed
PAL_TEST_PROC may
access memory with the
UC attribute

22 X 46 No Fix
L2 single bit data error
promoted to MCA
continues to flag a CMCI

23 X 47 Fixed
PAL_TEST_PROC
requires specific tests be
performed for correct
operation

24 X 47 Fixed
PAL_TEST_INFO may
return incorrect data for
invalid test parameters

25 X 47 Fixed
PAL_CACHE_INIT may
not function properly if
levels of the cache
hierarchy are specified

26 X 47 Fixed
PAL_SET_TIMEOUT may
have an unexpected
result when time-out = 0

27 X 47 Fixed
Concurrent MCAs that
signal a BERR may not
set PSP.bc correctly

28 X 47 Fixed
PAL_PLATFORM_ADDR
may return an error if bit
63 is set

29 X 48 Fixed
PAL_TEST_PROC may
overwrite predicate
registers

30 X 48 Fixed Recovery check fails if
PAL_B is not found

31 X 48 Fixed
PAL procedure calls may
have unexpected results
if an incorrect PAL_B
version is used

3.2 Itanium® Processor (up to 3 MB L3 Cache) Errata
(Sheet 2 of 7)

No.

Processor
Stepping

PAL
Version

Pg Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

Intel® Itanium® Processor Specification Update 13
Specification Update April 2014

Summary Table of Changes

32 X 48 Fixed
Late self-test may have
unexpected results
during concurrent
processor tests

33 X 48 Fixed
PAL_TEST_PROC may
cause unexpected
system behavior

34 X 49 Fixed
PAL halt procedures may
overwrite predicate
registers

35 X 49 No Fix
Two resets may be
necessary to leave TAP
test mode

36 X 49 No Fix

IA-32 instruction
pointers may be
overwritten under
certain boundary
conditions

37 X 49 Fixed
Initialization and ETM
recovery may overwrite
branch register

38 X 49 Fixed PAL procedures may not
save predicate register 3

39 X X 50 Fixed
PAL_CACHE_INFO
procedure may return
undefined value

40 X 50 Fixed
PAL_HALT_LIGHT
procedure may generate
a spurious Performance
Monitor Interrupt

41 X X 50 Fixed
Unexpected system
behavior after
PAL_CACHE_FLUSH is
executed

42 X X 50 Fixed
PAL_TEST_PROC may
not properly report self-
test status

43 X 50 No Fix

PSR.ri may not reflect
the correct slot upon
entrance to the
unimplemented address
fault handler

44 X 51 No Fix

WC and WB memory
attribute aliasing
combine with FC and
may cause processor
live-lock

45 X 51 No Fix
Improper use of memory
attribute aliasing may
lead to out of order
instruction execution

47 X 52 No Fix

Executing an rfi
instruction that is
located at the end of
implemented physical
memory can result in an
unexpected
unimplemented address
fault

48 X 52 Fixed
IA-32: xchg instruction
requires release
semantics

3.2 Itanium® Processor (up to 3 MB L3 Cache) Errata
(Sheet 3 of 7)

No.

Processor
Stepping

PAL
Version

Pg Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

Summary Table of Changes

14 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

49 X X X 52 Fixed
PAL MCA handler may
not correctly set PSP.co
bit

50 X X X 52 Fixed
PAL_MC_ERROR_INFO
may return incorrect PSP
information

51 X 53 No Fix FPSWA trap may be
missed

52 X 54 Fixed

WC evictions and
semaphore operations
combine to establish a
potential live-lock
condition

53 X 54 Fixed
The IA-32 cmpxchg8b
instruction may not
correctly set ZF flag

54 X X X X X X X X X X X 54 No Fix PAL_TEST_PROC status
return value

55 X 55 No Fix
Fault condition may
generate incorrect
address when using
short format VHPT

57 X X X X X 55 Fixed Cache snoops disabled
on BINIT#

58 X 56 No Fix
RFI to UIA using single
step mode may enter ss
trap

60 X 56 No Fix
Specific instruction
combination may disrupt
subsequent operation

61 X 56 No Fix
IFS register may be
invalidated during MCA
or INIT

62 X 57 Fixed
Unimplemented memory
access may occur while
handling an INIT or MCA
event

66 X X X X X X X X X X X 58 No Fix
PSP.cr is always set to
zero (0) at PALE_INIT
hand off to SALE_ENTRY

68 X X X X X X 59 Fixed
Performance Monitoring
Event counters may be
incorrect after leaving a
low-power state

69 X 59 No Fix
Instruction Breakpoint
Register update may
generate a false
instruction debug fault

70 X 59 No Fix
Application fault may be
missed on a br.ia
instruction

71 X 59 No Fix
Machine check may not
bring the system out of a
low-power state

72 X X X X X X 59 Fixed
Machine check event
received during PAL
execution may have
unexpected results

3.2 Itanium® Processor (up to 3 MB L3 Cache) Errata
(Sheet 4 of 7)

No.

Processor
Stepping

PAL
Version

Pg Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

Intel® Itanium® Processor Specification Update 15
Specification Update April 2014

Summary Table of Changes

73 X X X X X X 60 Fixed
Rendezvous may result
in spin loop due to
incorrect rendezvous
address passed to SAL

74 X X X X X X 60 Fixed

Possible degradation in
system performance
when calling
PAL_CACHE_FLUSH with
int = 1 for certain cache
memory types

75 X 60 No Fix
Memory read current
transaction may fail to
observe a st, ld.bias or
lfetch.excl

76 X 61 No Fix
BINIT taken on 2x ECC
and hard-fail errors with
BINIT event signaling
disabled

77 X 61 No Fix

Recoverable L3 cache
tag ECC error may raise
overflow error when
CMCI are promoted to
MCA

78 X 61 No Fix
L2 cache line with poison
data results in
unexpected fatal MCA

79 X 61 No Fix
XPN time-out with BINIT
response disabled may
cause system hang

80 X 62 No Fix

BINIT may be taken
after a UC single byte
access to ignored/
reserved area of the
Processor Interrupt
Block

81 X 62 No Fix
Recoverable CMCI may
combine with an L3 MCA
error to cause fatal
overflow error

82 X X X X X X 62 Fixed
BERR may be indicated
when the PAL MCA
routine invalidates L2
cache lines

83 X X X X X X X 62 Fixed

Pending RSE interrupt
during the PAL PMI
handler PAL PMI flow
may result in a system
hang

84 X X X X X X X X X X X 62 No Fix

An INIT signaled during
the PAL PMI flow while a
PAL PMI flow RFI is being
serviced may result in a
system hang

85 X X X X X X X 63 Fixed

PMI serviced during the
execution of
PAL_MCMA_ERROR_INF
O procedure may result
in unpredictable
processor behavior

86 X X X X X X X X X X X 63 No Fix

Data-poisoning bits not
included in
PAL_MC_ERROR_INFO
cache_check and
bus_check structures

3.2 Itanium® Processor (up to 3 MB L3 Cache) Errata
(Sheet 5 of 7)

No.

Processor
Stepping

PAL
Version

Pg Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

Summary Table of Changes

16 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

87 X X X X X X X X 63 Fixed PAL_PREFETCH_VISIBILI
TY call not implemented

89 X X X X X X X X 64 Fixed
Cache lines with ECC
errors may not be
invalidated

90 X X X X X X X X 64 Fixed
Interrupts are enabled
when exiting from a halt
state

92 X 64 No Fix Corrected ECC error may
not generate CMCI

93 X X X X X X X X 64 Fixed
PAL_CACHE_FLUSH
procedure may not flush
and invalidate all L2
cache lines

94 X X X X X X X X 65 Fixed
Performance counters
may include data from
low power states

95 X X X X X X X X 65 Fixed
MCA due to an XPN
timeout may result in a
spin loop

96 X 65 No Fix
BINIT# may not be
asserted for exactly two
cycles

97 X 66 No Fix
Memory read current
transaction may fail to
observe a st or lead to a
system hang

98 X X X X X X X X X 66 Fixed
PAL_VM_TR_READ will
return an incorrect page
size for DTR reads

100 X X X X X X X X X 66 Fixed Interruption of PAL calls
by a PMI or INIT

102 X X X X X X X X X 67 Fixed
PAL_MC_ERROR_INFO
call could invalidate
incorrect cache line
entry

104 X X X X X X X X X 67 Fixed
SALE_ENTRY may see
unexpected modified
cache line during system
cold boot

105 X 67 No Fix
Lower priority error
flagged on illegal write
to GR r0

107 X X X X X X X X X X X 68 No Fix PAL_CAR_INIT may not
clear all cache lines

108 X 68 Fixed
PSR.IC may not be
restored properly on exit
from a PAL call

109 X X X X X X X X X X 68 Fixed
Performance counters
may not be correctly
restored upon exit of the
LIGHT HALT state

110 X X X X X X X X X X X X 69 Plan Fix

Single-bit errors in the
tag and data portion of
cache lines in the “I”
state in the L2 or L3
levels of cache may not
be flushed

3.2 Itanium® Processor (up to 3 MB L3 Cache) Errata
(Sheet 6 of 7)

No.

Processor
Stepping

PAL
Version

Pg Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

Intel® Itanium® Processor Specification Update 17
Specification Update April 2014

Summary Table of Changes

111 X X X X X X X X X X X X 69 No Fix
Un-initialized word lines
at processor boot could
result in an incorrect
branch address

155 X X 77 No Fix
Processors may not
wake from the LIGHT
HALT state upon MCA

175 X X X X X X X X X X X 81 Plan Fix

Poison data in the
caches has partial or no
indication of 2xECC error
when written back to
memory

184 X X X X X X X X X X X 82 Plan Fix
Calls to
PAL_MC_ERROR_INFO
could cause a processor
hang

233
. X X X X X X X X X X X 91 No Fix

The
PAL_MC_ERROR_INFO
call Reg_File_Check
return does not include
the reg_num field

237
. X 92 No Fix

Under a complex set of
conditions, store to load
forwarding for a sub 8-
byte load may complete
incorrectly

3.3 Itanium Processor (up to 6 MB L3 Cache) Errata
(Sheet 1 of 3)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B1 5.37 5.61 5.65 5.69 5.72 5.73

1 X 41 No Fix IA64_INST_RETIRED and IA64_TAGGED_INST_RETIRED
does not count predicated off instructions

2 X 41 No Fix Performance Monitor Interrupt raised when freeze bit is
written to Performance Monitoring Counter register

6 X 42 No Fix IA-32: CPUID instruction returns incorrect L3 cache size

7 X 42 No Fix
Performance Monitoring Event counters may be incorrect
when using Instruction Address Range checking in fine
mode

8 X 42 No Fix Possible deadlock condition after ptc.g is issued on two-
way system

13 X 44 No Fix Floating-point instructions take a floating-point trap
before Unimplemented Instruction Address trap

22 X 46 No Fix L2 single bit data error promoted to MCA continues to
flag a CMCI

43 X 50 No Fix PSR.ri may not reflect the correct slot upon entrance to
the unimplemented address fault handler

45 X 51 No Fix Improper use of memory attribute aliasing may lead to
out of order instruction execution

47 X 52 No Fix
Executing an rfi instruction that is located at the end of
implemented physical memory can result in an
unexpected unimplemented address fault

54 X X X X X X 54 No Fix PAL_TEST_PROC status return value

55 X 55 No Fix Fault condition may generate incorrect address when
using short format VHPT

58 X 56 No Fix RFI to UIA using single step mode may enter ss trap

3.2 Itanium® Processor (up to 3 MB L3 Cache) Errata
(Sheet 7 of 7)

No.

Processor
Stepping

PAL
Version

Pg Status ERRATA

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

Summary Table of Changes

18 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

59 X 56 No Fix On-Die Termination value does not meet specification
61 X 56 No Fix IFS register may be invalidated during MCA or INIT

62 X 57 Fixed Unimplemented memory access may occur while
handling an INIT or MCA event

63 X 57 No Fix JTAG Sample/Preload or EXTEST instruction usage
64 X 58 Fixed CPU_CYCLES count includes data from halt states

65 X 58 No Fix System bus signals can be driven while RESET# is
asserted

66 X X X X X X 58 No Fix PSP.cr is always set to zero (0) at PALE_INIT hand off to
SALE_ENTRY

67 X 58 No Fix Incorrect Thermal Calibration Offset Byte value in the
PIROM

69 X 59 No Fix Instruction Breakpoint Register update may generate a
false instruction debug fault

70 X 59 No Fix Application fault may be missed on a br.ia instruction

71 X 59 No Fix Machine check may not bring the system out of a low-
power state

72 X 59 Fixed Machine check event received during PAL execution may
have unexpected results

73 X 60 Fixed Rendezvous may result in spin loop due to incorrect
rendezvous address passed to SAL

74 X 60 Fixed
Possible degradation in system performance when calling
PAL_CACHE_FLUSH with int = 1 for certain cache
memory types

75 X 60 No Fix Memory read current transaction may fail to observe a st,
ld.bias or lfetch.excl

76 X 61 No Fix BINIT taken on 2x ECC and hard-fail errors with BINIT
event signaling disabled

77 X 61 No Fix Recoverable L3 cache tag ECC error may raise overflow
error when CMCI are promoted to MCA

78 X 61 No Fix L2 cache line with poison data results in unexpected fatal
MCA

79 X 61 No Fix XPN time-out with BINIT response disabled may cause
system hang

80 X 62 No Fix BINIT may be taken after a UC single byte access to
ignored/reserved area of the Processor Interrupt Block

81 X 62 No Fix Recoverable CMCI may combine with an L3 MCA error to
cause fatal overflow error

82 X 62 Fixed BERR may be indicated when the PAL MCA routine
invalidates L2 cache lines

83 X X 62 Fixed Pending RSE interrupt during the PAL PMI handler PAL
PMI flow may result in a system hang

84 X X X X X X 62 No Fix An INIT signaled during the PAL PMI flow while a PAL PMI
flow RFI is being serviced may result in a system hang

85 X X 63 Fixed
PMI serviced during the execution of
PAL_MCMA_ERROR_INFO procedure may result in
unpredictable processor behavior

86 X X X X 63 No Fix
Data-poisoning bits not included in
PAL_MC_ERROR_INFO cache_check and bus_check
structures

87 X 63 Fixed PAL_PREFETCH_VISIBILITY call not implemented
88 X 63 No Fix INIT# signal not recognized properly
89 X X X 64 Fixed Cache lines with ECC errors may not be invalidated
90 X X X 64 Fixed Interrupts are enabled when exiting from a halt state

91 X 64 Fixed PAL_PREFETCH_VISIBILITY call may result in a system
hang

92 X 64 No Fix Corrected ECC error may not generate CMCI

93 X X X 64 Fixed PAL_CACHE_FLUSH procedure may not flush and
invalidate all L2 cache lines

3.3 Itanium Processor (up to 6 MB L3 Cache) Errata
(Sheet 2 of 3)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B1 5.37 5.61 5.65 5.69 5.72 5.73

Intel® Itanium® Processor Specification Update 19
Specification Update April 2014

Summary Table of Changes

94 X X X 65 Fixed Performance counters may include data from low power
states

95 X X X 65 Fixed MCA due to an XPN timeout may result in a spin loop
96 X 65 No Fix BINIT# may not be asserted for exactly two cycles

97 X 66 No Fix Memory read current transaction may fail to observe a st
or lead to a system hang

98 X X X X 66 Fixed PAL_VM_TR_READ will return an incorrect page size for
DTR reads

100 X X X X 66 Fixed Interruption of PAL calls by a PMI or INIT

102 X X X X 67 Fixed PAL_MC_ERROR_INFO call could invalidate incorrect
cache line entry

104 X X X X 67 Fixed SALE_ENTRY may see unexpected modified cache line
during system cold boot

105 X 67 No Fix Lower priority error flagged on illegal write to GR r0

106 X X X X 68 Fixed PAL_TEST_PROC L3 cache replacement test may return
invalid response

107 X X X X X 68 No Fix PAL_CAR_INIT may not clear all cache lines

108 X 68 Fixed PSR.IC may not be restored properly on exit from a PAL
call

109 X X X X X 68 Fixed Performance counters may not be correctly restored upon
exit of the LIGHT HALT state

110 X X X X X X X 69 Plan Fix
Single-bit errors in the tag and data portion of cache lines
in the “I” state in the L2 or L3 levels of cache may not be
flushed

111 X X X X X X X 69 No Fix Un-initialized word lines at processor boot could result in
an incorrect branch address

155 X X 77 No Fix Processors may not wake from the LIGHT HALT state
upon MCA

175 X X X X X X 81 Plan Fix Poison data in the caches has partial or no indication of
2xECC error when written back to memory

184 X X X X X X 82 Plan Fix Calls to PAL_MC_ERROR_INFO could cause a processor
hang

233
. X X X X X X 91 No Fix The PAL_MC_ERROR_INFO call Reg_File_Check return

does not include the reg_num field

237 X 92 No Fix
Under a complex set of conditions, store to load
forwarding for a sub 8-byte load may complete
incorrectly

3.4 Itanium Processor (up to 9 MB L3 Cache) Errata
(Sheet 1 of 3)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

A1 A2 1.27 2.10 2.14 2.15 2.20 2.24 2.25

1 X X 41 No Fix
IA64_INST_RETIRED and
IA64_TAGGED_INST_RETIRED does
not count predicated off instructions

2 X X 41 No Fix
Performance Monitor Interrupt raised
when freeze bit is written to
Performance Monitoring Counter
register

6 X X 42 No Fix IA-32: CPUID instruction returns
incorrect L3 cache size

7 X X 42 No Fix
Performance Monitoring Event
counters may be incorrect when using
Instruction Address Range checking in
fine mode

3.3 Itanium Processor (up to 6 MB L3 Cache) Errata
(Sheet 3 of 3)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

B1 5.37 5.61 5.65 5.69 5.72 5.73

Summary Table of Changes

20 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

8 X X 42 No Fix Possible deadlock condition after ptc.g
is issued on two-way system

13 X X 44 No Fix
Floating-point instructions take a
floating-point trap before
Unimplemented Instruction Address
trap

22 X X 46 No Fix L2 single bit data error promoted to
MCA continues to flag a CMCI

43 X X 50 No Fix
PSR.ri may not reflect the correct slot
upon entrance to the unimplemented
address fault handler

45 X X 51 No Fix
Improper use of memory attribute
aliasing may lead to out of order
instruction execution

47 X X 52 No Fix

Executing an rfi instruction that is
located at the end of implemented
physical memory can result in an
unexpected unimplemented address
fault

54 X X X X X 54 No Fix PAL_TEST_PROC status return value

55 X X 55 No Fix
Fault condition may generate incorrect
address when using short format
VHPT

58 X X 56 No Fix RFI to UIA using single step mode
may enter ss trap

63 X X 57 No Fix JTAG Sample/Preload or EXTEST
instruction usage

66 X X X X X 58 No Fix PSP.cr is always set to zero (0) at
PALE_INIT hand off to SALE_ENTRY

67 X X 58 No Fix Incorrect Thermal Calibration Offset
Byte value in the PIROM

69 X X 59 No Fix
Instruction Breakpoint Register update
may generate a false instruction
debug fault

70 X X 59 No Fix Application fault may be missed on a
br.ia instruction

71 X X 59 No Fix Machine check may not bring the
system out of a low-power state

76 X X 61 No Fix
BINIT taken on 2x ECC and hard-fail
errors with BINIT event signaling
disabled

77 X X 61 No Fix
Recoverable L3 cache tag ECC error
may raise overflow error when CMCI
are promoted to MCA

79 X X 61 No Fix XPN time-out with BINIT response
disabled may cause system hang

80 X X 62 No Fix
BINIT may be taken after a UC single
byte access to ignored/reserved area
of the Processor Interrupt Block

84 X X X X 62 No Fix
An INIT signaled during the PAL PMI
flow while a PAL PMI flow RFI is being
serviced may result in a system hang

86 X X X X 63 No Fix
Data-poisoning bits not included in
PAL_MC_ERROR_INFO cache_check
and bus_check structures

96 X X 65 No Fix BINIT# may not be asserted for
exactly two cycles

97 X 66 Fixed
Memory read current transaction may
fail to observe a st or lead to a system
hang

98 X 66 Fixed PAL_VM_TR_READ will return an
incorrect page size for DTR reads

99 X 66 Fixed Incorrect EID and ID information
passed by PAL

3.4 Itanium Processor (up to 9 MB L3 Cache) Errata
(Sheet 2 of 3)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

A1 A2 1.27 2.10 2.14 2.15 2.20 2.24 2.25

Intel® Itanium® Processor Specification Update 21
Specification Update April 2014

Summary Table of Changes

Note:
1. Fixed in Madison 9M processors shipped after September 2006 identified with an “A2” designation on the pin side of

the processor.

100 X 66 Fixed Interruption of PAL calls by a PMI or
INIT

101 X 67 Fixed External interrupt polling and
PAL_CACHE_FLUSH

102 X 67 Fixed PAL_MC_ERROR_INFO call could
invalidate incorrect cache line entry

103 X 67 Fixed
L3 cache tag error and pending cache
line replacement transactions may
result in system livelock

104 X 67 Fixed
SALE_ENTRY may see unexpected
modified cache line during system cold
boot

105 X X 67 No Fix Lower priority error flagged on illegal
write to GR r0

107 X X X X 68 No Fix PAL_CAR_INIT may not clear all cache
lines

108 X 68 Fixed PSR.IC may not be restored properly
on exit from a PAL call

109 X X 68 Fixed
Performance counters may not be
correctly restored upon exit of the
LIGHT HALT state

110 X X X X X X 69 Fixed
Single-bit errors in the tag and data
portion of cache lines in the “I” state
in the L2 or L3 levels of cache may not
be flushed

111 X X X X X X 69 No Fix
Un-initialized word lines at processor
boot could result in an incorrect
branch address

155 X X X X X 77 No Fix Processors may not wake from the
LIGHT HALT state upon MCA

167 X X1 79 Fixed Potential electrical marginality in the
integer register file

175 X X X X X 81 Fixed
Poison data in the caches has partial
or no indication of 2xECC error when
written back to memory

184 X X X X X X 82 Fixed Calls to PAL_MC_ERROR_INFO could
cause a processor hang

233 X X X X X X X 91 No Fix
The PAL_MC_ERROR_INFO call
Reg_File_Check return does not
include the reg_num field

237 X X 92 No Fix
Under a complex set of conditions,
store to load forwarding for a sub 8-
byte load may complete incorrectly

3.4 Itanium Processor (up to 9 MB L3 Cache) Errata
(Sheet 3 of 3)

No.
Processor
Stepping

PAL
Version Pg. Status ERRATA

A1 A2 1.27 2.10 2.14 2.15 2.20 2.24 2.25

Summary Table of Changes

22 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

3.5 Intel® Itanium® Processor 9000 Series Errata
(Sheet 1 of 5)

No.
Processor
Stepping PAL Version

Pg. Status ERRATA
C1 C2 7.46 8.30 9.08 9.20 9.68

1 X 41 No Fix
IA64_INST_RETIRED and

IA64_TAGGED_INST_RETIRED does not
count predicated off instructions

8 X 42 No Fix Possible deadlock condition after ptc.g is
issued on two-way system

13 X 44 No Fix
Floating-point instructions take a floating-
point trap before Unimplemented
Instruction Address trap

45 X 51 No Fix
Improper use of memory attribute aliasing
may lead to out of order instruction
execution

47 X 52 No Fix
Executing an rfi instruction that is located at
the end of implemented physical memory
can result in an unexpected unimplemented
address fault

54 X 54 No Fix PAL_TEST_PROC status return value

63 X 57 No Fix JTAG Sample/Preload or EXTEST instruction
usage

66 X 58 No Fix PSP.cr is always set to zero (0) at PALE_INIT
hand off to SALE_ENTRY

67 X 58 No Fix Incorrect Thermal Calibration Offset Byte
value in the PIROM

70 X 59 No Fix Application fault may be missed on a br.ia
instruction

79 X 61 No Fix XPN time-out with BINIT response disabled
may cause system hang

80 X 62 No Fix
BINIT may be taken after a UC single byte
access to ignored/reserved area of the
Processor Interrupt Block

86 X 63 Fixed
Data-poisoning bits not included in
PAL_MC_ERROR_INFO cache_check and
bus_check structures

112 X 69 No Fix Unexpected MCA on a fill to a line with
parity errors

113 X 69 No Fix Performance associated with an epc
instruction

114 X 69 No Fix Branch bit, mispredict bit and slot index of
branch instruction

115 X 70 No Fix Lower priority error flagged on illegal write
to GR r0

116 X 70 No Fix
ptc.e instructions may purge resources of
the other logical processor executing on the
same core

117 X 70 No Fix MPE_SCB_LIVE_REQ counts for disabled
cores

118 X 70 No Fix move to bspstore requires unexpected
serialization

119 X 70 No Fix System behavior as a result of nested
BINIT’s

120 X 71 No Fix Instruction Pointer-Event Address Register
(IP-EAR) may not behave as specified

121 X 71 No Fix Performance Monitor Data (PMD) registers
10-15 usage

122 X X X X X 71 No Fix Wrong address generated for L3 data 1x
and 2x ECC errors

123 X X X X X 71 No Fix Illegal opcodes may not raise the expected
operation fault

124 X X X X X 71 No Fix Logical Processor Migration (LPM) is not
working as expected

125 X 72 Fixed ALAT test is unavailable

Intel® Itanium® Processor Specification Update 23
Specification Update April 2014

Summary Table of Changes

126 X 72 Fixed Internal processor timeout (XPN) events are
not signaled

127 X 72 Fixed PAL incorrectly interpreting updates to the
Virtual Processor Descriptor

128 X 72 Fixed PAL based IA-32 execution may result in
unpredictable behavior

129 X X 72 No Fix Two MCAs issued due to active logical
processor being switched

130 X 72 Fixed PAL_VP_SAVE and PAL_VP_RESTORE
procedures not working as expected

131 X 73 Fixed PAL_VP_REGISTER procedure not working
as expected

132 X 73 Fixed
Write access to a cache line with an
uncorrectable error results in a MCA instead
of a CMCI

133 X 73 Fixed PAL_CACHE_SHARED_INFO not working as
expected

134 X 73 Fixed
PAL_MC_ERROR_INJECT in the cache error
consumption mode may not work as
expected

135 X 73 Fixed
TLB consumption mode in
PAL_MC_ERROR_INJECT uses the incorrect
address

136 X 73 Fixed PAL correction of any L2D or L3 correctable
error on a cache line may flush that line

137 X 74 Fixed PAL improperly decodes the instruction in
response to a virtualization fault

138 X 74 Fixed BINIT# assertion may result in a system
hang.

139 X 74 Fixed PAL is affecting ITP's ability to halt logical
processors

140 X 74 Fixed
PAL_MC_ERROR_INJECT not working as
expected in the inject_only mode and the
inject_and_consume mode

141 X 74 Fixed PAL incorrectly change the value for isr.code

142 X 75 Fixed
Illegal operation faults of the type .lx are
incorrectly delivered to the VMM
virtualization fault vector

143 X 75 Fixed
PAL incorrectly routes an illegal operation
fault on a reset system mask(rsm)
instruction fault

144 X 75 Fixed PAL based IA-32 execution does not raise
single step trap

145 X 75 Fixed PAL based IA-32 execution does not
respond to IA-32 debug traps

146 X 75 Fixed
Intel® Cache Safe Technology "performance
restricted" CMCI is issued after 3 ways per
set are disabled.

147 X 75 Fixed Interval Time Counter (ITC) may not be
properly initialized

148 X X 76 Fixed POPF instruction may not be intercepted
during PAL based IA-32 execution

149 X X X X X 76 No Fix CMCIs issued noting entry and exit from
ETM even when ETM is disabled

150 X 76 Fixed
Exclusion of first 3 single bit errors by
Intel® Cache Safe Technology may cause
system hangs in processors that have their
L3 cache size equal to 6 MB

151 X 76 Fixed Value of the IA-32 interruption code
(ISR.code) is incorrectly set

152 X 76 Fixed Infinite snoop stall during RESET or BINIT

3.5 Intel® Itanium® Processor 9000 Series Errata
(Sheet 2 of 5)

No.
Processor
Stepping PAL Version

Pg. Status ERRATA
C1 C2 7.46 8.30 9.08 9.20 9.68

Summary Table of Changes

24 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

153 X 77 Fixed Clock misalignment may result in a loss of
socket level lockstep

154 X 77 Fixed
Execution of an instruction in the multi-
media unit may result in unexpected
behavior

156 X 77 Fixed
Logical processor may be lost when a
recoverable or a PAL-correctable MCA occurs
during PAL_HALT_LIGHT

157 X X 77 No Fix On Die Termination (ODT) may be
unexpectedly enabled

158 X 78 Fixed Failure to set the PSR.it bit to its original
value

159 X 78 Fixed
The PAL_PSTATE_INFO procedure may write
to scratch floating point (FP) registers
without saving and restoring the value of
PSR.mfl

160 X X 78 No Fix
Performance Monitor Unit (PMU) readings
for system interface events may reflect both
threads

161 X X 78 Fixed PAL_FREQ_RATIO returns an incorrect value
for 1.42 GHz parts

162 X X 78 Fixed
PAL_MC_CLEAR_LOG called on one logical
processor may erase the processor error
logs

163 X 79 Fixed
Unable to specify the Current Frame Load
Enable (CFLE) value at the target guest
handler.

164 X X X X 79 No Fix Infinite snoop stalls may be observed

165 X 79 Fixed Unexpected behavior when code request
completes during PAL authentication

166 X X X X 79 No Fix PAL_CACHE_INFO is not available during
firmware recovery check

168 X X 79 Fixed PAL_MC_ERROR_INJECT consume mode
may not behave as expected

169 X 80 Fixed
Using PAL_CONTEXT_RESTORE and
PAL_CONTEXT_SAVE may result in a system
hang during logical processor migration

170 X X 80 Fixed PAL_MC_ERROR_INFO may report an invalid
index field

171 X X 80 Fixed
PAL_BUS_SET_FEATURES bit 52 enables a
bus cache line replacement transaction only
when a cache line is in the shared state

172 X X 80 Fixed
MOVL instructions taking a general
exception fault are decoded as legal
virtualized instructions

173 X X 80 Fixed
Reserved register field fault checks do not
check the present bit to determine if a
reserved register field fault should be raised

174 X X X X 80 No Fix Calling PAL_CAR_INIT in cacheable mode
may cause undefined behavior

175 X X 81 No Fix
Poison data in the caches has partial or no
indication of 2xECC error when written back
to memory

176 X X X X X 81 No Fix Multiple BINIT# assertions due to internal
processor timeout (XPN) events

177 X 81 Fixed PAL_CACHE_INIT and PAL_CAR_INIT may
corrupt parity error checking in L2 cache

178 X 81 Fixed PAL_HALT_INFO returns an inaccurate value
for power savings information

179 X 81 Fixed PAL_SET_HW_POLICY uses uninitialized
register to initialize thread priority

180 X 82 Fixed PAL_SET_HW_POLICY may not preserve
predicate bit p5

3.5 Intel® Itanium® Processor 9000 Series Errata
(Sheet 3 of 5)

No.
Processor
Stepping PAL Version

Pg. Status ERRATA
C1 C2 7.46 8.30 9.08 9.20 9.68

Intel® Itanium® Processor Specification Update 25
Specification Update April 2014

Summary Table of Changes

181 X 82 Fixed PAL_MC_RESUME clears branch registers
b6, b7

182 X X 82 No Fix Snooped L3 tag and/or state ECC error
sometimes reports wrong address

183 X 82 Fixed PAL_PSTATE_INFO returns data not
compliant with the SDM

185 X X 82 Fixed PAL_VPS_THASH virtualization service may
return an incorrect value

186 X X 82 Fixed High Priority performance policies turn ALAT
switch event "ON"

187 X X 83 Fixed Cache error on modified line generates a
target identifier of zero

188 X X X X 83 No Fix Masking MCAs without masking CMCIs could
result in a system hang

189 X X 83 Fixed
Logical to Physical mapping reported
incorrectly for single core Intel Itanium
9000 Series processors

190 X X X X 83 No Fix Non-deterministic processor initialization
may result in a fatal loss of SLL

191 X X X 83 Fixed PAL_MC_ERROR_INFO may incorrectly
report the way index as being invalid

192 X X X X 83 Fixed General exception fault due to corruption of
the DMSI bit

193 X X X X X 84 No Fix PAL_MC_ERROR_INJECT called in virtual
mode may result in unexpected behavior

194 X X X X X 84 No Fix
PAL_MC_ERROR_INJECT called in physical
mode with a virtual address may result in
unexpected behavior

195 X X X X 84 Fixed 1 bit L3 tag errors in invalid or CST disabled
set and way are incorrectly scrubbed

196 X X 84 Fixed
Incorrect logging of L3 tag and data errors
due to errata 122 and 182 may result in a
BERR

197 X X X 84 Fixed MCAs erroneously processed by both logical
processors

198 X X X X 85 Fixed
Calling PAL_MC_CLEAR_LOG while in single
issue mode during ETM may prevent exit
from Single Issue Mode

199 X X X 85 Fixed PAL_MC_RESUME may flag valid min_state
pointer as invalid

200 X X X X X 85 No Fix PAL_CHECK and PAL_MC_CLEAR_LOG do
not account for initial SLL settings

201 X X X X X 85 No Fix A general exception may be observed in the
LPM flow at loadrs

202 X X X X X 85 No Fix Illegal operation fault due to erroneous
initialization

203 X X X X 85 Fixed
Repeatedly entering and exiting ETM may
cause unexpected MCAs or XPN timeout
BINITs

204 X X X X 86 Fixed

An MCA in the middle of read/write
operations to internal structures, for
example, TLB, cache, and TR registers,
could cause a system hang in some
instances

205 X X X X X 86 Plan Fix Unexpected fault may be observed when
calling the PAL_SET_PSTATES procedure

206 X X X X 86 Fixed PAL_MC_ERROR_INFO could incorrectly
handle a logged overflow condition

207 X X X X 86 Fixed
PAL_MC_ERROR_INFO could return
CC_TV==1, but when queried for the TA
return an incorrect or zero TA

3.5 Intel® Itanium® Processor 9000 Series Errata
(Sheet 4 of 5)

No.
Processor
Stepping PAL Version

Pg. Status ERRATA
C1 C2 7.46 8.30 9.08 9.20 9.68

Summary Table of Changes

26 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

208 X X X X 86 Fixed
MCA during PAL_HALT_LIGHT followed by
another MCA may result in unexpected
behavior

209 X X X X X 87 No Fix PAL_MC_ERROR_INFO MI and CM bits may
report incorrect values

210 X X X X X 87 Plan Fix
Processor Error Map (PEM) index may be
inconsistent with the value reported by
Processor Status Parameter (PSP) index

211 X X X X 87 Fixed PAL_MC_ERROR_INFO may incorrectly
report op=load

212 X X X X 87 Fixed During MCA handling one of the logical
processors may not hand off to SAL

213 X X X X X 87 No Fix
If a PAL initiated reset occurs while
processing a ptc.g transaction, the system
bus may continue to indicate the previous
ptc.g transaction is still pending

214 X X X X X 87 No Fix The Instruction Pointer captured may not be
correct when monitoring ALAT mis-events

216 X X X X 88 Fixed Unexpected exit out of PAL_HALT_LIGHT

218 X X X X X 88 Plan Fix The PAL_HALT_INFO procedure may provide
inaccurate power consumption information

219 X X X X X 88 Plan Fix

When the PAL_CONTEXT_SAVE procedure is
called, an unexpected MCA may be
observed between the time of the original
MCA and the PAL_CONTEXT_SAVE
procedure call

220 X X X X 88 Fixed
PAL_VP_REGISTER and PAL_VP_CREATE
procedures should check for illegal vac/vdc
combinations

221 X X X X 89 Fixed
MCA's arriving during the
PAL_MC_ERROR_INFO call can cause
misalignment of the register stack base

222 X X X X 89 Fixed
The PAL_MC_ERROR_INFO call
Reg_File_Check return does not include the
operation type field

223 X X X X 89 Fixed The INIT event will not be taken in some
timing conditions

224 X X X X X 89 Plan Fix MCA during PAL_HALT or PAL_HALT_LIGHT
may result in unexpected behavior

225 X X X X X 89 No Fix MC_ERROR_INFO will incorrectly report
"corrected" for some bus_check queries

228 X X X X X 90 Plan Fix The flush cache operation could result in
L2D errors being placed on the FSB

229 X X X X X 90 No Fix MCA to BINIT promotion not supported on
Itanium processors

230 X X X X X 90 No Fix PAL does not preserve certain PSR bits at
handoff points

233 X X X X X 91 No Fix
The PAL_MC_ERROR_INFO call
Reg_File_Check return does not include the
reg_num field

234 X X X X X 91 No Fix Retrieving poisoned code from memory may
lead to infinite MCA signaling/handling

235 X X X X X 91 No Fix
Mid-level L2d data cache operations could
result in an unexpected Hardware Page
Walker (HPW) Abort, or other unexpected
processor behavior

236 X X X X X 91 No Fix
Calling PAL_TEST_PROC for phase-one
processor self tests will corrupt all
Protection Key Registers (PKRs)

237 X X 92 No Fix
Under a complex set of conditions, store to
load forwarding for a sub 8-byte load may
complete incorrectly

3.5 Intel® Itanium® Processor 9000 Series Errata
(Sheet 5 of 5)

No.
Processor
Stepping PAL Version

Pg. Status ERRATA
C1 C2 7.46 8.30 9.08 9.20 9.68

Intel® Itanium® Processor Specification Update 27
Specification Update April 2014

Summary Table of Changes

3.6 Intel® Itanium® Processor 9100 Series Errata
(Sheet 1 of 2)

No.
Processor
Stepping PAL Version

Pg. Status ERRATA
A1 (ID: Rev 1) 1.08 1.14

1 X 41 No Fix IA64_INST_RETIRED and IA64_TAGGED_INST_RETIRED
does not count predicated off instructions

8 X 42 No Fix Possible deadlock condition after ptc.g is issued on two-
way system

13 X 44 No Fix Floating-point instructions take a floating-point trap before
Unimplemented Instruction Address trap

45 X 51 No Fix Improper use of memory attribute aliasing may lead to out
of order instruction execution

47 X 52 No Fix
Executing an rfi instruction that is located at the end of
implemented physical memory can result in an unexpected
unimplemented address fault

54 X 54 No Fix PAL_TEST_PROC status return value
63 X 57 No Fix JTAG Sample/Preload or EXTEST instruction usage

66 X 58 No Fix PSP.cr is always set to zero (0) at PALE_INIT hand off to
SALE_ENTRY

70 X 59 No Fix Application fault may be missed on a br.ia instruction

79 X 61 No Fix XPN time-out with BINIT response disabled may cause
system hang

80 X 62 No Fix BINIT may be taken after a UC single byte access to
ignored/reserved area of the Processor Interrupt Block

112 X 69 No Fix Unexpected MCA on a fill to a line with parity errors
113 X 69 No Fix Performance associated with an epc instruction

114 X 69 No Fix Branch bit, mispredict bit and slot index of branch
instruction

115 X 70 No Fix Lower priority error flagged on illegal write to GR r0

116 X 70 No Fix ptc.e instructions may purge resources of the other logical
processor executing on the same core

117 X 70 No Fix MPE_SCB_LIVE_REQ counts for disabled cores

118 X 70 No Fix move to bspstore requires unexpected serialization

119 X 70 No Fix System behavior as a result of nested BINIT’s

120 X 71 No Fix Instruction Pointer-Event Address Register (IP-EAR) may
not behave as specified

121 X 71 No Fix Performance Monitor Data (PMD) registers 10-15 usage
122 X X 71 No Fix Wrong address generated for L3 data 1x and 2x ECC errors
123 X X 71 No Fix Illegal opcodes may not raise the expected operation fault

129 X 72 No Fix Two MCAs issued due to active logical processor being
switched

166 X X 79 No Fix PAL_CACHE_INFO is not available during firmware recovery
check is not available during firmware recovery check

174 X X 80 No Fix Calling PAL_CAR_INIT in cacheable mode may cause
undefined behavior

182 X X X 82 No Fix Snooped L3 tag and/or state ECC error sometimes reports
wrong address

192 X 83 Fixed General exception fault due to corruption of the DMSI bit

193 X X 84 No Fix PAL_MC_ERROR_INJECT called in virtual mode may result
in unexpected behavior

194 X X 84 No Fix PAL_MC_ERROR_INJECT called in physical mode with a
virtual address may result in unexpected behavior

204 X 86 Fixed
An MCA in the middle of read/write operations to internal
structures, for example, TLB, cache, and TR registers,
could cause a system hang in some instances

208 X X 86 No Fix MCA during PAL_HALT_LIGHT followed by another MCA
may result in unexpected behavior

209 X X 87 No Fix PAL_MC_ERROR_INFO MI and CM bits may report incorrect
values

Summary Table of Changes

28 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

210 X 87 Fixed
Processor Error Map (PEM) index may be inconsistent with
the value reported by Processor Status Parameter (PSP)
index

211 X 87 Fixed PAL_MC_ERROR_INFO may incorrectly report op=load

212 X 87 Fixed During MCA handling one of the logical processors may not
hand off to SAL

215 X 88 Fixed Core Level Lockstep (CLL) mode may not be working as
expected

216 X 88 Fixed Unexpected exit out of PAL_HALT_LIGHT
217 X 88 Fixed Unexpected XOR divergence resulting in a BINIT

218 X 88 Fixed The PAL_HALT_INFO procedure may provide inaccurate
power consumption information

219 X 88 Fixed
When the PAL_CONTEXT_SAVE procedure is called, an
unexpected MCA may be observed between the time of the
original MCA and the PAL_CONTEXT_SAVE procedure call

220 X 88 Fixed PAL_VP_REGISTER and PAL_VP_CREATE procedures should
check for illegal vac/vdc combinations

221 X 89 Fixed MCA's arriving during the PAL_MC_ERROR_INFO call can
cause misalignment of the register stack base

222 X 89 Fixed The PAL_MC_ERROR_INFO call Reg_File_Check return does
not include the operation type field

223 X 89 Fixed The INIT event will not be taken in some timing conditions

224 X X 89 No Fix MCA during PAL_HALT or PAL_HALT_LIGHT may result in
unexpected behavior

225 X X 89 No Fix MC_ERROR_INFO will incorrectly report "corrected" for
some bus_check queries

226 X X 90 No Fix PAL_CACHE_DISABLED_LINE_INFO doesn't report set0/
way0 disabled

227 X 90 Fixed PAL_CONTEXT_SAVE stores RSE resources in MCA/INIT
prior to procedure being called

228 X X 90 No Fix The flush cache operation could result in L2D errors being
placed on the FSB

229 X X 90 No Fix MCA to BINIT promotion not supported on Itanium
processors

230 X X 90 No Fix PAL does not preserve certain PSR bits at handoff points

231. X X 90 No Fix
When PAL_MC_ERROR_INJECT is used for CLL error
recovery testing, an unexpected FATAL Loss of Lockstep
MCA may be observed

232. X X 91 No Fix Unexpected BINIT may be observed in CLL error recovery
flow when XOR_BINIT is enabled

233. X X 91 No Fix The PAL_MC_ERROR_INFO call Reg_File_Check return does
not include the reg_num field

234 X X 91 No Fix Retrieving poisoned code from memory may lead to infinite
MCA signaling/handling

235 X X 91 No Fix
Mid-level L2d data cache operations could result in an
unexpected Hardware Page Walker (HPW) Abort, or other
unexpected processor behavior

236 X X 91 No Fix Calling PAL_TEST_PROC for phase-one processor self tests
will corrupt all Protection Key Registers (PKRs)

237 X 92 No Fix Under a complex set of conditions, store to load forwarding
for a sub 8-byte load may complete incorrectly

3.6 Intel® Itanium® Processor 9100 Series Errata
(Sheet 2 of 2)

No.
Processor
Stepping PAL Version

Pg. Status ERRATA
A1 (ID: Rev 1) 1.08 1.14

Intel® Itanium® Processor Specification Update 29
Specification Update April 2014

Summary Table of Changes

3.7 FPSWA Errata

No.
FPSWA Version

Pg. Status ERRATA
1.09 1.12 1.18

46 X 51 Fixed FPSWA may not set the Denormal status flag correctly
56 X 55 Fixed FPSWA version 1.12 may overwrite register fr12

3.8 IA-32 Execution Layer Errata (Sheet 1 of 2)

No.
IA-32 EL Version

Pg. Status ERRATA
4.3 4.4 5.3 6.5 6.6

1 X X X X X 95 No Fix Ordering of loads and stores
2 X X X X X 95 No Fix Segmentation not supported
3 X X X X X 95 No Fix 16-bit application mode not supported
4 X X X X X 95 No Fix IA-32 floating-point state
5 X X X X X 96 No Fix Floating-point C1 condition code flag support

6 X X X X X 96 No Fix IA-32 floating-point pseudo-denormal, pseudo-NaN, and pseudo-infinity
support

7 X X X X X 96 No Fix Behavior of quiet and signaling NaNs
8 X X X X X 96 No Fix IA-32 floating-point exceptions
9 X X X X X 96 No Fix Partial support for EFLAGS
10 X X X X X 97 No Fix EFLAGS and floating-point exception flag behavior
11 X X X X X 97 No Fix RSM and IRET instructions raise incorrect faults
12 X X X X X 97 No Fix Cross-modifying code
13 X X X X X 97 No Fix Atomicity of lock-prefixed instructions making unaligned memory references
14 X X X X X 97 No Fix Atomicity of lock-prefixed instructions making uncacheable memory references
15 X X X X X 98 No Fix Noninterruptability of 32-bit unaligned and 16-byte stores
16 X 98 Fixed IA-32 execution layer install and uninstall failures
17 X 98 Fixed Self-modifying code on unaligned memory may result in an access violation
18 X X X 98 Fixed Large data file accesses may return incorrect data
19 X X X 98 Fixed IA-32 EL applications will not run on kernels with page sizes greater than 16k

20 X 99 Fixed
IA-32 EL may incorrectly optimize frequently executed code with interleaved
integer and floating-point flag operations that include producer/consumer code
sequences

21 X X X 99 Fixed IA-32 code running with the IA-32 EL may see an SSE Exception being ignored
after the FPREM1 instruction is executed

22 X 99 Fixed An IA-32 EL optimized code procedure with interleaved MMX™ and SSE code
may experience an application hang

23 X 100 Fixed An IA-32 Linux* application may receive an unexpected memory access
violation

24 X X X X 100 Fixed Wrong NEG EFlags cases
25 X X X X 100 Fixed Lock XADD atomicity
26 X X X X 100 Fixed Lock <***> + MOV weak order
27 X X X X 101 Fixed SSE with behavior change
28 X X X X 101 Fixed Thread not suspended
29 X X X X 101 Fixed Extended-double to double precision
30 X X X X 101 Fixed CMPXCHG EAX, reg
31 X X X X 101 Fixed SSE with early loop exit
32 X X X X 102 Fixed Exception/suspension in fnstsw-sahf-jcc
33 X X X X 102 Fixed Load-misalign-reload
34 X X X X 102 Fixed Incorrect register values in multi-block prefetch
35 X X X X 103 Fixed Suspension while SMC observed
36 X X X X 103 Fixed LINUX internal synchronization
37 X X X X X 103 No Fix Page crosser lock w/ permission change
38 X X X 103 Fixed Socketcall send/receive message may fail

Summary Table of Changes

30 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

39 X X X 104 Fixed Interrupted long Linux system call that receives an interruption-indication may
unexpectedly modify an application buffer

40 X X X 104 Fixed ZF flag may be mishandled when using a CMPXCHG8b in an If-Then-Else code
structure

41 X X X X X 104 No Fix Performing SSE divide of a denormal value by zero, while the DAZ bit is set, will
result in a zero-divide exception instead of invalid-operation exception

42 X X X X X 105 No Fix Asynchronous suspend and resume calls to a thread may result in undefined
behavior

43 X X X X X 105 No Fix Files under /proc/<pid> may contain incorrect data for emulated processes
44 X X X X X 105 No Fix Select pending signals and SIG_IGN dispositions are not inherited cross-execve
45 X X X 105 Fixed Floating-point content reuse

46 X X X 106 Fixed FXSAVE with extensive SSE and floating-point usage may use incorrect values
from the XMM registers

47 X X X 106 Fixed Interruption of a loop with SSE may incorrectly restore XMM registers
48 X X X 106 Fixed Unmasked numeric FP exception in FXTRCT may view wrong FP values

49 X X X 107 Fixed On rare conditions, FP exceptions shortly after an FCLEX/FNCLEX may view
wrong status bits

50 X X X 107 Fixed An unmasked inexact SSE exception on some instructions may not be restored
correctly

51 X X X 107 Fixed SSE exceptions in a hot block may incorrectly set flags
52 X X X 108 Fixed Multiple exceptions between two code blocks may lead to an incorrect context
53 X X X 108 Fixed Numeric SSE exceptions could be ignored initially after being unmasked
54 X X X 108 Fixed Application writing to a guarded page on Windows may fail on access violation
55 X X X 108 Fixed Job Memory Limit on Windows
56 X X X 109 Fixed Reloading a modified DLL may fail
57 X X X 109 Fixed Linux* core file generation
58 X X X 109 Fixed Linux* EXECVE fails to launch NR file
59 X X X 109 Fixed ptrace returns wrong system-call id
60 X X X 109 Fixed READV/WRITEV overflow
61 X X X 109 Fixed More precise FP calculation result
62 X X X X 110 Fixed Wrong exception flags in interrupted context
63 X X X X 110 Fixed Wrong CF/AF in interrupted context for LOCK SBB
64 X X X X 110 Fixed Wrong ZF/PF/SF in interrupted context for AAM
65 X X X X 110 Fixed Unaligned RMW instruction interruption handling
66 X X X X 110 Fixed Unexpected access violation on PUSH/POP
67 X X X X 110 Fixed Wrong interrupted EIP on instructions consuming PF
68 X X X X 111 Fixed Interruption in unaligned CMPXCHG
69 X X X X 111 Fixed Wrong exception masks in MXCSR
70 X X X X 111 Fixed Wrong flags in interrupted context
71 X X X X 111 Fixed Wrong TOP in interrupted context for SQRTSS
72 X X X X 111 Fixed Applications unexpectedly abort
73 X X X X 111 Fixed Lock instruction with unaligned memory reference
74 X X X X 112 Fixed Second 4/8/16-byte unaligned load
75 X X X X 112 Fixed Wrong FP registers value in interrupted context
76 X X X 112 Fixed LOCK NOTW [odd address] negates 4B
77 X X X 112 Fixed LOCK RMW suspension atomicity break
78 X X X 112 Fixed Flags on CMPXCHGW
79 X X X 112 Fixed Wrong ZF on cmpxchg8b
80 X X X 113 Fixed Flags at interrupt after then/else
81 X X X 113 Fixed DIVPS [m128] interruption crash
82 X X X 113 Fixed Crash on optimization sequence
83 X X X 113 Fixed Ignored Self Modifying BTX
84 X X X 113 Fixed Lost signal in spin-loop
85 X X X 113 Fixed Debugger aborts on “fail to attach”

3.8 IA-32 Execution Layer Errata (Sheet 2 of 2)

No.
IA-32 EL Version

Pg. Status ERRATA
4.3 4.4 5.3 6.5 6.6

Intel® Itanium® Processor Specification Update 31
Specification Update April 2014

Summary Table of Changes

Note:
1. To obtain information on which IA-32 EL version is installed, from the directory that the IA-32 EL binaries are located (/emul/

bin, /emul, c:\windows\system32\, and so forth.)
• In Windows: right-click IA32Exec.bin->Properties->Tab “Version” and look for file Version x.x.xxxx.
• In Linux* in a command line window, write “libia32x.so -v”.
The leading number represents the major version number.

3.9 Intel® Itanium® Processor (up to 3 MB L3 Cache)
Specification Changes

No

Processor
Stepping

PAL
Version

Pg. SPECIFICATION
CHANGES

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

None for this revision of
the Specification Update

3.10 Intel® Itanium® Processor (up to 3 MB L3 Cache)
Specification Clarifications

No.

Processor
Stepping

PAL
Version Pg. SPECIFICATION CLARIFICATIONS

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

1 X 93 Error logging of deferred IPIs

2 X 93 Branch prediction across the 40-bit
boundary

3 X 93
PAL_FREQ_RATIOS in the Intel
Itanium Architecture Software
Developers Manual, revision 2.2

3.11 Intel® Itanium® Processor (up to 3 MB L3 Cache)
Documentation Changes

No.

Processor
Stepping

PAL
Version Pg. DOCUMENTATION CHANGES

B3 7.13 7.31 7.36 7.37 7.40 7.59 7.71 7.73 7.77 7.78 7.79

None for this revision of the
Specification Update

3.12 Intel® Itanium® Processor (up to 6 MB L3 Cache)
Specification Changes

No.

Processor
Stepping

PAL
Version Pg. SPECIFICATION CHANGES

B1 5.37 5.61 5.65 5.69 5.72 5.73

None for this revision of the Specification Update

3.13 Intel® Itanium® Processor (up to 6 MB L3 Cache)
Specification Clarifications

No.

Processor
Stepping

PAL
Version Pg. SPECIFICATION CLARIFICATIONS

B1 5.37 5.61 5.65 5.69 5.72 5.73

Summary Table of Changes

32 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

1 X 93 Error logging of deferred IPIs

2 X 93 Branch prediction across the 40-bit boundary

3 X 93 PAL_FREQ_RATIOS in the Intel Itanium Architecture Software
Developers Manual, revision 2.2

3.13 Intel® Itanium® Processor (up to 6 MB L3 Cache)
Specification Clarifications

3.14 Intel® Itanium® Processor (up to 6 MB L3 Cache)
Documentation Changes

No.

Processor
Stepping

PAL
Version Pg. DOCUMENTATION CHANGES

B1 5.37 5.61 5.65 5.69 5.72 5.73

None for this revision of the Specification Update

3.15 Intel® Itanium® Processor (up to 9 MB L3 Cache)
Specification Changes

No.

Processor
Stepping

PAL
Version Pg. SPECIFICATION CHANGES

A1 A2 1.27 2.10 2.14 2.15

None for this revision of the Specification Update

3.16 Intel® Itanium® Processor (up to 9 MB L3 Cache)
Specification Clarification

No.

Processor
Stepping

PAL
Version Pg. SPECIFICATION CLARIFICATIONS

A1 A2 1.27 2.10 2.14 2.15

1 X X 93 Error logging of deferred IPIs

2 X X 93 Branch prediction across the 40-bit boundary

3 X X 93 PAL_FREQ_RATIOS in the Intel Itanium Architecture Software
Developers Manual, revision 2.2

3.17 Intel® Itanium® Processor (up to 9 MB L3 Cache)
Documentation Changes

No.

Processor
Stepping

PAL
Version Pg. DOCUMENTATION CHANGES

A1 A2 1.27 2.10 2.14 2.15

None for this revision of the Specification Update

Intel® Itanium® Processor Specification Update 33
Specification Update April 2014

Summary Table of Changes

3.18 Intel® Itanium® Processor 9000 Series
Specification Changes

No.
Processor Stepping PAL

Version Pg. SPECIFICATION CHANGES

C1 C2 7.46 8.30

None for this revision of the Specification Update

3.19 Intel® Itanium® Processor 9000 Series
Specification Clarification

No.
Processor Stepping PAL

Version Pg. SPECIFICATION CLARIFICATIONS

C1 C2 7.46 8.30

3 X X 93 PAL_FREQ_RATIOS in the Intel Itanium Architecture Software
Developers Manual, revision 2.2

3.20 Intel® Itanium® Processor 9000 Series
Documentation Changes

No.
Processor Stepping PAL

Version Pg. DOCUMENTATION CHANGES

C1 C2 7.46 8.30

1 X X 94 PAL_MC_ERROR_INJECT err_data_buffer description change

2 X X 94 PAL_MC_ERROR_INJECT procedure err_struct_info - Register File
change

3.21 Intel® Itanium® Processor 9100 Series
Specification Changes

No.
Processor Stepping PAL Version

DOCUMENTATION CHANGES
A1 (ID: Rev 1) 1.08

None for this revision of the Specification Update

3.22 Intel® Itanium® Processor 9100 Series
Specification Clarifications

No.
Processor Stepping PAL Version

DOCUMENTATION CHANGES
A1 (ID: Rev 1) 1.08

None for this revision of the Specification Update

3.23 Intel® Itanium® Processor 9100 Series
Documentation Changes

No.
Processor Stepping PAL Version

DOCUMENTATION CHANGES
A1 (ID: Rev 1) 1.08

None for this revision of the Specification Update

Summary Table of Changes

34 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Notes: To obtain information on which IA-32 EL version is installed, from the directory that the IA-32 EL binaries are located (/
emul/bin, /emul, c:\windows\system32\, and so forth)
a. In Windows: right-click IA32Exec.bin->Properties->Tab “Version” and look for file Version x.x.xxxx.
b. In Linux in a command line window, write “libia32x.so -v”.

The leading number represents the major version number.

3.24 IA-32 Execution Layer Specification Clarifications

No.
IA-32 EL Version Pg.

SPECIFICATION CLARIFICATIONS
4.3 4.4 5.3 6.5

1 X X X 115 Aliasing of MMX registers to FP registers

2 X X X 115 Floating-point and SSE precision

3 X X X 115 CPUID values represent the IA-32 execution layer processor model

4 X X X 115 IA-32 execution layer resides in the application virtual address space

5 X X X 115 Signal delivery may be postponed during code translation or garbage
collection

6 X X X 115 Aborting threads could cause other process threads to hang

7 X X X 116 Core dump files cannot be produced correctly when an IA-32 process is
aborted

8 X X X 116 The I/O Privilege Level (IOPL) mechanism is not implemented

9 X X X 116 Software interrupts must be supported by the OS

10 X X X 116 Intersegment calls require OS mechanism

11 X X X 116 Thread creation may be reported incorrectly to the OS

12 X 116 Core-dump file may contain Itanium® architecture details

13 X X X 116 IA-32 process may hang while generating core-dump file

14 X X X 116 DLL unload issue

Intel® Itanium® Processor Specification Update 35
Specification Update April 2014

Identification Information

4 Identification Information

4.1 Intel® Itanium® Processor Package Marking
The following section details the processor top-side and bottom-side markings for the
Intel® Itanium® processor and is provided as an identification aid. The processor top-
side mark for the product is a laser marking on the Integrated Heat Spreader (IHS).

4.1.1 Processor Top-Side Marking
Figure 4-1 shows an example of the laser marking on the IHS. The processor top-side
mark provides the following information:

• INTEL Brand/ INTEL Product
• Legal Mark
• Assembly Process Order (APO) Number
• Serial Number

4.1.2 Bottom-Side Marking

The processor bottom-side mark for the product is a laser marking on the pin side of
the interposer. Figure 4-2 shows the placement of the laser marking on the pin side of
interposer. The processor bottom-side mark provides the following information:

• Product ID
• Finish Process Order (FPO) Number
• Serial Number
• S-Spec
• Country of Origin
• 2D Matrix Mark included on Intel® Itanium® processor (up to 6 MB L3 cache) only.

Not included on Intel® Itanium® processor (up to 3 MB L3 cache).

Figure 4-1. Processor Top-Side Marking on IHS

001088b

INTEL CONFIDENTIAL

APO NUMBER
SERIAL NUMBER

i M C 'YY

Identification Information

36 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

4.2 Intel® Itanium® Processor 9000 and 9100 Series
Package Marking
The following section details the processor top-side and bottom-side markings for the
Intel® Itanium® Processor 9000 and 9100 Series processor and is provided as an
identification aid. The processor top-side mark for the product is a laser marking on the
Integrated Heat Spreader (IHS).

4.2.1 Processor Top-Side Marking
Figure 4-3 shows an example of the laser marking on the IHS. The processor top-side
mark provides the following information:

• INTEL Brand/ INTEL Product

• Legal Mark

• Assembly Process Order (APO) Number

• Serial Number

• 2-D Matrix

Figure 4-2. Processor Bottom-Side Marking Placement on Interposer

001267

Laser Mark

AH1 A1

AH25 A25

Pin 1
Indicator

Figure 4-3. Processor Top-Side Marking on IHS

Intel® Itanium® Processor Specification Update 37
Specification Update April 2014

Identification Information

4.2.2 Bottom-Side Marking
The processor bottom-side mark for the product is a laser marking on the pin side of
the interposer. Figure 4-4 shows the placement of the laser marking on the pin side of
interposer. The processor bottom-side mark provides the following information:

• Product ID

• Finish Process Order (FPO) Number

• S-Spec

• 2D Matrix Mark

Figure 4-4. Processor Bottom-Side Marking Placement on Interposer

Identification Information

38 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

4.3 Intel® Itanium® Processor Identification and
Package Information

S-Spec Number Processor
Stepping CPUID1 Speed

(MHz)
L3 Size

(Mbytes)

SL67U B3 001F000704h 1000/400 1.5

SL67V B3 001F000704h 1000/400 3

SL67W B3 001F000704h 900/400 1.5

SL6P5 B3 001F000704h 1000/400 1.5

SL6P7 B3 001F000704h 1000/400 3

SL6P6 B3 001F000704h 900/400 1.5

SL6XF B1 001F010504h 1500/400 6

SL6XE B1 001F010504h 1400/400 4

SL6XD B1 001F010504h 1300/400 3

SL76K B1 001F010504h 1400/400 1.5

SL754 B1 001F010504h 1000/400 1.5

SL7FP B1 001F010504h 1400/400 3

SL7FQ B1 001F010504h 1600/400 3

SL7SD A1 001F020104h 1300/400 3

SL7ED A1 001F020104h 1500/400 4

SL7EC A1 001F020104h 1600/400 3

SL7EB A1 001F020104h 1600/400 6

SL87H A1 001F020104h 1600/400 9

SL7EF A1 001F020104h 1600/533 3

SL8CY A2 001F020204h 1300/400 3

SL8CX A2 001F020204h 1500/400 4

SL8CW A2 001F020204h 1600/400 3

SL8CV A2 001F020204h 1600/400 6

SL8CU A2 001F020204h 1600/400 9

SL8CZ A2 001F020204h 1600/533 3

SL8JK A2 001F020204h 1660/667 6

SL8JJ A2 001F020204h 1660/667 9

SL98T2 C1 0020000504h 1600/533 24

SL9DF C1 0020000504h 1600/533 24

SL9DG C1 0020000504h 1600/533 18

SL9DE C1 0020000504h 1420/533 12

SL9BW C1 0020000504h 1400/400 12

SL9DH4 C1 0020000504h 1600/533 8

SL9DJ3 C1 0020000504h 1600/533 6

SL9P72 C2 0020000704h 1600/533 24

SL9PG C2 0020000704h 1600/533 24

SL9P8 C2 0020000704h 1600/533 18

SL9PB C2 0020000704h 1420/533 12

SL9PC C2 0020000704h 1400/400 12

SL9P94 C2 0020000704h 1600/533 8

SL9PA3 C2 0020000704h 1600/533 6

SLAB4 A1 0020010104h 1666/667 24

Intel® Itanium® Processor Specification Update 39
Specification Update April 2014

Identification Information

SLAB5 A1 0020010104h 1666/667 18

SLAB6 A1 0020010104h 1600/533 24

SLAB7 A1 0020010104h 1600/533 18

SLAB82,6,7 A1 0020010104h 1666/667 24

SLAB94,6 A1 0020010104h 1666/667 8

SLABA3,6 A1 0020010104h 1600/533 12

SLABB6 A1 0020010104h 1420/533 12

Notes:
1. The CPUID column in this table indicates the contents of bits 39:0 of CPUID Register 3. Bits 63:40 of this

register are reserved. The Family ID for the Intel® Itanium® Processor is 0x1F. The Family ID for the Intel®
Itanium® Processor 9000 and 9100 Series is 0x20.

2. Supports Core Level Lockstep operation.
3. Single Core only and does not support Intel® Hyper-Threading Technology.
4. Does not support hyper-threading technology.
5. Does not support P-states.
6. Does not support DBS.
7. Supports Socket Level Lockstep operation.

Abbreviation PAL Version1

Notes:
1. Please refer to the applicable PAL release notes for information regarding changes in each PAL release.

Processor Stepping

Itanium® Processor (up to 3 MB L3 cache)

7.13 B3

7.31 B3

7.36 B3

7.37 B3

7.40 B3

7.59 B3

7.71 B3

7.73 B3

7.77 B3

7.78 B3

7.79 B3

Itanium Processor (up to 6 MB L3 cache)

5.37 B1

5.61 B1

5.65 B1

5.69 B1

5.72 B1

5.73 B1

Itanium Processor (up to 9 MB L3 cache)

1.27 A1

2.10 A1, A2

2.14 A1, A2

2.15 A1, A2

2.24 A1, A2

2.25 A1, A2

Intel® Itanium® Processor 9000 Series

7.46 C1, C2

8.30 C1, C2

9.08 C1, C2

9.20 C1, C2

Intel® Itanium® Processor 9100 Series 1.08 A1

S-Spec Number Processor
Stepping CPUID1 Speed

(MHz)
L3 Size

(Mbytes)

Limited Support for Mixed Steppings

40 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

5 Limited Support for Mixed
Steppings

Intel Corporation limits support for mixed steppings of the Intel® Itanium® 2 processor
(up to 9 MB L3 cache). The following list describes the requirements to support mixed
steppings:

• Mixed steppings of processors are only supported with the following paired
combinations of A1 and A2 steppings of the Intel® Itanium® processor with up to
9 MB L3 cache, identified by the package S-Spec numbers (see the Intel®
Itanium® Processor Identification and Package Information table for details):

— SL7SD and SL8CY
— SL7ED and SL8CX
— SL7EC and SL8CW
— SL7EB and SL8CV
— SL87H and SL8CU
— SL7EF and SL8CZ

• While Intel has done nothing to specifically prevent processors operating at
differing frequencies from functioning within a multiprocessor system, there may
be uncharacterized errata that exist in such configurations. Intel does not support
such configurations. In mixed stepping systems, all processors must operate at
identical frequencies (that is, the highest frequency rating commonly supported by
all processors).

• While there are no known issues associated with the mixing of processors with
differing cache sizes in a multiprocessor system, and Intel has done nothing to
specifically prevent such system configurations from operating, Intel does not
support such configurations since there may be uncharacterized errata that exist.
In mixed stepping systems, all processors must be of the same cache size.

• While Intel believes that certain customers may wish to perform validation of
system configurations with mixed frequency or cache sizes, or voltages and that
those efforts are an acceptable option to our customers, customers would be fully
responsible for the validation of such configurations.

• Intel requires that the latest version of PAL code be used in the system firmware.
Any system firmware that is not using the latest version of PAL is considered by
Intel to be operating out of specification.

• The workarounds identified in this and following specification updates must be
properly applied to each processor in the system. Certain errata are specific to the
multiprocessor environment. Errata for all processor steppings will affect system
performance if not properly worked around. Also see the processor Identification
and Package Information section for additional details on which processors are
affected by specific errata.

While there are no known issues associated with the mixing of processors with differing
voltages in a multiprocessor system, and Intel has done nothing to specifically prevent
such system configurations from operating, Intel does not support such configurations
since there may be uncharacterized errata that exist. In mixed stepping systems, all
processors must be of the same voltage.

Intel® Itanium® Processor Specification Update 41
Specification Update April 2014

Errata (Processor and PAL)

6 Errata (Processor and PAL)

1. IA64_INST_RETIRED and IA64_TAGGED_INST_RETIRED does not
count predicated off instructions

Problem: The event monitor count for instructions retired (IA64_INST_RETIRED and
IA64_TAGGED_INST_RETIRED) does not include the predicated off instructions.

Implication: The IA64_INST_RETIRED/IA64_TAGGED_INST_RETIRED performance monitoring
events may report an incorrect count.

Workaround: Add the PREDICATE_SQUASHED_RETIRED event monitor count to the
IA64_INST_RETIRED and/or the IA64_TAGGED_INST_RETIRED event monitor count to
get the intended results.

Status: For the steppings effected, see the Summary Table of Changes.

2. Performance Monitor Interrupt raised when freeze bit is written to
Performance Monitoring Counter register

Problem: The Performance Monitor Freeze (PMC[0].fr) bit within the Performance Monitoring
Counter (PMC) register is used to stop performance event monitoring. This can be set
by software or by an event counter overflow. Due to this erratum, the processor may
raise a Performance Monitor Interrupt (PMI) when the freeze bit is set by software,
even when the Performance Monitor Overflow Interrupt (PMC.oi) bit is not enabled and
no overflow has occurred.

Implication: The processor may generate a PMI when it’s not expected to do so.
Workaround: The interrupt service routine (ISR) needs to account for the spurious interrupt even if

no performance monitor overflow is indicated.
Status: For the steppings effected, see the Summary Table of Changes.

3. Priority agent requests with unit mask of I/O not counted
Problem: The system bus allows for the BPRI# signal to be asserted one cycle before an ADS# is

driven by the priority agent, provided no BREQ# pins are driven by the processor.
Priority agent requests exhibiting this behavior are not counted by the system bus
performance monitoring events when using a unit mask of ‘I/O’.

Implication: The system bus performance monitoring events may report an incorrect count in this
case.

Workaround: Measure the bus transactions for all bus masters (unit mask= ‘ANY’) and subtract from
it the sum of the corresponding bus transactions on each local processor (unit mask=
‘SELF’).

Status: For the steppings affected, see the Summary Table of Changes.

4. Incorrect fault reporting on move to/from the RNAT or BSPSTORE
application registers

Problem: Incorrect faulting behavior may be experienced under the following conditions:
1. A mov.imm (move immediate) to the ar.rsc register is executed in the same

instruction bundle (or the next bundle with no intervening stop bits) as a
mispredicted branch.

2. The mispredicted branch path includes another mov.imm to the same ar.rsc register,
and is within two issue groups or less of the (mispredicted) branch instruction. This
instruction is not executed. Also, the value moved to the rsc.mode field must be
different than the value moved to rsc.mode in the mov.imm in step 1.

3. The correct branch path is then taken and includes a move to/from the ar.rnat or
ar.bspstore registers, within the first bundle (or second bundle with no intervening
stop bit) of the correct branch instruction.

Errata (Processor and PAL)

42 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Implication: When the above conditions line up (and there are no stalls or cache misses), the
instruction in step 3 (move to/from ar.rnat or ar.bsp) uses the rse.mode value from the
mov.imm in the mispredicted branch path instead of from instruction in step 1. As a
result, there may be incorrect faulting behavior – an illegal opcode fault is missed (if
rse.mode!= 0) or falsely indicated (if rse.mode = 0) and may result in inconsistent
system behavior. This erratum has only been observed in a system validation
environment.

Workaround: Use one of the following workarounds:
1. Use the register form of the move instruction or;
2. Ensure there is a stop bit between any mov.imm instruction to/from the ar.rsc

registers and any subsequent branch instruction or;
3. Ensure that there is a stop bit between a “label” (branch target) and a subsequent

move to/from ar.rnat/ar.bspstore.
Status: For the steppings affected, see the Summary Table of Changes.

5. Power good deassertion affects boundary scan testing
Problem: Deassertion of the PWRGOOD signal during boundary scan testing prevents the correct

operation of the sampling functionality in the EXTEST and SAMPLE/PRELOAD JTAG
commands.

Implication: As a result of this erratum the boundary scan chain function is disabled and will stop
shifting data when the PWRGOOD signal is low.

Workaround: Keep the PWRGOOD signal asserted during boundary scan testing.
Status: For the steppings affected, see the Summary Table of Changes.

6. IA-32: CPUID instruction returns incorrect L3 cache size
Problem: The IA-32 CPUID instruction will always report the L3 cache size as 3 MB regardless of

the actual size of the L3 cache.
Implication: IA-32 applications using the IA-32: CPUID instruction cannot rely on the cache size

reported by this instruction. Native Intel® Itanium® architecture-based applications are
not affected by this erratum and can access this information via the processor CPUID
registers.

Workaround: Within the Linux *operating system (OS) environment, the ‘/proc/cpuinfo’ file contains
this information. Within the Microsoft Windows* OS environment this information is
available through Windows API calls.

Status: For the steppings affected, see the Summary Table of Changes.

7. Performance Monitoring Event counters may be incorrect when using
Instruction Address Range checking in fine mode

Problem: For performance monitoring events that use Instruction Address Range Matching set to
‘Fine Mode’ (PMC: 14, bit 13 = 1), the address matching capability will be inconsistent
and may yield incorrect results.

Implication: Due to this erratum the results of an event counter while using ‘Fine Mode’ may not be
correct.

Workaround: Use normal mode when using Instruction Address Range checking.
Status: For the steppings affected, see the Summary Table of Changes.

8. Possible deadlock condition after ptc.g is issued on two-way system
Problem: In a two processor system, a ptc.g instruction is issued on processor A. The execution

of the ptc.g on processor A blocks the completion of a semaphore upon which
processor B is waiting to become available. Concurrently processor B is issuing a long
series of loads and stores with one or more instructions being retried or involves
system memory access before being retired. Processor B’s L2 cache entry queue,
denoted as OzQ, is full and does not allow the ptc.g operation from processor A, entry
into the L2 OzQ for completion. The ptc.g request will be presented again in three
clock cycles. If processor B continues to execute a code sequence such that the L2
cache OzQ entries continue to be taken by other load/stores, then the ptc.g operation
must continue to wait.

Intel® Itanium® Processor Specification Update 43
Specification Update April 2014

Errata (Processor and PAL)

Implication: Due to this erratum, the system may deadlock while waiting for the ptc.g to be
completed. Any break in, or completion of the code loop on processor B, including
system interrupts, that allows the ptc.g operation to enter the L2 cache OzQ on
processor B will be enough to release the deadlock condition. Additional processors will
also change the time cycle necessary for this event to occur. This issue has only been
observed during Random Instruction Testing in a system validation environment.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

9. EPC, mov ar.pfs and br.ret instructions may combine to yield incorrect
privilege level

Problem: Due to certain internal timing and microarchitectural conditions, OS calls that return to
user space from privilege code promote pages using a br.ret instruction, may not
have the expected privilege level.

Using the following code sequence as an example:

<change of privilege level> //epc on promote page; or br.ret
mov ar.pfs, [value]; //new pfs value has ppl < cpl
br.ret;;

In this case, the br.ret is specified to not change the privilege level (pl) since the
br.ret is asking to promote privilege to a numerically lower level. Current processor
steppings may change current privilege level (cpl) to the pl at the beginning of the
<change of privilege level>.

Implication: This erratum would result in having the cpl demoted and the user space application
may not receive the correct privilege level. Privilege code promote page usage is
limited and controlled by the OS. This issue has only been observed during random
instruction testing in a system validation environment.

Workaround: Use one of the following workarounds:
1. Use an return from interrupt (rfi) instruction instead of br.ret to return from

privilege code promote pages.
2. Insert a useless call-to-next bundle in all paths leading to a demoting br.ret.
3. PAL version 7.01 and above, have a workaround for this issue and it is enabled by

default. The OS may implement one of the previous workarounds or a check
mechanism, such that this PAL workaround can be disabled. Please review the PAL
Release notes for details on the implementation of this workaround.

Status: For the steppings affected, see the Summary Table of Changes.

10. Removal of WAW hazard may lead to undefined result
Problem: Due to internal conditions an allowed WAW dependency may become a WAW hazard

under the following circumstances:
• A move to the AR.PFS register is followed by a BR.CALL and both are executed in

the same issue group, or

• A move to the AR.EC register is followed by a BR.RET and both are executed in the
same issue group.

These combinations of instructions are legal WAW memory dependencies if one of the
operations is predicated off. If preceding instructions (as indicated above) combine to
change the predication on the BR.CALL or BR.RET from predicated true to predicated
false, the processor may mistakenly decide the WAW hazard is still present and fail to
recognize that the WAW has been removed which may result in an undefined value for
ar.pfs or ar.ec.

Errata (Processor and PAL)

44 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

The following code sequence demonstrates this issue:

p15 = 1;
;;
mov ar.pfs = R[x];
ld.c R[y] = [m]; //causes R[y] to be reloaded.

cmp.eq p15, p16 = R[y], R0;
(p15) br.call;

The RAW dependencies on ld.c to cmp and cmp to branch are legal. When the
processor executes the issue group, the WAW hazard is present and the PFS results are
undefined. If the ld.c misses the advanced load address table (ALAT), the cmp to
branch will be re-executed, the new result of the ld.c causes the p15 value to change
to false and thus eliminate the WAW. Then the processor may fail to recognize that the
WAW has been removed.

Implication: An application may hang or signal an exception fault under these circumstances. The
affected code sequence is not known by Intel to be generated in any current compiled
code or exist in any current OS.

Workaround: Separate the predicate producing instruction from its consumer with a stop (as
recommended in the Intel® Itanium® Architecture Software Developer’s Manual,
Volume 1: Application Architecture) or change the predication sequence to assure
mutually exclusive predication of the instructions in the WAW dependency.

Status: For the steppings affected, see the Summary Table of Changes.

11. Unexpected data debug, data access or dirty bit fault taken after rfi
instruction

Problem: A fault may be taken after a rfi instruction has been executed under the following
circumstances. The IPSR.da or IPSR.dd bits are set to disable data debug/data access/
dirty bit faults for the first Intel® Itanium® processor system environment restore
instruction. This is followed by an rfi instruction. The rfi instruction is followed by
additional instructions that generate register stack engine (RSE) activity (alloc,
flushrs, br.ret). The processor will see the RSE activity as valid Itanium system
instructions and clear the ipsr.da/dd bits and this may result in an unexpected data
debug, data access or dirty bit fault at the target of the rfi.

Implication: Due to this erratum an unexpected fault may be generated after an rfi instruction has
been executed. This may slow the transition of the system into the Itanium system
environment and log un-necessary errors.

Workaround: Separate the rfi from the RSE generating instruction by four issue groups of nop
instructions.

Status: For the steppings affected, see the Summary Table of Changes.

12. Incorrect privilege level may be granted if a failed speculation check
precedes a privilege level change

Problem: A failed speculation check instruction (chk.s/chk.a/fchkf) that is followed by a
privilege change operation may result with the incorrect privilege level for instructions
in the issue group of the privilege level change and beyond. The privilege changing
instruction must occur within two clock cycles of the failed speculation check.

Implication: As a result of this erratum, the speculation check recovery code and subsequent
instructions may have an incorrect privilege level.

Workaround: Do not use speculation near privilege changing instructions. The workaround for this
erratum is to escalate failed speculation checks (speculation check re-steers) to the OS
for recovery. This workaround is included in PAL version 7.01 and above.

Status: For the steppings affected, see the Summary Table of Changes.

13. Floating-point instructions take a floating-point trap before
Unimplemented Instruction Address trap

Problem: A floating-point instruction that causes a floating-point trap and is the last instruction
at the top of the physical address space should flag an Unimplemented Address trap
before the floating-point trap.

Intel® Itanium® Processor Specification Update 45
Specification Update April 2014

Errata (Processor and PAL)

Implication: The correct trap is flagged but only after the floating-point trap is taken first.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

14. PAL_MC_ERROR_INFO does not return an address for certain double
bit ECC memory errors

Problem: PAL_MC_ERROR_INFO will report the address for the source of a double bit ECC
memory error. However, under the conditions that the data with a 2x ECC error was
prefetched to the L2 cache and later filled into the L1 cache, the source address will not
be available.

Implication: PAL_MC_ERROR_INFO will not be able to report the address of a double bit ECC error in
this case. Double bit errors that are consumed in this scenario will be not be
recoverable.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

15. PAL_CACHE_READ and PAL_CACHE_WRITE return incorrect status for
L1I cache access

Problem: The PAL_CACHE_READ and PAL_CACHE_WRITE procedures should return a status
value of ‘–7’ (which indicates this operation is not supported for this cache_type and
level) when attempting to read or write to/from the L1I (instruction) and L1D (data)
cache. When these procedures attempt to access the L1I cache an incorrect status
value will be returned.

Implication: Due to this erratum, using these PAL procedures to access the L1I cache will result in
the return of an incorrect status value, implying that the L1I cache is readable/
writeable by these PAL procedure calls.

Workaround: Do not use these PAL procedures to access the L1D and L1I caches.
Status: For the steppings affected, see the Summary Table of Changes.

16. Unpredictable behavior if the system is awakened from low power
mode by an MCA

Problem: If the system is in low power mode and an machine check abort (MCA), BERR# or
BINIT# is signaled, the PALE_CHECK handler will be called to process the error
condition. However, PALE_CHECK does not disable low power mode so that it can
continue execution. As soon as PALE_CHECK attempts to drain the processor queues,
the system may re-enter low power mode. This may cause incomplete handling of the
error event and potentially, intermittent continuation of the same event during later
signaled BINIT# events.

Implication: The processor can appear to be trapped in low power mode and/or system behavior
may be unpredictable.

Workaround: Do not use low power mode or call the following PAL procedures: PAL_HALT,
PAL_HALT_LIGHT or PAL_HALT_LIGHT_SPECIAL.

Status: For the steppings affected, see the Summary Table of Changes.

17. The system may lose an interrupt when SAL_CHECK reads the IVR
Problem: The PAL_REGISTER_INFO procedure returns an incorrect value to indicate that reading

the Interrupt Vector Register (IVR), CR65 (Configuration Register 65) has no side
effects. Based on this incorrect return value, when SAL_CHECK reads the IVR while
saving system state data to NVRAM, a pending interrupt may be allowed to proceed
before the current process has been completed.

Implication: The SAL_CHECK procedure relies on the return values of PAL_REGISTER_INFO to know
which ARs and CRs are safe to read and save off. Due to this erratum, the SAL_CHECK
reads the IVR, and consequently causes the corresponding bit in the IRR to be cleared
and the ISR to change. The results of the interrupt routine currently being executed
may be lost.

Errata (Processor and PAL)

46 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Workaround: After calling PAL_REGISTER_INFO with info_request = 3, System Abstraction Layer
(SAL) can force the correct return value for CR65 by setting bit 1 of reg_info_2 to a
value of one.

Status: For the steppings affected, see the Summary Table of Changes.

18. A bus MCA nested within a recoverable or firmware-corrected bus MCA
may not be handled correctly

Problem: During the processing of a non-fatal bus MCA, if a second bus MCA is received the
second MCA may be missed.

Implication: A bus MCA received in this scenario may be missed and result in unpredictable system
behavior. If the first MCA is fatal, system behavior remains correct.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

19. PAL reset sequence performed after a recovery check may result in
incorrect system behavior

Problem: The PAL early self-test sequence performed after a recovery check may not properly
serialize outstanding memory transactions.

Implication: As a result of this erratum, memory transactions that are outstanding at the point of
transition from the recovery check handler to PAL may cause a deadlock condition and
possibly hang the processor.

Workaround: SAL can call the PAL_MC_DRAIN procedure before returning to PAL from recovery
check to ensure that outstanding transactions have completed.

Status: For the steppings affected, see the Summary Table of Changes.

20. PAL_HALT_LIGHT_SPECIAL provides PAL_HALT functionality
Problem: The PAL_HALT_LIGHT_SPECIAL procedure does not issue the stop grant acknowledge

special bus cycle.
Implication: PAL_HALT_LIGHT_SPECIAL behavior will be the same as PAL_HALT.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

21. PAL_TEST_PROC may access memory with the UC attribute
Problem: The ‘mem_attr’ self-test in PAL_TEST_PROC may access memory with the UC attribute,

even though the ‘attributes’ parameter does not allow UC access.
Implication: PAL_TEST_PROC may access uncacheable memory that may not be supported in some

systems.
Workaround: Set bit 44 of the PAL_TEST_PROC procedure self-test control word (st_control) to ‘1’ to

skip the ‘mem_attr’ self-test.
Status: For the steppings affected, see the Summary Table of Changes.

22. L2 single bit data error promoted to MCA continues to flag a CMCI
Problem: With correctable machine check interrupt (CMCI) to MCA promotion enabled and an L2

single bit ECC data error occurs, an MCA is signaled but the CMCI continues to be
raised. After the MCA is completed and the system calls the PAL_MC_RESUME
procedure, a CMCI is raised if PSR.i = 1 (respond to external interrupts) and the
CMCV.m = 0 (CMCI interrupts are pended).

Implication: A CMCI continues to be signaled on L2 1x ECC data errors, even if CMCI to MCA
promotion is enabled.

Workaround: When enabling CMCI to MCA promotion, mask CMCIs by saving the state of CMCV.m
then set CMCV.m = ‘1’. Restore the original state of CMCV.m when disabling promotion.

Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 47
Specification Update April 2014

Errata (Processor and PAL)

23. PAL_TEST_PROC requires specific tests be performed for correct
operation

Problem: PAL_TEST_PROC self-test requires three specific tests be performed, otherwise the PAL
procedure may report false failures or unexpected behavior.

Implication: The PAL_TEST_PROC procedure must perform the virtual hash page table (VHPT) test
(bit 34), late floating-point test (bit 41) and RSE test (bit 45). Otherwise the system
may have unexpected behavior or false test failures may be indicated.

Workaround: Bits 34, 41 and 45 in the PAL_TEST_PROC self-test control word (st_control) should be
left at the default settings of ‘0’ so these tests are performed.

Status: For the steppings affected, see the Summary Table of Changes.

24. PAL_TEST_INFO may return incorrect data for invalid test parameters
Problem: The PAL_TEST_INFO procedure may return incorrect data or status if the input

arguments are not valid or are out of range for a given parameter.
Implication: Calling the PAL_TEST_PROC procedure with invalid inputs may result in incorrect data

and/or status instead of indicating invalid arguments.
Workaround: Ensure that PAL_TEST_INFO input parameters are valid and within the argument’s

range.
Status: For the steppings affected, see the Summary Table of Changes.

25. PAL_CACHE_INIT may not function properly if levels of the cache
hierarchy are specified

Problem: PAL_CACHE_INIT does not function properly when caches are selected individually.
Implication: A call to initialize the L1D cache may hang the processor and a call to initialize any

other cache structure may fail and return an error.
Workaround: Call the PAL_CACHE_INIT procedure with level = –1 to initialize all caches.
Status: For the steppings affected, see the Summary Table of Changes.

26. PAL_SET_TIMEOUT may have an unexpected result when time-out = 0
Problem: Setting the input parameter time-out = 0 will disable the processor watchdog timer

feature.
Implication: Calling PAL_SET_TIMEOUT with time-out = 0 disables the internal processor time-out

function.
Workaround: Do not set the time-out parameter to ‘0’.
Status: For the steppings affected, see the Summary Table of Changes.

27. Concurrent MCAs that signal a BERR may not set PSP.bc correctly
Problem: In the case of concurrent MCAs that should result in BERR assertion, the PALE_CHECK

handler may not set the PSP.bc (bus check error) bit before handing off to SAL.
Implication: As a result of this erratum, PAL_MC_ERROR_INFO will indicate that a bus error

occurred, but the PSP at hand-off to SAL_CHECK will not.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

28. PAL_PLATFORM_ADDR may return an error if bit 63 is set
Problem: PAL_PLATFORM_ADDR should ignore bit 63 of the address argument. If this PAL

procedure is called with bit 63 set to ‘1’ in the address argument, the procedure
incorrectly returns status = –2 (invalid argument).

Implication: Due to this erratum, calling PAL_PLATFORM_ADDR with bit 63 of the address set to ‘1’
will return a status of ‘invalid argument’.

Workaround: Bit 63 should be set to ‘0’ when calling the PAL_PLATFORM_ADDR procedure to avoid
this issue.

Status: For the steppings affected, see the Summary Table of Changes.

Errata (Processor and PAL)

48 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

29. PAL_TEST_PROC may overwrite predicate registers
Problem: PAL_TEST_PROC may overwrite predicate registers pr4 and pr5, which should be

preserved by the procedure.
Implication: PAL_TEST_PROC may modify pr4 or pr5, resulting in undefined behavior.
Workaround: Code calling this PAL procedure can save and restore these predicate registers around

the PAL_TEST_PROC procedure.
Status: For the steppings affected, see the Summary Table of Changes.

30. Recovery check fails if PAL_B is not found
Problem: SAL may not be able to complete a recovery check when no PAL_B is present. The I/O

port address, interrupt block and other features may not be available for SAL when
recovery check is entered from PAL_A_SPEC.

Implication: Recovery check may fail if PAL_B is not available or is invalid.
Workaround: Ensure that the firmware interface table (FIT) entry for PAL_B points to a valid and

correct version of PAL_B.
Status: For the steppings affected, see the Summary Table of Changes.

31. PAL procedure calls may have unexpected results if an incorrect
PAL_B version is used

Problem: PAL procedures that call PAL_B may not provide the expected results if the first PAL_B
entry in the FIT points to an incorrect version of PAL_B.

Implication: PAL procedures may fail if the PAL_B entry in the FIT is for an incorrect version.
Workaround: Ensure that the FIT entry for PAL_B points to the correct version.
Status: For the steppings affected, see the Summary Table of Changes.

32. Late self-test may have unexpected results during concurrent
processor tests

Problem: While running PAL_TEST_PROC concurrently on more than one processor and the
processors happen to access the same memory address space, a snoop may cause the
ALAT test to fail.

Implication: If a processor self-test procedure is using the same memory space for concurrent
processor testing, the ALAT test may fail and cause one processor to enter a spin loop.

Workaround: The ALAT test can be bypassed by setting bit 46 of the PAL_TEST_PROC self-test
control word to ‘1’.

Status: For the steppings affected, see the Summary Table of Changes.

33. PAL_TEST_PROC may cause unexpected system behavior
Problem: The PAL_TEST_PROC ‘late floating-point load/store test’ may overwrite the fr2-fr5 and

fr30-fr31 floating-point registers and the Bank 0 gr16–gr23 general registers may be
overwritten by the ALAT, VHPT, translation lookaside buffer (TLB) and memory
attributes tests.

Implication: PAL_TEST_PROC may corrupt the following registers: Bank 0 gr16–gr23 (general
registers) and the fr2– fr5, fr30–fr31 (floating-point registers).

Workaround: Use different registers or save/restore the contents before/after running
PAL_TEST_PROC.

Using the self-test control word of the PAL_TEST_PROC procedure, set the following
bits to ‘1’: To avoid corrupting the Bank 0 general registers do not run the ALAT (bit
46), VHPT (bit 35), TLB (bit 33) and mem_attr (bit 44) tests. To avoid corrupting the
floating-point registers do not run the late_fp_ld_st (bit 40) test.

Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 49
Specification Update April 2014

Errata (Processor and PAL)

34. PAL halt procedures may overwrite predicate registers
Problem: Predicate registers pr1, pr2 and pr3 may be overwritten by the PAL_HALT,

PAL_HALT_LIGHT and PAL_HALT_LIGHT_SPECIAL procedures.
Implication: As a result of this erratum, pr1, pr2 and p3 may be overwritten.
Workaround: Save and restore the predicate registers, as needed when calling these PAL procedures.
Status: For the steppings affected, see the Summary Table of Changes.

35. Two resets may be necessary to leave TAP test mode
Problem: After accessing the test access port (TAP), issuing a RESET# may result in the

processor entering an idle state instead of beginning normal operation. Signaling a
second RESET# may be necessary to properly reinitialize the system under these
conditions.

Implication: Due to this erratum, a second RESET# may be required to properly reinitialize the
processor after the TAP port has been accessed. Normal system operation and boot
process is not affected.

Workaround: Issue two resets to properly reinitialize the processor after accessing the TAP port.
Status: For the steppings affected, see the Summary Table of Changes.

36. IA-32 instruction pointers may be overwritten under certain boundary
conditions

Problem: Under certain internal conditions involving branch prediction and multiple branch
instructions, IA-32 instruction pointers may be overwritten and result in IA-32
instructions being executed out of order or incorrectly. An affected code sequence
would have consecutive branch instructions that have started execution before being
cancelled.

Implication: Due to this erratum, IA-32 instruction pointers may be overwritten resulting in
incorrect IA-32 instruction execution.

Workaround: A workaround for this erratum is included in PAL version 7.31
Status: For the steppings affected, see the Summary Table of Changes.

37. Initialization and ETM recovery may overwrite branch register
Problem: PAL INIT recovery code may overwrite br0, when it saves the system environment to

the min-state save area. This erratum also affects the recovery path of an enhanced
thermal management (ETM) alert that is generated while a system is in a low power
mode.

Implication: INIT and ETM recovery code may overwrite br0, which prevents recovery with
PAL_MC_RESUME and may result in unexpected system behavior.

Workaround: PAL version 7.31 fixes this issue.
Status: For the steppings affected, see the Summary Table of Changes.

38. PAL procedures may not save predicate register 3
Problem: The following PAL procedures may not properly save and restore predicate register pr3.

The affected PAL procedures are:

PAL_CACHE_INIT, PAL_CACHE_LINE_INIT, PAL_CACHE_READ,
PAL_CACHE_WRITE, PAL_CAR_INIT, PAL_COPY_INFO, PAL_COPY_PAL,
PAL_PROC_SET_FEATURES, PAL_TEST_PROC

Implication: Predicate register 3 may be overwritten by the PAL procedures listed above.
Workaround: Save and restore pr3, as needed, when calling the aforementioned PAL procedures.
Status: For the steppings affected, see the Summary Table of Changes.

Errata (Processor and PAL)

50 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

39. PAL_CACHE_INFO procedure may return undefined value
Problem: The PAL_CACHE_INFO procedure could return an invalid value in the config_info_1 ‘at’

(cache memory attributes) field. When requesting information for the L2 and L3 cache,
the ‘at’ field may contain the value of 2, which is undefined.

Implication: The PAL_CACHE_INFO procedure, cache memory attributes field may return an
undefined value.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

40. PAL_HALT_LIGHT procedure may generate a spurious Performance
Monitor Interrupt

Problem: The PAL_HALT_LIGHT procedure may not properly set the value of the PMV.m bit on
return from a low power state and as a result, a spurious PMI may be generated.

Implication: A spurious PMI may be indicated when using the PAL_HALT_LIGHT procedure.
Workaround: Set the PMV.m bit to ‘1’ (to mask PMIs) before calling PAL_HALT_LIGHT. Set the PMV.m

bit to ‘0’ on return from the PAL_HALT_LIGHT procedure.
Status: For the steppings affected, see the Summary Table of Changes.

41. Unexpected system behavior after PAL_CACHE_FLUSH is executed
Problem: The PSR.ic bit is not restored after the PAL_CACHE_FLUSH procedure is executed with

cache_type = 2. This may result in unexpected behavior when an interrupt is received
after calling PAL_CACHE_FLUSH.

Implication: The system may not respond to interrupts as expected after PAL_CACHE_FLUSH is
executed with cache_type = 2.

Workaround: Save and restore the PSR.ic bit as necessary, before and after calling the
PAL_CACHE_FLUSH procedure.

Status: For the steppings affected, see the Summary Table of Changes.

42. PAL_TEST_PROC may not properly report self-test status
Problem: In the case that some PAL_TEST_PROC self-test functions fail, the test_status field may

not indicate which self-test function has failed. Instead the failed test function may be
raised as an initialization failure and the procedure will enter an infinite loop.

Implication: The PAL_TEST_PROC procedure may enter an infinite loop as a result of some failed
self-tests, instead of operating in a functionally restricted manner.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

43. PSR.ri may not reflect the correct slot upon entrance to the
unimplemented address fault handler

Problem: In the case of an rfi instruction that targets an instruction in slot 1 or 2 and the
interrupt instruction pointer (IIP) points to an unimplemented physical address, the
PSR.ri may point to slot 0 instead of slot 1 or 2 as expected. The required conditions to
expose this erratum are: The processor is in physical address mode (PSR.it=0) and the
IIP points to a physical memory address that is unimplemented.

Implication: When the processor attempts to execute on the indicated instruction bundle an
unimplemented address fault will be taken and the restart instruction will indicate slot
0. Since no instruction in slot 0, 1, or 2 is executable under these conditions, there is
no useful information lost when the unimplemented address fault is taken.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 51
Specification Update April 2014

Errata (Processor and PAL)

44. WC and WB memory attribute aliasing combine with FC and may cause
processor live-lock

Problem: Under certain conditions involving write coalescing (WC) stores and the execution of a
flush cache (fc) instruction, the fc may not be able to proceed until the WC buffers
have been emptied, resulting in a live-lock condition.

The live-lock is armed when one or more WC stores (st [A]) occur and allocate space in
the processor’s WC buffer. A store or load (st/ld [B]) with a writeback (WB) memory
attribute is issued followed immediately by an fc (fc[C]) instruction. The fc is
targeted to a virtual address with the same physical address as address [A], but with a
WB memory attribute instead of WC. If address [B] shares the same physical address
bits 14:7 with the flush cache target address [C], then the processor may live-lock.

Implication: This memory attribute aliasing (MAA) scenario is likely to occur for a short time in OS
code page tear down or where a code page was previously accessed with the WC
attribute, but is now implicitly considered to have WB attributes because memory
translation has been disabled (PSR.dt=0).

Documented in the Intel® Itanium® Architecture Software Developer’s Manual, Volume
2, Section 4.4.11, as part of the process to properly transition to a new memory
attribute, an fc instruction should be issued to flush the WC buffers. However, the text
also states that a memory fence (mf) instruction should precede the fc instruction.
Properly following this transition procedure will be sufficient to avoid the live-lock
condition.

Workaround: Precede fc instructions with mf instructions where WC buffers may be non-empty.
Status: For the steppings affected, see the Summary Table of Changes.

45. Improper use of memory attribute aliasing may lead to out of order
instruction execution

Problem: An fc instruction is issued to a virtual memory address that has been aliased as
uncacheable (UC). This is immediately followed by a load/store to a WB memory
address that points to same physical memory address that is targeted by the fc. Due
to internal conditions, the load/store may be filled from the L2 cache rather then being
filled from memory after the fc has been completed.

Implication: Using MAA in this manner requires the proper transitioning sequence as noted in the
Intel® Itanium® Architecture Software Developer’s Manual, Volume 2, Section 4.4.11.
Under these conditions, the order of operations observed directly on the system bus
(by using a logic analyzer for example) may appear to be out of order, however there is
no functional impact because the result of instruction execution will always be correct
internally.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

46. FPSWA may not set the Denormal status flag correctly
Problem: In some cases when the Floating-Point Software Assistant (FPSWA) handles the

following floating-point operation using the specified floating-point class/subclass
types, the FPSWA may not return the correct Denormal/Unnormal (D) status flag
setting in the Floating-Point Status Register (FPSR.sf0:8).

The affected operation is: Infinity * unnormalized number - Infinity = QNaN Indefinite.
Implication: As a result of this erratum, the FPSWA may indicate a Denormal/Unnormal exception

fault where none has occurred.
Workaround: The FPSWA version 1.12 fixes this issue.
Status: For the steppings affected, see the Summary Table of Changes.

Errata (Processor and PAL)

52 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

47. Executing an rfi instruction that is located at the end of implemented
physical memory can result in an unexpected unimplemented address
fault

Problem: Due to this erratum, when the processor is in physical mode and an rfi instruction at
the end of physically implemented memory is executed, the processor will take an
unimplemented address fault regardless of the real target of the rfi (IIP).

Implication: On a platform that supports the full 50 bits of physical address, under the above
conditions an unexpected unimplemented address (UIA) fault could occur and the
result depends upon the implementation of the UIA fault handler. This issue has only
been observed in a pre-silicon simulation environment.

Workaround: Do not place an rfi instruction at the end of implemented physical memory.
Status: For the steppings affected, see the Summary Table of Changes.

48. IA-32: xchg instruction requires release semantics
Problem: The IA-32: xchg instruction can execute and write a value without it being explicitly

ordered with respect to other IA-32 stores. The IA-32 memory model is strongly
ordered and requires loads to have acquire (.acq) semantics and stores to have release
(.rel) semantics to be executed in proper order. As a result of this requirement the xchg
instruction requires the use of .acq and .rel semantics but only provides
.acq semantics.

Implication: Due to this erratum, store operations may not be committed to memory in order with
respect to IA-32 xchg operations.

Workaround: None at this time. PAL version 7.37 includes a fix for this issue.
Status: For the steppings affected, see the Summary Table of Changes.

49. PAL MCA handler may not correctly set PSP.co bit
Problem: The PAL MCA handler may not set the continuable bit (PSP.co) for potentially

recoverable errors.
Implication: If the PSP.co bit is not set on recoverable errors, the OS and/or application may

terminate when they could have potentially recovered from the error.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

50. PAL_MC_ERROR_INFO may return incorrect PSP information
Problem: When the PAL MCA handler has detected a fatal condition or has requested a

SAL_MC_RENDEZ procedure call, the PSP returned from the PAL_MC_ERROR_INFO
procedure may not contain all error information.

Implication: If SAL_CHECK is using the PSP returned from the PAL_MC_ERROR_INFO procedure
call, some error information maybe missing which could result in application
termination or a system hang.

Workaround: SAL_CHECK should use the PSP data at PALE_CHECK hand off rather than from
PAL_MC_ERROR_INFO.

Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 53
Specification Update April 2014

Errata (Processor and PAL)

51. FPSWA trap may be missed
Problem: For Itanium processor floating-point operations, when a tiny1 result is computed (this

usually corresponds to an underflow occurring), the processor should defer the
computation to the FPSWA handler. In most cases, FPSWA will convert the result to a
denormalized value that can be represented within the specified precision. However, for
an extremely limited set of conditions, the processor fails to recognize this underflow
and does not take the appropriate FPSWA trap.

Implication: Exposure to this issue occurs only under the following conditions:
1. Execution of one of the following instructions: fma, fms, fnma, fpma, fpms, fpnma.
2. The input operands for fma, fms, and fnma instructions (with or without.s or.d

completers) must be capable of containing any combination of 64 bits in their
significand, in register format. (If the significands of the operands are limited to
less than 64 bits, the operation is not affected.)

3. The computed result is precisely ± 1.0 x 2(Emin-1) 2. This is a necessary (but not
sufficient) condition as only an extremely small subset of the possible input
operand combinations that generate a result of ± 1.0 x 2(Emin-1) actually lead to a
missed FPSWA trap. There must be a massive and specific cancellation generating
the result prior to rounding to the destination precision.

For operations meeting these conditions, a small subset will not take the FPSWA trap.
In these cases, the result (± 1.0 x 2(Emin-1)) will not be representable within the
floating-point format specified. For example, assuming single precision mode, the
result would be ± 1.0 x 2 –127. Normally, the FPSWA handler converts this result to a
denormalized value in the form of
± 0.1 x 2 –126 to fit within the single precision exponent format. Without this
conversion the following impacts may be observed:

• For fma, fms, and fnma operations (with or without.s or.d completers) with
FPSR.wre=0 3, the result in the register file is numerically correct and may be used
for subsequent floating-point operations without issue. However, storing this value
to memory (using stfs, stfd or stfe as appropriate) will result in a correctly signed
zero instead of ± 0.1 x 2Emin. This is equivalent to what occurs for the “Flush-To-
Zero” (FTZ)4 mode of operation.
It is possible to preserve the correct numerical result (that is, 1.0 x 2 –127 for the
single precision example above) by using the stf.spill instruction for stores and
the ldf.fill instruction for any subsequent loads.

• For register precision fma, fms, and fnma operations (with or without.s or.d
completers) with FPSR.wre=1, the result should be ± 1.0 x 2 –65535. However, the
result in the register file will be ± 1.0 x 2 –16382 in the form of a double-extended
precision value.

• For parallel floating-point instructions (fpma, fpms, and fpnma), the result is stored
in the register file as a correctly signed zero instead of ± 1.0 x 2(Emin-1). Parallel
floating-point instructions are not used in any known compiled code.

1. A result is defined as tiny if it lies between -2Emin and +2Emin after rounding to the destination
precision with unbounded exponent range. Reference the Intel® Itanium® Architecture Software
Developer’s Manual or IEEE Standard 754-1985 for Binary Floating-Point Arithmetic for any
additional clarifications.

2. For single precision, Emin = –126; for double precision, Emin = –1022; for double-extended
precision, Emin = –16382; for register format, Emin = –65534.

3. Reference the Intel® Itanium® Architecture Software Developer’s Manual for Floating-point Status
Register (FPSR) bit definitions.

4. FTZ mode causes tiny results to be truncated to the correctly signed zero.

Errata (Processor and PAL)

54 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Workaround: For the vast majority of floating-point usage models, no workaround is recommended.
The issue is limited to an extremely small subset of possible floating-point operations
with a typical impact of replacing a tiny value (± 1.0 x 2(Emin-1)) with a correctly signed
zero. Any error due to this issue is typically less, in absolute value, than the majority of
rounding errors that normally occur for floating-point operations. For applications
requiring a workaround, the following actions are required:
1. For fma, fms, and fnma operations (with or without.s or.d completers) with

FPSR.wre=0, avoid input operands with 64-bit significands or use the stf.spill
instruction for stores and the ldf.fill instruction for any subsequent loads.

2. Do not use register precision (FPSR.wre=1) for fma, fms, and fnma operations.
3. Do not use parallel floating-point operations (fpma, fpms, and fpnma).

Status: For the steppings affected, see the Summary Table of Changes.

52. WC evictions and semaphore operations combine to establish a
potential live-lock condition

Problem: In the case that multiple processors are sharing memory space; when stores to WC
memory are closely followed by semaphore operations to cacheable memory, the
semaphore operations may block forward progress of the WC evictions. The semaphore
will not be able to proceed until the WC stores are completed. As a result a live-lock
condition is established between the WC evictions and the semaphore.

Implication: If the live-lock conditions are maintained, the system will eventually signal a BINIT.
Other system activity or external interrupts may change availability of the system bus
allowing the live-lock condition to be broken and the system will proceed as normal.

Workaround: None at this time. PAL version 7.37 includes a fix for this issue.
Status: For the steppings affected, see the Summary Table of Changes.

53. The IA-32 cmpxchg8b instruction may not correctly set ZF flag
Problem: The IA-32 cmpxchg8b instruction should set the Zero Flag (ZF) flag to 1 and update

memory when the compare operation is successful. However, if due to memory
contention, the upper four bytes (bits 63:32) of the targeted memory are changed
during execution of the instruction and the lower four bytes remain unchanged, the ZF
flag may be incorrectly set to 1, even though the upper four bytes of the compare are
not equal.

Implication: If this erratum occurs, two processors in a multiprocessor environment can end up
owning the same memory locations when there should be autonomous ownership.

The failing scenario can only occur in a multiprocessor system where there is heavy
contention for the targeted memory location. It also requires that another processor
manages to update only the upper four bytes of the targeted memory location during a
very small timing window just prior to execution of the compare.

This erratum only affects the cmpxchg8b form of the IA-32 cmpxchg instruction and has
only been observed in a synthetic test environment.

Workaround: PAL version 7.40 includes a fix for this erratum.
Status: For the steppings affected, see the Summary Table of Changes.

54. PAL_TEST_PROC status return value
Problem: The PAL_TEST_PROC procedure returns status = –3 when the call has completed

successfully and some self-test errors have occurred. Normally –3 would indicate that
the PAL procedure itself has failed.

Implication: SAL firmware that assumes self-test errors will be reported with status = 0 may not
function correctly.

Workaround: When PAL_TEST_PROC returns status = –3, SAL should check the self-test_state to
obtain more information about the self-test error and report the error.

Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 55
Specification Update April 2014

Errata (Processor and PAL)

55. Fault condition may generate incorrect address when using short
format VHPT

Problem: A Debug Breakpoint or Protection Key fault may, under certain internal conditions,
cause the physical address returned for a short format VHPT to not match the virtual
address indicated by the VHPT entry.

The conditions under which this can occur are:
• The VHPT is enabled using the short format in a virtual addressing mode,

• Privilege level 0 access is available,

• Debug Breakpoint faulting is enabled (psr.db=1) and/or Protection Key Checking is
enabled (psr.pk=1) and

• Certain cases of multiple TLB misses that result in multiple VHPT walks, where one
of the VHPT walks is cancelled (because the faulting condition is removed) and then
retried.

It is possible under these specific conditions that the short format data associated with
the retried VHPT walk may be associated with another.

Implication: If this erratum were to occur, a Protection Key fault or an Instruction or Data Debug
fault may cause a VHPT entry to be incorrect. This may result in an incorrect code
sequence being executed and would leave the system in an indeterminate state.

With regard to Debug Breakpoint faulting, exposure is limited to development code
environments only. In the case of Protection Key checking, there is no known exposure
for all current operating systems as the conditions for this erratum are not met.

Workaround: This erratum affects only the short format VHPT, using the long format of the VHPT will
avoid either of these faulting conditions. Additionally, in the case of Debug Breakpoint
Faulting, prevent the DBR from ever matching any portion of the VHPT by checking the
VHPT before allowing the DBR to be set.

Status: For the steppings affected, see the Summary Table of Changes.

56. FPSWA version 1.12 may overwrite register fr12
Problem: The FPSWA version 1.12 may overwrite register fr12 when handling FPSWA faults

caused by the fma, fms and fnma instructions consuming denormalized or unnormalized
values. FPSWA should only use registers fr6-fr11.

Implication: Operating systems are required to save and restore fr6-fr11 when handling FPSWA
faults. Any operating system that also saves and restores additional registers including
fr12 is not susceptible to this issue. Depending on how an application uses fr12 and
how the operating system preserves it, this erratum could lead to a number of different
failure scenarios including incorrect data. The only known current exposure is with the
Linux OS. This erratum is limited to FPSWA version 1.12.

Workaround: Upgrade to FPSWA version 1.18 or later which corrects the issue.
Status: For the steppings affected, see the Summary Table of Changes.

57. Cache snoops disabled on BINIT#
Problem: After a BINIT# is signaled the processor will disable snoops to contain the propagation

of any errors. The resulting MCA condition will cause the processor to enter the PAL
MCA handler, which will invalidate the processor caches before the hand-off to SAL. The
PAL MCA handler does not re-enable cache snoops before the hand-off to SAL.

Implication: This erratum only occurs after a BINIT event, thus any potential impact is limited to
error handling after this fatal event. As a result of this issue cache coherency will not be
maintained after a BINIT error. SAL code that runs uncacheable is unaffected. Cache
coherency is restored after the processor is reset as part of the normal BINIT event
handling.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

Errata (Processor and PAL)

56 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

58. RFI to UIA using single step mode may enter ss trap
Problem: In single step mode, a single step trap may be incorrectly taken on an rfi instruction

when the rfi attempts to address unimplemented memory.
Implication: The single step trap should not be taken on an rfi instruction. The result of this

erratum would be an indication that the single step/rfi instruction was completed
successfully before entering the unimplemented memory address (UIA) trap.

Workaround: Avoid taking an rfi to an UIA.
Status: For the steppings affected, see the Summary Table of Changes.

59. On-Die Termination value does not meet specification
Problem: The value of the On-Die Termination (ODT) does not meet the specified range of 45

Ohms ±15% when measured at Vol. The actual value is 37 Ohms ±5% when measured
at Vol. At output voltages above 0.6V, the ODT values are within the correct range.

Implication: The stronger value of ODT could result in a higher output low voltage (Vol) and reduced
noise margins. Measurements on an Intel platform have not shown any noticeable
increase in Vol and noise margins are within specified ranges.

Workaround: This erratum does not affect any system using on-board termination. No workaround is
recommended for platforms using ODT in a 3-load configuration. ODT termination is
not recommended for 5-load bus configurations, those should use on-board
termination.

Status: For the steppings affected, see the Summary Table of Changes.

60. Specific instruction combination may disrupt subsequent operation
Problem: A specific combination of memory and integer instructions may cause the result of a

prior integer operation to be incorrect. The combination of instructions necessary for
the failure is:
1. Four or more arithmetic and at least one additional operation executing

concurrently, immediately followed by a subsequent integer operation that
consumes data from the previous operation.

2. Particular data patterns are also required.
3. This erratum is more likely at higher temperatures and higher processor core

speeds.
Implication: As a result of this erratum, an integer operation may consume incorrect data leading to

unpredictable system behavior. In some instances, a fatal DTLB MCA or memory page
fault may occur.

Workaround: Intel recommends implementing one of the following workarounds:
• Reduce the processor operating frequency to 800 MHz by adjusting the system bus

ratio to 2:8. Consult the Intel® Itanium® Processor Hardware Developer’s Manual
for complete information on setting the system bus ratio.

• Avoid use of the susceptible code sequence and/or add stops between affected
instruction groups.

61. IFS register may be invalidated during MCA or INIT
Problem: If an interrupt service routine (ISR) is reading the interruption function state (IFS)

control register when the processor detects an MCA or receives an INIT event, under
certain internal timing conditions the destination register of the IFS read may indicate
that the IFS is invalid.

To be exposed to this issue the processor must be in the proper context to read the IFS
control register. This requires executing at privilege level 0, having interruption
collection disabled (psr.ic=0), and the IFS register must be valid (ifs.v=1). Executing a
cover instruction sets ifs.v=1. In addition MCAs and INITs must not be masked
(psr.mc=0).

Intel® Itanium® Processor Specification Update 57
Specification Update April 2014

Errata (Processor and PAL)

Implication: When the ISR issues a rfi instruction, the return value of current frame marker (CFM)
may not be properly restored. The contents of the backing store application registers
may not be correct in this situation. Indeterminate system operation can result if this
erratum occurs.

Workaround: PAL version 7.59 for the Itanium processor (up to 3 MB L3 cache) and PAL version 5.37
for the Itanium processor (up to 6 MB L3 cache) contain a workaround that corrects the
possible problem when reading the IFS control register. This workaround requires the
OS to abide by some specific restrictions. All known current OS releases adhere to
these restrictions. These restrictions are:
1. There are no branches within a small window of code after the IFS read. The length

of this window is the shorter of either three bundles or two instruction groups.
2. A cover instruction must not be followed by a branch to a bundle within the window

after the IFS read. The window is as defined in item #1.
3. All ISR code from the cover instruction to the earlier of either changing psr.ic to 1

or the rfi at the end of the ISR, must exist within the same contiguous region of
physical memory.

4. A bsw.1 instruction must not be used within the ISR after a cover instruction and
prior to the IFS read. This applies only if the destination register of the mov from
IFS is r29, r30, or r31. PAL version 7.71 for the Itanium processor (up to 3 MB L3
cache) and PAL version 5.61 for the Itanium processor (up to 6 MB L3 cache)
removes the requirement for this restriction.

5. After an MCA or INIT event, if this workaround is unable to properly recover the IFS
control register state, a fatal MCA will be signaled to prevent unpredictable machine
behavior.

6. An additional restriction is that the Dynamic Instruction Cache Prefetch remain
enabled (PAL_PROC_GET_FEATURES [46]=0) otherwise part of the workaround will
be ineffective. This prefetch feature is enabled by default. This restriction has been
removed in PAL version 7.77 and above for the Itanium processor (up to 3 MB L3
cache) and PAL version 5.69 and above for the Itanium processor (up to 6 MB L3
cache).

Status: For the steppings affected, see the Summary Table of Changes.

62. Unimplemented memory access may occur while handling an INIT or
MCA event

Problem: This erratum involves possible incorrect behavior if an ISR or fault handler exists in
physical memory near address zero. If such an ISR or fault handler is executing and a
cover instruction has been executed (IPSR.ic=0, IFS.v=1) and then an INIT or MCA
event occurs while the handler is within the address range of 0 to 0x20, the processor
can incorrectly access unimplemented memory. This results in a second MCA generated
by the incorrect PAL behavior and this MCA occurs while interruption collection
(IPSR.ic=0) is disabled.

Implication: It is highly unusual that any part of an ISR or fault handler including the cover
instruction would be located in the first few locations of physical memory. Current
known OS releases are not affected. If this erratum were to occur, receiving nested
MCAs is not a condition the OS expects to encounter. A system crash or fatal error
event may occur.

Workaround: Do not locate ISR or fault handling code with a cover instruction within the physical
address range of 0 to 0x20.

Status: For the steppings affected, see the Summary Table of Changes.

63. JTAG Sample/Preload or EXTEST instruction usage
Problem: When using the JTAG Sample/Preload or EXTEST boundary scan instruction, all internal

signals in the BSDL file must have their safe values loaded into the boundary scan
serial data register when the JTAG state machine enters the update DR state. Failure to
do so will result in putting the component into a non-operational test mode.

Implication: Failure to load the data register with safe values for all internal signals contained in the
BSDL file may result in putting the part into a non-operational test mode.

Errata (Processor and PAL)

58 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Workaround: When loading the JTAG data register during the Sample/Preload instruction, or EXTEST
instruction, load safe values contained for all internal signals contained in the BSDL
files.

Status: For the steppings affected, see the Summary Table of Changes.

64. CPU_CYCLES count includes data from halt states
Problem: The event monitor count for CPU_CYCLES accumulates the count of elapsed processor

clock cycles even in a light halt state. The CPU_CYCLES counter is not expected to
accumulate the count when the processor is in a light halt or powered down state.

Implication: The CPU_CYCLES performance monitoring event may report an incorrect count if the
processor goes into a light halt state.

Workaround: PAL version 5.37 and above, for the Itanium processor (up to 6 MB L3 cache) contain a
fix for this erratum.

Status: For the steppings affected, see the Summary Table of Changes.

65. System bus signals can be driven while RESET# is asserted
Problem: Upon the first assertion of RESET# after PWRGOOD is asserted, the processor may

drive some of the system bus signals. The processor should tristate all system bus
signals within two bus clocks of the assertion of RESET#. Due to this erratum, the
processor may not tristate all system bus signals within this two clock limit.

Implication: The system bus state during this initial time window with RESET# asserted cannot be
determined. Since no processor execution takes place with RESET# asserted, this does
not affect processor operation after the RESET# sequence has been completed.

Workaround: The state of the system bus signals during the initial RESET# sequence should be
ignored.

Status: For the steppings effected, see the Summary Table of Changes.

66. PSP.cr is always set to zero (0) at PALE_INIT hand off to SALE_ENTRY
Problem: When PALE_INIT completes the PAL handling of an initialization (INIT) event, status

information is indicated in the Processor State Parameter (PSP) register at the hand off
to SALE_ENTRY. After any INIT event, the state of PSP.cr (bit 20) will incorrectly be set
to zero (0) which indicates that the control registers are not valid. This erratum only
pertains to the state of the PSP.cr bit, the actual contents of all control registers after
the INIT is correct and the control register information recorded by PALE_INIT in the
min-state save area is also correct.

Implication: Based on the incorrect state of the PSP.cr bit, the control register information recorded
in the min-state save area could be assumed to be invalid. In fact, the information is an
accurate recording of the control register states at the time of the INIT event.
Furthermore, the control registers are valid at the PALE_INIT to SALE_ENTRY hand off.

Workaround: The value of PSP.cr can be assumed to be one (1) (valid) after any INIT event.
Status: For the steppings effected, see the Summary Table of Changes.

67. Incorrect Thermal Calibration Offset Byte value in the PIROM
Problem: The Thermal Calibration Offset Byte value in the PIROM was incorrectly programmed to

eight (8). The correct value for the Thermal Calibration Offset Byte should be zero (0).
Implication: Systems using the Thermal Calibration Offset Byte value programmed in the PIROM

may report inaccurate information for the following:
1. Temperature readings from the SMBus.
2. Upper and lower thresholds for THRMALERT#.

Workaround: Systems should use a value of 0 for the Thermal Calibration Offset Byte.
Status: For the steppings effected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 59
Specification Update April 2014

Errata (Processor and PAL)

68. Performance Monitoring Event counters may be incorrect after leaving
a low-power state

Problem: On entry into the PAL_HALT_LIGHT procedure the performance monitoring counters
that are expected to continue monitoring events in a low-power state will be frozen
until the processor returns to full power.

Implication: As a result of this erratum, the Performance Monitoring Event counters noted in Section
10.3.11 of the Intel® Itanium® Processor Reference Manual for Software Development
and Optimization may be incorrect after leaving a low-power state.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

69. Instruction Breakpoint Register update may generate a false
instruction debug fault

Problem: An incorrect instruction debug fault may be indicated on a write to the enable and mask
bits in the Instruction Breakpoint Registers (IBR).

Implication: Code execution may fault on the false instruction debug fault generated by either the
write into the IBR or on other instructions depending upon how the debug mask bits
have been set. The IBR is only accessible in privilege level 0. OS software debug tools
may or may not use this debug breakpoint feature.

Workaround: Disable Debug Breakpoint Faulting (Psr.db=0) before writing the enable and mask bits
in the IBR and then re-enable Debug Breakpoint Faulting.

Status: For the steppings effected, see the Summary Table of Changes.

70. Application fault may be missed on a br.ia instruction
Problem: An Illegal Operation Fault may not be indicated when executing the br.ia instruction

and the BSPSTORE register is not equal to the BSP register.
Implication: An Illegal Operation Fault should be indicated if an unconditional branch (br.ia) into

IA-32 application space is made without first issuing a Flush Register Stack (flushrs)
instruction to ensure that BSP and BSPSTORE are equal and the register stack
partitions are saved. As a result of this erratum it is possible that the IA-32 application
code will begin execution before indicating a fault.

Workaround: Ensuring that a flushrs instruction is issued before executing the br.ia instruction, as
required by the Intel® Itanium® Architecture Software Developer’s Manual, will
eliminate the exposure to this erratum.

Status: For the steppings effected, see the Summary Table of Changes.

71. Machine check may not bring the system out of a low-power state
Problem: In the case that the processor has entered a low-power state and MCA checking is

masked (PSR.mc=1) a machine check event may not bring the processor out of the
low-power state.

Implication: The Intel® Itanium® Architecture Software Developer’s Manual, Volume 2 (Document
No. 245318) documents that the processor should return to the Normal state upon
receipt of an unmasked external interrupt, machine check, Reset, PMI or INIT. As a
result of this erratum a machine check event received in a low-power state while
machine check aborts are being masked, will not be serviced until the system is
returned to a normal operating state by any other wakeup event.

Workaround: Enable machine check abort checking (PSR.mc=0) before entering a low-power state.
Status: For the steppings effected, see the Summary Table of Changes.

72. Machine check event received during PAL execution may have
unexpected results

Problem: Depending on internal conditions, a machine check event (MCA) received during the
execution of certain PAL procedures may have unexpected results.

Implication: During the execution of the following PAL procedures; PAL_CACHE_FLUSH,
PAL_CACHE_INIT, PAL_CACHE_LINE_INIT, PAL_CACHE_READ, PAL_CACHE_WRITE,
PAL_CAR_INIT, PAL_TEST_PROC and PAL_VM_TR_READ, if an MCA event is received

Errata (Processor and PAL)

60 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

the PAL procedure may fail. Depending on when the MCA is received and the execution
environment, the results may range from a PAL or system error to a processor hang. In
most cases the procedure will execute correctly.

Workaround: Ensure that machine check abort checking is disabled (PSR.mc=1) before calling the
PAL procedures noted above.

Status: For the steppings effected, see the Summary Table of Changes.

73. Rendezvous may result in spin loop due to incorrect rendezvous
address passed to SAL

Problem: When the PAL determines that an error has occurred which could cause a
multiprocessor system to lose error containment, it must rendezvous the other
processors in the system before proceeding with further processing of the machine
check. This is accomplished by branching to SAL with a non-zero return vector address.
It is then the responsibility of the SAL to rendezvous the other processors and return to
PAL through this return address. It is possible for PAL to pass an incorrect return
address to SAL during the hand off for processor Rendezvous.

Implication: The normal mode of operation during a rendezvous event is a blue screen, while the
processors enter a spin loop. As a result of this erratum, the hand off to SAL may be
fatal.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

74. Possible degradation in system performance when calling
PAL_CACHE_FLUSH with int = 1 for certain cache memory types

Problem: When the PAL_CACHE_FLUSH procedure is called with int = 1, external interrupts will
be polled periodically while the specified cache type(s) are being flushed. If an external
interrupt is seen, this procedure will return and allow the caller to service the interrupt
before all cache lines in the specified cache type are flushed. The problem is that when
PAL_CACHE_FLUSH is called again to resume the flush operation from where it was
interrupted, PAL attempts to start the flush operation over again rather than continuing
from the point of interruption. This erratum affects cache_types 1, 2, and 3 as
described in the The Intel® Itanium® Architecture Software Developer’s Manual,
Volume 2 (Document No. 245318).

Implication: If additional interrupts continue to occur before the completion of the
PAL_CACHE_FLUSH, the procedure may never complete. This may result in degraded
system performance due to one processor not being available or appearing to be
stalled. This issue has only been observed in a validation test environment.

Workaround: Do not call the PAL_CACHE_FLUSH procedure with int = 1 and cache_type = 1, 2 or 3.
Status: For the steppings effected, see the Summary Table of Changes.

75. Memory read current transaction may fail to observe a st, ld.bias or
lfetch.excl

Problem: A memory read current transaction allows a chipset to access a coherent copy of a
cache line in a caching agent without affecting the cache line state in the caching
agent. This transaction avoids later cache misses and subsequent transactions by the
cache agent to again cache the line.

The erratum requires the following code sequence:
1. Given two addresses X and Y, which would map to two different L2 cache lines:

a. A memory read current (same cache line as X) must occur coincident to the
sequence: load(X)... load (same cache line as X)... store (same cache line as X);
or

b. A memory read current (same cache line as X) must occur coincident to the
sequence: load(X)... semaphore (Y)... store (same cache line as X);
or

c. Either of the above where store(X) is replaced with an ld.bias(X) or an
lfetch.excl(X).

Intel® Itanium® Processor Specification Update 61
Specification Update April 2014

Errata (Processor and PAL)

2. First load(X) need not be cached but has to fill the L2 to an E-state.

If systems utilize the memory read current transaction and execute the above code
sequence, and specific internal micro-architectural timings are met, the cache line may
be updated to an incorrect state by the processor.

Implication: Usage models are not known to exist where the st, ld.bias or lfetch.excl to a cache
line (X) at or near the time of a memory read current transaction targeting cache line
(X). If the conditions as described are met, a future external access to the memory
contained in cache line (X) will not receive the expected hitm snoop response from the
processor. Internal accesses will miss and be issued to the system interface.

Workaround: Memory read current transactions should not be used in situations where the above
conditions are met.

Status: For the steppings effected, see the Summary Table of Changes.

76. BINIT taken on 2x ECC and hard-fail errors with BINIT event signaling
disabled

Problem: A Bus Initialization (BINIT) event may still be signaled after a multiple-bit ECC or hard-
fail error, even if BINIT event signaling/checking is disabled.

Implication: Multiple bit ECC errors, PTC and IPI operations that experience transactions errors may
normally signal a Machine check that result in a BINIT response. However, when the
BINIT response is disabled a BINIT is not expected. As a result of this erratum a BINIT
will still be signaled for these types of errors even with the BINIT response disabled.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

77. Recoverable L3 cache tag ECC error may raise overflow error when
CMCI are promoted to MCA

Problem: In the case that CMCIs are promoted to MCA, certain internal conditions combine with
an L3 cache tag ECC error to indicate an overflow error and signal a fatal MCA.

Implication: An L3 cache tag ECC error is normally a recoverable CMCI but when CMCIs are being
promoted to MCA, the error is promoted as a fatal MCA event instead of being firmware
corrected. The fatal MCA is indicated if the cache line tags are snooped after the ECC
error is flagged but before the MCA is taken.

Workaround: A workaround is under investigation.
Status: For the steppings effected, see the Summary Table of Changes.

78. L2 cache line with poison data results in unexpected fatal MCA
Problem: An L2 cache line with latent 2x ECC or poisoned data that is snooped before being

consumed may incorrectly signal a fatal MCA.
Implication: An L2 cache line with a 2x ECC or an error that results in a cache line being poisoned

should indicate a CMCI unless the data is consumed by a processor. A subsequent
snoo.p hit to the poisoned cache line may cause the errant line to be flagged as an
error twice, which would result in a machine check overflow and a fatal MCA being
taken rather than a CMCI. This erratum does not apply to consumed poisoned data

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

79. XPN time-out with BINIT response disabled may cause system hang
Problem: In the case where the BINIT response to a processor internal time-out response is

disabled, a second XPN time-out error may result in a system hang.
Implication: If an XPN time-out occurs such that a BINIT should be taken but is not due to the fact

that the BINIT on an internal time-out response has been suppressed. A second XPN
time-out error may result in the system hanging because the time-out counter was not
reset after the first internal time-out.

Workaround: Do not suppress the BINIT response to a processor internal time-out.
Status: For the steppings effected, see the Summary Table of Changes.

Errata (Processor and PAL)

62 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

80. BINIT may be taken after a UC single byte access to ignored/reserved
area of the Processor Interrupt Block

Problem: A Bus INITialization (BINIT#) event may be signaled after an uncacheable (UC) single
byte access to any ignored/reserved area in the upper half of the Processor Interrupt
Block.

Implication: Unsupported accesses result in undefined behavior of the processor, hence the BINIT#
response is taken to re-establish a consistent execution environment. In other cases
the unsupported access can be ignored. Single byte UC access to the ignored or
reserved areas of the IPI block should be ignored but as a result of this erratum a
BINIT# is signaled.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

81. Recoverable CMCI may combine with an L3 MCA error to cause fatal
overflow error

Problem: In the case where a recoverable L3 cache or system bus error flags a Correctable
Machine Check Interrupt (CMCI) and is followed by specific MCA events, the overflow
bit may be set and result in a fatal error. The specific MCA events are a L3 cache,
system hard-fail, local BINIT# or a non-coherent UC/WC memory access that receives
a HITM response.

Implication: As a result of this erratum a CMCI or MCA event that is normally recoverable, if
supported by the OS, may set the overflow bit and signal a global BINIT#.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

82. BERR may be indicated when the PAL MCA routine invalidates L2
cache lines

Problem: A Bus ERRor (BERR#) may be signaled when a read hit occurs to the same L2 cache
line that a PAL MCA routine is in process of invalidating.

Implication: As a result of this erratum a BERR# may be signaled after a hard-fail error, if a read
hits a cache line while the line is being invalidated via the MESI protocol tags but before
the cache line ECC has been updated.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

83. Pending RSE interrupt during the PAL PMI handler PAL PMI flow may
result in a system hang

Problem: A system hang may be the result of a case that we have a pending RSE
interruption that occurs during the execution of the PAL PMI handler.flow.

Implication: Depending on the execution of the PAL PMI flow and a pending RSE interruption, the
result may be unsuccessful handling of the PAL PMI handler which would lead to a
system hang.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

84. An INIT signaled during the PAL PMI flow while a PAL PMI flow RFI is
being serviced may result in a system hang

Problem: If an MCA/INIT is signaled during the execution of the PAL PMI handler when an rfi is
in the instruction pipeline but not yet executed, there exists a window of exposure in which
a system may hang as the rfi is aborted before returning from the MCA/INIT
procedure.

Implication: There is a small window of exposure where If the rfi can be in the instruction pipeline
and an MCA/INIT is taken, where it aborts the rfi before the rfi has been executed. If
these above mentioned conditions are met the result may be a system may hang.

Workaround: None at this time.

Intel® Itanium® Processor Specification Update 63
Specification Update April 2014

Errata (Processor and PAL)

Status: For the steppings effected, see the Summary Table of Changes.

85. PMI serviced during the execution of PAL_MCMA_ERROR_INFO
procedure may result in unpredictable processor behavior

Problem: If a PMI is taken during the execution of the PAL_MC_ERROR_INFO procedure, the
branch return information stored by the PAL call may be lost. As a result, the behavior
of the processor is not guaranteed upon its return from the PMI handler.

Implication: PAL_MCMA_ERROR_INFO may not complete successfully and the processor behavior is
unpredictable.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

86. Data-poisoning bits not included in PAL_MC_ERROR_INFO
cache_check and bus_check structures

Problem: In the Intel® Itanium® Architecture Software Developer’s Manual Specification Update
machine check architecture extensions were added for supporting data-poisoning
events. These extensions will help in supporting different data-poisoning handling
policies. Current Itanium processors do not implement the dp bit in the cache_check
and bus_check structures in PAL_MC_ERROR_INFO.

Implication: When parsing error logs, the OS cannot distinguish between some hardware generated
corrected events versus data-poisoning events.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

87. PAL_PREFETCH_VISIBILITY call not implemented
Problem: Calling PAL_PREFETCH_VISIBILITY with trans_type argument of 1 returns Invalid

Argument.
Implication: PAL_PREFETCH_VISIBILITY does not support physical addressing attribute transitions.
Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

88. INIT# signal not recognized properly
Problem: The INIT# signal triggers an unmasked interrupt to the processor. When operating at

odd bus-to-core frequency ratios, the assertion of the INIT# pin may not always be
recognized by the processor, preventing the processor from taking the interrupt.

Implication: Due to internal timing and electrical conditions, it is possible that the processor may
not recognize the INIT# signal when odd bus ratios (that is, 2:9, 2:11, and so forth)
are being used. This erratum is intermittent in nature and could result in the system
missing an INIT# assertion.

Note: This erratum does not impact the use of the INIT# pin for power-on configuration
during reset, nor does it affect other system interrupts.

Workaround: One of the following two workarounds can be implemented:
• Either a system bus-based interrupt transaction or the Platform Management

Interrupt (PMI)# input can be used to implement the same functionality. In this
case the PAL_PMI code flow will handoff control to SAL_PMI. The SAL_PMI code can
check the status of the INIT# signal and if INIT# has been asserted, the SAL code
flow can call SAL_INIT.

• Early in the SAL_INIT code, send an INIT IPI to all other processors in the domain.
The following issues should be considered to build a more intelligent SAL_INIT
implementation:

— Do not call PAL_MC_RESUME during INIT IPI handling.

Errata (Processor and PAL)

64 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

— If there is any “timeout” mechanism in the INIT handling flow, that value may
need to be increased to reflect the fact that some processors will see INIT#/IPI
earlier than others.

— INIT IPIs could be sent only to other processors that have not yet seen the
INIT#, this would be necessary in the case where the SAL/OS INIT code
unmasks MCAs (PSR.mc=0). However, it is typical that MCAs are masked
(PSR.mc=1) on the first INIT, so multiple INITs received by a given processor
should not cause a problem for INIT handling flow as further INITs should be
pended but not recognized.

— Consider the processor and ratios in effect in order to determine the necessity
of this workaround.

Status: For the steppings affected, see the Summary Table of Changes.

89. Cache lines with ECC errors may not be invalidated
Problem: In some instances, cache lines with single-bit errors may not be invalidated as

expected.
Implication: Multiple CMCIs may be seen for the same single-bit error as it will remain in the L2 or

L3 cache until flushed by regular system execution. The single-bit errors are
automatically corrected when data is requested.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

90. Interrupts are enabled when exiting from a halt state
Problem: When exiting from PAL_HALT, PAL_HALT_LIGHT, or PAL_HALT_LIGHT_SPECIAL, PSR.ic

is incorrectly set.
Implication: Interrupts are enabled after the processor wakes from the halt state.
Workaround: Disable interrupt collection within the SAL code flow.
Status: For the steppings affected, see the Summary Table of Changes.

91. PAL_PREFETCH_VISIBILITY call may result in a system hang
Problem: Calling PAL_PREFETCH_VISIBILITY with trans_type = 1 could result in PAL entering a

spin loop.
Implication: PAL_PREFETCH_VISIBILITY does not support physical addressing attribute transitions.
Workaround: Do not call PAL_PREFETCH_VISIBILITY with trans_type = 1.
Status: For the steppings affected, see the Summary Table of Changes.

92. Corrected ECC error may not generate CMCI
Problem: A hardware corrected error may not generate a CMCI when an IPI or PTC transaction is

in progress.
Implication: In the case of a 1xECC error on an IPI or PTC transaction, a hardware corrected CMCI

may not be signaled to the operating system even if CMCI signaling for hardware
corrected errors is enabled. It is important to note that the 1xECC error is detected and
corrected by the processor and has no impact to the executing processes.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

93. PAL_CACHE_FLUSH procedure may not flush and invalidate all L2
cache lines

Problem: In the case that a PAL_CACHE_FLUSH procedure is called to flush and invalidate the L2
cache lines, cache lines that are in the exclusive or shared state may not be
invalidated.

Intel® Itanium® Processor Specification Update 65
Specification Update April 2014

Errata (Processor and PAL)

Implication: As a result of this erratum, the PAL_CACHE_FLUSH procedure may not be successful in
invalidating the exclusive or shared cache lines. However, all modified lines are written
to memory and with the memory copy being valid for exclusive and shared state, all
memory is up-to-date at end of routine.

Workaround: Replace the PAL_CACHE_FLUSH procedure call with the “fc” instruction to cover the
address range to be flushed.

Status: For the steppings affected, see the Summary Table of Changes.

94. Performance counters may include data from low power states
Problem: The following list includes a number of processor performance counters that may

continue to accumulate event counts in a low power state.
• BACK_END_BUBBLE.ALL

• BACK_END_BUBBLE.FE

• FE_BUBBLE.ALL

• FE_BUBBLE.BUBBLE

• FE_BUBBLE.GROUP1

• FE_BUBBLE.ALLBUT_IBFULL

• FE_LOST_BW.ALL

• FE_LOST_BW.BUBBLE

• BE_LOST_BW_DUE_TO_FE.ALL

• BE_LOST_BW_DUE_TO_FE.BUBBLE

• IDEAL_BE_LOST_BW_DUE_TO_FE.ALL

• IDEAL_BE_LOST_BW_DUE_TO_FE.BUBBLE

Implication: These performance counters are not expected to continue to accumulate data in a low
power state. As a result of this erratum the count for these events may be inaccurate
after leaving a low power state.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

95. MCA due to an XPN timeout may result in a spin loop
Problem: If MCAs have been enabled to occur at the halfway count of an XPN timeout, PAL may

enter a spin loop.
Implication: Instead of passing the MCA up to SAL, PAL incorrectly enters a spin loop.
Workaround: Disable the MCA at the halfway count through PAL_PROC_SET_FEATURES.
Status: For the steppings affected, see the Summary Table of Changes.

96. BINIT# may not be asserted for exactly two cycles
Problem: As stated in the RS - Itanium® 2-Based Platform Compatible Processors System Bus

Specification, if an agent samples BINIT# asserted on clock N, and it asserts BINIT#
for the first time in cycle N, then the agent must keep BINIT# asserted for exactly two
cycles. Currently all Itanium® processors assert BINIT# for one cycle in the scenario
described above.

Implication: The agents on the system bus have one clock cycle to sample asserted BINIT#. Actions
taken upon sampling the asserted BINIT# remain unchanged and are listed in the
RS - Itanium® 2-Based Platform Compatible Processors System Bus Specification.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

Errata (Processor and PAL)

66 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

97. Memory read current transaction may fail to observe a st or lead to a
system hang

Problem: A memory read current transaction allows a chipset to access a coherent copy of a
cache line in a caching agent without affecting the cache line state in the caching
agent. This transaction avoids later cache misses and subsequent transactions by the
cache agent to again cache the line.

The erratum requires the following code sequence:
1. Given an addresses X which maps to a L2 cache line and an address Y which maps

to a cache line that belongs to the same set as X at L2.
2. A memory read current (same cache line as X) must occur coincident to the

sequence. load(X)... store (same cache line as X)... load (same cache line as Y); If
systems utilize the memory read current transaction and execute the above code
sequence, and specific internal micro-architectural timings are met, subsequent
transactions may not return the correct data and may lead to a system hang.

Implication: Usage models are not known to exist where the st to a cache line (X) at or near the
time of a memory read current transaction targeting cache line (X). If the conditions as
described are met, even though the st is correctly posted to the cache line by the
processor, incorrect data is returned for subsequent system interface accesses to a
different cache line. Another possible impact of the erratum is a system hang due to
erroneous assertion of the HIT# and HITM# snoop signals for accesses to the cache
line.

Workaround: Memory read current transactions should not be used in situations where the above
conditions are met.

Status: For the steppings affected, see the Summary Table of Changes.

98. PAL_VM_TR_READ will return an incorrect page size for DTR reads
Problem: When calling PAL_VM_TR_READ with tr_type = 1 (DTR), the return ps field will hold an

incorrect value.
Implication: The value returned by the PAL_VM_TR_READ procedure cannot be relied upon for

informational or architectural implementations.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

99. Incorrect EID and ID information passed by PAL
Problem: Itanium processor PAL, incorrectly reports the EID and ID mask bits in GR33[31:16]

instead of GR33[47:32].
Implication: EID and ID bits cannot be relied upon for a correct representation of the programability

of the LID register.
Workaround: In the case that the information about the programmable bits of the LID register is

required by SAL, the following steps should be taken:
1. Write 1's to the LID register.
2. Follow the write with a read from the LID register.
3. Bit positions with a read back value of 1 are programmable whereas bit positions

with a read back value of 0 are read-only.
Status: For the steppings affected, see the Summary Table of Changes.

100. Interruption of PAL calls by a PMI or INIT
Problem: In the case where a PMI or INIT interrupts a PAL procedure and the handler makes a

PAL call, the processor may take a general exception fault.
Implication: Normal operation of the processor is not guaranteed in the above mentioned scenario.

It must be noted that, for this issue to occur, the PAL call made in the interruption
handler must alter the machine state used by the interrupted PAL procedure.

Workaround: None at this time.

Intel® Itanium® Processor Specification Update 67
Specification Update April 2014

Errata (Processor and PAL)

Status: Initial fix for this erratum is found in PAL versions 7.78, 7.79, 5.72, 5.73, 2.10, 2.14,
and 2.15. An extension has been added in future PAL versions to handle the corner
case when the register frame is incomplete.

101. External interrupt polling and PAL_CACHE_FLUSH
Problem: If PAL_CACHE_FLUSH is called with external interrupt polling enabled (int =1) and an

interrupt occurs during the PAL procedure, the returned progress indicator may be
invalid. It must be noted that this issue only affects an Itanium processor with a cache
size smaller than 9MB.

Implication: Subsequent calls to PAL_CACHE_FLUSH that use an incorrect progress indicator will
return an invalid argument.

Workaround: Call PAL_CACHE_FLUSH without enabling interrupt polling (int=0).
Status: For the steppings affected, see the Summary Table of Changes.

102. PAL_MC_ERROR_INFO call could invalidate incorrect cache line entry
Problem: When an L3 cache 1xECC error is detected by the processor and PAL_MC_ERROR_INFO

is called, the processor may perform an L3 cache line invalidate operation. There exists
a small window where the cache line may be used, and the invalidate operation will
target the incorrect entry. PAL must be running in a cacheable mode for this to occur.

Implication: Unpredictable system behavior.
Workaround: Call PAL_MC_ERROR_INFO in uncacheable mode.
Status: For the steppings affected, see the Summary Table of Changes.

103. L3 cache tag error and pending cache line replacement transactions
may result in system livelock

Problem: An L3-tag 1xECC error in combination with several pending cache line replacement
(BCR) transactions, internal timing conditions and a single snoop can establish a
potential livelock condition.

Implication: This erratum may result in a system hang, however the livelock condition may be
broken by any additional snoops, instructions entering the pipeline or completion of any
of the BCR transactions that were required to establish the livelock condition.

Workaround: Cache line replacement transactions should not be used or L3 in-line correction mode
can be enabled (see the Itanium® 2-Based Platform Compatible Processors Firmware
Guide for details) in order to avoid this potential livelock condition. PAL version 2.10
provides an alternative workaround through PAL_PROC_SET_FEATURES feature_set
0x11 bit 5.

Status: For the steppings affected, see the Summary Table of Changes.

104. SALE_ENTRY may see unexpected modified cache line during system
cold boot

Problem: During a system cold boot, PAL firmware may unexpectedly leave a modified cache line
entry in L3 cache on hand-off to SALE_ENTRY. PAL is expected to not leave any entries
in cache for the hand-off to SAL.

Implication: The cache line is written by the PAL initialization process and is targeted to memory. As
a result a memory error may be indicated during the cold boot process. Intel continues
to recommend that any memory errors received before the memory levelization and
initialization process has been completed by SAL, should be ignored.

Workaround: SALE_ENTRY should be ignoring memory errors until memory initialization is complete.
A future PAL version will contain a fix for this erratum.

Status: For the steppings affected, see the Summary Table of Changes.

105. Lower priority error flagged on illegal write to GR r0
Problem: A Reserved Register/Field Fault may be incorrectly taken in place of an Illegal Operation

Fault when an alloc instruction targets General Register (GR) r0.
Implication: The write to GR r0 is an illegal operation and should return an Illegal Operation Fault.

However, if the alloc instruction is also trying to change the size of CFM.sor with the

Errata (Processor and PAL)

68 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

register rename base registers (CFM.rrb.gr, CFM.rrb.fr, CFM.rrb.pr) not set to zero, the
lower priority Reserved Register/Field Fault is flagged instead.

Workaround: A clrrrb instruction should be issued before the alloc attempts to change the size of
the CFM.sor.

Status: For the steppings affected, see the Summary Table of Changes.

106. PAL_TEST_PROC L3 cache replacement test may return invalid
response

Problem: When calling PAL_TEST_PROC with the L3 cache replacement test enabled, the
procedure may return an invalid performance restricted response on the Intel®
Itanium® Processor 1.40 GHz with 1.5 MB L3 Cache and Low Voltage Intel® Itanium®
Processor 1.0 GHz with 1.5 MB L3 Cache.

Implication: The PAL_TEST_PROC L3 cache replacement self test procedure may incorrectly return a
performance restricted response but there is no actual degradation.

Workaround: Disable the L3 cache replacement late self test.
Status: For the steppings affected, see the Summary Table of Changes.

107. PAL_CAR_INIT may not clear all cache lines
Problem: The PAL_CAR_INIT procedure may not clear all cache lines to null upon exit of the PAL

procedure.
Implication: Upon exit of the PAL_CAR_INIT call, random data may be unexpectedly left in some

cache lines.
Workaround: SAL code should clear the data portion of the cache.
Status: For the steppings affected, see the Summary Table of Changes

108. PSR.IC may not be restored properly on exit from a PAL call
Problem: If a PAL call is made with both PSR.IC and PSR.MC set, PAL may not restore the PSR.IC

bit properly on exit.
Implication: Interrupt collection may be unexpectedly turned off after a PAL call is made. This may

result in a system hang after a fault is taken.
Workaround: None available at this time.
Status: For the steppings affected, see the Summary Table of Changes.

109. Performance counters may not be correctly restored upon exit of the
LIGHT HALT state

Problem: A call to PAL_HALT_LIGHT will place the processor in the LIGHT HALT state. In this
state, select performance counters should remain frozen. In certain instances, upon
exit of the halt state the overflow bit of the performance counters may be incorrectly
set.

Implication: Incorrect performance monitoring values could be used after the exit of
PAL_HALT_LIGHT.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 69
Specification Update April 2014

Errata (Processor and PAL)

110. Single-bit errors in the tag and data portion of cache lines in the “I”
state in the L2 or L3 levels of cache may not be flushed

Problem: Single-bit errors in the tag portion of lines in the “I” state in the L2 or L3 levels of cache
may not be flushed by calls to PAL_MC_ERROR_INFO. Any access to lines within the
same cache set will signal the error with a CMCI.

Implication: Single-bit errors will remain in I-lines until evicted by normal system execution.
Workaround: SAL can cleanse the entire cache with a call to PAL_CACHE_FLUSH followed by

PAL_CACHE_INIT
Status: For the steppings affected, see the Summary Table of Changes.

111. Un-initialized word lines at processor boot could result in an incorrect
branch address

Problem: A small percentage of processors may intermittently boot up with un-initialized word
lines on the branch register file. These word lines are duplicated across four read ports.
The first access of a branch register on a given port, before all of the word lines on the
same port have been initialized, could result in an incorrect branch address being
calculated.

These branch register word lines are initialized by any read access, including predicated
code that is not used, and are subsequently not exposed.

Implication: The most common symptom is for the processor to fail to boot. However subsequent
branches could use an incorrect address, leading to an illegal address fault or
unpredictable system behavior.

Workaround: A power cycle re-boot can be used to work around the non-boot implication. For full
port initialization, SAL or PAL Itanium® Processor (up to 9 MB L3 cache) versions 2.20
and beyond will run a series of instructions to initialize all word lines and will eliminate
the exposure of incorrect branches post-boot.

Status: For the steppings affected, see the Summary Table of Changes.

112. Unexpected MCA on a fill to a line with parity errors
Problem: In the case that a fill hits a line with parity errors and certain microarchitectural

conditions are met, the processor may report an unexpected MCA.
Implication: The processor may report two MCA’s when in reality only one should have been

reported for the parity errors on the line. It must be noted that the coherency is
maintained for the processor.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

113. Performance associated with an epc instruction
Problem: The epc (enter privileged code) instruction increases the privilege level without causing

an interruption or a control flow transfer. In the case that an epc instruction is in the
same bundle and follows a branch instruction, a pipeline flush may be observed even if
the branch instruction is correctly predicted.

Implication: An unexpected performance penalty may be observed if the above conditions are met.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

114. Branch bit, mispredict bit and slot index of branch instruction
Problem: The branch trace buffer provides information about the outcome of the most recent

Itanium branch instructions. For every qualified Itanium branch instruction, the source
bundle address and slot number are written to the branch trace buffer. Due to an issue,
bits [4:0] of the branch trace buffer may not be captured correctly.

Problem: As a result the branch bit, mispredict bit and the slot index of the branch instruction in
the bundle may not be accurate

Workaround: None at this time.

Errata (Processor and PAL)

70 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Status: For the steppings affected, see the Summary Table of Changes.

115. Lower priority error flagged on illegal write to GR r0
Problem: A Reserve Register/Field Fault may be incorrectly taken in place of an Illegal Operation

Fault when an alloc instruction targets General Register (GR) r0.
Implication: The write to GR r0 is an illegal operation and should return an Illegal Operation Fault.

However, if the alloc instruction is also trying to change the size of CFM.sor with the
register rename base registers (CFM.rrb.gr, CFM.rrb.fr, CFM.rrb.pr) not set to zero, the
lower priority Reserved Register/Field Fault is flagged instead

Workaround: A clrrrb instruction should be issued before the alloc attempts to change the size of
the CFM.sor.

Status: For the steppings affected, see the Summary Table of Changes.

116. ptc.e instructions may purge resources of the other logical processor
executing on the same core

Problem: One or more translation entries are purged from a single processors instruction and
data translation cache by a ptc.e instruction and it should not propagate to other
processors in the system. However, in a multi-core, hyper-threaded environment,
ptc.e may purge one or more translation entries from the other logical processor
running on the same core.

Implication: It must be noted that the usage of ptc.e is synchronized and currently existing
software should not see any performance impact as a result of this issue.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

117. MPE_SCB_LIVE_REQ counts for disabled cores
Problem: MPE_SCB_LIVE_REQ counts even if the “either” unmask of a single core SKU is set.
Implication: Single core SKU may get spurious results due to this issue and the results should not

be relied upon.
Workaround: Set the umask to “self” instead of “either” for single core SKU’s.
Status: For the steppings affected, see the Summary Table of Changes.

118. move to bspstore requires unexpected serialization
Problem: When a br.ia is executed with bspstore != bsp an illegal operation fault should be raised

and when psr.di is set, the machine should assert disabled instruction set transition
fault. In the case that the above mentioned conditions occur in secession, a disabled
instruction set transition fault is detected instead of a illegal operation fault (illegal
operation fault has higher priority).

Implication: There is no architectural serialization required after a move to bspstore (typical of
application registers) but as a result of this issue move to bspstore requires unexpected
serialization.

Workaround: It is recommended that a srlz.i be executed prior to a br.ia.
Status: For the steppings affected, see the Summary Table of Changes.

119. System behavior as a result of nested BINIT’s
Problem: There exists a possibility of system hang in the case that an MCA or a BINIT is being

serviced by the processor and a 2-bit ECC error occurs in the L2 data cache tag-array of
the processor.

Implication: Nested BINIT’s of the type described above are not guaranteed to be logged/handled
correctly and the behavior of the machine is not guaranteed in the above mentioned
condition.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 71
Specification Update April 2014

Errata (Processor and PAL)

120. Instruction Pointer-Event Address Register (IP-EAR) may not behave
as specified

Problem: Instruction Pointer-Event Address Register (IP-EAR), when enabled in a MT
environment, may not behave as specified during a logical processor switch. Depending
on the status of the incoming logical processor’s IP-EAR, it is possible that an expected
entry may get dropped in the outgoing logical processor's IP-EAR or an incorrect entry
may get logged into the incoming logical processor’s IP-EAR.

Implication: IP-EAR may not behave as specified.
Workaround: Disable the IP-EAR in a MT environment. Please refer to Chapter 3 of the Update to the

Intel® Itanium® Processor Reference Manual For Software Development and
Optimization (Document #18612).

Status: For the steppings affected, see the Summary Table of Changes.

121. Performance Monitor Data (PMD) registers 10-15 usage
Problem: The Performance Monitor Data (PMD) registers 10-15 cannot be used to enable the

overflow and freeze capabilities when HT technology is enabled.
Implication: Do not use the PMD registers 10-15 for overflow and freeze capabilities.
Workaround: Use the PMD registers 4-9 to enable the overflow and freeze capabilities.
Status: For the steppings affected, see the Summary Table of Changes.

122. Wrong address generated for L3 data 1x and 2x ECC errors
Problem: This issue occurs when two cache lines, A and B, both exist modified in the L3 cache

and line A has an error in the data array. If line A is snooped just before line B is
snooped with the snoop confirms for both lines being close together, then the error may
be logged for line B instead of line A.

Implication: The wrong target address may be reported by PAL_MC_ERROR_INFO for L3 data 1x
and 2x ECC errors generated from snoop events.

Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

123. Illegal opcodes may not raise the expected operation fault
Problem: In some rare instances, when running with HT technology enabled, some illegal

opcodes may not raise the expected illegal operation fault when executed.
Implication: For application code, this may result in a privileged operation fault instead of an illegal

operation fault.
Workaround: None at this time.
Status: For the steppings effected, see the Summary Table of Changes.

124. Logical Processor Migration (LPM) is not working as expected
Problem: Logical Processor Migration (LPM) is included in PAL Rev 5.10 with minimal testing.
Implication: The following issues may arise when running LPM including:

• Pending register stack engine faults may not be handled correctly during LPM
procedures, which may result in a system hang.

• The register stack engine may not be restored correctly, which may result in a
general exception fault.

• TLBs may not be restored properly, which may result in a system hang.

• Region registers may not be saved or restored properly.

Workaround: None.
Status: For the steppings affected, see the Summary Table of Changes.

Errata (Processor and PAL)

72 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

125. ALAT test is unavailable
Problem: PAL_TEST_INFO returns a value of 1 in bit 12 of st_control indicating that the ALAT test

is unavailable.
Implication: The ALAT test is unavailable. Use the configuration defined by st_control that is

provided by PAL_TEST_INFO.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

126. Internal processor timeout (XPN) events are not signaled
Problem: When a processor XPN time out occurs the half-timeout MCA (if enabled) and full

timeout BINIT# assertion (if enabled) will not occur.
Implication: Half-timeout MCA (if enabled) and full timeout BINIT# assertion (if enabled) will not

occur.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

127. PAL incorrectly interpreting updates to the Virtual Processor
Descriptor

Problem: Updates to the Virtual Processor Descriptor are not being interpreted by PAL correctly
leading to the Set System Mask(ssm) instructions not delivering the expected fault to
the expected virtual external interrupt vector of the Virtual Memory Manager.

Implication: This issue results in the fault not being handled correctly and may result in unexpected
behavior and when using Intel® Virtualization Technology.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

128. PAL based IA-32 execution may result in unpredictable behavior
Problem: When software or hardware unexpectedly evicts a translation cache entry that is

utilized in PAL based IA-32 execution, a system hang may result.
Implication: System hangs and/or unpredictable behavior may be observed due to this issue.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

129. Two MCAs issued due to active logical processor being switched
Problem: If the active logical processor is switched just after an error event; the MCA will be

pended to the wrong logical processor, leading to two MCAs being issued.This issue
only occurs with hyper-threading enabled.

Implication: This may result in a recoverable MCA turning into a fatal MCA and may cause a system
reset.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

130. PAL_VP_SAVE and PAL_VP_RESTORE procedures not working as
expected

Problem: PAL_VP_SAVE and PAL_VP_RESTORE procedures do not save and restore the
implementation-specific state of PAL_PROC_GET/SET_FEATURES and PAL_GET/
SET_PSTATE as requested by the pal_proc_vector parameter.

Implication: Setting the pal_proc_vector bits have no effect.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 73
Specification Update April 2014

Errata (Processor and PAL)

131. PAL_VP_REGISTER procedure not working as expected
Problem: The PAL_VP_REGISTER procedure does not correctly populate the general exception

and virtualization fault vectors with the configuration information needed for correct
handling.

Implication: Calling PAL_VP_REGISTER will result in incorrect handling of virtualized instructions
and may result in a system hang.

Workaround: If the Virtual Machine Monitor (VMM) needs to move the (IVT) Interrupt Vector Table
location; the VMM needs to bring down the virtual machines, perform the move, and
bring the virtual machines back up.

Status: For the steppings affected, see the Summary Table of Changes.

132. Write access to a cache line with an uncorrectable error results in a
MCA instead of a CMCI

Problem: Any write access to a cache line with an uncorrectable error may cause a recoverable
MCA instead of the expected CMCI.

Implication: This error condition may result in an application crash or a system reboot.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

133. PAL_CACHE_SHARED_INFO not working as expected
Problem: PAL_CACHE_SHARED_INFO may incorrectly report that cache levels are being shared

between logical processors even when hyper-threading is disabled.
Implication: None.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

134. PAL_MC_ERROR_INJECT in the cache error consumption mode may
not work as expected

Problem: Calling PAL_MC_ERROR_INJECT in the cache error consumption mode may result in a
general exception fault.

Implication: This issue may lead to a system reset.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

135. TLB consumption mode in PAL_MC_ERROR_INJECT uses the incorrect
address

Problem: The TLB consumption mode in PAL_MC_ERROR_INJECT uses the incorrect address due
to PAL miscalculating the consumption address. PAL attempts to access the TLB entry
in which an error has been seeded, and an incorrect virtual address is used.

Implication: This can result in either a data or instruction TLB fault if the mis-calculated address
does not reside in the TLB or in the case where a matching address is located in the
instruction TLB, this could lead to undefined system behavior.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

136. PAL correction of any L2D or L3 correctable error on a cache line may
flush that line

Problem: The PAL correction of any L2D or L3 correctable error on a cache line may inadvertently
flush that line. The PAL correction of any L2D or L3 correctable cache error may trigger
the MESI = Invalid behavior as described below. The PAL correction of any correctable
L3 cache error may trigger the MESI = Disabled behavior as described below.

Implication: The incorrect flushing of the line can lead to the following situations:

Errata (Processor and PAL)

74 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

MESI = Invalid - An unimplemented address is flushed out of the processor. System
behavior is dependent upon chipset implementation and may lead to a system reset.

OR

MESI = Disabled - Loss of Intel® Cache Safe Technology tracking data may occur. This
may result in recurring transient events requiring one more occurrence than expected
prior to Intel® Cache Safe Technology removal.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

137. PAL improperly decodes the instruction in response to a virtualization
fault

Problem: When running under Virtual Machine Monitor software, PAL improperly decodes the
instruction in response to a virtualization fault. PAL mistakenly decodes the mov.itc
imm instruction to a rfi instruction.

Implication: This may lead to the virtual processor having undefined behavior, which may result in a
hang of the guest OS.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

138. BINIT# assertion may result in a system hang.
Problem: In rare cases, a BINIT# assertion occurring while the resources required to process the

BINIT# are owned by another logical processor in the same socket may result in a PAL
MCA handler hang.

Implication: This issue may result in a system hang.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

139. PAL is affecting ITP's ability to halt logical processors
Problem: Using ITP to set a breakpoint on one logical processor is not halting all logical

processors belonging to that Montecito processor socket.
Implication: Logical processors may not halt as expected.
Workaround: None at this time
Status: For the steppings affected, see the Summary Table of Changes.

140. PAL_MC_ERROR_INJECT not working as expected in the inject_only
mode and the inject_and_consume mode

Problem: In the inject_only mode or the inject_and_consume mode, PAL_MC_ERROR_INJECT
sometimes returns a random value that is not listed in the architectural specification.
The query mode is not affected by this issue.

Implication: A random value is observed instead of the expected return value.
Workaround: If the value returned does not match one of the status values described in the

architectural specification, interpret the return status as “Call completed without error.”
Negative status values returned (error conditions) are valid as described in the
architecture specification.

Status: For the steppings affected, see the Summary Table of Changes.

141. PAL incorrectly change the value for isr.code
Problem: When running under Virtual Machine Monitor software, PAL sometimes incorrectly

changes the value for isr.code when a general exception fault occurs.
Implication: This issue may result in undefined behavior for the VMM.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 75
Specification Update April 2014

Errata (Processor and PAL)

142. Illegal operation faults of the type .lx are incorrectly delivered to the
VMM virtualization fault vector

Problem: When running under Virtual Machine Monitor software, some instances of illegal
operation faults of the type .lx are incorrectly delivered to the VMM virtualization fault
vector instead of the expected VMM general exception vector.

Implication: This issue may result in undefined behavior for the VMM.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

143. PAL incorrectly routes an illegal operation fault on a reset system
mask(rsm) instruction fault

Problem: When running under Virtual Machine Management software, PAL incorrectly routes an
illegal operation fault on a reset system mask(rsm) instruction fault to the VMM
virtualization vector instead of the VMM general exception vector.

Implication: This issue may result in undefined behavior for the VMM.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

144. PAL based IA-32 execution does not raise single step trap
Problem: PAL based IA-32 execution does not raise single step trap on PSR.ss when EFLAG.tf is

enabled.
Implication: Debugging of PAL based IA-32 applications may not be possible.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

145. PAL based IA-32 execution does not respond to IA-32 debug traps
Problem: PAL based IA-32 execution does not respond to IA-32 debug traps when PSR.db and

DBRs are enabled.
Implication: Debugging of PAL based IA-32 applications may not be possible.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

146. Intel® Cache Safe Technology "performance restricted" CMCI is issued
after 3 ways per set are disabled.

Problem: On Montecito processors with 6 MB L3 cache, the Intel® Cache Safe Technology
"performance restricted" CMCI only occurs after 3 ways per set are disabled. The CMCI
should have occurred after 2 ways have been disabled.

Implication: The “performance restricted” CMCI is not occurring after 2 ways are disabled as
expected.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

147. Interval Time Counter (ITC) may not be properly initialized
Problem: The Interval Time Counter (ITC) may not be properly initialized at reset causing

indeterminate operation.
Implication: Lockstep mode may not work as expected with this issue.
Workaround: This is planned to be fixed in the post production PAL release.
Status: For the steppings affected, see the Summary Table of Changes.

Errata (Processor and PAL)

76 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

148. POPF instruction may not be intercepted during PAL based IA-32
execution

Problem: The POPF instruction may not be intercepted during PAL based IA-32 execution.
Implication: The system environment intercept trap may not be taken when CFLG.ii is set to 1.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

149. CMCIs issued noting entry and exit from ETM even when ETM is
disabled

Problem: When ETM is disabled, the CMCI's will still be issued noting entry and exit from ETM.
The processor will not enter ETM, but CMCIs will be issued.

Implication: Unexpected ETM related CMCIs are observed.
Workaround: Ignore the ETM based CMCI messages if ETM is disabled.
Status: For the steppings affected, see the Summary Table of Changes.

150. Exclusion of first 3 single bit errors by Intel® Cache Safe Technology
may cause system hangs in processors that have their L3 cache size
equal to 6 MB

Problem: The first 3 single bit L3 cache errors will automatically trigger Intel® Cache Safe
Technology exclusion. This exclusion is regardless of the type of error (hard error,
recurring transient error or standard random error).

Implication: This behavior may cause system hangs when using processors that have their L3 cache
size equal to 6MB.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

151. Value of the IA-32 interruption code (ISR.code) is incorrectly set
Problem: When running under Virtual Machine Monitor software and sending interrupt

information to the Virtualization Vector (x6100), the value of the IA-32 interruption
code (ISR.code) is incorrectly set to 0x10 when it should be 0.

Implication: Depending on the VMM implementation this issue could lead to system hangs in some
cases.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

152. Infinite snoop stall during RESET or BINIT
Problem: RESET and BINIT flows require the processor caches to be re-initialized and

reconfigured from incoherent operation to a coherent operation. If such a transition for
a socket is accompanied with data returns intended for that socket within a small
window of opportunity, an infinite snoop stall may occur for the next transaction issued
on the system bus.

Implication: In the case that an infinite snoop stall occurs, the processor may fail to complete the
RESET or BINIT flows successfully. Though there exists a non-zero probability of
exposure, the issue is highly unlikely to surface in the systems with firmware access
times that are longer than 100 ns. Systems with low latencies for firmware code
fetches that have associated data phases of more than 1 cycle produce sufficient
system bus activity for an infinite snoop stall to occur.

Workaround: There is no exposure after the caches have been successfully transitioned from
incoherent to coherent operation. This is planned to be fixed in the post production PAL
release.

Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 77
Specification Update April 2014

Errata (Processor and PAL)

153. Clock misalignment may result in a loss of socket level lockstep
Problem: When using parts that have socket level lockstep enabled, there could be a loss of

socket level lockstep due to a clock misalignment between the cores.
Implication: This issue may result in a loss of socket level lockstep.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

154. Execution of an instruction in the multi-media unit may result in
unexpected behavior

Problem: When the result of an instruction which uses a multi-media unit is used as an address
for a memory instruction, aligns with other internal processor conditions, unexpected
L1D CMCI's, L2 Tag BINIT's or other unexpected behavior may result. The conditions
necessary to cause these unexpected behaviors are the following:
1. Execution of an instruction in the multi-media unit produces an address that will be

used in a memory operation.
2. The timing of the address producer and consumer occurs within a one cycle

window.
3. A memory instruction targeting that address hits the L1D cache.
4. Values in the L1D cache and L2D tags contain patterns that create various failure

modes.
5. Additional instructions on other clock cycles create electrical conditions that make

the memory instruction vulnerable to noise.
Implication: Unexpected L1D CMCI's, L2 Tag BINIT's or other unexpected behaviors may be

observed. Intel has only observed this behavior in tightly controlled and specifically
targeted testing environments and not in an application environment. Intel believes
that any compiler or manual code generator targeting performance optimized code will
not generate the complete code sequence needed to see this.

Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

155. Processors may not wake from the LIGHT HALT state upon MCA
Problem: After a processor has been placed in the LIGHT HALT state, it will not awaken on a

BERR# or a MCA interrupt. The processor will return from the LIGHT HALT state for a
BINIT# and other interrupts.

Implication: MCA’s issued while the processor is in a LIGHT HALT state will be pended and handled
when the processor returns from the LIGHT HALT state.

Workaround: SAL can rendezvous the processors for global MCA handling.
Status: For the steppings affected, see the Summary Table of Changes.

156. Logical processor may be lost when a recoverable or a PAL-
correctable MCA occurs during PAL_HALT_LIGHT

Problem: A logical processor may be lost when a recoverable or a PAL-correctable MCA occurs
during PAL_HALT_LIGHT. If the MCA occurs within the 10 instruction bundles
immediately preceding the low power halt operation, the PAL_HALT_LIGHT state may
not be saved properly when the MCA returns to the interrupted context.

Implication: The processor may not return from PAL_HALT_LIGHT.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

157. On Die Termination (ODT) may be unexpectedly enabled
Problem: The On Die Termination (ODT) may be unexpectedly enabled when a Montecito Voltage

Regulator (MVR) failure occurs or is unexpectedly unplugged.
Implication: This may result in undefined behavior on the system bus.

Errata (Processor and PAL)

78 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Workaround: For testing that includes intentionally removing or powering down an MVR, disable (or
tristate) the output of the affected agent on the system bus.

Status: For the steppings affected, see the Summary Table of Changes.

158. Failure to set the PSR.it bit to its original value
Problem: When using PAL_MC_ERROR_INJECT, there may be a failure to set the PSR.it bit to its

original value, after an injection event in the register file error consumption mode.
Implication: This issue may result in unexpected behavior when using the register file error injection

feature in the consumption mode.
Workaround: Do not use the register file error consumption mode with PAL_MC_ERROR_INJECT.
Status: For the steppings affected, see the Summary Table of Changes.

159. The PAL_PSTATE_INFO procedure may write to scratch floating point
(FP) registers without saving and restoring the value of PSR.mfl

Problem: The PAL_PSTATE_INFO procedure may write to scratch floating point (FP) registers
without saving and restoring the value of PSR.mfl around those writes. Therefore, if
PSR.mfl was 0 at the entry to PAL_PSTATE_INFO, it may be set to 1 at the exit of that
PAL procedure. The PSR.mfl value will most likely always be set to 1 at the exit.

Implication: No action necessary.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

160. Performance Monitor Unit (PMU) readings for system interface events
may reflect both threads

Problem: When the thread identifier is not driven for system bus transactions, the PMU readings
for system bus events will reflect both thread 0 and 1 events.

Implication: PMU readings for system bus events will reflect both thread 0 and 1 events in cases
where only thread 0 or thread 1 events should be considered.

Workaround: Include the thread identifier on all system bus transactions to correctly associate
thread 0 and thread 1 transactions for PMU system bus events. Ensure that SAL makes
the appropriate call to PAL_THREAD_CONTROL to enable this functionality.

Status: See the Summary Table of Changes for affected steppings.

161. PAL_FREQ_RATIO returns an incorrect value for 1.42 GHz parts
Problem: For 1.42 GHz parts, PAL_FREQ_RATIO returns an incorrect value of 1400:267 instead

of 1420:267.
Implication: 1400 MHz is returned for 1420 MHz processors.
Workaround: None
Status: See the Summary Table of Changes for affected steppings.

162. PAL_MC_CLEAR_LOG called on one logical processor may erase the
processor error logs

Problem: For some multiple error scenarios in systems with hyper-threading enabled,
PAL_MC_CLEAR_LOG called on one logical processor may erase the processor error log
before PAL_MC_ERROR_INFO is called to retrieve the logs.

Implication: This may cause SAL to incorrectly consider an OS-recoverable MCA as fatal.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

Intel® Itanium® Processor Specification Update 79
Specification Update April 2014

Errata (Processor and PAL)

163. Unable to specify the Current Frame Load Enable (CFLE) value at the
target guest handler

Problem: PAL_VPS_RESUME_HANDLER does not allow the Virtual Machine Monitor (VMM) to
specify the CFLE value at the target guest handler.

Implication: PAL_VPS_RESUME_HANLDER disables the CFLE value automatically for the target
handling code.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

164. Infinite snoop stalls may be observed
Problem: In extremely rare cases, during the firmware recovery flow, infinite snoop stalls may be

observed.
Implication: There may be system hangs observed during the boot flow.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

165. Unexpected behavior when code request completes during PAL
authentication

Problem: During boot, if a code request from the system bus or L3 cache completes while any
logical processor is authenticating PAL, unexpected behavior may result.

Implication: System hangs during boot or other unexpected behavior may result.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

166. PAL_CACHE_INFO is not available during firmware recovery check
Problem: PAL_CACHE_INFO may not be available during firmware recovery check.
Implication: None.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

167. Potential electrical marginality in the integer register file
Problem: Under certain specific and complex environmental and data conditions a signal race

condition can occur that may affect some registers in the integer register file.
Implication: This issue may result in a nested OS fault, an application fault or other unexpected

behavior. A nested OS fault may manifest in Unix/Linux as a “Kernel Panic” and in
Windows as a “blue screen”.

Workaround: None at this time.
Status: Fixed for processors shipped after September 2006. See the Summary Table of

Changes for affected steppings.

168. PAL_MC_ERROR_INJECT consume mode may not behave as expected
Problem: PAL_MC_ERROR_INJECT consume mode may not cause error consumption and

subsequent signaling as expected for level 3 (L3) cache errors.
Implication: PAL_MC_ERROR_INJECT in the consume mode may not work as expected for level 3

(L3) cache errors.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

Errata (Processor and PAL)

80 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

169. Using PAL_CONTEXT_RESTORE and PAL_CONTEXT_SAVE may result in
a system hang during logical processor migration

Problem: Using PAL_CONTEXT_RESTORE and PAL_CONTEXT_SAVE may result in a system hang
during logical processor migration.

Implication: None.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

170. PAL_MC_ERROR_INFO may report an invalid index field
Problem: PAL_MC_ERROR_INFO may report an invalid L2D index field for cache_check.
Implication: An invalid L2D index field may be reported.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

171. PAL_BUS_SET_FEATURES bit 52 enables a bus cache line replacement
transaction only when a cache line is in the shared state

Problem: PAL_BUS_SET_FEATURES bit 52 enables a bus cache line replacement transaction only
when a cache line in the shared state (not the exclusive state) is replaced from the
highest level processor cache and is not present in the lower level processor caches.

Implication: PAL_BUS_SET_FEATURES bit 52 may not enable a bus cache line replacement
transaction only when a cache line is in the exclusive state.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

172. MOVL instructions taking a general exception fault are decoded as
legal virtualized instructions

Problem: When the virtualization environment is enabled, MOVL instructions taking a general
exception fault are occasionally decoded as legal virtualized instructions.

Implication: This issue may lead to undefined behavior.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

173. Reserved register field fault checks do not check the present bit to
determine if a reserved register field fault should be raised

Problem: When the virtualization environment is enabled, reserved register field fault checks do
not check the present bit to determine if a reserved register field fault should be raised
for the ITC.i instruction.

Implication: This issue may lead to unexpected behavior.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

174. Calling PAL_CAR_INIT in cacheable mode may cause undefined
behavior

Problem: Calling PAL_CAR_INIT in cacheable mode may cause entries in the Cache As RAM
(CAR) buffer to be evicted. Specifically, if the CAR buffer size combined with the size of
the cacheable code executing outside the buffer, exceed the total size of the L3 cache,
the cache lines holding the CAR buffer may be evicted.

Implication: This issue may lead to undefined behavior.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

Intel® Itanium® Processor Specification Update 81
Specification Update April 2014

Errata (Processor and PAL)

175. Poison data in the caches has partial or no indication of 2xECC error
when written back to memory

Problem: There are different signatures observed in the Itanium 3M/6M/9M processors versus
the Dual Core Itanium processors.

Problem: Itanium 3M/6M/9M processors: During the PAL processing of consumed poison MCA,
data from the cache is purged from the cache lines. This issue may cause L2 resident
modified poisoned data to not be marked as 2xECC error when written back to
memory. Dual Core Itanium processors: L2 and L3 resident modified poison data will
only be partially marked as 2xECC error when written back to memory. 2xECC
indication is only applied to even 8 byte chunks and the odd 8 byte chunks will not have
the 2xECC indication.

Implication: This issue may lead to uncontained poison data.
Workaround: For the Itanium 3M/6M/9M processors, there will be a PAL release with the fix. For Dual

Core Itanium processors, bit 53 of PAL_PROC_SET_FEATURES (feature set 0) can be
set so that the processor signals an MCA when poison data is received by the processor
as a PAL corrected error has occurred to facilitate containment.

Status: See the Summary Table of Changes for affected steppings.

176. Multiple BINIT# assertions due to internal processor timeout (XPN)
events

Problem: When a processor XPN timeout event occurs, it will signal multiple BINIT# assertions (if
enabled). After the first BINIT, successive unexpected BINITs will occur at fixed
intervals until another XPN timeout period elapses. After two XPN timeout periods, the
processor will proceed to the PAL MCA handler. This issue is currently masked by E126.

Implication: Multiple BINIT# assertions may be observed due to XPN timer events if/when E126 is
fixed.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

177. PAL_CACHE_INIT and PAL_CAR_INIT may corrupt parity error
checking in L2 cache

Problem: PAL_CACHE_INIT and PAL_CAR_INIT may corrupt parity error checking in L2 cache.
Implication: May cause loss of parity checking in L2 cache. The system may not raise CMCIs on

parity errors.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

178. PAL_HALT_INFO returns an inaccurate value for power savings
information

Problem: PAL_HALT_INFO returns an inaccurate value for power savings
Implication: The power savings returned is higher than the actual power savings.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

179. PAL_SET_HW_POLICY uses uninitialized register to initialize thread
priority

Problem: PAL_SET_HW_POLICY results in an uninitialized value being used by msr_ebl_thread_1
for the “high” and “exclusive high” priority settings.

Implication: May have a performance effect on systems that call PAL_SET_HW_POLICY to control
multithreaded performance settings.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

Errata (Processor and PAL)

82 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

180. PAL_SET_HW_POLICY may not preserve predicate bit p5
Problem: PAL_SET_HW_POLICY may not preserve predicate bit p5.
Implication: Predicate bit p5 may become corrupted if one thread has set the policy to exclusive,

and then a subsequent thread attempts to modify the policy.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

181. PAL_MC_RESUME clears branch registers b6, b7
Problem: PAL_MC_RESUME clears branch registers b6 and b7.
Implication: This could cause undefined behavior.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

182. Snooped L3 tag and/or state ECC error sometimes reports wrong
address

Problem: If a snoop that detects an error in the L3 tag or state (any way) is followed closely by a
snoop that does not incur an error, the second snoop address is incorrectly logged as
the error address.

Implication: 1x or 2x ECC errors may be logged with an incorrect error address.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

183. PAL_PSTATE_INFO returns data not compliant with the SDM
Problem: The two 64 bit blocks of each pstate_buffer entry are in the opposite order of what is

specified in SDM revision 2.2 and later.
Implication: PAL_PSTATE_INFO returns data in an unspecified format.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

184. Calls to PAL_MC_ERROR_INFO could cause a processor hang
Problem: Saving of registers R7 and R12 in PAL_MC_ERROR_INFO may cause a NaT fault, and

because psr.ic is 0 at the time of the fault the interrupt context cannot be resumed.
Implication: Calls to PAL_MC_ERROR_INFO may hang the processor if the NaT bits are set for R7 or

R12.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

185. PAL_VPS_THASH virtualization service may return an incorrect value
Problem: The PAL_VPS_THASH virtualization service may return an incorrect value for the 64-bit

Virtual Hashed Page Table (VHPT) entry address.
Implication: The calculated return value may be incorrect when this procedure is called.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

186. High Priority performance policies turn ALAT switch event "ON"
Problem: PAL_SET_HW_POLICY with High Priority or Exclusive High Priority performance settings

will turn ALAT switch events “ON” when they should always be “OFF”.
Implication: Spurious thread switches may be observed when using the high performance policies

High or Exclusive High Priority.

Intel® Itanium® Processor Specification Update 83
Specification Update April 2014

Errata (Processor and PAL)

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

187. Cache error on modified line generates a target identifier of zero
Problem: PAL_MC_ERROR_INFO reports target data available for L2D 2xECC errors, but when

queried the return may be either 0, or an incorrect target address.
Implication: Memory ECC errors may not be recoverable in all cases.
Workaround: If a bus error occurs concurrently with the L2D error, use the target address from the

bus error as the L2D error address.
Status: See the Summary Table of Changes for affected steppings.

188. Masking MCAs without masking CMCIs could result in a system hang
Problem: Code which masks MCAs without masking CMCIs allows lower priority CMCs to be

handled by the OS before higher priority MCAs errors can be handled by PAL.
Occurrences of this scenario may result in an internal hang in the PAL code when
machine checks are unmasked and the MCA is handled.

Implication: System hangs may be observed.
Workaround: Do not enable CMCIs when machine checks have been masked.
Status: See the Summary Table of Changes for affected steppings.

189. Logical to Physical mapping reported incorrectly for single core Intel
Itanium 9000 Series processors

Problem: The PAL_LOGICAL_TO_PHYSICAL call does not report the correct number of logical
processors on single core Intel Itanium 9000 Series processors.

Implication: The PAL_LOGICAL_TO_PHYSICAL call reports an incorrect logical number of
processors; although the number of cores per processor and threads per core are
correctly reported.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

190. Non-deterministic processor initialization may result in a fatal loss of
SLL

Problem: Non-deterministic processor initialization may result in a fatal loss of the SLL
environment due to system interface transactions reaching the socket lockstep
boundary at different times.

Implication: Non-deterministic initialization of processor registers may result in a fatal loss of SLL.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

191. PAL_MC_ERROR_INFO may incorrectly report the way index as being
invalid

Problem: PAL_MC_ERROR_INFO may incorrectly report the way index as being invalid (wiv=0)
for L2D 1x or 2x ECC and L2T 1x ECC errors.

Implication: Incorrect reporting that the way index is invalid when it may be valid.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

192. General exception fault due to corruption of the DMSI bit
Problem: If an MCA occurs during the window where a thread semaphore is being released and

entering low power mode, a general exception fault may occur due to corruption of the
Disable Model Specific Instruction (DMSI) bit such as halt.mf by the other logical
processor.

Errata (Processor and PAL)

84 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Implication: Occurrence of a general exception fault when a MCA occurs in conjunction with
entrance to a low power mode.

Workaround: Disabling hyper-threading may be used as a work around.
Status: See the Summary Table of Changes for affected steppings.

193. PAL_MC_ERROR_INJECT called in virtual mode may result in
unexpected behavior

Problem: PAL_MC_ERROR_INJECT called in virtual mode with err_struct_info.siv=1 may result in
undefined behavior.

Implication: System hangs and other unexpected behavior may observed.
Workaround: Use physical mode when using PAL_MC_ERROR_INJECT.
Status: See the Summary Table of Changes for affected steppings.

194. PAL_MC_ERROR_INJECT called in physical mode with a virtual
address may result in unexpected behavior

Problem: PAL_MC_ERROR_INJECT called in physical mode with a virtual address for cache error
injection may result in a system hang.

Implication: Using the virtual address with physical mode may cause unexpected behavior.
Workaround: Use the physical address when using PAL_MC_ERROR_INJECT.
Status: See the Summary Table of Changes for affected steppings.

195. 1 bit L3 tag errors in invalid or CST disabled set and way are
incorrectly scrubbed

Problem: Intel® Itanium® Processor 9000 Series processor and PAL typically scrub 1 bit L3 tag
errors to prevent them from becoming 2 bit errors. In PAL 7.46, 1 bit tag errors in
invalid or Cache Safe Technology (CST) disabled set and way will not be correctly
scrubbed. PAL 8.30 correctly scrubs invalid and CST disabled 1 bit L3 tag errors and
prevents them from being re-discovered with a BERR severity.

Implication: Unscrubbed 1 bit L3 tag errors in PAL 7.46 are re-discovered by the processor and PAL,
but with the severity of the event elevated to a BERR. PAL releases 8.30 and later do
not have this erratum.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

196. Incorrect logging of L3 tag and data errors due to errata 122 and 182
may result in a BERR

Problem: Errata 122 and 182 cause L3 1x and 2x tag or data ECC errors to be logged with an
incorrect address. These errors are re-discovered by the processor and PAL, but with
the severity elevated to a BERR.

Implication: Errata 122 and 182 may also result in a BERR.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

197. MCAs erroneously processed by both logical processors
Problem: If a system has enabled promotion of CMCIs to recoverable MCAs, some MCAs that are

to be processed by a single logical processor may instead be processed by both logical
processors on the same core.

Implication: Under certain timing conditions, the thread not expected to process the MCA can be
forced to handoff with a fatal severity to SAL. This may result in unwanted system
shutdowns.

Workaround: This issue may be avoided by disabling hyper-threading.
Status: See the Summary Table of Changes for affected steppings.

Intel® Itanium® Processor Specification Update 85
Specification Update April 2014

Errata (Processor and PAL)

198. Calling PAL_MC_CLEAR_LOG while in single issue mode during ETM
may prevent exit from Single Issue Mode

Problem: The processor may not be able to exit single issue mode in the case where in the call to
the PAL_MC_CLEAR_LOG procedure occurs while the processor is in single issue mode
due to Enhanced Thermal Management (ETM).

Implication: The processor performance may be impacted.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

199. PAL_MC_RESUME may flag valid min_state pointer as invalid
Problem: The PAL_MC_RESUME procedure incorrectly checks bits[40:0] instead of bits[49:9] for

a non-zero pointer.
Implication: PAL may report false errors on the min_state buffers passed to it by the SAL.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

200. PAL_CHECK and PAL_MC_CLEAR_LOG do not account for initial SLL
settings

Problem: PAL_CHECK and PAL_MC_CLEAR_LOG do not account for initial SLL settings during
Socket Level Lockstep (SLL) initialization.

Implication: In SLL configurations, L3 tag, L3data and system bus 1x ECC errors may be
erroneously promoted to MCAs resulting in a loss of lockstep operation.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

201. A general exception may be observed in the LPM flow at loadrs
Problem: An Illegal operation fault may be observed when a loadrs instruction is executed within

the context_restore code of the Logical Processor Migration (LPM) flow.
Implication: The illegal operation fault may result in a system hang.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

202. Illegal operation fault due to erroneous initialization
Problem: Illegal operation faults may be taken due to erroneous initialization of r.pta.
Implication: Unwanted system shutdowns may be observed.
Workaround: Initialize cr.pta (0x40) before its use in SAL_A.
Status: See the Summary Table of Changes for affected steppings.

203. Repeatedly entering and exiting ETM may cause unexpected MCAs or
XPN timeout BINITs

Problem: In some instances where the processor repeatedly enters and exits Enhanced Thermal
Management (ETM), unexpected MCAs, or BINITs due to XPN timeouts, may be
observed.

Implication: System hangs may be observed.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

Errata (Processor and PAL)

86 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

204. An MCA in the middle of read/write operations to internal structures,
for example, TLB, cache, and TR registers, could cause a system hang
in some instances

Problem: PAL may access processor micro-architectural state registers, for example, TLB, cache,
and TR registers, while satisfying SAL or OS requests. If these accesses are interrupted
by an MCA, the results of the low level access may be corrupted or cause the processor
to not retire more instructions once the MCA handling is complete.

Implication: A system hang could occur.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

205. Unexpected fault may be observed when calling the
PAL_SET_PSTATES procedure

Problem: PAL changes PSR.dt from 0 to 1 and serializes it with a srlz.d before returning to the
caller. The write to PSR.dt to 1 is not seen on the I-side when the return instruction in
the driver is executed. This makes the front-end assume that the VHPT is off and
therefore a Alternate Instruction TLB fault is generated rather than a regular
Instruction TLB Fault.

Implication: A system hang could occur.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

206. PAL_MC_ERROR_INFO could incorrectly handle a logged overflow
condition

Problem: The structure specific error information (SSEI) for a L2D cache_check with overflow
could be incorrect. PAL_MC_ERROR_INFO could incorrectly handle a logged overflow
condition and fail to clear the following SSEI fields: op, way, wiv, index, and tv.

Implication: A logging issue could occur during a logged overflow condition.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

207. PAL_MC_ERROR_INFO could return CC_TV==1, but when queried for
the TA return an incorrect or zero TA

Problem: PAL_MC_ERROR_INFO could indicate a cache check target value, but return an
incorrect target address or zero.

Implication: An incorrect cache check target address may be logged.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

208. MCA during PAL_HALT_LIGHT followed by another MCA may result in
unexpected behavior

Problem: If a MCA occurs when the processor is in the PAL_HALT_LIGHT state, PAL may
incorrectly leave low power state enabled during the handling of any subsequent MCA
on the same logical processor. After a subsequent MCA is handled, execution involving
reading/writing of cache structures or TLB registers may result in unexpected behavior.

Implication: Unexpected behavior observed may include BINITs due to XPN timeouts and exception
faults.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

Intel® Itanium® Processor Specification Update 87
Specification Update April 2014

Errata (Processor and PAL)

209. PAL_MC_ERROR_INFO MI and CM bits may report incorrect values
Problem: When PAL_MC_ERROR_INFO is called with index set for the Processor Status Parameter

(PSP), the value of the MI and CM bits may indicate that an error has occurred even in
cases where no error occurred.

Implication: Value of the MI and CM bits may be incorrect.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

210. Processor Error Map (PEM) index may be inconsistent with the value
reported by Processor Status Parameter (PSP) index

Problem: When using PAL_MC_ERROR_INFO the value reported by the Processor Error Map
(PEM) index may be inconsistent with the value reported by Processor Status
Parameter (PSP) index.

Implication: Value of the PEM index may be inconsistent with value of the PSP index.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

211. PAL_MC_ERROR_INFO may incorrectly report op=load
Problem: PAL_MC_ERROR_INFO may incorrectly report op=load when it should report op = store

for a RFO error type.
Implication: Incorrect reporting as op = load by PAL_MC_ERROR_INFO.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

212. During MCA handling one of the logical processors may not hand off to
SAL

Problem: In the rare event that there is a nested error on one logical processor and during the
MCA handling of that error another nested error occurs on the other logical processor in
the same core then one of the logical processors may not hand off to SAL as expected.

Implication: This issue may result in unexpected system hangs.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

213. If a PAL initiated reset occurs while processing a ptc.g transaction,
the system bus may continue to indicate the previous ptc.g
transaction is still pending

Problem: An option for calling PAL_HR_ENTER allows for PAL to perform a core reset to enter or
exit Core Level Lockstep (CLL). If this reset occurs while the cores are processing a
ptc.g instruction from the system interface, the socket may fail to correctly indicate
completion of the ptc.g by the cores and prohibit progress of further ptc.g transactions.

Implication: Processors will not be able to issue a PTC.g transaction. However, all other system bus
transactions can be processed.

Workaround: Ensure ptc.g transactions are complete before calling PAL_HR_ENTER with the option
for PAL to initiate the needed synchronization reset.

Status: See the Summary Table of Changes for affected steppings.

214. The Instruction Pointer captured may not be correct when monitoring
ALAT mis-events

Problem: The Instruction Pointer captured may not be correct when Data-Event Address Register
is programmed to monitor ALAT miss events.

Implication: The wrong value for the Instruction Pointer may be captured.

Errata (Processor and PAL)

88 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

215. Core Level Lockstep (CLL) mode may not be working as expected
Problem: Using the PAL_HR_ENTER procedure to enter Core Level Lockstep may result in the

processor not entering CLL mode as expected and other undefined behavior.
Implication: Core Level Lockstep may not be working as expected.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

216. Unexpected exit out of PAL_HALT_LIGHT
Problem: A logical processor may unexpectedly exit out of the low power PAL_HALT_LIGHT state

when the other logical processor is active.
Implication: A logical processor may no longer be in the expected PAL_HALT_LIGHT state.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

217. Unexpected XOR divergence resulting in a BINIT
Problem: Unexpected XOR divergence resulting in a BINIT may be observed when running in the

Core Level Lockstep (CLL) mode.
Implication: Loss of Core Level Lockstep (CLL) may be observed.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

218. The PAL_HALT_INFO procedure may provide inaccurate power
consumption information

Problem: The PAL_HALT_INFO procedure may provide inaccurate power consumption
information.

Implication: Inaccurate power consumption information is provided.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

219. When the PAL_CONTEXT_SAVE procedure is called, an unexpected
MCA may be observed between the time of the original MCA and the
PAL_CONTEXT_SAVE procedure call

Problem: The PAL_CONTEXT_SAVE procedure may not update the Register Stack Engine (RSE)
appropriately if the RSE value has changed between the time of the original MCA and
the PAL_CONTEXT_SAVE procedure call.

Implication: This may may lead to unexpected behaviors or faults in the code after context restore
that is dependent upon the RSE state being restored.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

220. PAL_VP_REGISTER and PAL_VP_CREATE procedures should check for
illegal vac/vdc combinations

Problem: PAL_VP_CREATE and PAL_VP_REGISTER procedures do not check for illegal
combinations of accelerations and disables. Illegal combinations will not result with an
invalid parameter return status. Running illegal combinations will result in unknown or
unpredictable behavior.

Implication: Intended virtualization optimizations may not be correctly applied.
Workaround: Caller should verify correct application of virtualization optimizations.

Intel® Itanium® Processor Specification Update 89
Specification Update April 2014

Errata (Processor and PAL)

Status: See the Summary Table of Changes for affected steppings.

221. MCA's arriving during the PAL_MC_ERROR_INFO call can cause
misalignment of the register stack base

Problem: A MCA arriving during a call to PAL_MC_ERROR_INFO will cause corruption of the
stacked registers for MCA’s which are not PAL corrected.

Implication: The register stack could become corrupted resulting in undefined behavior.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

222. The PAL_MC_ERROR_INFO call Reg_File_Check return does not
include the operation type field

Problem: The PAL_MC_ERROR_INFO call Reg_File_Check returns unknown operation type.
Implication: The operating system cannot recover Read/Write operations without the operation

type.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

223. The INIT event will not be taken in some timing conditions
Problem: An INIT which interrupts the PAL_PMI handler before it can hand off to the registered

SAL_PMI handler may cause PAL to fail to handle the INIT and hand off to the SAL_INIT
handler. The PMI that triggered the PAL_PMI handler must have also interrupted a PAL
procedure during a code section indicated as critical.

Implication: In some timing conditions, an INIT may be signaled, but not handed off to the SAL INIT
handler.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

224. MCA during PAL_HALT or PAL_HALT_LIGHT may result in unexpected
behavior

Problem: If an MCA occurs while the processor is in the PAL_HALT or PAL_HALT_LIGHT state, PAL
may incorrectly leave low power state enabled during the execution of SAL_CHECK and
beyond. Subsequent PAL operations involving reading/writing of internal structures
may result in unexpected behavior.

Implication: Unexpected behavior may result if an MCA which is not fully PAL corrected (and
resumed) wakes up a logical processor from the low power state.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

225. MC_ERROR_INFO will incorrectly report "corrected" for some
bus_check queries

Problem: On uncacheable read poison or hard fail returns, PAL_MC_ERROR_INFO will return an
incorrect “corrected” indicator in the bus_check return value. This is inconsistent with
the (accurate) severity reported by the PSP.

Implication: Error-specific queries for UC poison and UC hard fail returns will always incorrectly
indicate “corrected”.

Workaround: The PSP severity at SAL_CHECK handoff should always take precedence over error-
specific queries.

Status: See the Summary Table of Changes for affected steppings.

Errata (Processor and PAL)

90 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

226. PAL_CACHE_DISABLED_LINE_INFO doesn't report set0/way0
disabled

Problem: The procedure PAL_CACHE_DISABLED_LINE_INFO does not correctly report on status
of set0/way0. It will skip counting that cell if it happens to be disabled.

Implication: If set0/way0 is disabled, the value returned by PAL_CACHE_DISABLED_LINE_INFO will
be off by one.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

227. PAL_CONTEXT_SAVE stores RSE resources in MCA/INIT prior to
procedure being called

Problem: Logical Processor Migration is only supported in INIT or MCA flows and the RSE
resources saved by PAL_CONTEXT_SAVE are the values at the time the INIT or MCA is
taken.

Implication: Resource values changed between time of INIT/MCA and calling the
PAL_CONTEXT_SAVE procedure may not be properly saved and restored by Logical
Processor Migration.

Workaround: If calling Logical Processor Migration procedures, stacked RSE resources must be saved
and restored by SAL.

Status: See the Summary Table of Changes for affected steppings.

228. The flush cache operation could result in L2D errors being placed on
the FSB

Problem: The L2 tag array does not provide a corrected tag through a diagnose read.
Implication: An invalid bus transaction to an invalid address could occur resulting in a FSB error.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

229. MCA to BINIT promotion not supported on Itanium processors
Problem: MCA to BINIT promotion is not implemented on the Itanium processors.
Implication: Software depending upon MCA to BINIT promotion may not behave as expected.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

230. PAL does not preserve certain PSR bits at handoff points
Problem: PAL does not preserve 3 bits of the PSR at the following PAL exit points: PALE_CHECK,

PALE_INIT, PAL_PMI. The bits that are not preserved are PSR.mfl, PSR.mfh, and
PSR.pk. PAL clears these bits at each PAL exit point.

Implication: The PSR values for these bits will always be zero at a PAL exit point, regardless of the
state of the bits in the interrupted context.

Workaround: SAL or OS applications can still access or restore the correct bit values by referencing
the IPSR register or the IPSR value stored in minstate (for PALE_CHECK and
PALE_INIT).

Status: See the Summary Table of Changes for affected steppings.

231. When PAL_MC_ERROR_INJECT is used for CLL error recovery testing,
an unexpected FATAL Loss of Lockstep MCA may be observed

Problem: .The PAL_MC_ERROR_INJECT forced MCA event that is used to inject loss of lockstep
MCA in CLL mode testing may result in a FATAL Loss of Lockstep error being observed,
as reported by the PSP.

Implication: The PAL_MC_ERROR_INJECT function cannot be used to test for CLL recoverable errors
in some cases.

Intel® Itanium® Processor Specification Update 91
Specification Update April 2014

Errata (Processor and PAL)

Workaround: Use special firmware builds provided to test Core Level Lockstep error recovery.
Status: See the Summary Table of Changes for affected steppings.

232. Unexpected BINIT may be observed in CLL error recovery flow when
XOR_BINIT is enabled

Problem: An unexpected BINIT is sometimes observed when XOR_BINIT is enabled during CLL
recovery. The unexpected BINIT may be caused by state left over from the Loss of
Lockstep event that has not yet been re-initialized.

Implication: Lockstep recovery may unexpectedly fail do to a BINIT.
Workaround: Use special firmware build provided to test Core Level Lockstep.
Status: See the Summary Table of Changes for affected steppings.

233. The PAL_MC_ERROR_INFO call Reg_File_Check return does not
include the reg_num field

Problem: The PAL_MC_ERROR_INFO call Reg_File_Check does not return the reg_num.
Implication: Operating systems can not record the reg_num from the Reg_File_Check return.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

234. Retrieving poisoned code from memory may lead to infinite MCA
signaling/handling

Problem: Code accesses (demand or prefetch) which go to memory and return poisoned I-side
data can result in an infinite loop of PAL-corrected MCAs instead of the expected
recoverable MCA signaling. This can effectively result in a system hang.

Implication: System may become unavailable or unresponsive.
Workaround: Disabling interrupt-based CMCIs and using polling mode should resolve this situation.
Status: See the Summary Table of Changes for affected steppings.

235. Mid-level L2d data cache operations could result in an unexpected
Hardware Page Walker (HPW) Abort, or other unexpected processor
behavior

Problem: A specific complex sequence of operations and events in the mid-level L2d data cache
can lead to an unexpected HPW abort, or other unexpected processor behavior.

Implication: If the complex sequence of operations and events is encountered, more HPW aborts
will be seen and potentially other unexpected processor behavior. Intel has not
observed the issue with any commercially available operating system environments or
applications and has received no customer reports of this issue.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected steppings.

236. Calling PAL_TEST_PROC for phase-one processor self tests will
corrupt all Protection Key Registers (PKRs)

Problem: Calling PAL_TEST_PROC with test_phase=1 in order to execute the phase-one
processor self tests will result in all of the PRKs being corrupted from their original
values.

Implication: Protection key registers are not preserved after calling the PAL_TEST_PROC procedure
to execute the phase-one processor self tests.

Workaround: Save/restore or re-initialize PKR values after PAL_TEST_PROC completes.
Status: See the Summary Table of Changes for the affected steppings.

Errata (Processor and PAL)

92 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

237. Under a complex set of conditions, store to load forwarding for a sub
8-byte load may complete incorrectly

Problem: A load instruction may complete incorrectly when a code sequence using 4-byte or
smaller load and store operations to the same address is executed in combination with
specific timing of all the following concurrent conditions: store to load forwarding,
alignment checking enabled, a mis-predicted branch, and complex cache utilization
activity.

Implication: The affected sub 8-byte instruction may complete incorrectly resulting in unpredictable
system behavior. There is an extremely low probability of exposure due to the
significant number of complex microarchitectural concurrent conditions required to
encounter the erratum.

Workaround: Set PSR.ac = 0 to completely avoid the erratum. Disabling Hyper-Threading will
significantly reduce exposure to the conditions that contribute to encountering the
erratum.

Status: See the Summary Table of Changes for the affected steppings.

Intel® Itanium® Processor Specification Update 93
Specification Update April 2014

Specification Clarifications

7 Specification Clarifications

There are no new Specification Clarifications for this revision of the Intel®

Itanium® Processor Specification Update.

1. Error logging of deferred IPIs

In the case that an IPI is deferred by the processor and the chipset responds to the
deferred IPI with a hard-fail response in the deferred reply transaction, the processor
will not log or generate an MCA associated with the hard-fail. Hard-fail response to the
deferred IPI can, however, be logged by the chipset.

2. Branch prediction across the 40-bit boundary

Chapter 7, of the Intel® Itanium® 2 Processor Reference Manual for Software
Development and Optimization, May 2004, details Branch Instructions and Branch
Prediction. The following clarification will be added to the introduction of Chapter 7.

• “A branch prediction across a 40-bit boundary may result in an incorrect target
prediction on Itanium processors. Please refer to Table 4-2 for branch prediction
latencies in such cases.”

3. PAL_FREQ_RATIOS in the Intel Itanium Architecture Software
Developers Manual, revision 2.2

This is to clarify that when the PAL procedure PAL_FREQ_RATIOS is used for the Intel
Itanium-2 processors and the ratio reported is not approximated to the second
decimal, the resulting value may be slightly less than the expected integer ratio. For
example, when using parts with a maximum frequency of 1.6 GHz, the ratio reported is
1600:267. When not approximated to the second decimal place, the actual value of this
ratio will be slightly less than 6:1. As a result, if the system bus frequency used for the
calculation of the maximum core frequency is less than 267 MHz, the calculated core
frequency may be slightly less than 1.6 GHz.

Documentation Changes

94 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

8 Documentation Changes

There are no new Documentation Changes for this revision of the Intel®

Itanium® Processor Specification Update.

1. PAL_MC_ERROR_INJECT err_data_buffer description change

In the SDM 2.2, Vol. 2, PAL_MC_ERROR_INJECT procedure, the last parameter,
description of 'err_data_buffer' reads:

64-bit physical address of a buffer providing additional parameters for the requested
error. The address of this buffer must be 8-byte aligned.

The description will be changed to:

Unsigned 64-bit integer specifying the address of the buffer providing additional
parameters for the requested error. The address of this buffer must be 8-byte aligned.

2. PAL_MC_ERROR_INJECT procedure err_struct_info - Register File
change

In the SDM 2.2, Vol. 2, PAL_MC_ERROR_INJECT procedure, Table 11-95 err_struct_info
- Register File

The “Bits” column of “reg_num” will change from (8 bits required):

11:5

to:

12:5

The “Bits” column of “Reserved” (row below reg_num) will change from:

31:12

to:

31:13

Intel® Itanium® Processor Specification Update 95
Specification Update April 2014

Errata (IA-32 Execution Layer)

9 Errata (IA-32 Execution Layer)

There are no new IA-32 Execution Layer Errata for this revision of the Intel®

Itanium® Processor Specification Update.

1. Ordering of loads and stores
Problem: IA-32 execution layer (EL) reorders IA-32 loads and stores during code optimization. In

versions 4 and 5 of IA-32 EL, under some conditions, IA-32 applications executing on
IA-32 EL that share memory between processes, or explicitly setting affinity for running
logical processors, may not maintain processor ordering of loads and stores.

In version 5 of IA-32 EL, loads and stores of different threads in the same process are
guaranteed to follow the processor-ordering rules, except the case that the application
explicitly sets the affinity mask of a running thread, and except for floating-point
operations (fld and fst instructions) that may expose weak ordering behavior. Integer
memory accesses of the same process keep processor-ordering both between
themselves and with respect to floating-point memory accesses.

Implication: Multiprocessor or multithreaded IA-32 applications that share memory between
processes or explicitly set the affinity mask, and in addition depend upon processor
ordering, or use fld and fst IA-32 instructions as synchronization semaphores, may not
behave as expected. Locks, semaphores, and all other fencing instructions maintain
strong ordering and have no exposure to this erratum. Intel has not been able to
reproduce incorrect program behavior due to this erratum with commercial software.

Workaround: Multiprocessor or multithreaded IA-32 applications should protect access to shared
variables with locks, semaphores, or OS synchronization.

Status: For the steppings affected, see the Summary Table of Changes.

2. Segmentation not supported
Problem: IA-32 execution layer does not support segmentation, and only limited support for

segmentation registers is provided.
Implication: IA-32 applications that use segmentation may not operate as expected when executing

on IA-32 execution layer. Check with your OS vendor to determine if segmented IA-32
applications are supported.

Workaround: IA-32 applications should use the flat 32-bit addressing.
Status: For the versions affected, see the Summary Table of Changes.

3. 16-bit application mode not supported
Problem: IA-32 execution layer does not support 16-bit application mode. The size address prefix

(0x67) is supported only for allowed segment overrides.
Implication: IA-32 applications running on IA-32 execution layer that use 16-bit application mode

may not behave as expected. IA-32 execution layer does support 16-bit instructions.
Workaround: IA-32 applications should use 32-bit application mode.
Status: For the versions affected, see the Summary Table of Changes.

4. IA-32 floating-point state
Problem: FPUDataPointer, FPUInstructionPointer, and FPULastInstructionOpcode fields of the

floating-point (FP) state are not updated by the FSAVE, FNSAVE, FXSAVE, FSTENV, and
FNSTENV instructions.

Implication: IA-32 code running on IA-32 execution layer using FSAVE, FNSAVE, FXSAVE, FSTENV, or
FNSTENV instructions cannot retrieve FPUDataPointer, FPUInstructionPointer, and
FPULastInstructionOpcode fields from the last non-control FP instruction using these
instructions. The last FP state is guaranteed only upon unmasked FP exceptions.

Workaround: To get FP state on exceptions, one needs to use the OS-provided context. For example,
the user can get the exception record from Windows or use sigcontext on Linux.

Errata (IA-32 Execution Layer)

96 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Status: For the versions affected, see the Summary Table of Changes.

5. Floating-point C1 condition code flag support
Problem: IA-32 execution layer does not set the floating-point C1 condition code flag when the

last rounding by the instruction was upward. Other C1 behavior is unaffected.
Implication: IA-32 code running on IA-32 execution layer that depends upon the C1 condition code

flag to identify upward rounding may not behave as expected.
Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

6. IA-32 floating-point pseudo-denormal, pseudo-NaN, and pseudo-
infinity support

Problem: IA-32 execution layer will treat pseudo-denormal, pseudo-NaN, and pseudo-infinity
values as un-normalized numbers, normalize them, and continue operation rather than
raise a denormal exception.

Implication: IA-32 code running on IA-32 execution layer using pseudo-denormal, pseudo-NaN, and
pseudo-infinity values may not behave as expected. Note that IA-32 processors since
the Intel® 387 math coprocessor do not generate pseudo-denormal, pseudo-NaN, and
pseudo-infinity values.

Workaround: IA-32 applications should avoid using floating-point encodings not supported by the
final version of the IEEE Standard 754.

Status: For the versions affected, see the Summary Table of Changes.

7. Behavior of quiet and signaling NaNs

These NaN operations have the following behavior:
1. Floating-point operations involving an SNaN operand and a QNaN operand will

return a QNaN with the significand of the lesser operand. When moving values
using FLD followed by FSTP, IA-32 execution layer may not convert SNaNs to
QNaNs.

2. SSE operations performed on a pair of XMM registers that contain QNaN values
may result in the destination changing to the resultant QNaN.

Implication: IA-32 code running on IA-32 execution layer that depends upon SNaN or QNaN
behavior may not behave as expected.

Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

8. IA-32 floating-point exceptions
Problem: On a FP exception, IA-32 execution layer will set the denormalized operand exception

flag when a denormal value has been stored and will set the inexact precision exception
flag when an unmasked overflow/underflow fault occurs.

Implication: IA-32 code running on IA-32 execution layer depending upon the denormalized or
inexact precision flags may not behave as expected.

Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

9. Partial support for EFLAGS
Problem: IA-32 execution layer supports the ID, OF, DF, SF, ZF, AF, PF, CF, and TF EFLAG bits. The

IF flag is held to 1. The VIP, VM, and IOPL flags are held to 0. The AC, NT, and RF flags
can be written and read by POPF and PUSHF operations, but their semantics are not
simulated.

Implication: IA-32 code running on IA-32 execution layer depending upon privileged EFLAGS state
or the AC, NT and RF flags may not behave as expected.

Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 97
Specification Update April 2014

Errata (IA-32 Execution Layer)

10. EFLAGS and floating-point exception flag behavior
Problem: EFLAG and FP exception flags may have incorrect behavior when read from an

exception handler context, when read from another thread or process, or read by self-
modifying code if the flags are not consumed in the original context.

Note: EFLAG and FP exception flags are correct under the use of a debugger.
Implication: Multiprocess, multithreaded, or self-modifying IA-32 code running on IA-32 execution

layer reading EFLAGS or FP exception flags may not behave as expected if the flags are
not consumed in the original context.

Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

11. RSM and IRET instructions raise incorrect faults
Problem: On IA-32 execution layer, RSM calls raise a general protection fault, and IRET calls raise

an illegal operation fault.
Implication: These are not expected to occur in user mode.
Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

12. Cross-modifying code
Problem: IA-32 execution layer may not maintain execution consistency of multiprocess cross-

modifying IA-32 code if a process has opened the instruction page with read-only
permission.

Implication: Multiprocess cross-modifying IA-32 applications may not behave as expected, if a
process has opened the instruction page with read-only permission.

Workaround: Multiprocess cross-modifying IA-32 applications should open modified instruction pages
with read/write access.

Status: For the versions affected, see the Summary Table of Changes.

13. Atomicity of lock-prefixed instructions making unaligned memory
references

Problem: On IA-32 execution layer, an IA-32 lock-prefixed instruction making an unaligned
memory reference is performed atomically only with respect to other lock-prefixed
instructions making unaligned memory accesses in the same process.

Implication: If an unaligned memory access is made to the same physical address by a lock-prefixed
instruction and another process, an instruction without a lock prefix, or an aligned lock-
prefixed instruction, atomicity is not guaranteed, and the code may not behave as
expected.

Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

14. Atomicity of lock-prefixed instructions making uncacheable memory
references

Problem: On IA-32 execution layer, an IA-32 lock-prefixed instruction making an uncacheable
memory reference is performed atomically only with respect to other lock-prefixed
instructions making uncacheable memory accesses in the same process.

Implication: If an uncacheable memory access is made to the same physical address by a lock-
prefixed instruction and another process, an instruction without a lock prefix, or an
uncached lock-prefixed instruction, atomicity is not guaranteed and the code may not
behave as expected.

Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

Errata (IA-32 Execution Layer)

98 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

15. Noninterruptability of 32-bit unaligned and 16-byte stores
Problem: On IA-32 execution layer, if a thread is suspended during a 32-bit unaligned or a 16-

byte IA-32 store to cached memory, another thread may observe partially updated
memory until the OS can service the thread suspension.

Implication: When a process performs 32-bit unaligned or 16-byte stores, partial memory updates
may be observed by other threads until the OS can service the thread suspension,
resulting in unexpected behavior.

Workaround: None at this time.
Status: For the versions affected, see the Summary Table of Changes.

16. IA-32 execution layer install and uninstall failures
Problem: On some Itanium-based platforms, incorrect reports may be seen while installing or

uninstalling IA-32 execution layer.
Implication: During installation, the IA-32 execution layer installer “IA-32ExecutionLayerSetup.exe”

may incorrectly report that a previous version has been installed and ask the user to
remove the previous installation.

After an uninstall and subsequent reboot, the system may incorrectly ask users to
reinstall IA-32 execution layer.

Workaround: Users should download the latest IA-32 execution layer installer “IA-
32ExecutionLayerSetup_1.exe”(revision 1 or greater) from the Microsoft* download
center.

Status: For the versions affected, see the Summary Table of Changes.

17. Self-modifying code on unaligned memory may result in an access
violation

Problem: If an IA-32 application contains a basic code block that;
• Is doing self-modifying code,

• That modifies the very first instruction of the basic code block, and

• This basic block accesses an unaligned memory address.

Then the application may crash with an access violation (general protection fault).
Implication: Applications that use a self-modifying basic block on unaligned memory addresses may

fail and result in a general protection fault.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Table of Changes.

18. Large data file accesses may return incorrect data
Problem: When a Linux-based IA-32 application running on IA-32 execution layer tries to access

a file-offset beyond 4 GB, the wrong data may be accessed.
Implication: The use of incorrect data may result in unpredictable system behavior.
Workaround: None at this time. This issue is fixed in version 5.3.81.31.21 and above.
Status: For the steppings affected, see the Summary Table of Changes.

19. IA-32 EL applications will not run on kernels with page sizes greater
than 16k

Problem: When a Linux kernel is built using a page size greater than 16 k, IA-32 applications
utilizing the IA-32 execution layer will not load or run.

Implication: IA-32 processes that are loaded will immediately crash.
Workaround: None at this time. This issue is fixed in version 5.3.88.34.22 and above.
Status: For the steppings affected, see the Summary Table of Changes.

Intel® Itanium® Processor Specification Update 99
Specification Update April 2014

Errata (IA-32 Execution Layer)

20. IA-32 EL may incorrectly optimize frequently executed code with
interleaved integer and floating-point flag operations that include
producer/consumer code sequences

Problem: The IA-32 EL may optimize frequently executed instructions with a faster code
sequence. A special case exists when the following conditions are met:

• The IA-32 application code includes floating-point and integer code sequences that
use flags in a producer and consumer programming model.

• The iterations of this code are large enough to benefit from IA-32 EL performance
optimization.

In the case where the integer and floating-point code is intermixed it is possible under
certain conditions for the code optimization to incorrectly translate the flags used by
the consuming code.

Implication: IA-32 application code with intermixed integer and floating-point flag producer/
consumer sequences may fail with unpredictable results if this code is optimized by
IA-32 EL. This erratum affects versions 5.3.5336 to 5.3.5337 of IA32Exec.bin. Version
5.3.5338 of IA32Exec.bin contains a fix for this erratum.

Workaround: If possible avoid mixing the integer and floating-point code sequences used in a
producer/consumer programming model.

Status: For the steppings affected, see the Summary Table of Changes. Version 5.3.5338 of
IA32Exec.bin contains a fix for this erratum.

21. IA-32 code running with the IA-32 EL may see an SSE Exception being
ignored after the FPREM1 instruction is executed

Problem: In the case where the following conditions are met:
• IA-32 code is being executed through IA-32 EL.

• The IA-32 code clears one or more of the SSE exception mask bits in the MXCSR
register.

• The corresponding FCW register bit or bits are set.

When the IA-32 code is executed and calls the FPREM1 instruction the bits in the
emulated mask in the MXCSR register may not be cleared until after FPREM1 has
completed its execution.

Implication: An IA-32 procedure that turns off a bit in the MXCSR register SSE exception mask but
fails to do the same for the corresponding FCW bit, may find that if an exception occurs
during the execution of the FPREM1 instruction the exception could be ignored. This
erratum affects IA-32 EL version 4 and 5, fixed in version 5.3.5338 of IA32Exec.bin.

Workaround: The setting or clearing of the exception mask bits should match in both the FCW and
MXCSR registers or avoid using the FPREM1 instruction.

Status: For the steppings affected, see the Summary Table of Changes.

22. An IA-32 EL optimized code procedure with interleaved MMX™ and
SSE code may experience an application hang

Problem: The IA-32 EL may optimize frequently executed instructions with a faster code
sequence. If the code loop contains interleaved MMX™ and SSE instructions under
complex and rare conditions the application may hang.

Implication: An IA-32 application that mixes SSE and MMX code in a frequently executed code
procedure may experience an application hang. Affects IA-32 EL version 5, fixed in
version 5.3.5338 of IA32Exec.bin.

Workaround: Avoid mixing MMX and SSE instructions in the same code loop.
Status: For the steppings affected, see the Summary Table of Changes.

Errata (IA-32 Execution Layer)

100 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

23. An IA-32 Linux* application may receive an unexpected memory
access violation

Problem: If an IA-32 Linux application is running through the IA-32 EL and an interrupt is taken
during code execution, due to the way that stack space is allocated the application may
receive an unexpected error.

Implication: If the current memory stack pointer is close to the end of the allocated stack space an
interrupt received during the execution of an IA-32 Linux application may generate an
unexpected memory access violation and terminate execution of the program. This
erratum affects libia32x.so version 5.3.74.27.29 to 5.3.98.37.22

Workaround: None available at this time.
Status: For the steppings affected, see the Summary Table of Changes.

24. Wrong NEG EFlags cases
Problem: Some combinations of NEG instruction, flag consumer, and register values can cause an

incorrect flag to be emulated. If an application executes the NEGW reg instruction (16-
bit operand size), and the value of reg is 0x8000, producing the SF, and this flag is
consumed afterwards, then the emulated SF value can be incorrect.

If the application executes the NEGB reg instruction, when reg = *H (AH/BH/CH/DH)
and the corresponding *X value falls under one of the following two cases:

• *H=0 and *L!=0 [e.g. BX=0x0003]

• *H!=0 and *L=0; [e.g. DX=0x1000]

and this NEGB *H instruction produces the ZF or CF flags, which are consumed
afterwards by SETcc/Jcc/CMOVcc/FCMOVcc where cc = ae/b/e/ne, then the emulated
CF / ZF value can be wrong.

Implication: An unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

25. Lock XADD atomicity
Problem: Lock XADD executed as non-atomic during IA-32 EL interpreter phase (only at the

beginning of the execution). If an application uses lock XADD to perform inter-thread
synchronizations, the atomicity of the operation cannot be guaranteed during the first
tens execution of this lock XADD instruction.

Implication: Hang or other unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

26. Lock <***> + MOV weak order
Problem: A hyper-threaded application, running on top of an MP LINUX* platform, demonstrating

genuine thread-parallelisms and executes a LOCK XXX instruction as specified below,
immediately followed by a load from memory (for example, MOV reg, [mem]), can
view these two accesses as weakly ordered:

** =

ADC,ADD,SBB,SUB,INC,DEC,NOT,OR,XOR,AND,NEG,BTC/R/S,XADD,XCHG,CMPXCH

The bug is exposed only during the first several thousands of execution of this code.
Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

Intel® Itanium® Processor Specification Update 101
Specification Update April 2014

Errata (IA-32 Execution Layer)

27. SSE with behavior change
Problem: Possible wrong exception / suspension state in SSE code after behavior change.

Consider 3 code portions A,B,C, all containing SSE instructions. Assume all 3 run
several thousands of times, and later on the frequent internal paths between them
change. For example, A --> B is dominant at first 5K B entrances, but afterwards, it is
C --> B. In some cases, IA-32 EL may choose to modify the translation of B, this
modified translated B wrongly responds to exception or suspension – it can reconstruct
an incorrect IA-32 context.

Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

28. Thread not suspended
Problem: A thread-suspension can return as successful although the thread is running (Linux

only). When a hyper-threaded application, running on top of an MP LINUX platform,
demonstrating genuine thread-parallelisms and calls for thread suspension (either by a
kernel API or by using a threading library call), there is an extremely low chance that
the request will return a success indication but the thread will still be running. It
happens if a thread T1 is suspending a thread T2, and the following race condition
occurs: T2 is returning from a system call, and executing a specific gate unlock inside
BTGeneric (a very specific point inside BTGeneric), and exactly at the same time thread
T1 is trying to take this lock, there is a small chance that T2 will “believe” it succeeded
to block T1 from entering BTGeneric (in order to continue emulation), while in fact T1
already passed this point and continues execution. As a result, T2 may “believe” it
succeeded to suspend T1 in the 32-bit sense – while in fact T1 executes its IA-32
instructions. So suspension success indication is returned, while the suspension
actually did not take place.

Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

29. Extended-double to double precision
Problem: An extended double-precision fmul followed by double precision fst may result in a

slight precision deviation. If an application performs a floating-point multiplication with
extended precision that is followed by a store into double-precision element in the
memory, in some rare cases the result in memory can slightly deviate from the IA-32
compatible result.

The bug is exposed only after the first several thousands of execution of this specific
code. Unpredictable failure.

Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system
library file.

Status: For the steppings affected, see the Summary Tables of Changes.

30. CMPXCHG EAX, reg
Problem: Wrong CMPXCHG EAX/AL/AH, REG result during IA-32 EL interpreter phase. If an

application executes the CMPXCHG EAX/AL/AH,REG instruction, the eax/al/ah value
may incorrectly be kept unchanged in the first tens execution of this instruction.

Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

31. SSE with early loop exit
Problem: Possible incorrect XMM register content when exiting from an early exit of a loop. If an

IA-32 application contains a code sequence which:

Errata (IA-32 Execution Layer)

102 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

1. Forms a loop.
2. Contains SSE (1/2/3) instructions.
3. Has at least one early exit (a conditional jump leaving in the middle of the loop);

and this early exit is mostly untaken at the first several thousands of iterations of
the loop body.

4. An XMM register is written after the early exit, and this register is not read or
written between the loop-body-entrance and this early exit.

5. After several thousands of iterations of the loop body, there is an execution
instance when the early exit is taken immediately after at least one full iteration is
executed.

Then, it is possible that this XMM register will contain the wrong value after the exit.
Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

32. Exception/suspension in fnstsw-sahf-jcc
Problem: Wrong value of EAX can be reconstructed after exception/suspension occurs inside an

fnstsw-sahf-jcc sequence. If an exception or suspension occurs inside an fnstsw-sahf-
jcc sequence, in a hot block, a wrong value of EAX may be reconstructed:

• In most cases IA-32 EL chooses to restore the state before the fnstsw, and then the
operation is OK.

• If the restored state is between the SAHF and the Jcc, only the EAX is wrong, but
the Jcc is OK. In most cases, it will not cause any visible effect.

• If the restored state is between the FNSTSW and the SAHF, both the EAX and the
Jcc are incorrect.

Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

33. Load-misalign-reload
Problem: Wrong content loaded from memory in case it is misaligned and placed between two

identical loads overlapping with the other access. If an application executes the
following sequence Load; Misaligned Lock RMW; Reload; or Load; Misaligned Load;
Reload, and the following conditions hold:
1. The load and the reload can be statically identified as accessing exactly the same

address
2. The intermediate access is misaligned
3. The intermediate overlaps the loads’ address
4. Both loads are integer or both FP
5. Then, the value read at the reload may be incorrect.

Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

34. Incorrect register values in multi-block prefetch
Problem: Register corruption in some cases of dynamic data prefetch in multi-chain loops.

When:

Intel® Itanium® Processor Specification Update 103
Specification Update April 2014

Errata (IA-32 Execution Layer)

1. An IA-32 IP is translated in more than one chain (hot block) on same multi-chain
loop

2. There is a dynamic data prefetch generated for that IA-32 IP
3. The number of IA-32 IPs for which a dynamic data prefetch is generated for

exceeds 5, then IPF integer register#80 will be overwritten.
Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

35. Suspension while SMC observed
Problem: Wrong IA-32 state can be restored when a thread that inspected modified code is

resumed from suspension. Suppose a thread T1 that is executing a hot loop on
writable-page code, is suspended by another thread T2, and just upon resume it
detects that Self Modifying Code (SMC) has occurred in the loop body. In such a case, a
wrong state may be reconstructed.

Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

36. LINUX internal synchronization
Problem: LINUX internal synchronization object is not released properly. In the code that

releases an internal sync object, the order of memory barriers is not correct.
Implication: Unpredictable failure.
Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system

library file.
Status: For the steppings affected, see the Summary Tables of Changes.

37. Page crosser lock w/ permission change
Problem: If one thread performs a page-crosser locked instruction while another thread is

changing the write permission of one of the pages, the instruction may be viewed as
non-atomic and an extra access violation may occur. A hyper-threaded application in
which one thread performs an unaligned lock access which also crosses pages, while
one of these pages is a subject to a page-permission change in another thread, and the
application could have recovered from the access violation by an exception handler, the
memory may contain a partial write and 2 access violation events may be observed
instead of a single one.

Implication: Unpredictable failure.
Workaround: None at this time.
Status: For the steppings affected, see the Summary Tables of Changes.

38. Socketcall send/receive message may fail
Problem: If an IA-32 Linux application uses an OS socket system (socketcall) communication

message and the size of the message buffer is greater than 1 (msg_iovlen > 1), then
the socket message (sendmsg or recvmsg) may fail.

Implication: In most failed cases the system call will indicate a failure but in some extreme cases
the result of a failure may be unpredictable.

Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system
library file.

Status: For the steppings affected, see the Summary Tables of Changes.

Errata (IA-32 Execution Layer)

104 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

39. Interrupted long Linux system call that receives an interruption-
indication may unexpectedly modify an application buffer

Problem: An IA-32 Linux application may unexpectedly find its buffer modified under the
following conditions:

• The application issues a long Linux system call (a system call that can return due to
an asynchronous signal) that includes (pointers to) an initialized input buffer.

• This same application thread receives a system interrupt concurrently or soon after
the long system call is made, but before the system call reaches the kernel itself.

• The same thread receives a second system interrupt while the thread is inside of
the kernel and this second interrupt makes the kernel return an ‘interrupted’
indication to the thread without executing the system call.

Under these conditions the contents of the application’s input buffer may be partially or
completely over written.

Implication: The result of this erratum is unpredictable and is dependent upon the use of the
application and the application buffer.

Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system
library file.

Status: For the steppings affected, see the Summary Tables of Changes.

40. ZF flag may be mishandled when using a CMPXCHG8b in an If-Then-
Else code structure

Problem: The Zero Flag (ZF) may be unexpectedly consumed and cleared under the following
conditions:

• An application sets the ZF flag and enters an If-Then-Else code structure.

• One side of the If-Then-Else code block contains a CMPXCHG8b instruction, and

• The other side of the code structure does not use or change the ZF flag.

• The ZF flag is consumed after the If-Then-Else code structure is exited.

• The application code block is a frequently executed code sequence and is optimized
by IA-32 EL.

Under these conditions, the ZF flag may incorrectly be read as cleared after the
application has passed through the side of the If-Then-Else code structure that does not
contain the CMPXCHG8b instruction.

Implication: This issue has only been observed in a synthetic test environment. The results of this
erratum are unpredictable and dependent upon the use of the affected application.

Workaround: None at this time. This erratum is fixed in version 5.3.108 of the libia32x.so system
library file.

Status: For the steppings affected, see the Summary Tables of Changes.

41. Performing SSE divide of a denormal value by zero, while the DAZ bit
is set, will result in a zero-divide exception instead of invalid-
operation exception

Problem: If an IA-32 application, running on top of IA-32 EL, performs an SSE divide (DIVPD,
DIVSD, DIVPS or DIVSS) where the denominator is zero and the numerator is a
Denormal value, a zero-divide exception will be raised instead of an invalid-operation
exception.

Implication: If an IA-32 application turns DAZ on, and relies on specific exception type (invalid-
operation exception, which is raised when dividing zero by zero) to be raised, it can fail.
If the programmer suspects that the denominator may be zero, they should protect
both cases.

Workaround: A program that intends to handle zero division and uses DAZ, should check both for
invalid operation and zero-divide.

Intel® Itanium® Processor Specification Update 105
Specification Update April 2014

Errata (IA-32 Execution Layer)

Status: For the steppings affected, see the Summary Tables of Changes.

42. Asynchronous suspend and resume calls to a thread may result in
undefined behavior

Problem: If an IA-32 Windows-based application, running on top of IA-32 EL contains at least
three running threads T1, T2, T3; and T1 is trying to suspend T3, while at the same
time T2 tries to resume it (although T3 was not suspended), the results are undefined.

Implication: If an IA-32 application performs suspend-thread and resume-thread in an
asynchronous manner, including resuming running thread while another thread
attempts to suspend it, may fail in an unpredictable way. In most cases, this will result
in a process crash.

Workaround: The program should serialize the suspend-resume request for any of its threads or
avoid resume-thread calls to threads that are not suspended.

Status: For the steppings affected, see the Summary Tables of Changes.

43. Files under /proc/<pid> may contain incorrect data for emulated
processes

Problem: When examining /proc/pid, where ‘pid’ is an IA-32 process emulated by IA-32 EL, some
of the data may be incorrect.

When examined by the current process, the following fields will hold incorrect data:
• ‘exe’

• ‘statm’

• ‘status’ / memory and signal related fields

• ‘maps’

When examined by another process, most fields will show incorrect data.
Implication: Applications that rely on examining data of other processes (or specific fields for the

same process) through /proc interface may fail.
Workaround: None.
Status: For the steppings affected, see the Summary Tables of Changes.

44. Select pending signals and SIG_IGN dispositions are not inherited
cross-execve

Problem: Pending signals of the following types:
• SIGSEGV

• SIGBUS

• SIGFPE

• SIGILL

will not be inherited to new context after executing execve. The same is true for their
disposition.

Implication: Applications that rely on previous context for having the pending signals ready for
them, or their disposition will not get these signals and/or their disposition.

Workaround: Programs should not rely on inheritance, across execve call, of pending signals that are
also HW events, and neither on their disposition.

Status: For the steppings affected, see the Summary Tables of Changes.

45. Floating-point content reuse
Problem: If an IA-32 application, running on top of IA-32 Execution Layer, performs a sequence

of

Errata (IA-32 Execution Layer)

106 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

• FP/SSE Loads of a value, X, from an address on the stack, A, calculated based on
register R1

• Store to B calculated based on another register R2, B overlapping with A

— The calculation of B involves big back and forth offset from A, such as R2 <- R1
+ K, B = R2 - K, |K| > 0x4000

• Second FP/SSE Load from A (not based on R2)

Then, under some internal IA-32 EL conditions, IA-32 EL may reuse X as the result of
the 2nd load.

Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

46. FXSAVE with extensive SSE and floating-point usage may use
incorrect values from the XMM registers

Problem: If an IA-32 application performs a piece of code that:
• contains an FXSAVE instruction,

• contains SSE instructions,

• contains FP instructions,

• a rare internal condition of FP register pressure occurs in the block,

• and this code is in a hot block

Then, one or more of the XMM values can be wrongly saved in memory by the FXSAVE
instruction.

Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

47. Interruption of a loop with SSE may incorrectly restore XMM registers
Problem: If an IA-32 application

• performs SSE code in a loop,

• and this code is executed for several thousands of times,

• and it is interrupted by suspension or exception inside the loop

Then, on some internal conditions, the XMM register values (or part of them) may be
restored with wrong values.

Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

48. Unmasked numeric FP exception in FXTRCT may view wrong FP values
Problem: If an IA-32 application

• operates an a piece of code rich in FP operations,

• one of them is FXTRACT,

• and the same piece of code runs for several thousands of times, when at least one
of #I, #Z or #D exceptions, is unmasked,

• and then an unmasked numeric exception (#I/#Z/#D) occurs in this FXTRACT
operation,

Intel® Itanium® Processor Specification Update 107
Specification Update April 2014

Errata (IA-32 Execution Layer)

• and an exception handler consumes the FP register values

Then, on some rare internal conditions, an FP register value may be wrong
Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

49. On rare conditions, FP exceptions shortly after an FCLEX/FNCLEX may
view wrong status bits

Problem: If an IA-32 application
• operates an FCLEX or FNCLEX operation,

• and the same piece of code runs for several thousands of times,

• and then an exception occurs in this piece of code,

• and an exception handler consumes the FP status exception flags

Then, on some very rare internal conditions, an exception flag may be set although it
should have been cleared by the FCLEX

Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

50. An unmasked inexact SSE exception on some instructions may not be
restored correctly

Problem: If an IA-32 application
• performs one of the following instructions that contains an MMX register as

destination and SSE value (in an XMM register or in memory) as source, or vice
versa: CVTPS2PI, CVTTPS2PI, CVTPI2PS, CVTPI2PD, CVTPD2PI, CVTTPD2PI,
MOVDQ2Q, MOVQ2DQ,

• and this code is executed for several thousands of times,

• while the #I exception control-bit is unmasked,

• and such a #I exception occurs in this instruction,

Then, on some internal conditions, the exception context may be restored with wrong
values.

Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

51. SSE exceptions in a hot block may incorrectly set flags
Problem: If an IA-32 application, running on top of IA-32 Execution Layer, performs an SSE

instruction that causes a HW exception, after several thousands times of execution of
this block, and under some very rare internal conditions, then

• The C1 flag can be wrongly set to 0

• In case the instruction is LDMXCSR, the status bits can also get wrong values

Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

Errata (IA-32 Execution Layer)

108 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

52. Multiple exceptions between two code blocks may lead to an incorrect
context

Problem: If an IA-32 application encounters the following sequence:
• An exception occurs in a “young” piece of code, that is, executed for only a few

tens of times

• The application recovers from this exception (handles it) and continues execution

• A short time after, another exception occurs, this time on an “old” piece of code

Then, under some internal conditions, the context of the second exception may be
recovered incorrectly.

Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

53. Numeric SSE exceptions could be ignored initially after being
unmasked

Problem: If an IA-32 application encounters the following sequence:
• At some point, all SSE and FP numeric exceptions are masked,

• a block that

— Contains an SSE instruction S that may raise a numeric exception
— Contains no FP instruction

Runs for several thousands of times under this “mask SSE/FP” condition,
• afterwards, an MXCSR control bit, which is relevant to S, is unmasked (S can raise

a numeric exception now),

• and indeed this exception occurs

Then, under some very rare additional internal conditions, the exception is not
delivered and the application behaves as if the exception never happened.

Implication: Usage of incorrect data may result in unpredictable system behavior.
Workaround: Upgrade to the latest version.
Status: Fixed

54. Application writing to a guarded page on Windows may fail on access
violation

Problem: If an IA-32 application protects a page by a PAGE_GUARD attribute, then tries to
execute it under a structured exception handling closure, and examines the exception
code in the exception filter, may wrongly observe access-violation code instead of
guard-page-execution.

Implication: Applications that rely on the correct exception code when trying to execute a guarded
page, may fail with unexpected access violation.

Workaround: Do not use guard-page, or if you do, treat AV as a guard-page violation.
Status: Fixed

55. Job Memory Limit on Windows
Problem: If an IA-32 application is running with job memory limit, which is low enough so that

IA-32 EL cannot find the room for translations, it may slow down by many orders of
magnitude. The application seems to be in a complete hang.

Implication: Applications that run in such conditions hang.
Workaround: Do not use too severe job memory limit.

Intel® Itanium® Processor Specification Update 109
Specification Update April 2014

Errata (IA-32 Execution Layer)

Status: Fixed

56. Reloading a modified DLL may fail
Problem: If an IA-32 application

• Loads a DLL

• Runs its code (enough time to heat some blocks)

• Unloads it

• Modifies the DLL’s disk image (in the same directory)

• Reloads the modified DLL from the original disk place

May behave in an unpredictable manner.
Implication: Applications that performs the sequence above, will most probably abort or hang, but

can also behave in an unpredictable manner
Workaround: Upgrade to the latest version.
Status: Fixed

57. Linux* core file generation
Problem: If an executable, non-readable application crashes, and the environment is set for

core-file generation, a core file is generated and can be accessed by the user.
Implication: Parts of the binary may be exposed.
Workaround: Upgrade to the latest version.
Status: Fixed

58. Linux* EXECVE fails to launch NR file
Problem: If an IA-32 application executes EXECVE Linux system call for a non-readable

application, the EXECVE may return with a failure indication and the process will not be
launched.

Implication: The second process will not start.
Workaround: Upgrade to the latest version. Fix is in version 5, update 1 and later.
Status: Fixed

59. ptrace returns wrong system-call id
Problem: For IA-32 applications running on a Linux*-based operating system, if a debugger

queries an IA-32 application being inside a system call, which was the EAX value at the
call, it may get -1 instead of the correct system call ID.

Implication: The second process will not start.
Workaround: Upgrade to the latest version.
Status: Fixed

60. READV/WRITEV overflow
Problem: If an IA-32 application performs a READV or WRITEV Linux* system call, and the sum

of all lengths specified in the IO vector input is greater than 2G, the application may
abort instead of return with a failure indication.

Implication: The application will abort.
Workaround: Do not call READV/WRITEV with such a huge vector lengths.
Status: Fixed

61. More precise FP calculation result
Problem: A FP instruction which operates on single precision number while FPCW.PC is not single

precision mode may produce a more precise result that may not be IA-32 bit
compatible.

Errata (IA-32 Execution Layer)

110 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Implication: The application may get an incorrect or undefined result.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

62. Wrong exception flags in interrupted context
Problem: If an IA-32 thread is interrupted while executing X87 FP or SIMD FP instructions,

exception flags of FPSW or MXCSR in interrupted context may be incorrect.
Implication: Applications which depend on FPSW or MXCSR exception flags in interrupted context

may fail with undefined results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

63. Wrong CF/AF in interrupted context for LOCK SBB
Problem: If an IA-32 thread is interrupted while executing SBB instruction with LOCK prefix, CF/

AF of Eflags in interrupted context may be incorrect.
Implication: Applications which depend on the CF/AF Flags in interrupted context may fail with

undefined results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

64. Wrong ZF/PF/SF in interrupted context for AAM
Problem: If an IA-32 thread is interrupted while executing the AAM instruction, ZF/PF/SF of

Eflags in the interrupted context may be incorrect.
Implication: Applications which depend on ZF/PF/SF in an interrupted context may fail with

undefined results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

65. Unaligned RMW instruction interruption handling
Problem: Interruption on RMW (Read-Modify-Write) instructions which access unaligned memory

that crosses writable and non-writable pages may cause an unexpected access
violation.

Implication: Applications may abort unexpectedly.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

66. Unexpected access violation on PUSH/POP
Problem: XADD/XCHG instruction with two register operand and source operand is ESP may

cause unexpected access violation.
Implication: Applications may abort unexpectedly.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

67. Wrong interrupted EIP on instructions consuming PF
Problem: If an IA-32 thread is interrupted while executing instructions that consume PF, the EIP

in the interrupted context may be wrong.
Implication: Applications that depend on EIP in an interrupted context may fail with undefined

results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

Intel® Itanium® Processor Specification Update 111
Specification Update April 2014

Errata (IA-32 Execution Layer)

68. Interruption in unaligned CMPXCHG
Problem: If CMPXCHG mem, reg instruction, where mem is not naturally aligned, is interrupted,

the memory content may be wrong.
Implication: Applications may get undefined results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

69. Wrong exception masks in MXCSR
Problem: An IA-32 thread with unmasked exception bit in both FPCW and MXCSR may get wrong

MXCSR in cases where there is a FP stack fault exception.
Implication: Applications that unmask some SIMD exceptions may not get expected exceptions, and

the application may get undefined results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

70. Wrong flags in interrupted context
Problem: If an IA-32 thread with unmasked exception bits in FPCW or MXCSR is interrupted when

executing floating point comparison instructions, the corresponding flags in interrupted
context may be incorrect.

Implication: Applications that use these flags in the interrupted context may fail with undefined
results.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

71. Wrong TOP in interrupted context for SQRTSS
Problem: If an IA-32 thread is interrupted while executing SQRTSS, TOP of FPSW in the

interrupted context may be incorrect.
Implication: Applications that use FPSW.TOP in the interrupted context may fail with undefined

results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

72. Applications unexpectedly abort
Problem: Interruption on instructions that have memory source operand and modify PF may

cause an unexpected access violation.
Implication: Applications may abort unexpectedly.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

73. Lock instruction with unaligned memory reference
Problem: If there are two code sections which contain lock instructions with unaligned memory

references and a jump from the same predecessor, the lock instruction may produce
incorrect results.

Implication: Applications may fail with undefined results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

Errata (IA-32 Execution Layer)

112 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

74. Second 4/8/16-byte unaligned load
Problem: If the same 4/8/16-byte unaligned load is executed in different code sections, and the

first code section is branched from another code section with Flag producer – Jcc
sequence, the second 4/8/16-byte unaligned load may get incorrect results.

Implication: Applications may get undefined results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

75. Wrong FP registers value in interrupted context
Problem: If an IA-32 thread is interrupted while executing FP instructions followed by some

specific instructions, the FP registers value in the interrupted context may be incorrect.
Implication: Applications which depend on FP register value in an interrupted context may fail with

undefined results.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

76. LOCK NOTW [odd address] negates 4B
Problem: If LOCK NOTW refers to a misaligned (odd) address, the operation negates 32 bits

instead of 16. If a LOCK BTSL refers to a misaligned address that is 2-bytes aligned,
the process may crash.

Implication: If an IA-32 application uses LOCK NOTW for an odd memory address the results are
undefined. If it uses LOCK BTSL for address=4x+2, the process may terminate
unexpectedly.

Workaround: Align all memory areas that are accessed by LOCK operations; particularly LOCK NOTW
/ BTSL.

Status: See the Summary Table of Changes for affected versions.

77. LOCK RMW suspension atomicity break
Problem: If an IA-32 thread is suspended while executing LOCK Read-Modify-Write memory

operation, an inconsistent state may be observed.
Implication: Suspend-resume of a thread while performing a LOCK RMW operation may behave

non-atomically. If the application relies on the atomicity of the memory operation, the
results are undefined.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

78. Flags on CMPXCHGW
Problem: When CMPXCHGW instruction is executed, and the values of AX and the memory

operand has opposite signs, and the CMPXCHGW generated-flags are consumed by Jcc
or CMOVcc with signed-inequality semantics (LT/LE/GT/GE), a wrong decision can be
taken by the consumer.

Implication: If an application executes CMPXCHGW with the conditions above, the results are
undefined.

Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

79. Wrong ZF on cmpxchg8b
Problem: When CMPXCHG8B / ARPL / LSL / LAR / VER instruction turns the ZF off, after the

previous flags-producer generated zero-result with overflow, the ZF may erroneously
appear as set to the next consumer; when LSL or LAR instruction updates its
destination, but the new value happens to coincide with the old one, the ZF flag is
erroneously cleared.

Intel® Itanium® Processor Specification Update 113
Specification Update April 2014

Errata (IA-32 Execution Layer)

Implication: If an application executes one of the scenarios above, and relies on the correct value of
ZF, the results are undefined.

Workaround: Do not use LSL/LAR, or if you do, do not rely on ZF to indicate a write that is not
changing the value.

Status: See the Summary Table of Changes for affected versions.

80. Flags at interrupt after then/else
Problem: Exception or suspension right at the beginning of the “else” part of an “if” construct, or

right after it, can view wrong values of flags. The same problem occurs if the exception
or suspension comes at the end of CMP-SBB/ADC-MOV [mem].

Implication: For applications that fall under this sequence of conditions, the results are undefined.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

81. DIVPS [m128] interruption crash
Problem: If an IA-32 thread is suspended at the beginning of executing DIVPS with memory

source, or if the memory access faults, the application may terminate unexpectedly.
Implication: Suspend-resume of a thread while performing a DIVPS [m128], or allowing the

memory access to fault and handle the exception, may result in abnormal termination
of the process (abort).

Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

82. Crash on optimization sequence
Problem: If 2 consecutive very short code sections are running several thousands of times, on

some extremely rare internal conditions the process may terminate unexpectedly.
Implication: Applications encountering these conditions may abort.
Workaround: None at this time.
Status: See the Summary Table of Changes for affected versions.

83. Ignored Self Modifying BTX
Problem: If an application modifies its own code by using BTS/BTR/BTC as the modifying

instruction, and the second operand (bit offset) is greater then the operand size, the
modified code may remain unobserved (continue executing the old version).

Implication: If an application relies self modifying code using BTX, the results are undefined.
Workaround: Avoid using BTS/BTR/BTC for self modifying code operation.
Status: See the Summary Table of Changes for affected versions.

84. Lost signal in spin-loop
Problem: If an application spin-loop waits for a signal to exit, and the signal arrives just after the

block is translated, and at the same time another thread reaches the same point, the
signal may be lost and the spin loop is executed indefinitely.

Implication: Applications that use spin-loop to wait on a signal may not operate as expected.
Workaround: Time-out spin-loops that are waiting for signals.
Status: Linux only. See the Summary Table of Changes for affected versions.

85. Debugger aborts on “fail to attach”
Problem: On some rare conditions, when a debugger process tries ptrace-attach to a debugged

process, the attach may return a failure, and the debugger terminates unexpectedly.
Implication: The debugger application may terminate unexpectedly.

Errata (IA-32 Execution Layer)

114 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

Workaround: Retry the debugger (The failure is timing-dependent and it is very likely to succeed
next time).

Status: Linux only. See the Summary Table of Changes for affected versions.

Intel® Itanium® Processor Specification Update 115
Specification Update April 2014

IA-32 Execution Layer Specification Clarifications

10 IA-32 Execution Layer
Specification Clarifications

There are no new IA-32 Execution Layer Specification Clarifications for this
revision of the Intel® Itanium® Processor Specification Update.

1. Aliasing of MMX registers to FP registers

If a value is written to the FP register, and an MMX™ operation is performed to the
corresponding MMX register, the exponent portion of the corresponding FP register may
not be written to 1’s if the register’s significand is unchanged by the MMX instruction.

As described in the IA-32 Intel® Architecture Software Developer’s Manual, the EMMS
instruction, which empties the MMX state by setting the tags in the x87 FPU tag word to
11B, must be executed at the end of an MMX routine before calling other routines that
can execute FP instructions.

2. Floating-point and SSE precision

Floating-point and SSE instructions like RCPPS, RCPSS, RSQRTPS, and RSQRTSS may
provide slightly more precise results than Itanium processors or IA-32 Intel processors
since IA-32 execution layer may merge separate FADD and FMUL instructions into a
single FMA instruction or replace two roundings by one rounding. In particular,
subtraction of two infinite or ‘almost infinite’ numbers that originated from a
multiplication operation may result in a significant difference than on a native IA-32
processor due to the different rounding effects.

3. CPUID values represent the IA-32 execution layer processor model

CPUID return values accurately represent the IA-32 execution layer processor model,
but may not represent the physical processor in the system. The vendor and family
information are correct for IA-32 execution layer, but cache, translation lookaside
buffer (TLB), and other processor-specific information is not supported. The CPUID
values returned by IA-32 execution layer will be documented in the Intel® Processor
Identification and the CPUID Instruction Application Note (AP-485).

4. IA-32 execution layer resides in the application virtual address space

IA-32 execution layer components, memory for translated code blocks, and IA-32
execution layer data structures, all reside in the application virtual address space.
Memory requests may be denied if insufficient memory is available. Non-relocatable
DLLs may fail to load if that memory is already occupied.

5. Signal delivery may be postponed during code translation or garbage
collection

During code translation or garbage collection, signal delivery may be postponed. There
is no maximum time-limit, but the delivery is guaranteed to happen eventually.

6. Aborting threads could cause other process threads to hang

An application running on IA-32 execution layer may use internal IA-32 execution layer
critical objects. Aborting a thread that holds an IA-32 execution layer critical object
could cause the other threads in the process to hang.

IA-32 Execution Layer Specification Clarifications

116 Intel® Itanium® Processor Specification Update
April 2014 Specification Update

7. Core dump files cannot be produced correctly when an IA-32 process
is aborted

When an IA-32 process is aborted, a core dump file can often be used for debugging
purposes. Unfortunately, at this time, the core dump files created from an aborted
process using IA-32 execution layer does not contain valid information.

8. The I/O Privilege Level (IOPL) mechanism is not implemented

The I/O Privilege Level (IOPL) mechanism is not implemented and is hard coded to 0.
As a result, all applications that use the IN or OUT instructions, as well as CLI and STI,
will result in a #GP fault.

9. Software interrupts must be supported by the OS

Software interrupts (INT instructions) are only implemented to the extent that they are
supported by the OS, by converting them into an Itanium exception.

10. Intersegment calls require OS mechanism

FAR CALL, FAR JMP, FAR RET, SYSENTER, and SYSEXIT instructions are supported only
when there is a standard interface mechanism in the OS. Call gates and hardware task
switch mechanisms are not supported.

11. Thread creation may be reported incorrectly to the OS

Thread creation may succeed according to the OS, but could later fail inside IA-32
execution layer due to insufficient resources (memory/handle/semaphore). The created
thread will never start running.

12. Core-dump file may contain Itanium® architecture details

When an IA-32 application running on IA-32 execution layer fails such that it is
expected to generate a core-dump file, the generated file reflects Itanium architecture
details rather than IA-32 details. Only IA-32 EL Linux versions between 5.3.78 and
5.3.85.34.22 are affected.

13. IA-32 process may hang while generating core-dump file

When a multithreaded IA-32 application running on IA-32 execution layer in Linux fails
such that it is expected to generate a core-dump file, the process may hang. IA-32 EL
Linux versions before 5.3.88.34.22 are affected.

14. DLL unload issue

Windows multithreaded applications that perform a dynamic unload of a DLL may
receive an Access Violation exception. This may result in the application being
unexpectedly terminated. This behavior has only been observed in a synthetic test
environment.

§

	1 Revision History
	2 Preface
	3 Summary Table of Changes
	4 Identification Information
	5 Limited Support for Mixed Steppings
	6 Errata (Processor and PAL)
	7 Specification Clarifications
	8 Documentation Changes
	9 Errata (IA-32 Execution Layer)
	10 IA-32 Execution Layer Specification Clarifications

